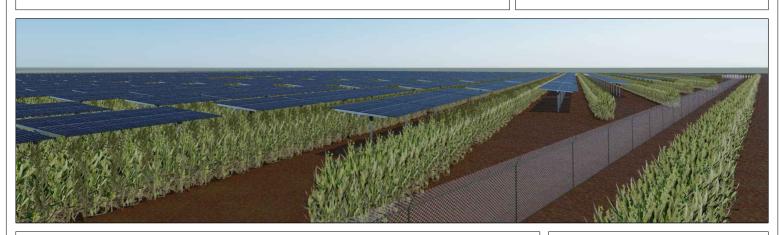




# PROGETTO PER LA REALIZZAZIONE E L'ESERCIZIO DI UN IMPIANTO AGRIVOLTAICO AVENTE POTENZA P=44,715 MWp CIRCA E RELATIVE OPERE DI CONNESSIONE


# Nome impianto CER01 Comune di Cerignola, Regione Puglia

# PROGETTO DEFINITIVO

Codice pratica: **SVN6MM8** 

N° Elaborato:

**RT10** 



# **ELABORATO:**

# **VALUTAZIONE DELLA PRODUCIBILITA'**

# **COMMITTENTE:**

Sole Verde s.a.s. della Praetorian s.r.l. via Walter Von Vogelweide n°8 39100 Bolzano (BZ) p.iva: 03124450218

### PROGETTISTI:

Ing. Alessandro la Grasta







### PROGETTAZIONE:



LT SERVICE s.r.l. via Trieste n°30, 70056 Molfetta (BA) tel: 0803346537 pec: studiotecnicolt@pec.it

File: SVN6MM8\_DocumentazioneSpecialistica\_39.pdf

Folder: SVN6MM8 DocumentazioneSpecialistica.zip

| 00   | 05/01/2022 |       |         |           | PRIMA EMISSIONE       |
|------|------------|-------|---------|-----------|-----------------------|
| REV. | DATA       | SCALA | FORMATO | NOME FILE | DESCRIZIONE REVISIONE |



# **INDICE**

| 1. | PREN   | ЛESSA                                                              | 2  |
|----|--------|--------------------------------------------------------------------|----|
|    | 1.1.   | DESCRIZIONE DEGLI ELEMENTI TECNICI DELL'IMPIANTO AGRO-FOTOVOLTAICO | 2  |
|    |        | INFO E CONTATTI                                                    |    |
| 2. | ENE    | RGIA ELETTRICA DA FONTE SOLARE                                     | 5  |
|    | 2.1.   | SOFTWARE UTILIZZATO                                                | 10 |
|    | 2.2.   | RADIAZIONE SOLARE MEDIA ANNUA SU BASE GIORNALIERA                  | 10 |
|    | 2.3.   | ANALISI DI PRODUCIBILITA' DELL'IMPIANTO FOTOVOLTAICO               | 11 |
|    | CRITER | O DI VERIFICA ELETTRICA                                            | 12 |
|    | 2.4.   | RISPARMIO DI COMBUSTIBILE                                          | 21 |
|    | 2.5.   | EMISSIONE DI SOSTANZE NOCIVE EVITATE IN ATMOSFERA                  | 21 |



# 1. PREMESSA

# 1.1. DESCRIZIONE DEGLI ELEMENTI TECNICI DELL'IMPIANTO AGRO-FOTOVOLTAICO

Il richiedente propone la realizzazione e gestione di un impianto Agro-Fotovoltaico, denominato "CER01", che si pone l'obiettivo di combinare sulla medesima superficie agricola la produzione di energia elettrica da fonti rinnovabili con l'attività agronomica consistente nella realizzazione di un oliveto super intensivo tra i filari di moduli fotovoltaici.

Il progetto prevede:

- la realizzazione dell'impianto fotovoltaico;
- la realizzazione della sottostazione elettrica di trasformazione e consegna dell'energia prodotta;
- la realizzazione delle opere di rete.

L'impianto fotovoltaico CER01 sarà ubicato nell'agro del **Comune di Cerignola (FG)** in località Acquarulo/Preti/Tressanti/PozzoTerraneo su una superficie recintata complessiva di circa 55,98 ha, prevalentemente pianeggiante, suddivisa in quattro blocchi aventi destinazione agricola "E" secondo il vigente piano urbanistico.

Più in dettaglio l'impianto si svilupperà su sei blocchi "A", "B", "C", "D", "E" ed "F" racchiusi in cerchio avente un raggio di circa 1,8 km, le cui caratteristiche dimensionali sono di seguito riepilogate:

|                            | CER01                                                             |      |       |      |      |      |       |  |  |  |  |
|----------------------------|-------------------------------------------------------------------|------|-------|------|------|------|-------|--|--|--|--|
|                            | TOTALE BLOCCO BLOCCO BLOCCO BLOCCO BLOCCO "A" "B" "C" "D" "E" "F" |      |       |      |      |      |       |  |  |  |  |
| POTENZA<br>TOTALE<br>[kWp] | 44715                                                             | 5068 | 13171 | 4724 | 4754 | 4350 | 12648 |  |  |  |  |



| NUMERO DI       | 77766 | 8814 | 22906 | 8216 | 8268 | 7566 | 21996 |
|-----------------|-------|------|-------|------|------|------|-------|
| MODULI          |       |      |       |      |      |      |       |
| POTENZA         | 575   | 575  | 575   | 575  | 575  | 575  | 575   |
| MODULO          |       |      |       |      |      |      |       |
| FOTOVOLT        |       |      |       |      |      |      |       |
| AICO [Wp]       |       |      |       |      |      |      |       |
| NUMERO DI       | 1401  | 169  | 407   | 145  | 152  | 127  | 401   |
| TRACKER         |       |      |       |      |      |      |       |
| DA 52           |       |      |       |      |      |      |       |
| MODULI          |       |      |       |      |      |      |       |
| NUMERO DI       | 189   | 1    | 67    | 26   | 14   | 37   | 44    |
| TRACKER         |       |      |       |      |      |      |       |
| DA 26<br>MODULI |       |      |       |      |      |      |       |
| NUMERO DI       | 8     | 1    | 2     | 1    | 1    | 1    | 2     |
| SUNWAY          | 0     | 1    | 2     | 1    | 1    | 1    | 2     |
| UNIT            |       |      |       |      |      |      |       |
| CONVERSIO       |       |      |       |      |      |      |       |
| N               |       |      |       |      |      |      |       |
| NUMERO DI       | 31    | 3    | 8     | 4    | 4    | 4    | 8     |
| INVERTER        |       |      |       |      |      |      |       |
| NUMERO          | 215   | 23   | 60    | 24   | 24   | 24   | 60    |
| SMART           |       |      |       |      |      |      |       |
| STRING          |       |      |       |      |      |      |       |
| вох             |       |      |       |      |      |      |       |

Tab. n°1 Caratteristiche dimensionali impianto fotovoltaico

Gli elementi tecnici inclusi nella presente relazione riguardano l'impianto fotovoltaico e la sottostazione elettrica ovvero:

# Impianto fotovoltaico

- Moduli fotovoltaici;
- Quadri di parallelo stringhe;
- > Inverter centralizzati su Power Skid;
- > Strutture di sostegno dei moduli (Tracker monoassiali);
- Cabine di Sezionamento/Smistamento MT;
- Cabine di Servizio;
- Trasformatore MT/BT;
- Cavidotti BT;
- > Cavidotti MT di collegamento alla Cabina di Smistamento e alla SSE;



- Quadro MT;
- Quadri BT;

## **Sottostazione Elettrica:**

- Piazzali e vie di transito;
- Edificio servizi;
- Quadro MT;
- Trasformatore MT/AT;
- Apparecchiature AT;
- Cavo AT sino allo stallo di consegna alla RTN
- Carpenteria metallica;

e più in dettaglio l'impianto si comporrà di:

- ✓ 77.766 moduli fotovoltaici in silicio monocristallino di potenza massima unitaria pari a 575 Wp, installati su tracker monoassiali da 2x26 e 1x26 moduli installati in modalità portrait;
- ✓ 2991 stringhe composte da 26 moduli da 575 Wp aventi tensione di stringa 1.121V @20°C, corrente di stringa 13,62;
- √ 215 cassette di parallelo stringhe;
- ✓ **31 inverter centralizzati**, su power-skid, di cui rispettivamente:
  - ✓ -n°1 aventi potenza di 832 kW @600V
  - ✓ -n°2 aventi potenza di 1662 kW @ 600V
  - √ -n°4 aventi potenza di 1802 kW @ 650V
  - ✓ -n°4 aventi potenza di 901 kW @ 650V
  - ✓ -n°2 aventi potenza di 957 kW @ 690V
  - ✓ -n°4 aventi potenza di 1774 kW @ 640V
  - ✓ -n°2 aventi potenza di 887 kW @ 640V
- ✓ 8 power-skid (conversion unit) dotate di sistema di trasformazione MT/BT, protezione MT e
  BT, di potenza complessiva compresa tra 1.700 e 2.700 kVA.
- ✓ 3 Cabine di Sezionamento/Smistamento in cui si convogliano l'energia prodotta dall'impianto fotovoltaico proveniente dai 13 sottocampi MT
- ✓ 3 Cabine di Servizio in cui saranno ubicati quadri BT / TLC, vano per l'alloggiamento del trasformatore per i servizi ausiliari, vano control room, vano deposito;



- ✓ 3 terne MT in cavo interrato attraverso cui l'energia prodotta viene trasferita alla SSE Utente;
- ✓ 1 Stazione Elettrica Utente in cui avviene la trasformazione di tensione da 30 kV a 150 kV e la consegna in AT a 150 kV.
- ✓ 1 terna AT in cavo interrato attraverso cui l'energia prodotta viene trasferita alla SE Terna;
- ✓ Gruppi di Misura (GdM) dell'energia prodotta, dotati di dai trasduttori di tensione (TV) e di corrente (TA).
- ✓ Apparecchiature elettriche di protezione e controllo in AT, MT, BT;

L'energia prodotta verrà convogliata, mediante tre terne di cavi MT 30 kV interrati su strada provinciale, strada interpoderale e terreni agricoli privati lungo i confini di proprietà, in modo da non interferire con le pratiche agricole, fino alla sottostazione utente 30/150 kV e da quest'ultima mediante una terna di cavi AT 150 kV collegata in antenna alla stazione elettrica di trasformazione 380/150 kV della RTN da collegare in entra-esce alla linea 380 kV "Foggia – Palo del Colle" (già autorizzata e voltura a TERNA), secondo quanto indicato nella STMG di Terna (Codice pratica P2020 – 02424).

|         | ARCHITETTURA IMPIANTO FOTOVOLTAICO CER01 |                     |                          |                    |                        |                            |                                          |                                         |  |  |  |
|---------|------------------------------------------|---------------------|--------------------------|--------------------|------------------------|----------------------------|------------------------------------------|-----------------------------------------|--|--|--|
| Shelter | modello<br>inverter<br>SUNWAY<br>TG      | Pn [kW]<br>inverter | Pn [kW]<br>trasformatore | Pn [kW]<br>Shelter | smart<br>string<br>box | n°di<br>stringhe<br>totali | Potenza<br>di picco<br>inverter<br>[kWp] | Potenza<br>di picco<br>shelter<br>[kWp] |  |  |  |
| A1      | TG1800<br>1500V<br>TE_600                | 1662                | 2500                     | 4156               | 9                      | 136                        | 2033                                     | 5068                                    |  |  |  |
|         | TG900<br>1500V<br>TE_600                 | 832                 |                          |                    | 5                      | 66                         | 987                                      |                                         |  |  |  |
|         | TG1800<br>1500V<br>TE_600                | 1662                | 1700                     |                    | 9                      | 137                        | 2048                                     |                                         |  |  |  |
| B1      | TG1800<br>1500V<br>TE_650                | 1802                | 2800                     | 5406               | 10                     | 147                        | 2198                                     | 6578                                    |  |  |  |
|         | TG900<br>1500V                           | 901                 |                          |                    | 5                      | 73                         | 1091                                     |                                         |  |  |  |



|    | TE_650          |      |      |      |    |      |      |      |
|----|-----------------|------|------|------|----|------|------|------|
|    |                 |      |      |      |    |      |      |      |
|    | TG1800          | 1802 | 2800 |      | 10 | 147  | 2198 |      |
|    | 1500V           |      |      |      |    |      |      |      |
|    | TE_650          | 004  |      |      |    |      | 1001 |      |
|    | TG900           | 901  |      |      | 5  | 73   | 1091 |      |
|    | 1500V           |      |      |      |    |      |      |      |
|    | TE_650          | 4000 | 2000 |      | 10 | 4.47 | 2422 | 6500 |
| B2 | TG1800          | 1802 | 2800 | 5406 | 10 | 147  | 2198 | 6593 |
|    | 1500V           |      |      |      |    |      |      |      |
|    | TE_650          | 004  |      |      | -  | 70   | 1001 |      |
|    | TG900           | 901  |      |      | 5  | 73   | 1091 |      |
|    | 1500V           |      |      |      |    |      |      |      |
|    | TE_650          | 1002 | 2000 |      | 10 | 1.47 | 2100 |      |
|    | TG1800          | 1802 | 2800 |      | 10 | 147  | 2198 |      |
|    | 1500V           |      |      |      |    |      |      |      |
|    | TE_650<br>TG900 | 901  |      |      | 5  | 74   | 1106 |      |
|    | 1500V           | 901  |      |      | )  | /4   | 1100 |      |
|    | TE_650          |      |      |      |    |      |      |      |
| C1 | TG900           | 957  | 2000 | 3828 | 6  | 79   | 1181 | 4724 |
| C1 | 1500V           | 337  | 2000 | 3020 |    | , ,  | 1101 | 7/27 |
|    | TE_690          |      |      |      |    |      |      |      |
|    | TG900           | 957  |      |      | 6  | 79   | 1181 |      |
|    | 1500V           | 337  |      |      |    | , ,  | 1101 |      |
|    | TE_690          |      |      |      |    |      |      |      |
|    | TG900           | 957  | 2000 |      | 6  | 79   | 1181 |      |
|    | 1500V           |      |      |      |    |      |      |      |
|    | TE_690          |      |      |      |    |      |      |      |
|    | TG900           | 957  |      |      | 6  | 79   | 1181 |      |
|    | 1500V           |      |      |      |    |      |      |      |
|    | TE_690          |      |      |      |    |      |      |      |
| D1 | TG900           | 957  | 2000 | 3828 | 6  | 79   | 1181 | 4754 |
|    | 1500V           |      |      |      |    |      |      |      |
|    | TE_690          |      |      |      |    |      |      |      |
|    | TG900           | 957  |      |      | 6  | 80   | 1196 |      |
|    | 1500V           |      |      |      |    |      |      |      |
|    | TE_690          |      |      |      |    |      |      |      |
|    | TG900           | 957  | 2000 |      | 6  | 79   | 1181 |      |
|    | 1500V           |      |      |      |    |      |      |      |
|    | TE_690          |      |      |      |    |      |      |      |
|    | TG900           | 957  |      |      | 6  | 80   | 1196 |      |
|    | 1500V           |      |      |      |    |      |      |      |
|    | TE_690          | 057  | 2022 | 2022 |    | 70   | 4004 | 4070 |
| E1 | TG900           | 957  | 2000 | 3828 | 6  | 73   | 1091 | 4350 |
|    | 1500V           |      |      |      |    |      |      |      |
|    | TE_690          | 0.57 |      |      | -  | 70   | 1001 |      |
|    | TG900           | 957  |      |      | 6  | 73   | 1091 |      |



|     | 15001  |      |      |       |     |      |      |       |
|-----|--------|------|------|-------|-----|------|------|-------|
|     | 1500V  |      |      |       |     |      |      |       |
|     | TE_690 |      |      |       | _   |      |      |       |
|     | TG900  | 957  | 2000 |       | 6   | 73   | 1091 |       |
|     | 1500V  |      |      |       |     |      |      |       |
|     | TE_690 |      |      |       |     |      |      |       |
|     | TG900  | 957  |      |       | 6   | 72   | 1076 |       |
|     | 1500V  |      |      |       |     |      |      |       |
|     | TE_690 |      |      |       |     |      |      |       |
| F1  | TG1800 | 1774 | 2700 | 5322  | 10  | 141  | 2108 | 6339  |
| • - | 1500V  |      |      |       |     |      |      |       |
|     | TE_640 |      |      |       |     |      |      |       |
|     | TG900  | 887  |      |       | 5   | 71   | 1061 |       |
|     | 1500V  |      |      |       |     |      |      |       |
|     | TE_640 |      |      |       |     |      |      |       |
|     | TG1800 | 1774 | 2700 |       | 10  | 141  | 2108 |       |
|     | 1500V  | 1//- | 2700 |       | 10  | 171  | 2100 |       |
|     | TE_640 |      |      |       |     |      |      |       |
|     | TG900  | 887  |      |       | 5   | 71   | 1061 |       |
|     | 1500V  | 007  |      |       | 5   | /1   | 1001 |       |
|     |        |      |      |       |     |      |      |       |
|     | TE_640 | 1771 | 2700 | F222  | 10  | 1.11 | 2400 | 6200  |
| F2  | TG1800 | 1774 | 2700 | 5322  | 10  | 141  | 2108 | 6309  |
|     | 1500V  |      |      |       |     |      |      |       |
|     | TE_640 |      |      |       |     |      |      |       |
|     | TG900  | 887  |      |       | 5   | 70   | 1047 |       |
|     | 1500V  |      |      |       |     |      |      |       |
|     | TE_640 |      |      |       |     |      |      |       |
|     | TG1800 | 1774 | 2700 |       | 10  | 141  | 2108 |       |
|     | 1500V  |      |      |       |     |      |      |       |
|     | TE_640 |      |      |       |     |      |      |       |
|     | TG900  | 887  |      |       | 5   | 70   | 1047 |       |
|     | 1500V  |      |      |       |     |      |      |       |
|     | TE_640 |      |      |       |     |      |      |       |
|     |        |      |      | 37096 | 215 | 2991 |      | 44715 |
|     |        |      |      |       |     |      |      |       |
|     |        |      |      |       |     |      |      |       |

Tab. n°2 Archittettura impianto fotovoltaico

L'elenco dei componenti e materiali utilizzati nel progetto definitivo dell'impianto fotovoltaico in oggetto sono tra i prodotti più efficienti e performanti attualmente disponibili nel mercato tuttavia, la rapida evoluzione del settore e della tecnologia potrebbe prospettare in sede di progettazione esecutiva nuove tecnologie che potrebbero essere utilizzate in sostituzione di quelle ivi elencate senza che questo però comporti alcuna variazione (maggiorazione) in termini



di potenza installata, superficie occupata da moduli fotovoltaici, vani tecnici e/o di conversione comunicati.

# 1.2. INFO E CONTATTI

La società promotrice dell'iniziativa e i progettisti incaricati sono rispettivamente:

# Sole Verde Sas della Praetorian Srl

39100 Bolzano (BZ)

Via Walter Von Vogelweide n.8

soleverdesasdellapraetoriansrl@legalmail.it

# Ing Alessandro la Grasta

70056 Molfetta (BA)

Via Zara 22

Email:info@ltservice,net

Pec: studiotecnicolt@pec.it

Tel: +39 3401706888

# Ing Luigi Tattoli

70056 Molfetta (BA)

Via Zara 22

Email:info@ltservice,net

Pec: studiotecnicolt@pec.it

Tel: +39 3403112803



# 2. ENERGIA ELETTRICA DA FONTE SOLARE

L'energia solare è considerata una fonte di energia rinnovabile e inesauribile nella scala del tempo dell'uomo.

Il Sole irraggia il nostro pianeta per una potenza di circa 180 mila miliardi di kilowatt e irraggia sull'orbita terrestre una energia pari a 1367 watt / m<sup>2</sup> ( 1,3 kW / m<sup>2</sup> ).

Complessivamente, giunge fino alla superficie terrestre circa 1 kilowatt di energia solare per metro quadro.

Il fotovoltaico è una tecnologia in grado di sfruttare l'energia solare per produrre energia elettrica che si basa sull'effetto fotovoltaico, in base al quale l'irradiazione solare viene convertita direttamente in elettricità.

L'effetto fotovoltaico si presenta nei materiali semiconduttori quando un elettrone passa dalla banda di valenza alla banda di conduzione per effetto dell'assorbimento dell'energia di un fotone proveniente dall'esterno.

Tale fenomeno si realizza in alcuni semiconduttori ed è il principio base di funzionamento delle celle fotovoltaiche che sono i componenti di base dei moduli fotovoltaici i quali possono essere assemblati per la realizzazione dei pannelli solari fotovoltaici.

I moduli fotovoltaici producono energia in corrente continua la quale per mezzo di inverter viene convertita in corrente alternata prima di essere immessa nella rete elettrica.



# 2.1. SOFTWARE UTILIZZATO

Il calcolo della producibilità è stato effettuato imputando il modello del sistema nel software di simulazione PVSyst vers. 6.67 del quale si riporta il report di calcolo in allegato alla presente relazione.

# 2.2. RADIAZIONE SOLARE MEDIA ANNUA SU BASE GIORNALIERA

Il sito di installazione appartiene ad un'area che dispone di dati climatici storici riportati in diversi database. Il database internazionale MeteoNorm rende disponibili i dati meteorologici per la località oggetto di intervento: l'attendibilità dei dati contenuti nel database è internazionalmente riconosciuta, possono quindi essere usati per l'elaborazione statistica per la stima di radiazione solare per il sito.

In particolare sono stati utilizzati i dati del database MeteoNorm 7.2, aggiornati rispetto a quelli utilizzati in progetto definitivo. Nelle immagini che seguono si riportano i dati meteorologici assunti per la presente simulazione.



# CER1\_575 Balances and main results

|           | GlobHor | DiffHor | T Amb | Globino | GlobEff | EArray | E_Grid | PR    |
|-----------|---------|---------|-------|---------|---------|--------|--------|-------|
|           | kWh/m²  | kWh/m²  | °C    | kWh/m²  | kWh/m²  | MWh    | MWh    |       |
| January   | 61.7    | 26.94   | 7.47  | 80.4    | 73.5    | 3155   | 3049   | 0.848 |
| February  | 77.0    | 33.07   | 7.82  | 99.2    | 91.7    | 3934   | 3814   | 0.860 |
| March     | 125.5   | 50.70   | 11.12 | 158.9   | 148.5   | 6293   | 6112   | 0.860 |
| April     | 159.1   | 69.93   | 13.97 | 199.2   | 186.5   | 7840   | 7623   | 0.856 |
| May       | 199.2   | 79.20   | 19.92 | 254.0   | 238.9   | 9844   | 9575   | 0.843 |
| June      | 208.7   | 82.94   | 23.92 | 262.1   | 246.7   | 10032  | 9762   | 0.833 |
| July      | 214.9   | 78.25   | 27.09 | 273.6   | 258.0   | 10383  | 10104  | 0.826 |
| August    | 189.9   | 73.64   | 26.58 | 242.2   | 227.8   | 9198   | 8946   | 0.826 |
| September | 142.1   | 51.17   | 21.05 | 182.4   | 171.3   | 7043   | 6846   | 0.839 |
| October   | 109.3   | 42.23   | 17.72 | 143.0   | 133.1   | 5537   | 5379   | 0.841 |
| November  | 63.1    | 28.96   | 12.38 | 81.6    | 74.7    | 3153   | 3050   | 0.836 |
| December  | 51.3    | 25.87   | 8.89  | 65.6    | 59.4    | 2533   | 2439   | 0.831 |
| Year      | 1601.8  | 642.89  | 16.55 | 2042.4  | 1909.9  | 78944  | 76698  | 0.840 |

| Legends: | GlobHor | Horizontal global irradiation  | GlobEff | Effective Global, corr. for IAM and shadings |
|----------|---------|--------------------------------|---------|----------------------------------------------|
|          | DiffHor | Horizontal diffuse irradiation | EArray  | Effective energy at the output of the array  |
|          | T Amb   | Ambient Temperature            | E_Grid  | Energy injected into grid                    |
|          | GlobInc | Global incident in coll. plane | PR      | Performance Ratio                            |

Figura 1 - Dati metereologici (fonte Meteonorm 7.2 agg. Marzo 2020)

# 2.3. ANALISI DI PRODUCIBILITA' DELL'IMPIANTO FOTOVOLTAICO

L'energia generata dipende:

- dal sito di installazione (latitudine, radiazione solare disponibile, temperatura, riflettanza della superficie antistante i moduli);
- dall'esposizione dei moduli: angolo di inclinazione (Tilt) e angolo di orientazione (Azimut);
- da eventuali ombreggiamenti o insudiciamenti del generatore fotovoltaico;
- dalle caratteristiche dei moduli: potenza nominale, coefficiente di temperatura, perdite per disaccoppiamento o mismatch;
- dalle caratteristiche del BOS (Balance Of System).

Il valore del BOS può essere stimato direttamente oppure come complemento all'unità del totale delle perdite, calcolate mediante la seguente formula:



# Totale perdite [%] = $[1 - (1 - a - b) \times (1 - c - d) \times (1 - e) \times (1 - f)] + g$

per i seguenti valori:

- Perdite per riflessione.
- perdite per ombreggiamento.
- Perdite per mismatching.
- Perdite per effetto della temperatura.
- Perdite nei circuiti in continua.
- Perdite negli inverter.
- Perdite nei circuiti in alternata.

# **CRITERIO DI VERIFICA ELETTRICA**

In corrispondenza dei valori minimi della temperatura di lavoro dei moduli (-6 °C) e dei valori massimi di lavoro degli stessi (60 °C) sono verificate le seguenti disuguaglianze:

# **TENSIONI MPPT**

Tensione nel punto di massima potenza, Vm, a 60 °C maggiore o uguale alla Tensione MPPT minima (Vmppt min).

Tensione nel punto di massima potenza, Vm, a -6 °C minore o uguale alla Tensione MPPT massima (Vmppt max).

I valori di MPPT rappresentano i valori minimo e massimo della finestra di tensione utile per la ricerca del punto di funzionamento alla massima potenza.

# **TENSIONE MASSIMA**

Tensione di circuito aperto, Voc, a -6 °C minore o uguale alla tensione massima di ingresso dell'inverter.

# **TENSIONE MASSIMA MODULO**

Tensione di circuito aperto, Voc, a -6 °C minore o uguale alla tensione massima di sistema del modulo.



## **CORRENTE MASSIMA**

Corrente massima (corto circuito) generata, Isc, minore o uguale alla corrente massima di ingresso dell'inverter.

#### **DIMENSIONAMENTO**

Dimensionamento compreso tra il 70 % e 120 %.

Per dimensionamento si intende il rapporto percentuale tra la potenza nominale dell'inverter e la potenza del generatore fotovoltaico ad esso collegato (nel caso di sottoimpianti MPPT, il dimensionamento è verificato per il sottoimpianto MPPT nel suo insieme).

La stima della producibilità dell'impianto è stata calcolata considerando la potenza dell'impianto fotovoltaico pari a 44,715 MWp composto da 77.766 moduli fotovoltaici in silicio monocristallino di potenza unitaria pari a 575 Wp, installati su tracker monoassiali in gruppi di 2x26 o 1x26 moduli in modalità portrait a comporre 2.991 stringhe, composte da 26 moduli da 575 Wp, aventi tensione di stringa 1.121V @20°C e corrente di stringa 13,62 A, collegate a n°31 inverter centralizzati di potenza complessiva compresa tra 832 e 1802 kVA.

Di seguito si riporta l'analisi di producibilità dell'impianto, utilizzando i dati meteorologici elaborati dal software PVSyst ricavati dal database Meteonorm, database riconosciuto a livello internazionale, da cui si evince che l'energia annua prodotta dall'impianto è pari a 76.698 MWh/annui che corrispondono ad una produzione di 1.715 kWh/kWp/anno con un performance ratio di 83,98%.

Il valore del performance ratio ottenuto deriva dall'aver considerato le varie perdite di energia che negli impianti fotovoltaici sono dovute essenzialmente a:

- -perdite di potenza dovute allo scostamento dalle condizioni STC
- -perdite per riflessione
- -perdite per mismatch
- -perdite per caduta di tensione sul tratto DC

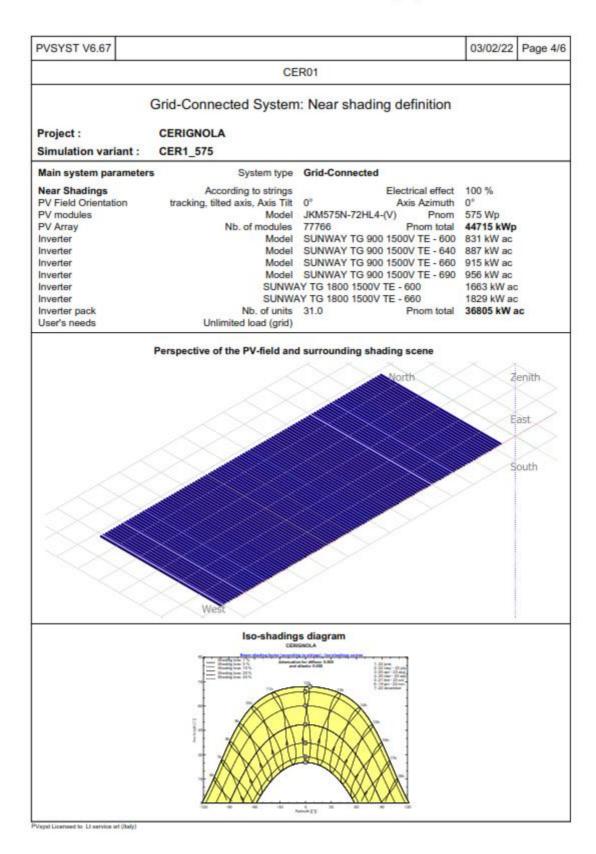


- -perdite nell'inverter
- -perdite per sporcizia
- -perdite per calo di efficienza annuale dei moduli fotovoltaici
- -perdite nel trasformatore di tensione (quando presente)
- -perdite per caduta di tensione nel tratto AC
- -perdite per ombreggiamento.



PVSYST V6.67 03/02/22 Page 1/6 CER01 Grid-Connected System: Simulation parameters **CERIGNOLA** Project: **Geographical Site** Cerignola\_Tressanti Country Italy Situation Latitude 41.37° N Longitude 15.89° E Time defined as Legal Time Time zone UT+1 Altitude 33 m Albedo 0.20 Meteo data: Cerignola\_Tressanti Meteonorm 7.1 (1964-2004), Sat=39% - Sintetico Simulation variant : CER1\_575 Simulation date 03/02/22 19h52 Simulation parameters Tracking plane, tilted Axis Axis Tilt 0° Axis Azimuth 0° Rotation Limitations Minimum Phi -45° Maximum Phi Backtracking strategy Tracker Spacing 9.50 m Collector width 4.50 m Left 0.02 m Right 0.02 m Inactive band Transposition Perez Diffuse Perez, Meteonorm Models used Horizon Free Horizon According to strings Electrical effect 100 % **Near Shadings** PV Arrays Characteristics (7 kinds of array defined) Si-mono Model JKM575N-72HL4-(V) Manufacturer Custom parameters definition JinkoSolar Sub-array "832" Number of PV modules In series 26 modules In parallel 66 strings Total number of PV modules Unit Nom. Power Nb. modules 1716 575 Wp At operating cond. 916 kWp (50°C) Array global power Nominal (STC) 987 kWp Array operating characteristics (50°C) U mpp 1020 V Impp 898 A Sub-array "887" Number of PV modules In series 26 modules In parallel 282 strings Total number of PV modules Nb. modules 7332 Unit Nom. Power 575 Wp Array global power Nominal (STC) 4216 kWp At operating cond. 3914 kWp (50°C) Array operating characteristics (50°C) Impp 3838 A U mpp 1020 V Sub-array "901" Number of PV modules 26 modules In parallel 293 strings In series Nb. modules 7618 Total number of PV modules Unit Nom. Power 575 Wp Array global power Nominal (STC) 4380 kWp At operating cond. 4067 kWp (50°C) Impp 3987 A Array operating characteristics (50°C) U mpp 1020 V Sub-array "957" Number of PV modules In series 26 modules In parallel 925 strings Total number of PV modules Nb. modules 24050 Unit Nom. Power 575 Wp Nominal (STC) 12839 kWp (50°C) 13829 kWp Array global power At operating cond. Array operating characteristics (50°C) U mpp 1020 V Impp 12588 A Sub-array "1662" Number of PV modules In parallel 273 strings In series 26 modules Total number of PV modules Nb. modules 7098 Unit Nom. Power 575 Wp 3789 kWp (50°C) Array global power Nominal (STC) 4081 kWp At operating cond. Array operating characteristics (50°C) U mpp 1020 V Impp 3715 A

PVsyst Licensed to Lt service srl (Italy)

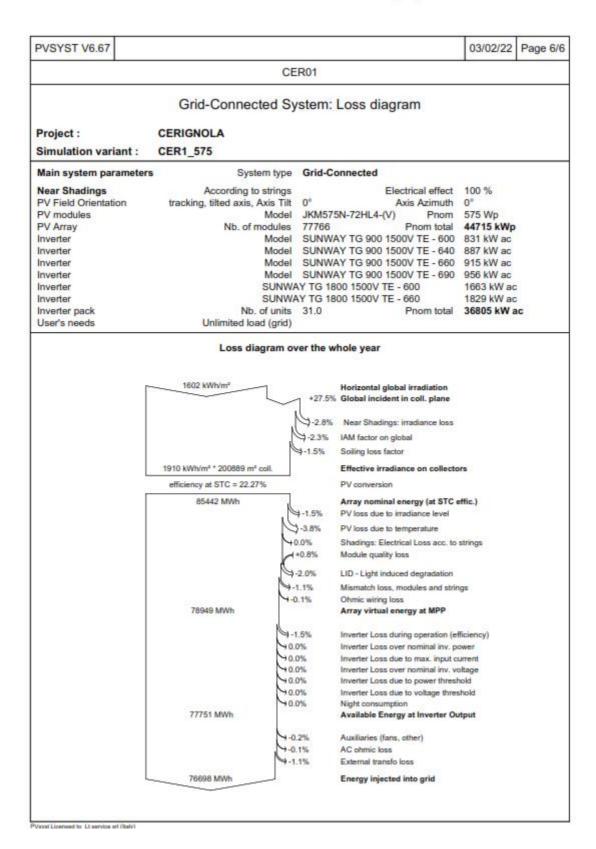



| PVSYST V6.67                                                                                                                                       |                                                                     |                                    |                                                               | 03/02/22                                       | Page 2 |
|----------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------|------------------------------------|---------------------------------------------------------------|------------------------------------------------|--------|
|                                                                                                                                                    | C                                                                   | ER01                               |                                                               |                                                |        |
| Grid-Co                                                                                                                                            | nnected System: Sim                                                 | nulation pa                        | rameters (contin                                              | ued)                                           |        |
| Sub-array "1774"<br>Number of PV modules<br>Total number of PV modules<br>Array global power<br>Array operating characteristic<br>Sub-array "1802" |                                                                     | 14664<br><b>8432 kWp</b><br>1020 V | In parallel<br>Unit Nom. Power<br>At operating cond.<br>I mpp | 564 strings<br>575 Wp<br>7828 kWp (9<br>7675 A | 50°C)  |
| Number of PV modules<br>Total number of PV modules<br>Array global power<br>Array operating characteristic                                         | In series<br>Nb. modules<br>Nominal (STC)<br>ss (50°C) U mpp        | 15288<br>8791 kWp                  | In parallel<br>Unit Nom. Power<br>At operating cond.<br>I mpp | 588 strings<br>575 Wp<br>8161 kWp (9<br>8002 A | 50°C)  |
| Total Arrays global power                                                                                                                          | Nominal (STC)<br>Module area                                        |                                    | Total                                                         | 77766 modu                                     | iles   |
| Sub-array "832" : Inverter<br>Custom parameters definit<br>Characteristics                                                                         | Model<br>tion Manufacturer<br>Operating Voltage                     | Santerno                           | G 900 1500V TE - 600<br>Unit Nom. Power                       | 831 kWac<br>935 kWac                           |        |
| Inverter pack                                                                                                                                      | Nb. of inverters                                                    | 1 units                            | Max. power (=>25°C)<br>Total Power                            |                                                |        |
| Sub-array "887": Inverter<br>Custom parameters defini<br>Characteristics                                                                           | Model<br>tion Manufacturer<br>Operating Voltage                     | Santerno                           | Unit Nom. Power<br>Max. power (=>25°C)                        | 887 kWac<br>998 kWac                           |        |
| Inverter pack                                                                                                                                      | Nb. of inverters                                                    | 4 units                            | Total Power                                                   | 3548 kWac                                      |        |
| Sub-array "901": Inverter<br>Custom parameters defini<br>Characteristics                                                                           | Model<br>tion Manufacturer<br>Operating Voltage                     | Santerno                           | Unit Nom. Power<br>Max. power (=>25°C)                        | 915 kWac<br>1028 kWac                          |        |
| Inverter pack                                                                                                                                      | Nb. of inverters                                                    |                                    | Total Power                                                   | 3660 kWac                                      |        |
| Sub-array "957": Inverter<br>Custom parameters defini<br>Characteristics<br>Inverter pack                                                          | Model<br>tion Manufacturer<br>Operating Voltage<br>Nb. of inverters | Santerno<br>980-1260 V             | Unit Nom. Power<br>Max. power (=>25°C)<br>Total Power         | 956 kWac<br>1076 kWac<br>11472 kWa             | C      |
| Sub-array "1662" : Inverter<br>Custom parameters defini<br>Characteristics                                                                         |                                                                     | Santerno                           | Unit Nom. Power<br>Max. power (=>25°C)                        | 1663 kWac                                      |        |
| Inverter pack                                                                                                                                      | Nb. of inverters                                                    | 2 units                            | Total Power                                                   |                                                |        |
| Sub-array "1774": Inverter<br>Custom parameters definit<br>Characteristics                                                                         | tion Manufacturer<br>Operating Voltage                              | Santerno<br>860-1260 V             | Unit Nom. Power<br>Max. power (=>25°C)                        | 1663 kWac<br>1871 kWac                         |        |
| Inverter pack                                                                                                                                      | Nb. of inverters                                                    |                                    | Total Power                                                   |                                                |        |
| Sub-array "1802": Inverter<br>Custom parameters definit<br>Characteristics                                                                         |                                                                     | Santerno                           | Unit Nom. Power                                               | 1829 kWac                                      |        |
| Inverter pack                                                                                                                                      | Nb. of inverters                                                    | 4 units                            | Max. power (=>25°C)<br>Total Power                            | 2058 kWac<br>7316 kWac                         |        |
| Total                                                                                                                                              | Nb. of inverters                                                    |                                    | T-t-I D-                                                      | 36805 kWa                                      | _      |



| PVSYST V6.67                                                                                                        |                                          |                                                |                                                                                                      |                                                                                                   | 03/02/22                                                                                                                          | Page 3/6        |
|---------------------------------------------------------------------------------------------------------------------|------------------------------------------|------------------------------------------------|------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|-----------------|
|                                                                                                                     |                                          | CE                                             | R01                                                                                                  |                                                                                                   |                                                                                                                                   |                 |
| Gr                                                                                                                  | rid-Connected System                     | : Sim                                          | ulation parame                                                                                       | ters (contin                                                                                      | ued)                                                                                                                              |                 |
| Array Soiling Losses<br>Thermal Loss factor<br>Wiring Ohmic Loss                                                    | Uc (<br>Ai<br>Ai<br>Ai<br>Ai<br>Ai<br>Ai | rray#3<br>rray#4<br>rray#5<br>rray#6<br>rray#7 | 29.0 W/m²K<br>2.4 mOhm<br>0.51 mOhm<br>0.54 mOhm<br>0.17 mOhm<br>0.58 mOhm<br>0.26 mOhm<br>0.41 mOhm | Loss Fraction | 0.0 W/m <sup>2</sup> K /<br>0.2 % at ST<br>0.2 % at ST<br>0.3 % at ST | c c c c c c c c |
| LID - Light Induced I<br>Module Quality Loss<br>Module Mismatch Lo<br>Strings Mismatch los<br>Incidence effect, ASI | Degradation<br>posses<br>posses          | Global                                         | 1 - bo (1/cos i - 1)                                                                                 | Loss Fraction<br>Loss Fraction<br>Loss Fraction<br>Loss Fraction<br>Loss Fraction<br>bo Param.    | 2.0 %<br>-0.8 %<br>1.0 % at MF<br>0.10 %                                                                                          |                 |
| System loss factors<br>AC loss, transfo to in<br>External transformer                                               | njection Grid V<br>Wires: 3x1500.0       | exion)                                         | 2000 m                                                                                               | Loss Fraction<br>Loss Fraction<br>Loss Fraction                                                   | 0.1 % at ST                                                                                                                       | С               |
| User's needs :                                                                                                      | Unlimited load                           | (grid)                                         |                                                                                                      |                                                                                                   |                                                                                                                                   |                 |
| Auxiliaries loss                                                                                                    | constant                                 | (rems)                                         | 42850 W from                                                                                         | Power thresh.                                                                                     | JAGU.U KW                                                                                                                         |                 |








PVSYST V6.67 03/02/22 Page 5/6 CER01 Grid-Connected System: Main results CERIGNOLA Project: Simulation variant: CER1 575 Main system parameters System type Grid-Connected Near Shadings According to strings Electrical effect 100 % tracking, tilted axis, Axis Tilt 0° PV Field Orientation Axis Azimuth 0° PV modules Model JKM575N-72HL4-(V) Pnom 575 Wp Pnom total 44715 kWp PV Array Nb. of modules 77766 Model SUNWAY TG 900 1500V TE - 600 831 kW ac Inverter Model SUNWAY TG 900 1500V TE - 640 887 kW ac Inverter Inverter Model SUNWAY TG 900 1500V TE - 660 915 kW ac Inverter Model SUNWAY TG 900 1500V TE - 690 956 kW ac SUNWAY TG 1800 1500V TE - 600 1663 kW ac Inverter SUNWAY TG 1800 1500V TE - 660 Inverter 1829 kW ac Inverter pack Nb. of units 31.0 Pnom total 36805 kW ac User's needs Unlimited load (grid) Main simulation results System Production Produced Energy 76698 MWh/year Specific prod. 1715 kWh/kWp/year Performance Ratio PR 83.98 % Normalized productions (per installed kWp): Nominal power 44715 kWp Performance Ratio PR 7.82 11.12 77.0 125.5 3814 6112 159.1 199.2 208.7 214.9 189.9 13.97 19.92 23.92 7840 9844 10002 69.93 79.20 199.2 196.5 7623 0.856 258.0 273.6 0.826 73.64 26.58 242.2 227.8 0.826 142:1 21.05 17.72 171.3 133.1 12.38 81.6 0.836 Horizontal diffuse irradiation EArray E\_Grid Effective energy at the output of the array Ambient Temperature Energy injected into grid

PVsyst Licensed to Lt service arl (Italy)





laGrasta&Tatto

2.4. RISPARMIO DI COMBUSTIBILE

L'impianto fotovoltaico consentirà un risparmio di combustibile quantificabile con il fattore di

conversione T.E.P./MWh, (tonnellate equivalenti di petrolio) necessarie per la produzione di 1

MWh di energia mediante combustibili fossili, pari a 0,000187 tep/kWh ovvero 14.342,53

tep/anno

Le T.E.P. risparmiate nell'arco di 20 anni saranno quinti pari a 430.275,78

2.5. **EMISSIONE DI SOSTANZE NOCIVE EVITATE IN ATMOSFERA** 

L'impianto fotovoltaico consentirà la riduzione di emissioni in atmosfera delle sostanze che hanno

effetto inquinante e di quelle che contribuiscono all'effetto serra.

Dato il parametro dell'energia prodotta, il contributo alle emissioni evitate in atmosfera di

sostanze nocive, può essere valorizzato come segue:

L'impianto fotovoltaico eviterà le seguenti emissioni inquinanti in atmosfera:

CO<sub>2</sub>: 462 t/GWh ovvero 35.434,47 t/anno

• **SO<sub>2</sub>:** 0,540 t/GWh ovvero **41,42 t/anno** 

• NO<sub>x</sub>: 0,490 t/GWh ovvero **37,58 t/anno** 

• Polveri: 0,014 t/GWh ovvero 1,07 t/anno



Molfetta 05/01/2022

I tecnici

Dott. Ing. Alessandro la Grasta

Dott. Ing. Luigi Tattoli