COMMITTENTE:

DIREZIONE LAVORI:

APPALTATORE:

TELESE S.c.a r.l.

Consorzio Telese Società Consortile a Responsabilità Limitata

PROGETTAZIONE:

MANDATARIA:

MANDANTI:

IL DIRETTORE DEALA
PROGETTAZIONE:

Ing. L. LACOPO

Responsabile integrazione in le varie
prestazioni specialistiche

PROGETTO ESECUTIVO

ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA CANCELLO - BENEVENTO II LOTTO FUNZIONALE FRASSO TELESINO – VITULANO 3° SUBLOTTO SAN LORENZO – VITULANO

RELAZIONE

PONTI E VIADOTTI

VI20 - VIADOTTO dal km 40+983 al km 41+213: Viadotto Calore Torrecuso Relazione di calcolo ritegni e varchi

APPALTATORE	SCALA:
IL DIRETTORE TECNICO Ing. M. FERRONI	-

COMMESSA LOTTO FASE ENTE TIPO DOC. OPERA/DISCIPLINA PROGR. REV. 2 R 3 2 Е Ζ Ζ С 2 0 0 0 0 0 1 С

Rev.	Descrizione	Redatto	Data	Verificato	Data	Approvato	Data	Autorizzato Data
^	EMISSIONE	Coding	23/06/21	G.Coppa	24/06/21	L.Bruzzone	24/06/21	IL PROGETTISTA
A	EINISSIONE		23/00/21		24/00/21		24/00/21	F. DI IULLO
В	REVISIONE PER RDV	Coding	29/10/21	G.Coppa	30/10/21	L.Bruzzone	30/10/21	PANCESC
	REVISIONE PER RDV		29/10/21		30/10/21		30/10/21	ORDINE
	DEVISIONE DED DDV	Coding	30/11/21	G.Coppa	30/11/21 L.Bruzzone	L.Bruzzone	30/11/21	MEND TO LAND
	C REVISIONE PER RDV		30/11/21		30/11/21		30/11/21	14128

File: IF2R.3.2.E.ZZ.CL.VI.20.0.0.001-C.docx n. Elab.:

APPALTATORE	ית זיתיד	TELESE S.c.a r.l.		NAPOL	I – BARI			
		S.c.a r.l. sortile a Responsabilità Limitata	RADDOPPI	O TRATT	A CANCEL	LO-BENEVEN	ITO	
PROGETTAZION		or the a Responsabilità Elimitata	II LOTTO F	JNZIONA	LE FRASS	O TELESINO -	- VITUL	ANO
Mandataria:	Mandante:	OVOTRA COTECNII C A	3° SUBLOT	TO SAN I	LORENZO -	- VITULANO		
SYSTRA S.A.	SYSTRA S.A. SWS Engineering S.p.A. SYSTRA-SOTECNI S.p.A.		PROGETTO	ESECU	ΓΙνο			
PONTI E VIADO	ΓΤΙ – VI20		COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
Relazione di calo	colo ritegni e varchi		l IF2R	3.2.E.ZZ	CL	VI.20.0.0.001	С	2 di 38

INDICE

1 P	PREMESSA	4
2 N	NORMATIVA E DOCUMENTI DI RIFERIMENTO	5
2.1	Normative	5
2.2	Elaborati di riferimento	6
3 N	MATERIALI	7
3.1	Calcestruzzo per getti in opera per elevazioni e getto completamento soletta	7
3.2	Calcestruzzo per getti in opera per fondazioni	7
3.3	Calcestruzzo per getti in opera per pali	8
3.4	Calcestruzzo per travi prefabbricate	8
3.5	Acciaio per c.a.	9
3.6	Acciaio per carpenteria metallica	9
4 E	DESCRIZIONE DELL'OPERA	10
5 A	AZIONI DI PROGETTO	12
5.1	Azione sismica	12
5.2	Impalcati da 25m in c.a.p.	14
5	5.2.1 Periodo di riferimento VR = 200 anni	14
5	5.2.2 Periodo di riferimento VR = 112.5 anni	14
6 B	BAGGIOLI	15
6	6.1.1 Baggiolo per appoggio fisso - F	
	6.1.1.1 Verifica pressione nel calcestruzzo	
	6.1.1.2 Verifica armatura a tranciamento	
	6.1.1.3 Verifica armatura di frettaggio	16

ITINERARIO NAPOLI – BARI APPALTATORE: TELESE S.c.a r.l. RADDOPPIO TRATTA CANCELLO-BENEVENTO Consorzio Telese Società Consortile a Responsabilità Limitata II LOTTO FUNZIONALE FRASSO TELESINO – VITULANO PROGETTAZIONE: 3° SUBLOTTO SAN LORENZO - VITULANO Mandataria: Mandante: SYSTRA S.A. SWS Engineering S.p.A. SYSTRA-SOTECNI S.p.A. **PROGETTO ESECUTIVO** PONTI E VIADOTTI – VI20 COMMESSA LOTTO CODIFICA DOCUMENTO VI.20.0.0.001 REV. FOGLIO 3.2.E.ZZ 3 di 38 IF2R С Relazione di calcolo ritegni e varchi CL

6.1.2 Baggiolo per appoggio unidirezionale longitudinale — UL						
6.1.2.1 Verifica pressione nel calcestruzzo	18					
6.1.2.2 Verifica armatura a tranciamento						
6.1.2.3 Verifica armatura di frettaggio	18					
6.1.3 Baggiolo per appoggio multidirezionale - M	21					
6.1.3.1 Verifica pressione nel calcestruzzo	21					
6.1.3.2 Verifica armatura di frettaggio	21					
7 RITEGNI SISMICI	23					
7.1 Ritegni longitudinali impalcati da 25m in c.a.p.	23					
7.1.1 Periodo di riferimento $VR = 200$ anni	23					
7.1.2 Periodo di riferimento $VR = 112.5$ anni						
7.2 Ritegni trasversali impalcati da 25m in c.a.p.	26					
7.2.1 Periodo di riferimento $VR = 200$ anni						
7.2.2 Periodo di riferimento $VR = 112.5$ anni	28					
8 ESCURSIONE LONGITUDINALE, GIUNTI E VARCHI	30					
8.1 Spostamento dovuto alla variazione termica uniforme	32					
8.2 Spostamento sismico in sommità pila	32					
8.3 Spostamento del suolo	32					
8.4 Calcolo escursione longitudinale, giunti e varchi - impalcati c.a.p. 25 m	33					
8.4.1 Spalla A						
8.4.2 Pila 1						
8.4.3 Pila 5	36					
8.4.4 Riepilogo.						

APPALTATORE	THIR	SE s.c.a r.l.	ITINERARIO	NAPOL	I – BARI			
			RADDOPPI	O TRATT	A CANCEL	LO-BENEVEN	TO	
PROGETTAZION	Consorzio Telese Società Consortile a Responsabilità Limitata PROGETTAZIONE:			JNZIONA	LE FRASS	O TELESINO -	- VITUL	ANO
Mandataria:	Mandante:		3° SUBLOT	TO SAN I	ORENZO -	- VITULANO		
SYSTRA S.A.	SWS Engineering S.p.A.	SYSTRA-SOTECNI S.p.A.	PROGETTO	ESECUT	ΓΙVΟ			
PONTI E VIADOT	PONTI E VIADOTTI – VI20		COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
Relazione di calc	olo ritegni e varchi		IF2R	3.2.E.ZZ	CL	VI.20.0.0.001	С	4 di 38

1 PREMESSA

Nell'ambito dell'Itinerario Napoli-Bari si inserisce il Raddoppio della Tratta Cancello - Benevento - II° Lotto Funzionale Frasso Telesino-Vitulano - 3° Lotto funzionale San Lorenzo-Vitulano oggetto di progettazione escecutiva.


Oggetto della presente relazione è il *Viadotto Calore Torrecuso_VI20* per il quale viene dimensionato il sistema di trasferimento dei carichi provenienti dagli impalcati ferroviari ai fusti delle pile: in particolare vengono verificati i ritegni sismici degli impalcati. Vengono, altresì, determinate le entità delle escursioni totali degli appoggi e dei giunti, quella del varco da prevedere fra le testate di impalcati adiacenti, nonché i fine corsa sui ritegni sismici.

Le tipologie di impalcato presenti sono tre, costituite ognuna da 4 travi, e nello specifico:

- ✓ impalcato da 25m in c.a.p.;
- ✓ impalcato da 45m a struttura mista acciaio-cls;
- ✓ impalcato da 65m a struttura mista acciaio-cls.

Nella presente relazione si farà riferimento esclusivamente agli impalcati in c.a.p. da 25 m.

Lo schema di vincolo del *Viadotto* in oggetto è riportato nella figura seguente:

APPALTATORE	TELESE S.c.a r.l.		ITINERARIO	O NAPOL	I – BARI			
		S.c.a r.l. sortile a Responsabilità Limitata	RADDOPPI	O TRATT	A CANCEL	LO-BENEVEN	ITO	
PROGETTAZION	E:		II LOTTO F	UNZIONA	LE FRASS	O TELESINO -	- VITUL	ANO
Mandataria:	Mandante:		3° SUBLOT	TO SAN	LORENZO -	- VITULANO		
SYSTRA S.A.	SWS Engineering S.p.A.	SYSTRA-SOTECNI S.p.A.	PROGETTO	ESECU ⁻	ΓΙVΟ			
PONTI E VIADOT	TI – VI20		COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
Relazione di calc	olo ritegni e varchi		IF2R	3.2.E.ZZ	CL	VI.20.0.0.001	С	5 di 38

2 NORMATIVA E DOCUMENTI DI RIFERIMENTO

2.1 Normative

Sono state prese a riferimento le seguenti Normative nazionali ed internazionali vigenti alla data di redazione del presente documento:

- [1] Ministero delle Infrastrutture, DM 14 gennaio 2008, «Approvazione delle nuove norme tecniche per le costruzioni»
- [2] Ministero delle Infrastrutture e Trasporti, Circolare 2 febbraio 2009, n. 617 C.S.LL.PP., «Istruzioni per l'applicazione delle Nuove norme tecniche per le costruzioni di cui al decreto ministeriale 14 gennaio 2008»
- [3] Istruzione RFI DTC SI PS MA IFS 001 B del 22/12/2017 Manuale di Progettazione delle Opere Civili Parte II Sezione 2 Ponti e Strutture
- [4] Istruzione RFI DTC SI CS MA IFS 001 B del 22/12/2017 Manuale di Progettazione delle Opere Civili Parte II Sezione 3 Corpo Stradale
- [5] Regolamento (UE) N.1299/2014 della Commissione del 18 Novembre 2014 relativo alle specifiche tecniche di interoperabilità per il sottosistema "infrastruttura" del sistema ferroviario dell'Unione europea

APPALTATORE	TOTO	TELESE S.c.a r.l.		NAPOL	I – BARI			
			RADDOPPI	O TRATT	A CANCEL	LO-BENEVEN	ТО	
PROGETTAZION		ortile a Responsabilità Limitata	II LOTTO FI	JNZIONA	LE FRASS	O TELESINO -	- VITUL	ANO
Mandataria:	Mandante:		3° SUBLOT	TO SAN I	ORENZO -	- VITULANO		
	SWS Engineering S.p.A.	SYSTRA-SOTECNI S.p.A.						
			PROGETTO	ESECU1	ΓΙVΟ			
PONTI E VIADOT	TI – VI20		COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
Relazione di calc	olo ritegni e varchi		IF2R	3.2.E.ZZ	CL	VI.20.0.0.001	С	6 di 38

2.2 Elaborati di riferimento

Vengono presi a riferimento tutti gli elaborati grafici progettuali di pertinenza.

Pianta scavi e sezione longitudinale - Tav. 1 di 2	IF2R.3.2.E.ZZ.PZ.VI.20.0.0.001
Pianta scavi e sezione longitudinale - Tav. 2 di 2	IF2R.3.2.E.ZZ.PZ.VI.20.0.0.002
Pianta fondazioni, impalcato e prospetto - Tav. 1 di 2	IF2R.3.2.E.ZZ.PZ.VI.20.0.0.003
Pianta fondazioni, impalcato e prospetto - Tav. 2 di 2	IF2R.3.2.E.ZZ.PZ.VI.20.0.0.004
Pianta quota solette	IF2R.3.2.E.ZZ.PZ.VI.20.0.B.001
Carpenteria "Struttura ad archi" spalla SPA: piante e sezioni - Tav. 1	IF2R.3.2.E.ZZ.BZ.VI.20.0.4.001
Carpenteria "Struttura ad archi" spalla SPA: piante e sezioni - Tav. 2	IF2R.3.2.E.ZZ.BZ.VI.20.0.4.002
Carpenteria travi "Struttura ad archi" spalla SPA	IF2R.3.2.E.ZZ.BZ.VI.20.0.4.003
Carpenteria spalla SPB - Tav. 1 di 2	IF2R.3.2.E.ZZ.BB.VI.20.0.4.001
Carpenteria spalla SPB - Tav. 2 di 2	IF2R.3.2.E.ZZ.BB.VI.20.0.4.002
Carpenteria pila P1	IF2R.3.2.E.ZZ.BZ.VI.20.0.5.001
Carpenteria pila P2	IF2R.3.2.E.ZZ.BZ.VI.20.0.5.002
Carpenteria pila P3	IF2R.3.2.E.ZZ.BZ.VI.20.0.5.003
Carpenteria pila P4	IF2R.3.2.E.ZZ.BZ.VI.20.0.5.004
Carpenteria pila P5	IF2R.3.2.E.ZZ.BZ.VI.20.0.5.005

APPALTATORE	ית זיתיד	SE s.c.a r.l.	ITINERARIO	NAPOL	I – BARI			
			RADDOPPI	O TRATT	A CANCEL	LO-BENEVEN	ITO	
PROGETTAZION	Consorzio Telese Società Consortile a Responsabilità Limitata PROGETTAZIONE:			JNZIONA	LE FRASS	O TELESINO -	- VITUL	ANO
Mandataria:	Mandante:		3° SUBLOT	TO SAN I	ORENZO -	- VITULANO		
SYSTRA S.A.	SWS Engineering S.p.A.	SYSTRA-SOTECNI S.p.A.	PROGETTO	ESECUT	ΓΙVΟ			
PONTI E VIADOTTI – VI20		COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO	
Relazione di calc	colo ritegni e varchi		IF2R	3.2.E.ZZ	CL	VI.20.0.0.001	С	7 di 38

3 MATERIALI

Si riportano di seguito i materiali previsti per la realizzazione delle strutture, suddivisi per elemento costruttivo.

3.1 Calcestruzzo per getti in opera per elevazioni e getto completamento soletta

Classe	C32/40		
$R_{ck} =$	40	MPa	resistenza caratteristica cubica
$f_{ck} =$	32	MPa	resistenza caratteristica cilindrica
$f_{cm} =$	40	MPa	valor medio resistenza cilindrica
$\alpha_{cc} =$	0.85		coeff. rid. Per carichi di lunga durata
$g_{\mathrm{M}}=$	1.5	-	coefficiente parziale di sicurezza SLU
$f_{cd} \equiv$	18.13	MPa	resistenza di progetto
$f_{\scriptscriptstyle ctm} =$	3.02	MPa	resistenza media a trazione semplice
$f_{\text{\tiny cfm}} =$	3.63	MPa	resistenza media a trazione per flessione
$f_{ctk} =$	2.12	MPa	valore caratteristico resistenza a trazione
$E_{cm} =$	33346	MPa	Modulo elastico di progetto
$\nu =$	0.2		Coefficiente di Poisson

3.2 Calcestruzzo per getti in opera per fondazioni

Classe	C28/35		
$R_{ck} =$	35	MPa	resistenza caratteristica cubica
$f_{ck} =$	28	MPa	resistenza caratteristica cilindrica
$f_{cm}\!=\!$	36	MPa	valor medio resistenza cilindrica
$\alpha_{cc} =$	0.85		coeff. rid. per carichi di lunga durata
$g_{\mathrm{M}}=$	1.5	-	coefficiente parziale di sicurezza SLU
$f_{cd} =$	15.87	MPa	resistenza di progetto
$f_{\text{\tiny ctm}} =$	2.77	MPa	resistenza media a trazione semplice
$f_{\text{cfm}} =$	3.32	MPa	resistenza media a trazione per flessione

APPALTATORE	TELESE S.c.a r.l.		ITINERARIO NAPOLI – BARI						
			RADDOPPI	O TRATT	A CANCEL	LO-BENEVEN	ТО		
Consorzio Telese Società Consortile a Responsabilità Limitata PROGETTAZIONE:			II LOTTO FI	JNZIONA	LE FRASS	O TELESINO -	- VITUL	ANO	
Mandataria:	Mandante:		3° SUBLOT	TO SAN I	ORENZO -	- VITULANO			
	SWS Engineering S.p.A.	SYSTRA-SOTECNI S.p.A.							
			PROGETTO	ESECU1	ΓΙνο				
PONTI E VIADOT	PONTI E VIADOTTI – VI20		COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO	
Relazione di calcolo ritegni e varchi		IF2R	3.2.E.ZZ	CL	VI.20.0.0.001	С	8 di 38		

$f_{ctk} =$	1.94	MPa	valore caratteristico resistenza a trazione
$E_{\text{\tiny cm}} =$	32308	MPa	Modulo elastico di progetto
$\nu =$	0.2		Coefficiente di Poisson

3.3 Calcestruzzo per getti in opera per pali

Classe	C25/30		
$R_{ck} =$	30	MPa	resistenza caratteristica cubica
$f_{ck}\!=\!$	25	MPa	resistenza caratteristica cilindrica
$f_{\scriptscriptstyle cm}\!=\!$	33	MPa	valor medio resistenza cilindrica
$\alpha_{cc} =$	0.85		coeff. rid. per carichi di lunga durata
$g_{M}=$	1.5	-	coefficiente parziale di sicurezza SLU
$f_{cd} =$	14.17	MPa	resistenza di progetto
$f_{ctm} =$	2.56	MPa	resistenza media a trazione semplice
$f_{cfm} =$	3.08	MPa	resistenza media a trazione per flessione
$f_{ctk} =$	1.8	MPa	valore caratteristico resistenza a trazione
$E_{cm} =$	31476	MPa	Modulo elastico di progetto

3.4 Calcestruzzo per travi prefabbricate

Classe	C35/45		
$R_{ck} =$	45	MPa	resistenza caratteristica cubica
$f_{ck} =$	37	MPa	resistenza caratteristica cilindrica
$f_{\text{\tiny cm}}\!=\!$	45.4	MPa	valor medio resistenza cilindrica
$\alpha_{cc} =$	0.85		coeff. rid. Per carichi di lunga durata
$g_M =$	1.5	-	coefficiente parziale di sicurezza SLU
$f_{cd} =$	21.2	MPa	resistenza di progetto
$f_{\text{\tiny ctm}} =$	3,4	MPa	resistenza media a trazione semplice
$f_{cfm} =$	4.0	MPa	resistenza media a trazione per flessione

APPALTATORE:	TIPT IN	SE s.c.a r.l.	ITINERARIO	NAPOL	– BARI			
			RADDOPPI	O TRATT	A CANCEL	LO-BENEVEN	то	
Consorzio Telese Società Consortile a Responsabilità Limitata PROGETTAZIONE:		II LOTTO FU	JNZIONA	LE FRASS	O TELESINO -	- VITUL	ANO	
			3° SUBLOT	TO SAN I	ORENZO -	- VITULANO		
SYSTRA S.A.	SWS Engineering S.p.A.	SYSTRA-SOTECNI S.p.A.	PROGETTO	ESECUT	IVO			
PONTI E VIADOTT Relazione di calco	TI – VI20 olo ritegni e varchi		COMMESSA IF2R	LOTTO 3.2.E.ZZ	CODIFICA CL	DOCUMENTO VI.20.0.0.001	REV. C	FOGLIO 9 di 38

$f_{ctk} =$	2.3	MPa	valore caratteristico resistenza a trazione
$E_{\text{cm}} =$	34625	MPa	Modulo elastico di progetto
ν =	0.2		Coefficiente di Poisson

3.5 Acciaio per c.a.

B450C		
$f_{yk} \ge$	450 MPa	tensione caratteristica di snervamento
$f_{tk} \ge$	540 MPa	tensione caratteristica di rottura
$(f_t/f_y)_k \ge$	1.15	
$(f_t/f_y)_k <$	1.35	
g_s =	1.15 -	coefficiente parziale di sicurezza SLU
$f_{yd} =$	391.3 MPa	tensione caratteristica di snervamento
$E_s =$	200000 MPa	Modulo elastico di progetto
ϵ_{yd} =	0.196%	deformazione di progetto a snervamento
$\varepsilon_{uk} = (A_{gt})_k$	7.50%	deformazione caratteristica ultima

3.6 Acciaio per carpenteria metallica

<u>S355</u>			
fyk =	355	N/mm^2	Resistenza di calcolo (t \leq 40 mm)
fyk =	335	N/mm^2	Resistenza di calcolo ($t \ge 40 \text{ mm}$)
$E_S =$	210000	N/mm²	modulo elastico

APPALTATORE	TITE	SE s.c.a r.l.	ITINERARIO	O NAPOL	I – BARI			
		S.c.a r.l. sortile a Responsabilità Limitata	RADDOPPI	O TRATT	A CANCEL	LO-BENEVEN	ТО	
PROGETTAZION	E:	-	II LOTTO F	UNZIONA	LE FRASS	O TELESINO -	- VITUL	ANO
Mandataria:	Mandante:	OVOTRA COTECNII O A	3° SUBLOT	TO SAN I	LORENZO -	- VITULANO		
SYSTRA S.A.	SWS Engineering S.p.A.	VS Engineering S.p.A. SYSTRA-SOTECNI S.p.A. PROGETTO ESECUTIVO						
PONTI E VIADOT	TI – VI20		COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
Relazione di calc	colo ritegni e varchi		IF2R	3.2.E.ZZ	CL	VI.20.0.0.001	С	10 di 38

4 DESCRIZIONE DELL'OPERA

Il Viadotto Calore Torrecuso - VI20, a doppio binario, si estende dal km 40+983,00 al km 41+213,00 della Tratta Cancello-Benevento - II° Lotto Funzionale Frasso Telesino-Vitulano per uno sviluppo complessivo di 230 m (a cui si aggiungono 44m, lato Cancello, di spalla A con struttura scatolare "a farfalla" dal km 40+939,00 al km 40+983,00) in corrispondenza del Fiume Calore ed è costituito da 6 campate isostatiche di cui:

- n°3 campate di luce L=25,00m (asse pila-asse pila): ciascun impalcato è costituito da n°4 travi a cassoncino in c.a.p. di luce di calcolo Lc=22,80m disposte ad un interasse di 2,48m e collegate trasversalmente da n°4 trasversi in c.a.p. con cavi post-tesi. Completa l'impalcato una soletta in c.a. gettata in opera di larghezza complessiva pari a 13,70m.
- ✓ 2 campate (tra le pile P2 e P3 e tra le pile P4 e P5) di luce L=45,00 m (asse pila- asse pila): l'impalcato è della tipologia a struttura mista acciaio-calcestruzzo con soletta collaborante in c.a. avente luce di calcolo Lc= 43,00m con una larghezza complessiva pari a 13,70m.
- √ 1 campata(tra le pile P3 e P4) di luce L=65,00 m (asse pila asse pila): l'impalcato è dellatipologia a struttura mista acciaio calcestruzzo con soletta collaborante in c.a. avente luce di calcolo Lc=63,00 m con una larghezza complessiva pari a 13,70m.

L'adozione di "campate speciali" (45,00m-65,00m-45,00m di cui sopra) per lo scavalco *del Fiume* Calore è stata dettata da motivazioni di carattere idraulico legate in primo luogo al rispetto di quanto prescritto dal DM 14 gennaio 2008 in termini di compatibilità idraulica (cfr.§ 5.2.1.2 "...la luce minima tra pile contigue, misurata ortogonalmente al filone principale della corrente, non dovrà esser inferiore a 40 metri...").

APPALTATOR	PALTATORE: TELESE S.c.a.r.l.		ITINERARIO NAPOLI – BARI						
		S.c.a r.l. sortile a Responsabilità Limitata	RADDOPPI	O TRATT	A CANCEL	LO-BENEVEN	ITO		
PROGETTAZIONE:		II LOTTO F	UNZIONA	LE FRASS	O TELESINO -	- VITUL	ANO		
Mandataria:	Mandante:			TO SAN I	LORENZO -	- VITULANO			
SYSTRA S.A.	SWS Engineering S.p.A.	SYSTRA-SOTECNI S.p.A.	PROGETTO	ESECUT	ΓΙνο				
PONTI E VIADO	TTI – VI20		COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO	
Relazione di calcolo ritegni e varchi		IF2R	3.2.E.ZZ	CL	VI.20.0.0.001	С	11 di 38		

La tabella sottostante individua le sottostrutture per le quli sono stati fatti i calcoli dei ritegni e delle escursioni dei giunti.

	vincolo	vincolo	h fusto
	sx - F	dx -M	m
SPA	-	cap 25 m	1
P1	cap 25 m	cap 25 m	8.4
P2	cap 25 m	met 45 m	9.65
Р3	met 45 m	met 65 m	15.35
P4	met 65 m	met 45 m	15.35
P5	met 45 m	cap 25 m	5.35
SPB	cap 25 m	-	-

APPALTATORE	Thin	ITINERARIO NAPOLI – BARI						
		SE S.c.a r.l. sortile a Responsabilità Limitata				LO-BENEVEN		
PROGETTAZION	E:		II LOTTO F	UNZIONA	LE FRASS	O TELESINO -	- VITUL	ANO
Mandataria:	Mandante:			TO SAN	LORENZO -	- VITULANO		
SYSTRA S.A.	SWS Engineering S.p.A.	SYSTRA-SOTECNI S.p.A.	PROGETTO	ESECU ⁻	ΓΙνο			
PONTI E VIADOT	TI – VI20		COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
Relazione di calc	olo ritegni e varchi		IF2R	3.2.E.ZZ	CL	VI.20.0.0.001	С	12 di 38

5 AZIONI DI PROGETTO

Per i calcoli riportati nei paragrafi successivi, relativamente ai ritegni trasversali e longitudinali, si fa riferimento al solo impalcato in c.a.p. da 25m. I ritegni degli impalcati metallici da 45m e 65m sono realizzati mediante un elemento in carpenteria metallica collegato all'intradosso dell'impalcato stesso, che va in battuta sul pulvino.

5.1 Azione sismica

L'azione sismica di progetto è rappresentata da spettri di risposta definiti in base alla pericolosità sismica di base del sito ove sorge l'opera in oggetto, la vita di riferimento e le caratteristiche del sottosuolo. Di seguito si riportano i parametri di input utilizzati per la definizione degli spettri di progetto orizzontali e verticali e i grafici degli stessi.

Per l'opera oggetto della presente relazione, ai fini della definizione delle azioni sismiche di progetto, sono state distinte due differenti periodi di riferimento V_R :

- Per la spalla A e la pila P1 è stata utilizzata una vita nominale V_N pari a 100 anni e classe d'uso IV (in base a quanto riportato al § 2.4.1 e §2.4.2 del DM 14 Gennaio 2008 [1] per "opere di importanza strategica"), a cui corrisponde un coefficiente d'uso C_U = 2; di conseguenza la vita di riferimento è quindi V_R = 100 x 2 = 200 anni.
- Per le pile da P2 a P5 e la spalla B è stata utilizzata una vita nominale V_N pari a 75 anni e classe d'uso III, a cui corrisponde un coefficiente d'uso C_U = 1.5; di conseguenza la vita di riferimento è quindi V_R = 75 x 1.5 = 112.5 anni.

La categoria topografica è "T1", mentre la categoria di sottosuolo è la C.

A seguire i parametri sismici per i due casi.

APPALTATORE	TITI	SE S.c.a r.l.	ITINERARIO	NAPOL	I – BARI			
			RADDOPPI	O TRATT	A CANCEL	LO-BENEVEN	ITO	
Consorzio Telese Società Consortile a Responsabilità Limitata PROGETTAZIONE:		II LOTTO FUNZIONALE FRASSO TELESINO – VITULANO						
Mandataria:	Mandante: SWS Engineering S.p.A.	SYSTRA-SOTECNI S.p.A.	3° SUBLOT	TO SAN I	LORENZO -	- VITULANO		
SYSTRA S.A.	PROGETTO	ESECUT	ΓΙνο					
PONTI E VIADOTTI – VI20		COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO	
Relazione di calc	olo ritegni e varchi		IF2R	3.2.E.ZZ	CL	VI.20.0.0.001	С	13 di 38

Periodo di riferimento $V_R = 200$ anni

Parametri indipendenti

STATO LIMITE	SLV	
a _g	0.437	[g]
F ₀	2.430	
T _C *	0.419	[s]
S _S	1.063	
C _C	1.399	
S _T	1.000	
ζ	15	[%]
q	1.000	

Parametri dipendenti

S	1.063	
η_1	0.707	
η ₂ =1/q	1.000	
T _B	0.195	[s]
T _C	0.586	[s]
T _D	3.348	[s]

Periodo di riferimento $V_R = 112.5$ anni

STATO LIMITE	SLV	
a _g	0.355	[g]
F ₀	2.354	
T _C *	0.395	[s]
S _S	1.198	
C _C	1.427	
S _T	1.000	
ζ	15	[%]
q	1.000	

Parametri dipendenti

S	1.198	
η_1	0.707	
η ₂ =1/q	1.000	
T _B	0.188	[s]
T _C	0.564	[s]
T _D	3.020	[s]

APPALTATORE	TELE	SE s.c.a r.l.	ITINERARIO	NAPOL	I – BARI			
		S.c.a r.l. sortile a Responsabilità Limitata	RADDOPPI	O TRATT	A CANCEL	LO-BENEVEN	ITO	
		II LOTTO FUNZIONALE FRASSO TELESINO – VITULANO						
Mandataria:	Mandante:		3° SUBLOT	TO SAN I	LORENZO -	- VITULANO		
SYSTRA S.A.	SWS Engineering S.p.A.	SYSTRA-SOTECNI S.p.A.	PROGETTO ESECUTIVO					
PONTI E VIADOTTI – VI20		COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO	
Relazione di calc	olo ritegni e varchi		IF2R	3.2.E.ZZ	CL	VI.20.0.0.001	С	14 di 38

5.2 Impalcati da 25m in c.a.p.

L'impalcato a singola campata isostatica, di luce pari a 25,00 m in asse ai giunti (22,80 m asse appoggi) è realizzato con 4 cassoncini accostati in c.a.p. e soletta gettata in opera. La lunghezza complessiva delle travi prefabbricate è pari a 24,30 m. La larghezza dell'impalcato è pari a 13,70 m.

Di seguito si riportano le azioni massime sugli appoggi.

5.2.1 Periodo di riferimento VR = 200 anni

Di seguito vengono riportate le azioni di progetto:

	FISSO	UNI LONG	MULTI	
F vert	4000	4000	4800	kN
F long	8500*	-	-	kN
F trasy	8000*	8000	_	kN

^{*} Non contemporanei

5.2.2 Periodo di riferimento VR = 112.5 anni

Di seguito vengono riportate le azioni di progetto:

	FISSO	UNI LONG	MULTI	
F vert	4000	4000	4800	kN
F long	7500*	-	-	kN
F trasv	7000*	7000	-	kN

^{*} Non contemporanei

APPALTATORE	TITLE	SE s.c.a r.l.	ITINERARIO	NAPOL	– BARI			
			RADDOPPI	O TRATT	A CANCEL	LO-BENEVEN	ITO	
Consorzio Telese Società Consortile a Responsabilità Limitata PROGETTAZIONE:		II LOTTO FUNZIONALE FRASSO TELESINO – VITULANO						
	Mandante:		3° SUBLOT	TO SAN I	ORENZO -	- VITULANO		
SYSTRA S.A.	SWS Engineering S.p.A.	SYSTRA-SOTECNI S.p.A.	DDOOFTTO		-11.40			
	PROGETTO	ESECUI	IVO					
PONTI E VIADOTTI – VI20		COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO	
Relazione di calcolo ritegni e varchi		IF2R	3.2.E.ZZ	CL	VI.20.0.0.001	С	15 di 38	

6 BAGGIOLI

Il dimensionamento e la verifica dell'armatura a tranciamento e di quella trasversale a fenditura dei baggioli delle pile, è stato eseguito in funzione delle massime azioni registrate sugli apparecchi di appoggio allo Stato Limite Ultimo (condizioni statiche) e allo Stato Limite di Salvaguardia della Vita (SLV) da spettro elastico (condizioni sismiche).

6.1.1 Baggiolo per appoggio fisso - F

6.1.1.1 Verifica pressione nel calcestruzzo

Si riporta di seguito la verifica.

VERIFICA A PRESSIONE NEL CALCESTRUZZO				
Reazione verticale dell'appoggio	Р	4000	kN	
Dimensione appoggio	а	0.85	m	
Dimensione baggiolo	d	1.00	m	
Altezza baggiolo	Х	0.30	m	
Area caricata	A _{car}	0.72	m²	
				1
Tensione nel calcetruzzo	σ_{cls}	5.54	MPa	
Tensione limite nel calcetruzzo	f _{cd} =	18.8	MPa	Ok. Verificato

6.1.1.2 Verifica armatura a tranciamento

L'armatura longitudinale si dimensiona a tranciamento.

Si riporta di seguito la verifica.

DIMENSIONAMENTO ARMATURA A TRANCIAMENTO (LONGITUDINALE)			
Massimo taglio agente	Т	8832	kN
Tensione snervamento acciaio	f _d	391.30	MPa
Area minima	А	390.95	cm ²
Numero di bracci	n	80	-
Diametro	ф	26	mm
Area resistente	A _R	424.528	cm ²
Fattore di sicrurezza	Fs	1.09	-

APPALTATORE	ATTALIATORE.		ITINERARIO NAPOLI – BARI					
			RADDOPPIO TRATTA CANCELLO-BENEVENTO					
PROGETTAZIONE:		II LOTTO FUNZIONALE FRASSO TELESINO – VITULANO						
Mandataria:	Mandante:		3° SUBLOT	TO SAN I	ORENZO -	- VITULANO		
SYSTRA S.A.	SWS Engineering S.p.A.	SYSTRA-SOTECNI S.p.A.	-SOTECNI S.p.A. PROGETTO ESECUTIVO					
PONTI E VIADOTTI – VI20		COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO	
Relazione di calcolo ritegni e varchi		IF2R	3.2.E.ZZ	CL	VI.20.0.0.001	С	16 di 38	

6.1.1.3 Verifica armatura di frettaggio

L'armatura trasversale si dimensiona in base alla forza di fenditura.

Il baggiolo di dimensione d su cui è poggiato l'apparecchio di appoggio di dimensione a soggetto ad una forza P avrà un andamento delle isostatiche di compressione di questo tipo:

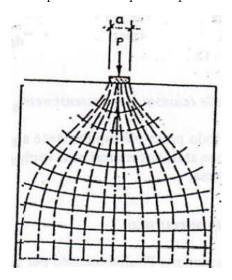


Figura 1: Andamento delle isostatiche di compressione

La curva delle tensioni di trazione trasversale oy risulta essere quella riportata nella Figura di seguito.

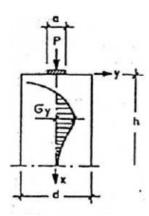


Figura 2: Curva delle tensioni di trazione trasversale σy

APPALTATORE	TELESE S.c.a r.l.	ITINERARIO NAPOLI – BARI							
				RADDOPPIO TRATTA CANCELLO-BENEVENTO					
Consorzio Telese Società Consortile a Responsabilità Limitata PROGETTAZIONE:			II LOTTO FUNZIONALE FRASSO TELESINO – VITULANO						
Mandataria:				3° SUBLOTTO SAN LORENZO – VITULANO					
SYSTRA S.A.	SWS Engineering S.p.A.	SYSTRA-SOTECNI S.p.A.	S.p.A. PROGETTO ESECUTIVO						
PONTI E VIADOT	TI – VI20		COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO	
Relazione di calc	olo ritegni e varchi		IF2R	3.2.E.ZZ	CL	VI.20.0.0.001	С	17 di 38	

Con l'area delle tensioni di trazione si ottiene la forza di fenditura $T = \int \sigma_y dx$ con la quale si deve dimensionare l'armatura. Tale forza è pari a:

$$T = 0.25 \cdot P \cdot (1 - \frac{a}{d})$$

Di seguito si esibisce la verifica dell'armatura resistente alla massima forza di fenditura.

DIMENSIONAMENTO ARMATURA DI FRETTAGGIO			
Massima forza di fenditura 'T = 0.25 x P x (1-a/d)	F _{fend}	150	kN
Tensione snervamento acciaio	f _d	391.30	MPa
Area minima	A	3.83	cm ²
Diametro	ф	12	mm
Altezza utile di disposizione dell'armatura	h	25.00	cm
Passo	S	10	cm
N° staffe		3	-
N° bracci		3	-
Area resistente	A_R	10.18	cm ²
Fattore di sicrurezza	Fs	2.66	-

APPALTATOR	APPALTATORE: TELESE S.c.a.r.l.			ITINERARIO NAPOLI – BARI					
		S.c.a r.l. sortile a Responsabilità Limitata				LO-BENEVEN		ANO	
PROGETTAZIO	NE:		II LOTTO FO	JNZIONA	LE FRASS	O TELESINO -	- VIIUL	ANO	
Mandataria:	Mandante:		3° SUBLOT	TO SAN I	LORENZO -	- VITULANO			
SYSTRA S.A.	SWS Engineering S.p.A.	SYSTRA-SOTECNI S.p.A.							
			PROGETTO	ESECU	ΓΙνο				
PONTI E VIADO	TTI – VI20		COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO	
Relazione di ca	lcolo ritegni e varchi		IF2R	3.2.E.ZZ	CL	VI.20.0.0.001	С	18 di 38	

6.1.2 Baggiolo per appoggio unidirezionale longitudinale – UL

6.1.2.1 Verifica pressione nel calcestruzzo

Si riporta di seguito la verifica.

VERIFICA A PRESSIONE NEL CALCESTRUZZO				
Reazione verticale dell'appoggio	Р	4000	kN	
Dimensione appoggio	а	0.80	m	
Dimensione baggiolo	d	0.95	m	
Altezza baggiolo	х	0.30	m	
Area caricata	A _{car}	0.64	m²	
				1
Tensione nel calcetruzzo	σ _{cls}	6.25	MPa	
Tensione limite nel calcetruzzo	f _{cd} =	18.8	MPa	0

6.1.2.2 Verifica armatura a tranciamento

L'armatura longitudinale si dimensiona a tranciamento.

Si riporta di seguito la verifica.

DIMENSIONAMENTO ARMATURA A TRANCIAMENTO (LONGITUDINALE)			
Massimo taglio agente	Т	8000	kN
Tensione snervamento acciaio	f _d	391.30	MPa
Area minima	Α	354.11	cm ²
Numero di bracci	n	80	-
Diametro	ф	26	mm
Area resistente	A_R	424.528	cm ²
Fattore di sicrurezza	Fs	1.20	-

6.1.2.3 Verifica armatura di frettaggio

L'armatura trasversale si dimensiona in base alla forza di fenditura.

Il baggiolo di dimensione d su cui è poggiato l'apparecchio di appoggio di dimensione a soggetto ad una forza P avrà un andamento delle isostatiche di compressione di questo tipo:

APPALTATORE	TOTO	TELESE S.c.a r.l.		ITINERARIO NAPOLI – BARI						
			RADDOPPI	O TRATT	A CANCEL	LO-BENEVEN	ТО			
Consorzio Telese Società Consortile a Responsabilità Limitata PROGETTAZIONE:			II LOTTO FUNZIONALE FRASSO TELESINO – VITULANO							
Mandataria:	Mandante:		3° SUBLOT	TO SAN I	ORENZO -	- VITULANO				
SYSTRA S.A.	SWS Engineering S.p.A.	SYSTRA-SOTECNI S.p.A.								
			PROGETTO	ESECUT	ΓΙVΟ					
PONTI E VIADOT	TI – VI20		COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO		
Relazione di calcolo ritegni e varchi			IF2R	3.2.E.ZZ	CL	VI.20.0.0.001	С	19 di 38		

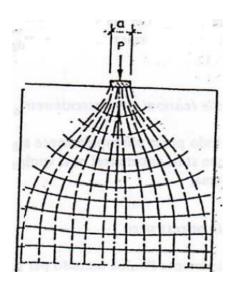


Figura 3: Andamento delle isostatiche di compressione

La curva delle tensioni di trazione trasversale oy risulta essere quella riportata nella Figura di seguito.

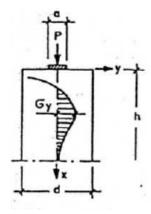


Figura 4: Curva delle tensioni di trazione trasversale σy

Con l'area delle tensioni di trazione si ottiene la forza di fenditura $T=\int \sigma_y dx$ con la quale si deve dimensionare l'armatura. Tale forza è pari a:

$$T = 0.25 \cdot P \cdot (1 - \frac{a}{d})$$

Di seguito si esibisce la verifica dell'armatura resistente alla massima forza di fenditura.

APPALTATOR	בי דער די (E:	THU HUNGARA		ITINERARIO NAPOLI – BARI						
	Consorzio Telese Società Con sortile a Responsa bilità Limitata			RADDOPPIO TRATTA CANCELLO-BENEVENTO						
PROGETTAZION		от не а кезроизаопна Епината				O TELESINO -	- VITUL	ANO		
Mandataria: SYSTRA S.A.	Mandante: SWS Engineering S.p.A.	SYSTRA-SOTECNI S.p.A.	3° SUBLOTTO SAN LORENZO – VITU				AN LORENZO – VITULANO			
			PROGETTO	ESECUT	ΓΙνο					
PONTI E VIADOTTI – VI20 Relazione di calcolo ritegni e varchi		COMMESSA IF2R	LOTTO 3.2.E.ZZ	CODIFICA CL	DOCUMENTO VI.20.0.0.001	REV. C	FOGLIO 20 di 38			

DIMENSIONAMENTO ARMATURA DI FRETTAGGIO			
Massima forza di fenditura 'T = 0.25 x P x (1-a/d)	F_{fend}	158	kN
Tensione snervamento acciaio	f _d	391.30	MPa
Area minima	A	4.04	cm ²
Diametro	ф	12	mm
Altezza utile di disposizione dell'armatura	h	25.00	cm
Passo	S	10	cm
N° staffe		3	-
N° bracci		3	-
Area resistente	A_R	10.18	cm ²
Fattore di sicrurezza	Fs	2.52	-

APPALTATOR	APPALTATORE: TELESE s.c.a r.l.			ITINERARIO NAPOLI – BARI					
		S.c.a r.l. sortile a Responsabilità Limitata	RADDOPPI	O TRATT	A CANCEL	LO-BENEVEN	ITO		
PROGETTAZIOI	NE:		II LOTTO F	UNZIONA	LE FRASS	O TELESINO -	- VITUL	ANO	
Mandataria: Mandante: 3° SUBLOTTO SAN LORENZO – VITUL					3° SUBLOTTO SAN LORENZO – VITULANO				
SYSTRA S.A.	SWS Engineering S.p.A.	SYSTRA-SOTECNI S.p.A.	PROGETTO	ESECUT	ΓΙνο				
PONTI E VIADO	TTI – VI20		COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO	
Relazione di ca	lcolo ritegni e varchi		IF2R	3.2.E.ZZ	CL	VI.20.0.0.001	С	21 di 38	

6.1.3 Baggiolo per appoggio multidirezionale - M

6.1.3.1 Verifica pressione nel calcestruzzo

Si riporta di seguito la verifica.

VERIFICA A PRESSIONE NEL CALCESTRUZZO				
Reazione verticale dell'appoggio	Р	4800	kN	
Dimensione appoggio	a	0.60	m	
Dimensione baggiolo	d	0.70	m	
Altezza baggiolo	х	0.30	m	
Area caricata	A _{car}	0.36	m²	
Tensione nel calcetruzzo	$\sigma_{\sf cls}$	13.33	MPa	
Tensione limite nel calcetruzzo	f _{cd} =	18.8	MPa	Ok.

6.1.3.2 Verifica armatura di frettaggio

L'armatura trasversale si dimensiona in base alla forza di fenditura.

Il baggiolo di dimensione d su cui è poggiato l'apparecchio di appoggio di dimensione a soggetto ad una forza P avrà un andamento delle isostatiche di compressione di questo tipo:

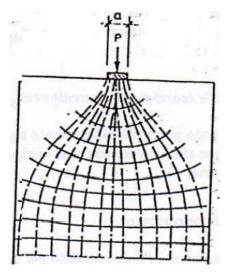


Figura 5: Andamento delle isostatiche di compressione

APPALTATORE:	TELE	TELESE S.c.a r.l.		ITINERARIO NAPOLI – BARI					
			RADDOPPI	O TRATT	A CANCEL	LO-BENEVEN	ТО		
Consorzio Telese Società Consortile a Responsabilità Limitata PROGETTAZIONE:			II LOTTO FUNZIONALE FRASSO TELESINO – VITULANO						
	Mandante:		3° SUBLOT	TO SAN I	ORENZO -	- VITULANO			
SYSTRA S.A.	SWS Engineering S.p.A.	SYSTRA-SOTECNI S.p.A.	PROGETTO	ESECUT	ΓΙVΟ				
PONTI E VIADOTT	ΓΙ – VI20 οΙο ritegni e varchi		COMMESSA IF2R	LOTTO 3.2.E.ZZ	CODIFICA CL	DOCUMENTO VI.20.0.0.001	REV.	FOGLIO 22 di 38	

La curva delle tensioni di trazione trasversale oy risulta essere quella riportata nella Figura di seguito.

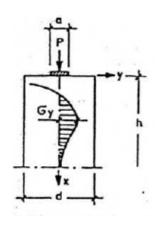


Figura 6: Curva delle tensioni di trazione trasversale σy

Con l'area delle tensioni di trazione si ottiene la forza di fenditura $T=\int \sigma_y dx$ con la quale si deve dimensionare l'armatura. Tale forza è pari a:

$$T = 0.25 \cdot P \cdot (1 - \frac{a}{d})$$

Di seguito si esibisce la verifica dell'armatura resistente alla massima forza di fenditura.

DIMENSIONAMENTO ARMATURA DI FRETTAGGIO			
Massima forza di fenditura 'T = 0.25 x P x (1-a/d)	F _{fend}	171	kN
Tensione snervamento acciaio	f _d	391.30	MPa
Area minima	A	4.38	cm ²
Diametro	ф	12	mm
Altezza utile di disposizione dell'armatura	h	25.00	cm
Passo	S	10	cm
N° staffe		3	-
N° bracci		3	-
Area resistente	A _R	10.18	cm ²
Fattore di sicrurezza	Fs	2.32	-

APPALTATORE:	TELESE s.c.a r.l.		ITINERARIO NAPOLI – BARI					
			RADDOPPI	O TRATT	A CANCEL	LO-BENEVEN	ITO	
Consorzio Telese Società Consortile a Responsabilità Limitata PROGETTAZIONE:			II LOTTO FU	JNZIONA	LE FRASS	TELESINO -	- VITUL	ANO
	Mandante:		3° SUBLOT	TO SAN L	ORENZO -	- VITULANO		
SYSTRA S.A.	SWS Engineering S.p.A.	SYSTRA-SOTECNI S.p.A.	DDOOFTTO					
			PROGETTO	ESECUI	IVO			
	PONTI E VIADOTTI – VI20		COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
Relazione di calcolo ritegni e varchi			IF2R	3.2.E.ZZ	CL	VI.20.0.0.001	С	23 di 38

7 RITEGNI SISMICI

La verifica dei ritegni sismici longitudinali e trasversali viene eseguita, per il livello di progettazione esecutiva in oggetto, con le massime azioni longitudinali e trasversali agenti su di essi riportate nel § 5.

Il numero di ritegni sismici previsti su ciascuna pila è il seguente:

✓ ritegni sismici longitudinali: 1

✓ ritegni sismici trasversali: 2

I ritegni longitudinali e trasversali delle pile che portano gli impalcati da 25m sono realizzati con profili metallici inglobati nel calcestruzzo.

7.1 Ritegni longitudinali impalcati da 25m in c.a.p.

7.1.1 Periodo di riferimento VR = 200 anni

Per le pile che portano gli impalcati da 25m, con periodo di riferimento 200 anni, i ritegni longitudinali sono realizzati con profili metallici inglobati nel calcestruzzo. L'elemento resistente del ritegno è costituito da 5 profilati HEM240 su cui vengono saldati alle estremità 2 piatti saldati 26 x 270 mm.

Le massime sollecitazioni sugli elementi costituenti il ritegno sismico longitudinale si determinano sulla base dei massimi valori delle forze trasmesse dall'impalcato e dell'altezza del punto di applicazione della forza dall'incastro dell'elemento metallico sul pulvino.

Il punto di applicazione ha una distanza pari a 0,325 m dall'incastro, ne consegue che alla base dell'elemento metallico si avranno le sollecitazioni di taglio e momento flettente: V_{Ed} e M_{Ed} .

Trascurando a favore di sicurezza il contributo del calcestruzzo, si ottengono le seguenti caratteristiche geometriche e di resistenza dell'elemento:

Tensione resistente caratteristica	fyk	355	MPa
Tensione resistente di progetto	fyd	338.1	MPa

APPALTATORE	TITI	TELESE S.c.a r.l.		ITINERARIO NAPOLI – BARI						
			RADDOPPI	O TRATT	A CANCEL	LO-BENEVEN	ТО			
Consorzio Telese Società Consortile a Responsabilità Limitata PROGETTAZIONE:			II LOTTO FUNZIONALE FRASSO TELESINO – VITULANO							
Mandataria:	Mandante:		3° SUBLOT	TO SAN I	LORENZO -	- VITULANO				
SYSTRA S.A.	SWS Engineering S.p.A.	SYSTRA-SOTECNI S.p.A.								
			PROGETTO	ESECU1	ΓΙνο					
PONTI E VIADOT	TI – VI20		COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO		
Relazione di calc	olo ritegni e varchi		IF2R	3.2.E.ZZ	CL	VI.20.0.0.001	С	24 di 38		

Azione londitudinale	H Long	8500	kN
Spessore piatto saldato	sp piatto	26	mm
Larghezza piatto saldato	L piatto	270	mm
numero piatti saldati	n piatto	2	-
Tipo profilo	HEM	240	-
Numero profili	n profili	5	-
Area resistente a taglio profilo	Asw,profilo	6008	mm2
Area resistente a taglio piatto	Asw,piatto	7020	mm2
Area resistente a taglio tot	Asw	44080	mm2
Momento plastico profilo	Wpl, profilo	2116960	mm3
Momento plastico piatto	Wpl,piatto	473850	mm3
Momento plastico tot	WpI	1.153E+07	mm3
Momento plastico anime	Wpl anime	3.454E+06	mm3
Taglio resistente	VRd	8604	kN
Taglio agente	Ved	8500	kN
Verifica V		OK	
ρ = (2VEd/VRd -1)2	ρ	0.952	-
Momento resistente	MRd	2787	kNm
Momento agente	Med	2763	kNm
Altezza applicazione forza	h	0.325	m
Verifica M		OK	

Dove:

$$\begin{split} V_{Rd} &= A_{sw} \cdot f_{yk} \, / (\gamma_{M0} \cdot \sqrt{3}) \\ M_{Rd} &= (W_{pl} \!\!-\! W_{pl \, anime} \!\!\cdot\! \varrho) \cdot f_{yk} \, / \gamma_{M0} \\ \varrho &= (2V_{Ed} / V_{Rd} \, \text{-}1 \,)^2 \end{split}$$

Le verifiche risultano soddisfatte.

APPALTATORE: TELESE s.c.a.r.l.			ITINERARIO NAPOLI – BARI					
		S.c.a r.l. ortile a Responsabilità Limitata				LO-BENEVEN		
PROGETTAZIONE	::		II LOTTO FI	JNZIONA	LE FRASS	O TELESINO -	- VITUL	ANO
Mandataria: Mandante: 3° SUBLOTTO SAN LORENZO – VITULANO								
SYSTRA S.A.	SWS Engineering S.p.A.	SYSTRA-SOTECNI S.p.A.	PROGETTO	ESECII	ΓΙVΩ			
DON'T E WARDOT	FI 1/100					DOCUMENTO	DEV	F00110
PONTI E VIADOTT	i – vizu olo ritegni e varchi		COMMESSA IF2R	LOTTO 3.2.E.ZZ	CODIFICA CL	DOCUMENTO VI.20.0.0.001	REV. C	FOGLIO 25 di 38

7.1.2 Periodo di riferimento VR = 112.5 anni

Per le pile che portano gli impalcati da 25m, con periodo di riferimento 112.5 anni, i ritegni longitudinali sono realizzati con profili metallici inglobati nel calcestruzzo. L'elemento resistente del ritegno è costituito da 5 profilati HEM240 su cui vengono saldati alle estremità 2 piatti saldati 22 x 270 mm.

Le massime sollecitazioni sugli elementi costituenti il ritegno sismico longitudinale si determinano sulla base dei massimi valori delle forze trasmesse dall'impalcato e dell'altezza del punto di applicazione della forza dall'incastro dell'elemento metallico sul pulvino.

Il punto di applicazione ha una distanza pari a 0,325 m dall'incastro, ne consegue che alla base dell'elemento metallico si avranno le sollecitazioni di taglio e momento flettente: V_{Ed} e M_{Ed} .

Trascurando a favore di sicurezza il contributo del calcestruzzo, si ottengono le seguenti caratteristiche geometriche e di resistenza dell'elemento:

Tensione resistente caratteristica	fyk	355	MPa
Tensione resistente di progetto	fyd	338.1	MPa
Azione londitudinale	H Long	7500	kN
Spessore piatto saldato	sp piatto	22	mm
Larghezza piatto saldato	L piatto	270	mm
numero piatti saldati	n piatto	2	-
Tipo profilo	HEM	240	-
Numero profili	n profili	5	-
Area resistente a taglio profilo	Asw,profilo	6008	mm2
Area resistente a taglio piatto	Asw,piatto	5940	mm2
Area resistente a taglio tot	Asw	41920	mm2
Momento plastico profilo	Wpl, profilo	2116960	mm3
Momento plastico piatto	Wpl,piatto	400950	mm3
Momento plastico tot	Wpl	1.139E+07	mm3
Momento plastico anime	Wpl anime	3.309E+06	mm3
Taglio resistente	VRd	8183	kN
Taglio agente	Ved	7500	kN
Verifica V		OK	

APPALTATORE	APPALTATORE: TELESE s.c.a r.l.			ITINERARIO NAPOLI – BARI						
			RADDOPPI	O TRATT	A CANCEL	LO-BENEVEN	ТО			
Consorzio Telese Società Consortile a Responsabilità Limitata PROGETTAZIONE: Mandataria: Mandante:			II LOTTO FUNZIONALE FRASSO TELESINO – VITULANO 3° SUBLOTTO SAN LORENZO – VITULANO							
										SWS Engineering S.p.A.
			PROGETTO	ESECU1	ΓΙνο					
PONTI E VIADOT	TI – VI20		COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO		
Relazione di calc	olo ritegni e varchi		IF2R	3.2.E.ZZ	CL	VI.20.0.0.001	С	26 di 38		

ρ = (2VEd/VRd -1)2	ρ	0.694	-
Momento resistente	MRd	3073	kNm
Momento agente	Med	2438	kNm
Altezza applicazione forza	h	0.325	m
Verifica M		OK	

Dove:

$$\begin{split} V_{Rd} &= A_{sw} \cdot f_{yk} \, / (\gamma_{M0} \cdot \sqrt{3}) \\ M_{Rd} &= (W_{pl} \! - W_{pl \, anime} \! \cdot \varrho) \cdot f_{yk} \, / \gamma_{M0} \\ \varrho &= (2V_{Ed} / V_{Rd} \, \text{-} 1 \,)^2 \end{split}$$

Le verifiche risultano soddisfatte.

7.2 Ritegni trasversali impalcati da 25m in c.a.p.

7.2.1 Periodo di riferimento VR = 200 anni

Per le pile che portano gli impalcati da 25m, con periodo di riferimento 200 anni, i ritegni trasversali sono realizzati con profili metallici inglobati nel calcestruzzo. L'elemento resistente del ritegno è costituito da 4 profilati HEM240 su cui vengono saldati alle estremità 2 piatti saldati 22 x 540 mm.

Le massime sollecitazioni sugli elementi costituenti il ritegno sismico trasversale si determinano sulla base dei massimi valori delle forze trasmesse dall'impalcato e dell'altezza del punto di applicazione della forza dall'incastro dell'elemento metallico sul pulvino.

Tensione resistente caratteristica Tensione resistente di progetto	fyk	355 338.1	MPa MPa
rensione resistente di progetto	fyd	330.1	IVIFA
Azione londitudinale	H Trasv	8000	kN
Spessore piatto saldato	sp piatto	22	mm
Larghezza piatto saldato	L piatto	540	mm
numero piatti saldati	n piatto	2	-

APPALTATORE	TIPT IN	TELESE S.c.a r.l.		ITINERARIO NAPOLI – BARI						
			RADDOPPI	O TRATT	A CANCEL	LO-BENEVEN	ITO			
Consorzio Telese Società Consortile a Responsabilità Limitata PROGETTAZIONE:			II LOTTO FUNZIONALE FRASSO TELESINO – VITULANO							
Mandataria:	Mandante:		3° SUBLOT	TO SAN I	LORENZO -	- VITULANO				
SYSTRA S.A.	SWS Engineering S.p.A.	SYSTRA-SOTECNI S.p.A.								
			PROGETTO	ESECU1	ΓΙνο					
PONTI E VIADOT	TI – VI20		COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO		
Relazione di calcolo ritegni e varchi			IF2R	3.2.E.ZZ	CL	VI.20.0.0.001	С	27 di 38		

Tipo profilo	HEM	240	-
Numero profili	n profili	4	-
spessore a	а	18	mm
Area resistente a taglio profilo	Asw,profilo	6008	mm2
Area resistente a taglio tot	Asw	47792	mm2
_	_	_	_
Momento plastico profilo	Wpl, profilo	2116960	mm3
Momento plastico anime	Wpl,anime	5212937	mm3
Momento plastico	Wpl	1.168E+07	mm3
-	-	-	-
Taglio resistente	VRd	9329	kN
Taglio agente	Ved	8000	kN
Verifica V		OK	
ρ = (2VEd/VRd -1)2	ρ	0.511	-
Momento resistente	MRd	3046	kNm
Momento agente	Med	2600	kNm
Altezza applicazione forza	h	0.325	m
Verifica M		OK	

Dove:

$$\begin{split} V_{Rd} &= A_{sw} \cdot f_{yk} \, / (\gamma_{M0} \cdot \sqrt{3}) \\ M_{Rd} &= (W_{pl} \!\!-\! W_{pl \, anime} \!\!\cdot\! \varrho) \cdot f_{yk} \, / \gamma_{M0} \\ \varrho &= (2V_{Ed} / V_{Rd} \, \text{-}1 \,)^2 \end{split}$$

Le verifiche risultano soddisfatte.

APPALTATORE	TELE	SE s.c.a r.l.	ITINERARIO NAPOLI – BARI					
			RADDOPPI	O TRATT	A CANCEL	LO-BENEVEN	ITO	
Consorzio Telese Società Consortile a Responsabilità Limitata PROGETTAZIONE:			II LOTTO FUNZIONALE FRASSO TELESINO – VITULANO					
Mandataria:	Mandante:		3° SUBLOT	TO SAN I	ORENZO -	- VITULANO		
SYSTRA S.A.	SWS Engineering S.p.A.	SYSTRA-SOTECNI S.p.A.	PROGETTO	ESECUT	ΓΙVΟ			
PONTI E VIADOT			COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
Relazione di calcolo ritegni e varchi			IF2R	3.2.E.ZZ	CL	VI.20.0.0.001	С	28 di 38

7.2.2 Periodo di riferimento VR = 112.5 anni

Per le pile che portano gli impalcati da 25m, con periodo di riferimento 112.5 anni, i ritegni trasversali sono realizzati con profili metallici inglobati nel calcestruzzo. L'elemento resistente del ritegno è costituito da 4 profilati HEM240 su cui vengono saldati alle estremità 2 piatti saldati 22 x 540 mm.

Le massime sollecitazioni sugli elementi costituenti il ritegno sismico trasversale si determinano sulla base dei massimi valori delle forze trasmesse dall'impalcato e dell'altezza del punto di applicazione della forza dall'incastro dell'elemento metallico sul pulvino.

Tensione resistente caratteristica	fyk	355	MPa
Tensione resistente di progetto	fyd	338.1	MPa
Azione londitudinale	H Trasv	7000	kN
Spessore piatto saldato	sp piatto	22	mm
Larghezza piatto saldato	L piatto	540	mm
numero piatti saldati	n piatto	2	-
Tipo profilo	HEM	240	-
Numero profili	n profili	4	-
spessore a	а	18	mm
Area resistente a taglio profilo	Asw,profilo	6008	mm2
Area resistente a taglio tot	Asw	47792	mm2
-	-	-	-
Momento plastico profilo	Wpl, profilo	2116960	mm3
Momento plastico anime	Wpl,anime	5212937	mm3
Momento plastico	Wpl	1.168E+07	mm3
-	-	-	-
Taglio resistente	VRd	9329	kN
Taglio agente	Ved	7000	kN
Verifica V		OK	
ρ = (2VEd/VRd -1)2	ρ	0.251	-
Momento resistente	MRd	3506	kNm
Momento agente	Med	2275	kNm
Altezza applicazione forza	h	0.325	m
Verifica M		OK	

APPALTATORE	TIPT IN	SE s.c.a r.l.	ITINERARIO	NAPOL	I – BARI			
			RADDOPPI	O TRATT	A CANCEL	LO-BENEVEN	ITO	
Consorzio Telese Società Consortile a Responsabilità Limitata PROGETTAZIONE:			II LOTTO FUNZIONALE FRASSO TELESINO – VITULANO					
Mandataria:	Mandante:		3° SUBLOT	TO SAN I	ORENZO -	- VITULANO		
SYSTRA S.A.	SWS Engineering S.p.A.	SYSTRA-SOTECNI S.p.A.	PROGETTO ESECUTIVO					
PONTI E VIADOT	TI – VI20		COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
Relazione di calc	olo ritegni e varchi		IF2R	3.2.E.ZZ	CL	VI.20.0.0.001	С	29 di 38

Dove:

$$\begin{split} V_{Rd} &= A_{sw} \cdot f_{yk} \, / (\gamma_{M0} \cdot \sqrt{3}) \\ M_{Rd} &= (W_{pl} \!\!-\! W_{pl \, anime} \!\!\cdot\! \varrho) \cdot f_{yk} \, / \gamma_{M0} \\ \varrho &= (2V_{Ed} \! / V_{Rd} \, \text{-}1 \,)^2 \end{split}$$

Le verifiche risultano soddisfatte.

APPALTATORE	Thin	SE s.c.a r.l.	ITINERARIO NAPOLI – BARI					
		S.c.a r.l. sortile a Responsabilità Limitata	RADDOPPI	O TRATT	A CANCEL	LO-BENEVEN	то	
PROGETTAZIONE:			II LOTTO F	JNZIONA	LE FRASS	O TELESINO -	- VITUL	ANO
Mandataria:	Mandante:		3° SUBLOT	TO SAN I	LORENZO -	- VITULANO		
SYSTRA S.A.	SWS Engineering S.p.A.	SYSTRA-SOTECNI S.p.A.	PROGETTO ESECUTIVO					
PONTI E VIADOT	TI – VI20		COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
Relazione di calc	olo ritegni e varchi		IF2R	3.2.E.ZZ	CL	VI.20.0.0.001	С	30 di 38

8 ESCURSIONE LONGITUDINALE, GIUNTI E VARCHI

Le escursioni longitudinali che i vincoli **mobili** devono consentire sono state determinate in accordo con quanto indicato nel § 2.5.2.1.5 del *Manuale di Progettazione RFI* [3].

Per i ponti e viadotti costituiti da una serie di travi semplicemente appoggiate l'entità dell'escursione totale dei giunti e degli apparecchi d'appoggio viene valutato mediante la seguente relazione:

$$E_L = k_1 \cdot (E_1 + E_2 + E_3) = k_1 \cdot (2 \cdot D_t + 4 \cdot d_{Ed} \cdot k_2 + 2 \cdot d_{eg})$$

dove:

 E_1 = spostamento dovuto alla variazione termica uniforme;

 E_2 = spostamento dovuto alla risposta della struttura all'azione sismica;

 E_3 = spostamento dovuto all'azione sismica fra le fondazioni di strutture non collegate;

k₁ = 0,45 coefficiente che tiene conto della non contemporaneità dei valori massimicorrispondenti a ciascun evento singolo;

 $k_2 = 0,55$ coefficiente legato alla probabilità di moto in controfase di due pile adiacenti;

d_{Ed} = è lo spostamento relativo totale tra le parti, pari allo spostamento d_E prodotto dall'azione sismica di progetto, calcolato come indicato nel § 7.3.3.3 delle NTC2008 [1];

 d_{eg} = è lo spostamento relativo tra le parti dovuto agli spostamenti relativi del terreno, da valutare secondo il \S 3.2.3.3 delle NTC2008 [1];

In ogni caso, dovrà risultare:

$$E_L \ge E_0 e E_L \ge E_i$$
 con $i = 1, 2,3$

dove:

 E_0 = escursione valutata secondo i criteri validi nelle zone non sismiche;

 $E_i = il$ maggiore dei due termini indicati nella espressione precedente.

Nei casi in cui anche una sola delle due precedenti disuguaglianze non risultasse verificata, dovrà Assumersi $E_L = max(E_0; E_i)$.

APPALTATORE	ית זיתיד	SE s.c.a r.l.	ITINERARIO	O NAPOL	I – BARI			
		S.c.a r.l. sortile a Responsabilità Limitata	RADDOPPI	O TRATT	A CANCEL	LO-BENEVEN	ITO	
PROGETTAZIONE:			II LOTTO FUNZIONALE FRASSO TELESINO – VITULANO					
Mandataria:	Mandante:		3° SUBLOT	TO SAN	LORENZO -	- VITULANO		
SYSTRA S.A. SWS Engineering S.p.A. SYSTRA-SOTECNI S.p.A. PROGETTO ESECUTIVO								
PONTI E VIADOT	TI – VI20		COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
Relazione di calc	colo ritegni e varchi		IF2R	3.2.E.ZZ	CL	VI.20.0.0.001	С	31 di 38

Per garantire un valore minimo di escursione, in funzione della sismicità del sito, il valore EL dovràessere assunto non minore di:

$$\begin{split} E_L & \geq 3, 3 \cdot L/1000 + 0, 1 \text{ m e } \quad E_L \geq 0, 15 \text{ m} \\ E_L & \geq 2, 3 \cdot L/1000 + 0, 073 \text{ m e } \quad E_L \geq 0, 10 \text{ m} \end{split} \qquad \text{per $a_g(SLV) \geq 0.25 \text{ g}}$$

dove:

L = la lunghezza del ponte (m).

a) La corsa degli apparecchi d'appoggio mobili deve essere non inferiore a

$$EC_{min} = \pm (E_L/2 + E_L/8)$$
 con unminimo di $\pm (EL/2 + 15 \text{ mm})$.

b) Il giunto fra le testate di due travi adiacenti dovrà consentire una escursione totale pari a:

$$EG_{min} = \pm (E_L/2 + 10 \text{ mm})$$

 c) Il <u>varco</u> da prevedere fra le testate degli impalcati adiacenti, a temperatura media ambiente, dovràessere non inferiore a:

$$EV_{min} = E_L/2 + 20 \text{ mm}$$

d) Il <u>ritegnosismico</u> dovrà essere disposto ad una distanza, dal bordo della trave supportata dal vincolo mobile,pari a:

$$ER_{min} = V - 10 \text{ mm}$$

Di seguito vengono valutati i diversi contributi relativi alle diverse azioni (termica, sismica e moto delle fondazioni) per gli impalcati in cap da 25 m e successivamente vengono riportati i calcoli delle diverse grandezze per le relative pile e spalle.

APPALTATORE	ית זיתיד	STP.	ITINERARIO NAPOLI – BARI					
		SE S.c.a r.l. sortile a Responsabilità Limitata				LO-BENEVEN		
PROGETTAZIONE:			II LOTTO F	UNZIONA	LE FRASS	O TELESINO -	- VITUL	ANO
Mandataria:	Mandante:		3° SUBLOT	TO SAN	LORENZO -	- VITULANO		
SYSTRA S.A.	SWS Engineering S.p.A.	SYSTRA-SOTECNI S.p.A.	RA-SOTECNI S.p.A. PROGETTO ESECUTIVO					
PONTI E VIADOT	TI – VI20		COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
Relazione di calc	colo ritegni e varchi		IF2R	3.2.E.ZZ	CL	VI.20.0.0.001	С	32 di 38

8.1 Spostamento dovuto alla variazione termica uniforme

In accordo con quanto indicato nel § 2.5.1.4.4.1 del *Manuale di Progettazione RFI* [3], la variazione termica per la quale si procede al calcolo della massima escursione è pari a:

$$DT = 1,50 \cdot 15 \, ^{\circ}C = \pm 22,5 \, ^{\circ}C$$

8.2 Spostamento sismico in sommità pila

Lo spostamento sismico longitudinale si ottiene dal modello di calcolo agli elementi finiti delle pile. Il valore dello spostamento elastico si ottiene a partire dal valore di calcolo allo SLV (per q=1,5), moltiplicando quest'ultimo per il fattore μ_d .

8.3 Spostamento del suolo

Lo spostamento relativo tra le pile e spalle d_{eg} dovuto agli spostamenti relativi del terreno si determina in base alle indicazioni riportate nel \S 3.2.3.3 delle NTC2008 [1].

Il valore dello spostamento assoluto orizzontale del suolo in un punto si determina mediante la seguente espressione:

$$d_g = 0.025 \cdot a_g \cdot S \cdot T_C \cdot T_D$$

Lo spostamento massimo relativo tra due punti i e j, viene stimato:

$$d_{ij,max} = 1,25 \cdot \sqrt{(d_{gi}^2 + d_{gj}^2)}$$

Se i punti ricadono su sottosuolo dello stesso tipo lo spostamento relativo tra due punti a distanza x può essere stimato con le seguenti relazioni:

$$d_{ii}(x) = d_{ii,0} + (d_{ii,max} - d_{ii,0}) \cdot (1-e^{(-1,25(x/vs)^0,7)})$$

APPALTATORE:	TITE TO	SE s.c.a r.l.	ITINERARIO	NAPOL	I – BARI			
		S.c.a r.l. ortile a Responsabilità Limitata	RADDOPPI	O TRATT	A CANCEL	LO-BENEVEN	TO	
PROGETTAZIONE:			II LOTTO FU	JNZIONA	LE FRASS	O TELESINO -	- VITUL	ANO
	Mandante:	0.0000 0.000000000000000000000000000000	3° SUBLOT	TO SAN I	ORENZO -	- VITULANO		
SYSTRA S.A. SWS Engineering S.p.A. SYSTRA-SOTECNI S.p.A. PROGETTO ESECUTIVO								
-	PONTI E VIADOTTI – VI20			LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
Relazione di calcolo ritegni e varchi			IF2R	3.2.E.ZZ	CL	VI.20.0.0.001	С	33 di 38

8.4 Calcolo escursione longitudinale, giunti e varchi - impalcati c.a.p. 25 m

Sulla base dei valori di E1, E2e E3 precedentemente calcolati, di seguito si procede al calcolo di:

- ✓ escursione longitudinale EL;
- ✓ corsa degli apparecchi d'appoggio EC;
- ✓ escursione di giunti EG;
- ✓ ampiezza dei varchi EV;
- ✓ distanza minima ritegno sismico ER.

8.4.1 Spalla A

Spostamenti _p.2.5.2.1.5.1 - Manuale di Progettazione RFI			
Spostamento dovuto alla variazione termica uniforme			
Lunghezza impalcato	L	25.00	m
Variazione Termica (p.2.5.1.4.4.1 - Manuale RFI)	ΔT	22.5	
Coeff. Dilatazione termica	α	1E-05	
Spostamento dovuto alla variazione termica uniforme	D _t	5.625	mm
Spostamento dovuto alla variazione termica uniforme	E ₁	11.25	mm
Spostamento sismico in sommità			
Spostamento dovuto alla riposta della struttura all'azione sismica	E ₂	0.00	mm
Spostamento al suolo			
Spostamento assoluto orizzontale del suolo in un punto	d_g	223.6	mm
Spostamento massimo relativo tra due punti i e j	$d_{ij,max}$	395.24	mm
Spostamento relativo tra due punti a piccola distanza	$d_{ij,0}$	0.00	mm
Distanza tra i due punti i e j	x	25	m
Velocità di propagazione delle onde di taglio	vs	180	m/s
Spostamento relativo tra punti a distanza x	$d_{ij}(x)$	106.5	mm
Spostamento dovuto all'azione sismica fra le fondazioni di strutture non collegate	E ₃	212.96	mm
Escursione totale dei giunti e degli apparecchi di appoggio			

APPALTATORE	ית זיתים	STP.	ITINERARIO NAPOLI – BARI					
		SE S.c.a r.l. sortile a Responsabilità Limitata				LO-BENEVEN		
PROGETTAZIONE:			II LOTTO F	UNZIONA	LE FRASS	O TELESINO -	- VITUL	ANO
Mandataria:	Mandante:		3° SUBLOT	TO SAN	LORENZO -	- VITULANO		
SYSTRA S.A.	SWS Engineering S.p.A.	SYSTRA-SOTECNI S.p.A.	PROGETTO ESECUTIVO					
PONTI E VIADOT	TI – VI20		COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
Relazione di calc	olo ritegni e varchi		IF2R	3.2.E.ZZ	CL	VI.20.0.0.001	С	34 di 38

Coefficiente che tiene conto della non contemporaneità dei valori massimi corrispondenti a ciascun evento singolo	\mathbf{k}_1	0.45	-
Escursione totale dei giunti e degli apparecchi di appoggio - da calcolo	E_{L_cal}	100.89	mm
Escursione valutata secondo i criteri validi nelle zone non sismiche	E ₀	11.25	mm
Max (E ₁ ;E ₂ ;E ₃ ;E _{L_cal})	$\text{Max } (E_1;\!E_2;\!E_3;\!E_0;\!E_{L_cal})$	212.96	mm
Valore minimo di escursione in funzione della sismicità del sito	$E_{L.min}$ (a_g)	182.50	mm
Valore minimo di escursione di progetto	EL.min_finale	212.96	mm
Escursione totale dei giunti e degli apparecchi di appoggio di progetto	EL	213.0	mm

Corsa degli apparecchi d'appoggio mobili - p.2.5.2.1.5.2 - Manuale RFI								
Corsa minima apparecchi di appoggio	±	133	mm					
Escursione dei giunti - p.2.5.2.1.5.3 - Manuale RFI								
Giunto minimo fra le testate di due travi adiacenti	±	116	mm					
Ampiezza dei varchi - p.2.5.2.1.5.4 - Manuale RFI								
Ampiezza minima del varco fra le testate di impalcati adiacenti	V L	126	mm					
Distanza del ritegno sismico dalla trave - p.2.5.2.1.5.5 - Manuale RFI								
Distanza minima del ritegno sismico dal bordo della trave supportata dal vincolo mobile	E _R	116	mm					

8.4.2 Pila 1

Spostamenti _p.2.5.2.1.5.1 - Manuale di Progettazione RFI								
Spostamento dovuto alla variazione termica uniforme								
Lunghezza impalcato	L	25.00 m						
Variazione Termica (p.2.5.1.4.4.1 - Manuale RFI)	ΔT	22.5						
Coeff. Dilatazione termica	α	1E-05						
Spostamento dovuto alla variazione termica uniforme	D_t	5.625 mm						
Spostamento dovuto alla variazione termica uniforme	E ₁	11.25 mm						

APPALTATORE	TITI	SE s.c.a r.l.	ITINERARIO	NAPOL	I – BARI			
			RADDOPPI	O TRATT	A CANCEL	LO-BENEVEN	ТО	
Consorzio Telese Società Consortile a Responsabilità Limitata PROGETTAZIONE:			II LOTTO F	JNZIONA	LE FRASS	O TELESINO -	- VITUL	ANO
Mandataria:	Mandante:		3° SUBLOT	TO SAN I	LORENZO -	- VITULANO		
SYSTRA S.A.	SWS Engineering S.p.A.	SYSTRA-SOTECNI S.p.A.	PROGETTO ESECUTIVO					
PONTI E VIADOT	TI – VI20		COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
Relazione di calcolo ritegni e varchi IF2R 3.2.E.ZZ CL VI.20.0.0.001 C				35 di 38				

Spostamento sismico in sommità pila			
Periodo di riferimento della struttura	T ₁	0.300	s
Periodo inizio del tratto a velocità costante	T _c	0.586	s
Risposta in accelerazione associata al periodo della struttura (Spettro elastico)	Se(T₁)	1.129	g
Fattore di struttura	q	1.5	-
Fattore amplificativo	μ_{d}	1.98	
Accelerazione sismica al suolo SLV	ag	0.437	g
Coeff, categoria del sottosuolo	S	1.063	
Periodo inizio del tratto a spostamento costante	T_D	3.348	s
Valore di spostamento ottenuto dall'analisi lineare (p.3.2.3.2.3 - NTC08)	d _{Ee}	25.26	mm
Spostamento massimo prodotto dall'azione sismica di progetto allo SLV	d_{Ed}	49.93	mm
Coefficiente legato alla probabilità di moto in controfase di due pile adiacenti	k_2	0.55	
Spostamento dovuto alla riposta della struttura all'azione sismica	E ₂	109.85	mn
Spostamento al suolo			
Spostamento assoluto orizzontale del suolo in un punto	d_g	223.6	mm
Spostamento massimo relativo tra due punti i e j	$d_{ij,max}$	395.24	mm
Spostamento relativo tra due punti a piccola distanza	$d_{ij,0}$	0.00	mm
Distanza tra i due punti i e j	X	25	m
Velocità di propagazione delle onde di taglio	vs	180	m/s
Spostamento relativo tra punti a distanza x	$d_{ij}(x)$	106.5	mm
Spostamento dovuto all'azione sismica fra le fondazioni di strutture non collegate	E ₃	212.96	mn
Escursione totale dei giunti e degli apparecchi di appoggio			
Coefficiente che tiene conto della non contemporaneità dei valori massimi corrispondenti a ciascun evento singolo	k_1	0.45	-
Escursione totale dei giunti e degli apparecchi di appoggio - da calcolo	E_{L_cal}	150.32	mm
Escursione valutata secondo i criteri validi nelle zone non sismiche	E ₀	11.25	mn
$Max\;(E_1;\!E_2;\!E_3;\!E_{L_cal})$	$\text{Max } (E_1; E_2; E_3; E_0; E_{L_cal})$	212.96	mn
Valore minimo di escursione in funzione della sismicità del sito	E _{L.min} (a _g)	182.50	mn
Valore minimo di escursione di progetto	EL.min_finale	212.96	mn
Escursione totale dei giunti e degli apparecchi di appoggio di progetto	EL	213.0	mn

Corsa degli apparecchi d'appoggio mobili - p.2	2.5.2.1.5.2 - Manuale RFI		
Corsa minima apparecchi di appoggio	±	133	mm

APPALTATORE	TELESE S.c.a.r.l.		ITINERARIO NAPOLI – BARI					
		S.c.a r.l. ortile a Responsabilità Limitata	RADDOPPI	O TRATT	A CANCEL	LO-BENEVEN	ТО	
PROGETTAZIONE:			II LOTTO FUNZIONALE FRASSO TELESINO – VITULANO					
Mandataria:	Mandante: SWS Engineering S.p.A.	SYSTRA-SOTECNI S.p.A.	3° SUBLOT	TO SAN I	LORENZO -	- VITULANO		
SYSTRA S.A.	PROGETTO	ESECUT	ΓΙVΟ					
PONTI E VIADOT	TI – VI20		COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
Relazione di calcolo ritegni e varchi			IF2R	3.2.E.ZZ	CL	VI.20.0.0.001	С	36 di 38

Escursione dei giunti - p.2.5.2.1.5.3 - Manuale RFI									
Giunto minimo fra le testate di due travi adiacenti	±	116	mm						
Ampiezza dei varchi - p.2.5.2.1.5.4 - Manuale RFI									
Ampiezza minima del varco fra le testate di impalcati adiacenti	V_{L}	126	mm						
Distanza del ritegno sismico dalla trave - p.2.5.2.1.5.5 - Manuale RFI									
Distanza minima del ritegno sismico dal bordo della trave supportata dal vincolo mobile	\mathbf{E}_{R}	116	mm						

8.4.3 Pila 5

Spostamenti _p.2.5.2.1.5.1 - Manuale di Progettazione RFI									
Spostamento dovuto alla variazione termica uniforme									
Lunghezza impalcato	L	25.00	m						
Variazione Termica (p.2.5.1.4.4.1 - Manuale RFI)	ΔT	22.5							
Coeff. Dilatazione termica	α	1E-05							
Spostamento dovuto alla variazione termica uniforme	D _t	5.625	mm						
Spostamento dovuto alla variazione termica uniforme	E ₁	11.25	mm						
Spostamento sismico in sommità pila									
Periodo di riferimento della struttura	T ₁	0.146	s						
Periodo inizio del tratto a velocità costante	T _c	0.564	S						
Risposta in accelerazione associata al periodo della struttura (Spettro elastico)	Se(T ₁)	1.002	g						
Fattore di struttura	q	1.5	-						
Fattore amplificativo	$\mu_{ extsf{d}}$	2.94							
Accelerazione sismica al suolo SLV	ag	0.355	g						
Coeff, categoria del sottosuolo	S	1.198							
Periodo inizio del tratto a spostamento costante	T_D	3.020	s						
Valore di spostamento ottenuto dall'analisi lineare (p.3.2.3.2.3 - NTC08)	d _{Ee}	5.28	mm						
Spostamento massimo prodotto dall'azione sismica di progetto allo SLV	d_{Ed}	15.49	mm						
Coefficiente legato alla probabilità di moto in controfase di due pile adiacenti	k_2	0.55							
Spostamento dovuto alla riposta della struttura all'azione sismica	E ₂	34.09	mm						

APPALTATORE:	TPI D	NT .	ITINERARIO	NAPOL	I – BARI					
	PPALTATORE: TELESE S.c.a r.l. Consorzio Telese Società Consortile a Responsabilità Limitata			RADDOPPIO TRATTA CANCELLO-BENEVENTO						
	II LOTTO FUNZIONALE FRASSO TELESINO – VITULANO									
PROGETTAZIONE	PROGETTAZIONE:									
Mandataria:	Mandante:		3° SUBLOT	TO SAN I	-ORENZO	- VITULANO				
SYSTRA S.A.	SWS Engineering S.p.A.	SYSTRA-SOTECNI S.p.A.								
	PROGETTO	ESECUT	Ινο							
PONTI E VIADOTT	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO				
Relazione di calco	IF2R	3.2.E.ZZ	CL	VI.20.0.0.001	С	37 di 38				

Spostamento al suolo			
Spostamento assoluto orizzontale del suolo in un punto	d_g	177.6	mm
Spostamento massimo relativo tra due punti i e j	$d_{ij,max}$	313.87	mm
Spostamento relativo tra due punti a piccola distanza	$d_{ij,0}$	0.00	mm
Distanza tra i due punti i e j	x	25	m
Velocità di propagazione delle onde di taglio	vs	180	m/s
Spostamento relativo tra punti a distanza x	$d_{ij}(x)$	84.6	mm
Spostamento dovuto all'azione sismica fra le fondazioni di strutture non collegate	E_3	169.11	mm
Escursione totale dei giunti e degli apparecchi di appoggio			
Coefficiente che tiene conto della non contemporaneità dei valori massimi corrispondenti a ciascun evento singolo	\mathbf{k}_1	0.45	-
Escursione totale dei giunti e degli apparecchi di appoggio - da calcolo	E_L_cal	96.50	mm
Escursione valutata secondo i criteri validi nelle zone non sismiche	E ₀	11.25	mm
$Max (E1;E2;E3;EL_cal)$	$\text{Max } (E_1; E_2; E_3; E_0; E_{L_cal})$	169.11	mm
Valore minimo di escursione in funzione della sismicità del sito	E _{L.min} (a _g)	182.50	mm
Valore minimo di escursione di progetto	EL _{.min_finale}	182.50	mm
Escursione totale dei giunti e degli apparecchi di appoggio di progetto	EL	182.5	mm

Corsa degli apparecchi d'appoggio mobili - p.2.5.2.1.5.2 - Manuale RFI									
Corsa minima apparecchi di appoggio	±	114	mm						
Escursione dei giunti - p.2.5.2.1.5.3 - Manuale RFI									
Giunto minimo fra le testate di due travi adiacenti	±	101	mm						
Ampiezza dei varchi - p.2.5.2.1.5.4 - Manuale RFI									
Ampiezza minima del varco fra le testate di impalcati adiacenti	V_{L}	111	mm						
Distanza del ritegno sismico dalla trave - p.2.5.2.1.5.5 - Manuale RFI									
Distanza minima del ritegno sismico dal bordo della trave supportata dal vincolo mobile	E _R	101	mm						

ITINERARIO NAPOLI – BARI APPALTATORE: TELESE S.c.a r.l. RADDOPPIO TRATTA CANCELLO-BENEVENTO Consorzio Telese Società Consortile a Responsabilità Limitata II LOTTO FUNZIONALE FRASSO TELESINO – VITULANO PROGETTAZIONE: 3° SUBLOTTO SAN LORENZO - VITULANO Mandataria: Mandante: SYSTRA S.A. SWS Engineering S.p.A. SYSTRA-SOTECNI S.p.A. **PROGETTO ESECUTIVO** PONTI E VIADOTTI – VI20 COMMESSA LOTTO CODIFICA DOCUMENTO VI.20.0.0.001 REV. **FOGLIO** IF2R 3.2.E.ZZ 38 di 38 С Relazione di calcolo ritegni e varchi CL

8.4.4 Riepilogo

	Escursione totale dei giunti													
		Azione sismica					Azione sismica in fondazione		Escursione giunti					
	Limp	ΔΤ	Dt	E1	T1	dEe	μd	dE	k2	E2	dg	E3	k1	EL_cal
	[m]	[°]	[mm]	[mm]	[s]	[mm]	[-]	[mm]	[-]	[mm]	[mm]	[mm]	[-]	[mm]
SP A	25.00	22.50	5.63	11.25	0.00	0.00	3.50	0.00	0.55	0.00	223.58	212.96	0.45	100.89
P1	25.00	22.50	5.63	11.25	0.30	25.26	1.98	49.93	0.55	109.85	223.58	212.96	0.45	150.32
P5	25.00	22.50	5.63	11.25	0.15	5.28	2 94	15.49	0.55	34.09	177 55	169.11	0.45	96.50

		EL	EC	EG	Ev min	ER	EV
		[mm]	[mm]	[mm]	[mm]	[mm]	[mm]
Ī	SP A	215	135	120	130	120	150
	P1	215	135	120	130	120	150
	P5	185	115	105	115	105	150