

METANODOTTO CITTA' S. ANGELO – ALANNO ANNESSO N. 2 PROVE PENETROMETRICHE STATICHE CPT

PROVA PENETROMETRICA STATICA

Committente: Enereco

Cantiere: Metanodotto Città S. Angelo - Alanno

Commessa: IP1307

Caratteristiche Strumentali PAGANI TG 63 (200 kN)

Rif. Norme	ASTM D3441-86
Diametro Punta conica meccanica	35.7
Angolo di apertura punta	60
Area punta	10
Superficie manicotto	150
Passo letture (cm)	20
Costante di trasformazione Ct	10

PROVE PENETROMETRICHE STATICHE

(CONE PENETRATION TEST)

CPT

PROVE CPT: METODOLOGIA DELL' INDAGINE

La prova penetrometrica statica CPT (di tipo meccanico) consiste essenzialmente nella misura della resistenza alla penetrazione di una punta meccanica di dimensioni e caratteristiche standardizzate, infissa nel terreno a velocità costante (v = 2 cm/s ± 0.5 cm/s).

La penetrazione viene effettuata tramite un dispositivo di spinta (martinetto idraulico), opportunamente ancorato al suolo con coppie di coclee ad infissione, che agisce su una batteria doppia di aste (aste coassiali esterne cave e interne piene), alla cui estremità è collegata la punta.

Lo sforzo necessario per l'infissione è misurato per mezzo di manometri, collegati al martinetto mediante una testa di misura idraulica.

La punta conica (del tipo telescopico) è dotata di un manicotto sovrastante, per la misura dell'attrito laterale: punta / manicotto tipo "Begemann".

Le dimensioni della punta / manicotto sono standardizzate, e precisamente

- diametro Punta Conica meccanica	Ø	= 35,7 mm
- area di punta	Ap	$= 10 \text{ cm}^2$
- angolo di apertura del cono	α	= 60 °
- superficie laterale del manicotto	Am	$= 150 \text{ cm}^2$

Sulla batteria di aste esterne può essere installato un anello allargatore per diminuire l'attrito sulle aste, facilitandone l'infissione.

REGISTRAZIONE DATI.

Una cella di carico, che rileva gli sforzi di infissione, è montata all'interno di un'unità rimovibile, chiamata "selettore", che preme alternativamente sull'asta interna e su quella esterna.

Durante la fase di spinta le aste sono azionate automaticamente da un comando idraulico. L'operatore deve solamente controllare i movimenti di spinta per l'infissione delle aste.

I valori acquisiti dalla cella di carico sono visualizzati sul display di una Sistema Acquisizione Automatico (qualora presente) o sui manometri.

Per mezzo di un software (in alcuni strumenti) è possibile sia durante l'acquisizione, che in un secondo momento a prove ultimate trasferire i dati ad un PC.

Le letture di campagna (che possono essere rilevate dal sistema di acquisizione sia in Kg che in Kg/cm²) durante l'infissione sono le seguenti:

- Lettura alla punta LP = prima lettura di campagna durante l'infissione relativa all'infissione della sola punta
- Lettura laterale LT = seconda lettura di campagna relativa all'infissione della punta+manicotto
- Lettura totale LLTT = terza lettura di campagna relativa all'infissione delle aste esterne (tale
 lettura non sempre viene rilevata in quanto non è influente metodologicamente ai fini
 interpretativi).

METODOLOGIA DI ELABORAZIONE

I dati rilevati della prova sono quindi una coppia di valori per ogni intervallo di lettura costituiti da LP (Lettura alla punta) e LT (Lettura della punta + manicotto), le relative resistenze vengono quindi desunte per differenza, inoltre la resistenza laterale viene conteggiata 20 cm sotto (alla quota della prima lettura della punta).

Trasferiti i dati ad un PC vengono elaborati da un programma di calcolo "STATIC PROBING" della GeoStru

Le resistenze specifiche **Qc** (Resistenza alla punta **RP**) e **Ql** Resistenza Laterale **RL** o **fs** attrito laterale specifico che considera la superficie del manicotto di frizione) vengono desunte tramite opportune costanti e sulla base dei valori specifici dell'area di base della punta e dell'area del manicotto di frizione laterale tenendo in debito conto che:

Ap = 1'area punta (base del cono punta tipo "Begemann") = 10 cm^2

Am = area del manicotto di frizione = 150 cm^2

Ct = costante di trasformazione =10

Il programma Static Probing permette inoltre l'archiviazione, la gestione e l'elaborazione delle Prove Penetrometriche Statiche.

La loro elaborazione, interpretazione e visualizzazione grafica consente di "catalogare e parametrizzare" il suolo attraversato con un'immagine in continuo, che permette anche di avere un raffronto sulle consistenze dei vari livelli attraversati e una correlazione diretta con sondaggi geognostici per la caratterizzazione stratigrafica.

La sonda penetrometrica permette inoltre di riconoscere abbastanza precisamente lo spessore delle coltri sul substrato, la quota di eventuali falde e superfici di rottura sui pendii, e la consistenza in generale del terreno. L'utilizzo dei dati dovrà comunque essere trattato con spirito critico e possibilmente, dopo esperienze geologiche acquisite in zona.

I dati di uscita principali sono RP (Resistenza alla punta) e RL (Resistenza laterale o fs, attrito laterale specifico che considera la superficie del manicotto di frizione) che il programma calcola

www.LR-SRL.it

Laboratorio Aut. L. 1086/71

automaticamente; inoltre viene calcolato il Rapporto RP/RL (Rapporto Begemann 1965) e il Rapporto RL/RP (Rapporto Schmertmann 1978 – FR %).

I valori sono calcolati con queste formule:

Qc (**RP**) =
$$(LP \times Ct) / 10 \text{ cm}^2$$
.

Resistenza alla punta

$$Ql(RL)(fs) = [(LT - LP) \times Ct] / 150 \text{ cm}^2.$$

Resistenza laterale

Qc (RP) = Lettura alla punta LP x Costante di Trasformazione Ct / Superficie Punta Ap

Q1 (RL) (fs) = Lettura laterale LT- Lettura alla punta LP x Costante di Trasformazione Ct / Am area del manicotto di frizione

N.B.

- $Ap = 10 cm^2 e Am = 150 cm^2$
- la resistenza laterale viene conteggiata 20 cm sotto (alla quota della prima lettura della punta)

VALUTAZIONI STATISTICHE

Permette l'elaborazione statistica dei dati numerici di Static Probing, utilizzando nel calcolo dei valori rappresentativi dello strato considerato un valore inferiore o maggiore della media aritmetica dello strato (dato comunque maggiormente utilizzato); i valori possibili in immissione sono:

Medio

Media aritmetica dei valori della resistenza alla punta sullo strato considerato.

Media minima

Valore statistico inferiore alla media aritmetica dei valori della resistenza alla punta sullo strato considerato.

Massimo

Valore massimo dei valori del numero della resistenza alla punta sullo strato considerato.

Minimo

Valore minimo dei valori del numero della resistenza alla punta sullo strato considerato.

Media (+) s

Media (+) scarto (valore statistico) dei valori della resistenza alla punta sullo strato considerato.

Media (-) s

Media (-) scarto (valore statistico) dei valori della resistenza alla punta sullo strato considerato.

CORRELAZIONI

Scegliendo il tipo di interpretazione litologica (consigliata o meno a seconda del tipo di penetrometro utilizzato) si ha in automatico la stratigrafia con il passo dello strumento ed interpolazione automatica degli strati. Il programma esegue inoltre il grafico (per i vari autori) Profondità/Valutazioni litologiche, per visualizzare in maniera diretta l'andamento delle litologie presenti lungo la verticale indagata.

CONSORZIO L.R. Laboratori Riuniti

Codice Fiscale, P. IVA e Iscrizione al Reg delle Imprese di Catania n. 05184000874. Iscritta al R.E.A. 270647 consorzio@ir-srl.it www.LR-SRL.it Uffici e Sede legale

Tel. +39 095 336490

Via Pablo Picasso n. 2 95037 San Giovanni La Punta (CT) Laboratorio Aut. L. 1086/71

Zona industriale, Capannone n. 5 94010 Catenanuova (EN) Laboratorio Aut. Terre e Rocce

Via C. Colombo n. 69 94018 Troina (EN)

Fax +39 095 7336297

INTERPRETAZIONI LITOLOGICHE (Autori di riferimento)

- Searle 1979
- Douglas Olsen 1981 (consigliato per CPTE) •
- A.G.I. 1977 (consigliato per CPT)
- Schmertmann 1978 (consigliato per CPT)
- Robertson 1983-1986 (consigliato per CPTE)
- Begemann 1965 (consigliato per CPT)

Suddivisione della metodologia di indagine con i Penetrometri statici

CPT (Cone Penetration Test – punta Meccanica tipo Begemann)

CPTE (Cone Penetration Test Electric – punta elettrica)

CPTU (Piezocono)

Per quanto riguarda la PUNTA ELETTRICA generalmente tale strumento permette di ottenere dati in continuo con un passo molto ravvicinato (anche 2 cm.) rispetto al PUNTA MECCANICA (20 cm.).

Per il PIEZOCONO i dati di inserimento oltre a quelli di LP e LT sono invece la pressione neutrale misurata ed il tempo di dissipazione (tempo intercorrente misurato tra la misura della sovrappressione neutrale e la pressione neutrale o pressione della colonna d'acqua). Tale misurazione si effettua generalmente misurando la sovrappressione ottenuta in fase di spinta e la pressione neutrale (dissipazione nel tempo) misurata in fase di alleggerimento di spinta (arresto penetrazione). Il programma usato per le elaborazioni permette di immettere U1 - U2 - U3 cioè la sovrappressione neutrale misurata rispettivamente con filtro poroso posizionato nel cono, attorno al cono, o attorno al manicotto a seconda del tipo di piezocono utilizzato. Tale sovrappressione (che è data dalla somma della pressione idrostatica preesistente la penetrazione e dalle pressioni dei pori prodotte dalla compressione) può essere positiva o negativa e generalmente varia da (-1 a max. + 10-20 kg/cmq) ed è prodotta dalla compressione o dilatazione del terreno a seguito della penetrazione. Per il calcolo oltre ai dati strumentali generali si deve immettere per una correzione dei valori immessi:

Area punta del cono (area esterna punta)

Area interna punta del cono (area del restringimento in prossimità del setto poroso – interna conomanicotto). Generalmente il rapporto tra le aree varia da (0.70 - 1.00).

Il Passo del penetrometro (l'intervallo entro cui effettua la lettura, generalmente per penetrometri normali è 20 cm., per le punte elettriche-piezoconi può essere di 2 cm).

Il programma elabora quindi i dati di resistenza alla punta e laterale fs con le opportune correzioni dovute alla normalizzazione (con la tensione litostatica e con la pressione dei pori). Robertson definisce infine il valore caratteristico del Ic (Indice di tipo dello strato) e Contenuto in materiale fine FC % (cioè la percentuale di contenuto argilloso < 2 micron).

CORRELAZIONI GEOTECNICHE

Scegliendo il tipo di interpretazione litologica si ha in automatico la stratigrafia con il passo dello strumento ed interpolazione automatica degli strati.

Ad ogni strato mediato il programma calcola la Qc media, la fs media, il peso di volume naturale medio, il comportamento geotecnico (coesivo, incoerente o coesivo-incoerente), ed applica una texture.

L'utilizzo dei dati dovrà comunque essere trattato con spirito critico e possibilmente, dopo esperienze geologiche acquisite in zona.

TERRENI INCOERENTI

Angolo di Attrito

Angolo di Attrito (Durgunouglu-Mitchell 1973-1975) – per sabbie N.C. e S.C. non cementate

Angolo di Attrito (Meyerhof 1951) – per sabbie N.C. e S.C.

Angolo di Attrito Herminier

Angolo di Attrito (Caquot) - per sabbie N.C. e S.C. non cementate e per prof. > 2 mt. in terreni saturi o > 1 mt. non saturi

Angolo di Attrito (Koppejan) - per sabbie N.C. e S.C. non cementate e per prof. > 2 mt. in terreni saturi o > 1 mt. non saturi

Angolo di Attrito (De Beer 1965-1967) - per sabbie N.C. e S.C. non cementate e per prof. > 2 mt. in terreni saturi o > 1 mt. non saturi

Angolo di Attrito (Robertson & Campanella 1983) - per sabbie non cementare quarzose

Angolo di Attrito (Schmertmann 1977-1982) – per varie litologie (correlazione che generalmente sovrastima il valore)

Densità relativa (%)

Densità Relativa (Baldi ed altri 1978-1983 - Schmertmann 1976) - per sabbie NC non cementate

Densità Relativa (Schmertmann)

Densità Relativa (Harman 1976)

Densità Relativa (Lancellotta 1983)

Densità Relativa (Jamiolkowski 1985)

Densità Relativa (Larsson 1995) - per sabbie omogenee non gradate

Modulo di Young

Modulo di Young (Schmertmann 1970-1978) Ey (25) – Ey (50) - modulo secante riferito rispettivamente al 25 % e 50 % del valore di rottura – prima fase della curva carico/deformazione

Modulo di Young secante drenato (Robertson & Campanella 1983) Ey (25) – Ey (50) - per sabbie NC Quarzose.

Modulo di Young (ISOPT-1 1988) Ey (50) - per sabbie OC sovraconsolidate e SC

Modulo Edometrico

Modulo Edometrico (Robertson & Campanella) da Schmertmann

Modulo Edometrico (Lunne-Christoffersen 1983 - Robertson and Powell 1997) - valido per sabbie NC

Modulo Edometrico (Kulhawy-Mayne 1990)

Modulo Edometrico (Mitchell & Gardner 1975) – valido per sabbie

Modulo Edometrico (Buisman - Sanglerat) – valido per sabbie argillose

Peso di Volume

Peso di Volume (Meyerhof) -

CONSORZIO L.R.

Laboratori Riuniti

Codice Fiscale, P. IVA e Iscrizione al Reg
delle Imprese di Catania n. 05184000874.
Iscritta al R.E.A. 270647

Peso di Volume saturo (Meyerhof) -

Modulo di deformazione di taglio

Imai & Tonouchi (1982) elaborazione valida soprattutto per sabbie e per tensioni litostatiche comprese tra 0.5 - 4.0 kg/cmg.

Potenziale di Liquefazione

Verifica alla liquefazione dei suoli incoerenti (Metodo di Robertson e Wride 1997 - C.N.R. - GNDT) coefficiente di sicurezza relativo alle varie zone sismiche I-I-III-IV cat. - N.B. la liquefazione è assente per Fs \geq = 1,25, possibile per Fs=1,0-1,25 e molto probabile per Fs < 1

Fattori di compressibilità

Ramo di carico C (autori vari)

Ramo di carico medio Crm (autori vari)

OCR - Grado di Sovraconsolidazione

Grado di Sovraconsolidazione OCR - (metodo Stress-History)

Grado di Sovraconsolidazione OCR (Larsson 1991 S.G.I.)

Grado di Sovraconsolidazione OCR (Piacentini-Righi Inacos 1978)

Grado di Sovraconsolidazione OCR - (Ladd e Foot - Ladd ed altri 1977)

Modulo Di Reazione Ko

(Kulhawy Maine, 1990).

Correlazione NSPT

Meardi - Meigh 1972

Meyerhof

TERRENI COESIVI

Coesione Non Drenata

Coesione non drenata (Lunne & Eide)

Coesione non drenata (Rolf Larsson SGI 1995) - suoli fini granulari

Coesione non drenata (Baligh ed altri 1976-1980) in tale elaborazione occorre inserire il valore di Nk (generalmente variabile da 11 a 25)

Coesione non drenata (Marsland 1974-Marsland e Powell 1979)

Coesione non drenata Sunda (relazione sperimentale)

Coesione non drenata (Lunne T.-Kleven A. 1981)

Coesione non drenata (Kjekstad. 1978)

Coesione non drenata (Lunne, Robertson and Powell 1977)

Coesione non drenata (Terzaghi - valore minimo)

Coesione non drenata (Begemann)

Coesione non drenata (De Beer) - valida per debole coesione.

Indice Di Compressione C

Indice di Compressione Vergine Cc (Schmertmann)

Indice di Compressione Vergine Cc (Schmertmann 1978)

Fattore di compressibilità ramo di carico C (Piacentini-Righi Inacos 1978)

Fattore di compressibilità medio ramo di carico Crm (Piacentini-Righi Inacos 1978).

Modulo Edometrico-Confinato

Mitchell - Gardnerr (1975) Mo (Eed) (Kg/cmq) per limi e argille.

Metodo generale del modulo edometrico.

CONSORZIO L.R.

Via Pablo Picasso n. 2 95037 San Giovanni La Punta (CT)

Laboratorio Aut. L. 1086/71

Laboratorio Aut. Terre e Rocce

Codice Fiscale, P. IVA e Iscrizione al Reg delle Imprese di Catania n. 05184000874. Iscritta al R.E.A. 270647

Buisman correlazione valida per limi e argille di media plasticità – Alluvioni attuali argille plastiche – suoli organici (W 90-130)

Buisman e Sanglerat valida per litotipi argille copatte

Valore medio degli autori su suoli coesivi

Modulo di deformazione non drenato

Modulo di deformazione non drenato Eu (Cancelli ed altri 1980)

Modulo di deformazione non drenato Eu (Ladd ed altri 1977) – (Inserire valore $\, {f n} \,$ 30 < n < 1500 sulla base di esperienze acquisite e del tipo

litologico)

Peso di Volume

Peso di Volume terreni coesivi (t/mq) (Meyerhof)

Peso di Volume saturo terreni coesivi (t/mq) (Meyerhof)

Modulo di deformazione di taglio)

Imai & Tonouchi (1982)

OCR

Grado di Sovraconsolidazione OCR - (metodo Stress-History)

Grado di Sovraconsolidazione OCR (P.W. Mayne 1991) - per argille ed argille sovraconsolidate

Grado di Sovraconsolidazione OCR (Larsson 1991 S.G.I.)

Grado di Sovraconsolidazione OCR (Piacentini-Righi Inacos 1978)

Grado di Sovraconsolidazione Jamiolkowski et altri 1979 – valida per argilla di Taranto

Grado di Sovraconsolidazione Schmertmannn 1978

Coefficiente Di Consolidazione Verticale

Coefficiente di Consolidazione Cv (Piacentini-Righi, 1988)

Permeabilità

Coefficiente di Permeabilità K (Piacentini-Righi, 1988)

www.LR-SRL.it

PROVA L2-P05

Committente: Enereco

Strumento utilizzato: PAGANI TG 63 (200 kN) Prova eseguita in data: 17/06/2021

Profondità prova: 5.20 mt

Località: Metanodotto Città S. Angelo - Alanno

Profondità			qc	fs	qc/fs	fs/qcx100
(m)	(Kg/cm²)	(Kg/cm²)	(Kg/cm²)	(Kg/cm²)	Begemann	(Schmertmann)
0.20	2.00	18.0	2.0	0.266667	7.5	13.3
0.40	7.00	11.0	7.0	1.133333	6.176	16.2
0.60	12.00	29.0	12.0	0.6	20.0	5.0
0.80	49.00	58.0	49.0	1.4	35.0	2.9
1.00	40.00	61.0	40.0	1.733333	23.077	4.3
1.20	43.00	69.0	43.0	1.933333	22.241	4.5
1.40	55.00	84.0	55.0	0.733333	75.0	1.3
1.60	78.00	89.0	78.0	3.4	22.941	4.4
1.80	52.00	103.0	52.0	2.866667	18.14	5.5
2.00	51.00	94.0	51.0	3.133333	16.277	6.1
2.20	32.00	79.0	32.0	2.266667	14.118	7.1
2.40	62.00	96.0	62.0	2.866667	21.628	4.6
2.60	65.00	108.0	65.0	4.266667	15.234	6.6
2.80	52.00	116.0	52.0	3.666667	14.182	7.1
3.00	43.00	98.0	43.0	3.066667	14.022	7.1
3.20	43.00	89.0	43.0	3.533333	12.17	8.2
3.40	65.00	118.0	65.0	4.0	16.25	6.2
3.60	69.00	129.0	69.0	0.933333	73.929	1.4
3.80	125.00	139.0	125.0	2.133333	58.594	1.7
4.00	190.00	222.0	190.0	1.533333	123.913	0.8
4.20	266.00	289.0	266.0	2.0	133.0	0.8
4.40	265.00	295.0	265.0	4.4	60.227	1.7
4.60	225.00	291.0	225.0	5.933333	37.921	2.6
4.80	266.00	355.0	266.0	0.933333	285.0	0.4
5.00	259.00	273.0	259.0	4.266667	60.703	1.6
5.20	389.00	453.0	389.0	0.0		0.0

Prof. Strato (m)	Media Media Medi (Kg/cm²) (Kg/cm²) (t/m³		Media Medio		Comp. Geotecnico	Descrizione
0.60	0.0	0.666667	1.9	Incoerente- Coesivo	Argilla limosa	
3.40	52.14286	2.776191	2.1	Incoerente- Coesivo	Limo argilloso	
5.20	228.2222	2.459259	2.4	Incoerente- Coesivo	Sabbia	

STIMA PARAMETRI GEOTECNICI L2-P05

TERRENI COESIVI

Coesione non drenata (Kg/cm²)

OCCSIONE NO	m archata (i	tg/cill/							
	Prof.	qc	fs	Lunne &	Sunda	Lunne T	Kjekstad.	Lunne,	Terzaghi
	Strato	(Kg/cm ²)	(Kg/cm ²)	Eide	Relazione	Kleven A.	1978 -	Robertson	
	(m)				Speriment	1981	Lunne,	and Powell	
					ale		Robertson	1977	
							and Powell		
							1977		
Strato 1	0.60	0.0	0.666667	0.00	0.00	0.00	0.00	0.00	0.00
Strato 2	3.40	52.14286	2.776191	2.96	2.61	3.45	3.04	2.72	2.61
Strato 3	5.20	228.2222	2.459259	13.02	4.92	15.15	13.37	11.96	11.41

Modulo Edometrico (Kg/cm²)

	7 ti 197 ci 11						
	Prof. Strato (m)	qc (Kg/cm²)	fs (Kg/cm²)	Mitchell & Gardner (1975)	Metodo generale del modulo edometrico	Buismann	Buismann Sanglerat
Strato 1	0.60	0.0	0.666667	0.00	0.00	0.00	0.00
Strato 2	3.40	52.14286	2.776191	130.36	104.28	156.43	78.21
Strato 3	5.20	228.2222	2.459259	570.56	456.44	684.67	342.33

Modulo di deformazione a taglio

Modulo di deloittie	oddio di delormazione a taglio											
	Prof. Strato	qc	fs	Correlazione	Modulo di							
	(m)	(Kg/cm²)	(Kg/cm²)		deformazione a							
					taglio							
					(Kg/cm²)							
Strato	1 0.60	0.0	0.666667	Imai & Tomauchi	0.00							
Strato	2 3.40	52.14286	2.776191	Imai & Tomauchi	313.59							
Strato	3 5.20	228.2222	2.459259	Imai & Tomauchi	772.88							

Peso unità di volume

oco dilita di Volanio									
	Prof. Strato (m)	qc (Kg/cm²)	fs (Kg/cm²)	Correlazione	Peso unità di volume (t/m³)				
Strato 1	0.60	0.0	0.666667	Meyerhof	0.00				
Strato 2	3.40	52.14286	2.776191	Meyerhof	2.13				
Strato 3	5.20	228.2222	2.459259	Meyerhof	2.38				

Peso unità di volume saturo

ooo amaa ar volama	oce and a relative datale								
	Prof. Strato	qc	fs	Correlazione	Peso unità di				
(m)		(Kg/cm²)	(Kg/cm²)		volume saturo				
					(t/m³)				
Strato 1	0.60	0.0	0.666667		0.00				
Strato 2	3.40	52.14286	2.776191	Meyerhof	2.21				
Strato 3	5.20	228.2222	2.459259	Meyerhof	2.46				

www.LR-SRL.it

TERRENI INCOERENTI

Densità relativa (%)

Deribita relati	chota rolativa (70)											
	Prof. Strato (m)	qc (Kg/cm²)	fs (Kg/cm²)	Baldi 1978 - Schmertma nn 1976	Schmertma nn	Harman		Jamiolkows ki 1985				
Strato 1	0.60	0.0	0.666667	< 5	0	0	0	0				
Strato 2	3.40	52.14286	2.776191	60.12	71.03	71.19	60.9	74.31				
Strato 3	5.20	228.2222	2.459259	90.56	100	100	91.6	93.38				

Angolo di resistenza al taglio (°)

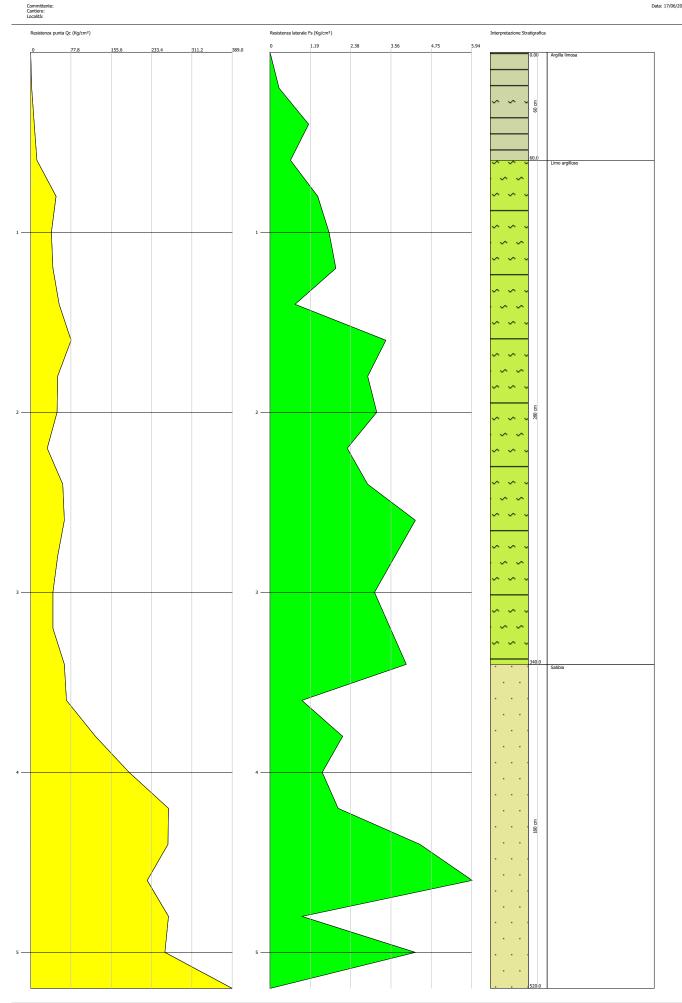
Angolo di resistenza ai taglio ()											
	Prof.	qc	fs	Durguno	Caquot	Koppeja	De Beer	Schmert	Robertso	Herminie	Meyerho
	Strato	(Kg/cm ²)	(Kg/cm ²)	uglu-		n		mann	n &	r	f 1951
	(m)			Mitchell					Campan		
				1973					ella 1983		
Strato 1	0.60	0.0	0.66666	0	0	0	0	28	0	0	17
			7								
Strato 2	3.40	52.1428	2.77619	37.41	33.86	31.07	28.99	37.94	41.98	29.5	40.41
		6	1								
Strato 3	5.20	228.222	2.45925	40.85	37.16	34.54	32.16	42	45	35.72	45
		2	9								

Modulo di Youna (Ka/cm²)

	\. \g, \cdots					
	Prof. Strato (m)	qc (Kg/cm²)	fs (Kg/cm²)	Schmertmann	Robertson & Campanella (1983)	ISOPT-1 1988 Ey(50)
Strato 1	0.60	0.0	0.666667	0.00	\ /	0.00
Strato 2	3.40	52.14286	2.776191	130.36	104.29	389.84
Strato 3	5.20	228.2222	2.459259	570.56	456.44	912.89

Modulo Edometrico (Ka/cm²)

Modulo Edometrico (kg/cm²)									
ſ		Prof. Strato	qc	fs	Robertson	Lunne-	Kulhawy-	Mitchell &	Buisman -
		(m)	(Kg/cm²)	(Kg/cm ²)	&	Christoffers	Mayne 1990	Gardner	Sanglerat
					Campanella	en 1983 -		1975	
					da	Robertson			
					Schmertma	and Powell			
					nn	1997			
	Strato 1	0.60	0.0	0.666667	0.67	0.00	-8.72	0.00	0.00
	Strato 2	3.40	52.14286	2.776191	62.45	204.54	418.56	88.64	78.21
	Strato 3	5.20	228.2222	2.459259	96.59	467.62	1867.01	342.33	342.33


Peso unità di volume

	_				
	Prof. Strato (m)	qc (Kg/cm²)	fs (Kg/cm²)	Correlazione	Peso unità di volume (t/m³)
Strato 1	0.60	0.0	0.666667	Meyerhof	1.80
Strato 2	3.40	52.14286	2.776191	Meyerhof	1.80
Strato 3	5.20	228.2222	2.459259	Meyerhof	1.90

Peso unità di volume saturo

. ooo amaa an romann					
	Prof. Strato	qc	fs	Correlazione	Peso unità di
	(m)	(Kg/cm²)	(Kg/cm²)		volume saturo
					(t/m³)
Strato 1	0.60	0.0	0.666667	Meyerhof	-
Strato 2	3.40	52.14286	2.776191	Meyerhof	2.10
Strato 3	5.20	228.2222	2.459259	Meyerhof	2.20

Data: 17/06/2021

PROVA L2P-06

Committente: Enereco

Strumento utilizzato: PAGANI TG 63 (200 kN)

Prova eseguita in data: 17/06/2021 Profondità prova: 1.80 mt Località: Metanodotto Città S. Angelo - Alanno

Profondità	Lettura punta	Lettura laterale	qc	fs	qc/fs	fs/qcx100	
(m)	(Kg/cm²) (Kg/cm²		(Kg/cm²)	(Kg/cm²)	Begemann	(Schmertmann)	
0.20	17.00	22.0	17.0	0.266667	63.75	1.6	
0.40	35.00	39.0	35.0	0.666667	52.5	1.9	
0.60	39.00	49.0	39.0	0.6	65.0	1.5	
0.80	32.00	41.0	32.0	0.4	80.0	1.3	
1.00	66.00	72.0	66.0	2.866667	23.023	4.3	
1.20	107.00	150.0	107.0	4.466667	23.955	4.2	
1.40	101.00	168.0	101.0	3.866667	26.121	3.8	
1.60	331.00	389.0	331.0	1.866667	177.321	0.6	
1.80	452.00	480.0	452.0	0.0		0.0	

Prof. Strato	qc	fs	Gamma	Comp. Geotecnico	Descrizione
(m)	Media	Media	Medio		
	(Kg/cm²)	(Kg/cm²)	(t/m³)		
0.80	30.75	0.483334	2.0	Incoerente-	Limo sabbioso
				Coesivo	
1.80	211.4	2.613333	1.9	Incoerente-	Sabbia
				Coesivo	

STIMA PARAMETRI GEOTECNICI L2-PL06

TERRENI COESIVI

Coesione non drenata (Kg/cm²)

0000101101110	,	19, 0							
	Prof.	qc	fs	Lunne &	Sunda	Lunne T	Kjekstad.	Lunne,	Terzaghi
	Strato	(Kg/cm²)	(Kg/cm ²)	Eide	Relazione	Kleven A.	1978 -	Robertson	
	(m)				Speriment	1981	Lunne,	and Powell	
					ale		Robertson	1977	
							and Powell		
							1977		
Strato 1	0.80	30.75	0.483334	1.76	1.85	2.04	1.80	1.61	1.54
Strato 2	1.80	211.4	2.613333	12.09	4.83	14.08	12.42	11.11	10.57

Modulo Edometrico (Kg/cm²)

modale Edeline	thoo (rtg/oni /						
	Prof. Strato (m)	qc (Kg/cm²)	fs (Kg/cm²)	Mitchell & Gardner (1975)	Metodo generale del modulo edometrico	Buismann	Buismann Sanglerat
Strato 1	0.80	30.75	0.483334	76.88	61.50	92.25	92.25
Strato 2	1.80	211.4	2.613333	528.50	422.79	634.20	317.10

Modulo di deformazione a taglio

	Prof. Strato (m)	qc (Kg/cm²)	fs (Kg/cm²)	Correlazione	Modulo di deformazione a taglio (Kg/cm²)
Strato 1	0.80	30.75	0.483334	Imai & Tomauchi	227.11
Strato 2	1.80	211.4	2.613333	Imai & Tomauchi	737.56

Peso unità di volume

	Prof. Strato	qc	fs	Correlazione	Peso unità di	
	(m)	(Kg/cm²)	(Kg/cm²)		volume	
			-		(t/m³)	
Strato 1	0.80	30.75	0.483334	Meyerhof	2.04	
Strato 2	1.80	211.4	2.613333	Meyerhof	2.37	

Peso unità di volume saturo

CONSORZIO L.R. Laboratori Riuniti Uffici e Sede legale

Laboratorio Aut. L. 1086/71

Laboratorio Aut. Terre e Rocce

Codice Fiscale, P. IVA e Iscrizione al Reg delle Imprese di Catania n. 05184000874. Iscritta al R.E.A. 270647

	Prof. Strato	qc	fs	Correlazione	Peso unità di
	(m)	(Kg/cm²)	(Kg/cm²)		volume saturo
					(t/m³)
Strato 1	0.80	30.75	0.483334	Meyerhof	2.12
Strato 2	1.80	211.4	2.613333	Meyerhof	2.45

Laboratorio Aut. Terre e Rocce

TERRENI INCOERENTI

Densità relativa (%)

	Prof. Strato (m)	qc (Kg/cm²)	fs (Kg/cm²)	Baldi 1978 - Schmertma nn 1976	Schmertma nn	Harman	Lancellotta 1983	Jamiolkows ki 1985
Strato 1	0.80	30.75	0.483334	68.27	95.53	92.23	69.12	100
Strato 2	1.80	211.4	2.613333	100	100	100	100	100

Angolo di resistenza al taglio (°)

Aligolo di	I COIOLCI IZA	i ai tayiio ()								
	Prof.	qc	fs	Durguno	Caquot	Koppeja	De Beer	Schmert	Robertso	Herminie	Meyerho
	Strato	(Kg/cm ²)	(Kg/cm ²)	uglu-		n		mann	n &	r	f 1951
	(m)			Mitchell					Campan		
				1973					ella 1983		
Strato 1	0.80	30.75	0.48333	42.21	39.32	36.81	34.23	41.37	45	40.02	30.81
			4								
Strato 2	1.80	211.4	2.61333	45	43.13	40.81	37.89	42	45	38.34	45
			3								

Modulo di Young (Kg/cm²)

Modalo al Toarig	date at realing (region)									
	Prof. Strato (m)	qc (Kg/cm²)	fs (Kg/cm²)	Schmertmann	Robertson & Campanella (1983)	ISOPT-1 1988 Ey(50)				
Strato 1	0.80	30.75	0.483334	76.88	61.50	139.49				
Strato 2	1.80	211.4	2.613333	528.50	422.80	845.60				

Modulo Edometrico (Ka/cm²)

Modulo Edon	ietnco (Kg/cm	l ²)						
	Prof. Strato	qc	fs	Robertson	Lunne-	Kulhawy-	Mitchell &	Buisman -
	(m)	(Kg/cm ²)	(Kg/cm ²)	&	Christoffers	Mayne 1990	Gardner	Sanglerat
				Campanella	en 1983 -		1975	
				da	Robertson			
				Schmertma	and Powell			
				nn	1997			
Strato 1	0.80	30.75	0.483334	77.33	120.62	244.78	61.50	92.25
Strato 2	1.80	211.4	2.613333	88.33	434.63	1733.70	317.10	317.10

Peso unità di volume

i occ arma ar voia					
	Prof. Strato (m)	qc (Kg/cm²)	fs (Kg/cm²)	Correlazione	Peso unità di volume (t/m³)
Strato	1 0.80	30.75	0.483334	Meyerhof	1.90
Strato	2 1.80	211.4	2.613333	Meyerhof	1.90

Peso unità di volume saturo

	Prof. Strato	qc	fs	Correlazione	Peso unità di
	(m)	(Kg/cm²)	(Kg/cm²)		volume saturo
					(t/m³)
Strato 1	0.80	30.75	0.483334	Meyerhof	2.20
Strato 2	1.80	211.4	2.613333	Meyerhof	2.20

www.LR-SRL.it

Committente: Data: 17/06/2021 Cardiore: Data: 17

Resistenza punta Qc (Kg/cm²) Resistenza laterale Fs (Kg/cm²) Interpretazione Stratigrafica 100 cm

PROVA L2-P07

Committente: Enereco

Strumento utilizzato: PAGANI TG 63 (200 kN)
Prova eseguita in data: 18/06/2021
Profondita prova: 9.40 mt

Località: Metanodotto Città S. Angelo - Alanno

Profondità	Lettura punta	Lettura laterale	qc	fs	qc/fs	fs/qcx100
(m)	(Kg/cm²)	(Kg/cm²)	(Kg/cm²)	(Kg/cm²)	Begemann	(Schmertmann)
0.20	12.00	19.0	12.0	0.333333	36.0	2.8
0.40	25.00	30.0	25.0	0.466667	53.571	1.9
0.60	27.00	34.0	27.0	0.4	67.5	1.5
0.80	32.00	38.0	32.0	1.333333	24.0	4.2
1.00	31.00	51.0	31.0	1.466667	21.136	4.7
1.20	33.00	55.0	33.0	2.933333	11.25	8.9
1.40	25.00	69.0	25.0	2.533333	9.868	10.1
1.60	20.00	58.0	20.0	1.533333	13.043	7.7
1.80	25.00	48.0	25.0	2.533333	9.868	10.1
2.00	26.00	64.0	26.0	1.733333	15.0	6.7
2.20	18.00	44.0	18.0	1.4	12.857	7.8
2.40	19.00	40.0	19.0	0.333333	57.0	1.8
2.60	32.00	37.0	32.0	0.8	40.0	2.5
2.80	21.00	33.0	21.0	0.6	35.0	2.9
3.00	21.00	30.0	21.0	0.8	26.25	3.8
3.20	32.00	44.0	32.0	1.133333	28.235	3.5
3.40	34.00	51.0	34.0	1.466667	23.182	4.3
3.60	26.00	48.0	26.0	0.866667	30.0	3.3
3.80	24.00	37.0	24.0	2.266667	10.588	9.4
4.00	20.00	54.0	20.0	1.2	16.667	6.0
4.20	29.00	47.0	29.0	1.133333	25.588	3.9
4.40	52.00	69.0	52.0	1.8	28.889	3.5
4.60	30.00	57.0	30.0	1.466667	20.455	4.9
4.80	25.00	47.0	25.0	1.866667	13.393	7.5
5.00	23.00	51.0	23.0	1.6	14.375	7.0
5.20	19.00	43.0	19.0	1.733333	10.962	9.1
5.40	19.00	45.0	19.0	1.533333	12.391	8.1
5.60	16.00	39.0	16.0	1.4	11.429	8.8
5.80	16.00	37.0	16.0	1.2	13.333	7.5
6.00 6.20	27.00 11.00	45.0	27.0	1.866667	14.464	6.9
6.40	11.00	39.0 29.0	11.0	1.2 1.8	9.167	10.9
6.60	57.00	84.0	11.0 57.0	1.066667	6.111 53.437	16.4 1.9
6.80	57.00	73.0	57.0	1.533333	37.174	
7.00	48.00	71.0	48.0	1.533333	31.304	2.7 3.2
7.00	68.00	91.0	68.0	2.666667	25.5	3.9
7.40	41.00	81.0	41.0	1.2	34.167	2.9
7.60	133.00	151.0	133.0	3.2	41.563	2.9
7.80	41.00	89.0	41.0	1.6	25.625	3.9
8.00	12.00	36.0	12.0	0.4	30.0	3.3
8.20	62.00	68.0	62.0	2.133333	29.063	3.4
8.40	135.00	167.0	135.0	1.466667	92.045	1.1
8.60	319.00	341.0	319.0	0.466667	683.571	0.1
8.80	288.00	295.0	288.0	1.533333	187.826	0.5
9.00	143.00	166.0	143.0	1.266667	112.895	0.9
9.20	340.00	359.0	340.0	1.8	188.889	0.5
9.40	453.00	480.0	453.0	0.0	1.00.000	0.0

Prof. Strato (m)	qc Media (Kg/cm²)	fs Media (Kg/cm²)	Gamma Medio (t/m³)	Comp. Geotecnico	Descrizione
0.60	21.33333	0.0	2.0	Incoerente	Sabbie limose
2.20	26.25	1.933333	1.9	Incoerente- Coesivo	Limo argilloso- sabbioso molto addensato
3.60	26.42857	0.857143	1.9	Incoerente- Coesivo	Limo argilloso- sabbioso

CONSORZIO L.R. Laboratori Riuniti

Codice Fiscale, P. IVA e Iscrizione al Reg delle Imprese di Catania n. 05184000874. Iscritta al R.E.A. 270647 consorzio@lr-srl.it Uffici e Sede legale

Via Pablo Picasso n. 2 95037 San Giovanni La Punta (CT) Laboratorio Aut. L. 1086/71

Laboratorio Aut. Terre e Rocce

Zona industriale, Capannone n. 5 94010 Catenanuova (EN)

6.40	23.0	1.57619	1.9	Incoerente-	Limo argilloso-
				Coesivo	sabbioso molto
					addensato
8.00	57.125	1.65	1.9	Incoerente-	Sabbia argilloso-
				Coesivo	limosa
9.40	248.5714	1.238095	1.9	Incoerente-	Sabbia ghiaiosa
				Coesivo	

www.LR-SRL.it

STIMA PARAMETRI GEOTECNICI L2-P07

TERRENI COESIVI

Coesione non drenata (Kg/cm²)

Coesione no	sione non dienata (kg/cm²)										
	Prof.	qc	fs	Lunne &	Sunda	Lunne T	Kjekstad.	Lunne,	Terzaghi		
	Strato	(Kg/cm²)	(Kg/cm²)	Eide	Relazione	Kleven A.	1978 -	Robertson	_		
	(m)				Speriment	1981	Lunne,	and Powell			
					ale		Robertson	1977			
							and Powell				
							1977				
Strato 2	2.20	26.25	1.933333	1.49	1.63	1.73	1.53	1.37	1.31		
Strato 3	3.60	26.42857	0.857143	1.48	1.62	1.72	1.52	1.36	1.32		
Strato 4	6.40	23.0	1.57619	1.27	1.43	1.47	1.30	1.16	1.15		
Strato 5	8.00	57.125	1.65	3.22	2.71	3.72	3.28	2.93	2.86		
Strato 6	9.40	248.5714	1.238095	14.17	5.01	16.46	14.52	13.00	12.43		

Modulo Edometrico (Ka/cm²)

MODULO EDOTTIE	oddio Edometrico (kg/cm²)											
	Prof. Strato	qc	fs	Mitchell &	Metodo	Buismann	Buismann					
	(m)	(Kg/cm²)	(Kg/cm²)	Gardner	generale del		Sanglerat					
				(1975)	modulo							
					edometrico							
Strato 2	2.20	26.25	1.933333	65.63	52.50	78.75	78.75					
Strato 3	3.60	26.42857	0.857143	66.07	52.86	79.29	79.29					
Strato 4	6.40	23.0	1.57619	57.50	46.00	69.00	69.00					
Strato 5	8.00	57.125	1.65	142.81	114.25	171.38	85.69					
Strato 6	9.40	248.5714	1.238095	621.43	497.13	745.71	372.86					

Modulo di deformazione a taglio

Modalo di dolomiaz	dale di delormazione a taglio									
	Prof. Strato	qc	fs	Correlazione	Modulo di					
	(m)	(Kg/cm²)	(Kg/cm²)		deformazione a					
					taglio					
					(Kg/cm²)					
Strato 2	2.20	26.25	1.933333	Imai & Tomauchi	206.18					
Strato 3	3.60	26.42857	0.857143	Imai & Tomauchi	207.04					
Strato 4	6.40	23.0	1.57619	Imai & Tomauchi	190.18					
Strato 5	8.00	57.125	1.65	Imai & Tomauchi	331.57					
Strato 6	9.40	248.5714	1.238095	Imai & Tomauchi	814.29					

Peso unità di volume

	Prof. Strato (m)	qc (Kg/cm²)	fs (Kg/cm²)	Correlazione	Peso unità di volume (t/m³)
Strato 2	2.20	26.25	1.933333	Meyerhof	2.02
Strato 3	3.60	26.42857	0.857143	Meyerhof	2.02
Strato 4	6.40	23.0	1.57619	Meyerhof	1.99
Strato 5	8.00	57.125	1.65	Meyerhof	2.15
Strato 6	9.40	248.5714	1,238095	Meverhof	2.40

Peso unità di volume saturo

	Prof. Strato (m)	qc (Kg/cm²)	fs (Kg/cm²)	Correlazione	Peso unità di volume saturo (t/m³)
Strato 2	2.20	26.25	1.933333	Meyerhof	2.10
Strato 3	3.60	26.42857	0.857143	Meyerhof	2.10
Strato 4	6.40	23.0	1.57619	Meyerhof	2.07
Strato 5	8.00	57.125	1.65	Meyerhof	2.23
Strato 6	9.40	248.5714	1.238095	Meyerhof	2.48

CONSORZIO L.R. Laboratori Riuniti Uffici e Sede legale

Laboratorio Aut. L. 1086/71

Laboratorio Aut. Terre e Rocce

Codice Fiscale, P. IVA e Iscrizione al Reg delle Imprese di Catania n. 05184000874. Iscritta al R.E.A. 270647

TERRENI INCOERENTI

Densità relativa (%)

	Prof. Strato	qc	fs	Baldi 1978 -	Schmertma	Harman	Lancellotta	Jamiolkows
	(m)	(Kg/cm²)	(Kg/cm²)	Schmertma	nn		1983	ki 1985
				nn 1976				
Strato 1	0.60	21.33333	0.0	61.96	89.89	86.59	62.76	100
Strato 2	2.20	26.25	1.933333	46.38	56.82	57.36	47.04	66.26
Strato 3	3.60	26.42857	0.857143	36.38	37.79	40.36	36.96	45.91
Strato 4	6.40	23.0	1.57619	27.54	23.44	27.3	28.05	26.44
Strato 5	8.00	57.125	1.65	50.21	50.69	53.15	50.9	42.12
Strato 6	9.40	248.5714	1.238095	90.17	100	100	91.21	78.87

Angolo di resistenza al taglio (°)

Arigolo di	16313161126	i ai tagiio ()								
	Prof.	qc	fs	Durguno	Caquot	Koppeja	De Beer	Schmert	Robertso	Herminie	Meyerho
	Strato	(Kg/cm ²)	(Kg/cm ²)	uglu-		n		mann	n &	r	f 1951
	(m)			Mitchell					Campan		
				1973					ella 1983		
Strato 1	0.60	21.3333	0.0	41.75	38.93	36.4	33.86	40.58	45	39.08	26.58
		3									
Strato 2	2.20	26.25	1.93333	35.94	32.47	29.61	27.65	35.95	40.52	27.51	28.79
			3								
Strato 3	3.60	26.4285	0.85714	32.75	28.94	25.91	24.27	33.29	36.53	24.38	28.87
		7	3								
Strato 4	6.40	23.0	1.57619	30.53	26.55	23.39	21.97	31.28	33.55	23.11	27.33
Strato 5	8.00	57.125	1.65	33.89	29.94	26.96	25.23	35.1	37.71	25.14	42.65
Strato 6	9.40	248.571	1.23809	40.37	36.6	33.95	31.62	42	44.67	34.53	45
		4	5								

Modulo di Young (Kg/cm²)

wioddio di Todrig (kg/ciii-)								
	Prof. Strato	qc	fs	Schmertmann	Robertson &	ISOPT-1 1988		
	(m)	(Kg/cm²)	(Kg/cm²)		Campanella	Ey(50)		
					(1983)			
Strato 1	0.60	21.33333	0.0	53.33	42.67	111.21		
Strato 2	2.20	26.25	1.933333	65.63	52.50	241.02		
Strato 3	3.60	26.42857	0.857143	66.07	52.86	303.01		
Strato 4	6.40	23.0	1.57619	57.50	46.00	303.31		
Strato 5	8.00	57.125	1.65	142.81	114.25	566.52		
Strato 6	9.40	248.5714	1.238095	621.43	497.14	994.29		

Modulo Edometrico (Ka/cm²)

	Prof. Strato	qc	fs	Robertson	Lunne-	Kulhawy-	Mitchell &	Buisman -
	(m)	(Kg/cm²)	(Kg/cm ²)	&	Christoffers	Mayne 1990	Gardner	Sanglerat
				Campanella	en 1983 -		1975	
				da	Robertson			
				Schmertma	and Powell			
				nn	1997			
Strato 1	0.60	21.33333	0.0	72.36	83.68	167.25	42.67	106.67
Strato 2	2.20	26.25	1.933333	48.86	102.97	206.07	52.50	131.25
Strato 3	3.60	26.42857	0.857143	37.16	103.67	205.19	52.86	132.14
Strato 4	6.40	23.0	1.57619	28.40	90.22	171.83	46.00	115.00
Strato 5	8.00	57.125	1.65	53.27	224.08	448.43	97.11	85.69
Strato 6	9.40	248.5714	1.238095	99.55	507.53	2024.80	372.86	372.86

Peso unità di volume

oce arma ai volame									
	Prof. Strato (m)	qc (Kg/cm²)	fs (Kg/cm²)	Correlazione	Peso unità di volume (t/m³)				
Strato 1	0.60	21.33333	0.0	Meyerhof	0.00				
Strato 2	2.20	26.25	1.933333	Meyerhof	1.80				

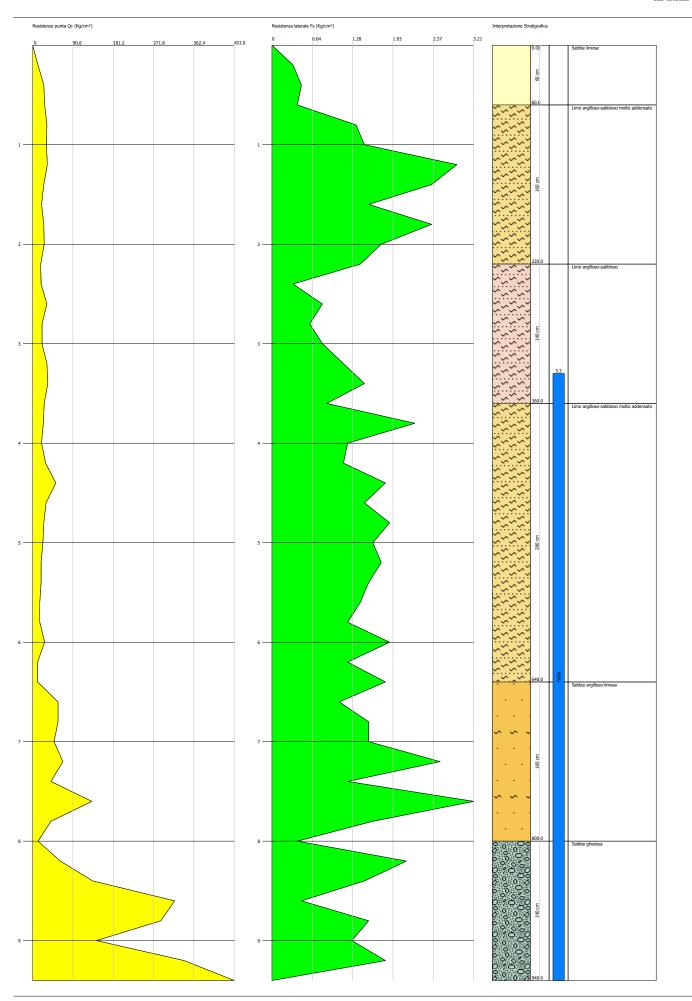
CONSORZIO L.R. Laboratori Riuniti

Uffici e Sede legale

Laboratorio Aut. L. 1086/71

Zona industriale, Capannone n. 5
94010 Catenanuova (EN)

Laboratorio Aut. Terre e Rocce


Laboratori Riuniti

Strato 3	3.60	26.42857	0.857143	Meyerhof	1.80
Strato 4	6.40	23.0	1.57619	Meyerhof	1.80
Strato 5	8.00	57.125	1.65	Meyerhof	1.80
Strato 6	9.40	248.5714	1.238095	Meyerhof	1.90

Peso unità di volume saturo

eso dilita di volume saturo							
	Prof. Strato	qc	fs	Correlazione	Peso unità di		
	(m)	(Kg/cm²)	(Kg/cm²)		volume saturo		
					(t/m³)		
Strato 1	0.60	21.33333	0.0	Meyerhof	0.00		
Strato 2	2.20	26.25	1.933333	Meyerhof	2.10		
Strato 3	3.60	26.42857	0.857143	Meyerhof	2.10		
Strato 4	6.40	23.0	1.57619	Meyerhof	2.10		
Strato 5	8.00	57.125	1.65	Meyerhof	2.10		
Strato 6	9.40	248.5714	1.238095	Meyerhof	2.20		

