COMMITTENTE:

DIREZIONE LAVORI:

APPALTATORE:

TELESE S.c.a r.l.

Consorzio Telese Società Consortile a Responsabilità Limitata

SYSTIA

PROGETTAZIONE: MANDATARIA:

MANDANTI:

IL DIRETTORE DEAL PROGETTAZIONE:

Ing. L. LACOPC

Responsabile integrazione fra le vari prestazioni specialistiche

PROGETTO ESECUTIVO

ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA CANCELLO - BENEVENTO II LOTTO FUNZIONALE FRASSO TELESINO – VITULANO 2° SUBLOTTO TELESE – SAN LORENZO

RELAZIONE

OPERE D'ARTE VIABILITÀ

VI15

Ponte Vallone Codalecchio - PONTE dal km 34+871.74 al km 34+893.74 Relazione di calcolo impalcato

APPALTATORE			
		SCA	ıLA:
IL DIRETTORÉ TÉCNICO			-
COMMESSA LOTTO FASE	ENTE TIPO DOC. OPERA/DI	SCIPLINA PROGR. REV.	
I F 2 R 2 2 E	ZZ CL VI1	5 0 8 0 0 1 B	

Rev.	Descrizione	Redatto	Data	Verificato	Data	Approvato	Data	Autorizzato Data
_	EMISSIONE	C.Pinti	23/06/21	G.Coppa	24/06/21	L.Bruzzone	24/06/21	IL PROGETTISTA
Α	EIVIIOSIUNE		23/06/21		24/06/21		24/06/21	F. DI IULLO
В	REVISIONE A SEGUITO	C.Pinti	29/10/21	G.Coppa	30/10/21	L.Bruzzone	30/10/21	PANCESC
P	RDV		29/10/21		00/10/21		00/10/21	ORDINE
								THE SOLEN
								14128
								(° * °)
								30/10/21

File: IF2R.2.2.E.ZZ.CL.VI.15.0.8.001.B.doc	n. Elab.:

APPALTATORE: TELESE S.c.a r.l. Consorzio Telese Società Consortile a Responsabilità Limitata			ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA CANCELLO-BENEVENTO II LOTTO FUNZIONALE FRASSO TELESINO – VITULANO 2° SUBLOTTO TELESE – SAN LORENZO						
PROGETTAZIONE:									
Mandataria:	Mandante:								
SYSTRA S.A.	SWS Engineering S.p.A.	SYSTRA-SOTECNI S.p.A.	PROGETTO	ESECUT	ΓΙνο				
OPERE D'ARTE VIABILITÀ Relazione di calcolo impalcato			COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO	
			IF2R	2.2.E.ZZ	CL	VI.15.0.8.001	В	3 di 75	

SOMMARIO

1	PR	EMESSA7
	1.1	DESCRIZIONE DELL'OPERA
2	DO	CUMENTI DI RIFERIMENTO9
,	2.1	NORMATIVA9
3	UN	ITÀ DI MISURA11
4	CA	RATTERISTICHE DEI MATERIALI12
,	4.1	CALCESTRUZZO12
,	4.2	ACCIAIO PER ARMATURE ORDINARIE
	4.3	ACCIAIO PER LE TRAVI DI IMPALCATO
	4.4	BULLONI
	4.5	COPRIFERRI MINIMI
5	CA	RATTERIZZAZIONE SISMICA DEL SITO14
	5.1	VITA NOMINALE E CLASSE D'USO DELL'OPERA15
	5.2	PARAMETRI DI PERICOLOSITÀ SISMICA
	5.3	CATEGORIA DI SOTTOSUOLO E CATEGORIA TOPOGRAFICA
6	AN	ALISI DEI CARICHI E CONDIZIONI DI CARICO24
	6.1	CARICHI PERMANENTI STRUTTURALI G ₁
	6.2	CARICHI PERMANENTI NON STRUTTURALI G ₂
	6.2.	1 Massicciata, armamento e impermeabilizzazione G _{2,1}
	6.2.	2 Altri carichi permanenti non strutturali G _{2,2} 25
	6.3	CARICHI ACCIDENTALI Q ₁

APPALTATORE: TELESE S.c.a r.l. ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA CANCELLO-BENEVENTO Consorzio Telese Società Consortile a Responsabilità Limitata II LOTTO FUNZIONALE FRASSO TELESINO – VITULANO PROGETTAZIONE: 2° SUBLOTTO TELESE – SAN LORENZO Mandataria: Mandante: SYSTRA S.A. SWS Engineering S.p.A. SYSTRA-SOTECNI S.p.A. PROGETTO ESECUTIVO OPERE D'ARTE VIABILITÀ CODIFICA COMMESSA LOTTO DOCUMENTO REV. **FOGLIO** Relazione di calcolo impalcato IF2R 2.2.E.ZZ VI.15.0.8.001 4 di 75 CL В

	6.3.	1	Effetti dinamici	25
	6.3.	2	Carichi verticali	26
	6.3.	3	Numero di treni contemporanei	28
6	.4	TRE	NO SCARICO Q ₂	28
6	.5	Azı	ONI DI AVVIAMENTO E FRENATURA Q ₃	28
6	.6	Azı	ONE CENTRIFUGA Q4	29
6	.7	Azı	ONE LATERALE (SERPEGGIO) Q5	31
6	.8	Azı	ONE DEL VENTO Q ₆	31
6	.9	EFF	ETTI AERODINAMICI ASSOCIATI AL PASSAGGIO DEI CONVOGLI FERROVIARI	36
6	.10	CAF	RICHI SUI MARCIAPIEDI	37
6	.11	Azı	ONI SISMICHE Q7	37
	6.11	1.1	Parametri sismici di calcolo	37
	6.11	1.1	Spettri di risposta elastici	37
6	.12	DER	RAGLIAMENTO Q9	38
7	CO	MBI	NAZIONI DI CARICO	41
8	CR	ITE	RI DI VERIFICA	48
8	.1	VER	RIFICHE AGLI STATI LIMITE DI ESERCIZIO	49
	8.1.	1	Verifica a fessurazione	49
	8.1.	2	Verifica delle tensioni in esercizio	50
	8.1.	3	Verifica di deformabilità e vibrazioni	50
8	.2	VER	RIFICHE AGLI STATI LIMITE ULTIMI	53
	8.2.	1	Sollecitazioni flettenti	53

APPALTATORE: TELESE S.c.a r.l. Consorzio Telese Società Consortile a Responsabilità Limitata			ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA CANCELLO-BENEVENTO II LOTTO FUNZIONALE FRASSO TELESINO – VITULANO						
PROGETTAZIONE:			2° SUBLOTTO TELESE – SAN LORENZO						
Mandataria:	Mandante:								
SYSTRA S.A.	SWS Engineering S.p.A.	SYSTRA-SOTECNI S.p.A.	PROGETTO	ESECU1	ΓΙVΟ				
OPERE D'ARTE VIABILITÀ			COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO	
Relazione di calcolo impalcato			IF2R	2.2.E.ZZ	CL	VI.15.0.8.001	В	5 di 75	

	8.2.	2	Sollecitazioni taglianti	54
9	AN	ALI	SI DELLE SOLLECITAZIONI	56
9	.1	SO	LLECITAZIONI SULLA FASCIA BRS	56
9	.2	TRA	AVE DI BORDO FASCIA	57
9	.3	RIE	PILOGO DELLE SOLLECITAZIONI SULLA TRAVE DI BORDO FASCIA	60
	9.3.	1	MODELLO DI CARICO: TRENO LM71	60
	9.3.	2	MODELLO DI CARICO: TRENO SW/2	60
10	VEI	RIFI	CHE DI RESISTENZA	61
11	VEF	RIFI	CHE DI DEFORMABILITA'	62
1	1.1	CAL	COLO DELLA FREQUENZA PROPRIA DELL'IMPALCATO	62
1	1.2	VER	RIFICHE DI DEFORMABILITÀ DELL'IMPALCATO	63
	11.2	2.1	Freccia sotto i carichi accidentali dinamizzati	63
	11.2	2.2	Rotazione agli appoggi:	63
	11.2	2.3	Sghembo	63
12	VEI	RIFI	CA DEGLI EFFETTI LOCALI – SBALZO DELL'IMPALCATO	64
1	2.1	Sou	LECITAZIONI AGENTI E VERIFICHE	64
	12.1	1.1	Modello di calcolo e analisi dei carichi	64
	12.1	1.2	Analisi delle sollecitazioni ed armature della soletta	64
	12.1	1.3	Verifiche	65
13	REA	AZI(ONI SUGLI APPOGGI	71
14	GIU	INT	I DI DILATAZIONE	72
1	4.1	SPC	DSTAMENTI	72

APPALTATORE	TELES Consorzio Telese Società Consort		ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA CANCELLO-BENEVENTO II LOTTO FUNZIONALE FRASSO TELESINO – VITULANO				ANO		
PROGETTAZIONE:			2° SUBLOTTO TELESE – SAN LORENZO						
Mandataria:	Mandante:		L GODEO.		02 0/1112	OKLINEO			
SYSTRA S.A.	SWS Engineering S.p.A.	SYSTRA-SOTECNI S.p.A.	PROGETTO	ESECU1	ΓΙνο				
OPERE D'ARTE VIABILITÀ			COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO	
Relazione di calcolo impalcato			IF2R	2.2.E.ZZ	CL	VI.15.0.8.001	В	6 di 75	

14.2	CORSA DEGLI APPARECCHI DI APPOGGIO MOBILI	74
14.3	ESCURSIONE DEI GIUNTI	75
14.4	AMPIEZZA DEI VARCHI	75

APPALTATORE: TELESE S.c.a r.l. ITINERARIO NAPOLI - BARI RADDOPPIO TRATTA CANCELLO-BENEVENTO Consorzio Telese Società Consortile a Responsabilità Limitata II LOTTO FUNZIONALE FRASSO TELESINO – VITULANO PROGETTAZIONE: 2° SUBLOTTO TELESE - SAN LORENZO Mandataria: Mandante: SWS Engineering S.p.A. SYSTRA S.A. SYSTRA-SOTECNI S.p.A. **PROGETTO ESECUTIVO** OPERE D'ARTE VIABILITÀ COMMESSA LOTTO CODIFICA DOCUMENTO REV. **FOGLIO**

IF2R

2.2.E.ZZ

CL

VI.15.0.8.001

В

7 di 75

1 PREMESSA

Relazione di calcolo impalcato

Il presente documento si inserisce nell'ambito della redazione degli elaborati tecnici di progetto definitivo del Raddoppio dell'Itinerario Ferroviario Napoli-Bari nella Tratta Cancello-Benevento/ 2° Lotto Funzionale Frasso Telesino – Vitulano.

Le Analisi e Verifiche nel seguito esposte fanno in particolare riferimento alla tipologia di impalcato a travi a doppio T incorporate di luce pari a 22m prevista in corrispondenza del VI15 a singola campata.

La modellazione dell'azione sismica e delle strutture è stata eseguita mediante il programma di calcolo strutturale agli elementi finiti Midas-Gen.

1.1 DESCRIZIONE DELL'OPERA

Il viadotto in esame è costituito da un'unica campata di luce pari a 22 m. L'impalcato è costituito da 18 travi metalliche HL1100M incorporate da un getto di completamento in c.a. che realizza anche gli aggetti laterali. La larghezza complessiva dell'impalcato è pari a 13.70 m su cui gravano 2 binari posti ad interasse pari a 4.00 m, in maniera simmetrica rispetto alla mezzeria del viadotto.

La distanza tra il piano ferro e l'intradosso impalcato risulta pari a 2.05 m. L'opera in oggetto è progettato per una vita nominale V_N pari a 75 anni. Gli si attribuisce inoltre una classe d'uso III ("Ponti e reti ferroviarie la cui interruzione provochi situazioni di emergenza.") ai sensi del D. Min. 14/01/2008, da cui scaturisce un coefficiente d'uso CU = 1.5. I dati di progetto per la verifica dell'impalcato sono:

Caratteristiche tracciato

Raggio di curvatura: Rettifilo

Sopraelevazione della rotaia: sr= 10 cm

Velocità di progetto V1= 160 km/h

APPALTATORE	TELES Consorzio Telese Società Consort		ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA CANCELLO-BENEVENTO II LOTTO FUNZIONALE FRASSO TELESINO – VITULANO			ANO		
PROGETTAZIONE:			2° SUBLOTTO TELESE – SAN LORENZO					
Mandataria:	Mandante:							
SYSTRA S.A.	SWS Engineering S.p.A.	SYSTRA-SOTECNI S.p.A.	PROGETTO	ESECU1	ΓΙVΟ			
OPERE D'ARTE VIABILITÀ			COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
Relazione di calcolo impalcato			IF2R	2.2.E.ZZ	CL	VI.15.0.8.001	В	8 di 75

Ponte di categoria: Cat A

Numero binari: nb=2

Caratteristiche geometriche impalcato

Lunghezza dell'impalcato di progetto: Limp= 22 m

Larghezza strutturale dell'impalcato: Bi= 10.70 m

Larghezza del ballast: Bb= 770 cm

Spessore medio del ballast: Sb= 80 cm

Larghezza di ripartizione per verifiche: Brs= 4.0 m

Spessori dell'impalcato (min - max): Ssn=122 cm - Ssm=131 cm

Di seguitosi riporta la sezione rappresentativa dell'impalcato:

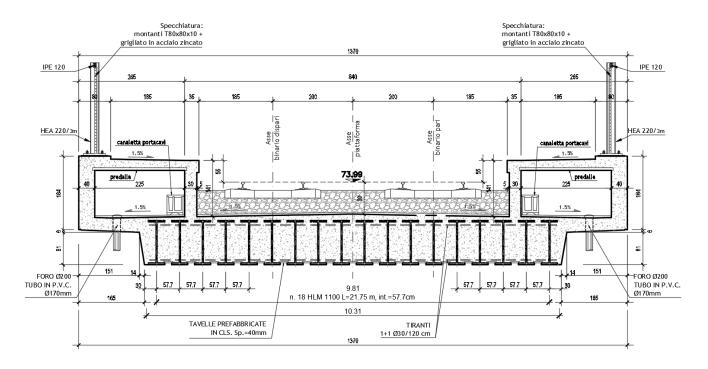


Figura 1: Sezione trasversale impalcato

APPALTATORE	TELES Consorzio Telese Società Con sort		ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA CANCELLO-BENEVENTO II LOTTO FUNZIONALE FRASSO TELESINO – VITULANO 2° SUBLOTTO TELESE – SAN LORENZO			_	ANO	
PROGETTAZION						ANO		
Mandataria:	Mandante:							
SYSTRA S.A.	SWS Engineering S.p.A.	SYSTRA-SOTECNI S.p.A.	PROGETTO	ESECU1	ΓΙVΟ			
OPERE D'ARTE VIABILITÀ Relazione di calcolo impalcato			COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
			IF2R	2.2.E.ZZ	CL	VI.15.0.8.001	В	9 di 75

2 DOCUMENTI DI RIFERIMENTO

2.1 NORMATIVA

L'analisi dell'opera e le verifiche degli elementi strutturali sono state condotte in accordo con le vigenti disposizioni legislative e in particolare con le seguenti norme e circolari:

- Rif. [1] Ministero delle Infrastrutture, DM 14 gennaio 2008, «Nuove Norme Tecniche per le Costruzioni»
- Rif. [2] Ministero delle Infrastrutture e Trasporti, circolare 2 febbraio 2009, n. 617 C.S.LL.PP., «Istruzioni per l'applicazione delle Nuove norme tecniche per le costruzioni di cui al decreto ministeriale 14 gennaio 2008»
- Rif. [3] Manuale di Progettazione delle Opere Civili: PARTE I / Aspetti Generali (RFI DTC SI MA IFS 001 A)
- Rif. [4] Manuale di Progettazione delle Opere Civili: PARTE II Sezione 1 / Ambiente e Geologia (RFI DTC SI AG MA IFS 001 A rev 30/12/2016)
- Rif. [5] Manuale di Progettazione delle Opere Civili: PARTE II Sezione 2 / Ponti e Strutture (
 RFI DTC SI PS MA IFS 001 A– rev 30/12/2016)
- Rif. [6] Manuale di Progettazione delle Opere Civili: PARTE II Sezione 3 / Corpo Stradale (RFI DTC SI CS MA IFS 001 A– rev 30/12/2016)
- Rif. [7] Manuale di Progettazione delle Opere Civili: PARTE II Sezione 4 / Gallerie (RFI DTC SI GA MA IFS 001 A– rev 30/12/2016)
- Rif. [8] Manuale di Progettazione delle Opere Civili: PARTE II Sezione 5 / Prescrizioni per i Marciapiedi e le Pensiline delle Stazioni Ferroviarie a servizio dei Viaggiatori (RFI DTC SI CS MA IFS 002 A– rev 30/12/2016)
- Rif. [9] Manuale di Progettazione delle Opere Civili: PARTE II Sezione 6 / Sagome e Profilo minimo degli ostacoli (RFI DTC SI CS MA IFS 003 A– rev 30/12/2016)
- Rif. [10] Regolamento (UE) N.1299/2014 della Commissione del 18 Novembre 2014 relativo alle specifiche tecniche di interoperabilità per il sottosistema "infrastruttura" del sistema ferroviario dell'Unione europea
- Rif. [11] Eurocodice 1 Azioni sulle strutture, Parte 1-4: Azioni in generale Azioni del vento (UNI EN 1991-1-4)

APPALTATORE	TELES Consorzio Telese Società Consorti		ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA CANCELLO-BENEVENTO II LOTTO FUNZIONALE FRASSO TELESINO – VITULA 2° SUBLOTTO TELESE – SAN LORENZO						
PROGETTAZIO	NE:					ANO			
Mandataria:	Mandante:		- 552251		0_ 0/				
SYSTRA S.A.	SWS Engineering S.p.A.	SYSTRA-SOTECNI S.p.A.	PROGETTO	ESECU	ΓΙVΟ				
OPERE D'ARTE VIABILITÀ		COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO		
Relazione di calcolo impalcato			IF2R	2.2.E.ZZ	CL	VI.15.0.8.001	В	10 di 75	

- Rif. [12] UNI 11104: Calcestruzzo : Specificazione, prestazione, produzione e conformità – Istruzioni complementari per l'applicazione della EN 206-1

APPALTATORE	TELES Consorzio Telese Società Consor			O TRATT	A CANCEL	LO-BENEVEN		ANO
PROGETTAZIONE:			II LOTTO FUNZIONALE FRASSO TELESINO – VITULANO 2° SUBLOTTO TELESE – SAN LORENZO					
Mandataria:	Mandante:							
SYSTRA S.A.	SWS Engineering S.p.A.	SYSTRA-SOTECNI S.p.A.	PROGETTO ESECUTIVO					
OPERE D'ARTI	VIABILITÀ		COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
Relazione di calcolo impalcato			IF2R	2.2.E.ZZ	CL	VI.15.0.8.001	В	11 di 75

3 UNITÀ DI MISURA

Le unità di misura usate nella presente relazione sono:

lunghezze [m]

• forze [kN]

momenti [kNm]

tensioni [MPa]

APPALTATORE	TELES Consorzio Telese Società Consort		ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA CANCELLO-BENEVENTO II LOTTO FUNZIONALE FRASSO TELESINO – VITULAN 2° SUBLOTTO TELESE – SAN LORENZO			II ANO		
PROGETTAZIO						ANO		
Mandataria:	Mandante:							
SYSTRA S.A.	SWS Engineering S.p.A.	SYSTRA-SOTECNI S.p.A.	PROGETTO	ESECU1	ΓΙVO			
OPERE D'ARTE VIABILITÀ		COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO	
Relazione di calcolo impalcato			IF2R	2.2.E.ZZ	CL	VI.15.0.8.001	В	12 di 75

4 CARATTERISTICHE DEI MATERIALI

4.1 CALCESTRUZZO

Per il getto in opera della soletta di impalcato, si adotta un calcestruzzo con le caratteristiche riportate di seguito:

Classe d'esposizione: XC4/XF1 C32/40 $f_{ck} \ge 32$ MPa $R_{ck} \ge 40$ MPa Classe minima di consistenza: S4

In accordo con le norme vigenti, risulta per il materiale in esame:

Resistenza caratteristica cubica a 28 giorni	R _{ck}	40	N/mm ²
Resistenza caratteristica cilindrica a 28 giorni	$f_{ck} = 0.83 \; R_{ck}$	33.2	N/mm²
Valore medio della resistenza cilindrica	$f_{cm} = f_{ck} + 8$	41.2	N/mm ²
Resistenza di calcolo breve durata	$f_{\text{cd (Breve durata)}} = f_{\text{ck}} / 1.5$	22.13	N/mm ²
Resistenza di calcolo lunga durata	$f_{\text{cd (Lungo durata)}} = 0.85 f_{\text{cd}}$	18.81	N/mm ²
Resistenza media a trazione assiale	$f_{ctm} = 0.3 (f_{ck})^{2/3}$ [Rck<50/60]	3.09	N/mm ²
Resistenza caratteristica a trazione	$f_{ctk\ 0,05}=\ 0.7\ f_{ctm}$	2.16	N/mm ²
Resistenza media a trazione per flessione	$f_{cfm} = 1.2 f_{ctm}$	3.70	N/mm ²
Resistenza di calcolo a trazione	$f_{ctd} = f_{ctk \ 0,05} / \ 1.5$	1.44	N/mm ²
Modulo di Young	$E = 22000 (f_{cm}/10)^{0.3}$	33642	N/mm ²
4.2 ACCIAIO PER ARMATURE ORDINA	RIE		
Classe acciaio per armature ordinarie		B450C	
Tensione di snervamento caratteristica		f _{yk} ≥ 450	MPa
Tensione caratteristica di rottura		f _t ≥ 540) MPa
Modulo di elasticità		E _a =2100	000 MPa
4.3 ACCIAIO PER LE TRAVI DI IMPALO	АТО		
Profilati: S355 J0 secondo UNI EN 10025			

Profilati: 5355 Ju secondo Uni En 10025	
Modulo di elasticità	E _a =210000 MPa
Tensione di snervamento caratteristica	f _{yk} ≥ 355 MPa
Tensione di snervamento rottura	f _{yt} ≥ 430 MPa
Tensione di snervamento di progetto	f _{vd} ≥ 262 MPa

APPALTATORE:	TELES Consorzio Telese Società Consort		ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA CANCELLO-BENEVENTO II LOTTO FUNZIONALE FRASSO TELESINO – VITULANO						
PROGETTAZION	NE:		2° SUBLOTTO TELESE – SAN LORENZO			ANO			
Mandataria:	Mandante:								
SYSTRA S.A.	SWS Engineering S.p.A.	SYSTRA-SOTECNI S.p.A.	PROGETTO	ESECU1	ΓΙVΟ				
OPERE D'ARTE VIABILITÀ		COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO		
Relazione di calcolo impalcato			IF2R	2.2.E.ZZ	CL	VI.15.0.8.001	В	13 di 75	

4.4 BULLONI

Classe vite 8.8 - Classe dado 8

Tensione di snervamento caratteristica $f_{yb} \geq 649 \ \text{MPa}$ Tensione di snervamento rottura $f_{tb} \geq 800 \ \text{MPa}$ Resistenza a taglio del bullone $f_{yd} \geq 384 \ \text{MPa}$ Tensione di snervamento di progetto $f_{yd} \geq 262 \ \text{MPa}$

4.5 COPRIFERRI MINIMI

Si riportano di seguito i copriferri minimi per le strutture in calcestruzzo armato:

Soletta impalcato 4.0 cm

APPALTATORE: TELESE s.c.a r.l. Consorzio Telese Società Consortile a Responsabilità Limitata			ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA CANCELLO-BENEVENTO II LOTTO FUNZIONALE FRASSO TELESINO – VITULANO					
PROGETTAZIO			2° SUBLOTTO TELESE – SAN LORENZO			ANO		
Mandataria:	Mandante:							
SYSTRA S.A.	SWS Engineering S.p.A.	SYSTRA-SOTECNI S.p.A.	PROGETTO	ESECU1	ΓΙνο			
OPERE D'ARTE VIABILITÀ		COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO	
Relazione di calcolo impalcato			IF2R	2.2.E.ZZ	CL	VI.15.0.8.001	В	14 di 75

5 CARATTERIZZAZIONE SISMICA DEL SITO

Nel seguente paragrafo è riportata la valutazione dei parametri di pericolosità sismica utili alla determinazione delle azioni sismiche di progetto dell'opera cui si riferisce il presente documento, in accordo a quanto specificato a riguardo dal D.M. 14 gennaio 2008 e relativa circolare applicativa.

L'opera in questione rientra in particolare nell'ambito del Progetto di Raddoppio della tratta Ferroviaria Frasso Telesino – Vitulano, che si sviluppa per circa 30Km, da ovest verso est, attraversando il territorio di diverse località tra cui Dugenta/Frasso (BN), Amorosi (BN), Telese(BN), Solopaca(BN), San Lorenzo Maggiore(BN), Ponte(BN), Torrecuso(BN), Vitulano (BN), Benevento – Località Roseto (BN).

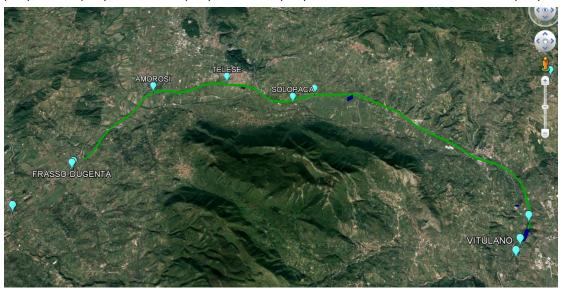


Figura 2 – Configurazione planimetrica tracciato

In considerazione della variabilità dei parametri di pericolosità sismica con la localizzazione geografica del sito, ed allo scopo di individuare dei tratti omogenei nell'ambito dei quali assumere costanti detti parametri, si è provveduto a suddividere il tracciato in tre sottozone simiche, a seguito di un esame generale del livello pericolosità sismica dell'area che evidenzia un graduale incremento dell'intensità sismica da ovest verso est; nella fattispecie le zone sismiche "omogenee" individuate, sono quelle di seguito elencate:

- Zona S1: da pk 16+500 a pk 22+500 (Dugenta/Frasso Amorosi)
- Zona S2: da pk 22+500 a pk 30+000 (Amorosi Solopaca)
- Zona S3: da pk 30+000 a pk 46+577 (Solopaca-Ponte-Vitulano)

Per ciascuna zona, sono stati dunque individuati, in funzione del periodo di riferimento dell'azione sismica (VR), i parametri di pericolosità sismica (ag/g, F0 e Tc*) rappresentativi delle più severe condizioni di pericolosità riscontrabili lungo il tratto di riferimento, assumendo in particolare come riferimento le seguenti Località

APPALTATORE:	TELES Consorzio Telese Società Consort		ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA CANCELLO-BENEVENTO II LOTTO FUNZIONALE FRASSO TELESINO – VITULANO 2° SUBLOTTO TELESE – SAN LORENZO				ANO	
PROGETTAZION	NE:					ANO		
Mandataria:	Mandante:							
SYSTRA S.A.	SWS Engineering S.p.A.	SYSTRA-SOTECNI S.p.A.	PROGETTO	ESECUT	ΓΙVΟ			
OPERE D'ARTE VIABILITÀ Relazione di calcolo impalcato			COMMESSA IF2R	LOTTO 2.2.E.ZZ	CODIFICA CL	DOCUMENTO VI.15.0.8.001	REV. B	FOGLIO 15 di 75

Zona S1: Amorosi (BN)Zona S2: Solopaca (BN)

• Zona S3: Ponte (BN)

Nei paragrafi seguenti è riportata la valutazione dei parametri di pericolosità sismica per ciascuna delle località di riferimento.

L'opera in esame ricade nella zona sismica denominata Zona S3

5.1 VITA NOMINALE E CLASSE D'USO DELL'OPERA

Per la valutazione dei parametri di pericolosità sismica è necessario definire, oltre alla localizzazione geografica del sito, la Vita nominale dell'opera strutturale (VN), intesa come il numero di anni nel quale la struttura, purchè soggetta alla manutenzione ordinaria, deve potere essere usata per lo scopo al quale è destinata, e la Classe d'Uso a cui è associato un coefficiente d'uso (CU)

La vita nominale delle infrastrutture ferroviarie può, di norma, assumersi come indicato nella seguente tabella.

	TIPI DI COSTRUZIONE	Vita Nominale V _N [anni]
1	Opere nuove su infrastrutture ferroviarie progettate con le norme vigenti prima del DM14/1/2008 a velocità convenzionale V<250 Km/h	50
2	Altre opere nuove a velocità V<250 Km/h	75
3	Altre opere nuove a velocità V>250 Km/h	100
4	Opere di grandi dimensioni: ponti e viadotti con campate di luce maggiore di 150 m	≥100

Per l'opera in oggetto si considera una vita nominale VN = 75 anni (categoria 2)

Riguardo invece la Classe d'Uso, il Decreto Ministeriale del 14 gennaio 2008, individua le seguenti quattro categorie

- Classe I: costruzioni con presenza solo occasionale di persone, edifici agricoli.
- Classe II: costruzioni il cui uso preveda normali affollamenti, senza contenuti pericolosi per l'ambiente e senza funzioni pubbliche e sociali essenziali. Industrie con attività non pericolose per l'ambiente. Ponti, opere infrastrutturali, reti viarie non ricadenti in Classe III o in Classe IV, reti ferroviarie la cui interruzione non provochi situazioni di emergenza. Dighe il cui collasso non provochi conseguenze rilevanti.
- Classe III: costruzioni il cui uso preveda affollamenti significativi. Industrie con attività pericolose
 per l'ambiente. Reti viarie extraurbane non ricadenti in Classe IV. Ponti e reti ferroviarie la cui
 interruzione provochi situazioni di emergenza. Dighe rilevanti per le conseguenze di un loro
 eventuale collasso.
- Classe IV: costruzioni con funzioni pubbliche o strategiche importanti, anche con riferimento alla gestione della protezione civile in caso di calamità. Industrie particolarmente pericolose per

APPALTATORE	TELES Consorzio Telese Società Consorti		ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA CANCELLO-BENEVENTO II LOTTO FUNZIONALE FRASSO TELESINO – VITULAN 2° SUBLOTTO TELESE – SAN LORENZO			LANO		
PROGETTAZIO						ANO		
Mandataria: SYSTRA S.A.	Mandante: SWS Engineering S.p.A.	SYSTRA-SOTECNI S.p.A.	PROGETTO	ESECUI	TIVO			
01011KA 0.A.	OWO Engineering O.p.A.	OTOTICA-OOTLONI O.P.A.	PROGETTO	ESECU	1100			
OPERE D'ARTE VIABILITÀ		COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO	
Relazione di calcolo impalcato			IF2R	2.2.E.ZZ	CL	VI.15.0.8.001	В	16 di 75

l'ambiente. Reti viarie di tipo A o B, di cui al D.M. 5 novembre 2001, n. 6792, "Norme funzionali e geometriche per la costruzione di strade", e di tipo quando appartenenti ad itinerari di collegamento tra capoluoghi di provincia non altresì serviti da strade di tipo A o B. Ponti o reti ferroviarie di importanza critica per il mantenimento delle vie di comunicazione, particolarmente dopo un evento sismico Dighe connesse al funzionamento di acquedotti e a impianti di produzione di energia elettrica.

All' opera in oggetto corrisponde pertanto una Classe III a cui è associato un coefficiente d'uso pari a (NTC – Tabella 2.4.II):

$$C_u = 1.5$$

I parametri di pericolosità sismica vengono quindi valutate in relazione ad un periodo di riferimento V_R che si ricava per ciascun tipo di costruzione, moltiplicando la vita nominale V_R per il coefficiente d'uso C_{U_R} ovvero:

$$V_R = V_N \cdot C_U$$

Pertanto, per l'opera in oggetto, il periodo di riferimento è pari a $V_R = 75x1.5 = 112.5$ anni

5.2 PARAMETRI DI PERICOLOSITÀ SISMICA

La valutazione dei parametri di pericolosità sismica, che ai sensi del D.M. 14-01-2008, costituiscono il dato base per la determinazione delle azioni sismiche di progetto su una costruzione (forme spettrali e/o forze inerziali) dipendono, come già in parte anticipato in precedenza, dalla localizzazione geografica del sito, dalle caratteristiche della costruzione (Periodo di riferimento per valutazione azione sismica / VR) oltre che dallo Stato Limite di riferimento/Periodo di ritorno dell'azione sismica.

Il DM 14.01.08 definisce in particolare la pericolosità sismica di un sito attraverso i seguenti parametri:

- ag/g: accelerazione orizzontale relativa massima al suolo, su sito di riferimento rigido;
- Fo: valore massimo del fattore di amplificazione dello spettro in accelerazione orizzontale;
- T*_C: periodo di inizio del tratto a velocità costante dello spettro in accelerazione orizzontale.

Per quanto detto al precedente paragrafo, risulta:

Localizzazione Geografica: Amorosi (BN), Solopaca (BN), Ponte (BN)

Periodo di riferimento Azione sismica V_R = 112.5 anni,

Riguardo, infine gli stati limite di verifica/periodo di ritorno dell'azione sismica, la normativa individua in particolare 4 situazioni tipiche riferendosi alle prestazioni che la costruzione nel suo complesso deve poter espletare, riferendosi sia agli elementi strutturali, che a quelli non strutturali / impianti, come di seguito descritto:

APPALTATORE:	TELES Consorzio Telese Società Consort		ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA CANCELLO-BENEVENTO II LOTTO FUNZIONALE FRASSO TELESINO – VITULANO						
PROGETTAZION	NE:		2° SUBLOTTO TELESE – SAN LORENZO			ANO			
Mandataria:	Mandante:								
SYSTRA S.A.	SWS Engineering S.p.A.	SYSTRA-SOTECNI S.p.A.	PROGETTO	ESECU1	ΓΙVΟ				
OPERE D'ARTE VIABILITÀ		COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO		
Relazione di calcolo impalcato			IF2R	2.2.E.ZZ	CL	VI.15.0.8.001	В	17 di 75	

- <u>Stato Limite di Operatività</u> **(SLO):** a seguito del terremoto la costruzione nel suo complesso, includendo gli elementi strutturali, quelli non strutturali, le apparecchiature rilevanti alla sua funzione, non deve subire danni ed interruzioni d'uso significativi;
- Stato Limite di Danno (SLD): a seguito del terremoto la costruzione nel suo complesso, includendo gli elementi strutturali, quelli non strutturali, le apparecchiature rilevanti alla sua funzione, subisce danni tali da non mettere a rischio gli utenti e da non compromettere la capacità di resistenza e di rigidezza nei confronti delle azioni verticali ed orizzontali, mantenendosi immediatamente utilizzabile all'interruzione d'uso di parte delle apparecchiature.
- Stato Limite di salvaguardia della Vita (SLV): a seguito del terremoto la costruzione subisce rotture o crolli dei componenti non strutturali ed impiantistici e significativi danni dei componenti strutturali cui si associa una perdita significativa di rigidezza nei confronti delle azioni orizzontali; la costruzione invece conserva una parte della resistenza e della rigidezza per azioni verticali e un margine di sicurezza nei confronti del collasso per azioni sismiche
- <u>Stato Limite di prevenzione del Collasso</u> (SLC): a seguito del terremoto la costruzione subisce gravi rotture e crolli dei componenti non strutturali ed impiantistici e danni molto gravi dei componenti strutturali; la costruzione conserva ancora un margine di sicurezza per azioni verticali ed un esiguo margine di sicurezza nei confronti del collasso per azioni orizzontali.

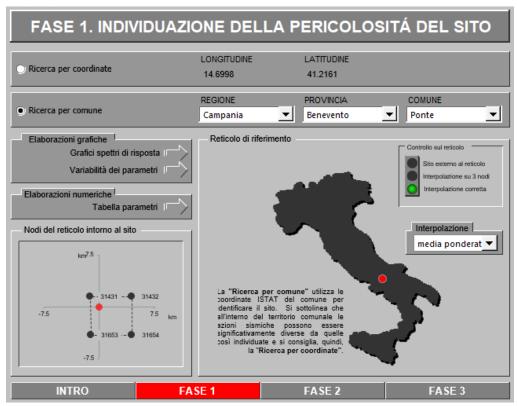
A ciascuno stato limite di verifica è quindi associata una probabilità di superamento \mathbf{P}_{VR} nel periodo di riferimento \mathbf{V}_{R} , secondo quanto indicato nel seguito:

Stati Limite		P _{VR} : Probabilità di superamento nel periodo di riferimento VR				
Stati limite di	SLO	81%				
esercizio	SLD	63%				
Stati limite	SLV	10%				
ultimi	SLC	5%				

A ciascuna probabilità di superamento PvR è quindi associato un Periodo di Ritorno dell'azione sismica T_R , valutabile attraverso la seguente relazione:

 $T_R = -V_R / In(1-P_{VR})$ (periodo di ritorno dell'azione sismica)

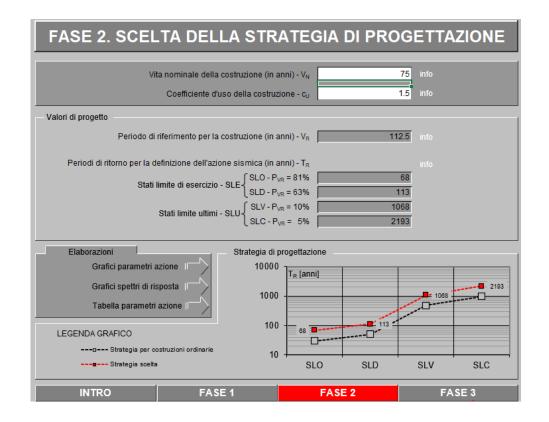
Nel caso in esame risulta dunque, con riferimento ai diversi stati limite :


SLATO LIMITE	T _R [anni]
SLO	68
SLD	113
SLV	1068
SLC	2193

Zona S3: da pk 30+000 a pk 46+577 (Ponte)

APPALTATORE	TELES Consorzio Telese Società Consort		ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA CANCELLO-BENEVENTO II LOTTO FUNZIONALE FRASSO TELESINO – VITULANO					
PROGETTAZIO	NE: Mandante:		2° SUBLOT				- VIIUL	ANO
SYSTRA S.A.	SWS Engineering S.p.A.	SYSTRA-SOTECNI S.p.A.	PROGETTO	ESECUT	ΓΙνο			
OPERE D'ARTE Relazione di ca			COMMESSA IF2R	LOTTO 2.2.E.ZZ	CODIFICA CL	DOCUMENTO VI.15.0.8.001	REV.	FOGLIO 18 di 75

Di seguito si riportano i parametri di pericolosità sismica da assumere come riferimento per la determinazione delle Azioni sismiche di progetto per opere ricadenti nella parte di tracciato dell'infrastruttura individuata come zona **S3**:


Località: Ponte (BN)

 $V_R = 112.5 \text{ anni}$

Sulla scorta di quanto riportato in Allegato A delle Norme Tecniche per le costruzioni DM 14.01.08, si ottiene:

APPALTATORE	TELES Consorzio Telese Società Consorti		ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA CANCELLO-BENEVENTO II LOTTO FUNZIONALE FRASSO TELESINO – VITULAN		II ANO			
PROGETTAZIO	NE:		2° SUBLOT				- VIIUL	ANO
Mandataria:	Mandante:							
SYSTRA S.A.	SWS Engineering S.p.A.	SYSTRA-SOTECNI S.p.A.	PROGETTO	ESECU1	ΓΙνο			
OPERE D'ARTE			COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
Relazione di ca	lcolo impalcato		IF2R	2.2.E.ZZ	CL	VI.15.0.8.001	В	19 di 75

SLATO	T _R	a g	F _o	T _C *
LIMITE	[anni]	[g]	[-]	[s]
SLO	68	0.097	2.343	0.310
SLD	113	0.127	2.332	0.326
SLV	1068	0.367	2.346	0.395
SLC	2193	0.473	2.445	0.427

APPALTATORE	TELES Consorzio Telese Società Consort		ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA CANCELLO-BENEVENTO II LOTTO FUNZIONALE FRASSO TELESINO – VITULANO		ANG			
PROGETTAZIO			2° SUBLOT				· VIIUL	ANO
Mandataria:	Mandante:							
SYSTRA S.A.	SWS Engineering S.p.A.	SYSTRA-SOTECNI S.p.A.	PROGETTO	ESECUT	ΓΙνο			
OPERE D'ARTE	VIABILITÀ		COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
Relazione di ca	Icolo impalcato		IF2R	2.2.E.ZZ	CL	VI.15.0.8.001	В	20 di 75

APPALTATORE: TELESE s.c.a r.l. ITINERARIO NAPOLI - BARI RADDOPPIO TRATTA CANCELLO-BENEVENTO Consorzio Telese Società Consortile a Responsabilità Limitata II LOTTO FUNZIONALE FRASSO TELESINO – VITULANO PROGETTAZIONE: 2° SUBLOTTO TELESE - SAN LORENZO Mandataria: Mandante: SYSTRA S.A. SWS Engineering S.p.A. SYSTRA-SOTECNI S.p.A. **PROGETTO ESECUTIVO** OPERE D'ARTE VIABILITÀ COMMESSA LOTTO **CODIFICA** DOCUMENTO REV. **FOGLIO** Relazione di calcolo impalcato IF2R 2.2.E.ZZ CL VI.15.0.8.001 В 21 di 75

Parametri e punti dello spettro di risposta orizzontale per lo stato limite: SLV

Parametri indipendenti

STATO LIMITE	SLV
ag	0.367 g
F _o	2.346
T _C	0.395 s
Ss	1.184
Co	1.427
St	1.000
Р	1.000

Parametri dipendenti

S	1.184
η	1.000
T _B	0.188 s
To	0.563 s
T _D	3.068 s

Espression i dei parametri dipendenti

 $S = S_s \cdot S_r$ (NTC-08 Eq. 3.2.5)

 $\eta = \sqrt{10.(5+\xi)} \ge 0.55$; $\eta = 1/q$ (NTC-08 Eq. 3.2.6; §. 3.2.3.5)

 $T_{\rm B} = T_{\rm C}/3$ (NTC-07 Eq. 3.2.8)

 $T_{c} = C_{c} \cdot T_{c}^{r}$ (NTC-07 Eq. 3.2.7)

 $T_D = 4.0 \cdot a_o / g + 1.6$ (NTC-07 Eq. 3.2.9)

Espressioni dello spettro di risposta (NTC-08 Eq. 3.2.4)

$$\begin{split} 0 &\leq T < T_B \\ S_c(T) = \textbf{a}_{\mu} \cdot \textbf{S} \cdot \boldsymbol{\eta} \cdot F_o \cdot \left[\frac{T}{T_B} + \frac{1}{\boldsymbol{\eta} \cdot F_o} \left(1 - \frac{T}{T_B} \right) \right] \\ T_B &\leq T < T_C \\ S_c(T) = \textbf{a}_{\mu} \cdot \textbf{S} \cdot \boldsymbol{\eta} \cdot F_o \\ T_C &\leq T < T_D \\ S_c(T) = \textbf{a}_{\mu} \cdot \textbf{S} \cdot \boldsymbol{\eta} \cdot F_o \cdot \left(\frac{T_C}{T} \right) \\ T_D &\leq T \end{split}$$

Lo spettro di progetto $S_d(T)$ per le verifiche agli Stati Limite Ultimi è ottenuto dalle espressioni dello spettro elastico $S_a(T)$ sostituendo η con 1/q, dove q è il fattore di struttura. (NTC-08 § 3.2.3.5)

Punti dello spettro di risposta

Punti	dello spettr	o di risposta
	T [s]	Se [g]
- 1	0.000	0.434
Tn →	0.188	1.019
Тс ◀	0.563	1.019
	0.683	0.841
ı	0.802	0.716
ı	0.921	0.623
ı	1.040	0.552
ŀ	1.160	0.495
ı	1.279	0.449
ı	1.398	0.411
ı	1.517	0.378
ı	1.637	0.351
ŀ	1.756	0.327
ŀ	1.875	0.306
ŀ	1.994	0.288
ŀ	2.114	0.272
ŀ	2.233	0.257
ŀ	2.352	0.244
ŀ	2.471	0.232
ŀ	2.591	0.222
ŀ	2.710	0.212
ŀ	2.829	0.203
ŀ	2.948	0.195
т₀ 🛧	3.068	0.187
- 1	3.112	0.182
ŀ	3.156	0.177
ŀ	3.201	0.172
ı	3.245	0.167
ŀ	3.290	0.163
ı	3.334	0.158
ŀ	3.378	0.154
ı	3.423	0.150
ŀ	3.467	0.146
ŀ	3.512	0.143
ı	3.556	0.139
ŀ	3.600	0.136
ı	3.645	0.133
ŀ	3.689	0.129
ŀ	3.734	0.126
ŀ	3.778	0.123
ŀ	3.822	0.121
ŀ	3.867	0.118
ŀ	3.911	0.115
ŀ	3.956	0.113
ŀ	4.000	0.110
ι	4.000	0.710

La verifica dell'idoneità del programma, l'utilizzo dei risultati da esso ottenuti sono onere e responsabilità esclusiva dell'utente. I Consiglio Superiore dei Lavori Pubblici non potrà essere ritenuto responsabile dei danni risultanti dall'utilizzo dell

APPALTATORE	TELES Consorzio Telese Società Con sort		ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA CANCELLO-BENEVENTO II LOTTO FUNZIONALE FRASSO TELESINO – VITU					
PROGETTAZION			2° SUBLOT	-			· VIIUL	ANO
Mandataria:	Mandante:							
SYSTRA S.A.	SWS Engineering S.p.A.	SYSTRA-SOTECNI S.p.A.	PROGETTO	ESECU1	ΓΙVΟ			
OPERE D'ARTE			COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
Relazione di cal	lcolo impalcato		IF2R	2.2.E.ZZ	CL	VI.15.0.8.001	В	22 di 75

5.3 CATEGORIA DI SOTTOSUOLO E CATEGORIA TOPOGRAFICA

Le Categoria di Sottosuolo e le Condizioni Topografiche sono valutate come descritte al punto 3.2.2 del DM 14.01.08, ovvero:

Tabella 3.2.II – Categorie di sottosuolo

	The Categorie at somosaoto
Categoria	Descrizione
A	Ammassi rocciosi affioranti o terreni molto rigidi caratterizzati da valori di $V_{s,30}$ superiori a 800 m/s, eventualmente comprendenti in superficie uno strato di alterazione, con spessore massimo pari a 3 m.
В	Rocce tenere e depositi di terreni a grana grossa molto addensati o terreni a grana fina molto consistenti con spessori superiori a 30 m, caratterizzati da un graduale miglioramento delle proprietà meccaniche con la profondità e da valori di $V_{s,30}$ compresi tra 360 m/s e 800 m/s (ovvero $N_{SPT,30} > 50$ nei terreni a grana grossa e $c_{u,30} > 250$ kPa nei terreni a grana fina).
C	Depositi di terreni a grana grossa mediamente addensati o terreni a grana fina mediamente consistenti con spessori superiori a 30 m, caratterizzati da un graduale miglioramento delle proprietà meccaniche con la profondità e da valori di $V_{s,30}$ compresi tra 180 m/s e 360 m/s (ovvero $15 < N_{SPT,30} < 50$ nei terreni a grana grossa e $70 < c_{u,30} < 250$ kPa nei terreni a grana fina).
D	Depositi di terreni a grana grossa scarsamente addensati o di terreni a grana fina scarsamente consistenti, con spessori superiori a 30 m, caratterizzati da un graduale miglioramento delle proprietà meccaniche con la profondità e da valori di $V_{s,30}$ inferiori a 180 m/s (ovvero $N_{SPT,30} < 15$ nei terreni a grana grossa e $c_{u,30} < 70$ kPa nei terreni a grana fina).
E	Terreni dei sottosuoli di tipo C o D per spessore non superiore a 20 m, posti sul substrato di riferimento (con $V_s > 800$ m/s).

Tabella 3.2.III – Categorie aggiuntive di sottosuolo.

Categoria	Descrizione
S1	Depositi di terreni caratterizzati da valori di $V_{s,30}$ inferiori a 100 m/s (ovvero $10 < c_{u,30} < 20$ kPa), che includono uno strato di almeno 8 m di terreni a grana fina di bassa consistenza, oppure che includono almeno 3 m di torba o di argille altamente organiche.
S2	Depositi di terreni suscettibili di liquefazione, di argille sensitive o qualsiasi altra categoria di sottosuolo non classificabile nei tipi precedenti.

Tabella 3.2.IV – Categorie topografiche

Categoria	Caratteristiche della superficie topografica
T1	Superficie pianeggiante, pendii e rilievi isolati con inclinazione media i $\leq 15^\circ$
T2	Pendii con inclinazione media i > 15°
Т3	Rilievi con larghezza in cresta molto minore che alla base e inclinazione media $15^\circ \le i \le 30^\circ$
T4	Rilievi con larghezza in cresta molto minore che alla base e inclinazione media i > 30°

Tabella di riepilogo Categoria di Sottosuolo e Topografiche DM 14.01.08

Note la Categoria di Sottosuolo e le Condizioni Topografiche, la costruzione degli spettri passa infine attraverso la definizione dei coefficienti di Amplificazione Stratigrafica (S_S e C_C) e Topografica (S_T), mediante le indicazioni di cui alle tab 3.2.V e 3.2.VI del DM 14.01.08, che si ripropongono nel seguito per chiarezza espositiva:

APPALTATORE	TELES Consorzio Telese Società Consort		ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA CANCELLO-BENEVENTO II LOTTO FUNZIONALE FRASSO TELESINO – VITULANO			ANO		
PROGETTAZIOI			2° SUBLOT				- VIIUL	ANO
Mandataria:	Mandante:							
SYSTRA S.A.	SWS Engineering S.p.A.	SYSTRA-SOTECNI S.p.A.	PROGETTO	ESECU1	ΓΙVΟ			
OPERE D'ARTE	VIABILITÀ	_	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
Relazione di calcolo impalcato			IF2R	2.2.E.ZZ	CL	VI.15.0.8.001	В	23 di 75

Tabella 3.2.V – Espressioni di S_S e di C_C

Categoria sottosuolo	\mathbf{S}_{S}	Cc
A	1,00	1,00
В	$1,00 \le 1,40 - 0,40 \cdot F_o \cdot \frac{a_g}{g} \le 1,20$	$1,10 \cdot (T_{C}^{*})^{-0,20}$
C	$1,00 \le 1,70 - 0,60 \cdot F_o \cdot \frac{a_g}{g} \le 1,50$	$1,05 \cdot (T_C^*)^{-0,33}$
D	$0.90 \le 2.40 - 1.50 \cdot F_o \cdot \frac{a_g}{g} \le 1.80 \cdot$	$1,25 \cdot (T_C^*)^{-0,50}$
E	$1,00 \le 2,00 - 1,10 \cdot F_o \cdot \frac{a_g}{g} \le 1,60$	$1,15 \cdot (T_{C}^{*})^{-0,40}$

 $\textbf{Tabella 3.2.VI} - \textit{Valori massimi del coefficiente di amplificazione topografica } S_T$

Categoria topografica	Ubicazione dell'opera o dell'intervento	S_{T}
T1	-	1,0
T2	In corrispondenza della sommità del pendio	1,2
Т3	In corrispondenza della cresta del rilievo	1,2
T4	In corrispondenza della cresta del rilievo	1,4

Per il caso in esame, risulta una <u>categoria di sottosuolo di tipo C</u> ($S_S = 1.184$) e una <u>classe Topografica</u> $\underline{T1} (S_T = 1.0)$

APPALTATORE	TELES Consorzio Telese Società Consort		ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA CANCELLO-BENEVENTO II LOTTO FUNZIONALE FRASSO TELESINO – VITULANO 2° SUBLOTTO TELESE – SAN LORENZO			ANO		
PROGETTAZIO						ANO		
Mandataria:	Mandante:							
SYSTRA S.A.	SWS Engineering S.p.A.	SYSTRA-SOTECNI S.p.A.	PROGETTO	ESECU1	ΓΙνο			
OPERE D'ARTE			COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
Relazione di ca	lcolo impalcato		IF2R	2.2.E.ZZ	CL	VI.15.0.8.001	В	24 di 75

6 ANALISI DEI CARICHI E CONDIZIONI DI CARICO

Si riporta di seguito l'analisi delle condizioni di carico elementari relative all'impalcato in esame.

6.1 CARICHI PERMANENTI STRUTTURALI G1

I carichi permanenti strutturali sono valutati sulla base della geometria degli elementi costituenti la struttura e del peso specifico dei diversi materiali. Si assume γ =25kN/m³ per il calcestruzzo e γ =78.5kN/m³ per l'acciaio strutturale. Si riportano di seguito i dati considerati per il calcolo del peso proprio degli elementi strutturali di impalcato:

PERMANENTI STRUTTURALI G ₁		
Peso Singola Trave HLM1100	p g1,1	4.33 kN/m
n° travi	n°	18
Area travi	A _{tr} 0	.055 m²
Peso Travi Impalcato	P _{g1,1}	77.9 kN/m
Sbalzi laterali	g _{2,2_4} 9	0.00 kN/m
Peso cls in opera - Impalcato	P _{g1,2} 4	28.4 kN/m
Peso totale G ₁	P _{g1,Tot} 5	06.3 kN/m

6.2 CARICHI PERMANENTI NON STRUTTURALI G2

6.2.1 Massicciata, armamento e impermeabilizzazione G_{2,1}

La determinazione dei carichi permanenti portati relativi al peso della massicciata, dell'armamento e dell'impermeabilizzazione si è effettuata assumendo convenzionalmente un peso specifico di 18kN/m³ (linea in curva), applicato su tutta la larghezza media compresa fra i muretti paraballast, pari a 7.70m, per un'altezza media fra piano del ferro (P.F.) ed estradosso impalcato pari a 0,80 m.

MASSICCIATA - ARMAMENTO G2,1			
Peso specifico massicciata (ponti in curva par. 5.2.2.1.1-DM 17 gennaio 2018)	γ	18.00	kN/m³
Larghezza media tra i muri paraballast	b ₃	7.70	m
Spessore ballast	S 3	0.80	m
Massicciata, armamento	P _{g2,1}	110.88	kN/m

APPALTATORE	TELES Consorzio Telese Società Consort		ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA CANCELLO-BENEVENTO II LOTTO FUNZIONALE FRASSO TELESINO – VITULANO			ANIO		
PROGETTAZIO Mandataria:	NE: Mandante:		2° SUBLOT				- VIIUL	ANU
SYSTRA S.A.	SWS Engineering S.p.A.	SYSTRA-SOTECNI S.p.A.	PROGETTO	ESECU	ΓΙVΟ			
OPERE D'ARTE Relazione di ca			COMMESSA IF2R	LOTTO 2.2.E.ZZ	CODIFICA CL	DOCUMENTO VI.15.0.8.001	REV.	FOGLIO 25 di 75

6.2.2 Altri carichi permanenti non strutturali G_{2,2}

Si riportano a seguire i carichi permanenti portati per l'intero impalcato.

CARICHI PERMANENTI NON STRUTTURALI G2,2			
Massetto sp=5cm	g 2,2_2	9.63	kN/m
Muretti paraballast h=70cm + cavidotti	g 2,2_3	12.66	kN/m
Barriera antirumore (1)	g 2,2_6	40.40	kN/m
Carichi permanenti portati (per impalcato)	P _{g2,2 tot}	75.35	kN/m
Peso totale G ₂	P _{g1,Tot}	186.2	kN/m

6.3 CARICHI ACCIDENTALI Q1

Per i sovraccarichi mobili si considerano gli effetti prodotti dai modelli di carico rappresentativi del traffico normale (LM71) e pesante (SW/2). Tali effetti sono amplificati per il coefficiente di adattamento α e per il coefficiente dinamico Φ_3 ; per il solo modello di carico LM71 si considera inoltre un'eccentricità di carico rispetto l'asse del binario. Sono inoltre portate in conto le azioni di frenatura ed avviamento, di serpeggio e l'effetto della sopraelevazione delle rotaie.

Il coefficiente " α ", assunto come da Tabella seguente, è in accordo con il "Manuale di progettazione delle opere civili":

Modello di carico	Coefficiente α
LM71	1.1
SW/0	1.1
SW/2	1

Tabella 1 – Coefficiente di adattamento α – Tab. 2.5.1.4.1-1 – Manuale di progettazione delle opere civili

6.3.1 Effetti dinamici

Secondo quanto riportato al par. 2.5.1.4.2.5 del "Manuale di progettazione delle opere civili", che riprende integralmente i contenuti del par. 5.2.2.2.3 del DM 14.1.2008, il coefficiente di incremento dinamico dei modelli di carico teorici adottato è:

$$\Phi_3 = \frac{2.16}{\sqrt{L_{\Phi}} - 0.2} + 0.73$$

APPALTATORE	TELES Consorzio Telese Società Consorti		ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA CANCELLO-BENEVENTO II LOTTO FUNZIONALE FRASSO TELESINO – VITULANO			ANO		
PROGETTAZIO	NE:		2° SUBLOT	-			· VIIUL	ANO
Mandataria:	Mandante:							
SYSTRA S.A.	SWS Engineering S.p.A.	SYSTRA-SOTECNI S.p.A.	PROGETTO	ESECUT	ΓΙνο			
OPERE D'ARTE			COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
Relazione di ca	lcolo impalcato		IF2R	2.2.E.ZZ	CL	VI.15.0.8.001	В	26 di 75

INCREMENTO DINAMICO DEI CARICHI TEORICI		
Lunghezza caratteristica	L_Φ	21.10 m
Coefficiente di incremento dinamico (linee con normale standard manutentivo)	Φ_3	1.22

6.3.2 Carichi verticali

Le azioni variabili verticali associate ai convogli ferroviari sono state definite in accordo con il par. 2.5.1.4.1. del "Manuale di progettazione delle opere civili" che riprende integralmente i contenuti dei par. 5.2.2.2.1.1 e 5.2.2.2.1.2 del DM 14.1.2008. I treni di carico adottati schematizzano gli effetti statici prodotti dal traffico ferroviario normale (treno di carico LM71) e pesante (treno di carico SW).

TRENO DI CARICO LM71

Distribuzione longitudinale dei carichi assiali Q_{vk}

 $q_{vk} = 80 \text{ kN/m}$

 $Q_{vk} = 250 \text{ kN}$

 α = 1.1 (coefficiente di adattamento)

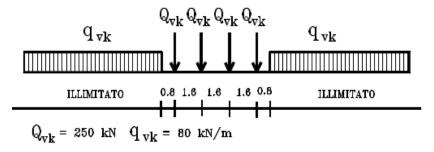
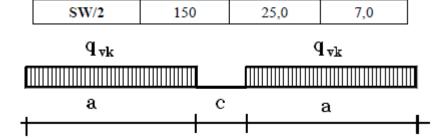


Figura 3: Treno di carico LM71


TRENO DI CARICO SW/2

Distribuzione longitudinale dei carichi

 $q_{vk} = 150 \text{ kN/m}$

 α = 1.0 (coefficiente di adattamento)

APPALTATORE	TELES Consorzio Telese Società Con sort		ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA CANCELLO-BENEVENTO II LOTTO FUNZIONALE FRASSO TELESINO – VITULANO		ANO			
PROGETTAZIO			2° SUBLOTTO TELESE – SAN LORENZO			ANO		
Mandataria:	Mandante:							
SYSTRA S.A.	SWS Engineering S.p.A.	SYSTRA-SOTECNI S.p.A.	PROGETTO	ESECU1	ΓΙνο			
OPERE D'ARTE			COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
Relazione di ca	lcolo impalcato		IF2R	2.2.E.ZZ	CL	VI.15.0.8.001	В	27 di 75

a [m]

c [m]

 q_{vk} [kN/m]

Tipo di Carico

Figura 4: Treno di carico SW/2

In particolare si sono considerati i carichi equivalenti (taglianti e flettenti) previsti dalle norme ferroviarie in funzione della luce di impalcato netta. Tali carichi sono comprensivi del coefficiente di adattamento α .

Treno LM 71			
Carico equivalente flettente	Q 1_LM71	132.70	kN/m
Carico equivalente tagliante	Q 2_LM71	140.60	kN/m
Treno SW2			
Carico equivalente flettente	q 1_sw2	153.00	kN/m
Carico equivalente tagliante	q 2_sw2	153.00	kN/m

Eccentricità dei carichi accidentali

L'applicazione dei carichi accidentali sugli elementi strutturali dell'impalcato dipende trasversalmente dalle eccentricità di questi rispetto all'asse dell'impalcato. Le eccentricità dei carichi sono legate a diversi fattori:

- eccentricità dovuta al tracciato: distanza asse tracciato-asse impalcato;
- eccentricità dovuta al sovralzo;
- eccentricità propria del modello di carico.

Nel caso in esame si è tenuto conto della sola eccentricità propria del modello di carico, in quanto risultano trascurabili le eccentricità dovute al tracciato e al sovralzo.

APPALTATORE:	TELES Consorzio Telese Società Consort		ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA CANCELLO-BENEVENTO II LOTTO FUNZIONALE FRASSO TELESINO – VITULANO		ΔNO			
PROGETTAZION	NE:		2° SUBLOTTO TELESE – SAN LORENZO					
Mandataria:	Mandante:		L GOBLO.		02 0/1112	OKLINEO		
SYSTRA S.A.	SWS Engineering S.p.A.	SYSTRA-SOTECNI S.p.A.	PROGETTO	ESECU1	ΓΙνο			
OPERE D'ARTE			COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
Relazione di cal	lcolo impalcato		IF2R	2.2.E.ZZ	CL	VI.15.0.8.001	В	28 di 75

Per il modello di carico LM71 è prevista un'eccentricità pari a ε_3 = 143.5/18 = 7.97 cm ≈ 8.0 cm, essendo 143.5 cm il valore dello scartamento, considerata nella direzione più sfavorevole, ossia verso l'asse del binario relativo al treno SW/2 per ottenere la condizione piu critica ai fini delle verifiche sulle travi.

Per il modello di carico SW/2 non è prevista un'eccentricità propria.

6.3.3 Numero di treni contemporanei

Conformemente a quanto riportato nel par. 5.2.3.1.2_Tab.5.2.III del DM 14.1.2008, si sono considerati due treni contemportanei sull'impalcato, sia per il traffico normale che per quello pesante.

Numero	Binari	Traffico	Traffico	
di binari	Carichi	caso a(1)	caso b(1)	pesante ⁽²⁾
1	Primo	1,0 (LM 71"+"SW/0")	-	1,0 SW/2
	Primo	1,0 (LM 71"+"SW/0")	-	1,0 SW/2
2	secondo	1,0 (LM 71"+"SW/0")	-	1,0 (LM 71"+"SW/0")
	Primo	1,0 (LM 71"+"SW/0")	0,75 (LM 71"+"SW/0")	1,0 SW/2
≥3	secondo	1,0 (LM 71"+"SW/0")	0,75 (LM 71"+"SW/0")	1,0 (LM 71"+"SW/0")
	Altri	-	0,75 (LM 71"+"SW/0")	-

⁽¹⁾ LM71 "+" SW/0 significa considerare il più sfavorevole fra i treni LM 71, SW/0

Tabella 2 – Carichi mobili in funzione del numero di binari presenti sul ponte – Tab.5.2.III del DM 14.1.2008

6.4 TRENO SCARICO Q2

La condizione di "Treno Scarico" è stata simulata con un carico uniformemente distribuito, in accordo con quanto previsto al par. 5.2.2.2.1.3 del DM 14.1.2008.

Treno scarico Q ₂	Q_2	10.00	kN/m

6.5 AZIONI DI AVVIAMENTO E FRENATURA Q₃

L'azione di frenatura ed avviamento dei treni è definita secondo quanto riportato nel par. 2.5.1.4.3.3 del "Manuale di progettazione delle opere civili".

⁽²⁾ Salvo i casi in cui sia esplicitamente escluso

APPALTATORE	TELES Consorzio Telese Società Consor		ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA CANCELLO-BENEVENTO II LOTTO FUNZIONALE FRASSO TELESINO – VITULANO		ANO			
PROGETTAZIO Mandataria:	NE: Mandante:		2° SUBLOTTO TELESE – SAN LORENZO			ANO		
SYSTRA S.A.	SWS Engineering S.p.A.	SYSTRA-SOTECNI S.p.A.	PROGETTO	ESECUT	ΓΙνο			
OPERE D'ARTE Relazione di ca	E VIABILITÀ Icolo impalcato		COMMESSA IF2R	LOTTO 2.2.E.ZZ	CODIFICA CL	DOCUMENTO VI.15.0.8.001	REV.	FOGLIO 29 di 75

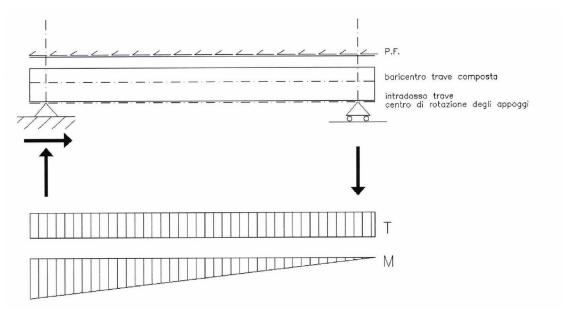


Figura 5: Sollecitazioni indotte da frenatura e avviamento dei treni

FRENATURA		
Lunghezza di binario	L 2	2.00 m
Treno LM71		
$q_{lb,k} = 20 \text{ kN/m x L x } \alpha$	q _{lb,k} 48	4.00 kN
Treno SW/2		
$q_{lb,k} = 35 \text{ kN/m x L x } \alpha$	q _{lb,k} 77	0.00 kN
AVVIAMENTO		<u>.</u>
$q_{lb,k} = 33 \text{ kN/m x L x } \alpha$		
Treno LM71	q _{lb,k} 79	8.60 kN
Treno SW/2	q _{ю,к} 72	6.00 kN
	,	
Distanza piano del ferro-baricentro delle travi		1.52 m
Si considera agente a livello del piano ferro		

6.6 AZIONE CENTRIFUGA Q4

Nei ponti ferroviari al di sopra dei quali il binario presenta un tracciato in curva deve essere considerata la forza centrifuga agente su tutta l'estensione del tratto in curva. La forza centrifuga si considera agente verso l'esterno della curva, in direzione orizzontale ed applicata alla quota di 1.80m al di sopra del P.F..

Il valore caratteristico della forza centrifuga si dertermina in accordo con le seguenti espressioni:

APPALTATORE	TELES Consorzio Telese Società Consort		ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA CANCELLO-BENEVENTO II LOTTO FUNZIONALE FRASSO TELESINO – VITULANO		ANO			
PROGETTAZIO	NE:		2° SUBLOTTO TELESE – SAN LORENZO			ANO		
Mandataria:	Mandante:		2 GOBLO	. O ILLL	OL - OAN L	OKLINZO		
SYSTRA S.A.	SWS Engineering S.p.A.	SYSTRA-SOTECNI S.p.A.	PROGETTO	ESECU1	ΓΙνο			
OPERE D'ARTE	VIABILITÀ		COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
Relazione di ca	Icolo impalcato		IF2R 2.2.E.ZZ CL VI.15.0.8.001 B 30 di 75			30 di 75		

$$\begin{split} Q_{tk} &= \frac{v^2}{g \cdot r} (f \cdot Q_{vk}) = \frac{v^2}{127 * r} (f \cdot Q_{vk}) \\ q_{tk} &= \frac{v^2}{g \cdot r} (f \cdot q_{vk}) = \frac{v^2}{127 * r} (f \cdot q_{vk}) \end{split}$$

dove:

- Qtk-qtk è il valore caratteristico della forza centrifuga, espresso in kN/m;
- Qvk-qvk è il valore caratteristico dei carichi verticali ferroviari, espresso in kN/m;
- V è la velocità di progetto, espressa in km/h;
- f è un fattore di riduzione:
- r è il raggio di curvatura, espresso in m.

L'azione centrifuga viene determinata per i modelli di carico LM71 e SW/2 associando alle grandezze precedentemente indicate quanto contenuto nella tabella 2.5.1.4.3.1-1 del "Manuale di progettazione delle opere civili".

Per quanto riguarda il modello di carico SW/2 si è assunta una velocità V uguale a 100 km/h, un valore di f pari ad 1 ed il valore di α pari a 1.

Per il modello di carico LM71, essendo la velocità di progetto superiore ai 120 km/h, sono stati considerati due casi:

- Modello di carico LM71 e forza centrifuga per V= 120 km/h in accordo con le formule precedenti dove f = 1;
- Modello di carico LM71 e forza centrifuga calcolata secondo le precedenti espressioni per la massima velocità di progetto (V=140 km/h).

La forza centrifuga, in accordo con quanto prescritto nel "Manuale di progettazione delle opere civili", non è stata incrementata dai coefficienti dinamici.

APPALTATORE	TELES Consorzio Telese Società Consort		ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA CANCELLO-BENEVENTO II LOTTO FUNZIONALE FRASSO TELESINO – VITULANO		ANO			
PROGETTAZIO Mandataria:	NE: Mandante:		2° SUBLOTTO TELESE – SAN LORENZO			ANO		
SYSTRA S.A.	SWS Engineering S.p.A.	SYSTRA-SOTECNI S.p.A.	PROGETTO	ESECUT	ΓΙνο			
OPERE D'ARTE Relazione di ca			COMMESSA IF2R	LOTTO 2.2.E.ZZ	CODIFICA CL	DOCUMENTO VI.15.0.8.001	REV.	FOGLIO 31 di 75

	Massima velocità della		Azio	traffico verticale		
Valore di α	linea [Km/h]	v	α	f		associato
SW/2	≥ 100	100	1	1	1 x 1 x SW/2	
	< 100	V	1	1	1 x 1 x SW/2	Φ x 1 x SW/2
		V	1	f	1 x f x (LM71"+"SW/0)	Φ x 1 x 1 x (LM71"+"SW/0)
LM71 e SW/0	> 120	120	α	1	α x 1 x (LM71"+"SW/0)	
	≤ 120	v	α	1	α x 1 x (LM71"+"SW/0)	Φ x α x 1 x (LM71"+"SW/0)

Tabella 3 – Parametri per determinazione della forza centrifuga – Tab. 2.5.1.3.1-1 – Manuale di progettazione delle opere civili

Nel caso in esame, l'opera si sviluppo in rettifilo, pertanto il contributo dell'azione centrifuga sull'impalcato in esame è nullo.

6.7 AZIONE LATERALE (SERPEGGIO) Q₅

L'azione laterale associata al serpeggio è definita secondo quanto riportato nel par. 2.5.1.4.3.2 del "Manuale di progettazione delle opere civili", che riprende il par. 5.2.2.3.2 del DM 14.1.2008, ed equivale ad una forza concentrata agente orizzontalmente, applicata alla sommita della rotaia piu alta, perpendicolarmente all'asse del binario, del valore di 100 kN.

AZIONE LATERALE (Serpeggio)		
Forza caratteristica di serpeggio	Qsk5	100.00 kN
Coefficiente di adattamento LM71	α	1.10
Coefficiente di adattamento SW2	α	1.00
Distanza piano del ferro-baricentro delle travi		1.52 m
Si considera agente a livello del piano ferro		

6.8 AZIONE DEL VENTO Q₆

Il calcolo dell'azione del vento è stato condotto secondo quanto riportato al par. 3.3 del DM 14.1.2008; si riportano di seguito i principali parametri di calcolo:

APPALTATORE: TELESE S.c.a r.l. ITINERARIO NAPOLI - BARI RADDOPPIO TRATTA CANCELLO-BENEVENTO Consorzio Telese Società Consortile a Responsabilità Limitata II LOTTO FUNZIONALE FRASSO TELESINO – VITULANO PROGETTAZIONE: 2° SUBLOTTO TELESE - SAN LORENZO Mandataria: Mandante: SYSTRA S.A. SWS Engineering S.p.A. SYSTRA-SOTECNI S.p.A. **PROGETTO ESECUTIVO** OPERE D'ARTE VIABILITÀ COMMESSA LOTTO **CODIFICA** DOCUMENTO REV. **FOGLIO** Relazione di calcolo impalcato IF2R 2.2.E.ZZ CL VI.15.0.8.001 В 32 di 75

DEFINIZIONE DEI DATI

zona:

3) Toscana, Marche, Umbria, Lazio, Abruzzo, Molise, Puglia, Campania, Basilicata, Calabria (esclusa la provincia di Reggio Calabria)

Classe di rugosità del terreno:

D) Aree prive di ostacoli (aperta campagna, aeroporti, aree agricole, pascoli, zone paludose o sabbiose, superfici innevate o ghiacciate, mare, laghi,....)

L'assegnazione della classe di rugosità non dipende dalla conformazione orografica e topografica del terreno. Affinchè una costruzione possa dirsi ubicata in classe Ao B è necessario che la situazione che contraddistingue la classe permanga intorno alla costruzione per non meno di 1 km e comunque non meno di 20 volte l'altezza della costruzione. Laddove sussistano dub bi sulla scelta della classe di rugosità , a meno di analisi dettagliate, verrà assegnata la classe pù sfavore vole.

Nelle fasce entro i 40km dalla costa delle zone 1,2,3,4,5 e 6 la categoria di esposizione è indipendente dall'altitudine del sito.

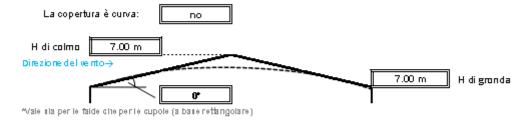
a_c(altitudine sul livello del mare della costruzione):

Distanza dalla costa

 $T_{R}(Tempo\ di\ ritorno)$:

Categoria di esposizione

200	[m]
50	[km]
75	[anni]
II	ĺ


costa

	ZONE	1,2,3,	4,5					ZONA	6			
	mare ,	sta 10 km	30 km	500 <u>m</u>	750m			mare ,	10 km	30 km	500 <u>n</u>	
A		IV	IV	V	v	v	Α		III	IV	V	V
В		III	III	IV	IV	IV	В		II	III	IV	
c		*	III	III	IV	IV	С		II	III	III	IV
D	1	п	II	II	III	**	D	I		ll l	II	III
٠		oria II in : oria III in	zona 1,2 zona 5	,3,4				ZONE	7,8		ZONA	
**		oria III in oria IV in	zona 2,3 zona 1	3,4,5			_	mare 1.5 km	0.5 km	ata 2		mare -
							А			IV	Α	
							В			IV	В	
							С			III	С	
							D	I	II		D	- 1
									II in zon III in zor			

APPALTATORE: TELESE S.c.a r.l. ITINERARIO NAPOLI - BARI RADDOPPIO TRATTA CANCELLO-BENEVENTO Consorzio Telese Società Consortile a Responsabilità Limitata II LOTTO FUNZIONALE FRASSO TELESINO – VITULANO PROGETTAZIONE: 2° SUBLOTTO TELESE - SAN LORENZO Mandataria: Mandante: SWS Engineering S.p.A. SYSTRA S.A. SYSTRA-SOTECNI S.p.A. **PROGETTO ESECUTIVO** OPERE D'ARTE VIABILITÀ COMMESSA LOTTO **CODIFICA** DOCUMENTO REV. **FOGLIO** Relazione di calcolo impalcato IF2R 2.2.E.ZZ CL VI.15.0.8.001 В 33 di 75

Altezza del colmo della copertura, rispetto al suolo e indinazione della falda sopravento

E' consigliabile calcolare la pressione del vento per ogni facciata del fabbricato modificando i parametri per ogni caso. Nel caso di studio su prospetto di timpano, la valutazione della pressione del vento si conduce come se la copertura fosse piana e la parete alta fino alla linea di colmo. Nel caso di coperture a padiglione, la valutazione delle pressioni si esegue su ogni facciata del fabbricato utilizzando di volta in volta l'angolo della falda investito dal vento. Nel caso di coperture curve, si deve inserire l'angolo della retta tangente al bordo della copertura, in sostanza l'angolo di attacco della copertura. (per cupole a tutto sesto l'angolo è di 90°, per cupole a sesto ribassato è minore di 90°). Nel caso di studio su prospetto piano l'analisi si conduce come su prospetto di timpano. Si osserva che oltre alle pressioni andrebbe considerata anche la forza tangenziale esercitata dal vento sul fabbricato. Generalmente essa si trascura, è necessaria modellarla solo per grandi coperture piane ad esempio: coperture di grandi capannoni industriali. Il foglio di calcolo è utilizzabile per fabbricati a base rettangolare.

CALCOLO VELOCITA' DI RIFERIMENTO DEL VENTO §3.3.2.

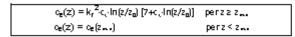
Zona	∨ _{в.Д} [m/s]	a ₀ [m]	ks	Ca
3	27	500	0.37	1.000

v_b (velocità base di riferimento) 27.00 m/s

PRESSIONE CINETICA DI RIFERIMENTO §3.3.6.

 q_r (pressione cinetica di riferimento [N/mq]) $q_r = 1/2 \cdot \rho \cdot v_r^2$ ($\rho = 1,25 \text{ kg/m}^2$) Pressione cinetica di riferimento qr 477.25

La pressione cinetica di riferimento è pari a:

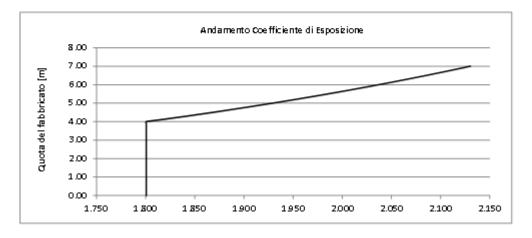

 $q_r = 477.25 \text{ N/m}^2$

[N/m²]

APPALTATORE	ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA CANCELLO-BENEVENTO II LOTTO FUNZIONALE FRASSO TELESINO – VITULANO 2° SUBLOTTO TELESE – SAN LORENZO									
PROGETTAZIONE:										
Mandataria:	Mandante:									
SYSTRA S.A.	SWS Engineering S.p.A.	SYSTRA-SOTECNI S.p.A.	A. PROGETTO ESECUTIVO							
OPERE D'ARTE VIABILITÀ			COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO		
Relazione di ca	IF2R	2.2.E.ZZ	CL	VI.15.0.8.001	В	34 di 75				

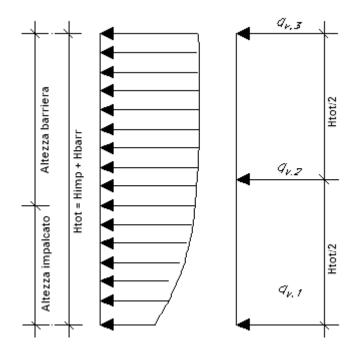
Coefficiente di esposizione [§3.3.7]

Il coefficiente di esposizione dipende dall'altezza z sul suolo del punto considerato, dalla topografia del terreno e dalla categoria di esposizione del sito (e quindi dalla classe di rugosità del terreno) ove sorge la costruzione; per altezze non maggiori di z=200m valgono le seguenti espressioni



k _r	zo (m)	z _{min} (m)
0.19	0.05	4.00

 Coefficiente di esposizione minimo
 $c_{c_{gin}}$ L80
 z < 4.00


 Coefficiente di esposizione alla gronda
 $c_{c_{gin} ida}$ 213
 z = 7.00

 Coefficiente di esposizione al colmo
 $c_{c_{colpo}}$ 213
 z = 7.00

Con riferimento all'andamento mostrato nella seguente Figura si valuta la pressione del vento alle tre diverse quote della superficie totale investita; in particolare si approssima l'andamento della curva logaritmica con una curva ad andamento bilineare avente un valore minimo, uno intermedio e uno massimo. Dai tre valori di pressione ottenuti, si ricava una pressione media considerata uniformemente distribuita sull'intera superficie investita:

APPALTATORE	ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA CANCELLO-BENEVENTO II LOTTO FUNZIONALE FRASSO TELESINO – VITULANO 2° SUBLOTTO TELESE – SAN LORENZO									
PROGETTAZIONE:										
Mandataria:	Mandante:									
SYSTRA S.A.	SWS Engineering S.p.A.	SYSTRA-SOTECNI S.p.A.	A. PROGETTO ESECUTIVO							
OPERE D'ARTE	VIABILITÀ		COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO		
Relazione di ca	IF2R	2.2.E.ZZ	CL	VI.15.0.8.001	В	35 di 75				

Ai fini delle analisi delle sottostrutture e quindi degli scarichi sugli apparecchi di appoggio si fa riferimento al caso di doppia barriera in quanto più gravoso ed in previsione di eventuali future integrazione degli elementi di mitigazione acustica.

Mentre per quanto riguarda la verifica delle travi di impalcato In via cautelativa si assume una pressione del vento pari a $pv = 2.5 \text{ kN/m}^2$ applicata sulla superficie del treno e su quella del ponte:

VENTO			
Pressione del vento	p :	2.50	kN/m²
Altezza treno	H	4.00	m
Distanza tra PF ed intradosso trave	d :	2.07	m
Altezza totale di spinta	H _{tot}	6.07	m
Forza sul lato direttamente esposto all'azione del vento	F _{wk1} 1	5.16	kN/m
Distanza tra il centro di spinta e il baricentro delle travi	y _g	3.49	m

APPALTATORE	ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA CANCELLO-BENEVENTO II LOTTO FUNZIONALE FRASSO TELESINO – VITULANO 2° SUBLOTTO TELESE – SAN LORENZO									
PROGETTAZIONE:										
Mandataria:	Mandante:									
SYSTRA S.A.	SWS Engineering S.p.A.	SYSTRA-SOTECNI S.p.A.	A. PROGETTO ESECUTIVO							
OPERE D'ARTE VIABILITÀ			COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO		
Relazione di ca	IF2R	2.2.E.ZZ	CL	VI.15.0.8.001	В	36 di 75				

6.9 EFFETTI AERODINAMICI ASSOCIATI AL PASSAGGIO DEI CONVOGLI FERROVIARI

Gli effetti aerodinamici associati al passaggio dei treni sono analoghi a quelli del vento (carichi equivalenti statici sulle barriere antirumore). L'intensità della pressione da considerare viene determinata secondo quanto indicato nel punto 2.5.1.4.6. del Manuale, che riporta integralmente il contenuto del par.5.2.2.6 del DM 14.1.2008: i valori caratteristici dell'azione ± q1k relativi a superfici verticali parallele al binario sono forniti nella Figura 5.2.8 del DM 14.1.2008, riportata di seguito, in funzione della distanza a'g dall'asse del binario più vicino, valutata secondo quanto prescritto nel par.5.2.2.6.4.

$$a_g' = 0,60 \min a_g + 0,40 \max a_g$$

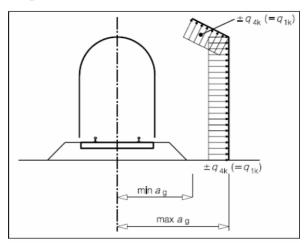


Figura 6: Definizione della distanza max ag e min ag dall'asse del binario

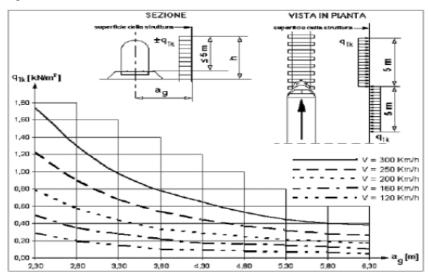


Figura 7: Valori caratteristici delle azioni q1k per superfici verticali parallele al binario – da Fig. 5.2.8 - "Manuale di progettazione delle opere civili"

APPALTATORE	TELES Consorzio Telese Società Consort		_	O TRATT	A CANCEL	LO-BENEVEN	_	ANO
PROGETTAZIOI	NE:		II LOTTO FUNZIONALE FRASSO TELESINO – VITULANO 2° SUBLOTTO TELESE – SAN LORENZO				ANO	
Mandataria:	Mandante:							
SYSTRA S.A.	SWS Engineering S.p.A.	SYSTRA-SOTECNI S.p.A.	PROGETTO	ESECU1	ΓΙVΟ			
OPERE D'ARTE	VIABILITÀ	_	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
Relazione di ca	IF2R	2.2.E.ZZ	CL	VI.15.0.8.001	В	37 di 75		

6.10 CARICHI SUI MARCIAPIEDI

Il carico sui marciapiedi e definito in accordo a quanto precisato al par. 2.5.1.4.1.6 del "Manuale di progettazione delle opere civili".

$$q_{vk} = 10.0 \text{ kN/m}^2$$

Per questo tipo di carico, che non deve considerarsi contemporaneo al transito dei convogli ferroviari, non deve applicarsi l'incremento dinarnico.

6.11 AZIONI SISMICHE Q7

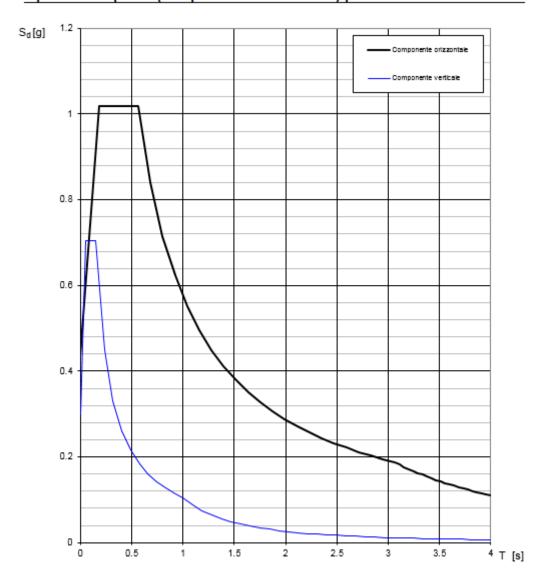
L'azione sismica non risulta dimensionante per l'impalcato, tuttavia se ne fornisce di seguito l'analisi, propedeutica per la valutazione delle azioni trasmesse alle sottostrutture.

6.11.1 Parametri sismici di calcolo

Si assumono i parametri sismici più cautelativi corrispondenti al tratto S2:

 $\begin{array}{lll} \mbox{Latitudine} & = 41.2161 \\ \mbox{Longitudine} & = 14.6998 \\ \mbox{a}_g & = 0.367 \ g \\ \mbox{F}_0 & = 2.346; \\ \mbox{T*c} & = 0.395 \ s; \\ \mbox{S}_s & = 1.184 \\ \mbox{a}_{max}(g) & = 0.434 \end{array}$

6.11.1 Spettri di risposta elastici


In accordo con le prescrizioni normative, è stato considerato lo spettro di risposta elastico ai fini della valutazione delle azioni sugli apparecchi di appoggio.

Stato limite di salvaguardia della vita

Di seguito si forniscono lo spettro di risposta elastico per lo stato limite di salvaguardia della vita e la tabella dei parametri rispettivi.

APPALTATORE	TELES Consorzio Telese Società Consort		_	O TRATT	A CANCEL	LO-BENEVEN	-	ANO
PROGETTAZIOI	NE:		II LOTTO FUNZIONALE FRASSO TELESINO – VITULANO 2º SUBLOTTO TELESE – SAN LORENZO				ANO	
Mandataria:	Mandante:							
SYSTRA S.A.	SWS Engineering S.p.A.	SYSTRA-SOTECNI S.p.A.	PROGETTO	ESECU1	ΓΙVΟ			
OPERE D'ARTE	VIABILITÀ	_	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
Relazione di ca	IF2R	2.2.E.ZZ	CL	VI.15.0.8.001	В	38 di 75		

Spettri di risposta (componenti orizz. e vert.) per lo stato li SLV

La verifica dell'idoneità del programma, l'utilizzo dei risultati da esso ottenuti sono onere e responsabilità esclusiva dell'utente. Il Consiglio Superiore dei Lavori Pubblici non potrà essere ritenuto responsabile dei danni risultanti dall'utilizzo dello stesso.

6.12 DERAGLIAMENTO Q9

Oltre a considerare i modelli di carico verticale da traffico ferroviario, ai fini della verifica della struttura si è tenuto conto, secondo quanto indicato al par. 5.2.2.9.2 del DM 14.1.2008, della possibilità alternativa

APPALTATORE	Consorzio Telese Società Consortile a Responsabilità Limitata			ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA CANCELLO-BENEVENTO					
PROGETTAZIOI Mandataria:	NE: Mandante:		II LOTTO FUNZIONALE FRASSO TELESINO – VITULA 2° SUBLOTTO TELESE – SAN LORENZO			ANO			
SYSTRA S.A.	SWS Engineering S.p.A.	SYSTRA-SOTECNI S.p.A.	PROGETTO	ESECU	ΓΙνο				
OPERE D'ARTE Relazione di ca	COMMESSA IF2R	LOTTO 2.2.E.ZZ	CODIFICA CL	DOCUMENTO VI.15.0.8.001	REV.	FOGLIO 39 di 75			

che un locomotore o un carro pesante deragli, esaminando separatamente le due seguenti situazioni di progetto:

Caso 1

Si considerano due carichi verticali lineari q_{A1d}=60 kN/m (comprensivo dell'effetto dinamico) ciascuno, posizionati longitudinalmente su una lunghezza di 6,40 m, ad una distanza trasversale pari allo scartamento S del binario. Il carico più eccentrico tra i due deve essere posto ad una distanza massima di 1,5 S dall'asse dei binari.

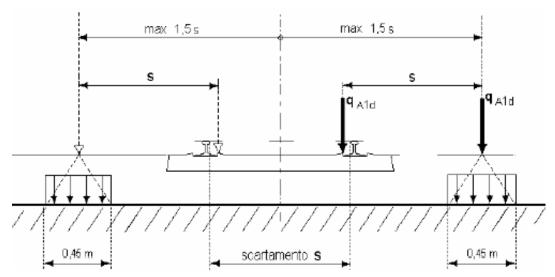


Figura 8: Deragliamento al di sopra del ponte - CASO 1

Caso 2

Si considera un unico carico lineare q_{A2d} =80x1.4 kN/m esteso per 20 m e disposto con una eccentricità massima, lato estemo, di 1,5 S rispetto all'asse del binario. Per questa condizione convenzionale di carico deve essere verificata la stabilità globale dell'opera, come il ribaltamento d'impalcato, il collasso della soletta ecc.

APPALTATORE	TELES Consorzio Telese Società Consort			O TRATT	A CANCEL	LO-BENEVEN		ANO
PROGETTAZIO			II LOTTO FUNZIONALE FRASSO TELESINO – VITULANO 2° SUBLOTTO TELESE – SAN LORENZO				ANO	
Mandataria:	Mandante:							
SYSTRA S.A.	SWS Engineering S.p.A.	SYSTRA-SOTECNI S.p.A.	PROGETTO	ESECU1	ΓΙνο			
OPERE D'ARTE			COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
Relazione di ca	lcolo impalcato		IF2R 2.2.E.ZZ CL VI.15.0.8.001 B 4				40 di 75	

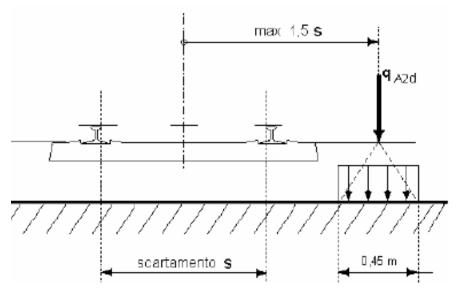


Figura 9: Deragliamento al di sopra del ponte – CASO 2

Nel caso in esame la forza di deragliamento non è stata considerata ai fini del dimensionamento strutturale, in quanto, considerando la geometria prevista, tale azione non può pregiudicare la stabilità globale dell'opera; inoltre, confrontando le sollecitazioni sulle singole travi con quelle indotte dal traffico, emerge che le azioni eccezionali di deragliamento non sono dimensionanti, pertanto la combinazione eccezionale non viene esaminata.

APPALTATORE	TELES Consorzio Telese Società Consort			O TRATT	A CANCEL	LO-BENEVEN		ANG
PROGETTAZIO			II LOTTO FUNZIONALE FRASSO TELESINO – VITULANO 2° SUBLOTTO TELESE – SAN LORENZO				ANO	
Mandataria:	Mandante:							
SYSTRA S.A.	SWS Engineering S.p.A.	SYSTRA-SOTECNI S.p.A.	PROGETTO	ESECU1	ΓΙνο			
OPERE D'ARTE			COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
Relazione di ca	lcolo impalcato		IF2R 2.2.E.ZZ CL VI.15.0.8.001 B 4				41 di 75	

7 COMBINAZIONI DI CARICO

Le combinazioni delle azioni sono state definite in accordo con quanto riportato al par. 2.5.3 del DM 14.1.2008:

Combinazione fondamentale, generalmente impiegata per gli stati limite ultimi (SLU):

$$\gamma_{G1} \cdot G_1 + \gamma_{G2} \cdot G_2 + \gamma_{P} \cdot P + \gamma_{Q1} \cdot Q_{k1} + \gamma_{Q2} \cdot \psi_{02} \cdot Q_{k2} + \gamma_{Q3} \cdot \psi_{03} \cdot Q_{k3} + \dots$$
 (2.5.1)

 Combinazione caratteristica (rara), generalmente impiegata per gli stati limite di esercizio (SLE) irreversibili, da utilizzarsi nelle verifiche alle tensioni ammissibili di cui al § 2.7:

$$G_1 + G_2 + P + Q_{k1} + \psi_{02} \cdot Q_{k2} + \psi_{03} \cdot Q_{k3} + \dots$$
 (2.5.2)

 Combinazione frequente, generalmente impiegata per gli stati limite di esercizio (SLE) reversibili:

$$G_1 + G_2 + P + \psi_{11} \cdot Q_{k1} + \psi_{22} \cdot Q_{k2} + \psi_{23} \cdot Q_{k3} + \dots$$
 (2.5.3)

 Combinazione quasi permanente (SLE), generalmente impiegata per gli effetti a lungo termine:

$$G_1 + G_2 + P + \psi_{21} \cdot Q_{k1} + \psi_{22} \cdot Q_{k2} + \psi_{23} \cdot Q_{k3} + \dots$$
 (2.5.4)

 Combinazione sismica, impiegata per gli stati limite ultimi e di esercizio connessi all'azione sismica E (v. § 3.2):

$$E + G_1 + G_2 + P + \psi_{21} \cdot Q_{k1} + \psi_{22} \cdot Q_{k2} + \dots$$
 (2.5.5)

– Combinazione eccezionale, impiegata per gli stati limite ultimi connessi alle azioni eccezionali di progetto $A_d(v. \S 3.6)$:

$$G_1 + G_2 + P + A_d + \psi_{21} \cdot Q_{k1} + \psi_{22} \cdot Q_{k2} + \dots$$
 (2.5.6)

I valori dei coefficienti parziali di sicurezza γ_{Gi} e γ_{Qj} e quelli dei coefficienti di combinazione Ψ_{ij} sono stati desunti dal par. 5.2.3.2.1 del DM 14.1.2008, relativo al capitolo sui 'Ponti ferroviari'. Di seguito si riportano le Tabelle di riferimento.

Per quanto riguarda il coefficiente di combinazione Ψ_{2j} relativo ai carichi dovuti al transito dei treni, questo si assume pari a 0,2 nelle combinazioni sismiche, conformemente a quanto prescritto nel par. 5.2.2.8 del DM 14.1.2008.

APPALTATORE	TELES Consorzio Telese Società Consort			O TRATT	A CANCEL	LO-BENEVEN		ANO
PROGETTAZIO	NE:		II LOTTO FUNZIONALE FRASSO TELESINO – VITULANO 2° SUBLOTTO TELESE – SAN LORENZO				ANO	
Mandataria:	Mandante:		_ 00220.		0_ 0,			
SYSTRA S.A.	SWS Engineering S.p.A.	SYSTRA-SOTECNI S.p.A.	PROGETTO	ESECU1	ΓΙνο			
OPERE D'ARTE			COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
Relazione di ca	colo impalcato		IF2R 2.2.E.ZZ CL VI.15.0.8.001 B 42				42 di 75	

_		Coefficiente	EQU ⁽¹⁾	Al STR	A2 GEO	Combinazione eccezionale	Combinazione Sismica
Carichi permanenti	favorevoli sfavorevoli	γG1	0,90 1,10	1,00 1,35	1,00 1,00	1,00 1,00	1,00 1,00
Carichi permanenti non strutturali ⁽²⁾	favorevoli sfavorevoli	γ _{G2}	0,00 1,50	0,00 1,50	0,00 1,30	1,00 1,00	1,00 1,00
Ballast ⁽³⁾	favorevoli sfavorevoli	γв	0,90 1,50	1,00 1,50	1,00 1,30	1,00 1,00	1,00 1,00
Carichi variabili da traffico ⁽⁴⁾	favorevoli sfavorevoli	γο	0,00 1,45	0,00 1,45	0,00 1,25	0,00 0,20 ⁽⁵⁾	0,00 0,20 ⁽⁵⁾
Carichi variabili	favorevoli sfavorevoli	γQi	0,00 1,50	0,00 1,50	0,00 1,30	0,00 1,00	0,00 0,00
Precompressione	favorevole sfavorevole	γр	0,90 1,00 ⁽⁶⁾	1,00 1,00 ⁽⁷⁾	1,00 1,00	1,00 1,00	1,00 1,00

⁽¹⁾ Equilibrio che non coinvolga i parametri di deformabilità e resistenza del terreno; altrimenti si applicano i valori di GEO.

Figura 10: Valori dei coefficienti parziali di sicurezza – Tabella 5.2.V del DM 17.1.2018

Azioni		V ₀	V 1	V 2
Azioni singole	Carico sul rilevato a tergo delle spalle	0,80	0,50	0,0
da traffico	Azioni aerodinamiche generate dal transito dei convogli	0,80	0,50	0,0
	gr1	0,80(2)	0,80(1)	0,0
Gruppi di	gr ₂	0,80(2)	0,80 ⁽¹⁾	-
carico	gr3	0,80(2)	0,80(1)	0,0
	gr ₄	1,00	1,00(1)	0,0
Azioni del vento	F _{Wk}	0,60	0,50	0,0
Azioni da	in fase di esecuzione	0,80	0,0	0,0
neve	SLU e SLE	0,0	0,0	0,0
Azioni termiche	T _k	0,60	0,60	0,50

^{(1) 0,80} se è carico solo un binario, 0,60 se sono carichi due binari e 0,40 se sono carichi tre o più binari.

Figura 11: Valori dei coefficienti di combinazione- Tabella 5.2.VI del DM 17.1.2018

⁽²⁾ Nel caso in cui i carichi permanenti non strutturali (ad es. carichi permanenti portati) siano compiutamente definiti si potranno adottare gli stessi coefficienti validi per le azioni permanenti.

⁽³⁾ Quando si prevedano variazioni significative del carico dovuto al ballast, se ne dovrà tener conto esplicitamente nelle verifiche.

⁽⁴⁾ Le componenti delle azioni da traffico sono introdotte in combinazione considerando uno dei gruppi di carico gr della Tab. 5.2.IV.

⁽⁵⁾ Aliquota di carico da traffico da considerare.

^{(6) 1,30} per instabilità in strutture con precompressione esterna

^{(7) 1,20} per effetti locali

⁽²⁾ Quando come azione di base venga assunta quella del vento, i coefficienti ψ₀ relativi ai gruppi di carico delle azioni da traffico vanno assunti pari a 0,0.

APPALTATORE	TELES Consorzio Telese Società Consort			O TRATT	A CANCEL	LO-BENEVEN		ANO
PROGETTAZIO	NE:		II LOTTO FUNZIONALE FRASSO TELESINO – VITULANO 2° SUBLOTTO TELESE – SAN LORENZO				ANO	
Mandataria:	Mandante:		L GODEO.		02 0/1112	OKLINEO		
SYSTRA S.A.	SWS Engineering S.p.A.	SYSTRA-SOTECNI S.p.A.	PROGETTO	ESECU1	ΓΙνο			
OPERE D'ARTE	VIABILITÀ		COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
Relazione di ca	IF2R	2.2.E.ZZ	CL	VI.15.0.8.001	В	43 di 75		

	Azioni	Ψο	Ψ1	Ψ 2
	Treno di carico LM 71	0,80(3)	(1)	0,0
Azioni	Treno di carico SW /0	0,80 ⁽³⁾	0,80	0,0
singole	Treno di carico SW/2	0,0(3)	0,80	0,0
da	Treno scarico	1,00(3)	-	-
traffico	Centrifuga	(2 (3)	(2)	(2)
	Azione laterale (serpeggio)	1,00(3)	0,80	0,0

^{(1) 0,80} se è carico solo un binario, 0,60 se sono carichi due binari e 0,40 se sono carichi tre o più binari.

Figura 12: Ulteriori valori dei coefficienti di combinazione - Tabella 5.2.VII del DM 14.1.2008

Conformemente con quanto prescritto al par.5.2.3.1.3 del DM 14.1.2008, gli effetti dei carichi verticali dovuti alla presenza dei convogli vanno sempre combinati con le altre azioni derivanti dal traffico ferroviario, adottando i coefficienti indicati nella Tabella 5.2.IV del DM 14.1.2008, riportata di seguito.

TIPO DI CARICO	Azioni v	erticali	A	zioni orizzont	ali					
Gruppo di carico	Carico verticale (1)	Treno scarico	Frenatura e avviamento	Centrifuga	Serpeggio	Commenti				
Gruppo 1 (2)	1,00	-	0,5 (0,0)	1,0 (0,0)	1,0 (0,0)	massima azione verticale e laterale				
Gruppo.2 (2)	-	1,00	0,00	1,0 (0,0)	1,0(0,0)	stabilità laterale				
Gruppo 3 (2)	1,0 (0,5)	-	1,00	0,5 (0,0)	0,5 (0,0)	massima azione longitudinale				
Gruppo 4	0,8 (0,6; 0,4)	-	0,8 (0,6; 0,4)	0,8 (0,6; 0,4)	0,8 (0,6; 0,4)	fessurazione				
Azione dominante (1) Includendo tutti i fattori ad essi relativi (Φ,α, ecc) (2) La simultaneità di due o tre valori caratteristici interi (assunzione di diversi coefficienti pari ad 1), sebbene improbabile, è stata considerata come semplificazione per i gruppi di carico 1, 2, 3 senza che ciò abbia significative conseguenze										

Figura 13: Valutazione dei carichi da traffico – Tabella 5.2.IV del DM 14.1.2008

I valori fra parentesi indicati nella Tab. 5.2.IV vanno assunti quando l'azione risulta favorevole nei riguardi della verifica che si sta svolgendo.

Sulla base dei criteri esposti sopra, si riportano nei prospetti di seguito i coefficienti dedotti per le combinazioni di carico più gravose tra quelle adottate nell'analisi strutturale, per i diversi stati limite, per la determinazione scarichi sugli apparecchi di appoggio.

.

⁽²⁾ Si usano gli stessi coefficienti ♥ adottati per i carichi che provocano dette azioni.

⁽³⁾ Quando come azione di base venga assunta quella del vento, i coefficienti ψ₀ relativi ai gruppi di carico delle azioni da traffico vanno assunti pari a 0,0.

APPALTATORE	APPALTATORE: TELESE S.c.a r.l. Consorzio Telese Società Consortile a Responsabilità Limitata			ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA CANCELLO-BENEVENTO					
PROGETTAZIO Mandataria:	NE: Mandante:		II LOTTO FUNZIONALE FRASSO TELESINO – VITULANO 2° SUBLOTTO TELESE – SAN LORENZO			ANO			
SYSTRA S.A.	SWS Engineering S.p.A.	SYSTRA-SOTECNI S.p.A.	PROGETTO	ESECU	ΓΙνο				
OPERE D'ARTE Relazione di ca	E VIABILITÀ Icolo impalcato						FOGLIO 44 di 75		

Combinazione	Gruppo	Traffico	G1	G2	Q3,a B1- SW2	Q3,a B1- LM71	Q3,a B2- LM71	Q3,f B1- SW2	Q3,f B1- LM71	Q3,f B2- LM71	Q4 B1- SW2	Q4 B1- LM71	Q4 B2- LM71	Q5 B1- SW2	Q5 B1- LM71	Q5 B2- LM71	Q6	LM71_B1	LM71_B2	SW2_B1
SLU-Gr.1(N)	Gr.1	(N)	1.35	1.5	0	0.725	0	0	0	0.725	0	1.45	1.45	0	1.45	1.45	0.9	1.45	1.45	0
SLU-Gr.3(N)	Gr.3	(N)	1.35	1.5	0	1.45	0	0	0	1.45	0	0.725	0.725	0	0.725	0.725	0.9	1.45	1.45	0
SLU-Gr.1(P)	Gr.1	(P)	1.35	1.5	0	0	0.725	0.725	0	0	1.45	0	1.45	1.45	0	1.45	0.9	0	1.45	1.45
SLU-Gr.3(P)	Gr.3	(P)	1.35	1.5	0	0	1.45	1.45	0	0	0.725	0	0.725	0.725	0	0.725	0.9	0	1.45	1.45
SLU-Gr.1-1SW/2	Gr.1	1SW/2	1.35	1.5	0	0	0	0.725	0	0	1.45	0	0	1.45	0	0	0.9	0	0	1.45
SLU-Gr.3-1SW/2	Gr.3	1SW/2	1.35	1.5	0	0	0	1.45	0	0	0.725	0	0	0.725	0	0	0.9	0	0	1.45
SLU-Gr.1-MaxML(P)	Gr.1	MaxML	1.35	1.5	0	0	0.725	0.725	0	0	1.45	0	1.45	1.45	0	1.45	0.9	0	1.45	1.45
SLU-Gr.3-MaxML(P)	Gr.3	MaxML	1.35	1.5	0	0	1.45	1.45	0	0	0.725	0	0.725	0.725	0	0.725	0.9	0	1.45	1.45
SLU-Gr.1(N)-Gk=1.00	Gr.1	(N)	1	1	0	0.725	0	0	0	0.725	0	1.45	1.45	0	1.45	1.45	0.9	1.45	1.45	0
SLU-Gr.3(N)-Gk=1.00	Gr.3	(N)	1	1	0	1.45	0	0	0	1.45	0	0.725	0.725	0	0.725	0.725	0.9	1.45	1.45	0
SLU-Gr.1(P)-Gk=1.00	Gr.1	(P)	1	1	0	0	0.725	0.725	0	0	1.45	0	1.45	1.45	0	1.45	0.9	0	1.45	1.45
SLU-Gr.3(P)-Gk=1.00	Gr.3	(P)	1	1	0	0	1.45	1.45	0	0	0.725	0	0.725	0.725	0	0.725	0.9	0	1.45	1.45
SLU-Gr.1-1SW/2-Gk=1.00	Gr.1	1SW/2	1	1	0	0	0	0.725	0	0	1.45	0	0	1.45	0	0	0.9	0	0	1.45
SLU-Gr.3-1SW/2-Gk=1.00	Gr.3	1SW/2	1	1	0	0	0	1.45	0	0	0.725	0	0	0.725	0	0	0.9	0	0	1.45
SLU-Gr.1-MaxML(P)-Gk=1.00	Gr.1	MaxML	1	1	0	0	0.725	0.725	0	0	1.45	0	1.45	1.45	0	1.45	0.9	0	1.45	1.45
SLU-Gr.3-MaxML(P)-Gk=1.00	Gr.3	MaxML	1	1	0	0	1.45	1.45	0	0	0.725	0	0.725	0.725	0	0.725	0.9	0	1.45	1.45
SLV-EL+0.3ET	\	\	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
SLV-0.3EL+ET	\	\	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
SLE-C-Gr.1(N)	Gr.1	(N)	1	1	0	0.5	0	0	0	0.5	0	1	1	0	1	1	0.6	1	1	0
SLE-C-Gr.3(N)	Gr.3	(N)	1	1	0	1	0	0	0	1	0	0.5	0.5	0	0.5	0.5	0.6	1	1	0
SLE-C-Gr.1(P)	Gr.1	(P)	1	1	0	0	0.5	0.5	0	0	1	0	1	1	0	1	0.6	0	1	1
SLE-C-Gr.3(P)	Gr.3	(P)	1	1	0	0	1	1	0	0	0.5	0	0.5	0.5	0	0.5	0.6	0	1	1
SLE-C-Gr.1-1SW/2	Gr.1	1SW/2	1	1	0	0	0	0.5	0	0	1	0	0	1	0	0	0.6	0	0	1
SLE-C-Gr.3-1SW/2	Gr.3	1SW/2	1	1	0	0	0	1	0	0	0.5	0	0	0.5	0	0	0.6	0	0	1
SLE-C-Gr.1-MaxML(P)	Gr.1	MaxML	1	1	0	0	0.5	0.5	0	0	1	0	1	1	0	1	0.6	0	1	1
SLE-C-Gr.3-MaxML(P)	Gr.3	MaxML	1	1	0	0	1	1	0	0	0.5	0	0.5	0.5	0	0.5	0.6	0	1	1
SLE-F-Gr.1(N)	Gr.1	(N)	1	1	0	0.4	0	0	0	0.4	0	0.8	8.0	0	8.0	8.0	0	0.8	8.0	0
SLE-F-Gr.3(N)	Gr.3	(N)	1	1	0	0.8	0	0	0	0.8	0	0.4	0.4	0	0.4	0.4	0	0.8	8.0	0
SLE-F-Gr.1(P)	Gr.1	(P)	1	1	0	0	0.4	0.4	0	0	0.8	0	8.0	0.8	0	8.0	0	0	8.0	8.0
SLE-F-Gr.3(P)	Gr.3	(P)	1	1	0	0	8.0	0.8	0	0	0.4	0	0.4	0.4	0	0.4	0	0	8.0	8.0
SLE-F-Gr.1-1SW/2	Gr.1	1SW/2	1	1	0	0	0	0.4	0	0	0.8	0	0	0.8	0	0	0	0	0	8.0
SLE-F-Gr.3-1SW/2	Gr.3	1SW/2	1	1	0	0	0	0.8	0	0	0.4	0	0	0.4	0	0	0	0	0	8.0
SLE-F-Gr.1-MaxML(P)	Gr.1	MaxML	1	1	0	0	0.4	0.4	0	0	0.8	0	8.0	0.8	0	8.0	0	0	8.0	8.0
SLE-F-Gr.3-MaxML(P)	Gr.3	MaxML	1	1	0	0	0.8	0.8	0	0	0.4	0	0.4	0.4	0	0.4	0	0	0.8	8.0
SLE-QP	\	\	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA CANCELLO-BENEVENTO II LOTTO FUNZIONALE FRASSO TELESINO – VITULANO
2° SUBLOTTO TELESE – SAN LORENZO
2 GOBEOTTO TELEGE - GAIN LONEINZO
PROGETTO ESECUTIVO
COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO IF2R 2.2.E.ZZ CL VI.15.0.8.001 B 45 di 75

I casi di carico che figurano nelle combinazioni sopra riportate, fanno riferimento alle seguenti azioni.

CASI DI CARICO									
Sigla	Tipologia	Descrizione							
-	-	-							
G1	Carichi permanenti strutturali	Peso proprio travi+soletta							
G2 (G2,1+G2,2+G2,3+G2,4)	Carichi permanenti non strutturali	Ballast e armamento-velette-paraballast-							
02 (02,1+02,2+02,3+02,4)	Canoni permanenti non strutturan	canalette e impianti-barriere antirumore							
Q3,a B1-SW2	Avviamento treno	Azione di avviamento per treno SW/2 su							
QO, a D1 OWZ	7. Vidinento treno	binario 1							
Q3,a B1-LM71	Avviamento treno	Azione di avviamento per treno LM71 su							
QO,Q DT EIVIT	7. Widinonto trono	binario 1							
Q3,a B2-LM71	Avviamento treno	Azione di avviamento per treno LM71 su							
Q0,4 D2 2.W. 1	7 Widmonto trono	binario 2							
Q3,f B1-SW2	Frenatura treno	Azione di frenatura per treno SW/2 su binario							
Q0,1 B1 0112	Tronatara trono	1							
Q3,f B1-LM71	Frenatura treno	Azione di frenatura per treno LM71 su binario							
QO,I DT EIM I	Tronatara trono	1							
Q3,f B2-LM71	Frenatura treno	Azione di frenatura per treno LM71 su binario							
		2							
Q4 B1-SW2	Azione centrifuga	Azione centrifuga per treno SW/2 su binario 1							
Q4 B1-LM71	Azione centrifuga	Azione centrifuga per treno LM71 su binario 1							
Q4 B2-LM71	Azione centrifuga	Azione centrifuga per treno LM71 su binario 2							
Q5 B1-SW2	Serpeggio	Azione di serpeggio per treno SW/2 su binario							
		1							
Q5 B1-LM71	Serpeggio	Azione di serpeggio per treno LM71 su binario							
Q0 D1 2		1							
Q5 B2-LM71	Serpeggio	Azione di serpeggio per treno LM71 su binario							
		2							
Q6	Vento	Azione del vento							
LM71_B1	Traffico ferroviario	Carico verticale per treno LM71 su binario 1							
LM71_B2	Traffico ferroviario	Carico verticale per treno LM71 su binario 2							
SW2_B1	Traffico ferroviario	Carico verticale per treno SW/2 su binario 1							

Tabella 5 – Casi di carico

APPALTATORE:	TELES Consorzio Telese Società Consort		_	O TRATT	A CANCEL	LO-BENEVEN O TELESINO -	_	ANO
PROGETTAZION	NE:		2° SUBLOT	-			· VIIUL	ANO
Mandataria:	Mandante:							
SYSTRA S.A.	SWS Engineering S.p.A.	SYSTRA-SOTECNI S.p.A.	PROGETTO	ESECU1	ΓΙνο			
OPERE D'ARTE	VIABILITÀ		COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
Relazione di cal	colo impalcato		IF2R	2.2.E.ZZ	CL	VI.15.0.8.001	В	46 di 75

Per quanto riguarda le condizioni di traffico indicate nel prospetto dei coefficienti di combinazioni adottati, queste fanno riferimento rispettivamente a:

- **(N)**: Condizioni di traffico normale (modello di carico LM71 su binario 1 e 2) su entrambe le campate afferenti;
- **(P)**: Condizioni di traffico pesante (modello di carico SW/2 su binario 1 e LM71 su binario 2) su entrambe le campate afferenti;
- **1SW/2**: Condizioni di traffico pesante con un solo binario carico (SW/2 su binario 1) su entrambe le campate afferenti;
- Max ML: Condizioni di traffico pesante (SW/2 su binario 1, LM71 su binario 2) solo sulla campata lato appoggi fissi.

Per quanto riguarda i gruppi di carico analizzati, come visibile nel prospetto dei coefficienti di combinazioni adottati, le azioni agenti sull'impalcato sono state combinate secondo i gruppi 1 e 3 (Gr.1-3), che danno luogo a sollecitazioni maggiori per le strutture in elevazione e in fondazione.

Inoltre, in accordo con la Tabella 5.2.V del DM 14.1.2008, le combinazioni allo SLU sono state duplicate considerando sia il possibile effetto sfavorevole che quello favorevole dei carichi permamenti strutturali e non. Nel secondo caso si sono quindi assunti valori unitari per i coefficienti γ_{Gk} .

APPALTATORE	TELES Consorzio Telese Società Consortile		ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA CANCELLO-BENEVENTO II LOTTO FUNZIONALE FRASSO TELESINO – VITULA				ANO			
PROGETTAZIONE:			2° SUBLOTTO TELESE – SAN LORENZO							
Mandataria:	Mandante:		L GOBLO		02 074142	OKLKEG				
SYSTRA S.A.	SWS Engineering S.p.A.	SYSTRA-SOTECNI S.p.A.	PROGETTO	ESECUT	ΓΙVΟ					
OPERE D'ARTE	VIABILITÀ		COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO		
Relazione di cal	lcolo impalcato		IF2R	2.2.E.ZZ	CL	VI.15.0.8.001	В	47 di 75		

Per la determinazione delle sollecitazioni di calcolo delle travi dell'impalcato sono state considerate, in relazione al modello di calcolo a fascia utilizzato, le seguenti condizioni di carico:

Condizione	
Permanenti strutturali	G ₁
Permanenti non strutturali	G ₂
Accidentali dinamizzati	Q _{1,1a}
Centrifuga	Qc
Frenatura/avviamento	Qa/Qf
Azione laterale	QL
Eccentricità di carico	Qe
Effetto sopraelevazione	Qs
Vento	Qw

	Со	mbinazioni	G1	G2	Q1,1a	Qa	Qf	Qc	QL	Qw	QS1	Qe
SLE	1	1 treno LM71	1.00	1.00	1.00	0.50	0	1.00	1.00	0.60	1.00	1.00
SLE	2	1 treno LM71	1.00	1.00	1.00	0.00	0.50	1.00	0.00	0.60	1.00	1.00
SLU	3	1 treno SW2	1.35	1.5	1.45	0.725	0	1.45	1.45	0.9	1.45	1.45
SLU	5	1 treno SW2	1.35	1.5	1.45	0	0.725	1.45	1.45	0.9	1.45	1.45

APPALTATORE: TELESE S.c.a r.l. ITINERARIO NAPOLI - BARI RADDOPPIO TRATTA CANCELLO-BENEVENTO Consorzio Telese Società Consortile a Responsabilità Limitata II LOTTO FUNZIONALE FRASSO TELESINO – VITULANO PROGETTAZIONE: 2° SUBLOTTO TELESE - SAN LORENZO Mandataria: Mandante: SWS Engineering S.p.A. SYSTRA S.A. SYSTRA-SOTECNI S.p.A. **PROGETTO ESECUTIVO** OPERE D'ARTE VIABILITÀ COMMESSA LOTTO CODIFICA DOCUMENTO REV. **FOGLIO** Relazione di calcolo impalcato

IF2R

2.2.E.ZZ

CL

VI.15.0.8.001

В

48 di 75

CRITERI DI VERIFICA 8

Le verifiche di sicurezza sono state effettuate sulla base dei criteri definiti nelle vigenti norme tecniche - "Norme tecniche per le costruzioni" - DM 14.1.2008 -, tenendo inoltre conto delle integrazioni riportate nel "Manuale di progettazione delle opere civili".

In particolare vengono effettuate le verifiche agli stati limite di servizio, riguardanti gli stati tensionale, di fessurazione e di deformazione, ed allo stato limite ultimo. Le combinazioni di carico considerate ai fini delle verifiche sono quelle indicate nei precedenti paragrafi.

Come anticipato nei capitoli precedenti, per le verifiche di resistenza, in accordo con quanto prescritto nel par. 2.9.2 del "Manuale di progettazione delle opere civili", il calcestruzzo è stato considerato non collaborante e pertanto la resistenza è stata affidata alle sole travi di acciaio.

I pesi propri e i sovraccarichi permanenti sono stati affidati a tutte le travi di acciaio presenti; le azioni variabili sono state assegnate alle travi che ricadono all'interno della fascia resistente di ripartizione del carico, pari a 4.00m per luce di calcolo L superiore ai 6.00m, conformemente con quanto prescritto nel par. 2.9.2.1 del "Manuale di progettazione delle opere civili".

Per quanto riguarda le verifiche di deformabilità, il calcestruzzo è stato considerato interamente collaborante ai fini della determinazione dell'inerzia flessionale dell'impalcato, con coefficiente di omogenerizzazione pari a n=6 e della ripartizione trasversale dei sovraccarichi mobili, in accordo con quanto prescritto nel par. 2.9.2 del "Manuale di progettazione delle opere civili".

Si espongono di seguito i criteri di verifica adottati per le verifiche degli elementi strutturali in c.a.(soletta).

Per quanto riquarda la verifica degli elementi in acciaio (travi di impalcato), si faccia riferimento ai criteri esposti nei par. 4.2.4.1 del DM 14.1.2008, per le verifiche agli stati limite ultimi (resistenza e stabilità delle membrature) e nel par. 4.2.4.2 per le verifiche agli stati limite di esercizio (spostamenti – stato limite di vibrazioni).

APPALTATORE	TELESE S Consorzio Telese Società Consortile a Res	RADDOPPIO TRATTA CANCELLO-BENEVENTO				ANO				
PROGETTAZIONE:			2° SUBLOTTO TELESE – SAN LORENZO							
Mandataria:	Mandante:		L GOBLO		02 074142	OKLKEG				
SYSTRA S.A.	SWS Engineering S.p.A. SYS	TRA-SOTECNI S.p.A.	PROGETTO	ESECU1	ΓΙVΟ					
OPERE D'ARTE	VIABILITÀ		COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO		
Relazione di ca	lcolo impalcato		IF2R	2.2.E.ZZ	CL	VI.15.0.8.001	В	49 di 75		

8.1 VERIFICHE AGLI STATI LIMITE DI ESERCIZIO

8.1.1 Verifica a fessurazione

Le verifiche a fessurazione sono eseguite adottando i criteri definiti nel paragrafo 4.1.2.2.4.5 del DM 14.1.2008.

Con riferimento alle classi di esposizione delle varie parti della struttura (si veda il paragrafo relativo alle caratteristiche dei materiali impiegati), alle corrispondenti condizioni ambientali ed alla sensibilità delle armature alla corrosione (armature sensibili per gli acciai da precompresso; poco sensibili per gli acciai ordinari), si individua lo stato limite di fessurazione per assicurare la funzionalità e la durata delle strutture, in accordo con il DM 14.1.2008:

Compai di	Condizioni	Combinazione	Armatura							
Gruppi di esigenze	ambientali	di azioni	Sensibile	Poco sensi	bile					
esigenze	amorentan	di azioni	Stato limite	Wd	Stato limite	$\mathbf{w_d}$				
	Ordinarie	frequente	ap. fessure	$\leq w_2$	ap. fessure	$\leq w_3$				
a	Ordinarie	quasi permanente	ap. fessure	$\leq w_1$	ap. fessure	$\leq w_2$				
ь	Aggregation	frequente	ap. fessure	$\leq w_1$	ap. fessure	$\leq w_2$				
	Aggressive	quasi permanente	decompressione	-	ap. fessure	$\leq w_1$				
	Malta aggressina	frequente	formazione fessure	-	ap. fessure	$\leq w_1$				
c	Molto aggressive	quasi permanente	decompressione	-	ap. fessure	$\leq w_1$				

Figura 14: Criteri di scelta dello stato limite di fessurazione - Tabella 4.1.IV del DM 14.1.2008

Nella Tabella sopra riportata, w₁=0.2mm, w₂=0.3mm; w₃=0.4mm.

Per le strutture di fondazione:

• Classe di esposizione e condizioni ambientali:

Lato terra e lato scavo: XC2 → condizioni ambientali ordinarie

• Stati limite di fessurazione:

Lato scavo e lato terra (cond. amb. Ordinarie + MdP RFI 2.6.2)

○ Combinazione di carico frequente: $w_d \le w_1 = 0.2 \text{ mm}$

○ Combinazione di carico quasi permanente: $w_d \le w_1 = 0.2 \text{ mm}$

Per le strutture di elevazione:

Classe di esposizione e condizioni ambientali:

XC4 → condizioni ambientali aggressive

Stati limite di fessurazione: (cond. amb. aggressive+ MdP RFI 2.6.2)

○ Combinazione di carico frequente: $w_d \le w_1 = 0.2 \text{ mm}$

o Combinazione di carico quasi permanente: $w_d \le w_1 = 0.2 \text{ mm}$

APPALTATORE: TELESE S.c.a r.l. ITINERARIO NAPOLI - BARI RADDOPPIO TRATTA CANCELLO-BENEVENTO Consorzio Telese Società Consortile a Responsabilità Limitata II LOTTO FUNZIONALE FRASSO TELESINO - VITULANO PROGETTAZIONE: 2° SUBLOTTO TELESE - SAN LORENZO Mandataria: Mandante: SWS Engineering S.p.A. SYSTRA S.A. SYSTRA-SOTECNI S.p.A. **PROGETTO ESECUTIVO** OPERE D'ARTE VIABILITÀ COMMESSA LOTTO CODIFICA DOCUMENTO REV. **FOGLIO** Relazione di calcolo impalcato IF2R 2.2.E.ZZ CL VI.15.0.8.001 В 50 di 75

8.1.2 Verifica delle tensioni in esercizio

Valutate le azioni interne nelle varie parti della struttura, dovute alle combinazioni caratteristica e quasi permanente delle azioni, si calcolano le massime tensioni sia nel calcestruzzo sia nelle armature; si verifica che tali tensioni siano inferiori ai massimi valori consentiti, di seguito riportati.

Le prescrizioni riportate di seguito fanno riferimento al par. 4.1.2.2.5.1 del DM 14.1.2008.

La massima tensione di compressione del calcestruzzo σc , deve rispettare la limitazione seguente:

- $\sigma c < 0.55$ fck per combinazione caratteristica (rara)
- $\sigma c < 0.40$ fck per combinazione quasi permanente.

Per l'acciaio ordinario, la tensione massima σ s per effetto delle azioni dovute alla combinazione caratteristica deve rispettare la limitazione seguente:

• $\sigma s < 0.75 \text{ fyk}$

dove fyk per armatura ordinaria è la tensione caratteristica di snervamento dell'acciaio.

8.1.3 Verifica di deformabilità e vibrazioni

Conformemente con quanto prescritto al par. 2.5.1.8.3.2.2 del "Manuale di progettazione delle opere civili", la valutazione dei parametri di deformazione degli impalcati, da eseguire utilizzando la combinazione caratteristica (rara) degli SLE, è richiesta per i motivi e con modalità riportati nei seguenti punti A e B:

A. Per questioni di sicurezza del traffico ferroviario (per garantire la stabilità e la continuità del binario ed assicurare il mantenimento del contatto ruota-rotaia), occorre verificare che non siano superati i limiti sulle seguenti grandezze:

- Accelerazione verticale dell'impalcato;
- Torsione dell'impalcato (sghembo del binario);
- Inflessione dell'impalcato nel piano orizzontale;

APPALTATORE:	TELES Consorzio Telese Società Consorti		_	O TRATT	A CANCEL	LO-BENEVEN O TELESINO -	_	ANO
PROGETTAZION	NE:		2° SUBLOT	-			VIIOL	ANO
Mandataria:	Mandante:							
SYSTRA S.A.	SWS Engineering S.p.A.	SYSTRA-SOTECNI S.p.A.	PROGETTO	ESECU	ΓΙνο			
OPERE D'ARTE	VIABILITÀ		COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
Relazione di cal	colo impalcato		IF2R	2.2.E.ZZ	CL	VI.15.0.8.001	В	51 di 75

- Inflessione dell'impalcato nel piano verticale.
- B. Per il comfort del passeggero, si dovrà verificare che non siano superati i limiti di freccia verticale dell'impalcato.

Stati limite di servizio per la sicurezza del traffico ferroviario

Accelerazioni verticali dell'impalcato

Tale verifica non è richiesta per l'opera in oggetto, in quanto le velocità di esercizio non superano i 200km/h.

Deformazioni torsionali dell'impalcato

La torsione dell'impalcato del ponte è calcolata considerando il treno di carico LM71, SW/0 o SW/2 incrementato con il corrispondente coefficiente dinamico e con il coefficiente α.

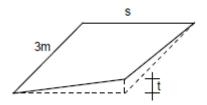


Figura 15: Sghembo ammissibile

Il massimo sghembo misurato su una lunghezza di 3 m e considerando le rotaie solidali all'impalcato, vedi figura precedente, non deve eccedere i seguenti valori per l'opera in oggetto:

Per 120< $V \le 200 \text{ km/h}$; $t \le 3.00 \text{ mm} / 3\text{m}$

Inflessione nel piano orizzontale dell'impalcato

Considerando la presenza del treno di carico LM71 e SW/0 (con i concetti di contemporanetà descritti in precedenza), incrementato con il corrispondente coefficiente dinamico e con il coefficiente α , l'azione del vento, la forza centrifuga e la forza laterale (serpeggio), l'inflessione nel piano orizzontale dell'impalcato non deve produrre:

• Una variazione angolare maggiore di quella fornita nella successiva Tabella;

APPALTATORE	TELES Consorzio Telese Società Consort		ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA CANCELLO-BENEVENTO II LOTTO FUNZIONALE FRASSO TELESINO – VITULA				ANO	
PROGETTAZIONE:			2° SUBLOT				VIIOL	ANO
Mandataria: SYSTRA S.A.	Mandante: SWS Engineering S.p.A.	SYSTRA-SOTECNI S.p.A.	PROGETTO	ESECU	ΓΙVΟ			
OPERE D'ARTE Relazione di ca			COMMESSA IF2R	LOTTO 2.2.E.ZZ	CODIFICA CL	DOCUMENTO VI.15.0.8.001	REV.	FOGLIO 52 di 75

• Un raggio di curvatura orizzontale minore dei valori di cui alla citata tabella.

Velocità	Variazione	Raggio minim	o di curvatura
[km/h]	Angolare massima	Singola campata	Più campate
V ≤ 120	0,0035 rd	1700 m	3500 m
120 < V ≤ 200	0,0020 rd	6000 m	9500 m
200 < V	0.0015 rd	14000 m	17500 m

Figura 16: Massima variazione angolare e minimo raggio di curvatura - Tab. 5.2.VIII del DM 14.1.2008

Il raggio di curvatura, nel caso caso in esame, è dato dalla seguente espressione:

$$R = \frac{L^2}{8\delta_h}$$

Dove δ_h rappresenta la freccia orizzontale.

Inflessione nel piano verticale dell'impalcato

È stato verificato che, considerando la presenza dei treni di carico LM71 e SW/2, incrementati con il corrispondente coefficiente dinamico e con il coefficiente α , il massimo valore di inflessione per effetto di tali carichi ferroviari non ecceda il valore **L/600**.

Stati limite per il comfort dei passeggeri

La freccia è stata calcolata in asse al binario, considerando un solo binario carico da un singolo modello LM71 con il relativo incremento dinamico e con il coefficiente α .

Nella successiva Figura sono riportati i valori del limite di deformabilità, validi per viadotti con impalcati semplicemente appoggiati aventi tre o più campate, corrispondenti all'accelerazione ammissibile verticale pari a $b_v=1$ m/s in carrozza.

APPALTATORE:	TELES Consorzio Telese Società Consort		_	O TRATT	A CANCEL	LO-BENEVEN O TELESINO -	_	ANO
PROGETTAZION	NE:		2° SUBLOT	-			· VIIUL	ANO
Mandataria:	Mandante:							
SYSTRA S.A.	SWS Engineering S.p.A.	SYSTRA-SOTECNI S.p.A.	PROGETTO	ESECU1	ΓΙνο			
OPERE D'ARTE	VIABILITÀ		COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
Relazione di cal	colo impalcato		IF2R	2.2.E.ZZ	CL	VI.15.0.8.001	В	53 di 75

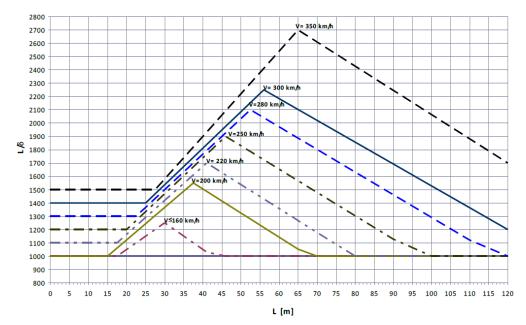


Figura 17: Valori del limite di deformabilità L/δ per il comfort dei passeggeri – da Fig.5.2.1.8.3.2.2-2 del "Manuale di progettazione delle opere civili"

Nel caso in esame si ottiene il limite inferiore:

L/d > 1000

8.2 VERIFICHE AGLI STATI LIMITE ULTIMI

8.2.1 Sollecitazioni flettenti

La verifica di resistenza (SLU) è stata condotta attraverso il calcolo dei domini di interazione N-M, ovvero il luogo dei punti rappresentativi di sollecitazioni che portano in crisi la sezione di verifica secondo i criteri di resistenza da normativa.

Nel calcolo dei domini sono state mantenute le consuete ipotesi, tra cui:

- · conservazione delle sezioni piane;
- legame costitutivo del calcestruzzo parabolo-rettangolo non reagente a trazione, con plateaux ad una deformazione pari a 0.002 e a rottura pari a 0.0035 ($\sigma_{max} = 0.85 \times 0.83 \times R_{ck}/1.5$);

APPALTATORE: TELESE s.c.a r.l. Consorzio Telese Società Consortile a Responsabilità Limitata			ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA CANCELLO-BENEVENTO II LOTTO FUNZIONALE FRASSO TELESINO – VITULANO					
PROGETTAZIO			2° SUBLOTTO TELESE – SAN LORENZO			ANO		
Mandataria:	Mandante:							
SYSTRA S.A.	SWS Engineering S.p.A.	SYSTRA-SOTECNI S.p.A.	PROGETTO	ESECU1	TIVO			
OPERE D'ARTE		_	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
Relazione di ca	lcolo impalcato		IF2R	2.2.E.ZZ	CL	VI.15.0.8.001	В	54 di 75

• legame costitutivo dell'armatura d'acciaio elastico–perfattamente plastico con deformazione limite di rottura a 0.01 ($\sigma_{max} = f_{yk} / 1.15$)

8.2.2 Sollecitazioni taglianti

La resistenza a taglio V_{Rd} di elementi sprovvisti di specifica armatura è stata calcolata sulla base della resistenza a trazione del calcestruzzo.

Con riferimento all'elemento fessurato da momento flettente, la resistenza al taglio si valuta con:

$$V_{\text{Rd}} = \left\{ 0.18 \cdot k \cdot (100 \cdot \rho_1 \cdot f_{ck})^{1/3} \, / \, \gamma_c + 0.15 \cdot \sigma_{cp} \right\} \cdot b_w \cdot d \geq \, \left(v_{min} \, + \, 0.15 \cdot \, \sigma_{cp} \right) \, \cdot b_w d + 0.00 \cdot \left(v_{min} + \, 0.00 \cdot \, \sigma_{cp} \right) \, \cdot b_w d + 0.00 \cdot \, \sigma_{cp} + 0.00 \cdot \, \sigma_$$

con:

 $k = 1 + (200/d)^{1/2} \le 2$

 $v_{min} = 0.035 k^{3/2} f_{ck}^{1/2}$

e dove:

d è l'altezza utile della sezione (in mm);

 $\rho_1 = A_{sl} / (b_w \times d)$ è il rapporto geometrico di armatura longitudinale (≤ 0.02);

 $\sigma_{cp} = N_{Ed}/A_c$ è la tensione media di compressione nella sezione ($\leq 0,2 f_{cd}$);

bw è la larghezza minima della sezione (in mm).

La resistenza a taglio V_{Rd} di elementi strutturali dotati di specifica armatura a taglio deve essere valutata sulla base di una adeguata schematizzazione a traliccio. Gli elementi resistenti dell'ideale traliccio sono: le armature trasversali, le armature longitudinali, il corrente compresso di calcestruzzo e i puntoni d'anima inclinati. L'inclinazione θ dei puntoni di calcestruzzo rispetto all'asse della trave deve rispettare i limiti seguenti:

$$1 \le ctg \theta \le 2.5$$

La verifica di resistenza (SLU) si pone con:

$$V_{Rd} \ge V_{Fd}$$

dove V_{Ed} è il valore di calcolo dello sforzo di taglio agente.

Con riferimento all'armatura trasversale, la resistenza di calcolo a "taglio trazione" è stata calcolata con:

APPALTATORE: TELESE S.c.a r.l. Consorzio Telese Società Consortile a Responsabilità Limitata			ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA CANCELLO-BENEVENTO II LOTTO FUNZIONALE FRASSO TELESINO – VITULANO 2° SUBLOTTO TELESE – SAN LORENZO					
PROGETTAZIONE:								
Mandataria:	Mandante:		2 GOBLOT	· O · LLL	OL - OAIT L	OKLINZO		
SYSTRA S.A.	SWS Engineering S.p.A. SYSTR	A-SOTECNI S.p.A.	PROGETTO	ESECU1	TIVO			
OPERE D'ARTE Relazione di cal			COMMESSA IF2R	LOTTO 2.2.E.ZZ	CODIFICA CL	DOCUMENTO VI.15.0.8.001	REV.	FOGLIO 55 di 75

$$V_{Rsd} = 0.9 \cdot d \cdot \frac{A_{sw}}{s} \cdot f_{yd} \cdot (ctg\alpha + ctg\theta) \cdot sin \alpha$$

Con riferimento al calcestruzzo d'anima, la resistenza di calcolo a "taglio compressione" è stata calcolata con:

$$V_{\text{Rcd}} = 0,9 \cdot d \cdot b_w \cdot \alpha_c \cdot f'_{\text{cd}} \cdot (\text{ctg}\alpha + \text{ctg}\theta)/(1 + \text{ctg}^2\theta)$$

La resistenza al taglio della trave è la minore delle due sopra definite:

$$V_{Rd} = min (V_{Rsd}, V_{Rcd})$$

In cui:

d è l'altezza utile della sezione;

b_w è la larghezza minima della sezione;

s_{cp} è la tensione media di compressione della sezione;

A_{sw} è l'area dell'armatura trasversale;

S è interasse tra due armature trasversali consecutive;

θ è l'angolo di inclinazione dell'armatura trasversale rispetto all'asse della

trave;

f'cd è la resistenza a compressione ridotta del calcestruzzo d'anima (f'cd=0.5fcd);

 α è un coefficiente maggiorativo pari ad 1 per membrature non compresse.

APPALTATORE: TELESE S.c.a r.l. ITINERARIO NAPOLI - BARI RADDOPPIO TRATTA CANCELLO-BENEVENTO Consorzio Telese Società Consortile a Responsabilità Limitata II LOTTO FUNZIONALE FRASSO TELESINO – VITULANO PROGETTAZIONE: 2° SUBLOTTO TELESE - SAN LORENZO Mandataria: Mandante: SYSTRA S.A. SWS Engineering S.p.A. SYSTRA-SOTECNI S.p.A. **PROGETTO ESECUTIVO** OPERE D'ARTE VIABILITÀ COMMESSA LOTTO CODIFICA DOCUMENTO REV. **FOGLIO** Relazione di calcolo impalcato IF2R 2.2.E.ZZ CL VI.15.0.8.001 В 56 di 75

9 ANALISI DELLE SOLLECITAZIONI

9.1 SOLLECITAZIONI SULLA FASCIA BRS

Nei seguenti paragrafi si valutano le azioni flettenti, taglianti e torcenti agenti sulla fascia resistente di larghezza pari a 4.0 m.

Le azioni verticali prodotte da permanenti e accidentali e quelle prodotte dalla frenatura/avviamento sono ugualmente ripartite sulle diverse travi contenute all'interno della fascia resistente di 4,0 m. Le azioni orizzontali, invece, riportate al baricentro delle travi, producono delle coppie torcenti lungo l'asse dell'impalcato che hanno come effetto quello di caricare maggiormente le travi più esterne della fascia considerata. Analogo effetto hanno l'eccentricità di carico del treno LM71 e l'effetto della sopraelevazione

Calcolo delle sollecitazioni su una fascia di 4,00m			
	1.		
Luce trave (assi appoggi)	L	21.10	m
Momento flettente in mezzeria			
Permanenti strutturali	M _{G1}	10534	kNm
Permanenti non strutturali	M_{G2}	2507	kNm
Accidentali: Treno LM71	M LM71	9022	kNm
Accidentali: Treno SW2	M sw ₂	10402	kNm
Avviamento: Treno LM71	LM71_AF	302	kNm
Frenatura: Treno SW2	SW2_AF	292	kNm
Taglio all' appoggio			
Permanenti strutturali	T _{G1}	1997	kN
Permanenti non strutturali	T _{G2}	475	kN
Accidentali: Treno LM71	T _{LM71}	1812	kN
Accidentali: Treno SW2	T sw2	1972	kN
Avviamento: Treno LM71	LM71_AF	78	kN
Frenatura: Treno SW2	SW2_AF	75	kN

APPALTATORE	TELESE Consorzio Telese Società Con sortile a		_	O TRATT	A CANCEL	LO-BENEVEN D TELESINO -	_	ANO
PROGETTAZIO	NE:		2° SUBLOT				· VIIUL	ANO
Mandataria:	Mandante:		2 GOBLOT	IO ILLL	OL - OAN L	OKLINZO		
SYSTRA S.A.	SWS Engineering S.p.A.	SYSTRA-SOTECNI S.p.A.	PROGETTO	ESECUT	ΓΙVΟ			
OPERE D'ARTE			COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
Relazione di ca	lcolo impalcato		IF2R	2.2.E.ZZ	CL	VI.15.0.8.001	В	57 di 75

Coppie torcenti a metro lineare di impalcato

Eccentricità Treno LM71	Ī		
	mt	40.00	
Effetti flettenti	ec_LM71	10.62	KINM
Effetti taglianti	m _t ec_LM71	11.25	kNm
(Si assume pari ad 8cm, come da normativa)			
Effetto della sopraelevazione			
Sopraelevazione	s	0.1	m
eccenticità e=180*s/143,5	е	0.125	m
Treno LM71			
	m_t		
Effetti flettenti	s_LM71	16.65	kNm
Effetti taglianti	m _t	17.64	kNlm
Effetti taglianti Treno SW2	s_LM71	17.04	KINIII
TIETIO SVV2	l m _t		
Effetti flettenti	s_SW2	19.19	kNm
	m_t		
Effetti taglianti	s_SW2	19.19	kNm
Vento	ı		
Vento	$m_{t\ v}$	52.97	kN/m
Serpeggio	•		
LM71	m _{t serp}	166.65	kN/m
SW2	m _{t serp}	151.50	kN/m

9.2 TRAVE DI BORDO FASCIA

Di seguito si riportano le azioni flettenti, taglianti e torcenti agenti sulla trave di bordo della fascia resistente. In particolare gli effetti delle coppie torcenti " m_t " si traducono un incremento di carico verticale Δq sulla trave di bordo. Le sollecitazioni flettenti e taglianti sono invece equamente suddivise tra le travi appratenti alla fascia.

L'incremento di carico verticale prodotto sulla trave di bordo dalle coppie torcenti si valuta, in prima approssimazione, considerando la flessione su una striscia unitaria trasversale di impalcato avente sezione b*h pari a 100 cm*400 cm ed il cui momento d'inerzia J' vale $1*4^3/12=5,33$ m⁴:

$$\Delta_p = (m_t / J')^* d^* i = 0,149^* m$$

Consorzio Telese Società Consortile a Responsabilità Limitata		ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA CANCELLO-BENEVENTO II LOTTO FUNZIONALE FRASSO TELESINO – VITULANO						
PROGETTAZION Mandataria:	IE: <u>Mandante:</u>		2° SUBLOTTO TELESE – SAN LORENZO			ANO		
SYSTRA S.A.	SWS Engineering S.p.A.	SYSTRA-SOTECNI S.p.A.	PROGETTO	ESECUT	IVO			
OPERE D'ARTE Relazione di cal			COMMESSA IF2R	LOTTO 2.2.E.ZZ	CODIFICA CL	DOCUMENTO VI.15.0.8.001	REV.	FOGLIO 58 di 75

essendo i=0.577 m e d=1.73 m (dove i è l'interasse fra le travi e d è la distanza fra distanza asse trave di bordo fascia-asse fascia).

Interasse travi Distanza fra l'asse della trave di bordo e l'asse dell'impalcato Momento d'inerzia Coefficiente di ripartizione	i d I Δp	0.58 1.73 5.33 0.187	$m \\ m^4$
Calcolo delle sollecitazioni sulla trave di bordo			
Luce trave (assi appoggi) Numero di travi comprese nella fascia di 4,00 m	L N°	21.10 6	m
Momento flettente in mezzeria Permanenti strutturali Permanenti non strutturali Accidentali: Treno LM71 Accidentali: Treno SW2	M G1 M G2 M LM71 M SW2	1755.6 417.8 1503.6 1733.6	kNm kNm
Avviamento: Treno LM71 Frenatura: Treno SW2	T LM71_AF T		kNm kNm
Coppie torcenti a metro lineare di impalcato	SW2_AF	40.0	KINIII
Eccentricità Treno LM71	m _t ec_LM71	110.6	kNm
Effetto della sopraelevazione Treno LM71 Treno SW2	$\begin{array}{c} m_t \\ s_LM71 \\ m_t \\ s_SW2 \end{array}$	173.4 199.9	
Vento Vento	m _{t v}	551.7	kN/m
Serpeggio LM71 SW2	m _{t serp}	164.5 149.6	

APPALTATORE: TELESE S.c.a r.l. ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA CANCELLO-BENEVENTO Consorzio Telese Società Consortile a Responsabilità Limitata II LOTTO FUNZIONALE FRASSO TELESINO – VITULANO PROGETTAZIONE: 2° SUBLOTTO TELESE - SAN LORENZO Mandataria: Mandante: SYSTRA S.A. SWS Engineering S.p.A. SYSTRA-SOTECNI S.p.A. PROGETTO ESECUTIVO CODIFICA **OPERE D'ARTE VIABILITÀ** COMMESSA LOTTO DOCUMENTO REV. **FOGLIO** Relazione di calcolo impalcato IF2R 59 di 75 2.2.E.ZZ CL VI.15.0.8.001 В

Luce trave (assi appoggi) L 21.10 m m Numero di travi comprese nella fascia di 4,00 m N° 6 m Taglio all' appoggio Permanenti strutturali T G1 332.8 kNm Permanenti non strutturali T G2 79.2 kNm Accidentali: Treno LM71 T Sw2 328.7 kNm T Sw2 328.7 kNm Accidentali: Treno LM71 LM71_AF 13.0 kNm T Sw2 328.7 kNm Frenatura: Treno LM71 LM71_AF 12.6 kNm Nm Coppie torcenti a metro lineare di impalcato Centrifuga Treno LM71 mt C_LM71 #DIV/0! kNm Centrifuga Treno LM71 mt 22.2 kNm Effetto della sopraelevazione Treno LM71 34.8 kNm Treno SW2 s_SW2 37.9 kNm Vento Vento mt mt mt Vento mt mt s_SW2 31.2 kN/m LM71 mt sep 28.4 kN/m	Calcolo delle sollecitazioni sulla trave di bordo			
Numero di travi comprese nella fascia di 4,00 m N° 6 Taglio all' appoggio T G1 332.8 kNm Permanenti strutturali T G2 79.2 kNm Accidentali: Treno LM71 T LM71 302.0 kNm Accidentali: Treno SW2 T Sw2 328.7 kNm Avviamento: Treno LM71 LM71 AF 13.0 kNm Frenatura: Treno SW2 " 12.6 kNm Coppie torcenti a metro lineare di impalcato mt C_LM71 #DIV/0! kNm Centrifuga Treno LM71 " #DIV/0! kNm Eccentricità Treno LM71 mt ec_LM71 22.2 kNm Effetto della sopraelevazione mt ec_LM71 34.8 kNm mt s.LM71 34.8 kNm mt s.SW2 37.9 kNm Vento mt v 104.6 kN/m Serpeggio LM71 mt serp 31.2 kN/m		1.	04.40	
Taglio all' appoggio T s1 332.8 kNm Permanenti strutturali T s2 79.2 kNm Permanenti non strutturali T s2 79.2 kNm Accidentali: Treno LM71 T LM71 302.0 kNm Accidentali: Treno SW2 T SW2 328.7 kNm Avviamento: Treno LM71 LM71 AF 13.0 kNm Frenatura: Treno SW2 SW2_AF 12.6 kNm Coppie torcenti a metro lineare di impalcato Centrifuga Treno LM71 C_LM71 #DIV/0! kNm Centrifuga Treno SW2 C_SW2 #DIV/0! kNm Eccentricità Treno LM71 mt c_LM71 22.2 kNm Effetto della sopraelevazione mt s_LM71 34.8 kNm mt s_LM71 34.8 kNm Treno LM71 mt s_LM71 34.8 kNm Vento mt v 104.6 kN/m Serpeggio LM71 mt serp 31.2 kN/m				m
Permanenti strutturali	Numero di travi comprese nella fascia di 4,00 m	N°	6	
Permanenti strutturali	Taglio all' appoggio			
Permanenti non strutturali		_{T 61}	332 8	kNm
Accidentali: Treno LM71 Accidentali: Treno SW2 Avviamento: Treno LM71 Avviamento: Treno LM71 Frenatura: Treno SW2 Coppie torcenti a metro lineare di impalcato Centrifuga Treno LM71 Centrifuga Treno LM71 Eccentricità Treno LM71 Effetto della sopraelevazione Treno LM71 Treno SW2 Treno SW2 Treno SW2 Treno SW2 Rit C_LM71 #DIV/0! kNm mt c_LM71 Effetto della sopraelevazione Treno LM71 Treno SW2 Rit C_LM71 #DIV/0! kNm mt c_LM71 Effetto della sopraelevazione Treno LM71 Treno SW2 Treno SW				
Accidentali: Treno SW2				
Avviamento: Treno LM71 Frenatura: Treno SW2 Coppie torcenti a metro lineare di impalcato Centrifuga Treno LM71 Centrifuga Treno LM71 Centrifuga Treno LM71 Eccentricità Treno LM71 Effetto della sopraelevazione Treno LM71 Treno SW2 Vento Vento Vento Serpeggio LM71 Freno LM71 Entre 13.0 kNm mt c_LM71 #DIV/0! kNm mt c_LM71 #DIV/0! kNm mt c_SW2 #DIV/0! kNm mt to_LM71 22.2 kNm mt s_LM71 34.8 kNm mt to_sW2 37.9 kNm Serpeggio LM71 mt serp 31.2 kN/m				
T SW2_AF 12.6 kNm			020	
Sw2_AF 12.6 kNm	Avviamento: Treno LM71		13.0	kNm
Coppie torcenti a metro lineare di impalcato	Frenatura: Treno SW2	I ⁻	12.6	kNlm
Centrifuga Treno LM71 mt C_LM71 mt mt C_SW2 #DIV/0! kNm Eccentricità Treno LM71 mt ec_LM71 22.2 kNm Effetto della sopraelevazione mt s_LM71 34.8 kNm mt s_SW2 37.9 kNm Vento mt v 104.6 kN/m Serpeggio LM71 mt serp 31.2 kN/m	Frendura. Frend GW2	SW2_AF	12.0	KINIII
Centrifuga Treno LM71 mt C_LM71 mt mt C_SW2 #DIV/0! kNm Eccentricità Treno LM71 mt ec_LM71 22.2 kNm Effetto della sopraelevazione mt s_LM71 34.8 kNm mt s_SW2 37.9 kNm Vento mt v 104.6 kN/m Serpeggio LM71 mt serp 31.2 kN/m	Connie torcenti a metro lineare di impalcato	Į.		
Centrifuga Treno SW2 mt c_SW2 #DIV/0! kNm Eccentricità Treno LM71 mt ec_LM71 22.2 kNm Effetto della sopraelevazione mt s_LM71 34.8 kNm mt mt s_SW2 Treno SW2 s_SW2 37.9 kNm Vento mt v 104.6 kN/m Serpeggio LM71 mt serp 31.2 kN/m	ooppio toroonii a mono imono ai impaioato	mt		
Centrifuga Treno SW2 c_sw2 #DIV/0! kNm Eccentricità Treno LM71 mt ec_LM71 22.2 kNm Effetto della sopraelevazione mt s_LM71 34.8 kNm mt mt s_LM71 Treno SW2 37.9 kNm Vento mt v 104.6 kN/m Serpeggio LM71 mt serp 31.2 kN/m	Centrifuga Treno LM71	_	#DIV/0!	kNm
Mt ec_LM71 22.2 kNm Effetto della sopraelevazione Treno LM71 34.8 kNm mt s_SW2 37.9 kNm Vento Vento mt v 104.6 kN/m Serpeggio LM71 mt serp 31.2 kN/m	Contributa Trong SW2	· ·	#DI\//0I	kNlm
Eccentricità Treno LM71 ec_LM71 22.2 kNm Effetto della sopraelevazione mt s_LM71 34.8 kNm Treno LM71 s_LM71 34.8 kNm mt Treno SW2 37.9 kNm s_SW2 37.9 kNm Vento mt v 104.6 kN/m Serpeggio thm thm thm LM71 mt serp 31.2 kN/m	Gentinaga Treno SW2	C_SW2	#DIV/0:	KINIII
Effetto della sopraelevazione		l m _t		
Treno LM71 34.8 kNm Treno SW2 37.9 kNm Vento mt v 104.6 kN/m Serpeggio LM71 mt serp 31.2 kN/m	Eccentricità Treno LM71	ec_LM71	22.2	kNm
Treno LM71 34.8 kNm Treno SW2 37.9 kNm Vento mt v 104.6 kN/m Serpeggio LM71 mt serp 31.2 kN/m				
Treno LM71 s_LM71 mt mt s_SW2 34.8 kNm Vento mt v 37.9 kNm Vento mt v 104.6 kN/m Serpeggio LM71 mt serp 31.2 kN/m	Effetto della sopraelevazione			
Treno SW2	Trans I M74		24.0	LeNimo
Vento mt v 104.6 kN/m Serpeggio LM71 mt serp 31.2 kN/m	Treno Livi7 I		34.8	KINIII
Vento m _{t v} 104.6 kN/m Serpeggio LM71 m _{t serp} 31.2 kN/m	Treno SW2	· ·	37.9	kNm
Vento m _{t v} 104.6 kN/m Serpeggio LM71 m _{t serp} 31.2 kN/m				
Serpeggio LM71	Vento			
LM71 m _{t serp} 31.2 kN/m	Vento	m _{t v}	104.6	kN/m
LM71 m _{t serp} 31.2 kN/m				
1.100	Serpeggio			
SW2 $m_{t serp}$ 28.4 kN/m	LM71	m _{t serp}	31.2	kN/m
	SW2	m _{t serp}	28.4	kN/m

APPALTATORE: TELESE S.c.a r.l. ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA CANCELLO-BENEVENTO Consorzio Telese Società Consortile a Responsabilità Limitata II LOTTO FUNZIONALE FRASSO TELESINO – VITULANO PROGETTAZIONE: 2° SUBLOTTO TELESE – SAN LORENZO Mandataria: Mandante: SYSTRA S.A. SWS Engineering S.p.A. SYSTRA-SOTECNI S.p.A. **PROGETTO ESECUTIVO** OPERE D'ARTE VIABILITÀ COMMESSA LOTTO CODIFICA DOCUMENTO REV. **FOGLIO** Relazione di calcolo impalcato IF2R 2.2.E.ZZ CL VI.15.0.8.001 В 60 di 75

9.3 RIEPILOGO DELLE SOLLECITAZIONI SULLA TRAVE DI BORDO FASCIA

Le sollecitazioni di pressoflessione e taglio agenti nella trave maggiormente sollecitata sono riportate nelle sottostanti tabelle suddivise per condizioni elementari di carico e relative ai modelli di carico ferroviario LM/71 e SW/2.

9.3.1 MODELLO DI CARICO: TRENO LM71

Modello di carico: Treno LM71									
Azione		Momento flettente in mezzeria	Taglio agli appoggi	Sforzo normale					
Permanenti strutturali	G ₁	1756	333						
Permanenti non strutturali	G ₂	418	79						
Accidentali dinamizzati	Q _{1,1a}	1504	302						
Centrifuga	Qc	0	0						
Frenatura/avviamento	Q _a /Q _f	50	13	133					
Azione laterale	QL	165	31						
Eccentricità di carico	Qe	111	22						
Effetto sopraelevazione	Qs	-173	-35						
Vento	Qw	552	105						

9.3.2 MODELLO DI CARICO: TRENO SW/2

Modello di carico: Treno SW2									
Azione		Momento flettente in mezzeria	Sforzo normale						
Permanenti	G ₁	1756	333						
Permanenti non strutturali	G ₂	418	79						
Accidentali dinamizzati	Q _{1,1a}	1734	329						
Centrifuga	Qc	0	0						
Frenatura/avviamento	Q _a /Q _f	49	13	121					
Azione laterale	QL	165	28						
Eccentricità di carico	Qe								
Effetto sopraelevazione	Qs	-200	38						
Vento	Qw	552	105						

APPALTATORE: TELESE S.c.a r.l. ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA CANCELLO-BENEVENTO Consorzio Telese Società Consortile a Responsabilità Limitata II LOTTO FUNZIONALE FRASSO TELESINO – VITULANO PROGETTAZIONE: 2° SUBLOTTO TELESE - SAN LORENZO Mandataria: Mandante: SYSTRA S.A. SWS Engineering S.p.A. SYSTRA-SOTECNI S.p.A. **PROGETTO ESECUTIVO** OPERE D'ARTE VIABILITÀ COMMESSA LOTTO CODIFICA DOCUMENTO REV. **FOGLIO** Relazione di calcolo impalcato IF2R 2.2.E.ZZ CL VI.15.0.8.001 В 61 di 75

10 VERIFICHE DI RESISTENZA

Le verifiche di resistenza allo SLU vengono eseguite per la trave di bordo in funzione delle sollecitazioni massime tra i modelli di carico considerati.

Il calcestruzzo è considerato non collaborante e pertanto la resistenza è affidata alle sole n travi in acciaio comprese all'interno della zona di ripartizione del carico pari a 4.0m.

Sollecitazioni risultanti

Sforzo assiale

Verifiche

Treno LM71				
Momento Totale SLU	M slu	=	5858	kNm
Taglio Totale SLU	T _{SLU}	=	1137	kN
Sforzo assiale SLU	N slu	=	96	kN
Treno SW2				
Momento Totale SLU	M slu	=	5991	kNm
Taglio Totale SLU	T	=	1244	kN

σ	=	296 MPa	<	338.10 MPa	Verificato
τ	=	57 MPa	<	195.20 MPa	Verificato
σ_{id}	=	313 MPa	<	338.10 MPa	Verificato

Ν

88

kΝ

APPALTATORE:	TELESE s.c.a r.l. Consorzio Telese Società Consortile a Responsabilità Lii	mitata	ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA CANCELLO-BENEVENTO II LOTTO FUNZIONALE FRASSO TELESINO – VITULAN					ANO
PROGETTAZION	NE:		2° SUBLOTTO TELESE – SAN LORENZO			ANO		
Mandataria:	Mandante:							
SYSTRA S.A.	SWS Engineering S.p.A. SYSTRA-SOTEC	NI S.p.A.	PROGETTO	ESECU	ΓΙνο			
OPERE D'ARTE VIABILITÀ			COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
Relazione di cal	colo impalcato		IF2R 2.2.E.ZZ CL VI.15.0.8.001 B 62 d					62 di 75

11 VERIFICHE DI DEFORMABILITA'

Le verifiche di deformabilità sono condotte agli stati limite di servizio considerando la combinazione rara delle azioni e prendendo in esame le seguenti grandezze:

- inflessione nel piano verticale dell'impalcato (rotazione agli appoggi)
- deformazioni torsionali dell'impalcato (fenomeno dello sghembo)
- stato limite per il comfort passeggeri (freccia sotto il treno di carico LM71 dinamizzato)

Le verifiche sono condotte con il treno di carico LM71 incrementato con il corrispondente coefficiente dinamico Φ_3 .

Il calcestruzzo è considerato interamente reagente ai fini della determinazione dell'inerzia flessionale dell'impalcato e della ripartizione trasversale dei carichi mobili con coefficiente di omogeneizzazione pari a n=6. Nelle verifiche la fascia di impalcato reagente ha una larghezza b=4.0m.

11.1 CALCOLO DELLA FREQUENZA PROPRIA DELL'IMPALCATO

Conformemente con quanto prescritto nell'allegato al cap.2.9 del "Manuale di progettazione delle opere civili", si verifica l'affidabilità del coefficiente di incremento dinamico Φ_3 , valutato in precedenza, controllando che la frequenza propria n_0 dell'impalcato sia contenuta all'interno del fuso indicato in Fig.2.5.1.4.2.4-2 del "Manuale di progettazione delle opere civili". Nel prospetto di seguito si mostra la sintesi del calcolo effettuato. La verifica risulta soddisfatta, pertanto si ritiene valido il coefficiente di incremento dinamico adottato nell'analisi eseguita.

CALCOLO DELLA PRIMA FREQUENZA PROPRIA DELL'IMPALCATO			
Luce della campata (caso ponte in semplice appoggio)	L	21.10	m
Limite inferiore del fuso della frequenza naturale	80/L	3.8	Hz
Limite superiore del fuso della frequenza naturale	94.76 L ^{-0.748}	9.7	Hz
Carichi permanenti di impalcato	р	626.8	kN/m
Modulo elastico dell'acciaio	E	2.1.E+08	kN/m²
Inerzia impalcato con cls omogeneizzato	J	0.169	m^4
Freccia sotto i carichi permanenti	$\delta_0 = 5/384 \text{ p L}^4/\text{ EJ}$	15.22	mm
Frequenza propria dell'impalcato	n ₀	4.6	Hz
Criterio di verifica	80/L < n ₀ < 94.76 L ^{-0.748}	VERIFICA	TO

APPALTATORE	TELES Consorzio Telese Società Consort		ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA CANCELLO-BENEVENTO II LOTTO FUNZIONALE FRASSO TELESINO – VITULANO					ANO
PROGETTAZIO	NE:		2° SUBLOTTO TELESE – SAN LORENZO				ANO	
Mandataria:	Mandante:							
SYSTRA S.A.	SWS Engineering S.p.A.	SYSTRA-SOTECNI S.p.A.	PROGETTO	ESECUT	ΓΙVΟ			
OPERE D'ARTE VIABILITÀ			COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
Relazione di ca	lcolo impalcato		IF2R 2.2.E.ZZ CL VI.15.0.8.001 B 63 di 7					63 di 75

11.2 VERIFICHE DI DEFORMABILITÀ DELL'IMPALCATO

11.2.1 Freccia sotto i carichi accidentali dinamizzati

Di seguito la sintesi del calcolo della freccia massima dell'impalcato sotto i carichi accidentali dinamizzati e incrementati con il coefficiente α :

VERIFICHE DI DEFORMABILITA'				_			
Luce della campata (caso ponte in semplice appoggio)	L	21.10	m				
Valore limite	L/1000	21	mm				
Carichi accidentali dinamizzati prodotti dal treno LM71	р	162.1	kN/m				
Modulo elastico dell'acciaio	E	2.1.E+08	kN/m2				
Inerzia impalcato con cls omogeneizzato	J	0.169	m^4				
Freccia sotto i carichi accidentali dinamizzati	$\delta_0 = 5/384 \text{ p L}^4/\text{ EJ}$	11.81	mm	<	21	mm	VERIFICATO

11.2.2 Rotazione agli appoggi:

Di seguito si riporta la valutazione della rotazione massima degli appoggi

Altezza del piano di regolamento del ballast							
rispetto al centro di rotazione degli apparecchi	h	1.27	m				
di appoggio							
Rotazione agli appoggi	$\theta = (16/5) \delta / L$	0.00179	-	<	0.00632	mm	VERIFICATO
Valore limite	8/H	0.00632	mm				

11.2.3 Sghembo

Il massimo sghembo misurato su una lunghezza di 3m non eccede il valore limite prescritto dalla normativa. Di seguito si mostra la sintesi della verifica effettuata.

SGHEMBO			_				
Forza centrifuga	0.00	kNm/m					
Eccentricità del carico treno LM71	12.97	kNm/m					
Sopraelevazione	-16.65	kNm/m					
Azione laterale	7.90	kNm/m					
Vento	31.78	kNm/m					
Totale	36.00	kNm/m					
Δρ	2.92	kN/m					
Momento d'inerzia singola trave e relativo calcestruzzo	0.0281	m^4					
Freccia verticale a 3m dall'appoggio	0.56	mm	<	3.0	mm	VERIFICATO)
Valore limite 120 ≤ V ≤ 200 km/h	3.0	mm					

APPALTATORE	TELES Consorzio Telese Società Consort		ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA CANCELLO-BENEVENTO II LOTTO FUNZIONALE FRASSO TELESINO – VITULANO					ANO
PROGETTAZIO	NE:		2° SUBLOTTO TELESE – SAN LORENZO				AITO	
Mandataria:	Mandante:		- 332231		0_ 0,			
SYSTRA S.A.	SWS Engineering S.p.A.	SYSTRA-SOTECNI S.p.A.	PROGETTO	ESECU1	ΓΙνο			
OPERE D'ARTE VIABILITÀ			COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
Relazione di ca	lcolo impalcato		IF2R	2.2.E.ZZ	CL	VI.15.0.8.001	В	64 di 75

12 VERIFICA DEGLI EFFETTI LOCALI – SBALZO DELL'IMPALCATO

Si riportano nei paragrafi successivi i risultati ottenuti sulla soletta in calcestruzzo di impalcato, in termini di sollecitazioni agenti. Le verifiche sono state eseguite secondo i criteri esposti in precedenza per gli elementi strutturali in c.a..

12.1 SOLLECITAZIONI AGENTI E VERIFICHE

12.1.1 Modello di calcolo e analisi dei carichi

L'analisi ha interessato la sezione di incastro dello sbalzo terminale della soletta, in quanto soggetta alle condizioni più gravose, ed è stata dunque eseguita considerando lo schema semplice di trave a mensola.

	1		
Luce di calcolo mensola	L	1.51	m
Spessore medio mensola	s	0.35	m
Spessore muro verticale	s	0.40	m
Altezza muro verticale	h	1.18	m
Peso proprio muro verticale	g1	11.80	kN/m
Peso proprio soletta superioe, soletta inferiore, muro verticale	g1 tot	29.30	kN/m
Peso massetto	g2	1.25	kN/m
Peso cordolo	g2	5.00	kN/m
Peso barriera antirumore	g2	20.20	kN
Peso veletta	g2	2.50	kN
Carico accidentale su marciapiede	q1	10.00	kN/m
Azione del vento sulla barriera	q6	2.50	kN/m

12.1.2 Analisi delle sollecitazioni ed armature della soletta

Si riportano di seguito i contributi dei singoli casi di carico in termini di sollecitazioni all'incastro:

SOLLECITAZIONI INDOTTE DALLE AZIONI CARATTERISTICHE		
Momento di incastro dovuto al peso proprio	M _{g1}	-33.40 kNm
Momento di incastro dovuto ai carichi permanenti (massetto e cordolo)	M _{g2}	-4.81 kNm
Momento di incastro dovuto alla barriera antirumore	M _{g2}	-22.42 kNm
Momento di incastro dovuto alla veletta	M _{g2}	-3.78 kNm

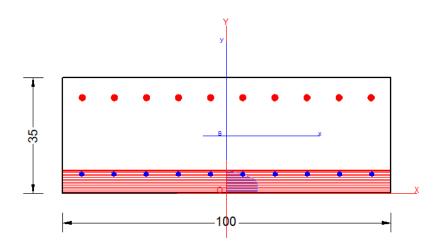
APPALTATORE:	TELES Consorzio Telese Società Consort		ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA CANCELLO-BENEVENTO II LOTTO FUNZIONALE FRASSO TELESINO – VITULANO					ANO	
PROGETTAZION	NE:		2° SUBLOTTO TELESE – SAN LORENZO				ANO		
Mandataria:	Mandante:								
SYSTRA S.A.	SWS Engineering S.p.A.	SYSTRA-SOTECNI S.p.A.	PROGETTO ESECUTIVO						
OPERE D'ARTE VIABILITÀ			COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO	
Relazione di cal	colo impalcato		IF2R 2.2.E.ZZ CL VI.15.0.8.001 B 65				65 di 75		

Momento di incastro dovuto al carico accidentale sul marciapiede	M_{q1}	-2.38	kNm
Momento di incastro dovuto al vento sulla barriera	M_{q6}	-37.74	kNm
Sforzo normale di trazione sulla soletta dovuto al vento sulla barriera	N _{q6}	-13.15	kN

Dalla combinazione delle azioni agli Stati Limite, si deducono le seguenti sollecitazioni di progetto in corrispondenza della sezione di incastro.

SOLLECITAZIONI SLE			
Momento di incastro SLE - combinazione caratteristica rara 1	M _{SLE.R}	-104.05	kNm
Sforzo normale di incastro SLE - combinazione caratteristica rara 1	N _{SLE.R}	-13.15	kN
Momento di incastro SLE - combinazione frequente 1	M _{SLE.F}	-83.28	kNm
Sforzo normale di incastro SLE - combinazione frequente 1	N _{SLE.F}	-6.58	kN
Momento di incastro SLE - combinazione quasi permanente	M _{SLE.QP}	-64.41	kNm
Sforzo normale di incastro SLE - combinazione quasi permanente	N _{SLE.QP}	0.00	kN
SOLLECITAZIONI SLU		_	
Momento di incastro SLU - combinazione critica	MsLU	-150.97	kNm
Sforzo normale di incastro SLU - combinazione critica	NsLu	-19.73	kN
Sforzo di taglio SLU - combinazione critica	VsLU	111.23	kN

Si impiegano:


Armatura superiore $1\Phi14/10$ Armatura inferiore $1\Phi12/20$ Non sono previste armature a taglio.

12.1.3 Verifiche

Si riportano di seguito le verifiche strutturali relative alla sezione di calcolo considerata per la soletta in esame, eseguite mediante il programma RC-SEC della GeoStru.

Come anticipato, le verifiche sono state eseguite secondo i criteri esposti in precedenza per gli elementi strutturali in c.a..

APPALTATORE: TELESE S.c.a r.l. ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA CANCELLO-BENEVENTO Consorzio Telese Società Consortile a Responsabilità Limitata II LOTTO FUNZIONALE FRASSO TELESINO – VITULANO PROGETTAZIONE: 2° SUBLOTTO TELESE - SAN LORENZO Mandataria: Mandante: SYSTRA S.A. SWS Engineering S.p.A. SYSTRA-SOTECNI S.p.A. **PROGETTO ESECUTIVO** CODIFICA OPERE D'ARTE VIABILITÀ COMMESSA LOTTO DOCUMENTO REV. **FOGLIO** Relazione di calcolo impalcato IF2R 66 di 75 2.2.E.ZZ CL VI.15.0.8.001 В

CARATTERISTICHE DI RESISTENZA DEI MATERIALI IMPIEGATI

CALCESTRUZZO -	Classe:	C32/40	
	Resistenza compress. di calcolo fcd:	18.81	MPa
	Resistenza compress. ridotta fcd':	9.405	MPa
	Deform. unitaria max resistenza ec2:	0.0020	
	Deformazione unitaria ultima ecu:	0.0035	
	Diagramma tensioni-deformaz.: Para	bola-Rettangolo	
	Modulo Elastico Normale Ec:	33643.0	MPa
	Resis, media a trazione fctm:	3.100	MPa
	Coeff.Omogen. S.L.E.:	15.00	
	Sc limite S.L.E. comb. Rare:	19.200	MPa
	Sc limite S.L.E. comb. Frequenti:	19.200	MPa
	Ap.Fessure limite S.L.E. comb. Frequenti:	0.200	mm
	Sc limite S.L.E. comb. Q.Permanenti:	14.400	MPa
	Ap.Fessure limite S.L.E. comb. Q.Permanen	ti: 0.200	mm
ACCIAIO -	Tipo:	B450C	
710017110	Resist. caratt. a snervamento fyk:	450.00	MPa
	Resist, caratt, a rottura ftk:	450.00	MPa
	Resist. a snerv. di calcolo fyd:	391.30	
	Resist, ultima di calcolo ftd:	391.30	MPa
	Deform. ultima di calcolo Epu:	0.068	WII G
	Modulo Elastico Ef:	200000.0	MPa
	Diagramma tensioni-deformaz.:	Bilineare finito	IVII G
	Coeff. Aderenza istant. ß1*ß2:	1.00	
	Coeff. Aderenza differito ß1*ß2:	0.50	
	Comb.Rare - Sf Limite:	360.00	MPa
	Comb.raic of Limite.	300.00	IVII U

CARATTERISTICHE GEOMETRICHE ED ARMATURE SEZIONE

Base:	100.0	cm
Altezza:	35.0	cm
Barre inferiori:	10Ø14	(15.4 cm ²)
Barre superiori:	10Ø20	(31.4 cm ²)
Coprif.Inf.(dal baric. barre):	5.8	cm
Coprif.Sup.(dal baric. barre):	6.0	cm

APPALTATORE:

'ELESE S.c.a r.l.

Consorzio Telese Società Consortile a Responsabilità Limitata

PROGETTAZIONE:

Mandataria: Mandante:

Relazione di calcolo impalcato

SYSTRA S.A. SWS Engineering S.p.A. SYSTRA-SOTECNI S.p.A.

OPERE D'ARTE VIABILITÀ

ITINERARIO NAPOLI - BARI RADDOPPIO TRATTA CANCELLO-BENEVENTO II LOTTO FUNZIONALE FRASSO TELESINO - VITULANO 2° SUBLOTTO TELESE - SAN LORENZO

PROGETTO ESECUTIVO

COMMESSA LOTTO **CODIFICA DOCUMENTO** REV. **FOGLIO** IF2R 2.2.E.ZZ CL VI.15.0.8.001 В 67 di 75

ST.LIM.ULTIMI - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

Sforzo normale [kN] applicato nel baricentro (posit. se di compress.) Momento flettente [kNm] intorno all'asse x baric. della sezione Mx con verso positivo se tale da comprimere il lembo sup. della sezione VY Taglio [kN] in direzione parallela all'asse Y del riferim. generale

MT Momento torcente [kN m]

N°Comb. Mx MT -19.73 -151.00 111.00 0.00 1

COMB. RARE (S.L.E.) - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

Sforzo normale [kN] applicato nel baricentro (positivo se di compress.)

Coppia [kNm] applicata all'asse x baricentrico (tra parentesi il Momento di fessurazione) Mx

con verso positivo se tale da comprimere il lembo superiore della sezione

N°Comb. Ν Mx 104.00 1 -13.15

COMB. FREQUENTI (S.L.E.) - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

Sforzo normale [kN] applicato nel baricentro (positivo se di compress.)

Coppia [kNm] applicata all'asse x baricentrico (tra parentesi il Momento di fessurazione) Mx

con verso positivo se tale da comprimere il lembo superiore della sezione

N°Comb. Ν Mx -84.00 (-81.94) 1 -13.15

COMB. QUASI PERMANENTI (S.L.E.) - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

Sforzo normale [kN] applicato nel baricentro (positivo se di compress.)

Coppia [kNm] applicata all'asse x baricentrico (tra parentesi il Momento di fessurazione) Μx

con verso positivo se tale da comprimere il lembo superiore della sezione

N°Comb. Ν Mx -64.00 (-82.67) 1 0.00

RISULTATI DEL CALCOLO

Sezione verificata per tutte le combinazioni assegnate

Copriferro netto minimo barre longitudinali: 5.0 cm Interferro netto minimo barre longitudinali: 7.8 cm Copriferro netto minimo staffe: 42 cm

METODO AGLI STATI LIMITE ULTIMI - RISULTATI PRESSO-TENSO FLESSIONE

Ver S = combinazione verificata / N = combin. non verificata

Sforzo normale baricentrico assegnato [kN] (positivo se di compressione) Momento flettente assegnato [kNm] riferito all'asse x baricentrico Мx Sforzo normale ultimo [kN] nella sezione (positivo se di compress.) N Ult Mx Ult Momento flettente ultimo [kNm] riferito all'asse x baricentrico Mis.Sic. Misura sicurezza = rapporto vettoriale tra (N Ult, Mx Ult) e (N, Mx)

APPALTATORE:

TELESE S.c.a r.l.

Consorzio Telese Società Consortile a Responsabilità Limitata

PROGETTAZIONE:

Mandataria: Mandante:

SYSTRA S.A. SWS Engineering S.p.A. SYSTRA-SOTECNI S.p.A.

OPERE D'ARTE VIABILITÀ Relazione di calcolo impalcato ITINERARIO NAPOLI - BARI

RADDOPPIO TRATTA CANCELLO-BENEVENTO II LOTTO FUNZIONALE FRASSO TELESINO - VITULANO 2° SUBLOTTO TELESE - SAN LORENZO

PROGETTO ESECUTIVO

COMMESSA LOTTO **CODIFICA DOCUMENTO** REV. **FOGLIO** IF2R 2.2.E.ZZ CL VI.15.0.8.001 В 68 di 75

Verifica positiva se tale rapporto risulta >=1.000

Ordinata [cm] dell'asse neutro a rottura nel sistema di rif. X,Y,O sez. Yneutro

Momento flettente allo snervamento [kNm] Mx sn Rapp. di duttilità a rottura solo se N = 0 (travi) x/d

C.Rid. Coeff. di riduz. momenti in travi continue [formula (4.1.1)NTC]

N°Comb Ver Ν Mx N Ult Mx Ult Mis.Sic. Yn M sn x/d C.Rid. As Tesa S -19.73 -151.00 -19.87 2.082 -301.73 1 -313.63 6.9

METODO AGLI STATI LIMITE ULTIMI - DEFORMAZIONI UNITARIE ALLO STATO ULTIMO

Deform, unit, massima del conglomerato a compressione ec max

Deform. unit. del conglomerato nella fibra a 3/7 dell'altezza efficace ec 3/7 Ordinata in cm della fibra corrisp. a ec max (sistema rif. X,Y,O sez.) Yc max es min Deform. unit. minima nell'acciaio (negativa se di trazione)

Ordinata in cm della barra corrisp. a es min (sistema rif. X,Y,O sez.) Ys min

Deform. unit. massima nell'acciaio (positiva se di compressione) es max Ordinata in cm della barra corrisp. a es max (sistema rif. X,Y,O sez.) Ys max

N°Comb ec 3/7 Ys max ec max Yc max es min Ys min es max 29.0 1 0.00350 -0.00416 0.0 0.00054 5.8 -0.01131

COMBINAZIONI RARE IN ESERCIZIO - VERIFICA MASSIME TENSIONI NORMALI

Ver S = combinazione verificata / N = combin. non verificata

Sc max Massima tensione di compress.(+) nel conglom. in fase fessurata ([Mpa] Yc max Ordinata in cm della fibra corrisp. a Sc max (sistema rif. X,Y,O) Sc min Minima tensione di compress. (+) nel conglom. in fase fessurata ([Mpa]

Ordinata in cm della fibra corrisp. a Sc min (sistema rif. X,Y,O) Yc min

Minima tensione di trazione (-) nell'acciaio [Mpa] Sf min

Ys min Ordinata in cm della barra corrisp. a Sf min (sistema rif. X,Y,O)

Dw Eff. Spessore di conglomerato [cm] in zona tesa considerata aderente alle barre Area di congl. [cm²] in zona tesa aderente alle barre (verifica fess.) Ac eff. Area Barre tese di acciaio [cm²] ricadente nell'area efficace(verifica fess.) As eff. D barre Distanza media in cm tra le barre tese efficaci utilizzata nel calcolo di fessurazione

(se Dbarre >14Ø viene posto Dbarre=14Ø nel calcolo di fess. [B.6.6.3 Circ. 252/96])

N°Comb Ver Sc max Yc max Sc min Yc min Sf min Ys min Dw Eff. Ac Eff. As Eff. D barre S 7.22 35.0 0.00 26.6 -268.3 29.0 13.3 1330 15.4 9.8

COMBINAZIONI RARE IN ESERCIZIO - VERIFICA APERTURA FESSURE

S = combinazione verificata / N = combin. non verificata Ver

Sclmax Massima tensione nel conglomerato nello STATO I non fessurato [Mpa] Sclmin Minuma tensione nel conglomerato nello STATO I non fessurato [Mpa]

=0,125 per flessione; = 0,25 (Sclmin + Sclmax)/(2 Sclmin) per trazione eccentrica K3

Beta12 Prodotto dei Coeff. di aderenza Beta1*Beta2

= 1-Beta12*(Ssr/Ss)² = 1-Beta12*(fctm/ScImin)² = 1-Beta12*(Mfess/M)² [B.6.6 DM96] Psi Deformazione unitaria media tra le fessure . Tra parentesi il valore minimo = 0.4 Ss/Es e sm Distanza media in mm tra le fessure srm

Apertura delle fessure in mm = 1,7*Eps*Srm. Tra parentesi è indicato il valore limite.

M fess. Momento di prima fessurazione [kNm]

APPALTATORE: TELESE S.c.a r.l. ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA CANCELLO-BENEVENTO Consorzio Telese Società Consortile a Responsabilità Limitata II LOTTO FUNZIONALE FRASSO TELESINO – VITULANO PROGETTAZIONE: 2° SUBLOTTO TELESE - SAN LORENZO Mandataria: Mandante: SYSTRA S.A. SWS Engineering S.p.A. SYSTRA-SOTECNI S.p.A. **PROGETTO ESECUTIVO** CODIFICA OPERE D'ARTE VIABILITÀ COMMESSA LOTTO DOCUMENTO REV. **FOGLIO** Relazione di calcolo impalcato 69 di 75 IF2R 2.2.E.ZZ CL VI.15.0.8.001 В

N°Comb	Ver	ScImax	Sclmin	Sc Eff	K3	Beta12	Psi		e sm	srm	wk	M Fess.
1	S	3.87	-4.23		0.125	1.00	0.464	0.00062	2 (0.000537)	182	0.193	76.15
COMBINA	AZIONI	FREQUEN	TI IN ESERCI	ZIO - VERIF	ICA MAS	SIME TENS	SIONI I	NORMALI				
N°Comb	Ver	Sc max	Yc max	Sc min	Yc min	Sf min	in	Ys min	Dw Eff.	Ac Eff.	As Eff.	D barre
1	S	4.82	0.0	0.00	11.5	-109.9	.9	5.8	11.7	1175	31.4	9.8
COMBINA	AZIONI	FREQUEN	TI IN ESERCI	IZIO - VERIF	ICA APER	RTURA FE	SSURI	≣				
N°Comb	Ver	ScImax	Sclmin	Sc Eff	K3	Beta12	Psi		e sm	srm	wk	M Fess.
1	S	3.36	-3.18		0.125	1.00	0.400	0.00022	0 (0.000220)	157 0	.059 (0.20)	-81.94
COMBINA	AZIONI	QUASI PE	RMANENTI IN	I ESERCIZIO	VEDIE	ICA MACCI	INAC TO	-NCIONI N				
				LOLITOILIO	- VERIF	ICA WASS	IIVIE I E	ENSIONI N	IORMALI			
N°Comb	Ver	Sc max	Yc max	Sc min	Yc min	Sf mi		Ys min	Dw Eff.	Ac Eff.	As Eff.	D barre
N°Comb 1	Ver S	Sc max 3.69					in			Ac Eff.		D barre
1	S	3.69	Yc max 0.0	Sc min	Yc min	Sf mii -82.:	in 2	Ys min 5.8	Dw Eff. 11.7			
1 COMBINA	S AZIONI	3.69 QUASI PE	Yc max 0.0 RMANENTI IN	Sc min 0.00 N ESERCIZIO	Yc min 11.7 - VERIF	Sf min -82.2	in 2 TURA	Ys min 5.8	Dw Eff. 11.7	1166	31.4	9.8
1	S	3.69	Yc max 0.0	Sc min	Yc min 11.7 - VERIF	Sf mii -82.:	in 2	Ys min 5.8	Dw Eff. 11.7			

APPALTATORE:

TELESE S.c.a r.l.

Consorzio Telese Società Consortile a Responsabilità Limitata

PROGETTAZIONE:

Mandataria: Mandante:

SYSTRA S.A. SWS Engineering S.p.A.

SYSTRA-SOTECNI S.p.A.

PROGETTO ESECUTIVO

ITINERARIO NAPOLI – BARI

COMMESSA LOTTO CODIFICA DOCUMENTO REV. **FOGLIO** 70 di 75 IF2R 2.2.E.ZZ CL VI.15.0.8.001 В

II LOTTO FUNZIONALE FRASSO TELESINO – VITULANO

RADDOPPIO TRATTA CANCELLO-BENEVENTO

2° SUBLOTTO TELESE - SAN LORENZO

OPERE D'ARTE VIABILITÀ Relazione di calcolo impalcato

SEZIONE				-	
b _w	=	100	cm		
h	Ш	35	cm		
С	=	5.7	cm		
d	=	h-c	=	29.3	cm

MATERIALI

R _{ck}	=	40	MPa		
γc	=	1.5			
f _{ck}	=	0.83xR _{ck}	=	33.2	MPa
f _{cd}	=	$0.85xf_{ck}/\gamma_c$	=	18.81	MPa

MPa

391.30

ARMATURE LONGITUDINALI

Øl	=	14		
Numero	=	10		
A _{sl}	II	15.394	cm ²	
TAGLIO AG	ENTE	V _{Ed} =	111	(KN)
SFORZO NO	ORMALE	N _{ed} =	0	(KN)
		$\alpha_c =$	1.0000	

k	=	1.83		$1 + \left(200/d\right)^{1/2} \le 2$	
vmin	=	0.498		$0.035 \cdot k^{3/2} \cdot f_{ck}^{1/2}$	
ρι	=	0.0053			
$\sigma_{cp}=Ned/Ac=$	=	0.0000	(Mpa)		
\mathbf{V}_{Rd}	=	166.52	(KN)		
VPd	=	166 52	(KN)	>= OK	145 82 <i>(KN</i>)

APPALTATORE: TELESE S.c.a r.l. ITINERARIO NAPOLI - BARI RADDOPPIO TRATTA CANCELLO-BENEVENTO Consorzio Telese Società Consortile a Responsabilità Limitata II LOTTO FUNZIONALE FRASSO TELESINO – VITULANO PROGETTAZIONE: 2° SUBLOTTO TELESE - SAN LORENZO Mandataria: Mandante: SYSTRA S.A. SWS Engineering S.p.A. SYSTRA-SOTECNI S.p.A. **PROGETTO ESECUTIVO** OPERE D'ARTE VIABILITÀ COMMESSA LOTTO CODIFICA DOCUMENTO REV. **FOGLIO** Relazione di calcolo impalcato IF2R 2.2.E.ZZ CL VI.15.0.8.001 В 71 di 75

13 REAZIONI SUGLI APPOGGI

Si riporta di seguito la sintesi degli scarichi massimi espletati da ciascuna delle tipologie degli appoggi d'impalcato sulle sottostrutture, relativamente ai due lati, fisso e mobile.

		N MAX SLU (kN)	V t SLU (kN)	V I SLU (kN)	N MAX SLE (kN)
F	8	1200	450	900	850
UL	8	1200	450	-	850
M	20	1200	-	-	850

APPALTATORE	TELES Consorzio Telese Società Consort			O TRATT	A CANCEL	LO-BENEVEN D TELESINO -		ANO
PROGETTAZIO	NE:		2° SUBLOT	-			- VIIOL	ANO
Mandataria:	Mandante:		2 GOBLO	. O . LLL	OL - OAN L	OKLINZO		
SYSTRA S.A.	SWS Engineering S.p.A.	SYSTRA-SOTECNI S.p.A.	PROGETTO	ESECUT	ΓΙVΟ			
OPERE D'ARTE	VIABILITÀ		COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
Relazione di cal	lcolo impalcato		IF2R	2.2.E.ZZ	CL	VI.15.0.8.001	В	72 di 75

14 GIUNTI DI DILATAZIONE

14.1 SPOSTAMENTI

Si riporta a seguire la valutazione dell'escursione totale dei giunti e degli apparecchi di appogggio mobili dell'impalcato in direzione longitudinale, effettuata conformemente a quanto prescritto nel par.2.5.2.1.5.1 del "Manuale di progettazione delle opere civili":

$$E_L = k_1 \cdot (E_1 + E_2 + E_3) = k_1 \cdot (2 \cdot D_t + 4 \cdot d_{Ed} \cdot k_2 + 2 \cdot d_{eg})$$

In cui:

- E₁ = spostamento dovuto alla variazione termica uniforme;
- E₂ = spostamento dovuto alla riposta della struttura all'azione sismica;
- E₃ = spostamento dovuto all'azione sismica fra le fondazioni di strutture non collegate;
- k₁ = 0.45 coefficiente che tiene conto della non contemporaneità dei valori massimi corrispondenti a ciascun evento singolo;
- k₂ = 0.55 coefficiente legato alla probabilità di moto in controfase di due pile adiacenti
- d_{Ed} = è lo spostamento relativo totale tra le parti, pari allo spostamento d_E prodotto dall'azione sismica di progetto, calcolato come indicato nel par. 7.3.3.3 del DM 17.1.2018.
- d_{eg} = è lo spostamento relativo tra le parti dovuto agli spostamenti relativi del terreno.

In particolare, gli spostamenti dE della struttura sotto l'azione sismica di progetto allo SLV si ottengono moltiplicando per il fattore μd i valori dEe ottenuti dall'analisi lineare, dinamica o statica, secondo l'espressione seguente:

$$dE = \pm \mu_d \cdot dE_e$$

APPALTATORE	TELES Consorzio Telese Società Consort			O TRATT	A CANCEL	LO-BENEVEN D TELESINO -		ANO
PROGETTAZIO	NE:		2° SUBLOT	-			- VIIOL	ANO
Mandataria:	Mandante:		2 JOBLO	IO ILLL	OL - OAN L	OKLINZO		
SYSTRA S.A.	SWS Engineering S.p.A.	SYSTRA-SOTECNI S.p.A.	PROGETTO	ESECU1	Ίνο			
OPERE D'ARTE			COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
Relazione di ca	lcolo impalcato		IF2R	2.2.E.ZZ	CL	VI.15.0.8.001	В	73 di 75

$$\mu_d = q$$
 se $T_1 \ge T_C$
 $\mu_d = 1 + (q - 1) \times T_C / T_1$ se $T_1 < T_C$
In ogni caso $\mu_d \le 5q - 4$.

Per quanto riguarda il valore dello spostamento assoluto orizzontale massimo del suolo (dg), questo può ottenersi utilizzando l'espressione seguente:

$$d_g$$
=0.025 a_g S T_c T_D

In ogni caso, dovrà risultare:

$$E_L \ge E_O$$
 ed $E_L \ge E_i$ con $i = 1, 2,3$

In cui:

- E_o = escursione valutata secondo i criteri validi nelle zone non sismiche;
- E_i = il maggiore dei due termini indicati nella espressione precedente.

Nei casi in cui anche una sola delle due precedenti disuguaglianze non risultasse verificata, dovrà assumersi:

$$E_L = max (E_o; E_i)$$

Per garantire un valore minimo di escursione, in funzione della sismicità del sito, il valore EL dovrà essere assunto non minore di:

$$E_L \ge 3,30 \cdot \frac{L}{1000} + 0,10$$
 e $E_L \ge 0,15m$ per le zone classificate sismiche con ag(SLV) $\ge 0,25$ g

$$E_L \ge 2,30 \cdot \frac{L}{1000} + 0,073 \;\; \text{e} \;\; E_L \ge 0.10 m \;\; \text{per le zone classificate sismiche con ag(SLV)} < 0,25 \; \text{g}$$

con L pari alla lunghezza del ponte.

Si ottiene, in definitiva, nel caso in esame:

APPALTATORE: TELESE S.c.a r.l. ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA CANCELLO-BENEVENTO Consorzio Telese Società Consortile a Responsabilità Limitata II LOTTO FUNZIONALE FRASSO TELESINO – VITULANO PROGETTAZIONE: 2° SUBLOTTO TELESE - SAN LORENZO Mandataria: Mandante: SYSTRA S.A. SWS Engineering S.p.A. SYSTRA-SOTECNI S.p.A. **PROGETTO ESECUTIVO** OPERE D'ARTE VIABILITÀ COMMESSA LOTTO CODIFICA DOCUMENTO REV. **FOGLIO** Relazione di calcolo impalcato IF2R 2.2.E.ZZ CL VI.15.0.8.001 В 74 di 75

Spostamenti _p.2.5.2.1.5.1 - Manuale di Progettazion	ne RFI		
Spostamento dovuto alla variazione termica uniforme			
Lunghezza impalcato	L	22.00	m
Variazione Termica (p.2.5.1.4.4.1 - Manuale RFI)	ΔT	30	
Coeff. Dilatazione termica	α	1E-05	
Spostamento dovuto alla variazione termica uniforme	Dt	6.600	mm
Spostamento dovuto alla variazione termica uniforme	E ₁	13.2	mm
Spostamento sismico in sommità spalla			
Periodo di riferimento della struttura	T ₁	0.000	s
Periodo a fine tratto a velocità costante	T _c	0.563	S
Risposta in accelerazione associata al periodo della struttura (Spettro elastico)	Se(T ₁)	0.188	g
Fattore di struttura	q	1.0	-
Fattore amplificativo	μ_{d}	1.00	
Accelerazione sismica al suolo SLV	ag	0.367	g
Coeff, categoria del sottosuolo	S	1.184	
Periodo inizio del tratto a spostamento costante	T_D	3.068	S
Valore di spostamento ottenuto dall'analisi lineare (p.3.2.3.2.3 - NTC08)	d _{Ee}	0.00	mm
Spostamento massimo prodotto dall'azione sismica di progetto allo SLV	d_{Ed}	0.00	mm
Coefficiente legato alla probabilità di moto in controfase di due pile adiacenti	k ₂	0.55	
Spostamento dovuto alla riposta della struttura all'azione sismica	E ₂	0.00	mm
Spostamento al suolo			
Spostamento assoluto orizzontale del suolo in un punto	d_g	184.1	mm
Spostamento massimo relativo tra due punti i e j	d _{ij,max}	325.40	mm
Spostamento relativo tra due punti a piccola distanza	$d_{ij,0}$	0.00	mm
Distanza tra i due punti i e j	X	22	m
Velocità di propagazione delle onde di taglio	VS	180	m/s
Spostamento relativo tra punti a distanza x	d _{ij} (x)	81.2	mm
Spostamento dovuto all'azione sismica fra le fondazioni di strutture non collegate	E ₃	162.38	mm
Escursione totale dei giunti e degli apparecchi di appoggio			
Coefficiente che tiene conto della non contemporaneità dei valori massimi corrispondenti a ciascun evento singolo	\mathbf{k}_1	0.45	-
Escursione totale dei giunti e degli apparecchi di appoggio - da calcolo	E_L_cal	79.01	mm
Max (E ₁ ;E ₂ ;E ₃ ;E _{L_cal})	$\text{Max } (E_1; E_2; E_3; E_{\mathsf{L_cal}})$	162.38	mm
Valore minimo di escursione in funzione della sismicità del sito	E _{L.min} (a _g)	172.60	mm
Valore minimo di escursione di progetto	EL.min_finale	172.60	mm
Escursione totale dei giunti e degli apparecchi di appoggio di progetto	EL	172.6	mm

14.2 CORSA DEGLI APPARECCHI DI APPOGGIO MOBILI

La corsa degli apparecchi d'appoggio mobili deve essere non inferiore a \pm (EL/2 + EL/8) con un minimo di \pm (EL/2 + 15 mm). Risulta pertanto:

Corsa degli apparecchi d'appoggio mobili - p.2.5.2.1.5.2 - Manuale RFI						
Corsa apparecchi di appoggio		±	108	mm		

APPALTATORE: TELESE S.c.a r.l. Consorzio Telese Società Consortile a Responsabilità Limitata PROGETTAZIONE:		ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA CANCELLO-BENEVENTO II LOTTO FUNZIONALE FRASSO TELESINO – VITULANO 2° SUBLOTTO TELESE – SAN LORENZO						
								Mandataria:
SYSTRA S.A.	SWS Engineering S.p.A.	SYSTRA-SOTECNI S.p.A.	PROGETTO ESECUTIVO					
OPERE D'ARTE VIABILITÀ Relazione di calcolo impalcato		COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO	
		IF2R	2.2.E.ZZ	CL	VI.15.0.8.001	В	75 di 75	

14.3 ESCURSIONE DEI GIUNTI

Il giunto fra le testate di due travi adiacenti dovrà consentire una escursione totale pari a: $\pm (EL/2 + 10mm)$. Risulta pertanto:

Escursione dei giunti - p.2.5.2.1.5.3 - Manuale RFI						
Escursione dei giunti		±	96	mm		

14.4 AMPIEZZA DEI VARCHI

Il varco da prevedere fra le testate degli impalcati adiacenti, a temperatura media ambiente, dovrà essere non inferiore a $V \ge EL/2 + V0$, con V0 = 20mm.

Ampiezza dei varchi - p.2.5.2.1.5.4 - Manuale F	RFI		
Ampiezza del varco	V_{L}	106	mm