COMMITTENTE:

DIREZIONE LAVORI:

APPALTATORE:

Consorzio Telese Società Consortile a Responsabilità Limitata

SYSTIA

PROGETTAZIONE:

MANDATARIA:

MANDANTI:

IL DIRETTORE DELL PROGETTAZIONE:

Ing. L. LACOPO

Responsabile integrazione fra le varie prestazioni specialistiche

PROGETTO ESECUTIVO

ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA CANCELLO - BENEVENTO II LOTTO FUNZIONALE FRASSO TELESINO – VITULANO 3° SUBLOTTO SAN LORENZO – VITULANO RELAZIONE

RELAZIONE INFRASTRUTTURA DI LINEA

Marciapiedi FFP e di stazione

Relazione di calcolo

APPALTATORE	SCALA:
IL DIRETTORE TECNICO	-

COMMESSA LOTTO FASE ENTE TIPO DOC. OPERA/DISCIPLINA PROGR. REV.

 I F 2 R
 3 2
 E
 Z Z
 C L
 O C 0 0 0 0
 0 0 1
 A

Rev.	Descrizione	Redatto	Data	Verificato	Data	Approvato	Data	Autorizzato Data
Α	EMISSIONE	C. Pinti	23/06/21	G. Сорра	24/06/21	L. Bruzzone	24/06/21	IL PROGETTISTA
								F. DI IULLO
								-42 CO
-								THE DISCHERENCE OF STATE OF ST
								14128
								1000
								25/06/21

File: IF2R.3.2.E.ZZ.CL.OC.00.0.0.001.A.doc n. Elab.:

TELESE S.c.a r.l.

Consorzio Telese Società Consortile a Responsabilità Limitata

PROGETTAZIONE:

Mandataria: Mandante:

SYSTRA S.A. SWS Engineering S.p.A.

SYSTRA-SOTECNI S.p.A.

Relazione di calcolo

IF2R.3.2.E.ZZ.CL.OC.00.0.0.001.A

ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA CANCELLO-BENEVENTO II LOTTO FUNZIONALE FRASSO TELESINO – VITULANO 2° SUBLOTTO TELESE – SAN LORENZO

PROGETTO ESECUTIVO

IF2R	3.2.E.ZZ	CL	OC.00.0.0.001	Α	1 di 92
COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO

1	PREMESSA	4
2	NORMATIVA DI RIFERIMENTO	7
3	UNITÁ DI MISURA	8
4	CARATTERISTICHE DEI MATERIALI	9
4.1	CALCESTRUZZO	9
4.2	ACCIAIO PER ARMATURE ORDINARIE	10
4.3	Copriferri	10
4.4	DURABILITÀ E PRESCRIZIONI SUI MATERIALI	11
5	PARAMETRI SISMICI	12
6	CARATTERIZZAZIONE GEOTECNICA	15
6.1	RILEVATI E RINTERRI	15
6.2	STRATIGRAFIA E PARAMETRI GEOTECNICI	15
6.3	COEFFICIENTI DI ATTRITO STRUTTURA-TERRENO	17
7	MODELLO DI CALCOLO	18
7.1	CALCOLO DELLA SPINTA DELLE TERRE IN CONDIZIONI STATICHE	18
7.2	CALCOLO DELLA SPINTA DELLE TERRE IN CONDIZIONI SISMICHE	19
8	GEOMETRIA DELLA STRUTTURA	21
8.1	ELEMENTI SCATOLARI: L4-P2	21
9	ANALISI DEI CARICHI	22
9.1	CONDIZIONI DI CARICO	
_	.1.1 Peso proprio degli elementi strutturali	
	.1.2 Carichi permanenti portati (PERM)	
_	.1.4 Spinta delle terre in condizioni statiche (SPTSX-SPTDX)	

TELESE S.c.a r.l.

Consorzio Telese Società Consortile a Responsabilità Limitata

PROGETTAZIONE:

Mandataria: Mandante:

SYSTRA S.A. SWS Engineering S.p.A.

SYSTRA-SOTECNI S.p.A.

Relazione di calcolo

IF2R.2.2.E.ZZ.CL.OC.00.0.0.001.A

ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA CANCELLO-BENEVENTO II LOTTO FUNZIONALE FRASSO TELESINO – VITULANO 2° SUBLOTTO TELESE – SAN LORENZO

PROGETTO ESECUTIVO

IF2R	2.2.E.ZZ	CL	OC.00.0.0.001	Α	2 di 92
COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO

9.1. 9.1.	1.6 Azione sismica	24
9.1.	1.7 Spinta delle terre in fase sismica	25
9.2	COMBINAZIONI DI CARICO	26
10	CRITERI DI VERIFICA	30
	VERIFICA AGLI STATI LIMITE DI ESERCIZIO	
	0.1.1 Verifica a fessurazione	
	VERIFICA AGLI STATI LIMITE ULTIMI DI TIPO STRUTTURALE (S	
	0.2.1 Sollecitazioni flettenti 0.2.2 Sollecitazioni taglianti	
	·	
	VERIFICHE ALLO STATO LIMITE ULTIMO DI TIPO GEOTECNICO (SLU-GE	
	 Verifica di stabilità globale del complesso opera di sostegno-ter Verifica a scorrimento dell'opera lungo il piano di posa 	
	0.3.3 Verifica a collasso per carico limite del complesso opera di sosi	
	0.3.4 Verifica a ribaltamento dell'opera come corpo rigido	
	0.3.5 Verifiche di capacità portante dei micropali	
11	TIPOLOGICI P2-L4	42
11.1	CODICE DI CALCOLO	42
11.2	MODELLO DI CALCOLO	42
11.2	.2.1 Interazione terreno-struttura	43
12	ANALISI DELLE SOLLECITAZIONI	44
13	VERIFICHE DI RESISTENZA ULTIMA E DI ESERCIZIO	48
13.1	SOLETTA DI FONDAZIONE E PIEDRTTI	49
13.2	SOLETTA DI COPERTURA	53
14	VERIFICHE GEOTECNICHE	57
14.1	VERIFICA DELLA CAPACITÀ PORTANTE	57
14.2	VALUTAZIONE DEI CEDIMENTI	64
15	TIPOLOGICO P3	66

TELESE S.c.a r.l.

Consorzio Telese Società Consortile a Responsabilità Limitata

PROGETTAZIONE:

Mandataria: Mandante:

SYSTRA S.A. SWS Engineering S.p.A. SYSTRA-SOTECNI S.p.A.

Relazione di calcolo

IF2R.2.2.E.ZZ.CL.OC.00.0.0.001.A

ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA CANCELLO-BENEVENTO II LOTTO FUNZIONALE FRASSO TELESINO – VITULANO 2° SUBLOTTO TELESE – SAN LORENZO

PROGETTO ESECUTIVO

COMMESSA CODIFICA DOCUMENTO REV. FOGLIO LOTTO IF2R 3 di 92

OC.00.0.0.001 2.2.E.ZZ CL Α

LESE S.c.a r.l.

PROGETTAZIONE:

Mandataria:

Mandante: SYSTRA S.A.

IF2R.2.2.E.ZZ.CL.OC.00.0.0.001.A

SWS Engineering S.p.A.

SYSTRA-SOTECNI S.p.A.

Relazione di calcolo

PROGETTO ESECUTIVO

ITINERARIO NAPOLI - BARI

COMMESSA IF2R

LOTTO 22 F 77 CODIFICA CI

RADDOPPIO TRATTA CANCELLO-BENEVENTO

2° SUBLOTTO TELESE - SAN LORENZO

II LOTTO FUNZIONALE FRASSO TELESINO - VITULANO

DOCUMENTO OC.00.0.0.001 RFV Α

FOGLIO 4 di 92

PREMESSA

Il presente documento si inserisce nell'ambito della redazione degli elaborati tecnici di progetto definitivo del Raddoppio dell'Itinerario Ferroviario Napoli-Bari nella Tratta Cancello-Benevento/ 2° Lotto Funzionale Frasso Telesino - Vitulano.

Le Analisi e Verifiche nel seguito esposte fanno in particolare riferimento ai marciapiedi FFP e alle opere civili in c.a previste nel lotto 3 sull'asse principale del tracciato.

Le opere in questione presentano le principali caratteristiche geometriche riassunte nella tabella seguente (per maggiori dettagli ed una descrizione più completa delle opere si rimanda agli elaborati grafici di progetto):

			00.CC	MARCIA	APIEDI FFP	- SUB LOTT	ГО 3	,	
	Ca	aratteristiche O	D.CC. marciapie	di FFP		(Caratteristisch	e micropali	B.A.
		36.759,00	36.849,68	P2	90,68				
	Dispari	36.849,68	36.907,00	M3	57,32				
		36.907,00	37.190,00	L4	283				
FFP6		36.759,20	36.787,70	P2	28,5				
Dowi	Pari	36.787,70	36.845,80	R3	58,1				
	Pall	36.845,80	36.907,00	M3	61,2				
		36.907,00	37.190,00	L4	283				
		34.800,00	34.822,15	P2	22,15				
		34.822,15	34.868,16	L4	46,01				
	Dispari	34.868,16	34.897,31	M4	29,15				
		34.897,31	34.920,10	L4	22,79				
FFP9 (M.		34.920,10	34.935,10	R3	15				
DI ESODO)		34.800,00	34.822,15	P2	22,15				
		34.822,15	34.868,16	L4	46,01				
	Pari	34.868,16	34.897,31	M4	29,15				
		34.897,31	34.920,10	L4	22,79				
		34.920,10	34.935,10	R3	15				

Tabella 1 Caratteristiche OOCC

APPALTATORE: ELESE S.c.a r.l. ITINERARIO NAPOLI - BARI RADDOPPIO TRATTA CANCELLO-BENEVENTO onsahilità Limitata II LOTTO FUNZIONALE FRASSO TELESINO – VITULANO PROGETTAZIONE: 2° SUBLOTTO TELESE - SAN LORENZO Mandataria: Mandante: **PROGETTO ESECUTIVO** SYSTRA S.A. SWS Engineering S.p.A. SYSTRA-SOTECNI S.p.A. CODIFICA FOGLIO Relazione di calcolo REV. COMMESSA LOTTO DOCUMENTO IF2R.2.2.E.ZZ.CL.OC.00.0.0.001.A IF2R 2.2.E.ZZ CL OC.00.0.0.001 5 di 92 Α

Elementi scatolari: L2-L3-L4-P2

SU RILEVATO BASSO SENZA BARRIERA ANTIRUMORE

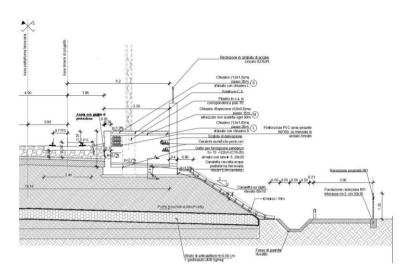


Figura 1Tipologico L4: muro a U

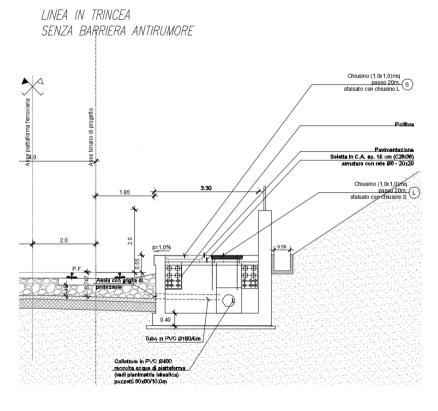


Figura 2Tipologico P2: in trincea

APPALTATORE: LESE s.c.a r.l. ITINERARIO NAPOLI - BARI RADDOPPIO TRATTA CANCELLO-BENEVENTO onsahilità Limitata II LOTTO FUNZIONALE FRASSO TELESINO - VITULANO PROGETTAZIONE: 2° SUBLOTTO TELESE - SAN LORENZO Mandataria: Mandante: **PROGETTO ESECUTIVO** SYSTRA S.A. SWS Engineering S.p.A. SYSTRA-SOTECNI S.p.A. Relazione di calcolo CODIFICA COMMESSA LOTTO DOCUMENTO REV. **FOGLIO** IF2R.2.2.E.ZZ.CL.OC.00.0.0.001.A IF2R 2.2.E.ZZ CL OC.00.0.0.001 6 di 92 Α

Muri a mensola: R3

IN ADIACENZA PIAZZALE MURO SENZA BARRIERA ANTIRUMORE

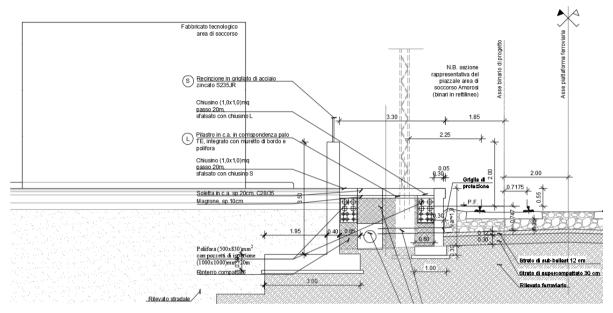


Figura 3Tipologico R3: muro a mensola

APPALTATORE: TELESE S.c.a r.l.

Consorzio Telese Società Consortile a Responsabilità Limitat

PROGETTAZIONE:

Mandataria: Mandante:

SYSTRA S.A. SWS Engineering S.p.A. SYSTRA-SOTECNI S.p.A.

Relazione di calcolo

IF2R.2.2.E.ZZ.CL.OC.00.0.0.001.A

ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA CANCELLO-BENEVENTO II LOTTO FUNZIONALE FRASSO TELESINO – VITULANO 2° SUBLOTTO TELESE – SAN LORENZO

PROGETTO ESECUTIVO

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 IF2R
 2.2.E.ZZ
 CL
 OC.00.0.0.001
 A
 7 di 92

2 NORMATIVA DI RIFERIMENTO

L'analisi dell'opera e le verifiche degli elementi strutturali sono state condotte in accordo con le disposizioni legislative in elenco e in particolare con le seguenti norme e circolari:

- Decreto Ministeriale del 14 gennaio 2008: "Norme Tecniche per le Costruzioni".
- Circolare M.LL.PP. n. 617 del 2 febbraio 2009: Istruzioni per l'applicazione delle "Nuove Norme Tecniche per le Costruzioni di cui al Decreto Ministeriale del 14/01/2008".

Si è tenuto inoltre conto dei seguenti documenti:

- UNI EN 1990 Aprile 2006: Eurocodice: Criteri generali di progettazione strutturale.
- UNI EN 1991-1-1 Agosto 2004: Eurocodice 1 Parte 1-1: Azioni in generale Pesi per unità di volume, pesi propri e sovraccarichi variabili.
- UNI EN 1991-1-4 Luglio 2005: Eurocodice 1. Azioni sulle strutture. Parte 1-4: Azioni in generale Azioni del vento.
- UNI EN 1992-1-1 Novembre 2005: Eurocodice 2 Progettazione delle strutture di calcestruzzo Parte 1-1: Regole generali e regole per gli edifici.
- UNI EN 1992-2 Gennaio 2006: Eurocodice 2. Progettazione delle strutture di calcestruzzo. Parte 2: Ponti di calcestruzzo Progettazione e dettagli costruttivi.
- UNI-EN 1997-1 Febbraio 2005: Eurocodice 7. Progettazione geotecnica. Parte 1: Regole generali.
- UNI-EN 1998-1 Marzo 2005: Eurocodice 8: Progettazione delle strutture per la resistenza sismica. Parte 1: Regole generali, azioni sismiche e regole per gli edifici.
- UNI-EN 1998-5 Gennaio 2005: Eurocodice 8: Progettazione delle strutture per la resistenza sismica. Parte 5: Fondazioni, strutture di contenimento ed aspetti geotecnici.
- Legge 5-11-1971 n° 1086: "Norme per la disciplina delle opere di conglomerato cementizio armato, normale e precompresso, ed a struttura metallica".
- Legge. 2 febbraio 1974, n. 64.: "Provvedimenti per le costruzioni con particolari prescrizioni per le zone sismiche".
- UNI EN 206-1-2016: Calcestruzzo. "Specificazione, prestazione, produzione e conformità".
- UNI 11104:2016 "Calcestruzzo Specificazione, prestazione, produzione e conformità Specificazioni complementari per l'applicazione della EN 206".
- RFI DTC SI MA IFS 001 B Dicembre 2017: Manuale di progettazione delle opere civili.

APPALTATORE: TELESE S.c.a r.l. ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA CANCELLO-BENEVENTO II LOTTO FUNZIONALE FRASSO TELESINO - VITULANO PROGETTAZIONE: 2° SUBLOTTO TELESE – SAN LORENZO Mandataria: Mandante: **PROGETTO ESECUTIVO** SYSTRA S.A. SWS Engineering S.p.A. SYSTRA-SOTECNI S.p.A. COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO Relazione di calcolo IF2R.2.2.E.ZZ.CL.OC.00.0.0.001.A 8 di 92 IF2R 2.2.E.ZZ CL OC.00.0.0.001 Α

3 UNITÁ DI MISURA

Le unità di misura usate nella presente relazione sono:

lunghezze [m]
forze [kN]
momenti [kNm]
tensioni [MPa]

APPALTATORE: TELESE s.c.a r.l.

Consorzio Telese Società Consortile a Responsabilità Limitata

PROGETTAZIONE:

Mandataria: Mandante:

SYSTRA S.A. SWS Engineering S.p.A. SYSTRA-SOTECNI S.p.A.

Relazione di calcolo

IF2R.2.2.E.ZZ.CL.OC.00.0.0.001.A

ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA CANCELLO-BENEVENTO II LOTTO FUNZIONALE FRASSO TELESINO – VITULANO 2° SUBLOTTO TELESE – SAN LORENZO

PROGETTO ESECUTIVO

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 IF2R
 2.2.E.ZZ
 CL
 OC.00.0.0.001
 A
 9 di 92

4 CARATTERISTICHE DEI MATERIALI

4.1 CALCESTRUZZO

Per le strutture in elevazione si adotta un calcestruzzo con le caratteristiche riportate di seguito:

Classe d'esposizione: XC4

C32/40: fck ≥ 32 MPa Rck ≥ 40 MPa Classe minima di consistenza: S4

In accordo con le norme seguite, risulta per il materiale in esame:

Resistenza caratteristica cubica a 28 giorni	R _{ck}	40	N/mm ²
Resistenza caratteristica cilindrica a 28 giorni	$f_{ck}=0.83\;R_{ck}$	33,20	N/mm²
Valore medio della resistenza cilindrica	$f_{cm} = f_{ck} + 8$	41,20	N/mm²
Resistenza di calcolo breve durata	$f_{cd (Breve durata)} = f_{ck} / 1.5$	22,13	N/mm²
Resistenza di calcolo lunga durata	$f_{cd (Lungo durata)} = 0.85 f_{cd}$	18,81	N/mm²
Resistenza media a trazione assiale	$f_{ctm} = 0.3 (f_{ck})^{2/3}$ [Rck<50/60]	3,10	N/mm²
Resistenza caratteristica a trazione	$f_{ctk\ 0,05} = 0.7\ f_{ctm}$	2,17	N/mm²
Resistenza media a trazione per flessione	$f_{cfm} = 1.2 f_{ctm}$	3,72	N/mm²
Resistenza di calcolo a trazione	$f_{ctd} = f_{ctk \ 0,05} / 1.5$	1,45	N/mm²
Modulo di Young	$E = 22000 (f_{cm}/10)^{0.3}$	33643	N/mm^2

Per la soletta di fondazione si adotta un calcestruzzo con le caratteristiche riportate di seguito:

Classe d'esposizione: XC2

C28/35: fck ≥ 25 MPa Rck ≥ 30 MPa Classe minima di consistenza: S4

In accordo con le norme seguite, risulta per il materiale in esame:

Resistenza caratteristica cubica a 28 giorni	R_{ck}		35	N/mm ²
Resistenza caratteristica cilindrica a 28 giorni	$f_{\text{ck}} = 0.83 \; R_{\text{ck}}$		29,05	N/mm²
Valore medio della resistenza cilindrica	$f_{cm} = f_{ck} + 8$		37,05	N/mm²
Resistenza di calcolo breve durata	$f_{cd (Breve durata)} = f_{ck} /$	1.5	16,46	N/mm²
Resistenza di calcolo lunga durata	$f_{cd (Lungo durata)} = 0.8$	5 f _{cd}	13,99	N/mm²
Resistenza media a trazione assiale	$f_{ctm} = 0.3 (f_{ck})^{2/3}$	[Rck<50/60]	2,83	N/mm²
Resistenza caratteristica a trazione	$f_{ctk\ 0,05} = 0.7 \ f_{ctm}$		1,98	N/mm²

ELESE s.c.a r.l.

PROGETTAZIONE:

Mandataria:

SYSTRA S.A.

Mandante:

SWS Engineering S.p.A. SYSTRA-SOTECNI S.p.A.

Relazione di calcolo

IF2R.2.2.E.ZZ.CL.OC.00.0.0.001.A

ITINERARIO NAPOLI - BARI RADDOPPIO TRATTA CANCELLO-BENEVENTO II LOTTO FUNZIONALE FRASSO TELESINO - VITULANO 2° SUBLOTTO TELESE - SAN LORENZO

PROGETTO ESECUTIVO

CODIFICA COMMESSA LOTTO DOCUMENTO REV. **FOGLIO** IF2R 2.2.E.ZZ OC.00.0.0.001 10 di 92 CI Α

Resistenza media a trazione per flessione $f_{cfm} = 1.2 f_{ctm}$ N/mm² 3,40 Resistenza di calcolo a trazione $f_{ctd} = f_{ctk \ 0.05} / 1.5$ 1,32 N/mm² $E = 22000 (f_{cm}/10)^{0.3}$ Modulo di Young 32588 N/mm²

Per i micropali di fondazione si adotta un calcestruzzo con le caratteristiche riportate di

Classe d'esposizione: XC2

C25/30: fck ≥ 25 MPa Rck ≥ 30 MPa Classe minima di consistenza: S4

In accordo con le norme seguite, risulta per il materiale in esame:

Resistenza caratteristica cubica a 28 giorni	R_{ck}	30	N/mm ²
Resistenza caratteristica cilindrica a 28 giorni	$f_{ck} = 0.83 \; R_{ck}$	24,90	N/mm²
Valore medio della resistenza cilindrica	$f_{cm} = f_{ck} + 8$	32,90	N/mm²
Resistenza di calcolo breve durata	$f_{cd (Breve durata)} = f_{ck} / 1.5$	16,60	N/mm²
Resistenza di calcolo lunga durata	$f_{\text{cd (Lungo durata)}} = 0.85 f_{\text{cd}}$	14,11	N/mm²
Resistenza media a trazione assiale	$f_{ctm} = 0.3 (f_{ck})^{2/3}$ [Rck<50/60]	2,56	N/mm²
Resistenza caratteristica a trazione	$f_{ctk\ 0,05} = 0.7\ f_{ctm}$	1,79	N/mm²
Resistenza media a trazione per flessione	$f_{cfm} = 1.2 f_{ctm}$	3,07	N/mm²
Resistenza di calcolo a trazione	$f_{ctd} = f_{ctk \ 0,05} / 1.5$	1,19	N/mm²
Modulo di Young	$E = 22000 (f_{cm}/10)^{0.3}$	31447	N/mm²

4.2 **ACCIAIO PER ARMATURE ORDINARIE**

Classe acciaio per armature ordinarie B450C Tensione di snervamento caratteristica fyk ≥ 450 MPa Tensione caratteristica di rottura f_t ≥ 540 MPa Es =210000 MPa Modulo di elasticità

4.3 **C**OPRIFERRI

Si riportano di seguito i copriferri nominali per le strutture in calcestruzzo armato:

Strutture di elevazione	4.0 cm
Strutture di fondazione	4.0 cm
Pali	6.0 cm

APPALTATORE: TELESE s.c.a r.l.

Consorzio Telese Società Consortile a Responsabilità Limitata

PROGETTAZIONE:

Mandataria: Mandante:

SYSTRA S.A. SWS Engineering S.p.A. SYSTRA-SOTECNI S.p.A.

Relazione di calcolo

IF2R.2.2.E.ZZ.CL.OC.00.0.0.001.A

ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA CANCELLO-BENEVENTO II LOTTO FUNZIONALE FRASSO TELESINO – VITULANO 2° SUBLOTTO TELESE – SAN LORENZO

PROGETTO ESECUTIVO

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 IF2R
 2.2.E.ZZ
 CL
 OC.00.0.0.001
 A
 11 di 92

4.4 DURABILITÀ E PRESCRIZIONI SUI MATERIALI

Per garantire la durabilità delle strutture in calcestruzzo armato ordinario, esposte all'azione dell'ambiente, si devono adottare i provvedimenti atti a limitare gli effetti di degrado indotti dall'attacco chimico, fisico e derivante dalla corrosione delle armature e dai cicli di gelo e disgelo.

Si adotta quanto segue:

Fondazione Classe di esposizione XC2 Elevazione Classe di esposizione XC4

TELESE S.c.a r.l.

Consorzio Telese Società Consortile a Responsabilità Limitata

PROGETTAZIONE:

Mandataria:

SYSTRA S.A. SWS Engineering S.p.A. SYSTRA-SOTECNI S.p.A.

Mandante:

Relazione di calcolo

IF2R.2.2.E.ZZ.CL.OC.00.0.0.001.A

ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA CANCELLO-BENEVENTO II LOTTO FUNZIONALE FRASSO TELESINO – VITULANO 2° SUBLOTTO TELESE – SAN LORENZO

CODIFICA

CI

PROGETTO ESECUTIVO

COMMESSA IF2R LOTTO **2.2.E.ZZ**

DOCUMENTO OC.00.0.001

REV.

FOGLIO 12 di 92

5 PARAMETRI SISMICI

Per la definizione dell'azione sismica occorre definire il periodo di riferimento P_{VR} in funzione dello stato limite considerato. La vita nominale (V_N) dell'opera è stata assunta pari a 75 anni. La classe d'uso assunta è la III. Il periodo di riferimento (V_R) per l'azione sismica, data la vita nominale e la classe d'uso, vale:

 $V_R = V_N \times C_u = 75 \times 1.5 = 112.5$ anni.

Il valore di probabilità di superamento del periodo di riferimento P_{VR} , cui riferirsi per individuare l'azione sismica agente, è:

Pvr (SLV)=10%.

Il periodo di ritorno dell'azione sismica T_R espresso in anni vale:

$$T_R (SLV) = -\frac{Vr}{\ln(1 - Pvr)} = 1068 \text{ anni}$$

Dato il valore del periodo di ritorno suddetto, tramite le tabelle riportate nell'Allegato B della norma o tramite la mappatura messa a disposizione in rete dall'Istituto Nazionale di Geofisica e Vulcanologia (INGV), è possibile definire i valori di ag, F₀, T*_c:

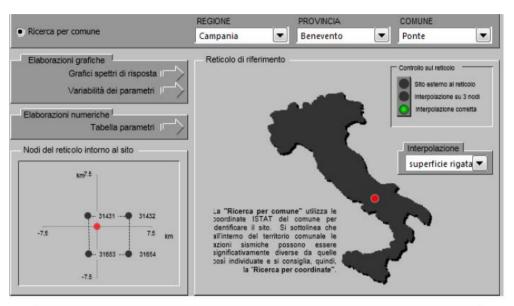
a_g → accelerazione orizzontale massima del terreno su suolo di categoria A, espressa come frazione dell'accelerazione di gravità;

 $F_0 \rightarrow \text{valore}$ massimo del fattore di amplificazione dello spettro in accelerazione orizzontale;

 $T^*_c \rightarrow$ periodo di inizio del tratto a velocità costante dello spettro in accelerazione orizzontale:

 $S \rightarrow \text{coefficiente}$ che comprende l'effetto dell'amplificazione stratigrafica (S_s) e dell'amplificazione topografica (S_t);

Il calcolo viene eseguito con il metodo pseudostatico (N.T.C. par. 7.11.6). In queste condizioni l'azione sismica è rappresentata da una forza statica equivalente pari al prodotto delle forze di gravità per un opportuno coefficiente sismico.


Le spinte delle terre, considerando lo scatolare una struttura rigida e priva di spostamenti (NTC par. 7.11.6.2.1 e EC8-5 par.7.3.2.1), sono calcolate in regime di spinta attiva, condizione che comporta il calcolo delle spinte in condizione sismica con l'incremento dinamico di spinta del terreno calcolato secondo la formula di Mononobe - Okabe:

$$S = \frac{1}{2} \cdot k_{a,E} \cdot \gamma \cdot H^2 \cdot (1 \pm k_{V})$$

L'azione sismica è rappresentata da un insieme di forze statiche orizzontali e verticali, date dal prodotto delle forze di gravità per le accelerazioni sismiche massime attese al suolo, considerando la componente verticale agente verso l'alto o verso il basso, in modo da produrre gli effetti più sfavorevoli.

Si assumono i parametri sismici più cautelativi della tratta in oggetto:

APPALTATORE: ESE s.c.a r.l. ITINERARIO NAPOLI - BARI RADDOPPIO TRATTA CANCELLO-BENEVENTO II LOTTO FUNZIONALE FRASSO TELESINO - VITULANO PROGETTAZIONE: 2° SUBLOTTO TELESE - SAN LORENZO Mandataria: Mandante: **PROGETTO ESECUTIVO** SYSTRA S.A. SWS Engineering S.p.A. SYSTRA-SOTECNI S.p.A. CODIFICA Relazione di calcolo COMMESSA LOTTO DOCUMENTO REV. FOGLIO IF2R.2.2.E.ZZ.CL.OC.00.0.0.001.A 13 di 92 IF2R 2.2.E.ZZ OC.00.0.0.001 CI Α

SLATO LIMITE	T _R [anni]	a _g [g]	F。 [-]	T _c *
SLO	68	0.097	2.344	0.310
SLD	113	0.127	2.333	0.326
SLV	1068	0.367	2.347	0.395
SLC	2193	0.473	2.446	0.427

Il sottosuolo su cui insiste l'opera ricade in categoria sismica "B" e categoria topografica "T1". I coefficienti di amplificazione stratigrafica e topografica risultano quindi:

$$Ss = 1.056;$$

 $ST = 1.0.$

La componente orizzontale k_h dell'accelerazione equivalente è data da:

$$k_h \cdot = \beta \cdot a_{max} / g$$

dove:

 $\beta \le 1$: coefficiente funzione della capacità dell'opera di subire spostamenti senza cadute di resistenza.

 β_m assume i valori riportati nel § 7.11.6.2.1 delle NTC 2008; a seguire se ne riporta per completezza la tabella riassuntiva.

APPALTATORE: ESE s.c.a r.l. ITINERARIO NAPOLI - BARI RADDOPPIO TRATTA CANCELLO-BENEVENTO II LOTTO FUNZIONALE FRASSO TELESINO – VITULANO PROGETTAZIONE: 2° SUBLOTTO TELESE – SAN LORENZO Mandataria: Mandante: **PROGETTO ESECUTIVO** SYSTRA S.A. SWS Engineering S.p.A. SYSTRA-SOTECNI S.p.A. CODIFICA Relazione di calcolo COMMESSA LOTTO DOCUMENTO REV. **FOGLIO** IF2R.2.2.E.ZZ.CL.OC.00.0.0.001.A IF2R 2.2.E.ZZ CL OC.00.0.0.001 14 di 92 Α

Tabella 7.11.II - Coefficienti di riduzione dell'accelerazione massima attesa al sito.

	Categoria di sottosuolo				
	A B, C, D, E				
	β_{m}	β_{m}			
$0.2 \le a_{\rm g}(g) \le 0.4$	0,31	0,31			
$0,1 \le a_{g}(g) \le 0,2$	0,29	0,24			
$a_{g}(g) \leq 0,1$	0,20	0,18			

per muri non liberi di subire spostamenti relativi rispetto al terreno, il coefficiente \mathfrak{G}_m assume valore unitario.

TELESE S.c.a r.l.

Consorzio Telese Società Consortile a Responsabilità Limitata

PROGETTAZIONE:

Mandataria: Mandante:

SYSTRA S.A. SWS Engineering S.p.A. SYSTRA-SOTECNI S.p.A.

Relazione di calcolo

IF2R.2.2.E.ZZ.CL.OC.00.0.0.001.A

ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA CANCELLO-BENEVENTO II LOTTO FUNZIONALE FRASSO TELESINO – VITULANO 2° SUBLOTTO TELESE – SAN LORENZO

PROGETTO ESECUTIVO

COMMESSA LOTTO CODIFICA DOCUMENTO

DOCUMENTO REV. FOGLIO
OC.00.0.0.001 A 15 di 92

6 CARATTERIZZAZIONE GEOTECNICA

6.1 RILEVATI E RINTERRI

Sono riassunte nel prospetto riportato di seguito le caratteristiche del terreno dei rilevati ferroviari (con γ pari al peso specifico del terreno; γ_{sat} pari al peso specifico saturo del terreno; c' pari alla coesione; φ' pari all'angolo di attrito; K_0 coefficiente di spinta a riposo):

Parametri del rilevato stradale							
γ γ_{sat} C' ϕ' k_0 k_a							
(kN/m ³)	(kN/m³) (kN/m³) (kPa) (°) (-) (-)						
19	19	0.0	35	0.426	0.270		

Parametri del rilevato ferroviario								
γ	γ γ_{sat} \mathbf{c}' ϕ' \mathbf{k}_0 \mathbf{k}_a							
(kN/m ³)	(kN/m³) (kN/m³) (kPa) (°) (-) (-)							
20	20	0.0	38	0.384	0.24			

6.2 STRATIGRAFIA E PARAMETRI GEOTECNICI

Si esibiscono di seguito le caratteristiche geotecniche relative ai terreni di fondazione della tratta in cui ricadono le opere in esame.

Stratigrafia FFP9					
Unità geotecnica	Profondità [m] da p.c.	Descrizione			
bc2	6.50	Sabbia, sabbia limosa (Alluvioni attuali e recenti)			
bn 1	15.50	Ghiaia sabbiosa (Alluvioni terrazzate)			

Falda: La quota di falda è situata a circa 3m dal p.c. locale Cautelativamente si assume falda a quota 3m dal piano di posa fondazioni muro.

Il volume di terreno direttamente interagente con l'opera ha le seguenti proprietà:

Unità bc2 – Sabbia, sabbia limosa (Alluvioni antiche)

 $\gamma = 19.5 \text{ kN/m}^3$ peso di volume naturale

 $\varphi' = 31 \div 37^{\circ}$ angolo di resistenza al taglio

c' = 0 kPa coesione drenata

Nspt = 7÷40 numero di colpi da prova SPT

PROGETTAZIONE:

Mandataria: Mandante:

SYSTRA S.A. SWS Engineering S.p.A. SYSTRA-SOTECNI S.p.A

Relazione di calcolo

IF2R.2.2.E.ZZ.CL.OC.00.0.0.001.A

ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA CANCELLO-BENEVENTO II LOTTO FUNZIONALE FRASSO TELESINO - VITULANO 2° SUBLOTTO TELESE - SAN LORENZO

CI

PROGETTO ESECUTIVO

COMMESSA LOTTO CODIFICA IF2R 22 F 77

DOCUMENTO OC 00 0 0 001 FOGLIO 16 di 92

RF\/

Δ

 $Dr = 25 \div 75\%$

densità relativa

 $Vs = 150 \div 300 \text{ m/s}$ velocità delle onde di taglio

 $Go = 45 \div 180 \text{ MPa}$ modulo di deformazione a taglio iniziale (a piccole deformazioni)

Eo = 120:450 MPa modulo di deformazione elastico iniziale (a piccole deformazioni)

Unità bn1 - Ghiaia sabbiosa (Alluvioni terrazzate)

 γ = 20.0 kN/m3 peso di volume naturale

φ' = 34÷42° angolo di resistenza al taglio

c' = 0 kPa coesione drenata

Nspt = 15÷R numero di colpi da prova SPT

Dr = 30÷85% densità relativa

Vs = 200÷1000 m/s velocità delle onde di taglio

Go = 80÷1950 MPa modulo di deformazione a taglio iniziale (a piccole deformazioni)

Eo = 200÷5000 MPa modulo di deformazione elastico iniziale (a piccole deformazioni)

Stratigrafia FFP6					
Unità geotecnica Profondità [m] da p.c. Descrizione					
bc1 0-4 Sabbia, sabbia limosa (Alluvioni attuali e					
bn 1 4-27 Ghiaia sabbiosa (Alluvioni terrazzate)					
Falda: La quota di falda è situata a circa 13m dal p.c					

Il volume di terreno direttamente interagente con l'opera ha le seguenti proprietà:

Unità bc1 - Ghiaia sabbiosa (Alluvioni antiche)

 γ = 19.5 kN/m3 peso di volume naturale

φ' = 34÷42° angolo di resistenza al taglio

c' = 0 kPa coesione drenata

Nspt = 7÷R numero di colpi da prova SPT

Dr = 35÷45% densità relativa

Vs = 200÷350 m/s velocità delle onde di taglio

Go = 75÷240 MPa modulo di deformazione a taglio iniziale (a piccole deformazioni)

Eo = 200÷600 MPa modulo di deformazione elastico iniziale (a piccole deformazioni)

TELESE S.c.a r.l.

Consorzio Telese Società Consortile a Responsabilità Limitata

PROGETTAZIONE:

Mandataria: Mandante:

SYSTRA S.A. SWS Engineering S.p.A. SYSTRA-SOTECNI S.p.A.

Relazione di calcolo

IF2R.2.2.E.ZZ.CL.OC.00.0.0.001.A

ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA CANCELLO-BENEVENTO II LOTTO FUNZIONALE FRASSO TELESINO – VITULANO 2° SUBLOTTO TELESE – SAN LORENZO

PROGETTO ESECUTIVO

COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO
IF2R 2.2.E.ZZ CL OC.00.0.0.001 A 17 di 92

Unità bn1 – Ghiaia sabbiosa (Alluvioni terrazzate)

 γ = 20.0 kN/m3 peso di volume naturale

φ' = 34÷42° angolo di resistenza al taglio

c' = 0 kPa coesione drenata

Nspt = 15÷R numero di colpi da prova SPT

Dr = 30÷85% densità relativa

Vs = 200÷1000 m/s velocità delle onde di taglio

Go = 80÷1950 MPa modulo di deformazione a taglio iniziale (a piccole deformazioni)

Eo = 200÷5000 MPa modulo di deformazione elastico iniziale (a piccole deformazioni)

Per il dimensionamento di entrambi i tipologici L4-P2, si farà riferimento alla stratigrafia 2. Per il tipologico R3 si ipotizza invece che il terreno di spinta si quello da rilevato stradale mentre quello di posa sia quello da rilevato ferroviario.

6.3 COEFFICIENTI DI ATTRITO STRUTTURA-TERRENO

Per l'attrito paramento – terreno si utilizza il valore δ = 0.6 ϕ ' in fase statica e δ = 0 in fase sismica. Tuttavia, il software di calcolo utilizzato non consente di differenziare il valore del coefficiente di attrito nelle varie fasi di calcolo. Pertanto è stato utilizzato, per la valutazione dei coefficienti di spinta del terreno di rinterro, cautelativamente δ =0 sia in fase statica che in fase sismica. Tale assunzione, peraltro, non risulta essere particolarmente gravosa in quanto nella maggioranza dei casi esaminati la condizione di carico dimensionante è risultata essere quella sismica.

Per quanto riguarda l'attrito fondazione muro – terreno, in funzione dell'angolo d'attrito del terreno, si sono assunti i seguenti valori:

per $\phi < 30^{\circ} \mu = tg \phi'$;

per $\phi > 35^{\circ} \mu = 0.85 \text{ tg } \phi'$;

per $30^{\circ} \le \phi \le 35^{\circ}$ μ si ricava per interpolazione lineare

Infine l'adesione ca terra-opera sarà considerata nulla.

TELESE s.c.a r.l.

Consorzio Telese Società Consortile a Responsabilità Limitata

PROGETTAZIONE:

Mandataria: Mandante:

SYSTRA S.A. SWS Engineering S.p.A. SYS

SYSTRA-SOTECNI S.p.A.

Relazione di calcolo

IF2R.2.2.E.ZZ.CL.OC.00.0.0.001.A

ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA CANCELLO-BENEVENTO II LOTTO FUNZIONALE FRASSO TELESINO – VITULANO 2° SUBLOTTO TELESE – SAN LORENZO

PROGETTO ESECUTIVO

COMMESSA IF2R

LOTTO 22 F 77 CODIFICA

DOCUMENTO

REV. FOGLIO

7 MODELLO DI CALCOLO

Il dimensionamento dell'opera di sostegno è stato eseguito analizzando gli stati limite ultimi che si riferiscono allo sviluppo di meccanismi di collasso determinati dalla mobilitazione della resistenza del terreno, e al raggiungimento della resistenza degli elementi strutturali costituenti le opere stesse.

Le azioni considerate sull'opera di sostegno sono quelle dovute al peso proprio del terreno e del materiale di riempimento, ai sovraccarichi permanenti e variabili dovuti rispettivamente al carico permanente della scarpata, ai carichi mobili e all'azione del vento sulle barriere antirumore.

Nel dimensionamento delle opere è stata assunta la stratigrafia descritta nel precedente Capitolo della presente relazione di calcolo.

Per ogni stato limite ultimo analizzato è stata rispettata la seguente condizione:

Ed ≤ Rd

essendo E_d il valore di progetto dell'azione o dell'effetto dell'azione, ed R_d il valore di progetto della resistenza del sistema strutturale/geotecnico.

Il modello di calcolo è realizzato mediante il software commerciale "MAX 15" distribuito da Aztec Informatica.

La spinta del terrapieno e degli eventuali carichi presenti sul piano limite dello stesso è valutata in condizione di equilibrio litostatica, distinguendo fra i due casi di fase statica e fase sismica.

Nel seguito si riportano le relative formulazioni.

7.1 CALCOLO DELLA SPINTA DELLE TERRE IN CONDIZIONI STATICHE

Le spinte del terreno sono state calcolate, per le opere superficiali, in condizioni di equilibrio limite attivo, con ka; le opere su fondazioni profonde, che non sono in grado di subire spostamenti, sono state invece calcolate in condizioni di equilibrio limite a riposo, con k₀.

In fase statica, le spinte esercitate dal terrapieno e dagli eventuali carichi presenti su di esso sono state valutate con il metodo di Culmann. Il metodo di Culmann adotta le stesse ipotesi di base del metodo di Coulomb. La differenza sostanziale è che mentre Coulomb considera un terrapieno con superficie a pendenza costante e carico uniformemente distribuito (il che permette di ottenere una espressione in forma chiusa per il coefficiente di spinta) il metodo di Culmann consente di analizzare situazioni con profilo di forma generica e carichi sia concentrati che distribuiti comunque disposti. Inoltre, rispetto al metodo di Coulomb, risulta più immediato e lineare tener conto della coesione del masso spingente. Il metodo di Culmann, nato come metodo essenzialmente grafico, si è evoluto per essere trattato mediante analisi numerica (noto in questa forma come metodo del cuneo di tentativo).

Come il metodo di Coulomb anche questo metodo considera una superficie di rottura rettilinea. I passi del procedimento risolutivo sono i seguenti:

APPALTATORE: TELESE S.c.a r.l.

Consorzio Telese Società Con sortile a Responsabilità Limitata

PROGETTAZIONE:

Mandataria:

SYSTRA S.A.

Relazione di calcolo

IF2R.2.2.E.ZZ.CL.OC.00.0.0.001.A

Mandante:
SWS Engineering S.p.A. SYSTRA-SOTECNI S.p.A. PR

ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA CANCELLO-BENEVENTO II LOTTO FUNZIONALE FRASSO TELESINO – VITULANO 2° SUBLOTTO TELESE – SAN LORENZO

PROGETTO ESECUTIVO

COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO IF2R 2.2.E.ZZ CL OC.00.0.0.001 A 19 di 92

- si impone una superficie di rottura (angolo di inclinazione ρ rispetto all'orizzontale) e si considera il cuneo di spinta delimitato dalla superficie di rottura stessa, dalla parete su cui si calcola la spinta e dal profilo del terreno;
- si valutano tutte le forze agenti sul cuneo di spinta e cioè peso proprio (W), carichi sul terrapieno, resistenza per attrito e per coesione lungo la superficie di rottura (R e C) e resistenza per coesione lungo la parete (A);
- dalle equazioni di equilibrio si ricava il valore della spinta S sulla parete.

Questo processo viene iterato fino a trovare l'angolo di rottura per cui la spinta risulta massima. La convergenza non si raggiunge se il terrapieno risulta inclinato di un angolo maggiore dell'angolo d'attrito del terreno. Nei casi in cui è applicabile il metodo di Coulomb (profilo a monte rettilineo e carico uniformemente distribuito) i risultati ottenuti col metodo di Culmann coincidono con quelli del metodo di Coulomb. Le pressioni sulla parete di spinta si ricavano derivando l'espressione della spinta "S" rispetto all'ordinata "z". Noto il diagramma delle pressioni è possibile ricavare il punto di applicazione della spinta.

7.2 CALCOLO DELLA SPINTA DELLE TERRE IN CONDIZIONI SISMICHE

Per muri in grado di subire spostamenti, si utilizza la trattazione di Mononobe-Okabe, secondo cui, la spinta complessiva in fase simica esercitata da un terrapieno è fornita dalla seguente relazione:

$$S' = 1/2*\gamma_t (1\pm K_v) * K_{ae} H^2$$

con punto di applicazione ad H/3 dal piano di posa della fondazione dell'opera. In fase sismica agirà pertanto una sovraspinta sismica sull'opera pari a S' – S.

Per la valutazione del coefficiente di spinta K_{ae} , avviene con le medesime formulazione valide per la fase statica, prevedendo però, come suggerito in letteratura, i seguenti valori corretti di θ ed ϵ :

 $\theta = \theta_{\text{stat}} + \theta^*$ inclinazione fittizia del paramento interno rispetto alla verticale;

 $\varepsilon = \varepsilon_{\text{stat}} + \varepsilon^*$ angolo di inclinazione fittizio del piano limite del terrapieno

essendo θ^* l'angolo di rotazione addizionale definito al precedente paragrafo valutato come di seguito indicato:

$$\tan(\theta) = \frac{k_h}{1 \pm k_v}$$

Analogamente, per la valutazione della spinta totale in fase simica degli eventuali carichi Q presenti sul piano limite, si utilizza la seguente formulazione:

 $S'_Q = Q^*(1\pm K_v) *K_{ae}*H$ applicata a quota H/2 dal piano di posa della fondazione dell'opera.

In fase sismica agirà pertanto una sovraspinta sismica sull'opera pari a S'Q – SQ.

APPALTATORE: ITINERARIO NAPOLI - BARI RADDOPPIO TRATTA CANCELLO-BENEVENTO II LOTTO FUNZIONALE FRASSO TELESINO - VITULANO PROGETTAZIONE: 2° SUBLOTTO TELESE - SAN LORENZO Mandataria: Mandante: **PROGETTO ESECUTIVO** SYSTRA S.A. SWS Engineering S.p.A. SYSTRA-SOTECNI S.p.A. Relazione di calcolo COMMESSA LOTTO CODIFICA DOCUMENTO RFV **FOGLIO** IF2R.2.2.E.ZZ.CL.OC.00.0.0.001.A IF2R 20 di 92 22 F 77 CI OC 00 0 0 001 Α

Per tener conto infine effetti idrodinamici (spinta della falda in fase sismica) si fa ricorso al Metodo di Westergaard (1931) secondo cui la pressione idrodinamica su una parete viene calcolata come in particolare come segue:

$$p_{\rm w} = \frac{7}{8} a_{\rm x} \gamma_{\rm w} \sqrt{z_{\rm w} H}$$

essendo:

H l'altezza del livello di falda rispetto a fondo scavo;

zw la profondità del punto considerato dalla superficie libera della falda;

ax accelerazione relativa di progetto.

Per muri a spostamento impedito si fa invece ricorso alla teoria di Wood, secondo la quale la risultante dell'incremento di spinta per effetto del sisma su una parete di altezza H viene determinata con la seguente espressione:

$$\Delta S_E = (a_{max}/g) \cdot \gamma \cdot H^2$$

con risultante applicata ad un'altezza pari ad H/2.

APPALTATORE: TELESE S.c.a r.l. ITINERARIO NAPOLI - BARI RADDOPPIO TRATTA CANCELLO-BENEVENTO onsahilità Limitata II LOTTO FUNZIONALE FRASSO TELESINO - VITULANO PROGETTAZIONE: 2° SUBLOTTO TELESE – SAN LORENZO Mandataria: Mandante: **PROGETTO ESECUTIVO** SYSTRA S.A. SWS Engineering S.p.A. SYSTRA-SOTECNI S.p.A. CODIFICA FOGLIO Relazione di calcolo COMMESSA LOTTO DOCUMENTO REV. IF2R.2.2.E.ZZ.CL.OC.00.0.0.001.A IF2R 2.2.E.ZZ OC.00.0.0.001 21 di 92 CL Α

8 GEOMETRIA DELLA STRUTTURA

8.1 ELEMENTI SCATOLARI: L4-P2

Nel seguito sarà esaminata una striscia del muro ad U avente lunghezza 1.00m. Si riportano di seguito le dimensioni geometriche della sezione in retto.

Spessore medio del ballast + armamento	$H_b =$	0.80m
Larghezza totale dello scatolare	$L_{tot} =$	3.65m
Larghezza utile dello scatolare	$L_{\text{int}} =$	2.85m
Larghezza mensola di fondazione sinistra	$L_{msx} =$	0.00m
Larghezza mensola di fondazione destra	$L_{mdx} \! = \!$	0.00m
Spessore piedritti	$S_p =$	0.40m
Spessore della soletta di fondazione	$S_f =$	0.40m
Spessore della soletta di copertura	$S_f =$	0.25m
Altezza libera del muro ad U	$H_{\text{int}} =$	3.25m
Altezza totale del muro ad U	$H_{tot} =$	3.65m
Quota terreno da estradosso fondazione	$H_{\text{terr}} =$	1.80m
Quota falda da intradosso fondazione	$H_w =$	0.00m
Larghezza striscia di calcolo	b =	1.00m

APPALTATORE: ESE S.c.a r.l. ITINERARIO NAPOLI - BARI RADDOPPIO TRATTA CANCELLO-BENEVENTO II LOTTO FUNZIONALE FRASSO TELESINO - VITULANO PROGETTAZIONE: 2° SUBLOTTO TELESE - SAN LORENZO Mandataria: Mandante: **PROGETTO ESECUTIVO** SYSTRA S.A. SWS Engineering S.p.A. SYSTRA-SOTECNI S.p.A. Relazione di calcolo COMMESSA LOTTO CODIFICA DOCUMENTO RFV **FOGLIO** IF2R.2.2.E.ZZ.CL.OC.00.0.0.001.A IF2R 22 F 77 CI OC.00.0.0.001 Α 22 di 92

9 ANALISI DEI CARICHI

9.1 CONDIZIONI DI CARICO

9.1.1 Peso proprio degli elementi strutturali

Per il calcestruzzo armato si assume il seguente peso specifico: calcestruzzo armato: $\gamma_{c.a.} = 25 \text{ kN/m}^3$.

9.1.2 Carichi permanenti portati (PERM)

Sulla soletta di fondazione degli scatolari sono stati considerati i carichi permanenti relativi al massetto delle pendenze, di spessore medio 9cm.

Massetto 0.09m x 25.00 kN/mc = 2.25 kN/mq

9.1.2.1 Carico barriera antirumore

Il carico dovuto ai montanti in acciaio, posti a interasse 1,50m è pari a:

IN	TERASSE i=1,50m	Н6
AL	TEZZA DA P.F. [m]	5.42
	H _{MONTANTI} [m]	3.65
	2 Tondi Ø30	0.555
M	Tubo Ø 88.9x6.3	0.638
ACC.	Piatti 130mm	0.108
Ž	Piatti 180mm	-
Ę	Piatti 12mm	-
ΑŢ	Profilo a T	1.578
MONTANTI IN ACCIAIO	Profili a 2T	0.331
U	TOTALE [kN]	3.21

Sono inoltre portati in conto i pesi permanenti non strutturali dei pannelli fonoassorbenti, rispettivamente nelle due condizioni di "pannelli asciutti" e "pannelli bagnati".

			Н6
	Peso [kN/m²]	Interasse [m]	3.50
Pannelli asciutti	0.50	3.00	5.25
Pannelli bagnati	1.00	3.00	10.50

Il carico al metro lineare dato dalla barriera antirumre è pertanto pari a: $p_{barr}=3.21/1.5+10.5/3.0=5.6$ kN/m

APPALTATORE: E S.c.a r.l. ITINERARIO NAPOLI - BARI RADDOPPIO TRATTA CANCELLO-BENEVENTO II LOTTO FUNZIONALE FRASSO TELESINO - VITULANO PROGETTAZIONE: 2° SUBLOTTO TELESE - SAN LORENZO Mandataria: Mandante: **PROGETTO ESECUTIVO** SYSTRA S.A. SWS Engineering S.p.A. SYSTRA-SOTECNI S.p.A. Relazione di calcolo COMMESSA LOTTO CODIFICA DOCUMENTO RF\/ FOGLIO IF2R.2.2.E.ZZ.CL.OC.00.0.0.001.A IF2R 22 F 77 CI OC 00 0 0 001 Α 23 di 92

9.1.3 Azioni variabili da traffico (ACC)

Per gli elementi scatolari a ridosso della ferrovia, si assume il carico accidentale dato la transito del treno di carico LM71, posto a tergo dell'opera.

Il treno LM71 viene schematizzato da 4 assi da 250 kN disposti ad interasse di 1,60 m e da un carico distribuito di 80 kN/m in entrambe le direzioni per una larghezza illimitata.

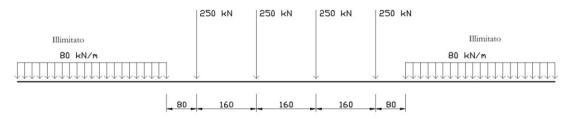


Figura 4- Treno LM71

Secondo il § 2.5.1.4.1.5 del RFI DTC SI PS MA IFS 001 C Manuale di progettazione RFI2018 (cfr, 5.2.2.2.1.5 NTC2018) il carico verticale su rilevato a tergo della spalla può essere ottenuto considerando una distribuzione trasversale dei carichi concentrati LM71 su una larghezza di 3m e una distribuzione longitudinale pari a quella di applicazione dei 4 carichi concentrati (schema LM71) = 6.40m.

Per questo tipo di carico non deve essere applicato l'incremento dinamico. Il coefficiente di adattamento è pari a 1.1. Il carico complessivo agente vale pertanto:

 $P_{V.LM71}$ =52.08 x 1,1= 57,29 kN/m²

Sulla soletta di copertura viene inoltre applicato un carico uniforme di 5 kPa.

Il carico accidentale sul piazzale a ridosso del piedritto del tipologico R3 ha invece intensità q=20 kN/m².

9.1.4 Spinta delle terre in condizioni statiche (SPTSX-SPTDX)

La struttura a mensola è stata analizzata nella condizione di spinta attiva, così come descritto nel paragrafo 7.1 della presente relazione; il valore del coefficiente di spinta è pari a:.

 $K_a = 0.390$

La struttura su pali è stata invece analizzata nella condizione di spinta a riposo; il valore del coefficiente di spinta è pari a:.

 $K_a = 0.384$

La pressione del terreno è stata calcolata come:

 $P = (P_b + h_{variabile}^* \gamma_{terreno_paramento})^* K_a$

al di sopra della falda

 $P = [P_b + h_{variabile}^*(\gamma_{terreno_paramento} - \gamma_w)]^* K_a$

APPALTATORE: ESE S.c.a r.l. ITINERARIO NAPOLI - BARI RADDOPPIO TRATTA CANCELLO-BENEVENTO II LOTTO FUNZIONALE FRASSO TELESINO - VITULANO PROGETTAZIONE: 2° SUBLOTTO TELESE - SAN LORENZO Mandataria: Mandante: PROGETTO ESECUTIVO SYSTRA S.A. SWS Engineering S.p.A. SYSTRA-SOTECNI S.p.A. Relazione di calcolo COMMESSA LOTTO CODIFICA DOCUMENTO RF\/ FOGLIO IF2R.2.2.E.ZZ.CL.OC.00.0.0.001.A IF2R 22 F 77 CI OC 00 0 0 001 Δ 24 di 92

al di sotto della falda

9.1.5 Spinta statica dell'acqua (SPTW)

Qualora la falda fosse posizionata al di sopra del piano di posa della fondazione si considera, in aggiunta alla spinta delle terre sopra definita, la spinta idrostatica esercitata dall'acqua sulle pareti verticali, pari a $S_w=\gamma_w^*z$, e la sottospinta idraulica diretta verso l'alto sulla soletta inferiore, pari al prodotto del peso specifico dell'acqua, per l'altezza dello scatolare immerso, $P_w=\gamma_w^*h_{imm}$.

9.1.6 Azione sismica

Per il calcolo dell'azione sismica si è utilizzato il metodo dell'analisi pseudo-statica in cui l'azione sismica è rappresentata da una forza statica equivalente pari al prodotto delle forze di gravità per un opportuno coefficiente sismico k.

Le forze sismiche sono pertanto le seguenti:

Forza sismica orizzontale $F_h = k_h \times W$ Forza sismica verticale $F_V = k_V \times W$

I valori dei coefficienti sismici orizzontale k_h e verticale k_v possono essere valutati mediante le espressioni:

 $k_h = \beta_m \text{ amax/g}$ $k_v = \pm 0.5 \times k_h$

Nelle analisi eseguite con il metodo pseudostatico, i valori dei coefficienti sismici orizzontali e verticali, nelle verifiche allo stato limite ultimo, potranno essere assunti come definito al paragrafo 7.11.6.2.1 delle NTC 2008 anche per i muri su pali, con l'avvertenza di sostituire le relazioni 7.11.6 e 7.11.7 delle stesse norme tecniche con le espressioni di seguito riportate:

$$\mathbf{k}_{\text{h}} = 2 \cdot \mathbf{\beta}_{\text{m}} \cdot \mathbf{S}_{\text{T}} \cdot \mathbf{S}_{\text{S}} \cdot \frac{\mathbf{a}_{\text{g}}}{\mathbf{g}} \qquad \qquad \mathbf{k}_{\text{v}} = \frac{1}{2} \cdot \mathbf{k}_{\text{h}}$$

Fondazione su pali (RFI DTC SI CS MA IFS 001 A_3.10.3.1)

ag/g = 0.367 $\beta m = 0.310$ Ss = 1.056ST = 1.00

Kh = 0.240 coefficiente sismico orizzontale Kv = 0.120 coefficiente sismico verticale

Fondazione superficiale

APPALTATORE: TELESE S.c.a r.l.

Consorzio Telese Società Consortile a Responsabilità Limitata

PROGETTAZIONE:

Mandataria: Mandante:

SYSTRA S.A. SWS Engineering S.p.A. SYSTRA-SOTECNI S.p.A.

Relazione di calcolo

IF2R.2.2.E.ZZ.CL.OC.00.0.0.001.A

ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA CANCELLO-BENEVENTO II LOTTO FUNZIONALE FRASSO TELESINO – VITULANO 2° SUBLOTTO TELESE – SAN LORENZO

PROGETTO ESECUTIVO

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 IF2R
 2.2.E.ZZ
 CL
 OC.00.0.0.001
 A
 25 di 92

ag/g = 0.367

 $\beta m = 0.310$ Ss = 1.056

ST = 1.00

Kh = 0.120 coefficiente sismico orizzontale

Kv = 0.06 coefficiente sismico verticale

9.1.7 Spinta delle terre in fase sismica

Per muri a spostamento impedito, si fa ricorso alla teoria di Wood, secondo la quale la risultante dell'incremento di spinta per effetto del sisma su una parete di altezza H viene determinata con la seguente espressione:

 $\Delta S_E = (a_{max}/g) \cdot \gamma \cdot H^2$

con risultante applicata ad un'altezza pari ad H/2.

Per fondazioni superficiali, le spinte delle terre sono state determinate con la teoria di Mononobe - Okabe, secondo la formulazione riportata nel paragrafo 7.2 della presente relazione ed applicata con distribuzione triangolare delle tensioni sulla spalla:

$$S = \frac{1}{2} \cdot k_{a,E} \cdot \gamma \cdot H^2 \cdot (1 \pm k_v)$$

con risultante applicata ad un'altezza pari ad H/3.

APPALTATORE: ESE S.c.a r.l.

PROGETTAZIONE:

Mandataria: Mandante:

SYSTRA S.A. SWS Engineering S.p.A. SYSTRA-SOTECNI S.p.A.

Relazione di calcolo

IF2R.2.2.E.ZZ.CL.OC.00.0.0.001.A

ITINERARIO NAPOLI - BARI RADDOPPIO TRATTA CANCELLO-BENEVENTO II LOTTO FUNZIONALE FRASSO TELESINO - VITULANO 2° SUBLOTTO TELESE - SAN LORENZO

PROGETTO ESECUTIVO

COMMESSA LOTTO CODIFICA DOCUMENTO RF\/ FOGLIO IF2R 22 F 77 CI OC 00 0 0 001 Α 26 di 92

COMBINAZIONI DI CARICO

Ai fini delle verifiche degli stati limite si è fatto riferimento alle seguenti combinazioni delle azioni.

Combinazione fondamentale, generalmente impiegata per gli stati limite ultimi (SLU):

$$\gamma_{G1} \cdot G_1 + \gamma_{G2} \cdot G_2 + \gamma_{P} \cdot P + \gamma_{Q1} \cdot Q_{k1} + \gamma_{Q2} \cdot \psi_{02} \cdot Q_{k2} + \gamma_{Q3} \cdot \psi_{03} \cdot Q_{k3} + \dots$$

Combinazione caratteristica (rara), generalmente impiegata per gli stati limite di esercizio (SLE) irreversibili:

$$G_1 + G_2 + P + Q_{k1} + \psi_{02} \cdot Q_{k2} + \psi_{03} \cdot Q_{k3} + \dots$$

Combinazione frequente, generalmente impiegata per gli stati limite di esercizio (SLE) reversibili:

$$G_1 + G_2 + P + \psi_{11} \cdot Q_{k1} + \psi_{22} \cdot Q_{k2} + \psi_{23} \cdot Q_{k3} + \dots$$

Combinazione quasi permanente, generalmente impiegata per gli stati limite di esercizio (SLE) a lungo termine:

$$G_1 + G_2 + P + \psi_{21} \cdot Q_{k1} + \psi_{22} \cdot Q_{k2} + \psi_{23} \cdot Q_{k3} + \dots$$

Combinazione sismica, impiegata per gli stati limite ultimi e di esercizio connessi all'azione sismica E:

$$E + G_1 + G_2 + P + \psi_{21} \cdot Q_{k1} + \psi_{22} \cdot Q_{k2} + \dots$$

dove:

$$E = \pm 1.00 \text{ x } E_Y \pm 0.3 \text{ 0 x } E_Z$$
 oppure $E = \pm 0.30 \text{ x } E_Y \pm 1.00 \text{ x } E_Z$

avendo indicato con EY e EZ rispettivamente le componenti orizzontale e verticale dell'azione sismica.

Gli effetti dei carichi verticali, dovuti alla presenza dei convogli, vengono sempre combinati con le altre azioni derivanti dal traffico ferroviario, adottando i coefficienti di cui alla Tabella 5.2.IV del DM 17/01/2018 di seguito riportata. In particolare, per ogni gruppo viene individuata una azione dominante che verrà considerata per intero; per le altre azioni, vengono definiti diversi coefficienti di combinazione. Ogni gruppo massimizza una particolare condizione alla quale la struttura dovrà essere verificata.

PROGETTAZIONE:

Mandataria: Mandante:

SYSTRA S.A. SWS Engineering S.p.A. SYSTRA-SOTECNI S.p.A.

Relazione di calcolo

IF2R.2.2.E.ZZ.CL.OC.00.0.0.001.A

ITINERARIO NAPOLI - BARI RADDOPPIO TRATTA CANCELLO-BENEVENTO II LOTTO FUNZIONALE FRASSO TELESINO - VITULANO 2° SUBLOTTO TELESE - SAN LORENZO

PROGETTO ESECUTIVO

COMMESSA LOTTO CODIFICA DOCUMENTO RE\/ **FOGLIO** IF2R 2.2.E.ZZ 27 di 92 CI OC 00 0 0 001 Α

Tabella 5.2.IV - Valutazione dei carichi da traffico (da DM 17/01/2018)

TIPO DI CARICO	Azioni v	erticali		Azioni orizzontal		
Gruppo di carico	Carico Verticale (1)	Treno Scarico	Frenatura ed Avviamento	Centrifuga Serpeggio		COMMENTI
Gruppo 1 (2)	1.0	-	0.5 (0.0)	1.0 (0.0)	1.0 (0.0)	massima azione verticale e laterale
Gruppo 2 (2)	-	1.0	0.0	1.0 (0.0)	1.0 (0.0)	stabilità laterale
Gruppo 3 (2)	1.0 (0.5)	ı	1.0	0.5 (0.0)	0.5 (0.0)	massima azione longitudinale
Gruppo 4	0.8 (0.6; 0.4)	-	0.8 (0.6; 0.4)	0.8 (0.6; 0.4)	0.8 (0.6; 0.4)	fessurazione

Azione dominante

- (1) Includendo tutti i fattori ad essi relativi (Φ,α , ecc..)
- (2) La simultaneità di due o tre valori caratteristici interi (assunzione di diversi coefficienti pari ad 1), sebbene improbabile, è stata considerata come semplificazione per i gruppi di carico 1, 2, 3 senza che ciò abbia significative conseguenze progettuali.

Nelle tabelle sopra riportate è indicato un coefficiente per gli effetti a sfavore di sicurezza e. tra parentesi, un coefficiente, minore del precedente, per gli effetti a favore di sicurezza. I coefficienti di amplificazione dei carichi γ e i coefficienti di combinazione ψ sono riportati nelle tabelle sequenti.

Di seguito viene riportata la Tabella 5.2.III delle NTC18 dove si mostrano i carichi mobili in funzione del numero di binari presenti:

Numero	Binari	Binari Traffico normale		T (2)
di binari	Carichi	caso a ⁽¹⁾	caso b ⁽¹⁾	Traffico pesante ⁽²⁾
1	Primo	1,0 (LM 71"+"SW/0)	-	1,0 SW/2
	Primo	1,0 (LM 71"+"SW/0)	-	1,0 SW/2
2	secondo	1,0 (LM 71"+"SW/0)	-	1,0 (LM 71"+"SW/0)
	Primo	1,0 (LM 71"+"SW/0)	0,75 (LM 71"+"SW/0)	1,0 SW/2
≥3	secondo	1,0 (LM 71"+"SW/0)	0,75 (LM 71"+"SW/0)	1,0 (LM 71"+"SW/0)
23	Altri	-	0,75 (LM 71"+"SW/0)	-

⁽¹⁾ LM71 ''+'' SW/0 significa considerare il più sfavorevole fra i treni LM 71, SW/0

Si ripota la Tabella 5.2.V delle NTC18 dei coefficienti parziali di sicurezza per le combinazioni di carico SLU:

⁽²⁾Salvo i casi in cui sia esplicitamente escluso

APPALTATORE: ESE S.c.a r.l. ITINERARIO NAPOLI - BARI RADDOPPIO TRATTA CANCELLO-BENEVENTO II LOTTO FUNZIONALE FRASSO TELESINO - VITULANO PROGETTAZIONE: 2° SUBLOTTO TELESE - SAN LORENZO Mandataria: Mandante: PROGETTO ESECUTIVO SYSTRA S.A. SWS Engineering S.p.A. SYSTRA-SOTECNI S.p.A. Relazione di calcolo COMMESSA LOTTO CODIFICA DOCUMENTO RFV **FOGLIO** IF2R.2.2.E.ZZ.CL.OC.00.0.0.001.A IF2R 22 F 77 CI OC 00 0 0 001 Α 28 di 92

Tabella 5.2.V – Coefficienti parziali di sicurezza per le combinazioni di carico agli SLU, eccezionali e sismica (da DM 17/01/2018)

		Coefficiente	EQU ⁽¹⁾	A1 STR	A2 GEO	Combinazione eccezionale	Combinazione Sismica
Carichi permanenti	favorevoli sfavorevoli	γ _{G1}	0,90 1,10	1,00 1,35	1,00 1,00	1,00 1,00	1,00 1,00
Carichi permanenti non strutturali ⁽²⁾	favorevoli sfavorevoli	γ _{G2}	0,00 1,50	0,00 1,50	0,00 1,30	1,00 1,00	1,00 1,00
Ballast ⁽³⁾	favorevoli sfavorevoli	γв	0,90 1,50	1,00 1,50	1,00 1,30	1,00 1,00	1,00 1,00
Carichi variabili da traffico ⁽⁴⁾	favorevoli sfavorevoli	γQ	0,00 1,45	0,00 1,45	0,00 1,25	0,00 0,20 ⁽⁵⁾	0,00 0,20 ⁽³⁾
Carichi variabili	favorevoli sfavorevoli	γQi	0,00 1,50	0,00 1,50	0,00 1,30	0,00 1,00	0,00 0,00
Precompressione	favorevole sfavorevole	γp	0,90 1,00 ⁽⁶⁾	1,00 1,00 ⁽⁷⁾	1,00 1,00	1,00 1,00	1,00 1,00

- (1) Equilibrio che non coinvolga i parametri di deformabilità e resistenza del terreno; altrimenti si applicano i valori di GEO.
- (2) Nel caso in cui i carichi permanenti non strutturali (ad es. carichi permanenti portati) siano compiutamente definiti si potranno adottare gli stessi coefficienti validi per le azioni permanenti.
- (3) Quando si prevedano variazioni significative del carico dovuto al ballast, se ne dovrà tener conto esplicitamente nelle verifiche.
- (4) Le componenti delle azioni da traffico sono introdotte in combinazione considerando uno dei gruppi di carico gr della Tab. 5.2.IV.
- (5) Aliquota di carico da traffico da considerare.
- (6) 1,30 per instabilità in strutture con precompressione esterna
- (7) 1,20 per effetti locali

Si riporta la Tabella 5.2.VI delle NTC18 in cui sono espressi i coefficienti di combinazione delle azioni:

TELESE S.c.a r.l.

Consorzio Telese Società Consortile a Responsabilità Limitata

PROGETTAZIONE:

Mandataria: Mandante:

Relazione di calcolo

IF2R.2.2.E.ZZ.CL.OC.00.0.0.001.A

SYSTRA S.A. SWS Engineering S.p.A. SYSTRA-SO

SYSTRA-SOTECNI S.p.A.

S.D.A. PROGETTO ESECUTIVO

COMMESSA IF2R LOTTO **2.2.E.ZZ**

ITINERARIO NAPOLI - BARI

CODIFICA CL

RADDOPPIO TRATTA CANCELLO-BENEVENTO

2° SUBLOTTO TELESE - SAN LORENZO

II LOTTO FUNZIONALE FRASSO TELESINO - VITULANO

DOCUMENTO **OC.00.0.001**

FOGLIO **29 di 92**

REV.

Α

Tabella 5.2.VI - Coefficienti di combinazione ψ delle azioni (da DM 17/01/2018)

Tab. 5.2.VI - Coefficienti di combinazione Ψ delle azioni

140. 5.2. V1 - Coefficienti di combinazione 7 delle azioni								
Azioni		ψο	ψ₁	Ψ 2				
Azioni singole	Carico sul rilevato a tergo delle spalle	0,80	0,50	0,0				
da traffico	Azioni aerodinamiche generate dal transito dei convogli	0,80	0,50	0,0				
	gr_1	0,80(2)	0,80(1)	0,0				
Gruppi di	gr_2	0,80(2)	0,80(1)	-				
carico	gr_3	0,80(2)	0,80(1)	0,0				
	gr_4	1,00	1,00(1)	0,0				
Azioni del vento	F_{Wk}	0,60	0,50	0,0				
Azioni da	in fase di esecuzione	0,80	0,0	0,0				
neve	SLU e SLE	0,0	0,0	0,0				
Azioni termiche	T_{k}	0,60	0,60	0,50				

⁽¹⁾0,80 se è carico solo un binario, 0,60 se sono carichi due binari e 0,40 se sono carichi tre o più binari.

Nella combinazione sismica le azioni indotte dal traffico ferroviario sono combinate con un coefficiente ψ_2 = 0.2 (paragrafo 5.1.3.12 del DM 17/01/2018) coerentemente con l'aliquota di massa afferente ai carichi da traffico.

Si riportano di seguito le combinazioni delle azioni maggiormente significative per la determinazione delle sollecitazioni più gravose.

Tabella 2 Combinazioni di carico SLU-SLV

	SLU01	SLU02	SLU03	SLU04	SLU05	SL06	SLV01	SLV02	SLV03	SLV04
PP	1.35	1.35	1.35	1.35	1	1.35	1	1	1	1
PERM	1.5	1.5	1.5	1.5	1	1.5	1	1	1	1
ACC	1.45	1.45	1	1.45	1.45	1.45	0.2	0.2	0.2	0.2
SPTSX	1.35	1.35	1	1.35	1.35	1.35	1	1	1	1
SPTDX	1.35	1	1	1.35	1.35	1.35	1	1	1	1
SPTW	1	1.35	1	1.35	1.35	1	1	1	1	1
SPACCSX	1.45	1.45	1	1.45	1.45	1.16	0.2	0.2	0.2	0.2
SPACCDX	1.45	1	1	1.45	1.45	1.16	0.2	0.2	0.2	0.2
SPPERMSX	1.5	1.5	1	1.5	1.5	1.5	1	1	1	1
SPPERMDX	1.5	1	1	1.5	1.5	1.5	1	1	1	1
VENTO+PA	0.9	0.9	0.9	0.9	0.9	1.5	0	0	0	0
SISMA_H	0	0	0	0	0	0	1	1	0.3	0.3
SISMA_V	0	0	0	0	0	0	0.3	0.3	1	1
SPSSX	0	0	0	0	0	0	1	1	1	1
SPSDX	0	0	0	0	0	0	1	-1	1	-1

⁽²⁾ Quando come azione di base venga assunta quella del vento, i coefficienti ψ₀ relativi ai gruppi di carico delle azioni da traffico vanno assunti pari a 0,0.

TELESE S.c.a r.l.

Consorzio Telese Società Consortile a Responsabilità Limitata

PROGETTAZIONE:

Mandataria: Mandante:

SYSTRA S.A. SWS Engineering S.p.A. SYSTRA-SOTECNI S.p.A.

Relazione di calcolo

IF2R.2.2.E.ZZ.CL.OC.00.0.0.001.A

ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA CANCELLO-BENEVENTO II LOTTO FUNZIONALE FRASSO TELESINO – VITULANO 2° SUBLOTTO TELESE – SAN LORENZO

PROGETTO ESECUTIVO

COMMESSA LOTTO CODIFICA DOCUMENTO REV.

OC.00.0.001 A 30 di 92

FOGLIO

Tabella 3 Combinazioni di carico SLE

	SLE_RARA01	SLE_RARA02	SLE_FREQ01	SLE_QPERM01
PP	1	1	1	1
PERM	1	1	1	1
ACC	1	1	0.8	0
SPTSX	1	1	1	1
SPTDX	1	0.8	0.8	1
SPTW	1	1	1	1
SPACCSX	1	1	0.8	0
SPACCDX	1	0	0	0
SPPERMSX	1	1	1	1
SPPERMDX	1	0.8	0.8	1
VENTO+PA	0.6	1	0.5	0
SISMA_H	0	0	0	0
SISMA_V	0	0	0	0
SPSSX	0	0	0	0
SPSDX	0	0	0	0

10 CRITERI DI VERIFICA

Le verifiche di sicurezza sono state effettuate sulla base dei criteri definiti nelle vigenti norme tecniche - "Norme tecniche per le costruzioni" - DM 14.1.2008 -, tenendo inoltre conto delle integrazioni riportate nel "Manuale di progettazione delle opere civili".

In particolare vengono effettuate le verifiche agli stati limite di servizio, riguardanti gli stati tensionale e di fessurazione, ed allo stato limite ultimo. Le combinazioni di carico considerate ai fini delle verifiche sono quelle indicate nei precedenti paragrafi.

Si espongono di seguito i criteri di verifica adottati per le verifiche degli elementi strutturali in c.a..

10.1 VERIFICA AGLI STATI LIMITE DI ESERCIZIO

10.1.1 Verifica a fessurazione

Le verifiche a fessurazione sono eseguite adottando i criteri definiti nel paragrafo 4.1.2.2.4.5 del DM 14.1.2008, tenendo inoltre conto delle ulteriori prescrizioni riportate nel "Manuale di progettazione delle opere civili RFI".

Con riferimento alle classi di esposizione delle varie parti della struttura (si veda il paragrafo relativo alle caratteristiche dei materiali impiegati), alle corrispondenti condizioni ambientali ed alla sensibilità delle armature alla corrosione (armature sensibili per gli acciai da precompresso; poco sensibili per gli acciai ordinari), si individua lo stato limite di fessurazione per assicurare la funzionalità e la durata delle strutture, in accordo con il DM 14.1.2008:

APPALTATORE: TELESE S.c.a r.l.

Consorzio Telese Società Consortile a Responsabilità Limitata

PROGETTAZIONE:

Mandataria: Mandante:

SWS Engineering S.p.A.

SYSTRA S.A.

Relazione di calcolo

IF2R.2.2.E.ZZ.CL.OC.00.0.0.001.A

ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA CANCELLO-BENEVENTO II LOTTO FUNZIONALE FRASSO TELESINO – VITULANO 2° SUBLOTTO TELESE – SAN LORENZO

PROGETTO ESECUTIVO

COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO IF2R 2.2.E.ZZ CL OC.00.0.0.001 A 31 di 92

Le verifiche a fessurazione sono eseguite adottando i criteri definiti nel paragrafo 4.1.2.2.4.5 del DM 14.1.2008.

Con riferimento alle classi di esposizione delle varie parti della struttura (si veda il paragrafo relativo alle caratteristiche dei materiali impiegati), alle corrispondenti condizioni ambientali ed alla sensibilità delle armature alla corrosione (armature sensibili per gli acciai da precompresso; poco sensibili per gli acciai ordinari), si individua lo stato limite di fessurazione per assicurare la funzionalità e la durata delle strutture, in accordo con il DM 14.1.2008:

Gruppi di esigenze	Condizioni ambientali	Combinazione di azioni	Armatura				
			Sensibile	Poco sensibile			
		di azioni	Stato limite	Wd	Stato limite	Wd	
a	Ordinarie	frequente	ap. fessure	$\leq w_2$	ap. fessure	≤ w ₃	
		quasi permanente	ap. fessure	$\leq w_1$	ap. fessure	$\leq w_2$	
b	Aggressive	frequente	ap. fessure	$\leq w_1$	ap. fessure	$\leq w_2$	
		quasi permanente	decompressione	-	ap. fessure	$\leq w_1$	
c	Molto aggressive	frequente	formazione fessure	-	ap. fessure	$\leq \mathbf{w}_1$	
		quasi permanente	decompressione	-	ap. fessure	$\leq \mathbf{w}_1$	

Figura 5: Criteri di scelta dello stato limite di fessurazione - Tabella 4.1.IV del DM 14.1.2008

Nella Tabella sopra riportata, w1=0.2mm, w2=0.3mm; w3=0.4mm.

SYSTRA-SOTECNI S.D.A.

Più restrittivi risultano i limiti di apertura delle fessure riportati nel "Manuale di progettazione delle opere civili". L'apertura convenzionale delle fessure, calcolata con la combinazione caratteristica (rara) per gli SLE, deve risultare:

- a) δ_f ≤ w₁ per strutture in condizioni ambientali aggressive e molto aggressive, così come identificate nel par. 4.1.2.2.4.3 del DM 14.1.2008, per tutte le strutture a permanente contatto con il terreno e per le zone non ispezionabili di tutte le strutture;
- δ_f ≤ w₂ per strutture in condizioni ambientali ordinarie secondo il citato paragrafo del DM 14.1.2008.

Si assume pertanto per tutti gli elementi strutturali analizzati nel presente documento:

Stato limite di fessurazione: w_d ≤ w₁ = 0.2 mm - combinazione di carico rara In accordo con la normativa seguita, il valore di calcolo di apertura delle fessure wd è dato da:

 $w_d = 1.7 w_m$

dove wm rappresenta l'ampiezza media delle fessure calcolata come prodotto della deformazione media delle barre d'armatura εsm per la distanza media tra le fessure Δsm:

 $W_{\text{m}} = \epsilon_{\text{sm}} \; \Delta_{\text{sm}}$

Per il calcolo di ε_{sm} e Δ_{sm} vanno utilizzati i criteri consolidati riportati nella letteratura tecnica.

TELESE S.c.a r.l.

Consorzio Telese Società Consortile a Responsabilità Limitata

PROGETTAZIONE:

Mandataria:

SYSTRA S.A. SWS Engineering S.p.A. SYSTRA-SOTECNI S.p.A.

Relazione di calcolo

IF2R.2.2.E.ZZ.CL.OC.00.0.0.001.A

Mandante:

ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA CANCELLO-BENEVENTO II LOTTO FUNZIONALE FRASSO TELESINO – VITULANO 2° SUBLOTTO TELESE – SAN LORENZO

PROGETTO ESECUTIVO

COMMESSA LOTTO CODIFICA

DOCUMENTO **OC.00.0.001**

FOGLIO

RF\/

Δ

10.1.1 Verifica delle tensioni in esercizio

Valutate le azioni interne nelle varie parti della struttura, dovute alle combinazioni caratteristica e quasi permanente delle azioni, si calcolano le massime tensioni sia nel calcestruzzo sia nelle armature; si verifica che tali tensioni siano inferiori ai massimi valori consentiti, di seguito riportati.

Le prescrizioni riportate di seguito fanno riferimento al par. 4.1.2.2.5.1 del DM 14.1.2008. La massima tensione di compressione del calcestruzzo σc, deve rispettare la limitazione

seguente:

σc < 0,60 fck per combinazione caratteristica (rara)

 $\sigma c < 0.45$ fck per combinazione guasi permanente.

Per l'acciaio ordinario, la tensione massima ss per effetto delle azioni dovute alla combinazione caratteristica deve rispettare la limitazione seguente:

 σ s < 0,80 fyk

dove fyk per armatura ordinaria è la tensione caratteristica di snervamento dell'acciaio.

10.2 VERIFICA AGLI STATI LIMITE ULTIMI DI TIPO STRUTTURALE (SLU-STR)

10.2.1 Sollecitazioni flettenti

La verifica di resistenza (SLU) è stata condotta attraverso il calcolo dei domini di interazione N-M, ovvero il luogo dei punti rappresentativi di sollecitazioni che portano in crisi la sezione di verifica secondo i criteri di resistenza da normativa.

Nel calcolo dei domini sono state mantenute le consuete ipotesi, tra cui:

- conservazione delle sezioni piane;
- legame costitutivo del calcestruzzo parabolo-rettangolo non reagente a trazione, con plateaux ad una deformazione pari a 0.002 e a rottura pari a 0.0035 (σmax = 0.85×0.83×Rck/1.5);
- legame costitutivo dell'armatura d'acciaio elastico-perfattamente plastico con deformazione limite di rottura a 0.01 (σmax = fyk / 1.15)

10.2.2 Sollecitazioni taglianti

La resistenza a taglio V_{Rd} di elementi sprovvisti di specifica armatura è stata calcolata sulla base della resistenza a trazione del calcestruzzo.

Con riferimento all'elemento fessurato da momento flettente, la resistenza al taglio si valuta con:

$$V_{Rd} = \left\{ 0.18 \cdot k \cdot (100 \cdot \rho_1 \cdot f_{ck})^{1/3} \, / \, \gamma_c + 0.15 \cdot \sigma_{cp} \right\} \cdot b_w \cdot d \geq \, \left(v_{min} \, + \, 0.15 \cdot \, \sigma_{cp} \right) \, \cdot b_w d$$

PROGETTAZIONE:

Mandataria:

Mandante: SYSTRA S.A. SWS Engineering S.p.A.

SYSTRA-SOTECNI S.p.A

Relazione di calcolo

IF2R.2.2.E.ZZ.CL.OC.00.0.0.001.A

ITINERARIO NAPOLI - BARI RADDOPPIO TRATTA CANCELLO-BENEVENTO II LOTTO FUNZIONALE FRASSO TELESINO - VITULANO 2° SUBLOTTO TELESE - SAN LORENZO

PROGETTO ESECUTIVO

COMMESSA LOTTO CODIFICA IF2R 22 F 77 CI

DOCUMENTO RF\/ OC 00 0 0 001 Δ

FOGLIO 33 di 92

con:

$$k = 1 + (200/d)^{1/2} \le 2$$

 $v_{min} = 0.035 k^{3/2} f_{ck}^{1/2}$

e dove:

d è l'altezza utile della sezione (in mm);

 $\rho_1 = A_{sl}/(b_w \times d)$ è il rapporto geometrico di armatura longitudinale (≤ 0.02);

 $\sigma_{cp} = N_{Ed}/A_c$ è la tensione media di compressione nella sezione ($\leq 0,2$ f_{cd});

bw è la larghezza minima della sezione (in mm).

La resistenza a taglio V_{Rd} di elementi strutturali dotati di specifica armatura a taglio deve essere valutata sulla base di una adequata schematizzazione a traliccio. Gli elementi resistenti dell'ideale traliccio sono: le armature trasversali, le armature longitudinali, il corrente compresso di calcestruzzo e i puntoni d'anima inclinati. L'inclinazione θ dei puntoni di calcestruzzo rispetto all'asse della trave deve rispettare i limiti seguenti:

$$1 \le ctg \theta \le 2.5$$

La verifica di resistenza (SLU) si pone con:

 $V_{Rd} \ge V_{Ed}$

dove V_{Ed} è il valore di calcolo dello sforzo di taglio agente.

Con riferimento all'armatura trasversale, la resistenza di calcolo a "taglio trazione" è stata calcolata con:

$$V_{Rsd} = 0.9 \cdot d \cdot \frac{A_{sw}}{s} \cdot f_{yd} \cdot (ctg\alpha + ctg\theta) \cdot \sin\alpha$$

Con riferimento al calcestruzzo d'anima, la resistenza di calcolo a "taglio compressione" è stata calcolata con:

$$V_{\text{Rcd}} = 0,9 \cdot d \cdot b_w \cdot \alpha_c \cdot f \, {'}_{\text{cd}} \cdot (\text{ctg}\alpha + \text{ctg}\theta) / (1 + \text{ctg}^2\theta)$$

La resistenza al taglio della trave è la minore delle due sopra definite:

$$V_{Rd} = min (V_{Rsd}, V_{Rcd})$$

In cui:

d è l'altezza utile della sezione;

è la larghezza minima della sezione; b_w

Scp è la tensione media di compressione della sezione;

è l'area dell'armatura trasversale; A_{sw}

APPALTATORE: LESE S.c.a r.l. onsahilità Limitata PROGETTAZIONE: Mandataria:

SWS Engineering S.p.A.

ITINERARIO NAPOLI - BARI RADDOPPIO TRATTA CANCELLO-BENEVENTO II LOTTO FUNZIONALE FRASSO TELESINO – VITULANO 2° SUBLOTTO TELESE - SAN LORENZO

PROGETTO ESECUTIVO

COMMESSA LOTTO CODIFICA FOGLIO DOCUMENTO REV. IF2R 2.2.E.ZZ OC.00.0.0.001 34 di 92 CL Α

S è interasse tra due armature trasversali consecutive:

SYSTRA-SOTECNI S.p.A.

θ è l'angolo di inclinazione dell'armatura trasversale rispetto all'asse della

trave:

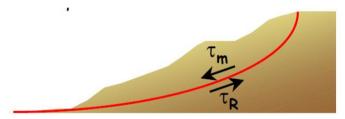
IF2R.2.2.E.ZZ.CL.OC.00.0.0.001.A

SYSTRA S.A.

Relazione di calcolo

Mandante:

 \mathbf{f}'_{cd} è la resistenza a compressione ridotta del calcestruzzo d'anima (f'cd=0.5fcd); è un coefficiente maggiorativo, pari ad 1 per membrature non compresse. α


APPALTATORE: ESE s.c.a r.l. ITINERARIO NAPOLI - BARI RADDOPPIO TRATTA CANCELLO-BENEVENTO II LOTTO FUNZIONALE FRASSO TELESINO - VITULANO PROGETTAZIONE: 2° SUBLOTTO TELESE - SAN LORENZO Mandataria: Mandante: PROGETTO ESECUTIVO SYSTRA S.A. SWS Engineering S.p.A. SYSTRA-SOTECNI S.p.A. CODIFICA Relazione di calcolo COMMESSA LOTTO DOCUMENTO RF\/ FOGLIO IF2R.2.2.E.ZZ.CL.OC.00.0.0.001.A IF2R 22 F 77 CI OC 00 0 0 001 Α 35 di 92

10.3 VERIFICHE ALLO STATO LIMITE ULTIMO DI TIPO GEOTECNICO (SLU-GEO)

10.3.1 Verifica di stabilità globale del complesso opera di sostegno-terreno

Per l'analisi di stabilità globale presentate nel seguito del presente documento, si è fatto riferimento ai metodi dell'equilibrio limite, messi a punto da diversi autori tra cui, Fellenius, Bishop, Janbu, Morgestern-Price, ecc.

In generale, ciascuno metodo va alla ricerca del potenziali superfici di scivolamento, generalmente di forma circolare, in qualche caso anche di forma diversa, rispetto a cui effettuare un equilibrio alla rotazione (o roto-traslazione) della potenziale massa di terreno coinvolta nel possibile movimento e quindi alla determinazione di un coefficiente di sicurezza coefficiente di sicurezza disponibile, espresso in via generale tra la resistenza al taglio disponibile lungo la superficie S e quella effettivamente mobilitata lungo la stessa superficie, ovvero:

$$\eta = \frac{\int\limits_{S} \tau_{\text{rott}}}{\int\limits_{S} \tau_{\text{mob}}}$$

Si procede generalmente suddividendo la massa di terreno coinvolta nella verifica in una serie di conci di dimensione b, interessati da azioni taglianti e normali sulle superfici di delimitazione dello stesso come di seguito rappresentato.

Nel caso in esame, è stata utilizzato in particolare il metodo di Bishop, di cui nel seguito si riporta la relativa trattazione teorica.

Il coefficiente di sicurezza si esprime mediante la relazione:

$$\eta = \frac{\sum_{i=1}^{n} \left(\frac{b_i c_i + W_i tg\phi_i}{m} \right)}{\sum_{i=1}^{n} W_i sin\alpha_i}$$

con

$$m = \left(1 + \frac{tg\alpha_i \ tg\phi_i}{\eta}\right) \cos\alpha_i$$

dove n è il numero delle strisce considerate, b_i ed α_i sono la larghezza e l'inclinazione della base della striscia i-esima rispetto all'orizzontale, W_i è il peso della striscia i-esima e c_i e ϕ_i sono le caratteristiche del terreno (coesione ed angolo di attrito) lungo la base della striscia. L'espressione del coefficiente di sicurezza di Bishop contiene al secondo membro il termine m che è funzione di η .

APPALTATORE: LESE S.c.a r.l. PROGETTAZIONE: Mandataria: Mandante:

SWS Engineering S.p.A.

SYSTRA-SOTECNI S.p.A.

ITINERARIO NAPOLI - BARI RADDOPPIO TRATTA CANCELLO-BENEVENTO II LOTTO FUNZIONALE FRASSO TELESINO - VITULANO 2° SUBLOTTO TELESE - SAN LORENZO

PROGETTO ESECUTIVO

COMMESSA LOTTO CODIFICA DOCUMENTO RF\/ FOGLIO IF2R 22F77 CI OC 00 0 0 001 Δ 36 di 92

Quindi essa va risolta per successive approssimazioni assumendo un valore iniziale per n da inserire nell'espressione di m ed iterare fino a quando il valore calcolato coincide con il valore assunto.

10.3.2 Verifica a scorrimento dell'opera lungo il piano di posa

La verifica allo scorrimento sul piano di posa dell'opera di sostegno è condotta rispetto alle combinazioni riportate nel paragrafo 9 della presente relazione di calcolo; in particolare è stato verificato il rispetto della seguente condizione:

Fs = $(c' * B + N * tan \delta)/H > 1.0$

dove:

SYSTRA S.A.

Relazione di calcolo

IF2R.2.2.E.ZZ.CL.OC.00.0.0.001.A

N = risultante delle azioni ortogonali al piano di scorrimento;

H = risultante delle azioni parallele al piano di scorrimento;

c' = coesione efficace, posta generalmente pari a zero, salvo particolari condizioni che ne consentano di tenerne conto:

B = dimensione della Fondazione sul piano di scorrimento;

 δ = coefficiente di attrito fondazione - terreno.

10.3.3 Verifica a collasso per carico limite del complesso opera di sostegno-terreno

Per la valutazione del carico limite delle fondazioni dirette si utilizza il criterio di Brinch-Hansen di cui nel seguito si riporta la relativa trattazione teorica.

Dette:

c = coesione del terreno:

 c_a = adesione lungo la base della fondazione ($c_a \le c$);

V = azione tagliante;

 ϕ' = angolo d'attrito;

 δ = angolo di attrito opera di sostegno – terreno;

y = peso specifico del terreno;

 k_p = coefficiente di spinta passiva espresso da k_p = $tan^2(45^\circ + \phi'/2)$;

B = larghezza della fondazione;

L = lunghezza della fondazione;

D = profondità del piano di posa della fondazione;

 η = inclinazione piano posa della fondazione;

P = pressione geostatica in corrispondenza del piano di posa della fondazione;

qult = carico ultimo della fondazione.

Risulta:

PROGETTAZIONE:

Mandataria:

Mandante: SYSTRA S.A.

SWS Engineering S.p.A. SYSTRA-SOTECNI S.p.A.

Relazione di calcolo

IF2R.2.2.E.ZZ.CL.OC.00.0.0.001.A

ITINERARIO NAPOLI - BARI RADDOPPIO TRATTA CANCELLO-BENEVENTO II LOTTO FUNZIONALE FRASSO TELESINO - VITULANO 2° SUBLOTTO TELESE - SAN LORENZO

PROGETTO ESECUTIVO

COMMESSA LOTTO CODIFICA DOCUMENTO RF\/ **FOGLIO** IF2R 22F77 CI OC 00 0 0 001 Α 37 di 92

Caso generale

$$q_{ult} = \mathbf{c} \cdot N_c \cdot \mathbf{s}_c \cdot d_c \cdot i_c \cdot g_c \cdot b_c + q \cdot N_q \cdot \mathbf{s}_q \cdot d_q \cdot i_q \cdot g_q \cdot b_q + 0.5 \cdot B \cdot \gamma \cdot N_\gamma \cdot \mathbf{s}_\gamma \cdot d_\gamma \cdot i_\gamma \cdot g_\gamma \cdot b_\gamma$$

Caso di terreno puramente coesivo $\phi = 0$

$$q_{ult} = 5.14 \cdot c \cdot (1 + s_c + d_c - i_c - g_c - b_c) + q$$

in cui dc, dq e d $_{V}$ sono i fattori di profondità, sc , sq e s $_{V}$ sono i fattori di forma, ic, iq e i $_{V}$ sono i fattori di inclinazione del carico, bc, bq e by, sono i fattori di inclinazione del piano di posa e q_c, q_q e q_v sono fattori che tengono conto del fatto che la fondazione poggi su un terreno in pendenza.

I fattori di capacità portante N_c , N_q , N_v sono espressi come:

$$\begin{split} N_q &= Kp \, e^{\pi \, tg \varphi} \\ N_c &= (N_q - 1)ctg \varphi \\ N_\gamma &= 1.5(N_q - 1)tg \varphi \end{split}$$

Fattori di forma

per φ = 0	per $\phi > 0$
	$s_c = 1 + \frac{N_q}{N_c} \frac{B}{L}$
$s_c = 0.2 \frac{B}{L}$	$s_q = 1 + \frac{B}{L} t g \phi$
	$s_{\gamma} = 1 - 0.4 \frac{B}{L}$

Fattori di profondità

$$k = \frac{D}{B}$$
 se $\frac{D}{B} \le 1$
 $k = arctg \frac{D}{B}$ se $\frac{D}{B} > 1$

Fattori di inclinazione del carico

Indicando con V e H le componenti del carico rispettivamente perpendicolare e parallela alla base e con Af l'area efficace della fondazione ottenuta come Af = B' * L' (B' e L' sono legate alle dimensioni effettive della fondazione B, L e all'eccentricità del carico eB, eL dalle relazioni B' = B-2 e_B ed L' = L- 2 e_L) con η l'angolo di inclinazione della fondazione espresso in gradi (η =0 per fondazione orizzontale).

I fattori di inclinazione del carico si esprimono come:

LESE S.c.a r.l.

PROGETTAZIONE:

Mandataria:

Mandante: SYSTRA S.A. SWS Engineering S.p.A.

SYSTRA-SOTECNI S.p.A.

Relazione di calcolo

IF2R.2.2.E.ZZ.CL.OC.00.0.0.001.A

ITINERARIO NAPOLI - BARI RADDOPPIO TRATTA CANCELLO-BENEVENTO II LOTTO FUNZIONALE FRASSO TELESINO - VITULANO 2° SUBLOTTO TELESE – SAN LORENZO

PROGETTO ESECUTIVO

COMMESSA IF2R

LOTTO 2.2.E.ZZ CODIFICA CL

DOCUMENTO OC.00.0.0.001 **FOGLIO** 38 di 92

REV.

Α

per φ = 0	per φ > 0				
$i_c = \frac{1}{2} \Biggl(1 - \sqrt{1 - \frac{H}{A_f c_a}} \Biggr)$	$i_c = i_q - \frac{1-i_q}{N_q-1}$				
	i	$I = \left(1 - \frac{0.5H}{V + A_f c_a \cot \phi}\right)^5$			
	Per η =0	$i_{\gamma} = \left(1 - \frac{0.7H}{V + A_f c_a \cot \phi}\right)^5$			
	Per η >0	$i_{\gamma} = \left(1 - \frac{\left(0.7 - \eta^{\circ} / 450^{\circ}\right)H}{V + A_{f}c_{a} \cot \phi}\right)^{5}$			

Fattori di inclinazione del piano di posa della fondazione

per φ = 0	per φ > 0
$b_c = \frac{\eta^o}{147^o}$	$b_c = 1 - \frac{\eta^{\circ}}{147^{\circ}}$ $b_q = e^{-2\eta \eta g \phi}$ $b_{\gamma} = e^{-2.7\eta \eta g \phi}$

Fattori di inclinazione del terreno

per φ = 0	per φ > 0
$g_c = \frac{\beta^o}{147^o}$	$g_c = 1 - \frac{\beta^o}{147^o}$ $g_q = g_\gamma = (1 - 0.5tg\beta)^5$

Per poter applicare la formula di Brinch-Hansen devono risultare verificate le seguenti condizioni:

$$H < V tg(\delta) + A_f ca$$

$$\beta \leq \phi$$

$$i_q$$
, $i_\gamma > 0$

$$\beta + \eta \le 90^{\circ}$$

APPALTATORE: TELESE s.c.a r.l.

Consorzio Telese Società Consortile a Responsabilità Limitata

PROGETTAZIONE:

Mandataria: Mandante:

SYSTRA S.A. SWS Engineering S.p.A. SYSTRA-SOTECNI S.p.A.

Relazione di calcolo

IF2R.2.2.E.ZZ.CL.OC.00.0.0.001.A

ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA CANCELLO-BENEVENTO II LOTTO FUNZIONALE FRASSO TELESINO – VITULANO 2° SUBLOTTO TELESE – SAN LORENZO

PROGETTO ESECUTIVO

COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO

IF2R 2.2.E.ZZ CL OC.00.0.0.001 A 39 di 92

10.3.4 Verifica a ribaltamento dell'opera come corpo rigido

La verifica al ribaltamento rispetto al vertice esterno della fondazione è viene trattata secondo la normativa come uno stato limite di equilibrio come corpo rigido (EQU), utilizzando i relativi coefficienti sulle azioni di cui alla Tabella 9.1 (Tab.5.2.V NTC 2008), adoperando i coefficienti parziali del gruppo (M2) per il calcolo delle spinte.

Nella fattispecie, per ciascuna delle combinazioni di verifica allo SLU statico e sismico rispetto alle quali è prescritta la verifica al ribaltamento, è stata verificata il rispetto della seguente condizione:

$$FS = \frac{M_{STA}}{M_{RIB}} \ge Fs_{\min}$$

essendo:

M_{RIB} = risultante dei momenti ribaltanti
M_{STA} = risultante dei momenti stabilizzanti

10.3.5 Verifiche di capacità portante dei micropali

Il calcolo viene eseguito secondo il metodo messo a punto dall' École Nationale des Ponts et Chaussées da Bustamante e Doix, recepito nella gran parte delle normative e linee guida in Europa e negli Stati Uniti (FHWA) e basato sulla conoscenza dei valori del parametro NSPT e/o pL (pressione laterale limite) dei terreni attraversati.

Per la determinazione del carico limite, Bustamante e Doix fanno riferimento alla nota espressione:

$$Q_{\text{lim}} = P + S$$

dove con P viene indicata la resistenza totale alla punta, mentre con S quella laterale. La resistenza laterale S, a sua volta, è data da:

$$S = \pi \cdot \alpha \cdot d \cdot L \cdot s$$

dove $d_s = \alpha \cdot d$ è il diametro equivalente del palo, L la lunghezza della zona iniettata, s la resistenza tangenziale unitaria all'interfaccia fra zona iniettata e terreno. Nel caso in esame il micropalo attraversa strati di terreno dalle caratteristiche diverse e la relazione per la determinazione di S risulta:

$$S = \pi \cdot \alpha \cdot d \sum \cdot L_i s_i$$

Si assume $d_s = \alpha \cdot d$, dove d è il diametro della perforazione e α un coefficiente maggiorativo, il cui valore può essere determinato attraverso l'uso della tabella seguente (Viggiani, 1999). Come è possibile notare, Bustamante e Doix forniscono indicazioni ulteriori riguardanti la quantità minima di miscela iniettata.

Secondo tale metodo si calcola il diametro equivalente del palo attraverso il coefficiente α coefficiente dimensionale che tiene conto della tecnica di esecuzione dei micropali e del tipo di terreno.

ESE S.c.a r.l.

PROGETTAZIONE:

Mandataria:

Mandante: SYSTRA S.A. SWS Engineering S.p.A.

SYSTRA-SOTECNI S.p.A.

Relazione di calcolo

IF2R.2.2.E.ZZ.CL.OC.00.0.0.001.A

ITINERARIO NAPOLI - BARI RADDOPPIO TRATTA CANCELLO-BENEVENTO II LOTTO FUNZIONALE FRASSO TELESINO - VITULANO 2° SUBLOTTO TELESE - SAN LORENZO

PROGETTO ESECUTIVO

COMMESSA IF2R

LOTTO 22F77 CODIFICA CI OC 00 0 0 001

DOCUMENTO RF\/ Α

FOGLIO 40 di 92

Secondo tale metodo, il carico limite del micropalo viene calcolato in funzione di un coefficiente adimensionale α , che tiene conto della tecnica di esecuzione dei micropali e del tipo di terreno e della resistenza tangenziale \(\tau\) all'interfaccia palo-terreno, funzione sia della natura che delle caratteristiche del terreno, sia dalla tecnologia di infissione.

Oltre al coefficiente α , il metodo di Bustamante e Doix contempla anche il calcolo della resistenza tangenziale s all'interfaccia palo-terreno in funzione sia della natura che delle caratteristiche del terreno, sia dalla tecnologia di infissione

La resistenza caratteristica R_k del micropalo è stata dedotta con riferimento alle procedure analitiche descritte precedentemente. Tali resistenze vengono a loro volta divise per un fattore di correlazione & riportato nella seguente tabella in funzione del numero delle verticali indagate. In questo caso, supponendo un numero minimo pari ad 1 di verticali indigate nei pressi dell'opera, si adotta, a favore di sicurezza, un coefficiente ξ = 1.7 [NTC - Tabella 6.4.IV].

Tabella 4 – Fattori di correlazione & per la determinazione della resistenza caratteristica in funzione del numero di verticali indagate

NUMERO DI VERTICALI INDAGATE	1	2	3	4	5	7	≥10
ξ ₃	1.70	1.65	1.60	1.55	1.50	1.45	1.40
ξ_4	1.70	1.55	1.48	1.42	1.34	1.28	1.21

In definitiva, il valore della resistenza di calcolo è data dal minimo tra quella calcolata considerando i valori minimi dei parametri geotecnici e quella calcolata considerando quelli medi, come indicato nelle seguente formula:

$$R_{c,k} = Min\left\{\frac{\left(R_{c,cal}\right)_{mean}}{\xi_{3}}, \frac{\left(R_{c,cal}\right)_{min}}{\xi_{4}}\right\}$$

$$R_{t,k} = Min\left\{\frac{\left(R_{t,cal}\right)_{mean}}{\xi_{3}}, \frac{\left(R_{t,cal}\right)_{min}}{\xi_{4}}\right\}$$

Ai fini della verifica della portanza si considera una lunghezza utile di 7,50 m.

Si assume uno spessore medio di rilevato ferroviario pari a 2.0m, trascurandone il relativo contributo in termini di portanza verticale. Conseguentemente la lunghezza del micropalo dal piano campagna è pari a 9.5m.

Per quanto riguarda la verifica a carico limite orizzontale dei pali, questa è stata condotta tramite il metodo di Broms, 1964, secondo il quale, per pali lunghi (ipotesi che si configura per tutti i pali in esame), in terreni incoerenti sotto falda, non liberi di ruotare in testa, vale la seguente formulazione:

APPALTATORE: ITINERARIO NAPOLI - BARI RADDOPPIO TRATTA CANCELLO-BENEVENTO II LOTTO FUNZIONALE FRASSO TELESINO - VITULANO PROGETTAZIONE: 2° SUBLOTTO TELESE - SAN LORENZO Mandataria: Mandante: **PROGETTO ESECUTIVO** SYSTRA S.A. SWS Engineering S.p.A. SYSTRA-SOTECNI S.p.A. COMMESSA Relazione di calcolo LOTTO CODIFICA DOCUMENTO RE\/ **FOGLIO** IF2R.2.2.E.ZZ.CL.OC.00.0.0.001.A IF2R 22F77 CI OC 00 0 0 001 Δ 41 di 92

$$H = k_{p} \gamma d^{3} \sqrt[3]{3.676 \frac{M_{y}}{k_{p} \gamma d^{4}}}^{2}$$

Per terreni coesivi e per le ulteriori ipotesi di cui sopra, vale la seguente formulazione:

$$H = -13.5c_ud^2 + c_ud^2 \sqrt{182.25 + 36\frac{M_y}{c_ud^3}}$$

In cui:

H = carico limite orizzontale del palo

K_p = coefficiente di spinta passiva

d = diametro del palo

L = lunghezza del palo

M_y = momenro di plasticizzazione del palo

cu = coesione non drenata

Il valore di H, ridotto per i coefficienti di normativa come riportato di seguito, dovrà essere confrontato con il valore del taglio massimo agente in testa palo dalle combinazioni SLU-SLV (Vpd):

$$H \lim = \frac{H}{\xi \cdot \gamma_T} \ge Vpd$$

Con ξ funzione del numero di verticali indagate per l'opera in esame e γ_T secondo l'approccio considerato.

In analogia con il carico limite verticale, per il carico limite orizzontale si considera l'Approccio 2, pertanto il coefficiente γ_T sarà pari a 1.3 (Tab.6.4.VI – NTC08).

COEFFICIENTE	COEFFICIENTE	COEFFICIENTE
PARZIALE	PARZIALE	PARZIALE
(R1)	(R2)	(R3)
$\gamma_{\rm T} = 1.0$	γ _t =1,6	$\gamma_{\rm T} = 1,3$

Figura 6: Coefficienti parziali per le resistenze caratteristiche di pali soggetti a carichi trasversali – Tabella 6.4.VI del DM 14.1.2008

APPALTATORE	TELES Consorzio Telese Società Consorti		ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA CANCELLO-BENEVENTO					
PROGETTAZIO			II LOTTO FUNZIONALE FRASSO TELESINO – VITULANO 2° SUBLOTTO TELESE – SAN LORENZO		ANO			
Mandataria:	Mandante:	0.0000 4 0.00000 11 0 14	PROGETTO	ESECU1	ΓΙνο			
SYSTRA S.A.	SWS Engineering S.p.A.	SYSTRA-SOTECNI S.p.A.						
Relazione di ca	Icolo		COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
IF2R.2.2.E.ZZ.C	L.OC.00.0.0.001.A		IF2R	2.2.E.ZZ	CL	OC.00.0.0.001	Α	42 di 92

11 TIPOLOGICI P2-L4

11.1 CODICE DI CALCOLO

L'analisi della struttura scatolare è stata condotta con un programma agli elementi finiti (STRAUS7) facendo riferimento agli assi baricentrici degli elementi schematizzati con elementi "beam".

11.2 MODELLO DI CALCOLO

Le analisi sono state condotte per una striscia di struttura di lunghezza unitaria, implementando un modello di calcolo bidimensionale in condizioni di deformazione piana. La struttura è definita sulla base degli assi baricentrici degli elementi. La fondazione è schematizzata come una trave su suolo elastico alla Winkler non reagente a trazione, il calcolo della costante di sottofondo è riportata nel paragrafo **Errore. L'origine riferimento non è stata trovata.**

In favore di sicurezza, si assume per entrambi i tipologico un regime di spinta a riposo. La soletta superiore è stata svincolata alle estremità per simulare la non continuità con la sottostruttura.

Lo schema statico della struttura e la relativa numerazione dei nodi e delle aste sono riportati nelle seguenti figure.

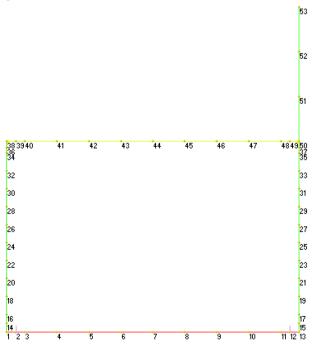


Figura 7 Modello F.E.M struttura - numerazione nodi

APPALTATORE	TELES Consorzio Telese Società Consort		ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA CANCELLO-BENEVENTO					
PROGETTAZIOI			II LOTTO FUNZIONALE FRASSO TELESINO – VITULANO 2° SUBLOTTO TELESE – SAN LORENZO		ANO			
Mandataria:	Mandante:		DDOCETTO	FCFCII				
SYSTRA S.A.	SWS Engineering S.p.A.	SYSTRA-SOTECNI S.p.A.	PROGETTO	ESECUI	IVO			
Relazione di ca			COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
IF2R.2.2.E.ZZ.C	L.OC.00.0.0.001.A		IF2R	2.2.E.ZZ	CL	OC.00.0.0.001	Α	43 di 92

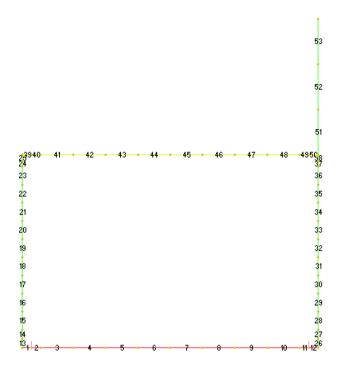


Figura 8 Modello F.E.M. struttura – numerazione aste

11.2.1 Interazione terreno-struttura

Nelle analisi strutturali, per la determinazione del coefficiente di sottofondo alla Winkler si è fatto riferimento alla seguente relazione (Vesic, 1965):

$$K = \frac{0.65E}{1 - v^2} \sqrt[12]{\frac{Eb^4}{(EJ)_{fond}}}$$

dove:

E = modulo elastico del terreno;

v = coefficiente di Poisson;

b = dimensione trasversale;

h = altezza;

J = inerzia;

Ec = modulo elastico del calcestruzzo della fondazione.

Nel caso in esame K risulta pari a 19401 kN/mc. Tale rigidezza è stata applicata come beam support lungo l'elemento, in particolare considerando la striscia di calcolo pari ad 1m risulta Errore. L'origine riferimento non è stata trovata. kPa/m*1m = Errore. L'origine riferimento non è stata trovata. kN/m/m.

APPALTATORE: ESE S.c.a r.l. ITINERARIO NAPOLI - BARI RADDOPPIO TRATTA CANCELLO-BENEVENTO onsahilità Limitata II LOTTO FUNZIONALE FRASSO TELESINO - VITULANO PROGETTAZIONE: 2° SUBLOTTO TELESE - SAN LORENZO Mandataria: Mandante: **PROGETTO ESECUTIVO** SYSTRA S.A. SWS Engineering S.p.A. SYSTRA-SOTECNI S.p.A. Relazione di calcolo CODIFICA COMMESSA LOTTO DOCUMENTO REV. **FOGLIO** IF2R.2.2.E.ZZ.CL.OC.00.0.0.001.A IF2R 2.2.E.ZZ OC.00.0.0.001 44 di 92 CL Α

12 ANALISI DELLE SOLLECITAZIONI

Nelle seguenti tabelle sono riportati i valori massimi delle caratteristiche delle sollecitazioni ricavati per le sezioni oggetto di verifica, indicate in figura.

Di seguito è riportato l'inviluppo delle sollecitazioni flettenti e taglianti dello stato limite ultimo. Le unità di misura adottate nei diagrammi seguenti sono kN-m.

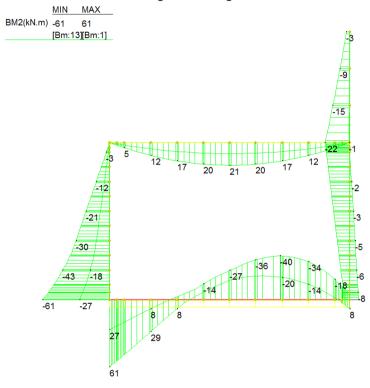


Figura 9 Inviluppo SLU/Sisma: Momenti flettenti

APPALTATORE	TELES Consorzio Telese Società Consorti		ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA CANCELLO-BENEVENTO					
PROGETTAZIO			II LOTTO FUNZIONALE FRASSO TELESINO – VITULANO 2º SUBLOTTO TELESE – SAN LORENZO		ANO			
Mandataria:	Mandante:	CVCTDA COTTONI C A	PROGETTO	ESECU1	ΓΙνο			
SYSTRA S.A.	SWS Engineering S.p.A.	SYSTRA-SOTECNI S.p.A.						
Relazione di ca	Icolo		COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
IF2R.2.2.E.ZZ.C	L.OC.00.0.0.001.A		IF2R	2.2.E.ZZ	CL	OC.00.0.0.001	Α	45 di 92

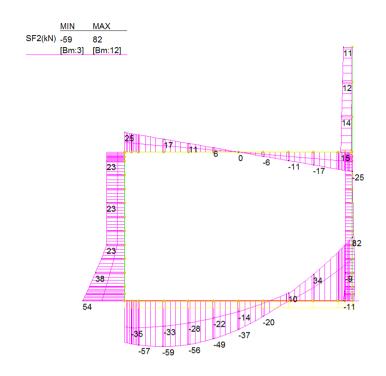


Figura 10 Inviluppo SLU/Sisma: sollecitazioni taglianti

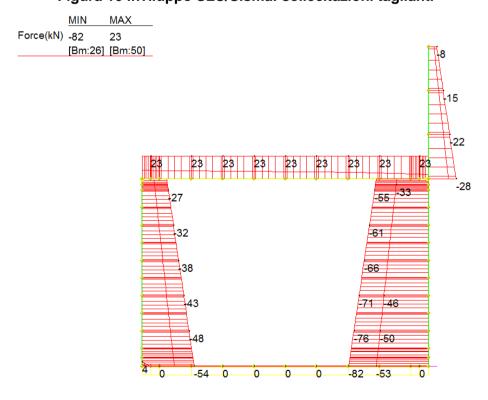


Figura 11 Inviluppo SLU/Sisma: sforzo normale

APPALTATORE: ITINERARIO NAPOLI - BARI RADDOPPIO TRATTA CANCELLO-BENEVENTO II LOTTO FUNZIONALE FRASSO TELESINO - VITULANO PROGETTAZIONE: 2° SUBLOTTO TELESE - SAN LORENZO Mandataria: Mandante: **PROGETTO ESECUTIVO** SYSTRA S.A. SWS Engineering S.p.A. SYSTRA-SOTECNI S.p.A. Relazione di calcolo COMMESSA CODIFICA REV. LOTTO DOCUMENTO **FOGLIO** IF2R.2.2.E.ZZ.CL.OC.00.0.0.001.A IF2R 2.2.E.ZZ CL OC.00.0.0.001 46 di 92 Α

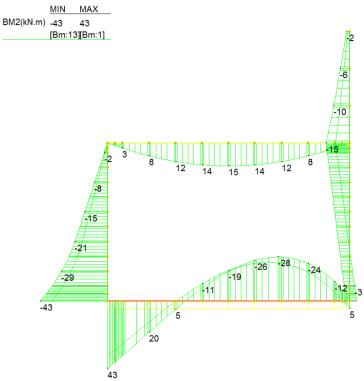


Figura 12 Inviluppo SLE: Momenti flettenti

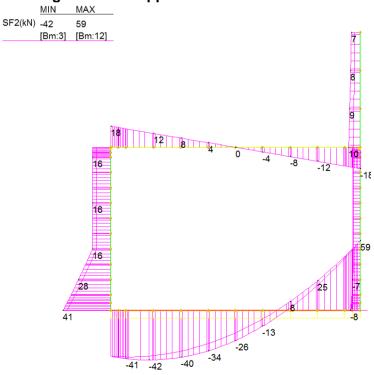


Figura 13 Inviluppo SLE: sollecitazioni taglianti

Di seguito si riportano i valori delle sollecitazioni per tutte le combinazioni di carico relative a tutte le sezioni di verifica.

Consorzio Telese Società Consortile a Responsabilità Limitata

PROGETTAZIONE:

Mandataria: Mandante:

Relazione di calcolo

IF2R.2.2.E.ZZ.CL.OC.00.0.0.001.A

SYSTRA S.A. SWS Engineering S.p.A.

SYSTRA-SOTECNI S.p.A.

COMMESSA

IF2R

LOTTO 2.2.E.ZZ

ITINERARIO NAPOLI – BARI

PROGETTO ESECUTIVO

CODIFICA CL

RADDOPPIO TRATTA CANCELLO-BENEVENTO

2° SUBLOTTO TELESE – SAN LORENZO

II LOTTO FUNZIONALE FRASSO TELESINO – VITULANO

DOCUMENTO OC.00.0.0.001

FOGLIO 47 di 92

REV.

Α

FOND	N	Mx	Vy
	(KN)	(KNm)	(KNm)
SLU/SLV	0	50	59
SLE RARA	0	35	40
SLE FREQ	0	25	38
SLE QUASI PERM.	0	11	29

COP	N	Mx	Vy
	(KN)	(KNm)	(KNm)
SLU/SLV	0	21	22
SLE RARA	0	15	16
SLE FREQ	0	13	14
SLE QUASI PERM.	0	8	9

PIEDR	N	Mx	Vy
	(KN)	(KNm)	(KNm)
SLU/SLV	0	56	46
SLE RARA	0	36	34
SLE FREQ	0	26	27
SLE QUASI PERM.	0	14	12

APPALTATORE: TELESE s.c.a r.l.

Consorzio Telese Società Consortile a Responsabilità Limitata

PROGETTAZIONE:

Mandataria: Mandante:

SYSTRA S.A. SWS Engineering S.p.A. SYSTRA-SOTECNI S.p.A.

Relazione di calcolo

IF2R.2.2.E.ZZ.CL.OC.00.0.0.001.A

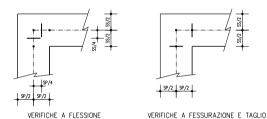
ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA CANCELLO-BENEVENTO II LOTTO FUNZIONALE FRASSO TELESINO – VITULANO 2° SUBLOTTO TELESE – SAN LORENZO

PROGETTO ESECUTIVO

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 IF2R
 2.2.E.ZZ
 CL
 OC.00.0.0.001
 A
 48 di 92

13 VERIFICHE DI RESISTENZA ULTIMA E DI ESERCIZIO


Si riassumono di seguito i risultati delle verifiche allo stato limite ultimo per le sollecitazioni di taglio e flessione, relative all'inviluppo delle combinazioni di carico. In particolare si riportano le sollecitazioni massime per tutte le sezioni di verifica e le combinazioni di carico più gravose (minimo coefficiente di sicurezza), sia per la verifica a flessione sia per la verifica a taglio.

Nelle verifiche della soletta di fondazione, cautelativamente, non si è tenuto in conto del contributo dello sforzo normale.

Le verifiche a flessione in corrispondenza dei nodi tra setti adiacenti sono effettuate rispettivamente:

- nella sezione ubicata a metà fra asse piedritto e sezione d'attacco piedritto-soletta nel caso delle verifiche della soletta:
- nella sezione ubicata a metà fra asse soletta e sezione d'attacco del piedritto nel caso delle verifiche del piedritto.

Le verifiche a fessurazione e a taglio sono eseguite nelle sezioni di attacco soletta-piedritto.

I calcoli di verifica sono effettuati con il metodo degli Stati Limite, applicando il combinato D.M.14.01.2008 con l'UNI EN 1992 (Eurocodice 2).

Si riporta di seguito l'armatura degli elementi strutturali nelle sezioni di mezzeria e di incastro.

Elemento	Dimens	ioni	[cm]	Fles	ssione	Armatura
Elemento	В		Н	Lato terra	Lato interno	a taglio
PIEDRITTI	100	Х	40	10Ø12	10Ø12	_
SOLETTA INF.	100	Х	40	10Ø12	10Ø12	_
SOLETTA INF.	100	Х	25	10Ø12	10Ø12	_

LESE s.c.a r.l.

PROGETTAZIONE:

Mandataria: Mandante:

SYSTRA S.A. SWS Engineering S.p.A. SYSTRA-SOTECNI S.p.A.

Relazione di calcolo

IF2R.2.2.E.ZZ.CL.OC.00.0.0.001.A

ITINERARIO NAPOLI - BARI RADDOPPIO TRATTA CANCELLO-BENEVENTO II LOTTO FUNZIONALE FRASSO TELESINO - VITULANO 2° SUBLOTTO TELESE - SAN LORENZO

PROGETTO ESECUTIVO

0.200

mm

COMMESSA LOTTO CODIFICA DOCUMENTO RE\/ FOGLIO

IF2R 2.2.E.ZZ OC.00.0.0.001 49 di 92 CI Δ

13.1 SOLETTA DI FONDAZIONE E PIEDRTTI

CARATTERISTICHE DI RESISTENZA DEI MATERIALI IMPIEGATI

C28/35 CALCESTRUZZO -Classe:

Resistenza compress. di calcolo fcd: 15.86 MPa Deform. unitaria max resistenza ec2: 0.0020 Deformazione unitaria ultima ecu: 0.0035 Diagramma tensioni-deformaz.: Parabola-Rettangolo

Modulo Elastico Normale Ec: 32308.0 MPa Resis. media a trazione fctm: 2.760 MPa Coeff.Omogen. S.L.E.: 15.00 Sc limite S.L.E. comb. Rare: 16.800 MPa Sc limite S.L.E. comb. Frequenti: 16.800 MPa 0.300 Ap.Fessure limite S.L.E. comb. Frequenti: mm Sc limite S.L.E. comb. Q.Permanenti: 12.600 MPa

ACCIAIO -Tipo: B450C

Ap.Fessure limite S.L.E. comb. Q.Permanenti:

Resist. caratt. a snervamento fyk: 450.00 MPa Resist. caratt. a rottura ftk: 450.00 MPa Resist. a snerv. di calcolo fyd: 391.30 MPa Resist. ultima di calcolo ftd: 391.30 MPa Deform. ultima di calcolo Epu: 0.068 Modulo Elastico Ef: 200000.0 MPa

Diagramma tensioni-deformaz.: Bilineare finito Coeff. Aderenza istant. ß1*ß2: 1.00 Coeff. Aderenza differito ß1*ß2: 0.50

Comb.Rare - Sf Limite: 360.00 MPa

CARATTERISTICHE GEOMETRICHE ED ARMATURE SEZIONE

Base: 100.0 cm Altezza: 40.0 cm (11.3 cm²) Barre inferiori: 10Ø12 Barre superiori: 10Ø12 (11.3 cm²) Coprif.Inf.(dal baric. barre): 7.2 cm Coprif.Sup.(dal baric. barre): 7.2 cm

ST.LIM.ULTIMI - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

Sforzo normale [kN] applicato nel baricentro (posit. se di compress.) Momento flettente [kNm] intorno all'asse x baric. della sezione Mx con verso positivo se tale da comprimere il lembo sup. della sezione ۱/Y Taglio [kN] in direzione parallela all'asse Y del riferim. generale

Momento torcente [kN m] MT

N°Comb. Ν Mx Vy MT 0.00 50.00 0.00 59.00 2 0.00 56.00 46.00 0.00

COMB. RARE (S.L.E.) - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

Sforzo normale [kN] applicato nel baricentro (positivo se di compress.)

Coppia [kNm] applicata all'asse x baricentrico (tra parentesi il Momento di fessurazione) Mx

con verso positivo se tale da comprimere il lembo superiore della sezione

N°Comb. Ν Mx

0.00 35.00

TELESE S.c.a r.l.

Consorzio Telese Società Consortile a Responsabilità Limitata

PROGETTAZIONE:

Mandataria: Mandante:

SYSTRA S.A. SWS Engineering S.p.A. SYSTRA-SOTECNI S.p.A.

Relazione di calcolo

IF2R.2.2.E.ZZ.CL.OC.00.0.0.001.A

2

ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA CANCELLO-BENEVENTO II LOTTO FUNZIONALE FRASSO TELESINO – VITULANO 2° SUBLOTTO TELESE – SAN LORENZO

PROGETTO ESECUTIVO

COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO
IF2R 2.2.E.ZZ CL OC.00.0.0.001 A 50 di 92

0.00 36.00

COMB. FREQUENTI (S.L.E.) - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

N Sforzo normale [kN] applicato nel baricentro (positivo se di compress.)

Mx Coppia [kNm] applicata all'asse x baricentrico (tra parentesi il Momento di fessurazione)

con verso positivo se tale da comprimere il lembo superiore della sezione

N°Comb. N Mx 1 0.00 25.00 (91.28) 2 0.00 26.00 (91.28)

COMB. QUASI PERMANENTI (S.L.E.) - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

N Sforzo normale [kN] applicato nel baricentro (positivo se di compress.)

Mx Coppia [kNm] applicata all'asse x baricentrico (tra parentesi il Momento di fessurazione)

con verso positivo se tale da comprimere il lembo superiore della sezione

N°Comb. N Mx

1 0.00 11.00 (91.28)
2 0.00 14.00 (91.28)

RISULTATI DEL CALCOLO

Copriferro netto minimo barre longitudinali: 6.6 cm Interferro netto minimo barre longitudinali: 8.3 cm Copriferro netto minimo staffe: 6.5 cm

METODO AGLI STATI LIMITE ULTIMI - RISULTATI PRESSO-TENSO FLESSIONE

Ver S = combinazione verificata / N = combin. non verificata

N Sforzo normale baricentrico assegnato [kN] (positivo se di compressione) Mx Momento flettente assegnato [kNm] riferito all'asse x baricentrico N Ult Sforzo normale ultimo [kN] nella sezione (positivo se di compress.) Mx Ult Momento flettente ultimo [kNm] riferito all'asse x baricentrico Mis.Sic. Misura sicurezza = rapporto vettoriale tra (N Ult,Mx Ult) e (N,Mx)

Verifica positiva se tale rapporto risulta >=1.000

Yneutro Ordinata [cm] dell'asse neutro a rottura nel sistema di rif. X,Y,O sez.

Mx sn. Momento flettente allo snervamento [kNm] x/d Rapp. di duttilità a rottura solo se N = 0 (travi)

C.Rid. Coeff. di riduz. momenti in travi continue [formula (4.1.1)NTC]

N°Comb Ver N Ult Mx Ult C.Rid. As Tesa Mx Mis.Sic. Yn M sn 0.30 3.053 S 0.00 50.00 152 67 34 9 132.25 0.15 0.70 11.3 (5.9) S 0.00 56.00 0.30 152.67 2.726 34.9 132.25 0.15 0.70 11.3 (5.9)

METODO AGLI STATI LIMITE ULTIMI - DEFORMAZIONI UNITARIE ALLO STATO ULTIMO

ec max
Deform. unit. massima del conglomerato a compressione
ec 3/7
Deform. unit. del conglomerato nella fibra a 3/7 dell'altezza efficace
Yc max
Ordinata in cm della fibra corrisp. a ec max (sistema rif. X,Y,O sez.)

es min Deform. unit. minima nell'acciaio (negativa se di trazione)

Ys min
ordinata in cm della barra corrisp. a es min (sistema rif. X,Y,O sez.)
es max
Deform. unit. massima nell'acciaio (positiva se di compressione)
Ys max
Ordinata in cm della barra corrisp. a es max (sistema rif. X,Y,O sez.)

N°Comb ec max ec 3/7 Yc max es min Ys min es max Ys max

APPALTATORE: LESE s.c.a r.l.

PROGETTAZIONE:

Mandataria: Mandante:

IF2R.2.2.E.ZZ.CL.OC.00.0.0.001.A

SYSTRA S.A. SWS Engineering S.p.A. SYSTRA-SOTECNI S.p.A.

Relazione di calcolo

PROGETTO ESECUTIVO

ITINERARIO NAPOLI - BARI

COMMESSA LOTTO CODIFICA DOCUMENTO RE\/ FOGLIO IF2R 2.2.E.ZZ OC.00.0.0.001 51 di 92

Δ

II LOTTO FUNZIONALE FRASSO TELESINO - VITULANO

RADDOPPIO TRATTA CANCELLO-BENEVENTO

CI

2° SUBLOTTO TELESE - SAN LORENZO

1 0.00350 -0.00832 40.0 -0.00146 32.8 -0.01911 7.2 2 0.00350 -0.00832 40.0 -0.00146 32.8 -0.01911 7.2

METODO SLU - VERIFICHE A TAGLIO SENZA ARMATURE TRASVERSALI (§ 4.1.2.1.3.1 NTC)

S = comb.verificata a taglio/ N = comb. non verificata

Vsdu Taglio agente [daN] uguale al taglio Vy di comb. (sollecit. retta)

Vwct Taglio trazione resistente [kN] in assenza di staffe [formula (4.1.14)NTC]

d Altezza utile sezione [cm] Larghezza minima sezione [cm] bw

Ro Rapporto geometrico di armatura longitudinale [<0.02] Tensione media di compressione nella sezione [Mpa] Scp

N°Comb Ver Vsdu Vwct d Scp hw Rο S 59.00 157.98 32.8 100.0 0.0034 0.00 S 46.00 2 157.98 32.8 100.0 0.0034 0.00

COMBINAZIONI RARE IN ESERCIZIO - VERIFICA MASSIME TENSIONI NORMALI

Ver S = combinazione verificata / N = combin. non verificata

Sc max Massima tensione di compress.(+) nel conglom. in fase fessurata ([Mpa] Yc max Ordinata in cm della fibra corrisp. a Sc max (sistema rif. X,Y,O) Sc min Minima tensione di compress.(+) nel conglom. in fase fessurata ([Mpa] Yc min Ordinata in cm della fibra corrisp. a Sc min (sistema rif. X,Y,O)

Minima tensione di trazione (-) nell'acciaio [Mpa] Sf min

Ys min Ordinata in cm della barra corrisp. a Sf min (sistema rif. X,Y,O)

Spessore di conglomerato [cm] in zona tesa considerata aderente alle barre Dw Eff. Area di congl. [cm²] in zona tesa aderente alle barre (verifica fess.) Ac eff As eff. Area Barre tese di acciaio [cm²] ricadente nell'area efficace(verifica fess.) Distanza media in cm tra le barre tese efficaci utilizzata nel calcolo di fessurazione D barre

(se Dbarre >14Ø viene posto Dbarre=14Ø nel calcolo di fess. [B.6.6.3 Circ. 252/96])

N°Comb	Ver	Sc max	Yc max	Sc min	Yc min	Sf min	Ys min	Dw Eff.	Ac Eff.	As Eff.	D barre
1	S	2.53	40.0	0.00	31.3	-104.5	32.8	15.6	1560	11.3	9.5
2	S	2.60	40.0	0.00	31.3	-107.5	32.8	15.6	1560	11.3	9.5

COMBINAZIONI RARE IN ESERCIZIO - VERIFICA APERTURA FESSURE

Ver S = combinazione verificata / N = combin. non verificata

ScImax Massima tensione nel conglomerato nello STATO I non fessurato [Mpa] Minuma tensione nel conglomerato nello STATO I non fessurato [Mpa] Sclmin

=0,125 per flessione; = 0,25 (Sclmin + Sclmax)/(2 Sclmin) per trazione eccentrica K3

Beta12 Prodotto dei Coeff. di aderenza Beta1*Beta2

= 1-Beta12*(Ssr/Ss)2 = 1-Beta12*(fctm/Sclmin)2 = 1-Beta12*(Mfess/M)2 [B.6.6 DM96] Psi Deformazione unitaria media tra le fessure . Tra parentesi il valore minimo = 0.4 Ss/Es e sm

Distanza media in mm tra le fessure srm

Apertura delle fessure in mm = 1,7*Eps*Srm. Tra parentesi è indicato il valore limite. wk

Momento di prima fessurazione [kNm] M fess.

N Comb	ver	Scimax	Scimin	SC EII	NJ E	seta i z	PSI	e sm	Srm	WK	W ress.
1	S	1.19	-1.19		0.125	1.00	0.400	0.000209 (0.000209)	234	0.083	91.28
2	S	1.22	-1.22		0.125	1.00	0.400	0.000215 (0.000215)	234	0.085	91.28

COMBINAZIONI FREQUENTI IN ESERCIZIO - VERIFICA MASSIME TENSIONI NORMALI

N°Comb	Ver	Sc max	Yc max	Sc min	Yc min	Sf min	Ys min	Dw Eff.	Ac Eff.	As Eff.	D barre
1	S	1.81	40.0	0.00	31.3	-74.6	32.8	15.6	1560	11.3	9.5
2	S	1.88	40.0	0.00	31.3	-77.6	32.8	15.6	1560	11.3	9.5

TELESE S.c.a r.l.

Consorzio Telese Società Consortile a Responsabilità Limitata

PROGETTAZIONE:

Relazione di calcolo

8

IF2R.2.2.E.ZZ.CL.OC.00.0.0.001.A

Mandataria:

SYSTRA S.A. SWS Engineering S.p.A.

Mandante:

SYSTRA-SOTECNI S.p.A.

PROGETTO ESECUTIVO

ITINERARIO NAPOLI – BARI

CODIFICA REV. FOGLIO COMMESSA LOTTO DOCUMENTO OC.00.0.0.001 52 di 92 IF2R 2.2.E.ZZ CL Α

RADDOPPIO TRATTA CANCELLO-BENEVENTO

2° SUBLOTTO TELESE – SAN LORENZO

II LOTTO FUNZIONALE FRASSO TELESINO - VITULANO

COMBINAZIONI FREQUENTI IN ESERCIZIO - VERIFICA APERTURA FESSURE

N°Comb	Ver	ScImax	Sclmin	Sc Eff	К3	Beta12	Psi		e sm	srm	wk	M Fess.
1 2	S S	0.85 0.88	-0.85 -0.88		0.125 0.125	1.00 1.00	0.400 0.400		9 (0.000149) 5 (0.000155)	234 234	0.059 (0.30) 0.062 (0.30)	91.28 91.28
COMBINA	AZIONI	QUASI PE	RMANENTI IN	I ESERCIZIO	- VERIF	ICA MAS	SIME T	ENSIONI N	IORMALI			
N°Comb	Ver	Sc max	Yc max	Sc min	Yc min	Sfr	min	Ys min	Dw Eff.	Ac E	eff. As Eff.	D barre
1 2	S S	0.80 1.01	40.0 40.0	0.00 0.00	31.3 31.3		2.8 1.8	32.8 32.8	15.6 15.6	150 150		9.5 9.5
COMBINA	AZIONI	QUASI PE	RMANENTI IN	I ESERCIZIO	- VERIF	ICA APE	RTURA	FESSURE				
N°Comb	Ver	ScImax	ScImin	Sc Eff	K3	Beta12	Psi		e sm	srm	wk	M Fess.
1 2	S S	0.37 0.48	-0.37 -0.48		0.125 0.125	0.50 0.50	0.400 0.400		66 (0.000066) 64 (0.000084)	234 234	0.026 (0.20) 0.033 (0.20)	91.28 91.2

ELESE s.c.a r.l.

sortile a Responsabilità Limitata

PROGETTAZIONE:

Mandataria: Mandante:

SYSTRA S.A. SWS Engineering S.p.A. SYSTRA-SOTECNI S.p.A.

Relazione di calcolo

IF2R.2.2.E.ZZ.CL.OC.00.0.0.001.A

ITINERARIO NAPOLI - BARI RADDOPPIO TRATTA CANCELLO-BENEVENTO II LOTTO FUNZIONALE FRASSO TELESINO - VITULANO 2° SUBLOTTO TELESE - SAN LORENZO

MPa

mm

PROGETTO ESECUTIVO

COMMESSA LOTTO CODIFICA DOCUMENTO RE\/ FOGLIO IF2R 2.2.E.ZZ OC.00.0.0.001 53 di 92 CI Δ

13.2 SOLETTA DI COPERTURA

CARATTERISTICHE DI RESISTENZA DEI MATERIALI IMPIEGATI

C32/40 CALCESTRUZZO -Classe:

Resistenza compress. di calcolo fcd: 18.81 Deform. unitaria max resistenza ec2: 0.0020 Deformazione unitaria ultima ecu: 0.0035

Diagramma tensioni-deformaz.: Parabola-Rettangolo Modulo Elastico Normale Ec: 33643.0 MPa Resis. media a trazione fctm: 3.100 MPa Coeff.Omogen. S.L.E.: 15.00 Sc limite S.L.E. comb. Rare: 19.920 MPa Sc limite S.L.E. comb. Frequenti: 19.920 MPa 0.300 Ap.Fessure limite S.L.E. comb. Frequenti: mm Sc limite S.L.E. comb. Q.Permanenti: 14.940 MPa Ap.Fessure limite S.L.E. comb. Q.Permanenti: 0.200

ACCIAIO -B450C Tipo:

> Resist. caratt. a snervamento fyk: 450.00 MPa Resist. caratt. a rottura ftk: 450.00 MPa Resist. a snerv. di calcolo fyd: 391.30 MPa Resist, ultima di calcolo ftd: 391.30 MPa Deform. ultima di calcolo Epu: 0.068 Modulo Elastico Ef: 200000.0 MPa Diagramma tensioni-deformaz.: Bilineare finito

> Coeff. Aderenza istant. ß1*ß2: 1.00 Coeff. Aderenza differito ß1*ß2: 0.50 Comb.Rare - Sf Limite: 360.00 MPa

CARATTERISTICHE GEOMETRICHE ED ARMATURE SEZIONE

Base: 100.0 cm Altezza: 25.0 cm (11.3 cm²) Barre inferiori: 10Ø12 Barre superiori: 10Ø12 (11.3 cm²) Coprif.Inf.(dal baric. barre): 7.2 cm Coprif.Sup.(dal baric. barre): 7.2 cm

ST.LIM.ULTIMI - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

Sforzo normale [kN] applicato nel baricentro (posit. se di compress.) Momento flettente [kNm] intorno all'asse x baric. della sezione Mx con verso positivo se tale da comprimere il lembo sup. della sezione ۱/Y

Taglio [kN] in direzione parallela all'asse Y del riferim. generale

Momento torcente [kN m] MT

N°Comb. Ν Mx ۷y MT 0.00 21.00 0.00 1 22.00

COMB. RARE (S.L.E.) - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

Sforzo normale [kN] applicato nel baricentro (positivo se di compress.)

Coppia [kNm] applicata all'asse x baricentrico (tra parentesi il Momento di fessurazione) Mx

con verso positivo se tale da comprimere il lembo superiore della sezione

N°Comb. Ν Mx

1 0.00 15.00 APPALTATORE: TELESE S.c.a r.l.

Consorzio Telese Società Consortile a Responsabilità Limitata

PROGETTAZIONE:

Mandataria: Mandante:

SYSTRA S.A. SWS Engineering S.p.A. SYSTRA-SOTECNI S.p.A.

Relazione di calcolo

IF2R.2.2.E.ZZ.CL.OC.00.0.0.001.A

ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA CANCELLO-BENEVENTO II LOTTO FUNZIONALE FRASSO TELESINO – VITULANO 2° SUBLOTTO TELESE – SAN LORENZO

PROGETTO ESECUTIVO

COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO
IF2R 2.2.E.ZZ CL OC.00.0.0.001 A 54 di 92

COMB. FREQUENTI (S.L.E.) - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

N Sforzo normale [kN] applicato nel baricentro (positivo se di compress.)

Mx Coppia [kNm] applicata all'asse x baricentrico (tra parentesi il Momento di fessurazione)

con verso positivo se tale da comprimere il lembo superiore della sezione

N°Comb. N Mx

1 0.00 13.00 (34.66)

COMB. QUASI PERMANENTI (S.L.E.) - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

N Sforzo normale [kN] applicato nel baricentro (positivo se di compress.)

Mx Coppia [kNm] applicata all'asse x baricentrico (tra parentesi il Momento di fessurazione)

con verso positivo se tale da comprimere il lembo superiore della sezione

N°Comb. N Mx

1 0.00 8.00 (34.66)

RISULTATI DEL CALCOLO

Copriferro netto minimo barre longitudinali: 6.6 cm Interferro netto minimo barre longitudinali: 8.3 cm Copriferro netto minimo staffe: 6.5 cm

METODO AGLI STATI LIMITE ULTIMI - RISULTATI PRESSO-TENSO FLESSIONE

Ver S = combinazione verificata / N = combin. non verificata

N Sforzo normale baricentrico assegnato [kN] (positivo se di compressione)
Mx Momento flettente assegnato [kNm] riferito all'asse x baricentrico
N Ult Sforzo normale ultimo [kN] nella sezione (positivo se di compress.)
Mx Ult Momento flettente ultimo [kNm] riferito all'asse x baricentrico
Mis.Sic. Misura sicurezza = rapporto vettoriale tra (N Ult,Mx Ult) e (N,Mx)

Verifica positiva se tale rapporto risulta >=1.000

Yneutro Ordinata [cm] dell'asse neutro a rottura nel sistema di rif. X,Y,O sez.

Mx sn. Momento flettente allo snervamento [kNm] x/d Rapp. di duttilità a rottura solo se N = 0 (travi)

C.Rid. Coeff. di riduz. momenti in travi continue [formula (4.1.1)NTC]

N°Comb Ver Mx N Ult Mx Ult Mis.Sic. Yn M sn x/d C.Rid. As Tesa 1 S 0.00 21.00 0.27 86.26 4.108 19.9 0.29 0.80 71.41 11.3 (3.2)

METODO AGLI STATI LIMITE ULTIMI - DEFORMAZIONI UNITARIE ALLO STATO ULTIMO

ec max
ec 3/7
Deform. unit. massima del conglomerato a compressione
ec 3/7
Deform. unit. del conglomerato nella fibra a 3/7 dell'altezza efficace
Yc max
Ordinata in cm della fibra corrisp. a ec max (sistema rif. X,Y,O sez.)

es min Deform, unit, minima nell'acciaio (negativa se di trazione)

Ys min
ordinata in cm della barra corrisp. a es min (sistema rif. X,Y,O sez.)
es max
Deform. unit. massima nell'acciaio (positiva se di compressione)
Ys max
Ordinata in cm della barra corrisp. a es max (sistema rif. X,Y,O sez.)

N°Comb ec 3/7 ec max Yc max es min Ys min es max Ys max 1 0.00350 -0.00389 25.0 -0.00146 17.8 -0.00877 7.2

METODO SLU - VERIFICHE A TAGLIO SENZA ARMATURE TRASVERSALI (§ 4.1.2.1.3.1 NTC)

APPALTATORE: TELESE S.c.a r.l.

Consorzio Telese Società Consortile a Responsabilità Limitata

PROGETTAZIONE:

Mandataria: Mandante:

SYSTRA S.A. SWS Engineering S.p.A. SYSTRA-SOTECNI S.p.A.

Relazione di calcolo

IF2R.2.2.E.ZZ.CL.OC.00.0.0.001.A

ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA CANCELLO-BENEVENTO II LOTTO FUNZIONALE FRASSO TELESINO – VITULANO 2° SUBLOTTO TELESE – SAN LORENZO

PROGETTO ESECUTIVO

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 IF2R
 2.2.E.ZZ
 CL
 OC.00.0.0.001
 A
 55 di 92

Ver S = comb.verificata a taglio/ N = comb. non verificata

Vsdu Taglio agente [daN] uguale al taglio Vy di comb. (sollecit. retta)

Vwct Taglio trazione resistente [kN] in assenza di staffe [formula (4.1.14)NTC]

d Altezza utile sezione [cm] bw Larghezza minima sezione [cm]

Ro Rapporto geometrico di armatura longitudinale [<0.02] Scp Tensione media di compressione nella sezione [Mpa]

 $N^{\circ}Comb$ Ver Vsdu Vwct d bw Ro Scp

1 S 22.00 118.04 17.8 100.0 0.0064 0.00

COMBINAZIONI RARE IN ESERCIZIO - VERIFICA MASSIME TENSIONI NORMALI

Ver S = combinazione verificata / N = combin. non verificata

Sc max

Massima tensione di compress.(+) nel conglom. in fase fessurata ([Mpa]
Yc max

Ordinata in cm della fibra corrisp. a Sc max (sistema rif. X,Y,O)
Sc min

Minima tensione di compress.(+) nel conglom. in fase fessurata ([Mpa]
Yc min
Ordinata in cm della fibra corrisp. a Sc min (sistema rif. X,Y,O)
Sf min

Minima tensione di trazione (-) nell'acciaio [Mpa]

Ys min Ordinata in cm della barra corrisp. a Sf min (sistema rif. X,Y,O)

Dw Eff Spessore di conglomerato [cm] in zona tesa considerata aderer

Dw Eff. Spessore di conglomerato [cm] in zona tesa considerata aderente alle barre
Ac eff. Area di congl. [cm²] in zona tesa aderente alle barre (verifica fess.)
As eff. Area Barre tese di acciaio [cm²] ricadente nell'area efficace(verifica fess.)
D barre Distanza media in cm tra le barre tese efficaci utilizzata nel calcolo di fessura

Distanza media in cm tra le barre tese efficaci utilizzata nel calcolo di fessurazione (se Dbarre >14Ø viene posto Dbarre=14Ø nel calcolo di fess. [B.6.6.3 Circ. 252/96])

N°Comb Yc max Ver Sc max Sc min Yc min Sf min Ys min Dw Fff Ac Eff As Eff. D harre 1 S 3.12 25.0 0.00 18.6 -82.9 17.8 9.3 929 11.3 9.5

COMBINAZIONI RARE IN ESERCIZIO - VERIFICA APERTURA FESSURE

Ver S = combinazione verificata / N = combin. non verificata

ScImax Massima tensione nel conglomerato nello STATO I non fessurato [Mpa] ScImin Minuma tensione nel conglomerato nello STATO I non fessurato [Mpa]

K3 =0,125 per flessione; = 0,25 (ScImin + ScImax)/(2 ScImin) per trazione eccentrica

Beta12 Prodotto dei Coeff. di aderenza Beta1*Beta2

Psi = 1-Beta12*(Ssr/Ss)² = 1-Beta12*(fctm/Sclmin)² = 1-Beta12*(Mfess/M)² [B.6.6 DM96] e sm Deformazione unitaria media tra le fessure . Tra parentesi il valore minimo = 0.4 Ss/Es

srm Distanza media in mm tra le fessure

wk Apertura delle fessure in mm = 1,7*Eps*Srm. Tra parentesi è indicato il valore limite.

M fess. Momento di prima fessurazione [kNm]

K3 Beta12 M Fess. N°Comb Ver ScImax Sclmin Sc Fff Psi wk e sm srm S 0.125 0.400 0.000166 (0.000166) 0.056 1 1.34 -1.34 1.00 200 34.66

COMBINAZIONI FREQUENTI IN ESERCIZIO - VERIFICA MASSIME TENSIONI NORMALI

N°Comb Sc max Sf min Dw Eff. Ac Eff. As Eff. D barre Ver Yc max Sc min Yc min Ys min S 2.70 25.0 0.00 18.6 -71.8 17.8 9.3 929 11.3 9.5

COMBINAZIONI FREQUENTI IN ESERCIZIO - VERIFICA APERTURA FESSURE

N°Comb Ver ScImax Sclmin Sc Eff K3 Beta12 Psi M Fess. e sm srm 1.00 1 S 1 16 -1.16 0.125 0.400 0.000144 (0.000144) 200 0.049 (0.30) 34.66

COMBINAZIONI QUASI PERMANENTI IN ESERCIZIO - VERIFICA MASSIME TENSIONI NORMALI

TELESE S.c.a r.l.

Consorzio Telese Società Consortile a Responsabilità Limitata

PROGETTAZIONE:

Mandataria: Mandante:

SYSTRA S.A. SWS Engineering S.p.A.

SYSTRA-SOTECNI S.p.A.

Relazione di calcolo IF2R.2.2.E.ZZ.CL.OC.00.0.0.001.A

ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA CANCELLO-BENEVENTO II LOTTO FUNZIONALE FRASSO TELESINO - VITULANO 2° SUBLOTTO TELESE – SAN LORENZO

PROGETTO ESECUTIVO

FOGLIO COMMESSA CODIFICA DOCUMENTO REV. LOTTO IF2R OC.00.0.0.001 56 di 92 2.2.E.ZZ CL Α

N°Comb	Ver	Sc max	Yc max	Sc min	Yc min	Sf min	Ys min	Dw Eff.	Ac Eff.	As Eff.	D barre
1	S	1.66	25.0	0.00	18.6	-44.2	17.8	9.3	929	11.3	9.5

COMBINAZIONI QUASI PERMANENTI IN ESERCIZIO - VERIFICA APERTURA FESSURE

N°Comb	Ver	ScImax	ScImin	Sc Eff	K3 B	eta12	Psi	e sm	srm	wk	M Fess.
1	S	0.72	-0.72		0 125	0.50	0 400	0.000088 (0.000088)	200	0.030 (0.20)	34 66

APPALTATORE: ITINERARIO NAPOLI - BARI RADDOPPIO TRATTA CANCELLO-BENEVENTO II LOTTO FUNZIONALE FRASSO TELESINO - VITULANO PROGETTAZIONE: 2° SUBLOTTO TELESE - SAN LORENZO Mandataria: Mandante: PROGETTO ESECUTIVO SYSTRA S.A. SWS Engineering S.p.A. SYSTRA-SOTECNI S.p.A. Relazione di calcolo COMMESSA LOTTO CODIFICA DOCUMENTO RF\/ FOGLIO IF2R.2.2.E.ZZ.CL.OC.00.0.0.001.A IF2R 22F77 CI OC 00 0 0 001 Δ 57 di 92

14 VERIFICHE GEOTECNICHE

14.1 VERIFICA DELLA CAPACITÀ PORTANTE

La verifica a capacità portante del complesso fondazione – terreno è stata effettuata applicando la combinazione (A1+M1+R3) dell'Approccio 2, tenendo conto dei valori dei coefficienti parziali riportati nelle Tabelle 6.2.I, 6.2.II e 6.4.I delle NTC2008. I coefficienti γ_R sono riportati nella seguente tabella 6.4.I delle NTC08):

Tab. 6.4.I – Coefficienti parziali γ_R per le verifiche agli stati limite ultimi di fondazioni superficiali

Verifica	Coefficiente
	parziale
	(R3)
Carico limite	$\gamma_R = 2.3$
Scorrimento	$\gamma_R = 1.1$

La pressione limite puo' essere calcolata in base alla formula generale di Brinch Hansen (1970):

$$q_{lim} = 0.5 \cdot \gamma \cdot BN_{\gamma} \cdot s_{\gamma} i_{\gamma} b_{\gamma} g_{\gamma} + q \cdot N_q s_q d_q i_q b_q g_q + c N_c s_c d_c i_c b_c g_c$$
 (valida in condizioni drenate)

$$q_{lim} = c_U N_c^* d_C^* i_C^* s_C^* b_C^* g_C^* + q$$

(valida in condizioni non drenate)

essendo

 N_q , N_c , N_γ i fattori di capacità portante in condizioni drenate;

 N_c^* il fattore di capacità portante in condizioni non drenate;

 $s_{\gamma} s_{q} s_{c}$ i fattori di forma della fondazione;

 i_{γ} i_{q} i_{c} i fattori correttivi per l'inclinazione del carico;

 $b_{\gamma} b_{\alpha} b_{c}$ i fattori correttivi per l'inclinazione della base della fondazione;

 $g_{\gamma} g_q g_c$ i fattori correttivi per l'inclinazione del piano campagna;

 $d_{\gamma} d_{\alpha} d_{c}$ i fattori correttivi per la profondità del piano di posa;

 $d_C^* i_C^* s_C^* b_C^* g_C^*$ i fattori correttivi corrispondenti rispettivamente a quanto sopra esposto ma validi in condizioni non drenate.

In condizioni drenate valgono le seguenti espressioni:

$$N_q = tg^2 (45 + \phi'/2) * e^{(\pi^* tg\phi')}$$

$$N_c = (N_q - 1)/tg\phi'$$

$$N_y = 1.5(N_q - 1) * tg\phi'$$

PROGETTAZIONE:

Mandataria:

Mandante:

SYSTRA S.A. SWS Engineering S.p.A. SYSTRA-SOTECNI S.p.A.

Relazione di calcolo

IF2R.2.2.E.ZZ.CL.OC.00.0.0.001.A

ITINERARIO NAPOLI - BARI RADDOPPIO TRATTA CANCELLO-BENEVENTO II LOTTO FUNZIONALE FRASSO TELESINO - VITULANO 2° SUBLOTTO TELESE - SAN LORENZO

PROGETTO ESECUTIVO

COMMESSA LOTTO CODIFICA

IF2R 2.2.E.ZZ CI

DOCUMENTO REV. OC.00.0.0.001 Α

FOGLIO 58 di 92

$$i_{y} = \left[1 - \frac{H}{N + B' \cdot c \cdot \cot \phi'}\right]^{m+1}$$

$$i_q = i_c = \left[1 - \frac{H}{N + B' \cdot c \cdot \cot \phi'}\right]^m$$

$$d_{q} = 1 + 2tg\phi' \cdot (1 - \sin\phi')^{2} \cdot \frac{D}{B'}$$

per D/B' ≤ 1

$$d_q = 1 + 2 \operatorname{tg} \phi \cdot (1 - \sin \phi')^2 \cdot \operatorname{arctg} \left(\frac{D}{B'} \right)$$

per D/B' > 1

$$d_{c} = d_{q} - \frac{1 - d_{q}}{N_{c} t g \phi'}$$

$$s_a = 1 + (B/2) tg \phi'$$

$$s_y = 1 - 0.4B/4$$

$$s_c = 1 + \frac{Nq B}{NcI}$$

$$g_{\gamma} = g_g = (1-0.5 \text{ tg}\beta)^5$$

$$g_c = 1 - \beta^{\circ}/147^{\circ}$$

$$b_a = e^{(-2\eta ig\varphi)}$$

$$b\gamma = e^{(-2.7\eta \log \phi)}$$

ove
$$\beta+\eta \le 90^{\circ}e \ \beta \le \phi$$

In condizioni non drenate i fattori hanno le seguenti espressioni:

$$N_c^* = (2 + \pi)$$

$$s_c^* = 0.2 + \frac{B}{I}$$

$$i_c* = \left[1 - \frac{mH}{B'cuNc}\right]m$$

$$d_c^* = 0.4 + \frac{D}{R}$$

per D/B ≤ 1

$$d_c* = 0.4 + \frac{tg^{-1D}}{B}$$

per D/B > 1

$$g_c^* = \beta^{\circ}/147^{\circ}$$

$$b^*_c = \eta^{\circ}/147^{\circ}$$

Si sono indicate con:

APPALTATORE: TELESE s.c.a r.l.

Consorzio Telese Società Consortile a Responsabilità Limitata

PROGETTAZIONE:

Mandataria: Mandante:

SYSTRA S.A. SWS Engineering S.p.A. SYSTRA-SOTECNI S.p.A.

Relazione di calcolo

IF2R.2.2.E.ZZ.CL.OC.00.0.0.001.A

ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA CANCELLO-BENEVENTO II LOTTO FUNZIONALE FRASSO TELESINO – VITULANO 2° SUBLOTTO TELESE – SAN LORENZO

PROGETTO ESECUTIVO

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 IF2R
 2.2.E.ZZ
 CL
 OC.00.0.0.001
 A
 59 di 92

q = γ^*D = pressione verticale totale agente alla quota di imposta della fondazione;

B' = larghezza efficace equivalente della fondazione;

 γ = peso di volume naturale del terreno;

c_u = coesione non drenata;

D = affondamento della fondazione:

H = carico orizzontale agente.

Per valutare gli effetti dell'eccentricità è necessario inserire nell'equazione della capacità due dimensioni L' e B' ridotte secondo le:

 $L' = L - 2e_x$

 $B' = B - 2e_v$

dove B e L sono le reali dimensioni della fondazione e ex e ey sono le eccentricità.

Si riporta di seguito la verifica per la condizione più gravosa.

L'azione complessiva trasmessa al terreno dalla fondazione nella condizione più gravosa è pari a circa 189kN per una striscia di larghezza unitaria e 189x12=2268 kN globalmente, ipotizzando conci da 12m.

.

PROGETTAZIONE:

Mandataria: Mandante:

SYSTRA S.A. SWS Engineering S.p.A. SYSTRA-SOTECNI S.p.A.

Relazione di calcolo

IF2R.2.2.E.ZZ.CL.OC.00.0.0.001.A

ITINERARIO NAPOLI - BARI RADDOPPIO TRATTA CANCELLO-BENEVENTO II LOTTO FUNZIONALE FRASSO TELESINO - VITULANO 2° SUBLOTTO TELESE - SAN LORENZO

PROGETTO ESECUTIVO

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
IF2R	2.2.E.ZZ	CL	OC.00.0.0.001	Α	60 di 92

(Per fondazione nastriforme L = 100 m)

B =
$$3.65$$

AZIONI

	valori d	i input	Valori di
	permanenti	temporanee	calcolo
N [kN]	2268		2268.00
Mb [kNm]	1332		1332.00
MI [kNm]	0.00		0.00
Tb [kN]	564		564.00
TI [kN]	0.00		0.00
H [kN]	564.00	0.00	564.00

Peso unità di volume del terreno

$$\gamma_1 = 19.50 \text{ (kN/mc)}$$

$$\gamma$$
 = 19.50 (kN/mc)

Valori caratteristici di resistenza del terreno

c'	=	0.00	(kN/mq)	
φ'	=	34.00	(°)	

Valori di progetto

$$c' = 0.00 (kN/mq)$$

 $\phi' = 34.00 (°)$

2.48

12.00

(m)

(m)

Profondità della falda

$$Zw = 1.80$$
 (m)

$$e_B = 0.59$$
 (m) $B^* = e_L = 0.00$ (m) $L^* = 0.00$

$$q = 35.10$$
 (kN/mq)

γ : peso di volume del terreno di fondazione

$$\gamma = 9.50 \quad (kN/mc)$$

PROGETTAZIONE:

Mandataria:

Mandante: SYSTRA S.A. SWS Engineering S.p.A.

SYSTRA-SOTECNI S.p.A.

Relazione di calcolo

IF2R.2.2.E.ZZ.CL.OC.00.0.0.001.A

ITINERARIO NAPOLI - BARI RADDOPPIO TRATTA CANCELLO-BENEVENTO II LOTTO FUNZIONALE FRASSO TELESINO - VITULANO 2° SUBLOTTO TELESE - SAN LORENZO

PROGETTO ESECUTIVO

CODIFICA COMMESSA LOTTO

IF2R

2.2.E.ZZ

CI

DOCUMENTO OC.00.0.0.001

REV.

Α

FOGLIO 61 di 92

Nc, Nq, Ny: coefficienti di capacità portante

Nq =
$$\tan^2(45 + \varphi'/2)^*e^{(\pi^*tg\varphi')}$$

$$Nq = 29.44$$

$$Nc = (Nq - 1)/tan\phi'$$

$$N\gamma = 2*(Nq + 1)*tan\phi'$$

$$N\gamma = 41.06$$

s_c, s_q, s_y: fattori di forma

$$s_c = 1 + B*Nq / (L*Nc)$$

$$s_c = 1.14$$

$$s_q = 1 + B*tan\phi' / L*$$

$$s_q = 1.14$$

$$s_{\gamma} = 1 - 0.4*B* / L*$$

$$s_{v} = 0.92$$

i_c, i_q, i_γ : <u>fattori di inclinazione del carico</u>

$$m_b = (2 + B^* / L^*) / (1 + B^* / L^*) =$$

1.83

 $\theta = arctg(Tb/TI) =$

90.00

$$m_1 = (2 + L^* / B^*) / (1 + L^* / B^*)$$

1.17

m =

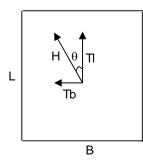
1.83

(°)

(-)

$$i_{\alpha} = (1 - H/(N + B^*L^* c' \cot g\phi'))^m$$

$$i_q = 0.59$$


$$i_c = i_q - (1 - i_q)/(Nq - 1)$$

$$i_c = 0.58$$

$$i_{\gamma} = (1 - H/(N + B^*L^* c' \cot g\phi'))^{(m+1)}$$

$$i_{\gamma} = 0.45$$

(m=2 nel caso di fondazione nastriforme e $m=(m_b sin^2 \theta + m_l cos^2 \theta)$ in tutti gli altri casi)

PROGETTAZIONE:

Mandataria:

Mandante: SYSTRA S.A.

SYSTRA-SOTECNI S.p.A. SWS Engineering S.p.A.

Relazione di calcolo

IF2R.2.2.E.ZZ.CL.OC.00.0.0.001.A

ITINERARIO NAPOLI - BARI RADDOPPIO TRATTA CANCELLO-BENEVENTO II LOTTO FUNZIONALE FRASSO TELESINO - VITULANO 2° SUBLOTTO TELESE - SAN LORENZO

PROGETTO ESECUTIVO

COMMESSA IF2R

LOTTO 2.2.E.ZZ CODIFICA CI

DOCUMENTO OC.00.0.0.001

REV. Α

FOGLIO 62 di 92

d_c, d_q, d_γ : fattori di profondità del piano di appoggio

per D/B*
$$\leq$$
 1; d_q = 1 +2 D tan ϕ ' (1 - sen ϕ ')² / B*

per D/B*> 1;
$$d_q = 1 + (2 \tan \varphi' (1 - \sin \varphi')^2) * \arctan (D / B*)$$

$$d_{q} = 1.19$$

$$d_c = d_q - (1 - d_q) / (N_c \tan \varphi)$$

$$d_c =$$

1.20

$$d_v = 1$$

$$d_v = 1.00$$

b_c , b_q , b_γ : fattori di inclinazione base della fondazione

$$b_{\alpha} = (1 - \beta_f \tan \varphi')^2$$

$$\beta_f + \beta_p = 0.00$$

$$\beta_f + \beta_p < 45^\circ$$

$$b_{q} = 1.00$$

$$b_c = b_q - (1 - b_q) / (N_c \tan \varphi)$$

$$b_c =$$

1.00

1.00

$$b_{\gamma} = b_{q}$$

$$b_{\nu} =$$

g_c, g_q, g_γ : <u>fattori di inclinazione piano di campagna</u>

$$g_q = (1 - tan\beta_p)^2$$

$$\beta_f + \beta_p =$$

$$\beta_f + \beta_p < 45^\circ$$

$$g_q =$$

1.00

$$g_c = g_q - (1 - g_q) / (N_c \tan \varphi)$$

1.00

$$g_{\gamma} = g_{q}$$

$$g_{\gamma} =$$

1.00

LESE s.c.a r.l.

Società Consortile a Responsabilità Limitata

PROGETTAZIONE:

Mandataria:

Mandante:

SYSTRA S.A. SYSTRA-SOTECNI S.p.A. SWS Engineering S.p.A.

Relazione di calcolo

IF2R.2.2.E.ZZ.CL.OC.00.0.0.001.A

ITINERARIO NAPOLI - BARI RADDOPPIO TRATTA CANCELLO-BENEVENTO II LOTTO FUNZIONALE FRASSO TELESINO - VITULANO 2° SUBLOTTO TELESE - SAN LORENZO

CL

PROGETTO ESECUTIVO

COMMESSA LOTTO CODIFICA

IF2R

2.2.E.ZZ

DOCUMENTO OC.00.0.0.001 **FOGLIO**

REV. 63 di 92 Α

Carico limite unitario

$$q_{lim} = 1028.05$$

 (kN/m^2)

Pressione massima agente

$$q = N / B^* L^*$$

 (kN/m^2)

Verifica di sicurezza capacità portante

$$q_{lim}/\gamma_R =$$

$$q = 76.35 (kN/m^2)$$

VERIFICA A SCORRIMENTO

Carico agente

564.00

(kN)

Azione Resistente

$$Sd = N tan(\phi') + c' B^* L^*$$

(kN)

Verifica di sicurezza allo scorrimento

Sd /
$$\gamma_R =$$

1390.72

≥

Hd =

564.00

(kN)

APPALTATORE: TELESES

Consorzio Telese Società Consortile a Responsabilità Limitata

PROGETTAZIONE:

Mandataria: Mandante:

SYSTRA S.A. SWS Engineering S.p.A. SYSTRA-SOTECNI S.p.A.

Relazione di calcolo

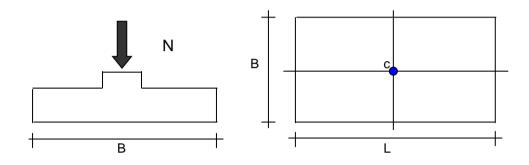
IF2R.2.2.E.ZZ.CL.OC.00.0.0.001.A

ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA CANCELLO-BENEVENTO II LOTTO FUNZIONALE FRASSO TELESINO – VITULANO 2° SUBLOTTO TELESE – SAN LORENZO

PROGETTO ESECUTIVO

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 IF2R
 2.2.E.ZZ
 CL
 OC.00.0.0.001
 A
 64 di 92


14.2 VALUTAZIONE DEI CEDIMENTI

Si esibisce di seguito il calcolo dei cedimenti in fondazione dell'opera in esame.

CEDIMENTI DI UNA FONDAZIONE RETTANGOLARE

LAVORO:

Sottopasso Stazione Acerra

Formulazione Teorica (H.G. Poulos, E.H. Davis; 1974)

$$\Delta \sigma z i = (q/2\pi)*(tan^{-1}((L/2)(B/2))/(zR_3))+((L/2)(B/2)z)/R_3)(1/R_1^2+1/R_2^2))$$

$$\Delta \sigma xi = (q/2\pi)^*(tan^{-1}((L/2)(B/2))/(zR_3))-((L/2)(B/2)z)/R_3R_1^2))$$

$$\Delta \sigma y i = (q/2\pi)^* (tan^{-1}((L/2)(B/2))/(zR_3)) - ((L/2)(B/2)z)/R_3R_2^{-2})$$

$$R1 = ((L/2)^2 + z^2)^{0.5}$$

$$R2 = ((B/2)^2 + z^2)^{0.5}$$

R3 =
$$((L/2)^2 + (B/2)^2 + z^2)^{0.5}$$

$$\delta_{\text{tot}} = \Sigma \delta_{\text{t}} = \Sigma (((\Delta \sigma z i - \nu i (\Delta \sigma x i + \Delta \sigma y i)) \Delta z i / E i)$$

TELESE S.c.a r.l.

Consorzio Telese Società Consortile a Responsabilità Limitata

PROGETTAZIONE:

Mandataria: Mandante:

SYSTRA S.A. SWS Engineering S.p.A. SYSTRA-SOTECNI S.p.A.

Relazione di calcolo

IF2R.2.2.E.ZZ.CL.OC.00.0.0.001.A

ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA CANCELLO-BENEVENTO II LOTTO FUNZIONALE FRASSO TELESINO – VITULANO 2° SUBLOTTO TELESE – SAN LORENZO

PROGETTO ESECUTIVO

COMMESSA LOTTO

IF2R 2.2.E.ZZ

CODIFICA CL DOCUMENTO **OC.00.0.001**

REV. F

FOGLIO 65 di 92

DATI DI INPUT:

B = 3.65 (m) (Larghezza della Fondazione)

L = 12.00 (m) (Lunghezza della Fondazione)

N = 4380 (kN) (Carico Verticale Agente)

q = 100.00 (kN/mq) (Pressione Agente (q = N/(B*L)))

ns = 2 (-) (numero strati) (massimo 6)

Strato	Litologia	Spessore	da z _i	a z _{i+1}	∆zi	Е	ν	δci
(-)	(-)	(m)	(m)	(m)	(m)	(kN/m ²)	(-)	(cm)
1	Bc2	4.00	0.0	4.0	1.0	40000	0.30	0.52
2	Bn1	11.00	4.0	15.0	1.0	40000	0.30	0.47
-			0.0	0.0	1.0			ı
-			0.0	0.0	1.0			ı
-			0.0	0.0	1.0			•
-			0.0	0.0	1.0			-

 $\delta_{\rm ctot} = 0.98$ (cm)

Il cedimento totale risulta essere pari a **0.98cm**.

Di seguito si forniscono le tabelle di sintesi del calcolo effettuato.

Z	∆zi	Terreno	R1	R2	R3	∆σzi	Δσχί	Δσγί	E	ν	δί	Σδί
(m)	(m)	(-)	(-)	(-)	(-)	(kN/m^2)	(kN/m ²)	(kN/m^2)	(kN/m^2)	(-)	(cm)	(cm)
0.00	1.0	1							40000	0.30		
1.00	1.0	1	6.02	1.89	6.29	83.80	65.27	51.33	40000	0.30	0.12	0.12
2.00	1.0	1	6.18	2.36	6.45	66.09	7.14	0.93	40000	0.30	0.16	0.28
3.00	1.0	1	6.50	3.10	6.75	53.02	3.46	-1.74	40000	0.30	0.13	0.41
4.00	1.0	1	6.95	3.95	7.18	42.50	1.65	-2.04	40000	0.30	0.11	0.52
5.00	1.0	2	7.50	4.86	7.72	34.41	0.68	-1.82	40000	0.30	0.09	0.61
6.00	1.0	2	8.14	5.79	8.34	28.19	0.16	-1.53	40000	0.30	0.07	0.68
7.00	1.0	2	8.85	6.75	9.03	23.34	-0.12	-1.27	40000	0.30	0.06	0.74
8.00	1.0	2	9.60	7.72	9.78	19.52	-0.26	-1.06	40000	0.30	0.05	0.79
9.00	1.0	2	10.40	8.69	10.56	16.48	-0.33	-0.89	40000	0.30	0.04	0.83
10.00	1.0	2	11.24	9.67	11.38	14.05	-0.35	-0.75	40000	0.30	0.04	0.86
11.00	1.0	2	12.09	10.66	12.23	12.07	-0.34	-0.64	40000	0.30	0.03	0.90
12.00	1.0	2	12.97	11.64	13.10	10.46	-0.33	-0.55	40000	0.30	0.03	0.92
13.00	1.0	2	13.87	12.63	13.99	9.14	-0.31	-0.48	40000	0.30	0.02	0.95
14.00	1.0	2	14.77	13.62	14.89	8.04	-0.29	-0.42	40000	0.30	0.02	0.97
15.00	1.0	2	15.69	14.61	15.80	7.12	-0.27	-0.37	40000	0.30	0.02	0.98

ELESE s.c.a r.l.

nsabilità Limitata

PROGETTAZIONE:

Mandataria: Mandante:

SYSTRA S.A. SWS Engineering S.p.A. SYSTRA-SOTECNI S.p.A.

Relazione di calcolo

IF2R.2.2.E.ZZ.CL.OC.00.0.0.001.A

ITINERARIO NAPOLI - BARI RADDOPPIO TRATTA CANCELLO-BENEVENTO II LOTTO FUNZIONALE FRASSO TELESINO - VITULANO 2° SUBLOTTO TELESE - SAN LORENZO

PROGETTO ESECUTIVO

COMMESSA LOTTO CODIFICA DOCUMENTO REV. **FOGLIO** IF2R 2.2.E.ZZ OC.00.0.0.001 66 di 92 CI Α

15 TIPOLOGICO P3

Dati

Materiali

Simbologia adottata

n° Descr Indice materiale Descrizione del materiale

Calcestruzzo armato

Classe di resistenza del cls Classe di resistenza dell'acciaio Ä

Resistenza caratteristica o in [kN/mc] Resistenza caratteristica a compressione, espressa in [kPa] Modulo elastico, espresso in [kPa] γ Rck

Coeff. di Poisson

Coeff. di omogenizzazione acciaio/cls ntc Coeff. di omogenizzazione cls teso/compresso

Calcestruzzo armato

n°	Descr	С	A	γ	Rck	E	v	n	ntc
				[kN/mc]	[kPa]	[kPa]			
1	C32/40	C32/40	B450C	24.5170	40000	33642648	0.30	15.00	0.50
2	Materiale tiranti	Rck 250	Precomp	24.5170	24517	30073438	0.30	15.00	0.50
4	C28/35	C28/35	Precomp	24.5170	35000	32587986	0.30	15.00	0.50
5	C25/30	C25/30	Precomp	24.5170	30000	31447048	0.30	15.00	0.50

Acciai

Descr	f yk	fuk
	[kPa]	[kPa]
Precomp	1569089	1863293
B450C	450000	540000

Geometria profilo terreno a monte del muro

Simbologia adottata

(Sistema di riferimento con origine in testa al muro, ascissa X positiva verso monte, ordinata Y positiva verso l'alto)

numero ordine del punto

ascissa del punto espressa in [m] ordinata del punto espressa in [m] inclinazione del tratto espressa in [°]

n°	X	Y	Α
	[m]	[m]	[°]
1	0.00	-1.20	0.000
2	30.00	-1.20	0.000

Inclinazione terreno a valle del muro rispetto all'orizzontale 0.000 [°]

<u>Falda</u>

Simbologia adottata

(Sistema di riferimento con origine in testa al muro, ascissa X positiva verso monte, ordinata Y positiva verso l'alto)

numero ordine del punto

ascissa del punto espressa in [m] ordinata del punto espressa in [m]

APPALTATORE: ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA CANCELLO-BENEVENTO Consorzio Telese Società Consortile a Responsabilità Limitata II LOTTO FUNZIONALE FRASSO TELESINO - VITULANO PROGETTAZIONE: 2° SUBLOTTO TELESE – SAN LORENZO Mandataria: Mandante: **PROGETTO ESECUTIVO** SYSTRA S.A. SWS Engineering S.p.A. SYSTRA-SOTECNI S.p.A. Relazione di calcolo COMMESSA CODIFICA REV. FOGLIO LOTTO DOCUMENTO IF2R.2.2.E.ZZ.CL.OC.00.0.0.001.A 67 di 92 IF2R 2.2.E.ZZ CL OC.00.0.0.001 Α

A inclinazione del tratto espressa in [°]

n°	X	Y	A
	[m]	[m]	[°]
1	-5.00	-4.00	0.000
2	-0.40	-4.00	0.000
3	10.00	-4.00	0.000
4	15.00	-4.00	0.000
5	30.00	-4.00	0.000

Geometria muro

Geometria paramento e fondazione

Lunghezza muro	10.00	[m]
Paramento		
Materiale	C28/35	
Altezza paramento	3.50	[m]
Altezza paramento libero	1.75	[m]
Spessore in sommità	0.40	[m]
Spessore all'attacco con la fondazione	0.40	[m]
Inclinazione paramento esterno	0.00	[°]
Inclinazione paramento interno	0.00	[°]
<u>Fondazione</u>		
Materiale	C32/40	
Lunghezza mensola di valle	0.65	[m]
Lunghezza mensola di monte	1.95	[m]
Lunghezza totale	3.00	[m]
Inclinazione piano di posa	0.00	[°]
Spessore	0.50	[m]
Spessore magrone	0.10	[m]

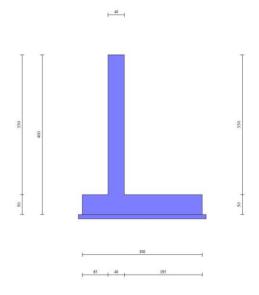


Fig. 1 - Sezione quotata del muro

PROGETTAZIONE:

Mandataria: Mandante:

SYSTRA S.A. SWS Engineering S.p.A. SYSTRA-SOTECNI S.p.A.

Relazione di calcolo

IF2R.2.2.E.ZZ.CL.OC.00.0.0.001.A

ITINERARIO NAPOLI - BARI RADDOPPIO TRATTA CANCELLO-BENEVENTO II LOTTO FUNZIONALE FRASSO TELESINO - VITULANO 2° SUBLOTTO TELESE - SAN LORENZO

PROGETTO ESECUTIVO

COMMESSA LOTTO CODIFICA DOCUMENTO REV. **FOGLIO** IF2R 2.2.E.ZZ OC.00.0.0.001 68 di 92 CI Α

Descrizione terreni

Parametri di resistenza

Simbologia adottata

Indice del terreno Descr Descrizione terreno

Peso di volume del terreno espresso in [kN/mc] Peso di volume saturo del terreno espresso in [kN/mc] Angolo d'attrito interno espresso in [°]

Angolo d'attrito terra-muro espresso in [°] Coesione espressa in [kPa] Adesione terra-muro espressa in [kPa]

Per calcolo portanza con il metodo di Bustamante-Doix
Cesp Coeff. di espansione laterale (solo per il metodo di Bustamante-Doix)

Tensione tangenziale limite, espressa in [kPa]

n'	Descr	γ	γsat	ф	δ	С	ca	Cesp	τΙ	
		[kN/mc]	[kN/mc]	[°]	[°]	[kPa]	[kPa]		[kPa]	
1	RILEVATO FERROVIARIO	20.0000	20.0000	38.000	33.000	0	0			
2	RILEVATO STRADALE	19.0000	19.0000	35.000	0.000	0	0			

Stratigrafia

Simbologia adottata

Indice dello strato
Spessore dello strato espresso in [m] n° H Inclinazione espressa in [°] $_{\text{Terreno}}^{\alpha}$ Terreno dello strato Per calcolo pali (solo se presenti)

Costante di Winkler orizzontale espressa in Kg/cm²/cm Kw

Coefficiente di spinta Ks

Coefficiente di espansione laterale (per tutti i metodi tranne il metodo di Bustamante-Doix)

Per calcolo della spinta con coeff. di spinta definiti (usati solo se attiva l'opzione 'Usa coeff. di spinta da strato')

Kststa, Kstsis Coeff. di spinta statico e sismico

n°	Н	α	Terreno	Kw	Ks	Cesp	Kststa	Kstsis
	[m]	[°]		[Kg/cm³]				
1	4.00	0.000	RILEVATO STRADALE					
2	10.00	0.000	RILEVATO FERROVIARIO					

Fig. 2 - Stratigrafia

ELESE S.c.a r.l.

PROGETTAZIONE:

Mandataria: Mandante:

SYSTRA S.A. SWS Engineering S.p.A. SYSTRA-SOTECNI S.p.A.

Relazione di calcolo

IF2R.2.2.E.ZZ.CL.OC.00.0.0.001.A

ITINERARIO NAPOLI - BARI RADDOPPIO TRATTA CANCELLO-BENEVENTO II LOTTO FUNZIONALE FRASSO TELESINO - VITULANO 2° SUBLOTTO TELESE - SAN LORENZO

PROGETTO ESECUTIVO

IF2R	2.2.E.ZZ	CI	OC.00.0.0.001	Λ.	69 di 92
COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO

Condizioni di carico

Simbologia adottata

Carichi verticali positivi verso il basso. Carichi orizzontali positivi verso sinistra. Momento positivo senso antiorario.

- Ascissa del punto di applicazione del carico concentrato espressa in [m] Componente orizzontale del carico concentrato espressa in [kN]
- Componente verticale del carico concentrato espressa in [kN]
- Momento espresso in [kNm]
- X F_y M X_i Q_i Q_f Ascissa del punto iniziale del carico ripartito espressa in [m]
- Ascissa del punto finale del carico ripartito espressa in [m]

 Intensità del carico per x=Xi espressa in [kN]
- Intensità del carico per x=Xf espressa in [kN]

Condizione nº 1 (PIAZZALE) - PERMANENTE

Carichi sul terreno

Carrer	i bai cerreno								
n°	Tipo	X	Fx	Fy	М	Xi	Xf	Qi	Qf
		[m]	[kN]	[kN]	[kNm]	[m]	[m]	[kN]	[kN]
1	Distribuito					0.00	30.00	20.0000	20.0000

Normativa

Normativa usata: Norme Tecniche sulle Costruzioni 2008 (D.M. 14.01.2008) - Approccio 2 + Circolare C.S.LL.PP. 02/02/2009 n.617

Coeff. parziali per le azioni o per l'effetto delle azioni

Carichi	Effetto		Combinazioni statiche				Combinazioni sismiche			
			HYD	UPL	EQU	A1	A2	EQU	A1	A2
Permanenti strutturali	Favorevoli	γG1,fav	1.00	0.90	1.00	1.00	1.00	1.00	1.00	1.00
Permanenti strutturali	Sfavorevoli	γG1,sfav	1.00	1.10	1.30	1.30	1.00	1.00	1.00	1.00
Permanenti non strutturali	Favorevoli	γG2,fav	0.00	0.80	0.80	0.80	0.80	0.00	0.00	0.00
Permanenti non strutturali	Sfavorevoli	γG2,sfav	1.00	1.50	1.50	1.50	1.30	1.00	1.00	1.00
Variabili	Favorevoli	γQ,fav	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Variabili	Sfavorevoli	γQ,sfav	1.00	1.50	1.50	1.50	1.30	1.00	1.00	1.00
Variabili da traffico	Favorevoli	γQT,fav	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Variabili da traffico	Sfavorevoli	γQT,sfav	1.00	1.50	1.45	1.45	1.15	1.00	1.00	1.00

Coeff. parziali per i parametri geotecnici del terreno

Parametro		Combinazio	Combinazioni statiche		ni sismiche
		M1	M2	M1	M2
Tangente dell'angolo di attrito	γtan(φ')	1.00	1.25	1.00	1.00
Coesione efficace	γc'	1.00	1.25	1.00	1.00
Resistenza non drenata	γcu	1.00	1.40	1.00	1.00
Peso nell'unita di volume	γγ	1.00	1.00	1.00	1.00

Coeff. parziali y_R per le verifiche agli stati limite ultimi STR e GEO

Verifica	Com	Combinazioni statiche			Combinazioni sismiche		
	R1	R2	R3	R1	R2	R3	
Capacità portante			1.40			1.20	
Scorrimento			1.10			1.00	
Resistenza terreno a valle			1.40			1.20	
Ribaltameno			1.15			1.00	
Stabilità fronte di scavo		1.10			1 20		

Descrizione combinazioni di carico

Con riferimento alle azioni elementari prima determinate, si sono considerate le seguenti combinazioni di carico:

- Combinazione fondamentale, impiegata per gli stati limite ultimi (SLU):

$$\gamma_{G1} G_1 + \gamma_{G2} G_2 + \gamma_{Q1} Q_{k1} + \gamma_{Q2} Q_{k2} + \gamma_{Q3} Q_{k3} + ...$$

- Combinazione caratteristica, cosiddetta rara, impiegata per gli stati limite di esercizio (SLE) irreversibili:

$$G_1 + G_2 + Q_{k1} + \Psi_{0,2} Q_{k2} + \Psi_{0,3} Q_{k3} + ...$$

APPALTATORE: TELESE S.c.a r.l.

Consorzio Telese Società Consortile a Responsabilità Limitata

PROGETTAZIONE:

Mandataria: Mandante:

ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA CANCELLO-BENEVENTO II LOTTO FUNZIONALE FRASSO TELESINO – VITULANO 2° SUBLOTTO TELESE – SAN LORENZO

PROGETTO ESECUTIVO

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
IF2R	2.2.E.ZZ	CL	OC.00.0.0.001	Α	70 di 92

SYSTRA S.A. SWS Engineering S.p.A. SYSTRA-SOTECNI S.p.A. Relazione di calcolo

- Combinazione frequente, impiegata per gli stati limite di esercizio (SLE) reversibili:

$$G_1 \, + \, G_2 \, + \, \Psi_{1,1} \, \, Q_{k1} \, + \, \Psi_{2,2} \, \, Q_{k2} \, + \, \Psi_{2,3} \, \, Q_{k3} \, + \, ...$$

- Combinazione quasi permanente, impiegata per gli effetti di lungo periodo:

$$G_1 \, + \, G_2 \, + \, \Psi_{2,1} \, \, Q_{k1} \, + \, \Psi_{2,2} \, \, Q_{k2} \, + \, \Psi_{2,3} \, \, Q_{k3} \, + \, ...$$

- Combinazione sismica, impiegata per gli stati limite ultimi connessi all'azione sismica E:

$$E + G_1 + G_2 + \Psi_{2,1} \, Q_{k1} + \Psi_{2,2} \, Q_{k2} + \Psi_{2,3} \, Q_{k3} + ...$$

I valori dei coeff. $\Psi_{0,j}$, $\Psi_{1,j}$, $\Psi_{2,j}$ sono definiti nelle singole condizioni variabili.par I valori dei coeff. γ_G e γ_Q , sono definiti nella tabella normativa.

In particolare si sono considerate le seguenti combinazioni:

Simbologia adottata

IF2R.2.2.E.ZZ.CL.OC.00.0.0.001.A

Y Coefficiente di partecipazione della condizione
Y Coefficiente di combinazione della condizione

Combinazione nº 1 - STR (A1-M1-R3)

Condizione	γ	Ψ	Effetto
Peso muro	1.00		Favorevole
Peso terrapieno	1.00		Favorevole
Spinta terreno	1.30		Sfavorevole
PIAZZALE	1.30		Sfavorevole

Combinazione nº 2 - STR (A1-M1-R3) H

Condizione	γ	Ψ	Effetto
Peso muro	1.00		Favorevole
Peso terrapieno	1.00		Favorevole
Spinta terreno	1.00		Sfavorevole
PIAZZALE	1.00		Sfavorevole

Combinazione nº 3 - GEO (A2-M2-R2)

Condizione	γ	Ψ	Effetto
Peso muro	1.00		Sfavorevole
Peso terrapieno	1.00		Sfavorevole
Spinta terreno	1.00		Sfavorevole
PIAZZALE	1.00		Sfavorevole

Combinazione nº 4 - GEO (A2-M2-R2) H

Condizione	γ	Ψ	Effetto
Peso muro	1.00		Sfavorevole
Peso terrapieno	1.00		Sfavorevole
Spinta terreno	1.00		Sfavorevole
PIAZZALE	1.00		Sfavorevole

Combinazione nº 5 - EQU

Condizione	γ	Ψ	Effetto
Peso muro	1.00		Favorevole
Peso terrapieno	1.00		Favorevole
Spinta terreno	1.30		Sfavorevole
PIAZZALE	1.30		Sfavorevole

Combinazione nº 6 - EQU H

Condizione	γ	Ψ	Effetto
Peso muro	1.00		Favorevole
Peso terrapieno	1.00		Favorevole
Spinta terreno	1.00		Sfavorevole
ΡΙΔ77ΔΙ Ε	1.00		Sfavorevole

TELESE s.c.a r.l.

Consorzio Telese Società Consortile a Responsabilità Limitata

PROGETTAZIONE:

Mandataria: Mandante:

SYSTRA S.A. SWS Engineering S.p.A. SYSTRA-SOTECNI S.p.A.

Relazione di calcolo

IF2R.2.2.E.ZZ.CL.OC.00.0.0.001.A

ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA CANCELLO-BENEVENTO II LOTTO FUNZIONALE FRASSO TELESINO – VITULANO 2° SUBLOTTO TELESE – SAN LORENZO

PROGETTO ESECUTIVO

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 IF2R
 2.2.E.ZZ
 CL
 OC.00.0.0.001
 A
 71 di 92

Combinazione nº 7 - SLER

Condizione	γ	Ψ	Effetto
Peso muro	1.00		Sfavorevole
Peso terrapieno	1.00		Sfavorevole
Spinta terreno	1.00		Sfavorevole
PIAZZALE	1.00		Sfavorevole

Combinazione nº 8 - SLEF

Condizione	γ	Ψ	Effetto
Peso muro	1.00		Sfavorevole
Peso terrapieno	1.00		Sfavorevole
Spinta terreno	1.00		Sfavorevole
PIAZZALE	1.00		Sfavorevole

Combinazione nº 9 - SLEQ

Condizione	γ	Ψ	Effetto
Peso muro	1.00		Sfavorevole
Peso terrapieno	1.00		Sfavorevole
Spinta terreno	1.00		Sfavorevole
PIAZZALE	1.00		Sfavorevole

Combinazione nº 10 - HYD

Condizione	γ	Ψ	Effetto
Peso muro	1.00		Favorevole
Peso terrapieno	1.00		Favorevole
Spinta terreno	1.00		Sfavorevole
PIAZZALE	1.00		Sfavorevole

Combinazione nº 11 - UPL

Condizione	γ	Ψ	Effetto
Peso muro	0.90		Favorevole
Peso terrapieno	0.90		Favorevole
Spinta terreno	1.10		Sfavorevole
PIAZZALE	1.10		Sfavorevole

Dati sismici

Comune Ponte
Provincia Benevento
Regione Campania
Latitudine 41.213973
Longitudine 14.693540

Indice punti di interpolazione 31431 - 31653 - 31654 - 31432

Vita nominale 75 anni Classe d'uso III

Tipo costruzione Normali affollamenti

Vita di riferimento 113 anni

	Simbolo	U.M.		SLU	SLE
Accelerazione al suolo	a g	[m/s ²]		3.600	1.248
Accelerazione al suolo	a _g /g	[%]		0.367	0.127
Massimo fattore amplificazione spettro orizzontale	F0			2.347	2.332
Periodo inizio tratto spettro a velocità costante	Tc*			0.395	0.326
Tipo di sottosuolo - Coefficiente stratigrafico	Ss		В	1.055	1.200
Categoria topografica - Coefficiente amplificazione topografica	St		T1	1.000	

Stato limite	Coeff. di riduzione βm	kh	kv
Ultimo	0.310	12.002	6.001
Esercizio	0.240	3.663	1.831

Nel calcolo non è stato portato in conto il sisma verticale Forma diagramma incremento sismico **Stessa forma del diagramma statico**

Opzioni di calcolo

LESE s.c.a r.l.

PROGETTAZIONE:

Relazione di calcolo

Mandataria: Mandante:

SYSTRA S.A. SWS Engineering S.p.A. SYSTRA-SOTECNI S.p.A.

IF2R.2.2.E.ZZ.CL.OC.00.0.0.001.A

ITINERARIO NAPOLI - BARI RADDOPPIO TRATTA CANCELLO-BENEVENTO II LOTTO FUNZIONALE FRASSO TELESINO - VITULANO 2° SUBLOTTO TELESE – SAN LORENZO

PROGETTO ESECUTIVO

COMMESSA LOTTO CODIFICA

IF2R 22F77 CI

DOCUMENTO OC.00.0.0.001 FOGLIO

72 di 92

RE\/

Δ

Spinta

Metodo di calcolo della spinta Culmann Tipo di spinta Spinta attiva

NO Terreno a bassa permeabilità Superficie di spinta limitata NO

Capacità portante

Metodo di calcolo della portanza Hansen

Criterio di media calcolo del terreno equivalente (terreni stratificati) Ponderata

Criterio di riduzione per eccentricità della portanza **Bowles** Criterio di riduzione per rottura locale (punzonamento) Nessuna

Larghezza fondazione nel terzo termine della formula del carico limite (0.5BγN_γ) Larghezza ridotta (B')

Fattori di forma e inclinazione del carico Solo i fattori di inclinazione

Se la fondazione ha larghezza superiore a 2.0 m viene applicato il fattore di riduzione per comportamento a piastra

Stabilità globale

Metodo di calcolo della stabilità globale **Bishop**

Partecipazione spinta passiva terreno antistante 0.00 Partecipazione resistenza passiva dente di fondazione 50.00 Componente verticale della spinta nel calcolo delle sollecitazioni NO Considera terreno sulla fondazione di valle NO Considera spinta e peso acqua fondazione di valle NO Calcolo percorso filtrazione nella verifica a sifonamento Bligh

Spostamenti

Non è stato richiesto il calcolo degli spostamenti

<u>Cedimenti</u>

Non è stato richiesto il calcolo dei cedimenti

Specifiche per le verifiche nelle combinazioni allo Stato Limite Ultimo (SLU)

	SLU	Eccezionale
Coefficiente di sicurezza calcestruzzo a compressione	1.50	1.00
Coefficiente di sicurezza acciaio	1.15	1.00
Fattore di riduzione da resistenza cubica a cilindrica	0.83	0.83
Fattore di riduzione per carichi di lungo periodo	0.85	0.85
Coefficiente di sicurezza per la sezione	1.00	1.00

Specifiche per le verifiche nelle combinazioni allo Stato Limite di Esercizio (SLE)

Paramento e fondazione muro

Verifiche strutturali nelle combinazioni SLD non eseguite. Struttura in classe d'uso III o IV

Condizioni ambientali Aggressive Armatura ad aderenza migliorata ST

Verifica a fessurazione

Sensibilità armatura Poco sensibile

Metodo di calcolo aperture delle fessure Circ. Min. 252 (15/10/96) - NTC 2008 I Formulazione

Valori limite aperture delle fessure:

 $w_1 = 0.20$ $w_2 = 0.30$

 $w_3 = 0.40$

Verifica delle tensioni

Valori limite delle tensioni nei materiali:

Combinazione	Calcestruzzo	Acciaio
Rara	0.60 fck	0.80 fyk
Frequente	1.00 fck	1.00 fyk
Quasi permanente	0.45 fck	1.00 fyk

APPALTATORE: ITINERARIO NAPOLI - BARI RADDOPPIO TRATTA CANCELLO-BENEVENTO II LOTTO FUNZIONALE FRASSO TELESINO - VITULANO PROGETTAZIONE: 2° SUBLOTTO TELESE - SAN LORENZO Mandataria: Mandante: **PROGETTO ESECUTIVO** SYSTRA S.A. SWS Engineering S.p.A. SYSTRA-SOTECNI S.p.A. CODIFICA Relazione di calcolo COMMESSA LOTTO DOCUMENTO REV. **FOGLIO** IF2R.2.2.E.ZZ.CL.OC.00.0.0.001.A IF2R 2.2.E.ZZ CL OC.00.0.0.001 73 di 92 Α

Risultati per inviluppo

Spinta e forze

Simbologia adottata

Indice della combinazione

Ic A I V Cx, Cy Px, Py Tipo azione
Inclinazione della spinta, espressa in [°]

Valore dell'azione, espressa in [kN]
Componente in direzione X ed Y dell'azione, espressa in [kN]
Coordinata X ed Y del punto di applicazione dell'azione, espressa in [m]

Ic	A	V	I	Cx	Cy	Px	Py
		[kN]	[°]	[kN]	[kN]	[m]	[m]
1	Spinta statica	45.97	0.00	45.97	0.00	1.95	-2.87
	Peso/Inerzia muro			0.00	71.10/0.00	0.14	-2.78
	Peso/Inerzia terrapieno			0.00	135.92/0.00	0.98	-2.35
	Peso dell'acqua sulla fondazione di valle				0.00	0.00	0.00

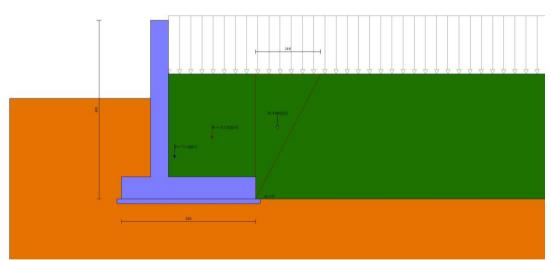


Fig. 3 - Cuneo di spinta (combinazione statica) (Combinazione nº 1)

APPALTATORE: ITINERARIO NAPOLI - BARI **RADDOPPIO TRATTA CANCELLO-BENEVENTO** II LOTTO FUNZIONALE FRASSO TELESINO - VITULANO PROGETTAZIONE: 2° SUBLOTTO TELESE - SAN LORENZO Mandataria: Mandante: **PROGETTO ESECUTIVO** SYSTRA-SOTECNI S.p.A. SYSTRA S.A. SWS Engineering S.p.A. CODIFICA Relazione di calcolo COMMESSA LOTTO DOCUMENTO REV. **FOGLIO** IF2R.2.2.E.ZZ.CL.OC.00.0.0.001.A IF2R 2.2.E.ZZ OC.00.0.0.001 74 di 92 CI Α

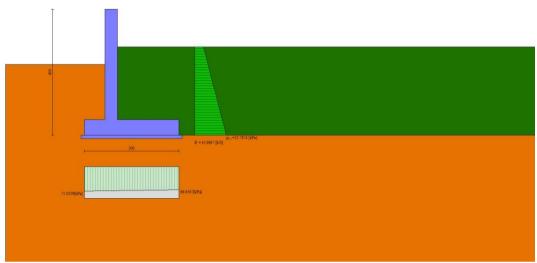


Fig. 4 - Diagramma delle pressioni (combinazione statica) (Combinazione nº 1)

Risultanti globali

Simbologia adottata

Indice/Tipo combinazione

Componente normale al piano di posa, espressa in [kN] Componente parallela al piano di posa, espressa in [kN]

Cmb N T Mr Ms Momento ribaltante, espresso in [kNm] Momento stabilizzante, espresso in [kNm] ecc Eccentricità risultante, espressa in [m]

Ic	N	Т	Mr	Ms	ecc
	[kN]	[kN]	[kNm]	[kNm]	[m]
1 - STR (A1-M1-R3)	207.01	45.97	52.12	359.57	0.015
2 - STR (A1-M1-R3)	195.31	67.85	83.51	335.87	0.208
3 - GEO (A2-M2-R2)	195.31	44.82	50.81	335.87	0.040
4 - GEO (A2-M2-R2)	195.31	67.85	83.51	335.87	0.208
5 - EQU	207.01	58.26	66.05	359.57	0.082
6 - EQU	195.31	67.85	83.51	335.87	0.208
7 - SLER	195.31	35.36	40.09	335.87	-0.014
8 - SLEF	195.31	35.36	40.09	335.87	-0.014
9 - SLEQ	195.31	35.36	40.09	335.87	-0.014
10 - HYD	195.31	35.36	40.09	335.87	-0.014
11 - UPL	183.58	49.30	55.89	318.08	0.072

Verifiche geotecniche

Quadro riassuntivo coeff. di sicurezza calcolati

Simbologia adottata

Cmb Indice/Tipo combinazione

S FSsco Sisma (H: componente orizzontale, V: componente verticale) Coeff. di sicurezza allo scorrimento

Coeff. di sicurezza al ribaltamento Coeff. di sicurezza a carico limite Coeff. di sicurezza a stabilità globale FS_RIB FSQLIM Coeff. di sicurezza a sifonamento Coeff. di sicurezza a sollevamento **FS**_{HYD} FSUPL

Cmb	Sismica	FS sco	FS RIB	FSQLIM	FS STAB	FS HYD	FSUPL
1 - STR (A1-M1-R3)		2.924		25.590			
2 - STR (A1-M1-R3)	Н	1.869		15.488			
3 - GEO (A2-M2-R2)					4.915		

APPALTATORE: LESE s.c.a r.l.

PROGETTAZIONE:

Mandataria: Mandante:

SYSTRA S.A. SWS Engineering S.p.A. SYSTRA-SOTECNI S.p.A.

Relazione di calcolo

IF2R.2.2.E.ZZ.CL.OC.00.0.0.001.A

ITINERARIO NAPOLI - BARI **RADDOPPIO TRATTA CANCELLO-BENEVENTO** II LOTTO FUNZIONALE FRASSO TELESINO - VITULANO 2° SUBLOTTO TELESE - SAN LORENZO

PROGETTO ESECUTIVO

COMMESSA LOTTO CODIFICA DOCUMENTO REV. **FOGLIO** 75 di 92 IF2R 22F77 CI OC 00 0 0 001 Δ

Cmb	Sismica	FSsco	FSRIB	FSOLIM	FSSTAB	FSHYD	FSUPL
CIIID	Sistilica	Fasco	LOKIR	LЭÓTIM		FOHYD	FOUPL
4 - GEO (A2-M2-R2)	H				3.583		
5 - EQU			5.444				
6 - EQU	Н		4.022				
10 - HYD						100.000	
11 - UPL							100.000

Verifica a scorrimento fondazione

Simbologia adottata

Indice combinazione

Resistenza allo scorrimento per attrito, espresso in [kN] Resistenza passiva terreno antistante, espresso in [kN] Rsa Rpt

Rps Rp Resistenza passiva sperone, espresso in [kN] Resistenza a carichi orizzontali pali (solo per fondazione mista), espresso in [kN] Resistenza a carichi orizzontali tiranti (solo se presenti), espresso in [kN] Resistenza allo scorrimento (somma di Rsa+Rpt+Rps+Rp), espresso in [kN] R T Carico parallelo al piano di posa, espresso in [kN]

FS Fattore di sicurezza (rapporto R/T)

n°	Rsa	Rpt	Rps	Rp	Rt	R	Т	FS
	[kN]	[kN]	[kN]	[kN]	[kN]	[kN]	[kN]	
2 - STR (A1-M1-R3) H	126.84	0.00	0.00			126.84	67.85	1.869

Verifica a carico limite

Simbologia adottata

Indice combinazione
Carico normale totale al piano di posa, espresso in [kN]

Qu Qd FS carico limite del terreno, espresso in [kN]

Portanza di progetto, espresso in [kN] Fattore di sicurezza (rapporto tra il carico limie e carico agente al piano di posa)

n°	N	Qu	Qd	FS
	[kN]	[kN]	[kN]	
2 - STR (A1-M1-R3) H	195.31	3025.09	2160.78	15.488

Dettagli calcolo portanza

Simbologia adottata

Indice combinazione n° Nc, Nq, Nγ ic, iq, iγ Fattori di capacità portante Fattori di inclinazione del carico Fattori di profondità del piano di posa Fattori di inclinazione del profilo topografico dc, dq, d γ gc, gq, gγ bc, bq, bγ Fattori di inclinazione del piano di posa sc, sq, sγ Fattori di forma della fondazione

Fattori di riduzione per punzonamento secondo Vesic pc, pq, pγ

Fattore di riduzione capacità portante per eccentricità secondo Meyerhof Indici di rigidezza per punzonamento secondo Vesic

Ir, Irc

Fattori per tener conto dell'effetto piastra. Per fondazioni che hanno larghezza maggiore di 2 m, il terzo termine della formula trinomia 0.5ByN, viene

B' H Larghezza fondazione ridotta, espresso in [m] Altezza del cuneo di rottura, espresso in [m] Peso di volume del terreno medio, espresso in [kN/mc] Angolo di attrito del terreno medio, espresso in [°]
 Coesione del terreno medio, espresso in [kPa]
Per i coeff. che in tabella sono indicati con il simbolo '--' sono coeff. non presenti nel metodo scelto (Hansen).

n°	Nc Nq Nγ	ic iq iγ	dc dq dγ	gc gq gy	bc bq by	sc sq sγ	pc pq pγ	Ir	Irc	Re	ľγ
2	61.352	0.372	1.300	1.000	1.000						0.956
	48.933	0.385	1.173	1.000	1.000						
	56.174	0.248	1.000	1.000	1.000						

n°	D	B'	Н	γ	ф	С
	[m]	[m]	[m]	[°]	[kN/mc]	[kPa]
2	2.25	2.58	3.08	10.19	38.00	0

PROGETTAZIONE:

Mandataria: Mandante:

SYSTRA S.A. SWS Engineering S.p.A. SYSTRA-SOTECNI S.p.A.

Relazione di calcolo

IF2R.2.2.E.ZZ.CL.OC.00.0.0.001.A

ITINERARIO NAPOLI - BARI **RADDOPPIO TRATTA CANCELLO-BENEVENTO** II LOTTO FUNZIONALE FRASSO TELESINO - VITULANO 2° SUBLOTTO TELESE - SAN LORENZO

PROGETTO ESECUTIVO

COMMESSA LOTTO CODIFICA DOCUMENTO REV. **FOGLIO** OC.00.0.0.001 IF2R 2.2.E.ZZ 76 di 92 CI Α

Simbologia adottata

Indice combinazione Momento stabilizzante, espresso in [kNm]

Mr Momento ribaltante, espresso in [kNm]
FS Fattore di sicurezza (rapporto tra momento stabilizzante e momento ribaltante)
La verifica viene eseguita rispetto allo spigolo inferiore esterno della fondazione

	n°	Ms	Mr	FS
		[kNm]	[kNm]	
6 - EOU H		335.87	83.51	4.022

Verifica stabilità globale muro + terreno

Simbologia adottata

Indice/Tipo combinazione

Centro superficie di scorrimento, espresso in [m]

Ic C R FS Raggio, espresso in [m]

Fattore di sicurezza

Ic	С	R	FS
	[m]	[m]	
4 - GEO (A2-M2-R2) H	0.00; 4.50	8.73	3.583

Dettagli strisce verifiche stabilità

Simbologia adottata

Le ascisse X sono considerate positive verso monte
Le ordinate Y sono considerate positive verso l'alto
Origine in testa al muro (spigolo contro terra)
W peso della striscia espresso in [kN]
Oy carico sulla striscia espresso in [kN]

Qy Qf

carico acqua sulla striscia espresso in [kN] angolo fra la base della striscia e l'orizzontale espresso in [°] (positivo antiorario) α

angolo d'attrito del terreno lungo la base della striscia

coesione del terreno lungo la base della striscia espressa in [kPa]

larghezza della striscia espressa in [m]

pressione neutra lungo la base della striscia espressa in [kPa] Resistenza al taglio fornita dai tiranti in direzione X ed Y espressa in [kPa] u Tx; Ty

n°	W	Qy	Qf	b	α	ф	С	u	Tx; Ty
	[kN]	[kN]	[kN]	[m]	<i>[°]</i>	<i>[°]</i>	[kPa]	[kPa]	[kN]
1	2.56	10.19	0.00	6.63 - 0.51	46.110	35.000	0	0.0	
2	7.36	10.19	0.00	0.51	42.222	35.000	0	0.0	
3	11.51	10.19	0.00	0.51	37.848	35.000	0	0.0	
4	15.07	10.19	0.00	0.51	33.722	35.000	0	0.0	
5	18.12	10.19	0.00	0.51	29.787	35.000	0	0.0	
6	20.74	10.19	0.00	0.51	26.001	35.000	0	0.0	
7	22.95	10.19	0.00	0.51	22.334	35.000	0	0.0	
8	24.80	10.19	0.00	0.51	18.762	35.000	0	0.0	
9	26.31	10.19	0.00	0.51	15.265	35.000	0	0.0	
10	29.89	10.19	0.00	0.51	11.825	38.000	0	0.4	
11	29.85	10.19	0.00	0.51	8.427	38.000	0	1.3	
12	30.47	10.19	0.00	0.51	5.060	38.000	0	1.9	
13	30.77	10.19	0.00	0.51	1.710	38.000	0	2.2	
14	32.07	0.11	0.00	0.51	-1.634	38.000	0	2.2	
15	25.15	0.00	0.00	0.51	-4.984	38.000	0	1.9	
16	23.24	0.00	0.00	0.51	-8.351	38.000	0	1.3	
17	22.22	0.00	0.00	0.51	-11.747	38.000	0	0.4	
18	21.02	0.00	0.00	0.51	-15.186	38.000	0	0.0	
19	19.52	0.00	0.00	0.51	-18.683	38.000	0	0.0	
20	17.67	0.00	0.00	0.51	-22.253	38.000	0	0.0	
21	15.47	0.00	0.00	0.51	-25.917	38.000	0	0.0	
22	12.87	0.00	0.00	0.51	-29.700	38.000	0	0.0	
23	9.82	0.00	0.00	0.51	-33.631	38.000	0	0.0	
24	6.27	0.00	0.00	0.51	-37.753	38.000	0	0.0	
25	2.14	0.00	0.00	-6.11 - 0.51	-41.539	38.000	0	0.0	

APPALTATORE: TELESE S.c.a r.l. ITINERARIO NAPOLI - BARI **RADDOPPIO TRATTA CANCELLO-BENEVENTO** II LOTTO FUNZIONALE FRASSO TELESINO - VITULANO PROGETTAZIONE: 2° SUBLOTTO TELESE - SAN LORENZO Mandataria: Mandante: **PROGETTO ESECUTIVO** SYSTRA S.A. SYSTRA-SOTECNI S.p.A. SWS Engineering S.p.A. CODIFICA Relazione di calcolo COMMESSA LOTTO DOCUMENTO REV. **FOGLIO** IF2R.2.2.E.ZZ.CL.OC.00.0.0.001.A IF2R 2.2.E.ZZ OC.00.0.0.001 77 di 92 CI Α

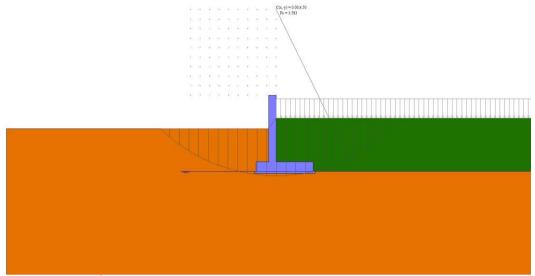


Fig. 5 - Stabilità fronte di scavo - Cerchio critico (Combinazione nº 4)

Verifica a sifonamento

Simbologia adottata

Ic ΔH Indice della combinazione perdita di carico, espressa in [m] Lunghezza di filtrazione, espressa in [m] γm ic Peso galleggiamento medio, espressa in [kN/mc]

gradiente idraulico critico

gradiente idraulico di efflusso Fattore di sicurezza a sifonamento (rapporto tra ic/ie) ie FS

Ic	ΔΗ	L	γm	ic	İE	FS
	[m]	[m]	[kN/mc]			
10	0.00	0.00	0.0000	0.000	0.000	100.000

Verifica a sollevamento

Simbologia adottata

As Ai Rp FS Azione stabilizzante, espressa in [kN] Azione instabilizzante, espressa in [kN] Resistenza di progetto, espressa in [kN]

Fattore di sicurezza a sollevamento (rapporto tra As/Ai)

Ic	As	Ai	FS
	[kN]	[kN]	
11	183.58	0.00	100.000

Sollecitazioni

Elementi calcolati a trave

Simbologia adottata

Sforzo normale, espresso in [kN]. Positivo se di compressione.

Taglio, espresso in [kN]. Positivo se diretto da monte verso valle Momento, espresso in [kNm]. Positivo se tende le fibre contro terra (a monte)

Paramento

n°	Х	Nmin	Nmax	Tmin	Tmax	Mmin	M _{max}
	[m]	[kN]	[kN]	[kN]	[kN]	[kNm]	[kNm]

APPALTATORE: TELESE s.c.a r.l

Consorzio Telese Società Consortile a Responsabilità Limitata

PROGETTAZIONE:

Mandataria: Mandante:

SYSTRA S.A. SWS Engineering S.p.A. SYSTRA-SOTECNI S.p.A.

Relazione di calcolo

IF2R.2.2.E.ZZ.CL.OC.00.0.0.001.A

ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA CANCELLO-BENEVENTO II LOTTO FUNZIONALE FRASSO TELESINO – VITULANO 2° SUBLOTTO TELESE – SAN LORENZO

PROGETTO ESECUTIVO

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 IF2R
 2.2.E.ZZ
 CL
 OC.00.0.0.001
 A
 78 di 92

n°	Х	Nmin	Nmax	Tmin	Tmax	Mmin	M _{max}
	[m]	[kN]	[kN]	[kN]	[kN]	[kNm]	[kNm]
1	0.00	0.00	0.00	0.00	0.00	0.00	0.00
2	-0.10	0.98	0.98	0.00	0.12	0.00	0.01
3	-0.20	1.96	1.96	0.00	0.24	0.00	0.02
4	-0.30	2.94	2.94	0.00	0.35	0.00	0.05
5	-0.40	3.92	3.92	0.00	0.47	0.00	0.09
6	-0.50	4.90	4.90	0.00	0.59	0.00	0.15
7	-0.60	5.88	5.88	0.00	0.71	0.00	0.21
8	-0.70	6.86	6.86	0.00	0.82	0.00	0.29
9	-0.80	7.85	7.85	0.00	0.94	0.00	0.38
10	-0.90	8.83	8.83	0.00	1.06	0.00	0.48
11	-1.00	9.81	9.81	0.00	1.18	0.00	0.59
12	-1.10	10.79	10.79	0.00	1.29	0.00	0.71
13	-1.20	11.77	11.77	0.00	1.41	0.00	0.85
14	-1.30	12.75	12.75	0.57	2.11	0.03	1.02
15	-1.40	13.73	13.73	1.19	2.89	0.12	1.27
16	-1.50	14.71	14.71	1.86	3.74	0.27	1.60
17	-1.60	15.69	15.69	2.58	4.67	0.49	2.02
18	-1.70	16.67	16.67	3.36	5.67	0.79	2.54
19	-1.80	17.65	17.65	4.18	6.75	1.16	3.16
20	-1.90	18.63	18.63	5.06	7.91	1.62	3.89
21	-2.00	19.61	19.61	5.99	9.15	2.18	4.74
22	-2.10	20.59	20.59	6.97	10.46	2.82	5.72
23	-2.20	21.57	21.57	8.00	11.85	3.57	6.84
24	-2.30	22.56	22.56	9.08	13.31	4.42	8.10
25	-2.40	23.54	23.54	10.21	14.86	5.39	9.50
26	-2.50	24.52	24.52	11.40	16.47	6.47	11.07
27	-2.60	25.50	25.50	12.64	18.17	7.67	12.80
28	-2.70	26.48	26.48	13.92	19.94	9.00	14.71
29	-2.80	27.46	27.46	15.26	21.79	10.46	16.79
30	-2.90	28.44	28.44	16.66	23.72	12.05	19.07
31	-3.00	29.42	29.42	18.10	25.72	13.79	21.54
32	-3.10	30.40	30.40	19.59	27.80	15.67	24.21
33	-3.20	31.38	31.38	21.14	29.96	17.71	27.10
34	-3.30	32.36	32.36	22.74	32.19	19.90	30.21
35	-3.40	33.34	33.34	24.39	34.50	22.26	33.54
36	-3.50	34.32	34.32	26.09	36.88	24.78	37.11

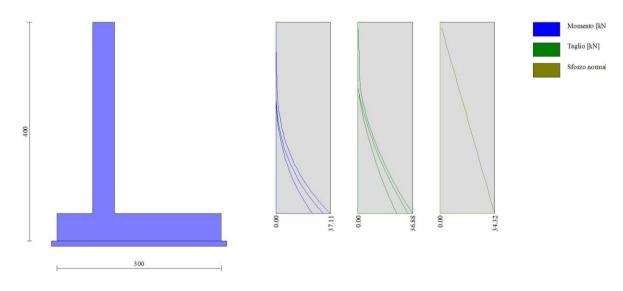


Fig. 6 - Paramento

n°	Х	Nmin	Nmax	Tmin	Tmax	Mmin	M _{max}
	[m]	[kN]	[kN]	[kN]	[kN]	[kNm]	[kNm]
1	-1.05	0.00	0.00	0.00	0.00	0.00	0.00
2	-0.96	0.00	0.00	4.74	7.34	0.22	0.34
3	-0.86	0.00	0.00	9.49	14.53	0.88	1.36

TELESE S.c.a r.l.

Consorzio Telese Società Consortile a Responsabilità Limitata

PROGETTAZIONE:

Mandataria: Mandante:

SYSTRA S.A. SWS Engineering S.p.A. SYSTRA-SOTECNI S.p.A.

Relazione di calcolo

IF2R.2.2.E.ZZ.CL.OC.00.0.0.001.A

ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA CANCELLO-BENEVENTO II LOTTO FUNZIONALE FRASSO TELESINO – VITULANO 2° SUBLOTTO TELESE – SAN LORENZO

PROGETTO ESECUTIVO

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 IF2R
 2.2.E.ZZ
 CL
 OC.00.0.0.001
 A
 79 di 92

n°	Х	Nmin	Nmax	Tmin	Tmax	M _{min}	M _{max}
	[m]	[kN]	[kN]	[kN]	[kN]	[kNm]	[kNm]
4	-0.77	0.00	0.00	14.25	21.56	1.98	3.04
5	-0.68	0.00	0.00	19.02	28.44	3.53	5.36
6	-0.59	0.00	0.00	23.80	35.16	5.51	8.31
7	-0.49	0.00	0.00	28.59	41.72	7.95	11.88
8	-0.40	0.00	0.00	33.40	48.13	10.82	16.06
9	0.00	0.00	0.00	-52.22	-19.89	-51.76	-18.62
10	0.10	0.00	0.00	-49.73	-18.78	-46.79	-16.73
11	0.20	0.00	0.00	-47.23	-17.68	-42.15	-14.95
12	0.29	0.00	0.00	-44.72	-16.60	-38.40	-13.28
13	0.39	0.00	0.00	-42.19	-15.53	-34.73	-11.72
14	0.49	0.00	0.00	-39.65	-14.47	-31.15	-10.25
15	0.59	0.00	0.00	-37.10	-13.42	-27.68	-8.89
16	0.68	0.00	0.00	-34.53	-12.38	-24.34	-7.64
17	0.78	0.00	0.00	-32.02	-11.36	-21.14	-6.48
18	0.88	0.00	0.00	-30.30	-10.35	-18.10	-5.42
19	0.98	0.00	0.00	-28.40	-9.35	-15.24	-4.46
20	1.07	0.00	0.00	-26.33	-8.36	-12.57	-3.60
21	1.17	0.00	0.00	-24.09	-7.38	-10.11	-2.83
22	1.27	0.00	0.00	-21.68	-6.42	-7.88	-2.16
23	1.37	0.00	0.00	-19.10	-5.47	-5.89	-1.58
24	1.46	0.00	0.00	-16.34	-4.53	-4.16	-1.09
25	1.56	0.00	0.00	-13.42	-3.60	-2.71	-0.70
26	1.66	0.00	0.00	-10.32	-2.68	-1.55	-0.39
27	1.76	0.00	0.00	-7.05	-1.77	-0.70	-0.17
28	1.85	0.00	0.00	-3.61	-0.88	-0.18	-0.04
29	1.95	0.00	0.00	0.00	0.00	0.00	0.00

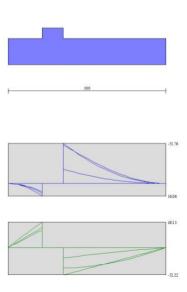


Fig. 7 - Fondazione

Verifiche strutturali

Verifiche a flessione

Elementi calcolati a trave

Simbologia adottata n° indice sezione

n° indice sezione
Y ordinata sezione espressa in [m]
B larghezza sezione espresso in [cm]
H altezza sezione espresso in [cm]
Afi area ferri inferiori espresso in [cmq]
Afs area ferri superiori espressa in [cmq]
M momento agente espressa in [kNm]
N sforzo normale agente espressa in [kN]
Mu momento ultimi espresso in [kNm]

TELESE S.c.a r.l.

Consorzio Telese Società Consortile a Responsabilità Limitata

PROGETTAZIONE:

Mandataria: Mandante:

SYSTRA S.A. SWS Engineering S.p.A. SYSTRA-SOTECNI S.p.A.

Relazione di calcolo

IF2R.2.2.E.ZZ.CL.OC.00.0.0.001.A

ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA CANCELLO-BENEVENTO II LOTTO FUNZIONALE FRASSO TELESINO - VITULANO 2° SUBLOTTO TELESE – SAN LORENZO

PROGETTO ESECUTIVO

CODIFICA DOCUMENTO REV. FOGLIO COMMESSA LOTTO OC.00.0.0.001 80 di 92 IF2R 2.2.E.ZZ CL Α

Nu FS

sforzo normale ultimo espressa in [kN] fattore di sicurezza (rapporto tra sollecitazione ultima e sollecitazione agente)

Paramento

n°	В	Н	Afi	Afs	М	N	Mu	Nu	FS
	[cm]	[cm]	[cmq]	[cmq]	[kNm]	[kN]	[kNm]	[kN]	
1	100	40	11.31	11.31	0.00	0.00	0.00	0.00	100000.000
2	100	40	11.31	11.31	0.00	0.00	0.00	0.00	100000.000
3	100	40	11.31	11.31	0.02	1.96	80.23	6684.94	3408.316
4	100	40	11.31	11.31	0.05	2.94	120.09	6670.39	2267.267
5	100	40	11.31	11.31	0.09	3.92	159.77	6655.91	1696.759
6	100	40	11.31	11.31	0.15	4.90	199.28	6641.50	1354.467
7	100	40	11.31	11.31	0.21	5.88	232.97	6470.24	1099.617
8	100	40	11.31	11.31	0.29	6.86	262.39	6246.24	909.899
9	100	40	11.31	11.31	0.38	7.85	289.65	6033.26	769.014
10	100	40	11.31	11.31	0.48	8.83	314.65	5825.77	660.060
11	100	40	11.31	11.31	0.59	9.81	337.32	5620.96	573.170
12	100	40	11.31	11.31	0.71	10.79	357.94	5422.33	502.650
13	100	40	11.31	11.31	0.85	11.77	376.24	5224.51	443.953
14	100	40	11.31	11.31	1.02	12.75	398.43	4965.38	389.477
15	100	40	11.31	11.31	1.27	13.73	425.81	4595.34	334.705
16	100	40	11.31	11.31	1.60	14.71	452.14	4149.58	282.089
17	100	40	11.31	11.31	2.02	15.69	473.75	3675.34	234.234
18	100	40	11.31	11.31	2.54	16.67	489.67	3215.38	192.866
19	100	40	11.31	11.31	3.16	17.65	501.01	2799.03	158.565
20	100	40	11.31	11.31	3.89	18.63	509.81	2440.49	130.977
21	100	40	11.31	11.31	4.74	19.61	516.74	2136.08	108.908
22	100	40	11.31	11.31	5.72	20.59	522.78	1880.72	91.322
23	100	40	11.31	11.31	6.84	21.57	528.01	1665.64	77.202
24	100	40	11.31	11.31	8.10	22.56	532.45	1483.27	65.760
25	100	40	11.31	11.31	9.50	23.54	536.23	1327.86	56.418
26	100	40	11.31	11.31	11.07	24.52	538.99	1193.65	48.687
27	100	40	11.31	11.31	12.80	25.50	541.33	1078.14	42.284
28	100	40	11.31	11.31	14.71	26.48	543.35	978.23	36.944
29	100	40	11.31	11.31	16.79	27.46	545.11	891.32	32.460
30	100	40	22.62	22.62	19.07	28.44	777.45	1159.54	40.772
31	100	40	11.31	11.31	21.54	29.42	548.00	748.51	25. 44 2
32	100	40	11.31	11.31	24.21	30.40	549.19	689.50	22.680
33	100	40	11.31	11.31	27.10	31.38	550.25	637.15	20.303
34	100	40	11.31	11.31	30.21	32.36	551.20	590.50	18.246
35	100	40	11.31	11.31	33.54	33.34	552.04	5 4 8.77	16.458
36	100	40	11.31	11.31	37.11	34.32	549.20	507.97	14.799

n°	В	н	Afi	Afs	М	N	Mu	Nu	FS
	[cm]	[cm]	[cmq]	[cmq]	[kNm]	[kN]	[kNm]	[kN]	
1	100	50	11.31	11.31	0.00	0.00	0.00	0.00	100000.000
2	100	50	11.31	11.31	0.34	0.00	193.04	0.00	564.208
3	100	50	11.31	11.31	1.36	0.00	193.04	0.00	142.052
4	100	50	11.31	11.31	3.04	0.00	193.04	0.00	63.585
5	100	50	11.31	11.31	5.36	0.00	193.04	0.00	36.024
6	100	50	11.31	11.31	8.31	0.00	193.04	0.00	23.222
7	100	50	11.31	11.31	11.88	0.00	193.04	0.00	16.244
8	100	50	11.31	11.31	16.06	0.00	193.04	0.00	12.022
9	100	50	11.31	11.31	-51.76	0.00	-193.04	0.00	3.729
10	100	50	11.31	11.31	-46.79	0.00	-193.04	0.00	4.126
11	100	50	11.31	11.31	-42.15	0.00	-193.04	0.00	4.580
12	100	50	11.31	11.31	-38.40	0.00	-193.04	0.00	5.027
13	100	50	11.31	11.31	-34.73	0.00	-193.04	0.00	5.558
14	100	50	11.31	11.31	-31.15	0.00	-193.04	0.00	6.197
15	100	50	11.31	11.31	-27.68	0.00	-193.04	0.00	6.973
16	100	50	11.31	11.31	-24.34	0.00	-193.04	0.00	7.931
17	100	50	11.31	11.31	-21.14	0.00	-193.04	0.00	9.131
18	100	50	11.31	11.31	-18.10	0.00	-193.04	0.00	10.664
19	100	50	11.31	11.31	-15.24	0.00	-193.04	0.00	12.668
20	100	50	11.31	11.31	-12.57	0.00	-193.04	0.00	15.358
21	100	50	11.31	11.31	-10.11	0.00	-193.04	0.00	19.095
22	100	50	11.31	11.31	-7.88	0.00	-193.04	0.00	24.507
23	100	50	11.31	11.31	-5.89	0.00	-193.04	0.00	32.789
24	100	50	11.31	11.31	-4.16	0.00	-193.04	0.00	46.424
25	100	50	11.31	11.31	-2.71	0.00	-193.04	0.00	71.342
26	100	50	11.31	11.31	-1.55	0.00	-193.04	0.00	124.773
27	100	50	11.31	11.31	-0.70	0.00	-193.04	0.00	276.258
28	100	50	11.31	11.31	-0.18	0.00	-193.04	0.00	1087.674
29	100	50	11.31	11.31	0.00	0.00	0.00	0.00	100000.000

PROGETTAZIONE:

Mandataria: Mandante:

SYSTRA S.A. SWS Engineering S.p.A. SYSTRA-SOTECNI S.p.A.

Relazione di calcolo

IF2R.2.2.E.ZZ.CL.OC.00.0.0.001.A

ITINERARIO NAPOLI - BARI **RADDOPPIO TRATTA CANCELLO-BENEVENTO** II LOTTO FUNZIONALE FRASSO TELESINO - VITULANO 2° SUBLOTTO TELESE - SAN LORENZO

PROGETTO ESECUTIVO

CODIFICA DOCUMENTO COMMESSA LOTTO REV. **FOGLIO** IF2R 2.2.E.ZZ OC.00.0.0.001 81 di 92 CI Α

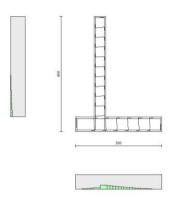


Fig. 8 - Paramento (Inviluppo)

Verifiche a taglio

Simbologia adottata

indice sezione

Is Y B H ordinata sezione espressa in [m] larghezza sezione espresso in [cm] altezza sezione espressa in [cm] A_{sw} cotgθ V_{Rcd}

antezza sezione espressa in [cm]
area ferri a taglio espresso in [cmq]
inclinazione delle bielle compresse, \(\theta\) inclinazione dei puntoni di calcestruzzo
resistenza di progetto a 'taglio compressione' espressa in [kN]
resistenza di progetto a 'taglio trazione' espressa in [kN]
resistenza di progetto a taglio espresso in [kN]. Per elementi con armature trasversali resistenti al taglio (Asw>0.0) VRd=min(VRcd, VRsd).

taglio agente espressa in [kN]

V_{Rsd} V_{Rd} T FS fattore di sicurezza (rapporto tra sollecitazione resistente e sollecitazione agente)

Paramento

n°	В	Н	Asw	cotθ	VRcd	VRsd	V Rd	Т	FS
	[cm]	[cm]	[cmq]		[kN]	[kN]	[kN]	[kN]	
1	100	40	0.00		0.00	0.00	199.96	0.00	100.000
2	100	40	0.00		0.00	0.00	200.09	0.12	1699.934
3	100	40	0.00		0.00	0.00	200.22	0.24	850.529
4	100	40	0.00		0.00	0.00	200.35	0.35	567.394
5	100	40	0.00		0.00	0.00	200.49	0.47	425.827
6	100	40	0.00		0.00	0.00	200.62	0.59	340.887
7	100	40	0.00		0.00	0.00	200.75	0.71	284.260
8	100	40	0.00		0.00	0.00	200.88	0.82	243.812
9	100	40	0.00		0.00	0.00	201.02	0.94	213.476
10	100	40	0.00		0.00	0.00	201.15	1.06	189.881
11	100	40	0.00		0.00	0.00	201.28	1.18	171.006
12	100	40	0.00		0.00	0.00	201.41	1.29	155.562
13	100	40	0.00		0.00	0.00	201.55	1.41	142.692
14	100	40	0.00		0.00	0.00	201.68	2.11	95.546
15	100	40	0.00		0.00	0.00	201.81	2.89	69.916
16	100	40	0.00		0.00	0.00	201.94	3.74	54.009
17	100	40	0.00		0.00	0.00	202.07	4.67	43.292
18	100	40	0.00		0.00	0.00	202.21	5.67	35.646
19	100	40	0.00		0.00	0.00	202.34	6.75	29.957
20	100	40	0.00		0.00	0.00	202.47	7.91	25.588
21	100	40	0.00		0.00	0.00	202.60	9.15	22.147
22	100	40	0.00		0.00	0.00	202.74	10.46	19.382
23	100	40	0.00		0.00	0.00	202.87	11.85	17.122
24	100	40	0.00		0.00	0.00	203.00	13.31	15.247
25	100	40	0.00		0.00	0.00	203.13	14.86	13.673

TELESE S.c.a r.l.

Consorzio Telese Società Consortile a Responsabilità Limitata

PROGETTAZIONE:

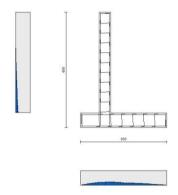
Mandataria: Mandante:

SYSTRA S.A. SWS Engineering S.p.A. SYSTRA-SOTECNI S.p.A.

Relazione di calcolo

IF2R.2.2.E.ZZ.CL.OC.00.0.0.001.A

ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA CANCELLO-BENEVENTO II LOTTO FUNZIONALE FRASSO TELESINO – VITULANO 2° SUBLOTTO TELESE – SAN LORENZO


PROGETTO ESECUTIVO

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 IF2R
 2.2.E.ZZ
 CL
 OC.00.0.0.001
 A
 82 di 92

n°	В	Н	Asw	cotθ	VRcd	V Rsd	V Rd	Т	FS
	[cm]	[cm]	[cmq]		[kN]	[kN]	[kN]	[kN]	
26	100	40	0.00		0.00	0.00	203.27	16.47	12.338
27	100	40	0.00		0.00	0.00	203.40	18.17	11.194
28	100	40	0.00		0.00	0.00	203.53	19.94	10.206
29	100	40	0.00		0.00	0.00	203.66	21.79	9.346
30	100	40	0.00		0.00	0.00	255.77	23.72	10.784
31	100	40	0.00		0.00	0.00	203.93	25.72	7.929
32	100	40	0.00		0.00	0.00	204.06	27.80	7.340
33	100	40	0.00		0.00	0.00	204.19	29.96	6.817
34	100	40	0.00		0.00	0.00	204.33	32.19	6.348
35	100	40	0.00		0.00	0.00	204.46	34.50	5.927
36	100	40	0.00		0.00	0.00	204.59	36.88	5.547

n°	В	Н	Asw	cotθ	V _{Rcd}	V _{Rsd}	VRd	Т	FS
	[cm]	[cm]	[cmq]		[kN]	[kN]	[kN]	[kN]	
1	100	50	0.00		0.00	0.00	234.04	0.00	100.000
2	100	50	0.00		0.00	0.00	234.04	-7.34	31.873
3	100	50	0.00		0.00	0.00	234.04	-14.53	16.107
4	100	50	0.00		0.00	0.00	234.04	-21.56	10.854
5	100	50	0.00		0.00	0.00	234.04	-28.44	8.230
6	100	50	0.00		0.00	0.00	234.04	-35.16	6.657
7	100	50	0.00		0.00	0.00	234.04	-41.72	5.609
8	100	50	0.00		0.00	0.00	234.04	-48.13	4.862
9	100	50	0.00		0.00	0.00	234.04	-52.22	4.482
10	100	50	0.00		0.00	0.00	234.04	-49.73	4.706
11	100	50	0.00		0.00	0.00	234.04	-47.23	4.955
12	100	50	0.00		0.00	0.00	234.04	-44.72	5.234
13	100	50	0.00		0.00	0.00	234.04	-42.19	5.547
14	100	50	0.00		0.00	0.00	234.04	-39.65	5.902
15	100	50	0.00		0.00	0.00	234.04	-37.10	6.308
16	100	50	0.00		0.00	0.00	234.04	-34.53	6.777
17	100	50	0.00		0.00	0.00	234.04	-32.02	7.309
18	100	50	0.00		0.00	0.00	234.04	-30.30	7.726
19	100	50	0.00		0.00	0.00	234.04	-28.40	8.241
20	100	50	0.00		0.00	0.00	234.04	-26.33	8.889
21	100	50	0.00		0.00	0.00	234.04	-24.09	9.715
22	100	50	0.00		0.00	0.00	234.04	-21.68	10.795
23	100	50	0.00		0.00	0.00	234.04	-19.10	12.255
24	100	50	0.00		0.00	0.00	234.04	-16.34	14.320
25	100	50	0.00		0.00	0.00	234.04	-13.42	17.442
26	100	50	0.00		0.00	0.00	234.04	-10.32	22.676
27	100	50	0.00		0.00	0.00	234.04	-7.05	33.187
28	100	50	0.00		0.00	0.00	234.04	-3.61	64.798
29	100	50	0.00		0.00	0.00	234.04	0.00	100.000

APPALTATORE: LESE S.c.a r.l.

PROGETTAZIONE:

Mandataria: Mandante:

SYSTRA S.A. SYSTRA-SOTECNI S.p.A. SWS Engineering S.p.A.

Relazione di calcolo

IF2R.2.2.E.ZZ.CL.OC.00.0.0.001.A

ITINERARIO NAPOLI - BARI **RADDOPPIO TRATTA CANCELLO-BENEVENTO** II LOTTO FUNZIONALE FRASSO TELESINO - VITULANO 2° SUBLOTTO TELESE - SAN LORENZO

PROGETTO ESECUTIVO

COMMESSA LOTTO CODIFICA DOCUMENTO REV. **FOGLIO** IF2R 2.2.E.ZZ OC.00.0.0.001 83 di 92 CI Α

Fig. 9 - Paramento (Inviluppo)

Verifica delle tensioni

Simbologia adottata

indice sezione

n° Y B H Afi indice sezione ordinata sezione, espressa in [m] larghezza sezione, espresso in [cm] altezza sezione, espresso in [cm] area ferri inferiori, espresso in [cmq] area ferri superiori, espresso in [cmq] area ferri superiori, espresso in [cmq] Afs M N momento agente, espressa in [kNm] sforzo normale agente, espressa in [kN] tensione di compressione nel cls, espressa in [kPa] tensione nei ferri inferiori, espressa in [kPa] tensione nei ferri superiori, espressa in [kPa] σC σfi

Combinazioni SLER

Paramento

Tensione massima di compressione nel calcestruzzo 17430 [kPa] Tensione massima di trazione dell'acciaio [kPa] 1255271

n°	В	Н	Afi	Afs	M	N	σε	σfi	σfs
	[cm]	[cm]	[cmq]	[cmq]	[kNm]	[kN]	[kPa]	[kPa]	[kPa]
1	100	40	11.31	11.31	0.00	0.00	0 (7)	0 (7)	0 (7)
2	100	40	11.31	11.31	0.00	0.98	2 (7)	34 (7)	34 (7)
3	100	40	11.31	11.31	0.00	1.96	5 (7)	68 (7)	68 (7)
4	100	40	11.31	11.31	0.00	2.94	7 (7)	102 (7)	102 (7)
5	100	40	11.31	11.31	0.00	3.92	9 (7)	136 (7)	136 (7)
6	100	40	11.31	11.31	0.00	4.90	11 (7)	170 (7)	170 (7)
7	100	40	11.31	11.31	0.00	5.88	14 (7)	203 (7)	203 (7)
8	100	40	11.31	11.31	0.00	6.86	16 (7)	237 (7)	237 (7)
9	100	40	11.31	11.31	0.00	7.85	18 (7)	271 (7)	271 (7)
10	100	40	11.31	11.31	0.00	8.83	20 (7)	305 (7)	305 (7)
11	100	40	11.31	11.31	0.00	9.81	23 (7)	339 (7)	339 (7)
12	100	40	11.31	11.31	0.00	10.79	25 (7)	373 (7)	373 (7)
13	100	40	11.31	11.31	0.00	11.77	27 (7)	407 (7)	407 (7)
14	100	40	11.31	11.31	0.03	12.75	30 (7)	430 (7)	451 (7)
15	100	40	11.31	11.31	0.12	13.73	35 (7)	431 (7)	518 (7)
16	100	40	11.31	11.31	0.27	14.71	43 (7)	408 (7)	609 (7)
17	100	40	11.31	11.31	0.49	15.69	52 (7)	358 (7)	726 (7)
18	100	40	11.31	11.31	0.79	16.67	64 (7)	281 (7)	872 (7)
19	100	40	11.31	11.31	1.16	17.65	79 (7)	173 (7)	1047 (7)
20	100	40	11.31	11.31	1.62	18.63	97 (7)	0 (1)	1265 (7)
21	100	40	11.31	11.31	2.18	19.61	123 (7)	353 (7)	1557 (7)
22	100	40	11.31	11.31	2.82	20.59	159 (7)	1035 (7)	1936 (7)
23	100	40	11.31	11.31	3.57	21.57	204 (7)	2144 (7)	2390 (7)
24	100	40	11.31	11.31	4.42	22.56	259 (7)	3699 (7)	2897 (7)
25	100	40	11.31	11.31	5.39	23.54	321 (7)	5671 (7)	3448 (7)
26	100	40	11.31	11.31	6.47	24.52	390 (7)	8036 (7)	4041 (7)
27	100	40	11.31	11.31	7.67	25.50	466 (7)	10781 (7)	4676 (7)
28	100	40	11.31	11.31	9.00	26.48	549 (7)	13903 (7)	5358 (7)
29	100	40	11.31	11.31	10.46	27.46	640 (7)	17408 (7)	6090 (7)
30	100	40	22.62	22.62	12.05	28.44	548 (7)	11239 (7)	5693 (7)
31	100	40	11.31	11.31	13.79	29.42	846 (7)	25597 (7)	7716 (7)
32	100	40	11.31	11.31	15.67	30.40	962 (7)	30302 (7)	8617 (7)
33	100	40	11.31	11.31	17.71	31.38	1087 (7)	35432 (7)	9580 (7)
34	100	40	11.31	11.31	19.90	32.36	1221 (7)	40997 (7)	10607 (7)
35	100	40	11.31	11.31	22.26	33.34	1365 (7)	47012 (7)	11702 (7)
36	100	40	11.31	11.31	24.78	34.32	1518 (7)	53489 (7)	12867 (7)

Fondazione

Tensione massima di compressione nel calcestruzzo 19920 [kPa] Tensione massima di trazione dell'acciaio 360000 [kPa]

n°	В	Н	Afi	Afs	М	N	σς	σfi	σfs

TELESE S.c.a r.l.

Consorzio Telese Società Consortile a Responsabilità Limitata

PROGETTAZIONE:

Mandataria: Mandante:

SYSTRA S.A. SWS Engineering S.p.A. SYSTRA-SOTECNI S.p.A.

Relazione di calcolo

IF2R.2.2.E.ZZ.CL.OC.00.0.0.001.A

ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA CANCELLO-BENEVENTO II LOTTO FUNZIONALE FRASSO TELESINO – VITULANO 2° SUBLOTTO TELESE – SAN LORENZO

PROGETTO ESECUTIVO

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 IF2R
 2.2.E.ZZ
 CL
 OC.00.0.0.001
 A
 84 di 92

	[cm]	[cm]	[cmq]	[cmq]	[kNm]	[kN]	[kPa]	[kPa]	[kPa]
1	100	50	11.31	11.31	0.00	0.00	0 (7)	0 (7)	0 (7)
2	100	50	11.31	11.31	0.22	0.00	9 (7)	465 (7)	72 (7)
3	100	50	11.31	11.31	0.88	0.00	35 (7)	1860 (7)	288 (7)
4	100	50	11.31	11.31	1.98	0.00	80 (7)	4188 (7)	648 (7)
5	100	50	11.31	11.31	3.53	0.00	142 (7)	7451 (7)	1153 (7)
6	100	50	11.31	11.31	5.51	0.00	221 (7)	11650 (7)	1802 (7)
7	100	50	11.31	11.31	7.95	0.00	319 (7)	16789 (7)	2598 (7)
8	100	50	11.31	11.31	10.82	0.00	434 (7)	22869 (7)	3538 (7)
9	100	50	11.31	11.31	-18.62	0.00	747 (7)	6085 (7)	39329 (7)
10	100	50	11.31	11.31	-16.73	0.00	671 (7)	5469 (7)	35347 (7)
11	100	50	11.31	11.31	-14.95	0.00	600 (7)	4888 (7)	31592 (7)
12	100	50	11.31	11.31	-13.28	0.00	533 (7)	4341 (7)	28061 (7)
13	100	50	11.31	11.31	-11.72	0.00	470 (7)	3830 (7)	24753 (7)
14	100	50	11.31	11.31	-10.25	0.00	411 (7)	3352 (7)	21664 (7)
15	100	50	11.31	11.31	-8.89	0.00	357 (7)	2907 (7)	18791 (7)
16	100	50	11.31	11.31	-7.64	0.00	306 (7)	2496 (7)	16134 (7)
17	100	50	11.31	11.31	-6.48	0.00	260 (7)	2118 (7)	13688 (7)
18	100	50	11.31	11.31	-5.42	0.00	218 (7)	1772 (7)	11453 (7)
19	100	50	11.31	11.31	-4.46	0.00	179 (7)	1458 (7)	9424 (7)
20	100	50	11.31	11.31	-3.60	0.00	144 (7)	1176 (7)	7601 (7)
21	100	50	11.31	11.31	-2.83	0.00	114 (7)	925 (7)	5979 (7)
22	100	50	11.31	11.31	-2.16	0.00	87 (7)	705 (7)	4558 (7)
23	100	50	11.31	11.31	-1.58	0.00	63 (7)	516 (7)	3334 (7)
24	100	50	11.31	11.31	-1.09	0.00	44 (7)	357 (7)	2305 (7)
25	100	50	11.31	11.31	-0.70	0.00	28 (7)	227 (7)	1469 (7)
26	100	50	11.31	11.31	-0.39	0.00	16 (7)	127 (7)	822 (7)
27	100	50	11.31	11.31	-0.17	0.00	7 (7)	56 (7)	364 (7)
28	100	50	11.31	11.31	-0.04	0.00	2 (7)	14 (7)	91 (7)
29	100	50	11.31	11.31	0.00	0.00	0 (7)	0 (7)	0 (7)

Combinazioni SLEF

Paramento

Tensione massima di compressione nel calcestruzzo 29050 [kPa] Tensione massima di trazione dell'acciaio 1569089 [kPa]

n°	В	н	Afi	Afs	М	N	σС	σfi	σfs
	[cm]	[cm]	[cmq]	[cmq]	[kNm]	[kN]	[kPa]	[kPa]	[kPa]
1	100	40	11.31	11.31	0.00	0.00	0 (8)	0 (8)	0 (8)
2	100	40	11.31	11.31	0.00	0.98	2 (8)	34 (8)	34 (8)
3	100	40	11.31	11.31	0.00	1.96	5 (8)	68 (8)	68 (8)
4	100	40	11.31	11.31	0.00	2.94	7 (8)	102 (8)	102 (8)
5	100	40	11.31	11.31	0.00	3.92	9 (8)	136 (8)	136 (8)
6	100	40	11.31	11.31	0.00	4.90	11 (8)	170 (8)	170 (8)
7	100	40	11.31	11.31	0.00	5.88	14 (8)	203 (8)	203 (8)
8	100	40	11.31	11.31	0.00	6.86	16 (8)	237 (8)	237 (8)
9	100	40	11.31	11.31	0.00	7.85	18 (8)	271 (8)	271 (8)
10	100	40	11.31	11.31	0.00	8.83	20 (8)	305 (8)	305 (8)
11	100	40	11.31	11.31	0.00	9.81	23 (8)	339 (8)	339 (8)
12	100	40	11.31	11.31	0.00	10.79	25 (8)	373 (8)	373 (8)
13	100	40	11.31	11.31	0.00	11.77	27 (8)	407 (8)	407 (8)
14	100	40	11.31	11.31	0.03	12.75	30 (8)	430 (8)	451 (8)
15	100	40	11.31	11.31	0.12	13.73	35 (8)	431 (8)	518 (8)
16	100	40	11.31	11.31	0.27	14.71	43 (8)	408 (8)	609 (8)
17	100	40	11.31	11.31	0.49	15.69	52 (8)	358 (8)	726 (8)
18	100	40	11.31	11.31	0.79	16.67	64 (8)	281 (8)	872 (8)
19	100	40	11.31	11.31	1.16	17.65	79 (8)	173 (8)	1047 (8)
20	100	40	11.31	11.31	1.62	18.63	97 (8)	0 (1)	1265 (8)
21	100	40	11.31	11.31	2.18	19.61	123 (8)	353 (8)	1557 (8)
22	100	40	11.31	11.31	2.82	20.59	159 (8)	1035 (8)	1936 (8)
23	100	40	11.31	11.31	3.57	21.57	204 (8)	2144 (8)	2390 (8)
24	100	40	11.31	11.31	4.42	22.56	259 (8)	3699 (8)	2897 (8)
25	100	40	11.31	11.31	5.39	23.54	321 (8)	5671 (8)	3448 (8)
26	100	40	11.31	11.31	6.47	24.52	390 (8)	8036 (8)	4041 (8)
27	100	40	11.31	11.31	7.67	25.50	466 (8)	10781 (8)	4676 (8)
28	100	40	11.31	11.31	9.00	26.48	549 (8)	13903 (8)	5358 (8)
29	100	40	11.31	11.31	10.46	27.46	640 (8)	17408 (8)	6090 (8)
30	100	40	22.62	22.62	12.05	28.44	548 (8)	11239 (8)	5693 (8)
31	100	40	11.31	11.31	13.79	29.42	846 (8)	25597 (8)	7716 (8)
32	100	40	11.31	11.31	15.67	30.40	962 (8)	30302 (8)	8617 (8)
33	100	40	11.31	11.31	17.71	31.38	1087 (8)	35432 (8)	9580 (8)
34	100	40	11.31	11.31	19.90	32.36	1221 (8)	40997 (8)	10607 (8)
35	100	40	11.31	11.31	22.26	33.34	1365 (8)	47012 (8)	11702 (8)
36	100	40	11.31	11.31	24.78	34.32	1518 (8)	53489 (8)	12867 (8)

TELESE S.c.a r.l.

Consorzio Telese Società Consortile a Responsabilità Limitata

PROGETTAZIONE:

Mandataria: Mandante:

SYSTRA S.A. SWS Engineering S.p.A. SYSTRA-SOTECNI S.p.A.

Relazione di calcolo

IF2R.2.2.E.ZZ.CL.OC.00.0.0.001.A

ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA CANCELLO-BENEVENTO II LOTTO FUNZIONALE FRASSO TELESINO – VITULANO 2° SUBLOTTO TELESE – SAN LORENZO

PROGETTO ESECUTIVO

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 IF2R
 2.2.E.ZZ
 CL
 OC.00.0.0.001
 A
 85 di 92

Fondazione

Tensione massima di compressione nel calcestruzzo 33200 [kPa] Tensione massima di trazione dell'acciaio 450000 [kPa]

n°	В	Н	Afi	Afs	М	N	σα	σfi	σfs
	[cm]	[cm]	[cmq]	[cmq]	[kNm]	[kN]	[kPa]	[kPa]	[kPa]
1	100	50	11.31	11.31	0.00	0.00	0 (8)	0 (8)	0 (8)
2	100	50	11.31	11.31	0.22	0.00	9 (8)	465 (8)	72 (8)
3	100	50	11.31	11.31	0.88	0.00	35 (8)	1860 (8)	288 (8)
4	100	50	11.31	11.31	1.98	0.00	80 (8)	4188 (8)	648 (8)
5	100	50	11.31	11.31	3.53	0.00	142 (8)	7451 (8)	1153 (8)
6	100	50	11.31	11.31	5.51	0.00	221 (8)	11650 (8)	1802 (8)
7	100	50	11.31	11.31	7.95	0.00	319 (8)	16789 (8)	2598 (8)
8	100	50	11.31	11.31	10.82	0.00	434 (8)	22869 (8)	3538 (8)
9	100	50	11.31	11.31	-18.62	0.00	747 (8)	6085 (8)	39329 (8)
10	100	50	11.31	11.31	-16.73	0.00	671 (8)	5469 (8)	35347 (8)
11	100	50	11.31	11.31	-14.95	0.00	600 (8)	4888 (8)	31592 (8)
12	100	50	11.31	11.31	-13.28	0.00	533 (8)	4341 (8)	28061 (8)
13	100	50	11.31	11.31	-11.72	0.00	470 (8)	3830 (8)	24753 (8)
14	100	50	11.31	11.31	-10.25	0.00	411 (8)	3352 (8)	21664 (8)
15	100	50	11.31	11.31	-8.89	0.00	357 (8)	2907 (8)	18791 (8)
16	100	50	11.31	11.31	-7.64	0.00	306 (8)	2496 (8)	16134 (8)
17	100	50	11.31	11.31	-6.48	0.00	260 (8)	2118 (8)	13688 (8)
18	100	50	11.31	11.31	-5.42	0.00	218 (8)	1772 (8)	11453 (8)
19	100	50	11.31	11.31	-4.46	0.00	179 (8)	1458 (8)	9424 (8)
20	100	50	11.31	11.31	-3.60	0.00	144 (8)	1176 (8)	7601 (8)
21	100	50	11.31	11.31	-2.83	0.00	114 (8)	925 (8)	5979 (8)
22	100	50	11.31	11.31	-2.16	0.00	87 (8)	705 (8)	4558 (8)
23	100	50	11.31	11.31	-1.58	0.00	63 (8)	516 (8)	3334 (8)
24	100	50	11.31	11.31	-1.09	0.00	44 (8)	357 (8)	2305 (8)
25	100	50	11.31	11.31	-0.70	0.00	28 (8)	227 (8)	1469 (8)
26	100	50	11.31	11.31	-0.39	0.00	16 (8)	127 (8)	822 (8)
27	100	50	11.31	11.31	-0.17	0.00	7 (8)	56 (8)	364 (8)
28	100	50	11.31	11.31	-0.04	0.00	2 (8)	14 (8)	91 (8)
29	100	50	11.31	11.31	0.00	0.00	0 (8)	0 (8)	0 (8)

Combinazioni SLEQ

Paramento

Tensione massima di compressione nel calcestruzzo 13073 [kPa] Tensione massima di trazione dell'acciaio 1569089 [kPa]

n°	В	н	Afi	Afs	М	N	σς	σfi	σfs
	[cm]	[cm]	[cmq]	[cmq]	[kNm]	[kN]	[kPa]	[kPa]	[kPa]
1	100	40	11.31	11.31	0.00	0.00	0 (9)	0 (9)	0 (9)
2	100	40	11.31	11.31	0.00	0.98	2 (9)	34 (9)	34 (9)
3	100	40	11.31	11.31	0.00	1.96	5 (9)	68 (9)	68 (9)
4	100	40	11.31	11.31	0.00	2.94	7 (9)	102 (9)	102 (9)
5	100	40	11.31	11.31	0.00	3.92	9 (9)	136 (9)	136 (9)
6	100	40	11.31	11.31	0.00	4.90	11 (9)	170 (9)	170 (9)
7	100	40	11.31	11.31	0.00	5.88	14 (9)	203 (9)	203 (9)
8	100	40	11.31	11.31	0.00	6.86	16 (9)	237 (9)	237 (9)
9	100	40	11.31	11.31	0.00	7.85	18 (9)	271 (9)	271 (9)
10	100	40	11.31	11.31	0.00	8.83	20 (9)	305 (9)	305 (9)
11	100	40	11.31	11.31	0.00	9.81	23 (9)	339 (9)	339 (9)
12	100	40	11.31	11.31	0.00	10.79	25 (9)	373 (9)	373 (9)
13	100	40	11.31	11.31	0.00	11.77	27 (9)	407 (9)	407 (9)
14	100	40	11.31	11.31	0.03	12.75	30 (9)	430 (9)	451 (9)
15	100	40	11.31	11.31	0.12	13.73	35 (9)	431 (9)	518 (9)
16	100	40	11.31	11.31	0.27	14.71	43 (9)	408 (9)	609 (9)
17	100	40	11.31	11.31	0.49	15.69	52 (9)	358 (9)	726 (9)
18	100	40	11.31	11.31	0.79	16.67	64 (9)	281 (9)	872 (9)
19	100	40	11.31	11.31	1.16	17.65	79 (9)	173 (9)	1047 (9)
20	100	40	11.31	11.31	1.62	18.63	97 (9)	0 (1)	1265 (9)
21	100	40	11.31	11.31	2.18	19.61	123 (9)	353 (9)	1557 (9)
22	100	40	11.31	11.31	2.82	20.59	159 (9)	1035 (9)	1936 (9)
23	100	40	11.31	11.31	3.57	21.57	204 (9)	2144 (9)	2390 (9)
24	100	40	11.31	11.31	4.42	22.56	259 (9)	3699 (9)	2897 (9)
25	100	40	11.31	11.31	5.39	23.54	321 (9)	5671 (9)	3448 (9)

LESE S.c.a r.l.

Società Consortile a Responsabilità Limitata

PROGETTAZIONE:

Mandataria: Mandante:

SYSTRA S.A. SYSTRA-SOTECNI S.p.A. SWS Engineering S.p.A.

Relazione di calcolo

IF2R.2.2.E.ZZ.CL.OC.00.0.0.001.A

ITINERARIO NAPOLI - BARI **RADDOPPIO TRATTA CANCELLO-BENEVENTO** II LOTTO FUNZIONALE FRASSO TELESINO - VITULANO 2° SUBLOTTO TELESE - SAN LORENZO

PROGETTO ESECUTIVO

LOTTO FOGLIO COMMESSA CODIFICA **DOCUMENTO** REV. IF2R 2.2.E.ZZ OC.00.0.0.001 86 di 92 CI Α

n°	В	Н	Afi	Afs	M	N	σε	σfi	σfs
	[cm]	[cm]	[cmq]	[cmq]	[kNm]	[kN]	[kPa]	[kPa]	[kPa]
26	100	40	11.31	11.31	6.47	24.52	390 (9)	8036 (9)	4041 (9)
27	100	40	11.31	11.31	7.67	25.50	466 (9)	10781 (9)	4676 (9)
28	100	40	11.31	11.31	9.00	26.48	549 (9)	13903 (9)	5358 (9)
29	100	40	11.31	11.31	10.46	27.46	640 (9)	17408 (9)	6090 (9)
30	100	40	22.62	22.62	12.05	28.44	548 (9)	11239 (9)	5693 (9)
31	100	40	11.31	11.31	13.79	29.42	846 (9)	25597 (9)	7716 (9)
32	100	40	11.31	11.31	15.67	30.40	962 (9)	30302 (9)	8617 (9)
33	100	40	11.31	11.31	17.71	31.38	1087 (9)	35432 (9)	9580 (9)
34	100	40	11.31	11.31	19.90	32.36	1221 (9)	40997 (9)	10607 (9)
35	100	40	11.31	11.31	22.26	33.34	1365 (9)	47012 (9)	11702 (9)
36	100	40	11.31	11.31	24.78	34.32	1518 (9)	53489 (9)	12867 (9)

Fondazione

Tensione massima di compressione nel calcestruzzo Tensione massima di trazione dell'acciaio

14940 450000 [kPa] [kPa]

n°	В	Н	Afi	Afs	М	N	σC	σfi	σfs
- 11	[cm]	[cm]	[cmq]	[cmq]	[kNm]	[kN]	[kPa]	[kPa]	[kPa]
1	100	50	11.31	11.31	0.00	0.00	0 (9)	0 (9)	0 (9)
2	100	50	11.31	11.31	0.22	0.00	9 (9)	465 (9)	72 (9)
3	100	50	11.31	11.31	0.88	0.00	35 (9)	1860 (9)	288 (9)
4	100	50	11.31	11.31	1.98	0.00	80 (9)	4188 (9)	648 (9)
5	100	50	11.31	11.31	3.53	0.00	142 (9)	7451 (9)	1153 (9)
6	100	50	11.31	11.31	5.51	0.00	221 (9)	11650 (9)	1802 (9)
7	100	50	11.31	11.31	7.95	0.00	319 (9)	16789 (9)	2598 (9)
8	100	50	11.31	11.31	10.82	0.00	434 (9)	22869 (9)	3538 (9)
9	100	50	11.31	11.31	-18.62	0.00	747 (9)	6085 (9)	39329 (9)
10	100	50	11.31	11.31	-16.73	0.00	671 (9)	5469 (9)	35347 (9)
11	100	50	11.31	11.31	-14.95	0.00	600 (9)	4888 (9)	31592 (9)
12	100	50	11.31	11.31	-13.28	0.00	533 (9)	4341 (9)	28061 (9)
13	100	50	11.31	11.31	-11.72	0.00	470 (9)	3830 (9)	24753 (9)
14	100	50	11.31	11.31	-10.25	0.00	411 (9)	3352 (9)	21664 (9)
15	100	50	11.31	11.31	-8.89	0.00	357 (9)	2907 (9)	18791 (9)
16	100	50	11.31	11.31	-7.64	0.00	306 (9)	2496 (9)	16134 (9)
17	100	50	11.31	11.31	-6.48	0.00	260 (9)	2118 (9)	13688 (9)
18	100	50	11.31	11.31	-5.42	0.00	218 (9)	1772 (9)	11453 (9)
19	100	50	11.31	11.31	-4.46	0.00	179 (9)	1458 (9)	9424 (9)
20	100	50	11.31	11.31	-3.60	0.00	144 (9)	1176 (9)	7601 (9)
21	100	50	11.31	11.31	-2.83	0.00	114 (9)	925 (9)	5979 (9)
22	100	50	11.31	11.31	-2.16	0.00	87 (9)	705 (9)	4558 (9)
23	100	50	11.31	11.31	-1.58	0.00	63 (9)	516 (9)	3334 (9)
24	100	50	11.31	11.31	-1.09	0.00	44 (9)	357 (9)	2305 (9)
25	100	50	11.31	11.31	-0.70	0.00	28 (9)	227 (9)	1469 (9)
26	100	50	11.31	11.31	-0.39	0.00	16 (9)	127 (9)	822 (9)
27	100	50	11.31	11.31	-0.17	0.00	7 (9)	56 (9)	364 (9)
28	100	50	11.31	11.31	-0.04	0.00	2 (9)	14 (9)	91 (9)
29	100	50	11.31	11.31	0.00	0.00	0 (9)	0 (9)	0 (9)

Verifica a fessurazione

Simbologia adottata

indice sezione ordinata sezione espressa in [m] n° Y B H Af larghezza sezione espresso in [cm] altezza sezione espressa in [cm] area ferri zona tesa espresso in [cmq] Aeff area efficace espressa in [cmq] momento agente espressa in [kNm] M Mpf

momento di prima fessurazione espressa in [kNm] deformazione espresso in %

Sm spaziatura tra le fessure espressa in [mm] apertura delle fessure espressa in [mm]

Combinazioni SLER

Paramento

Apertura limite fessure w_{lim}=0.20

TELESE S.c.a r.l.

Consorzio Telese Società Consortile a Responsabilità Limitata

PROGETTAZIONE:

Mandataria: Mandante:

SYSTRA S.A. SWS Engineering S.p.A. SYSTRA-SOTECNI S.p.A.

Relazione di calcolo

IF2R.2.2.E.ZZ.CL.OC.00.0.0.001.A

ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA CANCELLO-BENEVENTO II LOTTO FUNZIONALE FRASSO TELESINO – VITULANO 2° SUBLOTTO TELESE – SAN LORENZO

PROGETTO ESECUTIVO

COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO IF2R 2.2.E.ZZ CL OC.00.0.001 A 87 di 92

n°	В	Н	Af	Aeff	М	Mpf	8	Sm	w
	[cm]	[cm]	[cmq]	[cmq]	[kNm]	[kNm]	[%]	[mm]	[mm]
1	100	40	0.00	0.00	0.00	0.00			0.000 (7)
2	100	40	0.00	0.00	0.00	0.00	0.000008		0.000 (7)
3	100	40	0.00	0.00	0.00	0.00	0.000000	0.00	0.000 (7)
4	100	40	0.00	0.00	0.00	0.00	0.000000	0.00	0.000 (7)
5	100	40	0.00	0.00	0.00	0.00	0.000000	0.00	0.000 (7)
6	100	40	0.00	0.00	0.00	0.00	0.000000	0.00	0.000 (7)
7	100	40	0.00	0.00	0.00	0.00	0.000000	0.00	0.000 (7)
8	100	40	0.00	0.00	0.00	0.00	0.000000	0.00	0.000 (7)
9	100	40	0.00	0.00	0.00	0.00	0.000000	0.00	0.000 (7)
10	100	40	0.00	0.00	0.00	0.00	0.000074		0.000 (7)
11	100	40	0.00	0.00	0.00	0.00	0.000000	0.00	0.000 (7)
12	100	40	0.00	0.00	0.00	0.00	0.000000	0.00	0.000 (7)
13	100	40	0.00	0.00	0.00	0.00	0.000099		0.000 (7)
14	100	40	11.31	1360.00	0.03	105.31	0.000000	0.00	0.000 (7)
15	100	40	11.31	1360.00	0.12	105.38	0.000000	0.00	0.000 (7)
16	100	40	11.31	1360.00	0.27	105.45	0.000000	0.00	0.000 (7)
17	100	40	11.31	1360.00	0.49	105.51	0.000000	0.00	0.000 (7)
18	100	40	11.31	1360.00	0.79	105.59	0.000000	0.00	0.000 (7)
19	100	40	11.31	1360.00	1.16	105.66	0.000000	0.00	0.000 (7)
20	100	40	11.31	1360.00	1.62	105.73	0.000000	0.00	0.000 (7)
21	100	40	11.31	1360.00	2.18	105.79	0.000000	0.00	0.000 (7)
22	100	40	11.31	1360.00	2.82	105.86	0.000000	0.00	0.000 (7)
23	100	40	11.31	1360.00	3.57	105.93	0.000000	0.00	0.000 (7)
24	100	40	11.31	1360.00	4.42	106.00	0.000000	0.00	0.000 (7)
25	100	40	11.31	1360.00	5.39	106.07	0.000000	0.00	0.000 (7)
26	100	40	11.31	1360.00	6.47	106.14	0.000000	0.00	0.000 (7)
27	100	40	11.31	1360.00	7.67	106.21	0.000000	0.00	0.000 (7)
28	100	40	11.31	1360.00	9.00	106.28	0.000000	0.00	0.000 (7)
29	100	40	11.31	1360.00	10.46	106.35	0.000000	0.00	0.000 (7)
30	100	40	22.62	1360.00	12.05	120.20	0.000000	0.00	0.000 (7)
31	100	40	11.31	1360.00	13.79	106.48	0.000000	0.00	0.000 (7)
32	100	40	11.31	1360.00	15.67	106.56	0.000000	0.00	0.000 (7)
33	100	40	11.31	1360.00	17.71	106.63	0.000000	0.00	0.000 (7)
34	100	40	11.31	1360.00	19.90	106.69	0.000000	0.00	0.000 (7)
35	100	40	11.31	1360.00	22.26	106.77	0.000000	0.00	0.000 (7)
36	100	40	11.31	1360.00	24.78	106.83	0.000000	0.00	0.000 (7)

Fondazione

Apertura limite fessure w_{lim}=0.20

n°	В	Н	Af	Aeff	М	Mpf	8	Sm	w
	[cm]	[cm]	[cmq]	[cmq]	[kNm]	[kNm]	[%]	[mm]	[mm]
1	100	50	0.00	0.00	0.00	0.00			0.000 (7)
2	100	50	11.31	1360.00	0.22	175.95	0.000000	0.00	0.000 (7)
3	100	50	11.31	1360.00	0.88	175.95	0.000000	0.00	0.000 (7)
4	100	50	11.31	1360.00	1.98	175.95	0.000000	0.00	0.000 (7)
5	100	50	11.31	1360.00	3.53	175.95	0.000000	0.00	0.000 (7)
6	100	50	11.31	1360.00	5.51	175.95	0.000000	0.00	0.000 (7)
7	100	50	11.31	1360.00	7.95	175.95	0.000000	0.00	0.000 (7)
8	100	50	11.31	1360.00	10.82	175.95	0.000000	0.00	0.000 (7)
9	100	50	11.31	1996.67	-18.62	-175.95	0.000000	0.00	0.000 (7)
10	100	50	11.31	1996.67	-16.73	-175.95	0.000000	0.00	0.000 (7)
11	100	50	11.31	1996.67	-14.95	-175.95	0.000000	0.00	0.000 (7)
12	100	50	11.31	1996.67	-13.28	-175.95	0.000000	0.00	0.000 (7)
13	100	50	11.31	1996.67	-11.72	-175.95	0.000000	0.00	0.000 (7)
14	100	50	11.31	1996.67	-10.25	-175.95	0.000000	0.00	0.000 (7)
15	100	50	11.31	1996.67	-8.89	-175.95	0.000000	0.00	0.000 (7)
16	100	50	11.31	1996.67	-7.64	-175.95	0.000000	0.00	0.000 (7)
17	100	50	11.31	1996.67	-6.48	-175.95	0.000000	0.00	0.000 (7)
18	100	50	11.31	1996.67	-5.42	-175.95	0.000000	0.00	0.000 (7)
19	100	50	11.31	1996.67	-4.46	-175.95	0.000000	0.00	0.000 (7)
20	100	50	11.31	1996.67	-3.60	-175.95	0.000000	0.00	0.000 (7)
21	100	50	11.31	1996.67	-2.83	-175.95	0.000000	0.00	0.000 (7)
22	100	50	11.31	1996.67	-2.16	-175.95	0.000000	0.00	0.000 (7)
23	100	50	11.31	1996.67	-1.58	-175.95	0.000000	0.00	0.000 (7)
24	100	50	11.31	1996.67	-1.09	-175.95	0.000000	0.00	0.000 (7)
25	100	50	11.31	1996.67	-0.70	-175.95	0.000000	0.00	0.000 (7)
26	100	50	11.31	1996.67	-0.39	-175.95	0.000000	0.00	0.000 (7)
27	100	50	11.31	1996.67	-0.17	-175.95	0.000000	0.00	0.000 (7)
28	100	50	11.31	1996.67	-0.04	-175.95	0.000000	0.00	0.000 (7)
29	100	50	0.00	0.00	0.00	0.00			0.000 (7)

Combinazioni SLEF

TELESE S.c.a r.l.

Consorzio Telese Società Consortile a Responsabilità Limitata

PROGETTAZIONE:

Mandataria: Mandante:

SYSTRA S.A. SWS Engineering S.p.A. SYSTRA-SOTECNI S.p.A.

Relazione di calcolo

IF2R.2.2.E.ZZ.CL.OC.00.0.0.001.A

ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA CANCELLO-BENEVENTO II LOTTO FUNZIONALE FRASSO TELESINO – VITULANO 2° SUBLOTTO TELESE – SAN LORENZO

PROGETTO ESECUTIVO

COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO IF2R 2.2.E.ZZ CL OC.00.0.001 A 88 di 92

Paramento

Apertura limite fessure w_{lim}=0.30

n°	В	Н	Af	Aeff	М	Mpf	8	Sm	w
	[cm]	[cm]	[cmq]	[cmq]	[kNm]	[kNm]	<i>[%]</i>	[mm]	[mm]
1	100	40	0.00	0.00	0.00	0.00			0.000 (8)
2	100	40	0.00	0.00	0.00	0.00	0.000008		0.000 (8)
3	100	40	0.00	0.00	0.00	0.00	0.000000	0.00	0.000 (8)
4	100	40	0.00	0.00	0.00	0.00	0.000000	0.00	0.000 (8)
5	100	40	0.00	0.00	0.00	0.00	0.000000	0.00	0.000 (8)
6	100	40	0.00	0.00	0.00	0.00	0.000000	0.00	0.000 (8)
7	100	40	0.00	0.00	0.00	0.00	0.000000	0.00	0.000 (8)
8	100	40	0.00	0.00	0.00	0.00	0.000000	0.00	0.000 (8)
9	100	40	0.00	0.00	0.00	0.00	0.000000	0.00	0.000 (8)
10	100	40	0.00	0.00	0.00	0.00	0.000074		0.000 (8)
11	100	40	0.00	0.00	0.00	0.00	0.000000	0.00	0.000 (8)
12	100	40	0.00	0.00	0.00	0.00	0.000000	0.00	0.000 (8)
13	100	40	0.00	0.00	0.00	0.00	0.000099		0.000 (8)
14	100	40	11.31	1360.00	0.03	105.31	0.000000	0.00	0.000 (8)
15	100	40	11.31	1360.00	0.12	105.38	0.000000	0.00	0.000 (8)
16	100	40	11.31	1360.00	0.27	105.45	0.000000	0.00	0.000 (8)
17	100	40	11.31	1360.00	0.49	105.51	0.000000	0.00	0.000 (8)
18	100	40	11.31	1360.00	0.79	105.59	0.000000	0.00	0.000 (8)
19	100	40	11.31	1360.00	1.16	105.66	0.000000	0.00	0.000 (8)
20	100	40	11.31	1360.00	1.62	105.73	0.000000	0.00	0.000 (8)
21	100	40	11.31	1360.00	2.18	105.79	0.000000	0.00	0.000 (8)
22	100	40	11.31	1360.00	2.82	105.86	0.000000	0.00	0.000 (8)
23	100	40	11.31	1360.00	3.57	105.93	0.000000	0.00	0.000 (8)
24	100	40	11.31	1360.00	4.42	106.00	0.000000	0.00	0.000 (8)
25	100	40	11.31	1360.00	5.39	106.07	0.000000	0.00	0.000 (8)
26	100	40	11.31	1360.00	6.47	106.14	0.000000	0.00	0.000 (8)
27	100	40	11.31	1360.00	7.67	106.21	0.000000	0.00	0.000 (8)
28	100	40	11.31	1360.00	9.00	106.28	0.000000	0.00	0.000 (8)
29	100	40	11.31	1360.00	10.46	106.35	0.000000	0.00	0.000 (8)
30	100	40	22.62	1360.00	12.05	120.20	0.000000	0.00	0.000 (8)
31	100	40	11.31	1360.00	13.79	106.48	0.000000	0.00	0.000 (8)
32	100	40	11.31	1360.00	15.67	106.56	0.000000	0.00	0.000 (8)
33	100	40	11.31	1360.00	17.71	106.63	0.000000	0.00	0.000 (8)
34	100	40	11.31	1360.00	19.90	106.69	0.000000	0.00	0.000 (8)
35	100	40	11.31	1360.00	22.26	106.77	0.000000	0.00	0.000 (8)
36	100	40	11.31	1360.00	24.78	106.83	0.000000	0.00	0.000 (8)

Fondazione

Apertura limite fessure w_{lim}=0.30

n°	В	н	Af	Aeff	М	Mpf	8	Sm	w
-	[cm]	[cm]	[cma]	[cmq]	[kNm]	[kNm]	<i>[%]</i>	[mm]	[mm]
1	100	50	0.00	0.00	0.00	0.00			0.000 (8)
2	100	50	11.31	1360.00	0.22	175.95	0.000000	0.00	0.000 (8)
3	100	50	11.31	1360.00	0.88	175.95	0.000000	0.00	0.000 (8)
4	100	50	11.31	1360.00	1.98	175.95	0.000000	0.00	0.000 (8)
5	100	50	11.31	1360.00	3.53	175.95	0.000000	0.00	0.000 (8)
6	100	50	11.31	1360.00	5.51	175.95	0.000000	0.00	0.000 (8)
7	100	50	11.31	1360.00	7.95	175.95	0.000000	0.00	0.000 (8)
8	100	50	11.31	1360.00	10.82	175.95	0.000000	0.00	0.000 (8)
9	100	50	11.31	1996.67	-18.62	-175.95	0.000000	0.00	0.000 (8)
10	100	50	11.31	1996.67	-16.73	-175.95	0.000000	0.00	0.000 (8)
11	100	50	11.31	1996.67	-14.95	-175.95	0.000000	0.00	0.000 (8)
12	100	50	11.31	1996.67	-13.28	-175.95	0.000000	0.00	0.000 (8)
13	100	50	11.31	1996.67	-11.72	-175.95	0.000000	0.00	0.000 (8)
14	100	50	11.31	1996.67	-10.25	-175.95	0.000000	0.00	0.000 (8)
15	100	50	11.31	1996.67	-8.89	-175.95	0.000000	0.00	0.000 (8)
16	100	50	11.31	1996.67	-7.64	-175.95	0.000000	0.00	0.000 (8)
17	100	50	11.31	1996.67	-6.48	-175.95	0.000000	0.00	0.000 (8)
18	100	50	11.31	1996.67	-5.42	-175.95	0.000000	0.00	0.000 (8)
19	100	50	11.31	1996.67	-4.46	-175.95	0.000000	0.00	0.000 (8)
20	100	50	11.31	1996.67	-3.60	-175.95	0.000000	0.00	0.000 (8)
21	100	50	11.31	1996.67	-2.83	-175.95	0.000000	0.00	0.000 (8)
22	100	50	11.31	1996.67	-2.16	-175.95	0.000000	0.00	0.000 (8)
23	100	50	11.31	1996.67	-1.58	-175.95	0.000000	0.00	0.000 (8)
24	100	50	11.31	1996.67	-1.09	-175.95	0.000000	0.00	0.000 (8)
25	100	50	11.31	1996.67	-0.70	-175.95	0.000000	0.00	0.000 (8)
26	100	50	11.31	1996.67	-0.39	-175.95	0.000000	0.00	0.000 (8)
27	100	50	11.31	1996.67	-0.17	-175.95	0.000000	0.00	0.000 (8)
28	100	50	11.31	1996.67	-0.04	-175.95	0.000000	0.00	0.000 (8)
29	100	50	0.00	0.00	0.00	0.00			0.000 (8)

TELESE s.c.a r.l.

Consorzio Telese Società Consortile a Responsabilità Limitata

PROGETTAZIONE:

Mandataria: Mandante:

SYSTRA S.A. SWS Engineering S.p.A. SYSTRA-SOTECNI S.p.A.

Relazione di calcolo

IF2R.2.2.E.ZZ.CL.OC.00.0.0.001.A

ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA CANCELLO-BENEVENTO II LOTTO FUNZIONALE FRASSO TELESINO – VITULANO 2° SUBLOTTO TELESE – SAN LORENZO

PROGETTO ESECUTIVO

COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO IF2R 2.2.E.ZZ CL OC.00.0.001 A 89 di 92

Combinazioni SLEQ

<u>Paramento</u>

Apertura limite fessure w_{lim}=0.20

n°	В	Н	Af	Aeff	М	Mpf	3	Sm	w
	[cm]	[cm]	[cmq]	[cmq]	[kNm]	[kNm]	[%]	[mm]	[mm]
1	100	40	0.00	0.00	0.00	0.00			0.000 (9)
2	100	40	0.00	0.00	0.00	0.00	0.000008		0.000 (9)
3	100	40	0.00	0.00	0.00	0.00	0.000000	0.00	0.000 (9)
4	100	40	0.00	0.00	0.00	0.00	0.000000	0.00	0.000 (9)
5	100	40	0.00	0.00	0.00	0.00	0.000000	0.00	0.000 (9)
6	100	40	0.00	0.00	0.00	0.00	0.000000	0.00	0.000 (9)
7	100	40	0.00	0.00	0.00	0.00	0.000000	0.00	0.000 (9)
8	100	40	0.00	0.00	0.00	0.00	0.000000	0.00	0.000 (9)
9	100	40	0.00	0.00	0.00	0.00	0.000000	0.00	0.000 (9)
10	100	40	0.00	0.00	0.00	0.00	0.000074		0.000 (9)
11	100	40	0.00	0.00	0.00	0.00	0.000000	0.00	0.000 (9)
12	100	40	0.00	0.00	0.00	0.00	0.000000	0.00	0.000 (9)
13	100	40	0.00	0.00	0.00	0.00	0.000099		0.000 (9)
14	100	40	11.31	1360.00	0.03	105.31	0.000000	0.00	0.000 (9)
15	100	40	11.31	1360.00	0.12	105.38	0.000000	0.00	0.000 (9)
16	100	40	11.31	1360.00	0.27	105.45	0.000000	0.00	0.000 (9)
17	100	40	11.31	1360.00	0.49	105.51	0.000000	0.00	0.000 (9)
18	100	40	11.31	1360.00	0.79	105.59	0.000000	0.00	0.000 (9)
19	100	40	11.31	1360.00	1.16	105.66	0.000000	0.00	0.000 (9)
20	100	40	11.31	1360.00	1.62	105.73	0.000000	0.00	0.000 (9)
21	100	40	11.31	1360.00	2.18	105.79	0.000000	0.00	0.000 (9)
22	100	40	11.31	1360.00	2.82	105.86	0.000000	0.00	0.000 (9)
23	100	40	11.31	1360.00	3.57	105.93	0.000000	0.00	0.000 (9)
24	100	40	11.31	1360.00	4.42	106.00	0.000000	0.00	0.000 (9)
25	100	40	11.31	1360.00	5.39	106.07	0.000000	0.00	0.000 (9)
26	100	40	11.31	1360.00	6.47	106.14	0.000000	0.00	0.000 (9)
27	100	40	11.31	1360.00	7.67	106.21	0.000000	0.00	0.000 (9)
28	100	40	11.31	1360.00	9.00	106.28	0.000000	0.00	0.000 (9)
29	100	40	11.31	1360.00	10.46	106.35	0.000000	0.00	0.000 (9)
30	100	40	22.62	1360.00	12.05	120.20	0.000000	0.00	0.000 (9)
31	100	40	11.31	1360.00	13.79	106.48	0.000000	0.00	0.000 (9)
32	100	40	11.31	1360.00	15.67	106.56	0.000000	0.00	0.000 (9)
33	100	40	11.31	1360.00	17.71	106.63	0.000000	0.00	0.000 (9)
34	100	40	11.31	1360.00	19.90	106.69	0.000000	0.00	0.000 (9)
35	100	40	11.31	1360.00	22.26	106.77	0.000000	0.00	0.000 (9)
36	100	40	11.31	1360.00	24.78	106.83	0.000000	0.00	0.000 (9)

Fondazione

Apertura limite fessure w_{lim}=0.20

n°	В	Н	Af	Aeff	М	Mpf	8	Sm	w
	[cm]	[cm]	[cmq]	[cmq]	[kNm]	[kNm]	[%]	[mm]	[mm]
1	100	50	0.00	0.00	0.00	0.00			0.000 (9)
2	100	50	11.31	1360.00	0.22	175.95	0.000000	0.00	0.000 (9)
3	100	50	11.31	1360.00	0.88	175.95	0.000000	0.00	0.000 (9)
4	100	50	11.31	1360.00	1.98	175.95	0.000000	0.00	0.000 (9)
5	100	50	11.31	1360.00	3.53	175.95	0.000000	0.00	0.000 (9)
6	100	50	11.31	1360.00	5.51	175.95	0.000000	0.00	0.000 (9)
7	100	50	11.31	1360.00	7.95	175.95	0.000000	0.00	0.000 (9)
8	100	50	11.31	1360.00	10.82	175.95	0.000000	0.00	0.000 (9)
9	100	50	11.31	1996.67	-18.62	-175.95	0.000000	0.00	0.000 (9)
10	100	50	11.31	1996.67	-16.73	-175.95	0.000000	0.00	0.000 (9)
11	100	50	11.31	1996.67	-14.95	-175.95	0.000000	0.00	0.000 (9)
12	100	50	11.31	1996.67	-13.28	-175.95	0.000000	0.00	0.000 (9)
13	100	50	11.31	1996.67	-11.72	-175.95	0.000000	0.00	0.000 (9)
14	100	50	11.31	1996.67	-10.25	-175.95	0.000000	0.00	0.000 (9)
15	100	50	11.31	1996.67	-8.89	-175.95	0.000000	0.00	0.000 (9)
16	100	50	11.31	1996.67	-7.64	-175.95	0.000000	0.00	0.000 (9)
17	100	50	11.31	1996.67	-6.48	-175.95	0.000000	0.00	0.000 (9)
18	100	50	11.31	1996.67	-5.42	-175.95	0.000000	0.00	0.000 (9)
19	100	50	11.31	1996.67	-4.46	-175.95	0.000000	0.00	0.000 (9)
20	100	50	11.31	1996.67	-3.60	-175.95	0.000000	0.00	0.000 (9)
21	100	50	11.31	1996.67	-2.83	-175.95	0.000000	0.00	0.000 (9)
22	100	50	11.31	1996.67	-2.16	-175.95	0.000000	0.00	0.000 (9)
23	100	50	11.31	1996.67	-1.58	-175.95	0.000000	0.00	0.000 (9)

TELESE S.c.a r.l.

Consorzio Telese Società Consortile a Responsabilità Limitata

PROGETTAZIONE:

Mandataria: Mandante:

SYSTRA S.A. SWS Engineering S.p.A. SYSTRA-SOTECNI S.p.A.

Relazione di calcolo

IF2R.2.2.E.ZZ.CL.OC.00.0.0.001.A

ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA CANCELLO-BENEVENTO II LOTTO FUNZIONALE FRASSO TELESINO – VITULANO 2° SUBLOTTO TELESE – SAN LORENZO

PROGETTO ESECUTIVO

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 IF2R
 2.2.E.ZZ
 CL
 OC.00.0.0.001
 A
 90 di 92

n°	В	Н	Af	Aeff	М	Mpf	8	Sm	w
	[cm]	[cm]	[cmq]	[cmq]	[kNm]	[kNm]	[%]	[mm]	[mm]
24	100	50	11.31	1996.67	-1.09	-175.95	0.000000	0.00	0.000 (9)
25	100	50	11.31	1996.67	-0.70	-175.95	0.000000	0.00	0.000 (9)
26	100	50	11.31	1996.67	-0.39	-175.95	0.000000	0.00	0.000 (9)
27	100	50	11.31	1996.67	-0.17	-175.95	0.000000	0.00	0.000 (9)
28	100	50	11.31	1996.67	-0.04	-175.95	0.000000	0.00	0.000 (9)
29	100	50	0.00	0.00	0.00	0.00			0.000 (9)

TELESE S.c.a r.l.

onsahilità Limitata

PROGETTAZIONE:

Mandataria: Mandante:

SYSTRA S.A. SWS Engineering S.p.A. SYSTRA-SOTECNI S.p.A.

Relazione di calcolo

IF2R.2.2.E.ZZ.CL.OC.00.0.0.001.A

ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA CANCELLO-BENEVENTO II LOTTO FUNZIONALE FRASSO TELESINO - VITULANO 2° SUBLOTTO TELESE – SAN LORENZO

PROGETTO ESECUTIVO

CODIFICA DOCUMENTO REV. FOGLIO COMMESSA LOTTO OC.00.0.0.001 91 di 92 IF2R 2.2.E.ZZ CL Α

Elenco ferri

Simbologia adottata

n° Indice del ferro

nf numero ferri

D diametro ferro espresso in [mm]

L Lunghezza ferro espresso in [m]

Pferro Peso ferro espresso in [kN]

Paramento

n°	Tipo	nf	D	L	Pf	Pgf	Vcls
			[mm]	[m]	[kN]	[kN]	[mc]
1	Diritto inferiore	10	12.00	4.05	0.0353	0.3530	
2	Diritto superiore	10	12.00	4.05	0.0353	0.3530	
3	Diritto superiore	10	12.00	1.85	0.0161	0.1607	
4	Diritto inferiore	10	12.00	1.85	0.0161	0.1607	
5	Ripartitore	11	12.00	1.00	0.0087	0.0958	
6	Gancio	14	12.00	0.44	0.0038	0.0536	
	Totale al metro					1.2266	1.40
	Totale					11.7679	14.00

n°	Tipo	nf	D	L	Pf	Pgf	Vcls
			[mm]	[m]	[kN]	[kN]	[mc]
1	Diritto superiore	10	12.00	4.11	0.0358	0.3577	
2	Diritto inferiore	10	12.00	4.11	0.0358	0.3577	
3	Ripartitore	8	12.00	1.00	0.0087	0.0697	
4	Gancio	11	12.00	0.48	0.0042	0.0460	
	Totale al metro					0.8630	1.50
	Totale					8.3096	15.00