

Direzione Progettazione e Realizzazione Lavori

ITINERARIO RAGUSA-CATANIA

Collegamento viario compreso tra lo Svincolo della S.S. 514 "di Chiaramonte" con la S.S. 115 e lo Svincolo della S.S. 194 "Ragusana"

LOTTO 1 - Dallo svincolo n. 1 sulla S.S. 115 (compreso) allo svincolo n. 3 sulla S.P. 5 (escluso)

PROGETTO ESECUTIVO

COD. PA895

PROGETTAZIONE: ATI SINTAGMA - GP INGEGNERIA - COOPROGETTI -GDG - ICARIA - OMNISERVICE

VIADOTTI VIADOTTO VALLONE DELLE COSTE - CARR. DX Relazione di calcolo delle sottostrutture

CODICE PROGE	TTO LIV. PROG. N. PROG.	NOME FILE	W01STRRE02B			REVISIONE	SCALA:
LO40		CODICE ELAB.	T01VI01S	0 2	В	-	
D							
С							
В	Revisione a seguito di Rapporto	di Verifica		Novembre 2021	A. Signorelli	A. Signorelli	N. Granieri
Α	EMISSIONE			GIUGNO 2021 A. Signorelli		A. Signorelli	N. Granieri
REV.	DESCRIZIONE			REDATTO	VERIFICATO	APPROVATO	

Collegamento viario compreso tra lo Svincolo della S.S. 514 di "Chiaromonte" con la S.S. 115 e lo Svincolo della "Ragusana"

PROGETTO ESECUTIVO

RELAZIONE DI CALCOLO

Sommario

1	PREMESSA	3
2	DESCRIZIONE DELL'OPERA	4
3	NORMATIVE DI RIFERIMENTO	11
4	MATERIALI	13
4	4.1 CALCESTRUZZO	13
4	4.2 ACCIAIO PER ARMATURE ORDINARIE	13
5	CRITERI DI CALCOLO E DI VERIFICA	14
6	ANALISI DEI CARICHI	18
6	6.1 AZIONI DALL'IMPALCATO	18
	6.1.1 Peso proprio della struttura (g1)	18
	6.1.2 Carichi permanenti portati (g2)	18
	6.1.3 Variazione termica su impalcato (E3)	18
	6.1.4 Cedimenti vincolari (E4)	19
	6.1.5 Azioni sui parapetti e urto del veicolo in svio (Q8)	19
6	6.2 AZIONI VARIABILI DA TRAFFICO (Q1)	19
	6.2.1 Azione longitudinale di frenamento o di accelerazione (Q3)	20
	6.2.2 Azione centrifuga (Q4)	20
6	6.3 AZIONE DEL VENTO (Q5)	20
6	5.4 AZIONE SISMICA (Q6)	22
6	5.5 COMBINAZIONI DI CARICO	27
7	SOFTWARE DI CALCOLO E MODELLAZIONE	30
7	7.1 METODOLOGIA DI ANALISI	32
	7.1.1 Modellazione	32
	7.1.2 Elementi strutturali	32
	7.1.3 Vincoli esterni	32
	7.1.4 Dispositivi di appoggio	32
8	RISULTATI ANALISI DINAMICA	33
9	VERIFICA DELLE PILE	36

Realizzazione Lavori

Collegamento viario compreso tra lo Svincolo della S.S. 514 di "Chiaromonte" con la S.S. 115 e lo Svincolo della "Ragusana"

PROGETTO ESECUTIVO

RELAZIONE DI CALCOLO

9.1	VERIFICA SEZIONE SPICCATO PILA 1	38
	9.1.1 Verifica allo SLU sezione di spiccato	. 38
	9.1.2 Verifica allo SLE sezione di spiccato	. 39
9.2	VERIFICA SEZIONE SPICCATO PILA 2	41
	9.2.1 Verifica allo SLU sezione di spiccato	. 41
	9.2.2 Verifica allo SLE sezione di spiccato	. 42
9.3	VERIFICA SEZIONE SPICCATO PILA 3	44
	9.3.1 Verifica allo SLU sezione di spiccato	. 44
	9.3.2 Verifica allo SLE sezione di spiccato	. 45
9.4	VERIFICA SEZIONE SPICCATO PILA 4	47
	9.4.1 Verifica allo SLU sezione di spiccato	. 47
	9.4.2 Verifica allo SLE sezione di spiccato	. 48
10 v	VERIFICA DEI BAGGIOLI	.51
11	APPOGGI E GIUNTI	.54
11.3	1 ISOLATORI ELASTOMERICI	54
	11.1.1Azioni sugli isolatori	. 54
	11.1.2 Verifica dei massimi spostamenti allo slc	. 58
11.2	2 EFFETTI DELLA VARIABILITÀ DELLA RIGIDEZZA DEGLI ISOLATORI	
11.3	3 VARIABILITÀ SPAZIALE DEL MOTO SISMICO	59
11 4	4 GILINTI DI DII ATAZIONE	61

Collegamento viario compreso tra lo Svincolo della S.S. 514 di "Chiaromonte" con la S.S. 115 e lo Svincolo della "Ragusana"

PROGETTO ESECUTIVO

RELAZIONE DI CALCOLO

1 PREMESSA

La presente relazione illustra l'analisi e le verifiche strutturali effettuate per la progettazione e verifica delle pile del viadotto "Vallone delle Coste" carreggiata direzione Catania (carreggiata destra), previsto nell'ambito dei lavori di collegamento autostradale Ragusa-Catania: ammodernamento a n° 4 corsie della S.S. 514 "Di Chiaramonte" e della S.S. 194 Ragusana dallo svincolo con la S.S. 115 allo svincolo con la S.S. 114.

L'opera consiste in un viadotto a 5 campate realizzato con impalcato metallico a due travi, isolato sismicamente rispetto alle sottostrutture mediante dispositivi elastomerici. La lunghezza complessiva dell'opera è di circa 290m con luci massime di circa 60m e con pile che raggiungono una altezza massima di 20 m

Direzione Progettazione e Realizzazione Lavori

Collegamento viario compreso tra lo Svincolo della S.S. 514 di "Chiaromonte" con la S.S. 115 e lo Svincolo della "Ragusana"

PROGETTO ESECUTIVO

RELAZIONE DI CALCOLO

DESCRIZIONE DELL'OPERA

L'opera in progetto consiste in un viadotto a cinque campate con impalcato misto acciaio-calcestruzzo con schema statico di trave continua avente luci a 47.67+63.58+63.47+63.77+49.52 m per la carreggiata direzione Ragusa (carreggiata sinistra) e pari a 48.55+64.82+64.72+64.71+50.20 m per la carreggiata direzione Catania (carreggiata destra)

La sezione trasversale dell'impalcato destro (carreggiata direzione Catania) prevede due travi metalliche, oltre alla trave di spina centrale, disposte ad interasse trasversale pari a 10.00 m, con traversi posti a passo longitudinale variabile (tipico 9 m). La trave interno-curva ha una sezione a doppio T di altezza pari a 3300 mm mentre la trave esterno-curva ha un'altezza di 3550 mm. I traversi di testata ed intermedi sono realizzati con travi a doppio T composte mediante saldatura di altezza rispettivamente pari a 1800 mm e 1200 mm.

La sezione trasversale dell'impalcato sinistro (carreggiata direzione Ragusa) prevede due travi metalliche, oltre trave di spina centrale che si protrae dalla pila P3 fino alla spalla SP2, disposte ad interasse trasversale variabile con valore massimo pari a 8.065 m per la carreggiata sinistra e traversi posti a passo longitudinale variabile (tipico di 9000 mm). La trave interno-curva ha una sezione a doppio T di altezza pari a 3300 mm mentre la trave esterno-curva ha un'altezza pari a 3450 mm. I traversi di testata ed intermedi sono realizzati con travi a doppio T composte mediante saldatura di altezza rispettivamente pari a 1800 mm e 1200 mm.

Lo sviluppo longitudinale delle travi, per entrambi gli impalcati, comprende diversi conci la cui anima è provvista di irrigidimenti longitudinali e trasversali ad interasse variabile.

L'opera in oggetto è progettata per una vita nominale VN pari a 50 anni.

Ai fini del calcolo delle azioni sismiche è stata considerata una classe d'uso IV ("Ponti e reti ferroviarie di importanza critica per il mantenimento delle vie di comunicazione, particolarmente dopo un evento sismico") ai sensi del D.M. 14 gennaio 2008, da cui scaturisce un coefficiente d'uso CU = 2.

Pertanto le azioni sismiche sull'opera vengono valutate in relazione ad un periodo di riferimento VR = VN x CU = 50 x 2 = 100 anni.

Collegamento viario compreso tra lo Svincolo della S.S. 514 di "Chiaromonte" con la S.S. 115 e lo Svincolo della "Ragusana"

PROGETTO ESECUTIVO

RELAZIONE DI CALCOLO

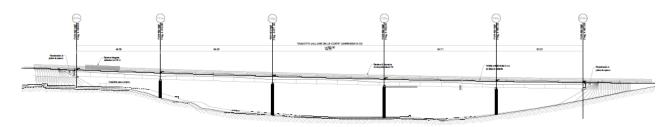


Figura 1 Prospetto carreggiata destra RG-CT

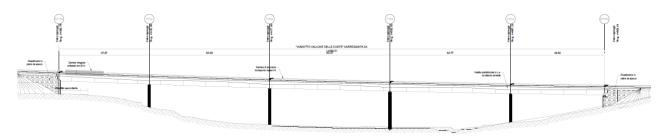


Figura 2 Prospetto carreggiata sinistra CT-RG

La soletta di impalcato, solidarizzata alle travi, è gettata in opera e presenta spessore complessivo di 300 mm, al lordo delle lastre tipo predalles di spessore 60 mm. La solidarizzazione della soletta alle travi metalliche è affidata a idonei connettori a taglio di tipo a piolo Nelson aventi diametro Ø19.

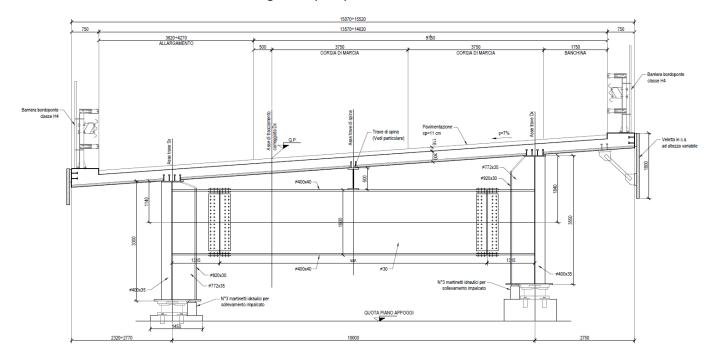


Figura 3 sezione impalcato

Collegamento viario compreso tra lo Svincolo della S.S. 514 di "Chiaromonte" con la S.S. 115 e lo Svincolo della "Ragusana"

PROGETTO ESECUTIVO

RELAZIONE DI CALCOLO

Le pile sono di tipo tradizionale in c.a. e sono costituite da fusti a sezione piena di massimo ingombro variabile da 9.30 m x 1,75 m a 12,00 m x 1,75 m. La sezione si mantiene con dimensioni costanti per tutta l'estensione del fusto. Le fondazioni delle pile sono suddivise in due tipologie: di tipo diretto su pila singola (tipo 1) e unica su doppia pila (tipo 2).

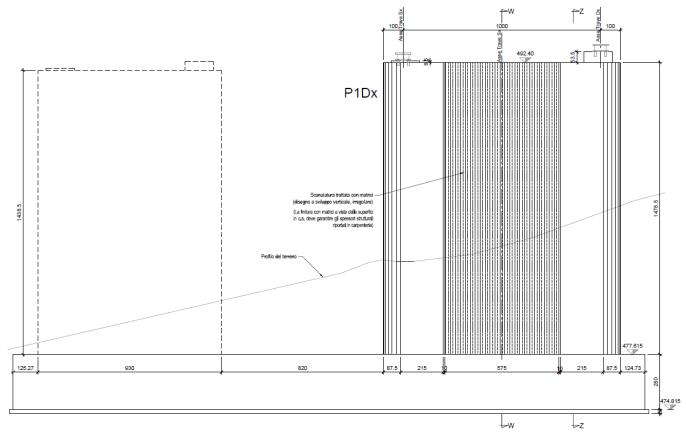


Figura 4 Prospetto pila 1

Collegamento viario compreso tra lo Svincolo della S.S. 514 di "Chiaromonte" con la S.S. 115 e lo Svincolo della "Ragusana"

PROGETTO ESECUTIVO

RELAZIONE DI CALCOLO

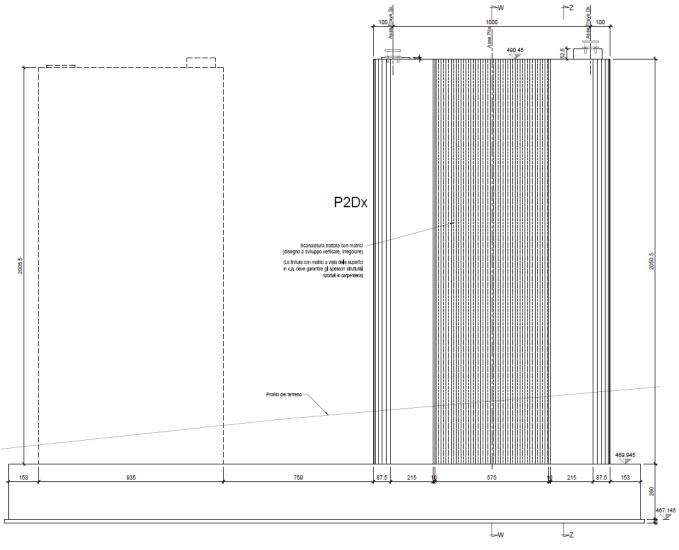


Figura 5 Prospetto pila 2

Collegamento viario compreso tra lo Svincolo della S.S. 514 di "Chiaromonte" con la S.S. 115 e lo Svincolo della "Ragusana"

PROGETTO ESECUTIVO

RELAZIONE DI CALCOLO

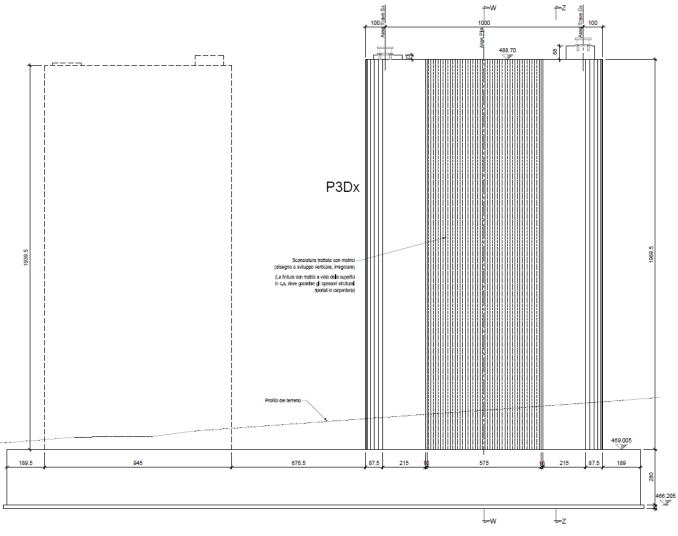


Figura 6 Prospetto pila 3

Collegamento viario compreso tra lo Svincolo della S.S. 514 di "Chiaromonte" con la S.S. 115 e lo Svincolo della "Ragusana"

PROGETTO ESECUTIVO

RELAZIONE DI CALCOLO

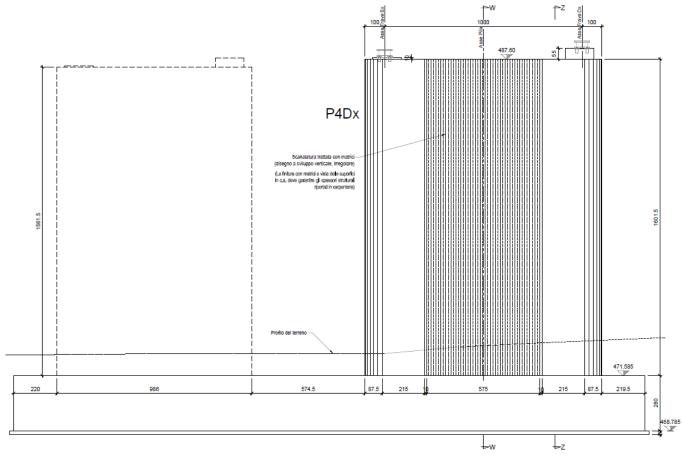


Figura 7 Prospetto pila 4

L'impalcato poggia su isolatori sismici di tipo elastomerico. Lo schema di vincolamento è quello di seguito riportato:

Collegamento viario compreso tra lo Svincolo della S.S. 514 di "Chiaromonte" con la S.S. 115 e lo Svincolo della "Ragusana"

PROGETTO ESECUTIVO

RELAZIONE DI CALCOLO

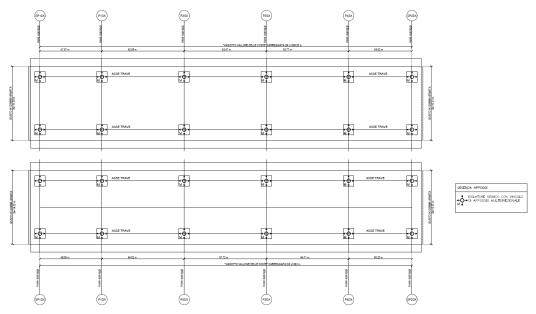


Figura 8 Schema di vincolamento

Il montaggio delle travi metalliche è previsto mediante sollevamento dal basso con autogru dopo la realizzazione delle sottostrutture (pile, spalle, baggioli e apparecchi di appoggio). I conci che costituiscono ciascuna campata sono assemblati nelle aree di cantiere opportunamente individuate, sono sollevati fino alla quota prevista e quindi collegati con quelli della campata precedente, procedendo dalle spalle lato Ragusa verso le spalle lato Catania. Una volta montata la carpenteria metallica, sono disposte le predalle autoportanti e le velette laterali prefabbricate, si provvede alla posa dell'armatura longitudinale e trasversale e quindi al getto della soletta.

Per maggiori dettagli si rimanda agli elaborati grafici specifici (Metodi e fasi costruttive impalcato).

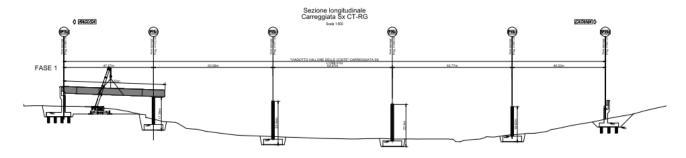


Figura 9 Schema di vincolamento

Collegamento viario compreso tra lo Svincolo della S.S. 514 di "Chiaromonte" con la S.S. 115 e lo Svincolo della "Ragusana"

PROGETTO ESECUTIVO

RELAZIONE DI CALCOLO

NORMATIVE DI RIFERIMENTO

Il progetto è sviluppato nell'osservanza della vigente normativa cogente e tecnica. In particolare, si fa riferimento a:

- D. Min. Infrastrutture 14 gennaio 2008 "Nuove norme tecniche per le costruzioni";
- Circolare 2 febbraio 2009 n.617: Istruzioni per l'applicazione delle "Nuove norme tecniche per le costruzioni" di cui al D. Min. 14 gennaio 2008;
- UNI EN 1992-1-1:2015: "Eurocodice 2 Progettazione delle strutture di calcestruzzo Parte 1-1: Regole generali e regole per gli edifici";
- UNI EN 1992-2:2006: "Progettazione delle strutture di calcestruzzo Parte 2: Ponti di calcestruzzo -Progettazione e dettagli costruttivi"
- UNI EN 1998-2:2011: "Eurocodice 8 Progettazione delle strutture per la resistenza sismica Parte 2: Ponti";
- UNI EN 1993-2:2007: "Eurocodice 3: Progettazione delle strutture di acciaio Parte 2: Ponti di acciaio»;
- UNI EN 1993-1-5:2019: "Eurocodice 3: Progettazione delle strutture di acciaio Parte 1-5: Elementi strutturali a lastra";
- UNI EN 1994-2:2006: "Eurocodice 4: Progettazione delle strutture composte acciaio-calcestruzzo Parte 2: Regole generali e regole per i ponti";
- UNI EN 206:2016 Calcestruzzo Parte1: Specificazione, prestazione, produzione e conformità.
- UNI 11104:2016 Specificazione, prestazione, produzione e conformità Istruzioni complementari per l'applicazione della UNI EN 206
- UNI 9156:2015 Cementi resistenti ai solfati Classificazione e composizione
- UNI EN ISO 4063:2011 Saldatura e tecniche affini Nomenclatura e codificazione numerica dei processi
- UNI EN 1011-1:2009: Saldatura Raccomandazioni per la saldatura di materiali metallici Parte 1: Guida generale per la saldatura ad arco

Collegamento viario compreso tra lo Svincolo della S.S. 514 di "Chiaromonte" con la S.S. 115 e lo Svincolo della "Ragusana"

PROGETTO ESECUTIVO

RELAZIONE DI CALCOLO

- UNI EN ISO 17635:2010 Controllo non distruttivo delle saldature Regole generali per i materiali metallici
- UNI EN ISO 9692-1:2005 "Saldatura e procedimenti connessi Raccomandazioni per la preparazione dei giunti - Parte 1: Saldatura manuale ad arco con elettrodi rivestiti, saldatura ad arco con elettrodo fusibile sotto protezione di gas, saldatura a gas, saldatura TIG e saldatura mediante fascio degli acciai"

Il metodo di calcolo adottato è quello semiprobabilistico agli stati limite, con applicazione di coefficienti parziali per le azioni o per l'effetto delle azioni, variabili in ragione dello stato limite indagato.

Collegamento viario compreso tra lo Svincolo della S.S. 514 di "Chiaromonte" con la S.S. 115 e lo Svincolo della "Ragusana"

PROGETTO ESECUTIVO

RELAZIONE DI CALCOLO

4 MATERIALI

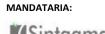
Per la realizzazione delle pile dell'opera in oggetto sono previsti i seguenti materiali:

4.1 CALCESTRUZZO

Caratteristiche del calcestruzzo per magrone

Classe di resistenza minima	C_{min}	C12/15

Caratteristiche del calcestruzzo per elevazioni pile


Conforme alle norme UNI EN 206-1/UNI 1110	04	Classe di esposizione XC3
Classe di resistenza minima	C_{min}	C28/35
Classe di consistenza	S	S4
Dimensione massima aggregati	D _{max}	30
Classe di contenuto in cloruri	CI	0.20

La dimensione minima del copriferro per le pile è pari a 5 cm.

Per garantire la durabilità delle strutture in calcestruzzo e per la definizione della classe di resistenza di queste ultime in funzione delle condizioni ambientali, si farà riferimento alle indicazioni contenute nelle norme UNI EN 206-1 ed UNI 11104.

4.2 ACCIAIO PER ARMATURE ORDINARIE

Acciaio per armatura ordinaria		
Acciaio in barre ad aderenza migliorata tipo B450C controllato in stab	ilimento	
Tensione caratteristica di snervamento	f _{yk}	≥ 450 N/mm ²
Tensione caratteristica di rottura	f _{tk}	≥ 540 N/mm ²

Collegamento viario compreso tra lo Svincolo della S.S. 514 di "Chiaromonte" con la S.S. 115 e lo Svincolo della "Ragusana"

PROGETTO ESECUTIVO

RELAZIONE DI CALCOLO

CRITERI DI CALCOLO E DI VERIFICA

CRITERI DI VERIFICA STRUTTURALE

Il presente paragrafo illustra nel dettaglio i criteri generali di verifica adottati per le verifiche strutturali condotte nel progetto. Ulteriori dettagli di carattere specifico, laddove impiegati, sono dichiarati e motivati nelle relative risultanze delle verifiche.

Criteri di verifica delle sezioni in c.a.

Per le sezioni in cemento armato si effettuano:

- verifiche per gli stati limite ultimi a presso-flessione ed a taglio;
- verifiche per gli stati limite di esercizio per la limitazione delle tensioni;
- verifiche per gli stati limite di esercizio per la fessurazione.

Verifica agli stati limite ultimi per pressoflessione e taglio

Le verifiche a pressoflessione vengono condotte confrontando le resistenze ultime e le sollecitazioni massime agenti, valutando il corrispondente fattore di sicurezza (FS) come rapporto tra la sollecitazione resistente e la massima agente.

Le verifiche flessionali allo SLU sono eseguite adottando le seguenti ipotesi:

- Conservazione delle sezioni piane;
- Perfetta aderenza tra acciaio e calcestruzzo;
- Resistenza a trazione del calcestruzzo nulla;
- Rottura del calcestruzzo determinata dal raggiungimento della sua capacità deformativa ultima a compressione;
- Rottura dell'armatura tesa determinata dal raggiungimento della sua capacità deformativa ultima;

Le tensioni nel calcestruzzo e nell'armatura sono state dedotte a partire dalle deformazioni utilizzando i rispettivi diagrammi tensione-deformazione.

Per quanto attiene la legge σ - ε del calcestruzzo si è utilizzata una curva parabola-rettangolo, considerando solo la porzione compressa e con ε_{c2} =0,2% ed ε_{cu} =0,35%.

Per quanto riguarda l'acciaio si è assunto un diagramma bilineare elastico-perfettamente plastico.

Collegamento viario compreso tra lo Svincolo della S.S. 514 di "Chiaromonte" con la S.S. 115 e lo Svincolo della "Ragusana"

PROGETTO ESECUTIVO

RELAZIONE DI CALCOLO

La verifica allo stato limite ultimo per azioni di taglio è condotta secondo quanto prescritto dalla norma UNI EN 1992-1-1:2005, per elementi con armatura a taglio verticali.

Si fa, pertanto, riferimento ai seguenti valori della resistenza di calcolo:

- $V_{Rd,c} = max\{C_{Rd,c} \cdot k \cdot (100 \cdot \rho_1 \cdot f_{ck})^{1/3} + k_1 \cdot \sigma_{cp}\} \cdot b_w \cdot d; (v_{min} + k_1 \cdot \sigma_{cp}) \cdot b_w \cdot d\}$, resistenza di calcolo dell'elemento privo di armatura a taglio
- $V_{Rd,s} = \frac{A_{sw}}{s} \cdot z \cdot f_{wd} \cdot \cot \vartheta$, valore di progetto dello sforzo di taglio che può essere sopportato dall'armatura a taglio alla tensione di snervamento
- $V_{Rd,max} = \frac{\alpha_{cw} \cdot b_w \cdot z \cdot v_1 \cdot f_{cd}}{\cot \theta + \tan \theta}$, valore di progetto del massimo sforzo di taglio che può essere sopportato dall'elemento, limitato dalla rottura delle bielle compresse.

Nelle espressioni precedenti, i simboli hanno i seguenti significati:

•
$$k = 1 + \sqrt{\frac{200}{d}} \le 2.0$$
 con d in mm

$$\bullet \qquad \rho_{l} = \frac{A_{sl}}{b_{w} \cdot d} \leq 0.02$$

- A_{sl} è l'area dell'armatura tesa
- b, è la larghezza minima della sezione in zona tesa

$$\bullet \qquad \sigma_{cp} \, = \frac{N_{\text{Ed}}}{A_c} < 0.2 \cdot f_{\text{cd}}$$

- N_{Ed} è la forza assiale nella sezione dovuta ai carichi
- A_c è l'area della sezione di calcestruzzo

$$C_{Rd,c} = \frac{0.18}{\gamma_c}$$

•
$$k_1 = 0.15$$

•
$$v_{min} = 0.035 \cdot k^{3/2} \cdot f_{ck}^{1/2}$$

Collegamento viario compreso tra lo Svincolo della S.S. 514 di "Chiaromonte" con la S.S. 115 e lo Svincolo della "Ragusana"

PROGETTO ESECUTIVO

RELAZIONE DI CALCOLO

- v = 0.5 per calcestruzzi fino a C70/85
- $1 \le \cot 9 \le 2,5$
- A_{sw} è l'area della sezione trasversale dell'armatura a taglio
- s è il passo delle staffe
- f, de la tensione di snervamento di progetto dell'armatura a taglio
- $v_1 = v$ è il coefficiente di riduzione della resistenza del calcestruzzo fessurato per taglio
- $\alpha_{\scriptscriptstyle \mathrm{CW}}$ è un coefficiente che tiene conto dell'interazione tra la tensione nel corrente compresso e qualsiasi tensione di compressione assiale.

Verifica agli stati limite di esercizio

Si effettuano le seguenti verifiche agli stati limite di esercizio:

- stato limite delle tensioni in esercizio;
- stato limite di fessurazione.

Nel primo caso, si esegue il controllo delle tensioni nei materiali supponendo una legge costitutiva tensioni-deformazioni di tipo lineare, nel secondo caso si adotta uno stato limite di fessurazione adeguato alle condizioni ambientali, alle sollecitazioni ed alla sensibilità delle armature alla corrosione.

I limiti tensionali e la scelta dello stato limite di fessurazione sono riportate di volta in volta nei paragrafi successivi in relazione all'elemento strutturale verificato.

Criteri di verifica delle pile

Di seguito si riportano i criteri di verifica a pressoflessione e taglio delle pile, compatibilmente con la strategia di protezione sismica adottata.

Verifica a pressoflessione nella sezione di base

Nelle sezioni in cui è prevista la formazione di cerniere plastiche, rappresentate dalla sola sezione alla base della pila, occorre verificare che:

 $M_{\text{Ed}} \leq M_{\text{Rd}}$

nella quale:

Collegamento viario compreso tra lo Svincolo della S.S. 514 di "Chiaromonte" con la S.S. 115 e lo Svincolo della "Ragusana"

PROGETTO ESECUTIVO

RELAZIONE DI CALCOLO

M_{Ed} è il momento flettente derivante dall'analisi;

 M_{Rd} è il momento resistente della sezione.

Verifica a taglio

Le sollecitazioni taglianti, tanto per la sezione di base, quanto per le altre sezioni, si ottengono con il criterio della GR al fine di escludere possibili meccanismi di rottura fragile. Il criterio conduce al seguente valore di taglio di calcolo:

$$V_{gr,i} = V_{Ed,i} \cdot \gamma_{Rd} \cdot \frac{M_{Rd.base}}{M_{Ed.base}}$$

nella quale:

V_{gr,i} è il taglio sollecitante nella sezione "i" calcolato sulla base della gerarchia delle resistenze;

V_{Ed,i} è il taglio sollecitante nella sezione "i" derivante dall'analisi con spettro di progetto.

I valori di resistenza degli elementi in calcestruzzo armato devono, inoltre, essere divisi per un fattore di sicurezza aggiuntivo nei confronti della rottura fragile calcolato sulla base del taglio di calcolo V_{Ed,i} e del taglio di progetto per la gerarchia della resistenza V_{gr.i}

$$1 \le \gamma_{Rd} = 1,25 + 1 - q \cdot \frac{V_{Ed,i}}{V_{gr,i}} \le 1,25$$

Nelle zone critiche, l'angolo di inclinazione delle bielle di calcestruzzo compresso è assunto pari a 45°. Le dimensioni della sezione sono riferite al nucleo confinato di calcestruzzo.

Il taglio V_{gr,i} non può comunque superare il taglio derivante dall'analisi con spettro elastico.

Collegamento viario compreso tra lo Svincolo della S.S. 514 di "Chiaromonte" con la S.S. 115 e lo Svincolo della "Ragusana"

PROGETTO ESECUTIVO

RELAZIONE DI CALCOLO

ANALISI DEI CARICHI

6.1 AZIONI DALL'IMPALCATO

6.1.1 Peso proprio della struttura (g1)

Sono considerati i seguenti pesi specifici dei materiali:

 $\gamma_c = 25 \, \text{kN/m}^3$ calcestruzzo armato:

 $\gamma_a=78.5\,kNm^3$ acciaio per carpenterie metalliche:

6.1.2 Carichi permanenti portati (g2)

Binder e strato di usura:

 $\gamma = 24 \text{ kN/m}^3$ peso dell'unità di volume:

S = 0,10mspessore:

Cordoli:

 $\gamma = 25 \,\text{kN/m}^3$ peso dell'unità di volume:

larghezza: $L = 0,75 \, m$

spessore: $s = 0,16 \, m$

Guardrail, parapetti ed elementi di bordo:

2 + 2 = 4 kNmpeso delle barriere integrate:

peso medio della veletta prefabbricata: 1.75 kN/m

6.1.3 Variazione termica su impalcato (E3)

Gli effetti delle differenze di temperatura tra la soletta di impalcato e la struttura metallica sottostante sono analizzati prevedendo una variazione termica uniforme pari a $\Delta T = +15/-18^{\circ}C$ applicata alla soletta secondo quanto previsto al prospetto 6.1 (approccio1) della EN 1991-1-5.

Per la valutazione dei giunti e delle slitte si considera una variazione termica uniforme su tutto l'impalcato, rispetto alla temperatura media annuale, pari a $\Delta T = +/-20^{\circ}$, tuttavia c'è da considerare che tali azioni non sono largamente inferiori agli spostamenti di impalcato in fase sismica. Pertanto, dimensionando i giunti in base agli spostamenti indotti dal sisma, sono implicitamente verificati anche quelli indotti dalle variazioni termiche.

Collegamento viario compreso tra lo Svincolo della S.S. 514 di "Chiaromonte" con la S.S. 115 e lo Svincolo della "Ragusana"

PROGETTO ESECUTIVO

RELAZIONE DI CALCOLO

Cedimenti vincolari (E4) 6.1.4

Per la verifica dell'impalcato si considera l'effetto prodotto dal cedimento isolato di 1 cm di ogni singolo

appoggio della trave continua (pile e spalle).

Azioni sui parapetti e urto del veicolo in svio (Q8) 6.1.5

Le azioni derivanti dall'urto di un veicolo in svio vengono valutate in maniera differente a seconda che si

tratti una verifica generale (es. pile) o una verifica locale (solette e cordoli).

Azioni di veicoli in svio: azioni generali

Le azioni di svio da considerare sono quelle relative ad una barriera di classe H4, cioè una barriera che

ammette un Livello di Contenimento LC ≥ 572 kJ. La forza orizzontale di collisione trasferita all'impalcato

dipende dalla rigidezza del collegamento fra la barriera di sicurezza e il cordolo in c.a. a cui la stessa è

connessa. Assumendo che tale connessione sia rigida (classe D ai sensi della tabella 4.9 delle EN 1991-2)

l'azione di svio impiegata è pari a 600 kN.

Tale forza orizzontale agisce trasversalmente ed è applicata 100 mm sotto la sommità della barriera o 1,0

m sopra il piano viario (il più piccolo fra i due) ed è distribuita su una linea di 0,50 m.

Concordemente a quanto indicato nel D. Min. 14/01/2008, si considera la presenza di un carico stradale

costituito dal secondo schema di carico, posizionato in adiacenza al guardrail in cui si verifica l'urto.

6.2 **AZIONI VARIABILI DA TRAFFICO (Q1)**

Le azioni da traffico, comprensive degli effetti dinamici, sono definite dagli schemi di carico di seguito

elencati (D. Min. 14/01/2008).

SCHEMA 1: utilizzato sia per le verifiche globali che per quelle locali. Esso è costituito da carichi

concentrati su due assi tandem (applicati su impronte di pneumatico di forma quadrata e lato 0,40 m) e da

carichi uniformemente distribuiti secondo le seguenti colonne di carico:

1° colonna: Q_{1k}: 2 assi da 300 kN disposti a distanza di 1,20 m

 q_{1k} : carico uniforme ripartito \rightarrow 9,00 kN/m²

2° colonna: Q_{2k}: 2 assi da 200 kN disposti a distanza di 1,20 m

 q_{2k} : carico uniforme ripartito \rightarrow 2,50 kN/m²

Collegamento viario compreso tra lo Svincolo della S.S. 514 di "Chiaromonte" con la S.S. 115 e lo

Svincolo della "Ragusana" **PROGETTO ESECUTIVO**

RELAZIONE DI CALCOLO

3° colonna: Q_{3k}: 2 assi da 100 kN disposti a distanza di 1,20 m

 q_{3k} : carico uniforme ripartito \rightarrow 2,50 kN/m²

 q_{ik} : carico uniforme ripartito \rightarrow 2,50 kN/m² altre colonne:

In senso trasversale i carichi Qik e qik sono distribuiti su corsie convenzionali di larghezza pari a 3,00 m in modo tale da ottenere la distribuzione trasversale più gravosa.

SCHEMA 2: utilizzato per le sole verifiche locali. Esso è costituito da un singolo asse applicato su specifiche impronte di pneumatico di forma rettangolare (di larghezza 0,60 m e lunghezza 0,35 m) e con asse longitudinale posto nella posizione più gravosa.

La disposizione delle corsie nella carreggiata è scelta in modo da ottenere la situazione più gravosa. I modelli di calcolo sono poi applicati longitudinalmente come suggerito dalle linee di influenza in modo da ottenere l'effetto più sfavorevole nelle sezioni di verifica considerate.

6.2.1 Azione longitudinale di frenamento o di accelerazione (Q3)

La forza di frenamento o accelerazione è funzione del carico verticale totale agente sulla corsia convenzionale n.1 e per i ponti di 1a categoria è uguale a:

$$180\,kN \leq Q_3 \, = 0.6 \cdot \left(2 \cdot Q_{1k} \, \right) + 0.10 \cdot q_{1k} \, \cdot w_1 \cdot L \leq 900\,kN$$

$$Q_3 = 0.6 \cdot (2 \cdot 300) + 0.10 \cdot 9 \cdot 3 \cdot 226 = 970.20 \text{ kN} \rightarrow 900.00 \text{ kN}$$

6.2.2 Azione centrifuga (Q4)

Di seguito si valuta l'azione centrifuga cui il viadotto è sottoposto a causa del traffico veicolare in curva. L' azione risultante verrà valutata secondo quanto stabilito dalle N.T.C. 2008 al punto 5.1.3.6.

Raggio R=604,25 m

$$Q_4 = 40 * Q_v/R = 40 * 2 * (300 + 200 + 100)/604,25 = 79,44 \text{ kN}$$

Il carico verrà applicato a livello della pavimentazione ed agente in direzione normale all'asse del ponte.

AZIONE DEL VENTO (Q5) 6.3

L'azione del vento è valutata, in termini di pressione, attraverso la seguente espressione (fornita dal D. Min. 14/01/2008): p=qb·ce· cp· cd.

In funzione della regione su cui sorge l'opera (Sicilia) si assume che la zona geografica di riferimento sia la "4" e si calcola:

 $v_{b,0} = 28$ m/s, parametro legato alla regione in cui sorge l'opera

Realizzazione Lavori

Collegamento viario compreso tra lo Svincolo della S.S. 514 di "Chiaromonte" con la S.S. 115 e lo Svincolo della "Ragusana"

PROGETTO ESECUTIVO

RELAZIONE DI CALCOLO

 $a_0 = 500$ m, parametro legato alla regione in cui sorge l'opera

 $k_a = 0,020$ 1/s, parametro legato alla regione in cui sorge l'opera

da cui deriva, assumendo che l'altitudine sul livello del mare (in m) del sito ove sorge l'opera sia $a_s \le a_0 e$ che il valore convenzionale di densità dell'aria sia $\rho = 1,25 \text{ kg/m}^3$:

 $v_{\rm b}=v_{\rm b,0}=28$ m/s, valore caratteristico della velocità del vento

$$q_b = \frac{1}{2} \cdot \rho \cdot v_b^2 = \frac{1}{2} \cdot (1,25 \text{ kg/m}^3) \cdot (28 \text{ m/s})^2 = 0,49 \text{ kN/m}^2, \text{ pressione cinetica di riferimento}.$$

In relazione alla posizione geografica e topografica dell'opera, si adotta la classe di rugosità D ("Aree prive di ostacoli"). Da ciò discende un'esposizione del sito al vento di II categoria per cui:

 $k_r = 0.19$, parametro per la definizione del coefficiente di esposizione

 $\mathrm{z}_{\mathrm{0}} = \mathrm{0.05}\,\mathrm{m}$, parametro per la definizione del coefficiente di esposizione

 $z_{min} = 4$ m, parametro per la definizione del coefficiente di esposizione

da cui, assumendo come coefficiente di topografia $c_{\rm t}=1$ ed una distanza dell'impalcato dal suolo pari alla pila di altezza maggiore z=22,92 m, deriva un coefficiente di esposizione $c_{\rm e}=2,9$

Si assume un coefficiente di pressione $c_{\rm p}=1$ ed un coefficiente dinamico $c_{\rm d}=1$,4

Pertanto l'azione del vento è valutabile come un carico orizzontale uniforme di $p=1,99 \ kN/m^2$ diretto ortogonalmente all'asse longitudinale del ponte, agente sulla proiezione, nel piano verticale, delle superfici direttamente investite dal vento. La superficie dei carichi transitanti sul ponte esposta al vento è assimilata ad una parete rettangolare continua di altezza costante pari a 3,00 m, dalla pavimentazione stradale.

			VALLO	NE DELLE COST	Έ	
	LUNGHEZZA	DILA	Altezza Pila	Coeff. Esposi	Coeff. Aerod	Pressione vento
	[m]	PILA	[m]	[-]	[-]	[kN/m2]
		1	15.17	2.62	1.40	1.80
DX	293	2	22.88	2.90	1.40	1.99
DX	293	3	22.24	2.88	1.40	1.98
		4	18.42	2.75	1.40	1.89
		1	17.21	2.71	1.40	1.86
SX	293	2	22.92	2.9	1.40	1.99
οX	293	3	22.27	2.88	1.40	1.98
		4	19.44	2.79	1.40	1.91

L'azione eolica in direzione verticale non è stata messa in conto poiché di un ordine di grandezza inferiore rispetto al peso proprio (Eurocodice EN1991-1-4:2005 cap 8.3.3).

Direzione Progettazione e Realizzazione Lavori

Collegamento viario compreso tra lo Svincolo della S.S. 514 di "Chiaromonte" con la S.S. 115 e lo Svincolo della "Ragusana"

PROGETTO ESECUTIVO

RELAZIONE DI CALCOLO

6.4 **AZIONE SISMICA (Q6)**

L'opera in oggetto è progettata per una vita nominale VN pari a 50 anni e considerando una classe d'uso IV ("Ponti e reti ferroviarie di importanza critica per il mantenimento delle vie di comunicazione, particolarmente dopo un evento sismico") ai sensi del D.M. 14 gennaio 2008, da cui scaturisce un coefficiente d'uso CU = 2.

L'azione sismica di progetto è definita per lo Stato Limite di Salvaguardia della Vita (SLV). Il periodo di ritorno di quest'ultima - in funzione della vita utile, della classe d'uso, del tipo di costruzione e dello stato limite di riferimento (prima definiti) - è di 949 anni.

Essa, conformemente a quanto prescritto dalle Nuove Norme Tecniche, è valutata a partire dalla pericolosità sismica di base del sito su cui l'opera insiste. Tale pericolosità sismica è descritta, in termini geografici e temporali:

- attraverso i valori di accelerazione orizzontale di picco ag (attesa in condizioni di campo libero su sito di riferimento rigido con superficie topografica orizzontale) e le espressioni che definiscono le ordinate del relativo spettro di risposta elastico in accelerazione S_e(T)
- in corrispondenza del punto del reticolo che individua la posizione geografica dell'opera
- con riferimento a prefissate probabilità di eccedenza PVR.

In particolare, la forma spettrale prevista dalla normativa è definita, su sito di riferimento rigido orizzontale, in funzione di tre parametri:

- a_g, accelerazione orizzontale massima del terreno
- F₀, valore massimo del fattore di amplificazione dello spettro in accelerazione orizzontale
- T_C*, periodo di inizio del tratto a velocità costante dello spettro in accelerazione orizzontale.

I suddetti parametri sono calcolati come media pesata dei valori assunti nei quattro vertici della maglia elementare del reticolo di riferimento che contiene il punto caratterizzante la posizione dell'opera (Latitudine 36,9686; Longitudine 14,6797), utilizzando come pesi gli inversi delle distanze tra il punto in questione ed i quattro vertici.

In particolare, si può notare come F₀ descriva la pericolosità sismica locale del sito su cui l'opera insiste. Infatti, da quest'ultimo, attraverso le espressioni fornite dalla normativa, sono valutati i valori d'amplificazione stratigrafica e topografica. Nella tabella seguente sono riassunti i valori dei parametri assunti per l'opera in oggetto.

Collegamento viario compreso tra lo Svincolo della S.S. 514 di "Chiaromonte" con la S.S. 115 e lo Svincolo della "Ragusana"

PROGETTO ESECUTIVO

RELAZIONE DI CALCOLO

Latitudine:	36°.9686							
Longitudine:	14°.6797							
Stato limite	V _N	Cu	V_R	T _R	a _g	F ₀	F _V	T _c *
	[anni]		[anni]	[anni]	[9]			[s]
SLO	50	2	100	60	0.060	2.505	0.828	0.269
SLD	50	2	100	101	0.085	2.443	0.961	0.286
SLV	50	2	100	949	0.314	2.360	1.787	0.455
SLC	50	2	100	1950	0.453	2.344	2.129	0.516

Figura 10 Parametri per la definizione dell'azione sismica di progetto

In quest'ultima V_N è la vita nominale dell'opera; C_U è il coefficiente relativo alla classe d'uso; V_R è il periodo di riferimento per l'azione sismica; T_R è il periodo di ritorno associato alla probabilità di non superamento dello stato limite della salvaguardia della vita; ag è la massima accelerazione riferita a quella di gravità attesa sul sito su suolo di riferimento; Fo è il valore massimo del fattore di amplificazione dello spettro in accelerazione orizzontale; F_V è il valore massimo del fattore di amplificazione dello spettro in accelerazione verticale; T_C* è il periodo, espresso in secondi, corrispondente alla fine del tratto orizzontale dello spettro su suolo di riferimento.

Lo spettro di risposta elastico per la descrizione della componente orizzontale del moto sismico è costruito a partire dai parametri riassunti nella tabella seguente.

Categoria suolo = B													
Stato limite	Suolo	Ss	S _T	S	C _c	T _B	T _C	T _D					
SLO	В	1.20	1.00	1.20	1.431	0.128	0.384	1.840					
SLD	В	1.20	1.00	1.20	1.413	0.135	0.404	1.940					
SLV	В	1.10	1.00	1.10	1.288	0.195	0.586	2.858					
SLC B 1.0		1.00	1.00	1.00	1.255	0.216	0.648	3.410					

Figura 11 Parametri per la definizione dello spettro elastico orizzontale

In quest'ultima S_s ed S_T sono rispettivamente il fattori di amplificazione stratigrafica e topografica concorrenti alla determinazione del fattore di amplificazione S; Cc è il coefficiente che modifica il valore del periodo T_C*; T_B è il periodo, espresso in secondi, corrispondente all'inizio del tratto ad accelerazione costante dello spettro della componente orizzontale; T_C è il periodo, espresso in secondi, corrispondente

Collegamento viario compreso tra lo Svincolo della S.S. 514 di "Chiaromonte" con la S.S. 115 e lo Svincolo della "Ragusana"

PROGETTO ESECUTIVO

RELAZIONE DI CALCOLO

all'inizio del tratto a velocità costante dello spettro della componente orizzontale; T_D è il periodo, espresso in secondi, corrispondente all'inizio del tratto a spostamento costante dello spettro della componente orizzontale. Tale spettro è descritto dalle espressioni seguenti.

$$S_e(T) = a_g \cdot S \cdot \eta \cdot F_o \cdot \left[\frac{T}{T_B} + \frac{1}{\eta \cdot F_o} \cdot \left(1 - \frac{T}{T_B} \right) \right]$$
 se $0 \le T \le T_B$

$$S_e(T) = a_g \cdot S \cdot \eta \cdot F_o$$

se
$$T_B \le T \le T_C$$

$$S_{e}(T) = a_{g} \cdot S \cdot \eta \cdot F_{o} \cdot \frac{T_{C}}{T}$$

se
$$T_C \le T \le T_D$$

$$S_e(T) = a_g \cdot S \cdot \eta \cdot F_o \cdot \frac{T_C \cdot T_D}{T^2}$$

se
$$T_D \leq T$$

Con riferimento al caso specifico, si riporta in figura lo spettro elastico per componente orizzontale.

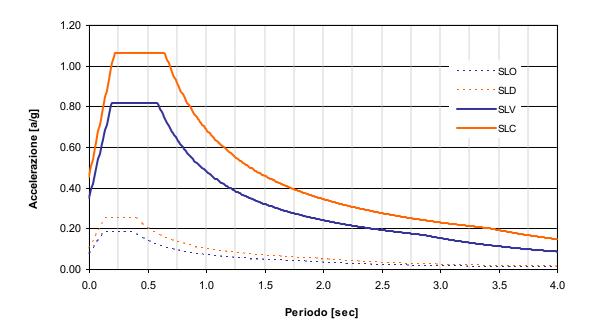


Figura 12 Spettro elastico per la componente orizzontale

Lo spettro di risposta elastico per la descrizione della componente verticale del moto sismico è costruito a partire dai parametri riassunti nella tabella seguente.

Collegamento viario compreso tra lo Svincolo della S.S. 514 di "Chiaromonte" con la S.S. 115 e lo Svincolo della "Ragusana"

PROGETTO ESECUTIVO

RELAZIONE DI CALCOLO

Stato limite	Suolo	S _S	S _T	S	C _c	T _B	T _c	T _D
SLO	В	1.00	1.00	1.00	1.431	0.050	0.150	1.000
SLD	В	1.00	1.00	1.00	1.413	0.050	0.150	1.000
SLV	В	1.00	1.00	1.00	1.288	0.050	0.150	1.000
SLC	В	1.00	1.00	1.00	1.255	0.050	0.150	1.000

Figura 13 Parametri per la definizione dello spettro elastico verticale

In quest'ultima S_S ed S_T sono rispettivamente il fattori di amplificazione stratigrafica e topografica concorrenti alla determinazione del fattore di amplificazione S; T_B è il periodo, espresso in secondi, corrispondente all'inizio del tratto ad accelerazione costante dello spettro della componente verticale; Tc è il periodo, espresso in secondi, corrispondente all'inizio del tratto a velocità costante dello spettro della componente verticale; T_D è il periodo, espresso in secondi, corrispondente all'inizio del tratto a spostamento costante dello spettro della componente verticale.

Tale spettro è descritto dalle espressioni seguenti.

$$S_{ve}\left(T\right) = a_g \cdot S \cdot \eta \cdot F_v \cdot \left[\frac{T}{T_B} + \frac{1}{\eta \cdot F_v} \cdot \left(1 - \frac{T}{T_B}\right)\right] \quad se \qquad \quad 0 \le T \le T_B$$

$$\boldsymbol{S}_{e}(T) = \boldsymbol{a}_{g} \cdot \boldsymbol{S} \cdot \boldsymbol{\eta} \cdot \boldsymbol{F}_{v} \hspace{1cm} \text{se} \hspace{1cm} \boldsymbol{T}_{B} \leq \boldsymbol{T} \leq \boldsymbol{T}_{C}$$

$$S_e(T) = a_g \cdot S \cdot \eta \cdot F_v \cdot \frac{T_C}{T}$$
 se $T_C \le T \le T_D$

$$S_e(T) = a_g \cdot S \cdot \eta \cdot F_v \cdot \frac{T_C \cdot T_D}{T^2}$$
 se $T_D \leq T$

Con riferimento al caso specifico, si riporta in figura lo spettro elastico per componente verticale.

Collegamento viario compreso tra lo Svincolo della S.S. 514 di "Chiaromonte" con la S.S. 115 e lo Svincolo della "Ragusana"

PROGETTO ESECUTIVO

RELAZIONE DI CALCOLO

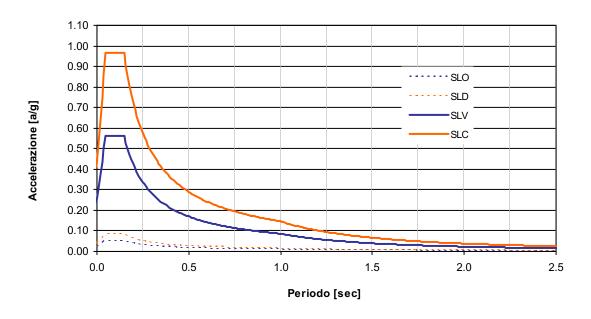
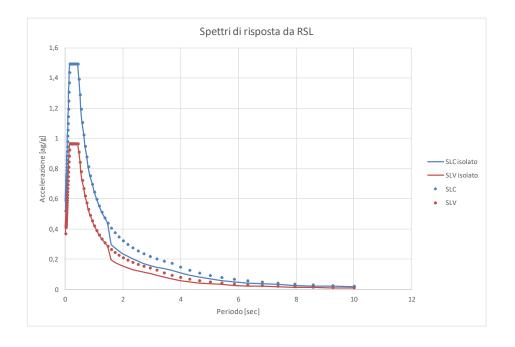



Figura 14 Spettro elastico per la componente verticale

In accordo con le indicazioni della normativa (paragrafo 7.10.5.3.2), per tenere in conto la dissipazione di energia indotta dal sistema di smorzamento, lo spettro elastico calcolato con valore unitario del parametro η , viene abbattuto per valori del periodo T>0.8 T_{is} in funzione dello smorzamento del sistema isolato ξ_{eis}

Collegamento viario compreso tra lo Svincolo della S.S. 514 di "Chiaromonte" con la S.S. 115 e lo Svincolo della "Ragusana"

PROGETTO ESECUTIVO

RELAZIONE DI CALCOLO

COMBINAZIONI DI CARICO 6.5

Ai fini delle verifiche agli stati limite, la combinazione delle azioni è effettuata secondo quanto disposto dal D. Min. Infrastrutture 14 gennaio 2008.

In particolare, si fa riferimento alle seguenti combinazioni:

combinazione fondamentale (SLU):

$$\gamma_{\text{G1}} \cdot G_1 + \gamma_{\text{G2}} \cdot G_2 + \gamma_{\text{p}} \cdot P + \gamma_{\text{Q1}} \cdot Q_{\text{k1}} + \gamma_{\text{Q2}} \cdot \psi_{\text{02}} \cdot Q_{\text{k2}} + \gamma_{\text{Q3}} \cdot \psi_{\text{03}} \cdot Q_{\text{k3}} + ...$$

combinazione sismica:

$$E + G_1 + G_2 + P + \psi_{21} \cdot Q_{k1} + \psi_{22} \cdot Q_{k2} + ...$$

combinazione eccezionale:

$$G_1 + G_2 + P + A_d + \psi_{21} \cdot Q_{k1} + \psi_{22} \cdot Q_{k2} + ...$$

combinazione Rara (SLE irreversibile):

$$G_1 + G_2 + P + Q_{k1} + \psi_{02} \cdot Q_{k2} + \psi_{03} \cdot Q_{k3} + ...$$

combinazione Frequente (SLE reversibile):

$$G_1 + G_2 + P + \psi_{11} \cdot Q_{k1} + \psi_{22} \cdot Q_{k2} + \psi_{23} \cdot Q_{k3} + \dots$$

combinazione Quasi Permanente (SLE per gli effetti a lungo termine):

$$G_{_{1}}+G_{_{2}}+P+\psi_{_{21}}\cdot Q_{_{k1}}+\psi_{_{22}}\cdot Q_{_{k2}}+\psi_{_{23}}\cdot Q_{_{k3}}+...$$

Per i carichi mobili, sezione per sezione, sono stati considerati i massimi ed i minimi del momento flettente e del taglio con i valori delle altre caratteristiche di sollecitazione concomitanti, al fine di determinare la condizione di verifica più gravosa.

I coefficienti di combinazione sono esplicitati nei capitoli di verifica dei singoli elementi strutturali.

Per quanto concerne il dimensionamento e le verifiche geotecniche e strutturali delle opere fondazionali (spalle e fondazioni pile), la normativa prevede l'applicazione di coefficienti di sicurezza parziali (γ) da applicare sia alle azioni che ai materiali, scelti nell'ambito di due approcci progettuali distinti ed alternativi definiti, rispettivamente, dalla normativa: "Approccio 1" ed "Approccio 2".

Nella presente progettazione si è adottato l'Approccio 1 di norma che prevede due diverse combinazioni di set di coefficienti: la prima combinazione (STR) risulta più severa nei confronti del dimensionamento strutturale delle opere a contatto con il terreno; la seconda combinazione (GEO) risulta più gravosa nei riguardi del dimensionamento geotecnico. Le combinazioni sono le seguenti:

Collegamento viario compreso tra lo Svincolo della S.S. 514 di "Chiaromonte" con la S.S. 115 e lo Svincolo della "Ragusana"

PROGETTO ESECUTIVO

Direzione Progettazione e Realizzazione Lavori

RELAZIONE DI CALCOLO

- Combinazione 1: A1+M1 (STR)
- Combinazione 2: A2+M2 (GEO).

		Permanenti	Permanenti non strutturali	Distorsioni di progetto	Ritiro CLS	Viscosità CLS	Variazioni termiche	Cedimenti vincolari	Max carico corsie tandem	Max carico corsie distribuito	Max eccentricità tandem	Max eccentricità distribuito	Azione frenatura	Azione centrifuga	Vento scarico	Vento carico	Sisma X SLV	Sisma Y SLV	Sisma Z SLV	Sisma X SLD	Sisma Y SLD	Sisma Z SLD	Sisma X SLO	Sisma Y SLO	Sisma Z SLO	Sisma X SLC	Sisma Y SLC	Sisma Z SLC	Resistenze parassite vincoli	Azioni su parapetti	Urtiveicoli
		G1	62	13	£2.a	62.6	£3	24	01	14	02	42	43	44	qScar	q5scar	x-vis-9b	4-vls-9p	z-vis-9b	x-pls-9b	4-pls-9b	z-pls-9b	x-ols-9b	4-ols-9p	de-slo-	de-slc-x	q6-slc-y	de-slc-z	47	86	6b
F.C.	0 Fasi costruttive	1,35	0	0	0	0	0	0	0	0	0	0	0	0	1,2	0	0	0	0	0	0	0	0	0	0	0	0	0	1,5	0	0
	1 SLU Gruppo 1 (max carico)	1,35	1,5	1	1,2	1,2	0,72	1,2		1,35	0	0	0	0	0,9	0,9	0	0	0	0	0	0	0	0	0	0	0	0	1,5	0	0
	2 SLU Gruppo 1 (max eccentricità)	1,35	1,5	1	1,2	1,2	0,72	1,2	0	0		1,35	0	0	0,9	0,9	0	0	0	0	0	0	0	0	0	0	0	0	1,5	0	0
	3 SLU Gruppo 1 (vento+max carico)	1,35	1,5	1	1,2	1,2	0,72		1,013	0,54	0	0	0	0	1,5	1,5	0	0	0	0	0	0	0	0	0	0	0	0	1,5	0	0
SLU	4 SLU Gruppo 1 (vento+eccentric)	1,35	1,5	1	1,2	1,2	0,72	1,2	0		1,013	0,54	0	0	1,5	1,5	0	0	0	0	0	0	0	0	0	0	0	0	1,5	0	0
S	5 SLU Gruppo 2 (frenatura +max carico)	1,35	1,5	1	1,2	1,2	0,72		1,013	0,54	0	0	1,35	0	0,9	0,9	0	0	0	0	0	0	0	0	0	0	0	0	1,5	0	0
	6 SLU Gruppo 2 (frenatura +max carico) 6* SLU Gruppo 2 (centrifuga +max carico)	1,35	1,5	1	1,2	1,2	0,72	1,2	1,013	0,54	1,013	0,54	1,35	1,35	0,9	0,9	0	0	0	0	0	0	0	0	0	0	0	0	1,5	0	- 0
	7 SLU Urto Longitudinale	1,55	1,5	1	1,2	1,2	1	1,2	1,013	1	0	0	0	0	0,9	0,9	0	0	0	0	0	0	0	0	0	0	0	0	1,5	0	1
	8 SLU Urto trasversale	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1,5	1	0
		Permanenti	Permanenti non strutturali	Distorsioni di progetto	Ritiro CLS	Viscosità CLS	Variazioni termiche	Cedimenti vincolari	Max carico corsie tandem	Max carico corsie distribuito	Max eccentricità tandem	Max eccentricità distribuito	Azione frenatura	Azione centrifuga	Vento scarico	Vento carico	Sisma X SLV	Sisma Y SLV	Sisma Z SLV	Sisma X SLD	Sisma Y SLD	Sisma Z SLD	Sisma X SLO	Sisma Y SLO	Sisma Z SLO	Sisma X SLC	Sisma Y SLC	Sisma Z SLC	Resistenze parassite vincoli	Azioni su parapetti	Urtiveicoli
		61	62	<u></u>	£2a	62.6	ខួ	24	01	41	02	q2	93	44	qScar	q5scar	x-vis-9b	q-vk-ðp	z-vis-9b	x-pls-9b	4-pls-9b	z-pls-9b	x-ols-9b	q6-slo-y	z-ols-9b	de-sic-x	q6-slc-y	de-slc-z	47	86	6b
F.C.	0 Fasi costruttive	1,35	0	0	0	0	0	0	0	0	0	0	0	0	1,2	0	0	0	0	0	0	0	0	0	0	0	0	0	1,5	0	0
RARE	9 SLE Gruppo 1 (max carico) 10 SLE Gruppo 1 (max eccentricità) 11 SLE Gruppo 1 (vento+max carico) 12 SLE Gruppo 1 (vento+eccentric) 13 SLE Gruppo 2 (frenatura+max carico) 14 SLE Gruppo 2 (frenatura+max eccentric)	1 1 1 1 1	1 1 1 1 1	1 1 1 1 1	1 1 1 1 1	1 1 1 1	0,6 0,6 0,6 0,6 0,6	1 1 1 1 1	0,75 0 0,75	0 0,4 0 0,4 0	0	0 1 0 0,4 0	0 0 0 0 1	0 0 0 0	0,6 0,6 1 1 0,6	0,6 0,6 1 1 0,6	0 0 0 0	0 0 0 0 0	0 0 0 0 0	0 0 0 0 0	0 0 0 0	0 0 0 0	1 1 1 1 1	0 0 0 0 0 0	0 0 0						
FREQ	15 SLE Gruppo 2 (menatura +max eccentric) 15 SLE Gruppo 1 (max carico) 17 SLE Gruppo 1 (vento+max carico) 18 SLE Gruppo 1 (vento+eccentric)	1 1 1 1	1 1 1 1	1 1 1 1	1 1 1 1	1 1 1 1	0,6 0,6 0,6 0,6	1	0,75	0,4 0 0,4	0	0 0,4 0 0,4	0 0	0 0 0	0 0 0,2 0,2	0 0 0,2 0,2	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	1 1 1 1 1	0 0 0	0
Q. P.	19 SLE Gruppo 1	1	1	1	1	1	0,5	0	0	0	0,73	0,4	0	0	0,2	0,2	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0

Direzione Progettazione e

Realizzazione Lavori

Itinerario Ragusa - Catania

Collegamento viario compreso tra lo Svincolo della S.S. 514 di "Chiaromonte" con la S.S. 115 e lo Svincolo della "Ragusana"

PROGETTO ESECUTIVO

RELAZIONE DI CALCOLO

		Permanenti	Permanenti non strutturali	Distorsioni di progetto	Ritiro CLS	Viscosità CLS	Variazioni termiche	Cedimenti vincolari	Max carico corsie tandem	Max carico corsie distribuito	Max eccentricità tandem	Max eccentricità distribuito	Azione frenatura	Azione centrifuga	Vento scarico	Vento carico	Sisma X SLV	Sisma Y SLV	Sisma Z SLV	Sisma X SLD	Sisma Y SLD	Sisma Z SLD	Sisma X SLO	Sisma Y SLO	Sisma Z SLO	Sisma X SLC	Sisma Y SLC	Sisma Z SLC	Resistenze parassite vincoli	Azioni su parapetti	Urtiveicoli
		61	62	13	£2:a	82-b	63	2	01	q1	02	d2	43	94	qScar	q5scar	x-vis-9b	4-vls-9b	z-vls-9b	x-pls-9b	4-pls-9b	z-pls-9b	x-ols-9b	q6-slo-y	z-ols-9b	de-sic-x	q6-slc-y	z-ors-9b	/b	86	66
	20 SLC 1+0,3	1	1	1	1	1	0,5	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0,3	0	1	0	0
	21 SLC 1-0,3	1	1	1	1	1	0,5	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	-0,3	0	1	0	0
	22 SLC -1+0,3	1	1	1	1	1	0,5	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	-1	0,3	0	1	0	0
U	23 SLC 1-0,3	1	1	1	1	1	0,5	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	-1	-0,3	0	1	0	0
SLC	24 SLC 0,3+1	1	1	1	1	1	0,5	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0,3	1	0	1	0	0
0,	25 SLC -0,3+1	1	1	1	1	1	0,5	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	-0,3	1	0	1	0	0
	26 SLC 0,3-1	1	1	1	1	1	0,5	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0,3	-1	0	1	0	0
	27 SLC -0,3-1	1	1	1	1	1	0,5	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	-0,3	-1	0	1	0	0
	28 SLC Z	1	1	1	1	1	0,5	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	0	0
	29 SLV 1+0,3	1	1	1	1	1	0,5	0	0	0	0	0	0	0	0	0	1	0,3	0	0	0	0	0	0	0	0	0	0	1	0	0
	30 SLV 1-0,3	1	1	1	1	1	0,5	0	0	0	0	0	0	0	0	0	1	-0,3	0	0	0	0	0	0	0	0	0	0	1	0	0
	31 SLV -1+0,3	1	1	1	1	1	0,5	0	0	0	0	0	0	0	0	0	-1	0,3	0	0	0	0	0	0	0	0	0	0	1	0	0
>	32 SLV -1-0,3	1	1	1	1	1	0,5	0	0	0	0	0	0	0	0	0	-1	-0,3	0	0	0	0	0	0	0	0	0	0	1	0	0
SLV	33 SLV 0,3+1	1	1	1	1	1	0,5	0	0	0	0	0	0	0	0	0	0,3	1	0	0	0	0	0	0	0	0	0	0	1	0	0
01	34 SLV -0,3+1	1	1	1	1	1	0,5	0	0	0	0	0	0	0	0	0	-0,3	1	0	0	0	0	0	0	0	0	0	0	1	0	0
	35 SLV 0,3-1	1	1	1	1	1	0,5	0	0	0	0	0	0	0	0	0	0,3	-1	0	0	0	0	0	0	0	0	0	0	1	0	0
	36 SLV -0,3-1	1	1	1	1	1	0,5	0	0	0	0	0	0	0	0	0	-0,3	-1	0	0	0	0	0	0	0	0	0	0	1	0	0
	37 SLV Z	1	1	1	1	1	0,5	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	1	0	0
	38 SLD 1+0,3	1	1	1	1	1	0,5	0	0	0	0	0	0	0	0	0	0	0	0	1	0,3	0	0	0	0	0	0	0	1	0	0
	39 SLD 1-0,3	1	1	1	1	1	0,5	0	0	0	0	0	0	0	0	0	0	0	0	1	-0,3	0	0	0	0	0	0	0	1	0	0
	40 SLD -1+0,3	1	1	1	1	1	0,5	0	0	0	0	0	0	0	0	0	0	0	0	-1	0,3	0	0	0	0	0	0	0	1	0	0
	41 SLD 1-0,3	1	1	1	1	1	0,5	0	0	0	0	0	0	0	0	0	0	0	0	-1	-0,3	0	0	0	0	0	0	0	1	0	0
SLD	42 SLD 0,3+1	1	1	1	1	1	0,5	0	0	0	0	0	0	0	0	0	0	0	0	0,3	1	0	0	0	0	0	0	0	1	0	0
01	43 SLD -0,3+1	1	1	1	1	1	0,5	0	0	0	0	0	0	0	0	0	0	0	0	-0,3	1	0	0	0	0	0	0	0	1	0	0
	44 SLD 0,3-1	1	1	1	1	1	0,5	0	0	0	0	0	0	0	0	0	0	0	0	0,3	-1	0	0	0	0	0	0	0	1	0	0
	45 SLD -0,3-1	1	1	1	1	1	0,5	0	0	0	0	0	0	0	0	0	0	0	0	-0,3	-1	0	0	0	0	0	0	0	1	0	0
	46 SLD Z	1	1	1	1	1	0,5	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	1	0	0
	47 SLO 1+0,3	1	1	1	1	1	0,5	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0,3	0	0	0	0	1	0	0
	48 SLO 1-0,3	1	1	1	1	1	0,5	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	-0,3	0	0	0	0	1	0	0
	49 SLO -1+0,3	1	1	1	1	1	0,5	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	-1	0,3	0	0	0	0	1	0	0
0	50 SLO 1-0,3	1	1	1	1	1	0,5	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	-1	-0,3	0	0	0	0	1	0	0
SLO	51 SLO 0,3+1	1	1	1	1	1	0,5	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0,3	1	0	0	0	0	1	0	0
V1	52 SLO -0,3+1	1	1	1	1	1	0,5	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	-0,3	1	0	0	0	0	1	0	0
	53 SLO 0,3-1	1	1	1	1	1	0,5	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0,3	-1	0	0	0	0	1	0	0
	54 SLO -0,3-1	1	1	1	1	1	0,5	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	-0,3	-1	0	0	0	0	1	0	0
	55 SLO Z	1	1	1	1	1	0,5	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	1	0	0

Collegamento viario compreso tra lo Svincolo della S.S. 514 di "Chiaromonte" con la S.S. 115 e lo Svincolo della "Ragusana"

PROGETTO ESECUTIVO

RELAZIONE DI CALCOLO

SOFTWARE DI CALCOLO E MODELLAZIONE

Tutti i codici di calcolo automatico utilizzati per l'analisi e la verifica delle strutture sono di sicura ed accertata validità e sono impiegati conformemente alle loro caratteristiche. Per i calcoli e le modellazioni di cui alla presente relazione sono impiegati i codici di calcolo brevemente descritti di seguito.

CSI Bridge v 23.1

Codice di calcolo F.E.M. (Finite Element Method) prodotto dalla Computers and Structures, Inc, capace di gestire analisi lineari e non lineari ed analisi sismiche con integrazione al passo delle equazioni nel tempo con routine specifiche per la sovrastruttura di ponti e viadotti.

Il software è stato impiegato per la modellazione dell'intera opera, finalizzata all'analisi strutturale.

- Preflex Enexsys Srl.
- Geostru RC-SEC
- Fogli di calcolo interni

MANDATARIA:

Direzione Proaettazione e Realizzazione Lavori

Collegamento viario compreso tra lo Svincolo della S.S. 514 di "Chiaromonte" con la S.S. 115 e lo Svincolo della "Ragusana"

PROGETTO ESECUTIVO

RELAZIONE DI CALCOLO

METODOLOGIA DI ANALISI 7.1

Modellazione 7.1.1

L'intera opera è schematizzata nel software di calcolo FEM con un unico modello che in funzione delle caratteristiche del programma consente di avere risultati sia su schema "monodimensionale" sia su

modello tridimensionale mediante la conversione delle parti di struttura in elementi bidimensionali.

Tale schematizzazione "ibrida" sviluppata con l'ausilio del software, consente di analizzare un unico

modello per poi ottenere risultati sia sul modello monodimensionale (di tipo riassuntivo per validare la

correttezza del modello con schematizzazioni teoriche semplificate), sia sul modello 3D per sviluppare in

automatico le verifiche richieste dalle attuali norme tecniche.

L'impalcato viene quindi generato con una modellazione "bivalente" mentre le pile sono schematizzate

in ambo i casi con elementi monodimensionali.

L'impalcato quindi è assimilabile ad una trave continua con appoggi in corrispondenza delle pile e delle

spalle ed è discretizzato in conci di caratteristiche geometriche ed inerziali costanti a tratti.

A partire da ciascun nodo di impalcato, posto in corrispondenza delle pile o delle spalle, è introdotto un

elemento rigido di lunghezza pari alla distanza tra il baricentro della sezione d'impalcato ed il lembo

inferiore della stessa sezione.

Al fine di simulare la presenza degli isolatori sismici, fra i nodi di testa di ciascuna pila e i relativi elementi

rigidi soprastanti, sono inseriti dei Link con rigidezze opportunamente tarate in funzione del grado di

vincolo dell'impalcato alla sottostruttura.

I vincoli al piede delle pile e delle spalle sono di tipo fisso andando quindi a schematizzare la presenza di

un incastro alla base del paramento spalle e delle pile.

Elementi strutturali 7.1.2

Le travi metalliche che costituiscono l'impalcato sono modellate in duplice modo: come beam nella

schematizzazione globale che il software "CSI Bridge" effettua in fase di input, e come elementi shell

allorquando il software esplode il modello per poter effettuare le necessarie verifiche. Con la modellazione

delle travi con elementi bidimensionali, si ottiene, come prevedibile, un comportamento prevalente a

"lastra" degli elementi bidimensionali, vale a dire con stati tensionali significativi nel piano dell'elemento

MANDATARIA:

MANDANTI:

Collegamento viario compreso tra lo Svincolo della S.S. 514 di "Chiaromonte" con la S.S. 115 e lo Svincolo della "Ragusana"

PROGETTO ESECUTIVO

RELAZIONE DI CALCOLO

(anima e ala trave). Tali stati tensionali sono quelli indotti dai momenti flettenti sulle travi e dalle azioni taglianti e torsionali calcolate sull'impalcato. Le pile sono modellate sempre con elementi beam.

7.1.3 Vincoli esterni

Le pile e le spalle sono schematizzate con vincoli di incastro al piede. A tali vincoli sono comunque applicati i cedimenti vincolari richiesti dalle attuali norme tecniche.

Dispositivi di appoggio 7.1.4

I dispositivi di appoggio, che nello specifico sono isolatori elastomerici, sono stati modellati con elementi elastici "link" ai quali sono state attribuite le rispettive rigidezze nelle diverse direzioni di funzionamento.

Collegamento viario compreso tra lo Svincolo della S.S. 514 di "Chiaromonte" con la S.S. 115 e lo Svincolo della "Ragusana"

PROGETTO ESECUTIVO

RELAZIONE DI CALCOLO

RISULTATI ANALISI DINAMICA 8

Si riportano i principali risultati dell'analisi dinamica della struttura. Come prevedibile, in virtù dell'utilizzo del sistema di isolamento, i primi modi di vibrare interessano essenzialmente l'impalcato con un elevato fattore di partecipazione delle masse.

TABLE: Modal Periods And Frequencies									
OutputCase	StepType	StepNum	Period	Frequency	CircFreq	Eigenvalue			
Text	Text	Unitless	Sec	Cyc/sec	rad/sec	rad2/sec2			
MODAL	Mode	1	2,02467	0,4939074	3,1033115	9,6305422			
MODAL	Mode	2	1,96261	0,5095249	3,2014391	10,249212			
MODAL	Mode	3	1,56431	0,6392592	4,0165841	16,132948			
MODAL	Mode	4	1,01057	0,9895422	6,2174772	38,657023			
MODAL	Mode	5	0,53038	1,8854429	11,846587	140,34162			
MODAL	Mode	6	0,52123	1,9185321	12,054493	145,3108			
MODAL	Mode	7	0,50721	1,9715597	12,387675	153,4545			
MODAL	Mode	8	0,47684	2,0971536	13,176805	173,62819			
MODAL	Mode	9	0,46836	2,1350939	13,41519	179,96734			
MODAL	Mode	10	0,42142	2,3729325	14,909574	222,29541			
MODAL	Mode	11	0,36075	2,7719781	17,416852	303,34673			
MODAL	Mode	12	0,35498	2,8171004	17,700364	313,30288			

TABLE: Modal Load Participation Ratios								
OutputCase	ItemType	Item	Static	Dynamic				
Text	Text	Text	Percent	Percent				
MODAL	Acceleration	UX	99,8592	85,797				
MODAL	Acceleration	UY	99,9617	69,8997				
MODAL	Acceleration	UZ	0,545	0,0815				

Collegamento viario compreso tra lo Svincolo della S.S. 514 di "Chiaromonte" con la S.S. 115 e lo Svincolo della "Ragusana"

PROGETTO ESECUTIVO

RELAZIONE DI CALCOLO

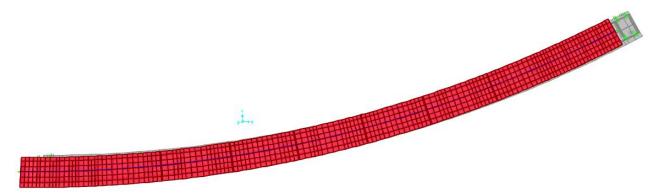


Figura 15 - deformata modale - 1° modo di vibrare

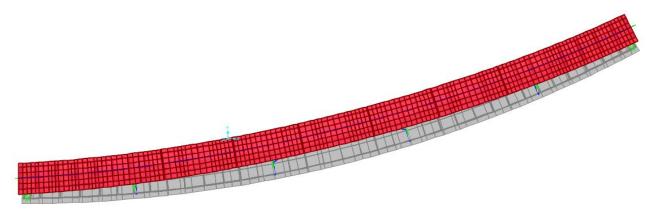


Figura 16 - deformata modale - 2° modo di vibrare

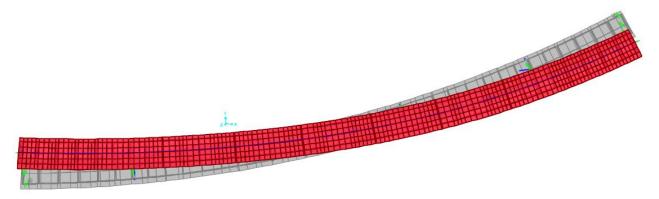


Figura 17 - deformata modale - 3° modo di vibrare

Direzione Progettazione e

Realizzazione Lavori

Collegamento viario compreso tra lo Svincolo della S.S. 514 di "Chiaromonte" con la S.S. 115 e lo Svincolo della "Ragusana"

PROGETTO ESECUTIVO

RELAZIONE DI CALCOLO

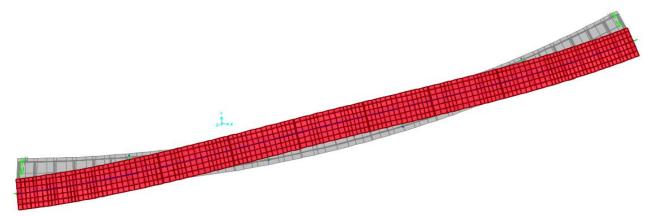


Figura 18 - deformata modale - 4° modo di vibrare

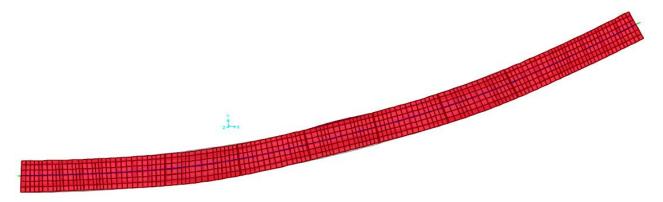


Figura 19 - deformata modale - 5° modo di vibrare

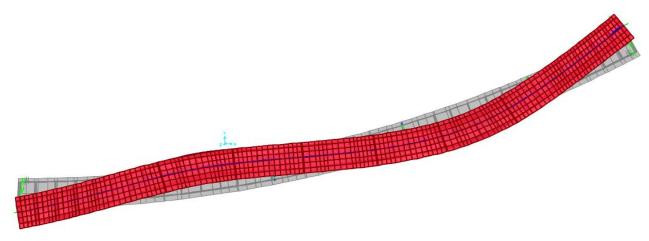


Figura 20 - deformata modale - 6° modo di vibrare

Collegamento viario compreso tra lo Svincolo della S.S. 514 di "Chiaromonte" con la S.S. 115 e lo Svincolo della "Ragusana"

PROGETTO ESECUTIVO

RELAZIONE DI CALCOLO

9 **VERIFICA DELLE PILE**

Le verifiche delle pile sono state condotte sulla base delle sollecitazioni calcolate con la modellazione dell'intera struttura. Nella tabella che segue, vi è la descrizione e la numerazione delle combinazioni di carico utilizzate nelle verifiche. La numerazione riportata nella prima colonna invece rappresenta la numerazione cui si associa il valore massimo e/o il valore minimo relativo alla combinazione di carico utilizzata.

2 01 SLU G1 Max Carico Mir 3 03 SLU G1 Vento+Max car Ma 4 03 SLU G1 Vento+Max car Mir 5 05 SLU G2 Fren+Max car Ma 6 05 SLU G2 Fren+Max car Mir 7 09 SLE G1 Max car Ma 8 09 SLE G1 Max car Mir 9 11 SLE G1 Vento+Max car Mir 10 11 SLE G1 Vento+Max car Mir 11 13 SLE G2 Fren+Max car Mir 12 13 SLE G2 Fren+Max car Mir 13 15 SLE G1 Max carico (Freq) Ma 14 15 SLE G1 Max carico (Freq) Ma 15 17 SLE G1 Vento+Max car (Freq) Ma 16 17 SLE G1 Vento+Max car (Freq) Mir 17 19 SLE Quasi Perm Ma 18 19 SLE Quasi Perm Mir 19 20 SLC 1+0,3 Ma 20 20 SLC 1+0,3 Ma 21 24 SLC 0,3+1 Mir 23 28 SLC Z Mir 24 28 SLC Z Mir 25			
2 01 SLU G1 Max Carico Mir 3 03 SLU G1 Vento+Max car Ma 4 03 SLU G1 Vento+Max car Mir 5 05 SLU G2 Fren+Max car Ma 6 05 SLU G2 Fren+Max car Mir 7 09 SLE G1 Max car Mar 8 09 SLE G1 Max car Mar 9 11 SLE G1 Vento+Max car Mir 10 11 SLE G1 Vento+Max car Mir 11 13 SLE G2 Fren+Max car Mir 12 13 SLE G2 Fren+Max car Mir 13 15 SLE G1 Max carico (Freq) Ma 14 15 SLE G1 Max carico (Freq) Mar 15 17 SLE G1 Vento+Max car (Freq) Mar 16 17 SLE G1 Vento+Max car (Freq) Mir 17 19 SLE Quasi Perm Mar 18 19 SLE Quasi Perm Mir 19 20 SLC 1+0,3 Mar 20 20 SLC 1+0,3 Mar 21 24 SLC 0,3+1 Mir 23 28 SLC Z Mir 24 28 SLC Z Mir 25	Numerazione	Combinazione di carico e descrizione	
3 03 SLU G1 Vento+Max car Max 4 03 SLU G1 Vento+Max car Mir 5 05 SLU G2 Fren+Max car Max 6 05 SLU G2 Fren+Max car Mir 7 09 SLE G1 Max car Max 8 09 SLE G1 Max car Mir 9 11 SLE G1 Vento+Max car Mir 10 11 SLE G1 Vento+Max car Mir 11 13 SLE G2 Fren+Max car Mir 12 13 SLE G2 Fren+Max car Mir 13 15 SLE G1 Max carico (Freq) Max 14 15 SLE G1 Max carico (Freq) Mir 15 17 SLE G1 Vento+Max car (Freq) Mir 17 19 SLE Quasi Perm Max 18 19 SLE Quasi Perm Mir 19 20 SLC 1+0,3 Mir 20 20 SLC 1+0,3 Mir 21 24 SLC 0,3+1 Mir 22 24 SLC 0,3+1 Mir 23 28 SLC Z Mir 25 29 SLV 1+0,3 Mir 26 29 SLV 1+0,3 Mir 27 33 SLV 0,3+1 Max 28 SLC Z Mir 29 SLV 1+0,3 Mir 20 20 SLV 1+0,3 Mir 21 33 SLV 0,3+1 Mir 22 33 SLV 0,3+1 Mir	1	01 SLU G1 Max Carico	Max
4 03 SLU G1 Vento+Max car Mir 5 05 SLU G2 Fren+Max car Max 6 05 SLU G2 Fren+Max car Mir 7 09 SLE G1 Max car Max 8 09 SLE G1 Max car Mir 9 11 SLE G1 Vento+Max car Mir 10 11 SLE G1 Vento+Max car Mir 11 13 SLE G2 Fren+Max car Mir 12 13 SLE G2 Fren+Max car Mir 13 15 SLE G1 Max carico (Freq) Max 14 15 SLE G1 Max carico (Freq) Mir 15 17 SLE G1 Vento+Max car (Freq) Mir 16 17 SLE G1 Vento+Max car (Freq) Mir 17 19 SLE Quasi Perm Max 18 19 SLE Quasi Perm Mir 19 20 SLC 1+0,3 Mir 20 20 SLC 1+0,3 Mir 21 24 SLC 0,3+1 Max 22 24 SLC Z Max 24 28 SLC Z Mir 25 29 SLV 1+0,3 Mir 26 29 SLV 1+0,3 Mir 27 33 SLV 0,3+1 Max	2	01 SLU G1 Max Carico	Min
5 05 SLU G2 Fren+Max car Ma 6 05 SLU G2 Fren+Max car Mir 7 09 SLE G1 Max car Ma 8 09 SLE G1 Max car Mir 9 11 SLE G1 Vento+Max car Ma 10 11 SLE G1 Vento+Max car Mir 11 13 SLE G2 Fren+Max car Mir 12 13 SLE G2 Fren+Max car Mir 13 15 SLE G1 Max carico (Freq) Ma 14 15 SLE G1 Max carico (Freq) Mir 15 17 SLE G1 Vento+Max car (Freq) Mir 16 17 SLE G1 Vento+Max car (Freq) Mir 17 19 SLE Quasi Perm Ma 18 19 SLE Quasi Perm Mir 19 20 SLC 1+0,3 Mir 20 20 SLC 1+0,3 Mir 21 24 SLC 0,3+1 Ma 22 24 SLC 0,3+1 Mir 23 28 SLC Z Mir 24 28 SLC Z Mir 25 29 SLV 1+0,3 Mir 26 29 SLV 1+0,3 Mir 27 33 SLV 0,3+1	3	03 SLU G1 Vento+Max car	Max
6	4	03 SLU G1 Vento+Max car	Min
7 09 SLE G1 Max car Mar 8 09 SLE G1 Max car Mir 9 11 SLE G1 Vento+Max car Mar 10 11 SLE G1 Vento+Max car Mir 11 13 SLE G2 Fren+Max car Mar 12 13 SLE G2 Fren+Max car Mir 13 15 SLE G1 Max carico (Freq) Mar 14 15 SLE G1 Max carico (Freq) Mir 15 17 SLE G1 Vento+Max car (Freq) Mar 16 17 SLE G1 Vento+Max car (Freq) Mir 17 19 SLE Quasi Perm Mar 18 19 SLE Quasi Perm Mar 19 20 SLC 1+0,3 Mir 20 20 SLC 1+0,3 Mir 21 24 SLC 0,3+1 Mar 22 24 SLC 0,3+1 Mir 23 28 SLC Z Mir 24 28 SLC Z Mir 25 29 SLV 1+0,3 Mir 26 29 SLV 1+0,3 Mir 27 33 SLV 0,3+1 Mar	5	05 SLU G2 Fren+Max car	Max
8 09 SLE G1 Max car Mir 9 11 SLE G1 Vento+Max car Ma 10 11 SLE G1 Vento+Max car Mir 11 13 SLE G2 Fren+Max car Ma 12 13 SLE G2 Fren+Max car Mir 13 15 SLE G1 Max carico (Freq) Ma 14 15 SLE G1 Max carico (Freq) Mir 15 17 SLE G1 Vento+Max car (Freq) Mir 16 17 SLE G1 Vento+Max car (Freq) Mir 17 19 SLE Quasi Perm Ma 18 19 SLE Quasi Perm Mir 19 20 SLC 1+0,3 Mir 20 20 SLC 1+0,3 Mir 21 24 SLC 0,3+1 Ma 22 24 SLC 0,3+1 Mir 23 28 SLC Z Mir 24 28 SLC Z Mir 25 29 SLV 1+0,3 Mir 26 29 SLV 1+0,3 Mir 27 33 SLV 0,3+1 Ma	6	05 SLU G2 Fren+Max car	Min
9 11 SLE G1 Vento+Max car Mir 10 11 SLE G1 Vento+Max car Mir 11 13 SLE G2 Fren+Max car Max 12 13 SLE G2 Fren+Max car Mir 13 15 SLE G1 Max carico (Freq) Max 14 15 SLE G1 Max carico (Freq) Mir 15 17 SLE G1 Vento+Max car (Freq) Mir 16 17 SLE G1 Vento+Max car (Freq) Mir 17 19 SLE Quasi Perm Max 18 19 SLE Quasi Perm Mir 19 20 SLC 1+0,3 Mir 20 20 SLC 1+0,3 Mir 21 24 SLC 0,3+1 Max 22 24 SLC 0,3+1 Mir 23 28 SLC Z Mir 24 28 SLC Z Mir 25 29 SLV 1+0,3 Mir 26 29 SLV 1+0,3 Mir 27 33 SLV 0,3+1 Max	7	09 SLE G1 Max car	Max
10	8	09 SLE G1 Max car	Min
11 13 SLE G2 Fren+Max car Ma 12 13 SLE G2 Fren+Max car Mir 13 15 SLE G1 Max carico (Freq) Ma 14 15 SLE G1 Max carico (Freq) Mir 15 17 SLE G1 Vento+Max car (Freq) Ma 16 17 SLE G1 Vento+Max car (Freq) Mir 17 19 SLE Quasi Perm Ma 18 19 SLE Quasi Perm Mir 19 20 SLC 1+0,3 Mir 20 20 SLC 1+0,3 Mir 21 24 SLC 0,3+1 Ma 22 24 SLC 0,3+1 Mir 23 28 SLC Z Mir 24 28 SLC Z Mir 25 29 SLV 1+0,3 Ma 26 29 SLV 1+0,3 Mir 27 33 SLV 0,3+1 Ma	9	11 SLE G1 Vento+Max car	Max
12 13 SLE G2 Fren+Max car Mir 13 15 SLE G1 Max carico (Freq) Ma 14 15 SLE G1 Max carico (Freq) Mir 15 17 SLE G1 Vento+Max car (Freq) Ma 16 17 SLE G1 Vento+Max car (Freq) Mir 17 19 SLE Quasi Perm Ma 18 19 SLE Quasi Perm Mir 19 20 SLC 1+0,3 Ma 20 20 SLC 1+0,3 Mir 21 24 SLC 0,3+1 Ma 22 24 SLC 0,3+1 Mir 23 28 SLC Z Mir 24 28 SLC Z Mir 25 29 SLV 1+0,3 Ma 26 29 SLV 1+0,3 Mir 27 33 SLV 0,3+1 Ma	10	11 SLE G1 Vento+Max car	Min
13 15 SLE G1 Max carico (Freq) Ma 14 15 SLE G1 Max carico (Freq) Mir 15 17 SLE G1 Vento+Max car (Freq) Ma 16 17 SLE G1 Vento+Max car (Freq) Mir 17 19 SLE Quasi Perm Ma 18 19 SLE Quasi Perm Mir 19 20 SLC 1+0,3 Mir 20 20 SLC 1+0,3 Mir 21 24 SLC 0,3+1 Ma 22 24 SLC 0,3+1 Mir 23 28 SLC Z Ma 24 28 SLC Z Mir 25 29 SLV 1+0,3 Ma 26 29 SLV 1+0,3 Mir 27 33 SLV 0,3+1 Ma	11	13 SLE G2 Fren+Max car	Max
14 15 SLE G1 Max carico (Freq) Mir 15 17 SLE G1 Vento+Max car (Freq) Ma 16 17 SLE G1 Vento+Max car (Freq) Mir 17 19 SLE Quasi Perm Ma 18 19 SLE Quasi Perm Mir 19 20 SLC 1+0,3 Ma 20 20 SLC 1+0,3 Mir 21 24 SLC 0,3+1 Ma 22 24 SLC 0,3+1 Mir 23 28 SLC Z Ma 24 28 SLC Z Mir 25 29 SLV 1+0,3 Ma 26 29 SLV 1+0,3 Mir 27 33 SLV 0,3+1 Ma	12	13 SLE G2 Fren+Max car	Min
15 17 SLE G1 Vento+Max car (Freq) Ma 16 17 SLE G1 Vento+Max car (Freq) Mir 17 19 SLE Quasi Perm Ma 18 19 SLE Quasi Perm Mir 19 20 SLC 1+0,3 Mar 20 20 SLC 1+0,3 Mir 21 24 SLC 0,3+1 Ma 22 24 SLC 0,3+1 Mir 23 28 SLC Z Ma 24 28 SLC Z Mir 25 29 SLV 1+0,3 Ma 26 29 SLV 1+0,3 Mir 27 33 SLV 0,3+1 Ma	13	15 SLE G1 Max carico (Freq)	Max
16 17 SLE G1 Vento+Max car (Freq) Mir 17 19 SLE Quasi Perm Ma 18 19 SLE Quasi Perm Mir 19 20 SLC 1+0,3 Ma 20 20 SLC 1+0,3 Mir 21 24 SLC 0,3+1 Ma 22 24 SLC 0,3+1 Mir 23 28 SLC Z Ma 24 28 SLC Z Mir 25 29 SLV 1+0,3 Ma 26 29 SLV 1+0,3 Mir 27 33 SLV 0,3+1 Ma	14	15 SLE G1 Max carico (Freq)	Min
17 19 SLE Quasi Perm Ma 18 19 SLE Quasi Perm Mir 19 20 SLC 1+0,3 Ma 20 20 SLC 1+0,3 Mir 21 24 SLC 0,3+1 Ma 22 24 SLC 0,3+1 Mir 23 28 SLC Z Ma 24 28 SLC Z Mir 25 29 SLV 1+0,3 Ma 26 29 SLV 1+0,3 Mir 27 33 SLV 0,3+1 Ma	15	17 SLE G1 Vento+Max car (Freq)	Max
18 19 SLE Quasi Perm Mir 19 20 SLC 1+0,3 Ma 20 20 SLC 1+0,3 Mir 21 24 SLC 0,3+1 Ma 22 24 SLC 0,3+1 Mir 23 28 SLC Z Ma 24 28 SLC Z Mir 25 29 SLV 1+0,3 Ma 26 29 SLV 1+0,3 Mir 27 33 SLV 0,3+1 Ma	16	17 SLE G1 Vento+Max car (Freq)	Min
19 20 SLC 1+0,3 Ma 20 20 SLC 1+0,3 Mir 21 24 SLC 0,3+1 Ma 22 24 SLC 0,3+1 Mir 23 28 SLC Z Ma 24 28 SLC Z Mir 25 29 SLV 1+0,3 Ma 26 29 SLV 1+0,3 Mir 27 33 SLV 0,3+1 Ma	17	19 SLE Quasi Perm	Max
20 20 SLC 1+0,3 Mir 21 24 SLC 0,3+1 Ma 22 24 SLC 0,3+1 Mir 23 28 SLC Z Ma 24 28 SLC Z Mir 25 29 SLV 1+0,3 Ma 26 29 SLV 1+0,3 Mir 27 33 SLV 0,3+1 Ma	18	19 SLE Quasi Perm	Min
21 24 SLC 0,3+1 Ma 22 24 SLC 0,3+1 Mir 23 28 SLC Z Ma 24 28 SLC Z Mir 25 29 SLV 1+0,3 Ma 26 29 SLV 1+0,3 Mir 27 33 SLV 0,3+1 Ma	19	20 SLC 1+0,3	Max
22 24 SLC 0,3+1 Mir 23 28 SLC Z Ma 24 28 SLC Z Mir 25 29 SLV 1+0,3 Ma 26 29 SLV 1+0,3 Mir 27 33 SLV 0,3+1 Ma	20	20 SLC 1+0,3	Min
23 28 SLC Z Ma 24 28 SLC Z Mir 25 29 SLV 1+0,3 Ma 26 29 SLV 1+0,3 Mir 27 33 SLV 0,3+1 Ma	21	24 SLC 0,3+1	Max
24 28 SLC Z Mir 25 29 SLV 1+0,3 Ma 26 29 SLV 1+0,3 Mir 27 33 SLV 0,3+1 Ma	22	24 SLC 0,3+1	Min
25 29 SLV 1+0,3 Ma 26 29 SLV 1+0,3 Mir 27 33 SLV 0,3+1 Ma	23	28 SLC Z	Max
26 29 SLV 1+0,3 Mir 27 33 SLV 0,3+1 Ma	24	28 SLC Z	Min
27 33 SLV 0,3+1 Ma	25	29 SLV 1+0,3	Max
	26	29 SLV 1+0,3	Min
	27	33 SLV 0,3+1	Max
28 33 SLV 0,3+1 Mir	28	33 SLV 0,3+1	Min
29 37 SLV Z Ma	29	37 SLV Z	Max

Collegamento viario compreso tra lo Svincolo della S.S. 514 di "Chiaromonte" con la S.S. 115 e lo Svincolo della "Ragusana"

PROGETTO ESECUTIVO

Direzione Progettazione e Realizzazione Lavori

RELAZIONE DI CALCOLO

		_
30	37 SLV Z	Min
31	38 SLD 1+0,3	Max
32	38 SLD 1+0,3	Min
33	42 SLD 0,3+1	Max
34	42 SLD 0,3+1	Min
35	46 SLD Z	Max
36	46 SLD Z	Min
37	47 SLO 1+0,3	Max
38	47 SLO 1+0,3	Min
39	51 SLO 0,3+1	Max
40	51 SLO 0,3+1	Min
41	55 SLO Z	Max
42	55 SLO Z	Min
43	06 SLU G2 Fcentr+Max car	Max
44	06 SLU G2 Fcentr+Max car	Min

Collegamento viario compreso tra lo Svincolo della S.S. 514 di "Chiaromonte" con la S.S. 115 e lo Svincolo della "Ragusana"

PROGETTO ESECUTIVO

RELAZIONE DI CALCOLO

Direzione Progettazione e Realizzazione Lavori

VERIFICA SEZIONE SPICCATO PILA 1

9.1.1 Verifica allo SLU sezione di spiccato

Condizione di carico	N [kg]	Mx [kgm]	My [kgm]	Azione Baricentrica	Tipo	Sd/Sr
1	-2968744.0	504818.0	2507267.0	Baricentrica	N costante	0.15
2	-1818754.0	-94295.0	-1256353.0	Baricentrica	N costante	0.06
3	-2715032.0	515667.0	2718525.0	Baricentrica	N costante	0.16
4	-1844775.0	-55659.0	-516349.0	Baricentrica	N costante	0.03
5	-2717172.0	883717.0	2128179.0	Baricentrica	N costante	0.22
6	-1847375.0	327370.0	-836838.0	Baricentrica	N costante	0.09
25	-1449570.0	1939852.0	1130332.0	Baricentrica	N costante	0.53
26	-1401993.0	-1657659.0	-647624.0	Baricentrica	N costante	0.46
27	-1444637.0	979233.0	2068208.0	Baricentrica	N costante	0.29
28	-1406926.0	-697040.0	-1585500.0	Baricentrica	N costante	0.21
29	-1435781.0	460780.0	278401.0	Baricentrica	N costante	0.13
30	-1417127.0	179306.0	167510.0	Baricentrica	N costante	0.05
43	-2715485.0	493672.0	2043537.0	Baricentrica	N costante	0.14
44	-1845689.0	-62675.0	-921480.0	Baricentrica	N costante	0.05

Figura 21 - disposizione schematica armature

VERIFICHE A TAGLIO

Diam. Staffe: 14 mm Diam. Legature: 8 mm

Passo staffe e legature: 20.0 cm [Passo massimo di normativa = 25.0 cm]

Ver S = comb. verificata a taglio / N = comb. non verificata

Taglio di progetto [daN] = proiez. di Vx e Vy sulla normale all'asse neutro Ved Vcd Taglio compressione resistente [daN] lato calcestruzzo [formula (4.1.28)NTC]

Vwd Taglio resistente [daN] assorbito dalle staffe

Altezza utile media pesata sezione ortogonale all'asse neutro | Braccio coppia interna [cm] d|z

La resistenza dei pilastri è calcolata assumendo il valore di z (coppia interna))

I pesi della media sono le lunghezze delle strisce (Sono esluse le strisce totalmente non compresse).

Larghezza media resistente a taglio [cm] misurate parallel. all'asse neutro bw E' data dal rapporto tra l'area delle sopradette strisce resistenti e Dmed. Cotangente dell'angolo di inclinazione dei puntoni di calcestruzzo Ctg Acw Coefficiente maggiorativo della resistenza a taglio per compressione Ast Area staffe+legature strettam. necessarie a taglio per metro di pil.[cm²/m] A.Eff Area staffe+legature efficaci nella direzione del taglio di combinaz [cm²/m]

Tra parentesi è indicata la quota dell'area relativa alle sole legature. L'area della legatura è ridotta col fattore L/d_max con L=lungh.legat.proiettata sulla direz. del taglio e d max= massima altezza utile nella direz.del taglio.

A.Eff $N^{\circ}Comb$ Ver Ved Vcd Vwd $d \mid z$ Ctg Acw Ast

Collegamento viario compreso tra lo Svincolo della S.S. 514 di "Chiaromonte" con la S.S. 115 e lo Svincolo della "Ragusana"

PROGETTO ESECUTIVO

Direzione Progettazione e Realizzazione Lavori

RELAZIONE DI CALCOLO

1	S	12557	3604985	632738146.1 126.8	937.8	2.500	1.109	1.0	51.0(7.8)
2	S	18688	1234796	345726181.5 135.2	316.9	2.500	1.054	1.4	26.1(1.4)
3	S	12823	3465021	636341146.0 126.9	910.5	2.500	1.097	1.0	51.3(7.9)
4	S	10509	1237120	345233181.2 134.7	318.2	2.500	1.056	8.0	26.2(1.4)
5	S	18537	4515950	852543147.0 131.3	1146.9	2.500	1.097	1.4	66.4(15.2)
6	S	61108	3032005	655804145.9 127.8	821.7	2.500	1.056	4.9	52.4(8.2)
7	S	188930	4483413	1054608146.9 135.5	1158.0	2.500	1.045	14.3	79.6(19.2)
8	S	208344	4479790	1058760146.9 135.7	1158.0	2.500	1.043	15.7	79.8(19.2)
9	S	82568	4409169	915869147.0 134.5	1147.9	2.500	1.045	6.3	69.6(16.2)
10	S	103091	4390650	894459147.1 134.6	1144.0	2.500	1.043	7.8	68.0(15.7)
11	S	30313	4488498	1089243146.9 135.8	1157.2	2.500	1.044	2.3	82.0(19.9)
12	S	49794	4490983	1104895146.9 136.0	1157.2	2.500	1.044	3.7	83.0(20.2)
13	S	123530	4482723	1054128146.9 135.5	1158.0	2.500	1.045	9.3	79.5(19.2)
14	S	142942	4480619	1059908146.9 135.7	1158.0	2.500	1.043	10.8	79.9(19.3)
15	S	53732	4414589	924912147.0 134.5	1149.2	2.500	1.044	4.1	70.3(16.4)
16	S	73999	4395509	899241147.1 134.5	1145.2	2.500	1.043	5.6	68.3(15.8)
17	S	14655	4487571	1075277146.9 135.7	1158.1	2.500	1.044	1.1	81.0(19.6)
18	S	34150	4488021	1083828146.9 135.8	1158.1	2.500	1.043	2.6	81.6(19.8)
19	S	8420	4349512	737497147.3 131.7	1101.7	2.500	1.097	0.7	57.3(11.3)
20	S	19121	1196007	344309191.4 142.3	291.2	2.500	1.056	1.4	24.7(1.2)

9.1.2 Verifica allo SLE sezione di spiccato

COMBINAZIONI RARE IN ESERCIZIO - MASSIME TENSIONI NORMALI ED APERTURA FESSURE (NTC/EC2)

Ver	S = comb. verificata/ N = comb. non verificata
Sc max	Massima tensione (positiva se di compressione) nel calcestruzzo [daN/cm²]
Xc max, Yc max	Ascissa, Ordinata [cm] del punto corrisp. a Sc max (sistema rif. X,Y,O)
Ss min	Minima tensione (negativa se di trazione) nell'acciaio [daN/cm²]
Xs min, Ys min	Ascissa, Ordinata [cm] della barra corrisp. a Ss min (sistema rif. X,Y,O)
Ac eff.	Area di calcestruzzo [cm²] in zona tesa considerata aderente alle barre
As eff.	Area barre [cm²] in zona tesa considerate efficaci per l'apertura delle fessure
Comb Ver Sc	may Yomay Yomay Semin Yemin Vemin Acaff Asaff

N°Comb	Ver	Sc max	Xc max	Yc max	Ss min	Xs min	Ys min	Ac eff.	As eff.
1	S	24.3	539.7	86.5	-21	-527.6	-83.5	324	19.4
2	S	11.1	-551.3	-83.6	2	555.2	77.5		
3	S	23.2	539.7	86.5	-44	-527.6	-83.5	1023	54.8
4	S	9.2	-551.3	-83.6	34	555.2	77.5		
5	S	29.0	527.8	87.5	-137	-527.6	-83.5	3800	130.8
6	S	12.9	-539.7	86.5	-20	527.6	-83.5	754	40.7

COMBINAZIONI RARE IN ESERCIZIO - APERTURA FESSURE [§ 7.3.4 EC2]

La sezior	ie viene assunta sempre te	ssurata anche nei cas	io in cui la trazione mi	nima dei caicestruzzo si	a interiore a tctm
Esito dell	a verifica				

e1	Massima deformazione unitaria di trazione nel calcestruzzo (trazione -) valutata in sezione fessurata
e2	Minima deformazione unitaria di trazione nel calcestruzzo (trazione -) valutata in sezione fessurata
k1	= 0.8 per barre ad aderenza migliorata [eq.(7.11)EC2]

= 0.4 per comb. quasi permanenti / = 0.6 per comb.frequenti [cfr. eq.(7.9)EC2] = 0.5 per flessione; =(e1 + e2)/(2*e1) per trazione eccentrica [eq.(7.13)EC2] = 3.400 Coeff. in eq.(7.11) come da annessi nazionali k2 k3

k4 = 0.425 Coeff. in eq.(7.11) come da annessi nazionali Diametro [mm] equivalente delle barre tese comprese nell'area efficace Ac eff [eq.(7.11)EC2] Ø Cf

Copriferro [mm] netto calcolato con riferimento alla barra più tesa Differenza tra le deformazioni medie di acciaio e calcestruzzo [(7.8)EC2 e (C4.1.7)NTC] e sm - e cm

Tra parentesi: valore minimo = 0.6 Smax / Es [(7.9)EC2 e (C4.1.8)NTC]

Massima distanza tra le fessure [mm] sr max

Apertura fessure in mm calcolata = sr max*(e_sm - e_cm) [(7.8)EC2 e (C4.1.7)NTC]. Valore limite tra parentesi wk

Mx fess. Componente momento di prima fessurazione intorno all'asse X [daNm] Componente momento di prima fessurazione intorno all'asse Y [daNm] My fess.

Ver.

Collegamento viario compreso tra lo Svincolo della S.S. 514 di "Chiaromonte" con la S.S. 115 e lo Svincolo della "Ragusana"

PROGETTO ESECUTIVO

Direzione Progettazione e Realizzazione Lavori

RELAZIONE DI CALCOLO

Comb.	Ver	e1	e2	k2	Ø	Cf	e sm - e cm sr max		wk	Mx fess	My fess
1	S	-0.00001	0.00000	0.500	28.8	25	0.00001 (0.00001)	167	0.001 (990.00)	6593072	35469869
2	S	0.00000	0.00000				`		0.000 (990.00)	0	0
3	S	-0.00002	0.00000	0.500	29.6	25	0.00001 (0.00001)	179	0.002 (990.00)	3811830	20065849
4	S	0.00000	0.00000				`		0.000 (990.00)	0	0
5	S	-0.00007	0.00000	0.500	29.6	25	0.00004 (0.00004)	231	0.009 (990.00)	2468578	6457870
6	S	-0.00001	0.00000	0.500	29.4	25	0.00001 (0.00001)	178	0.001 (990.00)	4206313	-24149462

COMBINAZIONI FREQUENTI IN ESERCIZIO - MASSIME TENSIONI NORMALI ED APERTURA FESSURE (NTC/EC2)

N°Comb	Ver	Sc max	Xc max	Yc max	Ss min	Xs min	Ys min	Ac eff.	As eff.
1	S	20.1	527.8	87.5	4	-527.6	-83.5	0	0.0
2	S	10.7	-551.3	-83.6	12	555.2	77.5		
3	S	20.7	527.8	87.5	-5	-527.6	-83.5	146	7.1
4	S	10.4	-551.3	-83.6	16	555.2	77.5		

COMBINAZIONI FREQUENTI IN ESERCIZIO - APERTURA FESSURE [§ 7.3.4 EC2]

Comb.	Ver	e1	e2	k2	Ø	Cf	e sm - e cm s	sr max	wk	Mx fess	My fess
1	S	0.00000	0.00000	0.500	29.4	25	0.00001 (0.00001)	0	0.002 (0.40)1	11120801	403244942
2	S	0.00000	0.00000				·		0.000 (0.40)	0	0
3	S	-0.00001	0.00000	0.500	30.0	25	0.00000 (0.00000)	190	0.000 (0.40)	15253726	60934887
4	S	0.00000	0.00000				·		0.000 (0.40)	0	0

COMBINAZIONI QUASI PERMANENTI IN ESERCIZIO - MASSIME TENSIONI NORMALI ED APERTURA FESSURE (NTC/EC2)

As eff.	Ac eff.	Ys min	Xs min	Ss min	Yc max	Xc max	Sc max	Ver	N°Comb
0.0	0	-83.5	-527.6	3	87.5	527.8	12.5	S	1
		26.2	-595.1	89	-32.8	598.0	6.3	S	2

COMBINAZIONI QUASI PERMANENTI IN ESERCIZIO - APERTURA FESSURE [§ 7.3.4 EC2]

Comb.	Ver	e1	e2	k2	Ø	Cf	e sm - e cm sr	max	wk	Mx fess	My fess
1	S	0.00000	0.00000	0.500	30.0	25	0.00000 (0.00000)	0	0.001 (0.30)10	2809972	62021273
2	S	0.00000	0.00000				` <u></u>		0.000 (0.30)	0	0

Realizzazione Lavori

Collegamento viario compreso tra lo Svincolo della S.S. 514 di "Chiaromonte" con la S.S. 115 e lo Svincolo della "Ragusana"

PROGETTO ESECUTIVO

RELAZIONE DI CALCOLO

VERIFICA SEZIONE SPICCATO PILA 2

9.2.1 Verifica allo SLU sezione di spiccato

Condizione di carico	N [kg]	Mx [kgm]	My [kgm]	Azione Baricentrica	Tipo	Sd/Sr
1	-3157539.0	396817.0	3208503.0	Baricentrica	N costante	0.12
2	-1950222.0	-57720.0	-1101536.0	Baricentrica	N costante	0.04
3	-2891873.0	449040.0	3683149.0	Baricentrica	N costante	0.14
4	-1985096.0	19660.0	-160085.0	Baricentrica	N costante	0.01
5	-2891602.0	806775.0	2685726.0	Baricentrica	N costante	0.17
6	-1985116.0	415865.0	-754580.0	Baricentrica	N costante	0.08
25	-1585321.0	3495325.0	2017907.0	Baricentrica	N costante	0.65
26	-1473221.0	-3395251.0	-1404657.0	Baricentrica	N costante	0.64
27	-1565041.0	1691400.0	3641221.0	Baricentrica	N costante	0.35
28	-1493501.0	-1591327.0	-3027971.0	Baricentrica	N costante	0.32
29	-1529698.0	317882.0	317086.0	Baricentrica	N costante	0.06
30	-1528467.0	219309.0	163231.0	Baricentrica	N costante	0.04
43	-2892117.0	366347.0	2709946.0	Baricentrica	N costante	0.11
44	-1985631.0	-24563.0	-730359.0	Baricentrica	N costante	0.03

Figura 22 - disposizione schematica armature

VERIFICHE A TAGLIO

Diam. Staffe: 14 mm Diam. Legature: 8 mm

20.0 cm [Passo massimo di normativa = 25.0 cm] Passo staffe e legature:

S = comb. verificata a taglio / N = comb. non verificata Ver

Ved Taglio di progetto [daN] = proiez. di Vx e Vy sulla normale all'asse neutro Taglio compressione resistente [daN] lato calcestruzzo [formula (4.1.28)NTC] Vcd

Vwd Taglio resistente [daN] assorbito dalle staffe

Altezza utile media pesata sezione ortogonale all'asse neutro | Braccio coppia interna [cm] d|z

La resistenza dei pilastri è calcolata assumendo il valore di z (coppia interna))

I pesi della media sono le lunghezze delle strisce.(Sono esluse le strisce totalmente non compresse).

Larghezza media resistente a taglio [cm] misurate parallel. all'asse neutro bw E' data dal rapporto tra l'area delle sopradette strisce resistenti e Dmed. Cotangente dell'angolo di inclinazione dei puntoni di calcestruzzo Ctg Coefficiente maggiorativo della resistenza a taglio per compressione Acw Area staffe+legature strettam. necessarie a taglio per metro di pil.[cm²/m] Ast A.Eff Area staffe+legature efficaci nella direzione del taglio di combinaz.[cm²/m] Tra parentesi è indicata la quota dell'area relativa alle sole legature. L'area della legatura è ridotta col fattore L/d_max con L=lungh.legat.proiettata sulla direz. del taglio e d_max= massima altezza utile nella direz.del taglio.

A.Eff N°Comb Ver Ved Vcd Vwd $d \mid z$ Ctg Acw Ast

MANDATARIA:

MANDANTI:

Collegamento viario compreso tra lo Svincolo della S.S. 514 di "Chiaromonte" con la S.S. 115 e lo Svincolo della "Ragusana"

PROGETTO ESECUTIVO

Direzione Progettazione e Realizzazione Lavori

RELAZIONE DI CALCOLO

1	S	15015	1726074	434467144.7 108.5	707.7	2.500	1.150	1.4	40.9(4.7)
2	S	323	930035	313255187.4 129.0	344.9	2.500	1.070	0.0	24.8(1.2)
3	S	16446	1747410	453274144.1 109.9	718.4	2.500	1.133	1.5	42.1(4.9)
4	S	42283	2939757	16245071105.8 1013.2	138.5	2.500	1.072	0.4	16.4(0.0)
5	S	14555	3164484	724108147.5 127.6	1120.8	2.500	1.133	1.2	58.0(12.6)
6	S	40505	3021917	739665147.4 130.5	1105.7	2.500	1.072	3.2	57.9(12.6)
7	S	391367	3186251	1009901146.7 132.6	1160.9	2.500	1.059	30.2	77.8(18.6)
8	S	395779	3185185	1022052146.7 132.9	1162.0	2.500	1.056	30.4	78.6(18.9)
9	S	190867	3124656	874314146.9 131.3	1150.7	2.500	1.059	14.9	68.1(15.7)
10	S	194903	3123461	883585146.9 131.5	1151.2	2.500	1.056	15.2	68.7(15.9)
11	S	29941	3195212	1046866146.7 133.1	1162.3	2.500	1.058	2.3	80.4(19.4)
12	S	35057	3204051	1089984146.7 133.5	1161.6	2.500	1.057	2.7	83.4(20.3)
13	S	256039	3185465	1006464146.7 132.6	1161.6	2.500	1.059	19.7	77.6(18.6)
14	S	260456	3186657	1023476146.7 132.9	1162.0	2.500	1.056	20.0	78.7(18.9)
15	S	124912	3124102	874843146.9 131.3	1150.7	2.500	1.058	9.7	68.1(15.7)
16	S	129056	3124840	885674146.9 131.5	1151.3	2.500	1.057	10.0	68.9(15.9)
17	S	14352	3174322	985739146.7 132.4	1160.4	2.500	1.058	1.1	76.1(18.1)
18	S	19534	3190571	1036622146.7 133.0	1161.3	2.500	1.057	1.5	79.7(19.2)
19	S	10876	1784493	460532143.6 110.1	732.2	2.500	1.133	1.0	42.7(5.1)
20	S	1805	915666	330818214.1 149.5	292.5	2.500	1.072	0.1	22.6(0.9)

9.2.2 Verifica allo SLE sezione di spiccato

COMBINAZIONI RARE IN ESERCIZIO - MASSIME TENSIONI NORMALI ED APERTURA FESSURE (NTC/EC2)

Ver S = comb. verificata/ N = comb. non verificata

Sc max Massima tensione (positiva se di compressione) nel calcestruzzo [daN/cm²] Xc max, Yc max Ascissa, Ordinata [cm] del punto corrisp. a Sc max (sistema rif. X,Y,O) Minima tensione (negativa se di trazione) nell'acciaio [daN/cm²] Ss min Ascissa, Ordinata [cm] della barra corrisp. a Ss min (sistema rif. X,Y,O) Xs min, Ys min Ac eff. Area di calcestruzzo [cm²] in zona tesa considerata aderente alle barre Area barre [cm²] in zona tesa considerate efficaci per l'apertura delle fessure As eff.

N°Comb	Ver	Sc max	Xc max `	Yc max	Ss min	Xs min	Ys min	Ac eff.	As eff.
1	S	21.5	539.7	86.5	2	-527.6	-83.5	0	0.0
2	S	9.4	-551.3	-83.6	6	555.2	77.5		
3	S	21.2	539.7	86.5	-32	-527.6	-83.5	774	49.5
4	S	7.0	-588.4	-54.7	47	587.8	47.5		
5	S	25.5	527.8	87.5	-99	-527.6	-83.5	2965	183.8
6	S	12.9	-527.8	87.5	-41	527.6	-83.5	2198	148.4

COMBINAZIONI RARE IN ESERCIZIO - APERTURA FESSURE [§ 7.3.4 EC2]

La sezione viene assunta sempre fessurata anche nel caso in cui la trazione minima del calcestruzzo sia inferiore a fctm

Esito della verifica Ver.

Massima deformazione unitaria di trazione nel calcestruzzo (trazione -) valutata in sezione fessurata e1 e2 Minima deformazione unitaria di trazione nel calcestruzzo (trazione -) valutata in sezione fessurata

= 0.8 per barre ad aderenza migliorata [eq.(7.11)EC2] k1

= 0.4 per comb. quasi permanenti / = 0.6 per comb.frequenti [cfr. eq.(7.9)EC2] kt k2 = 0.5 per flessione; =(e1 + e2)/(2*e1) per trazione eccentrica [eq.(7.13)EC2]

= 3.400 Coeff. in eq.(7.11) come da annessi nazionali k3 = 0.425 Coeff. in eq.(7.11) come da annessi nazionali k4

Ø Diametro [mm] equivalente delle barre tese comprese nell'area efficace Ac eff [eq.(7.11)EC2] Cf Copriferro [mm] netto calcolato con riferimento alla barra più tesa

Differenza tra le deformazioni medie di acciaio e calcestruzzo [(7.8)EC2 e (C4.1.7)NTC] e sm - e cm

Tra parentesi: valore minimo = 0.6 Smax / Es [(7.9)EC2 e (C4.1.8)NTC]

sr max Massima distanza tra le fessure [mm]

Apertura fessure in mm calcolata = sr max*(e_sm - e_cm) [(7.8)EC2 e (C4.1.7)NTC]. Valore limite tra parentesi wk

Mx fess. Componente momento di prima fessurazione intorno all'asse X [daNm] My fess. Componente momento di prima fessurazione intorno all'asse Y [daNm]

Collegamento viario compreso tra lo Svincolo della S.S. 514 di "Chiaromonte" con la S.S. 115 e lo Svincolo della "Ragusana"

PROGETTO ESECUTIVO

Direzione Progettazione e Realizzazione Lavori

RELAZIONE DI CALCOLO

Comb.	Ver	e1	e2	k2	Ø	Cf	e sm - e cm	sr max	wk	Mx fess	My fess
1	S	0.00000	0.00000	0.000	.0	25	0.00000 (0.00000)	0	0.002 (990.00)	32043111	298083883
2	S	0.00000	0.00000						0.000 (990.00)	0	0
3	S	-0.00002	0.00000	0.500	30.0	25	0.00001 (0.00001)	165	0.002 (990.00)	3140267	27521941
4	S	0.00000	0.00000				`		0.000 (990.00)	0	0
5	S	-0.00005	0.00000	0.500	30.0	25	0.00003 (0.00003)	167	0.005 (990.00)	2219301	8240458
6	S	-0.00002	0.00000	0.500	30.0	25	0.00001 (0.00001)	161	0.002 (990.00)	2444290	-10386547

COMBINAZIONI FREQUENTI IN ESERCIZIO - MASSIME TENSIONI NORMALI ED APERTURA FESSURE (NTC/EC2)

As eff.	Ac eff.	Ys min	Xs min	Ss min	Yc max	Xc max	Sc max	Ver	N°Comb
		-83.5	-527.6	47	86.5	539.7	15.8	S	1
		77.5	555.2	6	-83.6	-551.3	9.8	S	2
		-83.5	-527.6	32	86.5	539.7	16.8	S	3
		77.5	555.2	15	-83 6	-551.3	92	S	4

COMBINAZIONI FREQUENTI IN ESERCIZIO - APERTURA FESSURE [§ 7.3.4 EC2]

Comb.	Ver	e1	e2	k2	Ø	Cf	e sm - e cm sr ma	x wk	Mx fess	My fess
1	S	0.00000	0.00000					- 0.000 (0.40)	0	0
2	S	0.00000	0.00000					0.000 (0.40)	0	0
3	S	0.00000	0.00000					- 0.000 (0.40)	0	0
4	S	0.00000	0.00000					0.000 (0.40)	0	0

COMBINAZIONI QUASI PERMANENTI IN ESERCIZIO - MASSIME TENSIONI NORMALI ED APERTURA FESSURE (NTC/EC2)

As eff.	Ac eff.	Ys min	Xs min	Ss min	Yc max	Xc max	Sc max	Ver	N°Comb
		-83.5	-527.6	48	87.5	527.8	8.0	S	1
		77.5	-555.2	78	-78.8	562.3	5.9	S	2

COMBINAZIONI QUASI PERMANENTI IN ESERCIZIO - APERTURA FESSURE [§ 7.3.4 EC2]

Comb.	Ver	e1	e2	k2	Ø	Cf	e sm - e cm sr max	wk	Mx fess	My fess
1	S	0.00000	0.00000					0.000 (0.30)	0	0
2	S	0.00000	0.00000					0 000 (0 30)	0	0

Collegamento viario compreso tra lo Svincolo della S.S. 514 di "Chiaromonte" con la S.S. 115 e lo Svincolo della "Ragusana"

PROGETTO ESECUTIVO

Direzione Progettazione e Realizzazione Lavori

RELAZIONE DI CALCOLO

VERIFICA SEZIONE SPICCATO PILA 3

9.3.1 Verifica allo SLU sezione di spiccato

Condizione di carico	N [kg]	Mx [kgm]	My [kgm]	Azione Baricentrica	Tipo	Sd/Sr
1	-3162070.0	352660.0	3172974.0	Baricentrica	$\alpha(N,Mx,My)$	0.15
2	-1951897.0	-130398.0	-1169274.0	Baricentrica	$\alpha(N,Mx,My)$	0.08
3	-2896592.0	460353.0	3590006.0	Baricentrica	$\alpha(N,Mx,My)$	0.15
4	-1987343.0	-25477.0	-244603.0	Baricentrica	$\alpha(N,Mx,My)$	0.07
5	-2896876.0	752837.0	2573836.0	Baricentrica	$\alpha(N,Mx,My)$	0.16
6	-1987738.0	328305.0	-880224.0	Baricentrica	$\alpha(N,Mx,My)$	0.09
25	-1587660.0	3491206.0	2153639.0	Baricentrica	$\alpha(N,Mx,My)$	0.56
26	-1474397.0	-3585743.0	-1537863.0	Baricentrica	$\alpha(N,Mx,My)$	0.58
27	-1567118.0	1955527.0	3635148.0	Baricentrica	$\alpha(N,Mx,My)$	0.29
28	-1494939.0	-2050064.0	-3019372.0	Baricentrica	$\alpha(N,Mx,My)$	0.30
29	-1532502.0	217031.0	285118.0	Baricentrica	$\alpha(N,Mx,My)$	0.06
30	-1529669.0	108241.0	136923.0	Baricentrica	$\alpha(N,Mx,My)$	0.06
43	-2896562.0	318515.5	2666327.0	Rif. Assoluto	$\alpha(N,Mx,My)$	0.13
44	-1987425.0	-106085.7	-787733.0	Rif. Assoluto	$\alpha(N,Mx,My)$	0.08

Figura 23 - disposizione schematica armature

VERIFICHE A TAGLIO

Diam. Staffe: 14 mm Diam. Legature: 8 mm

Passo staffe e legature: 20.0 cm [Passo massimo di normativa = 25.0 cm]

Ver S = comb. verificata a taglio / N = comb. non verificata

Taglio di progetto [daN] = proiez. di Vx e Vy sulla normale all'asse neutro Ved Taglio compressione resistente [daN] lato calcestruzzo [formula (4.1.28)NTC] Vcd

Vwd Taglio resistente [daN] assorbito dalle staffe

Altezza utile media pesata sezione ortogonale all'asse neutro | Braccio coppia interna [cm] d|z

La resistenza dei pilastri è calcolata assumendo il valore di z (coppia interna))

I pesi della media sono le lunghezze delle strisce (Sono esluse le strisce totalmente non compresse).

Larghezza media resistente a taglio [cm] misurate parallel. all'asse neutro bw E' data dal rapporto tra l'area delle sopradette strisce resistenti e Dmed. Cotangente dell'angolo di inclinazione dei puntoni di calcestruzzo Ctg Acw Coefficiente maggiorativo della resistenza a taglio per compressione Ast Area staffe+legature strettam. necessarie a taglio per metro di pil.[cm²/m] Area staffe+legature efficaci nella direzione del taglio di combinaz.[cm²/m] A.Eff

Tra parentesi è indicata la quota dell'area relativa alle sole legature. L'area della legatura è ridotta col fattore L/d_max con L=lungh.legat.proiettata sulla direz. del taglio e d_max= massima altezza utile nella direz.del taglio.

Collegamento viario compreso tra lo Svincolo della S.S. 514 di "Chiaromonte" con la S.S. 115 e lo Svincolo della "Ragusana"

PROGETTO ESECUTIVO

Direzione Progettazione e Realizzazione Lavori

RELAZIONE DI CALCOLO

N°Comb	Ver	Ved	Vcd	Vwd	d z	bw	Ctg	Acw	Ast	A.Eff
1	S	17381	2163264	448009147.	1 113.0	632.1	2.500	1.107	1.6	40.5(4.6)
2	S	5767	1321520	345491171.3	3 126.1	365.1	2.500	1.050	0.5	28.0(1.7)
3	S	16191	2273877	479397145.5	5 114.3	664.4	2.500	1.095	1.4	42.9(5.1)
4	S	24295	1367221	437852280.0	223.0	213.3	2.500	1.051	1.1	20.1(0.5)
5	S	12893	4396050	769311147.4	4 131.0	1121.2	2.500	1.095	1.0	60.0(13.3)
6	S	39628	2940596	628915145.4	1 125.5	814.8	2.500	1.051	3.2	51.2(7.9)
7	S	425694	4470232	1046190146.9	9 135.5	1157.7	2.500	1.042	32.1	78.9(19.0)
8	S	421268	4468553	1056437146.9	9 135.7	1157.9	2.500	1.040	31.7	79.6(19.2)
9	S	244403	4411480	945282146.9	9 134.3	1153.3	2.500	1.042	18.6	72.0(16.9)
10	S	239550	4414177	957548146.9	134.5	1153.9	2.500	1.040	18.2	72.8(17.1)
11	S	24673	4477367	1087898146.9	9 135.9	1157.2	2.500	1.041	1.9	81.8(19.9)
12	S	29984	4476745	1086778146.9	135.9	1157.2	2.500	1.041	2.3	81.7(19.8)
13	S	280052	4468198	1043031146.9	9 135.5	1157.7	2.500	1.042	21.1	78.7(18.9)
14	S	275622	4469837	1057859146.9	9 135.7	1157.9	2.500	1.040	20.8	79.7(19.2)
15	S	161575	4406536	942975146.9	9 134.3	1152.3	2.500	1.041	12.3	71.8(16.8)
16	S	156771	4415762	959613146.9	9 134.5	1153.9	2.500	1.041	11.9	72.9(17.2)
17	S	9485	4453734	1014817146.9	9 135.2	1157.3	2.500	1.041	0.7	76.7(18.3)
18	S	14885	4474223	1067980146.9	9 135.7	1158.0	2.500	1.041	1.1	80.4(19.4)
19	S	14357	2165590	460559146.8	3 114.1	634.3	2.500	1.095	1.3	41.3(4.8)
20	S	8474	1431247	365883163.8		408.4	2.500	1.051	0.7	30.7(2.4)

Verifica allo SLE sezione di spiccato

COMBINAZIONI RARE IN ESERCIZIO - MASSIME TENSIONI NORMALI ED APERTURA FESSURE (NTC/EC2)

Ver S = comb. verificata/ N = comb. non verificata

Massima tensione (positiva se di compressione) nel calcestruzzo [daN/cm²] Sc max Xc max, Yc max Ascissa, Ordinata [cm] del punto corrisp. a Sc max (sistema rif. X,Y,O) Ss min Minima tensione (negativa se di trazione) nell'acciaio [daN/cm²] Xs min. Ys min Ascissa, Ordinata [cm] della barra corrisp. a Ss min (sistema rif. X,Y,O) Area di calcestruzzo [cm²] in zona tesa considerata aderente alle barre Ac eff. As eff. Area barre [cm²] in zona tesa considerate efficaci per l'apertura delle fessure

N°Comb	Ver	Sc max	Xc max	Yc max	Ss min	Xs min	Ys min	Ac eff.	As eff.
1	S	20.8	539.7	86.5	12	-527.6	-83.5		
2	S	10.3	-551.3	-83.6	-7	555.2	77.5	387	21.2
3	S	21.0	539.7	86.5	-29	-527.6	-83.5	698	42.4
4	S	7.5	-551.3	-83.6	39	555.2	77.5		
5	S	24.2	527.8	87.5	-79	-527.6	-83.5	2307	155.5
6	S	11.8	-539 7	86.5	-23	527 6	-83 5	1099	70.7

COMBINAZIONI RARE IN ESERCIZIO - APERTURA FESSURE [§ 7.3.4 EC2]

La sezione viene assunta sempre fessurata anche nel caso in cui la trazione minima del calcestruzzo sia inferiore a fctm

Esito della verifica Ver.

e1 Massima deformazione unitaria di trazione nel calcestruzzo (trazione -) valutata in sezione fessurata e2 Minima deformazione unitaria di trazione nel calcestruzzo (trazione -) valutata in sezione fessurata

k1 = 0.8 per barre ad aderenza migliorata [eq.(7.11)EC2]

= 0.4 per comb. quasi permanenti / = 0.6 per comb.frequenti [cfr. eq.(7.9)EC2] kt k2

= 0.5 per flessione; =(e1 + e2)/(2*e1) per trazione eccentrica [eq.(7.13)EC2] = 3.400 Coeff. in eq.(7.11) come da annessi nazionali k3 = 0.425 Coeff. in eq.(7.11) come da annessi nazionali k4

Diametro [mm] equivalente delle barre tese comprese nell'area efficace Ac eff [eq.(7.11)EC2] Ø Cf Copriferro [mm] netto calcolato con riferimento alla barra più tesa

Differenza tra le deformazioni medie di acciaio e calcestruzzo [(7.8)EC2 e (C4.1.7)NTC] e sm - e cm

Tra parentesi: valore minimo = 0.6 Smax / Es [(7.9)EC2 e (C4.1.8)NTC]

Massima distanza tra le fessure [mm] sr max

Apertura fessure in mm calcolata = sr max*(e_sm - e_cm) [(7.8)EC2 e (C4.1.7)NTC]. Valore limite tra parentesi

Mx fess. Componente momento di prima fessurazione intorno all'asse X [daNm] My fess. Componente momento di prima fessurazione intorno all'asse Y [daNm]

Collegamento viario compreso tra lo Svincolo della S.S. 514 di "Chiaromonte" con la S.S. 115 e lo Svincolo della "Ragusana"

PROGETTO ESECUTIVO

Direzione Progettazione e Realizzazione Lavori

RELAZIONE DI CALCOLO

Comb.	Ver	e1	e2	k2	Ø	Cf	e sm - e cm sr max	wk	Mx fess	My fess
1	S	0.00000	0.00000					0.000 (990.00)	0	0
2	S	0.00000	0.00000	0.500	30.0	25	0.00000 (0.00000) 178	0.000 (990.00)	-5366674	-78783029
3	S	-0.00002	0.00000	0.500	30.0	25	0.00001 (0.00001) 169	0.001 (990.00)	4206888	35866612
4	S	0.00000	0.00000				`	0.000 (990.00)	0	0
5	S	-0.00004	0.00000	0.500	30.0	25	0.00002 (0.00002) 161	0.004 (990.00)	3087570	11899113
6	S	-0.00001	0.00000	0.500	30.0	25	0.00001 (0.00001) 164	0.001 (990.00)	3839702	-22109654

COMBINAZIONI FREQUENTI IN ESERCIZIO - MASSIME TENSIONI NORMALI ED APERTURA FESSURE (NTC/EC2)

N°Comb	Ver	Sc max	Xc max	Yc max	Ss min	Xs min	Ys min	Ac eff.	As eff.
1	S	14.3	551.3	83.6	69	-555.2	-77.5		
2	S	11.2	-539.7	-86.5	-15	527.6	83.5	669	42.4
3	S	15.6	539.7	86.5	50	-544.3	-80.2		
4	S	10.4	-539.7	-86.5	-3	527.6	83.5	155	7.1

COMBINAZIONI FREQUENTI IN ESERCIZIO - APERTURA FESSURE [§ 7.3.4 EC2]

Comb.	Ver	e1	e2	k2	Ø	Cf	e sm - e cm s	sr max	wk	Mx fess	My fess
1	S	0.00000	0.00000						0.000 (0.40)	0	0
2	S	-0.00001	0.00000	0.500	30.0	25	0.00000 (0.00000)	165	0.001 (0.40)	-4262056	-38517292
3	S	0.00000	0.00000				` <u></u>		0.000 (0.40)	0	0
4	S	0.00000	0.00000	0.500	30.0	25	0.00000 (0.00000)	197	0.000 (0.40) -	-10677416-	103867121

COMBINAZIONI QUASI PERMANENTI IN ESERCIZIO - MASSIME TENSIONI NORMALI ED APERTURA FESSURE (NTC/EC2)

As eff.	Ac eff.	Ys min	Xs min	Ss min	Yc max	Xc max	Sc max	Ver	N°Comb
		-77.5	-555.2	72	83.6	551.3	6.3	S	1
		83.5	-527.6	54	-87.5	527.8	7.6	S	2

COMBINAZIONI QUASI PERMANENTI IN ESERCIZIO - APERTURA FESSURE [§ 7.3.4 EC2]

Comb.	Ver	e1	e2	k2	Ø	Ct	e sm - e cm sr max	wk	Mx tess	My tess
1	S	0.00000	0.00000					0.000 (0.30)	0	0
2	S	0.00000	0.00000					0.000 (0.30)	0	0

Collegamento viario compreso tra lo Svincolo della S.S. 514 di "Chiaromonte" con la S.S. 115 e lo Svincolo della "Ragusana"

PROGETTO ESECUTIVO

RELAZIONE DI CALCOLO

Direzione Progettazione e Realizzazione Lavori

VERIFICA SEZIONE SPICCATO PILA 4

9.4.1 Verifica allo SLU sezione di spiccato

Condizione di carico	N [kg]	Mx [kgm]	My [kgm]	Azione Baricentrica	Tipo	Sd/Sr
1	-3164205.0	413420.0	2691559.0	Baricentrica	N costante	0.14
2	-2013959.0	-338582.0	-1592605.0	Baricentrica	N costante	0.11
3	-2909669.0	557298.0	2819628.0	Baricentrica	N costante	0.17
4	-2039266.0	-218039.0	-787990.0	Baricentrica	N costante	0.06
5	-2908667.0	775202.0	2101322.0	Baricentrica	N costante	0.19
6	-2039132.0	75664.0	-1250022.0	Baricentrica	N costante	0.06
25	-1596560.0	1821152.0	1527010.0	Baricentrica	N costante	0.47
26	-1541586.0	-2109466.0	-1048931.0	Baricentrica	N costante	0.55
27	-1590887.0	1175293.0	2319793.0	Baricentrica	N costante	0.32
28	-1547259.0	-1463608.0	-1841714.0	Baricentrica	N costante	0.39
29	-1576826.0	183036.0	207867.0	Baricentrica	N costante	0.05
30	-1559860.0	-114279.0	94716.0	Baricentrica	N costante	0.03
43	-2910635.0	374389.0	2161428.0	Rif. Assoluto	N costante	0.12
44	-2041100.0	-325219.8	-1189916.0	Rif. Assoluto	N costante	0.09

Figura 24 - disposizione schematica armature

VERIFICHE A TAGLIO

Diam. Staffe: 14 mm Diam. Legature: 8 mm

Passo staffe e legature: 20.0 cm [Passo massimo di normativa = 25.0 cm]

S = comb. verificata a taglio / N = comb. non verificata Ver

Taglio di progetto [daN] = proiez. di Vx e Vy sulla normale all'asse neutro Ved Vcd Taglio compressione resistente [daN] lato calcestruzzo [formula (4.1.28)NTC]

Vwd Taglio resistente [daN] assorbito dalle staffe

Altezza utile media pesata sezione ortogonale all'asse neutro | Braccio coppia interna [cm] d|z

La resistenza dei pilastri è calcolata assumendo il valore di z (coppia interna))

I pesi della media sono le lunghezze delle strisce (Sono esluse le strisce totalmente non compresse). Larghezza media resistente a taglio [cm] misurate parallel. all'asse neutro

bw E' data dal rapporto tra l'area delle sopradette strisce resistenti e Dmed. Ctg Cotangente dell'angolo di inclinazione dei puntoni di calcestruzzo Coefficiente maggiorativo della resistenza a taglio per compressione Acw Area staffe+legature strettam. necessarie a taglio per metro di pil.[cm²/m] Ast A.Eff Area staffe+legature efficaci nella direzione del taglio di combinaz.[cm²/m] Tra parentesi è indicata la quota dell'area relativa alle sole legature.

L'area della legatura è ridotta col fattore L/d_max con L=lungh.legat.proiettata sulla direz. del taglio e d_max= massima altezza utile nella direz.del taglio.

Collegamento viario compreso tra lo Svincolo della S.S. 514 di "Chiaromonte" con la S.S. 115 e lo Svincolo della "Ragusana"

PROGETTO ESECUTIVO

Direzione Progettazione e Realizzazione Lavori

RELAZIONE DI CALCOLO

N°Comb	Ver	Ved	Vcd	Vwd	d z	bw	Ctg	Acw	Ast	A.Eff
1	S	28398	2513340	501401143	.2 113.8	727.9	2.500	1.109	2.6	45.0(5.5)
2	S	22437	2261821	521835144	.9 117.6	666.8	2.500	1.055	2.0	45.4(5.6)
3	S	22599	3380756	612958145	.6 125.0	901.9	2.500	1.097	1.8	50.1(7.6)
4	S	29420	2377669	540784143	.7 117.9	698.7	2.500	1.056	2.6	46.9(5.9)
5	S	1266	4468456	813880147	.2 130.7	1139.9	2.500	1.097	0.1	63.7(14.4)
6	S	35125	1220687	371622231	.7 174.4	242.5	2.500	1.056	2.1	21.8(0.8)
7	S	435570	4481265	1054602146	.9 135.4	1157.8	2.500	1.045	32.9	79.6(19.2)
8	S	416457	4480924	1064460146	.8 135.6	1158.8	2.500	1.043	31.4	80.3(19.4)
9	S	290224	4449185	987881146	.9 134.6	1156.5	2.500	1.045	22.0	75.0(17.8)
10	S	270717	4453847	1004672146	.9 134.9	1157.0	2.500	1.043	20.5	76.1(18.1)
11	S	8945	4491124	1107762146	.9 135.9	1157.2	2.500	1.044	0.7	83.3(20.3)
12	S	27378	4419862	952891146	.9 134.2	1153.5	2.500	1.044	2.1	72.6(17.0)
13	S	288974	4479509	1051078146	.9 135.4	1157.8	2.500	1.045	21.8	79.4(19.1)
14	S	269850	4482132	1066144146	.8 135.6	1158.8	2.500	1.043	20.3	80.4(19.4)
15	S	194847	4443401	984235146	.9 134.6	1155.5	2.500	1.045	14.8	74.8(17.7)
16	S	175369	4455942	1007745146	.9 135.0	1157.1	2.500	1.043	13.3	76.3(18.2)
17	S	5383	4478277	1044325146	.8 135.3	1158.6	2.500	1.044	0.4	78.9(19.0)
18	S	13461	4483666	1076930146	.9 135.7	1158.0	2.500	1.044	1.0	81.2(19.7)
19	S	25823	2881548	551853144	.4 120.1	799.8	2.500	1.097	2.2	47.0(5.9)
20	S	21468	2928209	620981145	.2 124.9	812.1	2.500	1.056	1.8	50.8(7.8)

Verifica allo SLE sezione di spiccato 9.4.2

Ver	S = comb_verificata/ N = comb_non_verificata

Massima tensione (positiva se di compressione) nel calcestruzzo [daN/cm²] Sc max Xc max, Yc max Ascissa, Ordinata [cm] del punto corrisp. a Sc max (sistema rif. X,Y,O) Ss min Minima tensione (negativa se di trazione) nell'acciaio [daN/cm²] Xs min, Ys min Ascissa, Ordinata [cm] della barra corrisp. a Ss min (sistema rif. X,Y,O) Area di calcestruzzo [cm²] in zona tesa considerata aderente alle barre Ac eff. As eff. Area barre [cm²] in zona tesa considerate efficaci per l'apertura delle fessure

N°Comb	Ver	Sc max	Xc max	Yc max	Ss min	Xs min	Ys min	Ac eff.	As eff.
1	S	20.7	539.7	86.5	21	-527.6	-83.5		
2	S	15.1	-539.7	-86.5	-65	527.6	83.5	3237	176.7
3	S	21.1	539.7	86.5	-22	-527.6	-83.5	437	28.3
4	S	11.8	-539.7	-86.5	-9	527.6	83.5	242	14.1
5	S	23.6	527.8	87.5	-58	-527.6	-83.5	1608	113.1
6	S	8.7	-598.0	-32 8	36	595 1	26.2		

COMBINAZIONI RARE IN ESERCIZIO - APERTURA FESSURE [§ 7.3.4 EC2]

La sezione viene assunta sempre fessurata anche nel caso in cui la trazione minima del calcestruzzo sia inferiore a fctm

Esito della verifica Ver.

Massima deformazione unitaria di trazione nel calcestruzzo (trazione -) valutata in sezione fessurata e1 e2 Minima deformazione unitaria di trazione nel calcestruzzo (trazione -) valutata in sezione fessurata

k1 = 0.8 per barre ad aderenza migliorata [eq.(7.11)EC2]

= 0.4 per comb. quasi permanenti / = 0.6 per comb.frequenti [cfr. eq.(7.9)EC2] kt = 0.5 per flessione; =(e1 + e2)/(2*e1) per trazione eccentrica [eq.(7.13)EC2] k2

= 3.400 Coeff. in eq.(7.11) come da annessi nazionali k3 = 0.425 Coeff. in eq.(7.11) come da annessi nazionali k4

Ø Diametro [mm] equivalente delle barre tese comprese nell'area efficace Ac eff [eq.(7.11)EC2]

Cf Copriferro [mm] netto calcolato con riferimento alla barra più tesa

Differenza tra le deformazioni medie di acciaio e calcestruzzo [(7.8)EC2 e (C4.1.7)NTC] e sm - e cm Tra parentesi: valore minimo = 0.6 Smax / Es [(7.9)EC2 e (C4.1.8)NTC]

Massima distanza tra le fessure [mm] sr max

Apertura fessure in mm calcolata = sr max*(e_sm - e_cm) [(7.8)EC2 e (C4.1.7)NTC]. Valore limite tra parentesi

Mx fess. Componente momento di prima fessurazione intorno all'asse X [daNm] Componente momento di prima fessurazione intorno all'asse Y [daNm] My fess.

Collegamento viario compreso tra lo Svincolo della S.S. 514 di "Chiaromonte" con la S.S. 115 e lo Svincolo della "Ragusana"

PROGETTO ESECUTIVO

Direzione Progettazione e Realizzazione Lavori

RELAZIONE DI CALCOLO

Comb.	Ver	e1	e2	k2	Ø	Cf	e sm - e cm si	r max	wk	Mx fess	My fess
1	S	0.00000	0.00000						0.000 (990.00)	0	0
2	S	-0.00003	0.00000	0.500	30.0	25	0.00002 (0.00002)	178	0.003 (990.00)	-2273641	-13029617
3	S	-0.00001	0.00000	0.500	30.0	25	0.00001 (0.00001)	164	0.001 (990.00)	6191841	35054589
4	S	-0.00001	0.00000	0.500	30.0	25	0.00000 (0.00000)	172	0.000 (990.00)	-8385908	-39972420
5	S	-0.00003	0.00000	0.500	30.0	25	0.00002 (0.00002)	158	0.003 (990.00)	3934960	11969846
6	S	-0.00001	0.00000				· ,		0.000 (990.00)	3839702	-22109654

COMBINAZIONI FREQUENTI IN ESERCIZIO - MASSIME TENSIONI NORMALI ED APERTURA FESSURE (NTC/EC2)

$N^{\circ}Comb$	Ver	Sc max	Xc max	Yc max	Ss min	Xs min	Ys min	Ac eff.	As eff.
1	S	14.2	539.7	86.5	79	-544.3	-80.2		
2	S	16.3	-527.8	-87.5	-79	527.6	83.5	3899	226.2
3	S	15.6	539.7	86.5	59	-527.6	-83.5		
4	S	15.3	-527.8	-87.5	-63	527.6	83.5	3172	197.9

COMBINAZIONI FREQUENTI IN ESERCIZIO - APERTURA FESSURE [§ 7.3.4 EC2]

Comb.	Ver	e1	e2	k2	Ø	Cf	e sm - e cm s	r max	wk	Mx fess	My fess
1	S	0.00000	0.00000						0.000 (0.40)	0	0
2	S	-0.00004	0.00000	0.500	30.0	25	0.00002 (0.00002)	173	0.004 (0.40)	-2368399	-9306013
3	S	0.00000	0.00000				`		0.000 (0.40)	0	0
4	S	-0.00003	0.00000	0.500	30.0	25	0.00002 (0.00002)	167	0.003 (0.40)	-2608072	-10527366

COMBINAZIONI QUASI PERMANENTI IN ESERCIZIO - MASSIME TENSIONI NORMALI ED APERTURA FESSURE (NTC/EC2)

As eff.	Ac eff.	Ys min	Xs min	Ss min	Yc max	Xc max	Sc max	Ver	N°Comb
		26.2	-595.1	84	-32.8	598.0	6.4	S	1
		83.5	-527 6	6	-87 5	527.8	11 7	S	2

COMBINAZIONI QUASI PERMANENTI IN ESERCIZIO - APERTURA FESSURE [§ 7.3.4 EC2]

Comb.	Ver	e 1	e2	k2	Ø	Ct	e sm - e cm sr m	nax	wk	Mx tess	My tess
1	S	0.00000	0.00000						0.000 (0.30)	0	0
2	S	0.00000	0.00000						0.000 (0.30)	0	0

Realizzazione Lavori

Itinerario Ragusa - Catania

Collegamento viario compreso tra lo Svincolo della S.S. 514 di "Chiaromonte" con la S.S. 115 e lo Svincolo della "Ragusana"

PROGETTO ESECUTIVO

RELAZIONE DI CALCOLO

Collegamento viario compreso tra lo Svincolo della S.S. 514 di "Chiaromonte" con la S.S. 115 e lo

Svincolo della "Ragusana"

PROGETTO ESECUTIVO

Direzione Progettazione e Realizzazione Lavori

RELAZIONE DI CALCOLO

10 VERIFICA DEI BAGGIOLI

DATI GENERALI SEZIONE RETTANGOLARE DI PILASTRO IN C.A.

NOME SEZIONE: VALLONE DELLE COSTE

(Percorso File: C:\Users\VERDE\Desktop\VERIFICA BAGGIOLI\VALLONE DELLE COSTE.sez)

Descrizione Sezione: BAGGIOLO VALLONE DELLE COSTE

Metodo di calcolo resistenza: Resistenze in campo sostanzialmente elastico

Normativa di riferimento: N.T.C.

Tipologia sezione: Pilastro rettangolare ad armatura simmetrica

Percorso sollecitazione: A Sforzo Norm. costante

Assi x,y principali d'inerzia Riferimento Sforzi assegnati:

Riferimento alla sismicità: Comb. non sismiche

CARATTERISTICHE DI RESISTENZA DEI MATERIALI IMPIEGATI

CALCESTRUZZO - Classe: C28/35

> Resistenza compress. di progetto fcd: 158.6 daN/cm² Resistenza compress. ridotta fcd': 79.3 daN/cm²

Deform. unitaria max resistenza ec2: 0.0020 Deformazione unitaria ultima ecu: 0.0035

Parabola-Rettangolo Diagramma tensioni-deformaz.:

Modulo Elastico Normale Ec: 323080 daN/cm² Resis. media a trazione fctm: 27.6 daN/cm²

ACCIAIO -B450C Tipo:

> Resist. caratt. a snervamento fyk: 4500 daN/cm²

Resist. caratt. a rottura ftk: daN/cm² Resist. a snerv. di progetto fyd: 3913 daN/cm² Resist. ultima di progetto ftd: 3913 daN/cm² Deform. ultima di progetto Epu: 0.068 Modulo Elastico Ef: 2000000 daN/cm² Diagramma tensioni-deformaz.: Bilineare finito

CARATTERISTICHE GEOMETRICHE ED ARMATURE SEZIONE

Base: 145.0 cm Altezza: 110.0 cm N°totale barre: 48

Diametro barre: 14 mm

Copriferro (dal baric.barre): 5.0 cm

Coordinate Barre nei vertici

N°Barra X [cm]Y [cm] -67.5-50.0 1 2 -67.550.0 3 67.550.0 4 67.5-50.0

DATI GENERAZIONI LINEARI DI BARRE

N°Gen. Numero assegnato alla singola generazione lineare di barre N°Barra Ini. Numero della barra iniziale cui si riferisce la generazione N°Barra Fin. Numero della barra finale cui si riferisce la generazione

Numero di barre generate equidistanti cui si riferisce la generazione

MANDATARIA: MANDANTI:

Collegamento viario compreso tra lo Svincolo della S.S. 514 di "Chiaromonte" con la S.S. 115 e lo

Svincolo della "Ragusana"

PROGETTO ESECUTIVO

Direzione Progettazione e Realizzazione Lavori

RELAZIONE DI CALCOLO

Ø	Diametro in mm	delle barre del	la generazione
---	----------------	-----------------	----------------

N°Gen.	N°B	arra Ini.	N°B	arra Fin.	N°Barre	Ø
1	1	4	14	14		
2	2	3	14	14		
3	1	2	8	14		
4	4	3	8	14		

ARMATURE A TAGLIO

Diametro staffe: 10 mm 5.0 cm Passo staffe:

Staffe: Una sola staffa chiusa perimetrale

CALCOLO DI RESISTENZA - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

N	Sforzo normale [daN] applicato nel baricentro (posit. se di compress.)
Mx	Momento flettente [daNm] intorno all'asse x baric. della sezione
	con verso positivo se tale da comprimere il lembo sup. della sezione
My	Momento flettente [daNm] intorno all'asse y baric. della sezione
	con verso positivo se tale da comprimere il lembo destro della sezione
Vy	Taglio [daN] in direzione parallela all'asse y baric. della sezione
Vx	Taglio [daN] in direzione parallela all'asse x baric. della sezione

N°Comb. N Mx

794157418 37217 7418 37217 1

RISULTATI DEL CALCOLO

Sezione verificata per tutte le combinazioni assegnate

Copriferro netto minimo barre longitudinali: 4.3 cm Interferro netto minimo barre longitudinali: 7.6 cm Copriferro netto minimo staffe: cm

VERIFICHE DI RESISTENZA IN PRESSO-TENSO FLESSIONE ALLO STATO LIMITE SOSTANZIALMENTE **ELASTICO**

S = combinazione verificata / N = combin. non verificata Ver N Sn Sforzo normale assegnato [daN] nel baricentro sezione cls. (positivo se di compressione)

Mx Sn Componente momento assegnato [daNm] riferito all'asse x princ. d'inerzia Componente momento assegnato [daNm] riferito all'asse y princ. d'inerzia My Sn N Res Sforzo normale resistente [daN] baricentrico (positivo se di compress.) Mx Res Momento flettente resistente [daNm] riferito all'asse x princ. d'inerzia

Momento flettente resistente [daNm] riferito all'asse y princ. d'inerzia My res Mis.Sic. Misura sicurezza = rapporto vettoriale tra (N r,Mx Res,My Res) e (N,Mx,My)

Verifica positiva se tale rapporto risulta >=1.000

As Totale Area totale barre longitudinali [cm²]. [Tra parentesi il valore minimo di normativa]

N°Comb N ResMx Res My Res Ver Mx My Mis.Sic.As Totale

1 79415 741837217 7939733772 167053 4.4973.9(47.9)

METODO AGLI STATI LIMITE IN CAMPO SOSTANZIALMENTE ELASTICO - DEFORMAZIONI UNITARIE ALLO **STATO LIMITE**

Deform. unit. massima del calcestruzzo a compressione ec max Deform. unit. massima del calcestruzzo a compressione

Xc max Ascissa in cm della fibra corrisp. a ec max (sistema rif. X,Y,O sez.) Yc max Ordinata in cm della fibra corrisp. a ec max (sistema rif. X,Y,O sez.) es min Deform. unit. minima nell'acciaio (negativa se di trazione)

Xs min Ascissa in cm della barra corrisp. a es min (sistema rif. X,Y,O sez.)

MANDATARIA: MANDANTI:

Collegamento viario compreso tra lo Svincolo della S.S. 514 di "Chiaromonte" con la S.S. 115 e lo

Svincolo della "Ragusana"

PROGETTO ESECUTIVO

Direzione Progettazione e Realizzazione Lavori

RELAZIONE DI CALCOLO

Ys min Ordinata in cm della barra corrisp. a es min (sistema rif. X,Y,O sez.) Deform. unit. massima nell'acciaio (positiva se di compress.) es max Xs max Ascissa in cm della barra corrisp. a es max (sistema rif. X,Y,O sez.) Ys max Ordinata in cm della barra corrisp. a es max (sistema rif. X,Y,O sez.)

N°Comb Xc maxYc maxes min Xs min es maxXs max Ys max ec max Ys min

1 0.00082 72.555.0 0.00072 67.5 50.0 -0.00196 -67.5 -50.0

POSIZIONE ASSE NEUTRO PER OGNI COMB. DI RESISTENZA

Coeff. a, b, c nell'eq. dell'asse neutro aX+bY+c=0 nel rif. X,Y,O gen. a, b, c x/d Rapp. di duttilità (travi e solette)[§ 4.1.2.1.2.1 NTC]: deve essere < 0.45

C.Rid. Coeff. di riduz. momenti per sola flessione in travi continue

N°Comb x/d C.Rid.

1

VERIFICHE A TAGLIO

Diam. Staffe: 10 mm

Passo staffe: 5.0 cm [Passo massimo di normativa = 16.8 cm]

Ver S = comb. verificata a taglio / N = comb. non verificata

Taglio di progetto [daN] = proiez. di Vx e Vy sulla normale all'asse neutro Ved Vcd Taglio compressione resistente [daN] lato calcestruzzo [formula (4.1.28)NTC]

Vwd Taglio resistente [daN] assorbito dalle staffe

 $d \,|\, z$ Altezza utile media pesata sezione ortogonale all'asse neutro | Braccio coppia interna [cm]

La resistenza dei pilastri è calcolata assumendo il valore di z (coppia interna))

I pesi della media sono le lunghezze delle strisce. (Sono esluse le strisce totalmente non compresse).

Larghezza media resistente a taglio [cm] misurate parallel. all'asse neutro bw E' data dal rapporto tra l'area delle sopradette strisce resistenti e Dmed. Ctg Cotangente dell'angolo di inclinazione dei puntoni di calcestruzzo

Acw Coefficiente maggiorativo della resistenza a taglio per compressione Ast Area staffe+legature strettam. necessarie a taglio per metro di pil.[cm²/m] A.Eff Area staffe+legature efficaci nella direzione del taglio di combinaz.[cm²/m]

> Tra parentesi è indicata la quota dell'area relativa alle sole legature. L'area della legatura è ridotta col fattore L/d_max con L=lungh.legat.proietta-

> ta sulla direz. del taglio e d_max= massima altezza utile nella direz.del taglio.

N°Comb Ver VedVcd Vwdd | z Ctg AcwAst A.Eff

1 S 37903357576 369377133.2 | 120.2 105.5 2.500 1.031 3.231.4(0.0)

MANDATARIA:

Collegamento viario compreso tra lo Svincolo della S.S. 514 di "Chiaromonte" con la S.S. 115 e lo Svincolo della "Ragusana"

PROGETTO ESECUTIVO

RELAZIONE DI CALCOLO

11 APPOGGI E GIUNTI

Il dimensionamento degli isolatori è stato eseguito a valle delle analisi statiche e sismiche, in funzione delle azioni trasmesse dall'impalcato alle pile e alle spalle nelle diverse combinazioni di carico.

L'impalcato, è poggiato su una coppia di isolatori sulla spalla 1 e sulla spalla 2 e su una coppia di isolatori su ciascuna pila.

11.1 ISOLATORI ELASTOMERICI

L'impalcato poggia su 12 isolatori caratterizzati da una rigidezza orizzontale di 4180kN/m e con smorzamento equivalente pari al 15%.

Il tipo di elastomero da adottare, il numero di layers vanno progettati per garantire le prestazioni richieste in termini di rigidezza verticale, rigidezza orizzontale ed escursione massima.

11.1.1 Azioni sugli isolatori

Di seguito sono le azioni trasmesse agli isolatori dalla sovrastruttura. Le azioni sugli isolatori sono identificate come segue:

p: azione verticale

V2: azione orizzontale in direzione longitudinale

V3: azione orizzontale trasversale

U3: spostamento longitudinale

Le unità di misura sono (kN; m)

MANDATARIA:

Direzione Progettazione e

Realizzazione Lavori

Itinerario Ragusa - Catania

Collegamento viario compreso tra lo Svincolo della S.S. 514 di "Chiaromonte" con la S.S. 115 e lo Svincolo della "Ragusana"

RELAZIONE DI CALCOLO

			TABLE	: Element For	ces - Links					
Link	LinkElem	OutputCase	StepType	Р	V2	V3	Т	M2	M3	U3
SP1 SX	1	01 SLU G1 Max Carico	Max	-4810,32	189,888	170,869	0	8,5085	9,4555	0,040878
SP1 SX	1	01 SLU G1 Max Carico	Min	-1110,01	89,032	-100,141	0	-4,9866	4,4334	-0,02396
SP1 SX	1	09 SLE G1 Max car	Max	-3487,52	130,558	141,821	0	7,062	6,5012	0,033928
SP1 SX	1	09 SLE G1 Max car	Min	-745,71	59,443	-79,739	0	-3,9706	2,96	-0,01908
SP1 SX	1	20 SLC 1+0,3	Max	-1496,05	305,485	1115,711	0	55,5574	15,2118	0,266916
SP1 SX	1	20 SLC 1+0,3	Min	-832,38	-283,765	-1038,01	0	-51,6883	-14,1302	-0,24833
SP1 SX	1	29 SLV 1+0,3	Max	-1390,07	205,497	769,905	0	38,3378	10,2328	0,184188
SP1 SX	1	29 SLV 1+0,3	Min	-938,35	-183,776	-692,206	0	-34,4688	-9,1512	-0,1656
SP1 DX	2	01 SLU G1 Max Carico	Max	-757,67	-76,92	181,149	0	117,7097	-49,9822	0,043337
SP1 DX	2	01 SLU G1 Max Carico	Min	-5813,50	-200,071	-119,985	0	-77,9655	-130,005	-0,0287
SP1 DX	2	09 SLE G1 Max car	Max	-484,06	-50,019	149,798	0	97,3378	-32,5023	0,035837
SP1 DX	2	09 SLE G1 Max car	Min	-4237,52	-139,725	-94,853	0	-61,6353	-90,7929	-0,02269
SP1 DX	2	20 SLC 1+0,3	Max	-921,56	288,843	1156,893	0	751,7438	187,6888	0,276769
SP1 DX	2	20 SLC 1+0,3	Min	-1575,37	-318,336	-1083,02	0	-703,744	-206,853	-0,2591
SP1 DX	2	29 SLV 1+0,3	Max	-1016,73	188,471	797,511	0	518,2193	122,4675	0,190792
SP1 DX	2	29 SLV 1+0,3	Min	-1480,19	-217,964	-723,642	0	-470,2196	-141,632	-0,17312
SP2 SX	7	01 SLU G1 Max Carico	Max	-4803,87	161,538	231,981	0	11,5913	8,0715	0,055498
SP2 SX	7	01 SLU G1 Max Carico	Min	-1085,60	73,125	-111,118	0	-5,5522	3,6538	-0,02658
SP2 SX	7	09 SLE G1 Max car	Max	-3483,47	111,487	168,8	0	8,4344	5,5706	0,040383
SP2 SX	7	09 SLE G1 Max car	Min	-726,92	48,756	-102,913	0	-5,1422	2,4362	-0,02462
SP2 SX	7	20 SLC 1+0,3	Max	-1495,24	432,769	1045,663	0	52,2483	21,624	0,250159
SP2 SX	7	20 SLC 1+0,3	Min	-818,07	-412,662	-1123,3	0	-56,1277	-20,6193	-0,26873
SP2 SX	7	29 SLV 1+0,3	Max	-1388,47	288,455	697,56	0	34,8548	14,4131	0,16688
SP2 SX	7	29 SLV 1+0,3	Min	-924,84	-268,347	-775,2	0	-38,7342	-13,4084	-0,18546
SP2 DX	8	01 SLU G1 Max Carico	Max	-812,15	-60,223	235,309	0	152,9431	-39,1427	0,056294
SP2 DX	8	01 SLU G1 Max Carico	Min	-5877,81	-172,319	-128,588	0	-83,5782	-112,002	-0,03076
SP2 DX	8	09 SLE G1 Max car	Max	-518,14	-38,736	172,239	0	111,9494	-25,1773	0,041205
SP2 DX	8	09 SLE G1 Max car	Min	-4281,35	-121,108	-116,151	0	-75,4946	-78,7163	-0,02779
SP2 DX	8	20 SLC 1+0,3	Max	-781,72	418,502	1091,538	0	709,4633	272,0126	0,261133
SP2 DX	8	20 SLC 1+0,3	Min	-1755,99	-446,029	-1174,69	0	-763,5074	-289,904	-0,28103
SP2 DX	8	29 SLV 1+0,3	Max	-930,75	273,619	727,918	0	473,1224	177,8431	0,174143
SP2 DX	8	29 SLV 1+0,3	Min	-1606,96	-301,146	-811,067	0	-527,1665	-195,735	-0,19404
P1 SX	13	01 SLU G1 Max Carico	Max	-7635,85	-106,623	172,69	0	86,3404	-53,3086	0,041313
P1 SX	13	01 SLU G1 Max Carico	Min	-15261,42	-234,807	-30,371	0	-15,1848	-117,396	-0,00727
P1 SX	13	09 SLE G1 Max car	Max	-5591,72	-69,91	137,943	0	68,9678	-34,953	0,033001
P1 SX	13	09 SLE G1 Max car	Min	-11252,02	-159,549	-24,939	0	-12,4687	-79,7691	-0,00597
P1 SX	13	20 SLC 1+0,3	Max	-5947,94	384,71	1004,399	0	502,1731	192,3448	0,240287

MANDANTI:

Realizzazione Lavori

Collegamento viario compreso tra lo Svincolo della S.S. 514 di "Chiaromonte" con la S.S. 115 e lo Svincolo della "Ragusana"

PROGETTO ESECUTIVO

RELAZIONE DI CALCOLO

P1 SX	13	20 SLC 1+0,3	Min	-6538,93	-393,42	-901,435	0	-450,6942	-196,7	-0,21565
P1 SX	13	29 SLV 1+0,3	Max	-6023,74	251,904	691,188	0	345,5759	125,9455	0,165356
P1 SX	13	29 SLV 1+0,3	Min	-6463,13	-260,614	-588,225	0	-294,097	-130,3	-0,14072
P1 DX	15	01 SLU G1 Max Carico	Max	-7142,24	-91,36	179,316	0	89,6539	-45,6775	0,042899
P1 DX	15	01 SLU G1 Max Carico	Min	-16296,47	-236,005	-48,609	0	-24,3034	-117,997	-0,01163
P1 DX	15	09 SLE G1 Max car	Max	-5199,76	-58,016	142,535	0	71,2642	-29,0066	0,034099
P1 DX	15	09 SLE G1 Max car	Min	-11976,92	-161,682	-38,728	0	-19,3629	-80,8373	-0,00927
P1 DX	15	20 SLC 1+0,3	Max	-5656,94	391,502	1003,083	0	501,5181	195,7418	0,239972
P1 DX	15	20 SLC 1+0,3	Min	-6343,65	-400,076	-911,431	0	-455,6944	-200,029	-0,21805
P1 DX	15	29 SLV 1+0,3	Max	-5768,72	258,745	688,639	0	344,3034	129,3667	0,164746
P1 DX	15	29 SLV 1+0,3	Min	-6231,87	-267,32	-596,987	0	-298,4797	-133,654	-0,14282
P2 SX	17	01 SLU G1 Max Carico	Max	-7143,09	-123,253	99,917	0	49,9585	-61,6264	0,023904
P2 SX	17	01 SLU G1 Max Carico	Min	-15203,96	-273,734	-12,941	0	-6,4706	-136,867	-0,0031
P2 SX	17	09 SLE G1 Max car	Max	-5181,70	-80,57	74,482	0	37,2412	-40,285	0,017819
P2 SX	17	09 SLE G1 Max car	Min	-11150,27	-185,788	-11,551	0	-5,7755	-92,8938	-0,00276
P2 SX	17	20 SLC 1+0,3	Max	-5524,00	538,777	862,107	0	431,0537	269,3883	0,206246
P2 SX	17	20 SLC 1+0,3	Min	-6339,67	-548,808	-832,724	0	-416,3621	-274,404	-0,19922
P2 SX	17	29 SLV 1+0,3	Max	-5655,94	352,619	573,167	0	286,5833	176,3095	0,137121
P2 SX	17	29 SLV 1+0,3	Min	-6207,73	-362,651	-543,784	0	-271,8918	-181,325	-0,13009
P2 DX	19	01 SLU G1 Max Carico	Max	-6270,04	-108,06	101,251	0	50,6256	-54,0302	0,024223
P2 DX	19	01 SLU G1 Max Carico	Min	-16132,40	-275,049	-33,498	0	-16,7491	-137,525	-0,00801
P2 DX	19	09 SLE G1 Max car	Max	-4491,05	-68,76	75,335	0	37,6676	-34,3802	0,018023
P2 DX	19	09 SLE G1 Max car	Min	-11796,84	-188,04	-26,882	0	-13,4412	-94,0201	-0,00643
P2 DX	19	20 SLC 1+0,3	Max	-5105,43	544,995	864,551	0	432,2755	272,4976	0,20683
P2 DX	19	20 SLC 1+0,3	Min	-5982,41	-555,268	-847,327	0	-423,6633	-277,634	-0,20271
P2 DX	19	29 SLV 1+0,3	Max	-5244,64	359,021	572,682	0	286,3408	179,5106	0,137005
P2 DX	19	29 SLV 1+0,3	Min	-5843,20	-369,294	-555,457	0	-277,7286	-184,647	-0,13289
P3 SX	21	01 SLU G1 Max Carico	Max	-7141,07	-116,953	98,201	0	49,1004	-58,4764	0,023493
P3 SX	21	01 SLU G1 Max Carico	Min	-15200,45	-262,13	-26,931	0	-13,4654	-131,065	-0,00644
P3 SX	21	09 SLE G1 Max car	Max	-5180,01	-76,291	69,553	0	34,7763	-38,1456	0,016639
P3 SX	21	09 SLE G1 Max car	Min	-11146,99	-177,867	-24,953	0	-12,4763	-88,9333	-0,00597
P3 SX	21	20 SLC 1+0,3	Max	-5519,82	591,785	859,742	0	429,8712	295,8925	0,20568
P3 SX	21	20 SLC 1+0,3	Min	-6329,14	-598,981	-877,024	0	-438,5119	-299,49	-0,20981
P3 SX	21	29 SLV 1+0,3	Max	-5651,38	387,769	563,713	0	281,8564	193,8843	0,13486
P3 SX	21	29 SLV 1+0,3	Min	-6197,58	-394,964	-580,994	0	-290,4971	-197,482	-0,13899
P3 DX	23	01 SLU G1 Max Carico	Max	-6244,01	-100,732	97,688	0	48,8438	-50,3662	0,02337
P3 DX	23	01 SLU G1 Max Carico	Min	-16111,24	-262,652	-47,717	0	-23,8583	-131,326	-0,01142
P3 DX	23	09 SLE G1 Max car	Max	-4472,73	-63,71	69,608	0	34,8038	-31,8549	0,016653
P3 DX	23	09 SLE G1 Max car	Min	-11782,66	-179,52	-40,139	0	-20,0696	-89,7601	-0,0096

Collegamento viario compreso tra lo Svincolo della S.S. 514 di "Chiaromonte" con la S.S. 115 e lo Svincolo della "Ragusana"

PROGETTO ESECUTIVO

Direzione Progettazione e **RELAZIONE DI CALCOLO** Realizzazione Lavori

P3 DX	23	20 SLC 1+0,3	Max	-5071,94	597,948	866,059	0	433,0295	298,9738	0,207191
P3 DX	23	20 SLC 1+0,3	Min	-5988,39	-604,647	-890,91	0	-445,4552	-302,324	-0,21314
P3 DX	23	29 SLV 1+0,3	Max	-5217,07	394,257	566,628	0	283,314	197,1283	0,135557
P3 DX	23	29 SLV 1+0,3	Min	-5843,26	-400,956	-591,479	0	-295,7397	-200,478	-0,1415
P4 SX	25	01 SLU G1 Max Carico	Max	-7682,58	-93,081	132,97	0	66,4851	-46,5405	0,031811
P4 SX	25	01 SLU G1 Max Carico	Min	-15310,62	-211,772	-101,066	0	-50,5328	-105,889	-0,02418
P4 SX	25	09 SLE G1 Max car	Max	-5624,82	-60,742	94,469	0	47,2345	-30,3711	0,0226
P4 SX	25	09 SLE G1 Max car	Min	-11287,68	-144,049	-88,633	0	-44,3167	-72,0266	-0,0212
P4 SX	25	20 SLC 1+0,3	Max	-5853,16	518,834	912,733	0	456,3666	259,4169	0,218357
P4 SX	25	20 SLC 1+0,3	Min	-6707,98	-525,221	-1002,93	0	-501,4656	-262,611	-0,23994
P4 SX	25	29 SLV 1+0,3	Max	-5974,65	340,031	596,795	0	298,3976	170,0157	0,142774
P4 SX	25	29 SLV 1+0,3	Min	-6586,49	-346,419	-686,993	0	-343,4965	-173,209	-0,16435
P4 DX	27	01 SLU G1 Max Carico	Max	-7234,17	-76,42	127,563	0	63,7817	-38,2101	0,030518
P4 DX	27	01 SLU G1 Max Carico	Min	-16371,59	-212,547	-123,712	0	-61,8561	-106,274	-0,0296
P4 DX	27	09 SLE G1 Max car	Max	-5259,39	-47,813	91,133	0	45,5663	-23,9067	0,021802
P4 DX	27	09 SLE G1 Max car	Min	-12023,83	-145,866	-105,278	0	-52,6387	-72,9331	-0,02519
P4 DX	27	20 SLC 1+0,3	Max	-5745,77	525,811	916,407	0	458,2033	262,9056	0,219236
P4 DX	27	20 SLC 1+0,3	Min	-6367,54	-531,146	-1015,56	0	-507,7805	-265,573	-0,24296
P4 DX	27	29 SLV 1+0,3	Max	-5847,29	347,151	597,902	0	298,951	173,5754	0,143039
P4 DX	27	29 SLV 1+0,3	Min	-6266,03	-352,485	-697,056	0	-348,5281	-176,243	-0,16676

	Р
	KN
max SLU	-16371,59
max SLE	-12023,83
max SLC	-6707,98
max SLV	-6586,49

Realizzazione Lavori

Collegamento viario compreso tra lo Svincolo della S.S. 514 di "Chiaromonte" con la S.S. 115 e lo Svincolo della "Ragusana"

PROGETTO ESECUTIVO

RELAZIONE DI CALCOLO

11.1.2 Verifica dei massimi spostamenti allo slc

Gli spostamenti massimi individuati su ciascun isolatore sono i seguenti:

TABLE: Ele	TABLE: Element Deformations - Links									
Link	LinkElem	OutputCase	StepType	U2	U3	U(2+3)				
Text	Text	Text	Text	m	m	m				
SP2DX	1	20 SLC 1+0,3	Max	0,073	0,267	0,277				
SP2DX	1	20 SLC 1+0,3	Min	-0,068	-0,248	0,257				
SP2SX	2	20 SLC 1+0,3	Max	0,069	0,277	0,285				
SP2SX	2	20 SLC 1+0,3	Min	-0,076	-0,259	0,270				
SP1DX	7	20 SLC 1+0,3	Max	0,104	0,250	0,271				
SP1DX	7	20 SLC 1+0,3	Min	-0,099	-0,269	0,286				
SP1SX	8	20 SLC 1+0,3	Max	0,100	0,261	0,279				
SP1SX	8	20 SLC 1+0,3	Min	-0,107	-0,281	0,301				
P4DX	13	20 SLC 1+0,3	Max	0,092	0,240	0,257				
P4DX	13	20 SLC 1+0,3	Min	-0,094	-0,216	0,235				
P4SX	15	20 SLC 1+0,3	Max	0,094	0,240	0,258				
P4SX	15	20 SLC 1+0,3	Min	-0,096	-0,218	0,238				
P3DX	17	20 SLC 1+0,3	Max	0,129	0,206	0,243				
P3DX	17	20 SLC 1+0,3	Min	-0,131	-0,199	0,239				
P3SX	19	20 SLC 1+0,3	Max	0,130	0,207	0,244				
P3SX	19	20 SLC 1+0,3	Min	-0,133	-0,203	0,242				
P2DX	21	20 SLC 1+0,3	Max	0,142	0,206	0,250				
P2DX	21	20 SLC 1+0,3	Min	-0,143	-0,210	0,254				
P2SX	23	20 SLC 1+0,3	Max	0,143	0,207	0,252				
P2SX	23	20 SLC 1+0,3	Min	-0,145	-0,213	0,258				
P1DX	25	20 SLC 1+0,3	Max	0,124	0,218	0,251				
P1DX	25	20 SLC 1+0,3	Min	-0,126	-0,240	0,271				
P1SX	27	20 SLC 1+0,3	Max	0,126	0,219	0,253				
P1SX	27	20 SLC 1+0,3	Min	-0,127	-0,243	0,274				
SP2DX	1	24 SLC 0,3+1	Max	0,152	0,120	0,194				
SP2DX	1	24 SLC 0,3+1	Min	-0,147	-0,102	0,179				
SP2SX	2	24 SLC 0,3+1	Max	0,149	0,126	0,195				
SP2SX	2	24 SLC 0,3+1	Min	-0,156	-0,108	0,189				
SP1DX	7	24 SLC 0,3+1	Max	0,151	0,180	0,235				
SP1DX	7	24 SLC 0,3+1	Min	-0,146	-0,199	0,247				
SP1SX	8	24 SLC 0,3+1	Max	0,148	0,175	0,229				
SP1SX	8	24 SLC 0,3+1	Min	-0,155	-0,195	0,249				
P4DX	13	24 SLC 0,3+1	Max	0,205	0,109	0,233				
P4DX	13	24 SLC 0,3+1	Min	-0,208	-0,084	0,224				
P4SX	15	24 SLC 0,3+1	Max	0,207	0,113	0,236				
P4SX	15	24 SLC 0,3+1	Min	-0,209	-0,091	0,228				
P3DX	17	24 SLC 0,3+1	Max	0,265	0,098	0,283				
P3DX	17	24 SLC 0,3+1	Min	-0,267	-0,091	0,282				
P3SX	19	24 SLC 0,3+1	Max	0,266	0,100	0,285				
P3SX	19	24 SLC 0,3+1	Min	-0,269	-0,096	0,285				
P2DX	21	24 SLC 0,3+1	Max	0,265	0,116	0,290				
P2DX	21	24 SLC 0,3+1	Min	-0,267	-0,120	0,293				
P2SX	23	24 SLC 0,3+1	Max	0,266	0,113	0,289				
P2SX	23	24 SLC 0,3+1	Min	-0,268	-0,119	0,293				
P1DX	25	24 SLC 0,3+1	Max	0,207	0,144	0,252				
P1DX	25	24 SLC 0,3+1	Min	-0,208	-0,166	0,266				
P1SX	27	24 SLC 0,3+1	Max	0,208	0,135	0,248				
P1SX	27	24 SLC 0,3+1	Min	-0,210	-0,158	0,263				

MANDATARIA:

MANDANTI:

Collegamento viario compreso tra lo Svincolo della S.S. 514 di "Chiaromonte" con la S.S. 115 e lo Svincolo della "Ragusana"

PROGETTO ESECUTIVO RELAZIONE DI CALCOLO

Lo spostamento massimo registrato è di 0.30 m.

11.2 EFFETTI DELLA VARIABILITÀ DELLA RIGIDEZZA DEGLI ISOLATORI

Di seguito si illustrano gli effetti che occorrono alla struttura qualora la rigidezza degli isolatori sia differente da quella valutata in sede progettuale. Si ipotizza una variazione cautelativa della rigidezza dell'isolatore pari a ± 20% (NTC '08 cap. 11.9.7 - tab. 11.9.IV).

Nella tabella seguente si riassumono i valori del periodo T e dell'accelerazione spettrale Sa oltre che la variazione delle medesime caratteristiche rispetto a quanto previsto nel calcolo.

Δk	Т	Δт	S _a	Δ S_a
[%]	[s]	[s]	[m/s ²]	[m/s ²]
20	1.87864	-7.21%	0.169	8.17%
0	2.02467	0.00%	0.156	0.00%
-20	2.22252	9.77%	0.147	-5.96%

Rispetto a quanto valutato nel progetto, quindi, l'accelerazione spettrale varia in un range che va dal -5.96% al 8.17%. Se pure lo sfruttamento della pila più sollecitata aumentasse linearmente nei confronti dell'accelerazione spettrale (ovvero se l'azione sismica fosse l'unica componente responsabile dello sfruttamento della sezione) un tale incremento della sollecitazione risulterebbe ampiamente sopportabile dalla pila maggiormente sollecitata (attualmente all' 80% circa dello sfruttamento).

Un'eventuale riduzione di rigidezza del 20%, di contro, comporta un incremento dello spostamento pari a:

$$\Delta d = \frac{\Delta k}{\Delta F} = \frac{\Delta k}{\Delta (m \cdot a)} = \frac{\Delta k}{m \cdot g \cdot \Delta S_a} \cong 8.21\%$$

Di cui si tiene conto nel dimensionamento del giunto.

11.3 VARIABILITÀ SPAZIALE DEL MOTO SISMICO

Di seguito si valutano gli eventuali effetti della variabilità spaziale del moto sismico secondo quanto contenuto nelle NTC '08 al capitolo 3.2.

Direzione Progettazione e

Realizzazione Lavori

Itinerario Ragusa - Catania

Collegamento viario compreso tra lo Svincolo della S.S. 514 di "Chiaromonte" con la S.S. 115 e lo Svincolo della "Ragusana"

PROGETTO ESECUTIVO

RELAZIONE DI CALCOLO

	Dati	suolo	inizi	o viac	otto							
Cat. S	Suolo:	В										
a _g =	0,453	m/s²		T _C =	0,648		v _i =	360	m/s			
S=	1			T _D =	3,41							
d _{gi} =0).025 x	a _g x S >	κ Τ _C x Τ	_D =	0,025	m			NTC '08 ed	q. 3.2.15		
	Dati											
Cat. S	Cat. Suolo: B											
		. 2										
a _g =	0,453	m/s²		T _C =	0,648		v _j =	360	m/s			
S=	1			T _D =	3,41							
d _{gj} =0).025 x	a _g x S x	κ T _C x T _I	_D =	0,025	m			NTC '08 ed	q. 3.2.15		
Spo	ostam	ento	relat	ivo m	assin	no d	el terr	eno				
x=	230	m						v _{ijmin} =	360 r	n/s		
d _{ij0} =	= 1.25	$x \left d_{gi}^{\square} \right $	$-d_{gj}^{\square}$	=	0,000	m			NTC '08 ed	q. 3.2.20		
d_{ijm}	ax = 1	.25 Ja	$l_{gi}^2 + d$	$\frac{-}{g_j} =$	0,044	m			NTC '08 ed	զ. 3.2.18		
a	$l_{ij} = d$	_{ij0} + (d_{ijmax}	$_{c}-d_{ij}$	₀)[₁₋	$e^{-1.2}$	$5 \left(\frac{x}{v_s}\right)^{0.7}$] =	0,026 NTC '08 ec			

Collegamento viario compreso tra lo Svincolo della S.S. 514 di "Chiaromonte" con la S.S. 115 e lo Svincolo della "Ragusana"

PROGETTO ESECUTIVO

RELAZIONE DI CALCOLO

11.4 GIUNTI DI DILATAZIONE

Si rileva che il valore massimo calcolato alle combinazioni sismiche di collasso (SLC) è di circa 300 mm. A questo si sommano gli incrementi percentuali dovuti all'eventuale variazione della rigidezza dell'isolatore riscontrati sul viadotto ed il massimo valore risultante dalla valutazione del problema della spazialità del moto sismico. Per garantire la compatibilità degli spostamenti con la struttura, si è optato per giunti di dilatazione con escursione massima di 350 mm.

	Vallone delle Coste	
	SX	DX
Massimo spostamento isolatore [m]	0,28	0,30
Spazialità moto sismico [m]	0,026	0,026
Variabilità rigidezza isolatore	8,21%	8,21%
Dimensione minima del Giunto [m]	0,35	0,35

MANDANTI:

