

AMBIENTE IDRAULICA STRUTTURE

Dott. Ing. Orazio Tricarico Via della Resistenza, 48/B1 - 70125 Bari (BA) +39 080 3219948 info@atechsrl.net www.atechsrl.net

STUDI ARCHEOLOGICI

Dott.ssa Adele Barbieri via Piave, 21- 73059 Ugento (LE) t. 0833 554843 info@archeostudio.com www.archeostudio.com

STUDI GEOLOGICI

Dott Geol, Michele Valerio

RILIEVI TOPOGRAFICI

GEOSECURE Geological & Geophysical Services Via Tuscolana, 1003 - 00174 Roma (RM) SEDE LEGALE Via Barcellona, 18 - 86021 Bojano (CB) SEDE OPERATIVA t.+ 39 0874783120 info@geosecure.it

OGGETTO:

N. REV.

STUDIO DI FATTIBILITA' AMBIENTALE-Quadro di riferimento progettuale

SCALA:

NOME FILE:

NGIC505 StudioFattibilitàAmbientale

DATA:

MARZO 2021

TAVOLA:

DAM.RE01 2

REVISIONE

O.Tricarico

VERIFICATO responsabile commessa

A.Albuzzi N.Zuech

MANAGEMENT:

PROPONENTE: HEPV29 S.R.L.

EHM.Solar

hepv29srl@legalmail.it

Via della Rena, 20 39100 Bolzano - Italy tel. +39 0461 1732700 fax. +39 0461 1732799

via Alto Adige, 160/A - 38121 Trento (TN)

info@ehm.solar

c.fiscale, p.iva e R.I. 03033000211

NOME COMMESSA:

COSTRUZIONE ED ESERCIZIO

IMPIANTO AGROVOLTAICO AVENTE POTENZA NOMINALE PARI A 8.120 kW E POTENZA MODULI PARI A 10.150,14 kWp, CON RELATIVO COLLEGAMENTO ALLA RETE ELETTRICA, SITO IN BRINDISI (BR) AL FG.179 PART.N.77-78-79-125-126-127- IMPIANTO 12

STATO DI AVANZAMENTO COMMESSA:

PROGETTO DEFINITIVO PER AUTORIZZAZIONE UNICA CODICE COMMESSA:

HE.19.0091

PROGETTAZIONE INGEGNERISTICA:

Galleria Passarella, 1 20122 Milano - Italy tel. +39 02 37905900 tel. +39 02 3/803900 via Alto Adige, 160/A 38121 Trento - Italy tel. +39 0461 1732700 fax. +39 0461 1732799

www.heliopolis.eu info@heliopolis.eu

c.fiscale, p.iva e R.I. Milano 08345510963

NCIA DI

COLLABORATORE:

STUDI PEDO-AGRONOMICI

Dott. Agr. Matteo Sorrenti

STUDI FAUNISTICI

Dott Nat Maria Grazia Fraccalvieri

CONSULENZA LEGALE

STUDIO LEGALE PATRUNO Via Argiro, 33 Bari t.f. +39 080 8693336

ELABORATO

VALIDATO direttore tecnico

0 03.2021 Emissione

DATA

Consulenza: **Atech srl**Proponente: **HEPV29 Srl**

Progetto per la realizzazione di un impianto agrovoltaico avente potenza nominale pari a 8.120 kW e potenza moduli pari a 10.150,14 kWp con relativo collegamento alla rete elettrica, sito in Brindisi (BR)

Progetto	Progetto per la realizzazione di un impianto agrovoltaico avente potenza nominale pari a 8.120 kW e potenza moduli pari a 10.150,14 kWp, con relativo collegamento alla rete elettrica, sito in Brindisi (BR)- IMPIANTO 12				
Regione	Puglia				
Comune	Brindisi (BR)				
Proponente	HEPV29 s.r.l				
	Sede Legale via Alto Adige,	160/A			
	38121 Trento (TN)				
Redazione SIA	ATECH S.R.L. – Società di Ingegneria e Servizi di Ingegneria				
	Sede Legale Via della Resist	tenza 48			
	70125 Bari (BA)				
Documento	Studio di Impatto Ambientale – Quadro Riferimento Progettuale				
Revisione	00				
Emissione	Marzo 2021				
Redatto	B.B M.G.F. – ed altri	Verificato	A.A.	Approvato	O.T.
	(vedi sotto)				
Redatto:	Ing. Alessandro Antezza				
Gruppo di lavoro	Arch. Berardina Boccuzzi				
	Ing. Alessandrina Ester Calabrese				
	Arch. Claudia Cascella				
	Geol. Anna Castro				
	Arch. Valentina De Paolis				
	Dott. Naturalista Maria Grazia Fraccalvieri				
	Ing. Emanuela Palazzotto				
\/::6:	Ing. Orazio Tricarico				
Verificato:	Ing. Alessandro Antezza (Socio di Atech srl)				
Approvato:	Ing. Orazio Tricarico (Amministratore Unico e Direttore Tecnico di Atech srl)				

Questo rapporto è stato preparato da Atech Srl secondo le modalità concordate con il Cliente, ed esercitando il proprio giudizio professionale sulla base delle conoscenze disponibili, utilizzando personale di adeguata competenza, prestando la massima cura e l'attenzione possibili in funzione delle risorse umane e finanziarie allocate al progetto.

Il quadro di riferimento per la redazione del presente documento è definito al momento e alle condizioni in cui il servizio è fornito e pertanto non potrà essere valutato secondo standard applicabili in momenti successivi. Le stime dei costi, le raccomandazioni e le opinioni presentate in questo rapporto sono fornite sulla base della nostra esperienza e del nostro giudizio professionale e non costituiscono garanzie e/o certificazioni. Atech Srl non fornisce altre garanzie, esplicite o implicite, rispetto ai propri servizi.

Questo rapporto è destinato ad uso esclusivo di HEPV29 S.r.l., Atech Srl non si assume responsabilità alcuna nei confronti di terzi a cui venga consegnato, in tutto o in parte, questo rapporto, ad esclusione dei casi in cui la diffusione a terzi sia stata preliminarmente concordata formalmente con Atech Srl.

I terzi sopra citati che utilizzino per qualsivoglia scopo i contenuti di questo rapporto lo fanno a loro esclusivo rischio e pericolo.

Atech Srl non si assume alcuna responsabilità nei confronti del Cliente e nei confronti di terzi in relazione a qualsiasi elemento non incluso nello scopo del lavoro preventivamente concordato con il Cliente stesso.

Consulenza: **Atech srl**Proponente: **HEPV29 Srl**

Progetto per la realizzazione di un impianto agrovoltaico avente potenza nominale pari a 8.120 kW e potenza moduli pari a 10.150,14 kWp con relativo collegamento alla rete elettrica, sito in Brindisi (BR)

1. PRE	MESSA	. 5
1.1.	ITER PROCEDURALE	7
1.2.	DESCRIZIONE SINTETICA DEL PROGETTO INTEGRATO	8
2. INQU	JADRAMENTO TERRITORIALE	9
3. QUA	DRO DI RIFERIMENTO PROGETTUALE	12
3.1.	OBIETTIVI PERSEGUITI	12
3.1	1.1. L'ENERGIA SOLARE IN ITALIA	
3.1	1.2. L'ENERGIA SOLARE IN PUGLIA	
3.1	1.3. CARATTERISTICHE DEL PROGETTO COMPLESSIVO	
3.2.	STUDIO DEL POTENZIALE SOLARE	22
3.3.	CARBON FOOTPRINT E COSTO ENERGETICO DEL FOTOVOLTAICO	23
3.4.	VANTAGGI AMBIENTALI	25
3.5.	VANTAGGI SOCIO-ECONOMICI	26
3.6.	CARATTERISTICHE TECNICHE DEL PROGETTO	27
3.6	6.1. SCHEDA IDENTIFICATIVA DELL'IMPIANTO27	
3.6	6.2. DESCRIZIONE GENERALE27	
3.6	6.3. Componenti principali31	
,	3.6.3.1. Generatore fotovoltaico	
•	3.6.3.1. Strutture di sostegno35	
;	3.6.3.2. Architettura del Generatore fotovoltaico	

Consulenza: **Atech srl**Proponente: **HEPV29 Srl**

Progetto per la realizzazione di un impianto agrovoltaico avente potenza nominale pari a 8.120 kW e potenza moduli pari a 10.150,14 kWp con relativo collegamento alla rete elettrica, sito in Brindisi (BR)

3.6.3	3.3. Moduli fotovoltaici43	
3.6.3	3.4. Inverter	
3.6.3	3.1. Cavi in BT	
3.6.3	3.2. Cabine di Campo50	
3.6.3	3.1. Cabine di Parallelo51	
3.6.4.	VIABILITÀ INTERNA	
3.6.1.	RECINZIONE PERIMETRALE E MITIGAZIONE VISIVA	
3.6.2.	ILLUMINAZIONE PERIMETRALE	
3.6.1.	SISTEMI AUSILIARI	
3.6.2.	MANUTENZIONE55	
3.6.3.	LAVAGGIO DEI MODULI FOTOVOLTAICI	
3.6.4.	CONTROLLO DELLE PIANTE INFESTANTI	
3.7. F	ASE DI CANTIERE	57
3.8. F	ASE DI ESERCIZIO	58
3.9. F	ASE DI DISMISSIONE - RICICLO COMPONENTI E RIFIUTI	58
3.9.1.	RIMOZIONE DEI PANNELLI FOTOVOLTAICI	
3.9.2.	RIMOZIONE DELLE STRUTTURE DI SOSTEGNO	
3.9.3.	IMPIANTO E APPARECCHIATURE ELETTRICHE	
3.9.4.	LOCALI PREFABBRICATI E CABINE	
3.9.5.	RECINZIONE AREA	

Elaborato: Studio Preliminare Ambientale – Quadro di Riferimento Progettuale

Consulenza: Atech srl

STUDIO DI IMPATTO AMBIENTALE

Proponente: **HEPV29 Srl**Progetto per la realizzazione di un impianto agrovoltaico avente potenza nominale pari a 8.120 kW e potenza moduli pari a 10.150,14 kWp con relativo collegamento alla rete elettrica, sito in Brindisi (BR)

	3.9.6.	VIABILITÀ INTERNA	
	3.9.1.	DETTAGLI RIGUARDANTI LO SMALTIMENTO DEI COMPONENTI	
3.	10. M A	NUTENZIONE	62
4. C	RONOP	ROGRAMMA DEI LAVORI	64
5. ANALISI DELLE ALTERNATIVE PROGETTUALI			

Consulenza: **Atech srl**Proponente: **HEPV29 Srl**

Progetto per la realizzazione di un impianto agrovoltaico avente potenza nominale pari a 8.120 kW e potenza moduli pari a 10.150,14 kWp con relativo collegamento alla rete elettrica, sito in Brindisi (BR)

1. PREMESSA

Il presente documento costituisce il **Quadro di Riferimento Progettuale dello Studio di Impatto Ambientale**, redatto ai sensi dell'art. 22 del D.Lgs 152/06 e ss.mm.ii. e dell'art. 8 della L.R. n. 11 del 12/06/2001 e ss.mm.ii., nell'ambito del Provvedimento Unico in materia ambientale (PUA), ai sensi dell'art. 27 del D.Lgs. 152/06 e ss.mm.ii., avente in oggetto la realizzazione di un impianto di generazione energetica alimentato da Fonti Rinnovabili e nello specifico da fonte solare.

La società proponente è la **HEPV29 s.r.l,** con sede legale in via Alto Adige, 160/A - 38121 Trento (TN), C.F./P.I. 02557810229.

Il progetto prevede la realizzazione di un <u>impianto agrovoltaico avente potenza nominale</u> pari a 8.120 kW e potenza moduli pari a 10.150,14 kWp con relativo collegamento alla rete <u>elettrica, da ubicarsi nel territorio comunale di Brindisi (BR).</u>

In realtà il presente intervento consiste in un progetto integrato di un <u>impianto agro-ovi-fotovoltaico</u> in quanto rientra in un intervento più vasto, esteso su un'area di circa 16,5 ettari (tutti ricadenti in agro di Brindisi), occupati sia dall'impianto fotovoltaico che da un progetto di agricoltura biologica, con aree dedicate all'apicoltura e a diversi tipi di colture, tra cui le colture cerealicole dedicate all'alimentazione animale ed aree dedicate al pascolo, come descritto in seguito.

Si precisa sin da subito che il progetto è da intendersi integrato e unico, quindi la società proponente si impegna a realizzarlo per intero nelle parti su descritte.

La società proponente si occuperà direttamente della gestione della parte relativa all'impianto fotovoltaico e concederà in gestione a società agricole la gestione della parte agricola e di pascolo.

Allo scopo di fornire evidenza <u>della effettiva realizzazione del progetto nella sua</u> <u>interezza</u>, la società *HEPV29 s.r.l.* si impegna, in caso di esito favorevole della procedura autorizzativa, a rispettare i contenuti del Piano di Monitoraggio Ambientale (allegato alla presente), nell'ambito del quale si darà evidenza alle autorità competenti dell'effettivo andamento del progetto, con la consegna di report (descrittivi e fotografici) con i risultati di:

Consulenza: **Atech srl**Proponente: **HEPV29 Srl**

Progetto per la realizzazione di un impianto agrovoltaico avente potenza nominale pari a 8.120 kW e potenza moduli pari a 10.150,14 kWp con relativo collegamento alla rete elettrica, sito in Brindisi (BR)

producibilità di energia da fonte fotovoltaica;

stato e consistenza delle colture agricole;

stato e consistenza dell'allevamento di ovini;

prodotti conseguiti dalla pratica agricola e allevamento;

messa in atto delle misure di mitigazione previste in progetto;

© evoluzione del territorio rispetto alla situazione ante operam.

L'impianto fotovoltaico si inserisce nel quadro istituzionale di cui al *D.Lgs 29 dicembre 2003,* n. 387 "Attuazione della direttiva 2001/77/CE relativa alla promozione dell'energia elettrica prodotta da fonti energetiche rinnovabili nel mercato interno dell'elettricità" le cui finalità sono:

 promuovere un maggior contributo delle fonti energetiche rinnovabili alla produzione di elettricità nel relativo mercato italiano e comunitario;

promuovere misure per il perseguimento degli obiettivi indicativi nazionali;

• concorrere alla creazione delle basi per un futuro quadro comunitario in materia;

favorire lo sviluppo di impianti di microgenerazione elettrica alimentati da fonti rinnovabili,
 in particolare per gli impieghi agricoli e per le aree montane.

La società proponente, e con essa chi scrive, è convinta della validità della proposta formulata e della sua compatibilità ambientale del progetto integrato, e pertanto vede nella redazione del presente documento e degli approfondimenti ad esso allegati un'occasione per approfondire le tematiche specifiche delle opere che si andranno a realizzare.

Consulenza: **Atech srl**Proponente: **HEPV29 Srl**

Progetto per la realizzazione di un impianto agrovoltaico avente potenza nominale pari a 8.120 kW e potenza moduli pari a 10.150,14 kWp con relativo collegamento alla rete elettrica, sito in Brindisi (BR)

1.1. Iter procedurale

In ragione della potenza nominale caratterizzante le opere di progetto, l'impianto è soggetto al rilascio di Autorizzazione Unica, da parte della Regione Puglia, mentre dal punto di vista delle norme vigenti in materia di tutela di ambiente, paesaggio e patrimonio storico-artistico, l'opera rientra nel campo di applicazione della normativa in materia di VIA e nello specifico l'intervento è soggetto:

- ai sensi dell'Allegato II Parte II del D.Lgs. 152/06 e ss.mm.ii., come modificato dalla legge n. 108 del 2021, essendo un impianto fotovoltaico per la produzione di energia elettrica con potenza complessiva superiore a 10 MW l'intervento proposto rientra tra quelli da sottoporre a una Verifica di assoggettabilità di competenza statale;
- ai sensi della L.R. 11/01 e ss.mm.ii., e quindi con riferimento alla normativa regionale, l'intervento proposto ricade tra quelli dell'allegato B.2 (Verifiche di assoggettabilità di competenza della provincia) punto B.2.g/5-bis) (impianti industriali per la produzione di energia elettrica, vapore e acqua calda, diversi da quelli di cui alle lettere B.2.g, B.2.g/3 e B.2.g/4, con potenza elettrica nominale uguale o superiore a 1 MW).

Pertanto, sulla base della norma vigente, l'impianto sarebbe soggetto ad una procedura di verifica di assoggettabilità a VIA di competenza statale.

La società proponente, tuttavia, ha deciso di sottoporre il progetto proposto alla procedura di Valutazione di Impatto Ambientale, da inquadrarsi nell'ambito di un Provvedimento Unico in materia ambientale, ai sensi dell'art. 27 D.Lgs. 152/06 e ss.mm.ii. di competenza statale (in quanto Autorità Competente ai fini VIA).

Per quanto fino ad ora esposto è stata redatta la presente documentazione, al fine di valutare l'entità dei potenziali impatti indotti sull'ambiente dalla realizzazione degli interventi in progetto e, nello specifico della presente relazione, le analisi di coerenza rispetto agli strumenti di pianificazione e programmazione vigenti.

Il presente Studio è stato redatto, conformemente a quanto stabilito nell'art.8 della L.R. 11/2001 e nell'allegato VII della Parte Seconda del D. Lgs 152/2006 e ss.mm.ii.

Consulenza: **Atech srl**Proponente: **HEPV29 Srl**

Progetto per la realizzazione di un impianto agrovoltaico avente potenza nominale pari a 8.120 kW e potenza moduli pari a 10.150,14 kWp con relativo collegamento alla rete elettrica, sito in Brindisi (BR)

1.2. Descrizione sintetica del progetto integrato

Come specificato in precedenza, il presente progetto si può definire un <u>impianto agro-ovi-fotovoltaico</u> in quanto si estende su una superficie territoriale di circa 16,5 ettari occupati dall'impianto fotovoltaico connesso ad un progetto di <u>valorizzazione</u> <u>agricola caratterizzato dalla</u> <u>presenza di aree coltivabili tra le strutture di sostegno (interfile), culture aromatiche e officinali nelle aree interne e fasce arboree perimetrali, per la mitigazione visiva dell'impianto. All'interno del parco, infatti, saranno presenti <u>aree dedicate al pascolo ovino di tipo vagante</u>, quale soluzione <u>ecocompatibile</u> ed economicamente sostenibile, che consente di <u>valorizzare al massimo le potenzialità agricole del parco fotovoltaico.</u></u>

Al fine di ottimizzare le operazioni di valorizzazione ambientale ed agricola dell'area a completamento di un indirizzo programmatico gestionale che mira alla conservazione e protezione dell'ambiente nonché all'implementazione delle caratterizzazioni legate alla biodiversità, si intende praticare all'interno dell'area dell'impianto anche l'attività di <u>allevamento</u> di api stanziale.

Il presente progetto integrato, per la parte "agro", è basato sui principi dell'agricoltura biologica, con colture diversificate, in parte dedicate all'alimentazione animale, al fine di promuovere l'organizzazione della filiera alimentare ed il benessere degli animali. Allo stesso modo, l'attività apistica ha come obiettivo primario quella della tutela della biodiversità, facendo svolgere all'apicoltura una funzione principalmente di valenza ambientale ed ecologica.

Il progetto integrato con l'impianto fotovoltaico, rende più efficiente l'uso dell'energia nell'agricoltura e nell'industria alimentare, e favorisce l'approvvigionamento e l'utilizzo di fonti di energia rinnovabili ed altresì contribuisce alla riduzione delle emissioni di gas a effetto serra.

Consulenza: **Atech srl**Proponente: **HEPV29 Srl**

Progetto per la realizzazione di un impianto agrovoltaico avente potenza nominale pari a 8.120 kW e potenza moduli pari a 10.150,14 kWp con relativo collegamento alla rete elettrica, sito in Brindisi (BR)

2. Inquadramento territoriale

Il sito interessato alla realizzazione dell'impianto si sviluppa nel territorio del **Comune di Brindisi (BR)** ed è raggiungibile attraverso la strada provinciale SP80 e SP82 che si incrociano in adiacenza all'area di intervento.

Figura 2-1: Inquadramento territoriale

Consulenza: Atech srl Proponente: HEPV29 Srl

Progetto per la realizzazione di un impianto agrovoltaico avente potenza nominale pari a 8.120 kW e potenza moduli pari a 10.150,14 kWp con relativo collegamento alla rete elettrica, sito in Brindisi (BR)

La superficie lorda dell'area di intervento è di circa 16,5 ha destinata complessivamente ad un progetto agro-energetico.

Il terreno agricolo, a meno della viabilità di accesso, sarà interessato da colture dedicate e pascolo vagante controllato. Nello specifico sulle aree tra le strutture di sostegno dei pannelli fotovoltaici sarà piantumato un *prato permanente polifita di leguminose* adatto alle caratteristiche pedoclimatiche della superficie di progetto.

L'intero progetto ricade nel Catasto Terreni ai seguenti fogli e particelle:

FOGLIO	PARTICELLA
179	77
179	78
179	79
179	125
179	126
179	127

L'area in oggetto si trova ad un'altitudine media di m 60 s.l.m. e le coordinate geografiche sono le seguenti:

40°31'13.29"N

17°52'53.58"E

Consulenza: **Atech srl** Proponente: **HEPV29 Srl**

Progetto per la realizzazione di un impianto agrovoltaico avente potenza nominale pari a 8.120 kW e potenza moduli pari a 10.150,14 kWp con relativo collegamento alla rete elettrica, sito in Brindisi (BR)

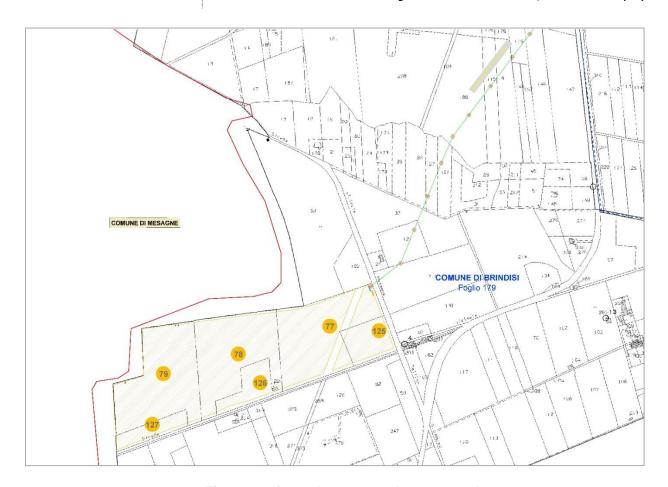


Figura 2-2: inquadramento su base catastale

Il preventivo di connessione prevede che l'impianto verrà allacciato alla Rete di Distribuzione di E-DISTRIBUZIONE alla tensione di 20kV trifase a frequenza industriale di 50Hz su nuova connessione in derivazione ad antenna **CP di Campofreddo esistente** ubicata alle seguenti coordinate:

Nel quadro di riferimento progettuale, verranno meglio inquadrate dal punto di vista territoriale anche le opere annesse all'impianto da realizzare.

Consulenza: Atech srl

Proponente: **HEPV29 Srl**

Progetto per la realizzazione di un impianto agrovoltaico avente potenza nominale pari a 8.120 kW e potenza moduli pari a 10.150,14 kWp con relativo

collegamento alla rete elettrica, sito in Brindisi (BR)

3. QUADRO DI RIFERIMENTO PROGETTUALE

Il quadro di riferimento progettuale è stato redatto conformemente a quanto previsto dalla

L.R. 11/2001 e s.m.i. e dal D.Lgs. 152/06 s.m.i.

Si descrive il progetto e le soluzioni adottate a seguito degli studi effettuati, nonché

l'inquadramento nel territorio, inteso come sito e come area vasta interessati.

Sono descritti altresì gli elementi di progetto e le motivazioni assunte dal proponente nella

definizione dello stesso, le caratteristiche tecniche alla base delle scelte progettuali, le misure, i

provvedimenti e gli interventi, anche non strettamente riferibili al progetto, che il proponente

ritiene opportuno adottare ai fini del migliore inserimento dell'opera nell'ambiente.

Oltre alla presente parte descrittiva, sono stati redatti gli elaborati grafici che rappresentano

nel dettaglio gli elementi che costituiscono le opere a farsi.

Oltre alla presente parte descrittiva, sono stati redatti gli elaborati grafici che rappresentano

nel dettaglio gli elementi che costituiscono le opere a farsi.

3.1. Obiettivi perseguiti

Le "fonti rinnovabili" di energia sono così definite perché, a differenza dei combustibili fossili

e nucleari destinati ad esaurirsi in un tempo definito, possono essere considerate inesauribili.

Sono fonti rinnovabili l'energia solare e quelle che da essa derivano, l'energia eolica,

idraulica, delle biomasse, delle onde e delle correnti, ma anche l'energia geotermica, l'energia

dissipata sulle coste dalle maree ed i rifiuti industriali e urbani.

La transizione verso basse emissioni di carbonio intende creare un settore energetico

sostenibile che stimoli la crescita, l'innovazione e l'occupazione, migliorando, nel contempo, la

qualità della vita, offrendo una scelta più ampia, rafforzando i diritti dei consumatori e, in ultima

analisi, permettendo alle famiglie di risparmiare sulle bollette.

Un approccio razionalizzato e coordinato dell'UE garantisce un impatto per tutto il continente

nella lotta contro i cambiamenti climatici. Per ridurre le emissioni di gas a effetto serra prodotte

Consulenza: **Atech srl**Proponente: **HEPV29 Srl**

Progetto per la realizzazione di un impianto agrovoltaico avente potenza nominale pari a 8.120 kW e potenza moduli pari a 10.150,14 kWp con relativo collegamento alla rete elettrica, sito in Brindisi (BR)

dall'Europa e soddisfare gli impegni assunti nell'ambito dell'accordo di Parigi sono essenziali iniziative volte a promuovere le energie rinnovabile migliorare l'efficienza energetica.

La direttiva originale sulle energie rinnovabili (2009/28/CE) stabilisce una politica generale per la produzione e la promozione di energia da fonti rinnovabili nell'UE. Richiede che l'UE soddisfi almeno il 20% del suo fabbisogno energetico totale con le rinnovabili entro il 2020, da realizzarsi attraverso il raggiungimento di singoli obiettivi nazionali. Tutti i paesi dell'UE devono inoltre garantire che almeno il 10% dei loro carburanti per il trasporto provenga da fonti rinnovabili entro il 2020.

Nel dicembre 2018 è entrata in vigore la direttiva riveduta sulle energie rinnovabili 2018/2001/UE, come parte del pacchetto Energia pulita per tutti gli europei, volto a mantenere l'UE un leader globale nelle energie rinnovabili e, più in generale, aiutare l'UE a soddisfare i suoi impegni di riduzione delle emissioni previsti dall'accordo di Parigi.

La nuova direttiva stabilisce un nuovo obiettivo vincolante per l'energia rinnovabile per l'UE per il 2030 di almeno il 32%, con una clausola per una possibile revisione al rialzo entro il 2023.

In base al nuovo regolamento sulla *governance*, che fa anche parte del pacchetto Energia pulita per tutti gli europei, i paesi dell'UE sono tenuti a redigere piani nazionali per l'energia e il clima (NECP) decennali per il 2021-2030, delineando il modo in cui faranno fronte ai nuovi obiettivi del 2030 per le energie rinnovabili e per l'efficienza energetica. Gli Stati membri dovevano presentare un progetto di NECP entro il 31 dicembre 2018 e dovrebbero essere pronti a presentare i piani definitivi alla Commissione europea entro il 31 dicembre 2019.

La maggior parte degli altri nuovi elementi della nuova direttiva devono essere recepiti negli Stati membri dalla legislazione nazionale entro il 30 giugno 2021.

Consulenza: **Atech srl**Proponente: **HEPV29 Srl**

Progetto per la realizzazione di un impianto agrovoltaico avente potenza nominale pari a 8.120 kW e potenza moduli pari a 10.150,14 kWp con relativo collegamento alla rete elettrica, sito in Brindisi (BR)

Finalmente, dunque, l'Unione energetica europea dispone di un quadro normativo aggiornato in grado di dare certezza degli investitori e con cui è stato introdotto un meccanismo di cooperazione tra gli Stati membri, basato sulla solidarietà, per rispondere alle potenziali crisi energetiche. Gli Stati membri hanno investito in nuove infrastrutture intelligenti (anche transfrontaliere) e ad oggi 26 paesi UE – che rappresentano oltre il 90% del consumo di elettricità europeo e più di 400 milioni di persone – hanno accoppiato i loro mercati giornalieri dell'elettricità. Oltre al nuovo quadro legislativo, la Commissione Europea ha introdotto una serie di misure di sostegno per garantire che tutte le regioni e i cittadini possano beneficiare in egual misura della transizione energetica, ovvero il passaggio dall'utilizzo di fonti energetiche non rinnovabili a fonti rinnovabili.

Gli obiettivi riportati sono obiettivi *minimi* e non dei target massimi da raggiungere, perché l'obiettivo principe è il 100% rinnovabile.

Obiettivi che stante il trend degli ultimi anni, ricavabile anche da pubblicazioni specialistiche del GSE, dimostrano come in realtà siamo lontani dal raggiungimento anche dei valori minimi imposti. La sola installazione a tetto non permetterebbe di raggiungere questi obiettivi, pertanto una importante % di impianti è inevitabile che debba essere prevista a terra. Il progetto fotovoltaico è stato infatti localizzato su aree prive di vincoli ed idonee all'installazione di impianti fotovoltaici a terra di grossa taglia.

Consulenza: Atech srl Proponente: **HEPV29 Srl**

Progetto per la realizzazione di un impianto agrovoltaico avente potenza nominale pari a 8.120 kW e potenza moduli pari a 10.150,14 kWp con relativo collegamento alla rete elettrica, sito in Brindisi (BR)

3.1.1. L'energia solare in Italia

Secondo la Strategia Energetica Nazionale la fonte rinnovabile solare sarà uno dei pilastri su cui si reggerà la transizione energetica del nostro Paese, prevedendo il raggiungimento al 2030 di 70 TWh di energia elettrica da impianti fotovoltaici (+180% rispetto al 2017), ovvero il 39% dell'intera produzione lorda di energia elettrica da fonti rinnovabili (pari a 184 TWh). Questo ambizioso obiettivo, che sarà probabilmente rivisto al rialzo per effetto del nuovo target europeo del 32%, dovrebbe tradursi nella realizzazione di circa 35-40 GW di nuovi impianti e richiederà una crescita delle installazioni fotovoltaiche pari a oltre 3 GW/anno, un cambio di marcia totale rispetto ai ritmi ai quali si è assistito negli ultimi anni. In quest'ottica sarà fondamentale adottare quanto prima nuovi strumenti di policy che da un lato sostengano lo sviluppo di nuovi impianti e dall'altro mantengano in esercizio l'attuale parco impianti garantendone il mantenimento di elevati standard di performance, rivedendo l'attuale quadro normativo e regolatorio, che dovrà svilupparsi in modo tale da permettere il massimo sfruttamento del potenziale oggi disponibile.

Fra le misure più importanti, necessarie per avviare questo percorso, un ruolo rilevante lo ricopre il nuovo Decreto Ministeriale che regolamenterà lo sviluppo delle fonti rinnovabili (compresa quella solare) in Italia nel periodo 2018-2020 tramite meccanismi di registri e aste al ribasso (cd. DM FER 1).

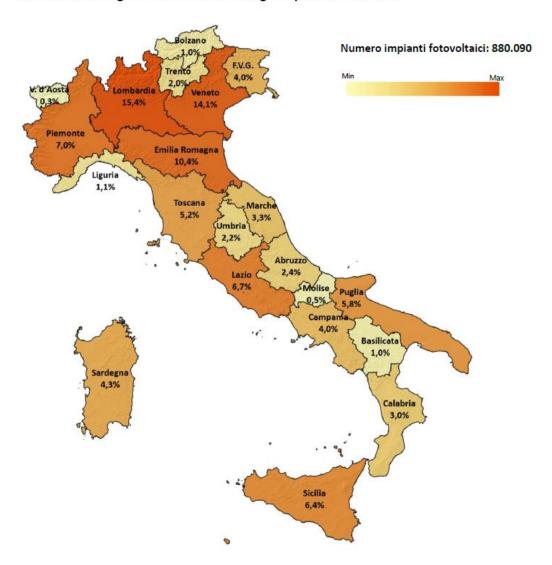
L'installazione di nuovi impianti fotovoltaici dovrà riguardare non solo impianti utility scale, ma anche impianti di piccola/media dimensione presumibilmente in autoconsumo. Per tali installazioni sarà necessario monitorare lo sviluppo dei Sistemi Efficienti di Utenza (SEU) e adottare una chiara regolamentazione anche per i Sistemi di Distribuzione Chiusa (SDC). In un'ottica cost reflective l'implementazione del fotovoltaico in combinazione con lo storage permetterà anche il miglioramento dell'efficienza del sistema.

Sarà inoltre necessario implementare strumenti per valorizzare i siti attualmente in uso e promuovere gli interventi di repowering/revamping, semplificando ad esempio i relativi iter amministrativi, proseguendo nella corretta linea individuata dal GSE con l'approvazione delle procedure per gli interventi di manutenzione e ammodernamento tecnologico degli impianti fotovoltaici in esercizio.

Consulenza: Atech srl Proponente: HEPV29 Srl

Progetto per la realizzazione di un impianto agrovoltaico avente potenza nominale pari a 8.120 kW e potenza moduli pari a 10.150,14 kWp con relativo collegamento alla rete elettrica, sito in Brindisi (BR)

Infine, molto importante sarà anche il contesto di mercato. Si dovrà completare un nuovo disegno, che garantisca una maggiore integrazione delle FER nel sistema elettrico, attraverso misure come la riduzione del timing tra programmazione e immissione in rete, l'estensione delle possibilità di aggregazione tra impianti e tra settori, la partecipazione delle fonti rinnovabili ai mercati dei servizi di dispacciamento e, ultimo ma non per importanza, la promozione dei contratti a lungo termine (PPA) che potranno garantire benefici sia all'offerta sia alla domanda in termini di stabilizzazione dei flussi e riduzione del rischio di investimento.


Consulenza: Atech srl Proponente: **HEPV29 Srl**

Progetto per la realizzazione di un impianto agrovoltaico avente potenza nominale pari a 8.120 kW e potenza moduli pari a 10.150,14 kWp con relativo collegamento alla rete elettrica, sito in Brindisi (BR)

3.1.2. L'energia solare in Puglia

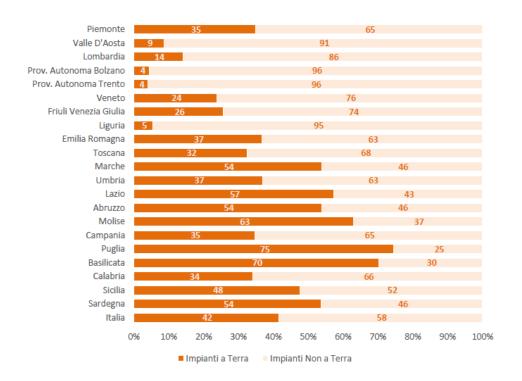
Al 31 dicembre 2019 gli impianti fotovoltaici installati in Italia risultavano 880.090.

Distribuzione regionale del numero degli impianti a fine 2019

Fonte: GSE Distribuzione Regionale della potenza a fine 2019

Le installazioni realizzate nel corso del 2019 non hanno provocato variazioni significative nella distribuzione regionale degli impianti, che rimane pressoché invariata rispetto all'anno precedente. A fine anno nelle regioni del Nord sono stati installati il 55% degli impianti

Consulenza: **Atech srl**Proponente: **HEPV29 Srl**


Progetto per la realizzazione di un impianto agrovoltaico avente potenza nominale pari a 8.120 kW e potenza moduli pari a 10.150,14 kWp con relativo collegamento alla rete elettrica, sito in Brindisi (BR)

complessivamente in esercizio in Italia, al Centro il 17% e al Sud il restante 28%. Le regioni con il maggior numero di impianti sono Lombardia, Veneto, Emilia Romagna, Piemonte e Lazio.

Tra le regioni italiane si rileva una notevole eterogeneità in termini di numerosità e potenza installata degli impianti fotovoltaici.

I 58.190 impianti fotovoltaici installati in Italia nel corso del 2019 (circa 10.000 in più rispetto all'analogo dato rilevato nel 2018) sono così distribuiti tra le ripartizioni territoriali: Nord 58,8%, Centro 17,1%, Sud 24,1%. Le concentrazioni maggiori si rilevano in Lombardia, Veneto, Emilia Romagna e Lazio.

Distribuzione dei pannelli fotovoltaici per collocazione nelle regioni a fine 2019

I fattori che determinano l'incidenza delle installazioni di impianti fotovoltaici a terra sono molteplici; tra questi la posizione geografica, le caratteristiche morfologiche del territorio, le condizioni climatiche, la disponibilità di aree idonee. Ne segue che la distribuzione della potenza installata dei pannelli fotovoltaici per collocazione, tra le diverse regioni, risulta molto eterogenea.

Consulenza: **Atech srl**Proponente: **HEPV29 Srl**

Progetto per la realizzazione di un impianto agrovoltaico avente potenza nominale pari a 8.120 kW e potenza moduli pari a 10.150,14 kWp con relativo collegamento alla rete elettrica, sito in Brindisi (BR)

Relativamente a tale tematica la Regione Puglia si è dotata di uno strumento programmatico, il Piano Energetico Ambientale Regionale (PEAR), adottato con Delibera di G.R. n.827 del 08-06-07, che contiene indirizzi e obiettivi strategici in campo energetico in un orizzonte temporale di dieci anni.

Il PEAR concorre pertanto a costituire il quadro di riferimento per i soggetti pubblici e privati che, in tale campo, hanno assunto ed assumono iniziative nel territorio della Regione Puglia.

Con Deliberazione della Giunta Regionale 28 marzo 2012, n. 602 sono state individuate le modalità operate per l'aggiornamento del Piano Energetico Ambientale Regionale affidando le attività ad una struttura tecnica costituita dai servizi Ecologia, Assetto del Territorio, Energia, Reti ed Infrastrutture materiali per lo sviluppo e Agricoltura.

Con medesima DGR la Giunta Regionale, in qualità di autorità procedente, ha demandato all'Assessorato alla Qualità dell'Ambiente, Servizio Ecologia – Autorità Ambientale, il coordinamento dei lavori per la redazione del documento di aggiornamento del PEAR e del Rapporto Ambientale finalizzato alla Valutazione Ambientale Strategica.

La revisione del PEAR è stata disposta anche dalla Legge Regionale n. 25 del 24 settembre 2012 che ha disciplinato agli artt. 2 e 3 le modalità per l'adeguamento e l'aggiornamento del Piano e ne ha previsto l'adozione da parte della Giunta Regionale e la successiva approvazione da parte del Consiglio Regionale.

La DGR n. 1181 del 27.05.2015 ha, in ultimo, disposto l'adozione del documento di aggiornamento del Piano nonché avviato le consultazioni della procedura di Valutazione Ambientale Strategica (VAS), ai sensi dell'art. 14 del D.Lgs. 152/2006 e ss.mm.ii.

La programmazione regionale in campo energetico costituisce un elemento strategico per il corretto sviluppo del territorio regionale e richiede un'attenta analisi per la valutazione degli impatti di carattere generale determinabili a seconda dei vari scenari programmatici. La presenza di un importante polo energetico basato sui combustibili tradizionali del carbone e del gasolio, lo sviluppo di iniziative finalizzate alla realizzazione di impianti turbogas, le potenzialità di sviluppo delle fonti energetiche alternative (biomasse) e rinnovabili (eolico e solare termico e fotovoltaico), le opportunità offerte dalla cogenerazione a servizio dei distretti industriali e lo

Consulenza: **Atech srl**Proponente: **HEPV29 Srl**

Progetto per la realizzazione di un impianto agrovoltaico avente potenza nominale pari a 8.120 kW e potenza moduli pari a 10.150,14 kWp con relativo collegamento alla rete elettrica, sito in Brindisi (BR)

sviluppo della ricerca in materia di nuove fonti energetiche (idrogeno), fanno sì che l'attenta analisi ambientale dei diversi scenari che si possono configurare attorno al tema energetico in Puglia, non risulta ulteriormente rinviabile.

Per far fronte alla richiesta sempre crescente di energia nel rispetto dell'ambiente e nell'ottica di uno sviluppo energetico che sia coscientemente sostenibile non si può evitare di far ricorso all'energia solare. Il primo aspetto da considerare è quello della disponibilità di energia. È noto che l'entità dell'energia solare che ogni giorno arriva sulla Terra è enorme ma, quello che interessa è l'energia o la potenza specifica cioè per unità di superficie captante. Ovviamente la situazione cambia notevolmente quando la radiazione solare arriva al livello del suolo a causa dell'assorbimento atmosferico, in funzione del tipo di atmosfera attraversata e del cammino percorso a seconda della posizione del sole ma resta il fatto che senza un sistema di captazione di tale energia (quali i pannelli fotovoltaici), essa andrebbe persa.

Ricapitolando, quindi, più in generale i motivi ed i criteri che hanno dettato le scelte in fase di progetto, sia relativamente alla localizzazione dell'impianto che in merito alla scelta della tecnologia costruttiva dei moduli e delle strutture, sono i seguenti:

- ispetto delle normative di buona tecnica vigenti (Best Available Practice);
- © rispetto delle normative di settore e delle normative di pianificazione territoriale paesistica;
- © conseguimento della massima economia di gestione e manutenzione degli impianti progettati;
- ottimizzazione del rapporto costi/benefici ed impiego di materiali e componenti di elevata qualità, efficienza e durata, facilmente reperibili sul mercato;
- iriduzione delle perdite energetiche connesse al funzionamento dell'impianto, al fine di massimizzare la quantità di energia elettrica immessa in rete.

Consulenza: **Atech srl**Proponente: **HEPV29 Srl**

Progetto per la realizzazione di un impianto agrovoltaico avente potenza nominale pari a 8.120 kW e potenza moduli pari a 10.150,14 kWp con relativo collegamento alla rete elettrica, sito in Brindisi (BR)

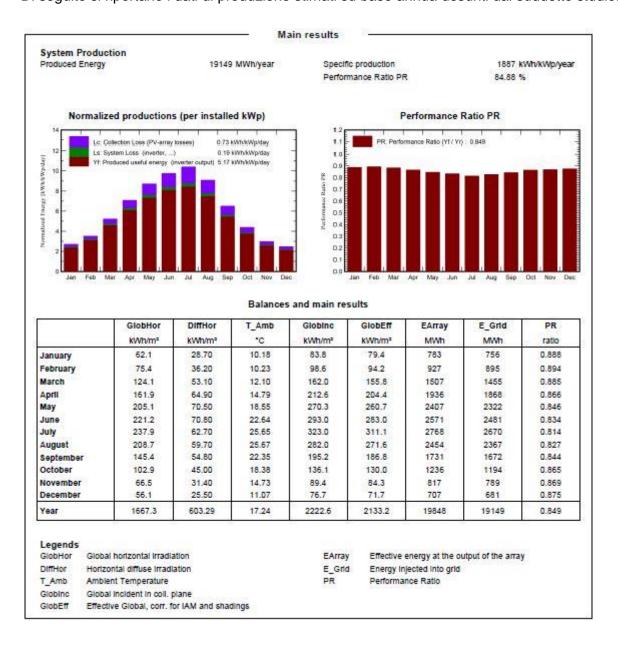
3.1.3. Caratteristiche del progetto complessivo

Il presente progetto si può definire un <u>impianto agro-ovi-fotovoltaico</u> in quanto si estende su una superficie territoriale di circa 16,5 ettari occupati dall'impianto fotovoltaico connesso ad un progetto di <u>valorizzazione</u> agricola caratterizzato dalla presenza di aree coltivabili tra le <u>strutture di sostegno (interfile), culture aromatiche e officinali nelle aree interne e fasce arboree perimetrali, per la mitigazione visiva dell'impianto</u>. All'interno del parco, infatti, saranno presenti <u>aree dedicate al pascolo ovino di tipo vagante</u>, quale soluzione <u>ecocompatibile ed economicamente sostenibile</u>, che consente di <u>valorizzare al massimo le potenzialità agricole del parco fotovoltaico.</u>

Al fine di ottimizzare le operazioni di valorizzazione ambientale ed agricola dell'area a completamento di un indirizzo programmatico gestionale che mira alla conservazione e protezione dell'ambiente nonché all'implementazione delle caratterizzazioni legate alla biodiversità, si intende praticare all'interno dell'area dell'impianto anche l'attività di <u>allevamento</u> di api stanziale.

Il presente progetto integrato, per la parte "agro", è basato sui principi dell'agricoltura biologica, con colture diversificate, in parte dedicate all'alimentazione animale, al fine di promuovere l'organizzazione della filiera alimentare ed il benessere degli animali. Allo stesso modo, l'attività apistica ha come obiettivo primario quella della tutela della biodiversità, facendo svolgere all'apicoltura una funzione principalmente di valenza ambientale ed ecologica.

Il progetto integrato con l'impianto fotovoltaico, rende più efficiente l'uso dell'energia nell'agricoltura e nell'industria alimentare, e favorisce l'approvvigionamento e l'utilizzo di fonti di energia rinnovabili ed altresì contribuisce alla riduzione delle emissioni di gas a effetto serra.


Consulenza: **Atech srl**Proponente: **HEPV29 Srl**

Progetto per la realizzazione di un impianto agrovoltaico avente potenza nominale pari a 8.120 kW e potenza moduli pari a 10.150,14 kWp con relativo collegamento alla rete elettrica, sito in Brindisi (BR)

3.2. Studio del potenziale solare

La valutazione relativa alla produzione di energia elettrica dell'impianto fotovoltaico è effettuata sulla base dei dati climatici della zona, della configurazione di impianto descritta nella relazione specialistica e delle caratteristiche tecniche dei vari componenti.

Di seguito si riportano i dati di produzione stimati su base annua desunti dal suddetto studio.

Consulenza: **Atech srl**Proponente: **HEPV29 Srl**

Progetto per la realizzazione di un impianto agrovoltaico avente potenza nominale pari a 8.120 kW e potenza moduli pari a 10.150,14 kWp con relativo collegamento alla rete elettrica, sito in Brindisi (BR)

L'installazione dell'impianto fotovoltaico permette di ridurre le emissioni di anidride carbonica per la produzione di elettricità. Considerando un valore caratteristico della produzione termoelettrica italiana (fonte ISPRA) pari a circa 466 grammi di CO₂ emessa per ogni kWh prodotto (tecnologia anno 2016), si può stimare il quantitativo di emissioni evitate:

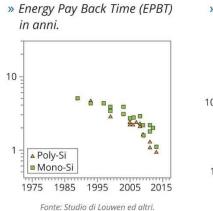
➤ Emissioni di CO2 evitate in un anno: 39.022,84 tonnellate

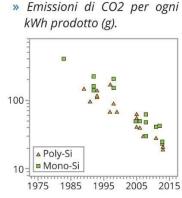
3.3. Carbon footprint e costo energetico del fotovoltaico

È noto che la generazione di energia fotovoltaica è completamente esente da emissioni e che un impianto fotovoltaico ha una vita attesa anche di 30anni.

Oltre a queste informazioni è importante conoscere anche le emissioni di CO2 e il consumo di energia nel ciclo di vita completo, dalla produzione al riciclo, in particolare per i pannelli fotovoltaici.

La fabbricazione implica l'utilizzo di risorse energetiche ed un impatto ambientale, così come il trasporto ed il montaggio di un impianto. Va sottolineato che, grazie all'avanzamento tecnologico e con nuovi stabilimenti produttivi di capacità crescente, l'impatto ambientale si è via via ridotto nel tempo.


Grazie ai continui sforzi in ricerca e sviluppo dell'industria solare, il costo energetico per la produzione dei pannelli fotovoltaici si è ridotto di circa il 15% ad ogni raddoppio di capacità di produzione.



Consulenza: **Atech srl**Proponente: **HEPV29 Srl**

Progetto per la realizzazione di un impianto agrovoltaico avente potenza nominale pari a 8.120 kW e potenza moduli pari a 10.150,14 kWp con relativo collegamento alla rete elettrica, sito in Brindisi (BR)

Oggi si stima che un impianto fotovoltaico ripaghi l'energia utilizzata per produrlo in circa 1 anno, ciò significa che viene prodotta 30 volte l'energia necessaria per produrlo.

e: Studio di Louwen ed altri. Fonte: Studio di Louwen ed altri.

La **carbon footprint** è definita come il totale gas serra prodotto direttamente o indirettamente per l'intero ciclo di vita di un prodotto, si esprime di solito in tonnellate di CO2.

L'impronta ambientale della produzione di energia fotovoltaica è notevolmente più limitata rispetto a quella delle fonti tradizionali.

IMPIANTO FOTOVOLTAICO	IMPIANTO A CARBONE
c.a.10-20	c.a 1.000
gCO2/kWh	gCO2/kWh

Quando si parla di impronta di carbonio, dunque, le migliori soluzioni sono eolico e fotovoltaico perché, non solo non richiedono energia aggiuntiva per produrre elettricità né per il trasporto dei carburanti, ma anche perché grazie alla rapida evoluzione tecnologica potranno essere fabbricati con processi sempre più efficienti sotto il profilo dei consumi.

Se a ciò si sommano i benefici derivanti dalla messa a dimora di specie vegetali ed aree boscate, descritte nei capitoli successivi, si ottiene un risultato sicuramente ed ampiamente positivo in termini di minori emissioni di CO2 e gas serra nel caso di realizzazione di un impianto fotovoltaico rispetto alla alternativa generazione della medesima energia da impianti convenzionali. Il vantaggio ambientale di tale produzione pulita andrebbe a superare

Consulenza: **Atech srl**Proponente: **HEPV29 Srl**

Progetto per la realizzazione di un impianto agrovoltaico avente potenza nominale pari a 8.120 kW e potenza moduli pari a 10.150,14 kWp con relativo collegamento alla rete elettrica, sito in Brindisi (BR)

ampiamente la perdita di stoccaggio di carbonio organico nel suolo anche nel caso di ipotetica ed alternativa coltivazione del medesimo suolo a prato stabile.

3.4. Vantaggi ambientali

Gli impianti fotovoltaici riducono la domanda di energia da altre fonti tradizionali contribuendo alla riduzione dell'inquinamento atmosferico (emissioni di anidride carbonica generate altrimenti dalle centrali termoelettriche). L'emissione di anidride carbonica "evitata" ogni anno è facilmente calcolabile. È sufficiente moltiplicare il valore di energia elettrica prodotta dall'impianto fotovoltaico per il fattore del mix elettrico italiano (0,466 Kg CO₂/kWhel).

Es. 1000 kWhel x $0,466 \text{ Kg} = 466 \text{ Kg CO}_2$

Di seguito si riportano le emissioni evitate dall'impianto oggetto della presente relazione, a fronte di una produzione attesa di 19.149.000 kWh/anno.

Produzione attesa [kWh/anno]	Riduzione Emissioni di CO2 [kg/anno]	Riduzione Emissioni di NOX [kg/anno]	Riduzione Emissioni di SO2 [kg/anno]	Riduzione Polveri sottili [kg/anno]	Riduzione Petrolio [kg/anno]	Producibilità [kWh/kWp]
19.149.000	9.076.626	8.176,62	7.142,58	268,09	4.212.780	1.887

Se la produzione di energia da fonte fotovoltaica presenta un impatto sull'ambiente molto basso e che è limitato agli aspetti di occupazione del territorio o di impatto visivo, la fase di produzione dei pannelli fotovoltaici comporta un certo consumo energetico e l'uso di prodotti chimici. Va considerato però che la maggior parte delle aziende produttrici di componenti fotovoltaici è certificata ISO14000, quindi impegnata a recuperare e riciclare tutti i propri effluenti e residui industriali sotto un attento controllo.

Nella fase di dismissione dell'impianto, i materiali di base quali l'alluminio, il silicio o il vetro, possono essere riciclati e riutilizzati sotto altre fonti. Per quanto riguarda il consumo energetico necessario alla produzione di pannelli, quello che viene chiamato energy pay-back time, ovvero il tempo richiesto dall'impianto per produrre altrettanta energia di quanta ne sia necessaria durante le fasi della loro produzione industriale, è sceso drasticamente negli ultimi anni ed è pari

Consulenza: **Atech srl**Proponente: **HEPV29 Srl**

Progetto per la realizzazione di un impianto agrovoltaico avente potenza nominale pari a 8.120 kW e potenza moduli pari a 10.150,14 kWp con relativo collegamento alla rete elettrica, sito in Brindisi (BR)

attualmente a circa 3 anni. Questo significa che, considerando una vita utile dei pannelli fotovoltaici di circa 30 anni, per i rimanenti 27 anni l'impianto produrrà energia pulita.

3.5. Vantaggi socio-economici

I vantaggi del fotovoltaico sono evidenti: i moderni impianti offrono grosse possibilità tecnologiche ed industriali per l'Italia.

I vantaggi principali di questa tecnologia sono:

- il fotovoltaico è un affare sicuro e senza rischi. Gli investimenti e le rese sono chiari e calcolabili a lungo termine;
- la facilità di installazione dei sistemi fotovoltaici e l'interdisciplinarietà delle competenze necessarie alla messa in opera di un impianto rendono questo campo di applicazione un mercato con interessanti prospettive di sviluppo. Il risultato è quello di ottenere il consolidamento del settore e la creazione di nuovi posti di lavoro;
- la tecnologia solare è molto richiesta e beneficia di un vasto consenso sociale.
 Nessun'altra tecnologia dispone al momento di una tale popolarità;
- la tecnologia solare ha strutture con dimensioni ridotte che, nel caso specifico, non necessitano di opere di fondazione poiché i pannelli saranno infissi direttamente nel terreno.

Tra i vantaggi legati allo sviluppo del fotovoltaico troviamo senza dubbio grandi ricadute positive in ambito occupazionale attraverso la definizione di una strategia trasversale per innovare il settore industriale e quello edilizio nonché il tessuto delle piccole e medie imprese italiane. Guardando oltre i nostri confini è possibile trovare 240 mila occupati in Germania nelle fonti rinnovabili; la prospettiva italiana è che ci siano almeno 65 mila occupati nell'eolico (secondo le stime dell'Anev al 2020) e magari altrettanti nel solare termico, nel fotovoltaico, nelle biomasse.

Consulenza: **Atech srl** Proponente: **HEPV29 Srl**

Progetto per la realizzazione di un impianto agrovoltaico avente potenza nominale pari a 8.120 kW e potenza moduli pari a 10.150,14 kWp con relativo collegamento alla rete elettrica, sito in Brindisi (BR)

3.6. Caratteristiche tecniche del progetto

3.6.1. Scheda identificativa dell'impianto

Impianto Fotovoltaico			
Comune	BRINDISI		
Identificativi Catastali	Foglio 179 p.lle 77-78-79-125-126-127		
Coordinate geografiche impianto	40°31'13.29"N 17°52'53.58"E		
Potenza Modulo PV	455 W		
Potenza massima di immissione	8.120 kW		
Potenza istallata	10.150,14 kWp		
Tipologia strutture	Tracker monoassiali		
Lunghezza cavidotto di connessione	3,4 km		
Punto di connessione	CP Campofreddo (esistente)		

3.6.2. Descrizione generale

L'intervento consiste in un di impianto agrovoltaico a terra, suddiviso in n. 2 campi da 2660 kWp e da n.1 campo da 2800 kWp.

La potenza nominale totale del generatore fotovoltaico, pari a 10.150,14kWp, è intesa come somma delle potenze di targa o nominali di ciascun modulo misurata in condizioni standard (STC). Considerazioni inerenti l'affidabilità e, di conseguenza, la producibilità dell'intero impianto hanno indotto alla scelta della conversione con potenza inferiore ai 3MW basata quindi su più convertitori di potenza limitata a tale soglia. In questo modo l'eventuale guasto di un convertitore non coinvolgerà la produzione di tutto l'impianto ma solo quella del campo corrispondente.

L'impianto con potenza massima in immissione pari a 8.000 kW verrà allacciato alla Rete di Trasmissione in antenna a 20kV in derivazione dalla Cabina Primaria Campofreddo di E-DISTRIBUZIONE esistente.

Consulenza: **Atech srl**Proponente: **HEPV29 Srl**

Progetto per la realizzazione di un impianto agrovoltaico avente potenza nominale pari a 8.120 kW e potenza moduli pari a 10.150,14 kWp con relativo collegamento alla rete elettrica, sito in Brindisi (BR)

L'allacciamento del nuovo impianto di produzione alla Rete di E-Distribuzione è subordinato alla richiesta di connessione all'ente distributore.

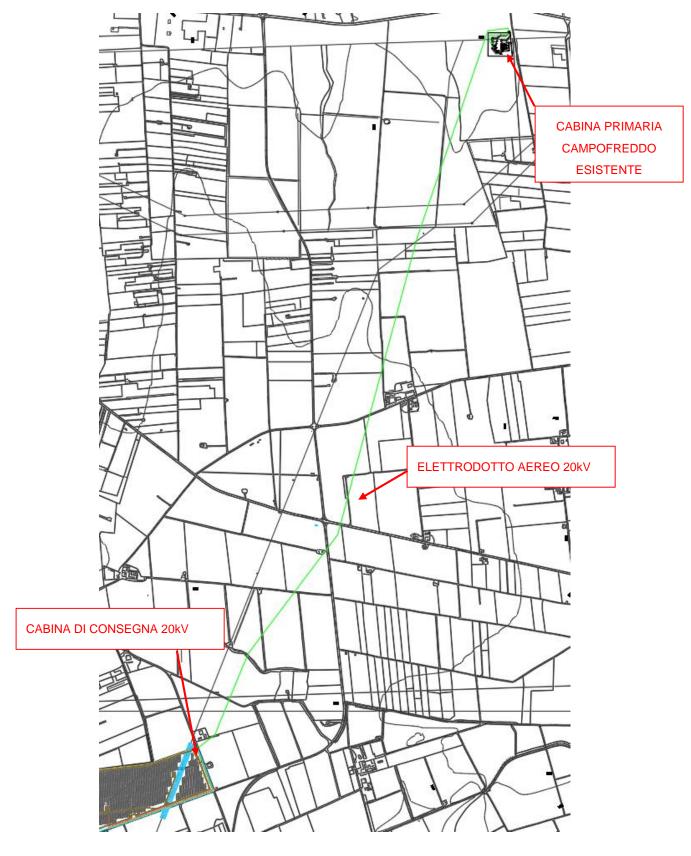
Sostanzialmente possono presentarsi due casi:

- La connessione alla RTN o alla rete di distribuzione avviene attraverso una stazione esistente;
 - La connessione avviene attraverso la realizzazione di una nuova stazione elettrica.

Gli Enti suddetti definiscono i requisiti e le caratteristiche di riferimento delle nuove stazioni elettriche, poiché esse devono essere compatibili con la rete esistente, oltre alle dimensioni delle stesse nel caso in cui debbano avere future espansioni.

Per l'impianto fotovoltaico in oggetto, l'ente distributore, prescrive che esso debba essere collegato in antenna con la sezione a 20kV della Cabina Primaria Campofreddo 20/150kV. Infatti progetto prevede la realizzazione sul sito dell'impianto di produzione di una Cabina di Consegna collegata tramite linea aerea con la Cabina Primaria esistente Campofreddo.

Nella planimetria sotto riportata sono riconoscibili gli elementi principali del progetto: impianto agrovoltaico di produzione, opere di connessione e cabina primaria esistente.



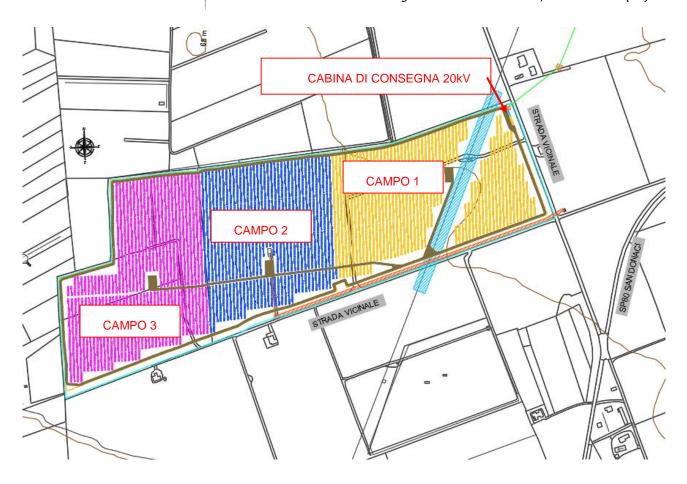
Consulenza: Atech srl

Proponente: **HEPV29 Srl**

STUDIO DI IMPATTO AMBIENTALE

Progetto per la realizzazione di un impianto agrovoltaico avente potenza nominale pari a 8.120 kW e potenza moduli pari a 10.150,14 kWp con relativo collegamento alla rete elettrica, sito in Brindisi (BR)

Elaborato: Studio Preliminare Ambientale – Quadro di Riferimento Progettuale


Rev. 0 – Marzo 2021

Consulenza: Atech srl

Proponente: HEPV29 Srl

STUDIO DI IMPATTO AMBIENTALE

Progetto per la realizzazione di un impianto agrovoltaico avente potenza nominale pari a 8.120 kW e potenza moduli pari a 10.150,14 kWp con relativo collegamento alla rete elettrica, sito in Brindisi (BR)

Consulenza: **Atech srl**Proponente: **HEPV29 Srl**

Progetto per la realizzazione di un impianto agrovoltaico avente potenza nominale pari a 8.120 kW e potenza moduli pari a 10.150,14 kWp con relativo collegamento alla rete elettrica, sito in Brindisi (BR)

3.6.3. Componenti principali

L'impianto fotovoltaico sarà realizzato posando i pannelli su strutture di sostegno ancorate al suolo e appositamente realizzate. L'impianto è costituito dalle parti seguenti:

- n. 858 stringhe collegate a tre stazioni/inverter posizionate nel punto di baricentro elettrico del singolo campo, e fissate alle strutture metalliche che costituiscono il sistema di ancoraggio a terra dei pannelli fotovoltaici;
- ❖ la Distribuzione elettrica DC/AC, che è garantita dall'utilizzo di cavi solari unipolari del tipo H1Z2Z2-K per la distribuzione delle singole stringhe fino al collegamento con i quadri di stringa distribuiti lungo il campo, mentre i cavi a partire da questi fino alle cabine di campo saranno del tipo ARE4R 0.6/1kV. La distribuzione elettrica sarà realizzata mediante l'interramento diretto delle linee con l'ausilio di sabbia fine vagliata per realizzare una sede adeguata per le guaine esterne dei cavi.
- ❖ la distribuzione di media tensione, interna all'impianto, avverrà con cavi ARG7R interrati direttamente nel terreno sempre con l'ausilio di sabbia fine vagliata che permette di realizzare una buona protezione meccanica per le guaine esterne dei cavi;
- ❖ N. 3 Cabine di campo (una per campo), sono costituite da strutture prefabbricate, posate su strutture di fondazione precedentemente gettate. Le cabine di campo saranno composte da: sezione DC completa di protezioni con sezionatori di manovra e fusibili; Inverter per la conversione DC/AC di potenza pari a 2660kVA e 2800kVA con tensione massima latto DC pari a 1.500V e con tensione lato AC pari a 630-600V; trasformatore BT/MT 0.6/30kV con potenza pari a 3150kVA; quadro di media tensione di sezionamento e protezione.
- ❖ N. 1 Cabina di Parallelo/Utente adiacente alla cabina di consegna di E-DISTRIBUZIONE, costituite da una struttura prefabbricata posata su platea di fondazione separatamente predisposta, atta a contenere il locale utente, dove sarà posizionato il Quadro di Media Tensione Generale, a cui si attesteranno le dorsali in Media Tensione dei diversi campi. Sul quadro di media tensione di parallelo sarà installato il sistema di protezione di interfaccia, SPI, rappresentato da un relè con le protezioni di minima e massima frequenza (<81 e >81) e minima e massima tensione (27 e 59) e la protezione di

Consulenza: **Atech srl**Proponente: **HEPV29 Srl**

Progetto per la realizzazione di un impianto agrovoltaico avente potenza nominale pari a 8.120 kW e potenza moduli pari a 10.150,14 kWp con relativo collegamento alla rete elettrica, sito in Brindisi (BR)

massima tensione residua (59Vo). Il dispositivo agirà direttamente su tutti i DDI e Il DDR in caso di mancata apertura dei primi;

- Collegamento alla cabina di consegna immediatamente adiacente alla cabina utente tramite cavo MT posato nella vasca tecnica delle cabine;
- ❖ Opere accessorie, quali lievi sbancamenti, recinzione dell'area e Impianto di sorveglianza. Al fine di prevedere il rispetto dei requisiti tecnici che possano garantire la massima efficienza del generatore fotovoltaico, sono stati attuati i seguenti accorgimenti:
- il posizionamento dei moduli è stato effettuato in maniera da favorire la dissipazione del calore al fine di limitare le perdite per temperatura;
- ❖ i cavi sono stati dimensionati in modo da limitare le cadute di tensione per perdite resistive al 2%; in particolare i cavi in cc tra i moduli di testa della stringa e le relative cassette di parallelo stringhe saranno inferiori all'1%.
- i moduli di ciascuna stringa saranno selezionati in modo da minimizzare le perdite per disaccoppiamento (mismatching);
- ❖ la massima tensione del generatore fotovoltaico è stata scelta molto prossima al limite superiore del campo di bassa tensione in modo da ridurre, a parità di potenza, le perdite proporzionali alla corrente del generatore fotovoltaico.

L'impianto in progetto si compone essenzialmente dei seguenti sistemi e sottosistemi:

- Connessione alla rete elettrica esistente Impianti di rete per la connessione;
- Consegna dell'energia elettrica;
- Quadri elettrici di Media Tensione;
- Distribuzione dell'energia elettrica;
- Produzione dell'energia elettrica;
- Impianto luce e FM;
- Impianto di terra;
- Supervisione e controllo dell'Impianto.

Consulenza: **Atech srl**Proponente: **HEPV29 Srl**

Progetto per la realizzazione di un impianto agrovoltaico avente potenza nominale pari a 8.120 kW e potenza moduli pari a 10.150,14 kWp con relativo collegamento alla rete elettrica, sito in Brindisi (BR)

3.6.3.1. Generatore fotovoltaico

Il generatore fotovoltaico ha potenza nominale ai sensi della norma CEI 0-16 pari a 8.120,00 kW, mentre la potenza dei moduli è pari a 10.150,14 kWp.

Le linee elettriche di potenza in corrente continua hanno origine dai moduli fotovoltaici presenti sul sito oggetto dell'intervento; ciascun modulo sarà composto da n. 144 celle al silicio monocristallino, collegate in serie tra loro e con caratteristiche elettriche e di efficienza tra le migliori attualmente disponibili in commercio, al fine di minimizzare i costi proporzionali all'area dell'impianto.

I moduli fotovoltaici sono rispondenti alle norme IEC 61215 ed. 2 e sono accompagnati da un data-sheet che riporta le principali caratteristiche del modulo stesso (Isc, Voc, Im, Pm, ecc.); i moduli saranno collegati in serie in modo da realizzare le stringhe che presentano delle caratteristiche elettriche compatibili con il sistema di conversione.

La disposizione delle stringhe in ogni campo fotovoltaico è stata progettata in modo da facilitare i collegamenti e le future ispezioni.

Ciascun modulo è dotato di:

- diodi di by-pass per garantire la continuità elettrica della stringa anche con danneggiamento o ombreggiamenti di una o più celle;
- cassetta di terminazione con un livello di protezione adeguato all'installazione da esterno;
- cornice, in alluminio anodizzato, che oltre a facilitare le operazioni di montaggio e a permettere una migliore distribuzione degli sforzi sui bordi del vetro, costituirà una ulteriore barriera all'infiltrazione di acqua.

Inoltre, il decadimento delle prestazioni dei moduli sarà non superiore al 3% della potenza nominale nel primo anno, all'8% nell'arco dei primi 10 anni e non superiore al 17% nell'arco di 25 anni.

Il numero di serie e il costruttore del modulo stesso saranno apposti in modo indelebile.

Il sistema di conversione cc/ca costituirà l'interfaccia tra il campo fotovoltaico e la rete in corrente alternata.

Le cabine di campo saranno n°3 e sono costituite da strutture prefabbricate, posate su strutture di fondazione precedentemente gettate. Le cabine di campo saranno composte da: sezione DC completa di protezioni con sezionatori di manovra e fusibili; Inverter per la conversione DC/AC di potenza pari a 2660kVA e 2800kVA con tensione massima latto DC pari a 1.500V e con

Consulenza: **Atech srl**Proponente: **HEPV29 Srl**

Progetto per la realizzazione di un impianto agrovoltaico avente potenza nominale pari a 8.120 kW e potenza moduli pari a 10.150,14 kWp con relativo collegamento alla rete elettrica, sito in Brindisi (BR)

tensione lato AC pari a 630-600V; trasformatore BT/MT 0.6/30kV con potenza pari a 3150kVA; quadro di media tensione di sezionamento e protezione. Le strutture delle cabine di campo saranno opportunamente ventilate per permettere l'adeguato smaltimento del calore.

L'impianto di generazione sarà dotato di idonei apparecchi di connessione e protezione e regolazione, rispondenti alle norme tecniche ed antinfortunistiche; il soggetto responsabile si impegna, altresì, a mantenerli in efficienza.

La connessione alla rete di distribuzione avverrà in MT secondo le prescrizioni tecniche del Gestore di Rete.

Tutti i componenti delle apparecchiature di misura, inclusi i cablaggi e le morsettiere, saranno dotati di sistemi meccanici di sigillatura (piombatura o similari) che garantiranno da manomissioni o alterazione dei dati di misura; il soggetto responsabile si impegnerà, altresì, a non alterare le caratteristiche di targa delle apparecchiature di misura e a non modificare i dati di misura registrati dalle medesime.

La sezione dei cavi utilizzati varierà a seconda delle distanze relative tra i moduli e le scatole di giunzione, tra queste e gli inverter, tra inverter e trasformatori, tra sezione di conversione e quella di misura e consegna. Ad ogni loro estremità i cavi saranno contrassegnati mediante fascetta identificativa numerata. I colori dei conduttori saranno quelli normalizzati UNI.

Ai fini della messa in opera dell'impianto fotovoltaico sono stati considerati, per tutti i circuiti della porzione di impianto in BT, cavi solari H1Z2Z2-K e del tipo ARE4R, direttamente interrati.

Le sezioni dei conduttori impiegati sono tali da non causare una caduta di tensione superiore al 2% totale.

Per quanto riguarda le vie cavo (di comando/segnalazione e di trasporto dell'energia prodotta), sono essenzialmente di due tipi: aeree ancorate alle strutture di sostegno, ed interrate.

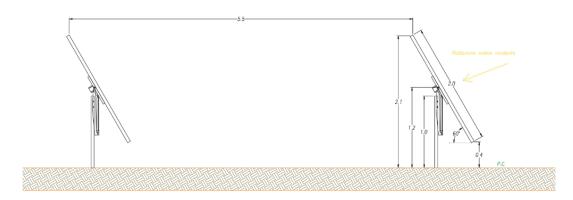
Le vie cavo aeree seguiranno percorsi prestabiliti lungo le strutture di supporto dei moduli fotovoltaici onde collegare gli stessi in serie per formare le stringhe, e per collegare le stringhe così ottenute ai quadri di stringa. Analoga tipologia di percorso seguiranno i cavi per il collegamento dei quadri di stringa con gli inverter, salvo che per brevi tratti interrati verso il locale di conversione, così come mostrato nella planimetria allegata.

Per quanto riguarda le vie cavo interrate, esse seguiranno percorsi disposti lungo o ai margini della viabilità interna all'impianto, generalmente in terreno vegetale. Le vie cavo saranno realizzate in un'unica trincea della profondità di circa 0,80 m, facendo attenzione alle interferenze con quelli esistenti. I cavi di potenza in media tensione (20 kV) sono posati su letto

Consulenza: **Atech srl**Proponente: **HEPV29 Srl**

Progetto per la realizzazione di un impianto agrovoltaico avente potenza nominale pari a 8.120 kW e potenza moduli pari a 10.150,14 kWp con relativo collegamento alla rete elettrica, sito in Brindisi (BR)

di sabbia vagliata a circa 80 cm di profondità. Il ricoprimento della trincea sarà effettuato con materiale misto granulometrico e posa di tegolino di protezione e nastro segnalatore.


Il fissaggio dei moduli fotovoltaici alla struttura di sostegno sarà eseguito utilizzando il telaio di alluminio di cui sono provvisti i moduli stessi.

I quadri di protezione, misura, parallelo e consegna sono messi a terra mediante conduttore equipotenziale in rame con guaina giallo-verde. La sezione del cavo di protezione rispetterà la normativa CEI 64-8.

Per la stima di producibilità dell'impianto, è stato calcolato che è pari a 19.149 MWh/annui. Per i dettagli si rimanda alla "Analisi della risorsa solare e stima di produzione energia" allegata al progetto.

3.6.3.1. Strutture di sostegno

L'impianto fotovoltaico sarà realizzato posando i pannelli su strutture di sostegno ancorate al suolo e appositamente realizzate. La configurazione del generatore fotovoltaico sarà a file parallele, installate in direzione nord-sud, su delle strutture mobili che permetteranno ai moduli fotovoltaici di ruotare durante il giorno, in modo da mantenere sempre la perpendicolarità al sole incidente. La distanza tra le file è pari a circa 5,5 m; distanza tra file e l'angolo di tilt sono stati scelti al fine di incrementare la produttività dell'impianto e limitare i fenomeni di ombreggiamento tra le file.

Definiti i confini fisici dell'area la soluzione individuata coniuga la necessità di massimizzare la produzione (ottimizzando l'angolo di tilt e l'orientamento del generatore) con quella di massimizzare la potenza installata, al fine di garantire la massima redditività dell'investimento,

Consulenza: **Atech srl**Proponente: **HEPV29 Srl**

Progetto per la realizzazione di un impianto agrovoltaico avente potenza nominale pari a 8.120 kW e potenza moduli pari a 10.150,14 kWp con relativo collegamento alla rete elettrica, sito in Brindisi (BR)

contenendo al contempo i costi di installazione e futura manutenzione, puntando su soluzioni semplici e collaudate.

Sempre nell'ottica di massimizzare la produzione di energia, le file di moduli saranno disposte in direzione nord-sud.

Le strutture destinate all'installazione dei pannelli fotovoltaici saranno interamente rimovibili; si tratterà infatti di sistemi in acciaio e alluminio, con piantoni infissi nel terreno tramite macchine battipalo.

Le strutture saranno progettate per ospitare 1 fila di moduli per contenere l'altezza complessiva dell'installazione. Tale altezza è circa 2,1 m sulla base dei calcoli preliminari effettuati.

Questa configurazione è determinata anche da considerazioni relative allo studio delle ombre, infatti in tal modo si eliminano gli ombreggiamenti sui moduli della fila più alta sui moduli della fila più bassa, aumentando la resa complessiva; inoltre le stringhe saranno per lo più cablate in senso orizzontale (salvo quelle costituite dai moduli nelle parti terminali delle strutture), al fine di avere in ogni istante il medesimo irraggiamento su ogni stringa, massimizzando ulteriormente la produzione.

La distanza tra le file è infine determinata ipotizzando di accettare un ombreggiamento tra le file quando l'elevazione del sole è inferiore a 21°.

Dall'analisi della carta del sole relativa alla latitudine in esame si evince chiaramente che in tali condizioni la mancata produzione è minima.

Consulenza: **Atech srl**Proponente: **HEPV29 Srl**

Progetto per la realizzazione di un impianto agrovoltaico avente potenza nominale pari a 8.120 kW e potenza moduli pari a 10.150,14 kWp con relativo collegamento alla rete elettrica, sito in Brindisi (BR)

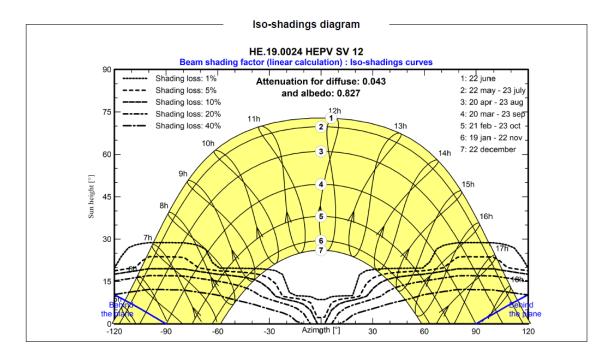


Figura 3: istogramma dell'energia normalizzata prodotta e delle perdite durante un anno solare

3.6.3.2. Architettura del Generatore fotovoltaico

Il progetto prevede la realizzazione di 3 sottocampi, o generatori fotovoltaici, ciascuno dei quali farà capo ad una cabina MT/BT da cui avranno origine le linee MT che collegheranno ciascuno campo alla cabina di parallelo in cui sarà realizzato il parallelo dei campi e da cui partirà la linea in MT che collegherà la centrale alla cabina di consegna.

Tale scelta consente di ridurre le perdite dal lato c.a.

L'architettura di ciascun sottocampo è sinteticamente riportata nel seguito:

Il generatore, denominato 12 CAMPO 1 ha complessivamente una potenza installata pari a 3.324,23kWp derivante da 7306 moduli con una superficie totale dei moduli di 16.219,32 m².

Dati generali	
Posizionamento dei moduli	Non complanare alle superfici
Struttura di sostegno	Mobile ad un asse orizzontale

Consulenza: **Atech srl**Proponente: **HEPV29 Srl**

Progetto per la realizzazione di un impianto agrovoltaico avente potenza nominale pari a 8.120 kW e potenza moduli pari a 10.150,14 kWp con relativo collegamento alla rete elettrica, sito in Brindisi (BR)

Inclinazione dei moduli (Tilt)	
Orientazione dei moduli (Azimut)	0°
Potenza totale	3.324,23 kWp

Modulo	
Marca – Modello	JA SOLAR - JAM-72-S20-455/MT
Numero totale moduli	7306
Superficie totale moduli	16.219,32 m²

Configurazione inverter		
МРРТ	Numero di moduli	Stringhe per modulo
1	7306	281x 26

Inverter	
Marca – Modello	SMA - Sunny Central 2660 UP
Numero totale	1
Dimensionamento inverter (compreso tra 70 % e 120 %)	80 % (VERIFICATO)
Tipo fase	Trifase

In corrispondenza dei valori minimi della temperatura di lavoro dei moduli (-10 °C) e dei valori massimi di lavoro degli stessi (70 °C) sono verificate le seguenti disuguaglianze:

TENSIONI MPPT	
Vm a 70 °C (928.68 V) maggiore di Vmppt min. (921.00 V)	VERIFICATO
Vm a -10 °C (1 210.71 V) minore di Vmppt max. (1 325.00 V)	VERIFICATO

Consulenza: **Atech srl**Proponente: **HEPV29 Srl**

Progetto per la realizzazione di un impianto agrovoltaico avente potenza nominale pari a 8.120 kW e potenza moduli pari a 10.150,14 kWp con relativo collegamento alla rete elettrica, sito in Brindisi (BR)

TENSIONE MASSIMA	
Voc a -10 °C (1 419.49 V) inferiore alla tensione max. dell'ingresso MPPT (1 500.00 V)	VERIFICATO

TENSIONE MASSIMA MODULO	
Voc a -10 °C (1 419.49 V) inferiore alla tensione max. di sistema del modulo (1 500.00 V)	VERIFICATO

CORRENTE MASSIMA	
Corrente max. generata (3 491.46 A) inferiore alla corrente max. dell'ingresso MPPT (8 400.00 A)	VERIFICATO

Il generatore, denominato 12 CAMPO 2 ha complessivamente una potenza installata pari a 3.300,57kWp derivante da 7254 moduli con una superficie totale dei moduli di 16.103,88 m².

Posizionamento dei moduli	Non complanare alle superfici
Struttura di sostegno	Mobile ad un asse orizzontale
Inclinazione dei moduli (Tilt)	
Orientazione dei moduli (Azimut)	0°
Potenza totale	3.300,57 kWp

Modulo	
Marca – Modello	JA SOLAR - JAM-72-S20-455/MT
Numero totale moduli	7254
Superficie totale moduli	16.103,88 m²

Consulenza: **Atech srl**Proponente: **HEPV29 Srl**

Progetto per la realizzazione di un impianto agrovoltaico avente potenza nominale pari a 8.120 kW e potenza moduli pari a 10.150,14 kWp con relativo collegamento alla rete elettrica, sito in Brindisi (BR)

Configurazione inverter		
МРРТ	Numero di moduli	Stringhe per modulo
1	7254	279 x 26

Inverter		
Marca – Modello	SMA - Sunny Central 2660 UP	
Numero totale	1	
Dimensionamento inverter (compreso tra 70 % e 120 %)	80.6 % (VERIFICATO)	
Tipo fase	Trifase	

In corrispondenza dei valori minimi della temperatura di lavoro dei moduli (-10 °C) e dei valori massimi di lavoro degli stessi (70 °C) sono verificate le seguenti disuguaglianze:

TENSIONI MPPT	
Vm a 70 °C (928.68 V) maggiore di Vmppt min. (880.00 V)	VERIFICATO
Vm a -10 °C (1 210.71 V) minore di Vmppt max. (1 325.00 V)	VERIFICATO

TENSIONE MASSIMA	
Voc a -10 °C (1 419.49 V) inferiore alla tensione max. dell'ingresso MPPT (1 500.00 V)	VERIFICATO

TENSIONE MASSIMA MODULO	
Voc a -10 °C (1 419.49 V) inferiore alla tensione max. di sistema del modulo (1 500.00 V)	VERIFICATO

CORRENTE MASSIMA	
Corrente max. generata (4 815.02 A) inferiore alla corrente max. dell'ingresso MPPT (8 400.00 A)	VERIFICATO

Consulenza: **Atech srl**Proponente: **HEPV29 Srl**

Progetto per la realizzazione di un impianto agrovoltaico avente potenza nominale pari a 8.120 kW e potenza moduli pari a 10.150,14 kWp con relativo collegamento alla rete elettrica, sito in Brindisi (BR)

Il generatore, denominato 12 CAMPO 3 ha complessivamente una potenza installata pari a 3.525,34kWp derivante da 7748 moduli con una superficie totale dei moduli di 17.200,56 m².

Posizionamento dei moduli	Non complanare alle superfici
Struttura di sostegno	Mobile ad un asse orizzontale
Inclinazione dei moduli (Tilt)	
, ,	
Orientazione dei moduli (Azimut)	0°
Potenza totale	3.525,34 kWp

Modulo	
Marca – Modello	JA SOLAR - JAM-72-S20-455/MT
Numero totale moduli	7748
Superficie totale moduli	17.200,56 m²

Configurazione inverter		
МРРТ	Numero di moduli	Stringhe per modulo
1	7748	298 x 26

Inverter	
ntral 2800 UP	
CATO)	
_	

Consulenza: **Atech srl**Proponente: **HEPV29 Srl**

Progetto per la realizzazione di un impianto agrovoltaico avente potenza nominale pari a 8.120 kW e potenza moduli pari a 10.150,14 kWp con relativo collegamento alla rete elettrica, sito in Brindisi (BR)

In corrispondenza dei valori minimi della temperatura di lavoro dei moduli (-10 °C) e dei valori massimi di lavoro degli stessi (70 °C) sono verificate le seguenti disuguaglianze:

TENSIONI MPPT	
Vm a 70 °C (928.68 V) maggiore di Vmppt min. (880.00 V)	VERIFICATO
Vm a -10 °C (1 210.71 V) minore di Vmppt max. (1 325.00 V)	VERIFICATO

TENSIONE MASSIMA	
Voc a -10 °C (1 419.49 V) inferiore alla tensione max. dell'ingresso MPPT (1 500.00 V)	VERIFICATO

TENSIONE MASSIMA MODULO	
Voc a -10 °C (1 419.49 V) inferiore alla tensione max. di sistema del modulo (1 500.00 V)	VERIFICATO

CORRENTE MASSIMA	
Corrente max. generata (4 815.02 A) inferiore alla corrente max. dell'ingresso MPPT (8 400.00 A)	VERIFICATO

Consulenza: Atech srl Proponente: HEPV29 Srl

Progetto per la realizzazione di un impianto agrovoltaico avente potenza nominale pari a 8.120 kW e potenza moduli pari a 10.150,14 kWp con relativo collegamento alla rete elettrica, sito in Brindisi (BR)

3.6.3.3. Moduli fotovoltaici

Per la scelta del pannello fotovoltaico, in fase di progettazione, si è fatto riferimento alle migliori caratteristiche in termini di efficienza delle celle fotovoltaiche; sono stati individuati moduli ad alta potenza, dimensioni standard, che uniscono alla caratteristica della migliore tecnologia disponibile, la facilità di reperibilità sul mercato un costo accessibile.

I moduli individuati avranno le seguenti caratteristiche:

DATI GENERALI

Marca	JA SOLAR
Modello	JAM-72-S20-455/MT
Tipo materiale	Si monocristallino

CARATTERISTICHE ELETTRICHE IN CONDIZIONI STC

Potenza di picco [W]	455.0 W
Im [A]	10.88
Isc [A]	11.41
Efficienza [%]	20.50
Vm [V]	41.82
Voc [V]	49.85

Consulenza: Atech srl Proponente: **HEPV29 Srl**

Progetto per la realizzazione di un impianto agrovoltaico avente potenza nominale pari a 8.120 kW e potenza moduli pari a 10.150,14 kWp con relativo collegamento alla rete elettrica, sito in Brindisi (BR)

ALTRE CARATTERISTICHE ELETTRICHE

Coeff. Termico Voc [%/°C]	-0.2720
Coeff. Termico Isc [%/°C]	0.044
NOCT [°C]	45.0
Vmax [V]	1 500.00

CARATTERISTICHE MECCANICHE


Lunghezza [mm]	2 112.00
Larghezza [mm]	1 052.00
Superficie [m²]	2.222
Spessore [mm]	35.00
Peso [kg]	24.70
Numero celle	144

I moduli dovranno essere approvati e verificati da laboratori di accreditamento (laboratori accreditati EA, European Accreditation Agreement, o che abbiano stabilito con EA accordi di mutuo riconoscimento), per le specifiche prove necessarie alla verifica dei moduli, in conformità alla norma UNI CEI EN ISO/IEC 17025.

Consulenza: Atech srl
Proponente: HEPV29 Srl

Progetto per la realizzazione di un impianto agrovoltaico avente potenza nominale pari a 8.120 kW e potenza moduli pari a 10.150,14 kWp con relativo collegamento alla rete elettrica, sito in Brindisi (BR)

Consulenza: **Atech srl**Proponente: **HEPV29 Srl**

Progetto per la realizzazione di un impianto agrovoltaico avente potenza nominale pari a 8.120 kW e potenza moduli pari a 10.150,14 kWp con relativo collegamento alla rete elettrica, sito in Brindisi (BR)

3.6.3.4. Inverter

La scelta degli Inverter per sistemi Fotovoltaici è avvenuta in funzione del migliore compromesso raggiungibile nell'accoppiamento tra pannelli ed il dispositivo di conversione della c.c. in c.a. Tali componenti rappresentano infatti il cuore di un generatore fotovoltaico.

Le esigenze da soddisfare al fine di realizzare un impianto a regola d'arte sono:

- Adeguata suddivisione dei pannelli FV in stringhe ed in campi fotovoltaici al fine di garantire una equilibrata ripartizione su più inverter;
- Dimensionamento delle singole stringhe e dei campi FV in modo da garantire il funzionamento sempre all'interno del range di MPPT dell'inverter.
- Ottenere un sufficiente equilibrio tra i vari campi fotovoltaici;
- Raggiungere un sufficiente grado di sfruttamento delle potenzialità dell'inverter.

In ragione delle considerazioni e scelte sopra descritte, la scelta progettuale è stata indirizzata verso inverter centralizzati, al fine di ridurre le perdite.

Gli inverter avranno le seguenti caratteristiche:

DATI GENERALI

Modello Sunny Central 2660/2800 UP	Marca	SMA
	Modello	Sunny Central 2660/2800 UP

Consulenza: **Atech srl**Proponente: **HEPV29 Srl**

Progetto per la realizzazione di un impianto agrovoltaico avente potenza nominale pari a 8.120 kW e potenza moduli pari a 10.150,14 kWp con relativo collegamento alla rete elettrica, sito in Brindisi (BR)

INGRESSI MPPT

N	VMppt min [V]	VMppt max [V]	V max [V]	I max [A]
1	921.00	1 325.00	1 500.00	8 400.00
Мах р	oot. FV [W]	3 640 000		

PARAMETRI ELETTRICI IN USCITA

Potenza nominale [W]	2 660 000/2 800 000
Tensione nominale [V]	630
Rendimento max [%]	98.70
Distorsione corrente [%]	3
Frequenza [Hz]	50
Rendimento europeo [%]	98.60

La composizione dei campi fotovoltaici è stata progettata al fine di garantire nelle varie condizioni di funzionamento, una tensione del sistema c.c. perfettamente all'interno del range del MPPT degli inverter.

Per maggiori dettagli su tali aspetti si rimanda alla relazione di calcolo riportante il dimensionamento.

Consulenza: Atech srl
Proponente: HEPV29 Srl

Progetto per la realizzazione di un impianto agrovoltaico avente potenza nominale pari a 8.120 kW e potenza moduli pari a 10.150,14 kWp con relativo collegamento alla rete elettrica, sito in Brindisi (BR)

3.6.3.1. Cavi in BT

Per il cablaggio dei moduli e per il collegamento delle stringhe agli Sting Box di campo sono previsti conduttori in doppio isolamento o equivalenti appositamente progettati per l'impiego in campi FV per la produzione di energia (tipo H1Z2Z2-K). Nella figura allegata sono riportate le caratteristiche principali dei cavi.

APPLICAZIONI

Cavo conforme ai requisiti previsti dal Regolamento Prodotti da Costruzione (CPR UE 305/11), con l'obiettivo di limitare la produzione e la diffusione di fuoco e di fumo.

Cavo unipolare halogen free adatto al collegamento dei vari elementi degli impianti fotovoltaici e solari.

Il cavo H1Z2Z2-K ha un'ottima resistenza ai raggi UV ed alle condizioni atmosferiche.

Il funzionamento del cavo è stimato in circa 25 anni (EN 50618) ed il periodo previsto per un suo utilizzo ad una temperatura massima del conduttore di 120°C e ad una temperatura massima ambientale di 90°C è limitato a 20.000 ore.

Per posa fissa all'esterno ed all'interno di fabbricati, senza protezione o entro tubazioni in vista o incassate.**

Consulenza: **Atech srl**Proponente: **HEPV29 Srl**

Progetto per la realizzazione di un impianto agrovoltaico avente potenza nominale pari a 8.120 kW e potenza moduli pari a 10.150,14 kWp con relativo collegamento alla rete elettrica, sito in Brindisi (BR)

Per il collegamento tra le CdC e la CdP vengono utilizzati dei cavi per media tensione con corda rotonda in alluminio (tipo ARG7H1R 12/20kV).

ARG7H1R-1,8/3 kV, 6/10 kV, 12/20 kV, 18/30 kV ARG7H1OR-3,6/6 kV, 6/10 kV, 12/20 kV, 18/30 kV

Costruzione, requisiti elettrici, fisici e meccanici:	CEI 20-13
	IEC 60502
Non propagazione della flamma:	EN 60332-1-2
Misura delle scariche parziali;	CEI 20-16
	IEC 60885-3
Gas corrosivi o alogenidrici:	EN 50267-2-1

Consulenza: Atech srl

Proponente: **HEPV29 Srl**

Progetto per la realizzazione di un impianto agrovoltaico avente potenza

nominale pari a 8.120 kW e potenza moduli pari a 10.150,14 kWp con relativo

collegamento alla rete elettrica, sito in Brindisi (BR)

3.6.3.2. Cabine di Campo

In linea generale le cabine elettriche svolgono la funzione di edifici tecnici adibiti a locali per

la posa dei quadri, degli inverter, del trasformatore, delle apparecchiature di telecontrollo, di

consegna e misura.

Nel particolare caso oggetto della presente relazione, le Cabine di Campo (CdC) saranno

costituite, da un punto di vista elettrico, da una sezione BT, da una sezione MT e da una

sezione di trasformazione.

La sezione BT sarà costituita da un Quadro BT a 1500 V cc in cui sono installati gli

interruttori di protezione delle linee che arrivano dagli String Box e che si attestano

elettricamente all'Inverter in Cabina. Nello stesso quadro sono contenuti gli interruttori di

protezione BT delle linee elettriche cha alimentano i servizi ausiliari

Dal punto di vista architettonico sarà a struttura prefabbricata in acciaio tipo shelter, pertanto

non necessita di fondazioni in cemento, fatta eccezione per la base di supporto/appoggio della

cabina stessa che sarà costituita da una platea in cemento dello spessore di 30 cm ed armata

con rete elettrosaldata 20x20 Φ10.

Per l'entrata e l'uscita dei cavi lo Shelter sarà predisposto con delle aperture, idonee ad

accogliere i cavi provenienti dagli Sting Box in campo con passacavi a tenuta stagna che

garantiscono comunque un grado di protezione contro le infiltrazioni anche in presenza di falde

acquifere.

La cabina di parallelo CdP raccoglie tutti i cavi provenienti dalle cabine di trasformazione e

convoglia l'energia prodotta dall'impianto verso la cabina di consegna di e-distribuzione.

La sezione di trasformazione è costituita da un trasformatore MT/BT di potenza variabile a

seconda della taglia degli inverter presenti in cabina, pari a 2660 kVA e 2800kVA.

Le caratteristiche comuni a tutti i trasformatori sono: 0.60-0,63/20 kV, trifase con

avvolgimenti immersi in olio/resina, munito di variatore di rapporto sotto carico, con neutro ad

isolamento pieno verso terra, gruppo vettoriale Dy11. La sezione MT è costituita da un guadro

Consulenza: **Atech srl**Proponente: **HEPV29 Srl**

Progetto per la realizzazione di un impianto agrovoltaico avente potenza nominale pari a 8.120 kW e potenza moduli pari a 10.150,14 kWp con relativo collegamento alla rete elettrica, sito in Brindisi (BR)

MT con sezionatori con fusibili per la protezione dei trasformatori (lato MT) e sezionatore per la linea MT in arrivo da altro CdC e/o in partenza verso la CdP o oltra CdC di altro sotto campo.

All'interno delle Cabine di Campo, sarà presente anche un Trasformatore per i Servizi Ausiliari da 10 kVA, 0,6/0,4 kV.

La cabina sarà dotata di impianto di illuminazione ordinario e di emergenza, forza motrice, alimentate da apposito quadro BT installato in loco, nonché di accessori normalmente richiesti dalle normative vigenti (schema del quadro, cartelli comportamentali, tappeti isolanti 30kV, guanti di protezione 30kV, estintore ecc.). Il sostegno dei circuiti ausiliari dei quadri per la sicurezza e per il funzionamento continuativo dei sistemi di protezione elettrica avverrà da gruppi di continuità (UPS) installati in loco.

3.6.3.1. Cabine di Parallelo

Sarà posizionata nelle immediate vicinanze della strada comunale che passa in prossimità dell'impianto, come si evince dalla planimetria generale dell'impianto allegata alla presente.

All'interno di essa, oltre alle celle di MT ed al trasformatore MT/BT Ausiliari, vi alloggeranno anche l'UPS, il rack dati, la centrale di videosorveglianza, gli apparati di supporto e controllo dell'impianto di generazione ed il QGBT Ausiliari. La cabina d'impianto sarà costituita da edificio di cabina utente e edificio cabina di consegna

Tutti gli edifici suddetti saranno dotati di impianto elettrico realizzato a norma della legge 37/08. L'accesso alle cabine elettriche avviene tramite la viabilità interna. Dal punto di vista costruttivo si rimanda agli elaborati grafici di progetto.

Dal punto di vista elettrico la CdP consta essenzialmente di un Quadro MT, con sbarre 20 kV–630 A 16 kA x 1 sec, costituito dagli interruttori delle linee MT in arrivo dai 3 sottocampi MT, ed il DG con linea in partenza verso la cabina di consegna. Nello stesso quadro è contenuto un sezionatore MT di protezione del trasformatore ausiliari di cabina (trafo 50 kVA Dyn11).

Al quadro MT della Cabina di Parallelo (CdP) si attesteranno: n. 3 Linee 20 kV in cavo provenienti dai 3 Sottocampi e n. 1 Linee 20 kV di collegamento con la cabina di consegna di E-DISTRIBUZIONE.

Consulenza: **Atech srl**Proponente: **HEPV29 Srl**

Progetto per la realizzazione di un impianto agrovoltaico avente potenza nominale pari a 8.120 kW e potenza moduli pari a 10.150,14 kWp con relativo collegamento alla rete elettrica, sito in Brindisi (BR)

Il Quadro MT 20 kV di Cabina sarà tipo blindato, isolato in aria/gas SF6, composto dai seguenti scomparti:

- n. 3 scomparti per DDI (dispositivi di interfaccia) arrivo cavi dal Parco Fotovoltaico (1 terna per scomparto) con interruttori 630 A, TA, sezionatore tre posizioni, relè di protezione multi funzionale a microprocessore;
- n. 1 scomparto per DDR (dispositivo di rincalzo) 630A, TA, TV sezionatore tre posizioni, relè di protezione multi funzionale a microprocessore;
- n. 1 scomparto per ausiliari, sezionatore tre posizioni, fusibile di protezione;
- n. 1 scomparto per DG (dispositivo generale) 630A, TA, TV sezionatore tre posizioni, relè di protezione multi funzionale a microprocessore;
- n. 1 scomparto per TV sezionatore tre posizioni e fusibile di protezione;
- n. 1 scomparto partenza cavi (1 terna) verso cabina di consegna

3.6.4. Viabilità interna

Per muoversi agevolmente all'interno dell'area ai fini delle manutenzioni e per raggiungere le cabine di campo verranno realizzate le strade interne strettamente necessarie a raggiungere in maniera agevole tutti i punti dell'impianto. La viabilità interna verrà realizzata solo con materiali naturali (pietrisco di cava) che consentono l'infiltrazione e il drenaggio delle acque meteoriche nel sottosuolo, pertanto non sarà ridotta la permeabilità del suolo. Per quanto concerne l'andamento plano-altimetrico dei tratti costituenti la viabilità interna, si sottolinea che quest'ultima verrà realizzata seguendo, come criterio progettuale, quello di limitare le movimentazioni di terra nel rispetto dell'ambiente circostante. Questo è possibile realizzarlo in quanto le livellette stradali seguiranno l'andamento naturale del terreno stesso.

3.6.1. Recinzione perimetrale e mitigazione visiva

Le varie aree dell'impianto saranno dotate di recinzione in rete metallica galvanizzata e da un cancello carrabile. La rete metallica come recinzione è stata scelta al fine di ridurre gli impatti; inoltre sarà posta, nelle zone dove l'impianto risulta visibile da infrastrutture e fabbricati, anche

Consulenza: **Atech srl**Proponente: **HEPV29 Srl**

Progetto per la realizzazione di un impianto agrovoltaico avente potenza nominale pari a 8.120 kW e potenza moduli pari a 10.150,14 kWp con relativo collegamento alla rete elettrica, sito in Brindisi (BR)

in disuso e in completo stato di abbandono, una fascia arborea autoctona di mitigazione. La posa in opera della recinzione a maglia rettangolare sarà a pali infissi direttamente nel terreno in modo da ridurre al minimo l'impatto sull'ambiente circostante ed evitare l'utilizzo di calcestruzzo, tranne nel caso in cui la geologia del terreno non permetta l'infissione dei pali.

I cancelli d'ingresso saranno realizzati in acciaio zincato, sorretto da pilastri in scatolare metallico. Le dimensioni saranno tali da permettere un agevole ingresso dei mezzi pesanti impiegati in fase di realizzazione e manutenzione. In fase esecutiva sarà considerata la possibilità di dotare il cancello di azionamento elettrico.

Al fine di attenuare, se non del tutto eliminare, l'impatto visivo prodotto dall'impianto fotovoltaico sono previsti interventi di mitigazione visiva mediante messa a dimora lungo il perimetro dell'impianto di una schermatura arborea con funzione di mitigazione visiva dell'impianto. Tale schermatura sarà realizzata mediante la messa a dimora di un doppio filare di uliveto intensivo, con piante disposte su file distanti m 2,00, lungo i perimetri prossimi alla viabilità esterna, mentre tale mitigazione visiva sarà costituita da un singolo filare di uliveto intensivo in prossimità dei terreni agricoli.

La soluzione adottata consente di ridurre efficacemente l'impatto visivo, permettendo la schermatura dell'impianto su diverse altezze grazie alla presenza di una vegetazione "a crescere", caratterizzata dalla presenza della lavanda (cfr.figura seguente).

Consulenza: **Atech srl**Proponente: **HEPV29 Srl**

Progetto per la realizzazione di un impianto agrovoltaico avente potenza nominale pari a 8.120 kW e potenza moduli pari a 10.150,14 kWp con relativo collegamento alla rete elettrica, sito in Brindisi (BR)

SEZIONE 2- Mitigazione in prossimità di terreno agricolo

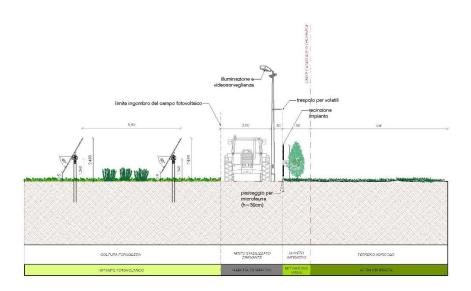


Figura 3-4: Sezione tipo misure di mitigazione

3.6.2. Illuminazione perimetrale

L'impianto di illuminazione perimetrale del campo sarà realizzata da apparecchi di illuminazione distribuiti uniformemente lungo il perimetro seguendo il percorso delle strade perimetrali ed eventualmente la sola recinzione. Gli apparecchi saranno dotati di fonte Luminosa

Consulenza: **Atech srl**Proponente: **HEPV29 Srl**

Progetto per la realizzazione di un impianto agrovoltaico avente potenza nominale pari a 8.120 kW e potenza moduli pari a 10.150,14 kWp con relativo collegamento alla rete elettrica, sito in Brindisi (BR)

a LED con emissione pari 5865lm e emissione dell'apparecchio pari a 4460lm. La potenza assorbita dall'apparecchio sarà pari a 46W con potenza massima assorbita dai LED pari a 39W.

Il suo funzionamento sarà esclusivamente legato alla sicurezza dell'impianto, gli apparecchi saranno installati sugli stessi pali montanti le telecamere dell'impianto di videosorveglianza. La direzione di proiezione del raggio luminoso, sarà verso il basso, senza quindi oltrepassare la linea dell'orizzonte o proiettare la luce verso l'altro.

3.6.1. Sistemi ausiliari

L'accesso all'area recintata sarà sorvegliata automaticamente da un sistema di Sistema integrato Anti-intrusione composto da: telecamere TVCC tipo fisso Day-Night, per visione diurna e notturna, con illuminatore a IR. Queste saranno installate su pali in acciaio zincato di altezza pari a m 5,00 nei pressi delle cabine di campo e smistamento.

Ogni cabina di campo e la cabina di consegna saranno dotate di illuminazione perimetrale che si attiverà nelle ore notturne secondo la presenza del personale di manutenzione e gestione dell'impianto.

3.6.2. Manutenzione

I pannelli fotovoltaici non hanno bisogno di molta manutenzione. Può capitare che le loro superfici si sporchino o si ricoprano di polvere, generalmente basta l'acqua e il vento per ripulirli ma e buona norma eseguire ispezioni periodiche dei moduli per verificare la presenza di danni a vetro, telaio, scatola di giunzione o connessioni elettriche esterne. La manutenzione va effettuata da personale specializzato e competente che effettui i controlli periodici.

3.6.3. Lavaggio dei moduli fotovoltaici

Benché il vetro dei pannelli fotovoltaici tendenzialmente si dovrebbe sporcare poco, di fatto può succedere che i pannelli si sporchino a causa di polveri presenti nell'aria, inquinamento, terra portata da vento, pioggia, etc. Tutto questo accumulo di sporcizia influisce negativamente sulle prestazioni dei pannelli solari, diminuendone sensibilmente l'efficacia. Per ovviare a questo problema per tutta la vita utile dell'impianto sono previsti dei lavaggi periodici della superficie

Consulenza: **Atech srl**Proponente: **HEPV29 Srl**

Progetto per la realizzazione di un impianto agrovoltaico avente potenza nominale pari a 8.120 kW e potenza moduli pari a 10.150,14 kWp con relativo collegamento alla rete elettrica, sito in Brindisi (BR)

captante dei moduli fotovoltaici. Per il lavaggio dei moduli non e previsto l'uso di sostanze e prodotti chimici.

3.6.4. Controllo delle piante infestanti

L'area sottostante i pannelli continuerà ad essere occupata da terreno vegetale allo stato naturale e pertanto soggetta al periodico accrescimento della vegetazione spontanea. Fanno eccezione ovviamente le aree utilizzate per la realizzazione di piazzali interni all'area dell'impianto. Allo scopo di mantenere un'adeguata "pulizia" dell'area, peraltro necessaria per evitare ombreggiamenti sui pannelli, saranno effettuate delle operazioni con tagliaerba al fine di eliminare eventuali piante infestanti. Tale attività avverrà con particolare cura, da parte di impresa specializzata, allo scopo di evitare il danneggiamento delle strutture e di altri componenti dell'impianto. In particolare, lo sfalcio meccanico verrà utilizzato per eliminare la vegetazione spontanea infestante al fine di prevenire la proliferazione dei parassiti e, durante la stagione estiva, al fine di evitare la propagazione degli incendi di erbe disseccate sia agli impianti sia ai poderi confinanti. In nessun caso saranno utilizzati diserbanti o altri prodotti chimici atti a ridurre o eliminare la presenza di vegetazione spontanea sul campo.

Consulenza: Atech srl

Proponente: **HEPV29 Srl**

Progetto per la realizzazione di un impianto agrovoltaico avente potenza

nominale pari a 8.120 kW e potenza moduli pari a 10.150,14 kWp con relativo

collegamento alla rete elettrica, sito in Brindisi (BR)

3.7. FASE DI CANTIERE

Considerata la tipologia dell'intervento da realizzare, si può affermare che le lavorazioni in

fase di cantiere avverranno senza la produzione di particolari rifiuti da conferire alle pubbliche

discariche. Questo e dovuto all'esiguità degli scavi necessari alla realizzazione dei cavidotti

interrati ed al fatto che la viabilità interna verrà realizzata seguendo come criterio progettuale

quello di limitare il più possibile le movimentazioni di terra nel rispetto dell'ambiente circostante e

seguendo il più possibile l'andamento del terreno.

Tali operazioni, riguardando solo la parte più superficiale del terreno vegetale, produrranno

come residuo delle lavorazioni solamente lo stesso terreno vegetale che verrà ridistribuito

uniformemente all'interno delle aree di pertinenza dell'impianto.

Per quanto riguarda gli imballaggi dei moduli fotovoltaici e dei quadri elettrici questi saranno

costituti da cartone e plastica, materiali che verranno trasferiti ai circuiti classici di riciclo che

sono stati analizzati nei paragrafi successivi.

A valle di quanto esposto non si esclude il fatto che, se in fase di cantiere si dovesse

produrre materiale di rifiuto, tale materiale prodotto sarà differenziato e conferito nella più vicina

discarica pubblica autorizzata.

A seguito delle lavorazioni di installazione degli impianti non verranno arrecati danni

permanenti alla viabilità pubblica e privata, e qualora dovessero accidentalmente verificarsi tali

episodi, vi verrà tempestivamente posto rimedio in quanto sia nelle convenzioni con gli Enti, sia

nei contratti con i privati sono riportati gli obblighi e le modalità per il ripristino.

Consulenza: Atech srl

Proponente: **HEPV29 Srl**

Progetto per la realizzazione di un impianto agrovoltaico avente potenza nominale pari a 8.120 kW e potenza moduli pari a 10.150,14 kWp con relativo collegamento alla rete elettrica, sito in Brindisi (BR)

3.8. FASE DI ESERCIZIO

Analizzando i componenti e la tipologia di operazioni che avvengono per la produzione di energia fotovoltaica e ben evidente che l'impianto in questione, in fase di esercizio, non produce

materiali di rifiuto.

3.9. FASE DI DISMISSIONE - RICICLO COMPONENTI E RIFIUTI

L'impianto fotovoltaico e costituito da una serie di manufatti necessari all'espletamento di

tutte le attività ad esso connesse e di seguito descritti.

Le componenti dell'impianto che costituiscono una modificazione rispetto alle condizioni in

cui si trova attualmente il sito oggetto dell'intervento sono prevalentemente:

stringhe fotovoltaiche

• strutture di fissaggio delle stringhe fotovoltaiche vibro-infisse nel terreno

cabine elettriche prefabbricate ed apparati elettrici, pali illuminazione e videosorveglianza

viabilità interna

cavi

· recinzione.

3.9.1. Rimozione dei pannelli fotovoltaici

Per quanto riguarda lo smaltimento dei pannelli fotovoltaici montati sulle strutture fuori terra

l'obiettivo è quello di riciclare pressoché totalmente i materiali impiegati.

Infatti circa il 90 – 95 % del peso del modulo è composto da materiali che possono essere

riciclati attraverso operazioni di separazione e lavaggio; i principali componenti di un pannello

fotovoltaico sono:

Silicio;

Componenti elettrici;

Consulenza: Atech srl

Proponente: **HEPV29 Srl**

Progetto per la realizzazione di un impianto agrovoltaico avente potenza

nominale pari a 8.120 kW e potenza moduli pari a 10.150,14 kWp con relativo

collegamento alla rete elettrica, sito in Brindisi (BR)

Metalli;

Vetro.

Le operazioni previste per la demolizione e successivo recupero/smaltimento dei pannelli

fotovoltaici consisteranno nello smontaggio dei moduli ed invio degli stessi ad idonea

piattaforma che effettuerà le seguenti operazioni di recupero:

recupero cornice di alluminio;

recupero vetro;

recupero integrale della cella di silicio o recupero del solo wafer;

invio a discarica delle modeste quantità di polimero di rivestimento della cella e/o ad

impianto di recupero e/o riutilizzo dei polimeri.

La tecnologia per il recupero e riciclo dei materiali, valida per i pannelli a silicio cristallino è

una realtà industriale che va consolidandosi sempre più. A titolo di esempio l'Associazione PV

CYCLE, che raccoglie il 70% dei produttori europei di moduli fotovoltaici (circa 40 aziende) ha

un programma per il recupero dei moduli ed hanno attivato un impianto di riciclo già dal 2017, i

produttori First Solar e Solar World hanno già in funzione due impianti per il trattamento dei

moduli con recupero del 90% dei materiali ed IBM ha già messo a punto e sperimentato una

tecnologia per il recupero del silicio dai moduli difettosi.

3.9.2. Rimozione delle strutture di sostegno

Le strutture di sostegno dei pannelli saranno rimosse tramite smontaggio meccanico, per

quanto riguarda la parte aerea e tramite estrazione dal terreno dei pali di fondazione infissi;

appare opportuno riportare che essendo i terreni di fondazione costituiti da sabbie limose ed

argillose, le travi di fondazione saranno semplicemente "infisse" con la tecnica del "battipalo" e

potranno essere facilmente estratti.

Non è necessario fissare le travi di fondazione con "boiacca "cementizia e/o calcestruzzo, in

quanto le tensioni orizzontali dei terreni tenderanno a farsi che si si abbiano vuoi fra terreno e

struttura di fondazione.

Consulenza: Atech srl

Proponente: **HEPV29 Srl**

Progetto per la realizzazione di un impianto agrovoltaico avente potenza

nominale pari a 8.120 kW e potenza moduli pari a 10.150,14 kWp con relativo

collegamento alla rete elettrica, sito in Brindisi (BR)

I materiali ferrosi ricavati verranno inviati ad appositi centri di recupero e riciclaggio istituiti a

norma di legge.

Per quanto attiene al ripristino del terreno non sarà necessario procedere a nessuna

demolizione di fondazioni in quanto non si utilizzano elementi in calcestruzzo gettati in opera.

3.9.3. Impianto e apparecchiature elettriche

Le linee elettriche e gli apparati elettrici e meccanici delle cabine di trasformazione MT/BT

saranno rimosse, conferendo il materiale di risulta agli impianti all'uopo deputati dalla normativa

di settore.

Per gli inverter e i trasformatori è previsto il ritiro e smaltimento a cura del produttore.

Il rame degli avvolgimenti e dei cavi elettrici e le parti metalliche verranno inviati ad aziende

specializzate nel loro recupero e riciclaggio mentre le guaine verranno recuperate in mescole di

gomme e plastiche.

Le polifere ed i pozzetti elettrici verranno rimossi tramite scavo a sezione obbligata che

verrà poi nuovamente riempito con il materiale naturale.

Le colonnine prefabbricate di distribuzione elettrica saranno smantellate ed inviate

anch'esse ad aziende specializzate nel loro recupero e riciclaggio.

3.9.4. Locali prefabbricati e cabine

Per quanto attiene alle strutture prefabbricate alloggianti le cabine elettriche si procederà

alla demolizione ed allo smaltimento dei materiali presso impianti di recupero e riciclaggio inerti

da demolizione (rifiuti speciali non pericolosi).

Per le platee delle cabine elettriche previste in calcestruzzo si prevede la loro

frantumazione, con asportazione e conferimento dei detriti a ditte specializzate per il recupero

degli inerti.

Appare opportuno riportare che gli scavi effettuati per alloggiare il cassonetto di fondazione

delle cabine, saranno isolati con la stesa di un Tessuto Non Tessuto (TNT) da 300- 400 g/mq

Consulenza: **Atech srl**Proponente: **HEPV29 Srl**

Progetto per la realizzazione di un impianto agrovoltaico avente potenza nominale pari a 8.120 kW e potenza moduli pari a 10.150,14 kWp con relativo collegamento alla rete elettrica, sito in Brindisi (BR)

che permetterà di non lasciare alcun elemento della sottofondazione in "misto granulare calcareo" (tipo Aia-CNR Uni 1006).

3.9.5. Recinzione area

La recinzione in maglia metallica di perimetrazione del sito, compresi i paletti di sostegno ed i cancelli di accesso, sarà rimossa tramite smontaggio ed inviata a centri di recupero per il riciclaggio delle componenti metalliche.

I pilastri in c.a. di supporto ai cancelli verranno demoliti ed inviati presso impianti di recupero e riciclaggio inerti da demolizione (rifiuti speciali non pericolosi).

3.9.6. Viabilità interna

La pavimentazione stradale permeabile (materiale stabilizzato) verrà rimossa per tutto il cassonetto che, come riferito, sarà isolato dal terreno naturale, da un manto di TNT che, fra l'altro, eviterà in questa fase di asportazione, che nessuna porzione di "misto granulare calcareo" resti a contatto con il terreno vegetale.

Il "misto" sarà recuperato, mentre il TNT potrà anche questo essere recuperato in impianti di Re.Mat.

In cassonetto di fondazione (di 15-20 cm) sarà ricolmato da terreno vegetale al fine del ripristino dello stato dei luoghi.

3.9.1. Dettagli riguardanti lo smaltimento dei componenti

Nell'ambito del presente progetto lo smaltimento dei componenti verrà gestito secondo i seguenti dettagli:

Materiale	Destinazione finale	
Acciaio	Riciclo in appositi impianti	
Materiali	Riciclo in appositi impianti	
Rame	Riciclo e vendita	
Inerti da costruzione	Conferimento ad impianto di recupero	
Materiali provenienti dalla demolizione delle strade	Conferimento ad impianto di recupero	
Materiali compositi in fibre di vetro	Riciclo	

Consulenza: **Atech srl**Proponente: **HEPV29 Srl**

Progetto per la realizzazione di un impianto agrovoltaico avente potenza nominale pari a 8.120 kW e potenza moduli pari a 10.150,14 kWp con relativo collegamento alla rete elettrica, sito in Brindisi (BR)

Materiali elettrici e component	Separazione dei materiali pregiati da
elettromeccanici	quelli meno pregiati. Ciascun materiale
	verrà riciclato/venduto in funzione delle
	esigenze del mercato alla data di dismissione del parco eolico

Per quel che riguarda gli specifici costi legati alle operazioni di dismissione si rimanda al computo metrico delle Operazioni di Dismissione.

3.10. Manutenzione

Le operazioni di manutenzione e conservazione devono conseguire i seguenti obiettivi funzionali ed estetici:

- mantenere uno strato vegetale più o meno continuo, capace di controllare l'eventuale erosione;
- limitare il rischio di incendi e la loro propagazione;
- controllare la vegetazione pregiudizievole per le colture agricole adiacenti;

Per la manutenzione si realizzeranno i seguenti lavori:

- > irrigazione: si considera la necessità di effettuare annaffiature degli arbusti e delle idrosemine definite:
- concimazioni: si dovrà effettuare un'analisi chimica dei nutrienti presenti nel terreno, in modo da evidenziare quali sono le carenze ed eventualmente effettuare una concimazione con gli elementi di cui si è verificata la carenza;
- taglio: per ragioni estetiche, di pulizia e di sicurezza nei confronti di incendi, il Programma include potature e spalcature degli arbusti, con successiva ripulitura della biomassa tagliata.
- rimpiazzo degli esemplari morti: il rimpiazzo degli esemplari morti si effettuerà l'anno seguente all'intervento, al termine dei lavori di rivegetazione.

Consulenza: **Atech srl**Proponente: **HEPV29 Srl**

Progetto per la realizzazione di un impianto agrovoltaico avente potenza nominale pari a 8.120 kW e potenza moduli pari a 10.150,14 kWp con relativo collegamento alla rete elettrica, sito in Brindisi (BR)

Con quanto riportato, si ritiene che i terreni utilizzati per l'impianto fotovoltaico, alla fine del ciclo di vita di questo, siano, previo un periodo di stabilizzazione per la ridefinizione dei parametri chimico-fisici e microbiologici del suolo (con analisi di laboratorio da confrontare con quelle previste periodicamente nel monitoraggio ambientale), in grado di assolvere totalmente alle funzioni di colture per le quali questi possono essere ripristinati.

Infine, appare opportuno riportare che, alla fine del ciclo di vita e con gli accorgimenti effettuati sul "suolo" durante questo periodo, si restituiranno all'economia primaria terreni agricoli che avranno avuto il beneficio di essere stati preservati dall'incipiente "desertificazione"; ciò ha determinato un rilevante "beneficio ambientale e sociale".

Consulenza: Atech srl Proponente: **HEPV29 Srl**

Progetto per la realizzazione di un impianto agrovoltaico avente potenza nominale pari a 8.120 kW e potenza moduli pari a 10.150,14 kWp con relativo collegamento alla rete elettrica, sito in Brindisi (BR)

4. CRONOPROGRAMMA DEI LAVORI

Il tempo di esecuzione dei lavori è stato fissato, in questa fase progettuale, in circa <u>365</u> giorni, tenuto anche conto del tempo necessario per l'approvvigionamento dei materiali (in particolare delle apparecchiature elettriche e cavidotti), dell'eventuale andamento stagionale sfavorevole, della chiusura dei cantieri per festività, nonché del tempo necessario per gli scavi lungo le vie di traffico (strade provinciali e statale, per la posa in opera del cavidotto interrato).

Sommariamente, le lavorazioni saranno suddivise in fasi di seguito riportate in ordine cronologico di realizzazione:

Attività
ALLESTIMENTO CANTIERE
Viabilita' e segnaletica cantiere
Realizzazione impianto elettrico e di terra del cantiere
Montaggio recinzione e cancello di cantiere
Apposizione segnaletica cantiere
Montaggio baracche
Montaggio bagni chimici e box ufficio
Montaggio box prefabbricati
Allestimento di depositi
IMPIANTO ELETTRICO ESTERNO
Installazione sostegni linee elettriche
Copia 1 di Installazione sostegni linee elettriche
Posa pozzetti prefabbricati
Posa tubazioni di piccolo diametro
Impianto elettrico e di terra esterno
Realizzazione cabina elettrica
CABINE ELETTRICHE
Installazione cabine elettriche
Realizzazione impianto di messa a terra
Lavori presso cabine elettriche di media e bassa tensione
Installazione quadri MT
Installazione trasformatori MT/bt
Installazione gruppo elettrogeno
NUOVO ELETTRODOTTO
REALIZZAZIONE STRUTTURE FOTOVOLTAICHE
Carpenteria metallica

Consulenza: **Atech srl**Proponente: **HEPV29 Srl**

Progetto per la realizzazione di un impianto agrovoltaico avente potenza nominale pari a 8.120 kW e potenza moduli pari a 10.150,14 kWp con relativo collegamento alla rete elettrica, sito in Brindisi (BR)

Scavi a sezione obbligata con mezzi meccanici h inf. 1.50 m
Passaggio e cablaggio cavi elettrici
Posa in opera di cavi ed esecuzione giunti
Montaggio pannelli fotovoltaici
Montaggio inverter
Apertura cantiere rete MT
Realizzazione Elettrodotto
Allaccio Ente gestore

5. ANALISI DELLE ALTERNATIVE PROGETTUALI

L'analisi delle alternative, in generale, ha lo scopo di individuare le possibili soluzioni diverse da quella di progetto e di confrontarne i potenziali impatti con quelli determinati dall'intervento proposto.

Le alternative di progetto possono essere distinte per:

- alternative strategiche;
- alternative di localizzazione;
- alternative di processo o strutturali;
- alternative di compensazione o di mitigazione degli effetti negativi;

dove:

- per alternative strategiche si intendono quelle prodotte da misure atte a prevenire la domanda, la "motivazione del fare", o da misure diverse per realizzare lo stesso obiettivo;
- le alternative di localizzazione possono essere definite in base alla conoscenza dell'ambiente, alla individuazione di potenzialità d'uso dei suoli, ai limiti rappresentati da aree critiche e sensibili;
- * le alternative di processo o strutturali passano attraverso l'esame di differenti tecnologie, processi, materie prime da utilizzare nel progetto;

Consulenza: **Atech srl**Proponente: **HEPV29 Srl**

Progetto per la realizzazione di un impianto agrovoltaico avente potenza

nominale pari a 8.120 kW e potenza moduli pari a 10.150,14 kWp con relativo

collegamento alla rete elettrica, sito in Brindisi (BR)

* le alternative di compensazione o di mitigazione degli effetti negativi sono

determinate dalla ricerca di contropartite, transazioni economiche, accordi vari per

limitare gli impatti negativi.

Oltre a queste possibilità di diversa valutazione progettuale, esiste anche l'alternativa

"zero" coincidente con la non realizzazione dell'opera.

Nel caso in esame tutte le possibili alternative sono state ampiamente valutate e vagliate

nella fase decisionale antecedente alla progettazione oppure nel corso della stessa; tale

processo ha condotto alla soluzione che ha fornito il massimo rendimento con il minore impatto

ambientale.

In particolare, le alternative di localizzazione sono state affrontate nella fase iniziale di

ricerca dei suoli idonei dal punto di vista vincolistico e ambientale; sono state condotte

campagne di indagini e *micrositing* che hanno consentito di giungere ai siti di prescelti.

La ricerca si è concentrata nel comune di Ginosa per la presenza della sottostazione Terna

di prossima realizzazione, quindi la necessità di creare impianti che immettano energia di tipo

rinnovabile nella rete elettrica nazionale, allo scopo di giustificare l'investimento economico

necessario alla realizzazione di una importante opera di trasformazione ed immissione in rete ed

allo stesso tempo garantire energia pulita prodotta da fonti alternative.

Inoltre, la ricerca si è concentrata, altresì, su siti di una certa estensione territoriale tale da

giustificare la costruzione dell'impianto in grid parity (cioè senza incentivi statali sulla produzione

di energia ma solamente sulla vendita diretta della energia) ma allo stesso tempo privi di vincoli

e con la possibilità di mettere in atto il più ampio progetto agrovoltaico, con la finalità di unire alla

produzione elettrica pulita la produzione agricola e zootecnica.

Le *alternative strutturali* sono state valutate durante la redazione del progetto, la cui

individuazione della soluzione finale è scaturita da un processo iterativo finalizzato ad ottenere il

massimo della integrazione dell'impianto con il patrimonio morfologico e paesaggistico

esistente.

In particolare, la scelta delle strutture di sostegno si è concentrata su soluzioni prive di

fondazioni in cemento armato ma semplicemente dotate di pali infissi nel terreno, certamente

Consulenza: Atech srl

Proponente: **HEPV29 Srl**

Progetto per la realizzazione di un impianto agrovoltaico avente potenza

nominale pari a 8.120 kW e potenza moduli pari a 10.150,14 kWp con relativo

collegamento alla rete elettrica, sito in Brindisi (BR)

meno impattanti; per quanto riguarda i pannelli fotovoltaici e le opere accessorie, la scelta è

stata frutto di un processo di affinamento che ha condotto alla scelta delle migliori tecnologie

disponibili sul mercato, come descritto in precedenza.

Per quanto riguarda invece le *alternative di compensazione e/o di mitigazione*, le cui

misure a volte risultano indispensabili ai fini della riduzione delle potenziali interferenze sulle

componenti ambientali a valori accettabili, sono state valutate e descritte nel capitolo dell'analisi

degli impatti ambientali.

Le soluzioni adottate consentiranno un perfetto inserimento dell'impianto nel contesto

paesaggistico ed ambientale esistente, garantendo la schermatura completa dai punti di vista

esterni.

L'opzione zero consiste fondamentalmente nel rinunciare alla realizzazione del Progetto,

come si è detto. Innanzitutto si sottolinea che l'alternativa zero non si valuta nell'ottica della non

realizzazione dell'intervento in maniera asettica, che avrebbe sicuramente un impatto

ambientale minore in termini prettamente paesaggistici, ma nell'ottica di produzione di energia

per il soddisfacimento di un determinato fabbisogno che, in alternativa, verrebbe prodotto da

altre fonti, tra cui quelle fossili.

Ma anche in assenza di crescita del fabbisogno energetico, la necessità di energia da fonte

rinnovabile è destinata a crescere.

La non realizzazione dell'impianto fotovoltaico in progetto costituisce rinuncia ad una

opportunità di soddisfare una significativa quota di produzione di energia elettrica mediante

fonte rinnovabili, in un territorio in cui la risorsa "sole" risulta più che mai sufficiente a rendere

produttivo l'impianto.

Quanto detto risulta quanto mai vantaggioso dal momento in cui puntare sull'energia pulita

non è più una questione puramente ambientale. I costi di produzione elettrica da fonti rinnovabili

hanno raggiunto il punto di svolta e, in metà delle potenze del G20, riescono a tener testa, se

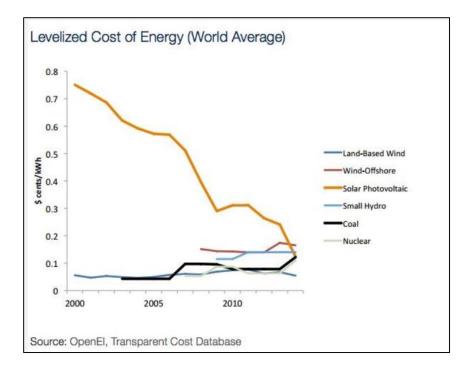
non addirittura a esser più convenienti, di fossili e nucleare.

Consulenza: **Atech srl**Proponente: **HEPV29 Srl**

Progetto per la realizzazione di un impianto agrovoltaico avente potenza nominale pari a 8.120 kW e potenza moduli pari a 10.150,14 kWp con relativo collegamento alla rete elettrica, sito in Brindisi (BR)

A ribadirlo è oggi un nuovo studio commissionato da Greenpeace alla Lappeenranta University della Finlandia. Il report compara gli attuali costi di produzione elettrica di energie verdi con carbone, gas ed "atomo" allungando le previsioni fino al 2030.

E se l'energia prodotta dalle centrali eoliche è risultata, fin dal 2015, l'opzione più conveniente in vaste parti d'Europa, Sud America, Stati Uniti, Cina e Australia, per il futuro lo studio prevede un vero e proprio boom del fotovoltaico. I dati pubblicati solo poco tempo fa da BNEF (Bloomberg New Energy Finance) mostrano come le tecnologie verdi abbiano tagliato drasticamente i costi. Lo scorso anno, il costo medio dell'elettricità prodotta attraverso il sole è calato a livello globale del 17%.


Il trend di riduzione dell'LCOE (*levelized cost of energy*) è visibile su scala mondiale ed è in netto contrasto con quello delle fonti fossili. Mentre, ad esempio, il costo energetico medio dell'energia dal carbone è stato per oltre un decennio intorno ai cento dollari a MWh, quello del solare si è letteralmente dimezzato nell'arco di cinque anni. E anche se oggi l'LCOE del carbone è molto sotto i 100 dollari sopracitati, se si parla di impianti IGCC (ciclo combinato di gassificazione integrata), ovvero il cosiddetto carbone pulito su cui tanti Paesi stanno facendo pressione, il costo schizza nuovamente oltre numeri a due zeri.

Le stime di IRENA, l'Agenzia internazionale per le energie rinnovabili, suggeriscono che l'LCOE solare scenderà ancora del 59% nel prossimo decennio.

Consulenza: **Atech srl**Proponente: **HEPV29 Srl**

Progetto per la realizzazione di un impianto agrovoltaico avente potenza nominale pari a 8.120 kW e potenza moduli pari a 10.150,14 kWp con relativo collegamento alla rete elettrica, sito in Brindisi (BR)

È chiaro quindi, come un impianto fotovoltaico produca notevoli benefici ambientali rispetto ad un analogo impianto alimentato con una risorsa tradizionale, evitando sia ragguardevoli quantità di consumo di materia prima, che emissioni nocive.

Quindi "l'Alternativa Zero" risulta senza ombra di dubbio notevolmente più impattante rispetto "all'Alternativa di Progetto". Tale aspetto sarà evidenziato anche sotto forma numerica attraverso il confronto matriciale riportata nel Quadro di riferimento Ambientale.

