

Direzione Progettazione e Realizzazione Lavori

ITINERARIO RAGUSA-CATANIA

Collegamento viario compreso tra lo Svincolo della S.S. 514 "di Chiaramonte" con la S.S. 115 e lo Svincolo della S.S. 194 "Ragusana"

LOTTO 1 - Dallo svincolo n. 1 sulla S.S. 115 (compreso) allo svincolo n. 3 sulla S.P. 5 (escluso)

PROGETTO ESECUTIVO

COD. PA895

PROGETTAZIONE: ATI SINTAGMA - GP INGEGNERIA - COOPROGETTI -GDG - ICARIA - OMNISERVICE

PROGETTISTA RESPONSABILE DELL'INTEGRAZIONE DELLE PRESTAZIONI
SPECIALISTICHE:

Dott. Ing. Nando Granieri
Ordine degli Ingegneri della Prov. di Perugia n° A351

INGEGNERI DELLA PROVINCIA
Dott. Ing. Dott. Ing. Dott. Ing. Dott. Ing. Dott. Ing. V.Truffini
V.Truffini

Sexione A Sexion

MANDO GRANIERI
SETTORE CIVILE E AMBIENTALE
SETTORE DELL'INFORMAZIONE

IL GEOLOGO:

Dott. Geol. Marco Leonardi

Ordine dei Geologi della Regione Lazio n° 1541

IL COORDINATORE PER LA SICUREZZA IN FASE DI PROGETTAZIONE:

Dott. Ing. Ambrogio Signorelli

Ordine degli Ingegneri della Provincia di Roma n° A35111

VISTO IL RESPONSABILE DEL PROCEDIMENTO

Dott. Ing. Luigi Mupo

N.Granieri F.Durastanti V.Truffini A.Bracchini L.Nani Dott. Ing. Dott. Ing. Dott. Ing. Dott. Arch. Dott. Ing. Dott. Ing. M.Abram F.Pambianco Dott. Ing. M.Briganti Botta Dott. Ing. Dott. Geol. L.Gagliardini Dott. Ing. G.Cerquiglini MANDANTI: Dott. Ing. Dott. Arch. Dott. Geol. Dott. Ing. A.Signorelli E.Moscatelli **GPI**ngegneria Dott. Ina. G.Guastella Dott. Ing M.Leonardi G.Parente Dott. Ing. A.Belà Dott. Ing. L.Ragnacci A.Strati M.G.Liseno Dott Arch Dott. Ing. Dott. Arch. F A F Crimi Dott. Ing. Dott. Arch. Dott. Ing. P.Ghirelli D.Pelle Archeol. Dott. Ing. Dott. Ing. D.Carlaccini F Aloe Dott. Ina. S.Sacconi C.Consorti A.Salvemini Dott. Ina Dott. Ing. Dott. Ing. G.Verini Supplizi V.Piunno Dott. Ing. V.Rotisciani G.Pulli F.Macchioni Dott. Ing. Dott. Ing. Geom. C.Sugaroni OMNISERVICE Dott. Ing.

IL RESPONSABILE DI PROGETTO:

Dat Ing. GIORGIO GUIDUCCI O R D IN E IN GEGNERI ROMA N° 14035

CAVALCAVIA CAVALCAVIA AL KM 0+000 Relazione di calcolo impalcato

CODICE PROGET	TTO LIV. PROG. N. PROG.	NOME FILE TO1CV01STRRE02B			REVISIONE	SCALA:
L 0 4 0		CODICE T 0 1 C V 0 1 S	TRRE	0 2	В	-
D						
С						
В	B REVISIONE A SEGUITO DI RAPPORTO DI VERIFICA		NOVEMBRE 2021	M. Toreno	G. Guiducci	N. Granieri
Α	EMISSIONE		GIUGNO 2021	M. Toreno	G. Guiducci	N. Granieri
REV.	DESCRIZIONE		DATA	REDATTO	VERIFICATO	APPROVATO

Collegamento viario compreso tra lo Svincolo della S.S. 514 di "Chiaromonte" con la S.S. 115 e lo Svincolo della "Ragusana"

PROGETTO ESECUTIVO

Cavalcavia km 0+000 - RELAZIONE DI CALCOLO IMPALCATO

INDICE

1		PREMESSA5
2	ı	NORMATIVE DI RIFERIMENTO7
3	ı	NTERVENTI PREVISTI8
	3.1	SCHEMA DI VINCOLO
	3.2	ISOLATORI ELASTOMERICI E DISPOSITIVI DI APPOGGIO8
4	ı	MATERIALI9
5	(CRITERI DI CALCOLO E VERIFICA11
6	,	AZIONI DI CALCOLO13
	6.1	PESO PROPRIO DELLA STRUTTURA
	6.2	CARICHI PERMANENTI PORTATI (G2)
	6.3	AZIONI VARIABILI DA TRAFFICO (Q1)
	6.4	AZIONE LONGITUDINALE DI FRENAMENTO O DI ACCELERAZIONE (Q3)16
	6.5	AZIONE CENTRIFUGA (Q4)
	6.6	AZIONE DEL VENTO SULL'IMPALCATO (Q5)
	6.7	AZIONE SISMICA SU IMPALCATO
		6.7.1 Definizione dei parametri sismici
		6.7.2 Spettri di risposta
	6.8	URTI VEICOLO (Q8)24
	6.9	EFFETTI REOLOGICI (E2)25
	6.10	O VARIAZIONI TERMICHE (£3)25
7	(COMBINAZIONE DELLE AZIONI26
8	1	ANALISI STRUTTURALE29
	8.1	SOFTWARE DI CALCOLO
	8.2	METODOLOGIA DI ANALISI30

Collegamento viario compreso tra lo Svincolo della S.S. 514 di "Chiaromonte" con la S.S. 115 e lo Svincolo della "Ragusana"

PROGETTO ESECUTIVO

Cavalcavia km 0+000 - RELAZIONE DI CALCOLO IMPALCATO

		8.2.1 Analisi in condizioni Non-Sismiche	. 30
		8.2.2 Analisi Sismica	. 31
8	.3	GEOMETRIA DEL MODELLO DI CALCOLO	31
		8.3.1 Vincoli interni	. 32
9	F	ASI COSTRUTTIVE E DI CALCOLO IMPALCATO	. 34
9.	.1	FASI COSTRUTTIVE	.34
9.	.2	FASI DI CALCOLO	34
10	D	DATI DIMENSIONALI PER VERIFICHE ALLO SLU	. 35
10	0.1	ARMATURA DI PRECOMPRESSIONE TRAVI	35
10	0.2	CARATTERISTICHE DELLE SEZIONI	38
		10.2.1Trave isolata	. 38
		10.2.2Sezione ideale omogeneizzata	. 38
		10.2.3Sezione mista trave + soletta	. 39
11	C	CADUTE DI TENSIONE	. 41
1	1.1	CADUTE PER RITIRO NEL CALCESTRUZZO	41
		11.1.1Ritiro per essiccamento	. 41
		11.1.2 Ritiro autogeno	. 42
1	1.2	CADUTE PER VISCOSITÀ	44
		11.2.1determinazione del coefficiente di viscosità	. 46
1	1.3	S CADUTA PER EFFETTO TERMICO	47
1	1.4	CADUTE PER RILASSAMENTO NELL'ACCIAIO DI PRECOMPRESSIONE	47
1	1.5	S CADUTE TOTALI	.48
12	C	CARATTERISTICHE DELLE SOLLECITAZIONI NELLE VARIE FASI PER TRAVE DI BORDO	. 50
13	V	/ERIFICHE TRAVI IN ESERCIZIO E SLU	.52
1	3.1	PRECOMPRESSIONE E CADUTE DI TENSIONE	52

Collegamento viario compreso tra lo Svincolo della S.S. 514 di "Chiaromonte" con la S.S. 115 e lo Svincolo della "Ragusana" PROGETTO ESECUTIVO

Cavalcavia km 0+000 - RELAZIONE DI CALCOLO IMPALCATO

	13.1.1Fase 1: Precompressione e peso trave – verifica all'atto del rilascio	52
	13.1.2 Fase 2: Getti in opera	52
	13.1.3 Fase 3: Carichi permanenti portati.	53
	13.1.4Riassunto cadute di tensioni acciaio precompressione	55
1	3.2 VERIFICHE ALLO STATO LIMITE ULTIMO PER SFORZO NORMALE E FLESSIONE	56
	13.2.1Verifiche a pressoflessione per momento positivo	57
1	3.3 VERIFICHE ALLO SLU PER SOLLECITAZIONI TAGLIANTI E TORCENTI	60
1	3.4 VERIFICA DELLO SCORRIMENTO TRAVE - SOLETTA	63
A	.1 VERIFICHE AGLI STATI LIMITE DI ESERCIZIO	65
	13.4.1Verifiche in combinazione frequente	66
	13.4.2 Verifiche in combinazione quasi permanente	67
	13.4.3 Verifiche in combinazione rara	68
14	VERIFICA DELLA SOLETTA	70
1	4.1 VERIFICA DELLE PREDALLE	70
1	4.2 VERIFICA DELLA SOLETTA NELLE FASI SUCCESSIVE	73
	14.2.1Verifica campi interni soletta	73
	14.2.2Verifica sbalzo	77
	14.2.3 Verifica cordolo per urto veicolo in svio	80
15	VERIFICA SISTEMA DI ISOLAMENTO PER AZIONI SISMICHE	81
1	5.1 ISOLATORI ELASTOMERICI	81
	15.1.1Azioni sugli isolatori elastomerici	81
	15.1.2Verifica dei massimi spostamenti allo slc	81
1	5.2 APPOGGI MULTIDIREZIONALI (COPPIA TRAVI CENTRALI)	82
1	5.3 GIUNTI DI DILATAZIONE	82
16	AZIONI DALL'IMPALCATO ALLE SPALLE	83

Cavalcavia km 0+000 - RELAZIONE DI CALCOLO IMPALCATO

PROGETTO ESECUTIVO

Cavalcavia km 0+000 - RELAZIONE DI CALCOLO IMPALCATO

1 PREMESSA

La presente relazione, redatta nell'ambito del Progetto Esecutivo "Itinerario Ragusa-Catania. Collegamento viario compreso tra lo svincolo della SS 514 di "Chiaromonte" con la SS 115 e lo svincolo della "Ragusana" - Lotto 1 contiene i calcoli e le verifiche dell'impalcato del cavalcavia ubicato al km0+000 della S.S.194 "Ragusana".

L'opera presenta un impalcato con 6 travi in c.a.p., accostate, ad interasse di 1.85m e di luce variabile da 21.52 a 21.73m. La distanza tra gli appoggi è variabile da 20.52 a 20.73m. L'altezza della trave in c.a.p. è di 80cm, la soletta, sagomata a schiena d'asino presenta spessore minimo di 20 + 5 cm (5 cm predalla tralicciata).

La piattaforma stradale è composta da una carreggiata di larghezza di 10.5m da due cordoli di larghezza pari a 0.75m ognuno su cui sono posizionate le barriere di sicurezza e le reti di protezione. La pavimentazione è formata da uno strato di usura di spessore pari a 4 cm e da uno strato di collegamento (binder) di spessore pari a 7 cm. Tra quest'ultimo e la soletta è interposta l'impermeabilizzazione.

L'impalcato è isolato sismicamente con isolatori elastomerici.

L'intervento si inserisce le più ampio progetto di miglioramento sismico delle strutture del cavalcavia e consiste nella sostituzione dell'attuale impalcato in c.a. (a struttura a cassone monocellulare) e nel rinforzo delle sottostrutture. Si riporta di seguito una sezione longitudinale dell'opera esistente e dell'opera futura.

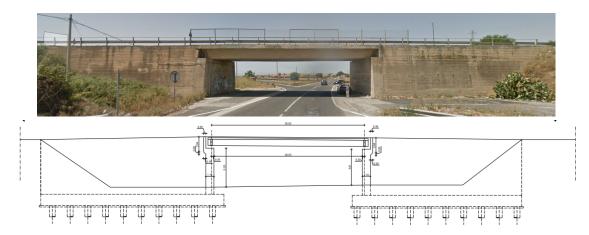


Figura 1.1: Vista laterale dell'opera (stato attuale e progetto futuro)

PROGETTO ESECUTIVO

Cavalcavia km 0+000 - RELAZIONE DI CALCOLO IMPALCATO

Figura 1.2 Vista laterale e planimetrica dell'opera (stato attuale)

Collegamento viario compreso tra lo Svincolo della S.S. 514 di "Chiaromonte" con la S.S. 115 e lo Svincolo della "Ragusana"

PROGETTO ESECUTIVO

Cavalcavia km 0+000 - RELAZIONE DI CALCOLO IMPALCATO

2 NORMATIVE DI RIFERIMENTO

Il principale riferimento normativo da considerare per lo studio e l'analisi di strutture esistenti è il D.M. 14/01/2008 "Norme Tecniche per le Costruzioni" che fornisce i criteri generali che regolano il processo di conoscenza e valutazione della sicurezza.

Per la definizione del numero di prove e rilievi, anche per scopi diversi dalla verifica sismica, si possono prendere in considerazione i criteri forniti da:

- Circolare n.617 del 6 Febbraio 2008 Ministero Infrastrutture e Trasporti, Istruzioni per l'applicazione dell'"Aggiornamento delle Norme tecniche per le costruzioni";
- EN1998-3, Eurocodice 8, Progettazione sismica delle strutture, Parte 3, Valutazione e rinforzo degli edifici.
- Valutazione e consolidamento sismico dei ponti esistenti Pinto P.E., Lupoi A., Franchin P. luss Press 2009;
- ANAS, Quaderni Tecnici Quaderno tecnico 1 Valutazione delle caratteristiche meccaniche del calcestruzzo;
- FEMA, FEMA 356, Prestandard and Commentary for the Seismic Rehabilitation of Existing Buildings;

Collegamento viario compreso tra lo Svincolo della S.S. 514 di "Chiaromonte" con la S.S. 115 e lo Svincolo della "Ragusana"

PROGETTO ESECUTIVO

Cavalcavia km 0+000 - RELAZIONE DI CALCOLO IMPALCATO

3 INTERVENTI PREVISTI

Si riporta sinteticamente la lista degli interventi da effettuare:

- Demolizione e sostituzione dell'impalcato esistente e del relativo sistema di appoggi, realizzando un nuovo impalcato isolato sismicamente che trasmetterà alle sottostrutture limitate azioni orizzontali in condizioni sismiche;
- Arretramento paraghiaia per consentire gli spostamenti sismici di progetto;
- Rinforzo di muri e spalle mediante realizzazione di tiranti e paretine di placcaggio.

3.1 SCHEMA DI VINCOLO

Risulta fondamentale, al fine di comprendere il comportamento strutturale dell'opera, descrivere il nuovo schema di vincolo che verrà realizzato mediante gli interventi descritti in precedenza. L'impalcato è così vincolato:

I due tronchi di impalcato vengono così vincolati: In corrispondenza delle spalle è presente un giunto di dilatazione che permette le dilatazioni termiche sia longitudinali e trasversali.

Al fine di calibrare correttamente la rigidezza traslazionale del sistema isolato per garantire l'efficacia del sistema di isolamento (riduzione azione sismica alle sottostrutture) ma al tempo stesso garantire spostamenti sismici compatibili con la funzionalità dell'opera, gli appoggi su entrambe le spalle sono di due tipi.

- Appoggi multidirezionale (per la coppia di travi centrali)
- Isolatori elastomerici per le rimanenti travi (4 travi).

Per dettagli su specifiche tecniche degli appoggi si rimanda allo specifico elaborato.

3.2 ISOLATORI ELASTOMERICI E DISPOSITIVI DI APPOGGIO

Per l'isolamento sismico del cavalcavia in oggetto si prevede l'utilizzo di isolatori elastomerici. Nella definizione dei dispositivi si è fatto riferimento a dei dispositivi attualmente in commercio, tuttavia si evidenzia che potranno esser adottati dei dispositivi fabbricati da un differente produttore, ovviamente a patto che questi ultimi siano dotati di caratteristiche tecniche del tutto equivalenti (comunque "non inferiori") a quelle definite.

PROGETTO ESECUTIVO

Cavalcavia km 0+000 - RELAZIONE DI CALCOLO IMPALCATO

4 MATERIALI

Al fine delle verifiche strutturali verranno utilizzati i parametri relativi ai materiali di seguito indicati:

Calcestruzzo Travi in c.a.p.

 $R_{ck} \ge 55 \text{ MPa}; (C45/55)$

 $f_{ck} = 0.83 \times 55 = 45.65 \text{ MPa}$ resistenza cilindrica caratteristica

 $f_{cd} = 0.85 \times 45.65 / 1.50 = 25.868 \text{ MPa}$ resistenza di calcolo

 $f_{cm} = f_{ck} + 8 = 53.65 \text{ MPa}$ resistenza media cilindrica

 $f_{ctm} = 0.30 \text{ x } f_{ck}^{2/3} = 3.83 \text{ MPa}$ resistenza media a trazione assiale

 $f_{ctk} = 0.7 x f_{ctm} = 2.68 MPa$ resistenza a trazione

 $f_{cfm} = 1.2 \text{ x } f_{ctm} = 4.60 \text{ MPa}$ resistenza media a trazione per flessione

 $f_{ctd} = f_{ctk} / \gamma_c = 1.79 \text{ MPa}$ resistenza a trazione di calcolo $E_{cm} = 22000 \text{ x } (f_{cm}/10)^{0.3} = 36416 \text{ MPa}$ modulo elastico istantaneo $\gamma_{cls} = 25.0 \text{ kN/mc}$ peso per unità di volume

Calcestruzzo soletta e trasversi

 $R_{ck} \ge 40 \text{ MPa; } (C32/40)$

f_{ck} = 0.83 x 40 = 33.2 MPa resistenza cilindrica caratteristica

 $f_{cd} = 0.85 \times 33.2 / 1.50 = 18.81 \text{ MPa}$ resistenza di calcolo

 $f_{cm} = f_{ck} + 8 = 41.2 \text{ MPa}$ resistenza media cilindrica $f_{ctm} = 0.30 \text{ x } f_{ck}^{2/3} = 3.10 \text{ MPa}$ resistenza media a trazione assiale

 $f_{ctk} = 0.7 \text{ x } f_{ctm} = 2.17 \text{ MPa}$ resistenza a trazione

 $f_{cfm} = 1.2 \text{ x } f_{ctm} = 3.72 \text{ MPa}$ resistenza media a trazione per flessione

 $f_{ctd} = f_{ctk} / \gamma_c = 1.45 \text{ MPa}$ resistenza a trazione di calcolo $E_{cm} = 22000 \text{ x } (f_{cm}/10)^{0.3} = 33643 \text{ MPa}$ modulo elastico istantaneo $\gamma_{cls} = 25.0 \text{ kN/mc}$ peso per unità di volume

Acciaio di precompressione

Trefoli φ0.6" in acciaio armonico stabilizzato a basso rilassamento

 f_{ptk} = 1860 MPa tensione caratteristica di rottura

 $f_{p(1)k}$ = 1670 MPa tensione caratteristica all'1% di deformazione sotto carico

 E_a = 195000 MPa modulo elastico apparente A_p = 1,39 cmq sezione utile nominale

 $A_p = 1,39$ cmq tensione massima in esercizio

 σ_{p} = 1336 MPa tensione di tiro

Acciaio in barre ad aderenza migliorata

PROGETTO ESECUTIVO

Cavalcavia km 0+000 - RELAZIONE DI CALCOLO IMPALCATO

Si utilizzano barre ad aderenza migliorata tipo B450C controllato in stabilimento, pertanto nei calcoli statici saranno assunti i seguenti parametri:

 $f_{yk} = 450 \text{ MPa}$

 $f_{tk} = 540 \text{ MPa}$

 $f_{yd} = f_{yk} / \gamma_S = 391.3 \text{ MPa}$

E_s = 210000 MPa

 ε_{yd} = f_{yd} / E_s = 1.863 ‰

 $\varepsilon_{uk} = (A_{gt})_k = 7.5 \%$

 ϵ_{ud} = 0.9 x ϵ_{uk} = 6.75 %

 $\gamma_{s=}$ 78.5 kN/mc

tensione caratteristica di snervamento

tensione caratteristica di rottura

tensione di calcolo modulo elastico

deformazione di snervamento ultima deformazione uniforme caratteristica

deformazione uniforme ultima peso per unità di volume

Cavalcavia km 0+000 - RELAZIONE DI CALCOLO IMPALCATO

5 CRITERI DI CALCOLO E VERIFICA

Il calcolo delle sollecitazioni è stato effettuato considerando le azioni sui ponti stradali secondo quanto indicato al paragrafo 5.1.3. del D.M. 14/01/2008.

Le verifiche delle sezioni in c.a. sono state condotte sulla base delle prescrizioni contenute nel D.M. 14/01/2008.

Stato Limite Ultimo

Resistenza di calcolo a compressione del calcestruzzo (punto 4.1.2.1.1.1 delle NTC):

$$f_{cd} = \alpha_{cc} f_{ck} / \gamma_{C}$$

 α_{cc} = 0,85 Coefficiente riduttivo per le resistenze di lunga durata

 γ_C =1,5 Coefficiente parziale di sicurezza relative al calcestruzzo

Resistenza di calcolo a trazione del calcestruzzo (punto 4.1.2.1.4.2 delle NTC):

$$f_{ctd} = f_{ctk}/\gamma_C$$

$$f_{ctk} = 0.7*f_{ctm}$$

Tensione di snervamento di calcolo dell'acciaio (punto 4.1.2.1.1.4 delle NTC):

$$f_{yd} = f_{yk}/\gamma_S = 391,3 \text{ MPa}$$

con γ_S =1,15 Coefficiente di sicurezza parziale dell'acciaio

Stato Limite di esercizio

Tensione max di compressione - Comb. rara $\sigma_c < 0.60 \times f_{ck}$

Tensione max di compressione - Comb. quasi permanente $\sigma_c < 0.45 \times f_{ck}$

Tensione massima di trazione dell'acciaio $\sigma_s < 0.80 \times f_{yk}$

Stati limite di fessurazione

Collegamento viario compreso tra lo Svincolo della S.S. 514 di "Chiaromonte" con la S.S. 115 e lo Svincolo della "Ragusana" PROGETTO ESECUTIVO

Cavalcavia km 0+000 - RELAZIONE DI CALCOLO IMPALCATO

Le classi di esposizione dei vari calcestruzzi sono indicate nelle tabelle materiali inserite sugli elaborati grafici.

In base a tali classi le condizioni ambientali rientrano in una delle seguenti tre categorie:

CONDIZIONI AMBIENTALI	CLASSE DI ESPOSIZIONE
Ordinarie	X0, XC1, XC2, XC3, XF1
Aggressive	XC4, XD1, XS1, XA1, XA2, XF2, XF3
Molto aggressive	XD2, XD3, XS2, XS3, XA3, XF4

Lo stato limite di fessurazione viene determinato attraverso la seguente tabella:

Condizioni	Combinazione	Armatura				
ambientali	di azioni	Sensibile		Poco sensibile		
ambientan		Stato limite	$\mathbf{w}_{\mathbf{d}}$	Stato limite	$\mathbf{w}_{\mathbf{d}}$	
Ordinarie	frequente	ap. fessure	\leq W ₂	ap. fessure	\leq W ₃	
Ordinarie	quasi permanente	ap. fessure	$\leq w_1$	ap. fessure	\leq W ₂	
Aggressive	frequente	ap. fessure	$\leq w_1$	ap. fessure	\leq W ₂	
Aggressive	quasi permanente	decompressione	-	ap. fessure	$\leq w_1$	
Molto aggressive	frequente	formazione fessure	-	ap. fessure	$\leq w_1$	
Mono aggressive	quasi permanente	decompressione	-	ap. fessure	$\leq w_1$	

Con

 $W_1 = 0.2 mm$

 $W_2 = 0.3 mm$

 $W_3 = 0.4 mm$

La verifica a fessurazione è soddisfatta se $W_d = 1.7~W_m = 1.7~(\epsilon_{sm}~\Delta_{sm}~) < W_d$

Per il calcolo di ε_{sm} e Δ_{sm} vanno utilizzati criteri consolidati riportati nella letteratura tecnica.

La verifica dell'ampiezza di fessurazione può anche essere condotta senza calcolo diretto, limitando la tensione di trazione nell'armatura, valutata nella sezione parzializzata per la combinazione di carico pertinente, ad un massimo correlato al diametro delle barre ed alla loro spaziatura; a tal scopo si veda C4.1.2.2.4.6., Tab C4.1.II e Tab C4.1.III.

Cavalcavia km 0+000 - RELAZIONE DI CALCOLO IMPALCATO

6 AZIONI DI CALCOLO

Per il calcolo si considerano le azioni indotte da:

g₁: peso proprio della struttura

g₂: carichi permanenti portati

q₁: azioni variabili da traffico

q₃: azione longitudinale di frenamento o di accelerazione

q4: azione centrifuga

q₅: azione del vento

q₆: azioni sismiche

q₇: resistenze passive dei vincoli

q₈: urto veicoli

 $\varepsilon_2, \varepsilon_3$: effetti reologici: Ritiro, viscosità e variazioni termiche

ε₄: cedimenti vincolari

6.1 PESO PROPRIO DELLA STRUTTURA

Il peso proprio delle travi in c.a.p è valutato automaticamente dal programma di calcolo avendone definito preliminarmente la sezione trasversale.

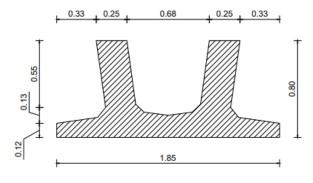


Figura 6.1 Sezione trasversale trave in c.a.p

Collegamento viario compreso tra lo Svincolo della S.S. 514 di "Chiaromonte" con la S.S. 115 e lo Svincolo della "Ragusana" PROGETTO ESECUTIVO

Cavalcavia km 0+000 - RELAZIONE DI CALCOLO IMPALCATO

Sezione corrente:

A = 0.639 mg

Analogamente accade per i traversi di testata i quali presentano dimensioni 0.25x1.0m.

La soletta, come già anticipato, presenta una sezione trasversale a schiena d'asino, con spessore minimo di 20 + 5cm in corrispondenza dell'interfaccia soletta cordolo ed uno spessore massimo di 29.6+5cm in corrispondenza della mezzeria trasversale di impalcato.

Risultano, in funzione dell'aria di competenza geometrica di ogni singola trave, i seguenti valori del carico a ml da applicare nel modello di calcolo.

Peso soletta + predalles

Peso specifico calcestruzzo: 25.0 kN/m³

Larghezza soletta: 12.00 m

Peso soletta + predalles: var: 15.00 - 15.49 kN/m per trave

6.2 CARICHI PERMANENTI PORTATI (G2)

Peso specifico pavimentazione: 24.0 kN/m³ Spessore medio pavimentazione: 0.11 m Ingombro pavimentazione: var. 10.50m

Peso Pavimentazione: Var: 4.62 kN/m per trave.

Cordoli destro e sinistro: 25 x (0.75 x 0.18) = 3.375 kN/m (su trave di bordo)

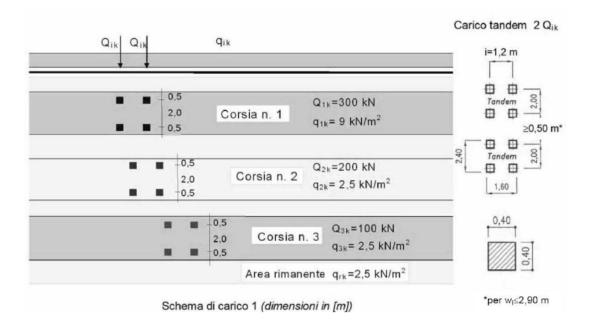
Guard Rail + rete di protezione = 2.0 kN/m

Veletta = 0.50 kN/m Collettore: 0.90 kN/m

6.3 AZIONI VARIABILI DA TRAFFICO (Q1)

I carichi mobili agenti sull'impalcato sono definiti al § 5.1.3.3 del D.M. 14/01/08 e vanno posizionati in modo da produrre gli effetti più sfavorevoli ai fini della verifica delle nervature.

Si fa riferimento allo Schema di Carico 1 per la verifiche globali.



PROGETTO ESECUTIVO

Cavalcavia km 0+000 - RELAZIONE DI CALCOLO IMPALCATO

La larghezza della carreggiata (w = 10.5m > 6.00 m) è tale da dover considerare tre corsie da 3.00 m ciascuna in base a quanto indicato nella Tabella 5.1.I del D.M. 14/01/08.

Tabella 5.1.I - Numero e Larghezza delle corsie

Larghezza di carreggiata	Numero di corsie	Larghezza di una corsia	Larghezza della zona
"w"	convenzionali	convenzionale [m]	rimanente [m]
w < 5,40 m	$n_l = 1$	3,00	(w-3,00)
5,4 ≤ w < 6,0 m	$n_l = 2$	w/2	0
6,0 m ≤ w	$n_l = Int(w/3)$	3,00	w - (3,00 x n _l)

L'area rimanente è variabile larga $w_r = 10.5 - 9 = 1.5 \text{m}$ m

Per i ponti di 1^a Categoria si considerano le seguenti intensità dei carichi:

Intensità dei carichi Qik e qik per le diverse corsie

Posizione	Carico asse Qik [kN]	$q_{ik}[kN/m^2]$
Corsia Numero 1	300	9,00
Corsia Numero 2	200	2,50
Corsia Numero 3	100	2,50
Altre corsie	0,00	2,50

Corsia n.1:

 $q_{1distr} = q_{1k} x w_1 = 9.00 x 3.00 = 27.0 kN/m$

carico uniformemente distribuito

 Q_{1tan} = 2 x Q_{1k} = 2 x 300 = 600 kN

2 file di carico tandem

Corsia n.2:

PROGETTO ESECUTIVO

Cavalcavia km 0+000 - RELAZIONE DI CALCOLO IMPALCATO

 $q_{2distr} = q_{2k} x w_2 = 2.50 x 3.00 = 7.50 kN/m$

carico uniformemente distribuito

 Q_{2tan} = 2 x Q_{2k} = 2 x 200 = 400 kN

2 file di carico tandem

Corsia n.3:

 $q_{3distr} = q_{3k} x w_3 = 2.50 x 3.00 = 7.50 kN/m$

carico uniformemente distribuito

 Q_{3tan} = 2 x Q_{3k} = 2 x 100 = 200 kN

2 file di carico tandem

Area rimanente

 $q_r = q_{rk} x w_r = 2.50 x l_{a.r.} = min: 3.75kN/m carico uniformemente distribuito$

6.4 AZIONE LONGITUDINALE DI FRENAMENTO O DI ACCELERAZIONE (Q3)

In base a quanto indicato al § 5.1.3.5 del D.M. 14.01.2008:

La forza di frenamento o di accelerazione è funzione del carico verticale totale agente sulla corsia convenzionale n. 1 e per i ponti di 1^a Categoria è pari a :

 $Q_3 = 0.6 (2 Q_{1k}) + 0.10 q_{1k} w_1 L$

con la limitazione:

 $180 \text{ kN} \le q_3 \le 900 \text{ kN}$

Nel caso in esame si ha:

 $Q_3 = 418.05 \text{ kN}$

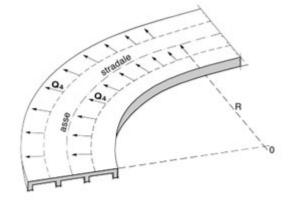
La forza, applicata a livello della pavimentazione ed agente lungo l'asse della corsia, è assunta uniformemente distribuita sulla lunghezza caricata. (19.44kN)/m

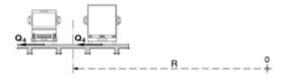
6.5 AZIONE CENTRIFUGA (Q4)

Il cavalcavia ha sviluppo rettilineo pertanto risulta q4 = 0 kN

In base a quanto indicato al § 5.1.3.6 del D.M. 14.01.2008 si ha:

Nei ponti con asse curvo di raggio R (in metri) l'azione centrifuga corrispondente ad ogni colonna di carico si valuta convenzionalmente come indicato nella tabella seguente





PROGETTO ESECUTIVO

Cavalcavia km 0+000 - RELAZIONE DI CALCOLO IMPALCATO

Raggio di curvatura R (m)	Q4 (kN)
R < 200	$0.2 \cdot Q_v$
$200 \le R < 1500$	$40 \cdot Q_v/R$
$R \ge 1500$	0

Essendo $Q_V = \Sigma_i \ 2 \ Q_{ik}$ il carico totale dovuto agli assi tandem dello schema di carico 1 agenti sul ponte. Il carico Q_4 , applicato a livello della pavimentazione, agisce in direzione normale all'asse del ponte. Nel caso in esame, essendo l'opera in un tratto rettilineo si ha: $Q_4 = 0 \ kN$

6.6 AZIONE DEL VENTO SULL'IMPALCATO (Q5)

In base a quanto indicato al § 3.3 del D.M. 14.01.2008 si hanno per il viadotto in questione i seguenti valori:

PROGETTO ESECUTIVO

Cavalcavia km 0+000 - RELAZIONE DI CALCOLO IMPALCATO

CALCOLO DELL'AZIONE DEL VENTO

4) Sicilia e provincia di Reggio Calabria

Zona	v _{b,0} [m/s]	a₀ [m]	k _a [1/s]
4	28	500	0.02

a _s (altitudine sul livello del mare [m]) 550	a _s (altitudine sul livello del mare [m])	550
--	--	-----

$$v_b = v_{b,0}$$
 per $a_s \le a_0$ $v_b = v_{b,0} + k_a (a_s - a_0)$ per $a_0 < a_s \le 1500 \text{ m}$

p (pressione del vento [N/mq]) = $q_b \cdot c_e \cdot c_p \cdot c_d$

q_b (pressione cinetica di riferimento [N/mq])

c_e (coefficiente di esposizione)

c_p (coefficiente di forma)

c_d (coefficiente dinamico)

Pressione cinetica di riferimento

$q_b = 1/2 \cdot \rho \cdot v_b^2$ ($\rho = 1,25 \text{ kg/mc}$)

q _b [N/mq]	525.63
-----------------------	--------

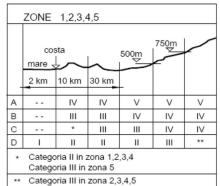
Coefficiente di forma

E' il coefficiente di forma (o coefficiente aerodinamico), funzione della tipologia e della geometria della costruzione e del suo orientamento rispetto alla direzione del vento. Il suo valore può essere ricavato da dati suffragati da opportuna documentazione o da prove sperimentali in galleria del vento.

Coefficiente dinamico

Esso può essere assunto autelativamente pari ad 1nelle costruzioni di tipologia ricorrente, quali gli edifici di forma regolare non eccedenti 80 m di altezza ed i capannoni industriali, oppure può essere determinato mediante analisi specifiche o facendo riferimento a dati di comprovata affidabilità.

PROGETTO ESECUTIVO

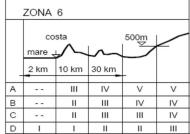

Cavalcavia km 0+000 - RELAZIONE DI CALCOLO IMPALCATO

Coefficiente di esposizione

Classe di rugosità del terreno

C) Aree con ostacoli diffusi (alberi, case, muri, recinzioni,....); aree con rugosità non riconducibile alle classi A, B, D

Categoria di esposizione



$c_{e}(z) = k_r^2 \cdot c_t \cdot \ln(z/z_0) \left[7 + c_t \cdot \ln(z/z_0)\right]$	per z≥ z _{min}
$c_{e}(z) = c_{e}(z_{min})$	per z < z _{min}

1.82

z altezza edif.[m]

		ZONE	7,8				
-			cos	sta /			
		mare 1.5 km	0.5 km	-			
	Α			IV			
1	В			IV		Α	
+	С			III		В	
+	D	1	II	*		С	
1	⋆ Categoria II in zona 8						
1	С	ategoria	III in zor	na 7		D	

Classe di rugosità

		ZONA 9				
a		mare <	costa			
IV						
IV	Α		Ĺ			
III	В		ı			
*	С		L			
a 7	D	T	ı			

a_s [m]

	6	4			550
1	200 A 200 A 200 A		200	100 000	

Zona

Cat. Esposiz.	k _r	z ₀ [m]	z _{min} [m]	c _t
III	0.2	0.1	5	1

La pressione del vento a meno del coefficiente di forma vale:	955.04 N/mq	(0.955 kN/mq)

								Ori	zzont	ale	
	h _{imp}	hp	h _{rif}	Се	Р	h _{tot}	d	h _{tot} /b	C _{fx}	q _{wx,pc}	m _{wx,pc}
	[m]	[m]	[m]	[-]	[kN/m2]	[m]	[m]	[-]	[-]	[kN/m]	[kNm/m]
S1	1.20	5.00	5.60	1.82	0.96	4.20	12.00	2.86	1.5	6.03	3.62
S2	1.20	5.00	5.60	1.82	0.96	4.20	12.00	2.86	1.5	6.03	3.62

Coefficienti di forma:

 $c_p = 1.50$ per l'impalcato

pressione del vento a ponte carico sull'impalcato:

 $p = 6.03 \, kN/mq$

L'azione del vento è riconducibile, in accordo a quanto prescritto dalle NTC'08, ad un carico orizzontale uniforme ed ortogonale all'asse longitudinale del ponte.

Collegamento viario compreso tra lo Svincolo della S.S. 514 di "Chiaromonte" con la S.S. 115 e lo Svincolo della "Ragusana" PROGETTO ESECUTIVO

Cavalcavia km 0+000 - RELAZIONE DI CALCOLO IMPALCATO

6.7 AZIONE SISMICA SU IMPALCATO

L'azione sismica di progetto/verifica è calcolata secondo le indicazioni delle NTC'08.

6.7.1 Definizione dei parametri sismici

L'azione sismica si definisce a partire dalla "pericolosità sismica di base" del sito; Le forme spettrali sono definite in funzione di tre parametri:

- Accelerazione orizzontale massima attesa ag.
- F₀, valore massimo del fattore di amplificazione dello spettro di accelerazione orizzontale;
- T_c^* , periodo di inizio del tratto a velocità costante dello spettro in accelerazione orizzontale.

Un altro parametro essenziale per la definizione delle azioni sismiche di progetto è la vita di riferimento che è definita come: $V_R = C_u * V_N$

ove:

- C_u è il coefficiente d'uso che, nel caso trattato, può essere posto pari a 2.0; in quanto appartenendo il viadotto ad un itinerario di collegamento tra capoluoghi di Provincia di importanza critica per il mantenimento delle vie di comunicazione ricade nella Classe d'uso IV.
- V_N è la vita nominale delle strutture che viene considerata pari a 50 anni;

Di conseguenza si ha: V_R = 100 anni

Le accelerazioni spettrali di progetto dipendono dalla probabilità, P_{Vr}, di superamento da parte della struttura di determinati Stati Limite durante la vita di riferimento.

In particolare, vengono considerati:

- Per lo stato limite ultimo, lo stato limite di salvaguardia della vita (SLV), per il quale a seguito del terremoto la costruzione subisce rotture e crolli dei componenti non strutturali ed impiantistici e significativi danni strutturali ai quali si associa una perdita significativa di rigidezza nei confronti delle azioni orizzontali; la costruzione conserva, invece, una parte della resistenza e rigidezza per azioni verticali e un margine di sicurezza nei confronti del collasso per azioni sismiche orizzontali. Per lo SLV la probabilità di superamento delle accelerazioni di progetto nel periodo di riferimento è PVr= 10 % (Tabella 1; tratta da NTC'08).
- Per lo stato limite di esercizio, lo stato limite di danno (SLD), per il quale, a seguito del terremoto, la costruzione, includendo gli elementi strutturali, quelli non strutturali e le apparecchiature rilevanti alla sua funzione, subisce danni tali da non mettere a rischio gli utenti e da non compromettere significativamente la capacità di resistenza e rigidezza nei confronti delle azioni verticali e orizzontali, mantenendosi immediatamente utilizzabile. Per lo SLD la probabilità di superamento delle accelerazioni di progetto nel periodo di riferimento è P_{Vr}=63 % (Figura 6.2 tratta da NTC'08).

PROGETTO ESECUTIVO

Cavalcavia km 0+000 - RELAZIONE DI CALCOLO IMPALCATO

Stati Limite		$P_{V_{R}}$: Probabilità di superamento nel periodo di riferimento \mathbf{V}_{R}
Stati limite di	SLO	81%
esercizio	SLD	63%
Stati limite	SLV	10%
ultimi	SLC	5%

Figura 6.2 Probabilità di superamento del sisma di progetto

Considerando per la struttura in esame una vita di riferimento pari a 100 anni (NTC 2008, tabella 2.4.I)) è possibile calcolare il periodo di ritorno dell'azione sismica T_R, come:

$$T_R = -\frac{V_R}{\ln{(1 - P_{Vr})}}$$

Si ottiene:

SLV: $P_{vr} = 0.1$ $T_{R(slv)} = 949 anni$

SLD: $P_{vr} = 0.63$ $T_{R(sld)} = 101$ anni

Dalla consultazione della microzonazione sismica nazionale per il sito in esame, si ottengono i seguenti parametri:



PROGETTO ESECUTIVO

Cavalcavia km 0+000 - RELAZIONE DI CALCOLO IMPALCATO

Valori dei parametri ag, Fo, Tc* per i periodi di ritorno TR associati a ciascuno \$

SLATO	T _R	a _g	F _o	T _c *
LIMITE	[anni]	[g]	[-]	[s]
SLO	60	0.054	2.515	0.267
SLD	101	0.075	2.491	0.289
SLV	949	0.283	2.361	0.454
SLC	1950	0.406	2.351	0.511

6.7.2 Spettri di risposta

A seguire si riportano i grafici degli spettri orizzontali determinati per la categoria di sottosuolo A e la categoria topografica T1, con uno smorzamento viscoso equivalente pari al 10% compatibile con la tipologia di isolatore elastomerico considerato.

Spettri di risposta (componenti orizz. e vert.) per lo stato limit SLV

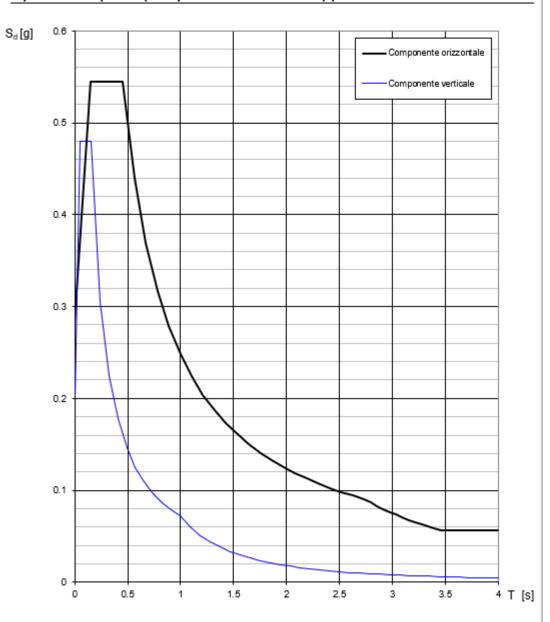


Figura 6.3 Spettro orizzontale di progetto (10%) SLV

PROGETTO ESECUTIVO

Cavalcavia km 0+000 - RELAZIONE DI CALCOLO IMPALCATO

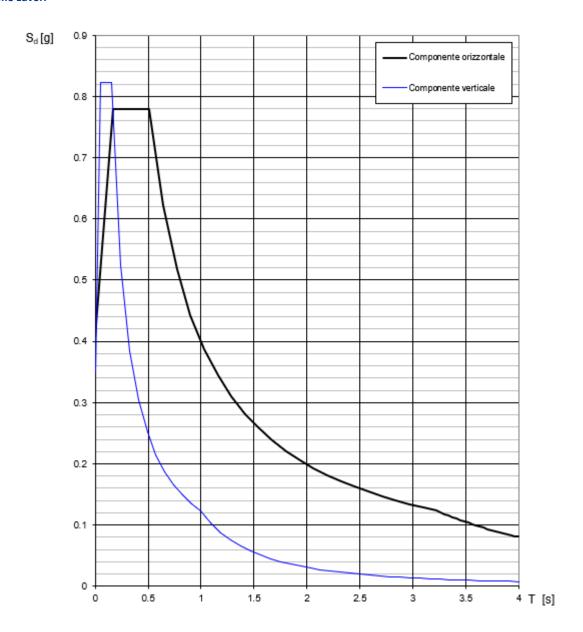


Figura 6.4 Spettro orizzontale di progetto (10%) SLC

6.8 URTI VEICOLO (Q8)

In base a quanto indicato dalle NTC2008 si tiene conto delle forze causate da collisioni accidentali sugli elementi di sicurezza attraverso una forza orizzontale equivalente di collisione di 100 kN. Essa viene considerata agente trasversalmente ed orizzontalmente 100 mm sotto la sommità dell'elemento o 1,0 m sopra il livello del piano di marcia, a seconda di quale valore sia più piccolo. Questa forza viene applicata su una linea lunga 0,5 m.

Per la verifica si considera una combinazione di carico eccezionale nella quale al carico orizzontale applicato al sicurvia si associa un carico verticale isolato pari ad una ruota del secondo schema di carico (200 kN su un'impronta 0.35 x 0.60 m).

Cavalcavia km 0+000 - RELAZIONE DI CALCOLO IMPALCATO

Inoltre, in base a quanto riportato nel quaderno Tecnico ANAS N.4 "Interventi di ripristino delle condizioni di sicurezza di cordoli e barriere bordo ponte" nel progetto strutturale si dovrà tener conto delle forze causate da collisioni sugli elementi di sicurezza attraverso il sistema di forze equivalenti rappresentato nella figura successiva.

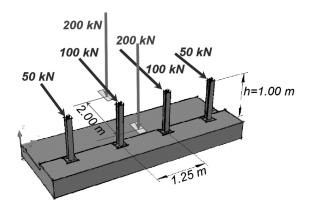


Figura 6.12- Sistema di forze equivalenti per condizioni di progetto ordinarie.

Esso risulta idoneo a rappresentare le azioni equivalenti alle forze di collisione, riferite a condizioni ordinarie della strada e delle barriere, con particolare riferimento alle connessioni tra queste e la struttura.

6.9 EFFETTI REOLOGICI (E2)

Si rimanda al successivo paragrafo 11 della presente relazione. Ai fini delle verifiche strutturali si considerano inoltre gli effetti della viscosità dopo il raggiungimento della configurazione finale di esercizio per i carichi permanenti (peso proprio e precompressione).

6.10 VARIAZIONI TERMICHE (E3)

Ai fini della verifica del sistema di appoggio, si considera una variazione termica uniforme peri a 28°c

Cavalcavia km 0+000 - RELAZIONE DI CALCOLO IMPALCATO

COMBINAZIONE DELLE AZIONI

Ai fini delle verifiche degli stati limite si sono considerate le seguenti combinazioni delle azioni (si veda D.M. 14.01.2008 §2.5.3):

Combinazione fondamentale per gli SLU

$$\gamma_{G1} \cdot G_1 + \gamma_{G2} \cdot G_2 + \gamma_{P} \cdot P + \gamma_{Q1} \cdot Q_{k1} + \gamma_{Q2} \cdot \psi_{02} \cdot Q_{k2} + \gamma_{Q3} \cdot \psi_{03} \cdot Q_{k3} + \dots$$

Combinazione caratteristica (rara) per gli SLE irreversibili

$$G_1 + G_2 + P + Q_{k1} + \psi_{02} \cdot Q_{k2} + \psi_{03} \cdot Q_{k3} + \dots$$

Combinazione frequente per gli SLE reversibili

$$G_1 + G_2 + P + \psi_{11} \cdot Q_{k1} + \psi_{22} \cdot Q_{k2} + \psi_{23} \cdot Q_{k3} + \dots$$

Combinazione quasi permanente per gli SLE a lungo termine

$$G_1 + G_2 + P + \psi_{21} \cdot Q_{k1} + \psi_{22} \cdot Q_{k2} + \psi_{23} \cdot Q_{k3} + \dots$$

Combinazione sismica

$$E + G_1 + G_2 + P + \psi_{21} \cdot Q_{k1} + \psi_{22} \cdot Q_{k2} + \dots$$

La combinazione direzionale dell'azione sismica è stata effettuata sulla base delle seguenti formule:

$$E = E_x \pm 0.3E_y \pm 0.3E_z$$
 combinazione "SISMA TRASVERSALE"

$$E = E_v \pm 0.3E_x \pm 0.3E_z$$
 combinazione "SISMA LONGITUDINALE"

$$E=E_v\pm 0.3E_x\pm 0.3E_z$$
 combinazione "SISMA VERTICALE"

 $G_{\rm l}$ = peso proprio di tutti gli elementi strutturali

G = peso proprio di tutti gli elementi non strutturali

P = eventuale pretensione o precompressione

 Q_{Ki} = azioni variabili

 γ_j = coefficienti parziali di sicurezza

Collegamento viario compreso tra lo Svincolo della S.S. 514 di "Chiaromonte" con la S.S. 115 e lo Svincolo della "Ragusana"

PROGETTO ESECUTIVO

Cavalcavia km 0+000 - RELAZIONE DI CALCOLO IMPALCATO

 ψ_{ij} = coefficiente di combinazione delle azioni variabili

I coefficienti parziali di sicurezza γ_j da utilizzare sono riportati nella tabella seguente (Estratto tabella 5.1.V) nella colonna "A1 STR" .

Tabella 5.1.V - Coefficienti parziali di sicurezza per le combinazioni di carico agli SLU

		Coefficiente	EQU ⁽¹⁾	A1 STR	A2 GEO
Carichi permanenti	favorevoli sfavorevoli	γ _{G1}	0,90 1,10	1,00 1,35	1,00 1,00
Carichi permanenti non strutturali ⁽²⁾	favorevoli sfavorevoli	γ _{G2}	0,00 1,50	0,00 1,50	0,00 1,30
Carichi variabili da traffico	favorevoli sfavorevoli	γο	0,00 1,35	0,00 1,35	0,00 1,15
Carichi variabili	favorevoli sfavorevoli	γQi	0,00 1,50	0,00 1,50	0,00 1,30
Distorsioni e presollecitazioni di progetto	favorevoli sfavorevoli	γε1	0,90 1,00 ⁽³⁾	1,00 1,00 ⁽⁴⁾	1,00 1,00
Ritiro e viscosità, Variazioni termiche, Cedimenti vincolari	favorevoli sfavorevoli	γε2, γε3, γε4	0,00 1,20	0,00 1,20	0,00 1,00

I coefficienti di combinazione $\,\psi_{0j}\,$ sono riportati nella tabella seguente (Estratto tabella 5.1.VI) .

Collegamento viario compreso tra lo Svincolo della S.S. 514 di "Chiaromonte" con la S.S. 115 e lo Svincolo della "Ragusana"

PROGETTO ESECUTIVO

Cavalcavia km 0+000 - RELAZIONE DI CALCOLO IMPALCATO

 $\textbf{Tabella 5.1.VI} - Coefficienti \ \psi \ per \ le \ \ azioni \ variabili \ per \ ponti \ stradali \ e \ pedonali$

Azioni	Gruppo di azioni (Tabella 5.1.IV)	Coefficiente Ψ ₀ di combinazione	Coefficiente ψ 1 (valori frequenti)	Coefficiente ψ 2 (valori quasi permanenti)
	Schema 1 (Carichi tandem)	0,75	0,75	0,0
	Schemi 1, 5 e 6 (Carichi distribuiti	0,40	0,40	0,0
	Schemi 3 e 4 (carichi concentrati)	0,40	0,40	0,0
Azioni da traffico	Schema 2	0,0	0,75	0,0
(Tabella 5.1.IV)	2	0,0	0,0	0,0
	3	0,0	0,0	0,0
	4 (folla)		0,75	0,0
	5	0,0	0,0	0,0
Vento q₅	Vento a ponte scarico SLU e SLE Esecuzione	0,6 0,8	0,2	0,0 0,0
	Vento a ponte carico	0,6		
Mana a	SLU e SLE	0,0	0,0	0,0
Neve q₅	esecuzione	0,8	0,6	0,5
Temperatura	T_k	0,6	0,6	0,5

Collegamento viario compreso tra lo Svincolo della S.S. 514 di "Chiaromonte" con la S.S. 115 e lo Svincolo della "Ragusana"

PROGETTO ESECUTIVO

Cavalcavia km 0+000 - RELAZIONE DI CALCOLO IMPALCATO

8 ANALISI STRUTTURALE

Le fasi di realizzazione dell'impalcato del viadotto possono essere così descritte:

In una prima fase le travi in c.a.p., in semplice appoggio sono soggette solo agli effetti del peso proprio e della precompressione.

Dopo verranno gettati i trasversi di testata e successivamente, dopo la presa del calcestruzzo dei trasversi, verrà effettuato il getto della soletta e dei cordoli per poi concludere con l'arredo dell'impalcato.

Per tener conto delle varie fasi costruttive sono stati implementati più modelli di calcolo.

Un primo modello (Mod. Fase 1) analizza l'impalcato con le travi appoggiate e considera i carichi di peso proprio delle travi e gli effetti della precompressione. Successivamente, sempre sullo stesso modello si determinano le sollecitazioni nella trave per effetto del getto della soletta.

Infine per effettuare l'analisi per sovraccarichi permanenti, per carichi variabili da traffico per cedimenti differenziali e variazioni termiche, nonché degli effetti della viscosità a tempo infinito viene implementato un ulteriore modello (Mod. Fase 2).

Il calcolo delle sollecitazioni derivanti dall'impalcato e agenti sulle sottostrutture è stato effettuato con il programma agli elementi finiti SAP2000 schematizzando l'impalcato nella sua configurazione reale di trave in semplice appoggio.

Per valutare gli effetti dell'azione sismica sulle strutture di impalcato, nel modello di fase 2 si aggiungono gli isolatori elastomerici modellati con elementi link ai quali è assegnata un valore specifico di rigidezza laterale e verticale di seguito definita nello specifico paragrafo di analisi sismica.

8.1 SOFTWARE DI CALCOLO

L' analisi della struttura è stata eseguita impiegando il software di calcolo automatico Sap2000 della Computers and Structures, Inc.

Nel seguito si riportano le caratteristiche generali del codice di calcolo utilizzato, nonché i dati generali sul modello realizzato comprensivi di numerazione di nodi ed aste.

Le unità di misura, ove non espressamente indicate, sono le seguenti:

lunghezze: m

forze: kN
coppie: kN-m
temperature: °C
tempo: sec

Una descrizione completa ed esauriente del programma, con il campo di applicazione, le informazioni sui fondamenti teorici e sui metodi di calcolo numerico usati possono essere consultati nella guida in linea del codice di calcolo.

In sintesi, si riportano gli elementi di valutazione del codice forniti dal distributore del programma, necessari alla formulazione del grado di affidabilità del codice richiesto al progettista utilizzatore, secondo quanto prescritto dalla CNR-10024/'86 "Analisi di strutture mediante elaboratore: impostazione e redazione delle relazioni di calcolo"

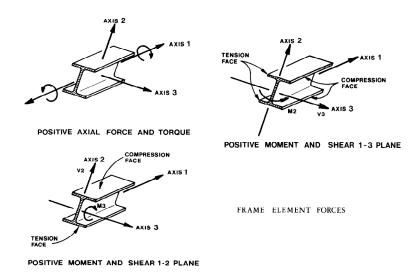
Cavalcavia km 0+000 - RELAZIONE DI CALCOLO IMPALCATO

I modelli numerici fanno riferimento ad un comportamento generale spaziale o piano a seconda dei gradi di libertà imposti ai nodi della struttura.

Ogni modello è riferito ad uno spazio fisso individuato da un sistema di riferimento globale nel quale sono da leggersi le coordinate di tutti i nodi della struttura.

Per ogni singola asta è poi considerato un sistema di riferimento locale, che assume l'asse "1" dell'asta orientato dal "primo nodo" (nodo I) al "secondo nodo" (nodo J) (essendo tali i nodi di definizione dell'asta. L'asse "3" viene definito (per direzione e verso) per ogni asta nella dichiarazione dei nodi della stessa e il suo significato fisico rispetto alla terna locale e indicato in figura. L'asse "2" (con il verso opportuno) completa la terna locale definita secondo la "regola della mano destra"

Il programma SAP presenta i chiari capitoli d'ingresso dati che vengono di seguito indicati:


JOINTS: Specifica le coordinate dei nodi del modello. È da precisare come sia possibile fare uso di subroutines di generazione automatica.

RESTRAINTS: Specifica i gradi di libertà inattivi dei nodi del modello (0 = attivo, 1 = inattivo).

SPRINGS: Specifica le caratteristiche di elasticità dei supporti se non considerati vincoli rigidi.

FRAME: Specifica le caratteristiche meccaniche di ogni asta ed i carichi ripartiti o concentrati lungo le stesse. Specifica inoltre le aste che costituiscono la struttura, assegnando ad ognuna il nodo di inizio (start) e di fine (end) nonché gli altri dati necessari ai fini della individuazione del sistema di riferimento locale. È da precisare come sia possibile fare uso di subroutines di generazione automatica.

LOADS: Specifica i carichi concentrati nei nodi della struttura.

I dati significativi di input ed output dei modelli sono riportati in appendice.

8.2 METODOLOGIA DI ANALISI

8.2.1 Analisi in condizioni Non-Sismiche

Le analisi svolte in condizioni non simiche sono tutte di tipo statico lineare. L'analisi per carichi mobili è stata svolta in automatico dal software impiegando la teoria delle linee di influenza e ricavando l'inviluppo delle sollecitazioni sugli elementi strutturali.

Collegamento viario compreso tra lo Svincolo della S.S. 514 di "Chiaromonte" con la S.S. 115 e lo Svincolo della "Ragusana" PROGETTO ESECUTIVO

Cavalcavia km 0+000 - RELAZIONE DI CALCOLO IMPALCATO

I risultati delle analisi in termini di distribuzioni delle sollecitazioni sono riportati nei paragrafi di verifica dei singoli elementi strutturali.

8.2.2 Analisi Sismica

L'analisi dinamica lineare con spettro di risposta è la metodologia di analisi adottata per valutare i benefici apportati dagli interventi proposti (descritti successivamente) sia in termini di sollecitazioni agli elementi strutturali sia in termini di spostamento del sistema di isolamento. Nella fattispecie essa consiste:

- nella determinazione dei modi di vibrare della costruzione (analisi modale);
- nel calcolo degli effetti dell'azione sismica, rappresentata dallo spettro di risposta di progetto, per ciascuno dei modi di vibrare individuati;
- nella combinazione di questi effetti.

8.3 GEOMETRIA DEL MODELLO DI CALCOLO

Il modello di calcolo che consiste nel solo impalcato e del sistema di vincolo, è stato realizzato impiegando esclusivamente elementi frame per la modellazione delle varie parti strutturali (travi, traversi, soletta).

La struttura dell'impalcato in particolare è stata modellata a graticcio tenendo conto della presenza delle fasce di soletta e dei traversi che contribuiscono alla ripartizione trasversale dei carichi tra le travi di impalcato.

Le connessioni tra le travi e l'estradosso muro frontale spalle sono state modellate mediante link rigidi e link elastici che vanno a modellare in particolare il comportamento meccanico degli apparecchi di appoggio.

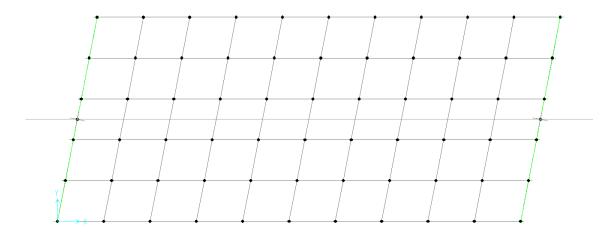


Figura 8.1 Modello FEM: Pianta impalcato

PROGETTO ESECUTIVO

Cavalcavia km 0+000 - RELAZIONE DI CALCOLO IMPALCATO

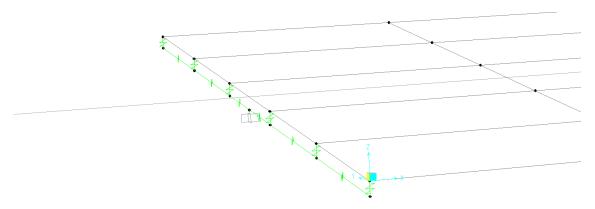


Figura 8.2 Modello FEM: Modellazione sistema di isolamento – spalla

8.3.1 Vincoli interni

Gli apparecchi d'appoggio multidirezionali e i dispositivi elastomerici di isolamento sismico sono stati modellati secondo quanto riportato di seguito.

- Gli appoggi multi-direzionali sono stati modellati come link dotati di elevata rigidezza assiale e rigidezza tagliante nulla sia in direzione trasversale che longitudinale; tali appoggi sono ubicati sotto le due travi centrali dell'impalcato.
- I dispositivi antisismici costituiti da isolatori elastomerici sono modellati mediante impiego di elementi link del tipo "linear" Al singolo dispositivo sono stati assegnati i seguenti valori di rigidezza verticale ed orizzontale determinati sulla base delle esigenze di avere una riduzione delle azioni sismiche trasmesse alle sottostrutture e una capacità di spostamento orizzontale compatibile con l'opera.

PROGETTO ESECUTIVO

Cavalcavia km 0+000 - RELAZIONE DI CALCOLO IMPALCATO

Linear Link/Support Directional Properties

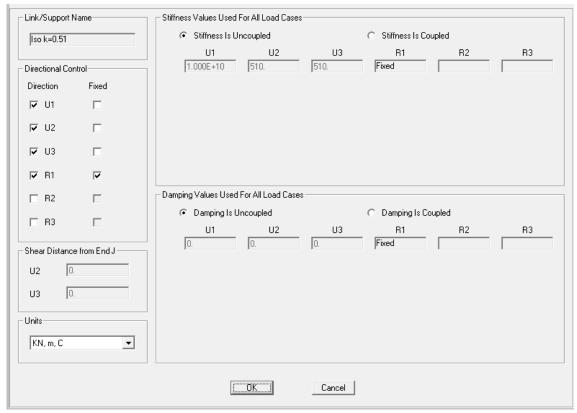


Figura 8.3 Modellazione dispostivi di isolamento

Cavalcavia km 0+000 - RELAZIONE DI CALCOLO IMPALCATO

FASI COSTRUTTIVE E DI CALCOLO IMPALCATO

9.1 **FASI COSTRUTTIVE**

Nella realizzazione dell'impalcato si dovrà procedere secondo le fasi costruttive indicate nella tabella successiva.

FASE	OPERAZIONE
1	Posa in opera delle travi
2	Getto trasversi
3	Getto della soletta
4	Pavimentazione e finiture

9.2 **FASI DI CALCOLO**

La tabella seguente riassume le diverse fasi di calcolo, indicando per ciascuna di esse le rispettive azioni con i corrispondenti tempi, e specificando la sezione resistente su cui agiscono le suddette azioni.

FASE	SEZIONE	ТЕМРО	Azione	
	RESISTENTE	giorni		
1	Trave isolata	0	Precompressione	
		0	Peso proprio trave	
		45	Cadute di tensione lente	
	Trave isolata	45	Getto trasversi	
2		60	Cadute di tensione lente	
	Trave isolata	60	Getto soletta	
	Sezione mista	>60	Carichi permanenti portati	
3		>60	Carichi variabili	
		~	Cadute di tensione lente	

Cavalcavia km 0+000 - RELAZIONE DI CALCOLO IMPALCATO

10 DATI DIMENSIONALI PER VERIFICHE ALLO SLU

Si riportano di seguito le verifiche delle travi in c.a.p. per effetto delle combinazioni dei carichi allo SLU.

TRAVI				
	Lunghezza campata		21.00	m
	Tipologia travi			
	Lunghezza trave		22.00	m
	Altezza trave		0.80	m
	Larghezza alla base		185.0	cm
	Larghezza superiore		119.5	cm
	Numero di anime per trave			
	Larghezza di ciascuna anima per la sezione corrente			cm
	Larghezza di ciascuna anima per la sezione di testata			cm
	Spessore soletta inferiore trave		18.0	cm

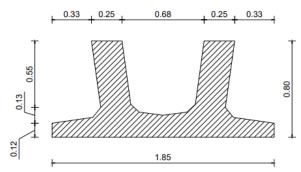


Figura 10.1 Sezione trasversale trave c.a.p.

10.1 ARMATURA DI PRECOMPRESSIONE TRAVI

Si riportano di seguito le caratteristiche generali dell'armatura di precompressione.

PROGETTO ESECUTIVO

Cavalcavia km 0+000 - RELAZIONE DI CALCOLO IMPALCATO

σ _{pi} =	1400	MPa			
f _{p(1)k} =	1670.00	MPa	Tens. Cara	ntt all'1% di	def. tot.
σ _{p,∞} =	1336.00	MPa	Tensione	massima ir	n esercizio
As =	1.39	cmq	Area 1 Tre	folo	
Armature	di precom	pressione			
Strato	n _{tr}	d _{tr}	A _u		
		[cm]	[cm ²]		
6	4	73.5	1.39		
5	0	28.0	1.39		
4	0	50.0	1.39		
3	0	16.5	1.39		
2	21	11.5	1.39		
1	23	6.5	1.39		
TOT	48				
n _{tr} =	Numero d	i trefoli de	llo strato		
d _{tr} =	Distanza d	lei trefoli d	al lembo ir	nferiore	
A _u =	Area di cia	scun trefol	lo dello str	ato	

Si riportano di seguito le caratteristiche dell'armatura di precompressione per le varie sezioni di verifica.

Itinerario Ragusa - Catania

Collegamento viario compreso tra lo Svincolo della S.S. 514 di "Chiaromonte" con la S.S. 115 e lo Svincolo della "Ragusana"

PROGETTO ESECUTIVO

Direzione Progettazione e Realizzazione Lavori

Cavalcavia km 0+000 - RELAZIONE DI CALCOLO IMPALCATO

								[cm]	[cm ⁴]																											
S19 (SP2) 22.00	4	0	0	0	3	7	14	26.71	30999																											
S18 21.50	4	0	0	0	3	7	14	26.71	30999																											
S17 21.00	4	0	0	0	3		14	26.71	30999																											
S16 20.00	4	0	0	0	13	13	30	17.60	33190																											
S15 19.00	4	0	0	0	13	13	30	17.60	33190																											
S14 18.00	4	0	0	0	13	21	38	15.26	33660																											
S13 17.00	4	0	0	0	13	21	38	15.26	33660																											
S12 15.00	0	0	0	0	21	21	42	9.00	5094																											
S11 12.50	0	0	0	0	21	23	44	8.89	5211																											
S10(Mezz) 11.00	0	0	0	0	21	23	44	8.89	5211																											
S9 9.50	0	0	0	0	21	23	44	8.89	5211																											
S8 7.00	0	0	0	0	21	21	42	9.00	5094																											
S7 5.00	4	0	0	0	13	21	38	15.26	33660																											
S6 4.00	4	0	0	0	13	21	38	15.26	33660	l e	Yspi	[cm]	26.71	26.71	26.71	17.60	17.60	15.26	15.26	9.00	8.89	8.89	8.89	9.00	15.26	15.26	17.60	17.60	26.71	26.71	26.71					
3.00	4	0	0	0	13	13	30	17.60	33190	mpression	- Isp	[cm ⁴]	30999	30999	30999	33190	33190	33660	33660	5094	5211	5211	5211	5094	33660	33660	33190	33190	30999	30999	66608			eriore	nferiore	
S4 2.00	4	0	0	0	13	13	30	17.60	33190	e di preco	S _{sp}	[cm ₃]	519.86	519.86	519.86	733.92	733.92	806.20	806.20	525.42	543.49	543.49	543.49	525.42	806.20	806.20	733.92	733.92	519.86	519.86	519.86			l lembo inf	al lembo i	nferiore
S3 1.00	4	0	0	0	3	7	14	26.71	30999	le armatur	A _{sp}	[cm ²]	19.46	19.46	19.46	41.70	41.70	52.82	52.82	58.38	61.16	61.16	61.16	58.38	52.82	52.82	41.70	41.70	19.46	19.46	19.46			rispetto al	ra rispetto	dal lembo i
S2 0.50	4	0	0	0	3	7	14	26.71	30999	etriche del	ů		14	14	14	30	30	38	38	42	4	4	44	42	38	38	30	30	14	14	14	ivi		l'armatura	ell'armatu	tro trefoli c
S1 (SP1) 0.00	4	0	0	0	3	7	14	26.71	30999	Caratteristiche geometriche delle armature di precompressione	Xasse pila	[m]	-0.50	0.00	0.50	1.50	2.50	3.50	4.50	6.50	9.00	10.50	12.00	14.50	16.50	17.50	18.50	19.50	20.50	21.00	21.50	Numero di trefoli attivi	refoli	Momento statico dell'armatura rispetto al lembo inferiore	Momento d'inerzia dell'armatura rispetto al lembo inferiore	Distanza del baricentro trefoli dal lembo inferiore
^/x	73.5	28.0	50.0	16.5	11.5	6.5	tot. tr.	y _{spi} =	- lsp =	Caratterist	Sez.		S1 (SP1)	52	53	S4	S5	98	57	88	89	S10(Mezz)	S11	S12	S13	S14	S15	S16	S17	S18	S19 (SP2)	Numero d	Area dei trefoli	Momento	Momento	Distanza d
Strato	9	5	4	3	2	1					Xtest trave	[m]	0.00	0.50	1.00	2.00	3.00	4.00	5.00	7.00	9.50	11.00	12.50	15.00	17.00	18.00	19.00	20.00	21.00	21.50	22.00	n _t =	$A_{sp} =$	S _{sp} =	= ds	y _{spi} =

MANDATARIA:

MANDANTI:

PROGETTO ESECUTIVO

Cavalcavia km 0+000 - RELAZIONE DI CALCOLO IMPALCATO

10.2 CARATTERISTICHE DELLE SEZIONI

10.2.1 Trave isolata

	Caratteristich	e geometr	riche del	le sezioni	della trav	e isolata	
X _{test. trave}	Sez.	X _{asse app}	Ac	S _{ci}	I _{ci}	I _{co}	y Gi
[m]		[m]	[m ²]	[m ³]	[m ⁴]	[m ⁴]	[m]
0.00	S1 (SP1)	-0.50	0.6393	0.1839	0.0895	0.0366	0.2877
0.50	S2	0.00	0.6393	0.1839	0.0895	0.0366	0.2877
1.00	S3	0.50	0.6393	0.1839	0.0895	0.0366	0.2877
2.00	S4	1.50	0.6393	0.1839	0.0895	0.0366	0.2877
3.00	S 5	2.50	0.6393	0.1839	0.0895	0.0366	0.2877
4.00	S6	3.50	0.6393	0.1839	0.0895	0.0366	0.2877
5.00	S7	4.50	0.6393	0.1839	0.0895	0.0366	0.2877
7.00	S8	6.50	0.6393	0.1839	0.0895	0.0366	0.2877
9.50	S9	9.00	0.6393	0.1839	0.0895	0.0366	0.2877
11.00	S10(Mezz)	10.50	0.6393	0.1839	0.0895	0.0366	0.2877
12.50	S11	12.00	0.6393	0.1839	0.0895	0.0366	0.2877
15.00	S12	14.50	0.6393	0.1839	0.0895	0.0366	0.2877
17.00	S13	16.50	0.6393	0.1839	0.0895	0.0366	0.2877
18.00	S14	17.50	0.6393	0.1839	0.0895	0.0366	0.2877
19.00	S15	18.50	0.6393	0.1839	0.0895	0.0366	0.2877
20.00	S16	19.50	0.6393	0.1839	0.0895	0.0366	0.2877
21.00	S17	20.50	0.6393	0.1839	0.0895	0.0366	0.2877
21.50	S18	21.00	0.6393	0.1839	0.0895	0.0366	0.2877
22.00	S19 (SP2)	21.50	0.6393	0.1839	0.0895	0.0366	0.2877
	A _C =	Area					
	S _{ci} =	Momento	statico r	ispetto al	lembo inf	eriore tra	ve
	I _{ci} =	Momento	di Inerzi	a rispetto	al lembo	inferiore t	trave
	I _{CO} =	Momento	di Inerzi	a baricent	trico		
	y _{Gi} =	Distanza c	lel barice	entro rispe	etto al lem	bo inferio	re trave

10.2.2 Sezione ideale omogeneizzata

CLS Trave	C45/55									
f _{ck,tr} =	45.65	MPa	Resistenz	a a compr	essione ci	lindrica	caratteri	stica del	cls travi	
E _{cm} =	36416	MPa	Modulo d	i elasticita	à del calce	struzzo (delle trav	/i		
E _s =	210000	MPa	Modulo d	i elasticita	à dell'arma	atura ord	linaria			
E _p =	195000	MPa	Modulo d	i elasticit	à dell' arm	atura di	precomp	ression	9	
ω _p =	5.35		Coeff. di	omogenei	zzazione a	acciaio d	precom	pressior	ne	
ω _s =	5.77		Coeff. di	omogenei	zzazione a	acciaio o	rdinario			

PROGETTO ESECUTIVO

Cavalcavia km 0+000 - RELAZIONE DI CALCOLO IMPALCATO

		C	aratterist	tiche Geo	metriche S	Sezione Id	eale Om	ogeneiz	zata			
X _{test. trave}	Sez.	X _{asse pila}	A_1	S _{1i}	l _{1i}	I ₁₀	y _{1s}	y _{1i}	y _{1p}	W _{1s}	W_{1i}	W _{1p}
[m]		[m]	$[m^2]$	[m ³]	[m ⁴]	[m ⁴]	[m]	[m]	[m]	[m ³]	[m ³]	[m ³]
0.00	S1 (SP1)	-0.50	0.6526	0.1866	0.0909	0.0375	0.514	-0.286	-0.019	0.0730	-0.1313	-1.9927
0.50	S2	0.00	0.6526	0.1866	0.0909	0.0375	0.514	-0.286	-0.019	0.0730	-0.1313	-1.9927
1.00	S3	0.50	0.6526	0.1866	0.0909	0.0375	0.514	-0.286	-0.019	0.0730	-0.1313	-1.9927
2.00	S4	1.50	0.6623	0.1876	0.0910	0.0379	0.517	-0.283	-0.107	0.0733	-0.1338	-0.3534
3.00	S5	2.50	0.6623	0.1876	0.0910	0.0379	0.517	-0.283	-0.107	0.0733	-0.1338	-0.3534
4.00	S6	3.50	0.6671	0.1879	0.0910	0.0381	0.518	-0.282	-0.129	0.0735	-0.1353	-0.2955
5.00	S7	4.50	0.6671	0.1879	0.0910	0.0381	0.518	-0.282	-0.129	0.0735	-0.1353	-0.2955
7.00	S8	6.50	0.6695	0.1866	0.0898	0.0377	0.521	-0.279	-0.189	0.0724	-0.1354	-0.2000
9.50	S9	9.00	0.6707	0.1867	0.0898	0.0378	0.522	-0.278	-0.190	0.0725	-0.1358	-0.1995
11.00	S10(Mezz)	10.50	0.6707	0.1867	0.0898	0.0378	0.522	-0.278	-0.190	0.0725	-0.1358	-0.1995
12.50	S11	12.00	0.6707	0.1867	0.0898	0.0378	0.522	-0.278	-0.190	0.0725	-0.1358	-0.1995
15.00	S12	14.50	0.6695	0.1866	0.0898	0.0377	0.521	-0.279	-0.189	0.0724	-0.1354	-0.2000
17.00	S13	16.50	0.6671	0.1879	0.0910	0.0381	0.518	-0.282	-0.129	0.0735	-0.1353	-0.2955
18.00	S14	17.50	0.6671	0.1879	0.0910	0.0381	0.518	-0.282	-0.129	0.0735	-0.1353	-0.2955
19.00	S15	18.50	0.6623	0.1876	0.0910	0.0379	0.517	-0.283	-0.107	0.0733	-0.1338	-0.3534
20.00	S16	19.50	0.6623	0.1876	0.0910	0.0379	0.517	-0.283	-0.107	0.0733	-0.1338	-0.3534
21.00	S17	20.50	0.6526	0.1866	0.0909	0.0375	0.514	-0.286	-0.019	0.0730	-0.1313	-1.9927
21.50	S18	21.00	0.6526	0.1866	0.0909	0.0375	0.514	-0.286	-0.019	0.0730	-0.1313	-1.9927
22.00	S19 (SP2)	21.50	0.6526	0.1866	0.0909	0.0375	0.514	-0.286	-0.019	0.0730	-0.1313	-1.9927
	A ₁ =	Area sezio	one ideal	e omoger	neizzata							
	S _{1i} =	Momento	statico r	ispetto al	lembo inf	eriore						
	I _{1i} =	Momento	di inerzi	a rispetto	al lembo	inferiore						
	I ₁₀ =	Momento	di inerzi	a baricent	rico							
	y _{1s} =	distanza le	embo su _l	periore tra	ave dal ba	ricentro tr	ave					
	y _{1i} =	distanza le	tanza lembo superiore trave dal baricentro trave tanza lembo inferiore trave dal baricentro trave									
	y _{1p} =	distanza b	anza lembo inferiore trave dal baricentro trave anza baricentro armature di precompressione dal baricentro trave									
	W _{1s} =					superior						
	W _{1i} =					o inferiore						
	W _{1p} =					ntro arma		precomp	ressione	<u> </u>		

10.2.3 Sezione mista trave + soletta

PROGETTO ESECUTIVO

Cavalcavia km 0+000 - RELAZIONE DI CALCOLO IMPALCATO

SEZIONE MISTA	TRAVE +	SOLETTA		
CLS	Sol.	C32/40		
f	ck,sol =	33.2	MPa	Resistenza a compressione cilindrica caratteristica del cls soletta
E	c,Sol =	33643	MPa	Modulo di elasticità del calcestruzzo della soletta
	n _C =	0.924		Coefficiente di omogeneizzazione dei calcestruzzi
ı	L _{imp} =	12.00	m	Larghezza impalcato (fuori tutto)
	n° _{tr} =	6		Numero travi
	i _{tr} =	1.85	m	Interasse travi
	S _{sol} =	0.20	m	Spessore della soletta
S	S _{pred} =	0.05	m	Spessore dalla

				Cara	tteristic	ne della s	ezione n	nista del	la trave	di bordo					
X _{test. trave}	Sez.	X _{asse pila}	A ₂	S _{2i}	l _{2i}	I ₂₀	Y _{2s,sol}	y _{2s}	y _{2i}	y _{2p}	W _{2ss}	W _{2si}	W _{2ts}	W _{2ti}	W _{2p}
[m]		[m]	$[m^2]$	[m ³]	[m ⁴]	[m ⁴]	[m]	[m]	[m]	[m]	[m³]	[m³]	[m ³]	[m ³]	[m ³]
0.00	S1 (SP1)	-0.50	1.084	0.6005	0.48574	0.15310	0.496	0.246	-0.554	-0.287	0.3340	0.6734	0.6221	-0.2764	-0.5339
0.50	S2	0.00	1.100	0.6116	0.49571	0.15579	0.494	0.244	-0.556	-0.289	0.3412	0.6905	0.6379	-0.2803	-0.5398
1.00	S3	0.50	1.100	0.6116	0.49571	0.15579	0.494	0.244	-0.556	-0.289	0.3412	0.6905	0.6379	-0.2803	-0.5398
2.00	S4	1.50	1.110	0.6125	0.49580	0.15783	0.498	0.248	-0.552	-0.376	0.3429	0.6882	0.6358	-0.2860	-0.4200
3.00	S5	2.50	1.110	0.6125	0.49580	0.15783	0.498	0.248	-0.552	-0.376	0.3429	0.6882	0.6358	-0.2860	-0.4200
4.00	S6	3.50	1.109	0.6071	0.49010	0.15780	0.503	0.253	-0.547	-0.395	0.3398	0.6760	0.6245	-0.2883	-0.3998
5.00	S7	4.50	1.109	0.6071	0.49010	0.15780	0.503	0.253	-0.547	-0.395	0.3398	0.6760	0.6245	-0.2883	-0.3998
7.00	S8	6.50	1.106	0.6010	0.48465	0.15806	0.507	0.257	-0.543	-0.453	0.3377	0.6668	0.6160	-0.2909	-0.3486
9.50	S9	9.00	1.107	0.6011	0.48466	0.15833	0.507	0.257	-0.543	-0.454	0.3380	0.6666	0.6159	-0.2916	-0.3487
11.00	S10(Mezz)	10.50	1.107	0.6011	0.48466	0.15833	0.507	0.257	-0.543	-0.454	0.3380	0.6666	0.6159	-0.2916	-0.3487
12.50	S11	12.00	1.107	0.6011	0.48466	0.15833	0.507	0.257	-0.543	-0.454	0.3380	0.6666	0.6159	-0.2916	-0.3487
15.00	S12	14.50	1.106	0.6010	0.48465	0.15806	0.507	0.257	-0.543	-0.453	0.3377	0.6668	0.6160	-0.2909	-0.3486
17.00	S13	16.50	1.109	0.6071	0.49010	0.15780	0.503	0.253	-0.547	-0.395	0.3398	0.6760	0.6245	-0.2883	-0.3998
18.00	S14	17.50	1.109	0.6071	0.49010	0.15780	0.503	0.253	-0.547	-0.395	0.3398	0.6760	0.6245	-0.2883	-0.3998
19.00	S15	18.50	1.110	0.6125	0.49580	0.15783	0.498	0.248	-0.552	-0.376	0.3429	0.6882	0.6358	-0.2860	-0.4200
20.00	S16	19.50	1.110	0.6125	0.49580	0.15783	0.498	0.248	-0.552	-0.376	0.3429	0.6882	0.6358	-0.2860	-0.4200
21.00	S17	20.50	1.100	0.6116	0.49571	0.15579	0.494	0.244	-0.556	-0.289	0.3412	0.6905	0.6379	-0.2803	-0.5398
21.50	S18	21.00	1.100	0.6116	0.49571	0.15579	0.494	0.244	-0.556	-0.289	0.3412	0.6905	0.6379	-0.2803	-0.5398
22.00	S19 (SP2)	21.50	1.089	0.6010	0.48578	0.15413	0.498	0.248	-0.552	-0.285	0.3349	0.6723	0.6211	-0.2793	-0.5413

Cavalcavia km 0+000 - RELAZIONE DI CALCOLO IMPALCATO

11 CADUTE DI TENSIONE

L'analisi della variabilità della precompressione nelle fasi previste viene condotta tenendo conto dei fenomeni di ritiro e viscosità nel calcestruzzo e di rilassamento nell'acciaio in conformità alle NTC 08 e alla norma UNI EN 1992-1-1.

11.1 CADUTE PER RITIRO NEL CALCESTRUZZO

I valori della deformazione totale da ritiro $\varepsilon_{\mathrm{CS}}$ sono dati da:

$$\varepsilon_{\rm cs}$$
 = $\varepsilon_{\rm cd}$ + $\varepsilon_{\rm ca}$

dove $\varepsilon_{\rm cd}$ è la deformazione da ritiro per essiccamento e $\varepsilon_{\rm ca}$ è la deformazione da ritiro autogeno.

11.1.1 Ritiro per essiccamento

La deformazione di base dovuta a ritiro per essiccamento $\varepsilon_{\rm cd,0}$ è calcolata con le espressioni:

$$\varepsilon_{cd,0} = 0.85 \left[\left(220 + 110 \cdot \alpha_{\rm ds1} \right) \cdot \exp \left(-\alpha_{\rm ds2} \cdot \frac{f_{\rm cm}}{f_{\rm cm0}} \right) \right] \cdot 10^{-6} \cdot \beta_{\rm RH}$$

$$\beta_{\rm RH} = 1.55 \left[1 - \left(\frac{RH}{RH_0} \right)^3 \right]$$

dove:

 f_{cm} è la resistenza media a compressione (N/mm²);

 $f_{cmo} = 10 \text{ N/mm}^2;$

 α_{ds1} é un coefficiente dipendente dal tipo di cemento;

 α_{ds2} é un coefficiente dipendente dal tipo di cemento;

RH è l'umidità relativa ambientale (in percentuale);

 $RH_0 = 100\%$

Lo sviluppo del ritiro per essiccamento nel tempo è regolato dalla:

$$\varepsilon_{\rm cd}(t) = \beta_{\rm ds}(t, t_{\rm s}) \cdot k_{\rm h} \varepsilon_{\rm cd,0}$$

dove: k_h è un coefficiente che dipende dalla dimensione convenzionale h_0 secondo il seguente prospetto (prospetto 3.3 della norma UNI):

h_0	k_{h}
100	1,0
200	0,85
300	0,75
≥ 500	0,70

Cavalcavia km 0+000 - RELAZIONE DI CALCOLO IMPALCATO

$$\beta_{\rm ds} \left(t, t_{\rm s} \right) = \frac{\left(t - t_{\rm s} \right)}{\left(t - t_{\rm s} \right) + 0.04 \sqrt{h_0^3}}$$

dove:

t è l'età del calcestruzzo, espressa in giorni, al momento considerato;

t_s è l'età del calcestruzzo (in giorni) all'inizio del ritiro per essiccamento;

 h_0 è la dimensione convenzionale (in millimetri) della sezione trasversale = $2A_c/u$

dove:

 A_{c} è l'area della sezione trasversale di calcestruzzo;

и è il perimetro della parte di sezione trasversale esposta ad essiccamento.

Il tempo t_s di inizio del ritiro per essiccamento coincide con la fine della maturazione.

11.1.2 Ritiro autogeno

La deformazione da ritiro autogeno è data da:

$$\varepsilon_{\rm ca}(t) = \beta_{\rm as}(t) \cdot \varepsilon_{\rm ca}(\infty)$$

dove:

$$\varepsilon_{\rm ca}(\infty) = 2.5 (f_{\rm ck} - 10) \cdot 10^{-6}$$

$$\beta_{as}(t) = 1 - \exp(-0.2t^{0.5})$$

MANDATARIA:

MANDANTI:

PROGETTO ESECUTIVO

Cavalcavia km 0+000 - RELAZIONE DI CALCOLO IMPALCATO

			Calcolo della	Deforma	zione per	ritiro			
Rck =	45.0	MPa	Resistenza cubica (_ caratterist	ica				
fck =	37.4	MPa	Resistenza cilindri	ca caratte	ristica				
E _{c,m} =	34625	MPa	Modulo elastico de	el cls					
A _C =	1069040	mmq	Area della sezione	in cls					
u =	7102	mm	Perimetro della se	zione in c	ls esposto	all'aria			
h ₀ =	301.1	mm	dimensione fittizia	$h_0 = 2A_C/$	u				
k _h =	0.750		oarametro funzion	e di h _o se	condo la T	ab. 11.2.V	b		
RH =	70	%	Jmidità Relativa a	mbientale	<u> </u>				
t ₀ =	3	gg	Tempo di messa di	carico					
			tiro a tempo infin	ito					
$\beta_{RH} =$	1.02								
f _{cm} =		MPa	esistenza media c	cilindrica a	compres	sione			
f _{cm0} =		MPa							
Classe:	N		Classe del cement						
$\alpha_{ds1} =$	4.00		coefficiente dipen		•				
$\alpha_{ds2} =$	0.12		coefficiente dipen		•				
$\varepsilon_{\text{cd,0}} =$	-0.332		Deformazione da r	•					
ε _{cd} =	-0.249		/alore medio a t=º			•			
ε _{ca} =	-0.068		/alore medio a t=º			•			
ε _{cs} =	-0.317	‰	/alore medio a t=¤	∞ della de	rformazioi 	ne per riti	ro (totale)		
			Deformazio	no nor riti	ro a tomp	o t			
			Deformazio	ne per nu	ro a temp	υις			
t _s =	60	gg							
$\beta_{ds}(t,t_S) =$		00	Coefficiente del rit	⊥ tiro da ess	iccament	o dipende	nte dall'e	tà del calce	estruzzo
$\beta_{as}(t) =$	0.788		Coefficiente del ri						
ε_{cd} (t _s)=	-0.055	‰	/alore medio a t=t		•			camento	
$\varepsilon_{ca}(t_S) =$	-0.054	‰	/alore medio a t=t	-		-			
$\varepsilon_{CS}(t_S) =$	-0.109	‰	/alore medio a t=t						
55 (5)							,		
	0003	MDa	Madula alastica di	 	 	<u> </u>			
$E_{c,\infty} = \frac{1}{4(\infty t_{c})}$		MPa	Modulo elastico de						
$\phi(\infty,t_0) =$	2.511	LAI	Coefficiente di vis		•		1-44		
N _{cs} =	-3342	KN	Sforzo assiale da a	pplicare a	i baricenti	ro della sc	ietta		

11.2 CADUTE PER VISCOSITÀ

Il coefficiente di viscosità $\varphi(t,t_0)$ è calcolato con la relazione:

$$\varphi(t,t_0) = \varphi_0 \cdot \beta_c(t,t_0)$$

dove:

è il coefficiente nominale di viscosità ed è valutato mediante: φ_0

$$\varphi_0 = \varphi_{RH} \cdot \beta(f_{cm}) \cdot \beta(t_0)$$

è un coefficiente che tiene conto dell'effetto dell'umidità relativa sul coefficiente nominale $\varphi_{\, {
m RH}}$

$$\varphi_{\text{RH}} = 1 + \frac{1 - RH / 100}{0.1 \cdot \sqrt[3]{h_0}}$$

per
$$f_{cm} \le 35 \text{ N/mm}^2$$

$$\varphi_{\mathrm{RH}} = \left[1 + \frac{1 - RH / 100}{0.1 \cdot \sqrt[3]{h_0}} \cdot \alpha_1 \right] \cdot \alpha_2$$

RH è l'umidità ambientale relativa, in percentuale;

 $\beta(f_{cm})$ è un coefficiente che tiene conto dell'effetto della resistenza del calcestruzzo sul coefficiente nominale di viscosità:

$$\beta(f_{\rm cm}) = \frac{16.8}{\sqrt{f_{\rm cm}}}$$

è la resistenza media a compressione del calcestruzzo, in N/mm², all'età di 28 giorni; $f_{\rm cm}$

 $\beta(t_0)$ è un coefficiente che tiene conto dell'effetto dell'età del calcestruzzo al momento dell'applicazione del carico sul coefficiente nominale di viscosità:

$$\beta(t_0) = \frac{1}{\left(0.1 + t_0^{0.20}\right)}$$

 h_0 è la dimensione fittizia dell'elemento, in millimetri, dove:

$$h_0 = \frac{2 A_c}{u}$$

 A_{c} è l'area della sezione trasversale;

è il perimetro dell'elemento a contatto con l'atmosfera;

è un coefficiente atto a descrivere l'evoluzione della viscosità nel tempo dopo l'applicazione $\beta_{\rm c}(t,t_0)$ del carico e può essere valutato con la seguente espressione:

$$\beta_{c}(t,t_{0}) = \left[\frac{\left(t-t_{0}\right)}{\beta_{H}+t-t_{0}}\right]^{0.3}$$

t è l'età del calcestruzzo, in giorni, al momento considerato;

è l'età del calcestruzzo, in giorni, al momento dell'applicazione del carico; t_0

PROGETTO ESECUTIVO

Cavalcavia km 0+000 - RELAZIONE DI CALCOLO IMPALCATO

 $t - t_0$ è la durata non corretta del carico, in giorni;

è un coefficiente dipendente dall'umidità relativa (RH in %) e dalla dimensione fittizia dell'elemento (h_0 in millimetri). È calcolato nel modo seguente:

$$\beta_{\rm H}$$
 = 1,5 [1 + (0,012 RH)] h_0 + 250 \leq 1500

$$per f_{cm} \leq 35$$

$$\beta_{\rm H}$$
 = 1,5 [1 + (0,012 RH)^{18}] h_0 + 250 $\alpha_3 \leq$ 1500 α_3

$$per f_{cm} > 35$$

sono coefficienti atti a prendere in conto l'influenza della resistenza del calcestruzzo: $\alpha_{1/2/3}$

$$\alpha_1 = \left[\frac{35}{f_{\rm cm}}\right]^{0.7}$$

$$\alpha_1 = \left[\frac{35}{f_{\text{cm}}}\right]^{0.7} \qquad \alpha_2 = \left[\frac{35}{f_{\text{cm}}}\right]^{0.2} \qquad \alpha_3 = \left[\frac{35}{f_{\text{cm}}}\right]^{0.5}$$

$$\alpha_3 = \left[\frac{35}{f_{\rm cm}} \right]^{0.5}$$

L'effetto del tipo di cemento sul coefficiente di viscosità del calcestruzzo viene considerato modificando l'età del carico t_0 secondo la seguente espressione:

$$t_0^* = t_{0,T} \cdot \left(\frac{9}{2 + t_{0,T}^{1.2}} + 1\right)^{\alpha} \ge 0.5$$

dove:

è l'età del calcestruzzo, in giorni, al momento dell'applicazione del carico, corretta in $t_{0,T}$ funzione della temperatura secondo l'espressione

è un esponente che dipende dal tipo di cemento. α

L'effetto di temperature elevate o ridotte comprese nell'intervallo 0-80 °C sulla maturazione del calcestruzzo viene preso in conto correggendo l'età del calcestruzzo con la seguente espressione:

$$t_{\rm T} = \sum_{i=1}^{n} e^{-(4000 / [273 + T(\Delta_{ti})] - 13.65)} \cdot \Delta t_{\rm i}$$

dove:

è l'età del calcestruzzo, corretta in funzione della temperatura, che sostituisce t nelle t_T corrispondenti espressioni;

 $T(t_i)$ è la temperatura, in gradi centigradi, durante il periodo di tempo Δt_i ;

 t_{i} è il numero di giorni in cui risulta prevalente la temperatura T.

È previsto un ciclo termico di maturazione forzata, descritto nella seguente tabella:

MANDANTI:

PROGETTO ESECUTIVO

Cavalcavia km 0+000 - RELAZIONE DI CALCOLO IMPALCATO

		C	iclo termico	di maturazio	ne forzat	ta
				1		
		Δt_{i}	T _i		Δt_{eq}	
	Fase	[h]	[°C]		[h]	
	1	3	20		3.00	
	2	3	40		7.18	
	3	6	60		30.92	
	4	4	40		9.57	
	5	8	20		8.00	
	6	0	0		0.00	_
	t =	24	h	t _T =	58.67	h
	t ₀ =	1	gg	t _{0,T} =	2.44	gg
t* ₀ =	2.44	gg	Stagionatur	ra del cls corr	etta in ba	se al tipo di cemento

 Δt_i Intervallo di tempo

Τį Temperatura nell'intervallo di tempo Δt_{i}

11.2.1 determinazione del coefficiente di viscosità

Rck =	55.0	MPa	Resistenza cubica cara	atteristica				
fck =	45.7	MPa	Resistenza cilindrica c	aratteristica				
fcm =	53.7	MPa	Resistenza media cilir	ndrica				
A _C =	1069040	mmq	Area della sezione in	cls				
u =	7102	mm	Perimetro della sezio	ne in cls esposto all'	aria			
h ₀ =	301.1	mm	dimensione fittizia	$h_0 = 2A_C/u$				
RH =	70	%	Umidità Relativa					
t _o =	2.44	gg	Tempo di messa di car	rico (stagionatura de	el cls all'at	to della pr	ecompres	ssione)
t-t ₀ =	60	gg						
α1=	0.742		coeff. di influenza del	lla resistenza del cls				
$\alpha_2 =$	0.918		coeff. di influenza del	lla resistenza del cls				
φ _{RH} =	1.223		coeff. dell'effetto del	l' RH sul coeff. nomi	nale di vis	cosità		
$\beta(f_{cm}) =$	2.294		coeff. di influenza del	lla resistenza del cls	sul coeff.	nominale	di viscosi	tà
$\beta(t_0) =$	0.772		coeff. dell'effetto del coeff. nominale di vis		ento di app	plicazione	del carico	sul
φ ₀ =	2.17		coefficiente nominale	e di viscosità (a temp	o infinito)		
Calcolo de	el coeffici	ente di e	evoluzione della viscosit	tà nel tempo dopo l'	applicazio	ne del car	ico β _c (t,t _o	,)
α3 =	0.81		coeff. di influenza del	lla resistenza del cls				
β _H =	673.1		coeff. che dipende da	RH e da h ₀				
$\beta_{\rm C}(t,t_0) =$	0.472		coeff. di evoluzione d	alla viccosità nal tar	mno dono	l'applicaz	iono dol c	arico

PROGETTO ESECUTIVO

Cavalcavia km 0+000 - RELAZIONE DI CALCOLO IMPALCATO

Calcolo d	el coefficie	ente di viscosità	ϕ (t,t ₀) dopo	60	gg dall'ar	plicazion	e del caric	o	
$\phi(t,t_0)=$	1.02	47.2%							
Viscosità	residua								
φ(t∞-t)=	1.14	52.8%							

11.3 CADUTA PER EFFETTO TERMICO

Per effetto della maturazione a vapore, la diminuzione di tensione nelle armature da precompressione e la dilatazione impedita del calcestruzzo dovute alla temperatura, inducono una specifica caduta termica $\Delta\sigma_{p\theta}$ che è valutata con l'espressione:

$$\Delta \sigma_{p\theta} = 0.5 E_{p} \alpha_{c} (T_{max} - T_{0})$$

è il modulo di elasticità delle armature di precompressione; E_{p}

è il coefficiente di dilatazione termica lineare del calcestruzzo; α_c

è la differenza tra la temperatura massima e quella iniziale del calcestruzzo a contatto $T_{\text{max}} - T_0$ delle armature di precompressione, in gradi centigradi.

E _p =	195000 MPa	Modulo elastico delle armature di precompressione
α_{C} =	0.00001 °C ⁻¹	coefficiente di dilatazione termica del cls
$T_0 =$	20 °C	Temperatura iniziale del cls a contatto delle armature di precompressione
$T_{max} =$	60 °C	Temperatura massima del cls a contatto delle armature di precompressione
$T_{max} - T_0 =$	40 °C	ΔT tra la T_{max} e T_0
$\Delta \sigma_{p\theta} =$	39.0 MPa	Caduta per effetto termico

11.4 CADUTE PER RILASSAMENTO NELL'ACCIAIO DI PRECOMPRESSIONE

Il rapporto della variazione della tensione di precompressione sulla tensione di precompressione iniziale è determinato applicando la seguente espressione, valida per acciaio di classe 2 (fili o trefoli a basso rilassamento):

$$\frac{\Delta\sigma_{\rm pr}}{\sigma_{\rm pi}} = 0.66 \cdot \rho_{1000} \cdot e^{9.1\,\mu} \cdot \left(\frac{t}{1000}\right)^{0.75\,(1-\mu)} \cdot 10^{-3} \tag{3.29}$$

dove:

 $\Delta\sigma_{
m pr}$ è il valore assoluto delle perdite per rilassamento;

è la massima tensione di trazione applicata al cavo meno le perdite immediate che si σ_{pi} verificano durante il procedimento di messa in tensione;

t è il tempo dopo la messa in tensione (in ore);

Cavalcavia km 0+000 - RELAZIONE DI CALCOLO IMPALCATO

= $\sigma_{
m pi}$ / $f_{
m pk'}$ dove $f_{
m pk}$ è il valore caratteristico della resistenza a trazione dell'acciaio da μ precompressione;

è il valore della perdita per rilassamento a 1000 h dopo la messa in tensione e a una ρ_{1000} temperatura media di 20 °C.

Per tener conto degli effetti del trattamento termico previsto sulle perdite di precompressione dovute al rilassamento dell'acciaio, nella funzione rilassamento-tempo precedente si aggiunge un tempo equivalente t_{eq} al tempo dopo la tesatura. Il tempo equivalente è valutato con l'espressione seguente:

$$t_{\text{eq}} = \frac{1.14 \, {^{(T_{\text{max}} - 20)}}}{T_{\text{max}} - 20} \sum_{i=1}^{n} \left(T_{(\Delta t_i)} - 20 \right) \Delta t_i$$

dove:

è il tempo equivalente (in ore); t_{eq}

è la temperatura (in gradi centigradi) durante l'intervallo di tempo t_i ; $T_{(ti)}$

 T_{max} è la temperatura massima (in gradi centigradi) durante il trattamento termico.

Si ottengono i seguenti valori delle cadute di tensione per rilassamento:

 $\Delta \sigma_{\text{relax}(\infty)}$ = 56.53 MPa

 $\Delta \sigma_{\text{relax}(45\text{g})} = 15.67 \text{ MPa}$

11.5 CADUTE TOTALI

Per tener conto dell'interazione tra rilassamento nell'acciaio e ritiro e viscosità nel calcestruzzo, la perdita di tensione nell'acciaio è valutata localmente in base alla seguente espressione:

$$\Delta\sigma_{\rm p,\,c+s+r} = \frac{\varepsilon_{\rm cs}\,E_{\rm p}\,+0.8\,\Delta\sigma_{\rm pr}\,+\frac{E_{\rm p}}{E_{\rm cm}}\varphi(t,t_{\rm o}\,)\cdot\sigma_{\rm c,Qp}}{1+\frac{E_{\rm p}}{E_{\rm cm}}\frac{A_{\rm p}}{A_{\rm c}}\bigg[1+\frac{A_{\rm c}}{I_{c}}z_{\rm cp}^{\,2}\bigg]\bigg[1+0.8\,\phi(t,t_{\rm o}\,)\bigg]}$$

dove:

 $\Delta\sigma_{\rm p,c+s+r}$ è il valore assoluto della variazione di tensione nelle armature dovuta a viscosità, ritiro e rilassamento al livello y, all'istante t;

è la deformazione per ritiro in valore assoluto; \mathcal{E}_{CS}

 E_{p} è il modulo di elasticità dell'acciaio da precompressione;

 $E_{\rm cm}$ è il modulo di elasticità del calcestruzzo;

è il valore assoluto della variazione di tensione per effetto del rilassamento dell'acciaio da $\Delta \sigma_{\rm pr}$ precompressione.

è il coefficiente di viscosità all'istante t con applicazione del carico all'istante t_0 ; $\varphi(t,t_0)$

Cavalcavia km 0+000 - RELAZIONE DI CALCOLO IMPALCATO

$\sigma_{ extsf{c,QP}}$	è la tensione nel calcestruzzo adiacente alle armature, dovuta a peso proprio,
	precompressione iniziale e ad altre azioni quasi-permanenti ove presenti.
A_{p}	è l'area di tutte le armature di precompressione al livello y ;

A_c è l'area della sezione di calcestruzzo;

 I_{c} è il momento d'inerzia della sezione di calcestruzzo;

 ${\bf z}_{\rm co}$ è la distanza tra il baricentro della sezione di calcestruzzo e le armature.

Cavalcavia km 0+000 - RELAZIONE DI CALCOLO IMPALCATO

12 CARATTERISTICHE DELLE SOLLECITAZIONI NELLE VARIE FASI PER TRAVE DI BORDO

Si riportano di seguito le caratteristiche delle sollecitazioni in termini ti momento flettente M e taglio V relative alla trave maggiormente sollecitata.

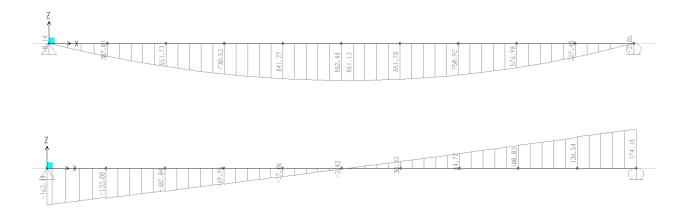


Figura 12.1 Momento flettente e taglio peso proprio

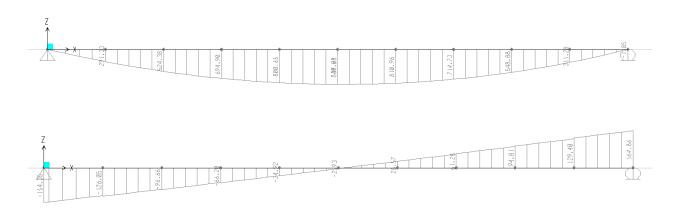


Figura 12.2 Momento flettente e taglio getto soletta

Realizzazione Lavori

Collegamento viario compreso tra lo Svincolo della S.S. 514 di "Chiaromonte" con la S.S. 115 e lo Svincolo della "Ragusana"

PROGETTO ESECUTIVO

Cavalcavia km 0+000 - RELAZIONE DI CALCOLO IMPALCATO

Figura 12.3 Momento flettente e taglio G2

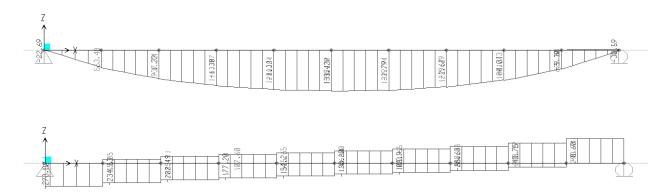


Figura 12.4 Momento flettente e taglio carichi mobili tandem

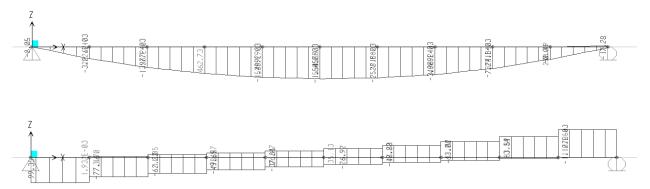


Figura 12.5 Momento flettente e taglio carichi mobili distribuiti

Itinerario Ragusa - Catania

Collegamento viario compreso tra lo Svincolo della S.S. 514 di "Chiaromonte" con la S.S. 115 e lo Svincolo della "Ragusana"

PROGETTO ESECUTIVO

Cavalcavia km 0+000 - RELAZIONE DI CALCOLO IMPALCATO

13 VERIFICHE TRAVI IN ESERCIZIO E SLU

13.1 PRECOMPRESSIONE E CADUTE DI TENSIONE

Nei paragrafi che seguono sono calcolate le precompressioni iniziali e valutate le cadute di tensione nelle diverse fasi di calcolo considerate.

13.1.1 Fase 1: Precompressione e peso trave – verifica all'atto del rilascio

Per le verifiche all'atto del rilascio si considerano i valori di sforzo normale e momento flettente dovuti alla precompressione determinati con una lunghezza di trasmissione della precompressione pari al valore inferiore di l_{pt} ed assumendo che all'estremità delle guaine i corrispondenti cavi siano attivi (condizioni che massimizzano i valori delle tensioni di trazione al lembo teso e compressione al lembo compresso).

Si considerano i soli effetti di precompressione e peso proprio. Sezione resistente trave isolata.

					Ve	erifica dell	e condizi	oni iniziali						
X _{test.trave}	Sez.	X _{asse pila}	P ₀	M _{P0}	σ_{p0ts}	σ_{p0ti}	σ_{p0pi}	M_{g0}	$\Delta\sigma_{\text{g0ts}}$	$\Delta\sigma_{\text{g0ti}}$	$\Delta\sigma_{\text{g0pi}}$	$\sigma_{\text{ts,li}}$	$\sigma_{\text{ti,li}}$	$\sigma_{\text{i,pi}}$
[m]		[m]	[kN]	[kNm]	[MPa]	[MPa]	[MPa]	[kNm]	[MPa]	[MPa]	[MPa]	[MPa]	[MPa]	[MPa]
0.00	S1 (SP1)	-0.50	0.0	0.0	0.00	0.00	0.00	0.0	0.00	0.00	0.00	0.00	0.00	0.00
0.50	S2	0.00	1846.6	-34.8	2.35	3.09	2.85	0.0	0.00	0.00	0.00	2.35	3.09	2.85
1.00	S3	0.50	5838.0	-625.9	0.28	13.49	10.59	81.5	1.11	-0.61	-0.23	1.39	12.88	10.36
2.00	S4	1.50	5838.0	-625.9	0.28	13.49	10.59	227.8	3.11	-1.70	-0.64	3.39	11.79	9.94
3.00	S5	2.50	7394.8	-953.9	-1.89	18.13	14.31	360.4	4.90	-2.66	-1.22	3.01	15.47	13.09
4.00	S6	3.50	7394.8	-953.9	-1.89	18.13	14.31	478.4	6.51	-3.53	-1.62	4.62	14.60	12.69
5.00	S 7	4.50	8173.2	-1542.9	-9.10	23.60	19.92	581.4	8.03	-4.29	-2.91	-1.07	19.31	17.02
7.00	S8	6.50	8562.4	-1622.8	-9.63	24.72	20.90	743.0	10.25	-5.47	-3.73	0.63	19.25	17.18
9.50	S9	9.00	8562.4	-1622.8	-9.63	24.72	20.90	858.3	11.84	-6.32	-4.30	2.22	18.40	16.60
11.00	S10(Mezz)	10.50	8562.4	-1622.8	-9.63	24.72	20.90	882.3	12.17	-6.50	-4.42	2.55	18.22	16.48
12.50	S11	12.00	8562.4	-1622.8	-9.63	24.72	20.90	858.3	11.84	-6.32	-4.30	2.22	18.40	16.60
15.00	S12	14.50	8562.4	-1622.8	-9.63	24.72	20.90	743.0	10.25	-5.47	-3.73	0.63	19.25	17.18
17.00	S13	16.50	8173.2	-1542.9	-9.10	23.60	19.92	581.4	8.03	-4.29	-2.91	-1.07	19.31	17.02
18.00	S14	17.50	7394.8	-953.9	-1.89	18.13	14.31	478.4	6.51	-3.53	-1.62	4.62	14.60	12.69
19.00	S15	18.50	7394.8	-953.9	-1.89	18.13	14.31	360.4	4.90	-2.66	-1.22	3.01	15.47	13.09
20.00	S16	19.50	5838.0	-625.9	0.28	13.49	10.59	227.8	3.11	-1.70	-0.64	3.39	11.79	9.94
21.00	S17	20.50	5838.0	-625.9	0.28	13.49	10.59	81.5	1.11	-0.61	-0.23	1.39	12.88	10.36
21.50	S18	21.00	1846.6	-34.8	2.35	3.09	2.85	0.0	0.00	0.00	0.00	2.35	3.09	2.85
22.00	S19 (SP2)	21.50	0.0	0.0	0.00	0.00	0.00	0.0	0.00	0.00	0.00	0.00	0.00	0.00

Per tutte le sezioni risulta $\sigma_t < f_{ctm}/1.2$. La verifica è soddisfatta

13.1.2 Fase 2: Getti in opera

Si determinano nel seguito le tensioni dovute al getto in opera della soletta e si valuta l'aliquota di cadute di tensione tra 45 e 60 gg.

Itinerario Ragusa - Catania

Collegamento viario compreso tra lo Svincolo della S.S. 514 di "Chiaromonte" con la S.S. 115 e lo Svincolo della "Ragusana"

PROGETTO ESECUTIVO

Direzione Progettazione e Realizzazione Lavori

Cavalcavia km 0+000 - RELAZIONE DI CALCOLO IMPALCATO

	Tensioni dovute al getto soletta sulla trave di bordo										
X _{test.trave}	Sez.	X _{asse pila}	M_{g1}	$\Delta\sigma_{\text{g1ts}}$	$\Delta\sigma_{\text{g1ti}}$	$\Delta\sigma_{\text{g1pi}}$	$\sigma_{s,2ts}$	σ _{i,2ti}	σ _{i,2pi}		
[m]		[m]	[kNm]	[MPa]	[MPa]	[MPa]	[MPa]	[MPa]	[MPa]		
0.00	S1 (SP1)	-0.50	0.00	0.00	0.00	0.00	-0.10	-0.13	-0.12		
0.50	S2	0.00	0.00	0.00	0.00	0.00	1.44	1.90	1.75		
1.00	S3	0.50	81.04	1.11	-0.62	-0.04	5.21	2.69	3.53		
2.00	S4	1.50	218.91	2.99	-1.64	-0.62	6.35	9.27	8.63		
3.00	S5	2.50	344.51	4.70	-2.58	-0.97	9.88	7.36	7.92		
4.00	S6	3.50	455.95	6.20	-3.37	-1.54	10.96	9.89	10.09		
5.00	S7	4.50	553.98	7.53	-4.09	-1.87	13.69	8.43	9.43		
7.00	S8	6.50	707.52	9.77	-5.23	-3.54	11.70	10.91	10.99		
9.50	S9	9.00	817.64	11.28	-6.02	-4.10	14.32	10.27	10.72		
11.00	S10(Mezz)	10.50	839.83	11.59	-6.18	-4.21	14.95	9.95	10.50		
12.50	S11	12.00	817.64	11.28	-6.02	-4.10	14.32	10.27	10.72		
15.00	S12	14.50	707.52	9.77	-5.23	-3.54	11.70	10.91	10.99		
17.00	S13	16.50	553.98	7.53	-4.09	-1.87	13.69	8.43	9.43		
18.00	S14	17.50	455.95	6.20	-3.37	-1.54	10.96	9.89	10.09		
19.00	S15	18.50	344.51	4.70	-2.58	-0.97	9.88	7.36	7.92		
20.00	S16	19.50	218.91	2.99	-1.64	-0.62	6.35	9.27	8.63		
21.00	S17	20.50	81.01	1.11	-0.62	-0.04	5.21	2.69	3.53		
21.50	S18	21.00	0.00	0.00	0.00	0.00	1.44	1.90	1.75		
22.00	S19 (SP2)	21.50	0.00	0.00	0.00	0.00	-0.10	-0.13	-0.12		

		Tensioni	risultanti a	l giorno :	60					
X _{test.trave}	Sez.	X _{asse pila}	Δ_2P	$\Delta_2 M_P$	$\Delta_2\sigma_{\text{ts,p}}$	$\Delta_2 \sigma_{\text{ti,p}}$	$\Delta_2\sigma_{\text{pi,p}}$	$\sigma_{ts,2f}$	$\sigma_{\text{ti,2f}}$	$\sigma_{pi,2f}$
[m]		[m]	[kN]	[kNm]	[MPa]	[MPa]	[MPa]	[MPa]	[MPa]	[MPa]
0.00	S1 (SP1)	-0.50	-7.55	0.14	-0.01	-0.01	-0.01	-0.11	-0.14	-0.13
0.50	S2	0.00	-9.30	0.18	-0.01	-0.02	-0.01	1.43	1.88	1.73
1.00	S3	0.50	-10.98	0.21	-0.01	-0.02	-0.02	5.20	2.67	3.52
2.00	S4	1.50	-33.69	3.61	0.00	-0.08	-0.06	6.35	9.20	8.57
3.00	S5	2.50	-32.29	3.46	0.00	-0.07	-0.06	9.87	7.29	7.86
4.00	S6	3.50	-46.41	5.99	0.01	-0.11	-0.09	10.97	9.77	10.00
5.00	S7	4.50	-44.78	5.78	0.01	-0.11	-0.09	13.70	8.32	9.34
7.00	S8	6.50	-54.10	10.21	0.06	-0.16	-0.13	11.76	10.75	10.86
9.50	S9	9.00	-56.00	10.61	0.06	-0.16	-0.14	14.38	10.11	10.59
11.00	S10(Mezz)	10.50	-55.37	10.49	0.06	-0.16	-0.14	15.01	9.79	10.37
12.50	S11	12.00	-56.00	10.61	0.06	-0.16	-0.14	14.38	10.11	10.59
15.00	S12	14.50	-54.10	10.21	0.06	-0.16	-0.13	11.76	10.75	10.86
17.00	S13	16.50	-44.78	5.78	0.01	-0.11	-0.09	13.70	8.32	9.34
18.00	S14	17.50	-46.41	5.99	0.01	-0.11	-0.09	10.97	9.77	10.00
19.00	S15	18.50	-32.29	3.46	0.00	-0.07	-0.06	9.87	7.29	7.86
20.00	S16	19.50	-33.69	3.61	0.00	-0.08	-0.06	6.35	9.20	8.57
21.00	S17	20.50	-10.98	0.21	-0.01	-0.02	-0.02	5.20	2.67	3.52
21.50	S18	21.00	-9.30	0.18	-0.01	-0.02	-0.01	1.43	1.88	1.73
22.00	S19 (SP2)	21.50	-7.55	0.14	-0.01	-0.01	-0.01	-0.11	-0.14	-0.13

13.1.3 Fase 3: Carichi permanenti portati.

Nella terza fase si considerano le cadute che si sviluppano dall'applicazione dei carichi permanenti portati fino a tempo infinito. Le cadute della terza fase sono scontate sulla sezione mista trave – soletta.

PROGETTO ESECUTIVO

Direzione Progettazione e Realizzazione Lavori

Cavalcavia km 0+000 - RELAZIONE DI CALCOLO IMPALCATO

			Tens	ioni dovu	te ai caricl	hi perman	enti porta	nti sulla tra	ave di bor	do			
X _{test.trave}	Sez.	X _{asse pila}	M_{g2}	$\Delta\sigma_{\text{g2ss}}$	$\Delta\sigma_{\text{g2si}}$	$\Delta\sigma_{\text{g2ts}}$	$\Delta\sigma_{\text{g2ti}}$	$\Delta\sigma_{\text{g2pi}}$	$\sigma_{ss,3i}$	$\sigma_{\text{si,3i}}$	$\sigma_{\text{ts,3i}}$	$\sigma_{\text{ti,3i}}$	$\sigma_{\text{i,3pi}}$
[m]		[m]	[kNm]	[MPa]	[MPa]	[MPa]	[MPa]	[MPa]	[MPa]	[MPa]	[MPa]	[MPa]	[MPa]
0.00	S1 (SP1)	-0.50	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-0.11	-0.14	-0.13
0.50	S2	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	1.43	1.88	1.73
1.00	S3	0.50	10.39	0.03	0.02	0.02	-0.04	-0.02	0.03	0.02	5.22	2.63	3.50
2.00	S4	1.50	74.05	0.22	0.11	0.12	-0.26	-0.18	0.22	0.11	6.47	8.94	8.39
3.00	S5	2.50	141.71	0.41	0.21	0.22	-0.50	-0.34	0.41	0.21	10.10	6.79	7.52
4.00	S6	3.50	205.53	0.60	0.30	0.33	-0.71	-0.51	0.60	0.30	11.30	9.06	9.49
5.00	S7	4.50	251.88	0.74	0.37	0.40	-0.87	-0.63	0.74	0.37	14.11	7.44	8.71
7.00	S8	6.50	327.70	0.97	0.49	0.53	-1.13	-0.94	0.97	0.49	12.29	9.62	9.92
9.50	S9	9.00	382.48	1.13	0.57	0.62	-1.31	-1.10	1.13	0.57	15.00	8.80	9.49
11.00	S10(Mezz)	10.50	393.99	1.17	0.59	0.64	-1.35	-1.13	1.17	0.59	15.65	8.43	9.24
12.50	S11	12.00	382.48	1.13	0.57	0.62	-1.31	-1.10	1.13	0.57	15.00	8.80	9.49
15.00	S12	14.50	327.70	0.97	0.49	0.53	-1.13	-0.94	0.97	0.49	12.29	9.62	9.92
17.00	S13	16.50	251.88	0.74	0.37	0.40	-0.87	-0.63	0.74	0.37	14.11	7.44	8.71
18.00	S14	17.50	205.53	0.60	0.30	0.33	-0.71	-0.51	0.60	0.30	11.30	9.06	9.49
19.00	S15	18.50	141.71	0.41	0.21	0.22	-0.50	-0.34	0.41	0.21	10.10	6.79	7.52
20.00	S16	19.50	47.05	0.14	0.07	0.07	-0.16	-0.11	0.14	0.07	6.43	9.03	8.46
21.00	S17	20.50	10.39	0.03	0.02	0.02	-0.04	-0.02	0.03	0.02	5.21	2.63	3.50
21.50	S18	21.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	1.43	1.88	1.73
22.00	S19 (SP2)	21.50	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-0.11	-0.14	-0.13

	Cadute di	tensione o	dal giorno	60	a tempo i	nfinito	(terza qu	ota delle d	cadute di t	ensione)
X _{test.trave}	Sez.	X _{asse pila}	$\Delta\epsilon_{cs}$	$\Delta\sigma_{cs}$	$\Delta\sigma_{pr}$	Δφ	$\Delta\sigma_{\text{creep}}$	ΣΔσ	Denom	$\Delta\sigma_{\text{p,c+s+r}}$
[m]		[m]	‰	[MPa]	[MPa]		[MPa]	[MPa]		[MPa]
0.00	S1 (SP1)	-0.50	0.208	40.56	45.69	1.330	0.00	86.25	1.02	84.57
0.50	S2	0.00	0.208	40.56	45.69	1.330	20.28	106.53	1.02	104.49
1.00	S3	0.50	0.208	40.56	45.69	1.330	73.33	159.58	1.02	156.52
2.00	S4	1.50	0.208	40.56	45.69	1.330	65.14	151.39	1.04	145.35
3.00	S5	2.50	0.208	40.56	45.69	1.330	83.90	170.15	1.04	163.37
4.00	S6	3.50	0.208	40.56	45.69	1.330	75.76	162.01	1.05	153.91
5.00	S7	4.50	0.208	40.56	45.69	1.330	103.35	189.60	1.05	180.12
7.00	S8	6.50	0.208	40.56	45.69	1.330	90.44	176.69	1.06	166.95
9.50	S9	9.00	0.208	40.56	45.69	1.330	81.21	167.46	1.06	157.82
11.00	S10(Mezz)	10.50	0.208	40.56	45.69	1.330	79.32	165.57	1.06	156.05
12.50	S11	12.00	0.208	40.56	45.69	1.330	81.21	167.46	1.06	157.82
15.00	S12	14.50	0.208	40.56	45.69	1.330	90.44	176.69	1.06	166.95
17.00	S13	16.50	0.208	40.56	45.69	1.330	103.35	189.60	1.05	180.12
18.00	S14	17.50	0.208	40.56	45.69	1.330	75.76	162.01	1.05	153.90
19.00	S15	18.50	0.208	40.56	45.69	1.330	83.90	170.15	1.04	163.37
20.00	S16	19.50	0.208	40.56	45.69	1.330	65.59	151.84	1.04	145.79
21.00	S17	20.50	0.208	40.56	45.69	1.330	73.33	159.58	1.02	156.52
21.50	S18	21.00	0.208	40.56	45.69	1.330	20.28	106.53	1.02	104.49
22.00	S19 (SP2)	21.50	0.208	40.56	45.69	1.330	0.00	86.25	1.02	84.58

Realizzazione Lavori

Collegamento viario compreso tra lo Svincolo della S.S. 514 di "Chiaromonte" con la S.S. 115 e lo Svincolo della "Ragusana"

PROGETTO ESECUTIVO

Cavalcavia km 0+000 - RELAZIONE DI CALCOLO IMPALCATO

					Tensi	oni dovut	e ai perm	anenti a te	empo infi	nito					
X _{test.trave}	Sez.	X _{asse pila}	Δ_3P	$\Delta_3 M_P$	$\Delta_3\sigma_{ss,p}$	$\Delta_3\sigma_{\text{si,p}}$	$\Delta_3\sigma_{ts,p}$	$\Delta_3\sigma_{ti,p}$	$\Delta_3\sigma_{pi,p}$	$\sigma_{ss,3f}$	$\sigma_{\text{si,3f}}$	$\sigma_{ts,3f}$	$\sigma_{\text{ti,3f}}$	$\sigma_{pi,3f}$	σ_{3Gf}
[m]		[m]	[kN]	[kNm]	[MPa]	[MPa]	[MPa]	[MPa]	[MPa]	[MPa]	[MPa]	[MPa]	[MPa]	[MPa]	[MPa]
0.00	S1 (SP1)	-0.50	-164.58	47.19	-0.01	-0.08	-0.08	-0.32	-0.24	-0.01	-0.08	-0.18	-0.46	-0.37	-0.27
0.50	S2	0.00	-203.33	58.69	-0.01	-0.10	-0.09	-0.39	-0.29	-0.01	-0.10	1.34	1.49	1.44	1.39
1.00	S3	0.50	-304.58	87.91	-0.02	-0.15	-0.14	-0.59	-0.44	0.01	-0.13	5.08	2.04	3.06	4.15
2.00	S4	1.50	-606.12	227.76	0.12	-0.22	-0.19	-1.34	-1.09	0.33	-0.11	6.28	7.59	7.30	6.69
3.00	S5	2.50	-681.25	255.99	0.13	-0.24	-0.21	-1.51	-1.22	0.55	-0.04	9.89	5.28	6.30	8.46
4.00	S6	3.50	-812.93	320.86	0.21	-0.26	-0.22	-1.85	-1.54	0.82	0.05	11.08	7.21	7.95	9.86
5.00	S7	4.50	-951.39	375.51	0.25	-0.30	-0.26	-2.16	-1.80	0.99	0.07	13.85	5.28	6.92	11.14
7.00	S8	6.50	-974.63	441.92	0.43	-0.22	-0.16	-2.40	-2.15	1.40	0.27	12.12	7.22	7.77	10.55
9.50	S9	9.00	-965.23	438.25	0.42	-0.21	-0.16	-2.37	-2.13	1.56	0.36	14.84	6.43	7.36	12.14
11.00	S10(Mezz)	10.50	-954.37	433.32	0.42	-0.21	-0.16	-2.35	-2.10	1.59	0.38	15.49	6.09	7.13	12.47
12.50	S11	12.00	-965.24	438.26	0.42	-0.21	-0.16	-2.37	-2.13	1.56	0.36	14.84	6.43	7.36	12.14
15.00	S12	14.50	-974.63	441.92	0.43	-0.22	-0.16	-2.40	-2.15	1.40	0.27	12.13	7.22	7.77	10.55
17.00	S13	16.50	-951.38	375.51	0.25	-0.30	-0.26	-2.16	-1.80	0.99	0.07	13.85	5.28	6.92	11.14
18.00	S14	17.50	-812.92	320.86	0.21	-0.26	-0.22	-1.85	-1.54	0.82	0.05	11.08	7.21	7.95	9.86
19.00	S15	18.50	-681.26	255.99	0.13	-0.24	-0.21	-1.51	-1.22	0.55	-0.04	9.89	5.28	6.30	8.46
20.00	S16	19.50	-607.95	228.45	0.12	-0.22	-0.19	-1.35	-1.09	0.26	-0.15	6.24	7.68	7.37	6.69
21.00	S17	20.50	-304.58	87.91	-0.02	-0.15	-0.14	-0.59	-0.44	0.01	-0.13	5.08	2.04	3.06	4.15
21.50	S18	21.00	-203.33	58.69	-0.01	-0.10	-0.09	-0.39	-0.29	-0.01	-0.10	1.34	1.49	1.44	1.39
22.00	S19 (SP2)	21.50	-164.59	46.86	-0.01	-0.08	-0.08	-0.32	-0.24	-0.01	-0.08	-0.18	-0.46	-0.37	-0.27

13.1.4 Riassunto cadute di tensioni acciaio precompressione

Si riportano di seguito i valori di sforzo normale e momento flettente di precompressione a tempo infinito, somma delle cadute parziali delle tre fasi.

x _{test.trave}	Sez.	x _{asse pila} [m]	$\Delta\sigma_{ m p,lente}$ [MPa]	$\Delta\sigma_{ m p,ist.}$ [MPa]	$\Sigma \Delta \sigma_{p}$ [MPa]	σ _{p,fin} [MPa]
0.00	S1 (SP1)	-0.50	-127.87	0.00	-127.87	-127.87
0.50	S2	0.00	-159.43	-10.16	-169.59	463.03
1.00	S3	0.50	-222.84	-20.11	-242.95	1022.29
2.00	S4	1.50	-244.90	-53.24	-298.14	1101.86
3.00	S5	2.50	-260.55	-51.23	-311.78	1088.22
4.00	S6	3.50	-266.33	-67.97	-334.31	1065.69
5.00	S7	4.50	-290.40	-66.11	-356.50	1043.50
7.00	S8	6.50	-293.95	-86.79	-380.74	1019.26
9.50	S9	9.00	-285.92	-88.88	-374.80	1025.20
11.00	S10(Mezz)	10.50	-283.43	-88.24	-371.67	1028.33
12.50	S11	12.00	-285.92	-88.88	-374.80	1025.20
15.00	S12	14.50	-293.95	-86.79	-380.74	1019.26
17.00	S13	16.50	-290.40	-66.11	-356.50	1043.50
18.00	S14	17.50	-266.33	-67.97	-334.30	1065.70
19.00	S15	18.50	-260.55	-51.23	-311.78	1088.22
20.00	S16	19.50	-245.34	-53.24	-298.58	1101.42
21.00	S17	20.50	-222.84	-20.11	-242.95	1022.29
21.50	S18	21.00	-159.43	-10.16	-169.59	463.03
22.00	S19 (SP2)	21.50	-127.88	0.00	-127.88	-127.88

Itinerario Ragusa - Catania

Collegamento viario compreso tra lo Svincolo della S.S. 514 di "Chiaromonte" con la S.S. 115 e lo Svincolo della "Ragusana"

PROGETTO ESECUTIVO

Cavalcavia km 0+000 - RELAZIONE DI CALCOLO IMPALCATO

13.2 VERIFICHE ALLO STATO LIMITE ULTIMO PER SFORZO NORMALE E FLESSIONE

Si riportano i valori caratteristici delle sollecitazioni di verifica e di seguito i loro valori combinati allo SLU.

	Verifica sezioni a momento positivo - Valori caratteristici di sollecitazione											
X _{test.trave}	Sez.	X _{asse pila}	M_{G0}	M _{G1}	M _{G2} + M _{rapp}	$M_{Q,tan}$	$M_{Q,distr}$	N_{rd}	M_{rd}	$M_{\!\DeltaT}$	M _{cedP}	M_{v}^{+}
[m]		[m]	[kNm]	[kNm]	[kNm]	[kNm]	[kNm]	[kN]	[kNm]	[kNm]	[kNm]	[kNm]
0.00	S1 (SP1)	-0.50	0.0	0.0	0.0	0.00	0.00	1269.0	210.0	0.0	0.0	0.00
0.50	S2	0.00	0.0	0.0	0.0	42.44	17.37	1269.0	210.0	0.0	0.0	0.00
1.00	S3	0.50	81.5	81.0	10.4	136.99	53.16	1269.0	210.0	0.0	0.0	0.00
2.00	S4	1.50	227.8	218.9	74.1	413.03	156.93	1269.0	210.0	0.0	0.0	0.00
3.00	S5	2.50	360.4	344.5	141.7	672.33	236.34	1269.0	210.0	0.0	0.0	0.00
4.00	S6	3.50	478.4	456.0	205.5	850.57	321.70	1269.0	210.0	0.0	0.0	0.00
5.00	S7	4.50	581.4	554.0	251.9	1021.67	385.27	1269.0	210.0	0.0	0.0	0.00
7.00	S8	6.50	743.0	707.5	327.7	1248.00	492.25	1269.0	210.0	0.0	0.0	0.00
9.50	S9	9.00	858.3	817.6	382.5	1386.0	565.38	1269.0	210.0	0.0	0.0	0.00
11.00	S10(Mezz)	10.50	882.3	839.8	394.0	1412.0	584.92	1269.0	210.0	0.0	0.0	0.00
12.50	S11	12.00	858.3	817.6	382.5	1386.0	565.4	1269.0	210.0	0.0	0.0	0.00
15.00	S12	14.50	743.0	707.5	327.7	1248.0	492.3	1269.0	210.0	0.0	0.0	0.00
17.00	S13	16.50	581.4	554.0	251.9	1021.7	385.3	1269.0	210.0	0.0	0.0	0.00
18.00	S14	17.50	478.4	456.0	205.5	850.6	321.7	1269.0	210.0	0.0	0.0	0.00
19.00	S15	18.50	360.4	344.5	141.7	672.3	236.3	1269.0	210.0	0.0	0.0	0.00
20.00	S16	19.50	227.8	218.9	47.1	413.0	156.9	1269.0	210.0	0.0	0.0	0.00
21.00	S17	20.50	81.5	81.0	10.4	137.0	53.2	1269.0	210.0	0.0	0.0	0.00
21.50	S18	21.00	0.0	0.0	0.0	0.0	17.4	1269.0	210.0	0.0	0.0	0.00
22.00	S19 (SP2)	21.50	0.0	0.0	0.0	0.0	0.0	1269.0	210.0	0.0	0.0	0.00

			Ver	ifica sezi	oni a mome	nto posit	tivo - Valo	ori sollec	itazione	allo SLU				
X _{test.trave}	Sez.	X _{asse pila}	M _{G0}	M _{G1}	M _{G2} + M _{rapp}	$M_{Q,tan}$	$M_{Q,distr}$	N_{rd}	M_{rd}	$M_{\!\DeltaT}$	M _{cedP}	M_{v}^{+}	N_{Ed}	M_{Ed}
[m]		[m]	[kNm]	[kNm]	[kNm]	[kNm]	[kNm]	[kN]	[kNm]	[kNm]	[kNm]	[kNm]	[kN]	[kNm]
0.00	S1 (SP1)	-0.50	0.0	0.0	0.0	0.0	0.0	1522.8	252.0	0.0	0.0	0.0	1522.8	252.0
0.50	S2	0.00	0.0	0.0	0.0	57.3	23.4	1522.8	252.0	0.0	0.0	0.0	1522.8	332.7
1.00	S3	0.50	110.0	109.4	14.0	184.9	71.8	1522.8	252.0	0.0	0.0	0.0	1522.8	742.1
2.00	S4	1.50	307.5	295.5	100.0	557.6	211.9	1522.8	252.0	0.0	0.0	0.0	1522.8	1724.5
3.00	S5	2.50	486.6	465.1	191.3	907.6	319.1	1522.8	252.0	0.0	0.0	0.0	1522.8	2621.7
4.00	S6	3.50	645.8	615.5	277.5	1148.3	434.3	1522.8	252.0	0.0	0.0	0.0	1522.8	3373.3
5.00	S7	4.50	784.9	747.9	340.0	1379.3	520.1	1522.8	252.0	0.0	0.0	0.0	1522.8	4024.2
7.00	S8	6.50	1003.0	955.2	442.4	1684.8	664.5	1522.8	252.0	0.0	0.0	0.0	1522.8	5001.9
9.50	S9	9.00	1158.7	1103.8	516.3	1871.1	763.3	1522.8	252.0	0.0	0.0	0.0	1522.8	5665.3
11.00	S10(Mezz)	10.50	1191.1	1133.8	531.9	1906.2	789.6	1522.8	252.0	0.0	0.0	0.0	1522.8	5804.6
12.50	S11	12.00	1158.7	1103.8	516.3	1871.1	763.3	1522.8	252.0	0.0	0.0	0.0	1522.8	5665.2
15.00	S12	14.50	1003.1	955.2	442.4	1684.8	664.5	1522.8	252.0	0.0	0.0	0.0	1522.8	5001.9
17.00	S13	16.50	784.9	747.9	340.0	1379.3	520.1	1522.8	252.0	0.0	0.0	0.0	1522.8	4024.2
18.00	S14	17.50	645.8	615.5	277.5	1148.3	434.3	1522.8	252.0	0.0	0.0	0.0	1522.8	3373.4
19.00	S15	18.50	486.5	465.1	191.3	907.6	319.1	1522.8	252.0	0.0	0.0	0.0	1522.8	2621.6
20.00	S16	19.50	307.5	295.5	63.5	557.6	211.9	1522.8	252.0	0.0	0.0	0.0	1522.8	1688.0
21.00	S17	20.50	110.0	109.4	14.0	184.9	71.8	1522.8	252.0	0.0	0.0	0.0	1522.8	742.1
21.50	S18	21.00	0.0	0.0	0.0	0.0	23.4	1522.8	252.0	0.0	0.0	0.0	1522.8	275.4
22.00	S19 (SP2)	21.50	0.0	0.0	0.0	0.0	0.0	1522.8	252.0	0.0	0.0	0.0	1522.8	252.0

PROGETTO ESECUTIVO

Cavalcavia km 0+000 - RELAZIONE DI CALCOLO IMPALCATO

13.2.1 Verifiche a pressoflessione per momento positivo

Si riportano di seguito le verifiche strutturali delle sezioni per momento positivo. Per tutte le sezioni si considera la presenza di armatura di soletta (sup – inf) ϕ 12/20cm.

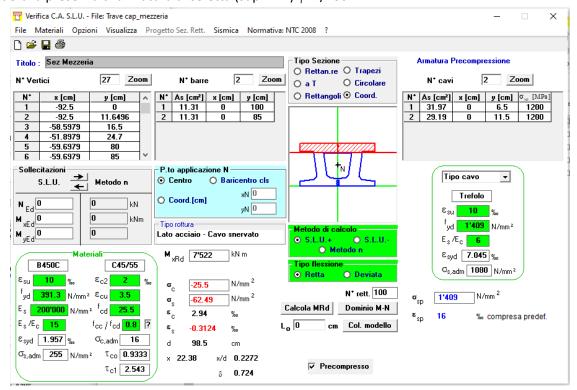


Figura 13.1 Verifica a rottura SLU sezione di mezzeria (S10)

Il momento flettente agente M_{sd} è minore del momento flettente resistente $M_{rd} \rightarrow 5804$ kNm < 7522 kNm → Verifica soddisfatta.

PROGETTO ESECUTIVO

Direzione Proaettazione e Realizzazione Lavori

Cavalcavia km 0+000 - RELAZIONE DI CALCOLO IMPALCATO

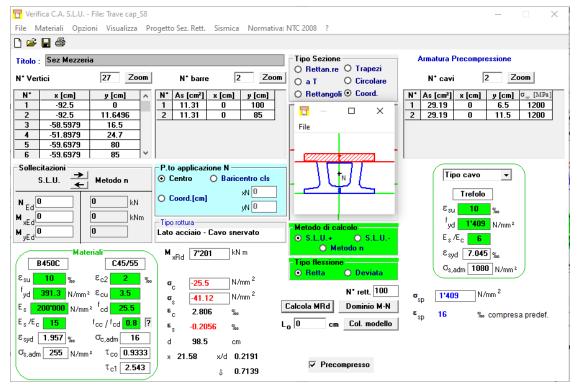


Figura 13.2 Verifica a rottura SLU sezione S8

Il momento flettente agente M_{sd} è minore del momento flettente resistente $M_{rd} \rightarrow 5000$ kNm < 7201 kNm → Verifica soddisfatta.

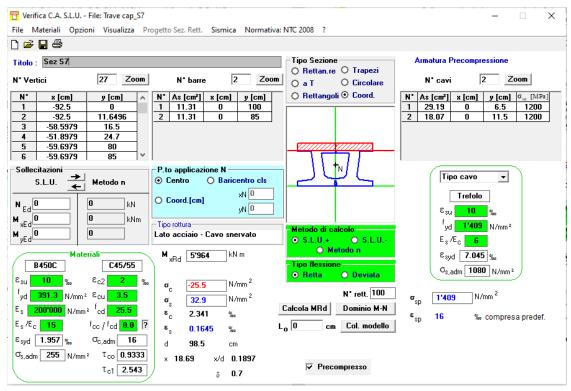


Figura 13.3 Verifica a rottura SLU sezione S7

PROGETTO ESECUTIVO

Cavalcavia km 0+000 - RELAZIONE DI CALCOLO IMPALCATO

Il momento flettente agente M_{sd} è minore del momento flettente resistente $M_{rd} \rightarrow 4024$ kNm < 5964 kNm → Verifica soddisfatta.

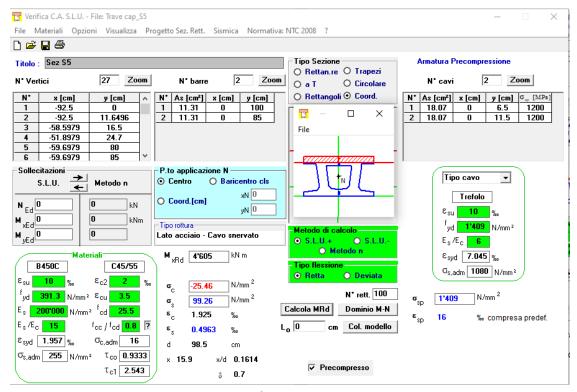


Figura 13.4 Verifica a rottura SLU sezione S5

Il momento flettente agente M_{sd} è minore del momento flettente resistente $M_{rd} \rightarrow 2621$ kNm < 4605 kNm → Verifica soddisfatta.

Realizzazione Lavori

Collegamento viario compreso tra lo Svincolo della S.S. 514 di "Chiaromonte" con la S.S. 115 e lo Svincolo della "Ragusana"

PROGETTO ESECUTIVO

Cavalcavia km 0+000 - RELAZIONE DI CALCOLO IMPALCATO

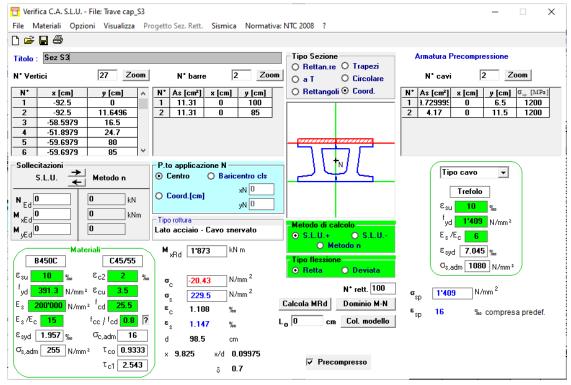


Figura 13.5 Verifica a rottura SLU sezione S3

Il momento flettente agente M_{sd} è minore del momento flettente resistente M_{rd} → 742 kNm < 1873 kNm → Verifica soddisfatta.

13.3 VERIFICHE ALLO SLU PER SOLLECITAZIONI TAGLIANTI E TORCENTI

Si riportano di seguito le verifiche strutturali delle sezioni a taglio e taglio – torsione.

ERIFIC	CHE ALLO SLU PI	ER SOLLEC	CITAZIONI TAGLIANTI E TORCENTI
	Parametri a	dottati pe	er le verifiche a taglio e torsione
	ctgα =	0.00	inclinazione dell'armatura trasversale rispetto asse trave
	f _{cd} =	25.87	resistenza di calcolo a compressione del cls
	ν=	0.50	coefficiente riduttivo per cls fessurato a taglio
	f'cd =	12.93	resistenza di calcolo corretta del cls
	f _{ywd} =	391.30	resistenza di calcolo delle armature a taglio
	n _w =	2.00	numero delle anime della sezione
	u _m =	3.39	perimetro medio del nucleo resistente
	f'cd =	9.41	resistenza di calcolo a compressione del cls riempimento

PROGETTO ESECUTIVO

Direzione Progettazione e Realizzazione Lavori

Cavalcavia km 0+000 - RELAZIONE DI CALCOLO IMPALCATO

	Caratteristiche travi e armature a taglio - Singola nervatura trave														
X _{test.trave}	Sez.	X _{asse pila}	$ctg \theta$	$\sigma_{\sf cp}$	α_{c}	b _w	bracci	ф	р	A _{sw} /s	d	Ω			
[m]		[m]		[MPa]		[cm]	[-]	[mm]	[cm]	[cm ² /m]	[cm]	[m ²]			
0.00	S1 (SP1)	-0.50	2.00	0.00	1.00	25.00	2	16	20	20.11	105	0.714			
0.50	S2	0.00	2.00	0.00	1.00	25.00	2	16	20	20.11	105	0.714			
1.00	S3	0.50	2.00	3.05	1.12	25.00	2	16	20	20.11	105	0.714			
2.00	S4	1.50	2.00	6.94	1.25	25.00	2	16	20	20.11	105	0.714			
3.00	S5	2.50	2.00	6.85	1.25	25.00	2	16	20	20.11	105	0.714			
4.00	S6	3.50	2.00	8.44	1.25	25.00	2	16	20	20.11	105	0.714			
5.00	S7	4.50	2.00	8.26	1.25	25.00	2	16	20	20.11	105	0.714			
7.00	S8	6.50	2.00	8.89	1.25	25.00	2	12	20	11.31	105	0.714			
9.50	S9	9.00	2.00	9.35	1.25	25.00	2	12	20	11.31	105	0.714			
11.00	S10(Mezz)	10.50	2.00	9.38	1.25	25.00	2	12	20	11.31	105	0.714			
12.50	S11	12.00	2.00	9.35	1.25	25.00	2	12	20	11.31	105	0.714			
15.00	S12	14.50	2.00	8.89	1.25	25.00	2	12	20	11.31	105	0.714			
17.00	S13	16.50	2.00	8.26	1.25	25.00	2	16	20	20.11	105	0.714			
18.00	S14	17.50	2.00	8.44	1.25	25.00	2	16	20	20.11	105	0.714			
19.00	S15	18.50	2.00	6.85	1.25	25.00	2	16	20	20.11	105	0.714			
20.00	S16	19.50	2.00	6.94	1.25	25.00	2	16	20	20.11	105	0.714			
21.00	S17	20.50	2.00	3.05	1.12	25.00	2	16	20	20.11	105	0.714			
21.50	S18	21.00	2.00	0.00	1.00	25.00	2	16	20	20.11	105	0.714			
22.00	S19 (SP2)	21.50	2.00	0.00	1.00	25.00	2	16	20	20.11	105	0.714			

Verifica sezioni - Valori caratteristici di sollecitazione Xtost tougo Sez. Xassociia Voo Voi Voi Voi Voi Voi Voi Voi Voi Voi													
x _{test.trave}	Sez.	x _{asse pila} [m]	V _{G0} [kN]	V _{G1} [kN]	V _{G2} [kN]	V _{Q,tan} [kN]	V _{Q,distr} [kN]	V _{vis} [kN]					
0.00	S1 (SP1)	-0.50	0.00	0.00	[•]	0.00	[•]	0.00					
0.50	S2	0.00	163.00	154.20	85.77	278.81	99.35	0.00					
1.00	S3	0.50	79.01	146.85	80.28	278.81	99.35	0.00					
2.00	S4	1.50	139.02	131.85	69.09	278.81	99.14	0.00					
3.00	S5	2.50	126.65	120.04	63.32	234.83	77.15	0.00					
4.00	S6	3.50	110.57	105.04	52.13	234.83	77.15	0.00					
5.00	S7	4.50	97.21	92.15	48.41	202.49	62.24	0.00					
7.00	S8	6.50	66.74	63.19	34.21	177.19	49.68	0.00					
9.50	S9	9.00	27.41	25.92	14.61	154.20	37.81	0.00					
11.00	S10(Mezz)	10.50	0.00	0.00	0.00	154.20	37.81	0.00					
12.50	S11	12.00	27.41	25.92	14.61	124.20	37.81	0.00					
15.00	S12	14.50	66.74	63.19	34.21	177.19	49.68	0.00					
17.00	S13	16.50	97.21	92.15	48.41	202.49	62.24	0.00					
18.00	S14	17.50	110.57	105.04	52.13	234.83	77.15	0.00					
19.00	S15	18.50	126.65	120.04	63.32	234.83	77.15	0.00					
20.00	S16	19.50	139.02	131.85	69.09	278.81	99.14	0.00					
21.00	S17	20.50	79.01	146.85	80.28	278.81	99.35	0.00					
21.50	S18	21.00	163.00	154.20	85.77	278.81	99.35	0.00					
22.00	S19 (SP2)	21.50	0.00	0.00	0.00	0.00	0.00	0.00					
	Coeff. SLU		1.35	1.35	1.35	1.35	1.35	1					

Itinerario Ragusa - Catania

Collegamento viario compreso tra lo Svincolo della S.S. 514 di "Chiaromonte" con la S.S. 115 e lo Svincolo della "Ragusana"

PROGETTO ESECUTIVO

Direzione Progettazione e Realizzazione Lavori

Cavalcavia km 0+000 - RELAZIONE DI CALCOLO IMPALCATO

	Verifica sezioni - Valori sollecitazioni allo SLU														
X _{test.trave}	Sez.	X _{asse pila}	V_{G0}	V _{G1}	V_{G2}	V_{rapp}	$V_{Q,tan}$	$V_{Q,distr}$	V_{rd}	$V_{\Delta T}$	V_{cedP}	V_{vis}	V_{Ed}		
[m]		[m]	[kN]	[kN]	[kN]	[kN]	[kN]	[kN]	[kN]	[kN]	[kN]	[kN]	[kN]		
0.00	S1 (SP1)	-0.50	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00		
0.50	S2	0.00	220.05	208.17	115.79	0.00	376.39	134.12	0.00	0.00	0.00	0.00	1054.53		
1.00	S3	0.50	106.66	198.25	108.38	0.00	376.39	134.12	0.00	0.00	0.00	0.00	923.81		
2.00	S4	1.50	187.68	178.00	93.27	0.00	376.39	133.84	0.00	0.00	0.00	0.00	969.18		
3.00	S5	2.50	170.98	162.05	85.48	0.00	317.02	104.15	0.00	0.00	0.00	0.00	839.69		
4.00	S6	3.50	149.27	141.80	70.38	0.00	317.02	104.15	0.00	0.00	0.00	0.00	782.62		
5.00	S7	4.50	131.23	124.40	65.35	0.00	273.36	84.02	0.00	0.00	0.00	0.00	678.38		
7.00	S8	6.50	90.10	85.31	46.18	0.00	239.21	67.07	0.00	0.00	0.00	0.00	527.86		
9.50	S9	9.00	37.00	34.99	19.72	0.00	208.17	51.04	0.00	0.00	0.00	0.00	350.93		
11.00	S10(Mezz)	10.50	0.00	0.00	0.00	0.00	208.17	51.04	0.00	0.00	0.00	0.00	259.21		
12.50	S11	12.00	37.00	34.99	19.72	0.00	167.67	51.04	0.00	0.00	0.00	0.00	310.43		
15.00	S12	14.50	90.10	85.31	46.18	0.00	239.21	67.07	0.00	0.00	0.00	0.00	527.86		
17.00	S13	16.50	131.23	124.40	65.35	0.00	273.36	84.02	0.00	0.00	0.00	0.00	678.38		
18.00	S14	17.50	149.27	141.80	70.38	0.00	317.02	104.15	0.00	0.00	0.00	0.00	782.62		
19.00	S15	18.50	170.98	162.05	85.48	0.00	317.02	104.15	0.00	0.00	0.00	0.00	839.69		
20.00	S16	19.50	187.68	178.00	93.27	0.00	376.39	133.84	0.00	0.00	0.00	0.00	969.18		
21.00	S17	20.50	106.66	198.25	108.38	0.00	376.39	134.12	0.00	0.00	0.00	0.00	923.81		
21.50	S18	21.00	220.05	208.17	115.79	0.00	376.39	134.12	0.00	0.00	0.00	0.00	1054.53		
22.00	S19 (SP2)	21.50	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00		

X _{test.trave}	Sez.	X _{asse pila}	Z	V_{Rcd}	V_{Rsd}	V_{Rd}	V _{Ed}	V _{Ed} /V _{Rd}
[m]		[m]	[cm]	[kN]	[kN]	[kN]	[kN]	
0.00	S1 (SP1)	-0.50	94.50	2444.56	2973.97	2444.56	0.00	0.00
0.50	S2	0.00	94.50	2444.56	2973.97	2444.56	1054.53	0.43
1.00	S3	0.50	94.50	2732.65	2973.97	2732.65	923.81	0.34
2.00	S4	1.50	94.50	3055.70	2973.97	2973.97	969.18	0.33
3.00	S5	2.50	94.50	3055.70	2973.97	2973.97	839.69	0.28
4.00	S6	3.50	94.50	3055.70	2973.97	2973.97	782.62	0.26
5.00	S7	4.50	94.50	3055.70	2973.97	2973.97	678.38	0.23
7.00	S8	6.50	94.50	3055.70	1672.86	1672.86	527.86	0.32
9.50	S9	9.00	94.50	3055.70	1672.86	1672.86	350.93	0.21
11.00	S10(Mezz)	10.50	94.50	3055.70	1672.86	1672.86	259.21	0.15
12.50	S11	12.00	94.50	3055.70	1672.86	1672.86	310.43	0.19
15.00	S12	14.50	94.50	3055.70	1672.86	1672.86	527.86	0.32
17.00	S13	16.50	94.50	3055.70	2973.97	2973.97	678.38	0.23
18.00	S14	17.50	94.50	3055.70	2973.97	2973.97	782.62	0.26
19.00	S15	18.50	94.50	3055.70	2973.97	2973.97	839.69	0.28
20.00	S16	19.50	94.50	3055.70	2973.97	2973.97	969.18	0.33
21.00	S17	20.50	94.50	2732.65	2973.97	2732.65	923.81	0.34
21.50	S18	21.00	94.50	2444.56	2973.97	2444.56	1054.53	0.43
22.00	S19 (SP2)	21.50	94.50	2444.56	2973.97	2444.56	0.00	0.00

Le verifiche a taglio sono soddisfatte in tutte le sezioni.

PROGETTO ESECUTIVO

Cavalcavia km 0+000 - RELAZIONE DI CALCOLO IMPALCATO

			Verifica c	ombinata	taglio e to	rsione - \	/alori com	plessivi arr	nature tra	sversali				
X _{test.trave}	Sez.	X _{asse pila}	Z	V_{Ed}	T _{Q,tan}	$T_{Q,distr}$	T _{G2}	T _{Ed}	V_{Rcd}	T_Rcd	k _{VT}	$A_{sw,V}$	$A_{sw,T}$	$A_{\text{sw,min}}$
[m]		[m]	[cm]	[kN]	[kNm]	[kNm]	[kNm]	[kNm]	[kN]	[kNm]		[cm ² /m]	[cm ² /m]	
0.00	S1 (SP1)	-0.50	94.50	0.0	0.0		0.0	0.0	2444.6	1847.0	0.00	0.00	0.0	0.00
0.50	S2	0.00	94.50	1054.5	138.2	64.63	8.8	285.6	2444.6	1847.0	0.59	14.26	2.6	16.81
1.00	S3	0.50	94.50	923.8	138.2	64.63	8.8	285.6	2732.6	1847.0	0.49	12.49	2.6	15.05
2.00	S4	1.50	94.50	969.2	138.2	64.61	8.8	285.6	3055.7	1847.0	0.47	13.10	2.6	15.66
3.00	S5	2.50	94.50	839.7	137.4	65.33	5.8	281.4	3055.7	1847.0	0.43	11.35	2.5	13.87
4.00	S6	3.50	94.50	782.6	137.4	65.33	5.8	281.4	3055.7	1847.0	0.41	10.58	2.5	13.10
5.00	S7	4.50	94.50	678.4	125.2	59.11	1.4	250.7	3055.7	1847.0	0.36	9.17	2.2	11.42
7.00	S8	6.50	94.50	527.9	116.6	48.61	2.9	226.9	3055.7	1847.0	0.30	7.14	2.0	9.17
9.50	S9	9.00	94.50	350.9	119.4	35.25	217.6	3055.7	1847.0	0.23	4.75	1.9	6.69	
11.00	S10(Mezz)	10.50	94.50	259.2	119.4	35.25	6.5	217.6	3055.7	1847.0	0.20	3.50	1.9	5.45
12.50	S11	12.00	94.50	310.4	119.4	35.25	10.4	222.9	3055.7	1847.0	0.22	4.20	2.0	6.19
15.00	S12	14.50	94.50	527.9	116.6	48.61	13.5	241.2	3055.7	1847.0	0.30	7.14	2.2	9.30
17.00	S13	16.50	94.50	678.4	125.2	59.1	16.0	270.4	3055.7	1847.0	0.37	9.17	2.4	11.59
18.00	S14	17.50	94.50	782.6	137.4	65.3	17.7	297.6	3055.7	1847.0	0.42	10.58	2.7	13.25
19.00	S15	18.50	94.50	839.7	137.4	65.3	17.7	297.6	3055.7	1847.0	0.44	11.35	2.7	14.02
20.00	S16	19.50	94.50	969.2	138.2	64.6	18.1	298.2	3055.7	1847.0	0.48	13.10	2.7	15.77
21.00	S17	20.50	94.50	923.8	138.2	64.6	18.1	298.2	2732.6	1847.0	0.50	12.49	2.7	15.16
21.50	S18	21.00	94.50	1054.5	138.2	64.6	18.1	298.2	2444.6	1847.0	0.59	14.26	2.7	16.93
22.00	S19 (SP2)	21.50	94.50	0.0	0.0	0.0	0.0	0.0	2444.6	1847.0	0.00	0.00	0.0	0.00
	K _{VT} =	verifica co	mbinata a	taglio e to	orsione									
	A _{sw,V} =	area comp	lessiva mi	inima arm	ature per	solo tagli								
	A _{sw,T} =	area comp	lessiva mi	inima arm	ature tras	versali pe	sione							
	A _{sw,min} =	area comp	lessiva mi	inima arm	ature tras	versali pe	torsione							
	A _{sw,min} =	area comp	lessiva mi	inima arm	ature Ion	gitudinali	per torsio	ne						

13.4 VERIFICA DELLO SCORRIMENTO TRAVE - SOLETTA

Si riportano di seguito la verifica delle tensioni tangenziali all'interfaccia trave-soletta.

VERIFICA D	ELLO SCOR	RIMENTO	TRA TRAV	E E SOLETT	ГА										
F	Parametri a	dottati pe	r le verifi	che a scorr	imento tr	ave-solet	:ta								
	c =	0.35		parametro dipendente dalla scabrezza dell'interfaccia											
	μ=	0.60		parametr	o dipende	ente dalla	scabrezza d	dell'inte	rfaccia						
	$f_{ctd} =$	-1.45	MPa	resistenza di calcolo a trazione del cls della soletta											
	f _{ywd} =	391.30	MPa	resistenza di calcolo delle armature a taglio											

Realizzazione Lavori

Collegamento viario compreso tra lo Svincolo della S.S. 514 di "Chiaromonte" con la S.S. 115 e lo Svincolo della "Ragusana"

PROGETTO ESECUTIVO

Cavalcavia km 0+000 - RELAZIONE DI CALCOLO IMPALCATO

	(Calcolo del	la tension	e tangenz	iale dovu	ta allo sco	rrimento		
X _{test.trave}	Sez.	X _{asse pila}	V _{scorr}	A_{sol}	d _{Gsol,0}	S _{sol}	I ₀	2 x b _{sol}	τ_{VEd}
[m]		[m]	[kN]	[m ²]	[m]	[m³]	[m ⁴]	[m]	[MPa]
0.00	S1 (SP1)	-0.50	0.00	0.463	0.371	0.17163	0.15310	0.50	0.00
0.50	S2	0.00	626.31	0.463	0.369	0.17077	0.15579	0.50	1.37
1.00	S3	0.50	618.89	0.463	0.369	0.17077	0.15579	0.50	1.36
2.00	S4	1.50	603.50	0.463	0.373	0.17262	0.15783	0.50	1.32
3.00	S5	2.50	506.66	0.463	0.373	0.17262	0.15783	0.50	1.11
4.00	S6	3.50	491.55	0.463	0.378	0.17467	0.15780	0.50	1.09
5.00	S7	4.50	422.74	0.463	0.378	0.17467	0.15780	0.50	0.94
7.00	S8	6.50	352.46	0.463	0.382	0.17648	0.15806	0.50	0.79
9.50	S9	9.00	278.94	0.463	0.382	0.17672	0.15833	0.50	0.62
11.00	S10(Mezz)	10.50	259.21	0.463	0.382	0.17672	0.15833	0.50	0.58
12.50	S11	12.00	238.44	0.463	0.382	0.17672	0.15833	0.50	0.53
15.00	S12	14.50	352.46	0.463	0.382	0.17648	0.15806	0.50	0.79
17.00	S13	16.50	422.74	0.463	0.378	0.17467	0.15780	0.50	0.94
18.00	S14	17.50	491.55	0.463	0.378	0.17467	0.15780	0.50	1.09
19.00	S15	18.50	506.66	0.463	0.373	0.17262	0.15783	0.50	1.11
20.00	S16	19.50	603.50	0.463	0.373	0.17262	0.15783	0.50	1.32
21.00	S17	20.50	618.89	0.463	0.369	0.17077	0.15579	0.50	1.36
21.50	S18	21.00	626.31	0.463	0.369	0.17077	0.15579	0.50	1.37
22.00	S19 (SP2)	21.50	0.00	0.463	0.373	0.17258	0.15413	0.50	0.00

Calcolo della tensione tangenziale dovuta alla torsione														
X _{test.trave}	Sez.	X _{asse pila}	M_{tors}	Ω	h _{sol}	$ au_{\text{VEd}}$								
[m]		[m]	[kNm]	[m ²]	[m]	[MPa]								
0.00	S1 (SP1)	-0.50	0.00	0.714	0.250	0.00								
0.50	S2	0.00	285.65	0.714	0.250	0.80								
1.00	S3	0.50	285.65	0.714	0.250	0.80								
2.00	S4	1.50	285.62	0.714	0.250	0.80								
3.00	S5	2.50	281.45	0.714	0.250	0.79								
4.00	S6	3.50	281.45	0.714	0.250	0.79								
5.00	S7	4.50	250.75	0.714	0.250	0.70								
7.00	S8	6.50	226.95	0.714	0.250	0.64								
9.50	S9	9.00	217.57	0.714	0.250	0.61								
11.00	S10(Mezz)	10.50	217.57	0.714	0.250	0.61								
12.50	S11	12.00	222.90	0.714	0.250	0.62								
15.00	S12	14.50	241.22	0.714	0.250	0.68								
17.00	S13	16.50	270.42	0.714	0.250	0.76								
18.00	S14	17.50	297.63	0.714	0.250	0.83								
19.00	S15	18.50	297.63	0.714	0.250	0.83								
20.00	S16	19.50	298.17	0.714	0.250	0.84								
21.00	S17	20.50	298.20	0.714	0.250	0.84								
21.50	S18	21.00	298.20	0.714	0.250	0.84								
22.00	S19 (SP2)	21.50	0.00	0.714	0.250	0.00								

Realizzazione Lavori

Collegamento viario compreso tra lo Svincolo della S.S. 514 di "Chiaromonte" con la S.S. 115 e lo

Svincolo della "Ragusana" PROGETTO ESECUTIVO

Cavalcavia km 0+000 - RELAZIONE DI CALCOLO IMPALCATO

	Calcolo della tensione tangenziale ultima di contatto per ciascuna anima															
X _{test.trave}	Sez.	X _{asse pila}	b _{sol}	A _{sup}	bracci	φ1	p ₁	A _{conn}	ρ	α	$\text{sen}\alpha$	$\cos \alpha$	σ_{n}	τ_{Rd}	τ_{Ed}	τ_{Ed}/t_{Rd}
[m]		[m]	[cm]	[cm ² /m]	[-]	[mm]	[cm]	[cm ² /m]	[adim]	[°]	[adim]	[adim]	[MPa]	[MPa]	[MPa]	[adim]
0.00	S1 (SP1)	-0.50	25.00	2500	2	16	20	20.11	0.00804	90	1.00	0.00	0.0	2.39	0.00	0.00
0.50	S2	0.00	25.00	2500	2	16	20	20.11	0.00804	90	1.00	0.00	0.0	2.39	2.17	0.91
1.00	S3	0.50	25.00	2500	2	16	20	20.11	0.00804	90	1.00	0.00	0.0	2.39	2.16	0.90
2.00	S4	1.50	25.00	2500	2	16	20	20.11	0.00804	90	1.00	0.00	0.0	2.39	2.12	0.89
3.00	S5	2.50	25.00	2500	2	16	20	20.11	0.00804	90	1.00	0.00	0.0	2.39	1.90	0.79
4.00	S6	3.50	25.00	2500	2	16	20	20.11	0.00804	90	1.00	0.00	0.0	2.39	1.88	0.78
5.00	S7	4.50	25.00	2500	2	16	20	20.11	0.00804	90	1.00	0.00	0.0	2.39	1.64	0.68
7.00	S8	6.50	25.00	2500	2	12	20	11.31	0.00452	90	1.00	0.00	0.0	1.57	1.42	0.91
9.50	S9	9.00	25.00	2500	2	12	20	11.31	0.00452	90	1.00	0.00	0.0	1.57	1.23	0.79
11.00	S10(Mezz)	10.50	25.00	2500	2	12	20	11.31	0.00452	90	1.00	0.00	0.0	1.57	1.19	0.76
12.50	S11	12.00	25.00	2500	2	12	20	11.31	0.00452	90	1.00	0.00	0.0	1.57	1.16	0.74
15.00	S12	14.50	25.00	2500	2	12	20	11.31	0.00452	90	1.00	0.00	0.0	1.57	1.46	0.93
17.00	S13	16.50	25.00	2500	2	16	20	20.11	0.00804	90	1.00	0.00	0.0	2.39	1.69	0.71
18.00	S14	17.50	25.00	2500	2	16	20	20.11	0.00804	90	1.00	0.00	0.0	2.39	1.92	0.80
19.00	S15	18.50	25.00	2500	2	16	20	20.11	0.00804	90	1.00	0.00	0.0	2.39	1.94	0.81
20.00	S16	19.50	25.00	2500	2	16	20	20.11	0.00804	90	1.00	0.00	0.0	2.39	2.16	0.90
21.00	S17	20.50	25.00	2500	2	16	20	20.11	0.00804	90	1.00	0.00	0.0	2.39	2.19	0.92
21.50	S18	21.00	25.00	2500	2	16	20	20.11	0.00804	90	1.00	0.00	0.0	2.39	2.21	0.92
22.00	S19 (SP2)	21.50	25.00	2500	2	16	20	20.11	0.00804	90	1.00	0.00	0.0	2.39	0.00	0.00
	b _{sol} =	Larghezza	di contat	to, per cias	cuna anin	na										
	A _{sup} =	Area di co	ntatto pe	r metro di	lunghezza	a, per cias	cuna anir	na								
	A _{conn} =	Area dei c	onnettori	adottati, į	oer metro	di lunghe	ezza									
	ρ =	rapporto A	A _{conn} /A _{sup}													
	α =	Angolo me	edio dei c	onnettori	rispetto la	superfic	ie di cont	atto								
	σ _n =	Tensione	normale a	all'interfac	cia											
	$\tau_{Rd} =$	Tensione	tangenzia	ıle ultima d	di contatto)										

Le verifiche a scorrimento (verifica delle tensioni ultime di contatto) sono soddisfatte in tutte le sezioni.

A.1 VERIFICHE AGLI STATI LIMITE DI ESERCIZIO

Si verifica:

Combinazione rara: $\sigma_c < 0.6 \, f_{ck} = \sigma_c < 19.92 \, MPa \, (soletta); \, \sigma_c < 27.39 \, Mpa \, (trave);$

 σ_{tc} < 3.19 MPa (trave)

Combinazione quasi permanente: $\sigma_c < 0.45 f_{ck} = \sigma_c < 20.54 Mpa (trave)$

 σ_{t} < f_{fct}/1.2 = σ_{t} < 2.58 MPa (soletta, se maggiore verifica a

fessurazione)

 σ_t < 0 = assenza trazioni lembi trave

Combinazione frequente: $\sigma_t < f_{ct}/1.2 = \sigma_t < 2.58$ MPa (soletta, se maggiore verifica a

fessurazione)

 $\sigma_{t} < f_{fct}/1.2 = \sigma_{t} < 3.19 \text{ MPa (trave)}$

Nelle tabelle seguenti sono riportate le tensioni finali nel calcestruzzo ai lembi superiore e inferiore della trave e al lembo superiore ed inferiore della soletta, nelle combinazioni di carico rara, frequente e quasi permanente.

PROGETTO ESECUTIVO

Direzione Progettazione e Realizzazione Lavori

Cavalcavia km 0+000 - RELAZIONE DI CALCOLO IMPALCATO

		SLE - Veri	fica sezio	ni a mon	nento positiv	o - Valor	i caratteri	stici di so	ollecitazi	one		
X _{test.trave}	Sez.	X _{asse pila}	M_{G0}	M _{G1}	M _{G2} + M _{Rapp}	$N_{p,fin}$	$M_{p,fin}$	N_{rd}	M_{rd}	$M_{Q,tan}$	$M_{Q,distr}$	M ⁺ _v
[m]		[m]	[kNm]	[kNm]	[kNm]	[kN]	[kNm]	[kN]	[kNm]	[kNm]	[kNm]	[kNm]
0.00	S1 (SP1)	-0.50	0.0	0.0	0.0	0.0	0.0	1269.0	210.0	0.0	0.0	0.0
0.50	S2	0.00	0.0	0.0	0.0	0.0	0.0	1269.0	210.0	42.4	17.4	0.0
1.00	S3	0.50	81.5	81.0	10.4	1989.4	-37.5	1269.0	210.0	137.0	53.2	0.0
2.00	S4	1.50	227.8	218.9	74.1	4594.8	-492.6	1269.0	210.0	413.0	156.9	0.0
3.00	S5	2.50	360.4	344.5	141.7	4537.9	-486.5	1269.0	210.0	672.3	236.3	0.0
4.00	S6	3.50	478.4	456.0	205.5	5629.0	-726.1	1269.0	210.0	850.6	321.7	0.0
5.00	S7	4.50	581.4	554.0	251.9	5511.7	-711.0	1269.0	210.0	1021.7	385.3	0.0
7.00	S8	6.50	743.0	707.5	327.7	5950.4	-1123.3	1269.0	210.0	1248.0	492.3	0.0
9.50	S9	9.00	858.3	817.6	382.5	6270.1	-1188.4	1269.0	210.0	1386.0	565.4	0.0
11.00	S10(Mezz)	10.50	882.3	839.8	394.0	6289.2	-1192.0	1269.0	210.0	1412.0	584.9	0.0
12.50	S11	12.00	858.3	817.6	382.5	6270.1	-1188.4	1269.0	210.0	1386.0	565.4	0.0
15.00	S12	14.50	743.0	707.5	327.7	5950.4	-1123.3	1269.0	210.0	1248.0	492.3	0.0
17.00	S13	16.50	581.4	554.0	251.9	5511.7	-711.0	1269.0	210.0	1021.7	385.3	0.0
18.00	S14	17.50	478.4	456.0	205.5	5629.0	-726.1	1269.0	210.0	850.6	321.7	0.0
19.00	S15	18.50	360.4	344.5	141.7	4537.9	-486.5	1269.0	210.0	672.3	236.3	0.0
20.00	S16	19.50	227.8	218.9	47.1	4592.9	-492.4	1269.0	210.0	413.0	156.9	0.0
21.00	S17	20.50	81.5	81.0	10.4	1989.4	-37.5	1269.0	210.0	137.0	53.2	0.0
21.50	S18	21.00	0.0	0.0	0.0	0.0	0.0	1269.0	210.0	0.0	17.4	0.0
22.00	S19 (SP2)	21.50	0.0	0.0	0.0	0.0	0.0	1269.0	210.0	0.0	0.0	0.0

13.4.1 Verifiche in combinazione frequente

	Ver	ifica sezio	ni a mom	ento pos	itivo - Valori	di solleci	tazione in	combin	azione fr	equente		
x _{test.trave}	Sez.	x _{asse pila}	M _{G0}	M _{G1}	M _{G2} + M _{Rapp}	N _{p,fin}	M _{p,fin}	N _{rd} [kN]	M _{rd} [kNm]	M _{Q,tan}	M _{Q,distr}	M ⁺ _v [kNm]
0.00	S1 (SP1)	-0.50	0.0				0.0	1269.0	. ,			0.0
0.50	S2	0.00	0.0			0.0		1269.0			6.9	
1.00	S3	0.50	81.5	81.0		1989.4	-37.5	1269.0			21.3	0.0
2.00	S4	1.50	227.8		74.1	4594.8	-492.6	1269.0			62.8	0.0
3.00	S5	2.50	360.4	344.5	141.7	4537.9	-486.5	1269.0			94.5	0.0
4.00	S6	3.50	478.4	456.0	205.5	5629.0	-726.1	1269.0	210.0	637.9	128.7	0.0
5.00	S7	4.50	581.4	554.0	251.9	5511.7	-711.0	1269.0	210.0	766.3	154.1	0.0
7.00	S8	6.50	743.0	707.5	327.7	5950.4	-1123.3	1269.0	210.0	936.0	196.9	0.0
9.50	S9	9.00	858.3	817.6	382.5	6270.1	-1188.4	1269.0	210.0	1039.5	226.2	0.0
11.00	S10(Mezz)	10.50	882.3	839.8	394.0	6289.2	-1192.0	1269.0	210.0	1059.0	234.0	0.0
12.50	S11	12.00	858.3	817.6	382.5	6270.1	-1188.4	1269.0	210.0	1039.5	226.2	0.0
15.00	S12	14.50	743.0	707.5	327.7	5950.4	-1123.3	1269.0	210.0	936.0	196.9	0.0
17.00	S13	16.50	581.4	554.0	251.9	5511.7	-711.0	1269.0	210.0	766.3	154.1	0.0
18.00	S14	17.50	478.4	456.0	205.5	5629.0	-726.1	1269.0	210.0	637.9	128.7	0.0
19.00	S15	18.50	360.4	344.5	141.7	4537.9	-486.5	1269.0	210.0	504.2	94.5	0.0
20.00	S16	19.50	227.8	218.9	47.1	4592.9	-492.4	1269.0	210.0	309.8	62.8	0.0
21.00	S17	20.50	81.5	81.0	10.4	1989.4	-37.5	1269.0	210.0	102.7	21.3	0.0
21.50	S18	21.00	0.0	0.0	0.0	0.0	0.0	1269.0	210.0	0.0	6.9	0.0
22.00	S19 (SP2)	21.50	0.0	0.0	0.0	0.0	0.0	1269.0	210.0	0.0	0.0	0.0

Itinerario Ragusa - Catania

Collegamento viario compreso tra lo Svincolo della S.S. 514 di "Chiaromonte" con la S.S. 115 e lo Svincolo della "Ragusana"

PROGETTO ESECUTIVO

Direzione Progettazione e Realizzazione Lavori

Cavalcavia km 0+000 - RELAZIONE DI CALCOLO IMPALCATO

Verifica sezioni a momento positivo combinazione frequente																
			Tensior	ni prima	e secor	ıda fase			To	ensioni	terza fa	se		Tensio	ni finali	
X _{test.trave}	Sez.	X _{asse pila}	$\sigma_{ss,freq.}$	$\sigma_{\text{si,freq.}}$	$\sigma_{ts,freq.}$	$\sigma_{\text{ti,freq.}}$	N ^{3f} freq.	M ^{3f} freq.	$\sigma_{ss,freq.}$	$\sigma_{\text{si,freq.}}$	$\sigma_{ts,freq.}$	$\sigma_{\text{ti,freq.}}$	$\sigma_{ss,freq.}$	$\sigma_{\text{si,freq.}}$	$\sigma_{ts,freq.}$	$\sigma_{\text{ti,freq.}}$
[m]		[m]	[MPa]	[MPa]	[MPa]	[MPa]	[kN]	[kNm]	[MPa]	[MPa]	[MPa]	[MPa]	[MPa]	[MPa]	[MPa]	[MPa]
0.00	S1 (SP1)	-0.50	-0.01	-0.08	-0.18	-0.46	1269.0	210.0	-0.68	-1.00	1.51	0.41	-0.69	-1.08	1.32	-0.05
0.50	S2	0.00	-0.01	-0.10	1.34	1.49	1269.0	248.8	-0.60	-0.97	1.54	0.27	-0.61	-1.07	2.88	1.76
1.00	S3	0.50	0.01	-0.13	5.08	2.04	1269.0	334.0	-0.35	-0.84	1.68	-0.04	-0.34	-0.98	6.75	2.01
2.00	S4	1.50	0.33	-0.11	6.28	7.59	1269.0	582.5	0.36	-0.49	2.06	-0.89	0.70	-0.60	8.34	6.70
3.00	S5	2.50	0.55	-0.04	9.89	5.28	1269.0	808.8	1.02	-0.16	2.42	-1.68	1.57	-0.20	12.30	3.60
4.00	S6	3.50	0.82	0.05	11.08	7.21	1269.0	976.6	1.54	0.11	2.71	-2.24	2.35	0.15	13.79	4.97
5.00	S7	4.50	0.99	0.07	13.85	5.28	1269.0	1130.4	1.99	0.33	2.95	-2.78	2.98	0.41	16.80	2.51
7.00	S8	6.50	1.40	0.27	12.12	7.22	1269.0	1342.9	2.64	0.68	3.33	-3.47	4.04	0.95	15.45	3.75
9.50	S9	9.00	1.56	0.36	14.84	6.43	1269.0	1475.7	3.03	0.88	3.54	-3.91	4.59	1.24	18.38	2.51
11.00	S10(Mezz)	10.50	1.59	0.38	15.49	6.09	1269.0	1503.0	3.11	0.92	3.59	-4.01	4.70	1.30	19.08	2.08
12.50	S11	12.00	1.56	0.36	14.84	6.43	1269.0	1475.7	3.03	0.88	3.54	-3.91	4.59	1.24	18.38	2.51
15.00	S12	14.50	1.40	0.27	12.13	7.22	1269.0	1342.9	2.64	0.68	3.33	-3.47	4.04	0.95	15.45	3.75
17.00	S13	16.50	0.99	0.07	13.85	5.28	1269.0	1130.4	1.99	0.33	2.95	-2.78	2.98	0.41	16.80	2.51
18.00	S14	17.50	0.82	0.05	11.08	7.21	1269.0	976.6	1.54	0.11	2.71	-2.24	2.35	0.15	13.79	4.97
19.00	S15	18.50	0.55	-0.04	9.89	5.28	1269.0	808.8	1.02	-0.16	2.42	-1.68	1.57	-0.20	12.30	3.60
20.00	S16	19.50	0.26	-0.15	6.24	7.68	1269.0	582.5	0.36	-0.49	2.06	-0.89	0.62	-0.64	8.30	6.79
21.00	S17	20.50	0.01	-0.13	5.08	2.04	1269.0	334.0	-0.35	-0.84	1.68	-0.04	-0.34	-0.98	6.75	2.01
21.50	S18	21.00	-0.01	-0.10	1.34	1.49	1269.0	216.9	-0.69	-1.01	1.49	0.38	-0.70	-1.11	2.83	1.87
22.00	S19 (SP2)	21.50	-0.01	-0.08	-0.18	-0.46	1269.0	210.0	-0.69	-1.00	1.50	0.41	-0.70	-1.08	1.32	-0.05

Per tutte le sezioni le tensioni non eccedono i valori limite di compressione e trazione. Le verifiche sono soddisfatte. Inoltre, essendo la tensione di trazione inferiore al limite indicato, non sono necessarie verifiche a fessurazione.

13.4.2 Verifiche in combinazione quasi permanente

	Verifica	sezioni a	momento	positivo	- Valori di so	llecitazio	one in cor	nbinazio	ne quasi	permane	nte	
X _{test.trave}	Sez.	X _{asse pila}	M_{G0}	M_{G1}	M _{G2} + M _{Rapp}	$N_{p,fin}$	$M_{p,fin}$	N_{rd}	M_{rd}	M _{Q,tan}	M _{Q,distr}	M ⁺ _v
[m]		[m]	[kNm]	[kNm]	[kNm]	[kN]	[kNm]	[kN]	[kNm]	[kNm]	[kNm]	[kNm]
0.00	S1 (SP1)	-0.50	0.0	0.0	0.0	0.0	0.0	1269.0	210.0	0.0	0.0	0.0
0.50	S2	0.00	0.0	0.0	0.0	0.0	0.0	1269.0	210.0	0.0	0.0	0.0
1.00	S3	0.50	81.5	81.0	10.4	1989.4	-37.5	1269.0	210.0	0.0	0.0	0.0
2.00	S4	1.50	227.8	218.9	74.1	4594.8	-492.6	1269.0	210.0	0.0	0.0	0.0
3.00	S5	2.50	360.4	344.5	141.7	4537.9	-486.5	1269.0	210.0	0.0	0.0	0.0
4.00	S6	3.50	478.4	456.0	205.5	5629.0	-726.1	1269.0	210.0	0.0	0.0	0.0
5.00	S 7	4.50	581.4	554.0	251.9	5511.7	-711.0	1269.0	210.0	0.0	0.0	0.0
7.00	S8	6.50	743.0	707.5	327.7	5950.4	-1123.3	1269.0	210.0	0.0	0.0	0.0
9.50	S9	9.00	858.3	817.6	382.5	6270.1	-1188.4	1269.0	210.0	0.0	0.0	0.0
11.00	S10(Mezz)	10.50	882.3	839.8	394.0	6289.2	-1192.0	1269.0	210.0	0.0	0.0	0.0
12.50	S11	12.00	858.3	817.6	382.5	6270.1	-1188.4	1269.0	210.0	0.0	0.0	0.0
15.00	S12	14.50	743.0	707.5	327.7	5950.4	-1123.3	1269.0	210.0	0.0	0.0	0.0
17.00	S13	16.50	581.4	554.0	251.9	5511.7	-711.0	1269.0	210.0	0.0	0.0	0.0
18.00	S14	17.50	478.4	456.0	205.5	5629.0	-726.1	1269.0	210.0	0.0	0.0	0.0
19.00	S15	18.50	360.4	344.5	141.7	4537.9	-486.5	1269.0	210.0	0.0	0.0	0.0
20.00	S16	19.50	227.8	218.9	47.1	4592.9	-492.4	1269.0	210.0	0.0	0.0	0.0
21.00	S17	20.50	81.5	81.0	10.4	1989.4	-37.5	1269.0	210.0	0.0	0.0	0.0
21.50	S18	21.00	0.0	0.0	0.0	0.0	0.0	1269.0	210.0	0.0	0.0	0.0
22.00	S19 (SP2)	21.50	0.0	0.0	0.0	0.0	0.0	1269.0	210.0	0.0	0.0	0.0

Itinerario Ragusa - Catania

Collegamento viario compreso tra lo Svincolo della S.S. 514 di "Chiaromonte" con la S.S. 115 e lo Svincolo della "Ragusana"

PROGETTO ESECUTIVO

Direzione Progettazione e Realizzazione Lavori

Cavalcavia km 0+000 - RELAZIONE DI CALCOLO IMPALCATO

	Verifica sezioni a momento positivo combinazione quasi permanente															
Tensioni prima e seconda fase								T	ensioni	terza fa:	se	Tensioni finali				
X _{test.trave}	Sez.	X _{asse pila}	$\sigma_{ss,q.p.}$	$\sigma_{\text{si,q.p.}}$	$\sigma_{\text{ts,q.p.}}$	$\sigma_{\text{ti,q.p.}}$	N ^{3f} q.p.	$M_{q.p.}^{3f}$	$\sigma_{\text{ss,q.p.}}$	$\sigma_{\text{si,q.p.}}$	$\sigma_{\text{ts,q.p.}}$	$\sigma_{\text{ti,q.p.}}$	$\sigma_{ss,q.p.}$	$\sigma_{\text{si,q.p.}}$	$\sigma_{\text{ts,q.p.}}$	$\sigma_{\text{ti,q.p.}}$
[m]		[m]	[MPa]	[MPa]	[MPa]	[MPa]	[kN]	[kNm]	[MPa]	[MPa]	[MPa]	[MPa]	[MPa]	[MPa]		[MPa]
0.00	S1 (SP1)	-0.50	-0.01	-0.08	-0.18	-0.46	1269.0	210.0	-0.68	-1.00	1.51	0.41	-0.69	-1.08	1.32	-0.05
0.50	S2	0.00	-0.01	-0.10	1.34	1.49	1269.0	210.0	-0.71	-1.02	1.48	0.40	-0.73	-1.12	2.82	1.89
1.00	S3	0.50	0.01	-0.13	5.08	2.04	1269.0	210.0	-0.71	-1.02	1.48	0.40	-0.70	-1.16	6.56	2.45
2.00	S4	1.50	0.33	-0.11	6.28	7.59	1269.0	210.0	-0.73	-1.03	1.47	0.41	-0.39	-1.14	7.75	8.00
3.00	S5	2.50	0.55	-0.04	9.89	5.28	1269.0	210.0	-0.73	-1.03	1.47	0.41	-0.18	-1.07	11.36	5.69
4.00	S6	3.50	0.82	0.05	11.08	7.21	1269.0	210.0	-0.72	-1.03	1.48	0.42	0.10	-0.98	12.56	7.63
5.00	S7	4.50	0.99	0.07	13.85	5.28	1269.0	210.0	-0.72	-1.03	1.48	0.42	0.27	-0.96	15.33	5.70
7.00	S8	6.50	1.40	0.27	12.12	7.22	1269.0	210.0	-0.71	-1.02	1.49	0.43	0.69	-0.75	13.61	7.65
9.50	S9	9.00	1.56	0.36	14.84	6.43	1269.0	210.0	-0.71	-1.02	1.49	0.43	0.84	-0.66	16.33	6.85
11.00	S10(Mezz)	10.50	1.59	0.38	15.49	6.09	1269.0	210.0	-0.71	-1.02	1.49	0.43	0.87	-0.64	16.98	6.51
12.50	S11	12.00	1.56	0.36	14.84	6.43	1269.0	210.0	-0.71	-1.02	1.49	0.43	0.84	-0.66	16.33	6.85
15.00	S12	14.50	1.40	0.27	12.13	7.22	1269.0	210.0	-0.71	-1.02	1.49	0.43	0.69	-0.75	13.61	7.65
17.00	S13	16.50	0.99	0.07	13.85	5.28	1269.0	210.0	-0.72	-1.03	1.48	0.42	0.27	-0.96	15.33	5.70
18.00	S14	17.50	0.82	0.05	11.08	7.21	1269.0	210.0	-0.72	-1.03	1.48	0.42	0.10	-0.98	12.56	7.63
19.00	S15	18.50	0.55	-0.04	9.89	5.28	1269.0	210.0	-0.73	-1.03	1.47	0.41	-0.18	-1.07	11.36	5.69
20.00	S16	19.50	0.26	-0.15	6.24	7.68	1269.0	210.0	-0.73	-1.03	1.47	0.41	-0.47	-1.18	7.71	8.09
21.00	S17	20.50	0.01	-0.13	5.08	2.04	1269.0	210.0	-0.71	-1.02	1.48	0.40	-0.70	-1.16	6.56	2.45
21.50	S18	21.00	-0.01	-0.10	1.34	1.49	1269.0	210.0	-0.71	-1.02	1.48	0.40	-0.73	-1.12	2.82	1.89
22.00	S19 (SP2)	21.50	-0.01	-0.08	-0.18	-0.46	1269.0	210.0	-0.69	-1.00	1.50	0.41	-0.70	-1.08	1.32	-0.05

Per tutte le sezioni le tensioni non eccedono i valori limite di compressione e trazione. Le verifiche sono soddisfatte. Inoltre, essendo la tensione di trazione inferiore al limite indicato, non sono necessarie verifiche a fessurazione.

13.4.3 Verifiche in combinazione rara

	1	/erifica se	zioni a m	omento p	ositivo - Val	ori di soll	ecitazion	e in com	binazione	e rara		
X _{test.trave}	Sez.	X _{asse pila}	M_{G0}	M_{G1}	M _{G2} + M _{Rapp}	$N_{p,fin}$	$M_{p,fin}$	N_{rd}	M_{rd}	$M_{Q,tan}$	$M_{Q,distr}$	M ⁺ _v
[m]		[m]	[kNm]	[kNm]	[kNm]	[kN]	[kNm]	[kN]	[kNm]	[kNm]	[kNm]	[kNm]
0.00	S1 (SP1)	-0.50	0.0	0.0	0.0	0.0	0.0	1269.0	210.0	0.0	0.0	0.0
0.50	S2	0.00	0.0	0.0	0.0	0.0	0.0	1269.0	210.0	42.4	17.4	0.0
1.00	S3	0.50	81.5	81.0	10.4	1989.4	-37.5	1269.0	210.0	137.0	53.2	0.0
2.00	S4	1.50	227.8	218.9	74.1	4594.8	-492.6	1269.0	210.0	413.0	156.9	0.0
3.00	S5	2.50	360.4	344.5	141.7	4537.9	-486.5	1269.0	210.0	672.3	236.3	0.0
4.00	S6	3.50	478.4	456.0	205.5	5629.0	-726.1	1269.0	210.0	850.6	321.7	0.0
5.00	S7	4.50	581.4	554.0	251.9	5511.7	-711.0	1269.0	210.0	1021.7	385.3	0.0
7.00	S8	6.50	743.0	707.5	327.7	5950.4	-1123.3	1269.0	210.0	1248.0	492.3	0.0
9.50	S9	9.00	858.3	817.6	382.5	6270.1	-1188.4	1269.0	210.0	1386.0	565.4	0.0
11.00	S10(Mezz)	10.50	882.3	839.8	394.0	6289.2	-1192.0	1269.0	210.0	1412.0	584.9	0.0
12.50	S11	12.00	858.3	817.6	382.5	6270.1	-1188.4	1269.0	210.0	1386.0	565.4	0.0
15.00	S12	14.50	743.0	707.5	327.7	5950.4	-1123.3	1269.0	210.0	1248.0	492.3	0.0
17.00	S13	16.50	581.4	554.0	251.9	5511.7	-711.0	1269.0	210.0	1021.7	385.3	0.0
18.00	S14	17.50	478.4	456.0	205.5	5629.0	-726.1	1269.0	210.0	850.6	321.7	0.0
19.00	S15	18.50	360.4	344.5	141.7	4537.9	-486.5	1269.0	210.0	672.3	236.3	0.0
20.00	S16	19.50	227.8	218.9	47.1	4592.9	-492.4	1269.0	210.0	413.0	156.9	0.0
21.00	S17	20.50	81.5	81.0	10.4	1989.4	-37.5	1269.0	210.0	137.0	53.2	0.0
21.50	S18	21.00	0.0	0.0	0.0	0.0	0.0	1269.0	210.0	0.0	17.4	0.0
22.00	S19 (SP2)	21.50	0.0	0.0	0.0	0.0	0.0	1269.0	210.0	0.0	0.0	0.0

PROGETTO ESECUTIVO

Direzione Progettazione e Realizzazione Lavori

Cavalcavia km 0+000 - RELAZIONE DI CALCOLO IMPALCATO

	Verifica sezioni a momento positivo combinazione rara															
Tensioni prima e seconda fase							To	ensioni	terza fas	e	Tensioni finali					
X _{test.trave}	Sez.	X _{asse pila}	$\sigma_{\text{ss,rara}}$	$\sigma_{\text{si,rara}}$	$\sigma_{\text{ts,rara}}$	$\sigma_{\text{ti,rara}}$	N_{rara}^{3f}	M_{rara}^{3f}	$\sigma_{\text{ss,rara}}$	$\sigma_{\text{si,rara}}$	$\sigma_{\text{ts,rara}}$	$\sigma_{\text{ti,rara}}$	$\sigma_{\text{ss,rara}}$	$\sigma_{\text{si,rara}}$	$\sigma_{\text{ts,rara}}$	$\sigma_{\text{ti,rara}}$
[m]		[m]	[MPa]	[MPa]	[MPa]	[MPa]	[kN]	[kNm]	[MPa]							
0.00	S1 (SP1)	-0.50	-0.01	-0.08	-0.18	-0.46	1269.0	210.0	-0.68	-1.00	1.51	0.41	-0.69	-1.08	1.32	-0.05
0.50	S2	0.00	-0.01	-0.10	1.34	1.49	1269.0	269.8	-0.54	-0.94	1.58	0.19	-0.55	-1.04	2.92	1.68
1.00	S3	0.50	0.01	-0.13	5.08	2.04	1269.0	400.2	-0.16	-0.75	1.78	-0.27	-0.14	-0.88	6.86	1.77
2.00	S4	1.50	0.33	-0.11	6.28	7.59	1269.0	780.0	0.94	-0.20	2.37	-1.58	1.27	-0.31	8.65	6.01
3.00	S5	2.50	0.55	-0.04	9.89	5.28	1269.0	1118.7	1.92	0.29	2.90	-2.77	2.47	0.25	12.79	2.52
4.00	S6	3.50	0.82	0.05	11.08	7.21	1269.0	1382.3	2.73	0.71	3.36	-3.65	3.55	0.75	14.44	3.56
5.00	S7	4.50	0.99	0.07	13.85	5.28	1269.0	1616.9	3.42	1.05	3.73	-4.46	4.41	1.13	17.58	0.82
7.00	S8	6.50	1.40	0.27	12.12	7.22	1269.0	1950.3	4.44	1.59	4.31	-5.56	5.84	1.86	16.44	1.66
9.50	S9	9.00	1.56	0.36	14.84	6.43	1269.0	2161.4	5.06	1.91	4.66	-6.26	6.62	2.27	19.50	0.16
11.00	S10(Mezz)	10.50	1.59	0.38	15.49	6.09	1269.0	2206.9	5.19	1.98	4.73	-6.42	6.78	2.35	20.22	-0.33
12.50	S11	12.00	1.56	0.36	14.84	6.43	1269.0	2161.4	5.06	1.91	4.66	-6.26	6.62	2.27	19.50	0.16
15.00	S12	14.50	1.40	0.27	12.13	7.22	1269.0	1950.3	4.44	1.59	4.31	-5.56	5.84	1.86	16.44	1.66
17.00	S13	16.50	0.99	0.07	13.85	5.28	1269.0	1616.9	3.42	1.05	3.73	-4.46	4.41	1.13	17.58	0.82
18.00	S14	17.50	0.82	0.05	11.08	7.21	1269.0	1382.3	2.73	0.71	3.36	-3.65	3.55	0.75	14.44	3.56
19.00	S15	18.50	0.55	-0.04	9.89	5.28	1269.0	1118.7	1.92	0.29	2.90	-2.77	2.47	0.25	12.79	2.52
20.00	S16	19.50	0.26	-0.15	6.24	7.68	1269.0	780.0	0.94	-0.20	2.37	-1.58	1.19	-0.35	8.61	6.10
21.00	S17	20.50	0.01	-0.13	5.08	2.04	1269.0	400.2	-0.16	-0.75	1.78	-0.27	-0.14	-0.88	6.86	1.77
21.50	S18	21.00	-0.01	-0.10	1.34	1.49	1269.0	227.4	-0.66	-1.00	1.51	0.34	-0.67	-1.10	2.85	1.83
22.00	S19 (SP2)	21.50	-0.01	-0.08	-0.18	-0.46	1269.0	210.0	-0.69	-1.00	1.50	0.41	-0.70	-1.08	1.32	-0.05

Per tutte le sezioni le tensioni non eccedono i valori limite. Le verifiche sono soddisfatte.

PROGETTO ESECUTIVO

Cavalcavia km 0+000 - RELAZIONE DI CALCOLO IMPALCATO

14 VERIFICA DELLA SOLETTA

Si riportano di seguito le verifiche della soletta di impalcato del cavalcavia.

La soletta presenta spessore totale di 25cm, ed è realizzata mediante impiego di predala tralicciata di spessore di 5cm e di successivo getto di cls classe C32/40 di spessore 20cm.

La soletta è armata sia trasversalmente che longitudinalmente con barre \varnothing 12/20cm superiori ed inferiori.

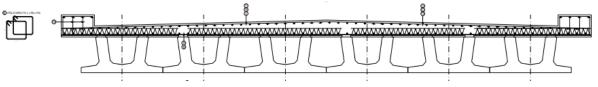


Figura 14.1 Sezione trasversale soletta

14.1 VERIFICA DELLE PREDALLE

Si riporta di seguito la verifica delle predalle per il campo intermedio "tra le anime delle travi" e delle predalle in corrispondenza dello sbalzo. Durante la fase di getto, la predalle deve essere in grado di sostenere oltre al peso proprio, il peso del conglomerato cementizio allo stato fluido e l'eventuale peso delle maestranze sull'impalcato. Con riferimento alle sezioni di sbalzo, ai fini di impedire il ribaltamento della predalle verso l'esterno, è necessario effettuare prima il getto dei campi interni. La predalla presenta larghezza standard di 2.40m, traliccio elettrosaldato "standard" di altezza 16.5cm, correnti inferiori \emptyset 8, corrente superiore \emptyset 12 e diagonali \emptyset 7.2.

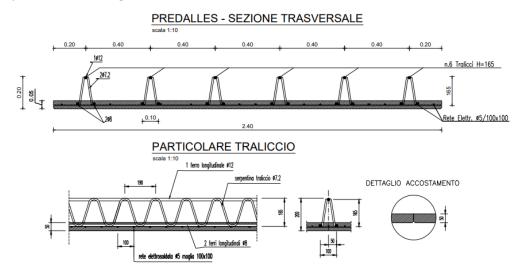


Figura 14.2 Sezione trasversale predalle

PROGETTO ESECUTIVO

Direzione Progettazione e Realizzazione Lavori

Cavalcavia km 0+000 - RELAZIONE DI CALCOLO IMPALCATO

VERIFICA PREDALLES	CAMPATA					CARATI	TERISTICHE	TRALICC	10		
TENTION INCOME						f _{yk}	450	N/mm ²			
DATI						E	2100000	kg/cm ²			
Luce della campata	L	=	0.75	m		γ _{M0}	1.15	Kg/ CIII			
Spessore soletta cls	Ss	=	0.31	m		γмι	1.15				
Spessore fondello cls	Sf	-	0.05	m		į MI	φ	N°	A [cm ²]	I [cm ⁴]	
Interasse trasversale tralicci	i	=	0.40	m		фs	12	1	1.13	0.102	
Altezza totale traliccio (esterno - esterno)	h,	=	0.175	m		ds	7.2	2	0.81	0.0132	
Altezza efficace dei correnti (asse - asse)	h _{eff}	=	0.161	m		фi	8	2	1.01		
Lunghezza tra due tralicci successivi	I	-	20.00	cm		φi,agg			0.00		
Interasse trasversale dei correnti inferiori	it _{ci}	_	10.00	cm		1					
Larghezza predalles	B _{pred}	_	2.40	m							
n°tralicci per predalle	n°t	-	6								
SOLLECITAZIONI AGENTI											
Coefficiente combinazione SLU	γ	=	1.35								
ederification de	1		tot dalla	1 tral.							
Carico uniformemente distribuito	q	=	29.16	4.86	kN/m						
Sovraccarico in fase di getto	q		3.24	0.54	kN/m						
Carico uniformemente distribuito totale	q		32.40	5.40	kN/m						
Momento flettente	М	=	2.28	0.38	kNm						
Taglio	V	=	10.9	1.82	kN						
Sforzo normale (di traz/compr nei correnti) M/h _{eff}	N	- ±		2.36	kN						
CORRENTE INFERIORE											
Area del corrente inferiore	A _{inf}	-	1.01	cm ²							
Tensione nella singola barra (trazione)	$\sigma_{\rm S}$	_	-23.5	N/mm²							
Resistenza di calcolo a trazione N _{t,Rd}	N _{t,Rd}	_	39.3	kN	\vdash						
N/N _{tRd} <1	N/N _{t,Rd}		0.06	ОК	\vdash						
	1 1/1 \t,Rd	_	0.00	- OK							
CORRENTE SUPERIORE			-	2							
Area del corrente superiore	A _{sup}	-	1.13	cm ²							
Tensione nella barra (compressione)	σ_{S}	-	20.9	N/mm ²							
Resistenza di calcolo a compressione N _{c,Rd}	$N_{c,Rd}$	-	44.26	kN							
N/N _{c,Rd} <1	N/N _{c,Rd}	-	0.053	ОК							
STABILITA' CORR. SUP.			0.0								
Coefficiente di vincolo βν	βv	-	20.00								
Lunghezza tra due tralicci successivi		-	18.00	cm							
Lunghezza libera d'inflessione I ₀ =1*β	I ₀			cm							
N critico euleriano	Ner	-	65.11	kN							
Snellezza adimensionale	λ_{ad}	-	0.88								
Fattore di imperfezione	αί	-	0.49								
coefficiente φ Coefficiente χ	ф	-	1.06 0.610								
Coefficiente gamma M1	χ	-	1.15								
RESISTENZA INSTABILITA' ASTA COMPRESSA N _{b,Rd}	γ _{M1} N _{b,Rd}	-	26.98	kN							
	N/N _{b,Rd}	-	0.087	OK							
N/N _{b,Rd} <1	11/11b,Rd	-	0.087	UK							
DIAGONALI				-	\sqcup						
Area dei diagonali	A _{inf}	-	0.81	cm ²							
Angolo asta del diagonale sulla vista trasversale	α	-	17.3	deg	$\sqcup \sqcup$						
Angolo asta del diagonale sulla vista longitudinale	β	-	31.8	deg	\Box						
Sforzo normale nel singolo diagonale (Compressione)	N		1.12	kN	\vdash						
Tensione nella singola barra (compressione)	$\sigma_{\rm S}$	-	27.6	N/mm ²	\vdash						
Posistanza di salcalo a compressione N	NT.	_	15.02	l _e s.	1 di -						
Resistenza di calcolo a compressione N _{c,Rd}	N _{c,Rd}	-	15.93	kN	1 dia.						
N/N _{c,Rd} <1	N/N _{c,Rd}	-	0.071	ОК							
STABILITA'			-		\vdash						
Coefficiente di vincolo βν	βv	-	1								
Lunghezza del diagonale	I	-	19.60	cm							
Lunghezza libera d'inflessione I ₀ =l*β	I ₀	-	19.60	cm							
N critico euleriano	N _{cr}	_	7.12	kN							
Snellezza adimensionale	λ _{ad}	_	1.60								
Fattore di imperfezione	αi	_	0.49		\vdash						
coefficiente φ	ф	_	2.13								
Coefficiente x	χ	_	0.283								
Coefficiente gamma M1	γмι	-	1.15								
RESISTENZA INSTABILITA' ASTA COMPRESSA N _{b.Rd}	N _{b,Rd}	-	4.51	kN							
N/N _{b,Rd} <1	N/N _{b,Rd}	_	0.249	ОК	\vdash						
· ujnd =	,Kd	_	3.243	_ U.							

MANDATARIA:

MANDANTI:

PROGETTO ESECUTIVO

Direzione Progettazione e Realizzazione Lavori

Cavalcavia km 0+000 - RELAZIONE DI CALCOLO IMPALCATO

DATI User delicit oblitics	VERIFICA PREDALL	ES SBA17	:O			C	RAT	TERISTICH	E TRALICO	10	
Description	VERNICATREDALI	JUNIE							1 -		
List of the shallow 1	DATI								+ -		
Sessore reported of Sessore for profession		L	=	0.80	m	١,			o kg/cm		
Spessore fondelle of the membrane trained 1 0,00 m m 0,00 1,00			=								
Internace traversale trailical scareno - esterno)			=	0.05	m				N°	A [cm ²]	I [cm⁴]
Abectae efficace dei Correnti (isse- asset) Interasse traversale dei correnti inferiori Lity = 18.00 cm Interasse traversale dei correnti inferiori Lity = 2.40 cm Larghezza produlte Person = 2.40 cm Correlatio per prediable NT = 6 c SOLECTAZION AGENTI Carloco uniformemente distributo Q = 2.06 d Sorvacarico in fise edi getto Gardoco uniformemente distributo totale Q = 3.34 cost d Q = 3.34 cost d MoMentro FlatTinitre M = 7.65 cost d SONEON MOMENTO FLATTINITE M = 1.01 cost d SONEON MOMENTO FLATTINITE M = 1.01 cost d SONEON MOMENTO FLATTINITE M = 1.01 cost d SONEON MOMENTO FLATTINITE M = 2.00 cost d Larghezza inter and direct cost d Larghezza inter and d Larghezza inter and d Larghezza inter and d Nover and d N	Interasse trasversale tralicci	i	=	0.40	m		φs		1		
Independent and the trailing successivi I 2000 cm	Altezza totale traliccio (esterno - esterno)	ht		0.175	m		ds	7.2	2	0.81	0.0132
Internate traversale dei corrent inferiori	Altezza efficace dei correnti (asse - asse)	h _{eff}	=	0.161	m	Т	фі	8	2	1.01	0.040
Larghezza predalle	Lunghezza tra due tralicci successivi	- 1	=	20.00	cm						
Distriction per pendalic n°t = 6 6	Interasse trasversale dei correnti inferiori	it _{ci}	-	10.00	cm						
SOLECTAZIONI AGENT Coefficiente combinazione SIU Y 1.35	Larghezza predalles	B _{pred}	=	2.40							
Coefficiente combinazione SUJ	n°tralicci per predalle	n°t	-	6							
	SOLLECITAZIONI AGENTI					+					
Carlos uniformemente distributo q = 20.66 3.44 kW/m Grico uniformemente distributo totale q 23.90 3.98 kW/m MOMENTO FLITTETTE M = 7.65 1.27 kWm TAGLIO V = 16.5 2.75 kWm TAGLIO CORRENTE INFERIORE COMPRESSO AREA DEL CORRENTE INFERIORE CORRENTE INFERIORE COMPRESSO AREA DEL CORRENTE INFERIORE AREA DEL CORRENTE INFERIORE CORFICIATE INFERIORE COMPRESSO AREA DEL CORRENTE INFERIORE Loginaria del radicolo accessivi N. = 20.00 Loginaria del radicolo accessivi N. = 10.00 Resistenza di calcolo a compressione N _{CRM} N.N.N.M. = 10.20 STABILITA' No critico quine di mensionale N. = 25.72 N.N.N.M. = 1.133 Fattore di imperfezione coefficiente y Coefficiente y N. = 1.66 Coefficiente y N. = 0.378 Coefficiente y N. = 0.378 RESISTENZA INSTABILITA' ASTA COMPRESSA N _{N.M.M.} N.N.M. = 1.15 RESISTENZA INSTABILITA' ASTA COMPRESSA N _{N.M.M.} N.N.M. = 1.13 RESISTENZA INSTABILITA' ASTA COMPRESSA N _{N.M.M.} N.N.M. = 1.13 RESISTENZA INSTABILITA' ASTA COMPRESSA N _{N.M.M.} N.N.M. = 1.13 RESISTENZA INSTABILITA' ASTA COMPRESSA N _{N.M.M.} N.N.M. = 1.13 RESISTENZA INSTABILITA' ASTA COMPRESSA N _{N.M.M.} N.N.M. = 1.13 RESISTENZA INSTABILITA' ASTA COMPRESSA N _{N.M.M.} N.N.M. = 1.13 RESISTENZA INSTABILITA' ASTA COMPRESSA N _{N.M.M.} N.N.M. = 1.13 RESISTENZA INSTABILITA' ASTA COMPRESSA N _{N.M.M.} N.N.M. = 1.13 RESISTENZA INSTABILITA' ASTA COMPRESSA N _{N.M.M.} Resistenza di calcolo a trazione N _{N.M.M.M.M.M.} Resistenza di calcolo a compressione N _{N.M.M.M.M.M.M.} Resistenza di calcolo a trazione N _{N.M.M.M.M.M.M.M.M.M.M.M.M.M.M.M.M.M.M.}	Coefficiente combinazione SLU	γ	=	1.35							
Sovraccarico in fase di getto				tot dalla	1 tral.						
Carico uniformemente distributo totale			=								
MOMENTO FLETTENTE	-					 					
TAGLIO			_			-					
SEORZO NORMALE (di traz/compr nei correnti) M/h _{uth} N =						_					
CORRENTE INFERIORE COMPRESSO ABRA DEL CORRENTE INFERIORE A _M - 1.01 Cm				10.5							
ABEA DEL CORRENTE INFERIORE COEfficiente di vinciolo βV (Directar al discribicio successivi) I = 20.00 Com Lunghezzar al discribicio successivi I = 20.00 Com ABEAGGIO DINERGA I = 18 Com ABEAGGIO DINERGA A = 90.00 Resistenza di calcolo a compressione N _{c.Nd} N.N., ad = 0.201 N. ad = 0	, , , , , , , , , , , , , , , , , , , ,					+					
Caefficiente di vincolo βν βν = 0.9		_		1.01	cm ²	+					
Lunghezzal libera d'inflessione l _g =1°β l ₀ = 18 cm			_		uII	+			-		
Lunghezzal libera d'inflessione l _g =1*β	·				cm	+					
SAGEIO D'INERZIA						+					
No. No											
N/N _{c,Rd} 1 N/N _{c,Rd} 2 0.201 OK STABILITA' Noritico euleriano N _o = 25.72 kN N critico euleriano N _o = 25.72 kN Snellezza adimensionale λ _{od} = 1.33 Fattore di imperfezione qi = 0.49 coefficiente φ φ = 1.66 Coefficiente χ χ = 0.378 Coefficiente gamma M1 γvii = 11.55 RESISTENZA INSTABILITA'ASTA COMPRESSA N _{h,Rd} N _{h,Rd} = 14.87 kN N/N _{h,Rd} = 0.53 OK CORRENTE SUPERIORE TESO AREA DEL CORRENTE SUPERIORE A _{op} = 1.13 cm² Tensione nella barra (trazione) G = 69.99 N/mm² Resistenza di calcolo a trazione N _{i,Rd} Ni,Rk = <td></td> <td></td> <td>-</td> <td></td> <td>C</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>			-		C						
N/N _{c,Rd} 1 N/N _{c,Rd} 2 0.201 OK STABILITA' Noritico euleriano N _o = 25.72 kN N critico euleriano N _o = 25.72 kN Snellezza adimensionale λ _{od} = 1.33 Fattore di imperfezione qi = 0.49 coefficiente φ φ = 1.66 Coefficiente χ χ = 0.378 Coefficiente gamma M1 γvii = 11.55 RESISTENZA INSTABILITA'ASTA COMPRESSA N _{h,Rd} N _{h,Rd} = 14.87 kN N/N _{h,Rd} = 0.53 OK CORRENTE SUPERIORE TESO AREA DEL CORRENTE SUPERIORE A _{op} = 1.13 cm² Tensione nella barra (trazione) G = 69.99 N/mm² Resistenza di calcolo a trazione N _{i,Rd} Ni,Rk = <td></td>											
STABILITA' Nortition euleriano N _{ort} = 25.72 km Nortition euleriano N _{ort} = 1.33 km Nortition euleriano N _{ortition} Nortition euleriano N _{ortition} Nortition euleriano N _{ortition} Nortition euleriano	Resistenza di calcolo a compressione N _{c,Rd}	N _{c,Rd}	=	39.34	kN						
Nortico euleriano N _{cr} = 25.72 kN	N/N _{c,Rd} <1	N/N _{c,Rd}	=	0.201	ОК						
Nortico euleriano N _{cr} = 25.72 kN											
Snellezza adimensionale											
Fattore di imperfezione	N critico euleriano	N _{cr}	-	25.72	kN	_			-		
coefficiente φ φ = 1.66 — O.378 — O.378 — O.378 — O.378 — O.378 — O.378 — — O.378 — — O.378 — — O.378 — — — O.378 — — O.378 — — — O.378 — — O.378 — — O.378 — — — O.378 — — O.378 — — — O.378 — — O.378 — — O.378 — — — O.378 — — O.378 — — — O.378 — — O.378 — — — O.53 OK — — O.53 OK — — O.53 OK — O.53 OK — — O.53 OK — O.53 OK — O.53 OK O.53<	Snellezza adimensionale	λ_{ad}	-								
Coefficiente χ						_					
Coefficiente gamma M1						-					
RESISTENZA INSTABILITA' ASTA COMPRESSA N _{B,Rd}			_			+					
N/N _{b,Rd} <1 N/N _{b,Rd} = 0.53 OK CORRENTE SUPERIORE TESO 1.13 cm²	-				kN.						
CORRENTE SUPERIORE TESO	7	_	_			+					
AREA DEL CORRENTE SUPERIORE A _{Sup} = 1.1.3 cm² Tensione nella barra (trazione) σ = 69.99 N/mm² Resistenza di calcolo a trazione N _{LRId} N/N _{LRId} = 44.26 kN N/N _{LRId} = 0.18 OK DIAGONALI AREA DEI DIAGONALI AREA DEI DIAGONALI ANGOLO ASTA DEL DIAGONALE SULLA VISTA TRASVERSALE α = 17.3 deg ANGOLO ASTA DEL DIAGONALE SULLA VISTA TRASVERSALE β = 31.8 deg SFORZO NORMALE NEL SINGOLO DIAGONALE (Compressione) N = 1.70 kN Tensione nella singola barra (compressione) σ _S = 41.7 N/mm² Resistenza di calcolo a compressione N _{C,Rid} N/N _{C,Rid} = 15.93 kN N/N _{C,Rid} = 15.93 kN N/N _{C,Rid} = 0.107 OK STABILITA' Coefficiente di vincolo βν βν = 1 Lunghezza del diagonale I = 19.60 cm N critico euleriano N _{Cr} = 7.12 kN Snellezza adimensionale λ _{did} = 1.60 Fattore di imperfezione α i = 0.49 coefficiente χ χ = 0.283 Coefficiente χ χ = 4.51 kN		1 1/1 1b,Rd	_	0.55	OK .						
Tensione nella barra (trazione)					,						
Resistenza di calcolo a trazione $N_{L,Rd}$ $N_{L,Rd}$ = 44.26 kN N/ $N_{L,Rd}$ <= 0.18 OK DIAGONALI AREA DEI DIAGONALI AREA DEI DIAGONALE SULLA VISTA TRASVERSALE ANGOLO ASTA DEL DIAGONALE SULLA VISTA CONSTITUDINALE SFORZO NORMALE NEL SINGOLO DIAGONALE (Compressione) Tensione nella singola barra (compressione) Resistenza di calcolo a compressione $N_{c,Rd}$ N/ $N_{c,Rd}$ Tensione nella singola barra (barra (compressione) N/ $N_{c,Rd}$ Tensione nella singola barra (compressione) Resistenza di calcolo a compressione $N_{c,Rd}$ N/ $N_{c,Rd}$ To 1.70 kN Resistenza di calcolo a compressione $N_{c,Rd}$ N/ $N_{c,Rd}$ To 1.70 kN Resistenza di calcolo a compressione $N_{c,Rd}$ N/ $N_{c,Rd}$ To 1.70 kN To 1.70 kN To 1.70 kN N/ $N_{c,Rd}$ To 1.70 k	AREA DEL CORRENTE SUPERIORE	A _{sup}	-	1.13	cm²						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Tensione nella barra (trazione)			69.99	N/mm ²	_					
DIAGONALI	7	N _{t,Rd}	=	44.26	kN						
AREA DEI DIAGONALI $A_{inf} = 0.81 cm^2$ $ANGOLO ASTA DEL DIAGONALE SULLA VISTA TRASVERSALE$ $\alpha = 17.3 deg$ $ANGOLO ASTA DEL DIAGONALE SULLA VISTA LONGITUDINALE$ $\beta = 31.8 deg$ $SFORZO NORMALE NEL SINGOLO DIAGONALE (Compressione)$ $N = 1.70 kN$	N/N _{t,Rd} <1	N/N _{t,Rd}	=	0.18	ОК						
ANGOLO ASTA DEL DIAGONALE SULLA VISTA TRASVERSALE $\alpha = 17.3$ deg	DIAGONALI										
ANGOLO ASTA DEL DIAGONALE SULLA VISTA TRASVERSALE $\alpha = 17.3$ deg $ANGOLO ASTA DEL DIAGONALE SULLA VISTA LONGITUDINALE \beta = 31.8 deg ANGOLO ASTA DEL DIAGONALE SULLA VISTA LONGITUDINALE \beta = 31.8 deg ANGOLO ASTA DEL DIAGONALE SULLA VISTA LONGITUDINALE \beta = 31.8 deg ANGOLO ASTA DEL DIAGONALE SULLA VISTA LONGITUDINALE \beta = 31.8 deg ANGOLO ASTA DEL DIAGONALE SULLA VISTA LONGITUDINALE \beta = 31.8 deg ANGOLO ASTA DEL DIAGONALE SULLA VISTA LONGITUDINALE \beta = 31.8 deg ANGOLO ASTA DEL DIAGONALE SULLA VISTA LONGITUDINALE \beta = 31.8 deg ANGOLO ASTA DEL DIAGONALE SULLA VISTA LONGITUDINALE \beta = 31.8 deg ANGOLO ASTA DEL DIAGONALE SULLA VISTA LONGITUDINALE \beta = 31.8 deg ANGOLO ASTA DEL DIAGONALE SULLA VISTA LONGITUDINALE \beta = 31.8 deg ANGOLO ASTA DEL DIAGONALE SULLA VISTA LONGITUDINALE \beta = 31.8 deg ANGOLO ASTA DEL DIAGONALE SULLA VISTA LONGITUDINALE \beta = 31.8 deg ANGOLO ASTA DEL DIAGONALE SULLA VISTA LONGITUDINALE \beta = 31.8 deg ANGOLO ASTA DEL DIAGONALE SULLA VISTA LONGITUDINALE \beta = 31.8 deg ANGOLO ASTA DEL DIAGONALE SULLA VISTA LONGITUDINALE \beta = 31.8 deg ANGOLO ASTA DEL DIAGONALE SULLA VISTA DEL DIAGONA$	AREA DEI DIAGONALI	A _{inf}	=	0.81	cm ²						
ANGOLO ASTA DEL DIAGONALE SULLA VISTA LONGITUDINALE $\beta = 31.8$ deg SFORZO NORMALE NEL SINGOLO DIAGONALE (Compressione) $N = 1.70$ kN Tensione nella singola barra (compressione) $\sigma_S = 41.7$ N/mm² Resistenza di calcolo a compressione $N_{c,Rd}$ $N_{c,Rd} = 15.93$ kN N/N _{c,Rd} = 0.107 OK STABILITA' $N/N_{c,Rd} = 0.107$ OK STABILITA' $N/N_{c,Rd} = 0.107$ OK $N/N_{c,$	ANGOLO ASTA DEL DIAGONALE SULLA VISTA TRASVERSALE		-	17.3	deg						
Tensione nella singola barra (compressione) $\sigma_S = 41.7 \text{ N/mm}^2$ Resistenza di calcolo a compressione $N_{c,Rd}$ $N_{c,Rd} = 15.93 \text{ kN}$ N/N _{c,Rd} = 0.107 OK STABILITA' Coefficiente di vincolo β_V $\beta_V = 1$ Lunghezza del diagonale $\beta_V = 10.0000000000000000000000000000000000$			=	31.8							
Resistenza di calcolo a compressione $N_{c,Rd}$ $N_{c,Rd}$ = 15.93 kN $N/N_{c,Rd}$ < 0.107 OK STABILITA' Coefficiente di vincolo βv Lunghezza del diagonale Lunghezza di dinflessione I_0 = $I^*\beta$ I_0 = 19.60 cm I_0 = 19.60 cm N critico euleriano I_0 = 19.60 cm STABILITA' Coefficiente d'inflessione I_0 = $I^*\beta$ I_0 = 19.60 cm I_0 = 10.60 cm Coefficiente d'inflessione I_0 = $I^*\beta$ I_0 = 10.60 cm $I_$	SFORZO NORMALE NEL SINGOLO DIAGONALE (Compressione)	N	-	1.70							
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Tensione nella singola barra (compressione)	σs		41.7	N/mm ²						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						_					
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Resistenza di calcolo a compressione N _{c,Rd}					_					
Coefficiente di vincolo βv βv = 1	N/N _{c,Rd} <1	N/N _{c,Rd}	=	0.107	ОК						
Coefficiente di vincolo βv βv = 1											
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		0,,	_	1		-					
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$					cm	+					
N critico euleriano $ \begin{array}{ccccccccccccccccccccccccccccccccccc$						+					
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			_		-						
Fattore di imperfezione $\begin{array}{cccccccccccccccccccccccccccccccccccc$					KIV	+					
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$						+					
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$						+					
Coefficiente gamma M1 $\gamma_{M1} = 1.15$ RESISTENZA INSTABILITA' ASTA COMPRESSA $N_{b,Rd}$ $N_{b,Rd} = 4.51$ kN											
RESISTENZA INSTABILITA' ASTA COMPRESSA N _{b,Rd} N _{b,Rd} = 4.51 kN			=								
$N/N_{b,Rd} = 0.377$ OK				4.51	kN						
	N/N _{b,Rd} <1	N/N _{b,Rd}	-	0.377	ОК						

MANDATARIA:

MANDANTI:

Itinerario Ragusa - Catania

Collegamento viario compreso tra lo Svincolo della S.S. 514 di "Chiaromonte" con la S.S. 115 e lo Svincolo della "Ragusana"

PROGETTO ESECUTIVO

Cavalcavia km 0+000 - RELAZIONE DI CALCOLO IMPALCATO

14.2 VERIFICA DELLA SOLETTA NELLE FASI SUCCESSIVE

La verifica della soletta è svolta determinando le massime sollecitazioni agenti in campata e in appoggio considerando due differenti schemi di calcolo. Schema di trave app – app per la determinazione del massimo momento flettente in mezzeria, e schema di trave inc – inc per la determinazione del massimo momento flettente.

14.2.1 Verifica campi interni soletta

La verifica della soletta è svolta determinando le massime sollecitazioni agenti in campata e in appoggio considerando due differenti schemi di calcolo.

Geometria			
Luce di calcolo	Lc =	0.75	m
Spessore soletta	Sp _{s ol} =	0.30	m
Copriferro	c =	0.035	m
Spessore pavimentazione	Sp _{pav} =	0.11	m
Pesi unitari			
Peso cls soletta	qcls =	25.0	kN/mc
Peso pavimentazione	q _{pav} =	24.0	kN/mc

Schema di carico 2 NTC 2018			
Carico impronta concentr.	q1 =	200.00	kN
Dim. trasv. impronta	I _{tr,i} =	0.60	m
Dim. long. impronta	l _{In,i} =	0.35	m
Diffusione impronta a metà soletta			
Dff. trasv. impronta	L _{tr,i} =	1.12	m
Diff. long. impronta	L _{In,i} =	1.25	m
Area impronta su soletta	A _i =	1.39	mq
Pressione impronta su soletta	Pr _{sol} =	143.43	kN/mq

PROGETTO ESECUTIVO

Cavalcavia km 0+000 - RELAZIONE DI CALCOLO IMPALCATO

Sollecitazioni SLU							
	Schema trave appoggiata						
Sezione in mezzeria	M ⁺	γ	M ⁺ _{Ed}				
	[kNm/m]		[kNm/m]				
Peso soletta	0.53	1.35	0.71				
Pavimentazione	0.19	1.35	0.25				
Ruota di carico	7.63	1.35	10.30				
Tot. Slu			11.26				

		Schema a tra	ive incastra	ta		
Sezione all'incastro		M	V	γ	M ⁻ Ed	V_{Ed}
		[kNm/m]	[kN/m]		[kNm/m]	[kN/m]
Peso soletta		-0.35	2.81	1.35	-0.47	3.80
Pavimenta	zione	-0.12	0.99	1.35	-0.17	1.34
Ruota di carico		-9.61	53.79	1.35	-12.98	72.61
Tot. Slu					-13.62	77.75

Sollecitazio	ni SLE							
			Combin. F	Combin. Rara		quente	Comb. Q.P.	
Sezione in mezzeria		M ⁺	γ	M ⁺ _{Ed}	γ	M ⁺ _{Ed}	γ	M ⁺ _{Ed}
		[kNm/m]		[kNm/m]		[kNm/m]		[kNm/m]
Peso soletta	Э	0.53	1.00	0.53	1.00	0.53	1.00	0.53
Pavimentazi	ione	0.19	1.00	0.19	1.00	0.19	1.00	0.19
Ruota di carico		7.63	1.00	7.63	0.75	5.72	0.00	0.00
Tot. Sle				8.34		6.44		0.71

		Combin. Rara		Comb. Fro	equente	Comb. Q.P.		
Sezione all'incastro	M	γ	M _{Ed}	γ	M _{Ed}	γ	M ⁻ Ed	
	[kNm/m]		[kNm/m]		[kNm/m]		[kNm/m]	
Peso soletta	-0.35	1.00	-0.35	1.00	-0.35	1.00	-0.35	
Pavimentazione	-0.12	1.00	-0.12	1.00	-0.12	1.00	-0.12	
Ruota di carico	-9.61	1.00	-9.61	0.75	-7.21	0.00	0.00	
Tot. Sle			-10.09		-7.68		-0.48	

Si riporta di seguito la determinazione del momento resistente della sezione di mezzeria, in corrispondenza del massimo e minimo spessore di cls.

PROGETTO ESECUTIVO

Cavalcavia km 0+000 - RELAZIONE DI CALCOLO IMPALCATO

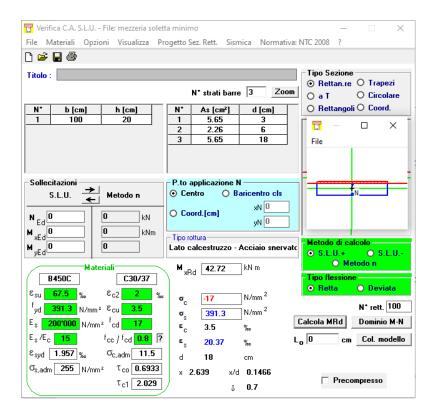


Figura 14.3 Momento resistente soletta (M+) (minimo spessore)

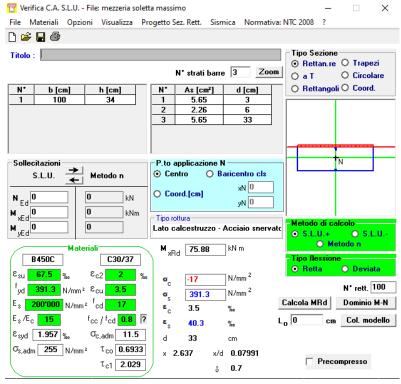


Figura 14.4 Momento resistente (M+) soletta (massimo spessore)

MANDATARIA:

MANDANTI:

PROGETTO ESECUTIVO

Cavalcavia km 0+000 - RELAZIONE DI CALCOLO IMPALCATO

Il momento flettente agente M_{sd} è minore del momento resistente M_{rd} della soletta determinato sia in riferimento al massimo che al minimo spessore, ignorando il contributo della predalle. \rightarrow 11.26kNm < 42.72 kNm \rightarrow Verifica soddisfatta.

Per la sezione di appoggio:

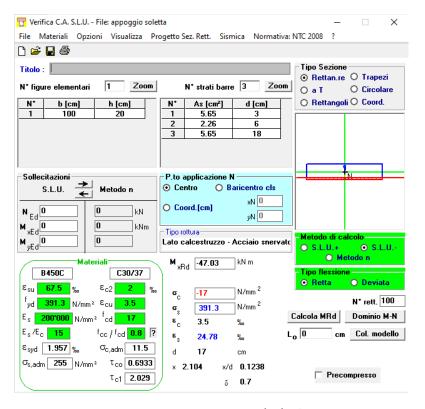


Figura 14.5 Momento resistente (M-) soletta

Il momento flettente agente M_{sd} è minore del momento resistente $M_{rd} \rightarrow 13.62 \text{kNm} < 47.03 \text{ kNm} \rightarrow \text{Verifica soddisfatta}$.

Per la determinazione della resistenza a taglio si fa riferimento alle formulazioni delle NTC 2008 con riferimento ad "elementi non armati a taglio" considerando il contributo del solo cls e delle armature longitudinali della sezione in c.a. h = 20 cm. (cautelativamente si trascura anche il contributo delle predalle.)

PROGETTO ESECUTIVO

Cavalcavia km 0+000 - RELAZIONE DI CALCOLO IMPALCATO

SEZIONE				_		
b _w	=	100	cm			
h	=	20	cm			
С	=	4	cm			
d	=	h-c	=	16	cm	
MATERIALI				_		
f _{y wd}	=	391.30	MPa			
				•		
R _{ck}	=	40.00	MPa			
γс	=	1.5				
f _{ck}	=	0.83xR _{ck}	=	33.20	MPa	
f _{cd}	=	$0.85xf_{ck}/\gamma_c$	=	18.81	MPa	
ARMATURE	LONGITUDIN	IALI				•
Øl	=	12				
Numero	=	5		_		
A _{sl}	=	5.65	cm2			
					_	
TAGLIO AG	ENTE	V _{Ed} =	0	(KN)		
SFORZO NO	ORMALE	N _{ed} =	0	(KN)	1	

ELEM	ENTI SEN	IZA ARM	ATURA A TA	GLIO			
k vmin ρι σ _{cp}		= = =	2.00 0.570 0.0035 0.0		$+(200/d)^{1/2} \le 2$ $.035 \cdot k^{3/2} \cdot f_{ck}^{1/2}$		
	$oldsymbol{V_{Rd}}{oldsymbol{V_{Rd}}}$	=	87.26 91.26	(KN) (KN)	NO	91.	3 <i>(KN</i>)
αc =		1.0	0	Ned/Ac=	0.0000	(Мра)	

Figura 14.6 Taglio resistente soletta (massimo spessore)

Il taglio agente V_{sd} è minore del taglio resistente V_{rd} della soletta → 77.75kN < 91.26 kN → Verifica soddisfatta.

14.2.2 Verifica sbalzo

La verifica dello sbalzo è svolta determinando le sollecitazioni agenti sullo sbalzo per effetto dei carichi G, carichi accidentati da traffico Q e dei carichi dovuto all'urto veicolo in svio.

Oltre alle armature trasversali di cui sopra, per la verifica dello sbalzo si considerano ulteriori Ø12/40cm integrativi.

Realizzazione Lavori

Collegamento viario compreso tra lo Svincolo della S.S. 514 di "Chiaromonte" con la S.S. 115 e lo Svincolo della "Ragusana"

PROGETTO ESECUTIVO

Cavalcavia km 0+000 - RELAZIONE DI CALCOLO IMPALCATO

				Х	Н				
Geometria				[m]	[m]				
Soletta all'e	stremità			0	0.200				
Soletta inca	stro sbalzo			0.850	0.200				
Presenza di	predalles che po	rtano il peso c	lella soletta	? (Y/N)	Y				
Sezione di \	/erifica								
Distanza dal bordo sez. di verifica		x _{sez,ver} =	0.850	m					
Altezza sezio	one di verifica		H _{sez,ver} =	0.200	m				
Carichi Perr	nanenti						Sollec. Ca	aratt. su Sez. (di Verifica
	γ	Lungh.tv	H _{med.}	P _{uni}	X _G dal bordo	d _{sez,ver}	٧	М	N
Elemento	[kN/mc]	[m]	[m]	[kN/m]	[m]	[m]	[KN]	[KN m]	[KN]
Soletta	25.0	0.850	0.200	4.25	0.425	0.425	0.00	0.00	0
Cordolo	25.0	0.750	0.18	3.38	0.375	0.475	3.38	-1.60	0
Paviment.	24.0	0.100	0.11	0.26	0.800	0.050	0.26	-0.01	0
Barriera	-	-	-	1.50	0.350	0.500	1.50	-0.75	0
Rete	-	-	-	1.00	0.050	0.800	1.00	-0.80	0
Veletta	-	-	-	1.00	-0.025	0.875	1.00	-0.88	0

Schema di carico 1 NTC 2018					
Carico singola impronta	q =	150.00	kN		
Dim. trasv. impronta	Dim. trasv. impronta				
Dim. long. Impronta		I _{In,i} =	0.40	m	
Diffusione verticale impronta	a metà sole	tta (45°)			
Diff. trasv. impronta		l _{tr,i} =	0.820	m	
Diff. long. impronta Sez. corre	nte	I _{In,i,corr.} =	2.020	m	
Diff. long. impronta Sez. di giu	nto	I _{In,i,giunto} =	1.810	m	
Schema di carico 2 NTC 2018					
Carico singola impronta		q =	200.00	kN	
Dim. trasv. impronta		l _{tr,i} =	0.60	m	
Dim. long. Impronta		I _{In,i} =	0.35	m	
Diffusione verticale impronta	a metà sole	tta (45°)			
Diff trasv impronta	I _{tr,i} =	1.020	m		
Diff. long Impronta Sez. correr	nte	I _{In,i,corr.} =	0.770	m	
Diff. long Impronta Sez. di giur	nto	I _{In,i,giunto} =	0.560	m	

Realizzazione Lavori

Collegamento viario compreso tra lo Svincolo della S.S. 514 di "Chiaromonte" con la S.S. 115 e lo

Svincolo della "Ragusana"

PROGETTO ESECUTIVO

Cavalcavia km 0+000 - RELAZIONE DI CALCOLO IMPALCATO

Carichi Ad	ccidentali - Sezione	Corrente					Sollec. Caratt. su Sez. di Verif		
		Ang. diff.	dist. Inc.	diff.TV	Rapp.	Forza	V	М	N
		[°]	[m]	[m]	[-]	[KN]	[KN]	[KN m]	[KN]
Q_1	Sch1_Impr.Ext.	45.00	0.155	2.330	0.38	300.00	48.68	-7.54	0
Q_1	Sch1_Impr.Int.	45.00	-1.845	0.585	0.00	300.00	0.00	0.00	0
q_1	Sch1_Distr.						0.90	-0.05	0
Q_1	Sch2_Impr.Ext.	45.00	0.155	1.080	0.30	200.0	56.28	-8.72	0
Q_1	Sch2_Impr.Int.	45.00	-1.845	-0.565	0.00	200.0	0.00	0.00	0
A_d	Urto	45.00	0.500	4.750		300.0	0	-76.42	-63.16

		V [KN]	M [KNm]	N [KN]
COMB.	Sch1	76.56	-15.70	0.00
	Sch2	85.62	-17.23	0.00
SLU	Ad	63.98	-89.27	-63.16

		M [KNm]	N [KN]
	Rara-Sch1	-11.63	0.00
	FreqSch1	-9.72	0.00
COMB. SLE	Rara-Sch2	-12.76	0.00
	FreqSch2	-10.58	0.00
	Q.P.	-4.04	0.00

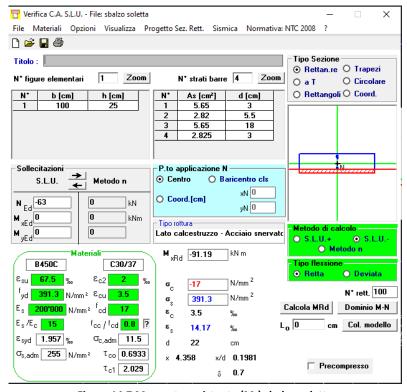


Figura 14.7 Momento resistente (M-) sbalzo soletta

Itinerario Ragusa - Catania

Collegamento viario compreso tra lo Svincolo della S.S. 514 di "Chiaromonte" con la S.S. 115 e lo Svincolo della "Ragusana" PROGETTO ESECUTIVO

Cavalcavia km 0+000 - RELAZIONE DI CALCOLO IMPALCATO

Il momento flettente agente M_{sd} è minore del momento resistente $M_{rd} \rightarrow 89.27 kNm < 91.19 kNm \rightarrow$ Verifica soddisfatta.

Il taglio agente V_{sd} è minore del taglio resistente V_{rd} della soletta \rightarrow 85.62kN < 91.26 kN \rightarrow Verifica soddisfatta.

14.2.3 Verifica cordolo per urto veicolo in svio

La verifica è svolta secondo quanto riportato nei quaderni tecnici anas e prevede l'azione di urto su 4 montanti ad interasse di 1.25m (50+100+100+50 = 300 kN)

Il cordolo ha una larghezza di 75cm e su di esso viene fissata la barriera guard rail. Il cordolo è armato con ϕ 12 longitudinali e staffe ϕ 12/10cm a 4 bracci.

Si prende come riferimento la singola forza massima sul montante più caricato (100kN).

L'urto è modellato come una forza di intensità F=100kN applicata alla barriera ad un'altezza h = 1m dalla sommità del cordolo. Per la determinazione delle sollecitazioni agenti all'altezza h va sommata l'altezza del cordolo pari a 18cm (si considera il cordolo di maggiore altezza). Risulta pertanto un'altezza complessiva pari a 1.18m.

Per effetto della forza F, in corrispondenza della sezione di interfaccia cordolo - soletta, si avranno le seguenti sollecitazioni taglianti e flettenti:

- F = 100kN
- M = F*h = 118kNm

Cautelativamente, si assume che il momento flettente sia assorbito mediante un meccanismo puntonetirante a cui concorrono le staffe (tirante) del cordolo ed il calcestruzzo (puntone).

Con riferimento ad una porzione di cordolo larga 50cm, si verifica che il momento ribaltante esterno sia minore del momento resistente calcolato con riferimento al suddetto meccanismo.

Si considerano solo 5 barre φ12 (solo 4 bracci delle staffe ricadenti nei 50cm considerati) e risulta:

 $T^*b = A_f^*\sigma_f^*b = 5^*1.13^*391.3^*0.65 = 143.7kNm > F^*h = 118kNm \rightarrow Verifica soddisfatta$

Si effettua la verifica a taglio (all'interfaccia getto soletta – getto cordolo) considerando i (restanti) bracci delle staffe che risultano non impegnati dalla flessione.

Cautelativamente si trascura la resistenza a taglio del cls all'interfaccia getto cordolo – soletta.

Sempre con riferimento ad una porzione di cordolo larga 50cm si ha: (5+5+5\psi12)

 $V_{Rsd} = (A_f * f_{vd})/radq(3) = 15 \times 1.13 \times 391.3 / 1.73 = 383 kN > F = 100 kN \rightarrow Verifica soddisfatta$

PROGETTO ESECUTIVO

Cavalcavia km 0+000 - RELAZIONE DI CALCOLO IMPALCATO

15 VERIFICA SISTEMA DI ISOLAMENTO PER AZIONI SISMICHE

Si riportano di seguito le verifiche del sistema di isolamento e dei giunti per effetto delle azioni sismiche.

Per la verifica del sistema di isolamento si fa riferimento alla combinazione delle azioni allo SLC, mentre per la verifica dei giunti si fa riferimento alla combinazione SLV

15.1 ISOLATORI ELASTOMERICI

Si riportano di seguito le rigidezze degli isolatori impiegati nel modello di calcolo. Gli isolatori elastomerici devono avere uno smorzamento viscoso equivalente pari al 10% ed una rigidezza orizzontale allo SLC pari a 0.51 kN/mm. E' previsto l'impiego degli isolatori elastomerici sulla coppia di travi esterne, mentre per le 2 travi centrali saranno posti in opera i dispositivi multidirezionali.

15.1.1 Azioni sugli isolatori elastomerici

Si riporta di seguito la tabella riassuntiva dei massimi carichi assiali sugli isolatori elastomerici per effetto delle combinazioni sismiche SLC e SLU

N _{max} (SLC)	N _{max} (SLU)	N _{max} (SLU)	
[kN]	[kN]	[kN]	
500	1150		

15.1.2 Verifica dei massimi spostamenti allo slc

Si riporta di seguito tabella riassuntiva dei massimi spostamenti in combinazione SLC agenti sui dispositivi elastomerici del cavalcavia Figura 15.1

Isolatori elastomerici	
L[m]	21
Δt [°C]	28
d [mm]	4
Spostamento longitudinale max da ritiro [mm]	
Spostamento massimo sismico allo SLV [mm] = [Ex]	136
Spostamento massimo sismico allo SLV [mm] = [Ey]	136
Spostamento massimo sismico allo SLC [mm] = [Ex]	220
Spostamento massimo sismico allo SLC [mm] = [Ey]	219
Spostamento massimo di verifica dell'isolatore [mm] = dEd (spostamento	
sismico SLC + 50% spostamento termico + eventuali spostamenti da ritiro,	<u>231</u>
fluage, etc.)	

Figura 15.1 Tabella spostamenti isolatori

Lo spostamento massimo in combinazione SLC da garantire, è posto pari a 240mm. In corrispondenza delle spalle deve essere garantito un varco di almeno 25cm.

Cavalcavia km 0+000 - RELAZIONE DI CALCOLO IMPALCATO

15.2 APPOGGI MULTIDIREZIONALI (COPPIA TRAVI CENTRALI)

Si riporta di seguito la tabella riassuntiva dei massimi carichi assiali sui dispositivi di appoggio multidirezionali per effetto delle combinazioni sismiche SLC e SLU

N _{max} (SLC)	N _{max} (SLU)	N _{max} (SLU)
[kN]	[kN]	[kN]
500	1150	

Lo spostamento massimo in combinazione SLC da garantire, è posto pari a 240mm.

15.3 GIUNTI DI DILATAZIONE

Si riporta di seguito in forma tabellare la determinazione dei massimi spostamenti longitudinali e trasversali per i giunti di impalcato. Figura 15.2

Giunti		
	SP1	SP2
d Δt [mm]	4	4
Inclinazione giunto rispetto asse x globale [°]	79	79
Spostamento massimo sismico allo SLV [mm] = [Ex] (lettura X globale)	136	136
Spostamento massimo sismico allo SLV [mm] = [Ex] (lettura y globale)	0.01	0.01
Spostamento massimo sismico giunto allo SLV [mm] = [Ex + 50%	135	135
spostamento termico] (Longitudinale locale sul giunto)		133
Spostamento massimo sismico allo SLV [mm] = [Ey] (lettura Y globale)	136	136
Spostamento massimo sismico allo SLV [mm] = [Ey] (lettura X globale)	0.011	0.011
Spostamento massimo sismico giunto allo SLV [mm] = [Ey] (trasversale	134	134
locale sul giunto)	134	134

Figura 15.2 Determinazione massimi spostamenti giunti in gomma armata

Si impiegheranno pertanto giunti in gomma armata con prestazioni almeno di:

Spalla1 e spalla 2: Longitudinale 280mm (±140) – Trasversale 280mm (±140)

PROGETTO ESECUTIVO

Cavalcavia km 0+000 - RELAZIONE DI CALCOLO IMPALCATO

16 AZIONI DALL'IMPALCATO ALLE SPALLE

Si riportano nella tabella di seguito le azioni (caratteristiche) trasmesse dall'impalcato alle spalle ottenuti dall'analisi modale effettuata di cui si riportano di seguito i principali modi di vibrare dell'impalcato, che essendo isolato saranno chiaramente modi traslazionali in direzione longitudinale e trasversale.

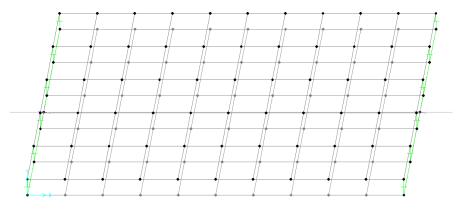


Figura 16.1 Modo di vibrare 1 T =2.21s

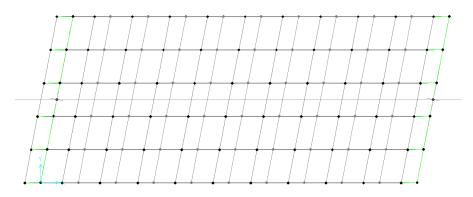


Figura 16.2 Modo di vibrare 2 T = 2.20s

Figura 16.3 Modo di vibrare 3 T = 0.52s

TABLE: Moda	l Participatin	g Mass Ratio)S						
OutputCase	StepType	StepNum	Period	UX	UY	UZ	SumUX	SumUY	SumUZ
Text	Text	Unitless	Sec	Unitless	Unitless	Unitless	Unitless	Unitless	Unitless
MODAL	Mode	1	2.2146	0.0%	99.7%	0.0%	0.0%	99.7%	0.0%
MODAL	Mode	2	2.2139	99.7%	0.0%	0.0%	99.7%	99.7%	0.0%
MODAL	Mode	3	0.5208	0.0%	0.0%	77.1%	99.7%	99.7%	77.1%

Itinerario Ragusa - Catania

Collegamento viario compreso tra lo Svincolo della S.S. 514 di "Chiaromonte" con la S.S. 115 e lo Svincolo della "Ragusana" **PROGETTO ESECUTIVO**

Cavalcavia km 0+000 - RELAZIONE DI CALCOLO IMPALCATO

Le spalle sono sollecitate in modo identico, pertanto la tabella è da ritenersi valida per entrambe le spalle. Le azioni sono intese al baricentro degli appoggi, e devono essere "lette" con riferimento al sistema locale di orientamento del muro frontale (inclinato di circa 11°)

OutputCase	StepType	F1 = T. long.	F2 = t. trasv.	F3 = c. vert.	M1 = m. trasv.	M2 = m. long.
Text	Text	KN	KN	KN	KN-m	KN-m
G1+G2		0	0	2482	219	0
SLV_Ex+0.3Ey	Max	289	135	0	0	0
SLV_Ex+0.3Ey	Min	-289	-135	0	0	0
SLV_0.3Ex+Ey	Max	135	289	0	0	0
SLV_0.3Ex+Ey	Min	-135	-289	0	0	0

OutputCase	StepType	F1 = T. long.	F2 = t. trasv.	F3 = c. vert.	M1 = m. trasv.	M2 = m. long.
Text	Text	KN	KN	KN	KN-m	KN-m
Tan	Max	0	0	1264	3572	0
Tan	Min	0	0	0	-2516	0
dist	Max	0	0	520	1504	0
dist	Min	0	0	0	-1110	0

