COMMITTENTE:

PROGETTAZIONE:

CUP J84C19000370009

U.O. ENERGIA E TRAZIONE ELETTRICA

PROGETTO DEFINITIVO

LINEA A.V./A.C. MILANO-VERONA NODO DI BRESCIA POTENZIAMENTO INFRASTRUTTURALE DELLO SCALO DI BRESCIA

GA6

Relazione di calcolo impianto di terra

SCA	LA:	
	-	

COMMESSA LOTTO FASE ENTE TIPO DOC. OPERA/DISCIPLINA PROGR. REV.

I N 1 M 1 1 D 1 8 C L L F 0 2 0 0 0 1 A

Rev.	Descrizione	Redatto	Data	Verificato	Data	Approvato	Data	Autorizzato Data
Α	Emissione esecutiva	L. Giorgini	Novembre 2021	C. Vacca	Novembre 2021	L. Barchi	Novembre 2021	G. Guidi Buffarini Novembre 2021
				/				BB Sent.
								UTALA U Oderal Ing. Gjidhe Ordine Ingegne

File IN1M11D18CLLF0200001A	n. Elab.:

IMPIANTI DI ILLUMINAZIONE E F.M. Relazione di calcolo impianto di terra

PROGETTO DEFINITIVO LINEA A.V./A.C. MILANO-VERONA NODO DI BRESCIA

POTENZIAMENTO INFRASTRUTTURALE DELLO SCALO DI BRESCIA

COMMESSA LOTTO CODIFICA DOCUMENTO REV.

IN1M 11 D18 CL LF 02 00 001 A 2 di 16

FOGLIO

INDICE

1	INT	RODUZIONE	3
2	DOG	CUMENTI DI RIFERIMENTO	3
3	RIF	ERIMENTI NORMATIVI	5
4	SIM	BOLOGIA E TERMINOLOGIA ADOTTATE	6
5	CRI	TERI PROGETTUALI	7
6	CON	NFIGURAZIONE DEL SISTEMA DISPERDENTE	.10
7	DIM	IENSIONAMENTO IMPIANTO DI TERRA	.11
	7.1	CALCOLO DELLA RESISTENZA DI TERRA DEL DISPERSORE	.11
	7.2	COLLEGAMENTO DEL NEUTRO	.12
	7.3 ALLA C	DIMENSIONAMENTO DELL'IMPIANTO DI TERRA IN RELAZIONE AL COMPORTAMENTO TERMICO ED ALLA RESISTENZA FORROSIONE	
	7.4	DIMENSIONAMENTO DEL CONDUTTORE DI TERRA PER GUASTI LATO MT	.13
	7.5	DIMENSIONAMENTO DEL CONDUTTORE DI TERRA PER GUASTI LATO BT	.14
	7.6	PROTEZIONE DAI CONTATTI INDIRETTI	.16
	7.7	GUASTO SULLA BASSA TENSIONE GESTITA CON SISTEMA TN-S.	.16
	7.8	GUASTO SULLA BASSA TENSIONE GESTITA CON SISTEMA TT	.16

1 INTRODUZIONE

Il progetto di potenziamento infrastrutturale dello Scalo di Brescia prevede l'adeguamento del fascio A/P del terminal e delle aste di manovra alle esigenze del futuro terminal intermodale di competenza di TERALP, la cui realizzazione è prevista in ambito del PFTE del potenziamento tecnologico dello scalo di Brescia.

2 DOCUMENTI DI RIFERIMENTO

I documenti elencati nella **Errore.** L'origine riferimento non è stata trovata. sono da considerarsi parte integrante della presente relazione tecnica, ed hanno lo scopo di fornire un maggiore dettaglio nella descrizione dei sistemi LF.

Gli elaborati elencati si intendono nell'indice di revisione più aggiornato.

	ELENCO ELABORATI LFM	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
N.	ELABORATI DI PROGETTO																				
LF	Luce e forza motrice - LFM																				
	GENERALI IMPIANTI																				
1	Relazione Tecnica: Impianti Energia LFM	I	Ν	1	Μ	1	1	D	1	8	R	0	ш	F	0	0	0	0	0	0	1
2	Relazione Tecnica: Verifiche Illuminotecniche fabbricati	I	N	1	Μ	1	1	D	1	8	С	L	L	F	0	0	0	0	0	0	1
3	Relazione Tecnica: Verifiche Scariche Atmosferiche	I	N	1	M	1	1	D	1	8	С	L	L	F	0	0	0	0	0	0	2
4	Relazione Tecnica Calcoli elettrici	I	Ν	1	Μ	1	1	D	1	8	С	L	Ш	F	0	0	0	0	0	0	3
5	Analisi carichi elettrici anello MT e relazione di calcolo linee MT	I	N	1	M	1	1	D	1	8	С	L	L	F	0	0	0	0	0	0	4
6	Specifica Tecnica: Materiali ed Apparecchiature MT e BT	-	Ν	1	М	1	1	D	1	8	S	Р	L	F	0	0	0	0	0	0	1
7	Schema generale delle alimentazioni a blocchi	١	Ν	1	М	1	1	D	1	8	D	X	L	F	0	0	0	0	0	0	1
8	Computo metrico estimativo LFM	I	Ν	1	М	1	1	D	1	8	С	Ε	L	F	0	0	0	0	0	0	1
9	Computo metrico LFM	Ι	Ν	1	М	1	1	D	1	8	С	М	L	F	0	0	0	0	0	0	1
10	Computo metrico estimativo LFM Materiali RFI	I	Ν	1	Μ	1	1	D	1	8	C	Е	ш	F	0	0	0	0	0	0	2
11	Computo metrico LFM Materiali RFI	I	Ν	1	Μ	1	1	D	1	8	С	Μ	L	F	0	0	0	0	0	0	2
12	Elaborazione Tariffe Voci Suppletive	Ι	Ν	1	М	1	1	D	1	8	Α	Р	L	F	0	0	0	0	0	0	1
	LF01 - GA5																				
13	Schema Elettrico Generale a Blocchi -	I	Ν	1	М	1	1	D	1	8	D	Χ	L	F	0	1	0	0	0	0	1

POTENZIAMENTO INFRASTRUTTURALE DELLO SCALO DI BRESCIA

IMPIANTI DI ILLUMINAZIONE E F.M.COMMESSALOTTOCODIFICADOCUMENTOREV.FOGLIORelazione di calcolo impianto di terraIN1M11D18 CLLF 02 00 001A4 di 16

	ie di calcolo impianto di terra		IIN.	1 IVI			11			אוט	3 CL		LF (J2 00	001		А		4 di	16	
	Analisi Carichi																				
14	Quadro MT Schema Elettrico Unifilare e Fronte Quadro	I	N	1	М	1	1	D	1	8	D	Х	L	F	0	1	0	0	0	0	2
15	Quadri BT: Power Center QGBT - QRED - Schema Elettrico Unifilare e Fronte Quadro	I	N	1	М	1	1	D	1	8	D	Х	L	F	0	1	0	0	0	0	3
16	Quadri BT: Fabbricato Tecnologico - Schema Elettrico Unifilare e Fronte Quadro	I	N	1	М	1	1	D	1	8	D	Х	L	F	0	1	0	0	0	0	4
17	Tabelle Cavi FT	Ι	Ζ	1	Μ	1	1	D	1	8	Т	Т	\neg	F	0	1	0	0	0	0	1
18	Lay out disposizione apparecchiature MT-BT	Ι	Z	1	Μ	1	1	D	1	8	Р	В	П	F	0	1	0	0	0	0	1
19	Lay out disposizione Apparecchiature e Impiantistica LFM	Ι	Ν	1	Μ	1	1	D	1	8	Р	В	L	F	0	1	0	0	0	0	2
20	Lay out impianto di terra	Ι	Ν	1	Μ	1	1	D	1	8	Р	В	L	F	0	1	0	0	0	0	3
21	Relazione di calcolo impianto di terra	I	Ν	1	М	1	1	D	1	8	С	L	L	F	0	1	0	0	0	0	1
	LF01 - GA5 - PIAZZALE																				
22	Planimetria Disposizione Apparecchiature RED	ı	N	1	М	1	1	D	1	8	Р	8	L	F	0	1	0	0	0	0	1
	LF01 - GA6																				
23	Schema Elettrico Generale a Blocchi - Analisi Carichi	I	N	1	М	1	1	D	1	8	D	Х	L	F	0	2	0	0	0	0	1
24	Quadro MT Schema Elettrico Unifilare e Fronte Quadro	ı	N	1	Μ	1	1	D	1	8	D	Х	L	F	0	2	0	0	0	0	2
25	Quadri BT: Power Center QGBT - QRED - Schema Elettrico Unifilare e Fronte Quadro	I	N	1	М	1	1	D	1	8	D	Х	L	F	0	2	0	0	0	0	3
26	Quadri BT: Fabbricato Tecnologico - Schema Elettrico Unifilare e Fronte Quadro	ı	N	1	М	1	1	D	1	8	D	х	L	F	0	2	0	0	0	0	4
27	Tabelle Cavi FT	Ι	Ν	1	М	1	1	D	1	8	Т	Т	L	F	0	2	0	0	0	0	1
28	Lay out disposizione apparecchiature MT-BT	١	Ν	1	М	1	1	D	1	8	Р	В	L	F	0	2	0	0	0	0	1
29	Lay out disposizione Apparecchiature e Impiantistica LFM	Ι	Ν	1	Μ	1	1	D	1	8	Р	В	L	F	0	2	0	0	0	0	2
30	Lay out impianto di terra	I	Ν	1	М	1	1	D	1	8	Р	В	L	F	0	2	0	0	0	0	3
31	Relazione di calcolo impianto di terra	Ι	Ν	1	М	1	1	D	1	8	С	L	L	F	0	2	0	0	0	0	1
	LF01 - GA6 - PIAZZALE																				
32	Planimetria Disposizione Apparecchiature RED	I	N	1	М	1	1	D	1	8	Р	8	L	F	0	2	0	0	0	0	1
	LF03 - ILLUMINAZIONE PIAZZALE																				
33	Relazione Tecnica: Verifiche Illuminotecniche piazzale	ı	N	1	М	1	1	D	1	8	С	L	L	F	0	3	0	0	0	0	1
34	Planimetria Disposizione Apparecchiature Illuminazione Piazzale 1-2	I	N	1	М	1	1	D	1	8	Р	7	L	F	0	3	0	0	0	0	1
35	Planimetria Disposizione Apparecchiature Illuminazione	I	N	1	М	1	1	D	1	8	Р	7	L	F	0	3	0	0	0	0	2

TALFERR GRUPPO FERROVIE DELLO STATO ITALIANE					ΕΑ <i>Ι</i> ΟΟ Ι	DI B	/A.	C. I SC	MIL. IA	AN	O-\	/ERC		LLO S	CALC) DI B	RESC	CIA				
	IMPIANTI DI ILLUMINAZIONE E F.M. Relazione di calcolo impianto di terra				iess 1M	iΑ	LOTTO CODIFICA 11 D18 CL					DOCUMENTO LF 02 00 001				REV.			FOGLIO 5 di 16			
		Piazzale 2-2																				
	36	Schema Elettrico Unifilare Comando Luci di Piazzale	ı	N	1	М	1	1	D	1	8	D	Х	L	F	0	3	0	0	0	0	1
	LF04 - RETE MT																					
	37	Rete canalizzazioni anello media tensione 15KV	I	N	1	М	1	1	D	1	8	Р	7	L	F	0	4	0	0	0	0	1

Tabella 1

3 RIFERIMENTI NORMATIVI

I principali riferimenti normativi di cui si è tenuto conto nello sviluppo della progettazione sono, in linea indicativa ma non esaustiva, i seguenti:

Leggi, Decreti e Circolari:

- D. Lgs. 09/04/08 n.81:"Testo Unico sulla sicurezza"
- DM. 37 del 22/01/08: "Sicurezza degli impianti elettrici, regole per la progettazione e realizzazione, ambiti di competenze professionali"
- L. REG. 7 agosto 2009, n 17 "Nuove norme per il contenimento dell'inquinamento luminoso e per il risparmio energetico" Regione Veneto
- Legge n. 791 del 18/10/1977: Attuazione delle direttive CEE 72/23 relative alle garanzie di sicurezza che deve possedere il materiale elettrico;
- Direttiva "bt" CEE 73/23 e 93/68
- DPR 4/12/1992 n. 476: "Direttiva EMC"
- Legge 1 Marzo 1968 n° 186 (G.U. n° 77 del 23/3/68) "Disposizioni concernenti la produzione di macchinari, installazioni ed impianti elettrici ed elettronici".
- Decreto del Ministero dello Sviluppo Economico e del Ministro dell'Ambiente e della tutela del territorio e del mare n. 37 del 22 Gennaio 2008: Regolamento concernente l'attuazione dell'articolo 11-quaterdecies, comma 13, lettera a) della legge 248 del 2 Dicembre 2005, recante riordino delle disposizioni in materia di attività di installazione degli impianti all'interno degli edifici.
- Ente Nazionale di Unificazione (UNI) Norme applicabili.
- Regolamento (UE) n. 305/2011del Parlamento Europeo e del Consiglio del 9/3/2011 che fissa condizioni armonizzate per la commercializzazione dei prodotti da costruzione e che abroga la direttiva 89/106/CEE del Consiglio

Normative Tecniche:

- **Norma CEI 0-16:** "Condizioni tecniche per la connessione alle reti di distribuzione dell'energia elettrica a tensione nominale superiore ad 1 kV"
- **Norma CEI EN50122-1 (9.6):** "Applicazioni ferroviarie Installazioni fisse; Parte 1a: Provvedimenti concernenti la sicurezza elettrica e la messa a terra";
- Norma CEI 99-3 (EN50522): "Messa a terra degli impianti elettrici a tensione superiore a 1 kV in c.a."
- Norma CEI 11-17: "Impianti di produzione, trasmissione e distribuzione di energia elettrica. Linee in cavo";

- Norma CEI EN 61936-1 (CEI 99-2): "Impianti elettrici con tensione superiore a 1 kV in corrente alternata. Parte 1: Prescrizioni comuni"
- **Norma CEI EN60865-1 (11-26):** "Correnti di corto circuito Calcolo degli effetti; parte 1a: Definizioni e metodi di calcolo";
- Norme CEI 64-8/1-2-3-4-5-6-7 Impianti elettrici utilizzatori a tensione nominale non superiore a 1000 V in corrente alternata e a 1500 V in corrente continua (Comprese tutte le varianti a tali norme);

Per quanto non esplicitamente indicato, dovranno in ogni caso essere sempre adottate tutte le indicazioni normative e di legge atte a garantire la realizzazione del sistema a regola d'arte e nel rispetto della sicurezza.

4 SIMBOLOGIA E TERMINOLOGIA ADOTTATE

La simbologia adottata è derivata direttamente dalla Norma CEI EN 50522 § 3.

Di seguito si riportano i simboli ed i termini più frequentemente usati nel presente elaborato:

GRANDEZZA	DEFINIZIONE	SIMBOLO
Terra di riferimento (terra lontana)	Zona della superficie del terreno al di fuori dell'area di influenza di un dispersore o di un impianto di terra	-
Dispersore di fatto	Parte metallica in contatto elettrico con il terreno, direttamente o tramite calcestruzzo, il cui scopo originale non è di mettere a terra ma soddisfa tutti i requisiti di un dispersore	-
Resistività del terreno	Resistività di un tipico campione di terreno	$ ho_{\rm E}$
Resistenza di terra	Resistenza tra il dispersore e la terra di riferimento	$R_{\rm E}$
Tensione totale di terra	Tensione tra un impianto di terra e la terra di riferimento	$U_{\rm E}$
Tensione di contatto	Tensione tra parti conduttrici quando vengano toccate simultaneamente	U_{T}
Tensione di passo	Tensione tra due punti della superficie del terreno a distanza di 1 m tra loro, distanza che si assume come lunghezza del passo di una persona	Us
Corrente di guasto a terra	corrente che fluisce dal circuito principale verso terra, o verso parti collegate a terra, nel punto di guasto	I_{F}
Corrente di terra	Corrente che fluisce a terra tramite la resistenza di terra e determina quindi la tensione totale di terra UE	$I_{\rm E}$

POTENZIAMENTO INFRASTRUTTURALE DELLO SCALO DI BRESCIA

IMPIANTI DI ILLUMINAZIONE E F.M.
Relazione di calcolo impianto di terra

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
IN1M	11	D18 CL	LF 02 00 001	Α	7 di 16

5 CRITERI PROGETTUALI

L'impianto di messa a terra in oggetto è destinato a realizzare il sistema di protezione dai contatti indiretti denominato "Protezione mediante interruzione automatica dell'alimentazione", che è il solo metodo ammesso per gli impianti elettrici alimentati da sistemi di categoria superiore alla I.

L'impianto dovrà essere realizzato nel rispetto della Norma CEI EN50522 che ha sostituito definitivamente la norma CEI 11-1 dal 1° novembre 2013.

Nei sistemi di II e III categoria il progetto dell'impianto di terra deve soddisfare le seguenti esigenze:

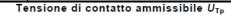
- Garantire la sicurezza delle persone contro le tensioni di contatto e le tensioni di passo che si manifestano a causa delle correnti di guasto a terra
- Presentare una sufficiente resistenza meccanica
- Presentare una sufficiente resistenza nei confronti della corrosione
- Essere in grado di sopportare termicamente le più elevate correnti di guasto prevedibili

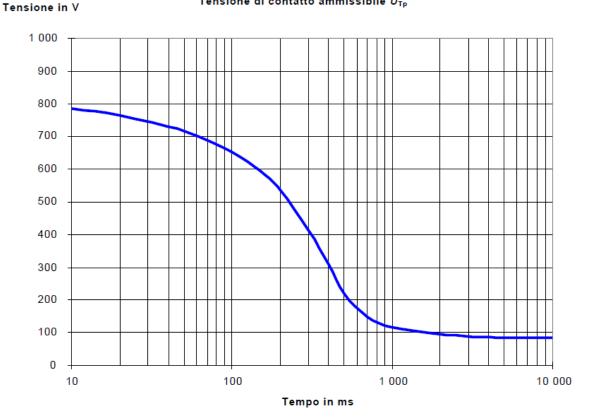
Le prestazioni devono essere garantite per ciascuno dei diversi livelli di tensione presenti nel sistema MT e BT.

Non è invece necessario prendere in considerazione la contemporaneità dei guasti in sistemi con differenti livelli di tensione.

La rete di distribuzione MT nella zona oggetto della fornitura è configurata con neutro compensato; ciò limita i valori delle correnti di guasto a terra a poche decine di ampere.

L'impianto di terra deve essere dimensionato e strutturato in modo da evitare che eventuali tensioni di contatto, stante i tempi di intervento dei dispositivi di protezione contro i guasti omopolari a terra, non superino i valori indicati dalla curva di sicurezza Tensione - Tempo riportata dalla norma CEI EN 50522 § 5.4.3 fig. 4.


PROGETTO DEFINITIVO LINEA A.V./A.C. MILANO-VERONA


NODO DI BRESCIA

POTENZIAMENTO INFRASTRUTTURALE DELLO SCALO DI BRESCIA

COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO IN1M D18 CL LF 02 00 001 Α 8 di 16 11

IMPIANTI DI ILLUMINAZIONE E F.M. Relazione di calcolo impianto di terra

Durata guasto t _f	Tensione di contattto ammissibile U_{Tp}
s	V
0,05	716
0,10	654
0,20	537
0,50	220
1,00	117
2,00	96
5,00	86
10,00	85

La procedura per il dimensionamento inizia con l'acquisizione, presso il gestore della rete, dei dati relativi ai punti di allaccio.

In mancanza di informazioni specifiche, come proposto dalla Norma CEI 0-16, per la corrente di guasto ed il tempo di intervento delle protezioni si assumono i valori:

IMPIANTI DI ILLUMINAZIONE E F.M. Relazione di calcolo impianto di terra

PROGETTO DEFINITIVO LINEA A.V./A.C. MILANO-VERONA NODO DI BRESCIA

POTENZIAMENTO INFRASTRUTTURALE DELLO SCALO DI BRESCIA

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 IN1M
 11
 D18 CL
 LF 02 00 001
 A
 9 di 16

t > 10 s;

 $I_g = 50 A;$

che andranno poi confermati in fase di Progettazione Esecutiva

In relazione al tempo massimo di intervento delle protezioni si è ricavata la tensione di contatto ammissibile U_{TP} (cfr. nota di Figura 4 – Tensione di contatto ammissibile – norma CEI EN 50522):

 $U_{TP} = 80 [V]$

Quest' ultimo valore deve essere confrontato con la tensione totale di terra U_E che può essere espressa applicando la formula:

 $U_E=R_EI_E$

Secondo la norma CEI EN 50522 § 5.4.3 il sistema disperdente è dimensionato correttamente se il valore della tensione totale di terra, determinato con misure o calcoli, non supera il valore della tensione di contatto ammissibile.

Imponendo che sia verificata la seguente disuguaglianza, si ricava il valore della resistenza di terra che si deve conseguire in modo da garantire la limitazione della tensione di contatto U_{TP} :

 $U_E = R_E I_E \le U_{TP}$

 $R_E \leq U_{TP}/I_E$

Sostituendo i valori numerici:

 $I_E = 50 [A]$

 $U_{TP} = 80 \text{ [V]}$

si ottiene:

POTENZIAMENTO INFRASTRUTTURALE DELLO SCALO DI BRESCIA

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
IN1M	11	D18 CL	LF 02 00 001	Α	10 di 16

IMPIANTI DI ILLUMINAZIONE E F.M.

Relazione di calcolo impianto di terra

6 CONFIGURAZIONE DEL SISTEMA DISPERDENTE

Il sistema disperdente sarà composto da:

• Un anello perimetrale in corda di rame nuda della sezione di 120mm² interrato a 0,6m di profondità lungo il perimetro del fabbricato tecnologico integrato da i dispersori verticali a picchetto di lunghezza 4,5 m.

Il calcolo rigoroso della resistenza di terra per un impianto così configurato richiede un approccio analitico molto complesso, in quanto i due sistemi disperdenti non si possono considerare indipendenti tra loro ma si influenzano reciprocamente, tuttavia si può pensare di valutare, in prima approssimazione, la resistenza totale come parallelo tra le resistenze di ciascuno dei suindicati dispersore.

All'interno di ciascun locale verrà realizzato uno o più nodi equipotenziali a cui collegare le masse metalliche di cabina tramite cavo in rame di sezione pari a 120mmq. L'installazione a parete dei nodi equipotenziali e delle relative derivazioni alle masse metalliche dovrà essere realizzata mediante interposizione di distanziali in resina autoestinguente, a loro volta fissati a parete con viti in acciaio e tasselli in PVC. Ai suddetti nodi saranno realizzati almeno i seguenti collegamenti equipotenziali:

- Centro stella trasformatori;
- Barra di terra Quadro Generale di Bassa Tensione;
- Barra di terra Quadro di Media Tensione.

PROGETTO DEFINITIVO LINEA A.V./A.C. MILANO-VERONA

NODO DI BRESCIA

POTENZIAMENTO INFRASTRUTTURALE DELLO SCALO DI BRESCIA

COMMESSA LOTTO CODIFICA DOCUMENTO REV. **FOGLIO** IN1M **D18 CL** LF 02 00 001 11 Α 11 di 16

IMPIANTI DI ILLUMINAZIONE E F.M.

Relazione di calcolo impianto di terra

DIMENSIONAMENTO IMPIANTO DI TERRA

7.1 Calcolo della resistenza di terra del dispersore

Per la determinazione della resistenza di terra R_{tot} del dispersore è essenziale conoscere il valore della resistività del terreno; in questa fase si è assunto il valore prudenziale

$$\rho = 100\Omega m$$

Qualora le condizioni del terreno risultassero avverse, questo valore può essere facilmente ottenuto asportando il terreno intorno al dispersore e sostituendolo con terreno vegetale ad elevata conducibilità.

Dal momento che "la maggior parte" della resistenza di terra è concentrata nei pressi del dispersore, la quantità di terreno da sostituire non è eccessiva.

Sarà onere dell'Appaltatore effettuare le necessarie verifiche strumentali per confermare o correggere il valore attribuito a tale parametro

La resistenza di terra dell'intero sistema disperdente può essere calcolata come parallelo delle resistenze dei singoli sistemi componenti, ossia dei dispersori lineari perimetrali, del dispersore lineare di collegamento e dei dispersori verticali a picchetto.

Il dispersore perimetrale del fabbricato tecnologico è costituito, come detto, da corda nuda in rame sez.120mmq interrata a profondità di 0,6 m rispetto al piano di calpestio del piazzale, avrà le seguenti caratteristiche geometriche:

 $L \approx 36.5 \text{m}$ Lunghezza:

Larghezza: $L \approx 8.8 \text{m}$

Perimetro: $P \approx 90.6$ m

 $A\approx 321m^2$ Area:

Impiegando la formula definita dalla CEI EN 50522 per un dispersore ad anello:

$$Ra = \frac{\rho}{\pi^2 D_a} \ln \frac{2\pi D_a}{d_a};$$

 $\rho \left[\Omega m\right] = 100$ Resistività del terreno;

Da [m] = 20.23Diametro del cerchio di area equivalente al dispersore ad anello:

da [mm] = 14,00Diametro del conduttore.

Si ha:

PROGETTO DEFINITIVO LINEA A.V./A.C. MILANO-VERONA

NODO DI BRESCIA

POTENZIAMENTO INFRASTRUTTURALE DELLO SCALO DI BRESCIA

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
IN1M	11	D18 CL	LF 02 00 001	Α	12 di 16

IMPIANTI DI ILLUMINAZIONE E F.M. Relazione di calcolo impianto di terra

Il sistema di dispersori lineare, come detto, sarà integrato da un sistema di dispersori verticali a picchetto, costituiti da aste in acciaio ramato infisse nel terreno e collegate al dispersore lineare a mezzo di capocorda in rame bullonati ad appositi collari fissati all'estremità dei picchetti.

I suddetti picchetti, in numero totale di 10, avranno le seguenti caratteristiche geometriche:

- L_p [m]= 4,50: Lunghezza complessiva del picchetto;
- D_p [mm]= 25: Diametro del picchetto.

La resistenza di un singolo picchetto così costituito può essere calcolata con la seguente formula:

$$R_{p1} = \frac{\rho}{2\pi L_p} \ln \frac{4L_p}{D_p};$$

nella quale, sostituendo i valori numerici si ottiene la resistenza di un singolo picchetto:

$$R_P=23,27 \Omega$$

Considerando il parallelo dei n.10 picchetti la resistenza complessiva del dispersore verticale assume il valore:

$$R_{TP} = R_P / N = 23.27 / 10 = 2.33 \Omega$$

La resistenza complessiva dell'impianto disperdente di cabina varrà dunque:

$$R_T = 1 / (1/R_{AFT} + 1/R_{TP}) = 1,54 \Omega$$

Poiché il valore calcolato della resistenza di terra è inferiore al limite che assicura il contenimento dei valori di passo e di contatto, ossia:

$$1,6[\Omega] > 1,54[\Omega]$$

Il sistema è dimensionato correttamente per il contenimento delle tensioni di passo e contatto e non è necessario effettuare le misure di passo.

7.2 Collegamento del Neutro

Secondo la norma CEI EN 50522 il neutro della bassa tensione può essere collegato alla terra della cabina solo se la tensione totale di terra verifica la seguente condizione:

$$V_T = R_T * I_F \le 1200 \text{ V}$$

$$R_T = 1,54$$

$$V_T = 1,54 * 50 = 77,09 \text{ V} < 1200 \text{ V}$$

POTENZIAMENTO INFRASTRUTTURALE DELLO SCALO DI BRESCIA

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
IN1M	11	D18 CL	LF 02 00 001	Α	13 di 16

IMPIANTI DI ILLUMINAZIONE E F.M. Relazione di calcolo impianto di terra

Dato che tale relazione risulta verificata, ogni trasformatore MT/BT verrà posato con la connessione a terra del centro stella degli avvolgimenti secondari. Detta connessione sarà ottenuta mediante collegamento in cavo fra il morsetto del centro stella del trasformatore ed il nodo equipotenziale.

7.3 Dimensionamento dell'Impianto di Terra in relazione al comportamento termico ed alla resistenza alla corrosione

Si procede al calcolo delle sezioni minime che devono presentare i conduttori di terra, i conduttori di protezione e gli elementi costituenti i dispersori. La sezione del dispersore deve essere calcolata in relazione all'entità e alla durata della corrente di guasto. Le norme CEI definiscono inoltre le sezioni minime per presentare un'adeguata robustezza nei confronti della corrosione e delle sollecitazioni meccaniche.

Occorre quindi analizzare separatamente tre casi:

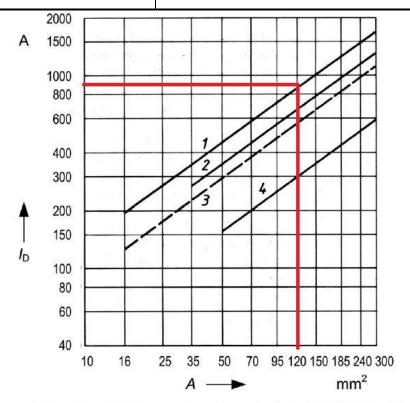
- Dimensionamento del conduttore di terra per guasti lato MT;
- Dimensionamento del conduttore di terra per guasto lato BT;
- Dimensionamento del dispersore.

7.4 Dimensionamento del Conduttore di terra per guasti lato MT

La sezione del conduttore di terra deve essere calcolata in relazione all'entità e alla durata della corrente di guasto. Nel caso in cui la durata della corrente di guasto $t_F \le 5s$ (fenomeno adiabatico) per il calcolo della sezione A espressa in millimetri quadrati si avrà:

$$A = \frac{I_F}{K} \sqrt{\frac{t_F}{ln * \frac{\theta_f + \beta}{\theta_l + \beta}}}$$

Per correnti di guasto che fluiscono per un periodo più lungo ($t_F >> 10$ s, impianto con neutro compensato), le correnti ammissibili sono riportate nella seguente figura, estratta dalla norma CEI EN 50522:



POTENZIAMENTO INFRASTRUTTURALE DELLO SCALO DI BRESCIA

IMPIANTI DI ILLUMINAZIONE E F.M. Relazione di calcolo impianto di terra

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 IN1M
 11
 D18 CL
 LF 02 00 001
 A
 14 di 16

Le linee 1, 2 e 4 si riferiscono ad una temperatura finale di 300 $^{\circ}$ C, la linea 3 a quella di 150 $^{\circ}$ C. La Tabella D.2 contiene fattori per la conversione ad altre temperature finali.

- 1 Rame, nudo o con rivestimento di zinco
- 2 Alluminio
- 3 Rame, con rivestimento in stagno o con guaina di piombo
- 4 Acciaio zincato
- a) Corrente permanente ID per conduttori di terra con sezione circolare (A)

7.5 Dimensionamento del conduttore di terra per guasti lato BT

Sono soggetti al guasto lato BT i seguenti conduttori:

- collegamenti a terra delle masse BT (quadro BT);
- collegamenti a terra dei boxes/grigliati di contenimento trasformatori;
- collegamenti a terra del centro stella dell'avvolgimento secondario dei trasformatori.

Per detti conduttori, la sezione del conduttore di terra non deve essere inferiore a quella ricavata dall'applicazione dell'art. 543.1.1 della norma CEI 64-8/5:

$$A = \frac{\sqrt{Ig^2 * t}}{k}$$

dove:

- Ig = corrente di guasto a terra, in ampere;
- t = tempo di eliminazione del guasto in secondi;

IMPIANTI DI ILLUMINAZIONE E F.M. Relazione di calcolo impianto di terra

PROGETTO DEFINITIVO LINEA A.V./A.C. MILANO-VERONA NODO DI BRESCIA

POTENZIAMENTO INFRASTRUTTURALE DELLO SCALO DI BRESCIA

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO	
IN1M	11	D18 CL	LF 02 00 001	Α	15 di 16	

- k = coefficiente che tiene conto delle caratteristiche del materiale che costituisce il conduttore e delle temperature iniziali e finali (per conduttori in rame isolati con cloruro di polivinile (PVC) si ha k = 115 [Amm-2s1/2]).

La situazione più critica si verifica quando:

- 1. avviene un guasto a terra immediatamente a valle dell'avvolgimento secondario del trasformatore (in tal caso l'impedenza del conduttore di fase si può ritenere nulla);
- 2. il guasto a terra è franco;
- 3. il tempo di intervento delle protezioni sia stimato ad 1 secondo (tbt) (intervento della protezione lato BT).

La corrente di guasto più elevata si verifica per un cortocircuito fase-terra al secondario del trasformatore: $I_g=I_{K1}=I_K$.

$$I_G = I_k = \frac{100 \cdot S_N}{u_{cr} \cdot \sqrt{3} \cdot U} = 9622 \text{ [A]}$$

Ciò fa si che la minima sezione ammissibile per i sopra citati conduttori sarà:

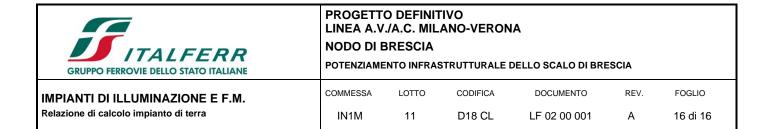
$$A = \frac{\sqrt{Ig^2 \cdot t}}{k} = 83,67 \text{ mm}^2$$

Per il collegamento a terra del centrostella dell'alternatore del gruppo elettrogeno occorre considerare la corrente di cortocircuito massima dell'alternatore, valutabile in maniera approssimata con la seguente formula empirica:

$$I_{CC} = \frac{0.14 \cdot S_n}{400 \cdot 1.73 \cdot X_d}$$

dove:

 S_n = Potenza nominale alternatore;


 X_d " = Reattanza sub-transitoria diretta percentuale;

Sostituendo i valori numerici si ha:

$$I_{CC}=9,62 \text{ [kA]}$$

Ciò fa si che la minima sezione ammissibile per i sopra citati conduttori sarà:

$$A = \frac{\sqrt{Ig^2 \cdot t}}{k} = 83,67 \text{ [mm²]}$$

- Scegliamo due conduttori G/V FG17 da 120 mm² in parallelo per garantire la ridondanza per collegare il centrostella dell'alternatore al collettore di terra.
- Scegliamo due conduttori G/V FG17 da 120 mm² in parallelo per garantire la ridondanza per collegare il dispersore con il collettore ubicato nella cabina Mt-BT
- Scegliamo due conduttori G/V FG17 da 120 mm² in parallelo per garantire la ridondanza per collegare il dispersore con il collettore ubicato nel locale gruppo elettrogeno.
- Scegliamo due conduttori G/V FG17da 120 mm² in parallelo per collegare i box trafo al collettore della cabina Mt-BT
- Scegliamo due conduttori G/V FG17da 120 mm² in parallelo per collegare il quadro generale di bassa tensione (QGBT) al collettore della cabina Mt-BT
- Per i sottoquadri alimentati da QGBT per determinare si applica la sezione la norma CEI 64-8 § 543.1

7.6 Protezione dai contatti indiretti

7.7 Guasto sulla bassa tensione gestita con sistema TN-S.

Si dovranno scegliere dei dispositivi di protezione che abbiano una corrente I_a tale da garantire il rispetto della seguente relazione:

$$Z_s \times I_a \leq U_0$$

Dove:

- U_0 = tensione nominale in c.a. (valore efficace tra fase e terra);
- Z_s = impedenza dell'anello di guasto che comprende la sorgente, il conduttore attivo fino al punto di guasto ed il conduttore di protezione tra il punto di guasto e la sorgente;
- I_a = corrente che provoca l'interruzione automatica del dispositivo di protezione entro 0,4 secondi (Norma CEI 64-8/4 Tabella 41A).

7.8 Guasto sulla bassa tensione gestita con sistema TT

Si dovrà scegliere un dispositivo di protezione che abbia una corrente differenziale Idn tale da garantire il rispetto della seguente relazione:

$$R_E \times I_{dn} \leq U_L$$

Dove:

- R_E = resistenza del dispersore in ohm;
- I_{dn} = corrente nominale differenziale in ampere;
- U_L = tensione di contatto limite convenzionale (50 V per i sistemi in c.a.).