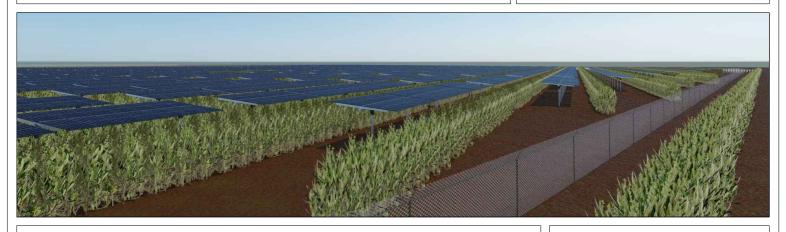


PROGETTO PER LA REALIZZAZIONE E L'ESERCIZIO DI UN IMPIANTO AGRIVOLTAICO AVENTE POTENZA P=44,715 MWp CIRCA E RELATIVE OPERE DI CONNESSIONE


Nome impianto CER01 Comune di Cerignola, Regione Puglia

PROGETTO DEFINITIVO

Codice pratica: SVN6MM8

N° Elaborato:

VA02

ELABORATO:

STUDIO DI IMPATTO AMBIENTALE SINTESI NON TECNICA

COMMITTENTE:

Sole Verde s.a.s. della Praetorian s.r.l. via Walter Von Vogelweide n°8 39100 Bolzano (BZ) p.iva: 03124450218

PROGETTISTI:

Ing. Alessandro la Grasta

Ing. Luigi Tattoli

Ing. Vincenzo Francesco Campanale

PROGETTAZIONE:

LT SERVICE s.r.l. via Trieste n°30, 70056 Molfetta (BA) tel: 0803346537 pec: studiotecnicolt@pec.it

File: SVN6MM8 StudioImpattoAmbientaleSintesiNonTecnica.pdf

Folder: SVN6MM8 StudioFattibilitaAmbientale.zip

00	05/01/2022				PRIMA EMISSIONE
REV.	DATA	SCALA	FORMATO	NOME FILE	DESCRIZIONE REVISIONE

Sommario

1		Prem	nessa		4
	1.1	1	Scop	oo e Criteri di Redazione dello Studio di Impatto Ambientale	10
2		Il Pro	getto)	. 11
	2.1	l	Desc	crizione del Progetto	11
		2.1.1	L	Descrizione impianto fotovoltaico e opere di connessione	21
	2.2	2	Funz	zionamento impianto, risorse naturali impiegate ed emissioni	33
		2.2.2	L	Fase di funzionamento	33
		2.2.2	2	Inquinamento ed emissioni	35
	2.3	3	Alte	rnative di Progetto	39
3		Quad	dro di	riferimento programmatico	. 40
	3.1	l	Inqu	adramento del sito	40
		3.1.2	L	Inquadramento territoriale	40
		3.1.2	2	Inquadramento catastale	42
	3.2	2	Ded	uzioni	46
4	,	Valu	tazior	ne Impatti cumulativi con altri progetti	. 47
	4.1	l	Intro	oduzione	47
	4.2	2	Impa	atto visivo cumulativo e impatto su patrimonio culturale e identitario	49
	4.3	3	Impa	atto acustico cumulativo	71
	4.4	1	Impa	atti cumulativi su suolo e sottosuolo	71
5		Quad	dro Ai	mbientale	. 76
	5.1	l	Stat	o attuale dell'ambiente e fattori ambientali	76
		5.1.1	L	Territorio, Suolo, Acqua, Aria e Clima	76
		5.1.2	2	Biodiversità	84
		5.1.3	3	Beni materiali, patrimonio culturale, patrimonio agroalimentare, paesaggio	85
		5.1.4	1	Popolazione e salute umana	87
		5.1.5	5	Interazione tra i vari fattori	89
		5.1.6	5	Stato dell'ambiente nello scenario senza il progetto	90
	5.2	2	Valu	tazione degli impatti	90
		5.2.2	L	Uso delle risorse naturali	92
		5.2.2	2	Emissioni inquinanti	93
		5.2.3	3	Rischi sulla salute, patrimonio culturale, paesaggio	95
		5.2.4	1	Effetto cumulo	97

	5.2.	5 Clima e cambiamenti climatici	98
	5.2.	6 Tecnologie e sostanze utilizzate	98
	5.3	Misure mitigative e compensative	99
	5.4	Beni culturali e elementi del paesaggio: misure mitigative e compensative	100
6	Con	clusioni	. 105
7	Ribli	iografia riferimenti e fonti	109

1 Premessa

Il progetto in questione, che prevede la realizzazione di un impianto solare fotovoltaico nel Comune di Cerignola (FG) in località Acquarulo/Preti/Tressanti/PozzoTerraneo su una superficie recintata complessiva di circa 55,98 Ha e con potenza di picco di 44,715 MWp, si inserisce nella strategia di decarbonizzazione nazionale ed in particolare della decarbonizzazione della Puglia attraverso la chiusura, entro il 2025, delle unità alimentate a carbone della centrale di Cerano (BR), la loro trasformazione in unità alimentate a gas naturale e la parziale sostituzione della capacità dismessa con unità da installare sul territorio regionale alimentate da fonti rinnovabili.

La realizzazione del progetto prevede l'abbinamento della produzione di energia elettrica "zero emissioni" da fonti rinnovabili attraverso un sistema integrato con l'attività agricola.

L'impianto "Agrofotovoltaico", denominato "CER01" si pone l'obiettivo di combinare sulla medesima superficie agricola la produzione di energia elettrica con l'attività agricola consistente nella realizzazione di un oliveto super intensivo tra i filari dei moduli fotovoltaici.

Il progetto prevede:

- la realizzazione dell'impianto fotovoltaico;
- la realizzazione della sottostazione elettrica di trasformazione e consegna dell'energia prodotta;
- la realizzazione delle opere di rete.

L'abbinamento dell'attività agricola e della produzione di energia elettrica da fonte rinnovabile nel medesimo luogo presenta un duplice beneficio in quanto, da un lato consentirà la produzione di energia rinnovabile in linea con la **Strategia Energetica Nazionale (SEN)**, che ambisce a raggiungere il 28% di rinnovabili sui consumi complessivi al 2030 rispetto al 17,5% del 2015 e rinnovabili elettriche al 55% al 2030 rispetto al 33,5% del 2015, dall'altro ostacolerà il consumo e la sottrazione di suolo agricolo in quanto verranno concesse a titolo gratuito, ad un'azienda agricola specializzata, tutte le superficie non occupate da impianti e relativi servizi per l'esercizio dell'attività agricola individuata.

In termini pratici la superficie destinata all'agricoltura sarà pari a 42,27 Ha su una superfice riflettente di 20,09 Ha pertanto, al netto di superfici destinate alla viabilità interna, la superfice destinata all'agricoltura sarà nettamente superiore a quella destinata a produzione di energia da fonte rinnovabile.

L'indice di copertura del suolo ne risulta contenuto nell'ordine del 36% calcolato sulla superficie utile di impianto. Le strutture saranno posizionate in maniera da poter rendere possibile il proseguo dello sfruttamento agricolo del terreno e ove questo non fosse praticabile di permettere l'inerbimento spontaneo dell'area.

Proponente del progetto è la Società **SOLE VERDE SAS DELLA PRAETORIAN S.r.I.** avente sede legale in Bolzano (BZ) alla Via Walter Von Vogelweide n. 8, che annovera le capacità tecniche, economiche e finanziarie per la realizzazione e gestione dell'impianto.

La superficie oggetto dell'intervento, è stata acquisita con contratti preliminari di diritto di superficie e compravendita dalla società proponente **SOLE VERDE SAS DELLA PRAETORIAN S.r.I.**

L'energia prodotta dall'impianto fotovoltaico verrà generata *senza ricorso a sussidi statali* grazie all'emergere di accordi di acquisto di energia solare o PPA (power purchase agreement), nell'ambito di progetti utility scale, tra il produttore e i grandi consumatori o tra il produttore e gli off-takers, a cui il presente progetto aderirà.

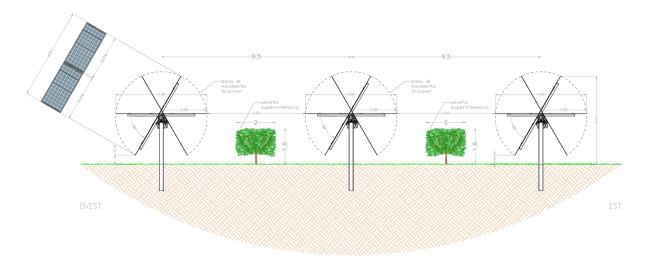


Figura 1-1: Schema sistema Agro-fotovoltaico

L'impianto fotovoltaico è, in generale, caratterizzato da aspetti favorevoli alcuni più evidenti altri meno, tra i quali:

- Non comporta emissioni inquinanti;
- Non comporta inquinamento acustico;
- La fonte solare è una risorsa inesauribile di energia pulita;
- È in linea con l'ambiziosa Strategia Energetica Nazionale di raggiungere il 55% di rinnovabili elettriche entro il 2050;
- È composto da tecnologie affidabili con vita utile superiore a 30 anni e con costi di gestione e manutenzione ridotti;
- Consente l'abbinamento a impianti di accumulo per la stabilizzazione dei parametri di rete e la gestione dei flussi di immissione di energia secondo le esigenze di rete;
- Se combinato ad attività agronomiche, come nel caso in progetto, ostacola il consumo e la sottrazione di suolo agricolo;
- Genera ricadute economiche positive in termine di gettito fiscale per l'erario, occupazione diretta ed indiretta sia per le fasi di costruzione che di gestione degli impianti, forniture e approvvigionamento dei materiali;
- Non appesantisce in alcun modo le finanze statali poiché si ricorrerà a sottoscrizione di PPA.

Nel progetto in oggetto, le ricadute economiche e agronomiche positive dell'intervento sono ulteriormente amplificate in quanto:

- a) il suolo verrà destinato alla produzione di energia elettrica e all'attività agricola con l'impianto di un oliveto super intensivo;
- b) è preciso intento del proponente agevolare l'uso dei suoli ai fini agricoli e pertanto l'imprenditore agricolo sarà messo in possesso dei terreni agricoli completamente a titolo gratuito.

L'impianto in oggetto ricade nell'ambito di intervento previsto nel Decreto Legislativo 29 dicembre 2003, n. 387 "Attuazione della direttiva 2001/77/CE relativa alla promozione dell'energia elettrica prodotta da fonti energetiche rinnovabili nel mercato interno dell'elettricità (G.U. n. 25 del 31 gennaio 2004 - s.o. n. 17)" e più in dettaglio *ricade nell'ambito di applicazione dell'art.* 12 del D.Lgs. 387/2003 laddove si asserisce che le opere per la realizzazione degli impianti alimentati da fonti rinnovabili, nonché le opere connesse e le infrastrutture indispensabili alla costruzione e all'esercizio degli stessi impianti, autorizzate ai sensi del comma 3, sono di pubblica utilità ed indifferibili ed urgenti nonché urbanisticamente compatibili con la destinazione agricola dei suoli come specificato nel medesimo art. 12 del D. LGS. 387/2003 al comma 7.

Sotto il profilo della tutela ambientale, il progetto ricade tra gli "impianti industriali non termici per la produzione di energia, vapore ed acqua calda" dell'Allegato IV co. 2 lett. b) del D.Lgs. 152/2006 così come sostituito dall'art.22 del D. Lgs. n°104/2017.

L'impianto in oggetto contribuisce al raggiungimento dei traguardi previsti nella Strategia Elettrica Nazionale che costituisce un importante tassello del futuro Piano Clima-Energia e definisce le misure per raggiungere i traguardi di crescita sostenibile e ambiente stabiliti nella COP21 contribuendo in particolare all'obiettivo della decarbonizzazione dell'economia e della lotta ai cambiamenti climatici, in quanto contribuisce non soltanto alla tutela dell'ambiente ma anche alla sicurezza – riducendo la dipendenza del sistema energetico – e all'economicità, favorendo la riduzione dei costi e della spesa.

L'abbinamento dell'attività agricola e della produzione di energia elettrica da fonte rinnovabile nel medesimo luogo presenta un molteplici benefici in quanto, da un lato consentirà la produzione di energia rinnovabile in linea con:

- a) la Strategia Energetica Nazionale (SEN), che ambisce a raggiungere il 28% di rinnovabili sui consumi complessivi al 2030 rispetto al 17,5% del 2015 e rinnovabili elettriche al 55% al 2030 rispetto al 33,5% del 2015,
- b) il Piano Nazionale di Ripresa e Resilienza (PNRR) che alla "Missione 2 Rivoluzione Vede e Transizione Ecologica" e più in dettaglio alla componente M2C2 "Energia Rinnovabile, Idrogeno, Rete e Mobilità" riporta: "...Per raggiungere la progressiva decarbonizzazione di tutti i settori, nella Componente 2 sono stati previsti interventi investimenti e riforme per incrementare decisamente la penetrazione di rinnovabili, tramite soluzioni decentralizzate e utility scale (incluse quelle innovative ed offshore) e rafforzamento delle reti (più smart e resilienti)", ".....Il settore agricolo è responsabile del 10 per cento delle emissioni di gas serra in Europa. Con questa iniziativa le tematiche di produzione agricola sostenibile e produzione energetica da fonti rinnovabili vengono affrontate in

maniera coordinata con l'obiettivo di diffondere impianti agro-voltaici di medie e grandi dimensioni. La misura di investimento nello specifico prevede: i) l'implementazione di sistemi ibridi agricoltura produzione di energia che non compromettano l'utilizzo dei terreni dedicati all'agricoltura, ma contribuiscano alla sostenibilità ambientale ed economica delle aziende coinvolte, anche potenzialmente valorizzando i bacini idrici tramite soluzioni galleggianti; ii) il monitoraggio delle realizzazioni e della loro efficacia, con la raccolta dei dati sia sugli impianti fotovoltaici sia su produzione..."

dall'altro

- c) ostacolerà il consumo e la sottrazione di suolo agricolo in quanto verranno concesse <u>a titolo</u> <u>gratuito</u>, ad un'azienda agricola specializzata, tutte le superficie non occupate da impianti e relativi servizi per l'esercizio dell'attività agricola individuata.
- d) migliorerà nettamente la produttività agricola dei terreni coinvolti sia in termini di reddito netto derivante dall'attività agricola sia in termini di manodopera necessaria.

I sistemi fotovoltaici, in generale, sono costituiti da moduli e telai per sostenere i pannelli e da infrastrutture elettriche. I pannelli sono montati su telai strutturali in acciaio o alluminio in maniera tale da permettere di assumere la giusta angolazione e orientazione rispetto al sole. I pannelli sono collegati con cavi elettrici e cablaggi fuori terra per trasportare l'elettricità generata in corrente continua (DC). La DC viene convertita in corrente alternata attraverso un inverter e la corrente passa quindi attraverso un trasformatore per aumentare la tensione in modo che corrisponda alla tensione della linea di collegamento.

L'impianto di produzione da fonte fotovoltaica sarà installato su tracker monoassiali E-O, avrà una potenza di picco di 44,715 MWp e ubicato, come già detto, nell'agro del Comune di Cerignola (FG) in località Acquarulo/Preti/Tressanti/PozzoTerraneo su una superficie recintata complessiva di circa 55,98 Ha.



Figura 1-2: Ubicazione dell'impianto agro-fotovoltaico su ortofoto

L'impianto fotovoltaico è globalmente suddiviso in n°6 campi, ciascuno delimitato da una propria recinzione, denominati blocco "A" - "B" - "C" - "D" - "E" ed "F".

CER01										
	TOTALE	BLOCCO "A"	BLOCCO "B"	BLOCCO "C"	BLOCCO "D"	BLOCCO "E"	BLOCCO "F"			
POTENZA TOTALE [kWp]	44715	5068	13171	4724	4754	4350	12648			
SUPERFICIE TERRENI OPZIONATI [ha]	81,52	8,20	20,27	9,60	10,80	7,74	24,91			
SUPERFICIE RECINTATA TOTALE [ha]	55,98	6,20	15,18	6,19	7,21	5,80	15,41			
SUPERFICIE NON RECINTATA DESTINATA A ULIVETO [ha]	20,54	1,12	2,86	2,50	3,53	1,36	9,17			
SUPERFICIE COLTIVATA ALL'INTERNO DELL'AREA RECINTATA [ha]	27,23	3,14	7,48	3,03	3,09	2,84	7,66			
SUPERFICIE TOTALE DESTINATA ALL'AGRICOLTURA [ha]	47,77	4,26	10,34	5,53	6,62	4,20	16,83			
SUPERFICIE DELL'IMPIANTO FV (superficie recintata - superficie coltivata) [ha]	28,74	3,06	7,70	3,16	4,12	2,96	7,75			
SUPERFICIE RIFLETTENTE [Ha]	20,09	2,28	5,92	2,12	2,14	1,95	5,68			

Tabella 1-1: Caratteristiche dimensionali impianto fotovoltaico

L'energia prodotta verrà convogliata, mediante tre terne di cavi MT 30 kV interrati su strada provinciale, strada interpoderale e terreni agricoli privati lungo i confini di proprietà, in modo da non interferire con le pratiche agricole, fino alla sottostazione utente 30/150 kV e da quest'ultima mediante una terna di cavi AT 150 kV collegata in antenna alla stazione elettrica di trasformazione 380/150 kV della RTN da collegare in entra-esce alla linea 380 kV "Foggia – Palo del Colle" (già autorizzata e voltura a TERNA), secondo quanto indicato nella STMG di Terna (Codice pratica P2020 – 02424).

La sottostazione utente ("SSEU") 30/150kV per la connessione in antenna a 150 kV sulla nuova stazione elettrica a 380/150 kV della RTN da collegare in entra-esce alla linea 380 kV "Foggia – Palo del Colle" (già autorizzata e voltura a TERNA), sarà condivisa con altri produttori così come richiesto da Terna al fine di razionalizzare le infrastrutture di rete.

Il presente documento costituisce *Relazione Sintetica* dello Studio di Impatto Ambientale (SIA) ai sensi dell'art. 22 del d.lgs. 03/04/06 n. 152 e s.m.i., redatto seguendo l'allegato VII del D.L.gs. 152/2006, così come recentemente modificato dal D.L.gs. 104/2017 e le indicazioni della Legge Regionale n. 11/2001 e s.m.i., relativo al progetto per la realizzazione di un impianto fotovoltaico di produzione di energia da fonte solare – di potenza pari a 44,715 MWp - sito in Comune di Cerignola (FG) in località Acquarulo/Preti/Tressanti/PozzoTerraneo.

1.1 Scopo e Criteri di Redazione dello Studio di Impatto Ambientale

Lo *Studio di Impatto di Impatto Ambientale* (SIA) è il documento, realizzato da un gruppo interdisciplinare, presentato dal proponente il progetto, contenente gli elementi tecnici necessari alla Valutazione di Impatto Ambientale (VIA) (procedura attraverso cui vengono valutati gli effetti che opere e interventi eserciteranno sull'ambiente ove andranno ad inserirsi). Il SIA non ha una struttura codificata: essa si adatta alle esigenze dei casi specifici. Lo studio si compone abitualmente di una descrizione dell'opera all'interno delle pianificazioni e programmazioni esistenti, di una stima e valutazione delle variazioni dall'opera sulle componenti dell'ambiente e sul sistema ambientale complessivo, dell'individuazione delle mitigazioni e dei sistemi di monitoraggio (oltre quelli eventualmente previsti in progetto) in grado di migliorare la compatibilità ambientale del progetto; lo studio deve prevedere, di regola, una sintesi redatta in linguaggio non tecnico che permetta al pubblico coinvolto di comprendere i termini della valutazione.

Il presente *Studio di Impatto Ambientale* è redatto con l'obiettivo di fornire all'Autorità Competente al rilascio del parere, gli elementi conoscitivi riguardanti il grado di coerenza del progetto con le disposizioni degli strumenti di pianificazione vigenti ed i potenziali impatti dell'opera.

2 Il Progetto

2.1 Descrizione del Progetto

Il richiedente propone la realizzazione e gestione di un impianto Agro-Fotovoltaico, denominato "CERO1", che si pone l'obiettivo di combinare sulla medesima superficie agricola la produzione di energia elettrica da fonti rinnovabili con l'attività agronomica consistente nell'impianto di un oliveto super intensivo tra i filari dei moduli fotovoltaici.

Il progetto prevede:

- la realizzazione dell'impianto fotovoltaico;
- la realizzazione della sottostazione elettrica di trasformazione e consegna dell'energia prodotta;
- la realizzazione delle opere di rete.

L'impianto di produzione da fonte fotovoltaica, installato su tracker monoassiali E-O, avrà una potenza di picco di 44,715 MWp e sarà ubicato nell'agro del Comune di Cerignola (FG) in località Acquarulo/Preti/Tressanti/PozzoTerraneo su una superficie recintata complessiva di circa 55,98 Ha.

Tale superficie è stata acquisita con contratti preliminari di diritto di superficie e compravendita dalla società proponente SOLE VERDE SAS DELLA PRAETORIAN S.r.l. avente sede legale in Bolzano (BZ) alla Via Walter Von Vogelweide n. 8.

L'abbinamento dell'attività agricola e della produzione di energia elettrica da fonte rinnovabile nel medesimo luogo presenta, come già detto, molteplici benefici in quanto, da un lato consentirà la produzione di energia rinnovabile in linea con:

- a) la Strategia Energetica Nazionale (SEN), che ambisce a raggiungere il 28% di rinnovabili sui consumi complessivi al 2030 rispetto al 17,5% del 2015 e rinnovabili elettriche al 55% al 2030 rispetto al 33,5% del 2015,
- b) il Piano Nazionale di Ripresa e Resilienza (PNRR) che alla "Missione 2 Rivoluzione Vede e Transizione Ecologica" e più in dettaglio alla componente M2C2 "Energia Rinnovabile, Idrogeno, Rete e Mobilità" riporta: "...Per raggiungere la progressiva decarbonizzazione di tutti i settori, nella Componente 2 sono stati previsti interventi investimenti e riforme per incrementare decisamente la penetrazione di rinnovabili, tramite soluzioni decentralizzate e utility scale (incluse quelle innovative ed offshore) e rafforzamento delle reti (più smart e resilienti)", ".....Il settore agricolo è responsabile del 10 per cento delle emissioni di gas serra in Europa. Con questa iniziativa le tematiche di produzione agricola sostenibile e produzione energetica da fonti rinnovabili vengono affrontate in maniera coordinata con l'obiettivo di diffondere impianti agro-voltaici di medie e grandi dimensioni. La misura di investimento nello specifico prevede: i) l'implementazione di sistemi ibridi agricoltura

produzione di energia che non compromettano l'utilizzo dei terreni dedicati all'agricoltura, ma contribuiscano alla sostenibilità ambientale ed economica delle aziende coinvolte, anche potenzialmente valorizzando i bacini idrici tramite soluzioni galleggianti; ii) il monitoraggio delle realizzazioni e della loro efficacia, con la raccolta dei dati sia sugli impianti fotovoltaici sia su produzione..."

c) Piano Nazionale Integrato Energia e Clima (PNIEC), nella tipologia elencata nell'Allegato I-bis alla Parte Seconda del D.Lgs.152/2006, al punto 1.2.1 denominata "Generazione di energia elettrica: impianti idroelettrici, geotermici, eolici e fotovoltaici (in terraferma e in mare), solari a concentrazione, produzione di energia dal mare e produzione di bioenergia da biomasse solide, bioliquidi, biogas, residui e rifiuti"

dall'altro

- d) ostacolerà il consumo e la sottrazione di suolo agricolo in quanto verranno concesse <u>a titolo</u> <u>gratuito</u>, ad un'azienda agricola specializzata, tutte le superficie non occupate da impianti e relativi servizi per l'esercizio dell'attività agricola individuata.
- e) migliorerà nettamente la produttività agricola dei terreni coinvolti sia in termini di reddito netto derivante dall'attività agricola sia in termini di manodopera necessaria.

In termini pratici la superficie destinata all'agricoltura sarà pari a 42,27 Ha su una superfice riflettente di 20,09 Ha pertanto, al netto di superfici destinate alla viabilità interna, la superfice destinata all'agricoltura sarà nettamente superiore a quella destinata a produzione di energia da fonte rinnovabile.

CER01										
	TOTALE	BLOCCO "A"	BLOCCO "B"	BLOCCO "C"	BLOCCO "D"	BLOCCO "E"	BLOCCO "F"			
POTENZA TOTALE [kWp]	44715	5068	13171	4724	4754	4350	12648			
SUPERFICIE TERRENI OPZIONATI [ha]	81,52	8,20	20,27	9,60	10,80	7,74	24,91			
SUPERFICIE RECINTATA TOTALE [ha]	55,98	6,20	15,18	6,19	7,21	5,80	15,41			
SUPERFICIE NON RECINTATA DESTINATA A ULIVETO [ha]	20,54	1,12	2,86	2,50	3,53	1,36	9,17			
SUPERFICIE COLTIVATA ALL'INTERNO DELL'AREA RECINTATA [ha]	27,23	3,14	7,48	3,03	3,09	2,84	7,66			
SUPERFICIE TOTALE DESTINATA ALL'AGRICOLTURA [ha]	47,77	4,26	10,34	5,53	6,62	4,20	16,83			
SUPERFICIE DELL'IMPIANTO FV (superficie recintata - superficie coltivata) [ha]	28,74	3,06	7,70	3,16	4,12	2,96	7,75			
SUPERFICIE RIFLETTENTE [Ha]	20,09	2,28	5,92	2,12	2,14	1,95	5,68			

Tabella 2-1: Superfici occupate dall'impianto agro-fotovoltaico

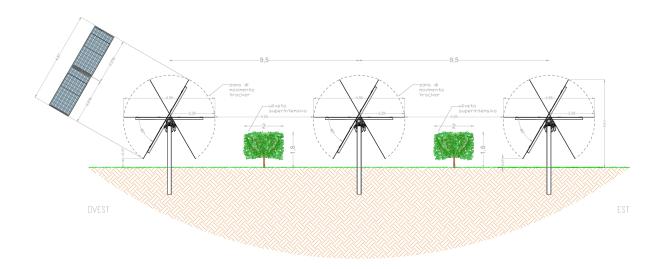


Figura 2-1: Sistema Agro-fotovoltaico

Tale abbinamento comporterà la produzione di energia elettrica rinnovabile e al contempo sfrutterebbe il suolo agricolo non occupato dagli impianti e relativi servizi.

Contestualmente allo studio del progetto, è stata individuata un'azienda agricola-vivaistica che avrà cura di sfruttare le predette superfici a titolo gratuito avendone cura nei coltivi e nello sgombro delle infestanti sotto la superficie riflettente.

L'impianto fotovoltaico è globalmente suddiviso in n°6 campi, ciascuno delimitato da una propria recinzione, denominati blocco "A" - "B" - "C" - "D" - "E" ed "F".

Figura 2-2: Impianto agro-fotovoltaico blocco "A" e "B" - aree destinate all'agricoltura e misure mitigative

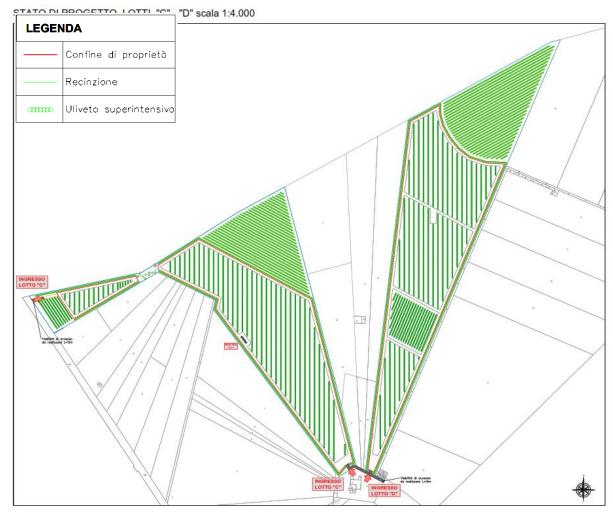
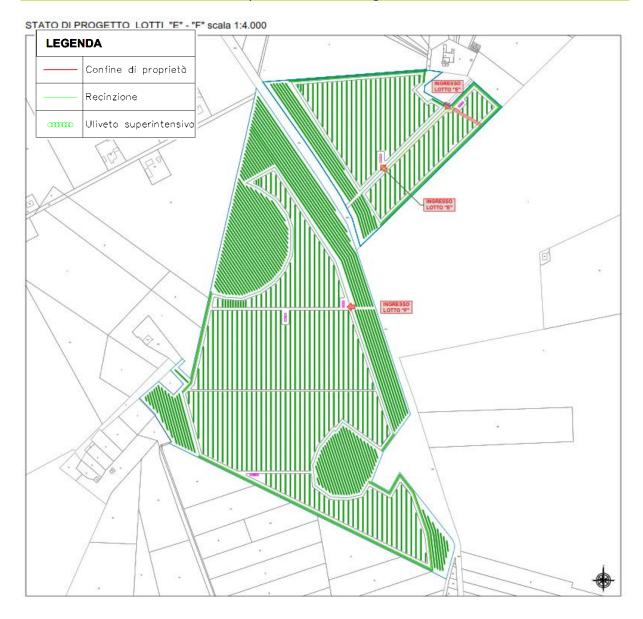



Figura 2-3: Impianto agro-fotovoltaico blocco "C" e "D"- aree destinate all'agricoltura e misure mitigative

Figura 2-4: Impianto agro-fotovoltaico blocco "E" e "F"- aree destinate all'agricoltura e misure mitigative

Al fine di mitigare l'impatto paesaggistico dei vari blocchi in cui è suddiviso l'impianto agrofotovoltaico, anche sulla base delle vigenti normative, è prevista la realizzazione di una fascia arborea lungo tutto il perimetro del sito dove sarà realizzato l'impianto fotovoltaico.

La fascia arborea sarà realizzata utilizzando una vera coltura (l'olivo) disposta in modo tale da poter essere gestita alla stessa maniera di un impianto arboreo intensivo tradizionale con un investimento rispettivamente di:

- n° 765 olivi nel blocchi "A"
- n° 1347 olivi nel blocchi "B"
- n° 1095 olivi nel blocco "C"
- n° 1076 olivi nel blocco "D"
- n° 519 olivi nel blocco "E"

n° 697 olivi nel blocco "F"

così come indicato nella tabella che segue:

CER01									
	TOTALE	BLOCCO "A"	BLOCCO "B"	BLOCCO "C"	BLOCCO "D"	BLOCCO "E"	BLOCCO "F"		
SUPERFICIE NON RECINTATA DESTINATA A ULIVETO [ha]	20,54	1,12	2,86	2,50	3,53	1,36	9,17		
SUPERFICIE COLTIVATA ALL'INTERNO DELL'AREA RECINTATA [ha]	27,23	3,14	7,48	3,03	3,09	2,84	7,66		
SUPERFICIE TOTALE DESTINATA ALL'AGRICOLTURA [ha]	47,77	4,26	10,34	5,53	6,62	4,20	16,83		
Numero di alberi all'interno della superficie recintata	36304	4186	9968	4044	4114	3780	10212		
Numero di alberi sulla superficie non recintata	27376	1498	3814	3330	4704	1814	12217		
Numero di alberi disposti parallelamente alla recinzione	5499	765	1347	1095	1076	519	697		
Numero di alberi totale	69180	6449	15129	8468	9894	6114	23126		

Tabella 2-2: Riepilogo superfici destinate all'agricoltura e numero di nuovi oliveti da impiantare

Figura 2-5: Rendering dell'impianto agro-fotovoltaico

In detti blocchi è previsto un investimento complessivo di 37.589 olivi, disposti al centro dell'area libera tra due tracker, con dimensioni delle chiome pari a circa 2 metri di altezza e 2 metri di larghezza, tali da consentire l'impiego di macchine potatrici e raccoglitrici che agiscano non sul singolo albero ma sulla parete produttiva consentendo di meccanizzare sino al 90% delle operazioni colturali (vedasi Figura 2-5).

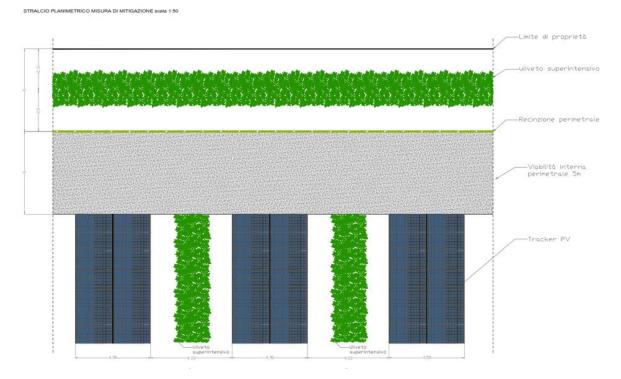


Figura 2-6: Esempio di sistemazione dell'oliveto super intensivo all'interno dell'impianto fotovoltaico

Fuori dalle aree recintate ben 20,54 ha resteranno destinati alla coltivazione di oliveto super intensivo con un ulteriore investimento di 27.376 olivi.

Complessivamente il progetto agro-fotovoltaico prevede un investimento complessivo di circa 69.179 olivi.

La coltivazione di oliveto super intensivo presenta una serie di caratteristiche tali da renderlo particolarmente adatto per essere coltivata tra le interfile dell'impianto fotovoltaico, come di seguito elencate (vedasi Figura 2-6):

- ridotte dimensioni della pianta (circa 2 m di altezza);
- disposizione in file strette creando una parete produttiva;
- gestione del suolo relativamente semplice e meccanizzazione elevata.

L'energia prodotta dall'impianto fotovoltaico verrà generata senza ricorso a sussidi statali grazie all'emergere di accordi di acquisto di energia solare o PPA (power purchase agreement), nell'ambito di progetti utility scale, tra il produttore e i grandi consumatori o tra il produttore e gli off-takers, a cui il presente progetto aderirà.

Oltre a questa dinamica, un impianto fotovoltaico è catalizzatore di ulteriori aspetti favorevoli alcuni più evidenti altri meno, ovvero:

- non comporta emissioni inquinanti;
- non comporta inquinamento acustico;
- la fonte solare è una risorsa inesauribile di energia pulita;

- è in linea con l'ambiziosa Strategia Energetica Nazionale di raggiungere il 55% di rinnovabili elettriche entro il 2050;
- è composto da tecnologie affidabili con vita utile superiore a 30 anni e con costi di gestione e manutenzione ridotti;
- consente l'abbinamento a impianti di accumulo per la stabilizzazione dei parametri di rete e la gestione dei flussi di immissione di energia secondo le esigenze di rete;
- se combinato ad attività agronomiche, come nel caso in progetto, ostacola il consumo e la sottrazione di suolo agricolo;
- genera ricadute economiche positive in termine di gettito fiscale per l'erario, occupazione diretta ed indiretta sia per le fasi di costruzione che di gestione degli impianti, forniture e approvvigionamento dei materiali;
- non appesantisce in alcun modo le finanze statali poiché si ricorrerà a sottoscrizione di PPA;
- e, nel progetto specifico, le ricadute economiche e agronomiche positive dell'intervento sono ulteriormente amplificate in quanto
 - a) il suolo verrà destinato alla produzione di energia elettrica e all'attività agricola di coltivazione di oliveto super intensivo;
 - è preciso intento del proponente agevolare l'uso dei suoli ai fini agricoli e pertanto l'imprenditore agricolo sarà messo in possesso dei terreni agricoli completamente a titolo gratuito.

L'impianto in oggetto ricade nell'ambito di intervento previsto nel Decreto Legislativo 29 dicembre 2003, n. 387 "Attuazione della direttiva 2001/77/CE relativa alla promozione dell'energia elettrica prodotta da fonti energetiche rinnovabili nel mercato interno dell'elettricità (G.U. n. 25 del 31 gennaio 2004 - s.o. n. 17)" e più in dettaglio ricade nell'ambito di applicazione dell'art. 12 del D.Lgs. 387/2003 laddove si asserisce che le opere per la realizzazione degli impianti alimentati da fonti rinnovabili, nonché le opere connesse e le infrastrutture indispensabili alla costruzione e all'esercizio degli stessi impianti, autorizzate ai sensi del comma 3, sono di pubblica utilità ed indifferibili ed urgenti nonché urbanisticamente compatibili con la destinazione agricola dei suoli come specificato nel medesimo art. 12 del D. LGS. 387/2003 al comma 7.

Inoltre, con la **L. 29 luglio 2021 n°108** Conversione in Legge **del Decreto Legge 31 maggio 2021 n°77** "Governance del Piano Nazionale di rilancio e resilienza e prime misure di rafforzamento delle strutture amministrative e di accelerazione e snellimento delle procedure" e più in dettaglio all'art.18.

Sotto il profilo della tutela ambientale, il progetto ricade tra gli "impianti fotovoltaici per la produzione di energia elettrica con potenza complessiva superiore a 10 MW." dell'Allegato II alla Parte Seconda del D.Lgs. 152/2006 così come sostituito dall'art.31 comma 6 del Decreto Legge n°77/2021.

L'impianto in oggetto contribuisce al raggiungimento dei traguardi previsti nella Strategia Elettrica Nazionale che costituisce un importante tassello del futuro Piano Clima-Energia e definisce le misure per

raggiungere i traguardi di crescita sostenibile e ambiente stabiliti nella COP21 contribuendo in particolare all'obiettivo della decarbonizzazione dell'economia e della lotta ai cambiamenti climatici, in quanto contribuisce non soltanto alla tutela dell'ambiente ma anche alla sicurezza – riducendo la dipendenza del sistema energetico – e all'economicità, favorendo la riduzione dei costi e della spesa.

2.1.1 Descrizione impianto fotovoltaico e opere di connessione

2.1.1.1 Inquadramento impianto fotovoltaico e opere di connessione

L'impianto fotovoltaico CER01 sarà ubicato nell'agro del Comune di Cerignola (FG) in località Acquarulo / Preti / Tressanti / Pozzo Terraneo su una superficie recintata complessiva di circa 55,98 Ha, su zona pianeggiante, suddiviso in n°6 campi aventi destinazione agricola "E" secondo il vigente piano urbanistico Comunale.

Le coordinate dei blocchi sono riportati nella seguente tabella:

Blocco	Lat	Lon	Elevazione m
A	41.382408	15.866732	17
В	41.380065	15.866329	21
С	41.368330	15.882126	22
D	41.369589	15.886297	27
E	41.363864	15.881901	28
F	41.359290	15.879692	31

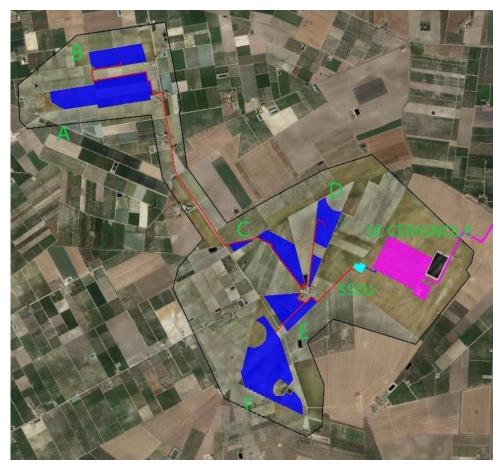


Figura 2-7: Inquadramento su ortofoto impianto agro-fotovoltaico

Di seguito si riportano i dati principali inerenti le aree agricole interessate dal progetto, nonché la mappa catastale con identificazione delle aree in oggetto:

Lotto	foglio	particella	Superficie [mq]	Superficie totale [mq]
A	77	41 89	2400 9680	82030
	78	201 83	9890 60060	
	77	92	6750	
		132	4668	120745
В	78	207 417 85	6590 36477 66260	120745
	78	79 346	80609 1326	81935
С	89	30 31 1 2 32 33 6	10748 14532 5547 44638 6798 394 10581	96010
	90	5	2772	
D	90	3	99950 8054	108004
	90 75	4505		
	90	28 10 17	22004 100 447	
E	89	4 19	21589 9498	77396
D E	89	43	11910	
	89	44	7343 1159	
	94	7 8 9 42	78 1003 86 6131	
	88	122 6	19546 11308	
F	93	7 8	123652 23919	249064
	88	5 17 159 158 161	10509 14102 18444 14745 4040	
	1	160	342	815184

Tabella 2-3: Informazioni aree oggetto di intervento

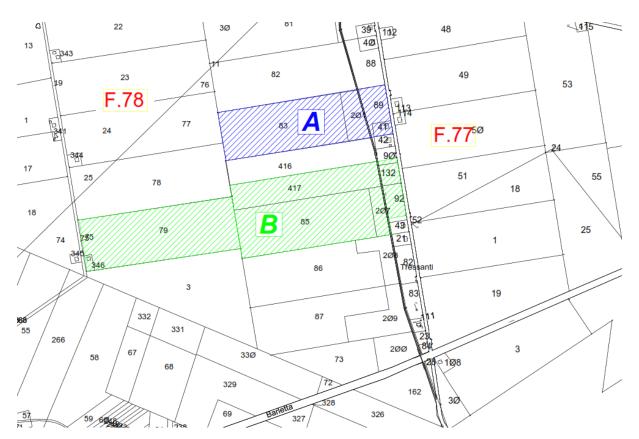


Figura 2-8: Blocchi "A" e "B" su stralcio catastale

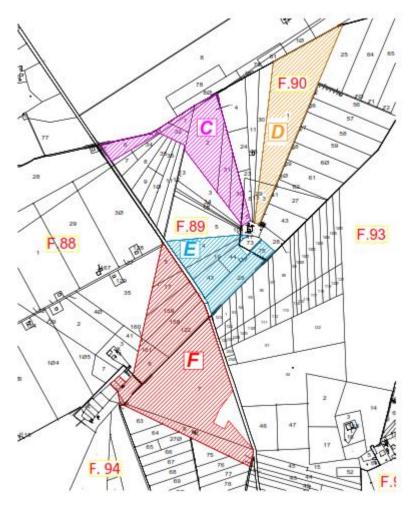


Figura 2-9: Blocchi "C", "D", "E", "F" su stralcio catastale

La sottostazione utente ("SSEU") 30/150kV per la connessione in antenna a 150 kV sulla nuova stazione elettrica a 380/150 kV della RTN da collegare in entra-esce alla linea 380 kV "Foggia – Palo del Colle" (già autorizzata e voltura a TERNA), sarà condivisa con altri produttori così come richiesto da Terna al fine di razionalizzare le infrastrutture di rete.

L'area ove sarà ubicata la Sottostazione Elettrica Utente "SSEU" si trova nel territorio del Comune di Cerignola e risulta identificata dai seguenti riferimenti cartografici:

- carta Tecnica Regionale in scala 1:5.000 N. 422032
- foglio catastale n°90 particella n° 82 e foglio catastale n°93 particella n°329-323 del Comune di Cerignola.

Essa è individuata dalle coordinate geografiche Lat. 41.366838° Nord e Long. 15.889168° Est. ed è posta a quota 31 m s.l.m.

La Sottostazione interessa un'area di circa 4550 mq, interamente recintata e accessibile principalmente tramite un cancello carrabile di 7,00 m di tipo scorrevole oltre a cancelli carrabili per ciascuna delle tre aree di competenza dei vari produttori aventi larghezza di 5,00 m..

L'accesso alla SST è previsto dalla S.P. 69 e da strada interpoderale mediante apposita servitù di passaggio.

Figura 2-10: Ortofoto ubicazione Sottostazione Utente

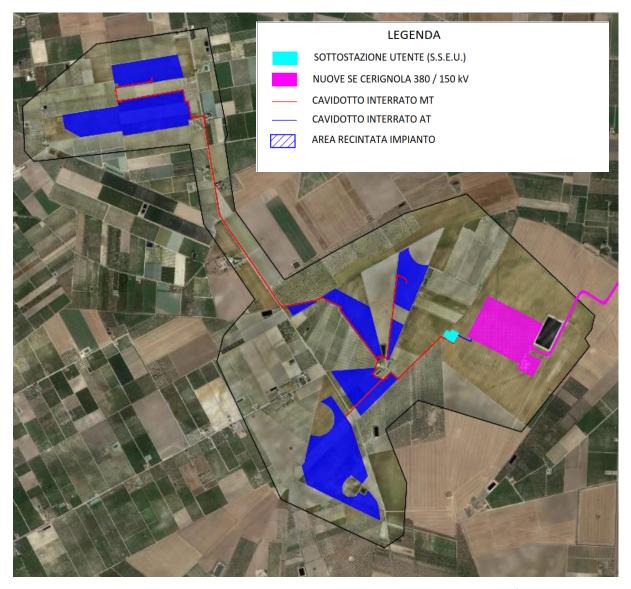


Figura 2-11: Inquadramento territoriale opere di connessione su ortofoto

Tutti i blocchi dell'impianto agri-fotovoltaico risultano facilmente accessibili dalla Strada Provinciale n° 69.

In particolare i blocchi "A", "B" ed "F" hanno accesso diretto dalla S.P. n°69 mentre per i restanti blocchi l'accesso avviene da questa viabilità principale da cui poi si dirama, verso le aree d'impianto, una strada interpoderale sulla quale si richiederà una servitù di passaggio che consenta un accesso più agevole ai suddetti mediante compattazione del terreno e posa di uno o più strati, laddove necessario, di pietrame a pezzatura variabile e brecciolino opportunamente costipati.

2.1.1.2 Criteri progettuali

Il percorso del cavidotto interrato MT di collegamento tra i vari blocchi dell'impianto fotovoltaico e la sottostazione elettrica di utente si svilupperà su una lunghezza complessiva di 5,24 km, di cui 2,05 km su percorsi esterni all'area d'impianto, e di questi solo 0,65 km interesseranno terreni agricoli privati ancorché

lungo il confine di proprietà in modo da interferire solo marginalmente con le pratiche agricole, e 3,19 km su percorsi interni all'area d'impianto.

Il percorso del cavidotto AT interrato di collegamento tra la sottostazione elettrica di utente e la nuova SE a 380/150 kV della RTN da collegare in entra-esce alla linea 380 kV "Foggia – Palo del Colle", si svilupperà su una lunghezza complessiva di circa 0,11 km su terreni agricoli.

Il tracciato è stato studiato in modo da avere il minor impatto possibile sul territorio cercando di utilizzare prevalentemente, superfici interne all'impianto, sedi stradali pubbliche esistenti, strade di fatto e/o strade interpoderali su terreni agricoli privati solo per brevi tratti.

L'elettrodotto percorrerà quasi completamente la viabilità pubblica, comunale e/o provinciale, utilizzando mezzi per la posa con limitate quantità di terreno da smaltire in quanto prevalentemente riutilizzabile per il rinterro, e qualche piccolo tratto di proprietà privata.

Esso interferirà con proprietà di alcuni Enti ed in particolare lungo il percorso con:

- la Strada Provinciale 69 in territorio di Cerignola (FG);

I criteri considerati ai fini della scelta delle aree su cui ubicare l'impianto agro-fotovoltaico sono di seguito riepilogati:

- aree pressoché pianeggianti al fine di facilitare l'installazione delle strutture di sostegno dei moduli fotovoltaici;
- 2) aree sufficientemente vicine tra loro in modo da agevolare l'imprenditore agricolo che si occuperà dell'oliveto super intensivo.
- aree non facilmente visibili da strade panoramiche e da viabilità principali e/o a maggior afflusso veicolare;
- 4) terreni agricoli di non eccessivo pregio;
- 5) aree sono sufficientemente distanti da centri abitati;
- 6) aree relativamente vicine alla rete di Terna;
- 7) aree che non presentano particolari criticità di accesso anche con mezzi pesanti, utilizzati per il trasporto dei componenti di impianto (in particolare trasformatori e cabine elettriche prefabbricate).

In merito alla tecnologia utilizzata si è fatto ricorso ai tracker mono-assiali in quanto da un lato permettono di sfruttare al meglio il suolo agricolo, con notevole potenza installata in rapporto alla superficie, dall'altro di sfruttare al meglio il "sole", poiché a parità di irraggiamento permette di avere una produzione di circa il 20% superiore rispetto agli stessi moduli fotovoltaici montati su strutture fisse;

Tutte le componenti dell'impianto sono progettate per un periodo di vita utile di almeno 30 anni, durante i quali alcune parti o componenti potranno essere sostituite.

Un impianto fotovoltaico è autorizzato all'esercizio, dalla Regione Puglia, per 20 anni pertanto al termine di tale periodo, è facoltà proponente richiede un'ulteriore proroga per l'esercizio.

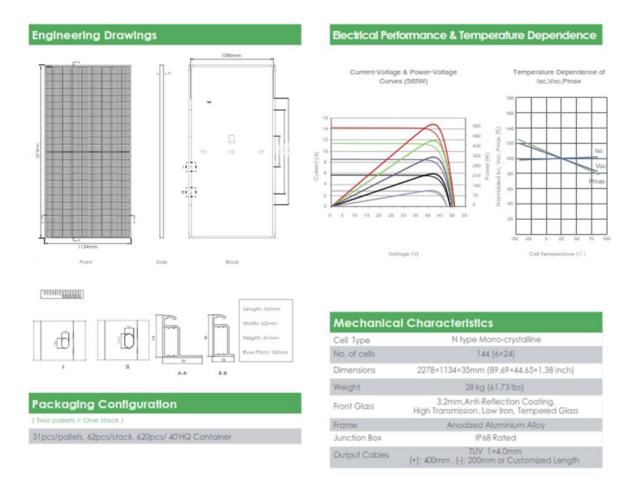
Qualora la società proponente, al termine dei 20 anni, non intenda chiedere una proroga all'esercizio, provvederà allo smantellamento dell'impianto e al ripristino delle condizioni preesistenti in tutta l'area impianto e delle opere di connessione.

2.1.1.3 Componenti principali

L'impianto di produzione da fonte fotovoltaica, installato su tracker monoassiali E-O, avrà una potenza di picco di 44,715 MWp e sarà ubicato nell'agro del Comune di Cerignola (FG) in località Acquarulo/Preti/Tressanti/PozzoTerraneo su una superficie recintata complessiva di circa 55,98 Ha.

Più in dettaglio l'impianto si svilupperà su sei blocchi "A", "B", "C", "D", "E" e "F" racchiusi in cerchio avente un raggio di circa 1,8 km, le cui caratteristiche dimensionali sono di seguito riepilogate:

CER01									
	TOTALE	BLOCCO "A"	BLOCCO "B"	BLOCCO "C"	BLOCCO "D"	BLOCCO "E"	BLOCCO "F"		
POTENZA TOTALE [kWp]	44715	5068	13171	4724	4754	4350	12648		
NUMERO DI MODULI	77766	8814	22906	8216	8268	7566	21996		
POTENZA MODULO FOTOVOLTAICO [Wp]	575	575	575	575	575	575	575		
NUMERO DI TRACKER DA 52 MODULI	1401	169	407	145	152	127	401		
NUMERO DI TRACKER DA 26 MODULI	189	1	67	26	14	37	44		
NUMERO DI SUNWAY UNIT CONVERSION	8	1	2	1	1	1	2		
NUMERO DI INVERTER	31	3	8	4	4	4	8		
SUPERFICIE TERRENI OPZIONATI [ha]	81,52	8,20	20,27	9,60	10,80	7,74	24,91		
SUPERFICIE RECINTATA TOTALE [ha]	55,98	6,20	15,18	6,19	7,21	5,80	15,41		
SUPERFICIE NON RECINTATA DESTINATA A ULIVETO [ha]	20,54	1,12	2,86	2,50	3,53	1,36	9,17		
SUPERFICIE COLTIVATA ALL'INTERNO DELL'AREA RECINTATA [ha]	27,23	3,14	7,48	3,03	3,09	2,84	7,66		
SUPERFICIE TOTALE DESTINATA ALL'AGRICOLTURA [ha]	47,77	4,26	10,34	5,53	6,62	4,20	16,83		
SUPERFICIE RIFLETTENTE [Ha]	20,09	2,28	5,92	2,12	2,14	1,95	5,68		


Tabella 2-4: Caratteristiche dimensionali impianto fotovoltaico

L'energia prodotta verrà convogliata, mediante tre terne di cavi MT 30 kV interrati su strada provinciale, strada interpoderale e terreni agricoli privati lungo i confini di proprietà, in modo da non interferire con le pratiche agricole, fino alla sottostazione utente 30/150 kV e da quest'ultima mediante una terna di cavi AT 150 kV collegata in antenna alla stazione elettrica di trasformazione 380/150 kV della RTN da collegare in entra-esce alla linea 380 kV "Foggia – Palo del Colle" (già autorizzata e voltura a TERNA), secondo quanto indicato nella STMG di Terna (Codice pratica P2020 – 02424).

2.1.1.4 Materiali e componenti dell'impianto fotovoltaico

1. MODULI FOTOVOLTAICI

Il generatore fotovoltaico sarà costituito da moduli del tipo monocristallino con una potenza unitaria pari a 575 Wp le cui caratteristiche tecniche riportate nel data-sheet di seguito allegato, per un totale di 77.766 moduli fotovoltaici.

Tabella 2-5: Data Sheet Modulo Fotovoltaico _1

I moduli avranno una struttura superiore in vetro e relativa cornice in alluminio e saranno dotati di scatola di giunzione con diodi di by-pass e connettori di collegamento.

Ogni modulo sarà corredato di diodi bypass per minimizzare la perdita di potenza per fenomeni di ombreggiamento.

2. CASSETTE DI PARALLELO STRINGHE

Gli impianti di generazione fotovoltaica di media e grande potenza sono costituiti da un numero elevato di stringhe pertanto, per ottimizzare la topologia di connessione e migliorare i sistemi di protezione e monitoraggio, la connessione in parallelo delle stringhe avverrà solitamente su più di un livello gerarchico, tipicamente un primo livello di parallelo tramite cassette di parallelo stringhe e un secondo livello di parallelo solitamente interne all'inverter centralizzato.

Figura 2-12: Quadro di parallelo stringhe

Le stringhe fotovoltaiche, derivanti dal collegamento dei moduli in serie, saranno da 26 moduli cadauna.

Il collegamento elettrico tra i vari moduli avverrà direttamente sotto le strutture con cavi esterni graffettati alle stesse.

2.1.1.5 Sistema ad inseguimento solare

Le stringhe saranno disposte secondo file parallele, in direzione longitudinale Nord-Sud e rotazione del modulo Est-Ovest, la cui distanza sarà calcolata in modo che, nella situazione di massima inclinazione dell'inseguitore, l'ombra di una fila non lambisca la fila adiacente.

Nei vari sotto campi che costituiscono il parco in oggetto, i tracker monoassiali lavorano singolarmente ed il movimento è regolato da un unico motore (anche del tipo autoalimentato) per tracker dotato di sistema backtracking per la massimizzazione della producibilità del sistema mentre i vari tracker comunicano tra loro con un sistema ibrido radio e RS485.

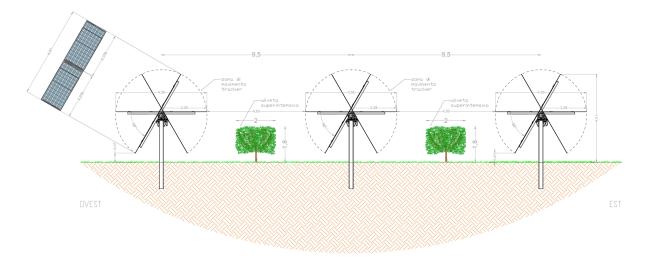


Figura 2-13: Schema impianto tracker nel sistema Agro-fotovoltaico

I tracker monoassiali sono costituiti da strutture a telaio metallico, in acciaio zincato a caldo, costituito da pali infissi nel terreno con una trave di collegamento superiore rotante sulla quale sono fissati i pannelli fotovoltaici.

L'installazione dei tracker avverrà tramite macchinari battipalo che infiggono i pali ad una profondità mediamente pari a 1,5 metri, riducendo le movimentazioni di terra e l'uso di cemento, anche se in fase esecutiva, in funzione delle caratteristiche del terreno e in funzione dei calcoli strutturali, tale profondità potrebbe subire modifiche in termini di profondità di infissione.

La tipologia di tracker scelti per l'impianto in oggetto è il modello SF7 della SOLTEC.

I componenti principali del sistema sono:

- pali infissi nel terreno;
- travi orizzontali;
- giunti di rotazione;
- elementi vari di collegamento travi;
- elementi di supporto e di fissaggio dei moduli fotovoltaici

Le strutture sono dimensionate per supportare i carichi trasmessi dai pannelli e le sollecitazioni esterne a cui sono sottoposti (vento, neve, etc.) secondo le normative vigenti (Eurocodici, Norme ISO, ecc).

Il range di rotazione del tracker oscilla tra + 60° e – 60° mediante controllo software che ottimizza durante l'arco della giornata l'orientamento e massimizza la producibilità.

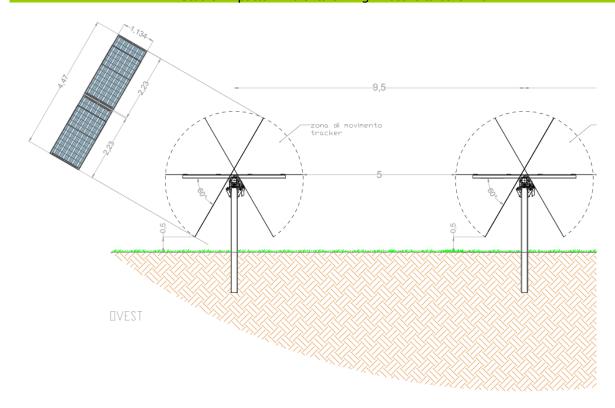


Figura 2-14: Angolo rotazione del tracker

Il software di gestione include anche il sistema di backtracking che, onde evitare ombreggiamenti reciproci tra file di tracker, interviene riducendo la radiazione solare sulla superficie dei moduli rispetto all'orientamento ottimale ma aumenta comunque l'efficienza complessiva del sistema in quanto per effetto della riduzione dell'ombreggiamento ottimizza la producibilità stessa e quindi l'output complessivo del sistema.

Il progetto prevede l'installazione di 1.639 tracker monoassiali di cui n°1444 da 52 moduli e n°195 da 26 moduli disposti in configurazione 2P, ovvero due moduli in verticale rispetto all'asse di rotazione della struttura) per un totale complessivo di 80.158 moduli fotovoltaici e quindi una potenza complessiva di generazione di 44.715 kWp.

CER01									
	TOTALE	BLOCCO "A"	BLOCCO "B"	BLOCCO "C"	BLOCCO "D"	BLOCCO "E"	BLOCCO "F"		
POTENZA TOTALE [kWp]	44715	5068	13171	4724	4754	4350	12648		
NUMERO DI MODULI	77766	8814	22906	8216	8268	7566	21996		
POTENZA MODULO FOTOVOLTAICO [Wp]	575	575	575	575	575	575	575		
NUMERO DI TRACKER DA 52 MODULI	1401	169	407	145	152	127	401		
NUMERO DI TRACKER DA 26 MODULI	189	1	67	26	14	37	44		

Tabella 2-6: Tabella riepilogativa tracker

Dal punto di visto strutturale i tracker resistono a velocità del vento fino a 55 km/h orientando la struttura nella posizione ottimale che minimizza le sollecitazioni dovute all'azione del vento.

L'installazione dei tracker avviene tramite macchinari battipalo che infiggono i pali ad una profondità mediamente pari a 1,5 metri, riducendo le movimentazioni di terra e l'uso di cemento, anche se in fase esecutiva, in funzione delle caratteristiche del terreno e in funzione dei calcoli strutturali, tale profondità potrebbe subire modifiche in termini di profondità di infissione.

2.2 Funzionamento impianto, risorse naturali impiegate ed emissioni

Viene riportata una descrizione delle caratteristiche della fase di funzionamento nel primo paragrafo, e quindi vengono indicati i fabbisogni, consumi, materiali e risorse naturali impiegate durante la fase di esercizio dell'impianto. Vengono poi descritti gli inquinamenti e le emissioni sia durante le fasi di costruzione che di esercizio.

Tali argomenti verranno poi ripresi nel paragrafo del Quadro Ambientale e verranno valutati sia in assenza che in presenza di misure mitigative.

2.2.1 Fase di funzionamento

Il fotovoltaico è una fonte di energia pulita e sfrutta una tecnologia che permette di produrre energia sfruttando la luce del sole. Si tratta di una fonte rinnovabile che permette di ridurre le emissioni inquinanti in atmosfera.

I pannelli fotovoltaici, costituiti dall'unione di più celle fotovoltaiche, convertono l'energia dei fotoni in elettricità. Il processo che crea questa "energia" viene chiamato effetto fotovoltaico, ovvero il meccanismo che, partendo dalla luce del sole, induce la "stimolazione" degli elettroni presenti nel silicio di cui è composta ogni cella solare.

Semplificando al massimo: quando un fotone colpisce la superficie della cella fotovoltaica, la sua energia viene trasferita agli elettroni presenti sulla cella in silicio. Questi elettroni vengono "eccitati" e iniziano a fluire nel circuito producendo corrente elettrica. Un pannello solare produce energia in Corrente Continua, in inglese: DC (Direct Current).

Sarà poi compito dell'inverter convertirla in Corrente Alternata per trasportarla ed utilizzarla nelle nostre reti di distribuzione. Gli edifici domestici e industriali, infatti, sono predisposti per il trasporto e l'utilizzo di corrente alternata.

Ogni sistema fotovoltaico è formato da almeno due componenti di base:

- I *moduli fotovoltaici*, composti da celle fotovoltaiche che trasformano la luce del sole in elettricità;
- uno o più inverter, apparecchi che convertono la corrente continua in corrente alternata. I
 moderni inverter integrano sistemi elettronici di gestione "intelligente" dell'energia e di

Comune di Cerignola - Regione Puglia

Studio Impatto Ambientale - Agri Fotovoltaico CER01

ottimizzazione della conversione. Possono inoltre integrare dei sistemi di stoccaggio

temporaneo dell'elettricità: batterie AGM, batterie al Litio o di altro tipo.

Oltre a queste componenti principali ci sono poi i quadri elettrici, i cavi solari, le strutture di supporto,

centraline, ecc..

L'impianto fotovoltaico è progettato per funzionare fino a 25 anni in piena produttività.

Dopo di che il l'impianto funzionerà all'80% di efficienza fino alla fine della sua durata.

La fase operativa del progetto richiederà una forza lavoro diretta molto piccola.

La manutenzione dovrà essere eseguita per tutta la durata di vita dell'impianto solare fotovoltaico. Le

attività tipiche durante la manutenzione includono il lavaggio dei pannelli solari e controllo della vegetazione. I

pannelli fotovoltaici saranno lavati manualmente con acqua demineralizzata e senza sostanze chimiche. Esiste

anche una potenziale creazione di lavoro indiretto e indotto, anche se molto piccolo legata all'aumentata

produzione di energia durante la fase operativa.

Dal puto di vista di consumo di energia, natura, materiali e risorse naturali, l'impianto provoca un

impatto positivo legato alla produzione di energia e dalla riduzione del consumo di CO2.

BIODIVERSITA', FLORA, FAUNA ED ECOSISTEMI

Per quanto riguarda la biodiversità, flora, fauna ed ecosistemi, si prevede che gli impatti più

significativi saranno nella fase di costruzione, mentre durante la fase operativa si prevedono impatti meno

significativi. Tuttavia, se verranno adottate le misure di mitigazione previste, tutti gli impatti possono essere

ridotti da bassi a molto bassi.

SUOLO

Per quanto riguarda il consumo di suolo, i terreni attualmente sono destinati all'agricoltura e dopo la

dismissione dell'impianto potranno essere di nuovo utilizzati per tale attività, ma con l'Innovativo PIANO AGRO-

FOTOVOLTAICO per un'integrazione virtuosa di Produzione di energia Rinnovabile e Agricoltura florovivaistica il

suolo verrà utilizzato per l'agricoltura anche durante l'esercizio dell'impianto.

ACQUE SUPERFICIALI E SOTTERRANEE

Non saranno presenti scarichi di nessun tipo, né di natura civile, né industriale. Le acque meteoriche,

nell'area oggetto di intervento, non necessitano ad oggi di regimazione di particolare importanza. Tale

situazione è giustificata dal fatto che la naturale permeabilità dei terreni superficiali fa sì che l'acqua nei primi spessori venga assorbita da questi e naturalmente eliminata attraverso percolazione ed evapotraspirazione. Questa condizione resterà sostanzialmente invariata durante la fase di funzionamento, in quanto l'acqua piovana scorrerà lungo i pannelli per poi ricadere sul terreno alla base di questi. Si ritiene quindi non necessario intervenire con fossetti o canalizzazione che comporterebbero al contrario una modifica al deflusso naturale oggi esistente e che l'impianto non va a modificare. Per quanto riguarda la componente acque, l'impianto, non prevedendo impermeabilizzazioni di nessun tipo, non comporta variazioni in relazione alla permeabilità e regimazione delle acque meteoriche.

Durante la fase di esercizio però ci sarà un consumo idrico legato all'attività di pulizia dei pannelli. A tale scopo sarà utilizzata solamente acqua senza detergenti. La stessa acqua utilizzata per la pulizia, poiché priva di detergenti, sarà usata per irrigare qualora necessario le aree erbacee e arbustive previste nel Progetto. L'approvvigionamento idrico per la pulizia dei pannelli verrà effettuato mediante autobotte.

2.2.2 Inquinamento ed emissioni

FASE DI COSTRUZIONE

La costruzione dell'impianto solare fotovoltaico richiederà circa 10 mesi. Durante il periodo di costruzione avremo un impatto socio-economico legato all'aumento alla creazione di posti di lavoro diretti e indiretti.

In termini di requisiti di competenze, sono considerate le seguenti categorie di occupazione:

- Manodopera altamente qualificata o qualificata come ingegneri, personale tecnico e progetto i manager costituiranno circa il 30% della forza lavoro;
- In genere, il personale semi-qualificato è tenuto ad utilizzare macchinari e così sarà costituiscono circa il 10% dei dipendenti;
- Mentre il resto sarà costituito da personale di costruzione e sicurezza poco qualificato costituiscono circa il 60% della forza lavoro. È probabile che la forza lavoro poco qualificata potrebbe essere locale.

Si stima che una media di 6 veicoli opereranno in loco durante la consegna del materiale e durante la fase di costruzione del progetto. Carichi anomali non saranno trasportati al sito.

La costruzione dell'impianto solare fotovoltaico consisterà nelle seguenti attività:

- Lo scotico del terreno vegetale sarà effettuato all'interno dei siti per preparare il terreno all'installazione dell'impianto fotovoltaico;
- Il terriccio sarà immagazzinato di conseguenza e utilizzato nella rinaturalizzazione del sito;
- Il livellamento del terreno per garantire superfici piane;
- Costruzione della recinzione del sito attorno al confine del sito;
- Costruzione dei passi carrai e delle strade interne necessari;
- Lavori di scavo per trincee e fondazioni e per la posa di cavi;
- Stoccaggio di materiale di scavo;

- Preparazione della posa interna dei cavi sotterranei;
- Preparazione di fondazioni idonee per struttura di montaggio dell'impianto, zavorra o pile di fondazioni;
- Costruzione di strutture di montaggio PV;
- Installazione di cablaggi sotterranei interni, scatole combinatrici, sorveglianza del sito;
- Realizzazione di un locale/sala di controllo per ospitare le apparecchiature di controllo e quadri elettrici;
- Installazione di moduli fotovoltaici;
- Installazione di inverter e cabine inverter;
- collegamento alla rete: una singola linea collegherà il sito fotovoltaico con il punto di connessione della centrale elettrica.

RUMORE

Il rumore in questa fase deriverà da attività di movimentazione macchinari e normali operazioni di cantiere: verranno presi tutti gli accorgimenti necessari per minimizzare il rumore prodotto da tali attività, in particolare le macchine operatrici rispetteranno i limiti di emissione dettati dalla normativa vigente. Tali attività avranno comunque carattere temporaneo e localmente circoscritto.

TRAFFICO

Il traffico è legato alla fase di approvvigionamento dei materiali e degli autoveicoli dei lavoratori.

RIFIUTI

I rifiuti saranno dovuti a imballaggi e scarti di lavorazione (cavi, ferro, ecc); tutti i rifiuti prodotti saranno gestiti nel pieno rispetto delle normative vigenti, privilegiando, ove possibile, il recupero degli stessi. Saranno presenti anche rifiuti derivanti dagli scavi, seppur esigui.

ATMOSFERA

Le emissioni di polvere saranno legate alle grosse movimentazione di terra durante la fase di scotico e livellamento del terreno nonché durante gli scavi (per la posa dei cavi e per i pali della recinzione). Ci saranno anche emissioni in atmosfera per la presenza di mezzi di cantiere e per l'aumento del traffico derivante dai veicoli dei lavoratori.

FASE DI ESERCIZIO

RUMORE

Come sorgenti di rumore si censiscono anche gli inverter e i trasformatori alloggiati all'interno della cabina elettrica, seppur molto basse. Nessun contributo di emissioni acustiche derivanti dal traffico indotto, praticamente inesistente, legato solo ad interventi di manutenzione ordinaria del verde e straordinaria dell'impianto.

TRAFFICO

Il traffico indotto dalla presenza dell'impianto è praticamente inesistente, legato solo a interventi di manutenzione ordinaria del verde e straordinaria dell'impianto.

RIFIUTI

Gli unici rifiuti che saranno prodotti ordinariamente durante la fase d'esercizio dell'impianto fotovoltaico sono costituiti dagli sfalci provenienti dal taglio con mezzi meccanici delle erbe infestanti nate spontaneamente sul terreno.

ATMOSFERA

L'impianto fotovoltaico non genera emissioni in atmosfera; al contrario, la produzione di energia elettrica da fonte solare evita l'immissione in atmosfera di CO₂, se confrontata con un impianto alimentato a combustibili fossili di analoga potenza. Per produrre un chilowattora elettrico vengono infatti bruciati mediamente l'equivalente di 2,56 kWh sotto forma di combustibili fossili e di conseguenza emessi nell'aria circa 0,531 kg di anidride carbonica (fattore di emissione del mix elettrico italiano alla distribuzione). Si può dire quindi che ogni kWh prodotto dal sistema fotovoltaico evita l'emissione di 0,53 kg di anidride carbonica. Nessun contributo dalle emissioni in atmosfera derivanti dal traffico indotto, praticamente inesistente, legato solo ad interventi di manutenzione ordinaria del verde e straordinaria dell'impianto.

ELETTROMAGNETISMO

La principale sorgente di campi elettrici dell'impianto fotovoltaico in oggetto è situata in corrispondenza delle cabine elettriche, sia quelle della rete esistente, sia quella eventualmente da realizzare. Inoltre la distribuzione elettrica avviene in corrente continua (i moduli fotovoltaici infatti producono corrente continua), il che ha come effetto l'emissione di campi magnetici statici, del tutto simili al campo magnetico

terrestre, a cui si sommano, ma centinaia di volte più deboli di questo. I cavi di trasmissione sono anch'essi in corrente continua e sono in larga parte interrati. Nelle apparecchiature contenute nelle cabine elettriche si intensificano le altrimenti deboli o debolissime correnti provenienti dai moduli fotovoltaici. Gli inverter, che contengono al proprio interno un trasformatore, emettono campi magnetici a bassa frequenza. Occorre sottolineare che l'impianto fotovoltaico non richiede la permanenza in loco di personale addetto alla custodia o alla manutenzione, si prevedono pertanto solamente interventi manutentivi molto limitati nel tempo stimabili mediamente in due ore alla settimana.

EMISSIONI LUMINOSE

Lungo il perimetro del parco fotovoltaico, per questioni di sicurezza e protezione, si prevede la realizzazione di un impianto di illuminazione perimetrale, fissato sui paletti di sostegno della recinzione ad altezza di c.a. 4 m da terra, con tecnologia a bassissimo consumo a LED. Il sistema sarà normalmente spento e si accenderà solo in caso di intrusione, verrà così ridotto al minimo l'inquinamento luminoso prodotto dall'impianto.

2.3 Alternative di Progetto

L'ubicazione del progetto così come presentato nasce dalla disponibilità dei proprietari a destinare i terreni a tale finalità per la scarsa utilizzazione agro-economica dei terreni ma soprattutto per la sensibilità di poter raggiungere gli obbiettivi posti dalla UE in materia di clima ed energia per il 2020, il 2030 e il 2050.

E' previsto che, l'energia prodotta verrà convogliata, mediante tre terne di cavi MT 30 kV interrati su strada provinciale, strada interpoderale e terreni agricoli privati lungo i confini di proprietà, in modo da non interferire con le pratiche agricole, fino alla sottostazione utente 30/150 kV e da quest'ultima mediante una terna di cavi AT 150 kV collegata in antenna alla stazione elettrica di trasformazione 380/150 kV della RTN da collegare in entra-esce alla linea 380 kV "Foggia – Palo del Colle" (già autorizzata e voltura a TERNA), secondo quanto indicato nella STMG di Terna (Codice pratica P2020 – 02424).

Pertanto la scelta dell'uso dei terreni per la progettazione di un impianto fotovoltaico anziché eolico è stata coadiuvata per le ragioni su esposte.

Si è scelto inoltre di ottimizzare la produzione di energia rinnovabile minimizzando l'occupazione del suolo scegliendo la tecnologia ad inseguimento solare mono assiale, con dei costi iniziali maggiori ma dei vantaggi in termini di efficienza dell'impianto a parità di occupazione suolo.

Sicuramente in termini di emissioni e qualità dell'aria si può dire che il progetto ha degli impatti positivi, per le ragioni esposte e per quanto stabilito nell'ambito della pianificazione energetica dell'UE.

Inoltre, con l'innovativo PIANO AGRO-FOTOVOLTAICO presentato nella relativa relazione si opererà un'integrazione virtuosa TRA Produzione di energia Rinnovabile e Agricoltura Floro-vivaistica.

L'alternativa zero consentirebbe la prosecuzione delle consuete attività agricole sui terreni. In termini di occupazione suolo avremmo un impatto di consumo suolo della stessa entità, mentre per il paesaggio avremmo un minor impatto.

Sicuramente, però, in termini di clima e qualità dell'aria e anche del suolo e sottosuolo avremmo impatti maggiori in questo caso, per la mancata riduzione di emissione di CO_2 e per l'uso del suolo per attività agricole senza la possibilità di produrre contemporaneamente energia rinnovabile. Inoltre non ci sarà la creazione di posti di lavoro indiretti e diretti (anche se temporanei).

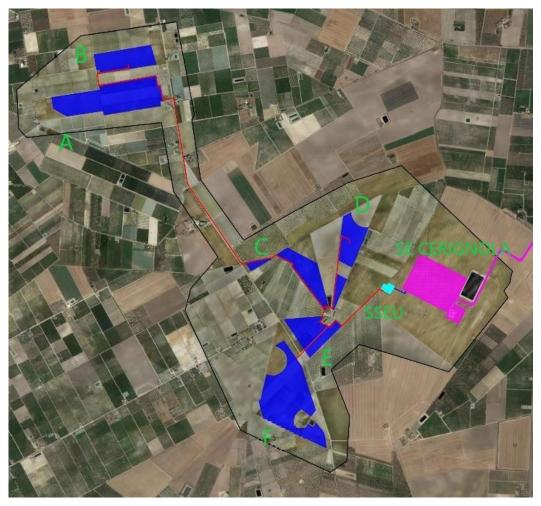
3 Quadro di riferimento programmatico

Al fine di verificare l'assenza di eventuali vincoli ostativi alla realizzazione l'impianto agri-fotovoltaico presenti all'interno delle aree oggetto di realizzazione dell'opera, dell'elettrodotto di collegamento alla sottostazione utente e della sottostazione elettrica di utente, si è analizzato il corretto inserimento dell'iniziativa nel contesto programmatico di riferimento inerente piani e programmi ambientali ed urbanistici di tipo comunale, regionale e nazionale.

L'attenta analisi del quadro normativo, pianificatorio e programmatico relativa all'intervento in progetto ha fornito esito pienamente positivo.

Non sono state infatti rilevate incompatibilità con gli strumenti della pianificazione regionale, provinciale e comunale, anzi è stata riscontrata una concordanza di intenti in termini di strategie dello Studio per la pianificazione energetica regionale, che a sua volta riprende indicazioni nazionali e comunitarie.

Le aree dell'impianto non risultano inoltre inserite in perimetrazioni di aree parco né in siti di importanza comunitaria o, comunque, di interesse per caratteristiche ambientali. Di seguito si riporta la trattazione degli strumenti pianificatori consultati per l'analisi dell'inquadramento programmatico.


3.1 Inquadramento del sito

3.1.1 Inquadramento territoriale

L'impianto agro-fotovoltaico CER01 sarà ubicato nell'agro del Comune di Cerignola (FG) in località Acquarulo / Preti / Tressanti / Pozzo Terraneo su una superficie recintata complessiva di circa 55,98 Ha avente destinazione agricola "E" secondo il vigente piano urbanistico.

Le coordinate dei due blocchi sono rispettivamente:

Blocco	Lat	Lon	Elevazione m
А	41.382408	15.866732	17
В	41.380065	15.866329	21
С	41.368330	15.882126	22
D	41.369589	15.886297	27
E	41.363864	15.881901	28
F	41.359290	15.879692	31

Figura 3-1: Inquadramento impianto agro-fotovoltaico e opere di connessione su ortofoto

3.1.2 Inquadramento catastale

L'area di intervento è censita interamente nel catasto del Comune di Cerignola, nello specifico di seguito si riportano i dati principali inerenti le aree agricole interessate dal progetto, nonché la mappa catastale con identificazione delle aree in oggetto:

Lotto	foglio	particella	Superficie [mq]	Superficie totale [mq]
Α	77	41 89	2400 9680	82030
	78	201 83	9890 60060	
В	77	92	6750	120745
		132	4668	
	78	207	6590	
		417	36477	
		85	66260	
	70	79	80609	81935
	78	346	1326	
C		30	10748	96010
		31	14532	
		1	5547	
	89	2	44638	
		32	6798	
		33	394	
		6	10581	
	90	5	2772	
		1	99950	
D	90	3	8054	108004
	90	75	4505	
	89	28	22004	77396
	- 03	10	100	
_	90	17	447	
E	89	4	21589	
		19	9498	
	89	43	11910	
F	94	44	7343	249064
		7	1159	
		8	78 1003	
		9		
			86 6131	
		42	6131 19546	
	88	122 6		
		7	11308	
	93	8	123652	
		5	23919 10509	
	88	17	14102	
		159	18444	
		158	14745	
		161	4040	
	1	160	342	

Tabella 3-1: Dati principali inerenti le aree agricole interessate dal progetto

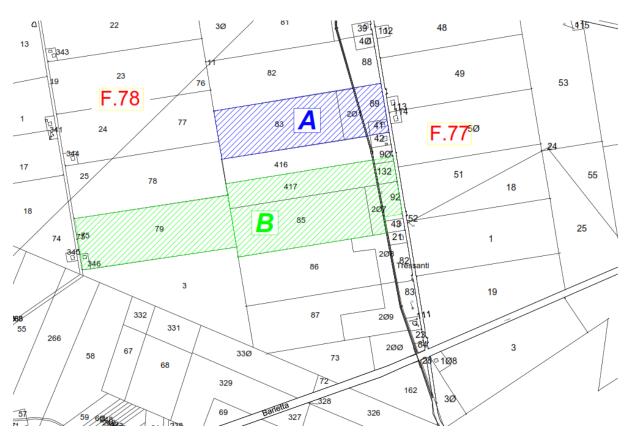


Figura 3-2: Blocco "A" e "B" su planimetria catastale

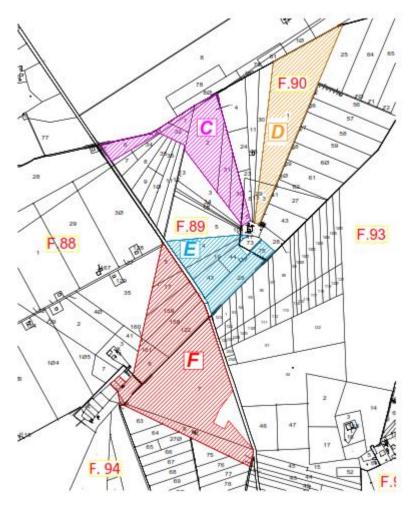


Figura 3-3: Blocco "C", "D", "E", "F" su planimetria catastale

La sottostazione utente ("SSEU") 30/150kV per la connessione in antenna a 150 kV sulla nuova stazione elettrica a 380/150 kV della RTN da collegare in entra-esce alla linea 380 kV "Foggia – Palo del Colle", sarà condivisa con altri produttori così come richiesto da Terna al fine di razionalizzare le infrastrutture di rete.

L'area ove sarà ubicata la Sottostazione Elettrica Utente "SSEU" si trova nel territorio del Comune di Cerignola e risulta identificata dai seguenti riferimenti cartografici:

- carta Tecnica Regionale in scala 1:5.000 N. 422032
- foglio catastale n°90 particella n° 82 e foglio catastale n°93 particella n°329-323 del Comune di Cerignola.

Essa è individuata dalle coordinate geografiche Lat. 41.366838° Nord e Long. 15.889168° Est. ed è posta a quota 31 m s.l.m.

La Sottostazione interessa un'area di circa 4550 mq, interamente recintata e accessibile principalmente tramite un cancello carrabile di 7,00 m di tipo scorrevole oltre a cancelli carrabili per ciascuna delle tre aree di competenza dei vari produttori aventi larghezza di 5,00 m..

L'accesso alla SST è previsto dalla S.P. 69 e da strada interpoderale mediante apposita servitù di passaggio.

Figura 3-4: Ubicazione Sottostazione Utente su ortofoto

3.2 Deduzioni

Dall'analisi dell'inquadramento delle aree oggetto di realizzazione dell'impianto agro-fotovoltaico all'interno dei piani, programmi e strumenti di pianificazione nazionale, regionale, provinciale, municipale e settoriale mostra che queste non intersecano aree soggette a vincoli che vietano/precludono o sono in contrasto con la realizzazione della suddetta opera e pertanto anche in conformità con quanto previsto dall'art. 12 co. 7 del D.lgs 387/2003, che prevede che la realizzazione di impianti per la produzione di energia da fonte rinnovabile è possibile anche in aree tipizzate come agricole dagli strumenti urbanistici comunali vigenti, si può ritenere che l'impianto agro-fotovoltaico che per sua natura combina sulla medesima superficie agricola la produzione di energia elettrica da fonti rinnovabili con l'attività agronomica non solo non interferisce ma si inserisce perfettamente con gli elementi costituenti il contesto rurale produttivo locale e pertanto, si può ritenere che l'intervento è compatibile con le aree in oggetto.

4 Valutazione Impatti cumulativi con altri progetti

4.1 Introduzione

La comprensione del concetto di "impatto cumulativo" è fornita dalla seguente definizione:

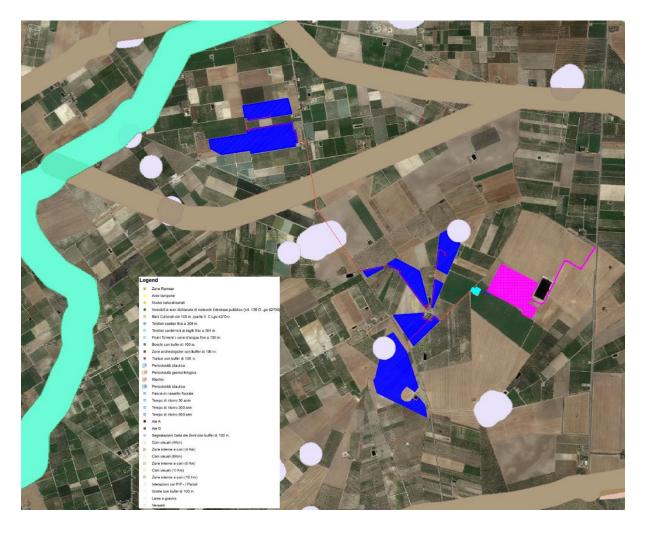
«Effetti riferiti alla progressiva degradazione ambientale derivante da una serie di attività in tutta un'area o regione, anche se ogni intervento, preso singolarmente, potrebbe non provocare impatti significativi» (A. Gilpin, 1995).

La Regione Puglia con la Delibera di Giunta Regionale n. 2122 del 23 ottobre 2012 ha dettato gli indirizzi per l'integrazione procedimentale e per la valutazione degli impatti cumulativi di impianti di produzione di energia da fonti rinnovabili nella Valutazione di Impatto Ambientale e con il successivo Atto Dirigenziale n. 162 del 6 giugno 2014, la Regione Puglia ha fornito gli indirizzi per addivenire alla definizione puntuale del dominio e metodi per calibrare gli impatti cumulativi degli impianti da fonti rinnovabili (FER) valido solo per eolici e fotovoltaici.

I criteri, espressi su cinque differenti temi (impatto visivo cumulativo; impatto su patrimonio culturale e identitario; tutela della biodiversità e degli ecosistemi; impatto acustico cumulativo; impatti cumulativi su suolo e sottosuolo) consentono di definire il dominio di impianti da considerare cumulativamente entro un assegnato areale o buffer, per la *definizione dell'impatto ambientale complessivo*.

Per "impatti cumulativi", quindi, si intendono quegli impatti (positivi o negativi, diretti o indiretti, a lungo e a breve termine) derivanti da una pluralità di attività all'interno di un'area o regione, ciascuno dei quali potrebbe non risultare significativo se considerato singolarmente.

Il "dominio" degli impianti che determinano gli impatti è definito da tre famiglie di impianti di produzione di energia elettrica da fonti rinnovabili:


- FER in A: impianti sottoposti ad AU ma non a verifica di VIA vengono considerati quelli già dotati di titolo autorizzativo alla costruzione ed esercizio;
- FER in B: impianti sottoposti a VIA o verifica di VIA vengono considerati quelli provvisti anche solo di titolo di compatibilità ambientale;
- FER in S: impianti per i quali non è richiesta neppure l'AU vengono considerati gli impianti per i quali sono già iniziati i lavori di realizzazione.

La D.G.R. 2122/2012 individua gli ambiti tematici che devono essere valutati e consideranti al fine di individuare gli impatti cumulativi che insistono su un dato territorio:

- Tema I: impatto visivo cumulativo;
- Tema II: impatto su patrimonio culturale e identitario;
- Tema III: tutela della biodiversità e degli ecosistemi;
- Tema IV: impatto acustico cumulativo
- Tema V: impatti cumulativi su suolo e sottosuolo (sotto temi: I consumo di suolo; II contesto agricolo e
 colture di pregio; III rischio idrogeologico).

Per ogni tema verrà individuata un'apposita AVIC (*Aree Vaste ai fini degli Impatti Cumulativi*), calcolata in base alla tipologia di impianto, al tipo di ricaduta che avrà sull'ambiente circostante e in relazione alle possibili interazioni con gli altri impianti presenti nell'area oggetto di valutazione, seguendo le indicazioni dell'Atto Dirigenziale n. 162 del 6 giugno 2014.

La Figura 4-1 inquadra l'impianto fotovoltaico in progetto rispetto alle installazioni attualmente già realizzate, cantierizzate e sottoposte a iter autorizzativo concluso positivamente, per fare ciò si è fatto riferimento all'anagrafe FER georeferenziato disponibile sul SIT Puglia.

Figura 4-1: Impianto in progetto (in Azzurro) e impianti fotovoltaici/eolici presenti nell'area oggetto di studio - Elaborazione in base ai dati presenti sul sito sit.puglia

4.2 Impatto visivo cumulativo e impatto su patrimonio culturale e identitario

All'interno del Piano Paesaggistico Territoriale Regionale della Puglia (Ambito 3 – Tavoliere), l'area oggetto del presente studio è caratterizzata dalla dominanza di superfici pianeggianti coltivate prevalentemente a seminativo che si spingono fino alle propaggini collinari dei Monti Dauni. La delimitazione dell'ambito si è attestata sui confini naturali rappresentati dal costone garganico, dalla catena montuosa appenninica, dalla linea di costa e dalla valle dell'Ofanto.

Questi confini morfologici rappresentano la linea di demarcazione tra il paesaggio del Tavoliere e quello degli ambiti limitrofi (Monti Dauni, Gargano e Ofanto).

Al fine di ottenere un inserimento paesaggistico non invasivo sul territorio risulta indispensabile valutare la disposizione, il disegno, i materiali e le eventuali opere di mitigazione adottate per l'impianto e per le aree a contorno. Viste le cospicue dimensioni del progetto oggetto dello Studio e la conformazione agricola dell'area in cui si inserisce, per mantenere la vocazione del territorio è stato deciso di dedicare gli spazi non adibiti a pannelli a produzioni agricole vivaistiche. Per quanto attiene la viabilità interpoderale esistente il progetto prevede di mantenere lo stato di fatto odierno.

Per mantenere la fertilità e la vocazione agricola dei suoli è previsto lo sviluppo di un progetto di compensazione, che accompagna il presente progetto, prevede il proseguo della messa a coltura dell'area.

Il progetto prevede di realizzare un impianto fotovoltaico da 44,715 MWp MWp consociato con l'attività agricola, nello specifico è previsto l'impianto e la coltivazione di uliveto intensivo tra i filari di moduli fotovoltaici (vedasi Figura 4-2) oltre a:

- Realizzare, a scopo di mitigazione, anche la fascia arborea perimetrale a 10 m delle strutture prevista per la mitigazione visiva dell'area di installazione dell'impianto;
- recintare tutta l'area interessata dalla realizzazione dell'impianto fotovoltaico;
- mantenere la restante superficie esterne al recintato alla coltivazione di seminativi.

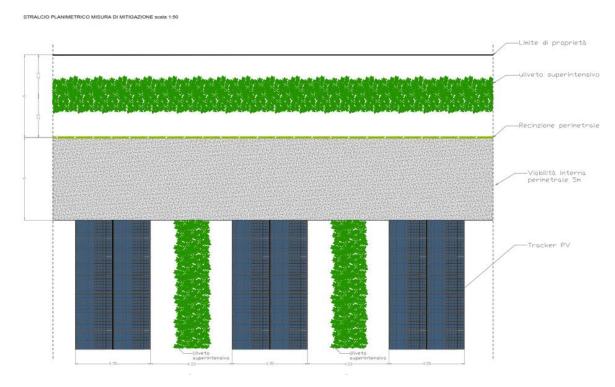


Figura 4-2: Schema esempio d'impianto uliveto super intensivo tra i pannelli fotovoltaici

Per le aree dove non sarà possibile proseguire con le attività agricole si prevede di conservare e, ove necessario, integrare l'inerbimento a prato permanente.

La manutenzione dell'inerbimento verrà effettuata con sfalcio periodico e rilascio in loco del materiale falciato che permetterà di ridurre al minimo il rischio di erosione e lisciviazione dell'azoto al suolo e contribuirà al mantenimento della fertilità con apporti continui di sostanza organica al terreno. Il tappeto erboso che si intende realizzare sarà un prato essenzialmente rustico con la finalità principale di preservare le caratteristiche agronomiche del suolo e la sua fertilità.

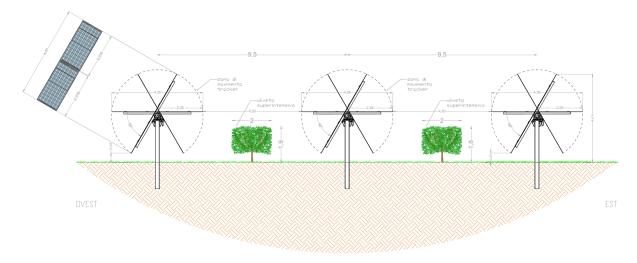


Figura 4-3: Schema d'impianto dell'ulivo super intensivo tra i pannelli fotovoltaico – vista in sezione

In termini pratici, la superficie destinata all'agricoltura sarà pari a 47,77 Ha su una superfice riflettente di 20,09 Ha pertanto, al netto di superfici destinate alla viabilità interna, la superfice destinata all'agricoltura sarà nettamente superiore a quella destinata a produzione di energia da fonte rinnovabile.

Per un ulteriore approfondimento si rimanda alla relazione sulle opere di mitigazione e compensazione allegata.

Come visibile in Figura 4-4 i comparti del progetto rispettano il reticolo idrografico (mantenendo la fascia di rispetto pari a 150 metri prevista dal PPTR e dall'Autorità di Bacino) e non vanno a modificare la viabilità interpoderale preesistente, inoltre rispettano i vincoli presenti da PPTR.

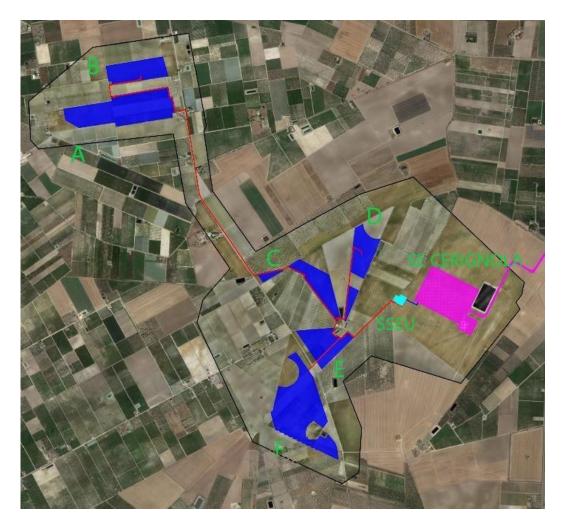


Figura 4-4: Inserimento dell'impianto nel contesto circostante a carattere agricolo principale

Per una valutazione esaustiva sugli impatti prodotti dall'impianto sul paesaggio e sul patrimonio agricolo si rimanda alla presente Relazione SIA capitolo 5 "Beni materiali, patrimonio culturale e

agroalimentare, paesaggio "dove viene analizzato lo stato di fatto di beni materiali, patrimonio culturale e agroalimentare e sul paesaggio e gli impatti che vengono prodotti sugli stessi.

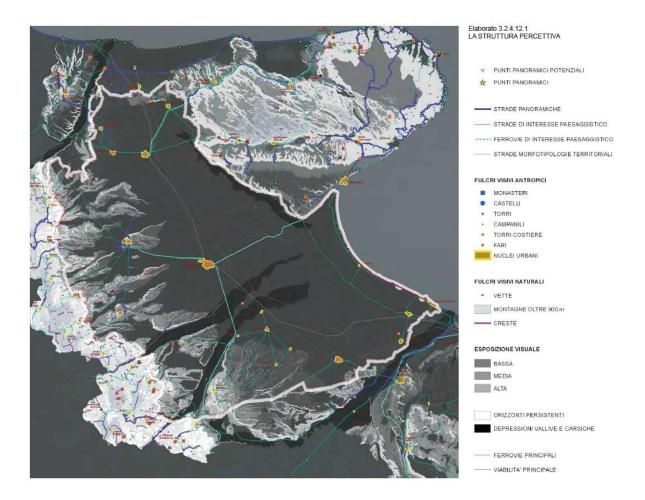


Figura 4-5:: La struttura percettiva – stralcio elaborato 5 del PPTR – Ambito 3/Tavoliere

La valutazione degli impatti cumulativi visivi presuppone l'individuazione di una "zona di visibilità teorica" (Atto Dirigenziale n.162 del 06/06/2014), definita come l'area in cui il nuovo impianto può essere teoricamente visto. In tale area pertanto sono state eseguite delle analisi più approfondite.

La zona di visibilità teorica è stata definita creando un buffer di 3 km intorno ai singoli blocchi dell'impianto in progetto e prendendo come zona di influenza quella ottenuta dall'unione delle aree (vedi Figura 4-6; Figura 4-7 e Figura 4-8).

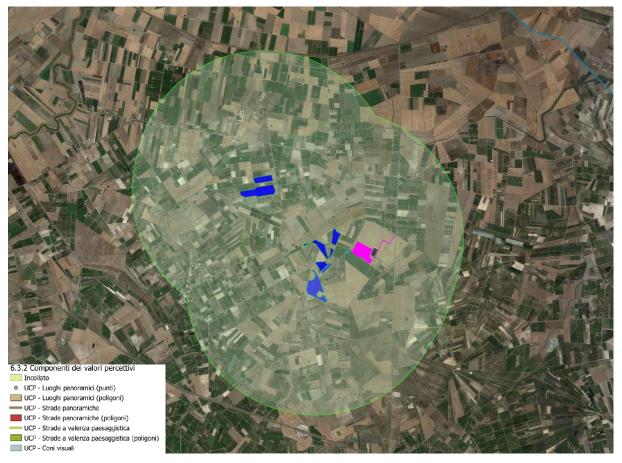


Figura 4-6: PPTR – Componenti dei valori percettivi e identificazione della zona di visibilità teorica

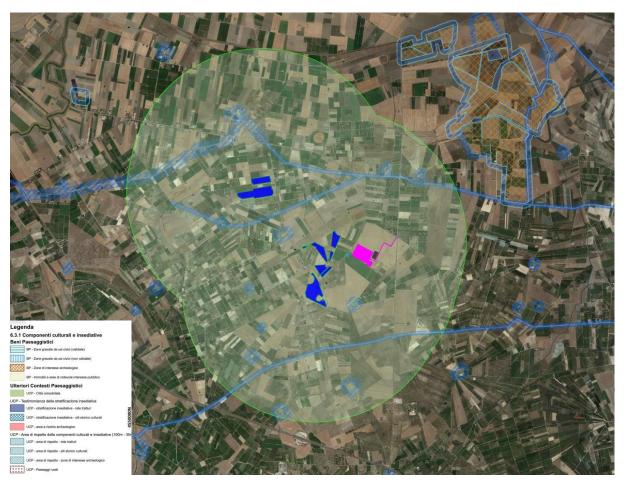
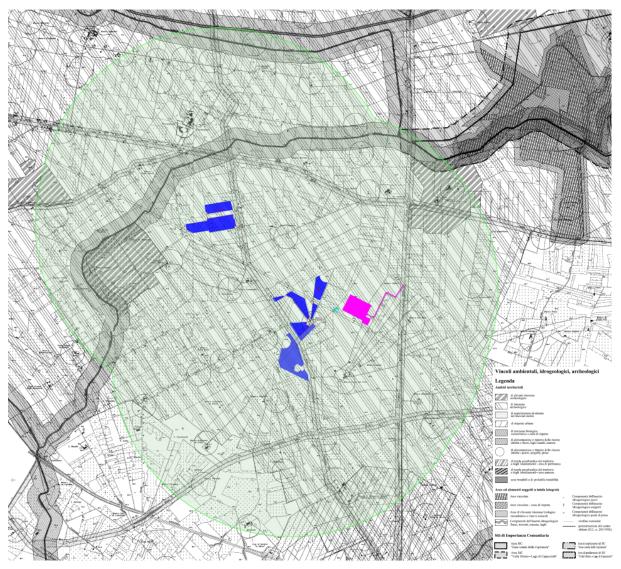



Figura 4-7: PPTR - Componenti culturali insediative e identificazione della zona di visibilità teorica

Figura 4-8: Zona di visibilità teorica -Quadro d'unione tavole serie 4 PRG Cerignola - Vincoli ambientali, idrologici, archeologici

E' stato effettuato uno studio paesaggistico contenente l'analisi del contesto territoriale in cui si inserisce il progetto che ha tenuto conto e riconosciuto le componenti visivo percettive utili ad una valutazione dell'effetto cumulativo.

Sintetizzando, dall'analisi è emerso che all'interno della zona di visibilità teorica sono presenti:

- Aree a rischio archeologico;
- Segnalazioni archeologiche;
- Vincoli archeologici e architettonici, segnalazioni archeologiche e architettoniche;
- Tratturi.

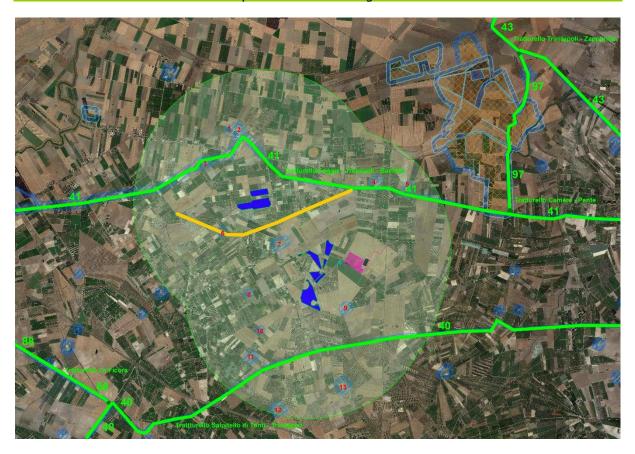


Figura 4-9: Individuazione delle segnalazioni nella zona di visibilità teorica

Aree a rischio archeologico e segnalazioni

Aree a rischio archeologico segnalate nel PPTR per il comune di Cerignola:

- Cerignola Podere 195 (sito n°12) Insediamento Età romana, età tardoantica;
- Podere 191 (sito n°13) Insediamento Neolitico;

Località tutte a basso rischio archeologico ad esclusione del sito n°13 - Podere 191, per il quale si valuta un alto rischio. Per tale valutazione si rimanda alla Relazione Valutazione del rischio archeologico (SVN6MM8_DocumentazioneSpecialistica_38.pdf- Relazione Valutazione del rischio archeologico) allegata al presente Studio di Impatto Ambientale.

Tutte le località saranno tutelate grazie alle mitigazioni a verde pensate lungo il perimetro dell'impianto a schermatura dello stesso.

Siti di interesse storico culturale e relative fasce di rispetto

Per quanto attiene a questi siti, sempre facendo riferimento alla Tav. 6.3.1 (Componenti culturali e insediative) del PPTR per il comune di Cerignola, abbiamo che all'interno della zona di visibilità teorica sono presenti i seguenti beni (vedi Figura 4-9:

- Tressanti I (1) Medioevo (XVI-XVIII secolo) (XIX-XX secolo);
- Tressanti II (2) Insediamento Neolitico (XVI-XVIII secolo) (XIX-XX secolo);
- Masseria Posta Nuova (3) (XIX-XX secolo);
- Masseria La Luparella (4) (XIX-XX secolo);
- Masseria Lupara (5) (XIX-XX secolo);
- Masseria Posta Crusta (6) (XIX-XX secolo);
- Masseria Campanello (7) (XIX-XX secolo);
- Posta Rossa (8) -;
- Masseria Posta Preti (9) (XIX-XX secolo);
- Posta Acquarolo (10) -;
- Masseria Aquarulo di Grillo (11) (XIX-XX secolo);
- Masseria Manfredi (12) (XIX-XX secolo);
- Masseria Santa Maria dei Manzi (13) (XIX-XX secolo).
- Masseria Acquarullo di Bruno (sito n°14) Insediamento Neolitico;
- Masseria Finizio (sito n°7) Insediamento Età Daunia (VIII IV sec. a.C.).

La potenziale visibilità da tutti i siti e in generale molto limitata a causa dell'orografia e in modo particolare delle opere di mitigazioni consistenti *in impianti completamente annegati nel verde* consistente nella coltura dell'olivo intensivo sia all'interno dei filari dei pannelli fotovoltaici, che all'esterno della recinzione con siepi realizzate sempre con impianto di olivo intensivo.

Non si ravvisano particolari criticità per tutti i siti all'interno dell'area di visibilità teorica.

L'abbattimento della visibilità sarà garantita dalla Tipologia dell'impianto agro-fotovoltaico con l'impianto completamente annegato nella coltivazione intensiva dell'ulivo e dalle opere di mitigazione previste in progetto con siepi della stessa tipologia di coltura agricola.

Per ulteriori specifiche si rimanda al paragrafo 5.3.

- Non vi sono Fiumi, Torrenti e corsi d'acqua presenti negli elenchi pubblici.

- Tratturo 41 (Tratturello Foggia –Tressanti Barletta) attraversa la zona di visibilità teorica a nord dell'impianto a circa 730 ml dal Blocco B, tutelato anche grazie alle mitigazioni a verde pensate lungo il perimetro dell'impianto a schermatura dello stesso.
- Deviazione del Tratturo 41 (vedi Figura 4-9) all'interno della zona di visibilità teorica ad una distanza dal blocco A di circa 410 ml. Di tale tratturello rimane il tracciato che va dalla SS 544 alla SP 69 mentre non vi sono più segni del suo tracciato del tratto ad ovest della SP 69;
- Tratturo 40 (Tratturello Salpitello di Tonti Trinitapoli) attraversa la zona di visibilità teorica a sud dell'impianto nel tratto di coincidenza con la SP 68 con una distanza dal Blocco F di circa 930 ml. Tutelato attraverso la schermatura delle opere di mitigazioni a verde pensate lungo il perimetro dell'impianto.

L'attenzione posta nelle opere di mitigazione e nella scelta della tipologia di Impianto optando per Agro-Fotovoltaico con una coltura intensiva di ulivo consente di *annegare completamente l'impianto nel Paesaggio Agrario* limitando l'interferenza con il PAESAGGIO CIRCOSTANTE.

Come evidenziato dalla cartografia non sono presenti all'interno della zona di visibilità teorica strade Panoramiche o di Valenza Paesaggistica.

All'interno dell'Area di Visibilità Teorica, l'impianto in progetto costituito da sei blocchi, risulta a cavallo ed attraversato dalla SP 69 (S.P. 75 – Borgo Inacquata).

All'interno delle zone di visibilità teorica abbiamo quindi:

- Gruppo dei blocchi A e B che a Nord contiene il tratturo 41 dal quale il blocco B, il più vicino dista circa 730 ml;
- Gruppo dei blocchi C, D, E ed F che a sud è potenzialmente visibile dal tratturo 40 nel tratto coincidente con la SP 68 al quale si avvicina in particolare con il blocco F con una distanza di circa 930 ml;
- Tutti i blocchi sono potenzialmente visibili dalla SP 69 dalla quale si trovano a distanza maggiore di 60 ml.

Dalle considerazioni sopra esposte si ritiene che l'impianto non produrrà, singolarmente, un impatto visivo significativo (vedi : da Figura 4-10 a Figura 4-20).

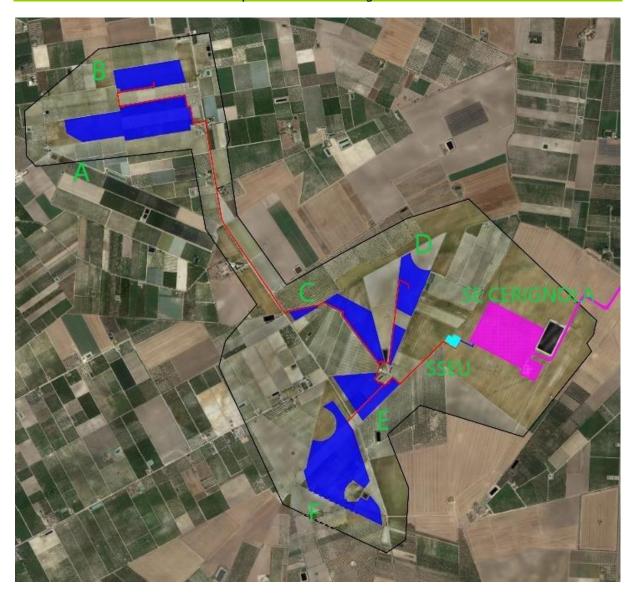


Figura 4-10: Visibilità dell'impianto dai vari punti di presa

Figura 4-11: Vista del blocco A: ante-operam

Figura 4-12: Vista del blocco A: rendering post-operam

Figura 4-13: : Vista del blocco B: ante-operam

Figura 4-14: Vista del blocco B: rendering post-operam

Figura 4-15: Vista del blocco C - D: ante-operam

Figura 4-16: Vista del blocco C - D: rendering post-operam

Figura 4-17: Vista del blocco E - F: ante-operam

Figura 4-18: Vista del blocco E - F: rendering post-operam

Figura 4-19: Vista 2 del blocco E - F: ante-operam

Figura 4-20: Vista2 del blocco E - F: rendering post-operam

Va inoltre specificato che, rispetto ad un impianto eolico, dove l'impatto percettivo sulla visuale paesaggistica è dato dagli aerogeneratori che si sviluppano in altezza e risultano ben visibili da diverse centinaia di metri di distanza, un impianto fotovoltaico ha uno sviluppo verticale minimo così da incidere esiguamente sulla componente percettiva del paesaggio.

Resta comunque importante indagare sulla presenza contemporanea di più impianti nella stessa area in modo da escludere un eccessivo peso delle opere in progetto. Pertanto sono stati individuati gli impianti fotovoltaici presenti all'interno dell'"Area di Visibilità Teorica" (3 km) riportati in Figura 4-21.



Figura 4-21: Impianti Fotovoltaici presenti nell'Area di Visibilità Teorica

Stelma Informativo Terriforiale - Regione Puglia – 04/03/2022 | Page | Puglia | Pug

Figura 4-22: Impianti nell'Area di Visibilità Teorica – Particolare nord– Fonte SIT Puglia

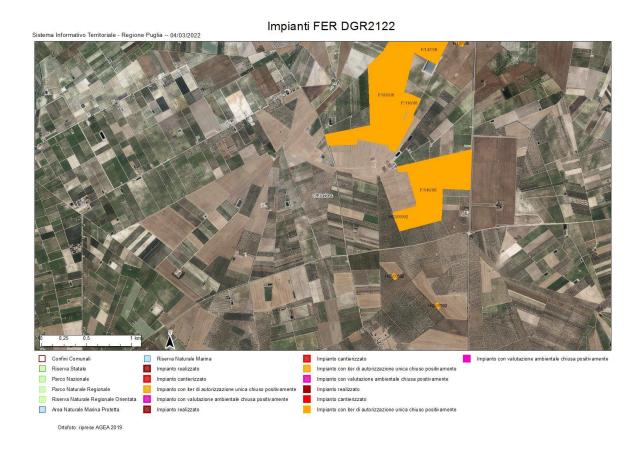


Figura 4-23: Impianti nell'Area di Visibilità Teorica – Particolare sud – Fonte SIT Puglia

Ortofoto: riprese AGEA 2019

Come evidenzia la cartografia (vedi Figura 4-21) nelle immediate vicinanze dell'impianto oggetto del presente Studio, ed in particolare nella zona nord, non sono presenti impianti fotovoltaici e/o eolici, ovvero impianti con iter autorizzativo chiuso positivamente ad eccezione di un piccolissimo impianto fotovoltaico (F/CS/C514/15) realizzato posto ad est in prossimità della SP77 (vedi Figura 4-22), mentre entro la zona di visibilità teorica posta a sud abbiamo che in prossimità dei blocchi E ed F, è individuato un impianto fotovoltaico (F/116/08) con Iter autorizzativo chiuso positivamente sin dal 2008 ma che a tutt'oggi non risulta cantierizzato. Sempre a sud oltre la SP68, si intercettano due pale eoliche (HCW0592) non realizzate, ma con iter autorizzativo chiuso positivamente (vedi Figura 4-23).

Anche dall'analisi fotografica e dai sopralluoghi effettuati, non risultano impianti visibili nell'area teorica di riferimento (vedi da Figura 4-24 a Figura 4-26)

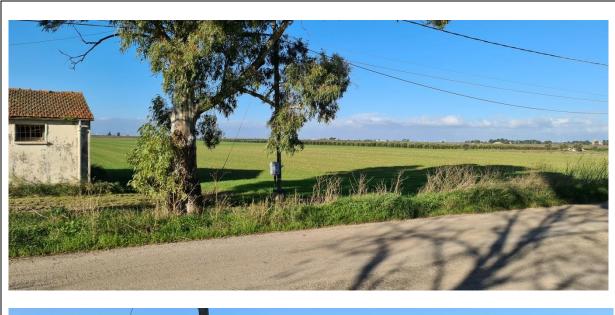


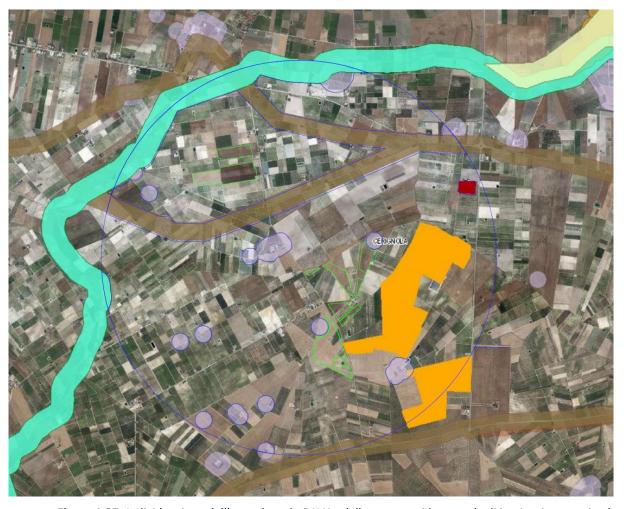
Figura 4-24: Alcune vedute del sito di intervento

Figura 4-25: Alcune vedute del sito di intervento

Figura 4-26: Alcune vedute del sito di intervento

Pertanto si ritiene che all'interno dell'area di visibilità teorica <u>non risultino impatti cumulativi tra gli</u> impianti fotovoltaici esistenti e l'impianto in progetto.

4.3 Impatto acustico cumulativo


In riferimento alla componente acustica l'analisi sugli impatti non ha evidenziato criticità per la fase di esercizio vista l'assenza di fonti di rumore rilevanti. Le uniche fonti di rumore presenti, di lieve entità, saranno caratterizzate dalle emissioni dei sistemi di raffreddamento dei cabinati e i trasformatori. La distanza del sito dagli altri impianti presenti sul territorio non comporta quindi la presenta di impatti cumulativi dovuti all'attuazione dell'impianto fotovoltaico in oggetto. Per un approfondimento si rimanda alla "Relazione di impatto acustico" (SVN6MM8_DocumentazioneSpecialistica_37.pdf-Valutazione Previsionale Impatto Acustico).

4.4 Impatti cumulativi su suolo e sottosuolo

In base a quanto delineato dall'atto dirigenziale n. 162 del 6 giugno 2014, è stata individuata l'area vasta come riferimento per analizzare gli effetti cumulativi legati al consumo e all'impermeabilizzazione di suolo considerando anche il possibile rischio di sottrazione di suolo fertile e la perdita di biodiversità dovuta all'alterazione della sostanza organica nel terreno.

CRITERIO A: impatto cumulativo tra impianti fotovoltaici

Al fine di valutare gli impatti cumulativi sul suolo e sottosuolo derivanti dal cumulo di impianti fotovoltaici presenti nelle vicinanze dell'impianto in progetto è stata determinata l'Area di Valutazione Ambientale, in seguito AVA, al netto delle aree non idonee così come classificate da R.R. 24 del 2010 in m².

Figura 4-27: Individuazione dell'area data da RAVA , delle aree non idonee e degli impianti presenti nel dominio

Di seguito si riporta la tabella riepilogativa per il calcolo dell'ICP.

Comune di Cerignola - Regione Puglia

Studio Impatto Ambientale – Agri Fotovoltaico CER01

cer01						
L ОТТІ	Superficie [mq]	Х	Υ			
А	61975	572427,8	4581557,59			
В	151754	572335,78	4581268,85			
С	61892	573742,64	4579965,17			
D	72078	574089,733	4580116,337			
E	58007	573825,64	4579518,67			
F	154069	573658,77	4579020,88			
Sup.tot	559775					
Sup. impianto FV (al netto delle aree coltivate)	287428					
COORDINATE BARICENTRO		573245,88	4580208,19			
Type of plant	PV		Agro-FV			
Raggio equivalente	422		422			
Rava = Re x 6	2533		2533			
Area ava	20151900		20151900			
aree non idonee	3059230		3059230			
aree altri impianti FER FV	36479		36479			
ava	17092670		17092670			
IPC	3,49%	1,90%				

Tabella 4-1: Tabella Riepilogativa per il calcolo dell'IPC

IPC = 1,90 % e quindi < 3%

L'indice di Pressione Cumulativa è nettamente inferiore a 3, come richiesto dalle indicazioni delle direttive tecniche approvate con atto dirigenziale del Servizio Ecologia della Regione Puglia n. 162 del 06/06/2014. Riteniamo corretto sottolineare che l'impianto in progetto ha dimensioni medio grandi che verranno tuttavia compensate grazie al progetto di opportune opere di mitigazione e compensazione che sintetizziamo in seguito.

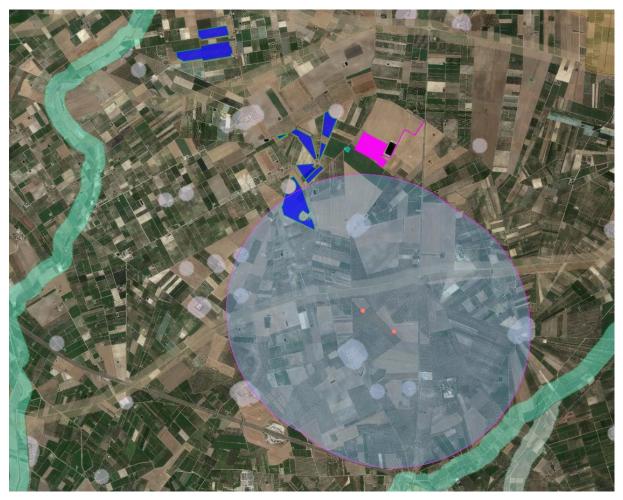
Mantenimento della fertilità e della vocazione agricola dei suoli:

Per mantenere la fertilità e la vocazione agricola dei suoli è previsto lo sviluppo di un progetto di compensazione che prevede il proseguo della messa a coltura dell'area.

La possibilità di mantenere la vocazione agricola del sito è resa possibile grazie alla conformazione dei pannelli che saranno posizionati ad una distanza di circa 9,5 metri (tra le fila) e avranno una quota media pari a 2,70 metri da terra. La proiezione complessiva al suolo dei pannelli sarà pari a 20,09 Ha.

Al fine di mitigare l'impatto paesaggistico, anche sulla base delle vigenti normative, è prevista la realizzazione di una fascia arborea lungo tutto il perimetro del sito dove sarà realizzato l'impianto fotovoltaico.

I terreni fuori dalle aree recintate ben 20,54 Ha resteranno destinati alla coltivazione di oliveto super intensivo.


Per le aree dove non sarà possibile proseguire con le attività agricole si prevede di conservare e, ove necessario, integrare l'inerbimento a prato permanente.

Il tappeto erboso che si intende realizzare sarà un prato essenzialmente rustico con la finalità principale di preservare le caratteristiche agronomiche del suolo e la sua fertilità.

CRITERIO B – Eolico con Fotovoltaico

Come richiesto dalla Regione Puglia sono state individuate, tracciando un buffer di 2 km dagli aerogeneratori più prossimi all'impianto, le aree di impatto cumulativo tra Eolico e Fotovoltaico.

Come si evince dalla Figura 4-28 nell'area individuata dall'impianto in progetto vi sono due pale eoliche con iter autorizzativo chiuso positivamente, il buffer costruito su ciascuna pala non intercetta nessun impianto fotovoltaico compreso quello in progetto.

Figura 4-28: Individuazione degli impianti eolici presenti nell'area del dominio – Autorizzati ma non realizzati.

Dall'analisi eseguita si rileva che l'AVIC costruita per definire l'impatto cumulativo tra eolico e fotovoltaico individuata attraverso le uniche due pale oleiche (non realizzate ma con iter autorizzativo chiuso positivamente) presenti in prossimità del progetto non intercettano altri impianti fotovoltaici se non quello in progetto in prossimità del blocco F.

Dalle considerazioni sopra esposte si ritiene che <u>l'impianto non produrrà impatti cumulati</u>.

5 Quadro Ambientale

Il SIA deve contenere quanto sotto riportato pertanto nei paragrafi successivi verranno sviluppati i contenuti richiesti nell'Allegato VII.

5.1 Stato attuale dell'ambiente e fattori ambientali

5.1.1 Territorio, Suolo, Acqua, Aria e Clima

Territorio

L'abitato di Cerignola dista circa 10 e 13 km dall'impianto, le opere in progetto sono localizzate in una zona rurale pianeggiante con quota media variabile tra circa 40 e 16 m s.l.m.. Si tratta di un contesto a prevalente funzione agricola, secondo quanto previsto dal PRG vigente.

La città di Cerignola è situata nei pressi della bassa valle dell'Ofanto, un lembo di terra che costeggia i lati dell'omonimo fiume, sulle alture che delimitano il margine meridionale del Tavoliere delle Puglie, a dorso dei bacini dei fiumi Ofanto e Carapelle e tra le campagne di un territorio tra i più vasti della Puglia.

Le forme di utilizzazione del suolo sono quelle della vicina pianura con il progressivo aumento della quota nelle aree circostanti si assiste alla rarefazione del seminativo che progressivamente si alterna alle colture arboree tradizionali (oliveto, vigneto, mandorleto). Il paesaggio agrario è dominato dal seminativo in cui si dipanano i tratturi della transumanza utilizzati dai pastori che in inverno scendevano dai freddi monti dell'Abruzzo verso la più mite e pianeggiante Puglia.

Il territorio agrario di Cerignola è localizzato nella zona sud del Tavoliere della Puglia; in tale area il clima è di tipo continentale, caratterizzato da forti escursioni termiche; estati torride si contrappongono ad inverni più o meno rigidi, tuttavia la temperatura media annua si aggira sui 16 °C. Le piogge, scarse, si attestano intorno ai 600 mm e interessano soprattutto il periodo che va da settembre a febbraio; nel periodo estivo invece non sono rari periodi di siccità; di conseguenza, si alternano caldi estate a inverni miti, in queste condizioni sono possibili gelate primaverili, che si generano da ondate di freddo tardive, provocate da venti del nord.

L'ambito del Tavoliere, cui appartiene l'area di intervento secondo il PPTR, è caratterizzato dalla dominanza di vaste superfici pianeggianti coltivate prevalentemente a seminativo che si spingono fino alle propaggini collinari dei Monti Dauni. La delimitazione dell'ambito si attesta sui confini naturali rappresentati dal costone garganico, dalla catena montuosa appenninica, dalla linea di costa e dalla valle dell'Ofanto.

La coltivazione di cereali contraddistingue il tessuto economico dell'areale, mentre complementari sono coltivazioni arboree attinenti la produzione di grano e olive legnose; marginali le superfici destinate alle coltivazioni di ortaggi e di altri alberi da frutto.

Le attuali tecniche colturali hanno modificato intensamente i paesaggi storici e talvolta, i processi di messa a coltura, hanno interessato parti del territorio alle quali non erano storicamente legate.

Una criticità particolarmente evidente è la progressiva rarefazione del territorio rurale ad opera di una urbanizzazione a carattere produttivo che assume forme lineari lungo la viabilità e di una edilizia di tipo discontinuo che altera la percezione del territorio rurale verso una tipologia a carattere periurbano, logorando le grandi estensioni seminative che dominano i paesaggi delle campagne.

L'intensivizzazione dei mosaici portano, in particolare nel territorio agricolo intorno a Cerignola e S. Severo, ad una diminuzione del valore ecologico del territorio rurale del Tavoliere.

La coltura prevalente per superficie investita è rappresentata dai cereali. Seguono per valore di produzione i vigneti e le orticole localizzati principalmente nel basso tavoliere fra Cerignola e San Severo. La produttività agricola, del basso Tavoliere (INEA 2005), è di tipo estensiva per la coltivazione a cereali, mentre diventa di classe alta o addirittura intensiva per le orticole e soprattutto per la vite.

Il ricorso all'irriguo in quest'ambito è frequente, per l'elevata disponibilità d'acqua garantita dai bacini fluviali ed in particolare dal Carapelle e dall'Ofanto ed in alternativa da emungimenti

Nella fascia intensiva compresa nei comuni di Cerignola, Orta Nova, Foggia e San Severo la coltura irrigua prevalente è il vigneto. Seguono le erbacee di pieno campo e l'oliveto.

La valenza ecologica è bassa o nulla nel basso Tavoliere fra Apricena e Cerignola, per la presenza di aree agricole intensive con colture legnose agrarie per lo più irrigue (vigneti, frutteti e frutti minori, uliveti) e seminativi irrigui e non irrigui.

La pressione antropica sugli agroecosistemi del basso Tavoliere è notevole, tanto da presentarsi scarsamente complessi e diversificati.

L'impatto per sottrazione di suolo per l'impianto in oggetto viene considerato poco significativo in quanto l'area sotto i pannelli verrà utilizzata per la coltivazione così come riportato nell'innovativo Piano Agrofotovoltaico.

Inoltre tale *destinazione è temporanea e reversibile* poiché l'attività agricola potrà riprendere in maniera consueta anche dopo la vita utile dell'impianto.

Durante l'esercizio, la spazio sotto i pannelli resta libero, fruibile e transitabile per animali anche di medie dimensioni.

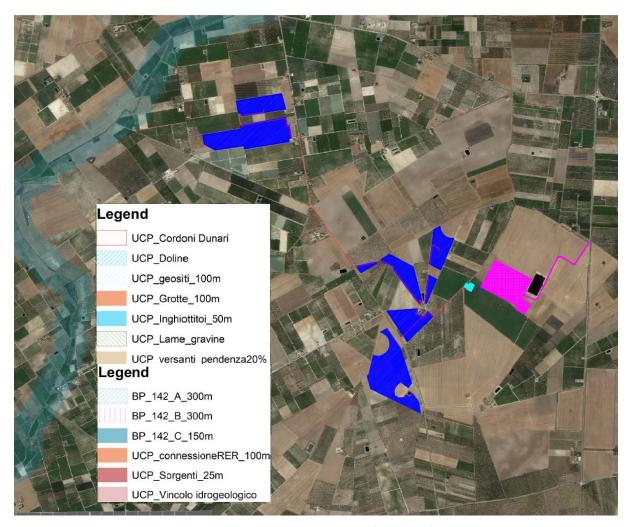


Figura 5-1: Uso del suolo al 2011 – Fonte SIT Puglia

Suolo e sottosuolo – Ambiente Idrico

Il territorio non presenta una rilevante idrografia superficiale a causa della carenza di rilievi montuosi, della scarsità delle piogge e dell'elevata permeabilità del terreno; soprattutto quest'ultimo fattore consente all'acqua piovana di penetrare nel sottosuolo e nella falda acquifera impedendo l'arricchimento di fiumi e torrenti. L'unico corso d'acqua che lambisce l'agro cittadino è l'Ofanto, dal carattere torrentizio, che alimenta l'invaso idrico della marana di Capacciotti dando così vita all'omonimo lago artificiale indispensabile (vista la mancanza d'acqua) per l'irrigazione

A differenza dell'idrografia superficiale, quella sotterranea risulta molto interessante; difatti la permeabilità del terreno e la sua uniformità permettono all'acqua piovana di penetrare facilmente nel sottosuolo in corrispondenza con il livello del mare, formando una falda sotterranea anch'essa utilizzabile per l'irrigazione dei campi.

Figura 5-2: Struttura Idrogeomorfologica – fonte PPTR

Per quanto riguarda l'idrografia la pianura è attraversata da corsi d'acqua tra i più rilevanti della Puglia (Carapelle, Candelaro, Cervaro e Fortore) che hanno contribuito significativamente con i loro apporti detritici alla sua formazione. La pianura si trova ai piedi del sub-appennino dauno e la separazione è graduale e corrisponde ai primi rialzi morfologici mentre con il promontorio garganico è netta e immediata dovuta alle dislocazioni tettoniche della piattaforma calcarea. Il settore orientale, prossimo al mare, caratterizzato da aree umide e zone paludose è attualmente coltivato a seguito di un processo di diffusa bonifica.

Caratteri morfologici e idrografici

Il Territorio Comunale di Cerignola, si colloca nel settore SE della Provincia di Foggia, occupa un'area di 59.300 ettari è situata nei pressi della bassa valle dell'Ofanto, un lembo di terra che costeggia i lati dell'omonimo fiume, sulle alture che delimitano il margine meridionale del Tavoliere delle Puglie, a dorso dei bacini dei fiumi Ofanto e Carapelle.

In definitiva l'area in esame risulta possedere caratteri geomorfologici che ne assicurano la stabilità generale.

L'area di progetto, e più in generale l'intero Tavoliere di Puglia, è caratterizzata da un'idrografia superficiale piuttosto diffusa. Ciò e da mettere in relazione sia alla natura geolitologica, con affioramenti di litologie prevalentemente limo argillose che favoriscono il ruscellamento superficiale sia anche alla collocazione morfologica e geografica, ai piedi di importanti rilievi dove si verificano intense precipitazioni e forti ruscellamenti a causa delle pendenze elevate e degli affioramenti lapidei impermeabili.

Lo scorrimento idrico in superficie, pertanto, avviene secondo linee di massima pendenza che normalmente seguono una direzione ortogonale alla linea di costa. L'idrografia rivela nel complesso una fase di maturità con un andamento meandriforme e con presenza talora di alvei abbandonati. Fuorché l'Ofanto, che evidenzia un regime a carattere perenne.

Nello specifico le aree d'intervento, come da carta idrogeomorfologica ed IGM non presentano interferenze con nessun reticolo idrografico.

Caratteri idrogeologici e vulnerabilità della falda

In relazione alle caratteristiche stratigrafico-strutturali dell'area e in funzione della profondità, si identificano tre unita acquifere principali, di seguito elencate, dal basso verso l'alto [Maggiore et alii,1996].

Si distinguono, a partire dal basso.

- Acquifero fessurato-carsico profondo, situato in corrispondenza del substrato carbonatico prepliocenico.
- Acquifero poroso profondo, situato in corrispondenza delle lenti sabbiose intercalate alle argille plio-pleistoceniche.
- Acquifero poroso superficiale, la cui falda ha sede nei livelli sabbioso ghiaiosi dei depositi marini e alluvionali del Pleistocene sup. Olocene.

Le principali differenze tra queste tre unita acquifere risiedono nei caratteri della circolazione idrica sotterranea e nelle caratteristiche chimiche delle acque, legate a un diverso grado di mescolamento di tre componenti fondamentali: acque di origine meteorica, acque salate di intrusione marina e acque connate.

La salvaguardia degli acquiferi sotterranei in questi terreni viene svolta anche dai sistemi vegetali attraverso la conservazione del suolo, l'aumento della capacità di infiltrazione e la riduzione della velocità media di scorrimento delle acque meteoriche. A seconda della densità, struttura e età delle cenosi vegetali la copertura vegetale esercita la sua funzione di salvaguardia. Le attività antropiche, ovvero le pratiche agricole e gli insediamenti urbani, sottraendo suolo alle coperture vegetali hanno diminuito la protezione delle acque. La scarsa pendenza del sito, il rapido ripristino del manto erboso, la diminuzione dell'energia di impatto degli scrosci piovosi al suolo dovuta all'effetto coprente dei moduli, ecc..., consentirà di raccogliere le acque e convogliarle nei canali presenti allontanandole dal terreno. Occorre però precisare che sulla porzione di terreno sottostante il lato più basso dei moduli sarà riversato lo stesso volume di acqua intercettato dall'intera superficie dei moduli stessi, ma in maniera concentrata.

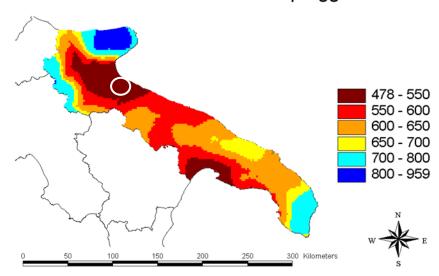
Da quanto su detto si deduce che:

- 1) la presenza dell'impianto non interferirà con processi di infiltrazione, accumulo e scorrimento superficiale delle acque meteoriche presenti sulla medesima area allo stato ante operam.
- 2) La presenza dell'impianto non comporta modifiche dell'assetto attuale della rete idrografica né l'attuazione di interventi di regimazione idraulica e la sua presenza può considerarsi ininfluente nel determinare cambiamenti sulle portate idriche della rete.

In conclusione, <u>l'intervento non introduce variazioni nella relazione tra gli eventi meteorologici ed il</u> suolo e disincentiva la possibilità che si presentino fenomeni degradativi di tipo erosivo.

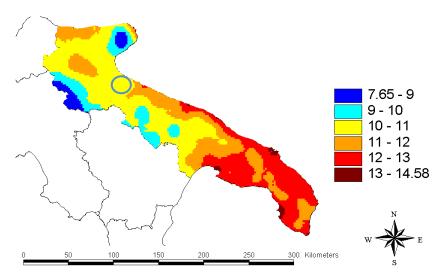
Aria e clima

Il clima dell'alto Tavoliere è continentale per effetto della presenza dell'Appennino Dauno ma andando verso la costa diventa mediterraneo. Il clima è caldo e temperato e presenta valori massimi di 35 - 37°C circa durante l'estate e valori minimi intorno allo 0 °C durante l'inverno. Esiste una piovosità significativa durante tutto l'anno. Anche nel mese più secco si riscontra molta piovosità. Si registra una temperatura media di 14.0 °C. La media annuale di piovosità è di 494 mm.


Le condizioni climatiche della zona sono favorevoli alle colture agrarie per quanto riguarda l'andamento delle temperature.

Le pressioni sull'aria sono imputabili unicamente alla circolazione delle auto e alla presenza di attività agricole pertanto nella zona non si registrano particolari impatti legati ad attività antropiche.

Gli impianti eolici presenti nella zona sono assolutamente privi di qualsiasi emissione pertanto la qualità dell'aria è indipendente dalla loro presenza.


In definitiva, il processo di produzione di energia elettrica da impianto fotovoltaico, è un processo totalmente pulito con assenza di emissioni in atmosfera per cui la qualità dell'area e le condizioni climatiche che ne derivano non verranno alterate dal funzionamento dell'impianto proposto. L'energia prodotta ed immessa in rete sostituirà un'equivalente quantità di energia altrimenti prodotta attraverso centrali termiche tradizionali, con conseguente emissione in atmosfera di sensibili quantità di inquinanti, pertanto l'impatto sulla componente aria sarà positivo anziché negativo.

Media annuale delle piogge

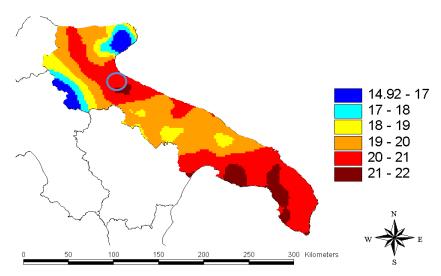
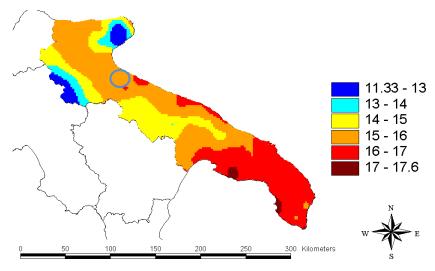


Figura 5-3: Distribuzione spaziale della media annuale delle piogge sul territorio Pugliese (serie storica 1950-1992, fonte ACLA II)


Media annuale delle temperature minime

Media annuale delle temperature massime

Media annuale delle temperature medie

Figura 5-4: Distribuzione spaziale della media annuale delle temperature minime, massime e medie sul territorio Pugliese (serie storica 1950-1992, fonte ACLA II)

5.1.2 Biodiversità

La valenza ecologica è medio-bassa nell'alto Tavoliere, dove prevalgono le colture seminative marginali ed estensive, mentre è bassa o nulla nel basso Tavoliere fra Apricena e Cerignola, per la presenza di aree agricole intensive con colture legnose agrarie per lo più irrigue (vigneti, frutteti e frutti minori, uliveti) e seminativi irrigui e non irrigui, per poi aumentare (valenza ecologica da medio bassa a medio alta) in prossimità dei corsi d'acqua principali rappresentati del Carapelle, del Cervaro e soprattutto dall'Ofanto.

La matrice agricola ha decisamente pochi e limitati elementi residui di naturalità, per lo più in prossimità del reticolo idrografico. La pressione antropica sugli agroecosistemi del basso Tavoliere è notevole, tanto da presentarsi scarsamente complessi e diversificati.

L'analisi vegetazionale del sito indagato ha, infatti, evidenziato un ambiente piuttosto povero di parametri naturalistici di pregio e poco degni di valutazione, riscontrando sul sito stesso oggetto di indagine un terreno con caratteristiche principalmente agricole, per lo più seminativi e colture ad olivo. Vista, quindi l'area prettamente agricola-pascoliva in cui si colloca la superficie e l'assenza di particolari formazioni vegetali naturali, appare chiaro che l'attività di cantiere non arrecherà particolari problematiche al sito ambientale sia a livello delle componenti floristiche che all'eventuale fauna presente.

In ragione di quanto rilevato le uniche presenze vegetali esistenti, si identificano in essenze erbacee annuali (graminacee spontanee) e in alcuni arbusti di robinia. Tuttavia, in considerazione del fatto che le aree limitrofe al sito d'intervento, hanno una connotazione periurbana o perlopiù simile al sito d'indagine, le possibili perturbazioni dovute all'attività del cantiere, non si estenderebbero a questi siti, come non si rilevano a livello dell'area di progetto.

L'impatto risulta quindi quasi nullo, ampiamente compensabile con opere a verde qualificate.

Inoltre non si rilevano presenza di specie di pregio, sottoposte a particolari tipi di tutela (direttiva Habitat o IBA). L'estensione della vegetazione naturale e semi-naturale risulta poco significativa, dato che i suoli marcatamente fertili e la morfologia semi-pianeggiante hanno determinato lo sviluppo di un'agricoltura di tipo estensivo e vista anche la presenza di aree antropizzate in prossimità.

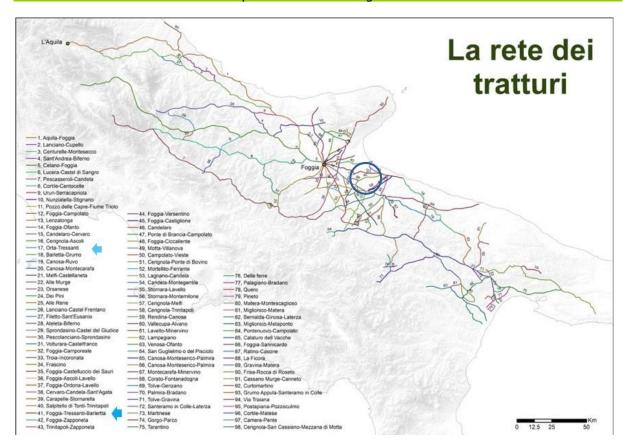
Non si rilevano pertanto particolari caratteristiche proprie della biodiversità, ovvero differenziazione o presenza di elementi di naturalità da preservare, tutelare e conservare. Le attività legate all'agricoltura ed alla coltivazione dei campi, normalmente eseguite con cadenza e l'utilizzo di prodotti chimici e lo sfalcio e la raccolta risultano già essere momenti di disturbo alla fauna e all'ecosistema in generale che pertanto risulta già alterato.

5.1.3 Beni materiali, patrimonio culturale, patrimonio agroalimentare, paesaggio

L'impianto si trova a circa 10 e 13 km a NW dall'abitato di Cerignola .

L'area interessata dal progetto di realizzazione dell'impianto fotovoltaico e delle opere ad esso connesse ricadono nel settore settentrionale del territorio comunale di Cerignola (FG) in località La Riserva e si estendono in località Masseria Paletta per proseguire verso località Borgo Tressanti.

La Daunia durante la lunga storia si è trovata in una posizione di passaggio e ancor di più la posizione di Cerignola, situata nei pressi della bassa valle dell'Ofanto, un lembo di terra che costeggia i lati dell'omonimo fiume, sulle alture che delimitano il margine meridionale del Tavoliere delle Puglie, a dorso dei bacini dei fiumi Ofanto e Carapelle.


Nel territorio in esame, sono stati censiti 13 siti noti da letteratura o archivio principalmente riferibili a contesti preistorici.

Più precisamente nel territorio in esame sono stati censiti 13 siti noti da letteratura o archivio di cui: 11 neolitici, 1 databile all'età daunia, 1 riconducibile all'età romana con continuità di frequentazione in età tardoantica e 1 all'età medievale.

Per quanto attiene alla viabilità antica, il territorio interessato dalle opere in progetto, era attraversato da alcuni percorsi viari antichi, dove però non si notano interferenze con tratti viari primari. Tuttavia, si segnalano diverse interferenze con possibili tratti viari secondari.

Per quanto riguarda l'area in progetto, l'impianto costituito da sei blocchi, risulta a cavallo ed attraversato dalla SP 69 (S.P. 75 – Borgo Inacquata).

Per quanto attiene alla rete tratturale non si segnalano interferenze. Tuttavia, a Nord del progetto si colloca il tratturello Foggia – Tressanti – Barletta n°41, mentre Sud si segnala il tratturello Salpitello di Tonti – Trinitapoli n°40.

Figura 5-5: Carta della rete tratturale nell'Italia centro-meridionale; cerchiata in rosso l'area interessata dalle opere in progetto

Nell'ambito delle indagini per la verifica preventiva dell'interesse archeologico dell'area interessata dal progetto, la **Relazione Archeologica**, basata sull'edito e sullo spoglio degli archivi disponibili, ha evidenziato che il comprensorio destinato alla realizzazione dell'impianto sia noto nella bibliografia archeologica.

Le condizioni geo-ambientali del territorio in esame si presentano particolarmente adeguate allo sfruttamento antropico. La distribuzione dei siti, nell'area in progetto, mostra un'occupazione capillare dell'intero territorio.

Nell'area interessata dal progetto si nota un buon numero di siti noti da bibliografia, anomalie e unità topografiche. Queste evidenze si distribuiscono da nord a sud, in maniera abbastanza omogenea, senza particolari concentrazioni; la maggioranza di queste evidenze sono distanti dall'opera in progetto, pochi invece sono quelle vicine o a ridosso di questa.

Nello specifico per quanto riguarda la valutazione del rischio archeologico la situazione più problematica rimane quella dal sito n°13 (Podere 191) e l'anomalia n°3 in località Podere 744, entrambi villaggi neolitici che costituiscono aree ad **alto rischio** (vedi Relazione Archeologica).

Anche le 3 unità topografiche individuate (UUTT 1, 2 e 3) costituiscono tutte situazioni ad alto rischio.

Tuttavia, le ricognizioni e i dati delle immagini satellitari suggeriscono che è possibile circoscrivere le evidenze e che queste ricadono, probabilmente, subito al di fuori delle aree interessate dal progetto.

Per quanto attiene l'analisi delle <u>interferenze dell'impianto con le aree sottoposte a vincolo</u> di tutela archeologica, si è verificato che <u>il progetto non presenta alcun tipo di interferenza</u>.

In conclusione sussiste un limitato rischio potenziale di impatto con i beni archeologici ampiamente compensabile con il controllo archeologico degli scavi di cantiere.

In caso di eventuali ritrovamenti verranno concordate le opportune modifiche e valorizzazioni con la competente soprintendenza. L'impatto risulta solo potenziale mitigabile con gli opportuni accorgimenti a seguito delle indagini.

Infine il paesaggio agrario è di certo un elemento caratterizzante l'area di studio, localizzata in un ambito rurale. L'agricoltura è presente, seppur con coltivazioni differenti, nell'area di progetto.

5.1.4 Popolazione e salute umana

La zona è caratterizzata da un inquinamento acustico relativamente basso poiché legato alle attività agricole della zona e al traffico veicolare lungo le strade provinciali SP69.

Durante il rielevo con fonometro strumento ha captato rumori naturali prodotti principalmente dalla fauna circostante vista la presenza di alcuni fabbricati e proprietà a carattere agricolo; si è registrato una densità di traffico automobilistico e di automezzi molto bassa.

Per quanto riguarda invece l'inquinamento elettromagnetico, nella zona sono già presenti degli elettrodotti, impianti eolici, e Cabine elettriche.

Per valutare i fenomeni legati all'esistenza di cariche elettriche e i fenomeni magnetici è bene precisare che sono tra loro dipendenti. La concatenazione di un campo elettrico e di un campo magnetico origina il campo elettromagnetico. Quando i campi variano nel tempo, ammettono la propagazione di onde elettromagnetiche che risultano essere differenti tra loro per la frequenza di oscillazione. A frequenze molto basse (es. 50 hertz), il campo elettrico e quello magnetico si comportano come agenti fisici indipendenti tra loro. A frequenze più elevate, come nel caso delle onde radio (dai 100 kHz delle stazioni radiofoniche tradizionali ai 0,9 ÷ 1,8 MHz della telefonia mobile), il campo si manifesta sotto la forma di onde elettromagnetiche, nelle quali le due componenti risultano inscindibili e strettamente correlate.

La frequenza dei campi elettromagnetici generati da un elettrodotto è sempre 50 Hz (largamente entro la soglia delle radiazioni non ionizzanti). Il campo elettrico generato dalle linee elettriche è facilmente schermato dalla maggior parte degli oggetti (non solo tutti i conduttori, ma anche la vegetazione e le strutture murarie). Il campo magnetico, invece, è poco attenuato da quasi tutti gli ostacoli normalmente presenti, per cui la sua intensità si riduce soltanto al crescere della distanza dalla sorgente. L'intensità del campo magnetico è direttamente proporzionale alla quantità di corrente che attraversa i conduttori che lo generano e pertanto, nel caso degli elettrodotti, non è costante ma varia al variare della potenza assorbita (i consumi). Quindi, negli elettrodotti ad alta tensione non è possibile definire una distanza di sicurezza uguale per tutti gli impianti, proprio perché non tutte le linee trasportano la stessa quantità di energia.

Gli effetti biologici e sanitari dei campi a frequenza estremamente bassa sono stati ampiamente studiati negli ultimi 30 anni. Un'approfondita valutazione dei risultati della ricerca e dei possibili rischi per la salute è stata pubblicata dall'Organizzazione Mondiale della Sanità (OMS) nel 2007.

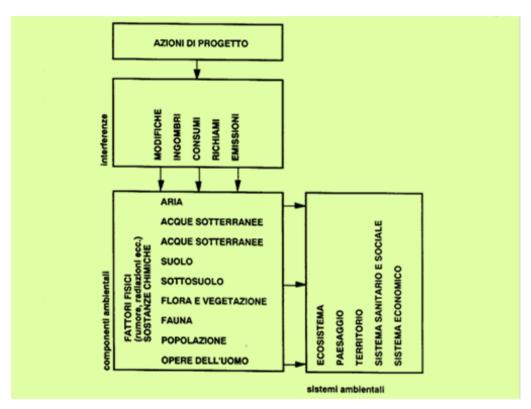
Calcoli basati sui dati epidemiologici indicano che, qualora i campi magnetici fossero effettivamente cancerogeni, in Italia sarebbe imputabile agli elettrodotti circa 1 caso di leucemia infantile all'anno (il numero medio annuo di nuovi casi è circa 400). In considerazione della debole evidenza scientifica da un lato e del modesto, eventuale impatto sulla salute pubblica dall'altro, l'OMS ritiene giustificato prendere in considerazione delle misure precauzionali, ma raccomanda che queste siano adottate solo se sono a costo nullo o molto basso.

In Italia, in considerazione di possibili effetti a lungo termine, sono stati adottati, per la protezione del pubblico, dei limiti di esposizione inferiori a quelli raccomandati dall'Unione Europea esclusivamente per la protezione dagli effetti accertati, a breve termine. Questi limiti sono comunque sensibilmente più alti di quelli che normalmente si riscontrano nelle vicinanze di elettrodotti o di impianti elettrici di trasformazione. L'Italia, con finalità di riordino e miglioramento della normativa in materia allora vigente, ha emanato la Legge n. 36 del 22 febbraio 2001 "Legge quadro sulla protezione dalle esposizioni a campi elettrici, magnetici ed elettromagnetici". La legge fissa i principi fondamentali diretti alla tutela della salute della popolazione (lavoratori e non) dai rischi derivanti dall'esposizione ai campi elettrici e magnetici in uno spettro di frequenze che va da 0 a 300 GHz. In esecuzione della predetta Legge quadro, è stato emanato il D.P.C.M. 8 luglio 2003 "Fissazione dei limiti di esposizione, dei valori di attenzione e degli obiettivi di qualità per la protezione della popolazione dalle esposizioni ai campi elettrici e magnetici alla frequenza di rete (50 Hz) generati dagli elettrodotti".

Il D.P.C.M. 8 luglio 2003 ha quale campo di applicazione i campi elettrici e magnetici connessi al funzionamento degli elettrodotti a frequenza industriale. I limiti che il Decreto fissa, non si applicano a chi risulta essere esposto per ragioni professionali.

Nello specifico il Decreto fissa:

- Limiti di esposizione: 100 μT per l'induzione magnetica e 5 kV/m per l'intensità di campo elettrico intesi come valori efficaci;
- Valori di attenzione: 10 μT per l'induzione magnetica intesi come valore efficace, a titolo di cautela per la protezione da possibili effetti a lungo termine negli ambienti abitativi, nelle aree gioco per l'infanzia, nelle scuole ed in tutti quei luoghi adibiti a permanenze non inferiori a quattro ore giornaliere;
- Obiettivi di qualità: 3 μT per l'induzione magnetica intesi come valore efficace, valore da osservare nella progettazione di nuovi elettrodotti e nella progettazione di nuovi edifici in prossimità di linee ed installazione elettriche esistenti.


Per quanto riguarda i moduli fotovoltaici, essi lavorano in corrente e tensione continue e non in corrente alternata pertanto si ha la generazione di campi variabili limitata ai soli transitori di corrente per brevissima durata (nella fase di ricerca del Maximum Power Point da parte dell'inverter e in accensione o spegnimento). Nella certificazione dei moduli fotovoltaici alla norma CEI 82-8 (IEC 61215) non sono comunque menzionate prove di compatibilità elettromagnetica, poiché sono ritenute assolutamente irrilevanti. Gli inverter sono apparecchiature che utilizzano un trasformatore ad alta frequenza per ridurre le perdite di conversione, pertanto sono costituiti da componenti elettronici operanti ad alte frequenze.

Il legislatore infatti, ha previsto che tali macchine possiedano le necessarie certificazioni a garantirne sia l'immunità dai disturbi elettromagnetici esterni sia le ridotte emissioni per minimizzare l'interferenza elettromagnetica con altre apparecchiature elettroniche posizionate nelle vicinanze o con la rete elettrica stessa via cavo.

Gli inverter prescelti possiedono la certificazione di rispondenza alle normative di compatibilità elettromagnetica. Per quanto riguarda il rispetto delle distanze da ambienti presidiati ai fini dei campi elettrici e magnetici, si è tenuto conto del limite di qualità dei campi magnetici, fissato dalla legislazione a 3 µT.

5.1.5 Interazione tra i vari fattori

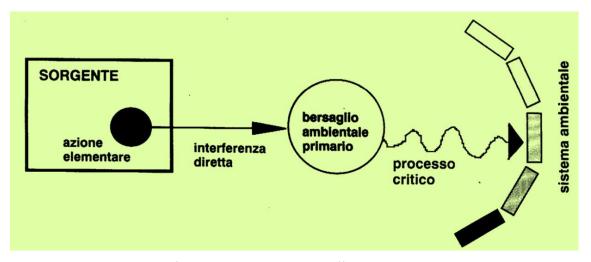

I diversi fattori ambientali sono tra loro legati, l'acqua è un fattore che modella la superficie terrestre, interferendo dunque con la componente suolo.

Figura 5-6: Rapporto tra componenti ambientali, fattori di interferenza, sistemi ambientali (fonte: Lezioni di V.I.A. - Ing. Franco Campanale – Politecnico di Bari - 2003)

Effettuata la scomposizione dell'ambiente in componenti e fattori ambientali, è ora necessario procedere alla loro ricomposizione sintetica in un sistema complessivo.

Il fattore Acque superficiali è strettamente legato con la biodiversità, così come l'uso del suolo (agricoltura) è strettamente legato allo stato di salute delle falde sotterranee, per l'uso di fertilizzanti e diserbanti. Il clima, la temperatura e le piogge sono legate al regime idrologico dell'area. Nel caso in esame i due fattori che maggiormente interagiscono sono acqua e suolo come descritto nei paragrafi su esposti.

Figura 5-7: Modello grafico di un impatto ambientale (fonte: Lezioni di V.I.A. – Ing. Franco Campanale – Politecnico di Bari - 2003)

5.1.6 Stato dell'ambiente nello scenario senza il progetto

In caso di mancata attuazione del progetto è plausibile ipotizzare che i terreni continuino ad essere sfruttati per l'agricoltura. Questa alternativa fornisce la base di riferimento rispetto alla quale viene confrontata l'alternativa del progetto.

Le conseguenze dell'alternativa senza progetto sono:

- l'uso del suolo rimane agricolo;
- non ci sono cambiamenti nel paesaggio;
- non c'è riduzione delle emissioni di CO₂;
- non c'è la possibilità di utilizzare l'energia solare contestualmente alle attività agricole (secondo l'innovativo Piano Agro - fotovoltaico presentato nella Relazione allegata)
- Non vi è alcuna possibilità di creazione di posti di lavoro indiretti e diretti (anche se temporanei)

5.2 Valutazione degli impatti

L'identificazione e la valutazione della significatività degli impatti è ottenuta attraverso l'individuazione dei fattori di impatto per ciascuna azione di progetto e la classificazione degli effetti che le azioni hanno sull'ambiente, basata sulla loro rilevanza e sulla qualità e sensibilità delle risorse che questi coinvolgono.

Con riferimento allo stato attuale, per ogni componente ambientale, l'impatto è valutato tenendo in considerazione:

la scarsità della risorsa (rara-comune);

- la sua capacità di ricostituirsi entro un arco temporale ragionevolmente esteso (reversibilenon reversibile);
- la rilevanza e l'ampiezza spaziale dell'influenza che essa ha su altri fattori del sistema considerato (locale esteso);
- la durata dell'impatto: breve durata, lunga durata, permanente;
- la "ricettività" ambientale.

L'impatto viene stimato secondo una scala qualitativa di riferimento, composta dalle seguenti classi:

- Impatto positivo
- Impatto nullo
- Impatto trascurabile
- Impatto basso
- Impatto medio
- Impatto alto

Con il termine "nullo" si intendono tutte le situazioni in cui la realizzazione dell'impianto non provoca alcuna modifica sulla natura della singola componente ambientale. Ad esempio l'impatto sonoro durante la fase di esercizio sarà di grado "nullo".

Per ogni singola *componente ambientale* considerata, è possibile suddividere la stima degli impatti considerando separatamente:

- l'impatto durante la fase di costruzione;
- l'impatto in fase di esercizio, ad opera ultimata, terminata la realizzazione dell'opera.

La realizzazione dell'opera in progetto, considerando la *fase di costruzione*, quella di *dismissione* e quella di *esercizio*, risulta scomponibile in una serie di azioni progettuali, in grado di indurre potenziali effetti nei confronti dell'ambiente circostante.

Nel Capitolo della descrizione del progetto sono state sintetizzate le principali azioni di progetto e le relative attività di dettaglio per la fase di costruzione e di esercizio e, da quanto riportato, la maggior parte degli impatti tra il progetto e l'ambiente circostante avviene quasi esclusivamente in fase di costruzione. Tali impatti sono, per questo motivo, temporanei e mitigabili a fronte dell'adozione di opportune scelte progettuali e di mirate operazioni di ripristino.

Gli impatti nella fase di esercizio sono prevalentemente sulla componente paesaggio come modifica della percezione visiva dell'ambiente circostante.

Si riporta di seguito una descrizione delle azioni durante la fase di smontaggio dell'impianto. Gli impatti sono simili a quelli che si hanno nella fase di costruzione, ma si riportano di seguito le azioni che

verranno realizzate in tale fase, a completamento di quanto descritto nel paragrafo della descrizione del Progetto.

Fase di dismissione

Si ipotizza che l'impianto fotovoltaico verrà dismesso dopo 50 anni di vita del progetto. L'impianto fotovoltaico e l'infrastruttura saranno disconnessi dalla rete elettrica, i componenti del modulo verranno rimossi e riciclati per quanto possibile. Le strutture saranno smantellate e tutti i cavi sotterranei saranno scavati e rimossi.

La rinaturalizzazione delle aree costituisce parte della fase di dismissione. Lo scopo della rinaturalizzazione è di riportare il sito di lavoro a una condizione stabile, il più vicino possibile alle condizioni di pre-costruzione e alla soddisfazione del proprietario del terreno. La riabilitazione dell'area comporterebbe quanto segue:

- Una volta che l'area è libera da tutte le strutture e dai rifiuti, l'area verrà coperta da strati di terriccio che sarà posizionato sopra le aree;
- L'applicazione di fertilizzanti sarà utilizzata per migliorare la composizione del suolo;
- La semina a mano di semi autoctoni sarà utilizzata per ottenere vegetazione idonea e restituire naturalità, oppure, integrare la coltivazione dell'ulivo intensivo, ma non necessariamente potendosi optare per la diversificazione delle colture onde ripristinare la naturalità e la percezione del paesaggio.

5.2.1 Uso delle risorse naturali

<u>Suolo</u>

L'impatto maggiore sulle risorse naturali è legato alla perdita di terreni coltivati per la costruzione dell'impianto fotovoltaico e delle relative infrastrutture.

La disponibilità di terreni agricoli nelle vicinanze riduce la significatività dell'impatto. Inoltre alla fine del ciclo di vita del progetto, si prevede la rimozione delle strutture e ciò consentirebbe di restituire il suolo ad uno stato naturale dopo la rinaturalizzazione, con un impatto medio-basso. Si tratta pertanto di un impatto temporaneo, di lunga durata, reversibile.

Occorre però sottolineare che il nostro progetto innovativo prevede il recupero di circa il 50% del suolo agricolo, il dettaglio di questo aspetto è riportato nel Piano Agro-fotovoltaico allegato. In tali condizioni l'impatto si riduce diventando quasi nullo.

Acqua

Non saranno presenti scarichi di nessun tipo, né di natura civile, né industriale. Le acque meteoriche, nell'area oggetto di intervento, non necessitano opere di regimazione.

Durante la fase di esercizio però ci sarà un consumo idrico legato all'attività di pulizia dei pannelli. A tale scopo sarà utilizzata solamente acqua senza detergenti. La stessa acqua utilizzata per la pulizia, poiché priva di detergenti, sarà usata per irrigare qualora necessario le aree erbacee e arbustive previste nel Progetto. L'approvvigionamento idrico per la pulizia dei pannelli verrà effettuato mediante autobotte.

Si registra un impatto nullo per questa risorsa.

Biodiversità

Le interferenze maggiori potrebbero derivare dal rumore dovuto al passaggio dei mezzi necessari alla realizzazione dell'opera. L'eventuale sottrazione di habitat faunistici nella fase di cantiere è molto limitata nello spazio, interessa aree agricole e anche aree di interesse naturalistico ma ha carattere transitorio, in quanto al termine dell'esecuzione dei lavori le aree di cantiere vengono riportate all'uso originario.

L'interferenza in <u>fase di cantiere</u>, sia in <u>fase di costruzione</u> che di <u>dismissione</u>, risulta limitata nel tempo, in quanto i tempi di realizzazione sono *brevi* pertanto eventuali disturbi legati alla fase di cantiere risultano *bassi, locali, temporanei e reversibili*.

Durante la <u>fase di esercizio</u> si potrebbe avere il fenomeno di "abbagliamento" e "confusione biologica" sull'avifauna acquatica e migratoria e la variazione del campo termico nella zona di installazione dei moduli.

Si tratta di un impatto a lungo termine, locale, di bassa entità.

5.2.2 Emissioni inquinanti

Emissioni in atmosfera

Durante la <u>fase di costruzione</u> si registreranno degli impatti legati alle attività di cantiere per la presenza di mezzi meccanici nell'area e di mezzi per l'approvvigionamento dei materiali. Si tratta di impatti <u>locali, reversibili di breve durata e bassa entità</u> e al termine dei lavori la risorsa ritornerà al suo stato iniziale.

Emissioni analoghe si registreranno durante la fase di dismissione.

Nella <u>fase di funzionamento</u> l'impianto fotovoltaico non avrà emissioni e a livello nazionale eviterà una significativa quantità di emissioni di CO_2 in atmosfera evitando il ricorso a combustibili fossili per la generazione dell'energia prodotta. Pertanto, l'impatto derivante si ritiene <u>esteso, lunga durata, positivo medio</u>.

Emissioni sonore

Durante la <u>fase di costruzione</u> le emissioni sonore sono legate alle attività di cantiere perché le fonti di rumore sono rappresentate dai macchinari utilizzati per il movimento terra e materiali, per la preparazione del sito e per il trasporto dei lavoratori durante la fase di cantiere. L'impatto risulta a <u>breve termine, reversibile,</u> <u>locale, e di bassa entità</u> per la presenza di pochi ricettori sensibili in zona.

Non si prevedono fonti di rumore significative durante la <u>fase di esercizio</u> del progetto pertanto <u>l'impatto è nullo</u>.

La <u>fase di dismissione</u> prevede fonti di rumore connesse all'utilizzo di veicoli/macchinari per le attività di smantellamento, simili a quelle previste nella fase di cantiere. Si prevede tuttavia l'impiego di un numero di mezzi inferiore.

<u>Rifiuti</u>

La gestione dei rifiuti durante la fase di costruzione avverrà con le seguenti modalità:

- il materiale vegetale proveniente dall'eventuale decespugliamento delle aree sarà conferito, appena prodotto, ad impianto di compostaggio;
- i rifiuti derivati dagli imballaggi dei pannelli fotovoltaici (quali carta e cartone, plastica, legno e
 materiali misti) saranno provvisoriamente stoccati in appositi cassoni metallici appoggiati a
 terra, nelle aree individuate ed appositamente predisposte come da normativa vigente, e
 opportunamente coperti con teli impermeabili. I rifiuti saranno poi conferiti ad uno smaltitore
 autorizzato, da individuare prima della fase di realizzazione dell'impianto fotovoltaico, che li
 prenderà in carico e li gestirà secondo la normativa vigente.

L'impatto sarà pertanto temporaneo, di breve durata, reversibile, locale e di bassa entità.

Nel Piano di Gestione delle Terre e Rocce da scavo sono riportate le quantità relative agli scavi che dovranno essere realizzati e la stima degli eventuali approvvigionamenti o la possibilità del riuso delle terre.

Durante la <u>fase di dismissione</u>, le operazioni di rimozione e demolizione delle strutture nonché recupero e smaltimento dei materiali di risulta, verranno eseguite, applicando le migliori metodiche di lavoro e tecnologie a disposizione, in osservazione delle norme vigenti in materia di smaltimento rifiuti.

I principali rifiuti prodotti, con i relativi codici CER, sono i seguenti:

- 20 01 36 Apparecchiature elettriche ed elettroniche fuori uso (inverter, quadri elettrici, trasformatori, moduli fotovoltaici);
- 17 01 01 Cemento (derivante dalla demolizione dei fabbricati che alloggiano le apparecchiature elettriche);

- 17 02 03 Plastica (derivante dalla demolizione delle tubazioni per il passaggio dei cavi elettrici);
- 17 04 05 Ferro, Acciaio (derivante dalla demolizione delle strutture di sostegno dei moduli fotovoltaici);
- 17 04 11 Cavi;
- 17 05 08 Pietrisco (derivante dalla rimozione della ghiaia gettata per realizzare la viabilità).

<u>L'impatto</u> anche in questo caso <u>sarà temporaneo, di breve durata, reversibile, locale e di medio-bassa entità</u>.

Durante la <u>fase di esercizio</u> la produzione di rifiuti sarà non significativa, essendo sostanzialmente limitata agli scarti degli imballaggi prodotti durante le attività di manutenzione dell'impianto.

Emissioni elettromagnetiche

Durante la fase di cantiere a causa della presenza di Campo elettromagnetico prodotto dai pannelli fotovoltaici fra loro interconnessi e dei campi magnetici prodotti dagli inverter e dei trasformatori, si avranno degli impatti negativi legati al rischio di esposizione al campo elettromagnetico.

I potenziali ricettori individuati saranno gli operatori impiegati come manodopera per la fase di allestimento dei moduli fotovoltaici. L'esposizione sarà gestita in accordo con la normativa sulla sicurezza dei lavoratori mentre non sono previsti impatti significativi sulla popolazione riconducibili ai campi elettromagnetici, sia in fase di esercizio che di costruzione e dismissione, poiché i ricettori si trovano ad una distanza tale da ritenere l'impatto non significativo.

5.2.3 Rischi sulla salute, patrimonio culturale, paesaggio

<u>Salute</u>

I potenziali impatti negativi sulla salute pubblica possono essere collegati essenzialmente alle <u>attività</u> di costruzione e di dismissione, come conseguenza delle potenziali interferenze delle attività di cantiere e del movimento mezzi per il trasporto merci con le comunità locali.

Saranno presenti però impatti positivi (benefici) alla salute pubblica derivanti, durante la fase di esercizio, dalle emissioni risparmiate rispetto alla produzione di un'uguale quota di energia mediante impianti tradizionali. Il Progetto è localizzato in zona occupata da terreni agricoli e distante da agglomerati residenziali o case sparse pertanto ne deriva una conseguente limitata presenza di recettori interessati.

Gli impatti sulla Salute pubblica durante la <u>fase di costruzione e dismissione</u> sono prevalentemente legati ai seguenti aspetti:

- rischi per la sicurezza stradale, per l'aumento del traffico veicolare legato all'approvvigionamento dei materiali, all'attività dei mezzi meccanici e di trasporto dei lavoratori;
- salute ambientale e qualità della vita, aumento della rumorosità e peggioramento della qualità dell'aria (per polveri ed emissioni inquinanti) derivante dalle attività di cantiere e movimento mezzi;
- modifiche del paesaggio generate dalle attività di costruzione e dimissione dell'impianto per l'approvvigionamento del materiale, presenza del cantiere e movimentazione mezzi;
- aumento della pressione sulle infrastrutture sanitarie, in caso di lavoratori non residenti;
- incidenti connessi all'accesso non autorizzato al sito di cantiere.

Tali impatti risultano essere reversibili, di breve durata, ad estensione locale, e di entità medio-bassa.

Gli impatti sulla Salute pubblica durante la fase di esercizio sono legati ai seguenti aspetti:

- impatti positivi legati alla riduzione dell'emissioni risparmiate rispetto alla produzione di una quota uguale di energia con impianti tradizionali;
- potenziale malessere psicologico associato alle modifiche apportate al paesaggio;
- impatti sulla salute dei lavoratori e dei residenti per la presenza di campi elettromagnetici prodotti dall'impianto.

In considerazione della distanza dei recettori il rischio di esposizione ai campi elettromagnetici per la popolazione risulta <u>trascurabile</u>.

Non si avranno emissioni di rumore perché non vi sono sorgenti significative.

Le emissioni atmosferiche invece durante la fase di esercizio sono unicamente legate ai veicoli che sono impiegati durante le attività di manutenzione.

Tali impatti sono assolutamente trascurabili e poco significativi.

La presenza dell'impianto fotovoltaico può provocare alterazioni sul paesaggio che possono influenzare il benessere psicologico della popolazione.

Si tratta di un impatto reversibile, con durata lunga ma che può essere facilmente mitigato e compensato dalle opere di mitigazione previste. La struttura dell'impianto risulta alta da terra al massimo 4,22 metri pertanto è facilmente schermabile con la vegetazione e le mitigazioni previste.

Patrimonio culturale

In merito al Patrimonio Culturale si rimanda all'analisi riportata nella Relazione archeologica allegata al presente Studio. L'area non risulta vincolata da vincolo archeologico e non sono presenti beni culturali vincolati o di pregio nella zona oggetto di intervento. In prossimità delle aree sono presenti aree ad interesse

archeologico pertanto la zona è stata analizzata e studiata per valutare lo stato e gli eventuali impatti sulla componente culturale.

<u>Paesaggio</u>

Per quanto riguarda il Paesaggio, gli impatti sono prevalentemente legati ai seguenti aspetti:

- durante la fase di costruzione e dismissione, alle modifiche generate dalle attività di costruzione e dimissione dell'impianto per l'approvvigionamento del materiale, per la presenza del cantiere e per movimentazione mezzi;
- durante la fase di esercizio, alle modifiche per la presenza dell'impianto fotovoltaico.

La presenza dell'impianto provoca alterazioni visive che possono influenzare il benessere psicologico della comunità. Le strutture però saranno alte meno di 4,22 m e saranno difficilmente visibili anche dai recettori lineari (strade) perché, come riportato nel paragrafo delle misure mitigative, saranno schermati da barriere verdi piantumate che verranno realizzate come fasce di mitigazione.

L'impatto, senza la mitigazione, in questo caso <u>risulta reversibile, di lunga durata per la fase di esercizio e breve durata per le fasi di costruzione e dismissione, di entità media</u>. Tale entità verrà ridotta grazie alle misure di mitigazione previste.

5.2.4 Effetto cumulo

Nei pressi dell'impianto in progetto sono già presenti:

- Cabina elettriche e Stazione Elettrica;
- Altri impianto eolici in progetto o realizzati.

In questo contesto, il progetto non comporta un aumento aggiuntivo di disturbo significativo, in quanto interessa un territorio relativamente esteso rispetto alle opere già esistenti.

Sono presenti altri impianti eolici in zona, sia già realizzati che in progetto. L'impianto in progetto risulterà sufficientemente schermato.

La sottostazione utente ("SSEU") 30/150kV per la connessione in antenna a 150 kV sulla nuova stazione elettrica a 380/150 kV della RTN da collegare in entra-esce alla linea 380 kV "Foggia – Palo del Colle", sarà condivisa con altri produttori così come richiesto da Terna al fine di razionalizzare le infrastrutture di rete.

La scelta asseconda l'esigenza dell'UE che pone degli obiettivi per la qualità dell'aria per la riduzione dell'emissioni di CO₂.

Le componenti maggiormente impattate dalla presenza di tali impianti sono il paesaggio ed il consumo di suolo. Non si prevedono altri contributi aggiuntivi in merito ad usi di risorse naturali, produzione di rifiuti, inquinamenti e disturbi ambientali significativi. Il rischio di incidenti per questa tipologia di impianti, considerata la normativa di riferimento per la progettazione di linee elettriche, risulta irrilevante.

Per approfondimenti specifici vedasi capitolo 4 Valutazione Impatti cumulativi con altri progetti.

5.2.5 Clima e cambiamenti climatici

La realizzazione di un impianto fotovoltaico permette di risparmiare l'immissione in atmosfera di anidride carbonica (CO_2). La quantità di CO_2 risparmiata è equivalente al valore di anidride carbonica emessa da un impianto termoelettrico a gasolio per produrre la stessa quantità di energia elettrica prodotta dall'impianto fotovoltaico. Utilizzando i fattori di conversione emessi dall'Autorità per l'Energia Elettrica ed il Gas (Delibera n 177/05) e considerando che per ogni TEP (Tonnellata Equivalente di Petrolio) si producono circa 3 tonnellate di CO_2 si ottiene che l'impianto in questione permetterà di evitare l'immissione in atmosfera di circa 65.000 Tonnellate di CO_2 ogni anno (ovvero circa 700g di CO_2 per ogni kWh fotovoltaico prodotto).

5.2.6 Tecnologie e sostanze utilizzate

Le tecnologie adottate sono state descritte in maniera dettagliata nel capitolo della descrizione del progetto. Sono stati riportati i motivi delle scelte e soprattutto i benefici derivanti da tali scelte.

Il generatore fotovoltaico sarà costituito da moduli del tipo monocristallino con una potenza unitaria pari a 540 Wp le cui caratteristiche tecniche riportate nel data-sheet.

Il pannello solare produce energia in Corrente Continua, in inglese: DC (Direct Current).

Sarà poi compito dell'inverter convertirla in Corrente Alternata per trasportarla ed utilizzarla nelle nostre reti di distribuzione. Gli edifici domestici e industriali, infatti, sono predisposti per il trasporto e l'utilizzo di corrente alternata.

Ogni sistema fotovoltaico è formato da almeno due componenti di base:

- I moduli fotovoltaici, composti da celle fotovoltaiche che trasformano la luce del sole in elettricità;
- uno o più *inverter*, apparecchi che convertono la corrente continua in corrente alternata. I
 moderni inverter integrano sistemi elettronici di gestione "intelligente" dell'energia e di
 ottimizzazione della conversione. Possono inoltre integrare dei sistemi di stoccaggio
 temporaneo dell'elettricità: batterie AGM, batterie al Litio o di altro tipo.

La connessione in serie dei moduli fotovoltaici dovrà essere effettuata utilizzando i connettori multicontact pre-installati dal produttore nelle scatole di giunzione poste sul retro di ogni modulo. I cavi dovranno essere stesi fino a dove possibile all'interno degli appositi canali previsti nei profili delle strutture di fissaggio.

Ulteriore innovazione del progetto è l'adozione di tecnologie ad inseguimento monoassiale che permettono nel contempo di aumentare significativamente la redditività degli impianti e di ridurre l'impatto visivo degli stessi, avendo altezze inferiore.

L' inseguitore solare est-ovest ha l'obiettivo di massimizzare l'efficienza energetica e i costi di un impianto fotovoltaico a terra che impiega pannelli fotovoltaici in silicio cristallino. Questo obiettivo è stato raggiunto con un singolo prodotto che garantisce i vantaggi di una soluzione di inseguimento solare con una semplice installazione e manutenzione. Sono inoltre previste batterie per lo storage dell'energia prodotta.

5.3 Misure mitigative e compensative

Emissioni sonore

Durante la <u>fase di costruzione e di dismissione</u> saranno messe in atto le seguenti misure di mitigazione:

- Uso di macchine provviste di silenziatore a norma di legge per contenere il rumore;
- Minimizzazione dei tempi di stazionamento a "motore acceso" durante le attività di carico e scarico di materiali (per approvvigionamenti materiali e movimentazione mezzi);
- limitare le attività più rumorose ad orari della giornata più consoni;
- Corretta gestione del traffico sulle strade coinvolte dalla viabilità di cantiere;
- Riduzione di vibrazione e rumori,
- Monitoraggio dell'area di cantiere.

Emissioni atmosferiche

Durante la fase di costruzione e di dismissione si adotteranno le seguenti misure di mitigazione al fine di ridurre le emissioni in atmosfera:

- Adozione di un sistema di gestione del cantiere di lavoro prestando attenzione a ridurre l'inquinamento di tipo pulviscolare;
- Bagnatura delle piste di cantiere per mezzo di idranti per limitare il propagarsi delle polveri nell'aria in fase di cantiere;
- bagnature delle gomme degli automezzi;
- riduzione della velocità di transito dei mezzi;
- Utilizzo di macchinari omologati e rispondenti alle normative vigenti.

Vegetazione, flora e fauna e biodiversità

Durante la fase di esercizio, al fine di diminuire il rischio di abbaglio e la variazione del campo termico che potrebbe provocare disturbo alla naturalità, si ravvisano le seguenti misure di mitigazione:

- l'utilizzo di pannelli di ultima generazione a basso indice di riflettenza;
- previsione di una sufficiente circolazione d'aria al di sotto dei pannelli per
- semplice moto convettivo o per aerazione naturale.

Durante la <u>fase di costruzione e dismissione</u> applicando le misure mitigative previste per le altre componenti, atte a ridurre le emissioni sonore, le emissioni atmosferiche e gli impatti sul paesaggio conseguentemente verrà mitigato l'impatto sulla componente della vegetazione, flora e fauna.

Sono previste alcune misure di mitigazione e di controllo durante la <u>fase di costruzione e dismissione</u> dell'impianto, al fine di minimizzare gli impatti sul paesaggio. In particolare:

- Le aree di cantiere verranno mantenute in condizioni di ordine e pulizia e saranno opportunatamente delimitate e segnalate.
- Al termine dei lavori si provvederà al ripristino dei luoghi. Tutte le strutture di cantiere verranno rimosse, insieme agli stoccaggi di materiale.

Durante la <u>fase di esercizio</u> a mitigazione dell'impatto paesaggistico dell'impianto, saranno realizzate delle fasce vegetali (siepi e/o uliveti) perimetrali per schermare l'impatto visivo.

L'inserimento di mitigazioni favorirà un migliore inserimento paesaggistico dell'impianto e avrà l'obiettivo di ricostituire e riarmonizzare gli elementi paesaggistici legati alla spontaneità dei luoghi.

Per valutare l'efficacia di tali misure di mitigazione sono stati realizzati dei rendering nella presente relazione (vedi da Figura 4-11 a Figura 4-20).

<u>Suolo</u>

Il progetto innovativo e prevede il recupero di circa il 50% del suolo agricolo interna alla recinzione, il dettaglio di questo aspetto è riportato nel Piano Agro-Fotovoltaico allegato.

In fase di esercizio pertanto l'impatto si riduce diventando quasi nullo.

5.4 Beni culturali e elementi del paesaggio: misure mitigative e compensative

In base a quanto previsto dal Piano Territoriale Paesistico Regionale (P.T.P.R.), e dal PTP della Provincia di Foggia l'area in esame riporta i seguenti vincoli:

PPTR

Il nuovo Piano Paesaggistico Territoriale Regionale (PPTR) della Puglia, è in vigore dal 16 febbraio 2015.

Il PPTR persegue, in particolare, la promozione e la realizzazione di uno sviluppo socioeconomico autosostenibile e durevole e di un uso consapevole del territorio regionale, anche attraverso la conservazione ed il recupero degli aspetti e dei caratteri peculiari dell'identità sociale, culturale e ambientale, la tutela della biodiversità, la realizzazione di nuovi valori paesaggistici integrati, coerenti e rispondenti a criteri di qualità e sostenibilità.

Di seguito si esaminano le varie interferenze del progetto con elaborati del PPTR aggiornati secondo quanto disposto dal D.G.R. del 2 agosto 2019 n°1543 con relativa analisi di ammissibilità.

Componenti Geomorfologiche

Beni Paesaggistici: Non vi sono interferenze

Ulteriori Contesti Paesaggistici: Non vi sono interferenze

L'intervento si può ritenere che è ammissibile.

Componenti Idrologiche

Beni Paesaggistici: Non vi sono interferenze

Ulteriori Contesti Paesaggistici: Non vi sono interferenze

Si può ritenere che l'intervento è ammissibile.

Componenti Botanico-Vegetazionali

Beni Paesaggistici: Non vi sono interferenze

Ulteriori Contesti Paesaggistici: Non vi sono interferenze

Si può ritenere che l'intervento è ammissibile.

Componenti delle aree protette e dei siti naturalistici

Beni Paesaggistici: Non vi sono interferenze

Ulteriori Contesti Paesaggistici: Non vi sono interferenze

Si può ritenere che l'intervento è ammissibile.

Comune di Cerignola - Regione Puglia

Studio Impatto Ambientale – Agri Fotovoltaico CER01

Componenti culturali e insediative

Beni Paesaggistici: Non vi sono interferenze

Ulteriori Contesti Paesaggistici: E' presente una interferenza del cavidotto MT con aree

interessate dalla "Testimonianza della stratificazione insediativa" :

Regio Tratturello Foggia-Tressanti-Barletta

Aree di rispetto:

Area di rispetto Regio Tratturello Foggia-Ascoli-Lavello;

Aree di rispetto siti interessati da beni storico culturali "Masseria Campanello".

Considerando che l'elettrodotto è completamente interrato, si può ritenere che l'intervento è

ammissibile.

Componenti dei valori percettivi

Componenti dei valori percettivi: Non vi sono interferenze

Ulteriori Contesti Paesaggistici: Non vi sono interferenze

Si può ritenere che l'intervento è ammissibile.

Alla luce di quanto sopra esposto si può ritenere quindi ,in definitiva, l'intervento coerente con gli

indirizzi del PPTR.

PTCP

Il Piano Territoriale di Coordinamento Provinciale è stato approvato con delibera di G.R. 3 Agosto 2007

n. 1328 ed è l'atto di programmazione generale riferito alla totalità del territorio provinciale, che definisce gli

indirizzi strategici e l'assetto fisico e funzionale del territorio con riferimento agli interessi sovracomunali.

Tutela dell'integrità fisica del territorio

Sia l'impianto agro-fotovoltaico che la sottostazione elettrica utente non presentano interferenze con

le aree a pericolosità geomorfologica e idraulica, pertanto l'intervento è compatibile con le aree in oggetto.

Pertanto si può ritenere che l'intervento è compatibile con le aree in oggetto.

Vulnerabilità degli acquiferi

L'area di intervento ricade all'interno delle aree ad elevata vulnerabilità degli acquiferi.

Poiché l'intervento proposto non comporta alcuna attività e/o lavorazione non consentita dalle norme, e poiché le acque sulle superfici dell'area di impianto non saranno soggette a variazioni/alterazioni chimico/fisiche che ne richiedano il convogliamento in fognatura, si può ritenere che l'intervento è compatibile con le aree in oggetto.

Tutela dell'identità culturale del territorio di matrice naturale

Sia l'impianto agro-fotovoltaico che la sottostazione elettrica utente **non presentano interferenze con** le aree della rete ecologica provinciale.

Pertanto si può ritenere che l'intervento è compatibile con le aree in oggetto.

Tutela dell'identità culturale del territorio di matrice antropica

Come si evince dalla stralcio cartografico la sottostazione elettrica utente si inseriscono in aree con presenza di insediamenti abitativi derivanti dalle bonifiche e dalle riforme agrarie, mentre il tracciato dell'elettrodotto MT interseca una ipotesi di viabilità romana secondaria.

Considerando che l'impianto agro-fotovoltaico non interferisce direttamente con gli elementi costituenti l'identità culturale del territorio di matrice antropica e considerando che l'elettrodotto è completamente interrato, si può ritenere che l'intervento è compatibile con le aree in oggetto.

Assetto territoriale

Sia l'impianto agro-fotovoltaico che le opere di rete si inseriscono nel contesto rurale produttivo dell'assetto territoriale del PTCP.

L'impianto agro-fotovoltaico, per sua natura, combina sulla medesima superficie agricola la produzione di energia elettrica da fonti rinnovabili con l'attività agronomica e quindi non solo non interferisce ma si inserisce perfettamente con gli elementi costituenti il contesto rurale produttivo locale pertanto, si può ritenere che l'intervento è compatibile con le aree in oggetto.

Sistema delle qualità e sistema insediativo e mobilità

L'impianto agro-fotovoltaico si inserisce all'interno delle aree agricole del tipo "seminativi asciutti" e non interferisce con elementi della rete ecologica e la rete dei beni culturali inoltre, per sua natura, combina sulla medesima superficie agricola la produzione di energia elettrica da fonti rinnovabili con l'attività agronomica e quindi non solo non interferisce ma si inserisce perfettamente con gli elementi costituenti il contesto rurale produttivo locale pertanto, si può ritenere che l'intervento è compatibile con le aree in oggetto.

Si può ritenere quindi ,in definitiva, l'intervento coerente con gli indirizzi del PTCP.

PRG

L'impianto agro-fotovoltaico rientra in zona agricola "E" del PRG regolamentata dall'art.20 delle NTA in cui all'art. 20.2.3 co. 3.3/2 cita espressamente la possibilità di realizzare centrali elettriche in genere ed e pertanto in linea con quanto normato all'art. 12 co. 7 Decreto Legislativo 29 dicembre 2003, n. 387, laddove si precisa che gli impianti per la realizzazione di energia elettrica da fonti rinnovabili sono ammessi in zona agricola.

Quindi, l'impianto agro-fotovoltaico si rileva orientato al perseguimento degli obiettivi indicati nell'Art. 20 delle NTA del PRG (Art 20.2 comma 20.2.3 comma 3.3 p.to 2) questo *rientra interamente all'interno delle aree definita come "Zona E agricola"*.

L'impianto agro-fotovoltaico, per sua natura, combina sulla medesima superficie agricola la produzione di energia elettrica da fonti rinnovabili con l'attività agronomica e quindi non solo non interferisce ma si inserisce perfettamente con gli elementi costituenti il contesto rurale produttivo locale, pertanto si può ritenere che <u>l'intervento è compatibile con la classificazione delle aree come da NTA del PRG di Cerignola.</u>

Si può ritenere quindi ,in definitiva, l'intervento coerente con gli indirizzi del PRG.

6 Conclusioni

L'impianto agro-fotovoltaico CER01 sarà ubicato nell'agro del Comune di Cerignola (FG) in località Acquarulo / Preti / Tressanti / Pozzo Terraneo su una superficie recintata complessiva di circa 55,98 Ha avente destinazione agricola "E" secondo il vigente piano urbanistico.

Le coordinate dei due blocchi sono rispettivamente:

Blocco	Lat	Lon	Elevazione m
А	41.382408	15.866732	17
В	41.380065	15.866329	21
С	41.368330	15.882126	22
D	41.369589	15.886297	27
E	41.363864	15.881901	28
F	41.359290	15.879692	31

L'area di intervento è censita interamente nel catasto del Comune di Cerignola, nello specifico di seguito si riportano i dati principali inerenti le aree agricole interessate dal progetto, nonché la mappa catastale con identificazione delle aree in oggetto:

Lotto	foglio	particella	Superficie [mq]	Superficie totale [mq]	
A	77	41 89	2400 9680	82030	
	78	201	9890		
		83 92	60060		
	77	132	6750 4668		
		207	6590	120745	
В	78	417	36477	120745	
D		85			
			66260		
	78	79	80609	81935	
	-	346	1326		
		30	10748		
		31	14532		
		1	5547		
C	89	2	44638	96010	
•		32	6798		
		33	394		
		6	10581		
	90	5	2772		
D	90	1	99950	108004	
		3	8054	100007	
	90	75	4505		
	89	28	22004	77396	
	90	10	100		
E		17	447		
	89	4	21589		
		19	9498		
	89	43	11910		
	89	44	7343		
	94	4	1159	249064	
		7	78		
		8	1003		
		9	86		
		42	6131		
	00	122	19546		
	88	6	11308		
F	93	7	123652		
•		8	23919		
	88	5	10509		
		17	14102		
		159	18444		
		158	14745		
		161	4040		
		160	342		
	I	100	542		
				815184	

La sottostazione utente ("SSEU") 30/150kV per la connessione in antenna a 150 kV sulla nuova stazione elettrica a 380/150 kV della RTN da collegare in entra-esce alla linea 380 kV "Foggia – Palo del Colle", sarà condivisa con altri produttori così come richiesto da Terna al fine di razionalizzare le infrastrutture di rete.

L'area ove sarà ubicata la Sottostazione Elettrica Utente "SSEU" si trova nel territorio del Comune di Cerignola e risulta identificata dai seguenti riferimenti cartografici:

- carta Tecnica Regionale in scala 1:5.000 N. 422032
- foglio catastale n°90 particella n° 82 e foglio catastale n°93 particella n°329-323 del Comune di Cerignola.

Il paesaggio agrario, anche se risulta mediamente urbanizzato e modificato negli ordinamenti culturali, mantiene ancora elementi di interesse. Nell'area oggetto di studio il ruolo delle colture legnose è minore rispetto alle atre zone della pianura del Tavoliere: le aree sono caratterizzate da sequenze di grandi masse di colture a seminativo con pochi alberi ad alto fusto a bordo delle strade o in prossimità delle costruzioni rurali.

Sono presenti inoltre infrastrutture aeree, impianti eolici, cabine elettrica, infrastrutture viarie asfaltate e non che confermano la condizione dello stato ambientale dell'area esaminata.

La presenza dell'impianto non comporta modifiche dell'assetto attuale della rete idrografica né l'attuazione di interventi di regimazione idraulica e la sua presenza può considerarsi ininfluente nel determinare cambiamenti sulle portate idriche della rete.

In conclusione l'intervento non introduce variazioni nella relazione tra gli eventi meteorologici ed il suolo e disincentiva la possibilità che si presentino fenomeni degradativi.

L'impatto per sottrazione di suolo viene considerato poco significativo in quanto con l'Innovativo PIANO AGRO-FOTOVOLAICO sarà possibile operare un'integrazione virtuosa di Produzione di Energia Rinnovabile e Agricoltura.

L'area sotto i pannelli sarà rinverdita naturalmente e ciò porterà in breve al ripristino del soprassuolo originario. Pertanto non avremo un consumo di suolo ma una un diverso utilizzo che consentirà un'integrazione del reddito e dell'attività agricola del sito. Tali attività inoltre sono temporanee e reversibili.

Durante l'esercizio, lo spazio sotto i pannelli resta libero, fruibile e transitabile per animali anche di medie dimensioni. Visto l'ampio contesto rurale in cui si inserisce il progetto, lo spazio sotto i pannelli probabilmente assumerà una minore appetibilità, rispetto ai terreni limitrofi, come luogo per la predazione o la riproduzione.

In merito al Paesaggio, la presenza dell'impianto provoca alterazioni visive che possono influenzare il benessere psicologico della comunità. Le strutture però saranno alte meno di 4,22 m e saranno difficilmente visibili anche dai recettori lineari (strade) perché, come riportato nel paragrafo delle misure mitigative e nella relazione paesaggistica allegata al presente studio, saranno schermati da barriere verdi piantumate che verranno realizzate come fasce di mitigazione e con produzione di reddito agrario. L'impatto, senza la mitigazione, in questo caso risulta reversibile, di lunga durata per la fase di esercizio, e di breve durata per le fasi di costruzione e dismissione, ma di entità media. Tale entità verrà ridotta e la magnitudo raggiungerà il valore basso grazie alle misure di mitigazione previste che consentiranno l'annegamento dell'impianto nel verde agrario riequilibrando il valore paesaggistico.

Ciò premesso e ricapitolato sulla base delle analisi condotte nel Paragrafo 5.2, il progetto in esame si caratterizza per il fatto che molti degli impatti sono a carattere temporaneo poiché legati alle attività di

cantiere necessarie alle fasi di costruzione e successiva dismissione dell'impianto fotovoltaico. Tali interferenze sono complessivamente di bassa significatività minimizzate dalle misure di mitigazione previste.

Le restanti interferenze sono legate alla fase di esercizio dell'impianto fotovoltaico che, nonostante la durata prolungata di questa fase, presentano comunque una significatività bassa.

In ogni caso sono state adottate misure specifiche di mitigazione mirate alla salvaguardia della qualità dell'ambiente e del territorio.

Si sottolinea che tra le interferenze valutate nella fase di esercizio sono presenti anche fattori "positivi" quali la produzione di energia elettrica da sorgenti rinnovabili che consentono un notevole risparmio di emissioni di macro inquinanti atmosferici e gas a effetto serra, quindi un beneficio per la componente aria e conseguentemente salute pubblica.

Dalle analisi dello studio emerge che l'area interessata dallo sviluppo dell'impianto fotovoltaico risulta particolarmente idonea a questo tipo di utilizzo in quanto caratterizzata da un irraggiamento solare tra le più alte del Paese e dalla vicinanza con Stazione Elettrica denominata "Cerignola" oltre alle programmazioni di ampliamento/potenziamento della rete di TERNA che rende i terreni circostanti maggiormente appetibili a tali scopi rispetto all'utilizzo per soli fini agricoli.

Inoltre, l'impianto fornirà energia elettrica senza emettere gas serra e, quindi, consentirà la produzione di energia rinnovabile in linea con la Strategia Energetica Nazionale (SEN) e con il Piano Nazionale di Ripresa e Resilienza (PNRR) "Energia Rinnovabile, Idrogeno, Rete e Mobilità".

In conclusione si può ritenere che l'area scelta per la realizzazione dell'impianto agro-fotovoltaico, risulta idonea alla realizzazione di impianti fotovoltaici, sia per le caratteristiche geomorfologiche del sito, sia perché non contrasta con i piani, programmi e strumenti di pianificazione nazionale, regionale, provinciale, municipale e settoriale, sia perché l'impianto agro-fotovoltaico che per sua natura combina sulla medesima superficie agricola la produzione di energia elettrica da fonti rinnovabili con l'attività agronomica, non solo non interferisce ma, si inserisce perfettamente con gli elementi costituenti il contesto rurale produttivo locale.

7 Bibliografia, riferimenti e fonti

- PUG del Comune di Ascoli Satriano
- PTCP della Provincia di Foggia
- PPTR della Regione Puglia
- PAI dell'Autorità di Bacino dell'Appennino Centrale
- PAI dell'Autorità di Bacino della Puglia
- Piano Energetico Regionale della Puglia
- Piano Regionale di Tutela delle Acque della Regione Puglia
- Piano Energetico Regionale della Regione Puglia
- Piano Regionale di Tutela delle Acque della Regione Puglia
- Sito istituzionale "PCN Portale Cartografico Nazionale"
- Sito istituzionale Regione Puglia
- Sito ARPA Puglia
- ISPRA Puglia
- SIT Puglia
- Sito del comune di Ascoli Satriano

Fonti:

- Valutazione di Impatto Ambientale. Norme tecniche per la redazione degli studi di impatto ambientale (linee guida SNPA 28 2020)
- Manuale per la valutazione di Impatto Ambientale cooerd, arch. G. Banfi
- Lezioni di V.I.A Ing. V. Franco Campanale Politecnico di Bari 2003
- Valutazione di Impatto Ambientale Luigi Bruzzi Maggioli Editore
- Ecologia Applicata Renato Vismara Hoepli