COMMITTENTE:

DIREZIONE LAVORI:

APPALTATORE:

Consorzio Telese Società Consortile a Responsabilità Limitata

SYSTIA

PROGETTAZIONE:

MANDATARIA:

MANDANTI:

IL DIRETTORE DELLA PROGETTAZIONE:

Ing. L. L

Responsabile integrazione fra le varie prestazioni specialistiche

PROGETTO ESECUTIVO

ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA CANCELLO - BENEVENTO II LOTTO FUNZIONALE FRASSO TELESINO – VITULANO 3° SUBLOTTO SAN LORENZO – VITULANO

RELAZIONE

IDRAULICA

IDRAULICA DI PIATTAFORMA

Relazione idraulica – drenaggio piattaforma ferroviaria

APPALTATORE	SCALA:
IL DIRETTORE TECNICO	
Ing. IMFERRONI	-
77	

COMMESSA LOTTO FASE ENTE TIPO DOC. OPERA/DISCIPLINA PROGR. REV.

 I F 2 R
 3 2
 E
 Z Z
 R I
 I D 0 0 0 0
 0 0 1
 B

Rev.	Descrizione	Redatto	Data	Verificato	Data	Approvato	Data	Autorizzato Data	
Α	EMISSIONE	T.SALVAGO	23/06/21	L.MELICA	24/06/21	A.REZZI	24/06/21	IL PROGETTISTA	
	LIVIIOOIONE		25/00/21		24/00/21		24/00/21	Ing. L.I. LACOPO	
В	REVISIONE A SEGUITO DI	T. SALVAGO	29/10/21	L. MELICA	30/10/21	A.REZZI	30/10/21	(8)	
	RDV		207.072.		00,10,21		00/10/21	1. (1)	
								10 0 0	
								V MHZ	
								VV	
								31/10/21	

File: IF2R.3.2.E.ZZ.RI.ID.00.0.0.001.B

TELESE S.c.a r.l.

Consorzio Telese Società Consortile a Responsabilità Limitata

PROGETTAZIONE:

Mandataria:

Mandante:

SYSTRA S.A. SWS Engineering S.p.A. SYSTRA-SOTECNI S.p.A.

IDRAULICA DI PIATTAFORMA

Relazione idraulica – drenaggio piattaforma ferroviaria

ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA CANCELLO-BENEVENTO II LOTTO FUNZIONALE FRASSO TELESINO – VITULANO 3° SUBLOTTO SAN LORENZO – VITULANO

PROGETTO ESECUTIVO

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
IF2R	3 2 F 77	RI	ID 00 0 0 001	R	2 di 36

1	PR	REMESSA	3
2	NC	DRMATIVA DI RIFERIMENTO	4
3	Α٨	NALISI IDROLOGICA	7
4	ST	TIMA DELLE PORTATE DI PIENA1	1
4	4.1	DIMENSIONAMENTO IDRAULICO13	3
5	AC	CQUE METEORICHE RICADENTI SULLA PIATTAFORMA FERROVIARIA1	5
į	5.1	FOSSI DI GUARDIA20)
ţ	5.2	EMBRICI24	4
ţ	5.3	CUNETTE DI PIATTAFORMA25	5
ţ	5.4	COLLETTORI	3
6	VE	ERIFICHE FOSSI RIVESTITI2	7
7	VE	ERIFICHE FOSSI DISPERDENTI30)
8	VE	ERIFICHE CANALETTE RETTANGOLARI3	1
9	VE	FRIFICHE COLLETTORI	4

APPALTATORE: TELESE S.c.a r.l. ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA CANCELLO-BENEVENTO Consorzio Telese Società Consortile a Responsabilità Limitata II LOTTO FUNZIONALE FRASSO TELESINO – VITULANO 3° SUBLOTTO SAN LORENZO - VITULANO PROGETTAZIONE: Mandataria: Mandante: PROGETTO ESECUTIVO SYSTRA-SOTECNI S.p.A SYSTRA S.A. SWS Engineering S.p.A. **IDRAULICA DI PIATTAFORMA** COMMESSA LOTTO CODIFICA DOCUMENTO REV. **FOGLIO** Relazione idraulica - drenaggio piattaforma ferroviaria IF2R ID.00.0.0.001 3 di 36 3.2.E.ZZ RI В

1 PREMESSA

L'intervento complessivo relativo alla tratta "Cancello – Benevento" è suddiviso in due lotti: il primo lotto, fra Cancello e Frasso Telesino, e il secondo lotto tra Frasso Telesino e Vitulano (BN). Il secondo lotto "Frasso Telesino-Vitulano, oggetto della presente relazione, ha inizio al km 143+200 della LS (km16+500 di progetto in relazione alle chilometriche del I lotto Funzionale Cancello-Frasso) dopo il PC/Fermata di Frasso Telesino e termina al km 108+030 LS (km 46+887 di progetto) prima dell'impianto di Vitulano. La tratta Vitulano – Benevento è già raddoppiata ed è in esercizio.

.

La presente relazione riassume brevemente le indagini sviluppate, le metodologie applicate ed i risultati dello studio idraulico per il convogliamento e lo smaltimento delle acque di linea e dei fossi di gronda del nuovo tracciato relativo al progetto di raddoppio della tratta Sublotto III San Lorenzo – Vitulano. Saranno esposte le impostazioni teoriche adottate per la schematizzazione dei fenomeni naturali, le ipotesi semplificative assunte e le metodologie di calcolo utilizzate. ad ogni modo si farà riferimento a quanto riportato nel manuale di progettazione RFI 2016.

Successivamente, tali metodologie saranno applicate allo studio dell'idraulica di piattaforma, definendo i criteri di progetto e le caratteristiche dimensionali e tecniche degli elementi idraulici previsti per il drenaggio della superficie ferroviaria e delle aree limitrofe afferenti ai canali di gronda e ai fossi di guardia.

APPALTATORE: TELESE s.c.a r.l. ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA CANCELLO-BENEVENTO ortile a Responsabilità Limitata II LOTTO FUNZIONALE FRASSO TELESINO - VITULANO 3° SUBLOTTO SAN LORENZO - VITULANO PROGETTAZIONE: Mandataria: Mandante: **PROGETTO ESECUTIVO** SYSTRA-SOTECNI S.p.A SYSTRA S.A. SWS Engineering S.p.A. **IDRAULICA DI PIATTAFORMA** COMMESSA LOTTO CODIFICA DOCUMENTO REV. **FOGLIO** Relazione idraulica - drenaggio piattaforma ferroviaria IF2R ID.00.0.0.001 В 4 di 36 3.2.E.ZZ RI

2 NORMATIVA DI RIFERIMENTO

Di seguito si riporta la normativa

COMUNITARIA:

- DIRETTIVA 2007/60/CE DEL PARLAMENTO EUROPEO E DEL CONSIGLIO del 27 ottobre 2007 Direttiva relativa alla valutazione e alla gestione dei rischi da alluvioni;
- DIRETTIVA 2006/118/CE DEL PARLAMENTO EUROPEO E DEL CONSIGLIO del 12 dicembre 2006 sulla protezione delle acque sotterranee dall'inquinamento e dal deterioramento;
- COM/2006/232: Proposta di DIRETTIVA DEL PARLAMENTO EUROPEO E DEL
- CONSIGLIO Istituzione di un quadro per la protezione del suolo e modifica della direttiva 2004/35/CE;
- DIRETTIVA 2001/42/CE DEL PARLAMENTO EUROPEO E DEL CONSIGLIO del 27 giugno 2001 Valutazione ambientale strategica;
- DIRETTIVA 2000/60/CE DEL PARLAMENTO EUROPEO E DEL CONSIGLIO del 23 ottobre 2000 Direttiva acque;
- DIRETTIVA 85/337/CEE del 27/06/1985 Valutazione dell'impatto ambientale di progetti pubblici e privati;
- Direttiva 80/68/CEE Direttiva del Consiglio concernente la protezione delle acque sotterranee dall'inquinamento provocato da certe sostanze pericolose;
- Direttiva 76/464/CEE Direttiva 76/464/CEE del Consiglio, del 4 maggio 1976 inquinamento provocato da certe sostanze pericolose scaricate nell'ambiente idrico della Comunità;

NAZIONALE:

- Circolare Ministero LL.PP. n° 11633 del 07/01/1974; "Istruzioni per la progettazione delle fognature e degli impianti di trattamento delle acque di rifiuto"
- Delibera Ministero LL.PP. del 04/02/1977 Allegato 4 (G.U. 21/02/1977 n° 48 suppl.) "Norme tecniche generali per la regolamentazione dell'installazione e dell'esercizio degli impianti di fognatura e depurazione";
- Decreto Presidente del Consiglio dei Ministri 04/03/1996 (G.U. 14/03/1996 n° 62)
- Decreto Ministero LL.PP. del 08/01/1997 n° 99 (G.U. 18/04/1997 n° 90) "Regolamento per la definizione dei criteri e del metodo in base ai quali valutare le perdite degli acquedotti e delle fognature";
- Decreto Legislativo 03/04/2006 n° 152 (G.U. 14/04/2006 n° 88 suppl.) e ss.mm.ii. "Norme in materia di difesa ambientale";
- Decreto Ministero LL.PP. del 12/12/1985 (G.U. 14/03/1986 n° 61) "Norme tecniche relative alle tubazioni";

APPALTATORE	LLLSE S.c.a r.l.			ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA CANCELLO-BENEVENTO II LOTTO FUNZIONALE FRASSO TELESINO – VITULANO					
PROGETTAZIONE:			3° SUBLOTTO SAN LORENZO – VITULANO						
Mandataria:	Mandante:								
SYSTRA S.A.	SWS Engineering S.p.A.	SYSTRA-SOTECNI S.p.A.	PROGETTO	ESECUT	ΓΙνο				
IDRAULICA DI PIATTAFORMA			COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO	
Relazione idraulica – drenaggio piattaforma ferroviaria			IF2R	3.2.E.ZZ	RI	ID.00.0.0.001	В	5 di 36	

- Circolare Ministero LL.PP. n° 27291 del 20/02/1986 "Istruzioni relative alla normativa per le tubazioni":
- Decreto Legislativo 23 febbraio 2010, n. 49 "Attuazione della direttiva 2007/60/CE relativa alla valutazione e alla gestione dei rischi di alluvioni";
- Legge 27 febbraio 2009 n.13 "Conversione in legge, con modificazioni, del decreto-legge 30 dicembre 2008, n. 208, recante misure straordinarie in materia di risorse idriche e di protezione dell'ambiente:
- Dm Ambiente 17 luglio 2009. Attuazione degli obblighi comunitari e nazionali in materia di acque -Predisposizione rapporti conoscitivi;
- Dm Ambiente 14 aprile 2009, n. 56. Criteri tecnici per il monitoraggio dei corpi idrici Articolo 75,
 Dlgs 152/2006;
- Dlgs 16 marzo 2009, n. 30. Protezione delle acque sotterranee dall'inquinamento;
- Dm Ambiente 16 giugno 2008, n. 131. Criteri tecnici per la caratterizzazione dei corpi idrici;
- Dm Ambiente 6 novembre 2003, n. 367. Dlgs 152/1999 Regolamento concernente la fissazione di standard di qualità nell'ambiente acquatico per le sostanze pericolose;
- Dm Ambiente 12 giugno 2003, n. 185. Regolamento recante norme tecniche per il riutilizzo delle acque reflue;
- Legge 5 gennaio 1994, n. 36. Disposizioni in materia di risorse idriche;
- Dlgs 27 gennaio 1992, n. 132. Protezione delle acque sotterranee;
- Dpr 24 maggio 1988, n. 236. Qualità delle acque destinate al consumo umano;
- Legge 31 dicembre 1982, n. 979. Disposizioni per la difesa del mare;

REGIONALE

- Deliberazione N. 571 del 19 ottobre 2012 L.R. 4/2011, art. 1 comma 256: Disegno di legge di ratifica dell'Intesa sottoscritta tra la Regione Campania e la Regione Basilicata per l'accorpamento dell'Autorita' di bacino Interregionale del fiume Sele nell'unica Autorita' di
- Bacino Regionale Campania Sud ed interregionale per il Bacino Idrografico del fiume Sele.
- Deliberazione di Giunta Regionale n.1426 del 3 settembre 2009: "Linee guida per l'esercizio delle funzioni di cui all'art.. 35 del D.L.gvo 152/99, come confermato dall'art. 109 del D. L.gvo n. 152/2006, attribuite alle Regioni con l'art. 21 della L. n. 179/2002"
- Legge Regionale N.13 del 13 Ottobre 2008. "PIANO TERRITORIALE REGIONALE"
- Legge Regionale n.16 del 22 dicembre 2004. Norme sul governo del territorio.

I LLESE S.c.a r.l.			ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA CANCELLO-BENEVENTO II LOTTO FUNZIONALE FRASSO TELESINO – VITULANO 3° SUBLOTTO SAN LORENZO – VITULANO					
PROGETTAZIONE:								
Mandataria:	Mandante:							
SYSTRA S.A.	SWS Engineering S.p.A.	SYSTRA-SOTECNI S.p.A.	PROGETTO	ESECUT	ΓΙVΟ			
IDRAULICA DI I	PIATTAFORMA		COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
Relazione idraulica – drenaggio piattaforma ferroviaria			IF2R	3.2.E.ZZ	RI	ID.00.0.0.001	В	6 di 36

- Legge Regionale n.14 del 21 maggio 1997. Direttive per l'attuazione del servizio idrico integrato ai sensi della legge 5 gennaio 1994 n. 36.
- Legge Regionale 7/2/94, n. 8. Norme in materia di difesa del suolo Attuazione della Legge 18 maggio 1989, n. 183 e successive modificazioni ed integrazioni.
- Autorità di Bacino Nord-Occidentale della Campania Comitato Istituzionale Seduta del 25.07.2011 - DELIBERA n. 532 - Convocazione prot. 1161 del 29.06.11 - Progetto di "Piano
- Stralcio per la Tutela del Suolo e delle Risorse Idriche"

APPALTATORE	TELESE S.c.a r.l. Consorzio Telese Società Consortile a Responsabilità Limitat	ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA CANCELLO-BENEVENTO II LOTTO FUNZIONALE FRASSO TELESINO – VITULANO
PROGETTAZIO	NE:	3° SUBLOTTO SAN LORENZO – VITULANO
Mandataria: SYSTRA S.A.	Mandante: SWS Engineering S.p.A. SYSTRA-SOTECNI S	PROGETTO ESECUTIVO
IDRAULICA DI F Relazione idrau	PIATTAFORMA lica – drenaggio piattaforma ferroviaria	COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO IF2R 3.2.E.ZZ RI ID.00.0.0.001 B 7 di 36

3 ANALISI IDROLOGICA

Per la definizione delle portate transitanti nei sistemi di drenaggio si utilizza il metodo dell'invaso, a partire dalla curva di possibilità pluviometrica relativa ad un tempo di ritorno pari a 100 anni per la piattaforma ferroviaria (come da prescrizioni del manuale RFI).

I parametri caratteristici di tale curva sono ottenuti partendo dall'analisi idrologica riportata nella relativa relazione idrologica, di seguito si riportano le conclusioni dello studio idrologico.

Lo studio delle piogge è stato affrontato applicando il metodo suggerito dal "Rapporto sulla Valutazione delle Piene in Campania".

Gli afflussi naturali sono stati determinati, per assegnati tempi di ritorno, tramite l'impiego di piogge estreme regionalizzate nell'ambito del progetto VAPI-CNR dello studio del GNDCI (Gruppo Nazionale per la Difesa dalle Catastrofi Idrogeologiche) con il modello probabilistico che adotta la distribuzione TCEV (Two-Component Extreme Value).

Si riportano di seguito i valori di KT ottenuti numericamente per alcuni valori del periodo di ritorno.

T (anni)	2	5	10	20	25	40	50	100	200	500	1000
K _T (piogge)	0.93	1.22	1.43	1.65	1.73	1.90	1.98	2.26	2.55	2.95	3.26

Tabella 1: Valori del parametro KT in funzione del tempo di ritorno

- PIOGGE PUNTUALI

Le leggi di probabilità pluviometrica definiscono come varia la media del massimo annuale dell'intensità di pioggia su una fissata durata d, $\mu(h(d))$, con la durata stessa.

Tali leggi devono essere strettamente monotone, in quanto mediamente l'intensità di pioggia media per una durata superiore deve essere necessariamente minore di quella per una durata inferiore. inoltre, per una durata molto piccola devono raggiungere un valore finito, rappresentante al limite per d che tende a zero, la media del massimo annuale dell'intensità di pioggia istantanea.

Per la Campania è stata adottata una espressione del tipo:

$$I_d(d,T,z) = \frac{I_0}{\left(1 + \frac{d}{d_c}\right)^{C - D \cdot z}} \cdot K_T$$

in cui d e dc vanno espressi in ore, 10 e ld in mm/ore.

I parametri sono costanti all'interno di singole aree pluviometriche omogenee, e per la zona in esame assumono i seguenti valori:

LLLSE S.c.a r.l.			ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA CANCELLO-BENEVENTO II LOTTO FUNZIONALE FRASSO TELESINO – VITULANO 3° SUBLOTTO SAN LORENZO – VITULANO					
PROGETTAZIONE:								
Mandataria:	Mandante:							
SYSTRA S.A.	SWS Engineering S.p.A.	SYSTRA-SOTECNI S.p.A.	PROGETTO	ESECUT	ΓΙνο			
IDRAULICA DI PIATTAFORMA			COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
Relazione idraulica – drenaggio piattaforma ferroviaria			IF2R	3.2.E.ZZ	RI	ID.00.0.0.001	В	8 di 36

Area omogenea	n. staz.	μ(h ₀) [mm/h]	d _c [h]	С	D x10 ⁵	ρ^2
3	5	117.0	0.0976	0.7360	8.7300	0.9980

Tabella 2: Valori dei parametri per l'area omogenea 3

La valutazione della intensità di pioggia media sull'intero bacino (pioggia media areale) viene effettuata moltiplicando la (5) per il fattore di riduzione areale KT:

$$K_T = 1 - \left(1 - e^{-\epsilon_1 A} e^{-\epsilon_2 d^{\epsilon_3}}\right)$$

dove:

A = area del bacino [kmq]

c1 = 0.0021

c2 = 0.53

c3 = 0.25

Data l'esigua estensione delle aree drenate dagli elementi di linea il coefficiente areale sarà posto, a favore di sicurezza, pari ad 1.

Per l'applicazione della procedura di calcolo con il metodo dell'invaso si ha la necessità di avere una legge di pioggia nella sua espressione monomia del tipo e .

La trasformazione è stata fatta con una curva di regressione applicata ai vari tempi di ritorno di progetto e considerando la quota altimetrica z come la quota media del tracciato pari a 68 m s.l.m., la curava è stata estrapolata per piogge di breve durata ($t \le 30$ min). Di seguito si riportano i risultati per le espressioni relative a Tr 100 e 25 anni.

LLLSE S.c.a r.l.			ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA CANCELLO-BENEVENTO II LOTTO FUNZIONALE FRASSO TELESINO – VITULANO 3° SUBLOTTO SAN LORENZO – VITULANO					
PROGETTAZIONE:								
Mandataria:	Mandante:							
SYSTRA S.A.	SWS Engineering S.p.A. SYSTRA-SO	OTECNI S.p.A.	PROGETTO	ESECU1	ΓΙVO			
IDRAULICA DI F	PIATTAFORMA		COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
Relazione idraulica – drenaggio piattaforma ferroviaria			IF2R	3.2.E.ZZ	RI	ID.00.0.0.001	В	9 di 36

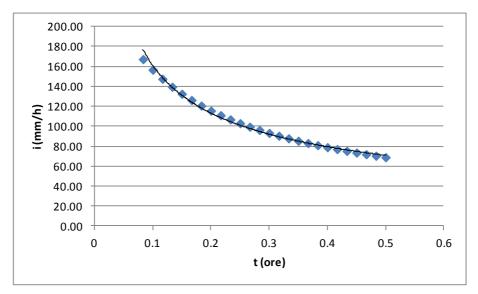


Figura 1: Interpolazione per Tr 100 anni

L'equazione della curva interpolante relativa alla legge di pioggia per Tr=100 anni è:

$$i = 49.79 \cdot t^{-0.51}$$
 con

a=49.79 ed n=0.49

La curva sopra esposta ha un indice di determinazione R=0.994. Tale indice misura la bontà dell'interpolazione per valori di R prossimi ad 1 l'equazione interpola bene i valori di partenza.

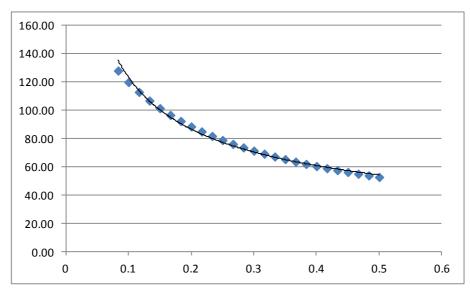


Figura 2: Interpolazione per Tr 25 anni

L'equazione della curva interpolante relativa alla legge di pioggia per Tr=25 anni è:

$$i = 38.11 \cdot t^{-0.51}$$
 con

I LLEST S.c.a r.l.	ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA CANCELLO-BENEVENTO II LOTTO FUNZIONALE FRASSO TELESINO – VITULANO 3° SUBLOTTO SAN LORENZO – VITULANO					
PROGETTAZIONE:						
Mandataria: Mandante:						
SYSTRA S.A. SWS Engineering S.p.A. SYSTRA-SOTECNI S.p.A.	PROGETTO ESECUTIVO					
IDRAULICA DI PIATTAFORMA Relazione idraulica – drenaggio piattaforma ferroviaria	COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO IF2R 3.2.E.ZZ RI ID.00.0.0.001 B 10 di 36					

a=38.11 ed n=0.49

La curva sopra esposta ha un indice di determinazione R=0.994.

Nelle verifiche sono state utilizzate piogge con durate pari o inferiori ai 30 minuti, in quanto le aree afferenti della piattaforma stradale sono caratterizzate da tempi di risposta dell'ordine di pochi minuti.

APPALTATORE	TELES F. Consorzio Telese Società Consortile a	D 1707 7 14 4	ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA CANCELLO-BENEVENTO II LOTTO FUNZIONALE FRASSO TELESINO – VITULAN			ANO		
PROGETTAZIONE:			3° SUBLOTTO SAN LORENZO – VITULANO					
Mandataria:	Mandante:							
SYSTRA S.A.	SWS Engineering S.p.A. S	SYSTRA-SOTECNI S.p.A.	PROGETTO	ESECUT	ΓΙVO			
IDRAULICA DI PIATTAFORMA		COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO	
Relazione idraulica – drenaggio piattaforma ferroviaria			IF2R	3.2.E.ZZ	RI	ID.00.0.0.001	В	11 di 36

4 STIMA DELLE PORTATE DI PIENA

La verifica idraulica delle canalette e delle condotte per lo smaltimento delle acque di piattaforma è stata condotta mediante il metodo dell'invaso a fronte dell'elevata affidabilità e della vasta diffusione di tale approccio.

La portata pluviale della rete è calcolata con un metodo empirico dell'invaso che tiene conto della diminuzione di portata per il velo (sottilissimo) che rimane sul terreno e per il volume immagazzinato in rete. Tale metodo è conforme alle indicazioni riportate sul manuale di Progettazione Ferroviario.

L'acqua di pioggia proveniente dall'atmosfera avrà una portata che indicheremo con "p", mentre con "l "indicheremo l'intensità di pioggia, cioè l'altezza d'acqua che cade nell'unità di tempo.

Dell'acqua piovana una parte viene assorbita dal terreno, una porzione evapora ed il resto defluisce; la porzione che evapora è molto piccola e quindi trascurabile.

Indicando con " ϕ " l'aliquota che defluisce sul terreno, bisogna tenere conto che tale valore dipenderà dalla natura del terreno, dalla durata dell'evento di pioggia, dal grado di umidità dell'atmosfera e dalla stagione; ϕ prende il nome di coefficiente di afflusso e moltiplicato per l'area del bacino (A) e per l'intensità di pioggia (I) ci fornirà una stima della portata che affluisce nel bacino nell'unità di tempo.

$$p = \varphi * I * A \tag{1}$$

Nel tempo dt il volume d'acqua affluito sarà p*dt, mentre nell'istante t nella rete di drenaggio defluirà una portata q, inizialmente nulla e man mano crescente.

Se il volume che affluisce nel tempo di è pari a p*di e quello che defluisce è q*di, la differenza, che indicheremo con dw, rappresenterà il volume d'acqua che si invasa nel tempo.

Pertanto l'equazione di continuità in forma differenziale sarà:

$$p * dt = q * dt + dw ag{2}$$

Il metodo dell'invaso utilizzato per lo studio idraulico e la verifica dei collettori di smaltimento delle acque delle aree esterne si basa proprio sull'equazione di continuità.

Considerando che la portata q può essere considerata costante, le variabili da determinare sono q(t), w(t), e t, per cui l'equazione [2] non sarebbe integrabile se non fissando q o w.

Tuttavia valutando che il valore massimo di portata verrà raggiunto alla fine dell'evento di pioggia di durata t, il problema di progetto si riduce ad individuare la durata di pioggia che massimizzi la portata, tenuto conto che al diminuire di questa aumenta l'intensità di pioggia I.

APPALTATORE	TELESE S. Consorzio Telese Società Consortile a Respo	1990 71 16 4	ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA CANCELLO-BENEVENTO II LOTTO FUNZIONALE FRASSO TELESINO – VITULANO			ANO		
			3° SUBLOTTO SAN LORENZO – VITULANO					
Mandataria:	Mandante:							
SYSTRA S.A.	SWS Engineering S.p.A. SYSTR	A-SOTECNI S.p.A.	PROGETTO	ESECUT	ΓΙVΟ			
IDRAULICA DI PIATTAFORMA Relazione idraulica – drenaggio piattaforma ferroviaria		COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO	
		IF2R	3.2.E.ZZ	RI	ID.00.0.0.001	В	12 di 36	

Tale problema è stato risolto, nell'ipotesi di intensità di pioggia (I) costante e di rete di drenaggio inizialmente vuota (q = 0 per t = 0), considerando:

una relazione lineare tra il volume w immagazzinato nella rete a monte e l'area della sezione idrica
 ω:

$$W/\omega = W/\omega = cost$$
 [3]

Questa condizione, nel caso di un singolo tratto, corrisponde all'ipotesi di moto uniforme, mentre nel caso di reti, si basa su due ulteriori ipotesi: che i vari elementi si riempiano contemporaneamente senza che mai il deflusso affluente sia ostacolato (funzionamento autonomo) e che il grado di riempimento di ogni elemento sia coincidente con quello degli altri (funzionamento sincrono);

• una relazione lineare tra la portata defluente e l'area della sezione a monte:

$$q/\omega = Q/\Omega = cost$$
 [4]

Tale relazione corrisponde all'ipotesi di velocità costante in condotta, ipotesi abbastanza prossima alla realtà nella fascia dei tiranti idrici che in genere si considerano.

Con queste ipotesi semplificative si ottiene:

$$\frac{dw}{W} = \frac{dq}{O} \tag{5}$$

$$dw = \frac{dq}{Q} * W ag{6}$$

L'equazione di continuità diviene quindi:

$$(p-q)dt = \frac{w}{Q} * dq$$
 [7]

Ovvero:

$$p - q = \frac{dW}{dt} \tag{8}$$

L'integrazione dell'equazione di continuità consente di ottenere una relazione tra la portata e il tempo di riempimento di un canale, ovvero consente la stima dell'intervallo temporale tra un valore nullo di portata ed un valore massimo. Definendo τ il tempo necessario per passare da q=0 a q=qmax, e tr il tempo di riempimento, un canale risulterà adeguato se $\tau \le tr$, viceversa se $\tau > tr$ il canale sarà insufficiente.

APPALTATORE	TELESE S.c.a r.l. Consorzio Telese Società Con sortile a Responsa bilità Limita	ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA CANCELLO-BENEVENTO II LOTTO FUNZIONALE FRASSO TELESINO – VITULANO
PROGETTAZIOI	NE:	3° SUBLOTTO SAN LORENZO – VITULANO
Mandataria: SYSTRA S.A.	Mandante: SWS Engineering S.p.A. SYSTRA-SOTECNI S	A.A. PROGETTO ESECUTIVO
IDRAULICA DI PIATTAFORMA Relazione idraulica – drenaggio piattaforma ferroviaria		COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO IF2R 3.2.E.ZZ RI ID.00.0.0.001 B 13 di 36

Il corretto dimensionamento del canale di drenaggio delle acque piovane si ottiene ponendo τ = tr , ovvero nel caso in cui la durata dell'evento piovoso eguagli il tempo di riempimento del canale. In quest'ottica nasce il metodo dell'invaso non come metodo di verifica, ma come strumento progettazione, imponendo la relazione τ = tr si ottiene l'espressione analitica del coefficiente udometrico:

$$u = k * \frac{(\varphi * a)^{1/n}}{w_n^{\frac{1}{n-1}}}$$
 [9]

Il coefficiente udometrico rappresenta la portata per unità di superficie del bacino, ed è espresso in l/s*ha, φ è il coefficiente di afflusso, w è il volume di acqua invasata riferito all'area del bacino in m3/m2, a ed n sono i coefficienti della curva di possibilità climatica, k un coefficiente che assume il valore di [Sistemi di Fognatura, Manuale di Progettazione, CSU Editore, Hoepli; Appunti di Costruzioni idrauliche, Girolamo lppolito, Liguori Editore]

L'espressione del coefficiente udometrico utilizzata nel nostro studio è:

$$u = 2168 * n * \frac{(\psi * a)^{1/n}}{w^{1/n-1}}$$
 [10]

I coefficienti di afflusso adottati sono:

- ϕ =0.70 per la piattaforma ferroviaria in assenza del sub-ballast bituminoso e per le aree esterne (scarpate naturali ed artificiali) [Manuale di Progettazione Italferr];
- ϕ =0.90 per la piattaforma ferroviaria in presenza del sub-ballast bituminoso e per le piattaforme stradali pavimentate [Manuale di Progettazione Italferr];

Il volume w rappresenta il volume specifico di invaso totale pari al rapporto tra il volume di invaso totale Wtot e la superficie drenata.

Wtot è dato dalla somma del volume proprio di invaso, W1; del volume di invaso dei tratti confluenti depurato del termine dei piccoli invasi, W2; del volume dei piccoli invasi considerando l'intera superficie del bacino drenata, W3.

In particolare il volume dei piccoli invasi è stato calcolato considerando un apporto unitario di 30 m3/ha per le superfici stradali [Manuale di Progettazione Italferr].

4.1 DIMENSIONAMENTO IDRAULICO

La verifica idraulica degli spechi in progetto, è stata effettuata valutando le altezze idriche e le velocità relative alle portate di progetto tramite l'espressione di Chezy:

$$V = K\sqrt{Ri}$$
 [11]

APPALTATORE	TELESII Consorzio Telese Società Consortile a	B 1807 144	ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA CANCELLO-BENEVENTO II LOTTO FUNZIONALE FRASSO TELESINO – VITULAN			ANO		
PROGETTAZIONE:			3° SUBLOTTO SAN LORENZO – VITULANO					
Mandataria:	Mandante:							
SYSTRA S.A.	SWS Engineering S.p.A. S	SYSTRA-SOTECNI S.p.A.	PROGETTO	ESECU1	IVO			
IDRAULICA DI PIATTAFORMA		COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO	
Relazione idraulica – drenaggio piattaforma ferroviaria			IF2R	3.2.E.ZZ	RI	ID.00.0.0.001	В	14 di 36

e l'equazione di continuità

$$Q = \sigma V$$
 [12]

dove K, il coefficiente di scabrezza, è stato valutato secondo la formula di Gaukler-Strickler:

$$K = C R^{1/6}$$
 [13]

ottenendo:

$$Q = K \times R^{2/3} \times i^{1/2} \times \sigma$$
 [14]

dove:

- Q, la portata in m3/s
- R, il raggio idraulico in metri;
- σ , la sezione idraulica [m2];
- i, la pendenza [m/m];
- C, il coefficiente di scabrezza in m1/3s-1, pari a 75 per le tubazioni in PVC
- C, il coefficiente di scabrezza in m1/3s-1, pari a 67 per le canalette e le condotte in cls.

Nella tabella seguente si riportano i risultati delle verifiche del sistema di drenaggio in progetto.

I collettori circolari e i fossi di guardia si ritengono verificati se la portata transita con un riempimento massimo pari al 70% dell'altezza utile e una velocità inferiore a 4.0 m/sec.

APPALTATORE	TELESE s.c.a r.l. Consorzio Telese Società Con sortile a Responsabilità Limitata	ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA CANCELLO-BENEVENTO II LOTTO FUNZIONALE FRASSO TELESINO – VITULANO					
PROGETTAZIOI	NE:	3° SUBLOTTO SAN LORENZO – VITULANO					
Mandataria: SYSTRA S.A.	Mandante: SWS Engineering S.p.A. SYSTRA-SOTECNI S.p.A	PROGETTO ESECUTIVO					
IDRAULICA DI PIATTAFORMA Relazione idraulica – drenaggio piattaforma ferroviaria		COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO IF2R 3.2.E.ZZ RI ID.00.0.0.001 B 15 di 36					

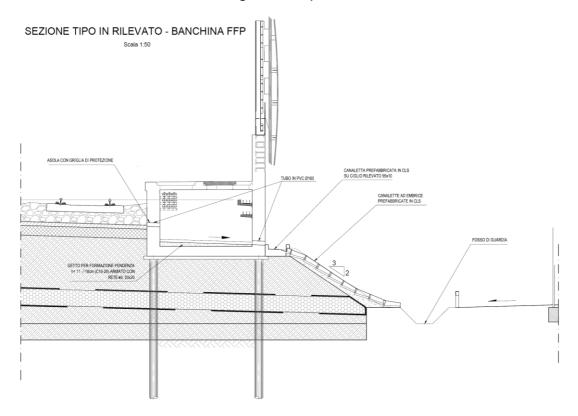
5 ACQUE METEORICHE RICADENTI SULLA PIATTAFORMA FERROVIARIA

Per l'intercettazione dei flussi d'acqua ricadenti sulla piattaforma ferroviaria nei tratti in rilevato e in quelli in scavo ed assicurare il loro recapito all'esterno del corpo ferroviario, si sono adottate generalmente le seguenti soluzioni ed opere idrauliche:

- per garantire l'immediato smaltimento delle acque meteoriche dalla pavimentazione ferroviaria è stata assegnata alla pavimentazione una pendenza trasversale del 3.0 %;
- nei tratti in rilevato le acque meteoriche defluiscono quindi al cordolo bituminoso di delimitazione del ciglio ferroviario e da questo al fosso di guardia tramite embrici;
- nei tratti in trincea i flussi d'acqua sono recapitati direttamente nella cunetta rettangolare di piattaforma sotto passando il manufatto della canaletta porta-cavi. Nel passaggio tra scavo e rilevato i flussi d'acqua hanno poi esito esternamente nel fosso di guardia;
- fossi di guardia a sezione trapezoidale rivestiti in cls previsti al piede del rilevato con sezione ferroviaria in rilevato e sopra la trincea nel caso di sezione in scavo.

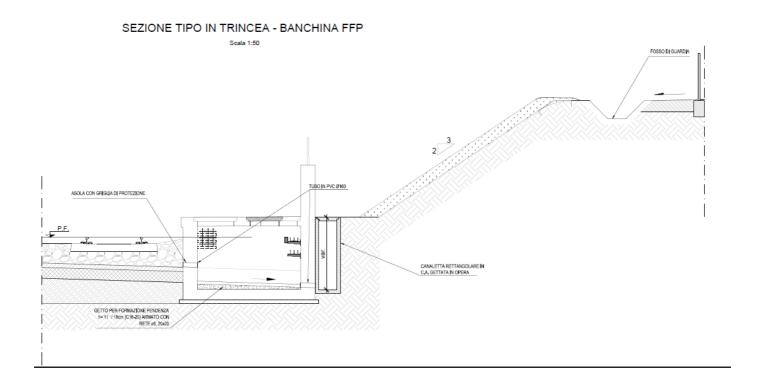
Di seguito si riporta la descrizione del sistema di drenaggio nelle varie configurazioni tipologiche riscontrate lungo il tracciato di progetto:

Sezione in rilevato

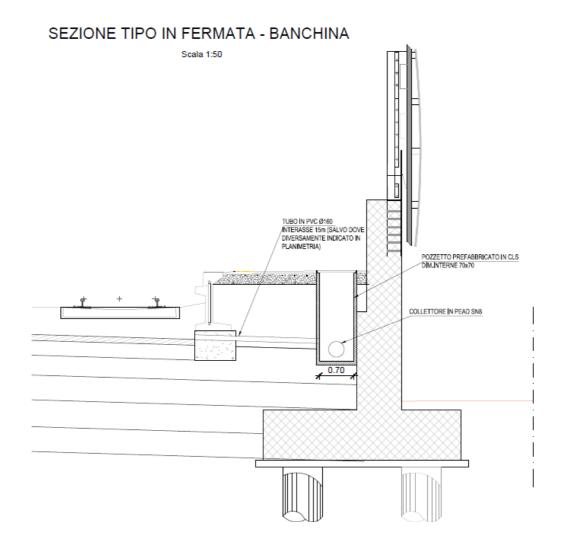

Le acque meteoriche defluiscono al cordolo bituminoso di delimitazione del ciglio ferroviario, e da questo al sottostante fosso di guardia tramite embrici. Il fosso di guardia è previsto di tipo rivestito o disperdente, a seconda della disponibilità di un recapito nell'idrografia superficiale

Sezione in trincea

Le acque meteoriche defluiscono direttamente nella cunetta rettangolare di piattaforma. La cunetta rettangolare allontana le acque raccolte, sino al loro recapito nel fosso di guardia in corrispondenza del passaggio tra scavo e rilevato


APPALTATORE:	TELESE S.c.a r.l. Consorzio Telese Società Consortile a Responsabilità Limitata ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA CANCELLO-BENEVENTO II LOTTO FUNZIONALE FRASSO TELESINO – VI							
PROGETTAZIONE:			3° SUBLOTTO SAN LORENZO – VITULANO					
Mandataria:	Mandante:							
SYSTRA S.A.	SWS Engineering S.p.A.	SYSTRA-SOTECNI S.p.A.	PROGETTO	ESECUT	ΓΙVO			
IDRAULICA DI PIATTAFORMA		COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO	
Relazione idraulica – drenaggio piattaforma ferroviaria			IF2R	3.2.E.ZZ	RI	ID.00.0.0.001	В	16 di 36

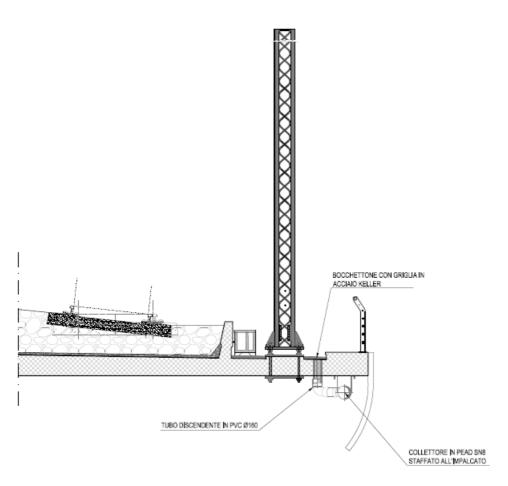
Le acque meteoriche sono allontanate dalla piattaforma ferroviaria a mezzo di asole praticate nella banchina. Le acque vengono dunque raccolte da una canaletta posta esternamente alla banchina, ed allontanate mediante embrici sino al fosso di guardia al piede del rilevato.


APPALTATORE	TELES Consorzio Telese Società Consort		RADDOPPIO TRATTA CANCELLO-BENEVENTO			ANO		
PROGETTAZIONE:			3° SUBLOTTO SAN LORENZO – VITULANO					
Mandataria:	Mandante:							
SYSTRA S.A.	SWS Engineering S.p.A.	SYSTRA-SOTECNI S.p.A.	PROGETTO	ESECU1	IVO			
IDRAULICA DI PIATTAFORMA Relazione idraulica – drenaggio piattaforma ferroviaria		COMMESSA IF2R	LOTTO 3.2.E.ZZ	CODIFICA RI	DOCUMENTO ID.00.0.0.001	REV.	FOGLIO 17 di 36	

Le acque meteoriche sono allontanate dalla piattaforma ferroviaria a mezzo di asole praticate nella banchina. Le acque vengono dunque raccolte da una canaletta rettangolare posta esternamente alla banchina, ed allontanate sino al fosso di guardia.

APPALTATORE	TELESE s.c.a r.l. Consorzio Telese Società Consortile a Responsabilità Limi	ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA CANCELLO-BENEVENTO II LOTTO FUNZIONALE FRASSO TELESINO – VITULANO
PROGETTAZIO	NE:	3° SUBLOTTO SAN LORENZO – VITULANO
Mandataria: SYSTRA S.A.	Mandante: SWS Engineering S.p.A. SYSTRA-SOTECNI	PROGETTO ESECUTIVO
IDRAULICA DI PIATTAFORMA Relazione idraulica – drenaggio piattaforma ferroviaria		COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO IF2R 3.2.E.ZZ RI ID.00.0.0.001 B 18 di 36

Le acque meteoriche sono allontanate mediante un collettore in PEAD SN8 corrente in banchina, in grado di raccogliere le acque e recapitarle al fosso di guardia. Le acque vengono raccolte sulla piattaforma ferroviaria mediante condotte in PVC φ160 alloggiate in asole praticate sulla banchina, e collegate al collettore principale.



APPALTATORE	TELES Consorzio Telese Società Consort		RADDOPPIO TRATTA CANCELLO-BENEVENTO			LANO		
PROGETTAZIONE:			3° SUBLOTTO SAN LORENZO – VITULANO					
Mandataria:	Mandante:							
SYSTRA S.A.	SWS Engineering S.p.A.	SYSTRA-SOTECNI S.p.A.	PROGETTO	ESECU1	ΓΙVO			
IDRAULICA DI PIATTAFORMA Relazione idraulica – drenaggio piattaforma ferroviaria		COMMESSA IF2R	LOTTO 3.2.E.ZZ	CODIFICA RI	DOCUMENTO ID.00.0.0.001	REV.	FOGLIO 19 di 36	

Le acque meteoriche sono raccolte mediante bocchettoni posti esternamente all'impalcato. Le acque vengono dunque inviate mediante un discendente in PVC \$\phi\$160 ad un collettore corrente in PEAD SN8 staffato all'impalcato. Il collettore allontana le acque raccolte sino alla spalla dell'opera, dove vengono recapitate al fosso di guardia.

SEZIONE TIPO IN VIADOTTO

Scala 1:50

APPALTATORE	TELES Consorzio Telese Società Con sorti		ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA CANCELLO-BENEVENTO II LOTTO FUNZIONALE FRASSO TELESINO – VITULANO			ANO			
PROGETTAZIONE:			3° SUBLOTTO SAN LORENZO – VITULANO						
Mandataria: SYSTRA S.A.	Mandante: SWS Engineering S.p.A.	SYSTRA-SOTECNI S.p.A.	PROGETTO ESECUTIVO						
IDRAULICA DI PIATTAFORMA Relazione idraulica – drenaggio piattaforma ferroviaria		COMMESSA IF2R	LOTTO 3.2.E.ZZ	CODIFICA RI	DOCUMENTO ID.00.0.0.001	REV.	FOGLIO 20 di 36		

Viene prevista la realizzazione di una canaletta situata alla base della galleria per il drenaggio di eventuali venute d'acqua e/o sversamenti all'interno delle opere. La canaletta segue l'andamento della livelletta ferroviaria, che permette asempre alle acque di defluire verso l'esterno. Una volta fuori dalla galleria, la canaletta trova il recapito nel fosso di guardia.

Di seguito si riporta la descrizione degli elementi complessivamente utilizzati nel drenaggio della piattaforma ferroviaria

5.1 FOSSI DI GUARDIA

I fossi di guardia, posti ai piedi del rilevato o a monte dello scavo, hanno funzione di intercettare le acque meteoriche provenienti dalla piattaforma e dal rilevato ferroviario, e eventualmente le aree esterne naturalmente scolanti verso la nuova opera, impedendo che queste raggiungano il corpo ferroviario con le prevedibili conseguenze di fenomeni di erosione.

Le acque intercettate dai fossi di guardia scaricano all'esterno del corpo ferroviario direttamente in incisioni della rete idrografica naturale, nelle opere idrauliche di attraversamento in progetto o in vasche di laminazione che disperdono le portate meteoriche nel sottosuolo. In quest'ultimo caso, onde limitare le dimensioni delle vasche di laminazione e dispersione, lungo la rete di drenaggio della piattaforma ferroviaria sono stati disposti dei fossi disperdenti realizzati con materiale inerte drenante a diversa granulometria che contribuiscono alla dispersione delle portate meteoriche nel sottosuolo.

Le tipologie previste per i fossi di guardia a sezione trapezoidale rivestiti in cls e pendenza sponda 1/1 sono riassunti nella tabella seguente:

Tipo	Base minore	Altezza	Sponde
	(m)	(m)	
T1	0.5	0.5	1/1
T2	0.6	0.6	1/1

APPALTATORE	TELESE S.c.a r. Consorzio Telese Società Consortile a Responsabilità		ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA CANCELLO-BENEVENTO II LOTTO FUNZIONALE FRASSO TELESINO – VITULA			ANO		
PROGETTAZIONE:			3° SUBLOTTO SAN LORENZO – VITULANO					
Mandataria:	Mandante:							
SYSTRA S.A.	SWS Engineering S.p.A. SYSTRA-SOT	ECNI S.p.A.	PROGETTO	ESECUT	ΓΙνο			
IDRAULICA DI PIATTAFORMA		COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO	
Relazione idraulica – drenaggio piattaforma ferroviaria		IF2R	3.2.E.ZZ	RI	ID.00.0.0.001	В	21 di 36	

Т3	0.8	0.8	1/1
T4	1.0	1.0	1/1

Tabella 3: Tipologie fossi di guardia rivestiti

Le acque intercettate dai fossi di guardia scaricano nelle incisioni della rete idrografica naturale, nelle opere idrauliche di attraversamento in progetto. Qualora il territorio sia privo di recapiti naturali per le acque intercettate saranno previsti dei fossi disperdenti realizzati con materiale inerte drenante a diversa granulometria che consentono la dispersione delle portate meteoriche nel sottosuolo.

Nei tratti privi di recapiti naturali i fossi di guardia saranno in terra a sezione trapezoidale con pendenza sponda 1/1, le dimensioni sono riassunte nella tabella seguente:

Tipo	Base minore	Altezza	Sponde	
	(m)	(m)		
TD0	0.5	0.5	1/1	
TD1	1.0	0.5	1/1	
TD2	1.0	1.0	1/1	
TD3	2.0	1.0	1/1	
TD4	3.0	1.0	1/1	

Tabella 4: Tipologie fossi di guardia disperdenti

La portata dispersa dai fossi per infiltrazione è stata stimata con riferimento allo schema di moto filtrante riportato in Figura. Dalla relazione geologica emerge come il coefficiente di permeabilità degli strati di suolo più superficiali può essere assunta pari a circa 1 x 10-4 m/s.

APPALTATORE	TELESE S.c.a r Consorzio Telese Società Consortile a Responsabilit	ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA CANCELLO-BENEVENTO II LOTTO FUNZIONALE FRASSO TELESINO – VITULANO						
PROGETTAZIOI	NE:		3° SUBLOTTO SAN LORENZO – VITULANO					
Mandataria:	Mandante:							
SYSTRA S.A.	SWS Engineering S.p.A. SYSTRA-SOT	ECNI S.p.A.	PROGETTO	ESECUT	ΓΙνο			
IDRAULICA DI F	PIATTAFORMA	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO	
Relazione idrau	lica – drenaggio piattaforma ferroviaria	IF2R	3.2.E.ZZ	RI	ID.00.0.0.001	В	22 di 36	

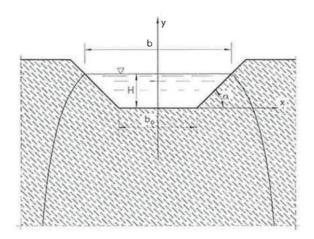


Figura 3: Schema funzionamento fosso disperdente

Tutti i fossi disperdenti hanno al disotto un cassonetto drenante rettangolare di altezza variabile pari a 1.0 o 2.0 m a seconda delle necessità e riempito di ghiaia. Il perimetro di filtrazione nel terreno sarà quindi quello appartenente al cassonetto di ghiaia di larghezza b0 e altezza h, mentre, a favore di sicurezza si considera nullo il contributo disperdente delle sponde oblique del fosso, per cui la portata infiltrata per metro lineare sarà: $q = K(b_0 + 2h)$

Il calcolo del volume di invaso ha seguito l'ipotesi di valutare il volume di pioggia per un tempo di ritorno di 100 anni. Il volume che affluisce nei fossi in funzione del tempo è dato da

$$V_{affl} = h A$$

con h altezza di pioggia ed A area ridotta drenata.

L'altezza di pioggia [m/h], è data da:

$$h = \frac{a}{1000} t^n$$

Considerando costante la portata infiltrata q, si ha che il volume defluito risulta essere:

$$V_{defl} = q t$$

Il volume all'interno dei fossi in funzione del tempo è quindi dato dalla differenza tra il volume affluito e quello defluito:

$$V_{affl} - V_{defl} = h A - q t = A \frac{a}{1000} t^n - q t = V$$

Per determinare la durata dell'evento meteorico che massimizza il volume da invasare, basta porre a 0 la derivata, fatta in funzione del tempo, della funzione precedente. Si ottiene quindi:

APPALTATORE: TELESE s.c.a r.l. Consorzio Telese Società Consortile a Responsabilità Limitata	ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA CANCELLO-BENEVENTO II LOTTO FUNZIONALE FRASSO TELESINO – VITULANO 3° SUBLOTTO SAN LORENZO – VITULANO						
PROGETTAZIONE:							
Mandataria: Mandante:							
SYSTRA S.A. SWS Engineering S.p.A. SYSTRA-SOTECNI S.p.A	PROGETTO ESECUTIVO						
IDRAULICA DI PIATTAFORMA Relazione idraulica – drenaggio piattaforma ferroviaria	COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO						

$$A\frac{a\ n}{1000}\ t^{n-1} - q = 0$$

Esplicitando la precedente in funzione del tempo si ha:

$$t^* = \left(\frac{1000 \ q}{A \ a \ n}\right)^{\frac{1}{n-1}}$$
 [ore]

Il massimo volume da invasare è dato quindi da:

$$V_{\text{max}} = A \frac{a}{1000} (t^*)^n - q t^*$$
 [m³]

Il volume immagazzinato nel fosso di guardia è dato dal volume utile della sezione trapezia più il volume del cassonetto considerando un indice dei vuoti pari a 0.4:

$$V_{inv} = L \cdot H_u \cdot (2 \cdot B + 2 \cdot H_u \cot g\alpha) + B \cdot Hcass \cdot n$$

dove L, lunghezza fosso;

B, larghezza di base;

Hu, tirante utile idraulico;

α, inclinazione sponda;

n, indice dei vuoti

Il fosso si ritiene verificato quando il volume immagazzinato è maggiore o uguale al massimo volume da invasare.

Il fosso disperdente deve essere in grado di ricevere e mantenere al suo interno i volumi in arrivo per svolgere la sua funzione di laminazione e dispersione della portata. Di conseguenza, nei casi in cui vi sia una certa pendenza longitudinale del terreno e quindi del fosso, è necessatio sotacolare l'innesco del deflusso delle portate al suo interno e contrastare la riduzione dell'invaso. A questo fine si prevede di

APPALTATORE	TELESE s.c.a r.l. Consorzio Telese Società Consortile a Responsabilità Limitata	ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA CANCELLO-BENEVENTO II LOTTO FUNZIONALE FRASSO TELESINO – VITULANO						
PROGETTAZIOI	NE:	3° SUBLOTTO SAN LORENZO – VITULANO						
Mandataria: SYSTRA S.A.	Mandante: SWS Engineering S.p.A. SYSTRA-SOTECNI S.p.	A. PROGETTO ESECUTIVO						
IDRAULICA DI F Relazione idrau	PIATTAFORMA lica – drenaggio piattaforma ferroviaria	COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO IF2R 3.2.E.ZZ RI ID.00.0.0.001 B 24 di 36						

realizzare degli opportuni setti di ripartizione in terra da posizionare all'interno del fosso di guardia in modo da garantire il necessario volume di invaso.

Per la valutazione del volume di invaso disponibile viene quindi mediata l'area bagnata tra due setti di ripartizione, ciè tra la sezione terminale del fosso (fosso pieno) e la sezione iniziale dello stesso; così facendo è possibile determinare il volume di invaso al variare della pendenza e dell'interasse dei setti. Si riporta la tabella costruita per il posizionamento dei setti all'interno dei fossi disperdenti di progetto

P [%] pendenza del fosso	L [m] interasse del setto
0.1	200
0.2	100
0.3	75
0.5	40
0.75	30
1.0	20
2.0	15
3.0	10
p>3.0	5

Si ritiene opportuno controllare periodicamente (ogni sei mesi o in concomitanza di eventi meteorici eccezionali) i fossi disperdenti. Dal punto di vista manutentivo va tagliata periodicamente la vegetazione, in modo da mantenerne l'altezza tra 10 e 20 cm, vanno inoltre rimossi gli eventuali sedimenti e sanati eventuali fenomeni erosivi.

5.2 EMBRICI

Per i tratti di linea ferroviaria per i quali in affiancamento è presente il fosso di guardia, le acque vengono dapprima convogliate nella zona compresa tra il cordolo bituminoso e lo strato di subballast e poi indirizzate, a mezzo di embrici, nel fosso di guardia. La posizione degli scarichi (embrici) da tale canaletta è stata determinata attraverso la lunghezza massima di autosufficienza del manufatto di raccolta. Le elaborazioni sono state condotte con riferimento al metodo della corrivazione (T=100 anni) ed alle condizioni di moto uniforme (Ks=50 m_{1/3}/s).

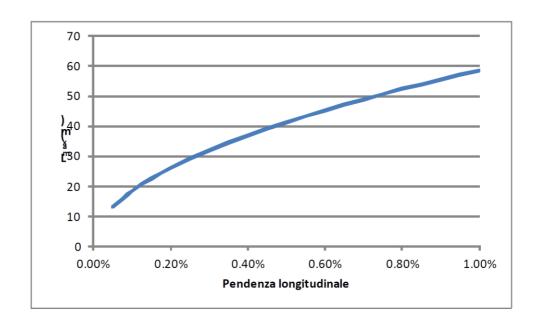
Il calcolo dell'interasse degli embrici riguarda un canale di bordo triangolare con una larghezza b = 1.5 m, avendo previsto una tale ampiezza massima d'impegno della piattaforma ferroviaria, e con un tirante d'acqua dipendente dalla pendenza trasversale i.

Per la determinazione dell'interasse tra gli embrici si, utilizza la formula di Gauckler-Strickler, applicata ad un canale di sezione triangolare:

APPALTATORE	TELES Consorzio Telese Società Consortil	D 1807 144	ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA CANCELLO-BENEVENTO II LOTTO FUNZIONALE FRASSO TELESINO – VITULANO 3° SUBLOTTO SAN LORENZO – VITULANO						
PROGETTAZIO	NE:								
Mandataria:	Mandante:								
SYSTRA S.A.	SWS Engineering S.p.A.	SYSTRA-SOTECNI S.p.A.	PROGETTO	ESECUT	ΓΙVO				
IDRAULICA DI F	PIATTAFORMA		COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO	
Relazione idrau	lica – drenaggio piattaforma fe	erroviaria	IF2R	3.2.E.ZZ	RI	ID.00.0.0.001	В	25 di 36	

$$Q = KA R^{2/3} i^{1/2}$$

con $K = 50 \text{ m}^{1/3} \text{ sec}^{-1}$


Con pendenza trasversale pt pari a 2.5% si ha:

 $A = area bagnata = p_t B^2/2$

 $C = contorno bagnato = B(1+p_t)$

R = raggio idraulico = A/C = B/2 p_t / (1+ p_t)

Nella figura che segue si riporta la lunghezza massima di autosufficienza.

L'interasse degli scarichi è stato comunque assunto pari a 15.0 m.

In caso di tratti con pendenze longitudinali nulle o inferiori allo 0.1% l'interasse degli embrici sarà pari a 5.0 m.

5.3 CUNETTE DI PIATTAFORMA

La verifica idraulica delle cunette rettangolari di piattaforma è stata effettuata in modo similare ai fossi di guardia, considerando per il calcolo a moto uniforme punti di chiusura idraulicamente significativi, sia per la variazione di pendenza longitudinale che per il cambio di tipologia.

APPALTATORE	TELESE S.c.a r.l. Consorzio Telese Società Consortile a Responsabilità Limitata	ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA CANCELLO-BENEVENTO II LOTTO FUNZIONALE FRASSO TELESINO – VITULANO 3° SUBLOTTO SAN LORENZO – VITULANO						
PROGETTAZIOI	NE:							
Mandataria: SYSTRA S.A.	Mandante: SWS Engineering S.p.A. SYSTRA-SOTECNI S.p.A.	PROGETTO ESECUTIVO						
IDRAULICA DI F Relazione idrau	PIATTAFORMA lica – drenaggio piattaforma ferroviaria	COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO IF2R 3.2.E.ZZ RI ID.00.0.0.001 B 26 di 36						

La massima portata afferente è stata calcolata in funzione dello sviluppo e larghezza della semipiattaforma ferroviaria, inserendo inoltre l'altezza della scarpata in scavo.

La tipologia di cunetta di piattaforma adottata è quella di sezione rettangolare in cls di base costante pari a 50 cm ed altezza variabile da 40 a 200 cm con copertura asolata.

5.4 COLLETTORI

Il dimensionamento e la verifica del diametro D dei collettori preposti allo smaltimento delle acque provenienti dalla piattaforma ferroviaria, dovrà essere effettuata con la formula di Gauckler-Strickler con

$$K= 1/n = 75 \text{ m}^{1/3} \text{ s}^{-1} \text{ per le tubazioni in PEAD}$$

K=67 m^{1/3} s⁻ per le tubazioni in cls

ed ipotizzando un riempimento massimo delle tubazioni pari a 0.7 h al fine di garantire un sensibile margine di sicurezza (la portata corrispondente è circa l'80% della portata a tubo pieno).

$$Q = \mathbf{K} \cdot \mathbf{A} \cdot \mathbf{R}^{2/3} \, \mathbf{i}^{1/2} \quad \frac{\mathbf{mc}}{\mathbf{sec}}$$

con:

i = pendenza longitudinale della tubazione

 $A = \pi D^2/4 = Area Bagnata in mq$

 $C = \pi D = Contorno bagnato in m$

R = D/4 = Raggio idraulico in m

Per permettere l'ispezionabilità dei collettori si è posto pari a circa 25 metri l'interasse massimo dei pozzetti.

PROGETTAZIONE:

Mandataria:

Mandante:

SYSTRA S.A. SWS Engineering S.p.A.

SYSTRA-SOTECNI S.p.A.

IDRAULICA DI PIATTAFORMA Relazione idraulica – drenaggio piattaforma ferroviaria ITINERARIO NAPOLI – BARI

RADDOPPIO TRATTA CANCELLO-BENEVENTO II LOTTO FUNZIONALE FRASSO TELESINO – VITULANO

3° SUBLOTTO SAN LORENZO – VITULANO

PROGETTO ESECUTIVO

COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO IF2R

ID.00.0.0.001 В 27 di 36 3.2.E.ZZ RI

6 **VERIFICHE FOSSI RIVESTITI**

				Superfici	confluenti				Superfi	ci tratto			Volumi p	oiccoli invasi	i specifici
Progressiva iniziale	Progressiva finale	POSIZIONE	Vol. INVASO PROPRIO CONFLUENTE	Sup FERROVIA	Sup STRADA	Superficie ESTERNA	Sup FERROVIA	Superficie STRADA	Superficie ESTERNA	Sup FERROVIA - TOTALE	Superficie STRADA - TOTALE	Superficie ESTERNA - TOTALE	Vol.specifico piccoli invasi FERROVIA	Vol.specifico piccoli invasi STRADA	Vol.specifico piccoli invasi ESTERNO
			m³	ha	ha	ha	ha	ha	ha	ha	ha	ha	m³/ha	m³/ha	m³/ha
38726	39096	sx	0	0	0	0	0.23495	0	0.25	0.23495	0	0.25	50	30	50
39660	39096	sx	0	0	0	0	0.35814	0	0.92	0.35814	0	0.92	50	30	50
38930	38726	dx	0	0	0	0	0.12954	0	0.204	0.12954	0	0.204	50	30	50
39560	39672	sx	0	0	0	0	0.07112	0	0.82	0.07112	0	0.82	50	30	50
39865	39672	sx	0	0	0	0	0.122555	0	0.25	0.122555	0	0.25	50	30	50
39672	40066	sx	0	0	0	0	0.25019	0	0.3152	0.25019	0	0.3152	50	30	50
40066	40247	sx	0	0	0	0	0.114935	0	0.181	0.114935	0	0.181	50	30	50
40247	40419	sx	0	0	0	0	0.10922	0	0.172	0.10922	0	0.172	50	30	50
40635	40419	sx	0	0	0	0	0.13716	0	2.97	0.13716	0	2.97	50	30	50
42220	42530	dx	0	0	0	0	0.19685	0	3.15	0.19685	0	3.15	50	30	50
42220	42530	sx	0	0	0	0	0.19685	0	0.38	0.19685	0	0.38	50	30	50
42550	42700	sx-dx	0	0	0	0	0.3937	0	4.03	0.3937	0	4.03	50	30	50
42950	43150	sx-dx	0	0	0	0	0.195	0	0.47	0.195	0	0.47	50	30	50
45900	46250	sx	0	0	0	0	0.3055	0	1.2	0.3055	0	1.2	50	30	50
46383	46260	SX	0	0	0	0	0.07995	0	0.4	0.07995	0	0.4	50	30	50

TELESE S.c.a r.l.

Consorzio Telese Società Consortile a Responsabilità Limitata

PROGETTAZIONE:

Mandataria:

Mandante:

SYSTRA S.A. SWS Engineering S.p.A. SYSTRA-SOTECNI S.p.A.

IDRAULICA DI PIATTAFORMA

Relazione idraulica – drenaggio piattaforma ferroviaria

ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA CANCELLO-BENEVENTO II LOTTO FUNZIONALE FRASSO TELESINO – VITULANO 3° SUBLOTTO SAN LORENZO – VITULANO

PROGETTO ESECUTIVO

COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO IF2R 3.2.E.ZZ RI ID.00.0.0.001 B 28 di 36

					Ele	menti del tr	atto				Calcolo della portata				
Progressiva iniziale	Progressiva finale	POSIZIONE	Superficie TOTALE	Volumi piccoli invasi TOTALE	Lunghezza	Pendenza	Volume proprio d'invaso	Volume totale d'invaso	Invaso specifico w		a	n	U	Portata Pluviale	
			ha	m³	m	m/m	m³	m³	m³/m²		m/h ⁿ		lt/s/ha	m³/s	
38726	39096	sx	0.48495	24.2475	370	0.001	42.783144	67.030644	0.0138222	0.7968966	0.0498	0.49	126.36816	0.0612822	
39660	39096	sx	1.27814	63.907	564	0.01	66.45902	130.36602	0.0101997	0.7560408	0.0498	0.49	155.72886	0.1990433	
38930	38726	dx	0.33354	16.677	204	0.001	20.526736	37.203736	0.0111542	0.7776758	0.0498	0.49	150.29257	0.0501286	
39560	39672	sx	0.89112	44.556	112	0.001	11.26958	55.82558	0.0062647	0.7159619	0.0498	0.49	231.43138	0.2062331	
39865	39672	sx	0.372555	18.62775	193	0.001	19.419902	38.047652	0.0102126	0.7657916	0.0498	0.49	159.64415	0.0594762	
39672	40066	sx	0.56539	28.2695	394	0.001	50.04313	78.31263	0.0138511	0.7885017	0.0498	0.49	123.39769	0.0697678	
40066	40247	sx	0.295935	14.79675	181	0.001	22.989357	37.786107	0.0127684	0.7776758	0.0498	0.49	130.57033	0.0386403	
40247	40419	sx	0.28122	14.061	172	0.001	21.84624	35.90724	0.0127684	0.7776758	0.0498	0.49	130.57033	0.036719	
40635	40419	sx	3.10716	155.358	216	0.015	52.287627	207.64563	0.0066828	0.7088286	0.0498	0.49	212.00197	0.658724	
42220	42530	dx	3.34685	167.3425	310	0.001	163.17331	330.51581	0.0098754	0.7117633	0.0498	0.49	142.39104	0.4765614	
42220	42530	sx	0.57685	28.8425	310	0.001	42.003647	70.846147	0.0122816	0.76825	0.0498	0.49	132.61963	0.0765016	
42550	42700	sx-dx	4.4237	221.185	150	0.025	44.454854	265.63985	0.0060049	0.7177996	0.0498	0.49	243.12762	1.0755237	
42950	43150	sx-dx	0.665	33.25	200	0.04	12.365983	45.615983	0.0068595	0.7586466	0.0498	0.49	236.99627	0.1576025	
45900	46250	SX	1.5055	75.275	350	0.001	96.355493	171.63049	0.0114002	0.7405845	0.0498	0.49	132.97239	0.2001899	
46383	46260	sx	0.47995	23.9975	123	0.001	17.698387	41.695887	0.0086875	0.733316	0.0498	0.49	172.92314	0.0829945	

TELESE S.c.a r.l.

Consorzio Telese Società Consortile a Responsabilità Limitata

PROGETTAZIONE:

Mandataria:

Mandante:

SYSTRA S.A. SWS Engineering S.p.A. SYSTRA-SOTECNI S.p.A.

IDRAULICA DI PIATTAFORMA

Relazione idraulica – drenaggio piattaforma ferroviaria

ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA CANCELLO-BENEVENTO II LOTTO FUNZIONALE FRASSO TELESINO – VITULANO 3° SUBLOTTO SAN LORENZO – VITULANO

PROGETTO ESECUTIVO

COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO IF2R 3.2.E.ZZ RI ID.00.0.0.001 B 29 di 36

					Caratterist	iche idriche		
Progressiva iniziale	Progressiva finale	POSIZIONE	Tipo CANALETTA / COLLETTORE	DIMENSIONE FOSSO (m)	SCABREZZA	Velocità	Tirante idrico	Percentuale di riempimento
						m/s	m	%
38726	39096	sx	F 50x50	0.5	70	0.530117	0.1720546	34%
39660	39096	sx	F 50x50	0.5	70	1.6892249	0.1746589	35%
38930	38726	dx	F 50x50	0.5	70	0.5007342	0.1538827	31%
39560	39672	sx	F 50x50	0.5	70	0.5007342	0.1538827	31%
39865	39672	sx	F 50x50	0.5	70	0.5007342	0.1538827	31%
39672	40066	sx	F 50x50	0.5	70	0.5504803	0.1853309	37%
40066	40247	sx	F 50x50	0.5	70	0.5504803	0.1853309	37%
40247	40419	sx	F 50x50	0.5	70	0.5504803	0.1853309	37%
40635	40419	sx	F 50x50	0.5	70	2.720992	0.3018807	60%
42220	42530	dx	F 80x80	0.8	70	0.9054933	0.4284718	54%
42220	42530	sx	F 50x50	0.5	70	0.5647495	0.194967	39%
42550	42700	sx-dx	F 80x80	0.8	70	3.6276968	0.2755484	34%
42950	43150	sx-dx	F 50x50	0.5	70	2.5611345	0.1026045	21%
45900	46250	sx	F 60x60	0.6	70	0.7275696	0.3044017	51%
46383	46260	sx	F 50x50	0.5	70	0.5782001	0.2043009	41%

Consorzio Telese Società Consortile a Responsabilità Limitata

PROGETTAZIONE:

IDRAULICA DI PIATTAFORMA

Mandataria:

Mandante:

SYSTRA S.A. SWS Engineering S.p.A.

Relazione idraulica – drenaggio piattaforma ferroviaria

SYSTRA-SOTECNI S.p.A.

COMMESSA LOTTO

IF2R

3.2.E.ZZ

ITINERARIO NAPOLI – BARI

PROGETTO ESECUTIVO

CODIFICA RI

RADDOPPIO TRATTA CANCELLO-BENEVENTO

3° SUBLOTTO SAN LORENZO – VITULANO

II LOTTO FUNZIONALE FRASSO TELESINO – VITULANO

DOCUMENTO ID.00.0.0.001

REV. В

FOGLIO 30 di 36

7 **VERIFICHE FOSSI DISPERDENTI**

Progressiva iniziale	Progressiva finale	POSIZIONE	(base x altezza) ELEMENTO	base fosso	altezza fosso	BASE CASSONETTO	ALTEZZA CASSONETTO	LUNGHEZZA	AERA PAVIMENTATA	AERA SCARPATE
			m				m	m	\mathbf{m}^2	m ²
38925	40935	dx	1.0 x 1.0	1	1	1	1	2010	26130	76870
40710	40960	sx	1.0 x 0.5	1	0.5	1	1	250	1625	10800
41220	41405	SX	1.0 x 0.5	1	0.5	1	1	185	3917.5	3800
41220	41385	dx	1.0 x 1.0	1	1	1	1	165	3787.5	7000
45875	46383	dx	1.0 x 0.5	1	0.5	1	1	508	3302	5080
								ш		

Progressiva iniziale	Progressiva finale	POSIZIONE	AERA RIDOTTA DI MONTE	AERA RIDOTTA TOTALE	ь	1	VOLUME DA INVASARE	VASATO VOLUME	Portata ingresso	Portata infiltrata
			\mathbf{m}^2	\mathbf{m}^2	mc/s/m		m³	\mathbf{m}^3	m³/s	m³/s
38925	40935	dx	0	77326	0.0003	0.76	1715.8	3195.9	1.231	0.603
40710	40960	sx	0	9022.5	0.0003	0.67	188.3	218.1	0.153	0.075
41220	41405	sx	0	6185.75	0.0003	0.58	120.0	161.4	0.113	0.056
41220	41385	dx	0	8308.75	0.0003	1.29	238.8	262.4	0.101	0.050
45875	46383	dx	0	6527.8	0.0003	0.09	50.5	443.2	0.311	0.152

PROGETTAZIONE:

Mandataria: Mandante:

SYSTRA S.A. SWS Engineering S.p.A. SYSTRA-SOTECNI S.p.A.

IDRAULICA DI PIATTAFORMA

Relazione idraulica – drenaggio piattaforma ferroviaria

ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA CANCELLO-BENEVENTO II LOTTO FUNZIONALE FRASSO TELESINO – VITULANO 3° SUBLOTTO SAN LORENZO – VITULANO

PROGETTO ESECUTIVO

CODIFICA COMMESSA LOTTO DOCUMENTO REV. FOGLIO 31 di 36

ID.00.0.0.001 В IF2R 3.2.E.ZZ RI

VERIFICHE CANALETTE RETTANGOLARI 8

				Superfici confluenti				Superfi	ci tratto		Volumi piccoli invas		i specifici			
58666 38633 5.8	Progressiva iniziale	Progressiva finale	POSIZIONE	Vol. INVASO PROPRIO CONFLUENTE	Sup FERROVIA	Sup STRADA	Superficie ESTERNA	Sup FERROVIA	Superficie STRADA	Superficie ESTERNA	Sup FERROWA - TOTALE	Superficie STRADA - TOTALE	Superficie ESTERNA - TOTALE	Vol.specifico piccoli invasi FERROVIA	Vol.specifico piccoli invasi STRADA	Vol.specifico piccoli invasi ESTERNO
39800 38838 xx				m³	ha	ha	ha	ha	ha	ha	ha	ha	ha	m³/ha	m³/ha	m³/ha
39155 38860 ax	39565	38833	sx	0	0	0	0	0.55115	0	0.365	0.55115	0	0.365	50	30	50
39600 39000 8x	39600	38838	sx	0	0	0	0	0.577575	0	0.3825	0.577575	0	0.3825	50	30	50
39865 39750 dx	39155	38890	sx	0	0	0	0	0.200075	0	0.1325	0	0	0.1325	50	30	50
39833 39866 dx	39600	39090	sx	0	0	0	0	0.388825	0	0.2575	0	0	0.2575	50	30	50
39833 40068	39865	39750	dx	0	0	0	0	0.0906	0	0	0.0906	0	0	50	30	50
40066 40250 dx 0 0 0 0.1359 0 0.1359 0 0 50 30 50 40250 40419 dx 0 0 0 0.132125 0 0 50 30 50 39865 39845 sx 0 0 0 0.01511 0 0 0.05285 0 0 50 30 50 39833 39865 sx 0 0 0 0 0.05285 0 0 0.05285 0 0 0.05285 0 0 50 30 50 39933 40066 sx 0 0 0 0 0.05815 0 0 50 30 50 40250 4x0550 sx 0 0 0 0.079275 0 0 50 30 50 490250 4x050 dx 0 0 0 0.079275 0	39933	39865	dx	0	0	0	0	0.05285	0	0	0.05285	0	0	50	30	50
A0250	39933	40066	dx	0	0	0	0	0.09815	0	0	0.09815	0	0	50	30	50
39865 39845 S.X	40066	40250	dx	0	0	0	0	0.1359	0	0	0.1359	0	0	50	30	50
39933 39865 sx 0 0 0 0.05285 0 0 0.50 30 50 39933 40066 sx 0 0 0 0.09815 0 0 0.50 30 50 40066 40250 sx 0 0 0 0.1359 0 0 0.550 30 50 40250 40350 sx 0 0 0 0.079275 0 0 0.079275 0 0 0.07575 50 30 50 39865 39750 dx 0 0 0 0 0.0575 50 30 50 39933 39865 dx 0 0 0 0 0 0.0575 50 30 50 40066 dx 0 0 0 0 0 0.0655 0.09815 0 0.0955 50 30 50 40250 dx 0	40250	40419	dx	0	0	0	0	0.132125	0	0	0.132125	0	0	50	30	50
39933 40066 sx 0 0 0 0 0 0.09815 0 0 0.09815 0 0 0 50 30 50 40066 40250 sx 0 0 0 0 0 0.079275 0 0 0 0.1359 0 0 0 50 30 30 50 3	39865	39845	sx	0	0	0	0	0.0151	0	0	0.0151	0	0	50	30	50
40066 40250 sx 0 0 0 0.1359 0 0 0.1359 0 0 50 30 50 40250 40350 sx 0 0 0 0 0.079275 0 0 0.0575 50 30 50 39865 39750 dx 0 0 0 0 0 0.0575 50 30 50 39933 39865 dx 0 0 0 0 0 0.05285 0 0.035 50 30 50 39933 40066 dx 0 0 0 0 0 0.0655 50 30 50 40066 40250 dx 0 0 0 0 0 0.099 0.1359 0 0.09 50 30 50 40250 dx 0 0 0 0 0 0.099 0.132125 0 0.0875	39933	39865	sx	0	0	0	0	0.05285	0	0	0.05285	0	0	50	30	50
40250 40350 sx 0 0 0 0.079275 0 0 0.079275 0 0 50 30 50 39865 39750 dx 0 0 0 0 0 0.0575 50 30 50 39933 39865 dx 0 0 0 0 0 0.05285 0 0.035 50 30 50 39933 40066 dx 0 0 0 0 0 0.0665 50 30 50 40066 40250 dx 0 0 0 0 0 0.09815 0 0.0875 50 30 50 40250 dx 0 0 0 0 0 0.09875 0.1359 0 0.09875 50 30 50 40250 40419 dx 0 0 0 0 0.0075 0.132125 0 0.0875 50 <td>39933</td> <td>40066</td> <td>sx</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>0.09815</td> <td>0</td> <td>0</td> <td>0.09815</td> <td>0</td> <td>0</td> <td>50</td> <td>30</td> <td>50</td>	39933	40066	sx	0	0	0	0	0.09815	0	0	0.09815	0	0	50	30	50
38865 39750 dx 0 0 0 0 0 0.0675 0.086825 0 0.0575 50 30 50 39933 39865 dx 0 0 0 0 0 0.035 0.05285 0 0.035 50 30 50 39933 40066 dx 0 0 0 0 0 0 0.065 0.09815 0 0.065 50 30 50 40066 40250 dx 0 0 0 0 0 0.099 0.1359 0 0.09 50 30 50 40250 40419 dx 0 0 0 0 0 0.0875 50 30 50 39865 38845 sx 0 0 0 0 0.011 0.0151 0 0.01 50 30 50 39933 39865 sx 0 0 0	40066	40250	sx	0	0	0	0	0.1359	0	0	0.1359	0	0	50	30	50
39933 39865 dx 0 0 0 0 0 0 0 0 0.035 0.05285 0 0.035 50 30 50 30 50 40066 dx 0 0 0 0 0 0 0 0 0 0.065 0.09815 0 0.0665 50 30 50 30 50 40066 40250 dx 0 0 0 0 0 0 0 0 0 0 0.0875 0.1359 0 0.09 50 30 50 30 50 30 40250 40419 dx 0 0 0 0 0 0 0 0 0 0 0.0875 0.132125 0 0.0875 50 30 50 30 50 30 50 30 39865 39845 sx 0 0 0 0 0 0 0 0 0 0 0 0.011 0.0161 0 0.01 50 30 50 30 50 30 39833 39865 sx 0 0 0 0 0 0 0 0 0 0 0 0.035 0.05285 0 0.035 50 30 50 30 50 30 30 30 50 30 30 30 30 30 30 30 30 30 30 30 30 30	40250	40350	sx	0	0	0	0	0.079275	0	0	0.079275	0	0	50	30	50
39933	39865	39750	dx	0	0	0	0	0	0	0.0575	0.086825	0	0.0575	50	30	50
40066 40250 dx 0 0 0 0 0 0.09 0.09 50 30 50 40250 40419 dx 0 0 0 0 0 0.0875 0.132125 0 0.0875 50 30 50 39865 39845 sx 0 0 0 0 0 0.011 0.0151 0 0.01 50 30 50 39933 39865 sx 0 0 0 0 0 0.035 0.05285 0 0.035 50 30 50 39933 40666 sx 0 0 0 0 0 0.05285 0 0.035 50 30 50 40066 sx 0 0 0 0 0 0.09815 0 0.095 50 30 50 40250 sx 0 0 0 0 0.099 0.1359	39933	39865	dx	0	0	0	0	0	0	0.035	0.05285	0	0.035	50	30	50
40250 40419 dx 0 0 0 0 0 0.0875 0.132125 0 0.0875 50 30 50 39865 39845 sx 0 0 0 0 0 0.01 0.0151 0 0.01 50 30 50 39933 39865 sx 0 0 0 0 0 0.035 0.05285 0 0.035 50 30 50 39933 40066 sx 0 0 0 0 0 0.065 0.09815 0 0.065 50 30 50 40066 40250 sx 0 0 0 0 0 0.099 0.1359 0 0.099 50 30 50 41250 40350 sx 0 0 0 0 0 0.0525 0.079275 0 0.0525 50 30 50 413430 41545	39933	40066	dx	0	0	0	0	0	0	0.065	0.09815	0	0.065	50	30	50
39865 39845 sx 0 0 0 0 0.01 0.0151 0 0.01 50 30 50 39933 39865 sx 0 0 0 0 0 0.035 0.05285 0 0.035 50 30 50 39933 40066 sx 0 0 0 0 0 0.065 0.09815 0 0.065 50 30 50 40066 40250 sx 0 0 0 0 0 0.099 0.1359 0 0.09 50 30 50 40250 40350 sx 0 0 0 0 0 0.09275 0 0.0625 50 30 50 41430 41545 sx 0 0 0 0 0.0922 0 0 0.092 50 30 50 41375 41567 dx 0 0 0	40066	40250	dx	0	0	0	0	0	0	0.09	0.1359	0	0.09	50	30	50
39933 39865 sx 0 0 0 0 0 0.035 0.05285 0 0.035 50 30 50 39933 40066 sx 0 0 0 0 0 0.065 0.09815 0 0.065 50 30 50 40066 40250 sx 0 0 0 0 0 0.099 0.099 50 30 50 40250 40350 sx 0 0 0 0 0 0.092 0 0.0525 50 30 50 41430 41545 sx 0 0 0 0 0.092 0 0.092 50 30 50 41375 41567 dx 0 0 0 0 0 0.16 0 0 0.16 50 30 50 41767 41769 dx 0 0 0 0 0.024 <t< td=""><td>40250</td><td>40419</td><td>dx</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0.0875</td><td>0.132125</td><td>0</td><td>0.0875</td><td>50</td><td>30</td><td>50</td></t<>	40250	40419	dx	0	0	0	0	0	0	0.0875	0.132125	0	0.0875	50	30	50
39933 40066 sx 0 0 0 0 0 0.065 0.09815 0 0.065 50 30 50 40066 40250 sx 0 0 0 0 0 0.099 0.1359 0 0.09 50 30 50 40250 40350 sx 0 0 0 0 0 0.09275 0 0.0525 50 30 50 41430 41545 sx 0 0 0 0 0.092 0 0 0.092 50 30 50 41375 41567 dx 0 0 0 0 0 0.16 0 0 0.16 50 30 50 41767 41562 dx 0 0 0 0 0 0.172 0 0 0.024 50 30 50 41767 41739 sx 0 0 0<	39865	39845	sx	0	0	0	0	0	0	0.01	0.0151	0	0.01	50	30	50
40066 40250 sx 0 0 0 0 0.09 0.1359 0 0.09 50 30 50 40250 40350 sx 0 0 0 0 0 0.0525 0.079275 0 0.0525 50 30 50 41430 41545 sx 0 0 0 0 0 0.092 0 0 0.092 50 30 50 41375 41567 dx 0 0 0 0 0 0.16 0 0.16 50 30 50 41767 41562 dx 0 0 0 0 0 0.172 0 0 0.172 50 30 50 41767 41739 sx 0 0 0 0.302 0 0.024 0 0 0.024 50 30 50 43150 43090 dx 0 0 <td< td=""><td>39933</td><td>39865</td><td>sx</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0.035</td><td>0.05285</td><td>0</td><td>0.035</td><td>50</td><td>30</td><td>50</td></td<>	39933	39865	sx	0	0	0	0	0	0	0.035	0.05285	0	0.035	50	30	50
40250 40350 sx 0 0 0 0 0 0.0525 0.079275 0 0.0525 50 30 50 41430 41545 sx 0 0 0 0 0 0.092 0 0 0.092 50 30 50 41375 41567 dx 0 0 0 0 0 0.16 0 0 0.16 50 30 50 41767 41562 dx 0 0 0 0 0 0.172 0 0 0.172 50 30 50 41767 41739 sx 0 0 0 0.302 0 0.024 0 0 0.024 50 30 50 43150 43090 dx 0 0 0 0.302 0 0.044 0 0 0.044 50 30 50 45736 45770 dx <t< td=""><td>39933</td><td>40066</td><td>sx</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0.065</td><td>0.09815</td><td>0</td><td>0.065</td><td>50</td><td>30</td><td>50</td></t<>	39933	40066	sx	0	0	0	0	0	0	0.065	0.09815	0	0.065	50	30	50
41430 41545 sx 0 0 0 0 0 0.092 0 0.092 50 30 50 41375 41567 dx 0 0 0 0 0 0.16 0 0.16 50 30 50 41767 41562 dx 0 0 0 0 0 0.172 0 0 0.172 50 30 50 41767 41739 sx 0 0 0 0 0.024 0 0 0.024 50 30 50 43150 43090 dx 0 0 0 0.302 0 0.044 0 0 0.044 50 30 50 45736 45770 dx 0 0 0 0 0.028 0 0 0.028 50 30 50 45800 45952 dx 0 0 0 0 0 0.075 0.11325 0 0.075 50 30 50	40066	40250	sx	0	0	0	0	0	0	0.09	0.1359	0	0.09	50	30	50
41375 41567 dx 0 0 0 0 0 0.16 0 0.16 50 30 50 41767 41562 dx 0 0 0 0 0 0.172 0 0 0.172 50 30 50 41767 41739 sx 0 0 0 0 0.302 0 0.024 0 0 0.024 50 30 50 43150 43090 dx 0 0 0 0 0.302 0 0.044 0 0 0.044 50 30 50 45736 45770 dx 0 0 0 0 0.302 0 0.028 0 0 0.028 50 30 50 45800 45952 dx 0 0 0 0 0 0.075 0.11325 0 0.075 50 30 50	40250	40350	sx	0	0	0	0	0	0	0.0525	0.079275	0	0.0525	50	30	50
41767 41562 dx 0 0 0 0 0 0.172 0 0 0.172 50 30 50 41767 41739 sx 0 0 0 0 0.302 0 0.024 0 0 0.024 50 30 50 43150 43090 dx 0 0 0 0 0.302 0 0.044 0 0 0.044 50 30 50 45736 45770 dx 0 0 0 0 0.028 0 0 0.028 50 30 50 45800 45952 dx 0 0 0 0 0 0.075 0.11325 0 0.075 50 30 50	41430	41545	sx	0	0	0	0	0	0	0.092	0	0	0.092	50	30	50
41767 41739 sx 0 0 0 0.302 0 0.024 0 0.024 50 30 50 43150 43090 dx 0 0 0 0.302 0 0.044 0 0 0.044 50 30 50 45736 45770 dx 0 0 0 0.302 0 0.028 0 0 0.028 50 30 50 45800 45952 dx 0 0 0 0 0 0.075 0.11325 0 0.075 50 30 50	41375	41567	dx	0	0	0	0	0	0	0.16	0	0	0.16	50	30	50
43150 43090 dx 0 0 0 0 0.302 0 0.044 0 0 0.044 50 30 50 45736 45770 dx 0 0 0 0 0.302 0 0.028 0 0 0.028 50 30 50 45800 45952 dx 0 0 0 0 0 0.075 0.11325 0 0.075 50 30 50	41767	41562	dx	0	0	0	0	0	0	0.172	0	0	0.172	50	30	50
45736 45770 dx 0 0 0 0 0.302 0 0.028 0 0 0.028 50 30 50 45800 45952 dx 0 0 0 0 0 0 0.075 0.11325 0 0.075 50 30 50	41767	41739	sx	0	0	0	0	0.302	0	0.024	0	0	0.024	50	30	50
45800 45952 dx 0 0 0 0 0 0 0 0.075 0.11325 0 0.075 50 30 50	43150	43090	dx	0	0	0	0	0.302	0	0.044	0	0	0.044	50	30	50
	45736	45770	dx	0	0	0	0	0.302	0	0.028	0	0	0.028	50	30	50
45736 46000 sx 0 0 0 0 0 0 0.1375 0.207625 0 0.1375 50 30 50	45800	45952	dx	0	0	0	0	0	0	0.075	0.11325	0	0.075	50	30	50
	45736	46000	sx	0	0	0	0	0	0	0.1375	0.207625	0	0.1375	50	30	50

TELESE S.c.a r.l.

Consorzio Telese Società Consortile a Responsabilità Limitata

PROGETTAZIONE:

Mandataria: Mandante:

SYSTRA S.A. SWS Engineering S.p.A. SYSTRA-SOTECNI S.p.A.

IDRAULICA DI PIATTAFORMA

Relazione idraulica – drenaggio piattaforma ferroviaria

ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA CANCELLO-BENEVENTO II LOTTO FUNZIONALE FRASSO TELESINO – VITULANO 3° SUBLOTTO SAN LORENZO – VITULANO

PROGETTO ESECUTIVO

COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO IF2R 3.2.E.ZZ ID.00.0.0.001 В 32 di 36 RI

					Ele	menti del tr	atto				Calcolo della portata				
Progressiva iniziale	Progressiva finale	POSIZIONE	Superficie TOTALE	Volumi piccoli invasi TOTALE	Lunghezza	Pendenza	Volume proprio d'invaso	Volume totale d'invaso	Invaso specífico w		a	n	U	Portata Pluviale	
			ha	m³	m	m/m	m³	m³	m³/m²		m/h ⁿ		lt/s/ha	m³/s	
39565	38833	sx	0.91615	45.8075	730	0.0069	72.25	118.05324	0.0128858	0.8203187	0.0498	0.49	144.21853	0.1321258	
39600	38838	sx	0.960075	48.00375	765	0.0069	77.24	125.24157	0.013045	0.8203187	0.0498	0.49	142.38735	0.1367025	
39155	38890	sx	0.1325	16.62875	265	0.0069	4.89	21.522571	0.0162434	0.7	0.0498	0.49	81.991447	0.0108639	
39600	39090	sx	0.2575	32.31625	515	0.0069	13.58	45.897297	0.0178242	0.7	0.0498	0.49	74.437324	0.0191676	
39865	39750	dx	0.0906	4.53	120	0.005	3.81	8.3365934	0.0092015	0.9	0.0498	0.49	247.40269	0.0224147	
39933	39865	dx	0.05285	2.6425	70	0.005	1.70	4.3469866	0.0082251	0.9	0.0498	0.49	278.04173	0.0146945	
39933	40066	dx	0.09815	4.9075	130	0.0044	4.58	9.4828326	0.0096616	0.9	0.0498	0.49	235.15394	0.0230804	
40066	40250	dx	0.1359	6.795	180	0.0044	7.43	14.226312	0.0104682	0.9	0.0498	0.49	216.32452	0.0293985	
40250	40419	dx	0.132125	6.60625	175	0.001	9.93	16.531736	0.0125122	0.9	0.0498	0.49	179.67328	0.0237393	
39865	39845	sx	0.0151	0.755	20	0.005	0.26	1.0121731	0.0067031	0.9	0.0498	0.49	344.03499	0.0051949	
39933	39865	sx	0.05285	2.6425	70	0.005	1.70	4.3469866	0.0082251	0.9	0.0498	0.49	278.04173	0.0146945	
39933	40066	sx	0.09815	4.9075	130	0.0044	4.58	9.4828326	0.0096616	0.9	0.0498	0.49	235.15394	0.0230804	
40066	40250	sx	0.1359	6.795	180	0.0044	7.43	14.226312	0.0104682	0.9	0.0498	0.49	216.32452	0.0293985	
40250	40350	sx	0.079275	3.96375	105	0.001	4.62	8.5849488	0.0108293	0.9	0.0498	0.49	208.82187	0.0165544	
39865	39750	dx	0.144325	2.875	115	0.005	5.98	8.850024	0.006132	0.8203187	0.0498	0.49	312.38711	0.0450853	
39933	39865	dx	0.08785	1.75	70	0.005	2.85	4.6020914	0.0052386	0.8203187	0.0498	0.49	368.02212	0.0323307	
39933	40066	dx	0.16315	3.25	130	0.0044	7.44	10.685864	0.0065497	0.8203187	0.0498	0.49	291.67907	0.0475874	
40066	40250	dx	0.2259	4.5	180	0.0044	11.94	16.443249	0.007279	0.8203187	0.0498	0.49	261.32747	0.0590339	
40250	40419	dx	0.219625	4.375	175	0.001	15.65	20.023474	0.0091171	0.8203187	0.0498	0.49	206.73192	0.0454035	
39865	39845	sx	0.0251	0.5	20	0.005	0.46	0.9558177	0.003808	0.8203187	0.0498	0.49	512.90814	0.012874	
39933	39865	sx	0.08785	1.75	70	0.005	2.85	4.6020914	0.0052386	0.8203187	0.0498	0.49	368.02212	0.0323307	
39933	40066	sx	0.16315	3.25	130	0.0044	7.44	10.685864	0.0065497	0.8203187	0.0498	0.49	291.67907	0.0475874	
40066	40250	sx	0.2259	4.5	180	0.0044	11.94	11.94	0.005287	0.8203187	0.0498	0.49	364.51732	0.0823445	
40250	40350	sx	0.131775	2.625	105	0.001	7.40	10.020859	0.0076045	0.8203187	0.0498	0.49	249.69452	0.0329035	
41430	41545	sx	0.092	4.6	115	0.001	4.40	9.0018768	0.0097846	0.7	0.0498	0.49	138.95898	0.0127842	
41375	41567	dx	0.16	8	200	0.001	9.28	17.278775	0.0107992	0.7	0.0498	0.49	125.39782	0.0200637	
41767	41562	dx	0.172	8.6	215	0.001	11.36	19.959273	0.0116042	0.7	0.0498	0.49	116.35694	0.0200134	
41767	41739	sx	0.024	16.3	30	0.001	0.13	16.427798	0.0684492	0.7	0.0498	0.49	18.347681	0.0004403	
43150	43090	dx	0.044	17.3	55	0.006	0.23	17.534296	0.0398507	0.7	0.0498	0.49	32.218306	0.0014176	
45736	45770	dx	0.028	16.5	35	0.009	0.10	16.596579	0.0592735	0.7	0.0498	0.49	21.312779	0.0005968	
45800	45952	dx	0.18825	3.75	150	0.009	7.74	11.490101	0.0061036	0.8203187	0.0498	0.49	313.89858	0.0590914	
45736	46000	sx	0.345125	6.875	275	0.009	29.99	36.863721	0.0106813	0.8203187	0.0498	0.49	175.32171	0.0605079	
I	<u> </u>	<u> </u>									•				

TELESE S.c.a r.l.

Consorzio Telese Società Consortile a Responsabilità Limitata

PROGETTAZIONE:

Mandataria:

Mandante:

SYSTRA S.A. SWS Engineering S.p.A. SYSTRA-SOTECNI S.p.A.

IDRAULICA DI PIATTAFORMA

Relazione idraulica – drenaggio piattaforma ferroviaria

ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA CANCELLO-BENEVENTO II LOTTO FUNZIONALE FRASSO TELESINO – VITULANO 3° SUBLOTTO SAN LORENZO – VITULANO

PROGETTO ESECUTIVO

COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO

IF2R 3.2.E.ZZ RI ID.00.0.0001 B 33 di 36

			Caratteristiche idriche								
Progressiva iniziale	Progressiva finale	POSIZIONE	Tipo CANALETTA	ALTEZZA CANALETTA (m)	SCABREZZA	Velocità	Tirante idrico	Percentuale di riempimento			
						m/s	m	%			
39565	38833	sx	CAN50x80	0.8	70	1.3387099	0.1979335	25%			
39600	38838	sx	CAN50x80	0.8	70	1.3486571	0.2019289	25%			
39155	38890	sx	CAN50x50	0.5	70	0.5882775	0.0369345	7%			
39600	39090	sx	CAN50x50	0.5	70	0.7197885	0.0527419	11%			
39865	39750	dx	CAN50x80	0.8	70	0.6771641	0.0634432	8%			
39933	39865	dx	CAN50x80	0.8	70	0.5862331	0.0486996	6%			
39933	40066	dx	CAN50x80	0.8	70	0.6709212	0.0703897	9%			
40066	40250	dx	CAN50x80	0.8	70	0.7279098	0.0825701	10%			
40250	40419	dx	CAN50x80	0.8	70	0.4042066	0.1134341	14%			
39865	39845	sx	CAN50x80	0.8	70	0.4040025	0.0257173	3%			
39933	39865	sx	CAN50x80	0.8	70	0.5862331	0.0486996	6%			
39933	40066	sx	CAN50x80	0.8	70	0.6709212	0.0703897	9%			
40066	40250	sx	CAN50x80	0.8	70	0.7279098	0.0825701	10%			
40250	40350	sx	CAN50x80	0.8	70	0.3582264	0.0880228	11%			
39865	39750	dx	CAN50x50	0.5	70	0.8677465	0.1039135	21%			
39933	39865	dx	CAN50x50	0.5	70	0.7708345	0.0814883	16%			
39933	40066	dx	CAN50x50	0.5	70	0.8511626	0.1143979	23%			
40066	40250	dx	CAN50x50	0.5	70	0.9094873	0.1327028	27%			
40250	40419	dx	CAN50x50	0.5	70	0.4903476	0.1788397	36%			
39865	39845	sx	CAN50x50	0.5	70	0.5648747	0.0455818	9%			
39933	39865	sx	CAN50x50	0.5	70	0.7708345	0.0814883	16%			
39933	40066	sx	CAN50x50	0.5	70	0.8511626	0.1143979	23%			
40066	40250	sx	CAN50x50	0.5	70	0.9094873	0.1327028	27%			
40250	40350	sx	CAN50x50	0.5	70	0.4448908	0.1408735	28%			
41430	41545	sx	CAN50x80	0.8	70	0.3339907	0.0765544	10%			
41375	41567	dx	CAN50x80	0.8	70	0.3675939	0.0927877	12%			
41767	41562	dx	CAN50x80	0.8	70	0.3911318	0.1056677	13%			
41767	41739	sx	CAN50x80	0.8	70	0.0902991	0.0085198	1%			
43150	43090	dx	CAN50x200		70	0.2211867	0.0085198	3%			
45736	45770	dx	CAN50x200		70	0.2043898	0.0055188	2%			
45800	45952	dx	CAN50x200	0.25	70	1.1604363	0.1032013	41%			
45736	46000	sx	CAN50x200	0.23	70	1.5838857	0.2180998	44%			

TELESE S.c.a r.l.

Consorzio Telese Società Consortile a Responsabilità Limitata

PROGETTAZIONE:

Mandataria:

9

Mandante:

SYSTRA S.A. SWS Engineering S.p.A. SYSTRA-SOTECNI S.p.A.

IDRAULICA DI PIATTAFORMA Relazione idraulica – drenaggio piattaforma ferroviaria ITINERARIO NAPOLI – BARI

RADDOPPIO TRATTA CANCELLO-BENEVENTO
II LOTTO FUNZIONALE FRASSO TELESINO – VITULANO

3° SUBLOTTO SAN LORENZO – VITULANO

PROGETTO ESECUTIVO

COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO IF2R 3.2.E.ZZ RI ID.00.0.0.001 B 34 di 36

VERIFICHE COLLETTORI

				Superfici	confluenti				Superf	ici tratto			Volumi p	iccoli invasi	specifici
Progressiva iniziale	Progressiva finale	POSIZIONE	Vol. INVASO PROPRIO CONFLUENTE	Sup FERROVIA	Sup STRADA	Superficie ESTERNA	Sup FERROVIA	Superficie STRADA	Superficie ESTERNA	Sup FERROVIA - TOTALE	Superficie STRADA - TOTALE	Superficie ESTERNA - TOTALE	Vol.specifico piccoli invasi FERROVIA	Vol.specifico piccoli invasi STRADA	Vol.specifico piccoli invasi ESTERNO
			m³	ha	ha	ha	ha	ha	ha	ha	ha	ha	m³/ha	m³/ha	m³/ha
40970	40930	dx	0	0	0	0	0.035	0.00	0.00	0.035	0.00	0	50	30	50
40970	40945	dx	0	0	0	0	0.021	0.00	0.00	0.021	0.00	0	50	30	50
41000	41235	sx	0	0	0	0	0.1785	0.00	0.00	0.1785	0.00	0	50	30	50
41000	41235	dx	0	0	0	0	0.175	0.00	0.00	0.175	0.00	0	50	30	50
41739	41330	sx	0	0	0	0	0.1001	0.65	0.02	0.1001	0.65	0.015	50	30	50
41442	41545	SX	0	0	0	0	0.073645	0.00	0.00	0.073645	0.00	0	50	30	50
41580	41545	SX	0	0	0	0	0.025025	0.00	0.00	0.025025	0.00	0	50	30	50
41595	41610	SX	0	0	0	0	0.010725	0.00	0.00	0.010725	0.00	0	50	30	50
41730	41610	SX	0	0	0	0	0.0858	0.00	0.00	0.0858	0.00	0	50	30	50
41442	41570	dx	0	0	0	0	0.09152	0.00	0.00	0.09152	0.00	0	50	30	50
41585	41570	dx	0	0	0	0	0.010725	0.00	0.00	0.010725	0.00	0	50	30	50
41595	41625	dx	0	0	0	0	0.02145	0.00	0.00	0.02145	0.00	0	50	30	50
41730	41625	dx	0	0	0	0	0.075075	0.00	0.00	0.075075	0.00	0	50	30	50
41739	41370	dx	0	0	0	0	0.1501	0.30	0.27	0.1501	0.30	0.265	50	30	50
43005	42567	sx	0	0	0	0	0.30222	0.00	0.00	0.30222	0.00	0	50	30	50
43005	42567	dx	0	0	0	0	0.30222	0.00	0.00	0.30222	0.00	0	50	30	50
43144	43025	sx	0	0	0	0	0.085085	0.00	0.00	0.085085	0.00	0	50	30	50
43144	43065	dx	0	0	0	0	0.056485	0.00	0.00	0.056485	0.00	0	50	30	50
45736	45966	dx	0	0	0	0	0.16445	0.00	0.00	0.16445	0.00	0	50	30	50
45736	46100	sx	0	0	0	0	0.26026	0.00	0.00	0.26026	0.00	0	50	30	50

TELESE S.c.a r.l.

Consorzio Telese Società Consortile a Responsabilità Limitata

PROGETTAZIONE:

Mandataria:

Mandante:

SYSTRA S.A. SWS Engineering S.p.A. SYSTRA-SOTECNI S.p.A.

IDRAULICA DI PIATTAFORMA

Relazione idraulica – drenaggio piattaforma ferroviaria

ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA CANCELLO-BENEVENTO II LOTTO FUNZIONALE FRASSO TELESINO – VITULANO 3° SUBLOTTO SAN LORENZO – VITULANO

PROGETTO ESECUTIVO

COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO IF2R 3.2.E.ZZ ID.00.0.0.001 В 35 di 36 RI

					⊟e	menti del tr	atto					Calcolo de	ella portata	
Progressiva iniziale	Progressiva finale	POSIZIONE	Superficie TOTALE	Volumi piccoli invasi TOTALE	Lunghezza	Pendenza	Volume proprio d'invaso	Volume totale d'invaso	Invaso specifico w	coefficiente di deflusso φ	a	n	U	Portata Pluviale
			ha	m³	m	m/m	m³	m³	m³/m²		m/h ⁿ		lt/s/ha	m³/s
40970	40930	dx	0.04	1.75	50	0.006	1.79	3.54	0.01	0.90	0.0498	0.49	224.29	0.01
40970	40945	dx	0.02	1.05	30	0.006	1.07	2.12	0.01	0.90	0.0498	0.49	224.29	0.00
41000	41235	sx	0.18	8.925	255	0.006	9.12	18.05	0.01	0.90	0.0498	0.49	224.29	0.04
41000	41235	dx	0.18	8.75	250	0.006	8.94	17.69	0.01	0.90	0.0498	0.49	224.29	0.04
41739	41330	sx	0.77	25.255	409	0.003	59.00	84.25	0.01	0.90	0.0498	0.49	203.40	0.16
41442	41545	sx	0.07	3.68225	103	0.001	3.89	7.57	0.01	0.90	0.0498	0.49	220.42	0.02
41580	41545	sx	0.03	1.25125	35	0.001	0.74	1.99	0.01	0.90	0.0498	0.49	287.78	0.01
41595	41610	sx	0.01	0.53625	15	0.001	0.22	0.76	0.01	0.90	0.0498	0.49	326.58	0.00
41730	41610	sx	0.09	4.29	120	0.001	4.91	9.20	0.01	0.90	0.0498	0.49	210.99	0.02
41442	41570	dx	0.09	4.576	128	0.001	5.42	9.99	0.01	0.90	0.0498	0.49	207.07	0.02
41585	41570	dx	0.01	0.53625	15	0.001	0.22	0.76	0.01	0.90	0.0498	0.49	326.58	0.00
41595	41625	dx	0.02	1.0725	30	0.001	0.59	1.66	0.01	0.90	0.0498	0.49	296.21	0.01
41730	41625	dx	0.08	3.75375	105	0.001	3.96	7.72	0.01	0.90	0.0498	0.49	220.42	0.02
41739	41370	dx	0.71	29.611	369	0.003	43.87	73.48	0.01	0.83	0.0498	0.49	183.55	0.13
43005	42567	sx	0.30	15.111	438	0.001	21.53	36.64	0.01	0.90	0.0498	0.49	185.66	0.06
43005	42567	dx	0.30	15.111	438	0.006	21.53	36.64	0.01	0.90	0.0498	0.49	185.66	0.06
43144	43025	sx	0.09	4.25425	119	0.001	4.78	9.03	0.01	0.90	0.0498	0.49	213.22	0.02
43144	43065	dx	0.06	2.82425	79	0.001	2.60	5.43	0.01	0.90	0.0498	0.49	236.59	0.01
45736	45966	dx	0.16	8.2225	230	0.009	7.47	15.69	0.01	0.90	0.0498	0.49	238.18	0.04
45736	46100	sx	0.26	13.013	364	0.009	14.98	27.99	0.01	0.90	0.0498	0.49	210.33	0.05

TELESE S.c.a r.l.

Consorzio Telese Società Consortile a Responsabilità Limitata

PROGETTAZIONE:

Mandataria:

Mandante:

SYSTRA S.A. SWS Engineering S.p.A. SYSTRA-SOTECNI S.p.A.

IDRAULICA DI PIATTAFORMA

Relazione idraulica – drenaggio piattaforma ferroviaria

ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA CANCELLO-BENEVENTO II LOTTO FUNZIONALE FRASSO TELESINO – VITULANO 3° SUBLOTTO SAN LORENZO – VITULANO

PROGETTO ESECUTIVO

COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO

IF2R 3.2.E.ZZ ID.00.0.0.001 В 36 di 36 RI

				Ca	aratteristich	e idriche		
Progressiva iniziale	Progressiva finale	POSIZIONE	DIAMETRO	DIMENSIONE FOSSO (m) SCABREZZA K		Velocità	Tirante idrico	Percentuale di riempimento
					m1/3s-1	m/s	m	%
40970	40930	dx	DN400 PEAD	0.344	75	1.03	0.14	41%
40970	40945	dx	DN400 PEAD	0.344	75	1.03	0.14	41%
41000	41235	sx	DN400 PEAD	0.344	75	1.03	0.14	41%
41000	41235	dx	DN400 PEAD	0.344	75	1.03	0.14	41%
41739	41330	sx	DN630 PEAD	0.533	75	1.16	0.33	62%
41442	41545	sx	DN400 PEAD	0.344	75	0.43	0.15	43%
41580	41545	sx	DN400 PEAD	0.344	75	0.34	0.10	28%
41595	41610	sx	DN400 PEAD	0.344	75	0.30	0.07	21%
41730	41610	sx	DN400 PEAD	0.344	75	0.44	0.16	45%
41442	41570	dx	DN400 PEAD	0.344	75	0.45	0.16	46%
41585	41570	dx	DN400 PEAD	0.344	75	0.30	0.07	21%
41595	41625	dx	DN400 PEAD	0.344	75	0.33	0.09	26%
41730	41625	dx	DN400 PEAD	0.344	75	0.43	0.15	43%
41739	41370	dx	DN630 PEAD	0.533	75	1.09	0.28	53%
43005	42567	SX	DN500 PEAD	0.433	75	0.47	0.16	37%
43005	42567	dx	DN500 PEAD	0.433	75	1.14	0.16	37%
43144	43025	SX	DN400 PEAD	0.344	75	0.44	0.15	45%
43144	43065	dx	DN400 PEAD	0.344	75	0.41	0.13	38%
45736	45966	dx	DN400 PEAD	0.344	75	1.22	0.13	38%
45736	46100	SX	DN400 PEAD	0.344	75	1.33	0.16	45%