COMMITTENTE:

DIREZIONE LAVORI:

APPALTATORE:

Consorzio Telese Società Consortile a Responsabilità Limitata

PROGETTAZIONE:

MANDATARIA:

MANDANTI:

IL DIRETTORE DEAL PROGETTAZIONE

Ing. L. LACOPO

Responsabile integrazione fra le varie prestazioni specialistiche

PROGETTO ESECUTIVO

ITINERARIO NAPOLI – BARI **RADDOPPIO TRATTA CANCELLO - BENEVENTO** II LOTTO FUNZIONALE FRASSO TELESINO – VITULANO 3° SUBLOTTO SAN LORENZO – VITULANO

Relazione geotecnica fondazioni su pali VI20 – VIADOTTO dal km 40+983 al km 41+213: Viadotto Calore Torrecuso

APPALTATORE	SCALA:
IL DIRETTORE TECNICO	
Ing, M. FERRONI	-
Mauster	

COMMESSA

LOTTO FASE ENTE TIPO DOC. OPERA/DISCIPLINA

PROGR.

REV.

2 R 3 2 Ε

000

0 1 0

В

Rev.	Descrizione	Redatto	Data	Verificato	Data	Approvato	Data	Autorizzato Data
Α	EMISSIONE	C. Pinti	23/06/21	G. Сорра	24/06/21	L. Bruzzone	24/06/21	IL PROGETTISTA
			20,00,2		2 1/00/2		21/00/21	F. DI IULLO
В	REVISIONE A SEGUITO	C. Pinti	29/10/21	G. Сорра	30/10/21	L. Bruzzone	30/10/21	RANCESCO
	RDV							GENERIA 6
								Walls of Has
								1 120
								(* O
								31/10/21

File: IF2R.3.2.E.ZZ.RB.VI.20.0.0.001.B.doc

n. Elab.:

TELESE S.c.a r.l.

PROGETTAZIONE:

Mandante:

SYSTRA S.A. SWS Engineering S.p.A. Relazione geotecnica fondazioni su pali

IF2R.3.2.E.ZZ.RB.VI.20.0.0.001.B.DOCX

SYSTRA-SOTECNI S.p.A.

ITINERARIO NAPOLI – BARI

RADDOPPIO TRATTA CANCELLO-BENEVENTO II LOTTO FUNZIONALE FRASSO TELESINO – VITULANO

3° SUBLOTTO SAN LORENZO-VITULANO

PROGETTO ESECUTIVO

COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO 3.2.E.ZZ VI.20.0.0.001 В 2 di 44

1	PF	REM	ESSA	3
			TTERIZZAZIONE GEOTECNICA	
	2.1	STE	RATIGRAFIA E PARAMETRI GEOTECNICI	4
	2.2	TA	BELLE DI PORTANZA	4
3	NC	DRM	ATIVA DI RIFERIMENTO	11
4	ΑZ	ZION	IE SISMICA DI VERIFICA PILA P1	12
	4.1	.1	Spettri di risposta elastici	20
5	ΑZ	ZION	IE SISMICA DI VERIFICA PILE P2-P5	22
	5.1	.1	Spettri di risposta elastici	30
6	CC	ОМВ	INAZIONI DI CARICO	32
7	CF	RITE	RI DI VERIFICA	34
8	VE	RIF	ICHE GEOTECNICHE	37
a	INI	חורו	F NELLE EIGLIRE	11

TELESE S.c.a r.l.

PROGETTAZIONE:

SYSTRA S.A. SWS Engineering S.p.A.

SYSTRA-SOTECNI S.p.A.

Relazione geotecnica fondazioni su pali IF2R.3.2.E.ZZ.RB.VI.20.0.0.001.B.DOCX

ITINERARIO NAPOLI - BARI RADDOPPIO TRATTA CANCELLO-BENEVENTO II LOTTO FUNZIONALE FRASSO TELESINO – VITULANO 3° SUBLOTTO SAN LORENZO-VITULANO

PROGETTO ESECUTIVO

LOTTO CODIFICA COMMESSA DOCUMENTO REV. **FOGLIO** 3.2.E.ZZ VI.20.0.0.001 3 di 44

1 **PREMESSA**

La presente relazione afferisce ai calcoli e alle verifiche geotecniche delle fondazioni delle pile su pali (P1-P2-P5) previste lungo il Viadotto Calore Torrecuso_VI20, nell'ambito della redazione dei documenti tecnici relativi alla progettazione esecutiva dell'itinerario della linea ferroviaria Napoli-Bari, tratta Cancello - Benevento - IIº Lotto Funzionale Frasso Telesino-Vitulano - 3° Lotto funzionale San Lorenzo-Vitulano. Per quanto riguarda le verifiche geotecniche relative alle pile dei viadotti in esame caratterizzate da fondazioni su pozzo e alle spalle, si faccia riferimento agli elaborati dedicati.

Il progetto è stato eseguito coerentemente con quanto previsto dalla normativa vigente, "Norme Tecniche per le Costruzioni"- DM 14.1.2008 e Circolare n .617 "Istruzioni per l'applicazione delle Nuove norme tecniche per le costruzioni".

TELESE S.c.a r.l.

Consorzio Telese Società Consortile a Responsabilità Limitata

PROGETTAZIONE:

Mandataria: Mandar

SYSTRA S.A. SWS Engineering S.p.A. SYSTRA-SOTECNI S.p.A.

Relazione geotecnica fondazioni su pali IF2R.3.2.E.ZZ.RB.VI.20.0.0.001.B.DOCX

ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA CANCELLO-BENEVENTO II LOTTO FUNZIONALE FRASSO TELESINO – VITULANO 3° SUBLOTTO SAN LORENZO-VITULANO

PROGETTO ESECUTIVO

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 IF2R
 3.2.E.ZZ
 RB
 VI.20.0.0.001
 B
 4 di 44

2 CARATTERIZZAZIONE GEOTECNICA

2.1 STRATIGRAFIA E PARAMETRI GEOTECNICI

Per la stratigrafia di riferimento e le caratteristiche geotecniche relative al terreno di fondazione che interessa il viadotto in esame, si faccia riferimento agli elaborati di progetto dedicati.

2.2 TABELLE DI PORTANZA

Si riportano nei prospetti di seguito le tabelle di portanza a compressione e trazione relative ai pali delle fondazioni delle pile in esame. Si faccia riferimento agli elaborati di progetto dedicati, per le metodologie e i criteri adottati per la determinazione delle Tabelle.

Qp(m) =4.0 quota testa palo da piano campagna (+ verso il basso) Qf(m) =0.0 quota falda da piano campagna (+ verso il basso) Dp(m) =1.5 diametro del palo Ap $(m^2) =$ 1.77 area del palo $gp(kN/m^3) =$ 25.00 peso specifico del palo $gp_c (kN/m^3) =$ 5.00 peso specifico del palo per verifica a compressione (peso specifico del palo - peso specifico medio del terreno) $gp_t (kN/m^3) =$ 15.00 peso specifico del palo per verifica a trazione (peso specifico del palo - peso specifico dell'acqua) FSL,c = 1.9 fattore di sicurezza per resistenza laterale a compressione FSL.t 2.1 fattore di sicurezza per resistenza laterale a trazione **FSB** 2.2 fattore di sicurezza per capacità portante di base

F (verifica MdP)	1.25					CC	MPRESSION	IE	
Depth From Pile Head (m)	Elevation (m)	Skin Friction Capacity (kN)	End Bearing Capacity (kN)	Ultimate Capacity (kN)	QI/FS (kN)	QI/F(kN)	Qb/FS (kN)	Wp (kN)	Qd,c (kN)
0.0	-4.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.5	-4.5	43.1	1973.2	2016.3	22.7	31.0	885.8	4.4	904.1
1.0	-5.0	91.3	2192.4	2283.7	48.1	66.0	984.2	8.8	1023.5
1.5	-5.5	144.5	2411.7	2556.2	76.2	105.0	1082.7	13.3	1145.6
2.0	-6.0	202.9	2630.9	2833.8	106.9	148.2	1181.1	17.7	1270.3
2.5	-6.5	266.3	2850.1	3116.4	140.3	195.3	1279.5	22.1	1397.8
3.0	-7.0	334.7	3069.4	3404.1	176.4	246.6	1377.9	26.5	1527.8
3.5	-7.5	408.3	3288.6	3696.9	215.2	301.9	1476.4	30.9	1660.6
4.0	-8.0	486.9	3507.9	3994.7	256.6	361.2	1574.8	35.3	1796.0
4.5	-8.5	570.6	3727.1	4297.7	300.7	424.6	1673.2	39.8	1934.1

TELESE S.c.a r.l.

Consorzio Telese Società Consortile a Responsabilità Limitata

PROGETTAZIONE:

<u>Mandataria:</u>

Mandante:

SYSTRA S.A. SWS Engineering S.p.A.

Relazione geotecnica fondazioni su pali
IF2R.3.2.E.ZZ.RB.VI.20.0.001.B.DOCX

SYSTRA-SOTECNI S.p.A.

ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA CANCELLO-BENEVENTO II LOTTO FUNZIONALE FRASSO TELESINO – VITULANO 3° SUBLOTTO SAN LORENZO-VITULANO

CODIFICA

DOCUMENTO

VI.20.0.0.001

REV.

В

FOGLIO

5 di 44

PROGETTO ESECUTIVO

LOTTO

3.2.E.ZZ

5.0	-9.0	659.3	3946.3	4605.6	347.5	492.1	1771.6	44.2	2074.9
5.5	-9.5	753.1	4165.6	4918.7	396.9	563.6	1870.1	48.6	2218.4
6.0	-10.0	852.0	4384.8	5236.8	449.0	639.2	1968.5	53.0	2364.5
6.5	-10.5	956.0	4604.1	5560.1	503.8	718.9	2066.9	57.4	2513.3
7.0	-11.0	1065.0	4823.3	5888.3	561.3	802.5	2165.3	61.9	2664.8
7.5	-11.5	1179.1	5042.5	6221.7	621.4	890.3	2263.8	66.3	2818.9
8.0	-12.0	1298.3	5261.8	6560.1	684.2	982.1	2362.2	70.7	2975.7
8.5	-12.5	1422.6	5481.0	6903.6	749.7	1078.0	2460.6	75.1	3135.2
9.0	-13.0	1552.2	5724.1	7276.3	818.0	1178.1	2569.8	79.5	3308.2
9.5	-13.5	1687.4	5967.2	7654.6	889.3	1282.8	2678.9	83.9	3484.2
10.0	-14.0	1828.3	6210.3	8038.6	963.5	1391.9	2788.0	88.4	3663.2
10.5	-14.5	1974.7	6453.4	8428.1	1040.7	1505.6	2897.2	92.8	3845.1
11.0	-15.0	2126.8	6696.5	8823.3	1120.9	1623.7	3006.3	97.2	4030.0
11.5	-15.5	2284.5	6939.6	9224.2	1204.0	1746.3	3115.4	101.6	4217.8
12.0	-16.0	2447.9	7182.7	9630.6	1290.1	1873.5	3224.6	106.0	4408.6
12.5	-16.5	2616.9	7425.8	10042.7	1379.1	2005.1	3333.7	110.4	4602.4
13.0	-17.0	2791.4	7668.9	10460.3	1471.1	2141.3	3442.8	114.9	4799.1
13.5	-17.5	2971.7	7912.0	10883.7	1566.1	2281.9	3552.0	119.3	4998.8
14.0	-18.0	3157.5	8155.1	11312.6	1664.0	2427.0	3661.1	123.7	5201.4
14.5	-18.5	3349.0	8398.2	11747.1	1764.9	2576.7	3770.2	128.1	5407.0
15.0	-19.0	3546.0	8641.3	12187.3	1868.8	2730.8	3879.4	132.5	5615.6
15.5	-19.5	3728.2	6252.0	9980.2	1964.8	2873.0	2806.7	137.0	4634.6
16.0	-20.0	3915.5	6423.0	10338.5	2063.5	3019.3	2883.5	141.4	4805.6
16.5	-20.5	4107.7	6594.1	10701.9	2164.8	3169.6	2960.3	145.8	4979.3
17.0	-21.0	4305.1	6765.2	11070.3	2268.8	3323.9	3037.1	150.2	5155.7
17.5	-21.5	4507.5	6936.3	11443.7	2375.5	3482.3	3113.9	154.6	5334.8
18.0	-22.0	4714.9	7107.3	11822.3	2484.8	3644.7	3190.7	159.0	5516.5
18.5	-22.5	4927.4	7278.4	12205.8	2596.8	3811.2	3267.5	163.5	5700.9
19.0	-23.0	5145.0	7449.5	12594.5	2711.5	3981.7	3344.3	167.9	5887.9
19.5	-23.5	5367.6	7598.7	12966.3	2828.8	4156.3	3411.3	172.3	6067.8
20.0	-24.0	5595.3	7598.7	13194.0	2948.8	4334.9	3411.3	176.7	6183.4
20.5	-24.5	5828.0	7598.7	13426.7	3071.4	4517.5	3411.3	181.1	6301.6
21.0	-25.0	6092.6	10249.4	16342.0	3210.8	4725.6	4601.3	185.6	7626.6
21.5	-25.5	6362.8	10249.4	16612.2	3353.2	4938.2	4601.3	190.0	7764.6
22.0	-26.0	6638.6	10249.4	16888.0	3498.6	5155.4	4601.3	194.4	7905.5
22.5	-26.5	6920.0	10249.4	17169.5	3646.9	5377.0	4601.3	198.8	8049.4
23.0	-27.0	7207.1	10249.4	17456.5	3798.2	5603.1	4601.3	203.2	8196.3
23.5	-27.5	7499.8	10249.4	17749.2	3952.4	5833.7	4601.3	207.6	8346.1
24.0	-28.0	7798.1	10249.4	18047.5	4109.6	6068.8	4601.3	212.1	8498.9

TELESE S.c.a r.l.

Consorzio Telese Società Consortile a Responsabilità Limitata

PROGETTAZIONE:

Mandataria:

Mandante:

SYSTRA S.A. SWS Engineering S.p.A.

Relazione geotecnica fondazioni su pali
IF2R.3.2.E.ZZ.RB.VI.20.0.001.B.DOCX

SYSTRA-SOTECNI S.p.A.

ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA CANCELLO-BENEVENTO II LOTTO FUNZIONALE FRASSO TELESINO – VITULANO 3° SUBLOTTO SAN LORENZO-VITULANO

CODIFICA

DOCUMENTO

VI.20.0.0.001

REV.

В

FOGLIO

6 di 44

PROGETTO ESECUTIVO

LOTTO

3.2.E.ZZ

24.5	-28.5	8102.0	10249.4	18351.4	4269.8	6308.4	4601.3	216.5	8654.7
25.0	-29.0	8411.5	10249.4	18661.0	4433.0	6552.5	4601.3	220.9	8813.4
25.5	-29.5	8726.7	10249.4	18976.2	4599.1	6801.1	4601.3	225.3	8975.1
26.0	-30.0	9047.5	10249.4	19297.0	4768.1	7054.2	4601.3	229.7	9139.7
26.5	-30.5	9373.9	10249.4	19623.4	4940.2	7311.8	4601.3	234.1	9307.3
27.0	-31.0	9706.0	10249.4	19955.4	5115.1	7573.9	4601.3	238.6	9477.9
27.5	-31.5	10043.7	10249.4	20293.1	5293.1	7840.5	4601.3	243.0	9651.4
28.0	-32.0	10387.0	10249.4	20636.4	5474.0	8111.6	4601.3	247.4	9827.9
28.5	-32.5	10735.9	10249.4	20985.3	5657.9	8387.2	4601.3	251.8	10007.4
29.0	-33.0	11088.3	10249.4	21337.7	5843.6	8665.6	4601.3	256.2	10188.7
29.5	-33.5	11441.7	10249.4	21691.1	6029.9	8944.8	4601.3	260.7	10370.5
30.0	-34.0	11795.1	10249.4	22044.6	6216.1	9224.0	4601.3	265.1	10552.4
30.5	-34.5	12148.6	10249.4	22398.0	6402.4	9503.3	4601.3	269.5	10734.2
31.0	-35.0	12502.0	10249.4	22751.4	6588.7	9782.5	4601.3	273.9	10916.1
31.5	-35.5	12855.4	10249.4	23104.9	6774.9	10061.7	4601.3	278.3	11097.9
32.0	-36.0	13208.8	10249.4	23458.3	6961.2	10340.9	4601.3	282.7	11279.8
32.5	-36.5	13562.3	10249.4	23811.7	7147.4	10620.1	4601.3	287.2	11461.6
33.0	-37.0	13915.7	10249.4	24165.1	7333.7	10899.3	4601.3	291.6	11643.4
33.5	-37.5	14269.1	10249.4	24518.6	7520.0	11178.5	4601.3	296.0	11825.3
34.0	-38.0	14622.6	10249.4	24872.0	7706.2	11457.7	4601.3	300.4	12007.1
34.5	-38.5	14976.0	10249.4	25225.4	7892.5	11736.9	4601.3	304.8	12189.0
35.0	-39.0	15329.4	10249.4	25578.9	8078.7	12016.1	4601.3	309.3	12370.8
35.5	-39.5	15682.8	10249.4	25932.3	8265.0	12295.3	4601.3	313.7	12552.7
36.0	-40.0	16036.3	10249.4	26285.7	8451.3	12574.5	4601.3	318.1	12734.5
36.5	-40.5	16389.7	10249.4	26639.2	8637.5	12853.8	4601.3	322.5	12916.3
37.0	-41.0	16743.1	10249.4	26992.6	8823.8	13133.0	4601.3	326.9	13098.2
37.5	-41.5	17096.6	10249.4	27346.0	9010.0	13412.2	4601.3	331.3	13280.0
38.0	-42.0	17450.0	10249.4	27699.4	9196.3	13691.4	4601.3	335.8	13461.9
38.5	-42.5	17803.4	10249.4	28052.9	9382.6	13970.6	4601.3	340.2	13643.7
39.0	-43.0	18156.8	10249.4	28406.3	9568.8	14249.8	4601.3	344.6	13825.6
39.5	-43.5	18510.3	10249.4	28759.7	9755.1	14529.0	4601.3	349.0	14007.4
40.0	-44.0	18863.7	10249.4	29113.2	9941.3	14808.2	4601.3	353.4	14189.2
40.5	-44.5	19217.1	10249.4	29466.6	10127.6	15087.4	4601.3	357.8	14371.1
41.0	-45.0	19570.6	10249.4	29820.0	10313.9	15366.6	4601.3	362.3	14552.9
41.5	-45.5	19924.0	10249.4	30173.4	10500.1	15645.9	4601.3	366.7	14734.8
42.0	-46.0	20277.4	10249.4	30526.9	10686.4	15925.1	4601.3	371.1	14916.6
42.5	-46.5	20630.9	10249.4	30880.3	10872.7	16204.3	4601.3	375.5	15098.5
43.0	-47.0	20984.3	10249.4	31233.7	11058.9	16483.5	4601.3	379.9	15280.3
43.5	-47.5	21337.7	10249.4	31587.2	11245.2	16762.7	4601.3	384.4	15462.1

TELESE S.c.a r.l.

Consorzio Telese Società Consortile a Responsabilità Limitata

PROGETTAZIONE:

Mandataria:

Mandante:

SYSTRA S.A. SWS Engineering S.p.A. Relazione geotecnica fondazioni su pali IF2R.3.2.E.ZZ.RB.VI.20.0.0.001.B.DOCX

SYSTRA-SOTECNI S.p.A.

ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA CANCELLO-BENEVENTO II LOTTO FUNZIONALE FRASSO TELESINO – VITULANO 3° SUBLOTTO SAN LORENZO-VITULANO

CODIFICA

RB

DOCUMENTO

VI.20.0.0.001

REV.

В

FOGLIO

7 di 44

PROGETTO ESECUTIVO

LOTTO

3.2.E.ZZ

COMMESSA

IF2R

44.0	-48.0	21691.1	10249.4	31940.6	11431.4	17041.9	4601.3	388.8	15644.0
44.5	-48.5	22044.6	10249.4	32294.0	11617.7	17321.1	4601.3	393.2	15825.8
45.0	-49.0	22398.0	10249.4	32647.4	11804.0	17600.3	4601.3	397.6	16007.7
45.5	-49.5	22751.4	10249.4	33000.9	11990.2	17879.5	4601.3	402.0	16189.5
46.0	-50.0	23104.9	10249.4	33354.3	12176.5	18158.7	4601.3	406.4	16371.4
46.5	-50.5	23458.3	10249.4	33707.7	12362.7	18437.9	4601.3	410.9	16553.2
47.0	-51.0	23811.7	10249.4	34061.2	12549.0	18717.1	4601.3	415.3	16735.0
47.5	-51.5	24165.1	10249.4	34414.6	12735.3	18996.4	4601.3	419.7	16916.9
48.0	-52.0	24518.6	10249.4	34768.0	12921.5	19275.6	4601.3	424.1	17098.7
48.5	-52.5	24872.0	10249.4	35121.4	13107.8	19554.8	4601.3	428.5	17280.6
49.0	-53.0	25225.4	10249.4	35474.9	13294.0	19834.0	4601.3	433.0	17462.4
49.5	-53.5	25578.9	10249.4	35828.3	13480.3	20113.2	4601.3	437.4	17644.2
50.0	-54.0	25932.3	10249.4	36181.7	13666.6	20392.4	4601.3	441.8	17826.1

Qp (m) = 4.0 quota testa palo da piano campagna (+ verso il basso)
Qf (m) = 0.0 quota falda da piano campagna (+ verso il basso)

Dp (m) = 1.5 diametro del palo Ap (m²) = 1.77 area del palo

gp (kN/m³) = 25.00 peso specifico del palo

gp_c (kN/m³) = 5.00 peso specifico del palo per verifica a compressione (peso specifico del palo - peso specifico medio del terreno)

gp_t (kN/m³) = 15.00 peso specifico del palo per verifica a trazione (peso specifico del palo - peso specifico dell'acqua)

FSL,c = 1.9 fattore di sicurezza per resistenza laterale a compressione FSL,t 2.1 fattore di sicurezza per resistenza laterale a trazione FSB 2.2 fattore di sicurezza per capacità portante di base

			· ·					
F (verifica MdP)	1.25					TRAZI	ONE	
Depth From Pile Head (m)	Elevation (m)	Skin Friction Capacity (kN)	End Bearing Capacity (kN)	Ultimate Capacity (kN)	QI/FS (kN)	QI/F(kN)	Wp (kN)	Qd,t (kN)
0.00	-4.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
0.50	-4.50	35.92	1973.17	2009.09	17.42	39.34	13.25	30.67
1.00	-5.00	76.07	2192.41	2268.48	36.88	82.06	26.51	63.39
1.50	-5.50	120.45	2411.65	2532.10	58.40	128.17	39.76	98.16
2.00	-6.00	169.05	2630.89	2799.94	81.97	177.65	53.01	134.98
2.50	-6.50	221.88	2850.13	3072.01	107.58	230.52	66.27	173.85
3.00	-7.00	278.94	3069.37	3348.31	135.24	286.77	79.52	214.76
3.50	-7.50	340.22	3288.61	3628.83	164.95	346.40	92.78	257.73
4.00	-8.00	405.73	3507.86	3913.58	196.72	409.41	106.03	302.75
4.50	-8.50	475.46	3727.10	4202.56	230.53	475.80	119.28	349.81
5.00	-9.00	549.42	3946.34	4495.76	266.39	545.57	132.54	398.92

TELESE S.c.a r.l.

Consorzio Telese Società Consortile a Responsabilità Limitata

PROGETTAZIONE:

Mandataria:

Mandante:

SYSTRA S.A. SWS Engineering S.p.A.

Relazione geotecnica fondazioni su pali
IF2R.3.2.E.ZZ.RB.VI.20.0.001.B.DOCX

SYSTRA-SOTECNI S.p.A.

ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA CANCELLO-BENEVENTO II LOTTO FUNZIONALE FRASSO TELESINO – VITULANO 3° SUBLOTTO SAN LORENZO-VITULANO

CODIFICA

DOCUMENTO

VI.20.0.0.001

REV.

В

FOGLIO

8 di 44

PROGETTO ESECUTIVO

LOTTO

3.2.E.ZZ

5.50	-9.50	627.61	4165.58	4793.19	304.30	618.72	145.79	450.09
6.00	-10.00	710.02	4384.82	5094.84	344.25	695.25	159.04	503.30
6.50	-10.50	796.66	4604.06	5400.72	386.26	775.17	172.30	558.56
7.00	-11.00	887.53	4823.30	5710.83	430.32	858.46	185.55	615.87
7.50	-11.50	982.62	5042.54	6025.16	476.42	945.14	198.80	675.23
8.00	-12.00	1081.94	5261.78	6343.72	524.58	1035.20	212.06	736.63
8.50	-12.50	1185.49	5481.02	6666.51	574.78	1128.64	225.31	800.09
9.00	-13.00	1293.49	5724.12	7017.61	627.15	1225.64	238.56	865.71
9.50	-13.50	1406.17	5967.22	7373.39	681.78	1326.39	251.82	933.60
10.00	-14.00	1523.55	6210.32	7733.86	738.69	1430.90	265.07	1003.76
10.50	-14.50	1645.61	6453.41	8099.02	797.87	1539.15	278.33	1076.20
11.00	-15.00	1772.35	6696.51	8468.87	859.32	1651.15	291.58	1150.90
11.50	-15.50	1903.79	6939.61	8843.39	923.05	1766.90	304.83	1227.88
12.00	-16.00	2039.90	7182.71	9222.61	989.04	1886.39	318.09	1307.13
12.50	-16.50	2180.71	7425.80	9606.51	1057.31	2009.64	331.34	1388.65
13.00	-17.00	2326.20	7668.90	9995.10	1127.85	2136.64	344.59	1472.45
13.50	-17.50	2476.38	7912.00	10388.38	1200.67	2267.38	357.85	1558.52
14.00	-18.00	2631.24	8155.10	10786.34	1275.75	2401.87	371.10	1646.85
14.50	-18.50	2790.79	8398.19	11188.99	1353.11	2540.12	384.35	1737.47
15.00	-19.00	2955.03	8641.29	11596.32	1432.74	2682.11	397.61	1830.35
15.50	-19.50	3106.20	6251.98	9358.18	1506.04	2813.65	410.86	1916.90
16.00	-20.00	3261.57	6423.05	9684.61	1581.37	2948.55	424.12	2005.48
16.50	-20.50	3421.13	6594.11	10015.24	1658.73	3086.80	437.37	2096.10
17.00	-21.00	3584.88	6765.18	10350.06	1738.12	3228.40	450.62	2188.75
17.50	-21.50	3752.83	6936.25	10689.08	1819.55	3373.36	463.88	2283.43
18.00	-22.00	3924.97	7107.32	11032.29	1903.02	3521.68	477.13	2380.15
18.50	-22.50	4101.31	7278.39	11379.69	1988.51	3673.35	490.38	2478.90
19.00	-23.00	4281.84	7449.46	11731.29	2076.04	3828.38	503.64	2579.68
19.50	-23.50	4466.56	7598.73	12065.29	2165.60	3986.76	516.89	2682.49
20.00	-24.00	4655.47	7598.73	12254.20	2257.20	4148.49	530.14	2787.34
20.50	-24.50	4848.59	7598.73	12447.31	2350.83	4313.59	543.40	2894.23
21.00	-25.00	5069.06	10249.45	15318.50	2457.72	4500.57	556.65	3014.38
21.50	-25.50	5294.21	10249.45	15543.66	2566.89	4691.29	569.90	3136.80
22.00	-26.00	5524.06	10249.45	15773.50	2678.33	4885.77	583.16	3261.49
22.50	-26.50	5758.59	10249.45	16008.03	2792.04	5084.00	596.41	3388.45
23.00	-27.00	5997.80	10249.45	16247.25	2908.02	5285.97	609.67	3517.69
23.50	-27.50	6241.70	10249.45	16491.15	3026.28	5491.70	622.92	3649.20
24.00	-28.00	6490.29	10249.45	16739.74	3146.81	5701.17	636.17	3782.98
24.50	-28.50	6743.56	10249.45	16993.01	3269.61	5914.39	649.43	3919.03

TELESE S.c.a r.l.

Consorzio Telese Società Consortile a Responsabilità Limitata

PROGETTAZIONE:

Mandataria:

Mandante:

SYSTRA S.A. SWS Engineering S.p.A.

Relazione geotecnica fondazioni su pali
IF2R.3.2.E.ZZ.RB.VI.20.0.001.B.DOCX

SYSTRA-SOTECNI S.p.A.

ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA CANCELLO-BENEVENTO II LOTTO FUNZIONALE FRASSO TELESINO – VITULANO 3° SUBLOTTO SAN LORENZO-VITULANO

CODIFICA

DOCUMENTO

VI.20.0.0.001

REV.

В

FOGLIO

9 di 44

PROGETTO ESECUTIVO

LOTTO

3.2.E.ZZ

25.00	-29.00	7001.53	10249.45	17250.97	3394.68	6131.36	662.68	4057.36
25.50	-29.50	7264.17	10249.45	17513.62	3522.02	6352.08	675.93	4197.96
26.00	-30.00	7531.50	10249.45	17780.95	3651.64	6576.55	689.19	4340.83
26.50	-30.50	7803.52	10249.45	18052.97	3783.53	6804.77	702.44	4485.97
27.00	-31.00	8080.23	10249.45	18329.68	3917.69	7036.74	715.69	4633.38
27.50	-31.50	8361.62	10249.45	18611.07	4054.12	7272.46	728.95	4783.07
28.00	-32.00	8647.70	10249.45	18897.15	4192.82	7511.92	742.20	4935.03
28.50	-32.50	8938.46	10249.45	19187.91	4333.80	7755.14	755.45	5089.26
29.00	-33.00	9233.92	10249.45	19483.36	4477.05	8002.10	768.71	5245.76
29.50	-33.50	9534.05	10249.45	19783.50	4622.57	8252.81	781.96	5404.53
30.00	-34.00	9838.87	10249.45	20088.32	4770.36	8507.27	795.22	5565.58
30.50	-34.50	10148.38	10249.45	20397.83	4920.43	8765.48	808.47	5728.90
31.00	-35.00	10462.57	10249.45	20712.02	5072.76	9027.44	821.72	5894.49
31.50	-35.50	10781.46	10249.45	21030.91	5227.37	9293.15	834.98	6062.35
32.00	-36.00	11105.02	10249.45	21354.47	5384.25	9562.60	848.23	6232.48
32.50	-36.50	11433.28	10249.45	21682.73	5543.41	9835.81	861.48	6404.89
33.00	-37.00	11766.22	10249.45	22015.66	5704.83	10112.76	874.74	6579.57
33.50	-37.50	12103.85	10249.45	22353.29	5868.53	10393.47	887.99	6756.52
34.00	-38.00	12446.15	10249.45	22695.60	6034.50	10677.92	901.24	6935.74
34.50	-38.50	12793.16	10249.45	23042.60	6202.74	10966.13	914.50	7117.24
35.00	-39.00	13144.54	10249.45	23393.98	6373.11	11257.83	927.75	7300.86
35.50	-39.50	13497.97	10249.45	23747.42	6544.47	11551.18	941.01	7485.48
36.00	-40.00	13851.40	10249.45	24100.84	6715.83	11844.52	954.26	7670.09
36.50	-40.50	14204.83	10249.45	24454.28	6887.19	12137.88	967.51	7854.70
37.00	-41.00	14558.26	10249.45	24807.70	7058.55	12431.22	980.77	8039.31
37.50	-41.50	14911.69	10249.45	25161.14	7229.91	12724.57	994.02	8223.93
38.00	-42.00	15265.11	10249.45	25514.56	7401.27	13017.91	1007.27	8408.54
38.50	-42.50	15618.55	10249.45	25867.99	7572.63	13311.26	1020.53	8593.16
39.00	-43.00	15971.97	10249.45	26221.42	7743.99	13604.60	1033.78	8777.77
39.50	-43.50	16325.41	10249.45	26574.85	7915.35	13897.95	1047.03	8962.38
40.00	-44.00	16678.83	10249.45	26928.28	8086.71	14191.30	1060.29	9146.99
40.50	-44.50	17032.26	10249.45	27281.71	8258.07	14484.64	1073.54	9331.61
41.00	-45.00	17385.69	10249.45	27635.14	8429.43	14777.99	1086.79	9516.22
41.50	-45.50	17739.12	10249.45	27988.57	8600.79	15071.34	1100.05	9700.83
42.00	-46.00	18092.55	10249.45	28341.99	8772.14	15364.68	1113.30	9885.45
42.50	-46.50	18445.98	10249.45	28695.43	8943.51	15658.03	1126.56	10070.06
43.00	-47.00	18799.41	10249.45	29048.85	9114.86	15951.37	1139.81	10254.67
43.50	-47.50	19152.84	10249.45	29402.28	9286.22	16244.72	1153.06	10439.29
44.00	-48.00	19506.27	10249.45	29755.71	9457.58	16538.07	1166.32	10623.90

TELESE S.c.a r.l.

Consorzio Telese Società Consortile a Responsabilità Limitata

PROGETTAZIONE:

Mandataria:

Mandante:

Relazione geotecnica fondazioni su pali

IF2R.3.2.E.ZZ.RB.VI.20.0.0.001.B.DOCX

SYSTRA S.A. SWS Engi

SWS Engineering S.p.A. SYSTRA-SOTECNI S.p.A.

ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA CANCELLO-BENEVENTO II LOTTO FUNZIONALE FRASSO TELESINO – VITULANO 3° SUBLOTTO SAN LORENZO-VITULANO

CODIFICA

DOCUMENTO

VI.20.0.0.001

REV.

В

FOGLIO

10 di 44

PROGETTO ESECUTIVO

LOTTO

3.2.E.ZZ

44.50	-48.50	19859.70	10249.45	30109.14	9628.94	16831.41	1179.57	10808.51	
45.00	-49.00	20213.12	10249.45	30462.57	9800.30	17124.76	1192.82	10993.13	
45.50	-49.50	20566.55	10249.45	30816.00	9971.66	17418.11	1206.08	11177.74	
46.00	-50.00	20919.98	10249.45	31169.43	10143.02	17711.45	1219.33	11362.35	
46.50	-50.50	21273.41	10249.45	31522.86	10314.38	18004.80	1232.58	11546.97	
47.00	-51.00	21626.84	10249.45	31876.29	10485.74	18298.14	1245.84	11731.58	
47.50	-51.50	21980.27	10249.45	32229.72	10657.10	18591.49	1259.09	11916.19	
48.00	-52.00	22333.70	10249.45	32583.15	10828.46	18884.84	1272.35	12100.81	
48.50	-52.50	22687.13	10249.45	32936.57	10999.82	19178.18	1285.60	12285.42	
49.00	-53.00	23040.56	10249.45	33290.00	11171.18	19471.53	1298.85	12470.03	
49.50	-53.50	23393.99	10249.45	33643.43	11342.54	19764.87	1312.11	12654.65	
50.00	-54.00	23747.42	10249.45	33996.86	11513.90	20058.22	1325.36	12839.26	

APPALTATORE: TELESE S.c.a r.l. ITINERARIO NAPOLI - BARI RADDOPPIO TRATTA CANCELLO-BENEVENTO Consorzio Telese Società Consortile a Responsabilità Limitata II LOTTO FUNZIONALE FRASSO TELESINO – VITULANO PROGETTAZIONE: 3° SUBLOTTO SAN LORENZO-VITULANO Mandante: PROGETTO ESECUTIVO SYSTRA S.A. SWS Engineering S.p.A. SYSTRA-SOTECNI S.p.A. LOTTO Relazione geotecnica fondazioni su pali COMMESSA CODIFICA DOCUMENTO REV. **FOGLIO** IF2R.3.2.E.ZZ.RB.VI.20.0.0.001.B.DOCX IF2R 3.2.E.ZZ RВ VI.20.0.0.001 В 11 di 44

3 NORMATIVA DI RIFERIMENTO

L'analisi dell'opera e le verifiche geotecniche sono state condotte in accordo con le vigenti disposizioni legislative e in particolare con le seguenti norme e circolari:

- Decreto Ministeriale del 14 gennaio 2008: "Norme Tecniche per le Costruzioni".
- Circolare M.LL.PP. n. 617 del 2 febbraio 2009: Istruzioni per l'applicazione delle "Nuove norme tecniche per le costruzioni di cui al Decreto Ministeriale del 14/01/2008".

Si è tenuto inoltre conto dei seguenti documenti:

- UNI EN 1990 Aprile 2006: Eurocodice: Criteri generali di progettazione strutturale.
- UNI EN 1991-1-1 Agosto 2004: Eurocodice 1 Parte 1-1: Azioni in generale Pesi per unità di volume, pesi propri e sovraccarichi variabili.
- UNI EN 1991-1-4 Luglio 2005: Eurocodice 1. Azioni sulle strutture. Parte 1-4: Azioni in generale - Azioni del vento.
- UNI EN 1992-1-1 Novembre 2005: Eurocodice 2 Progettazione delle strutture di calcestruzzo - Parte 1-1: Regole generali e regole per gli edifici.
- UNI EN 1992-2 Gennaio 2006: Eurocodice 2. Progettazione delle strutture di calcestruzzo. Parte 2: Ponti di calcestruzzo Progettazione e dettagli costruttivi.
- UNI-EN 1997-1 Febbraio 2005: Eurocodice 7. Progettazione geotecnica. Parte 1: Regole generali.
- UNI-EN 1998-1 Marzo 2005: Eurocodice 8: Progettazione delle strutture per la resistenza sismica. Parte 1: Regole generali, azioni sismiche e regole per gli edifici.
- UNI-EN 1998-5 Gennaio 2005: Eurocodice 8: Progettazione delle strutture per la resistenza sismica. Parte 5: Fondazioni, strutture di contenimento ed aspetti geotecnici.
- Legge 5-1-1971 n° 1086: "Norme per la disciplina delle opere di conglomerato cementizio armato, normale e precompresso, ed a struttura metallica".
- Legge. 2 febbraio 1974, n. 64.: "Provvedimenti per le costruzioni con particolari prescrizioni per le zone sismiche".
- UNI EN 206-1-2016: Calcestruzzo. "Specificazione, prestazione, produzione e conformità".
- RFI DTC SI MA IFS 001 A Dicembre 2016: Manuale di progettazione delle opere civili.

PROGETTAZIONE:

SYSTRA S.A. SWS Engineering S.p.A.

SYSTRA-SOTECNI S.p.A.

Relazione geotecnica fondazioni su pali IF2R.3.2.E.ZZ.RB.VI.20.0.0.001.B.DOCX

ITINERARIO NAPOLI - BARI

RADDOPPIO TRATTA CANCELLO-BENEVENTO II LOTTO FUNZIONALE FRASSO TELESINO - VITULANO

3° SUBLOTTO SAN LORENZO-VITULANO

PROGETTO ESECUTIVO

COMMESSA

LOTTO 3.2.E.ZZ CODIFICA DOCUMENTO VI.20.0.0.001

REV. **FOGLIO** 12 di 44

4 AZIONE SISMICA DI VERIFICA PILA P1

Nel presente paragrafo si riportano la descrizione e la valutazione dell'azione sismica secondo le specifiche del DM 14.1.2008.

L'azione sismica è descritta mediante spettri di risposta elastici e di progetto. In particolare nel DM 14.1.2008, vengono presentati gli spettri di risposta in termini di accelerazioni orizzontali e verticali.

L'espressione analitica dello spettro di risposta elastico in termini di accelerazione orizzontale è la seguente:

$$0 \le T \le T_B \longrightarrow S_{\epsilon}(T) = a_g \cdot S \cdot \eta \cdot F_0 \cdot \left[\frac{T}{T_B} + \frac{1}{\eta \cdot F_0} \left(1 - \frac{T}{T_B} \right) \right]$$

$$T_B \leq T \leq T_C \longrightarrow S_1(T) = a_{g_1} \cdot S \cdot \eta \cdot F_0$$

$$T_C \leq T \leq T_D \longrightarrow S_{e}(T) = a_{g.} \cdot S \cdot \eta \cdot F_0 \cdot \left(\frac{T_C}{T}\right)$$

$$T_D \leq T_D \longrightarrow S_{e}(T) = a_{g.} \cdot S \cdot \eta \cdot F_0 \cdot \left(\frac{T_C \cdot T_D}{T}\right)$$

In cui:

$$S = S_S \cdot S_T$$

S_s: coefficiente di amplificazione stratigrafico;

 S_T : coefficiente di amplificazione topografica;

η: fattore che tiene conto di un coefficiente di smorzamento viscoso equivalente ξ, espresso in punti percentuali diverso da 5 (η =1 per ξ =5):

$$\eta = \sqrt{\frac{10}{5 + \xi}} \ge 0.55$$

 F_0 : valore massimo del fattore di amplificazione dello spettro in accelerazione orizzontale:

^a_s: accelerazione massima al suolo;

T: periodo di vibrazione dell'oscillatore semplice;

T_B, T_C, T_D: periodi che separano i diversi rami dello spettro, e che sono pari a:

APPALTATORE: TELES

TELESE S.c.a r.l.

PROGETTAZIONE:

Mandataria:

<u>Mandante</u>

Relazione geotecnica fondazioni su pali IF2R.3.2.E.ZZ.RB.VI.20.0.0.001.B.DOCX

SYSTRA S.A. SWS Engineering S.p.A. SYSTRA-SOTECNI S.p.A.

II LOTTO FUNZIONALE FRASSO TELESINO – VITULANO 3° SUBLOTTO SAN LORENZO-VITULANO

RADDOPPIO TRATTA CANCELLO-BENEVENTO

ITINERARIO NAPOLI - BARI

PROGETTO ESECUTIVO

COMMESSA IF2R

LOTTO 3.2.E.ZZ CODIFICA DOCUMENTO VI.20.0.0.001

REV. F

FOGLIO 13 di 44

$$T_C = C_C \cdot T *_C$$

$$T_B = \frac{T_C}{3}$$

$$T_D = 4.0 + \frac{a_g}{g} + 1.6$$

In cui:

 C_{c} : coefficiente che tiene conto della categoria del terreno;

 $T^*{}_{\mathcal{C}}$: periodo di inizio del tratto a velocità costante dello spettro in accelerazione orizzontale.

L'espressione analitica dello spettro di risposta elastico in termini di accelerazione verticale è la seguente:

$$0 \le T \le T_B \longrightarrow S_{\epsilon}(T) = a_{g.} \cdot S \cdot \eta \cdot F_{v} \cdot \left[\frac{T}{T_B} + \frac{1}{\eta \cdot F_{v}} \left(1 - \frac{T}{T_B} \right) \right]$$

$$T_B \leq T \leq T_C \longrightarrow S_{e}(T) = a_{g} \cdot S \cdot \eta \cdot F_{v}$$

$$T_C \le T \le T_D \longrightarrow S_{e}(T) = a_{g.} \cdot S \cdot \eta \cdot F_{v} \cdot \left(\frac{T_C}{T}\right)$$

$$T_D \leq T_D \longrightarrow S_{_{e}}(T) = a_{_{g.}} \cdot S \cdot \eta \cdot F_{_{v}} \cdot \left(\frac{T_C \cdot T_D}{T}\right)$$

nelle quali:

 $S = S_S \times S_T$: con S_S pari sempre a 1 per lo spettro verticale;

η: fattore che tiene conto di un coefficiente di smorzamento viscoso equivalente ξ, espresso in punti percentuali diverso da 5 (η=1 per ξ=5):

$$\eta = \sqrt{\frac{10}{5 + \xi}} \ge 0.55$$

T: periodo di vibrazione dell'oscillatore semplice;

APPALTATORE: ITINERARIO NAPOLI - BARI RADDOPPIO TRATTA CANCELLO-BENEVENTO II LOTTO FUNZIONALE FRASSO TELESINO – VITULANO PROGETTAZIONE: 3° SUBLOTTO SAN LORENZO-VITULANO Mandante: PROGETTO ESECUTIVO SYSTRA S.A. SYSTRA-SOTECNI S.p.A. SWS Engineering S.p.A. LOTTO Relazione geotecnica fondazioni su pali COMMESSA CODIFICA DOCUMENTO REV. **FOGLIO** IF2R.3.2.E.ZZ.RB.VI.20.0.0.001.B.DOCX 3.2.E.ZZ VI.20.0.0.001 14 di 44 RВ

T_B, T_C, T_D: periodi che separano i diversi rami dello spettro, e che sono pari a:

$$T_C = 0.05$$
 $T_B = 0.15$ $T_D = 1.0$

F_V: fattore che quantifica l'amplificazione spettrale massima mediante la relazione:

$$F_V = 1.35 \cdot F_0 \cdot \left(\frac{a_g}{g}\right)^{0.5}$$

Di seguito si riporta il calcolo dei parametri per la valutazione degli spettri in accelerazione orizzontale e verticale, effettuata mediante l'utilizzo del software "Spettri NTC ver. 1.0.3" reperibile presso il sito del Consiglio Superiore dei Lavori Pubblici.

Vita Nominale

La vita nominale di un'opera strutturale (V_N) , è intesa come il numero di anni nel quale la struttura, purchè soggetta alla manutenzione ordinaria, deve potere essere usata per lo scopo al quale è destinata. La vita nominale delle infrastrutture ferroviarie può, di norma, assumersi come indicato nella seguente tabella.

TIPI DI COSTRUZIONE	Vita Nominale (VN)
Opere nuove su infrastrutture ferroviarie progettate con le norme vigenti prima del DM14/1/2008 a velocità convenzionale V<250 Km/h	50
Altre opere nuove a velocità V<250 Km/h	75
Altre opere nuove a velocità V>250 Km/h	100
Opere di grandi dimensioni: ponti e viadotti con campate di luce maggiore di 150 m	≥100

Per l'opera in oggetto si considera una vita nominale VN = 100 anni.

TELESE s.c.a r.l.

Consorzio Telese Società Consortile a Responsabilità Limitata

PROGETTAZIONE:

Mandataria:

<u>Mandante</u>

SYSTRA S.A. SWS Engineering S.p.A.

Relazione geotecnica fondazioni su pali IF2R.3.2.E.ZZ.RB.VI.20.0.0.001.B.DOCX

SYSTRA-SOTECNI S.p.A.

ITINERARIO NAPOLI – BARI

RADDOPPIO TRATTA CANCELLO-BENEVENTO
II LOTTO FUNZIONALE FRASSO TELESINO – VITULANO
3° SUBLOTTO SAN LORENZO-VITULANO

PROGETTO ESECUTIVO

COMMESSA LOTTO
IF2R 3.2.E.ZZ

CODIFICA

DOCUMENTO VI.20.0.001

REV. FOGLIO

Classi D'uso

Il Decreto Ministeriale del 14 gennaio 2008 prevede quattro categorie di classi d'uso riportate nel seguito:

Classe I: Costruzioni con presenza solo occasionale di persone, edifici agricoli.

Classe II: Costruzioni il cui uso preveda normali affollamenti, senza contenuti pericolosi per l'ambiente e senza funzioni pubbliche e sociali essenziali. Industrie con attività non pericolose per l'ambiente. Ponti, opere infrastrutturali, reti viarie non ricadenti in Classe III o in Classe IV, reti ferroviarie la cui interruzione non provochi situazioni di emergenza. Dighe il cui collasso non provochi conseguenze rilevanti.

Classe III: Costruzioni il cui uso preveda affollamenti significativi. Industrie con attività pericolose per l'ambiente. Reti viarie extraurbane non ricadenti in Classe IV. Ponti e reti ferroviarie la cui interruzione provochi situazioni di emergenza. Dighe rilevanti per le conseguenze di un loro eventuale collasso.

Classe IV: Costruzioni con funzioni pubbliche o strategiche importanti, anche con riferimento alla gestione della protezione civile in caso di calamità. Industrie particolarmente pericolose per l'ambiente. Reti viarie di tipo A o B, di cui al D.M. 5 novembre 2001, n. 6792, "Norme funzionali e geometriche per la costruzione di strade", e di tipo quando appartenenti ad itinerari di collegamento tra capoluoghi di provincia non altresì serviti da strade di tipo A o B. Ponti o reti ferroviarie di importanza critica per il mantenimento delle vie di comunicazione, particolarmente dopo un evento sismico. Dighe connesse al funzionamento di acquedotti e a impianti di produzione di energia elettrica.

Per l'opera in oggetto si considera una Classe d'uso IV.

Periodo di Riferimento dell'Azione Sismica

Le azioni sismiche su ciascuna costruzione vengono valutate in relazione ad un periodo di riferimento V_R che si ricava per ciascun tipo di costruzione, moltiplicando la vita nominale V_R per il coefficiente d'uso C_R :

$$V_{R} = V_{N} \cdot C_{IJ}$$

Il valore del coefficiente d'uso Cu è definito, al variare della classe d'uso, come mostrato nella tabella seguente:

CLASSE D'USO	I	II	III	IV
COEFFICIENTE C _U	0.7	1	1.5	2

Pertanto per l'opera in oggetto il periodo di riferimento è pari a 100x2,0= 200 anni.

PROGETTAZIONE:

Mandataria:

Mandante:

SYSTRA S.A. SWS Engineering S.p.A.

SYSTRA-SOTECNI S.p.A.

Relazione geotecnica fondazioni su pali IF2R.3.2.E.ZZ.RB.VI.20.0.0.001.B.DOCX

ITINERARIO NAPOLI - BARI

RADDOPPIO TRATTA CANCELLO-BENEVENTO II LOTTO FUNZIONALE FRASSO TELESINO – VITULANO 3° SUBLOTTO SAN LORENZO-VITULANO

PROGETTO ESECUTIVO

COMMESSA LOTTO CODIFICA DOCUMENTO REV. **FOGLIO** 3.2.E.ZZ VI.20.0.0.001 16 di 44

Stati limite e relative probabilità di superamento

Nei confronti delle azioni sismiche gli stati limite, sia di esercizio che ultimi, sono individuati riferendosi alle prestazioni della costruzione nel suo complesso, includendo gli elementi strutturali, quelli non strutturali e gli impianti.

La probabilità di superamento nel periodo di riferimento PVR, cui riferirsi per individuare l'azione sismica agente in ciascuno degli stati limite considerati, sono riportati nella tabella successiva.

Stati Limite		$P_{\text{VR}}\text{:}$ Probabilità di superamento nel periodo di riferimento V_{R}
Otati limita di accesinia	SLO	81%
Stati limite di esercizio	SLD	63%
Chati limita ultimi	SLV	10%
Stati limite ultimi	SLC	5%

Accelerazione (a_q), fattore (F_0) e periodo (T_c^*)

Ai fini del D.M. 14-01-2008 le forme spettrali, per ciascuna delle probabilità di superamento nel periodo di riferimento PVR, sono definite a partire dai valori dei seguenti parametri su sito di riferimento rigido orizzontale:

a_q: accelerazione orizzontale massima sul sito;

F_o: valore massimo del fattore di amplificazione dello spettro in accelerazione orizzontale:

T*c: periodo di inizio del tratto a velocità costante dello spettro in accelerazione orizzontale.

I parametri prima elencati dipendono dalle coordinate geografiche, espresse in termini di latitudine e longitudine, del sito interessato dall'opera, dal periodo di riferimento (V_R), e quindi dalla vita nominale (VN) e dalla classe d'uso (Cu) e dallo stato limite considerato. Si riporta nel seguito la valutazione di detti parametri per i vari stati limite.

Comune di Torrecuso – Provincia di Benevento

Latitudine: 41.1858200° Longitudine: 14.6812600°

TELESE S.c.a r.l.

Consorzio Telese Società Consortile a Responsabilità Limitata

PROGETTAZIONE:

Mandataria: Mandante:

SYSTRA S.A. SWS Engineering S.p.A. SYSTRA-SOTECNI S.p.A.

Relazione geotecnica fondazioni su pali IF2R.3.2.E.ZZ.RB.VI.20.0.0.001.B.DOCX

ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA CANCELLO-BENEVENTO II LOTTO FUNZIONALE FRASSO TELESINO – VITULANO 3° SUBLOTTO SAN LORENZO-VITULANO

PROGETTO ESECUTIVO

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 IF2R
 3.2.E.ZZ
 RB
 VI.20.0.0.001
 B
 17 di 44

SLATO	T _R	ag	F _o	T _C *
LIMITE	[anni]	[g]	[-]	[s]
SLO	120	0.128	2.336	0.328
SLD	201	0.167	2.321	0.343
SLV	1898	0.437	2.430	0.419
SLC	2475	0.481	2.466	0.431

Tabella 1: Valutazione dei parametri a_g, F₀ e T^{*}_C per i periodi di ritorno associati a ciascuno stato limite

Sono stati presi in esame, secondo quanto previsto dal DM 14.1.2008 "Nuove Norme Tecniche per le Costruzioni", cap. 7.1, i seguenti Stati Limite sismici:

- SLV: Stato Limite di Salvaguardia della Vita (Stato Limite Ultimo)
- SLD: Stato Limite di Danno (Stato Limite di Esercizio)
- SLC: Stato Limite di Collasso (Stato Limite Ultimo)
- SLO: Stato Limite di Operatività (Stato Limite di Esercizio)

Si riportano al termine dell'analisi, i parametri ed i punti dello spettro di risposta elastici e di progetto per lo stato limite SLV.

Classificazione dei terreni

Per la definizione dell'azione sismica di progetto, la valutazione dell'influenza delle condizioni litologiche e morfologiche locali sulle caratteristiche del moto del suolo in superficie, deve essere basata su studi specifici di risposta sismica locale esistenti nell'area di intervento. In mancanza di tali studi la normativa prevede la classificazione, riportata nella tabella seguente, basata sulla stima dei valori della velocità media delle onde sismiche di taglio $V_{\rm s30}$, ovvero sul numero medio di colpi NSPT ottenuti in una prova penetrometrica dinamica (per terreni prevalentemente granulari), ovvero sulla coesione non drenata media cu (per terreni prevalentemente coesivi).

TELESE S.c.a r.l.

PROGETTAZIONE:

SYSTRA S.A. SWS Engineering S.p.A. Relazione geotecnica fondazioni su pali

IF2R.3.2.E.ZZ.RB.VI.20.0.0.001.B.DOCX

SYSTRA-SOTECNI S.p.A.

RADDOPPIO TRATTA CANCELLO-BENEVENTO II LOTTO FUNZIONALE FRASSO TELESINO – VITULANO

3° SUBLOTTO SAN LORENZO-VITULANO

CODIFICA

PROGETTO ESECUTIVO

ITINERARIO NAPOLI – BARI

COMMESSA

LOTTO 3.2.E.ZZ DOCUMENTO VI.20.0.0.001

REV. FOGLIO В 18 di 44

Categoria di suolo di fondazione	Descrizione
Cat. A	Ammassi rocciosi affioranti o terreni molto rigidi caratterizzati da valori di Vs,30 superiori a 800 m/s eventualmente comprendenti in superficie uno strato di alterazione, con spessore massimo di 3 m.
Cat. B	Rocce tenere e depositi di terreni a grana grossa molto addensati o terreni a grana fina molto consistenti con spessori superiori a 30 m, caratterizzati da un graduale miglioramento delle proprietà meccaniche con la profondità e da valori Vs,30 compresi tra 360 m/s e 800 m/s (ovvero Nspt,30>50 nei terreni a grana grossa e cu,30 > 250 kPa nei terreni a grana fina)
Cat. C	Depositi di terreni a grana grossa mediamente addensati o terreni a grana fina mediamente consistenti con spessori superiori a 30 m, caratterizzanti da un graduale miglioramento delle proprietà meccaniche con la profondità e da valori di Vs,30 compresi tra 180 m/s e 360 m/s (ovvero 15< Nspt,30<50 nei terreni a grana grossa e 70 <cu,30<250 a="" fina)<="" grana="" kpa="" nei="" td="" terreni=""></cu,30<250>
Cat. D	Depositi di terreni a grana grossa scarsamente addensati o di terreni a grana fina scarsamente consistenti, con spessori superiori a 30 m, caratterizzati da un graduale miglioramento delle proprietà meccaniche con la profondità e da valori Vs,30 inferiori a 180 m/s (ovvero Nspt,30<15 nei terreni a grana grossa e cu,30<70 kPa nei terreni a grana fina)
Cat. E	Terreni dei sottosuoli di tipo C o D per spessore non superiore a 20 m, posti sul substrato di riferimento (con Vs>800 m/s)
Cat. S1	Depositi di terreni caratterizzati da valori di Vs,30 inferiori a 100m/s (ovvero 10 <cu,30<20 3="" 8="" a="" almeno="" altamente="" argille="" bassa="" che="" consistenza,="" di="" fina="" grana="" includono="" kpa),="" m="" o="" oppure="" organiche.<="" strato="" td="" terreni="" torba="" uno=""></cu,30<20>
Cat. S2	Depositi di terreni suscettibili di liquefazione, di argille sensitive o qualsiasi altra categoria di sottosuolo non classificabile nei tipi precedenti.

Si considera una categoria C di suolo di fondazione.

Amplificazione stratigrafica

I due coefficienti prima definiti, Ss e Cc, dipendono dalla categoria del sottosuolo come mostrato nel prospetto seguente.

Per i terreni di categoria A, entrambi i coefficienti sono pari a 1, mentre per le altre categorie i due coefficienti sono pari a:

APPALTATORE: ITINERARIO NAPOLI - BARI **RADDOPPIO TRATTA CANCELLO-BENEVENTO** II LOTTO FUNZIONALE FRASSO TELESINO - VITULANO PROGETTAZIONE: 3° SUBLOTTO SAN LORENZO-VITULANO **PROGETTO ESECUTIVO** SYSTRA S.A. SWS Engineering S.p.A. SYSTRA-SOTECNI S.p.A. COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO Relazione geotecnica fondazioni su pali IF2R.3.2.E.ZZ.RB.VI.20.0.0.001.B.DOCX IF2R 3.2.E.ZZ RB VI.20.0.0.001 В 19 di 44

Categoria sottosuolo	Ss	Cc
A	1,00	1,00
В	$1,00 \le 1,40 - 0,40 \cdot F_o \cdot \frac{a_g}{g} \le 1,20$	$1,10\cdot(T_{C}^{*})^{-0,20}$
C	$1,00 \le 1,70 - 0,60 \cdot F_o \cdot \frac{a_g}{g} \le 1,50$	$1,05\cdot(T_C^*)^{-0,33}$
D	$0.90 \le 2.40 - 1.50 \cdot F_o \cdot \frac{a_g}{g} \le 1.80 \cdot$	$1,25 \cdot (T_C^*)^{-0,50}$
E	$1,00 \le 2,00 - 1,10 \cdot F_o \cdot \frac{a_g}{g} \le 1,60$	$1,15 \cdot (T_C^*)^{-0,40}$

Nel caso in esame (categoria di sottosuolo C) allo SLV risulta:

Ss = 1.063

 $C_{c} = 1.399$

Amplificazione topografica

Per poter tenere conto delle condizioni topografiche e in assenza di specifiche analisi di risposta sismica, si utilizzano i valori del coefficiente topografico S_T riportati nella seguente tabella.

Categoria	Ubicazione dell'opera o dell'intervento	
topografica		
T1		1
T2	In corrispondenza della sommità del pendio	1.2
Т3	In corrispondenza della cresta del rilievo con inclinazione media 15°≤i≤30°	1.2
T4	In corrispondenza della cresta del rilievo con inclinazione media i>30°	1.4

Nel caso in esame $S_T = 1$

APPALTATORE: ITINERARIO NAPOLI - BARI **RADDOPPIO TRATTA CANCELLO-BENEVENTO** II LOTTO FUNZIONALE FRASSO TELESINO - VITULANO PROGETTAZIONE: 3° SUBLOTTO SAN LORENZO-VITULANO **PROGETTO ESECUTIVO** SYSTRA S.A. SWS Engineering S.p.A. SYSTRA-SOTECNI S.p.A. COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO Relazione geotecnica fondazioni su pali IF2R.3.2.E.ZZ.RB.VI.20.0.0.001.B.DOCX IF2R 3.2.E.ZZ RВ VI.20.0.0.001 20 di 44

4.1.1 Spettri di risposta elastici

In accordo con le prescrizioni normative, lo spettro di risposta elastico è stato considerato solo ai fini della valutazione delle azioni in fondazione e delle azioni sugli apparecchi di appoggio.

Stato limite di salvaguardia della vita

Di seguito si forniscono lo spettro di risposta elasitco per lo stato limite di salvaguardia della vita e la tabella dei parametri rispettivi.

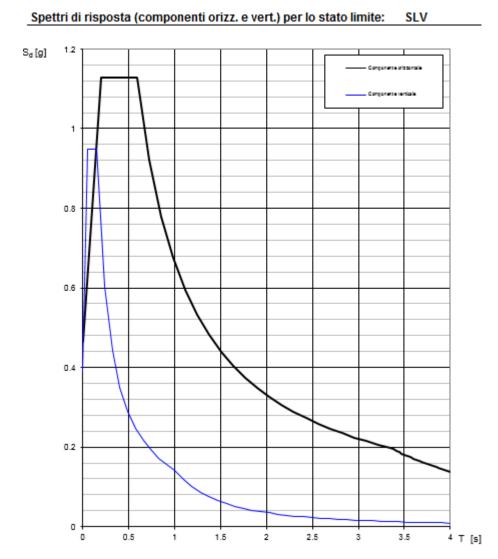


Figura 1: Spettri di risposta elastici_SLV (Componente orizzontale e verticale)

PROGETTAZIONE:

SYSTRA S.A. SWS Engineering S.p.A. Relazione geotecnica fondazioni su pali

IF2R.3.2.E.ZZ.RB.VI.20.0.0.001.B.DOCX

SYSTRA-SOTECNI S.p.A.

ITINERARIO NAPOLI - BARI RADDOPPIO TRATTA CANCELLO-BENEVENTO II LOTTO FUNZIONALE FRASSO TELESINO – VITULANO 3° SUBLOTTO SAN LORENZO-VITULANO

PROGETTO ESECUTIVO

Parametri indipendenti

STATO LIMITE	SLV
a _o	0.437 g
F _o	2.430
T _C	0.419 s
Ss	1.063
Cc	1.399
S _T	1.000
q	1.000

Parametri dipendenti

S	1.063
η	1.000
T _B	0.195 s
Tc	0.586 s
T _D	3.348 s

Espressioni dei parametri dipendenti

 $S = S_c \cdot S_T$

(NTC-08 Eq. 3.2.5)

 $\eta = \sqrt{10/(5+\xi)} \ge 0.55$; $\eta = 1/q$ (NTC-08 Eq. 3.2.6; §. 3.2.3.5)

 $T_B = T_C/3$

(NTC-07 Eq. 3.2.8)

 $T_C = C_C \cdot T_C^*$

(NTC-07 Eq. 3.2.7)

 $T_D = 4,0 \cdot a_g / g + 1,6$

(NTC-07 Eq. 3.2.9)

Espressioni dello spettro di risposta (NTC-08Eq. 3.2.4)

$$\begin{split} 0 &\leq T < T_B \left| & S_{\text{o}}(T) = a_g \cdot S \cdot \eta \cdot F_{\text{o}} \cdot \left[\frac{T}{T_B} + \frac{1}{\eta \cdot F_{\text{o}}} \left(1 - \frac{T}{T_B} \right) \right] \right. \\ T_B &\leq T < T_C \quad S_{\text{o}}(T) = a_g \cdot S \cdot \eta \cdot F_{\text{o}} \\ T_C &\leq T < T_D \quad S_{\text{o}}(T) = a_g \cdot S \cdot \eta \cdot F_{\text{o}} \cdot \left(\frac{T_C}{T} \right) \\ T_D &\leq T \end{split}$$

Lo spettro di progetto S₄(T) per le verifiche agli Stati Limite Ultimi è ottenuto dalle espressioni dello spettro elastico $S_{\mathfrak{s}}(T)$ sostituendo \mathfrak{q} con 1/q, dove q è il fattore di struttura. (NTC-08 § 3.2.3.5)

Punti dello spettro di risposta

	T [s]	Se [g]
	0.000	0.464
T _B ◀	0.195	1.129
Tc◀	0.586	1.129
	0.718	0.922
	0.849	0.779
	0.981	0.675
	1.112	0.595
	1.244	0.532
	1.375	0.481
	1.507	0.439
	1.638	0.404
	1.770	0.374
	1.901	0.348
	2.033	0.325
	2.164	0.306
	2.296	0.288
	2.427	0.273
	2.559	0.259
	2.690	0.246
	2.822	0.234
	2.953	0.224
	3.085	0.214
	3.216	0.206
T₀◀	3.348	0.198
	3.379	0.194
	3.410	0.190
	3.441	0.187
	3.472	0.184
	3.503	0.180
	3.534	0.177
	3.565	0.174
	3.596	0.171
	3.627	0.168
	3.658	0.165
	3.689	0.163
	3.720	0.160
	3.752	0.157
	3.783	0.155
	3.814	0.152
	3.845	0.150
	3.876	0.147
	3.907	0.145
	3.938	0.143
	3,969	0.141
	4.000	0.138

PROGETTAZIONE:

SYSTRA S.A. SWS Engineering S.p.A.

Relazione geotecnica fondazioni su pali IF2R.3.2.E.ZZ.RB.VI.20.0.0.001.B.DOCX

ITINERARIO NAPOLI - BARI

RADDOPPIO TRATTA CANCELLO-BENEVENTO II LOTTO FUNZIONALE FRASSO TELESINO - VITULANO 3° SUBLOTTO SAN LORENZO-VITULANO

PROGETTO ESECUTIVO

LOTTO CODIFICA

COMMESSA

3.2.E.ZZ

DOCUMENTO VI.20.0.0.001

REV. **FOGLIO** 22 di 44

5 AZIONE SISMICA DI VERIFICA PILE P2-P5

SYSTRA-SOTECNI S.p.A.

Nel presente paragrafo si riportano la descrizione e la valutazione dell'azione sismica secondo le specifiche del DM 14.1.2008.

L'azione sismica è descritta mediante spettri di risposta elastici e di progetto. In particolare nel DM 14.1.2008, vengono presentati gli spettri di risposta in termini di accelerazioni orizzontali e verticali.

L'espressione analitica dello spettro di risposta elastico in termini di accelerazione orizzontale è la seguente:

$$0 \le T \le T_B \longrightarrow S_{\epsilon}(T) = a_g \cdot S \cdot \eta \cdot F_0 \cdot \left[\frac{T}{T_B} + \frac{1}{\eta \cdot F_0} \left(1 - \frac{T}{T_B} \right) \right]$$

$$T_B \leq T \leq T_C \longrightarrow S_1(T) = a_{g_1} \cdot S \cdot \eta \cdot F_0$$

$$T_C \leq T \leq T_D \longrightarrow S_{e}(T) = a_{g.} \cdot S \cdot \eta \cdot F_0 \cdot \left(\frac{T_C}{T}\right)$$

$$T_D \leq T_D \longrightarrow S_{e}(T) = a_{g.} \cdot S \cdot \eta \cdot F_0 \cdot \left(\frac{T_C \cdot T_D}{T}\right)$$

In cui:

$$S = S_S \cdot S_T$$

S_s: coefficiente di amplificazione stratigrafico;

 S_T : coefficiente di amplificazione topografica;

η: fattore che tiene conto di un coefficiente di smorzamento viscoso equivalente ξ, espresso in punti percentuali diverso da 5 (η =1 per ξ =5):

$$\eta = \sqrt{\frac{10}{5 + \xi}} \ge 0.55$$

 F_0 : valore massimo del fattore di amplificazione dello spettro in accelerazione orizzontale:

^a_s: accelerazione massima al suolo;

T: periodo di vibrazione dell'oscillatore semplice;

T_B, T_C, T_D: periodi che separano i diversi rami dello spettro, e che sono pari a:

PROGETTAZIONE:

Relazione geotecnica fondazioni su pali IF2R.3.2.E.ZZ.RB.VI.20.0.0.001.B.DOCX

SYSTRA-SOTECNI S.p.A. SYSTRA S.A. SWS Engineering S.p.A.

II LOTTO FUNZIONALE FRASSO TELESINO - VITULANO 3° SUBLOTTO SAN LORENZO-VITULANO

RADDOPPIO TRATTA CANCELLO-BENEVENTO

PROGETTO ESECUTIVO

ITINERARIO NAPOLI - BARI

COMMESSA LOTTO CODIFICA DOCUMENTO REV. **FOGLIO** 3.2.E.ZZ VI.20.0.0.001 23 di 44

$$T_C = C_C \cdot T *_C$$

$$T_B = \frac{T_C}{3}$$

$$T_D = 4.0 + \frac{a_g}{g} + 1.6$$

In cui:

 C_c : coefficiente che tiene conto della categoria del terreno;

 $T^*{}_{\mathcal{C}}$: periodo di inizio del tratto a velocità costante dello spettro in accelerazione orizzontale.

L'espressione analitica dello spettro di risposta elastico in termini di accelerazione verticale è la seguente:

$$0 \le T \le T_B \longrightarrow S_{\epsilon}(T) = a_{g.} \cdot S \cdot \eta \cdot F_{v.} \left[\frac{T}{T_B} + \frac{1}{\eta \cdot F_{v.}} \left(1 - \frac{T}{T_B} \right) \right]$$

$$T_B \leq T \leq T_C \longrightarrow S_{\mathfrak{g}}(T) = a_{\mathfrak{g}} \cdot S \cdot \eta \cdot F_{\mathfrak{g}}$$

$$T_C \le T \le T_D \longrightarrow S_{e}(T) = a_{g.} \cdot S \cdot \eta \cdot F_{v} \cdot \left(\frac{T_C}{T}\right)$$

$$T_D \leq T_D \longrightarrow S_{_{e}}(T) = a_{_{g.}} \cdot S \cdot \eta \cdot F_{_{v}} \cdot \left(\frac{T_C \cdot T_D}{T}\right)$$

nelle quali:

 $S = S_S \times S_T$: con S_S pari sempre a 1 per lo spettro verticale;

 η : fattore che tiene conto di un coefficiente di smorzamento viscoso equivalente ξ , espresso in punti percentuali diverso da 5 (η =1 per ξ =5):

$$\eta = \sqrt{\frac{10}{5 + \xi}} \ge 0.55$$

T: periodo di vibrazione dell'oscillatore semplice;

APPALTATORE: ITINERARIO NAPOLI - BARI RADDOPPIO TRATTA CANCELLO-BENEVENTO II LOTTO FUNZIONALE FRASSO TELESINO – VITULANO PROGETTAZIONE: 3° SUBLOTTO SAN LORENZO-VITULANO Mandante: PROGETTO ESECUTIVO SYSTRA S.A. SYSTRA-SOTECNI S.p.A. SWS Engineering S.p.A. LOTTO Relazione geotecnica fondazioni su pali COMMESSA CODIFICA DOCUMENTO REV. **FOGLIO** IF2R.3.2.E.ZZ.RB.VI.20.0.0.001.B.DOCX 3.2.E.ZZ VI.20.0.0.001 RВ 24 di 44

T_B, T_C, T_D: periodi che separano i diversi rami dello spettro, e che sono pari a:

$$T_C = 0.05$$
 $T_B = 0.15$ $T_D = 1.0$

F_V: fattore che quantifica l'amplificazione spettrale massima mediante la relazione:

$$F_V = 1.35 \cdot F_0 \cdot \left(\frac{a_g}{g}\right)^{0.5}$$

Di seguito si riporta il calcolo dei parametri per la valutazione degli spettri in accelerazione orizzontale e verticale, effettuata mediante l'utilizzo del software "Spettri NTC ver. 1.0.3" reperibile presso il sito del Consiglio Superiore dei Lavori Pubblici.

Vita Nominale

La vita nominale di un'opera strutturale (V_N) , è intesa come il numero di anni nel quale la struttura, purchè soggetta alla manutenzione ordinaria, deve potere essere usata per lo scopo al quale è destinata. La vita nominale delle infrastrutture ferroviarie può, di norma, assumersi come indicato nella seguente tabella.

TIPI DI COSTRUZIONE	Vita Nominale (VN)
Opere nuove su infrastrutture ferroviarie progettate con le norme vigenti prima del DM14/1/2008 a velocità convenzionale V<250 Km/h	50
Altre opere nuove a velocità V<250 Km/h	75
Altre opere nuove a velocità V>250 Km/h	100
Opere di grandi dimensioni: ponti e viadotti con campate di luce maggiore di 150 m	≥100

Per l'opera in oggetto si considera una vita nominale VN = 75 anni.

PROGETTAZIONE:

SYSTRA S.A. SWS Engineering S.p.A.

IF2R.3.2.E.ZZ.RB.VI.20.0.0.001.B.DOCX

Relazione geotecnica fondazioni su pali

SYSTRA-SOTECNI S.p.A.

ITINERARIO NAPOLI - BARI RADDOPPIO TRATTA CANCELLO-BENEVENTO II LOTTO FUNZIONALE FRASSO TELESINO – VITULANO 3° SUBLOTTO SAN LORENZO-VITULANO

PROGETTO ESECUTIVO

3.2.E.ZZ

COMMESSA LOTTO

IF2R

CODIFICA DOCUMENTO VI.20.0.0.001

REV. **FOGLIO** 25 di 44

Classi D'uso

Il Decreto Ministeriale del 14 gennaio 2008 prevede quattro categorie di classi d'uso riportate nel seguito:

Classe I: Costruzioni con presenza solo occasionale di persone, edifici agricoli.

Classe II: Costruzioni il cui uso preveda normali affollamenti, senza contenuti pericolosi per l'ambiente e senza funzioni pubbliche e sociali essenziali. Industrie con attività non pericolose per l'ambiente. Ponti, opere infrastrutturali, reti viarie non ricadenti in Classe III o in Classe IV, reti ferroviarie la cui interruzione non provochi situazioni di emergenza. Dighe il cui collasso non provochi conseguenze rilevanti.

Classe III: Costruzioni il cui uso preveda affollamenti significativi. Industrie con attività pericolose per l'ambiente. Reti viarie extraurbane non ricadenti in Classe IV. Ponti e reti ferroviarie la cui interruzione provochi situazioni di emergenza. Dighe rilevanti per le conseguenze di un loro eventuale collasso.

Classe IV: Costruzioni con funzioni pubbliche o strategiche importanti, anche con riferimento alla gestione della protezione civile in caso di calamità. Industrie particolarmente pericolose per l'ambiente. Reti viarie di tipo A o B, di cui al D.M. 5 novembre 2001, n. 6792, "Norme funzionali e geometriche per la costruzione di strade", e di tipo quando appartenenti ad itinerari di collegamento tra capoluoghi di provincia non altresì serviti da strade di tipo A o B. Ponti o reti ferroviarie di importanza critica per il mantenimento delle vie di comunicazione, particolarmente dopo un evento sismico. Dighe connesse al funzionamento di acquedotti e a impianti di produzione di energia elettrica.

Per l'opera in oggetto si considera una Classe d'uso III.

Periodo di Riferimento dell'Azione Sismica

Le azioni sismiche su ciascuna costruzione vengono valutate in relazione ad un periodo di riferimento V_R che si ricava per ciascun tipo di costruzione, moltiplicando la vita nominale Vn per il coefficiente d'uso Cu:

$$V_R = V_N \cdot C_U$$

Il valore del coefficiente d'uso Cu è definito, al variare della classe d'uso, come mostrato nella tabella seguente:

CLASSE D'USO	I	II	III	IV
COEFFICIENTE C _U	0.7	1	1.5	2

Pertanto per l'opera in oggetto il periodo di riferimento è pari a 75x1,5= 112,5 anni.

PROGETTAZIONE:

Mandataria:

Mandante:

SYSTRA S.A. SWS Engineering S.p.A.

SYSTRA-SOTECNI S.p.A.

Relazione geotecnica fondazioni su pali IF2R.3.2.E.ZZ.RB.VI.20.0.0.001.B.DOCX

ITINERARIO NAPOLI - BARI

RADDOPPIO TRATTA CANCELLO-BENEVENTO II LOTTO FUNZIONALE FRASSO TELESINO – VITULANO 3° SUBLOTTO SAN LORENZO-VITULANO

PROGETTO ESECUTIVO

COMMESSA LOTTO CODIFICA DOCUMENTO REV. **FOGLIO** 3.2.E.ZZ VI.20.0.0.001 26 di 44

Stati limite e relative probabilità di superamento

Nei confronti delle azioni sismiche gli stati limite, sia di esercizio che ultimi, sono individuati riferendosi alle prestazioni della costruzione nel suo complesso, includendo gli elementi strutturali, quelli non strutturali e gli impianti.

La probabilità di superamento nel periodo di riferimento PVR, cui riferirsi per individuare l'azione sismica agente in ciascuno degli stati limite considerati, sono riportati nella tabella successiva.

Stati Limite		$P_{\text{VR}}\text{:}$ Probabilità di superamento nel periodo di riferimento V_{R}
Ctati limita di gagraizia	SLO	81%
Stati limite di esercizio		63%
Chati limita ultimi	SLV	10%
Stati limite ultimi		5%

Accelerazione (a_q), fattore (F_0) e periodo (T_c^*)

Ai fini del D.M. 14-01-2008 le forme spettrali, per ciascuna delle probabilità di superamento nel periodo di riferimento PVR, sono definite a partire dai valori dei seguenti parametri su sito di riferimento rigido orizzontale:

a_q: accelerazione orizzontale massima sul sito;

F_o: valore massimo del fattore di amplificazione dello spettro in accelerazione orizzontale:

T*c: periodo di inizio del tratto a velocità costante dello spettro in accelerazione orizzontale.

I parametri prima elencati dipendono dalle coordinate geografiche, espresse in termini di latitudine e longitudine, del sito interessato dall'opera, dal periodo di riferimento (V_R), e quindi dalla vita nominale (VN) e dalla classe d'uso (Cu) e dallo stato limite considerato. Si riporta nel seguito la valutazione di detti parametri per i vari stati limite.

Comune di Torrecuso – Provincia di Benevento

Latitudine: 41.1858200° Longitudine: 14.6812600°

TELESE S.c.a r.l.

Consorzio Telese Società Consortile a Responsabilità Limitata

PROGETTAZIONE:

Mandataria: Mandante:

SYSTRA S.A. SWS Engineering S.p.A. SYSTRA-SOTECNI S.p.A.

Relazione geotecnica fondazioni su pali IF2R.3.2.E.ZZ.RB.VI.20.0.0.001.B.DOCX

ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA CANCELLO-BENEVENTO II LOTTO FUNZIONALE FRASSO TELESINO – VITULANO 3° SUBLOTTO SAN LORENZO-VITULANO

PROGETTO ESECUTIVO

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 IF2R
 3.2.E.ZZ
 RB
 VI.20.0.0.001
 B
 27 di 44

SLATO	T _R	ag	F _o	T _C *
LIMITE	[anni]	[g]	[-]	[s]
SLO	68	0.095	2.345	0.310
SLD	113	0.124	2.338	0.326
SLV	1068	0.355	2.354	0.395
SLC	2193	0.460	2.450	0.425

Tabella 2: Valutazione dei parametri a_g, F₀ e T^{*}_C per i periodi di ritorno associati a ciascuno stato limite

Sono stati presi in esame, secondo quanto previsto dal DM 14.1.2008 "Nuove Norme Tecniche per le Costruzioni", cap. 7.1, i sequenti Stati Limite sismici:

- SLV: Stato Limite di Salvaguardia della Vita (Stato Limite Ultimo)
- SLD: Stato Limite di Danno (Stato Limite di Esercizio)
- SLC: Stato Limite di Collasso (Stato Limite Ultimo)
- SLO: Stato Limite di Operatività (Stato Limite di Esercizio)

Si riportano al termine dell'analisi, i parametri ed i punti dello spettro di risposta elastici e di progetto per lo stato limite SLV.

Classificazione dei terreni

Per la definizione dell'azione sismica di progetto, la valutazione dell'influenza delle condizioni litologiche e morfologiche locali sulle caratteristiche del moto del suolo in superficie, deve essere basata su studi specifici di risposta sismica locale esistenti nell'area di intervento. In mancanza di tali studi la normativa prevede la classificazione, riportata nella tabella seguente, basata sulla stima dei valori della velocità media delle onde sismiche di taglio $V_{\rm s30}$, ovvero sul numero medio di colpi NSPT ottenuti in una prova penetrometrica dinamica (per terreni prevalentemente granulari), ovvero sulla coesione non drenata media cu (per terreni prevalentemente coesivi).

TELESE S.c.a r.l.

Consorzio Terese società Consortite a Responsa

PROGETTAZIONE:

Mandataria: M

SYSTRA S.A. SWS Engineering S.p.A. SYSTRA-SOTECNI S.p.A.

Relazione geotecnica fondazioni su pali IF2R.3.2.E.ZZ.RB.VI.20.0.0.001.B.DOCX

ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA CANCELLO-BENEVENTO II LOTTO FUNZIONALE FRASSO TELESINO – VITULANO 3° SUBLOTTO SAN LORENZO-VITULANO

PROGETTO ESECUTIVO

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 IF2R
 3.2.E.ZZ
 RB
 VI.20.0.0.001
 B
 28 di 44

Categoria di suolo di fondazione	Descrizione
Cat. A	Ammassi rocciosi affioranti o terreni molto rigidi caratterizzati da valori di Vs,30 superiori a 800 m/s eventualmente comprendenti in superficie uno strato di alterazione, con spessore massimo di 3 m.
Cat. B	Rocce tenere e depositi di terreni a grana grossa molto addensati o terreni a grana fina molto consistenti con spessori superiori a 30 m, caratterizzati da un graduale miglioramento delle proprietà meccaniche con la profondità e da valori Vs,30 compresi tra 360 m/s e 800 m/s (ovvero Nspt,30>50 nei terreni a grana grossa e cu,30 > 250 kPa nei terreni a grana fina)
Cat. C	Depositi di terreni a grana grossa mediamente addensati o terreni a grana fina mediamente consistenti con spessori superiori a 30 m, caratterizzanti da un graduale miglioramento delle proprietà meccaniche con la profondità e da valori di Vs,30 compresi tra 180 m/s e 360 m/s (ovvero 15< Nspt,30<50 nei terreni a grana grossa e 70 <cu,30<250 a="" fina)<="" grana="" kpa="" nei="" td="" terreni=""></cu,30<250>
Cat. D	Depositi di terreni a grana grossa scarsamente addensati o di terreni a grana fina scarsamente consistenti, con spessori superiori a 30 m, caratterizzati da un graduale miglioramento delle proprietà meccaniche con la profondità e da valori Vs,30 inferiori a 180 m/s (ovvero Nspt,30<15 nei terreni a grana grossa e cu,30<70 kPa nei terreni a grana fina)
Cat. E	Terreni dei sottosuoli di tipo C o D per spessore non superiore a 20 m, posti sul substrato di riferimento (con Vs>800 m/s)
Cat. S1	Depositi di terreni caratterizzati da valori di Vs,30 inferiori a 100m/s (ovvero 10 <cu,30<20 3="" 8="" a="" almeno="" altamente="" argille="" bassa="" che="" consistenza,="" di="" fina="" grana="" includono="" kpa),="" m="" o="" oppure="" organiche.<="" strato="" td="" terreni="" torba="" uno=""></cu,30<20>
Cat. S2	Depositi di terreni suscettibili di liquefazione, di argille sensitive o qualsiasi altra categoria di sottosuolo non classificabile nei tipi precedenti.

Si considera una categoria C di suolo di fondazione.

Amplificazione stratigrafica

I due coefficienti prima definiti, Ss e Cc, dipendono dalla categoria del sottosuolo come mostrato nel prospetto seguente.

Per i terreni di categoria A, entrambi i coefficienti sono pari a 1, mentre per le altre categorie i due coefficienti sono pari a:

APPALTATORE: TELESE S.c.a r.l. ITINERARIO NAPOLI - BARI **RADDOPPIO TRATTA CANCELLO-BENEVENTO** II LOTTO FUNZIONALE FRASSO TELESINO - VITULANO PROGETTAZIONE: 3° SUBLOTTO SAN LORENZO-VITULANO **PROGETTO ESECUTIVO** SYSTRA S.A. SWS Engineering S.p.A. SYSTRA-SOTECNI S.p.A. COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO Relazione geotecnica fondazioni su pali IF2R.3.2.E.ZZ.RB.VI.20.0.0.001.B.DOCX IF2R 3.2.E.ZZ RB VI.20.0.0.001 В 29 di 44

Categoria sottosuolo	Ss	Cc
A	1,00	1,00
В	$1,00 \le 1,40-0,40 \cdot F_o \cdot \frac{a_g}{g} \le 1,20$	$1,10\cdot(T_{C}^{*})^{-0,20}$
C	$1,00 \le 1,70 - 0,60 \cdot F_o \cdot \frac{a_g}{g} \le 1,50$	$1,05\cdot(T_C^*)^{-0,33}$
D	$0.90 \le 2.40 - 1.50 \cdot F_o \cdot \frac{a_g}{g} \le 1.80 \cdot$	$1,25 \cdot (T_C^*)^{-0,50}$
E	$1,00 \le 2,00 - 1,10 \cdot F_o \cdot \frac{a_g}{g} \le 1,60$	$1,15 \cdot (T_C^*)^{-0,40}$

Nel caso in esame (categoria di sottosuolo C) allo SLV risulta:

Ss = 1.198

 $C_{C} = 1.427$

Amplificazione topografica

Per poter tenere conto delle condizioni topografiche e in assenza di specifiche analisi di risposta sismica, si utilizzano i valori del coefficiente topografico S_T riportati nella seguente tabella.

Categoria	Ubicazione dell'opera o dell'intervento	
topografica		
T1	-	1
T2	In corrispondenza della sommità del pendio	1.2
T3	In corrispondenza della cresta del rilievo con inclinazione media 15°≤i≤30°	1.2
T4	In corrispondenza della cresta del rilievo con inclinazione media i>30°	1.4

Nel caso in esame $S_T = 1$

APPALTATORE: ITINERARIO NAPOLI - BARI **RADDOPPIO TRATTA CANCELLO-BENEVENTO** II LOTTO FUNZIONALE FRASSO TELESINO - VITULANO PROGETTAZIONE: 3° SUBLOTTO SAN LORENZO-VITULANO **PROGETTO ESECUTIVO** SYSTRA S.A. SYSTRA-SOTECNI S.p.A. SWS Engineering S.p.A. COMMESSA LOTTO CODIFICA DOCUMENTO FOGLIO Relazione geotecnica fondazioni su pali REV. IF2R.3.2.E.ZZ.RB.VI.20.0.0.001.B.DOCX IF2R 3.2.E.ZZ RВ VI.20.0.0.001 30 di 44

5.1.1 Spettri di risposta elastici

In accordo con le prescrizioni normative, lo spettro di risposta elastico è stato considerato solo ai fini della valutazione delle azioni in fondazione e delle azioni sugli apparecchi di appoggio.

Stato limite di salvaguardia della vita

Di seguito si forniscono lo spettro di risposta elasitco per lo stato limite di salvaguardia della vita e la tabella dei parametri rispettivi.

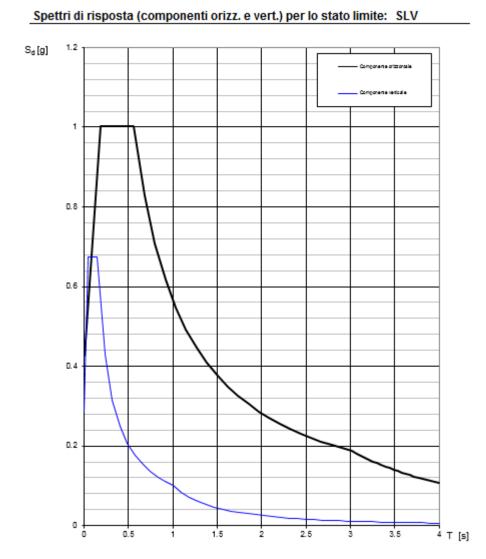


Figura 2: Spettri di risposta elastici_SLV (Componente orizzontale e verticale)

TELESE S.c.a r.l.

PROGETTAZIONE:

Mandante:

Relazione geotecnica fondazioni su pali

IF2R.3.2.E.ZZ.RB.VI.20.0.0.001.B.DOCX

SYSTRA S.A.

SWS Engineering S.p.A.

SYSTRA-SOTECNI S.p.A.

ITINERARIO NAPOLI - BARI RADDOPPIO TRATTA CANCELLO-BENEVENTO II LOTTO FUNZIONALE FRASSO TELESINO – VITULANO 3° SUBLOTTO SAN LORENZO-VITULANO

PROGETTO ESECUTIVO

COMMESSA LOTTO CODIFICA DOCUMENTO FOGLIO REV. 3.2.E.ZZ VI.20.0.0.001 В 31 di 44

Parametri indipendenti

STATO LIMITE	SLV
a _o	0.355 g
F _o	2.354
T _C *	0.395 s
Ss	1.198
Сс	1.427
S⊤	1.000
q	1.000

Parametri dipendenti

S	1.198
η	1.000
T _B	0.188 s
Tc	0.563 s
T _D	3.022 s

Espressioni dei parametri dipendenti

 $S = S_S \cdot S_T$

(NTC-08 Eq. 3.2.5)

 $\eta = \sqrt{\frac{10}{(5+\xi)}} \ge 0.55$, $\eta = 1/q$

(NTC-08 Eq. 3.2.6; §. 3.2.3.5)

 $T_B = T_C / 3$

(NTC-07 Eq. 3.2.8)

 $T_c = C_c \cdot T_c^*$

(NTC-07 Eq. 3.2.7)

 $T_D = 4,0 \cdot a_g / g + 1,6$

(NTC-07 Eq. 3.2.9)

Espressioni dello spettro di risposta (NTC-08 Eq. 3.2.4)

$$\begin{split} 0 \leq & T < T_B \left| \begin{array}{l} S_{\text{e}}(T) = a_{\text{g}} \cdot S \cdot \eta \cdot F_{\text{o}} \cdot \left[\frac{T}{T_B} + \frac{1}{\eta \cdot F_{\text{o}}} \left(1 - \frac{T}{T_B} \right) \right] \\ T_B \leq & T < T_C \\ T_C \leq & T < T_D \end{array} \right. \\ S_{\text{e}}(T) = a_{\text{g}} \cdot S \cdot \eta \cdot F_{\text{o}} \cdot \left(\frac{T_C}{T} \right) \\ T_D \leq & T \\ S_{\text{e}}(T) = a_{\text{g}} \cdot S \cdot \eta \cdot F_{\text{o}} \cdot \left(\frac{T_C T_D}{T^2} \right) \end{split}$$

Lo spettro di progetto S₄(T) per le verifiche agli Stati Limite Ultimi è ottenuto dalle espressioni dello spettro elastico S_r(T) sostituendo n con 1/q, dove q è il fattore di struttura. (NTC-08 § 3.2.3.5)

Punti dello spettro di risposta

aniu (ui naposta		
	T [s]	Se [g]		
	0.000	0.426		
T⊯	0.188	1.002		
T∢	0.563	1.002		
	0.680	0.830		
	0.797	0.708		
	0.915	0.617		
	1.032	0.547		
	1.149	0.491		
	1.266	0.446		
	1.383	0.408		
	1.500	0.376		
	1.617	0.349		
	1.734	0.326		
	1.851	0.305		
	1.968	0.287		
	2.085	0.271		
	2.202	0.256		
	2.319	0.243		
	2.436	0.232		
	2.554	0.221		
	2.671	0.211		
	2.788	0.203		
	2.905	0.194		
Tℯ	3.022	0.187		
	3.068	0.181		
	3.115	0.176		
	3.162	0.171		
	3.208	0.166		
	3.255	0.161		
	3.301	0.157		
	3.348	0.152		
	3.394	0.148		
	3.441	0.144		
	3,488	0.140		
	3.534	0.137		
	3.581	0.133		
	3.627	0.130		
	3.674	0.126		
	3.721	0.123		
	3.767	0.120		
	3.814	0.117		
	3.860	0.114		
	3.907	0.112		
	3.953	0.109		
	4.000	0.107		
	4.000	0.101		

APPALTATORE: TELESE s.c.a r.l. ITINERARIO NAPOLI - BARI RADDOPPIO TRATTA CANCELLO-BENEVENTO II LOTTO FUNZIONALE FRASSO TELESINO – VITULANO PROGETTAZIONE: 3° SUBLOTTO SAN LORENZO-VITULANO PROGETTO ESECUTIVO SYSTRA S.A. SWS Engineering S.p.A. SYSTRA-SOTECNI S.p.A. Relazione geotecnica fondazioni su pali COMMESSA LOTTO CODIFICA DOCUMENTO REV. **FOGLIO** IF2R.3.2.E.ZZ.RB.VI.20.0.0.001.B.DOCX VI.20.0.0.001 32 di 44 3.2.E.ZZ

6 COMBINAZIONI DI CARICO

Le verifiche di tipo geotecnico sono state effettuate, tenendo conto dei valori dei coefficienti parziali riportati nei prospetti di seguito, seguendo l'Approccio normativo 2: A1+M1+R3.

I parametri di resistenza del terreno sono stati dunque ridotti tramite i coefficienti parziali M1, le resistenze tramite i coefficienti R3 e le azioni sono state amplificate tramite i coefficienti parziali A1.

		Coefficiente	EQU ⁽¹⁾	Al STR	A2 GEO	Combinazione eccezionale	Combinazione Sismica
Carichi permanenti	favorevoli sfavorevoli	γG1	0,90 1,10	1,00 1,35	1,00 1,00	1,00 1,00	1,00 1,00
Carichi permanenti non strutturali ⁽²⁾	favorevoli sfavorevoli	γω	0,00 1,50	0,00 1,50	0,00 1,30	1,00 1,00	1,00 1,00
Ballast ⁽³⁾	favorevoli sfavorevoli	γв	0,90 1,50	1,00 1,50	1,00 1,30	1,00 1,00	1,00 1,00
Carichi variabili da traffico ⁽⁴⁾	favorevoli sfavorevoli	γQ	0,00 1,45	0,00 1,45	0,00 1,25	0,00 0,20 ⁽⁵⁾	0,00 0,20 ⁽⁵⁾
Carichi variabili	favorevoli sfavorevoli	γQi	0,00 1,50	0,00 1,50	0,00 1,30	0,00 1,00	0,00 0,00
Precompressione	favorevole sfavorevole	γp	0,90 1,00 ⁽⁶⁾	1,00 1,00 ⁽⁷⁾	1,00 1,00	1,00 1,00	1,00 1,00

Equilibrio che non coinvolga i parametri di deformabilità e resistenza del terreno; altrimenti si applicano i valori

Figura 3: Coefficienti parziali di sicurezza – Tabella 5.2.V del DM 14.1.2008

PARAMETRO	GRANDEZZA ALLA QUALE APPLICARE IL	COEFFICIENTE PARZIALE	(M1)	(M2)
	COEFFICIENTE PARZIALE	Υм		
Tangente dell'angolo di resistenza al taglio	$\tan \phi'_k$	γ _{φ'}	1,0	1,25
Coesione efficace	c′ _k	$\gamma_{e'}$	1,0	1,25
Resistenza non drenata	Cuk	Yeu	1,0	1,4
Peso dell'unità di volume	γ	γ_{γ}	1,0	1,0

Figura 4: Coefficienti parziali per i parametri geotecnici del terreno – Tabella 6.2.II del DM 14.1.2008

⁽²⁾ Nel caso in cui i carichi permanenti non strutturali (ad es. carichi permanenti portati) siano compiutamente definiti si potranno adottare gli stessi coefficienti validi per le azioni permanenti.

⁽³⁾ Quando si prevedano variazioni significative del carico dovuto al ballast, se ne dovrà tener conto esplicitamente nelle verifiche.

⁽⁴⁾Le componenti delle azioni da traffico sono introdotte in combinazione considerando uno dei gruppi di carico gr della Tab. 5.2.IV.

⁽⁵⁾ Aliquota di carico da traffico da considerare.

^{(6) 1,30} per instabilità in strutture con precompressione esterna

APPALTATORE: ITINERARIO NAPOLI - BARI **RADDOPPIO TRATTA CANCELLO-BENEVENTO** II LOTTO FUNZIONALE FRASSO TELESINO - VITULANO PROGETTAZIONE: 3° SUBLOTTO SAN LORENZO-VITULANO Mandante: **PROGETTO ESECUTIVO** SYSTRA S.A. SWS Engineering S.p.A. SYSTRA-SOTECNI S.p.A. COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO Relazione geotecnica fondazioni su pali IF2R.3.2.E.ZZ.RB.VI.20.0.0.001.B.DOCX IF2R 3.2.E.ZZ RB VI.20.0.0.001 В 33 di 44

Resistenza	Simbolo	I	Pali infissi		Pali trivellati			Pali ad elica continua		
	Ϋ́R	(R1)	(R2)	(R3)	(R1)	(R2)	(R3)	(R1)	(R2)	(R3)
Base	Υь	1,0	1,45	1,15	1,0	1,7	1,35	1,0	1,6	1,3
Laterale in	Ϋ́s	1,0	1,45	1,15	1,0	1,45	1,15	1,0	1,45	1,15
compressione										
Totale (*)	γι	1,0	1,45	1,15	1,0	1,6	1,30	1,0	1,55	1,25
Laterale in	Yst	1,0	1,6	1,25	1,0	1,6	1,25	1,0	1,6	1,25
trazione										

Figura 5: Coefficienti parziali per le resistenze caratteristiche – Tabella 6.4.II del DM 14.1.2008

COEFFICIENTE	COEFFICIENTE	COEFFICIENTE
PARZIALE	PARZIALE	PARZIALE
(R1)	(R2)	(R3)
$\gamma_{T} = 1.0$	$\gamma_{\rm T} = 1.6$	$\gamma_{T} = 1,3$

Figura 6: Coefficienti parziali per le resistenze caratteristiche di pali soggetti a carichi trasversali – Tabella 6.4.VI del DM 14.1.2008

APPALTATORE: ITINERARIO NAPOLI - BARI RADDOPPIO TRATTA CANCELLO-BENEVENTO II LOTTO FUNZIONALE FRASSO TELESINO - VITULANO PROGETTAZIONE: 3° SUBLOTTO SAN LORENZO-VITULANO Mandataria: Mandante: PROGETTO ESECUTIVO SYSTRA S.A. SWS Engineering S.p.A. SYSTRA-SOTECNI S.p.A. Relazione geotecnica fondazioni su pali COMMESSA LOTTO CODIFICA DOCUMENTO REV. **FOGLIO** IF2R.3.2.E.ZZ.RB.VI.20.0.0.001.B.DOCX IF2R 3.2.E.ZZ VI.20.0.0.001 В 34 di 44

7 CRITERI DI VERIFICA

Conformemente con quanto prescritto nel par. 6.4.3.1 del DM 14.1.2008, le verifiche geotecniche devono essere effettuate con riferimento ai seguenti stati limite:

SLU di tipo geotecnico (GEO):

- collasso per carico limite della palificata nei riguardi dei carichi assiali;
- collasso per carico limite della palificata nei riguardi dei carichi trasversali;
- collasso per carico limite di sfilamento nei riguardi dei carichi assiali di trazione.

Le verifiche a carico limite verticale dei pali vengono svolte secondo la metodologia degli stati limite ultimi, in accordo alla normativa vigente.

La verifica della capacità portante dei pali, per carichi verticali, è soddisfatta se:

 $F_{cd} < R_{cd}$

essendo:

 $R_{cd} = R_k / \gamma_R$

dove:

F_{cd} = carico assiale di compressione di progetto;

R_{cd} = capacità portante di progetto nei confronti dei carichi assiali;

R_k = valore caratteristico della capacità portante limite del palo.

In particolare le verifiche di capacità portante dei pali agli stati limite ultimi (SLU) vengono condotte, come anticipato nel capitolo precedente, con riferimento all'Approccio normativo 2, in accordo con il DM 14.1.2008 (cfr. §6.4.3.1) - Combinazione 1: A1 + M1 + R3, mediante il confronto dei massimi valori di sforzo normale sui pali, di compressione e di trazione, con le curve di capacità portante relative alla progressiva in esame. Il soddisfacimento della verifica consente la determinazione della lunghezza dei pali.

Per i criteri di valutazione della capacità portante di progetto R_{cd} nei confronti dei carichi assiali, esibita nelle curve di portanza, si faccia riferimento alla Relazione Geotecnica.

In aggiunta alle verifiche di portanza richieste dal DM 14.1.2008, è stata verificata la seguente relazione, in accordo con il par. 2.5.1.9.3 del 'Manuale di progettazione delle opere civili' - RFI DTC SI MA IFS 001 A:

$$R_{c.cal,LAT}/1,25 > N_{aq}$$

dove $R_{c,cal,LAT}$ è la resistenza laterale di calcolo e N_{ag} è il carico agente sul palo determinato per la combinazione caratteristica (rara) impiegata per le verifiche agli stati limiti di esercizio (SLE).

PROGETTAZIONE:

Mandataria:

Mandante:

SYSTRA S.A. SWS Engineering S.p.A.

Relazione geotecnica fondazioni su pali IF2R.3.2.E.ZZ.RB.VI.20.0.0.001.B.DOCX

SYSTRA-SOTECNI S.p.A.

RADDOPPIO TRATTA CANCELLO-BENEVENTO II LOTTO FUNZIONALE FRASSO TELESINO – VITULANO 3° SUBLOTTO SAN LORENZO-VITULANO

PROGETTO ESECUTIVO

ITINERARIO NAPOLI - BARI

COMMESSA LOTTO CODIFICA DOCUMENTO REV. **FOGLIO** 3.2.E.ZZ VI.20.0.0.001 35 di 44

Per quanto riguarda la verifica a carico limite orizzontale dei pali, questa è stata condotta tramite il metodo di Broms, 1964, secondo il quale, per pali lunghi (ipotesi che si configura per tutti i pali in esame), in terreni incoerenti sotto falda, non liberi di ruotare in testa, vale la seguente formulazione:

$$H = k_p \gamma d^3 \sqrt[3]{\left(3.676 \frac{M_y}{k_p \gamma d^4}\right)^2}$$

In cui:

H = carico limite orizzontale del palo

K_p = coefficiente di spinta passiva

D = diametro del palo

L = lunghezza del palo

M_v = momento di plasticizzazione del palo

Il valore di H, ridotto per i coefficienti di normativa come riportato di seguito, dovrà essere confrontato con il massimo valore agente in testa palo dalle combinazioni SLU-SLV (Vpd), dedotto per ciascuna palificata dal programma di calcolo PIGLET v.6.2b (Randolph, 2019) il quale permette di analizzare l'interazione del terreno con un gruppo di pali anche di diversa geometria sotto condizioni di carico generalizzate.

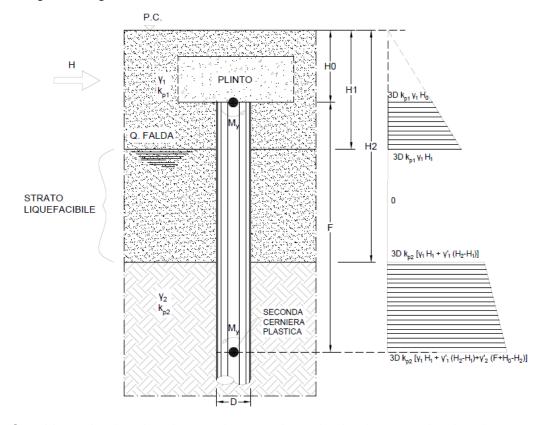
L'analisi d'interazione è stata condotta adottando un modulo di rigidezza tangenziale operativo G del terreno con andamento costante con la profondità e valutato come media pesata dei diversi strati a partire dalle correlazioni riportate nella Relazione geotecnica dell'opera in esame. Tutti i dati di input adottati nell'analisi di interazione sono riportati nel dettaglio nell'allegato di calcolo delle rispettive relazioni di calcolo strutturale delle pile.

$$H \lim = \frac{H}{\xi \cdot \gamma_T} \ge Vpd$$

Con ξ funzione del numero di verticali indagate per l'opera in esame e γ_T secondo l'approccio considerato.

In analogia con il carico limite verticale, per il carico limite orizzontale si considera l'Approccio 2, pertanto il coefficiente γ_T sarà pari a 1.3.

Verrà tenuta in conto, ove previsto, la possibilità di liquefazione in condizioni sismiche. Per la verifica del carico limite orizzontale per i pali di fondazione situati nelle zone dove è riscontrata la presenza di lenti sabbiose potenzialmente liquefacibili, la teoria di Broms resta


APPALTATORE: TELESE S.c.a r.l. ITINERARIO NAPOLI - BARI RADDOPPIO TRATTA CANCELLO-BENEVENTO II LOTTO FUNZIONALE FRASSO TELESINO – VITULANO PROGETTAZIONE: 3° SUBLOTTO SAN LORENZO-VITULANO Mandante: PROGETTO ESECUTIVO SYSTRA S.A. SWS Engineering S.p.A. SYSTRA-SOTECNI S.p.A. Relazione geotecnica fondazioni su pali COMMESSA LOTTO CODIFICA DOCUMENTO REV. **FOGLIO** IF2R.3.2.E.ZZ.RB.VI.20.0.0.001.B.DOCX 3.2.E.ZZ VI.20.0.0.001 36 di 44

applicabile, ma non sono più utilizzabili le soluzioni semplificate, disponibili in forma chiusa e/o con abachi adimesnionali. Per tale ragione è stato studiato un modello di calcolo, che pur basandosi sulla teoria di Broms tenga conto delle peculiarità del caso in esame, ove previsto. Nella fattispecie, si trascura totalmente il contributo della spinta passiva all'interno dello strato liquefacibile.

A vantaggio di sicurezza si trascura anche il contributo della resistenza offerta dal terreno intorno al plinto.

L'approccio riportato risulta pertanto cautelativo.

La seguente Figura mostra lo schema di calcolo considerato.

Considerando che si crei una prima cerniera plastica in testa al palo ed una seconda alla profondità F (palo lungo non libero di ruotare in testa), si scrivono le equazioni di equilibrio alla traslazione e di equilibrio alla rotazione intorno alla testa del palo. In tal modo si ricavano le due incognite F ed H, ovvero la profondità della seconda cerniera plastica e la forza massima orizzontale del sistema palo-terreno.

Si fa presente che il calcolo della portanza orizzontale riportato è cautelativo in quanto, pur considerando l'approfondimento della testa del palo rispetto al p.c., trascura la presenza del carico superficiale rappresentato dal peso proprio del plinto di fondazione.

TELESE s.c.a r.l.

Consorzio Telese Società Consortile a Responsabilità Limitata

PROGETTAZIONE:

Mandataria: Manda

SYSTRA S.A. SWS Engineering S.p.A. SYSTRA-SOTECNI S.p.A.

Relazione geotecnica fondazioni su pali IF2R.3.2.E.ZZ.RB.VI.20.0.0.001.B.DOCX

ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA CANCELLO-BENEVENTO II LOTTO FUNZIONALE FRASSO TELESINO – VITULANO 3° SUBLOTTO SAN LORENZO-VITULANO

PROGETTO ESECUTIVO

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 IF2R
 3.2.E.ZZ
 RB
 VI.20.0.0.001
 B
 37 di 44

8 VERIFICHE GEOTECNICHE

Si riportano di seguito le verifiche geotecniche relative al sistema di fondazione delle pile su pali del viadotto in esame, eseguite secondo i criteri esibiti nel precedente capitolo, conformemente alla normativa vigente.

Per ciascuna delle verifiche geotecniche, effettuate per ogni pila, si riporta la sintesi delle sollecitazioni di controllo desunte dalla combinazione più gravosa per la verifica in esame; per ulteriori dettagli relativi alla metodologia di calcolo delle azioni sui pali, e per l'elenco delle sollecitazioni associate a ciascuna combinazione di carico, si faccia riferimento alla Relazione di Calcolo della pila rispettiva.

Si riportano di seguito in forma tabellare, per ciascuna pila del viadotto in esame, le seguenti verifiche. Nell'ordine:

- Verifica a carico limite della palificata nei riguardi dei carichi assiali di compressione e trazione (SLU);
- Verifica del rapporto tra la resistenza laterale del palo e il carico assiale in combinazione caratteristica (SLE);
- Verifica a carico limite della palificata nei riguardi dei carichi trasversali.

TELESE S.c.a r.l.

Consorzio Telese Società Consortile a Responsabilità Limitata

PROGETTAZIONE:

Mandataria: Mandante:

SYSTRA S.A. SWS Engineering S.p.A. SYSTRA-SOTECNI S.p.A.

Relazione geotecnica fondazioni su pali IF2R.3.2.E.ZZ.RB.VI.20.0.001.B.DOCX ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA CANCELLO-BENEVENTO II LOTTO FUNZIONALE FRASSO TELESINO – VITULANO 3° SUBLOTTO SAN LORENZO-VITULANO

PROGETTO ESECUTIVO

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 IF2R
 3.2.E.ZZ
 RB
 VI.20.0.0.001
 B
 38 di 44

VIADOTTO VI.20 - PILA P1

	VERIFIC	CHE C	DI CAPACITA' PORTANTE VERTICALE					
DATI SISTEMA DI FONDAZIO	ONE							
PK	41+017.60	-	Progressiva					
Dpali	1500	mm	Diametro pali					
npali	9	-	Numero pali					
Lpali	34	m	Lunghezza pali					
SFORZI NEI PALI SLU	SFORZI NEI PALI SLU							
Nmin	-11665	kN	Massimo sforzo normale di compressione sui pali					
Nmax	4400	kN	Massimo sforzo normale di trazione sui pali					
Comb. Nmin	SLV-EL+0.3ET	-	Combinazione associata al massimo sforzo di compressione sui pali					
Comb. Nmax	SLV-EL+0.3ET	-	Combinazione associata al massimo sforzo di trazione sui pali					
RESISTENZE								
Qd,c	12007	kN	Portata di progetto in compressione (in valore assoluto)					
Qd,t	6935	kN	Portata di progetto in trazione					
VERIFICA DI PORTANZA VE	RTICALE							
FS,c = Qd,c/Nmin > 1	1.03	-	Fattore di sicurezza carico limite a compressione					
FS,t = Qd,t/Nmax > 1	1.58	-	Fattore di sicurezza carico limite a trazione					

VIADOTTO VI.20 - PILA P1

VE	VERIFICHE RESISTENZA LATERALE PALO (par.2.5.1.9.3 - Manuale RFI)								
DATI SISTEMA DI FONDAZIO	ONE								
PK	41+017.60	-	Progressiva						
Dpali	1500	mm	Diametro pali						
npali	9	-	Numero pali						
Lpali	34	m	Lunghezza pali						
SFORZI NEI PALI SLE									
Nmin	-5394	kN	Massimo sforzo normale di compressione sui pali						
Comb. Nmin	SLE-C-Gr.3(P)	-	Combinazione associata al massimo sforzo di compressione sui pali						
RESISTENZE									
QII,k	14622	kN	Resistenza laterale di calcolo (in valore assoluto)						
VERIFICA RESISTENZA LAT	ERALE RFI								
FS = QII,k/Nmin >1,25	2.71	-	Fattore di sicurezza carico limite a compressione						

APPALTATORE: TELESE S.c.a r.l.

Consorzio Telese Società Consortile a Responsabilità Limitata

PROGETTAZIONE:

SYSTRA S.A. SWS Engineering S.p.A.

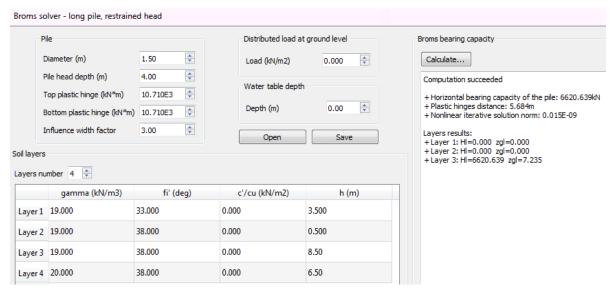
Relazione geotecnica fondazioni su pali IF2R.3.2.E.ZZ.RB.VI.20.0.0.001.B.DOCX

ITINERARIO NAPOLI - BARI **RADDOPPIO TRATTA CANCELLO-BENEVENTO** II LOTTO FUNZIONALE FRASSO TELESINO - VITULANO 3° SUBLOTTO SAN LORENZO-VITULANO

PROGETTO ESECUTIVO

COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO 3.2.E.ZZ VI.20.0.0.001 В 39 di 44

CARICO LIMITE ORIZZONTALE DI PALI CON ROTAZIONE IN TESTA IMPEDITA


VIADOTTO VI20-P1

СО	efficienti parz	iali	Α		M	R
М	etodo di calc	olo	permanenti	variabili	2/ .	γт
	- Ctodo di odio		γg	γο	$\gamma_{\phi'}$	11
	A1+M1+R1	0	1.30	1.50	1.00	1.00
SLU	A2+M1+R2	0	1.00	1.30	1.00	1.60
S	A1+M1+R3	0	1.30	1.50	1.00	1.30
	SISMA	•	1.00	1.00	1.00	1.30
DM88		0	1.00	1.00	1.00	1.00
definiti da	progettista	0	1.30	1.50	1.25	1.00

SYSTRA-SOTECNI S.p.A.

n	~⊛	20	ო	40	50	70	≥10	T.A.	prog.
ξs	1.70	1.65	1.60	1.55	1.50	1.45	1.40	1.00	1.40
<u></u> \$4	1.70	1.55	1.48	1.42	1.34	1.28	1.21	1.00	1.40

Fd = 2526 kN

 $Hd = H/\xi * \gamma_T = 2995 kN$

FS = Hd/Fd = 1.19

TELESE S.c.a r.l.

Consorzio Telese Società Consortile a Responsabilità Limitata

PROGETTAZIONE:

Mandataria: Mandante:

SYSTRA S.A. SWS Engineering S.p.A. SYSTRA-SOTECNI S.p.A.

Relazione geotecnica fondazioni su pali IF2R.3.2.E.ZZ.RB.VI.20.0.0.001.B.DOCX

ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA CANCELLO-BENEVENTO II LOTTO FUNZIONALE FRASSO TELESINO – VITULANO 3° SUBLOTTO SAN LORENZO-VITULANO

PROGETTO ESECUTIVO

COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO
IF2R 3.2.E.ZZ RB VI.20.0.0.001 B 40 di 44

VIADOTTO VI.20 - PILA P2

	VERIFIC	CHE DI CA	PACITA' PORTANTE VERTICALE					
DATI SISTEMA DI FONDAZIO	NE							
PK	41+042.57	-	Progressiva					
Dpali 1500 mr		mm	Diametro pali					
npali	12	-	Numero pali					
Lpali	38	m	Lunghezza pali					
SFORZI NEI PALI SLU	SFORZI NEI PALI SLU							
Nmin	-12836	kN	Massimo sforzo normale di compressione sui pali					
Nmax	3841	kN	Massimo sforzo normale di trazione sui pali					
Comb. Nmin	SLV-EL+0.3ET	-	Combinazione associata al massimo sforzo di compressione sui pali					
Comb. Nmax	SLV-EL+0.3ET	-	Combinazione associata al massimo sforzo di trazione sui pali					
RESISTENZE								
Qd,c	13462	kN	Portata di progetto in compressione (in valore assoluto)					
Qd,t	8409	kN	Portata di progetto in trazione					
VERIFICA DI PORTANZA VER	TICALE							
FS,c = Qd,c/Nmin > 1	1.05	-	Fattore di sicurezza carico limite a compressione					
FS,t = Qd,t/Nmax > 1	2.19	-	Fattore di sicurezza carico limite a trazione					

VIADOTTO VI.20 - PILA P2

	VERIFICHE RESIS	TENZA LA	TERALE PALO (par.2.5.1.9.3 - Manuale RFI)
DATI SISTEMA DI FONDAZIO	NE		
PK	41+042.57	-	Progressiva
Dpali	1500	mm	Diametro pali
npali	12	-	Numero pali
Lpali	38	m	Lunghezza pali
SFORZI NEI PALI SLE			
Nmin	-6595	kN	Massimo sforzo normale di compressione sui pali
Comb. Nmin	SLE-C-Gr.3(P)	-	Combinazione associata al massimo sforzo di compressione sui pali
RESISTENZE			
QII,k	17450	kN	Resistenza laterale di calcolo (in valore assoluto)
VERIFICA RESISTENZA LATE	RALE RFI		
FS = QII,k/Nmin >1,25	2.65	-	Fattore di sicurezza carico limite a compressione

APPALTATORE: TELESE S.c.a r.l.

Consorzio Telese Società Consortile a Responsabilità Limitata

PROGETTAZIONE:

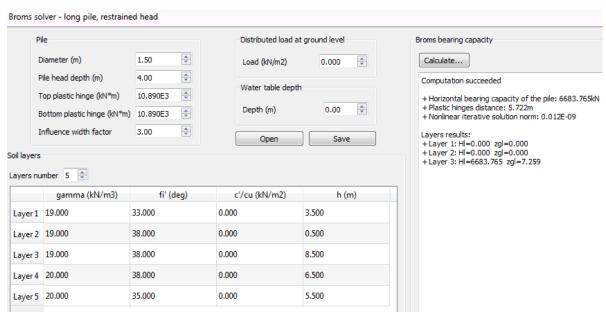
SYSTRA S.A. SWS Engineering S.p.A. SYSTRA-SOTECNI S.p.A.

Relazione geotecnica fondazioni su pali IF2R.3.2.E.ZZ.RB.VI.20.0.0.001.B.DOCX

ITINERARIO NAPOLI - BARI **RADDOPPIO TRATTA CANCELLO-BENEVENTO** II LOTTO FUNZIONALE FRASSO TELESINO - VITULANO 3° SUBLOTTO SAN LORENZO-VITULANO

PROGETTO ESECUTIVO

COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO 3.2.E.ZZ VI.20.0.0.001 В 41 di 44


CARICO LIMITE ORIZZONTALE DI PALI CON ROTAZIONE IN TESTA IMPEDITA

VIADOTTO VI20-P2

СО	efficienti parz	iali	Α		M	R
M	letodo di calc	olo	permanenti variabili			2/-
10	- Cloud ai caic		γg	γο	$\gamma_{\phi'}$	γт
	A1+M1+R1	0	1.30	1.50	1.00	1.00
SLU	A2+M1+R2	0	1.00	1.30	1.00	1.60
S	A1+M1+R3	0	1.30	1.50	1.00	1.30
	SISMA	•	1.00	1.00	1.00	1.30
DM88		0	1.00	1.00	1.00	1.00
definiti da	l progettista	0	1.30	1.50	1.25	1.00

n	™	20	ო	40	50	70	≥10	T.A.	prog.
ξ3	1.70	1.65	1.60	1.55	1.50	1.45	1.40	1.00	1.40
ξ4	1.70	1.55	1.48	1.42	1.34	1.28	1.21	1.00	1.40

Fd = 2796 kN

 $Hd = H/\xi^*\gamma_T = 3023 \text{ kN}$

FS = Hd/Fd = 1.08

TELESE S.c.a r.l.

Consorzio Telese Società Consortile a Responsabilità Limitata

PROGETTAZIONE:

Mandataria: Mandante:

SYSTRA S.A. SWS Engineering S.p.A. SYSTRA-SOTECNI S.p.A.

Relazione geotecnica fondazioni su pali IF2R.3.2.E.ZZ.RB.VI.20.0.0.001.B.DOCX

ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA CANCELLO-BENEVENTO II LOTTO FUNZIONALE FRASSO TELESINO – VITULANO 3° SUBLOTTO SAN LORENZO-VITULANO

PROGETTO ESECUTIVO

COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO
IF2R 3.2.E.ZZ RB VI.20.0.0.001 B 42 di 44

VIADOTTO VI.20 - PILA P5

VIADOTTO VI.20 - FILA F3	VEDIE		DAOITAL BODTANTE VEDTICAL E						
	VERIFICHE DI CAPACITA' PORTANTE VERTICALE								
DATI SISTEMA DI FONDAZIO	NE								
PK	41+197.37	-	Progressiva						
Dpali	1500	mm	Diametro pali						
npali	12	-	Numero pali						
Lpali	34	m	Lunghezza pali						
SFORZI NEI PALI SLU									
Nmin	-11462	kN	Massimo sforzo normale di compressione sui pali						
Nmax	4614	kN	Massimo sforzo normale di trazione sui pali						
Comb. Nmin	SLV-EL+0.3ET	-	Combinazione associata al massimo sforzo di compressione sui pali						
Comb. Nmax	SLV-EL+0.3ET	-	Combinazione associata al massimo sforzo di trazione sui pali						
RESISTENZE									
Qd,c	12007	kN	Portata di progetto in compressione (in valore assoluto)						
Qd,t	6936	kN	Portata di progetto in trazione						
VERIFICA DI PORTANZA VER	TICALE								
FS,c = Qd,c/Nmin > 1	1.05	-	Fattore di sicurezza carico limite a compressione						
FS,t = Qd,t/Nmax > 1	1.50	-	Fattore di sicurezza carico limite a trazione						

VIADOTTO VI.20 - PILA P5

	VERIFICHE RESISTE	NZA LA	TERALE PALO (par.2.5.1.9.3 - Manuale RFI)
DATI SISTEMA DI FONDAZIO	NE		
PK	41+197.37	-	Progressiva
Dpali	1500	mm	Diametro pali
npali	12	-	Numero pali
Lpali	34	m	Lunghezza pali
SFORZI NEI PALI SLE			
Nmin	-5566	kN	Massimo sforzo normale di compressione sui pali
Comb. Nmin	SLE-C-Gr.3-MaxML (P)	-	Combinazione associata al massimo sforzo di compressione sui pali
RESISTENZE			
QII,k	14623	kN	Resistenza laterale di calcolo (in valore assoluto)
VERIFICA RESISTENZA LATE	RALE RFI		
FS = QII,k/Nmin >1,25	2.63	-	Fattore di sicurezza carico limite a compressione

APPALTATORE: TELESE S.c.a r.l. Consorzio Telese Società Consortile a Responsabilità Limitata

PROGETTAZIONE:

SWS Engineering S.p.A.

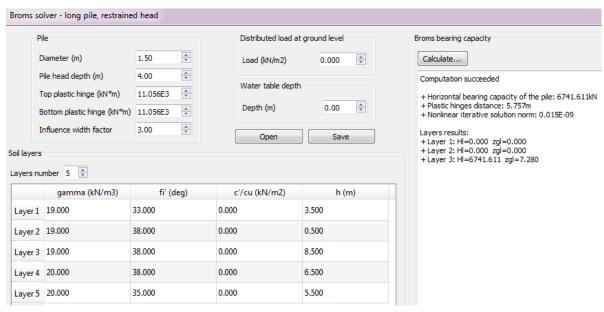
Relazione geotecnica fondazioni su pali

IF2R.3.2.E.ZZ.RB.VI.20.0.0.001.B.DOCX

SYSTRA S.A. SYSTRA-SOTECNI S.p.A. ITINERARIO NAPOLI - BARI **RADDOPPIO TRATTA CANCELLO-BENEVENTO** II LOTTO FUNZIONALE FRASSO TELESINO – VITULANO 3° SUBLOTTO SAN LORENZO-VITULANO

PROGETTO ESECUTIVO

COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO 3.2.E.ZZ VI.20.0.0.001 В 43 di 44


CARICO LIMITE ORIZZONTALE DI PALI CON ROTAZIONE IN TESTA IMPEDITA

VIADOTTO VI20-P5

СО	efficienti parz	ziali	Α		M	R
М	Metodo di calcolo			variabili γο	$\gamma_{\phi'}$	γт
A1+M1+R1			γ _G 1.30	1.50	1.00	1.00
SLU	A2+M1+R2	0	1.00	1.30	1.00	1.60
S	A1+M1+R3	0	1.30	1.50	1.00	1.30
	SISMA	•	1.00	1.00	1.00	1.30
DM88		0	1.00	1.00	1.00	1.00
definiti da	progettista	0	1.30	1.50	1.25	1.00

n	™	20	ო	40	50	70	≥10	T.A.	prog.
ξ3	1.70	1.65	1.60	1.55	1.50	1.45	1.40	1.00	1.40
ξ4	1.70	1.55	1.48	1.42	1.34	1.28	1.21	1.00	1.40

Fd = 3033 kN

 $Hd = H/\xi^*\gamma_T = 3050 \text{ kN}$

FS = Hd/Fd = 1.01

TELESE S.c.a r.l.

PROGETTAZIONE:

Mandante:

SYSTRA S.A. SWS Engineering S.p.A. Relazione geotecnica fondazioni su pali

IF2R.3.2.E.ZZ.RB.VI.20.0.0.001.B.DOCX

SYSTRA-SOTECNI S.p.A.

ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA CANCELLO-BENEVENTO II LOTTO FUNZIONALE FRASSO TELESINO – VITULANO 3° SUBLOTTO SAN LORENZO-VITULANO

PROGETTO ESECUTIVO

COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO 3.2.E.ZZ VI.20.0.0.001 В 44 di 44

9 INDICE DELLE FIGURE

Figura 1: Spettri di risposta elastici_SLV (Componente orizzontale e verticale)	20
Figura 2: Spettri di risposta elastici_SLV (Componente orizzontale e verticale)	30
Figura 3: Coefficienti parziali di sicurezza – Tabella 5.2.V del DM 14.1.2008	32
Figura 4: Coefficienti parziali per i parametri geotecnici del terreno - Tabella 6.2	.II del DM
14.1.2008	32
Figura 5: Coefficienti parziali per le resistenze caratteristiche - Tabella 6.4.II del DM	14.1.2008
	33
Figura 6: Coefficienti parziali per le resistenze caratteristiche di pali soggetti a carichi	
- Tabella 6.4.VI del DM 14.1.2008	33