

VISTO IL RESPONSABILE DEL PROCEDIMENTO

Dott. Ing. Luigi Mupo

Direzione Progettazione e Realizzazione Lavori

ITINERARIO RAGUSA-CATANIA

Collegamento viario compreso tra lo Svincolo della S.S. 514 "di Chiaramonte" con la S.S. 115 e lo Svincolo della S.S. 194 "Ragusana"

LOTTO 1 - Dallo svincolo n. 1 sulla S.S. 115 (compreso) allo svincolo n. 3 sulla S.P. 5 (escluso)

PROGETTO ESECUTIVO

COD. PA895

PROGETTAZIONE: ATI SINTAGMA - GP INGEGNERIA - COOPROGETTI -GDG - ICARIA - OMNISERVICE

IL GRUPPO DI PROGETTAZIONE: PROGETTISTA RESPONSABILE DELL'INTEGRAZIONE DELLE PRESTAZIONI SPECIALISTICHE: MANDATARIA: Dott. Ing. Dott. Ing. Dott. Ing. Dott. Arch. N.Granieri M.Abram F.Pambianco Dott. Ing. Nando Granieri **11** Sintagma INGEGNERI DELLA PROVINCIA F.Durastanti V.Truffini A.Bracchini Dott. Ing. Dott. Ing. Ordine degli Ingegneri della Prov. di Perugia n° A351 M.Briganti Botta Seziofe A L.Gagliardini Dott. Ing. I Nani Dott. Geol. G.Cerquiglini MANDANTI: DOTTORS INGEGNERE Dott. Ing. Dott. Ing. Dott. Arch. **GPI**NGEGNERIA A.Signorelli E.Moscatelli Dott. Ina. G.Guastella MANDO GRANIERI Dott. Ing. Dott. Ing. Dott. Geol. Dott. Ing. M.Leonardi G.Parente SETTORE CIVILE E AMBIENTALE SETTORE INDUSTRIALE SETTORE DELL'INFORMAZIONE Dott. Ing. Dott. Arch. L.Ragnacci A.Strati Dott Arch F A F Crimi Dott. Ing. Dott. Arch. Dott. Ing. P.Ghirelli D.Pelle Archeol. M.G.Liseno IL GEOLOGO: Dott. Ing. Dott. Ing. D.Carlaccini Dott. Ing. Dott. Ing. F Aloe Dott. Geol. Marco Leonardi A.Salvemini C.Consorti Dott. Ina Ordine dei Geologi della Regione Lazio n° 1541 G.Verini Supplizi V.Piunno Dott. Ing. V.Rotisciani Dott. Ing. Dott. Ing. Dott. Ing. Dott. Ing. G.Pulli F.Macchioni Geom. C.Sugaroni IL COORDINATORE PER LA SICUREZZA IN FASE DI PROGETTAZIONE: OMNISERVICE Dott. Ina. P.Aanello Dott. Ing. Ambrogio Signorelli Ordine degli Ingegneri della Provincia di Roma n° A35111 IL RESPONSABILE DI PROGETTO:

Dott. Ing. Danilo PEL alla Sezione degir ingegneri (Se - Settore cluite e ambientale OPDINE DEGLI INGEGNERI

OPFRE D'ARTE MINORI TOMBINO SCATOLARE - PROLUNGAMENTO ESISTENTE AL KM 7+157 Relazione tecnica e di calcolo

CODICE PROGET	TTO LIV. PROG. N. PROG.	NOME FILE TO1TM12STRREO1B			REVISIONE	SCALA:
L O 4 0		CODICE T01TM12S	TRRE	0 1	В	-
D						
С						
В	REVISIONE A SEGUITO DI RAP	PORTO DI VERIFICA	NOVEMBRE 2021	RAGNACCI	PELLE	GRANIERI
Α	EMISSIONE		GIUGNO 2021	RAGNACCI	PELLE	GRANIERI
REV.	DESCRIZIONE		DATA	REDATTO	VERIFICATO	APPROVATO

Collegamento viario compreso tra lo Svincolo della S.S. 514 di "Chiaromonte" con la S.S. 115 e lo Svincolo della "Ragusana" PROGETTO ESECUTIVO

RELAZIONE DI CALCOLO

INDICE

1	P	PREMESSA6
2	N	NORMATIVE DI RIFERIMENTO8
3	C	CARATTERISTICHE DEI MATERIALI
3	.1	CALCESTRUZZO MAGRONE DI FONDAZIONE
3	.2	CALCESTRUZZO OPERE IN FONDAZIONE E IN ELEVAZIONE
3	.3	ACCIAIO D'ARMATURA
4	C	CRITERI DI PROGETTAZIONE E DI CALCOLO
4	.1	GENERALITA'
4	.2	CRITERI DI MODELLAZIONE STRUTTURALE
5	C	CARATTERISTICHE GEOTECNICHE DEL SITO
6	P	PARAMETRI E COEFFICIENTI SISMICI
6	.1	GENERALITA'
6	.2	PARAMETRI PER LA DETERMINAZIONE DELL'ANALISI SISMICA
7	P	ANALISI DEI CARICHI18
7	.1	CARICHI PERMANENTI
		7.1.1 G1 Peso proprio strutturale (condizione: G1k_Strutturale)
		7.1.2 G2.1 Peso permanente ricoprimento (condizione: G2.1k_Geo su soletta)
		7.1.3 G2.2 Spinta statica terreno (condizione G2.2k_Spinta a riposo)
7	.2	CARICHI VARIABILI
		7.2.1 Carico mobile su manufatto (Condizione: Q1_Veicolo tandem)
		7.2.2 Carichi a tergo del rilevato (condizione: Q2_Veicolo distribuito)
		7.2.3 Frenatura
		7.2.4 Forza centrifuga

Collegamento viario compreso tra lo Svincolo della S.S. 514 di "Chiaromonte" con la S.S. 115 e lo Svincolo della "Ragusana"

PROGETTO ESECUTIVO

RELAZIONE DI CALCOLO

	7.2.5 Forza del vento	. 19
	7.2.6 Variazioni termiche	. 20
	7.2.7 E azione sismica	. 20
8	METODO VERIFICHE	. 23
8.1	VERIFICHE AGLI STATI LIMITE ULTIMI	. 23
	8.1.1 Verifiche di resistenza	. 23
8.2	2 VERIFICHE AGLI STATI LIMITE DI ESERCIZIO	. 23
	8.2.1 Verifiche delle tensioni di esercizio	. 23
	8.2.2 Verifica dello stato limite di fessurazione	. 23
	8.2.3 Verifica di deformabilità	. 24
8.3	3 VERIFICHE AGLI STATI LIMITE DI SALVAGUARDIA DELLA VITA	. 24
	8.3.1 Verifiche di resistenza	. 24
8.4	VERIFICHE AGLI STATI LIMITE DI DANNO	. 24
	8.4.1 Verifiche di resistenza	. 24
8.5	5 VERIFICHE AGLI STATI LIMITE DI OPERATIVITA'	. 24
	8.5.1 Verifiche di rigidezza	. 24
9	COMBINAZIONI DI CARICO	. 25
10	RISULTATI DELLE ANALISI SEZIONE SCATOLARE	.30
10	.1 INVILUPPO SOLLECITAZIONI	. 30
10	.2 PRESSIONI TERRENO	. 32
10	.3 SOLLECITAZIONI RARE	. 33
11	VERIFICHE	. 35
11	.1 VERIFICHE SLU/SLV	. 35
	11.1.1Soletta fondazione - flessione	. 35

Collegamento viario compreso tra lo Svincolo della S.S. 514 di "Chiaromonte" con la S.S. 115 e lo Svincolo della "Ragusana" PROGETTO ESECUTIVO

		0						

	11.1.2Soletta fondazione – taglio	36
	11.1.3Impalcato – flessione	37
	11.1.4Impalcato – taglio	38
	11.1.5 Piedritti – flessione	39
	11.1.6Piedritti – taglio	40
11.2	2 VERIFICHE SLE	41
	11.2.1Impalcato	41
	11.2.2Piedritti	44
	11.2.3Soletta fondazione	46
11.3	3 VERIFICHE SLO	49
12	ALLEGATO – TABULATI DI CALCOLO SCATOLARE	51
12.	1 DATI RELATIVI AI NODI DELLA STRUTTURA	51
12.2	2 ELEMENTI TIPO TRAVE	53
12.3	3 ELEMENTO TIPO PILASTRO	54
	3 ELEMENTO TIPO PILASTRO4 ELEMENTO TIPO TRAVE SU SUOLO ALLA WINKLER	
12.4		56
12.4	4 ELEMENTO TIPO TRAVE SU SUOLO ALLA WINKLER	. 56 . 57
12.4 12.5 12.6	4 ELEMENTO TIPO TRAVE SU SUOLO ALLA WINKLER	. 56 . 57 . 64
12.4 12.5 12.6 12.7	4 ELEMENTO TIPO TRAVE SU SUOLO ALLA WINKLER	56 57 64 67
12.4 12.5 12.6 12.7	4 ELEMENTO TIPO TRAVE SU SUOLO ALLA WINKLER	56 57 64 67
12.4 12.5 12.6 12.7 12.8	4 ELEMENTO TIPO TRAVE SU SUOLO ALLA WINKLER	. 56 . 57 . 64 . 67 . 69
12.4 12.5 12.6 12.7 12.8	4 ELEMENTO TIPO TRAVE SU SUOLO ALLA WINKLER	. 56 . 57 . 64 . 67 . 69 . 82
12.5 12.6 12.7 12.8 12.9 13.7	4 ELEMENTO TIPO TRAVE SU SUOLO ALLA WINKLER	. 56 . 57 . 64 . 67 . 69 . 82 . 87

Collegamento viario compreso tra lo Svincolo della S.S. 514 di "Chiaromonte" con la S.S. 115 e lo Svincolo della "Ragusana"

PROGETTO ESECUTIVO

RELAZIONE DI CALCOLO

13.4 INVILUPPO SOLLECITAZIONI	89
13.5 SOLLECITAZIONI RARE	91
13.6 VERIFICHE SLU/SLV	91
13.6.1Piedritti – flessione	91
13.6.2 Piedritti – taglio	93
13.6.3Soletta – flessione	94
13.6.4Soletta – taglio	95
13.7 VERIFICHE SLE	96
13.7.1Piedritti	96
13.7.2Soletta	98
4 VERIFICHE GEOTECNICHE	101
14.1 APPROCCIO DI VERIFICA GEOTECNICA	101
14.2 VERIFICHE GEOTECNICHE TOMBINO	101
14.2.1Inviluppo delle sollecitazioni per la verifica	101
14.2.2Verifica di portanza	102
14.2.3 Verifica di galleggiamento	107
14.3 VERIFICHE GEOTECNICHE POZZETTO DI MONTE	108
14.3.1Inviluppo delle sollecitazioni per la verifica	108
14.3.2Verifica di portanza	109
14.3.3 Verifica di galleggiamento	113
5 SINTESI DEI RISULTATI	114
15.1 SOLETTE FONDAZIONE	114
15.2 PARETI	114
15.3 SOLETTA COPERTURA	

Collegamento viario compreso tra lo Svincolo della S.S. 514 di "Chiaromonte" con la S.S. 115 e lo Svincolo della "Ragusana"

PROGETTO ESECUTIVO

RELAZIONE DI CALCOLO

1!	5.4 CONTROLLO DETTAGLI COSTRUTTIVI	114
16	ACCETTABILITA' DEI CALCOLI	115
17	LICENZA SOFTWARE	117

PROGETTO ESECUTIVO

RELAZIONE DI CALCOLO

1 PREMESSA

La presente relazione di calcolo tratta le analisi e le verifiche strutturali dell'attraversamento idraulico posto al km 7+157, composto da due canne di dimensioni interne 3,30 m x 3,50 m ciascuna da realizzarsi nell'ambito dell'"Ammodernamento a N° 4 corsie della S.S. 5140 "Di Chiaramonte" e della S.S. 194 Ragusana dallo svincolo con la S.S. 115 allo svincolo con la S.S. 114, Lotto 1°. Il manufatto in progetto presenta una forma scatolare, costituito in cemento armato gettato in opera.

La fondazione, i piedritti e la soletta hanno uno spessore di 60 cm, le verifiche strutturali sono state effettuate considerando la sezione trasversale avente il ricoprimento massimo di terreno, che nel caso in esame è 4,00 m.

Il piano di manutenzione T01CM00CMSRE1 e la relazione sui materiali T01EG04GENSC01 è presente in altre relazioni generali. Verifica delle fondazioni e fascicolo di calcolo sono riportate in questo elaborato.

Geometria sezione trasversale

Altezza esterna	4,20 [m]
Lunghezza esterna	8,40 [m]
Lunghezza mensola fondazione sinistra	0,50 [m]
Lunghezza mensola di fondazione destra	0,50 [m]
Spessore piedritto sinistro	0,60 [m]
Spessore piedritto destro	0,60 [m]
Spessore fondazione	0,60 [m]
Spessore traverso	0,60 [m]

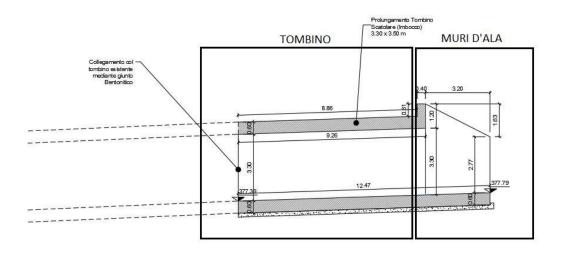


Figura 1-1"Sezione"

Realizzazione Lavori

Collegamento viario compreso tra lo Svincolo della S.S. 514 di "Chiaromonte" con la S.S. 115 e lo Svincolo della "Ragusana"

PROGETTO ESECUTIVO

RELAZIONE DI CALCOLO

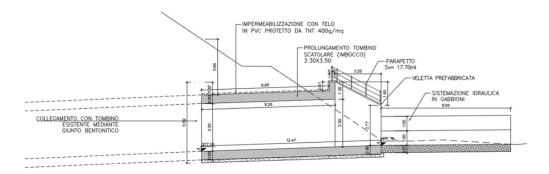


Figura 1-2"Sezione con ricoprimento"

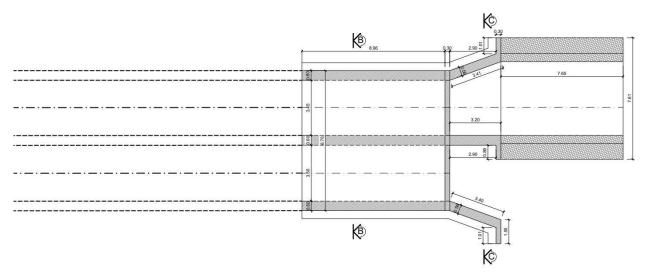


Figura 1-3"Pianta"

Collegamento viario compreso tra lo Svincolo della S.S. 514 di "Chiaromonte" con la S.S. 115 e lo Svincolo della "Ragusana" **PROGETTO ESECUTIVO**

RELAZIONE DI CALCOLO

NORMATIVE DI RIFERIMENTO

Le analisi strutturali e le verifiche di sicurezza sono state effettuate in accordo con le prescrizioni contenute nelle seguenti normative.

Legge nr 1086 del 05/11/1971

Norme per la disciplina delle opere in conglomerato cementizio, normale e precompresso ed a struttura metallica.

Legge nr 64 del 02/02/1974

Provvedimenti per le costruzioni con particolari prescrizioni per le zone sismiche.

Norme Tecniche per le Costruzioni 2008 (D.M. 14 gennaio 2008)

Circolare 617 del 02/02/2009

Istruzioni per l'applicazione delle Nuove Norme tecniche per le Costruzioni di cui al D.M. 14 gennaio 2008.

UNI EN 206-1:2006

Calcestruzzo – Specificazione, prestazione, produzione e conformità.

UNI 11104:2004

Calcestruzzo – Specificazione, prestazione, produzione e conformità – Istruzioni complementari per l'applicazione delle EN 206-1.

UNI EN 1990:2006 Eurocodice 0

Criteri generali di progettazione strutturale.

UNI EN 1991-1-1:2004 Eurocodice 1

Azioni sulle strutture - Parte 1-1: Azioni generali - Pesi per unità di volume, pesi propri e sovraccarichi per gli edifici.

UNI EN 1991-2:2005 Eurocodice 1

Azioni sulle strutture – Parte 2: Carichi da traffico sui ponti.

UNI EN 1992-1-1:2005 Eurocodice 2

Progettazione delle strutture in calcestruzzo – Parte 1-1: Regole generali e regole per gli edifici.

UNI EN 1992-2:2006 Eurocodice 2

Progettazione delle strutture in calcestruzzo Parte 2: Ponti in calcestruzzo – Progettazione e dettagli costruttivi.

UNI EN 1997-1:2005 Eurocodice 7

Progettazione geotecnica – Parte 1: Regole generali.

Collegamento viario compreso tra lo Svincolo della S.S. 514 di "Chiaromonte" con la S.S. 115 e lo Svincolo della "Ragusana" **PROGETTO ESECUTIVO**

RELAZIONE DI CALCOLO

UNI EN 1997-2:2007 Eurocodice 7

Progettazione geotecnica Parte 2: Indagini e prove nel sottosuolo.

UNI EN 1998-1:2005 Eurocodice 8

Progettazione delle strutture per la resistenza sismica – Parte 1: Regole generali, azioni sismiche e regole per gli edifici.

UNI EN 1998-2:2009 Eurocodice 8

Progettazione delle strutture per la resistenza sismica Parte 2: Ponti.

PROGETTO ESECUTIVO

RELAZIONE DI CALCOLO

CARATTERISTICHE DEI MATERIALI

3.1 **CALCESTRUZZO MAGRONE DI FONDAZIONE**

Per tale tipologia di calcestruzzi, si è individuata una classe di esposizione XO. Per tale classe, la UNI 11104 impone le seguenti prescrizioni:

- Massimo rapporto acqua/cemento:......Nessuna prescrizione
- Minima classe di resistenza:.....C12/15
- Minimo contenuto in cemento(Kg/m3):...Nessuna prescrizione

Alla luce di quanto esposto, di seguito le caratteristiche del calcestruzzo scelto:

Rck	15	N/mm²	resistenza cubica calcestruzzo
γс	1,5		coefficiente parziale di sicurezza
αCC	0,85		coefficiente riduttivo resistenze di lunga durata
Ecm	27267	N/mm²	modulo elastico
fck	12,45	N/mm²	resistenza cilindrica caratteristica a compressione del calcestruzzo
fcd	7,06	N/mm²	resistenza cilindrica di calcolo a compressione del calcestruzzo
fcm	20,45	N/mm²	resistenza cilindrica media a compressione del calcestruzzo
fctm	1,61	N/mm²	resistenza cilindrica media a trazione calcestruzzo <c50 60<="" th=""></c50>
fctk	1,13	N/mm²	resistenza cilindrica caratteristica a trazione calcestruzzo <c50 60<="" th=""></c50>
fctd	0,75	N/mm²	resistenza cilindrica di calcolo a trazione calcestruzzo <c50 60<="" th=""></c50>
fbd	1,69	N/mm²	resistenza tangenziale di aderenza
fcfm	1,93	N/mm²	resistenza a trazione per flessione

CALCESTRUZZO OPERE IN FONDAZIONE E IN ELEVAZIONE 3.2

Per tale tipologia di calcestruzzi, si è individuata una classe di esposizione XA2, "Ambiente chimico moderatamente aggressivo". Per tale classe, la UNI 11104 impone le seguenti prescrizioni:

- Massimo rapporto acqua/cemento:...... 0,50
- Minima classe di resistenza:.....C32/40
- Minimo contenuto in cemento(Kg/m3):...340

Alla luce di quanto esposto, di seguito le caratteristiche del calcestruzzo scelto:

Rck	40	N/mm²	resistenza cubica calcestruzzo
γс	1,5		coefficiente parziale di sicurezza
αCC	0,85		coefficiente riduttivo resistenze di lunga durata
Ecm	33643	N/mm²	modulo elastico
fck	33,20	N/mm²	resistenza cilindrica caratteristica a compressione del calcestruzzo
fcd	18,81	N/mm²	resistenza cilindrica di calcolo a compressione del calcestruzzo

Collegamento viario compreso tra lo Svincolo della S.S. 514 di "Chiaromonte" con la S.S. 115 e lo Svincolo della "Ragusana"

PROGETTO ESECUTIVO

RELAZIONE DI CALCOLO

fcm	41,20	N/mm²	resistenza cilindrica media a compressione del calcestruzzo
fctm	3,10	N/mm²	resistenza cilindrica media a trazione calcestruzzo <c50 60<="" th=""></c50>
fctk	2,17	N/mm²	resistenza cilindrica caratteristica a trazione calcestruzzo <c50 60<="" th=""></c50>
fctd	1,45	N/mm²	resistenza cilindrica di calcolo a trazione calcestruzzo <c50 60<="" th=""></c50>
fbd	3,25	N/mm²	resistenza tangenziale di aderenza
fcfm	3,72	N/mm²	resistenza a trazione per flessione

COPRIFERRO

Al fine della protezione delle armature dalla corrosione, lo strato di ricoprimento di calcestruzzo (copriferro) deve essere dimensionato in funzione dell'aggressività dell'ambiente e ella sensibilità delle armature alla corrosione, tenendo conto delle tolleranze di posa delle armature. Per consentire un omogeneo getto del calcestruzzo, il copriferro e l'interferro delle armature devono essere rapportati alla dimensione massima degli inerti impiegati.

Con riferimento al §4.1.6.1.3 delle NTC, al fine della progettazione delle armature alla corrosione il valore minimo dello strato di ricoprimento di calcestruzzo deve rispettare quanto indicato in Tabella C4.1.IV della Circolare 2 Febbraio 2009, nella quale sono distinte le tre condizioni ambientali di tabella 4.1.IV delle NTC.

Si riporta la tabella sopra citata.

Cmin	5 0 0			RE DA C.A. NTI A PIASTRA	37.60	RE DA C.A. I ELEMENTI	2002	CONTRACTOR AND CONTRACTOR CONTRAC		AVI DA C.A.P. TRI ELEMENTI	
	C _o	AMBIENTE	C ≥ C₀	C _{min} ≤ C < C _o	C ≥ C₀	C _{min} ≤ C < C _o	C ≥ C₀	C _{min} ≤ C < C _o	C ≥ C₀	Cmin ≤ C < Co	
C25/30	C35/45	ORDINARIO	15	20	20	25	25	30	30	35	
C28/35	C40/50	AGGRESSIVO	25	30	30	35	35	40	40	45	
C35/45	C45/55	MOLTO AGGRESSIVO	35	40	40	45	45	50	50	50	

La classe XA2 rientra nella categoria di "condizione ambientale aggressiva". In base alla classe di calcestruzzo scelta(C32/40), ne deriva un copriferro minimo per "barre da c.a." di 35mm. A tale valore vanno aggiunte le tolleranze di posa di 10mm.

Ne deriva un copriferro pari a: 35+10=45mm approssimato a **50mm** in favore di sicurezza.

ACCIAIO D'ARMATURA

Per l'armatura degli elementi in cemento armato, viene utilizzato un acciaio B450C, caratterizzato dai seguenti valori nominali delle tensioni caratteristiche di snervamento e rottura da utilizzare nei calcoli:

PROGETTO ESECUTIVO

RELAZIONE DI CALCOLO

Tab. 11.3.Ia

f _{y nom}	450 N/mm ²
f _{t nom}	540 N/mm ²

E deve rispettare i requisiti richiesti indicati nella seguente tabella.

Tab. 11.3.Ib

Caratteristiche		Requisiti	Frattile (%)
Tensione caratteristica di snervamento	f_{yk}	≥ f _{y nom}	5.0
Tensione caratteristica a carico massimo	f_{tk}	≥ f _{t nom}	5.0
	$(f_t/f_v)_k$	≥ 1,15	100
	(1 _t /1 _y) _k	< 1,35	10.0
	$(f_y/f_{ynom})_k$	≤1,25	10.0
Allungamento	$(A_{gt})_k$	≥7,5%	10.0
Diametro del mandrino per prove di piegamento	a 90°		
e successivo raddrizzamento senza cricche:	φ < 12 mm	4ф	
	12≤φ≤16 mm	5ф	
per	16<φ≤25 mm	8ф	
per.	25 < φ ≤ 40 mm	10 ф	1

Per l'accertamento delle caratteristiche meccaniche vale quanto indicato al § 11.3.2.3.

Le caratteristiche del materiale sono quindi di seguito riassunte.

Proprietà	Requisito
Limite di snervamento f _y	≥450 MPa
Limite di rottura f _t	≥540 MPa
Allungamento totale al carico massimo Agt	≥7,5%
Rapporto f _t /f _y	$1,15 \le R_{\rm m}/R_{\rm e} \le 1,35$
Rapporto f _{y misurato} / f _{y nom}	≤ 1,25
Resistenza a fatica assiale*	2 milioni di cicli
Resistenza a carico ciclico*	3 cicli/sec (deformazione 1,5÷4 %)
Idoneità al raddrizzamento dopo piega*	Mantenimento delle proprietà meccaniche
Controllo radiometrico**	superato, ai sensi del D.Lgs. 230/1995
* = prove periodiche annuali	

Collegamento viario compreso tra lo Svincolo della S.S. 514 di "Chiaromonte" con la S.S. 115 e lo Svincolo della "Ragusana"

PROGETTO ESECUTIVO

RELAZIONE DI CALCOLO

CRITERI DI PROGETTAZIONE E DI CALCOLO

4.1 **GENERALITA'**

Le analisi e le verifiche sull'opera sono state condotte nel pieno rispetto delle Norme Tecniche per le Costruzioni adottando, di conseguenza, un approccio di calcolo di tipo prestazionale basato sul ricorso del Metodo degli Stati Limite.

Come indicato dalle NTC2008 al 2.6.1, nelle verifiche nei confronti dello stato limite ultimo strutturali (STRU) e geotecnici (GEO), si possono adottare, in alternativa, due diversi approcci progettuali.

Si utilizza l'approccio 2 che utilizza un'unica combinazione di gruppi di coefficienti parziali (A1+M1+R3).

4.2 CRITERI DI MODELLAZIONE STRUTTURALE

Lo stato di sollecitazione della struttura, viene desunto da un codice di calcolo (Enexsys-Winstrand). La struttura in progetto, nonostante lo sviluppo longitudinale, viene schematizzata come un telaio piano di estensione 1 metro. Elementi orizzontali e elementi verticali sono rappresentati da elementi beam monodimensionali la cui sezione sarà data da una dimensione fissa (1 metro, ossia l'estensione del telaio analizzato) e una dimensione variabile (lo spessore degli elementi) che rappresenta la dimensione effettiva in progetto.

Le camerette di monte e valle o intermedie, sono separate dai tombini scatolari da giunti waterstop che garantiscono continuità idraulica, ma non strutturale. Queste, quando articolate, sono state modellate tridimensionalmente. I tombini scatolari presentano invece una distribuzione spaziale costante. La modellazione piana, riferendosi alla sezione maggiormente sollecitata sia dal punto di vista dei carichi statici che dinamici, non differisce dalla modellazione intera tridimensionale, o al più ne differisce in forma lievemente conservativa non considerando le ridistribuzioni di sollecitazioni agli elementi limitrofi meno sollecitati.

Lo schema statico assunto è quello di telaio chiuso e continuo, nel quale l'interazione con la struttura di fondazione è tenuta in conto tramite una modellazione del terreno alla Winkler.

Il coefficiente di reazione non è tuttavia una proprietà intrinseca del materiale costituente la fondazione, ma è funzione anche delle caratteristiche della struttura in appoggio sia in termini di estensione che di rigidezza.

Per tale ragione, in una prima fase, la costante di Winkler è ipotizzata. Con tale ipotesi viene eseguito un primo dimensionamento del telaio. Questo dimensionamento è sufficiente per la determinazione delle pressioni, della portanza, dei cedimenti e della costante di Winkler. Il valore così ottenuto è reinserito quindi nel modello di calcolo. Il processo iterativo viene interrotto non appena le differenze di sollecitazione sono ritenute trascurabili e/o non dimensionanti.

La caratterizzazione del terreno in cui la struttura è immersa è suddiviso nei tre strati: ricoprimento, rinfianco, e di fondazione. Per ogni strato occorre fornire i valori dei parametri fisici e meccanici più comuni (peso di volume, angolo di attrito, attrito terreno-struttura, coesione, adesione ecc).

Data la natura della infrastruttura, ossia viabilità in rilevato, il terreno di rinfianco corrisponde sempre al terreno di ricoprimento (caratteristiche da materiale di riporto).

Collegamento viario compreso tra lo Svincolo della S.S. 514 di "Chiaromonte" con la S.S. 115 e lo Svincolo della "Ragusana"

PROGETTO ESECUTIVO

RELAZIONE DI CALCOLO

Contrariamente, il terreno di fondazione, presenta le caratteristiche dei terreni affioranti in loco o in taluni casi è ancora definito da materiale di riporto.

PROGETTO ESECUTIVO

RELAZIONE DI CALCOLO

CARATTERISTICHE GEOTECNICHE DEL SITO

Di seguito si riportano i parametri geotecnici utilizzati per le analisi.

STRATO DI RICOPRIMENTO

Descrizione	Rilevato	
Spessore dello strato	4,00	[m]
Peso di volume	20,00	[kN/m3]
Angolo di attrito	35,00	[°]
Coesione	0.00	[MPa]

STRATO DI RINFIANCO

Descrizione	Rilevato	
Peso di volume	20,00	[kN/m3]
Angolo di attrito	35,00	[°]
Coesione	0,00	[MPa]

STRATO DI FONDAZIONE

Descrizione	Formazio	ne Ocm Ghiaia in matrice sabbiosa limosa
Peso di volume	20,00	[kN/m3]
Angolo di attrito	36,00	[°]
Coesione	0.175	[MPa]

Collegamento viario compreso tra lo Svincolo della S.S. 514 di "Chiaromonte" con la S.S. 115 e lo Svincolo della "Ragusana" **PROGETTO ESECUTIVO**

RELAZIONE DI CALCOLO

PARAMETRI E COEFFICIENTI SISMICI

6.1 **GENERALITA'**

Per il calcolo sismico dell'opera in esame si è fatto riferimento alle indicazioni delle NTC2008 con il concetto di "pericolosità sismica di base" come elemento di conoscenza primario per la determinazione delle azioni sismiche. Tale pericolosità è quella relativa a condizioni ideali di sito con superficie topografica orizzontale e terreno di tipo rigido (Categoria A).

Le indicazioni sulla pericolosità sismica di base dell'interno territorio nazionale è fornita dalla predetta normativa, in termini di:

- ag accelerazione orizzontale massima del terreno;
- **Fo** valore massimo del fattore di amplificazione dello spettro in accelerazione orizzontale;
- T*c periodo di inizio del tratto a velocità costante dello spettro in accelerazione orizzontale;

Tali valori sono forniti per ciascun nodo del reticolo di riferimento con maglia di circa 10km e per ciascun periodo di ritorno T_R . Il periodo di ritorno è ricavabile mediante la seguente relazione.

 $T_R=-(V_R)/(In(1-P_{VR}))$

Dove

- V_R Vita di riferimento per l'azione sismica
- P_{VR} Probabilità di superamento nel periodo di riferimento

La vita di riferimento è funzione della vita nominale tramite la classe d'uso. La probabilità di superamento è funzione dello stato limite considerato. Gli stati limite analizzati sono SLV, SLD e SLO.

Gli spettri di progetto associati ai vari stati limite di interesse, sono determinati a partire dai parametri di pericolosità sismica sopra esposti (determinati in funzione del tempo di ritorno), dai coefficienti di amplificazione stratigrafica Ss e topografica S_T.

6.2 PARAMETRI PER LA DETERMINAZIONE DELL'ANALISI SISMICA

CATEGORIA DI SOTTOSUOLO E CONDIZIONI TOPOGRAFICHE (PAR. 3.2.2 NTC08)

Per la definizione dello spettro utilizzato nel calcolo sismico, sono stati considerati i seguenti parametri.

Identificazione sito:......Tombino km 7+157 Comune: Ragusa Provincia:......Ragusa

MANDATARIA:

MANDANTI:

Collegamento viario compreso tra lo Svincolo della S.S. 514 di "Chiaromonte" con la S.S. 115 e lo Svincolo della "Ragusana" PROGETTO ESECUTIVO

RELAZIONE DI CALCOLO

Longitudine:	14.6700°
Categoria di sottosuolo:	В
Categoria topografica:	T1
Zona sismica amministrativa	2

La categoria di sottosuolo è desunta dall'elaborato T01GE03GEORE01

VITA NOMINA E CLASSE D'USO (2.4.2 NTC08)

Vita nominale:	50anni
Classe d'uso:	IV
Cu	2
Vita di riferimento:	100anni

TIPOLOGIA STRUTTURALE E FATTORE DI STRUTTURA

Per la determinazione del fattore di struttura per l'opera in esame si è fatto riferimento a quanto le NTC08 prevedono per i ponti.

Nel caso in oggetto, la struttura è stata assimilata a delle spalle connesse in maniera rigida all'impalcato con i piedritti che sostengono un terreno rigido naturale per più dell'80% dell'altezza (p.to 7.9.5.6.2). Si tratta pertanto di strutture che si muovono col terreno ai sensi della Tabella 7.9.I, caratterizzate da peridi di vibrazione in direzione orizzontale molo bassi e per le quali si assume un valore di $q_0=q=1,0$.

Per strutture con tali proprietà, le forze di inerzia possono essere determinate considerando un'accelerazione pari a a_g*S .

Collegamento viario compreso tra lo Svincolo della S.S. 514 di "Chiaromonte" con la S.S. 115 e lo Svincolo della "Ragusana"

PROGETTO ESECUTIVO

RELAZIONE DI CALCOLO

ANALISI DEI CARICHI

CARICHI PERMANENTI

G1 Peso proprio strutturale (condizione: G1k_Strutturale)

Il peso strutturale è calcolato automaticamente dal software di calcolo strutturale e quindi è tenuto in conto automaticamente durante la fase di progettazione

7.1.2 G2.1 Peso permanente ricoprimento (condizione: G2.1k_Geo su soletta)

Il carico sulla calotta è stato determinato mediante il metodo della pressione geostatica secondo il quale la pressione in calotta viene calcolata come prodotto tra il peso del volume di terreno per l'altezza del ricoprimento (tale carico tiene conto anche dell'eventuale pavimentazione, considerando uno spessore di ricoprimento H_{rinterro} comprensivo del suddetto).

G2.1=Pv=YrinterroxHrinterroxLtelaio=PvxLtelaio=20x4x1=80,0kN/m

7.1.3 G2.2 Spinta statica terreno (condizione G2.2k_Spinta a riposo)

Si assume che sui piedritti agisca la spinta calcolata in condizioni di riposo.

Il coefficiente di spinta a riposo è espresso dalla relazione:

Dove φ rappresenta l'angolo d'attrito interno del terreno di rinfianco.

Quindi la pressione laterale, ad una generica profondità z e la spinta totale sulla parete di altezza H valgono:

$$\sigma$$
=YzK_o+P_VK_o

$$S=1/2YH^2K_o+P_VK_oH$$

Dove P_V è la pressione verticale agente in corrispondenza della calotta.

Di seguito si riporta il calcolo di suddetta spinta.

Dati	Dati geometrici opera				
h	4,2	m	altezza		
hr	hr 4 m ricoprimento misurato dall'estradosso della soletta				
Н	H 8,2 m altezza di spinta terreno				
Δq	0	KN/m ²	sovraccarico		

Le proprietà del terreno di rinfianco/rinterro

Caratter	Caratteristiche del terreno				
ф	35 °	angolo di attrito			
γ _{sat}	20 KN/m ³	peso di volume terreno saturo			
γw	0 KN/m³	peso acqua			

MANDATARIA:

MANDANTI:

Realizzazione Lavori

 H_{w}

Collegamento viario compreso tra lo Svincolo della S.S. 514 di "Chiaromonte" con la S.S. 115 e lo Svincolo della "Ragusana"

PROGETTO ESECUTIVO

RELAZIONE DI CALCOLO

Z _w	-20	m	quota falda
· ·			•

0 m

20 KN/m3 peso efficace

La spinta a riposo vale quindi, con riferimento ad ogni elemento di lunghezza 0,6m con il quale sono stati discretizzati i piedritti

altezza di spinta falda

Spinta Statica su elementi bidimensionali						
h mesh	hi [m]	σ _w ,i [KN/m²]	σ' _{h,} i [KN/m²]	σ _{h,} i [KN/m²]	σq,i [KN/m²]	σ'tot,i [KN/m²]
0,60	0,30	0,00	0,00	67,42	0,00	67
	0,90	0,00	0,00	62,29	0,00	62
	1,50	0,00	0,00	57,17	0,00	57
	2,10	0,00	0,00	52,05	0,00	52
	2,70	0,00	0,00	46,93	0,00	47
	3,30	0,00	0,00	41,81	0,00	42
	3,90	0,00	0,00	36,69	0,00	37

7.2 CARICHI VARIABILI

7.2.1 Carico mobile su manufatto (Condizione: Q1_Veicolo tandem)

Data la posizione del prolungamento in progetto rispetto all'impronta stradale, la diffusione a 30° nel rilevato non va ad interessare la soletta del tombino. Tale cario è quindi assente

Carichi a tergo del rilevato (condizione: Q2_Veicolo distribuito) 7.2.2

Data la posizione del prolungamento in progetto rispetto all'impronta stradale, la diffusione a 30° nel rilevato non va ad interessare la soletta del tombino. Tale cario è quindi assente

7.2.3 Frenatura

Per quanto riguarda l'azione di frenatura, definita al paragrafo 5.1.3.5 del D.M.14/01/08, viene considerata azione trascurabile ai fini del dimensionamento dei tombini.

7.2.4 Forza centrifuga

Poiché la sezione dello scatolare considerata nel modello di calcolo è parallela all'asse stradale, l'azione centrifuga non presenta componente trasversale per lo scatolare.

7.2.5 Forza del vento

Poiché la sezione dello scatolare considerata nel modello di calcolo è parallela all'asse stradale, l'azione del vento non presenta componente trasversale per lo scatolare.

RELAZIONE DI CALCOLO

7.2.6 Variazioni termiche

Trattandosi di un manufatto interrato, si ritiene trascurabile l'effetto delle variazioni termiche, con ordine di grandezza nettamente inferiore all'entità delle sollecitazioni in gioco.

7.2.7 E azione sismica

L'azione sismica è tenuta in conto tramite due contributi, E1 ed E2 descrivibili come segue.

Le azioni sismiche di progetto considerate sono:

- E1 gli incrementi sismici della spinta esercitata dal terrapieno a tergo della spalla;
- E2 le azioni sismiche dovute alle masse strutturali.

7.2.7.1 E1 – incremento sismico di spinta piedritti (condizione: E_Spinta sismica+X_SLV/SLO)

Spinta del terreno nel caso di strutture rigide.

Nel caso di strutture rigide completamente vincolate, in modo tale che non può svilupparsi nel terreno uno stato di spinta attiva, nonché nel caso di muri verticali con terrapieno a superficie orizzontale, l'incremento dinamico di spinta può essere calcolato per via pseudo-statica.

Nell'analisi pseudo-statica, l'azione sismica è rappresentata da una forza statica equivalente pari al prodotto delle forze di gravità per un opportuno coefficiente sismico.

Nelle verifiche allo stato limite ultimo, il valore del coefficiente sismico orizzontale k_h è valutato mediante l'espressione:

$$k_h = \beta_m * a_{max}/g$$

Dove:

a_{max}=accelerazione orizzontale massima attesa al sito=S_S*S_T*a_g

a_g =accelerazione orizzontale massima attesa su sito di riferimento rigido

S_S*S_T = coefficienti di amplificazione stratigrafica e topografica

Per elementi che non sono in grado di subire spostamenti relativi rispetto al terreno, il coefficiente β_m assume valore unitario.

Con tali ipotesi, sono stati calcolati due incrementi di pressione, una relativa alla condizione di stato limite di salvaquardia della vita e una relativa alla condizione di stato limite di operatività.

Salvaguardia della vita: SLV

Dati sismici		
ag	0,317	accelerazione massima del sito su suolo rigido / g
Categoria sottosuolo	В	
F ₀	2,359	valore massimo del fattore di amplificazione spettro
S _T	1	coefficiente di amplificazione topografica
S _S	1,101	coefficiente di amplificazione stratigrafica
S=S _S S _T	1,101	
β	1	

Collegamento viario compreso tra lo Svincolo della S.S. 514 di "Chiaromonte" con la S.S. 115 e lo Svincolo della "Ragusana"

PROGETTO ESECUTIVO

RELAZIONE DI CALCOLO

Spinte sismiche		
$K_h = agS\beta$	0,35	coefficiente di spinta sismica
$S_E = K_h \gamma H^2$	123,13 KN/m	spinta sismica terreno applicata su 1/2 h

Spinta Statica su elementi bidimensionali		Spinta sismica
h mesh	hi [m]	σ'E,i [KN/m²]
0,60	0,30	29
	0,90	29
	1,50	29
	2,10	29
	2,70	29
	3,30	29
	3,90	29

Operatività_SLO

Dati sismici		
ag	0,06	accelerazione massima del sito su suolo rigido / g
Categoria sottosuolo	В	
F ₀	2,504	valore massimo del fattore di amplificazione spettro
S _T	1	coefficiente di amplificazione topografica
Ss	1,2	coefficiente di amplificazione stratigrafica
S=S _S S _T	1,2	
β	1	

Spinte sismiche		
$K_h = agS\beta$	0,07	coefficiente di spinta sismica
$S_E = K_h \gamma H^2$	25,40 KN/m	spinta sismica terreno applicata su 1/2 h

Spinta Statica su elementi bidimensionali		Spinta sismica
h mesh	hi [m]	σ'E,i [KN/m²]
0,60	0,30	6
	0,90	6
	1,50	6
	2,10	6

PROGETTO ESECUTIVO

RELAZIONE DI CALCOLO

2,70	6
3,30	6
3,90	6

7.2.7.2 E2 – azioni sismiche dovute alle masse

L'azione sismica è tenuta in conto tramite Analisi Lineare Dinamica così come indicato al 7.3.3.1. delle NTC2008.

Così come indicato dalla normativa tecnica, sono stati considerati un numero di modi tale da considerare almeno l'85% di massa partecipante e comunque tutti i modi con massa partecipante significativa, indicati come quelli a massa superiore al 5%.

Le due azioni derivanti dal sisma sopra descritte, ossia **E1** ed **E2**, sono state applicate in una sola direzione, in particolare la direzione +x, parallela alla sezione dello scatolare e all'asse stradale.

L'omissione dell'analisi in direzione -x è legata alla simmetria dell'opera che conduce ad un comportamento equivalente nelle due direzioni e quindi a stessi fattori di sicurezza.

L'omissione dell'analisi in direzione +y/-y è legata alla modellazione e relativa verifica piana (piano x-z) dello scatolare, che risulta essere a favore di sicurezza non considerando le inevitabili ridistribuzioni di forze agli elementi vicini.

Collegamento viario compreso tra lo Svincolo della S.S. 514 di "Chiaromonte" con la S.S. 115 e lo Svincolo della "Ragusana"

PROGETTO ESECUTIVO

RELAZIONE DI CALCOLO

METODO VERIFICHE

VERIFICHE AGLI STATI LIMITE ULTIMI 8.1

8.1.1 Verifiche di resistenza

La verifica di resistenza delle sezioni nei vari elementi strutturali, viene condotta tenendo conto delle condizioni più gravose che si individuano dall'inviluppo delle sollecitazioni agenti nelle diverse combinazioni di carico.

Le verifiche si basano sul concetto dei coefficienti di sicurezza parziali e considerando una sola famiglia si combinazioni (indicata come A1 -M1-R3) in conseguenza dell'utilizzo dell'approccio 2 della normativa. Si ricorda brevemente come il caso A1 – M1 – R3 prevede che vengano incrementate le azioni permanenti e variabili con i coefficienti (Υ_G , Υ_Q) e vengono lasciate inalterate le caratteristiche di resistenza del terreno. Le combinazioni ottenute sono rilevanti per stabilire sia le capacità strutturali delle opere che interagiscono con il terreno sia le verifiche rilevanti per il dimensionamento geotecnico.

8.2 VERIFICHE AGLI STATI LIMITE DI ESERCIZIO

Verifiche delle tensioni di esercizio 8.2.1

Valutate le azioni interne nelle varie parti della struttura, dovute alle combinazioni rare e quasi permanenti delle azioni, si calcolano le massime tensioni sia nel conglomerato cementizio sia nelle armature; si deve verificare che tali tensioni siano inferiori ai massimi valori consentiti si seguito riportati.

Verifica della tensione massima di compressione del conglomerato cementizio nelle condizioni di esercizio.

La massima tensione di compressione del conglomerato cementizio σ_c , deve rispettare la limitazione seguente:

 $\sigma_{\rm C}$ <0,6fck per la combinazione rara

σ_C<0,45fck per la combinazione quasi permanente

Verifica della tensione massima dell'acciaio in condizione di esercizio.

Per l'acciaio, la tensione massima, σ_s, per effetto delle azioni dovute alle combinazione rare deve rispettare la limitazione seguente:

 $\sigma_s < 0.8 \text{ fyk}$

8.2.2 Verifica dello stato limite di fessurazione

In base alla classe di esposizione individuata, XA2, classificata come condizione ambientale aggressiva, ed in base alla tipologia di armatura utilizzata, armatura poco sensibile, si individuano due verifiche entrambe di controllo di apertura delle fessure. In particolare si deve verificare che:

ap.fessure<w2=0,3mm per la combinazione frequente

ap.fessure<w1=0,2mm per la combinazione quasi permanente

Collegamento viario compreso tra lo Svincolo della S.S. 514 di "Chiaromonte" con la S.S. 115 e lo Svincolo della "Ragusana"

PROGETTO ESECUTIVO

RELAZIONE DI CALCOLO

8.2.3 Verifica di deformabilità

Si verifica che l'inflessione della soletta superiore non superi 1/250 della luce.

8.3 VERIFICHE AGLI STATI LIMITE DI SALVAGUARDIA DELLA VITA

8.3.1 Verifiche di resistenza

Si ripropongono verifiche di resistenza così come eseguito per le verifiche allo stato limite ultimo, ma con azioni derivanti dalle forze indotte dall'azione sismica.

8.4 VERIFICHE AGLI STATI LIMITE DI DANNO

8.4.1 Verifiche di resistenza

Avendo progettato con un fattore di comportamento q pari ad 1, lo spettro relativo all'SLV risulta necessariamente sempre maggiore di quello all'SLD. Perciò il soddisfacimento delle verifiche di resistenza all'SLV implica il soddisfacimento delle verifiche all'SLD.

8.5 VERIFICHE AGLI STATI LIMITE DI OPERATIVITA'

8.5.1 Verifiche di rigidezza

Per le costruzioni ricadenti in classe d'uso IV, si deve controllare che l'azione sismica di progetto non produca danni agli elementi costruttivi senza funzione strutturale tali da rendere temporaneamente non operativa la costruzione.

Questa condizione si può ritenere soddisfatta quando gli spostamenti di interpiano ottenuti dall'analisi in presenza dell'azione sismica di progetto relativa allo SLO siano inferiori ai 2/3 dei limiti indicati per classi d'uso I e II.

Il limite scelto è pari a:

dr<2/3*0,005h

Dove:

dr spostamento d'interpiano

h altezza d'interpiano

PROGETTO ESECUTIVO

RELAZIONE DI CALCOLO

COMBINAZIONI DI CARICO

Le combinazioni e i coefficienti moltiplicativi delle singole azioni vengono definiti in base a quanto indicato al paragrafo 5.1.3.12. del D.M.14/01/08 per quello che riguarda le strutture assimilabili a ponti/viadotti e che sorreggono carichi variabili da traffico.

Tabella 5.1.IV - Valori caratteristici delle azioni dovute al traffico

		Carichi su marciapiedi e piste ciclabili				
	Carichi verticali		Carichi orizzo		ontali	Carichi verticali
Gruppo di azioni	Modello principale (Schemi di carico 1, 2, 3, 4, 6)	Veicoli speciali	Folla (Schema di carico 5)	Frenatura q ₃	Forza centrifuga q ₄	Carico uniformemente. distribuito
1	Valore caratteristico					Schema di carico 5 con valore di combinazione 2,5 kN/m ²
2 a	Valore frequente			Valore caratteristico		
2 b	Valore frequente				Valore caratteristico	
3 (*)						Schema di carico 5 con valore caratteristico 5,0 kN/m ²
4 (**)			Schema di carico 5 con valore caratteristico 5,0 kN/m ²	3		Schema di carico 5 con valore caratteristico 5,0 kN/m ²
5 (***)	Da definirsi per il singolo progetto	Valore caratteristico o nominale				

^(*) Ponti di 3^a categoria

^(**) Da considerare solo se richiesto dal particolare progetto (ad es. ponti in zona urbana)

^(***) Da considerare solo se si considerano veicoli speciali

PROGETTO ESECUTIVO

RELAZIONE DI CALCOLO

Tabella 5.1.V - Coefficienti parziali di sicurezza per le combinazioni di carico agli SLU

		Coefficiente	EQU ⁽¹⁾	A1 STR	A2 GEO
Carichi permanenti	favorevoli sfavorevoli	γ _{G1}	0,90 1,10	1,00 1,35	1,00 1,00
Carichi permanenti non strutturali ⁽²⁾	favorevoli sfavorevoli	γ _{G2}	0,00	0,00 1,50	0,00 1,30
Carichi variabili da traffico	favorevoli sfavorevoli	γο	0,00 1,35	0,00 1,35	0,00
Carichi variabili	favorevoli sfavorevoli	γ _{Qi}	0,00	0,00 1,50	0,00
Distorsioni e presollecitazioni di progetto	favorevoli sfavorevoli	γει	0,90 1,00 ⁽³⁾	1,00 1,00 ⁽⁴⁾	1,00 1,00
Ritiro e viscosità, Variazioni termiche, Cedimenti vincolari	favorevoli sfavorevoli	γε2, γε3, γε4	0,00 1,20	0,00 1,20	0,00 1,00

Equilibrio che non coinvolga i parametri di deformabilità e resistenza del terreno; altrimenti si applicano i

(4) 1,20 per effetti locali

⁽²⁾ Nel caso in cui i carichi permanenti non strutturali (ad es. carichi permanenti portati) siano compiutamente definiti si potranno adottare gli stessi coefficienti validi per le azioni permanenti.

^{(3) 1,30} per instabilità in strutture con precompressione esterna

PROGETTO ESECUTIVO

RELAZIONE DI CALCOLO

Tabella 5.1.VI - Coefficienti \(\psi \) per le azioni variabili per ponti stradali e pedonali

Azioni	Gruppo di azioni (Tabella 5.1.IV)	Coefficiente Ψ ₀ di combinazione	Coefficiente \(\psi_1\) (valori frequenti)	Coefficiente W (valori quasi permanenti)
	Schema 1 (Carichi tandem)	0,75	0,75	0,0
	Schemi 1, 5 e 6 (Carichi distribuiti	0,40	0,40	0,0
	Schemi 3 e 4 (carichi concentrati)	0,40	0,40	0,0
Azioni da traffico	Gruppo di azioni (Tabella 5.1.IV) \(\psi_0 \) a combina	0,0	0,75	0,0
(Tabella 5.1.IV)	2	0,0	0,0	0,0
lzioni da traffico (Tabella 5.1.IV)	3	0,0	0,0	0,0
	4 (folla)		0,75	0,0
	5	0,0	0,0	0,0
Vento q ₅	SLU e SLE	0,6 0,8	0,2	0,0 0,0
	Vento a ponte carico	0,6		
Nava a	SLU e SLE	0,0	0,0	0,0
Neve q ₅	esecuzione	da 5.1.IV) ψ ₀ di combinazione (va frequencia) n) 0,75 0 distribuiti 0,40 0 centrati) 0,40 0 0,0 0 0 0,0 0 0 0,0 0 0 0,0 0 0 0,0 0 0 0,6 0 0 0,6 0 0 0,6 0 0 0,6 0 0 0,8 0 0 0,8 0 0	0,6	0,5
Temperatura	T _k	0,6	0,6	0,5

Come sopra esposto, si è fatto riferimento all'approccio 2 e quindi a coefficienti A1 – M1 – R3.

Numero di condizioni di carico ... : 3 Numero di combinazioni di carico . : 6

Condizione

1	G1k_Strutturale
2	G2.1k_Geo su calotta
3	G2.2k_Spinta a riposo
4	Sisma OSLV
5	Sisma OSLO

Combinazioni di carico:

Combinazioni agli Stati Limite Ultimi

Combinazione di carico numero

1 SLU

RELAZIONE DI CALCOLO

Comb.\Cond 2 3

1 1.35 1.35 1.35

Combinazioni agli Stati Limite di Salvaguardia della Vita

Combinazione di carico numero

2 Sisma 0

Comb.\Cond 2 1 1 1 1

Combinazioni RARE Stati Limite di Esercizio

Combinazione di carico numero

3 **RARA**

Comb.\Cond 3 1

Combinazioni FREQUENTI Stati Limite di Esercizio

Combinazione di carico numero

4 **FRE**

Comb.\Cond 1 1 1

Combinazioni QUASI PERMANENTI Stati Limite di Esercizio

Combinazione di carico numero

5 QUASI

Comb.\Cond 1 2 3 5 1 1 1

Combinazioni agli Stati Limite di Operatività

PROGETTO ESECUTIVO

RELAZIONE DI CALCOLO

Combinazione di carico numero

6 Sisma 0

Comb.\Cond 1 2 3 5 1 1 1 1

PROGETTO ESECUTIVO

RELAZIONE DI CALCOLO

10 RISULTATI DELLE ANALISI SEZIONE SCATOLARE

10.1 INVILUPPO SOLLECITAZIONI

Inviluppo sollecitazioni fondazione

Trave di fondazione Sezione numero 1 Rett. FONDAZIONE 100X60

Taglio	Min trave 45 53	-288.64 [kN]	Comb. 1	Max trave 37 45	288.64 [kN]	Comb. 1
Pressioni sul terreno	Min trave 37 45	0.164 [MPa]	Comb. 1	Max trave 61 37	0.061 [MPa]	Comb. 2
Momento flettente	Min trave 45 53	-214.86 [kNm]	Comb. 1	Max trave 45 53	92.88 [kNm]	Comb. 2
Momento torcente	Min trave 45 53	-0.00 [kNm]	Comb. 1	Max trave 53 62	0.00 [kNm]	Comb. 1

Inviluppo sollecitazioni impalcato

Trave Sezione numero 1 Rett. IMPALCATO 100X60

Sforzo normale	Min asta 52 60	107.13 [kN]	Comb. 2	Max asta 52 60	148.18 [kN]	Comb. 1
Taglio piano 1-2	Min asta 52 60	-254.06 [kN]	Comb. 1	Max asta 44 52	254.06 [kN]	Comb. 1
Taglio piano 1-3	Min asta 52 60	-0.00 [kN]	Comb. 1	Max asta 44 52	-0.00 [kN]	Comb. 2
Momento torcente	Min asta 52 60	-0.00 [kNm]	Comb. 1	Max asta 52 60	-0.00 [kNm]	Comb. 2
Momento Flet. piano 1-2	Min asta 52 60	-98.18 [kNm]	Comb. 1	Max asta 52 60	164.49 [kNm]	Comb. 2
Momento Flet. piano 1-3	Min asta 44 52	-0.00 [kNm]	Comb. 1	Max asta 52 60	0.00 [kNm]	Comb. 1

Inviluppo sollecitazioni piedritti

Trave Sezione numero 2 Rett. PIEDRITTI 100X60

Sforzo normale	Min asta 44 43	156.12 [kN]	Comb. 2	Max asta 46 45	577.28 [kN]	Comb. 1
Taglio piano 1-2	Min asta 44 43	-148.18 [kN]	Comb. 1	Max asta 60 59	148.18 [kN]	Comb. 1
Taglio piano 1-3	Min asta 44 43	-0.00 [kN]	Comb. 1	Max asta 54 53	0.00 [kN]	Comb. 2
Momento torcente	Min asta 44 43	0.00 [kNm]	Comb. 2	Max asta 52 51	0.00 [kNm]	Comb. 1
Momento Flet. piano 1-2	Min asta 44 43	-153.40 [kNm]	Comb. 1	Max asta 60 59	164.51 [kNm]	Comb. 2
Momento Flet. piano 1-3	Min asta 44 43	-0.00 [kNm]	Comb. 1	Max asta 60 59	0.00 [kNm]	Comb. 1

Realizzazione Lavori

Collegamento viario compreso tra lo Svincolo della S.S. 514 di "Chiaromonte" con la S.S. 115 e lo Svincolo della "Ragusana"

PROGETTO ESECUTIVO

RELAZIONE DI CALCOLO

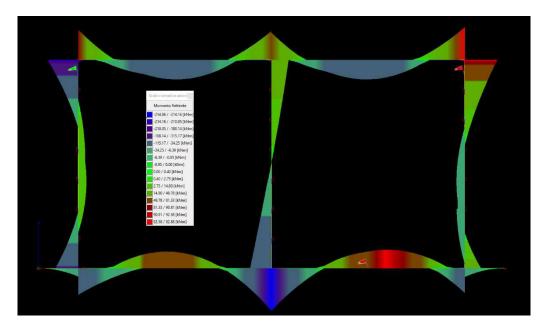


Figura 10-1"Diagramma inviluppo momenti flettenti"

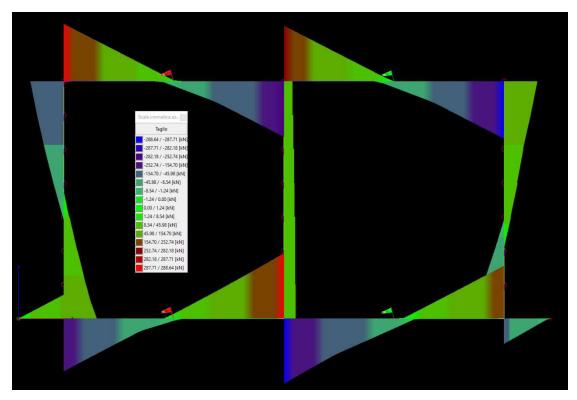


Figura 10-2"Inviluppo diagramma taglio"

PROGETTO ESECUTIVO

RELAZIONE DI CALCOLO

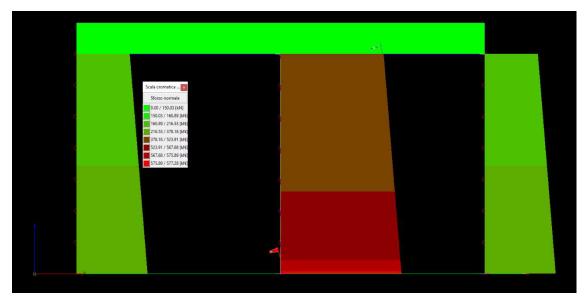


Figura 10-3"Diagramma inviluppo sforzo normale"

10.2 PRESSIONI TERRENO

Pressioni massime su terreno di fondazione

Combinazioni agli Stati Limite Ultimi

	Elemento	Combinazione	p [MPa]
Min	Trave di fondazione Sez. 1 Nodi: 37 45	1	-0.164
Max	Trave di fondazione Sez. 1 Nodi: 45 53	1	-0.150

Combinazioni agli Stati Limite di Salvaguardia della Vita

	Elemento	Combinazione	p [MPa]
Min	Trave di fondazione Sez. 1 Nodi: 53 62	2	-0.163
Max	Trave di fondazione Sez. 1 Nodi: 61 37	2	-0.061

Combinazioni RARE Stati Limite di Esercizio

	Elemento	Combinazione	p [MPa]
Min	Trave di fondazione Sez. 1 Nodi: 37 45	3	-0.121
Max	Trave di fondazione Sez. 1 Nodi: 45 53	3	-0.111

Combinazioni FREQUENTI Stati Limite di Esercizio

PROGETTO ESECUTIVO

RELAZIONE DI CALCOLO

	Elemento	Combinazione	p [MPa]
Min	Trave di fondazione Sez. 1 Nodi: 37 45	4	-0.121
Max	Trave di fondazione Sez. 1 Nodi: 45 53	4	-0.111

Combinazioni QUASI PERMANENTI Stati Limite di Esercizio

	Elemento	Combinazione	p [MPa]
Min	Trave di fondazione Sez. 1 Nodi: 37 45	5	-0.121
Max	Trave di fondazione Sez 1 Nodi: 45 53	5	-0 111

Combinazioni agli Stati Limite di Operatività

	Elemento	Combinazione	p [MPa]
Min	Trave di fondazione Sez. 1 Nodi: 53 62	6	-0.126
Max	Trave di fondazione Sez. 1 Nodi: 61 37	6	-0.099

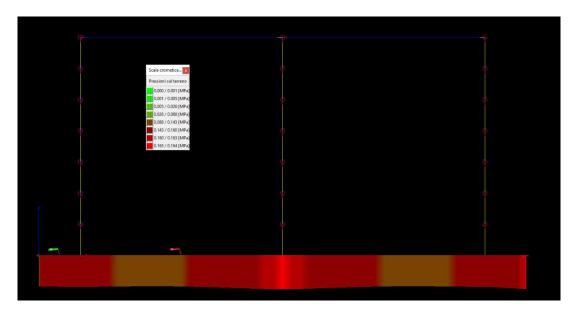


Figura 10-4"Diagramma inviluppo pressioni terreno"

10.3 SOLLECITAZIONI RARE

Sollecitazioni fondazione

Trave di fondazione Sezione numero 1 Rett. FONDAZIONE 100X60

Taglio Min trave 45 53 -213.81 [kN] Comb. 3 Max trave 37 45 213.81 [kN] Comb. 3

PROGETTO ESECUTIVO

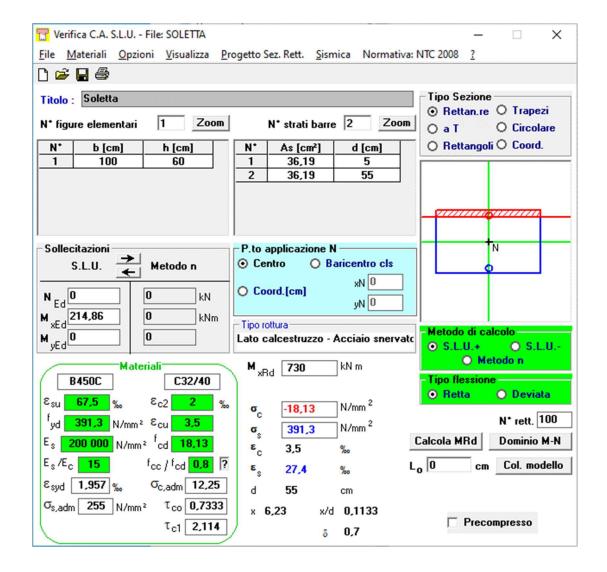
RELAZIONE DI CALCOLO

Pressioni sul terreno	Min trave 37 45	0.121 [MPa]	Comb. 3	Max trave 45 53	0.111 [MPa]	Comb. 3
Momento flettente	Min trave 37 45	-159.15 [kNm]	Comb. 3	Max trave 37 45	62.21 [kNm]	Comb. 3
Momento torcente	Min trave 45 53	-0.00 [kNm]	Comb. 3	Max trave 53 62	0.00 [kNm]	Comb. 3
Sollecitazioni impalca	ato					
Trave Sezione numer	o 1 Rett. IMPALO	CATO 100X60				
Sforzo normale	Min asta 44 52	109.77 [kN]	Comb. 3	Max asta 52 60	109.77 [kN]	Comb. 3
Taglio piano 1-2	Min asta 52 60	-188.19 [kN]	Comb. 3	Max asta 44 52	188.19 [kN]	Comb. 3
Taglio piano 1-3	Min asta 52 60	-0.00 [kN]	Comb. 3	Max asta 44 52	-0.00 [kN]	Comb. 3
Momento torcente	Min asta 52 60	-0.00 [kNm]	Comb. 3	Max asta 44 52	-0.00 [kNm]	Comb. 3
Momento Flet. piano 1-2	Min asta 44 52	-72.73 [kNm]	Comb. 3	Max asta 52 60	113.63 [kNm]	Comb. 3
Momento Flet. piano 1-3	Min asta 44 52	-0.00 [kNm]	Comb. 3	Max asta 52 60	0.00 [kNm]	Comb. 3
Sollecitazioni piedritt	<u>ti</u>					
Trave Sezione numer	o 2 Rett. PIEDRI	TTI 100X30				
Sforzo normale	Min asta 60 59	188.19 [kN]	Comb. 3	Max asta 46 45	427.61 [kN]	Comb. 3
Taglio piano 1-2	Min asta 44 43	-109.77 [kN]	Comb. 3	Max asta 60 59	109.77 [kN]	Comb. 3
Taglio piano 1-3	Min asta 44 43	-0.00 [kN]	Comb. 3	Max asta 60 59	0.00 [kN]	Comb. 3
Momento torcente	Min asta 44 43	0.00 [kNm]	Comb. 3	Max asta 52 51	0.00 [kNm]	Comb. 3
Momento Flet. piano 1-2	Min asta 44 43	-113.63 [kNm]	Comb. 3	Max asta 60 59	113.63 [kNm]	Comb. 3
Momento Flet. piano 1-3	Min asta 44 43	-0.00 [kNm]	Comb. 3	Max asta 60 59	0.00 [kNm]	Comb. 3

Data l'assenza di carichi variabili, in esercizio viene verificata la sola combinazione di carico rara, dato che le altre condurrebbero ai medesimi valori.

PROGETTO ESECUTIVO

RELAZIONE DI CALCOLO

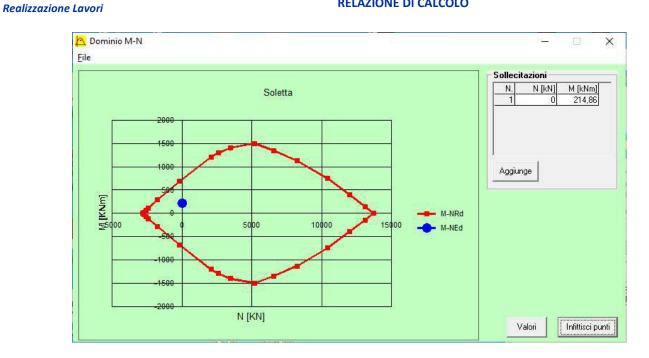

11 VERIFICHE

11.1 VERIFICHE SLU/SLV

11.1.1 Soletta fondazione - flessione

Base sezione 100,00cm B= 60,00cm Altezza sezione H=

Afs=8Ø24 = 36,19cmq Afi = 8024 = 36,19cmq



PROGETTO ESECUTIVO

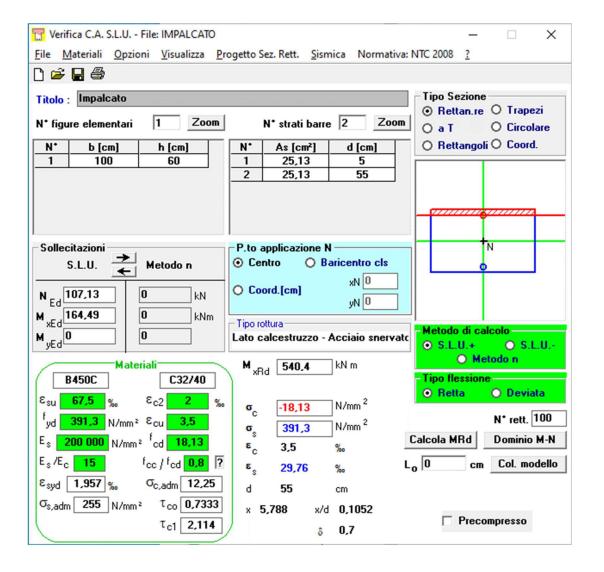
RELAZIONE DI CALCOLO

11.1.2 Soletta fondazione – taglio

Verifica a taglio			par. 4.1.2.1	1.3.1 NTC2008
Valore di calcolo dello sforzo di taglio	\mathbf{V}_{Ed}	288640	N	
resistenza calcestruzzo	Rck	40	N/mm²	
	fck	33,2	N/mm ²	
coeff. parziale di sicurezza del cls	γc	1,5		
altezza	h	600	mm	
copriferro	С	50	mm	
altezza utile	d	550	mm	
larghezza minima sezione	b_w	1000	mm	
armatura longitudinale	A_{sl}	3617,28	mm2	
sezione calcestruzzo	Ac	600000	mm2	
valore di calcolo dello sforzo normale	N_{Ed}	0	N	
k=1+(200/d) ^{1/2} ≤2	k	1,6030227		
v_{min} =0,035 $k^{3/2}$ fc $k^{1/2}$	vmin	0,4093046		
$\rho_1 = A_{sl}/(b_w d) \le 0.02$	ρ1	0,0065769		rapporto geometrico di armatura longitudinale
σ_{cp} =N _{Ed} /A _c ≤0,2fcd	$\sigma_{\sf cp}$	0	N/mm ²	tensione media di compressione della sezione
Resistenza a taglio	\mathbf{V}_{Rd}	295712,34	N	
$\begin{split} &V_{Rd} \!\!=\!\! \{(0,\!18^*k^*(100^*\rho_1^*f_{ck})^{\Lambda^{1/3}})\!/\gamma_c \!\!+\! 0,\!15^*\sigma_{cp}\}^*I \\ &V_{Rd} \!\!\geq\!\! V_{Ed} \end{split}$	o _w *d≥(ν _{min} +0,15*σ _{cp}))*b _w *d		VERIFICATA VERIFICATA

Realizzazione Lavori

Collegamento viario compreso tra lo Svincolo della S.S. 514 di "Chiaromonte" con la S.S. 115 e lo Svincolo della "Ragusana"

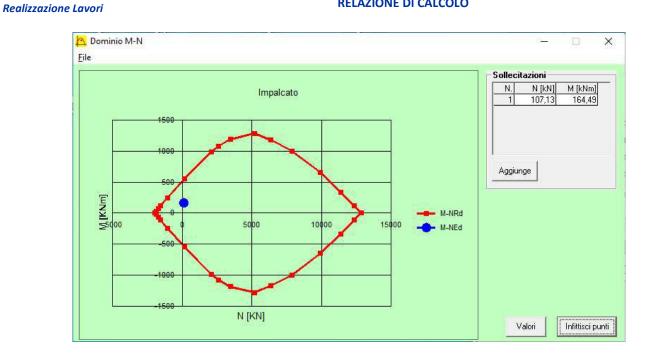

PROGETTO ESECUTIVO

RELAZIONE DI CALCOLO

11.1.3 Impalcato – flessione

Base sezione 100,00cm Altezza sezione 60,00cm H=

Afi= $8\emptyset20 = 25,13$ cmq Afs=8Ø20 = 25,13cmq



PROGETTO ESECUTIVO

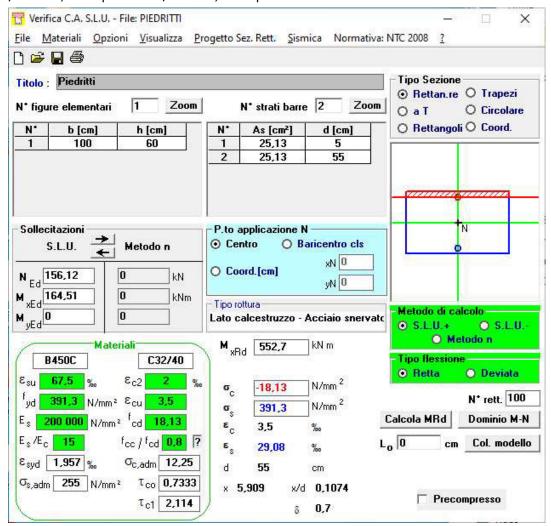
RELAZIONE DI CALCOLO

11.1.4 Impalcato - taglio

Verifica a taglio			par. 4.1.2.	1.3.1 NTC2008
Valore di calcolo dello sforzo di taglio	\mathbf{V}_{Ed}	254060	N	
resistenza calcestruzzo	Rck	40	N/mm ²	
	fck	33,2	N/mm²	
coeff. parziale di sicurezza del cls	γс	1,5		
altezza	h	600	mm	
copriferro	С	50	mm	
altezza utile	d	550	mm	
larghezza minima sezione	\mathbf{b}_{w}	1000	mm	
armatura longitudinale	A_{sl}	2512	mm2	
sezione calcestruzzo	Ac	600000	mm2	
valore di calcolo dello sforzo normale	N_{Ed}	107130	N	
k=1+(200/d) ^{1/2} ≤2	k	1,6030227		
v_{min} =0,035 $k^{3/2}$ fc $k^{1/2}$	vmin	0,4093046		
$\rho_1 = A_{si}/(b_w d) \le 0.02$	ρ ₁	0,0045673		rapporto geometrico di armatura longitudinale
σ_{cp} =N _{Ed} /A _c ≤0,2fcd	$\sigma_{\sf cp}$	0,17855	N/mm²	tensione media di compressione della sezione
Resistenza a taglio	\mathbf{V}_{Rd}	276598,08	N	
$\begin{split} V_{Rd} &= \{(0,18*k*(100*\rho_1*f_{ck})^{\Lambda 1/3})/\gamma_c + 0,15*\sigma_{cp}\}*I\\ V_{Rd} &\geq V_{Ed} \end{split}$	o _w *d≥(ν _{min} +0,15*σ _{cp})*b _w *d		VERIFICATA VERIFICATA

Realizzazione Lavori

Collegamento viario compreso tra lo Svincolo della S.S. 514 di "Chiaromonte" con la S.S. 115 e lo Svincolo della "Ragusana"

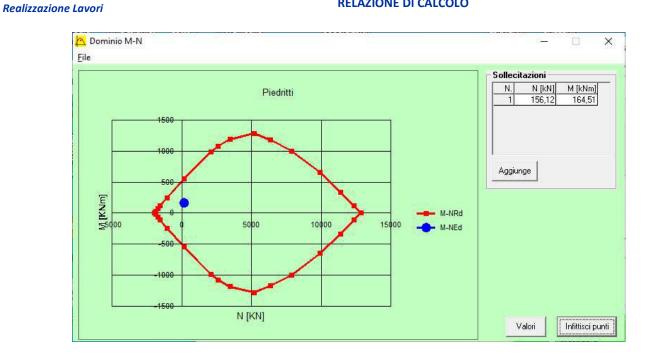

PROGETTO ESECUTIVO

RELAZIONE DI CALCOLO

11.1.5 Piedritti – flessione

Base sezione 100,00cm Altezza sezione 60,00cm H=

Afi= $8\emptyset20 = 25,13$ cmq Afs=8Ø20 = 25,13cmq



PROGETTO ESECUTIVO

RELAZIONE DI CALCOLO

11.1.6 Piedritti – taglio

Verifica a taglio			par. 4.1.2.	1.3.1 NTC2008
Valore di calcolo dello sforzo di taglio	V_{Ed}	148180	N	
resistenza calcestruzzo	Rck	40	N/mm ²	
	fck	33,2	N/mm ²	
coeff. parziale di sicurezza del cls	γс	1,5		
altezza	h	600	mm	
copriferro	С	50	mm	
altezza utile	d	550	mm	
larghezza minima sezione	b_w	1000	mm	
armatura longitudinale	A_{sl}	2512	mm2	
sezione calcestruzzo	A_c	600000	mm2	
valore di calcolo dello sforzo normale	N_{Ed}	156120	N	
k=1+(200/d) ^{1/2} ≤2	k	1,6030227		
v_{min} =0,035 $k^{3/2}$ fc $k^{1/2}$	vmin	0,4093046		
$\rho_1 = A_{sl}/(b_w d) \le 0.02$	Ρ1	0,0045673		rapporto geometrico di armatura longitudinale
$\sigma_{cp} {=} N_{Ed}/A_c {\le} 0, 2fcd$	$\sigma_{\sf cp}$	0,2602	N/mm ²	tensione media di compressione della sezione
Resistenza a taglio	\mathbf{V}_{Rd}	283334,21	N	
V_{Rd} ={(0,18*k*(100* ρ_1 *f _{ck})^1/3})/ γ_c +0,15* σ_{cp} }*	b _w *d≥(v _{min} +0,15*σ _{cp})*b _w *d		VERIFICATA
$V_{Rd} \ge V_{Ed}$				VERIFICATA

MANDATARIA:

RELAZIONE DI CALCOLO

11.2 VERIFICHE SLE

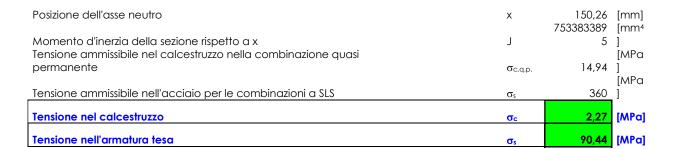
11.2.1 Impalcato

100,00cm Base sezione 60,00cm Altezza sezione H=

Afi = 8020 = 25,13cmqAfs=8Ø20 = 25,13cmq

<u>DETERMINAZIONE DELLE TENSIONI A SLS</u>			
Controllo tensionale per la Combinazione Caratteristica			F1 . 1
Momento sollecitante assunto in valore assoluto	M_{Ed}	113,6	[kNm]
Coefficiente di omogeneizzazione	n	15,0	[-]
Altezza della sezione trasversale di calcestruzzo	h	600	[mm]
Larghezza della sezione trasversale di calcestruzzo	b	1000	[mm]
Copriferro	d'	50	[mm]
Altezza utile della sezione	d	550	[mm]
Area dell'armatura tesa	As	2513	[mm ²]
Area dell'armatura compressa	A's	2513]
Posizione dell'asse neutro	X	150,26 753383389	[mm] [mm ⁴
Momento d'inerzia della sezione rispetto a x	J	733363367]
Tensione ammissibile nel calcestruzzo nella combinazione caratteristica	σc,caratt	19,92	[MPa] [MPa
Tensione ammissibile nell'acciaio per le combinazioni a SLS	$\sigma_{\scriptscriptstyle S}$	360]
Tensione nel calcestruzzo	σc	2,27	[MPa]
Tensione nell'armatura tesa	σ_{s}	90,44	[MPa]

DETERMINAZIONE DELLE TENSIONI A SLS			
Controllo tensionale per la Combinazione Quasi Permanente			
Momento sollecitante assunto in valore assoluto	M_{Ed}	113,6	[kNm]
Coefficiente di omogeneizzazione	n	15,0	[-]
Altezza della sezione trasversale di calcestruzzo	j	600	[-]
Larghezza della sezione trasversale di calcestruzzo	b	1000	[-]
Copriferro	d'	50	[-]
Altezza utile della sezione	d'	550	[-] [mm²
Area dell'armatura tesa	As	2513] [mm²
Area dell'armatura compressa	A's	2513]



Realizzazione Lavori

Collegamento viario compreso tra lo Svincolo della S.S. 514 di "Chiaromonte" con la S.S. 115 e lo Svincolo della "Ragusana"

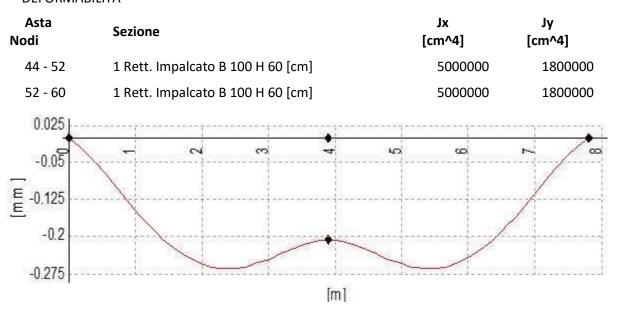
PROGETTO ESECUTIVO

RELAZIONE DI CALCOLO

CONTROLLO DI FESSURAZIONE A SI	<u>.s</u>		
Altezza della sezione trasversale di calcestruzzo	h	600	· [mm]
Larghezza della sezione trasversale di calcestruzzo	b	1000	[mm]
Copriferro	d'	50	[mm]
Altezza utile della sezione	d	550	[mm]
Area dell'armatura tesa	As	2513	$[mm^2]$
Area dell'armatura compressa	A's	2513	[mm ²]
Distanza tra il bordo del cls e l'armatura	С	50	[mm]
Distanza tra i baricentri delle barre	S	100	[mm]
Distanza massima di riferimento tra le barre	Srif.max	300	[mm]
Calcolo dell'ampiezza delle fessure - Combinazione	Quasi Permane	ente	
Momento sollecitante per la combinazione Quasi Permanente	M _{Ed,q.p.}	113,63	[kNm]
Durata del carico		lunga	[-]
Posizione dell'asse neutro dal lembo superiore	X	150,26	[mm]
Tensione indotta nell'armatura tesa considerando la sezione fessurata	$\sigma_{\scriptscriptstyle S}$	90,44	[MPa]
Valore medio della resistenza a trazione efficace del calcestruzzo	$f_{\text{ct,eff}}$	3,1	[MPa]
Fattore dipendente dalla durata del carico	k _t	0,4	[-]
Altezza efficace	h _{c,eff}	125	[mm]
Area efficace del calcestruzzo teso attorno all'armatura	$A_{c,eff}$	125000	[mm ²]
Rapporto geometrico sull'area efficace	$\rho_{\text{p,eff}}$	0,02011	[-]
Rapporto tra E _s /E _{cm}	αe	5,94	[-]
Differenza tra la deformazione nell'acciaio e quella nel calcestruzzo	Esm - Ecm	0,000107	[-]
		0,000271	[-]
Determinazione del diametro equivalente delle barre tese	феq	20,00	[mm]
Coefficiente che tiene conto dell'aderenza migliorata delle barre	k_1	0,8	[-]
Coefficiente che tiene conto della flessione pura	k_2	0,5	[-]
	k ₃	3,4	[-]
	k ₄	0,425	[-]
Distanza massima tra le fessure	S _{r,max}	339,10	[mm]
		339,10	[mm]
Ampiezza delle fessure	W k	0,0920	[mm]

MANDATARIA:

Realizzazione Lavori


Collegamento viario compreso tra lo Svincolo della S.S. 514 di "Chiaromonte" con la S.S. 115 e lo Svincolo della "Ragusana"

PROGETTO ESECUTIVO

RELAZIONE DI CALCOLO

Ampiezza massima delle fessure	W _{max}	0,2	[mm]
Calcolo dell'ampiezza delle fessure - Combinaz	ione Frequente		
Momento sollecitante per la combinazione Frequente	$M_{Ed,freq}$.	113,63	[kNm]
Durata del carico		lunga	[-]
Posizione dell'asse neutro dal lembo superiore	X	150,26	[mm]
Tensione indotta nell'armatura tesa considerando la sezione fessurata	σ_{s}	90,44	[MPa]
Valore medio della resistenza a trazione efficace del calcestruzzo	$f_{\text{ct,eff}}$	3,1	[MPa]
Fattore dipendente dalla durata del carico	k _t	0,4	[-]
Altezza efficace	h _{c,eff}	125	[mm]
Area efficace del calcestruzzo teso attorno all'armatura	Ac,eff	125000	[mm ²]
Rapporto geometrico sull'area efficace	$ ho_{ m p,eff}$	0,02011	[-]
Rapporto tra E _s /E _{cm}	$lpha_{ extsf{e}}$	5,94	[-]
Differenza tra la deformazione nell'acciaio e quella nel calcestruzzo	Esm - Ecm	0,000107	[-]
		0,000271	[-]
Determinazione del diametro equivalente delle barre tese	феа	20,00	[mm]
Coefficiente che tiene conto dell'aderenza migliorata delle barre	k_1	0,8	[-]
Coefficiente che tiene conto della flessione pura	k_2	0,5	[-]
	k ₃	3,4	[-]
	k ₄	0,425	[-]
Distanza massima tra le fessure	S _{r,max}	339,10	[mm]
		339,10	[mm]
Ampiezza delle fessure	Wk	0,0920	[mm]
Ampiezza massima delle fessure	W _{max}	0,3	[mm]

DEFORMABILITA'

Collegamento viario compreso tra lo Svincolo della S.S. 514 di "Chiaromonte" con la S.S. 115 e lo Svincolo della "Ragusana" **PROGETTO ESECUTIVO**

RELAZIONE DI CALCOLO

Lunghezza dell'asta 7.80 [m]

Freccia massima nel piano 1-2 combinazione 8: -0.3 [mm] VERIFICATO

Freccia massima nel piano 1-3 combinazione 8: -0.0 [mm]

Rapporto f/L nel piano 1-2 1/-29541

Rapporto f/L nel piano 1-3 1/∞

11.2.2 Piedritti

B= 100,00cm Base sezione Altezza sezione 60,00cm

Afi = 8020 = 25,13cmqAfs=8Ø20 = 25,13cmq

<u>DETERMINAZIONE DELLE TENSIONI A SLS</u>			
Controllo tensionale per la Combinazione Caratteristica			F1
Momento sollecitante assunto in valore assoluto	MEd	113,6	[kNn]
Coefficiente di omogeneizzazione	n	15,0	[-]
Altezza della sezione trasversale di calcestruzzo	h	600	[mm]
Larghezza della sezione trasversale di calcestruzzo	b	1000	[mm]
Copriferro	d'	50	[mm]
Altezza utile della sezione	d	550	[mm]
Area dell'armatura tesa	As	2513	[mm ²] [mm ²
Area dell'armatura compressa	A's	2513	j
Posizione dell'asse neutro	X	150,26 753383389	[mm]
Momento d'inerzia della sezione rispetto a x	J	5	j
Tensione ammissibile nel calcestruzzo nella combinazione caratteristica	σ c,caratt	19,92	[MPa] [MPa
Tensione ammissibile nell'acciaio per le combinazioni a SLS	σ_{s}	360]
Tensione nel calcestruzzo	σο	2,27	[MPa
Tensione nell'armatura tesa	σs	90,44	[MPa

DETERMINAZIONE DELLE TENSIONI A SLS			
Controllo tensionale per la Combinazione Quasi Perman	ente		
			[kNm
Momento sollecitante assunto in valore assoluto	M_{Ed}	113,6]
Coefficiente di omogeneizzazione	n	15,0	[-]
Altezza della sezione trasversale di calcestruzzo	j	600	[-]
Larghezza della sezione trasversale di calcestruzzo	b	1000	[-]

MANDATARIA:

Realizzazione Lavori

Collegamento viario compreso tra lo Svincolo della S.S. 514 di "Chiaromonte" con la S.S. 115 e lo Svincolo della "Ragusana"

PROGETTO ESECUTIVO

RELAZIONE DI CALCOLO

Copriferro	d'	50	[-]
Altezza utile della sezione	d'	550	[-] [mm²
Area dell'armatura tesa	As	2513] [mm²
Area dell'armatura compressa	A's	2513]
Posizione dell'asse neutro	Χ	150,26 753383389	[mm] [mm ⁴
Momento d'inerzia della sezione rispetto a x Tensione ammissibile nel calcestruzzo nella combinazione quasi	J	5] [MPa
permanente	$\sigma_{\text{c,q,p.}}$	14,94] [MPa
Tensione ammissibile nell'acciaio per le combinazioni a SLS	σs	360]
Tensione nel calcestruzzo	σς	2,27	[MPa]
Tensione nell'armatura tesa	σs	90,44	[MPa]

CONTROLLO DI FESSURAZIONE A SL	<u>s</u>		
Altezza della sezione trasversale di calcestruzzo	h	600	[mm]
Larghezza della sezione trasversale di calcestruzzo	b	1000	[mm]
Copriferro	d'	50	[mm]
Altezza utile della sezione	d	550	[mm]
Area dell'armatura tesa	As	2513	[mm ²]
Area dell'armatura compressa	A's	2513	[mm ²]
Distanza tra il bordo del cls e l'armatura	С	50	[mm]
Distanza tra i baricentri delle barre	S	100	[mm]
Distanza massima di riferimento tra le barre	Srif.max	300	[mm]
Calcolo dell'ampiezza delle fessure - Combinazione	Quasi Permanent	е	
Momento sollecitante per la combinazione Quasi Permanente	M Ed,q.p.	113,63	[kNm]
Durata del carico		lunga	[-]
Posizione dell'asse neutro dal lembo superiore	X	150,26	[mm]
Tensione indotta nell'armatura tesa considerando la sezione fessurata	$\sigma_{\scriptscriptstyle S}$	90,44	[MPa]
Valore medio della resistenza a trazione efficace del calcestruzzo	$f_{\text{ct,eff}}$	3,1	[MPa]
Fattore dipendente dalla durata del carico	k _t	0,4	[-]
Altezza efficace	$h_{c,eff}$	125	[mm]
Area efficace del calcestruzzo teso attorno all'armatura	$A_{c,eff}$	125000	[mm ²]
Rapporto geometrico sull'area efficace	$ ho_{ extsf{p,eff}}$	0,02011	[-]
Rapporto tra E _s /E _{cm}	αe	5,94	[-]
Differenza tra la deformazione nell'acciaio e quella nel calcestruzzo	Esm - Ecm	0,000107	[-]
		0,000271	[-]
Determinazione del diametro equivalente delle barre tese			
	$\phi_{ ext{eq}}$	20,00	[mm]
Coefficiente che tiene conto dell'aderenza migliorata delle barre	ϕ_{eq} k_1	20,00	[mm]
Coefficiente che tiene conto della flessione pura		•	

MANDATARIA:

Collegamento viario compreso tra lo Svincolo della S.S. 514 di "Chiaromonte" con la S.S. 115 e lo Svincolo della "Ragusana"

PROGETTO ESECUTIVO

RELAZIONE DI CALCOLO

	k ₄	0,425	[-]
Distanza massima tra le fessure	\$ _{r,max}	339,10	[mm]
		339,10	[mm]
Ampiezza delle fessure	Wk	0,0920	[mm]
Ampiezza massima delle fessure	W _{max}	0,2	[mm]
Calcolo dell'ampiezza delle fessure - Combinaz	ione Frequente		
Momento sollecitante per la combinazione Frequente	M _{Ed,freq} .	113,63	[kNm]
Durata del carico		lunga	[-]
Posizione dell'asse neutro dal lembo superiore	X	150,26	[mm]
Tensione indotta nell'armatura tesa considerando la sezione fessurata	$\sigma_{\scriptscriptstyle S}$	90,44	[MPa]
Valore medio della resistenza a trazione efficace del calcestruzzo	$f_{\text{ct,eff}}$	3,1	[MPa]
Fattore dipendente dalla durata del carico	k _t	0,4	[-]
Altezza efficace	$h_{\text{c,eff}}$	125	[mm]
Area efficace del calcestruzzo teso attorno all'armatura	$A_{c,eff}$	125000	[mm ²]
Rapporto geometrico sull'area efficace	$ ho_{ extsf{p,eff}}$	0,02011	[-]
Rapporto tra E _s /E _{cm}	$lpha_{ t e}$	5,94	[-]
Differenza tra la deformazione nell'acciaio e quella nel calcestruzzo	Esm - Ecm	0,000107	[-]
		0,000271	[-]
Determinazione del diametro equivalente delle barre tese	$\phi_{ extsf{eq}}$	20,00	[mm]
Coefficiente che tiene conto dell'aderenza migliorata delle barre	k_1	0,8	[-]
Coefficiente che tiene conto della flessione pura	k_2	0,5	[-]
	k ₃	3,4	[-]
	k ₄	0,425	[-]
Distanza massima tra le fessure	\$ _{r,max}	339,10	[mm]
		339,10	[mm]
Ampiezza delle fessure	W k	0,0920	[mm]
Ampiezza massima delle fessure	W _{max}	0,3	[mm]

11.2.3 Soletta fondazione

Base sezione 100,00cm Altezza sezione 60,00cm

 $Afi = 8\emptyset 24 = 36,19cmq$ $Afs=8\emptyset24 = 36,19cmq$

DETERMINAZIONE DELLE TENSIONI A SLS Controllo tensionale per la Combinazione Caratteristica [kNm Momento sollecitante assunto in valore assoluto M_{Ed} Coefficiente di omogeneizzazione n

MANDATARIA:

Realizzazione Lavori

Collegamento viario compreso tra lo Svincolo della S.S. 514 di "Chiaromonte" con la S.S. 115 e lo Svincolo della "Ragusana"

PROGETTO ESECUTIVO

RELAZIONE DI CALCOLO

Altezza della sezione trasversale di calcestruzzo	h	600	[mm]
Larghezza della sezione trasversale di calcestruzzo	b	1000	[mm]
Copriferro	d'	50	[mm]
Altezza utile della sezione	d	550	[mm] [mm²
Area dell'armatura tesa	As	3619] [mm²
Area dell'armatura compressa	A's	3619]
Posizione dell'asse neutro	X	168,79 1025799439	[mm] [mm ⁴
Momento d'inerzia della sezione rispetto a x	J	5	j
Tensione ammissibile nel calcestruzzo nella combinazione caratteristica	$\sigma_{\text{c,caratt}}$.	19,92	[MPa] [MPa
Tensione ammissibile nell'acciaio per le combinazioni a SLS	$\sigma_{\scriptscriptstyle S}$	360	.]
Tensione nel calcestruzzo	σ _c	2,62	[MPa]
Tensione nell'armatura tesa	G.	88.71	[MPa]

DETERMINAZIONE DELLE TENSIONI A SLS										
Controllo tensionale per la Combinazione Quasi Permanente										
Momento sollecitante assunto in valore assoluto	M_{Ed}	159,2	[kNr]							
Coefficiente di omogeneizzazione	n	15,0	[-]							
Altezza della sezione trasversale di calcestruzzo	j	600	[-]							
Larghezza della sezione trasversale di calcestruzzo	b	1000	[-]							
Copriferro	d'	50	[-]							
Altezza utile della sezione	d'	550	[-]							
Area dell'armatura tesa	As	3619	[mm] [mm							
Area dell'armatura compressa	A's	3619]							
Posizione dell'asse neutro	X	168,79 1025799439	[mm							
Momento d'inerzia della sezione rispetto a x Tensione ammissibile nel calcestruzzo nella combinazione quasi	J	5	[MPc							
permanente	σ c,q.p.	14,94] [MPc							
Tensione ammissibile nell'acciaio per le combinazioni a SLS	σ_s	360]							
Tensione nel calcestruzzo	σο	2,62	[MPc							
Tensione nell'armatura tesa	σs	88,71	[MPc							

CONTROLLO DI FESSURA	AZIONE A SLS		
Altezza della sezione trasversale di calcestruzzo	h	600	[mm]
Larghezza della sezione trasversale di calcestruzzo	b	1000	[mm]
Copriferro	d'	50	[mm]
Altezza utile della sezione	d	550	[mm]
Area dell'armatura tesa	As	3619	[mm ²]

MANDATARIA:

PROGETTO ESECUTIVO

RELAZIONE DI CALCOLO

Distanza tra il bordo del cle e l'armatura C 5.0 [mm]	Area dell'armatura compressa	A's	3619	[mm ²]
Distanza massima di riferimento tra la barre Calcolo dell'amplezza delle fessure - Combinazione Quasi Permanente Nema	Distanza tra il bordo del cls e l'armatura	С	50	[mm]
Momento sollecitante per la combinazione Quasi Permanente Motage 159,15 [kNm] -	Distanza tra i baricentri delle barre	S	100	[mm]
Momento sollecitante per la combinazione Quasi Permanente Mesage 159;15 [Rhm]	Distanza massima di riferimento tra le barre	Srif.max	310	[mm]
Durata del carico Lunga F Posizione dell'asse neutro dal lembo superiore x 168.79 mm] Tensione indotta nell'ammatura tesa considerando la sezione fessurata as 88.71 MPa Valore medio della reistanza a trazione efficace del calcestruzzo fictueri 125 mm] Area efficace del calcestruzzo ki 0.4 F 125 mm] Area efficace del calcestruzzo che efficace del calcestruzzo che efficace del calcestruzzo che efficace del calcestruzzo che efficace che efficac	Calcolo dell'ampiezza delle fessure - Combinazione	Quasi Permanent	е	
Posizione dell'asse neutro dal lembo superiore x 168.79 [mm] Tensione indatta nell'armatura tesa considerando la sezione fessurata σ; 88,71 [MPa] Valore medio della resistenza a trazione efficace del calcestruzzo fc.tell* 3.1 [MPa] Atlezza efficace hc.att 125 [mm] Acett 125000 [mm²] Atlezza efficace del calcestruzzo teso attorno all'armatura Acett 125000 [mm²] Rapporto geometrico sull'area efficace pp.m²t 0.02895 [-] Pl. Rapporto geometrico sull'area efficace pp.m²t 0.02895 [-] Pl. <	Momento sollecitante per la combinazione Quasi Permanente	M _{Ed,q.p.}	159,15	[kNm]
Tensione indotta nell'armatura tesa considerando la sezione fessurata as 88,71 MPa Valore medio della resistenza a trazione efficace del calcestruzzo fet.eff 3.1 MPa Fattre dipendente dalla durata del carico k1 0.4 Fatteza efficace del calcestruzzo escario all'armatura Ac.eff 125 mm] Area efficace del calcestruzzo teso attorno all'armatura Ac.eff 125 mm] Area efficace del calcestruzzo teso attorno all'armatura Ac.eff 125 mm] Area efficace officace pn.eff 0.02895 Fapporto geometrico sull'area efficace pn.eff 0.02895 Fapporto fra E/E.m. ac 5.94 Fapporto fra E/E.m. 0.000193 Fapporto geometrico sull'area efficace del calcestruzzo feso attorno all'armatura 0.000193 Fapporto fra E/E.m. 0.000193 Fapporto geometrico sull'area efficace quella nel calcestruzzo feso attorno all'ar	Durata del carico		lunga	[-]
Valore medio della resistenza a trazione efficace del calcestruzzo f _{c1.eff} 3.1 [MPa] Fattore dipendente dalla durata del carico k₁ 0.4 [-] Altezza efficace hc.eff 125 [mm] Area efficace del calcestruzzo teso attorno all'armatura Aceff 125000 [mm²] Rapporto geometrico sull'area efficace pp.eff 0.02875 [-] Rapporto tra Ey/Ecm ac 5,94 [-] Differenza tra la deformazione nell'acciaio e quella nel calcestruzzo 6µm - 6cm 0.000133 [-] Differenza tra la deformazione del diametro equivalente delle barre tese ∮eq 24,00 [mm] Coefficiente che fiene conto dell'adderenza migliorata delle barre k1 0.8 [-] Coefficiente che fiene conto della flessione pura k2 0.5 [-] Distanza massima tra le fessure yc. 310,92 [mm] Amplezza delle fessure yc. 310,92 [mm] Amplezza massima delle fessure yc. 0.000266 [-] Amplezza massima delle fessure yc. 0.00026 [-] Calcola dell'amplezza delle fessure - Combinatore yc. 159,15 [-] Momento sollectiante per la combinazione frequente <	Posizione dell'asse neutro dal lembo superiore	X	168,79	[mm]
Fattore dipendente dalla durata del carico k ₁ 0.4 C. Altezza efficace h _{c.eff} 125 mm] Area efficace del calcestruzzo teso attomo all'armatura A _{c.eff} 125000 mm²] Rapporto geometrico sull'area efficace p _{D.eff} 0.02895 C. Rapporto geometrico sull'area efficace p _{D.eff} 0.02895 C. Rapporto tra E/E _{cm} α _e 5.794 C. Differenza tra la deformazione nell'acciaio e quella nel calcestruzzo ε _{cm} - ε _{cm} 0.0001233 C. Determinazione del diametro equivalente delle barre tese φ _{eq} 24.00 mm] Coefficiente che tiene conto dell'aderenza migliorata delle barre k ₁ 0.8 C. Coefficiente che tiene conto della flessione pura k ₂ 0.5 C. Coefficiente che tiene conto della flessione pura k ₃ 3.4 C. Coefficiente che tiene conto della flessione pura k ₄ 0.425 C. Distanza massima tra le fessure s _{c.max} 310,92 mm] Ampiezza delle fessure w _k 0.08827 mm] Ampiezza delle fessure w _k 0.08827 mm] mm] Momento sollecitante per la combinazione Frequente Mestes, 159,15 kNm] mm] Durata del carico lunga C. Posizione dell'asse neutro dal lembo superiore x 168,79 mm] Tensione indotta nell'armatura tesa considerando la sezione fessurata σ ₅ 88,71 MPα] Valore medio della cresistenza a trazione efficace del calcestruzzo f _{c.t.eff} 3.1 MPα] Altezza efficace h _{c.eff} 125 mm] Rapporto geometrico sull'area efficace p _{p.eff} 0.00895 C. Rapporto geometrico sull'area efficace p _{p.eff} 0.00895 C. Rapporto fra E/E _{cm} α _e 5,94 C. Differenza tra la deformazione nell'accioio e quella nel calcestruzzo ε _{cm} - ε _{cm} 0.000193 C.	Tensione indotta nell'armatura tesa considerando la sezione fessurata	$\sigma_{\scriptscriptstyle S}$	88,71	[MPa]
Altezza efficace h_cet 125 mm Area efficace del calcestruzzo teso attomo all'armatura A_cet 125000 mm² Rapporto geometrico sull'area efficace ρ_Det 0,02895 - 1 125000 mm² Rapporto geometrico sull'area efficace ρ_Det 0,02895 - 1 125000 mm² Rapporto tra E/Fcm α ₆ 5,94 - 1 125000 mm² 125000 125000 mm² 125000 125000 125000 125000 125000 1250	Valore medio della resistenza a trazione efficace del calcestruzzo	$f_{\text{ct,eff}}$	3,1	[MPa]
Reaporto geometrico sull'area efficace Poett 0.02895 - Rapporto geometrico sull'area efficace Poett 0.02895 - Rapporto tra E/Eem αe 5.94 - Differenza tra la deformazione nell'acciaio e quella nel calcestruzzo Em - Ecm 0.000193 - 0.000266 - Determinazione del diametro equivalente delle barre tese Φeq 24.00 mm] Coefficiente che tiene conto dell'aderenza migliorata delle barre k₁ 0.8 -	Fattore dipendente dalla durata del carico	k _t	0,4	[-]
Rapporto geometrico sull'area efficace pp. eff 0.02895 [-] Rapporto tra Es/Ecm αe 5.94 [-] Differenza tra la deformazione nell'acciaio e quella nel calcestruzzo εm - εεm 0,000193 [-] Determinazione del diametro equivalente delle barre tese φeq 24,00 [mm] Coefficiente che tiene conto dell'aderenza migliorata delle barre k1 0.8 [-] Coefficiente che tiene conto della flessione pura k2 0.5 [-] Coefficiente che tiene conto della flessione pura k3 3.4 [-] Coefficiente che tiene conto della flessione pura k2 0.5 [-] Ka 3.4 [-] [-] Distanza massima tra le fessure sm. 310,92 [mm] Ampiezza delle fessure wx 0,8827 [mm] Ampiezza massima delle fessure wx 0,8827 [mm] Momento sollecitante per la combinazione Frequente Mediene 159,15 [kNm] Momento sollecitante per la combinazione Frequente x 168,79 [mm] Durat	Altezza efficace	$h_{c,eff}$	125	[mm]
Rapporto tra Ev/Esm αe 5,94 [-] Differenza tra la deformazione nell'acciaio e quella nel calcestruzzo εsm - εcm 0,000193 [-] Determinazione del diametro equivalente delle barre tese ψeq 24,00 [mm] Coefficiente che tiene conto dell'aderenza migliorata delle barre k1 0,8 [-] Coefficiente che tiene conto della flessione pura k2 0,5 [-] Ks 3,4 [-] [-] Distanza massima tra le fessure s.max 310,92 [mm] Ampiezza delle fessure wk 0,0827 [mm] Ampiezza massima delle fessure wmax 0,22 [mm] Momento sollecitante per la combinazione frequente Medireg 159,15 [kNm] Durata del carico x 168,79 [mm] Posizione dell'asse neutro dal lembo superiore x 168,79 [mm] Tensione indotta nell'armatura tesa considerando la sezione fessurata σ1 88,71 [MPa] Valore medio della durata del carico k1 0,4 [-] Altezza efficace	Area efficace del calcestruzzo teso attorno all'armatura	$A_{c,eff}$	125000	[mm ²]
Differenza tra la deformazione nell'acciaio e quella nel calcestruzzo Esm - Ecm 0,000193 -1	Rapporto geometrico sull'area efficace	$ ho_{ m p,eff}$	0,02895	[-]
Determinazione del diametro equivalente delle barre tese	Rapporto tra E _s /E _{cm}	$lpha_{ t e}$	5,94	[-]
Determinazione del diametro equivalente delle barre tese φeq 24,00 [mm] Coefficiente che tiene conto dell'aderenza migliorata delle barre k1 0.8 [-] Coefficiente che tiene conto della flessione pura k2 0.5 [-] k3 3.4 [-] [-] k4 0,425 [-] [-] Distanza massima tra le fessure Si.max 310,92 [mm] Ampiezza delle fessure Wm 0,0827 [mm] Ampiezza massima delle fessure Wm 0,0827 [mm] Calcolo dell'ampiezza delle fessure - Combinazione Frequente Imm] [mm] Momento sollecitante per la combinazione Frequente Mt. d.treq. 159,15 [kNm] Durata del carico lunga [-] Posizione dell'asse neutro dal lembo superiore x 168,79 [mm] Tensione indotta nell'armatura tesa considerando la sezione fessurata α; 88,71 [MPa] Valore medio della resistenza a trazione efficace del calcestruzzo fet.eff 3,1 [MPa] Fattore dipendente dalla durata del carico k1 0,4 [-] Altezza efficace hc.eff 125 [mm] Area efficace del calcestruzzo	Differenza tra la deformazione nell'acciaio e quella nel calcestruzzo	Esm - Ecm	0,000193	[-]
Coefficiente che tiene conto dell'aderenza migliorata delle barre k1 0,8 [-]			0,000266	[-]
Coefficiente che tiene conto della flessione pura k2 0,5 [-] k3 3,4 [-] k4 0,425 [-] Distanza massima tra le fessure Sr.max 310,92 [mm] Ampiezza delle fessure wk 0,8827 [mm] Calcolo dell'ampiezza delle fessure requente Medirea. Medirea. 159,15 [kNm] Durata del carico Posizione dell'asse neutro dal lembo superiore Tensione indotta nell'armatura tesa considerando la sezione fessurata as 88,71 [MPa] Valore medio della resistenza a trazione efficace del calcestruzzo fater dipendente dalla durata del carico Altezza efficace Altezza efficace Altezza efficace del calcestruzzo teso attorno all'armatura Ac.eff 125 [mm] Rapporto geometrico sull'area efficace Rapporto geometrico sull'area efficace qe 5,94 [-] Differenza tra la deformazione nell'acciaio e quella nel calcestruzzo £xm - 8cm 0,000193 [-] 0,000266 [-]	Determinazione del diametro equivalente delle barre tese	феq	24,00	[mm]
Ray	Coefficiente che tiene conto dell'aderenza migliorata delle barre	k_1	0,8	[-]
Distanza massima tra le fessure S _{1,max} 310,92 [mm] [Coefficiente che tiene conto della flessione pura	k ₂	0,5	[-]
Distanza massima tra le fessure St.max 310,92 mm 310,92 mm 310,92 mm mm mm mm mm mm mm		k ₃	3,4	[-]
Ampiezza delle fessure Ampiezza massima delle fessure Calcolo dell'ampiezza delle fessure - Combinazione Frequente Momento sollecitante per la combinazione Frequente Momento sollecitante per la combinazione Frequente Meddreg. 159,15 [kNm] Durata del carico Posizione dell'asse neutro dal lembo superiore X 168,79 [mm] Tensione indotta nell'armatura tesa considerando la sezione fessurata 3 88,71 [MPa] Valore medio della resistenza a trazione efficace del calcestruzzo fateff 3,1 [MPa] Fattore dipendente dalla durata del carico k1 0,4 [-] Altezza efficace hc.eff 125 [mm] Area efficace del calcestruzzo teso attorno all'armatura Ac.eff 125000 [mm²] Rapporto geometrico sull'area efficace pp.eff 0,02895 [-] Rapporto tra Es/Ecm 0,000193 [-] Differenza tra la deformazione nell'acciaio e quella nel calcestruzzo \$\sim - \sim \cdot \		k ₄	0,425	[-]
Ampiezza delle fessureWk0,0827 (mm)Imm)Ampiezza massima delle fessureWmax0,2Calcolo dell'ampiezza delle fessure - Combinazione FrequenteImm)Momento sollecitante per la combinazione FrequenteMed.freq.159,15Durata del caricolunga[-]Posizione dell'asse neutro dal lembo superiorex168,79[mm]Tensione indotta nell'armatura tesa considerando la sezione fessurataσs88,71[MPa]Valore medio della resistenza a trazione efficace del calcestruzzofct.eff3,1[MPa]Fattore dipendente dalla durata del caricokt0,4[-]Altezza efficacehc.eff125[mm]Area efficace del calcestruzzo teso attorno all'armaturaAc.eff125000[mm²]Rapporto geometrico sull'area efficacepp.eff0,02895[-]Rapporto tra Es/Ecmαe5,94[-]Differenza tra la deformazione nell'acciaio e quella nel calcestruzzoεsm - εcm0,000193[-][-][-]	Distanza massima tra le fessure	S _{r,max}	310,92	[mm]
Ampiezza massima delle fessurewmax0,2[mm]Calcolo dell'ampiezza delle fessure - Combinazione FrequenteMed.freq.159,15[kNm]Momento sollecitante per la combinazione FrequenteMed.freq.159,15[kNm]Durata del caricolunga[-]Posizione dell'asse neutro dal lembo superiorex168,79[mm]Tensione indotta nell'armatura tesa considerando la sezione fessurataσs88,71[MPa]Valore medio della resistenza a trazione efficace del calcestruzzofct.eff3,1[MPa]Fattore dipendente dalla durata del caricokt0,4[-]Altezza efficacehc.eff125[mm]Area efficace del calcestruzzo teso attorno all'armaturaAc.eff125000[mm²]Rapporto geometrico sull'area efficacepp.eff0,02895[-]Rapporto tra Es/Ecmαe5,94[-]Differenza tra la deformazione nell'acciaio e quella nel calcestruzzoεsm - εcm0,000193[-]			310,92	[mm]
Calcolo dell'ampiezza delle fessure - Combinazione FrequenteMomento sollecitante per la combinazione FrequenteMeddreg.159,15[kNm]Durata del caricolunga[-]Posizione dell'asse neutro dal lembo superiorex168,79[mm]Tensione indotta nell'armatura tesa considerando la sezione fessurataσs88,71[MPa]Valore medio della resistenza a trazione efficace del calcestruzzofct.eff3,1[MPa]Fattore dipendente dalla durata del caricokt0,4[-]Altezza efficacehc.eff125[mm]Area efficace del calcestruzzo teso attorno all'armaturaAc.eff125000[mm²]Rapporto geometrico sull'area efficaceρp.eff0,02895[-]Rapporto tra Es/Ecmαe5,94[-]Differenza tra la deformazione nell'acciaio e quella nel calcestruzzoεsm - εcm0,000193[-]	Ampiezza delle fessure	Wk	0,0827	[mm]
Momento sollecitante per la combinazione FrequenteMed/req.159,15[kNm]Durata del caricolunga[-]Posizione dell'asse neutro dal lembo superiorex168,79[mm]Tensione indotta nell'armatura tesa considerando la sezione fessurataσs88,71[MPa]Valore medio della resistenza a trazione efficace del calcestruzzofct.eff3,1[MPa]Fattore dipendente dalla durata del caricokt0,4[-]Altezza efficacehc.eff125[mm]Area efficace del calcestruzzo teso attorno all'armaturaAc.eff125000[mm²]Rapporto geometrico sull'area efficacepp.eff0,02895[-]Rapporto tra Es/Ecmαe5,94[-]Differenza tra la deformazione nell'acciaio e quella nel calcestruzzoεsm - εcm0,000193[-]	Ampiezza massima delle fessure	W _{max}	0,2	[mm]
Durata del caricolunga[-]Posizione dell'asse neutro dal lembo superiorex168,79 [mm]Tensione indotta nell'armatura tesa considerando la sezione fessurataσ _s 88,71 [MPa]Valore medio della resistenza a trazione efficace del calcestruzzof _{ct,eff} 3,1 [MPa]Fattore dipendente dalla durata del caricokt0,4 [-]Altezza efficaceh _{c,eff} 125 [mm]Area efficace del calcestruzzo teso attorno all'armaturaA _{c,eff} 125000 [mm²]Rapporto geometrico sull'area efficaceρ _{p,eff} 0,02895 [-]Rapporto tra E _s /E _{cm} α _e 5,94 [-]Differenza tra la deformazione nell'acciaio e quella nel calcestruzzoε _{sm} - ε _{cm} 0,000193 [-]0,000266 [-]	Calcolo dell'ampiezza delle fessure - Combinaz	ione Frequente		
Durata del caricolunga[-]Posizione dell'asse neutro dal lembo superiorex168,79 [mm]Tensione indotta nell'armatura tesa considerando la sezione fessurataσ _s 88,71 [MPa]Valore medio della resistenza a trazione efficace del calcestruzzof _{ct,eff} 3,1 [MPa]Fattore dipendente dalla durata del caricokt0,4 [-]Altezza efficaceh _{c,eff} 125 [mm]Area efficace del calcestruzzo teso attorno all'armaturaA _{c,eff} 125000 [mm²]Rapporto geometrico sull'area efficaceρ _{p,eff} 0,02895 [-]Rapporto tra E _s /E _{cm} α _e 5,94 [-]Differenza tra la deformazione nell'acciaio e quella nel calcestruzzoε _{sm} - ε _{cm} 0,000193 [-]0,000266 [-]	Momento sollecitante per la combinazione Frequente	M _{Ed.frea} .	159,15	[kNm]
Posizione dell'asse neutro dal lembo superiorex168,79[mm]Tensione indotta nell'armatura tesa considerando la sezione fessurataσs88,71[MPa]Valore medio della resistenza a trazione efficace del calcestruzzofct.eff3,1[MPa]Fattore dipendente dalla durata del caricokt0,4[-]Altezza efficacehc.eff125[mm]Area efficace del calcestruzzo teso attorno all'armaturaAc.eff125000[mm²]Rapporto geometrico sull'area efficaceρp.eff0,02895[-]Rapporto tra Es/Ecmαe5,94[-]Differenza tra la deformazione nell'acciaio e quella nel calcestruzzoεsm - εcm0,000193[-]0,000266[-]				[-]
Valore medio della resistenza a trazione efficace del calcestruzzo f _{ct,eff} 3,1 [MPa] Fattore dipendente dalla durata del carico kt 0,4 [-] Altezza efficace h _{c,eff} 125 [mm] Area efficace del calcestruzzo teso attorno all'armatura A _{c,eff} 125000 [mm²] Rapporto geometrico sull'area efficace pp.eff 0,02895 [-] Rapporto tra E _s /E _{cm} α _e 5,94 [-] Differenza tra la deformazione nell'acciaio e quella nel calcestruzzo ε _{sm} - ε _{cm} 0,000193 [-] 0,000266 [-]	Posizione dell'asse neutro dal lembo superiore	X	168,79	
Fattore dipendente dalla durata del carico kt 0,4 [-] Altezza efficace hc.,eff 125 [mm] Area efficace del calcestruzzo teso attorno all'armatura Ac.,eff 125000 [mm²] Rapporto geometrico sull'area efficace pp.,eff 0,02895 [-] Rapporto tra Es/Ecm αe 5,94 [-] Differenza tra la deformazione nell'acciaio e quella nel calcestruzzo εsm - εcm 0,000193 [-] 0,000266 [-]	Tensione indotta nell'armatura tesa considerando la sezione fessurata	σ_{s}	88,71	[MPa]
Altezza efficace $h_{c,eff}$ 125 [mm] Area efficace del calcestruzzo teso attorno all'armatura $A_{c,eff}$ 125000 [mm²] Rapporto geometrico sull'area efficace $p_{p,eff}$ 0,02895 [-] Rapporto tra E_s/E_{cm} α_e 5,94 [-] Differenza tra la deformazione nell'acciaio e quella nel calcestruzzo $E_{sm} - E_{cm}$ 0,000193 [-] 0,000266 [-]	Valore medio della resistenza a trazione efficace del calcestruzzo	$f_{\text{ct,eff}}$	3,1	[MPa]
Area efficace del calcestruzzo teso attorno all'armatura $A_{c,eff}$ 125000 [mm²] Rapporto geometrico sull'area efficace $p_{p,eff}$ 0,02895 [-] Rapporto tra Es/Ecm α_{e} 5,94 [-] Differenza tra la deformazione nell'acciaio e quella nel calcestruzzo $\epsilon_{sm} - \epsilon_{cm}$ 0,000193 [-] 0,000266 [-]	Fattore dipendente dalla durata del carico	k _t	0,4	[-]
Rapporto geometrico sull'area efficace $\rho_{p,eff}$ 0,02895 [-] Rapporto tra Es/Ecm α_e 5,94 [-] Differenza tra la deformazione nell'acciaio e quella nel calcestruzzo $\epsilon_{sm} - \epsilon_{cm}$ 0,000193 [-] 0,000266 [-]	Altezza efficace	h _{c,eff}	125	[mm]
Rapporto tra Es/Ecm α_e 5,94 [-] Differenza tra la deformazione nell'acciaio e quella nel calcestruzzo $\epsilon_{sm} - \epsilon_{cm}$ 0,000193 [-] 0,000266 [-]	Area efficace del calcestruzzo teso attorno all'armatura	$A_{c,eff}$	125000	[mm ²]
Rapporto tra Es/Ecm α_e 5,94 [-] Differenza tra la deformazione nell'acciaio e quella nel calcestruzzo $\epsilon_{sm} - \epsilon_{cm}$ 0,000193 [-] 0,000266 [-]	Rapporto geometrico sull'area efficace	ρ _{p,eff}	0,02895	[-]
Differenza tra la deformazione nell'acciaio e quella nel calcestruzzo $\epsilon_{sm} - \epsilon_{cm}$ 0,000193 [-] 0,000266	Rapporto tra E _s /E _{cm}			
0,000266 [-]				
	4	-		
Z //CC []	Determinazione del diametro equivalente delle barre tese	фед	24,00	[mm]

MANDATARIA:

Collegamento viario compreso tra lo Svincolo della S.S. 514 di "Chiaromonte" con la S.S. 115 e lo Svincolo della "Ragusana"

PROGETTO ESECUTIVO

RELAZIONE DI CALCOLO

Ampiezza massima delle fessure	W _{max}	0,3	[mm]
Ampiezza delle fessure	Wk	0,0827	[mm]
		310,92	[mm]
Distanza massima tra le fessure	S _{r,max}	310,92	[mm]
	K 4	0,425	[-]
	k ₃	3,4	[-]
Coefficiente che tiene conto della flessione pura	k_2	0,5	[-]
Coefficiente che tiene conto dell'aderenza migliorata delle barre	k_1	8,0	[-]

11.3 VERIFICHE SLO

La normativa NTC2008 prescrive, per le costruzioni che ricadono in classe d'uso IV, verifiche di rigidezza allo stato limite di operatività.

Data la difficoltà di inserire la struttura in esame tra le categorie elencate al 7.3.7.2 delle NTC2008, si è deciso, in via cautelativa, di verificare suddetto stato limite con il valore di controllo più basso, ossia dr<0,005h, ulteriormente moltiplicato per 2/3 così come richiesto.

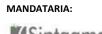
In definitiva il valore massimo di spostamento ammissibile è:

Massimi spostamenti differenziali orizzontali

- Fattore moltiplicativo spostamenti dovuti al sisma b 1
- c 1
- Controllo degli spostamenti di interpiano dU inferiore a 0.0033 H

Combinazioni agli Stati Limite di Operatività

Componente	Valori Min				Valori Max				Valori Max				
Componente	Comb Nodo Valor		Valore		Comb	Nodo	Valore		Comb Nodo Val		Valore	Valore	
Ux	9 Sisma 0	54	-0.0	[mm]	9 Sisma 0	60	1.4	[mm]	9 Sisma 0	60	1.4	[mm]	
Uy	9 Sisma 0	60	-0.0	[mm]	9 Sisma 0	44	0.0	[mm]	9 Sisma 0	60	-0.0	[mm]	
Uz	9 Sisma 0	60	-4.4	[mm]	9 Sisma 0	37	-2.3	[mm]	9 Sisma 0	60	-4.4	[mm]	
Rx	9 Sisma 0	38	-0.00	[°]	9 Sisma 0	37	0.00	[°]	9 Sisma 0	37	0.00	[°]	
Ry	9 Sisma 0	37	0.00	[°]	9 Sisma 0	44	0.03	[°]	9 Sisma 0	44	0.03	[°]	
Rz	9 Sisma 0	52	-0.00	[°]	9 Sisma 0	38	-0.00	[°]	9 Sisma 0	52	-0.00	[°]	



Collegamento viario compreso tra lo Svincolo della S.S. 514 di "Chiaromonte" con la S.S. 115 e lo Svincolo della "Ragusana"

PROGETTO ESECUTIVO

RELAZIONE DI CALCOLO

Lo spostamento massimo è pari a 1,4 mm che risulta minore dello spostamento limite pari a 14mm.

12 ALLEGATO – TABULATI DI CALCOLO SCATOLARE

12.1 DATI RELATIVI AI NODI DELLA STRUTTURA

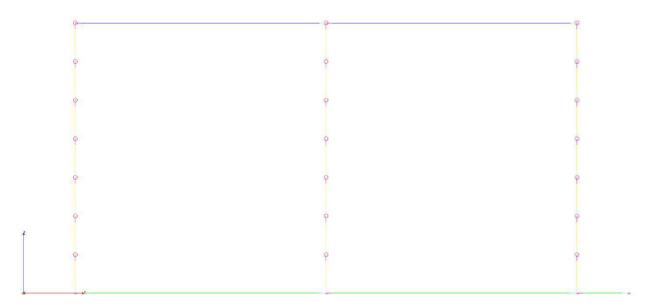


Figura 12-1"Schema strutturale a fili"

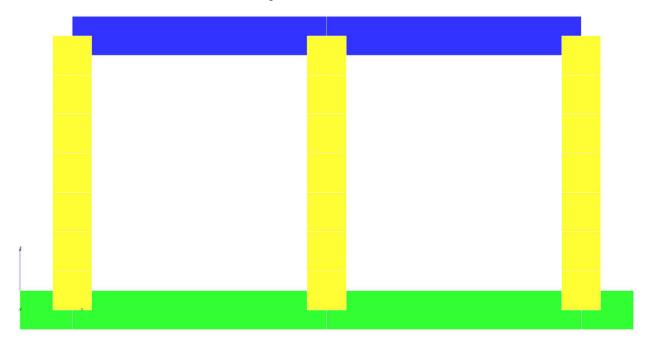


Figura 12-2"Schema strutturale solido"

Convenzioni adottate

La terna di riferimento generale è destrorsa.

Collegamento viario compreso tra lo Svincolo della S.S. 514 di "Chiaromonte" con la S.S. 115 e lo Svincolo della "Ragusana"

PROGETTO ESECUTIVO

RELAZIONE DI CALCOLO

I nodi vengono numerati, con riferimento a una sezione orizzontale, da sinistra a destra, dal basso verso l'alto e per quote crescenti.

L'impalcato di appartenenza di un nodo è definito, in generale, dalla prima delle tre cifre che ne definiscono il numero, possono tuttavia presentarsi casi in cui si hanno più di 100 nodi per solaio nel qual caso il solaio di appartenenza è specificato dall'ultimo valore stampato nella riga dei dati relativi al nodo.

La maschera dei vincoli è costituita dai valori 0 e 1. Il valore 1 indica che per il nodo in riferimento il grado di libertà correlativo è soppresso mentre il valore 0 indica che è libero.

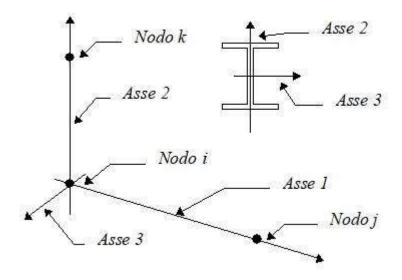
Nel caso di edifici civili multipiano l'asse z generale coincide con l'asse verticale rivolto verso l'alto. Nodi

Nodo	x [m]	y [m]	z [m]	Ux	Uy	Uz	Rx	Ry	Rz	Solaio
37	0.00	0.00	0.00	1	1	0	0	0	1	0
38	0.00	0.00	0.60	0	0	0	0	0	0	0
39	0.00	0.00	1.20	0	0	0	0	0	0	0
40	0.00	0.00	1.80	0	0	0	0	0	0	0
41	0.00	0.00	2.40	0	0	0	0	0	0	0
42	0.00	0.00	3.00	0	0	0	0	0	0	0
43	0.00	0.00	3.60	0	0	0	0	0	0	0
44	0.00	0.00	4.20	0	0	0	0	0	0	0
45	3.90	0.00	0.00	1	1	0	0	0	1	0
46	3.90	0.00	0.60	0	0	0	0	0	0	0
47	3.90	0.00	1.20	0	0	0	0	0	0	0
48	3.90	0.00	1.80	0	0	0	0	0	0	0
49	3.90	0.00	2.40	0	0	0	0	0	0	0
50	3.90	0.00	3.00	0	0	0	0	0	0	0
51	3.90	0.00	3.60	0	0	0	0	0	0	0
52	3.90	0.00	4.20	0	0	0	0	0	0	0
53	7.80	0.00	0.00	1	1	0	0	0	1	0
54	7.80	0.00	0.60	0	0	0	0	0	0	0
55	7.80	0.00	1.20	0	0	0	0	0	0	0
56	7.80	0.00	1.80	0	0	0	0	0	0	0
57	7.80	0.00	2.40	0	0	0	0	0	0	0
58	7.80	0.00	3.00	0	0	0	0	0	0	0
59	7.80	0.00	3.60	0	0	0	0	0	0	0
60	7.80	0.00	4.20	0	0	0	0	0	0	0
61	-0.80	0.00	0.00	1	1	0	0	0	1	0
62	8.60	0.00	0.00	1	1	0	0	0	1	0

RELAZIONE DI CALCOLO

12.2 ELEMENTI TIPO TRAVE

Convenzioni adottate


Ogni elemento tipo trave viene identificato da:

Il nodo iniziale i;

Il nodo finale i;

Il nodo **k** che definisce l'orientamento nello spazio della terna riferimento locale dell'elemento.

La terna di riferimento locale delle travi risulta essere così disposta:

Vengono riportati i valori di efficacia dei vincoli alle estremità dello elemento (variabili fra 0 e 100%), nei due piani 1-2 e 1-3 della trave in corrispondenza dei nodi, dando quindi la possibilità di considerare aste non perfettamente incastrate (coefficienti Vi12, Vj12, Vi13, Vj13).

Caratteristiche dei Materiali:

Tipo	Modulo Elastico [MPa]	ν	alfa [1/°C]	Peso Specifico [KN/m³]	Commento		
1	30000.000	0.120	0.000012	25.00	Calcestruzzo		
2	210000.003	0.330	0.000012	78.50	Acciaio		

Sezioni Impiegate:

Sezione	Materiale	Tipo di Sezione	Parametri Dimensionali Commenti
1	1	Rett.	B= 100 H= 60 [cm] Impalcato

Caratteristiche Inerziali:

MANDATARIA:

PROGETTO ESECUTIVO

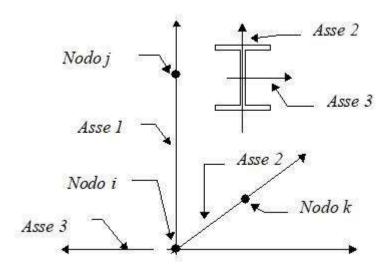
RELAZIONE DI CALCOLO

Sezione	Materiale	Area [mm²]	Jt [cm^4]	J2 [cm^4]	J3 [cm^4]	J23 [cm^4]	Хx	Ху
1	1	600000	4378496	1800000	5000000	0	1.2	1.2

Dal	Al	Nodo k	Luce [m]	Materiale Sez	Sezione				Fixit	y factors				Rigid-e	nd [m]
	Nodo				Sezione	V_{i12}	V_{j12}	V_{i13}	V_{j13}	N_{i}	$\mathbf{N}_{\mathbf{j}}$	$\mathbf{T}_{\mathbf{i}}$	$\mathbf{T}_{\mathbf{j}}$	\mathbf{d}_{ri}	\boldsymbol{d}_{rj}
44	52	10000	3.90	1	1	100	100	100	100	100	100	100	100	0.00	0.00
52	60	10000	3.90	1	1	100	100	100	100	100	100	100	100	0.00	0.00

12.3 ELEMENTO TIPO PILASTRO

Convenzioni adottate


Ogni elemento tipo pilastro viene identificato da:

Il nodo iniziale i;

Il nodo finale **j**;

Il nodo **k** che definisce l'orientamento nello spazio della terna riferimento locale dell'elemento.

La terna di riferimento locale del pilastro risulta quindi essere così disposta:

Sistema di riferimento locale

Vengono riportati i valori di efficacia dei vincoli flessionali alle estremità dell'elemento (variabili fra lo 0% e il 100%), nei due piani 1-2 e 1-3 del pilastro in corrispondenza dei nodi, dando quindi la possibilità di considerare aste non perfettamente incastrate alle estremità (coefficienti Vi12 - Vj12 - Vi13 - Vj13).

In generale, se non diversamente disposto, l'asse 2 coincide, per i pilastri, con l'asse y globale e pertanto la disposizione della sezione coincide con quella che si avrebbe in una vista in pianta.

Caratteristiche dei Materiali:

PROGETTO ESECUTIVO

RELAZIONE DI CALCOLO

Direzione Progettazione	e
Realizzazione Lavori	

Tipo [l	Modulo Elastico MPa]	v [:	alfa 1/°C]	Peso Specifico [KN/m³]	Commento
1	30000.000	0.120	0.000012	25.00	Calcestruzzo
2	210000.003	0.330	0.000012	78.50	Acciaio

Sezioni Impiegate:

Sezione	Materiale	Tipo di Sezione	Parametri Dimensionali Commenti
1	1	Rott	R= 100 H= 60 [cm] Piedritti

Caratteristiche Inerziali:

Sezione	Materiale	Area [mm²]	Jt [cm^4]	J2 [cm^4]	J3 [cm^4]	J23 [cm^4]	Хх	Ху
1	1	600000	4378496	1800000	5000000	0	1.2	1.2

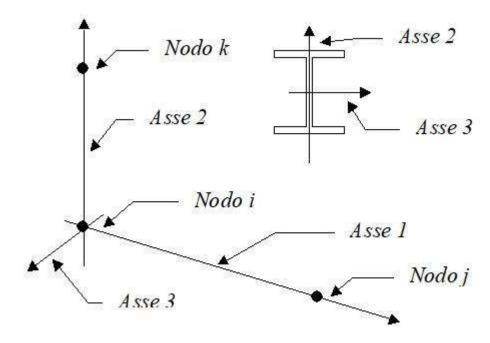
Dal Nodo	Al Nodo		Luce [m]	Materiale	Sezione	Fixity factors							Rigid-end [m]		
14000	14000	Ν.	[]			V_{i12}	V_{j12}	V_{i13}	V_{j13}	N_{i}	N_{j}	T_{i}	$\mathbf{T}_{\mathbf{j}}$	d_{ri}	\boldsymbol{d}_{rj}
38	37	10001	0.60	1	1	100	100	100	100	100	100	100	100	0.00	0.00
39	38	10001	0.60	1	1	100	100	100	100	100	100	100	100	0.00	0.00
40	39	10001	0.60	1	1	100	100	100	100	100	100	100	100	0.00	0.00
41	40	10001	0.60	1	1	100	100	100	100	100	100	100	100	0.00	0.00
42	41	10001	0.60	1	1	100	100	100	100	100	100	100	100	0.00	0.00
43	42	10001	0.60	1	1	100	100	100	100	100	100	100	100	0.00	0.00
44	43	10001	0.60	1	1	100	100	100	100	100	100	100	100	0.00	0.00
46	45	10001	0.60	1	1	100	100	100	100	100	100	100	100	0.00	0.00
47	46	10001	0.60	1	1	100	100	100	100	100	100	100	100	0.00	0.00
48	47	10001	0.60	1	1	100	100	100	100	100	100	100	100	0.00	0.00
49	48	10001	0.60	1	1	100	100	100	100	100	100	100	100	0.00	0.00
50	49	10001	0.60	1	1	100	100	100	100	100	100	100	100	0.00	0.00
51	50	10001	0.60	1	1	100	100	100	100	100	100	100	100	0.00	0.00
52	51	10001	0.60	1	1	100	100	100	100	100	100	100	100	0.00	0.00
54	53	10001	0.60	1	1	100	100	100	100	100	100	100	100	0.00	0.00
55	54	10001	0.60	1	1	100	100	100	100	100	100	100	100	0.00	0.00
56	55	10001	0.60	1	1	100	100	100	100	100	100	100	100	0.00	0.00
57	56	10001	0.60	1	1	100	100	100	100	100	100	100	100	0.00	0.00
58	57	10001	0.60	1	1	100	100	100	100	100	100	100	100	0.00	0.00
59	58	10001	0.60	1	1	100	100	100	100	100	100	100	100	0.00	0.00
60	59	10001	0.60	1	1	100	100	100	100	100	100	100	100	0.00	0.00

PROGETTO ESECUTIVO

RELAZIONE DI CALCOLO

12.4 ELEMENTO TIPO TRAVE SU SUOLO ALLA WINKLER

Convenzioni adottate


Ogni elemento tipo trave su suolo alla Winkler viene identificato da:

Il nodo iniziale i;

il nodo finale j;

il nodo k che definisce l'orientamento nello spazio della terna riferimento locale dell'elemento.

La terna di riferimento locale della trave risulta essere così disposta:

La modellazione del terreno sul quale agiscono le travi è alla Winkler e pertanto particolare attenzione va riposta ai casi in cui le travi inducano sul terreno zone di trazione poichè, in tal caso, la modellazione stessa cade in difetto.

Caratteristiche dei Materiali:

Tipo [Modulo Elastico [MPa]	v [1	alfa L/°C]	Peso Specifico [KN/m³]	Commento
1	30000.000	0.120	0.000012	25.00	Calcestruzzo
2	210000.003	0.330	0.000012	78.50	Acciaio

Numer	k Winkler o [kg/cm³]	E [MPa]	v	Commento
1	5.0	0.100	0.10	Default

Sezioni Impiegate:

Collegamento viario compreso tra lo Svincolo della S.S. 514 di "Chiaromonte" con la S.S. 115 e lo

Svincolo della "Ragusana" **PROGETTO ESECUTIVO**

RELAZIONE DI CALCOLO

Sezione	Materiale	Tipo di Sezione	Parametri Dimensionali Commenti
1	1	Rett.	B= 100 H= 60 [cm] Terreno numero 1 Default Soletta

Caratteristiche Inerziali:

Sezione	Materiale	Area [mm²]	Jt [cm^4]	J2 [cm^4]	J3 [cm^4]	J23 [cm^4]	Хx	Ху
1	1			1800000				12

Travata	Trave	Nodo i	Nodo j	Nodo k	Materiale	Sezione	Luce [m]
0	0	37	45	10001	1	1	3.90
0	0	45	53	10001	1	1	3.90
0	0	53	62	10001	1	1	0.80
0	0	61	37	10001	1	1	0.80

12.5 CONDIZIONI, COMBINAZIONI E ANALISI SISMICA

RISULTATI DELL'ANALISI DINAMICA

raggio d'inerzia polare di piano l_s= sqrt(J_p/ m)

 X_g , Y_g , Z_g coordinate centro di massaModale

eccentricità centro di massa-centro delle rigidezza Dx, Dy

rigidezze traslanti e torcenti Krzz, Kttmin, Ktmax

raggi giratori d'inerzia $(r_1 = (Kr_{zz}/Kt_{min})^{1/2}r_2 = (Kr_{zz}/Kt_{max})^{1/2})$ r_1, r_2

 $\Delta K_x,\! \Delta K_y \! \Delta K_{\Theta z}$ incrementi percentuali di rigidezza (ΔK = (K_i-K_{i-1})/K_{i-1}

rigidezze traslanti e torsionali del piano i-esimo rispetto agli assi globali K_{xi} , K_{yi} , $K_{\Theta zi}$

ordinata dello spettro

Coeff.di Part. coefficienti di partecipazione (in letteratura gii)

rapporto percentuale fra i fattori di partecipazione del modo i-esimo e del primo $|L_i|/|L_1|$

modo

Mmi/Mmtot percentuale massa modale efficacie dell'i-esimo modo

Sum

percentuale cumulativa delle masse modali efficaci Mmi/Mmtot

spostamenti modali del nodo master $\varphi_{i,Ux}\text{, }\varphi_{i,Uy}\text{, }\varphi_{i,\theta z}$

RELAZIONE DI CALCOLO

Modalità di valutazione della risposta modale Analisi spettrale via Subspace iterator Smorzamento strutturale 5.0 % risposta $S = CQC(S_i)$ segno risposta = $sign(\Sigma S_i)$

Sintesi dei risultati SLV per direzione d'ingresso del sisma.

Direzione	Modo Principale	Periodo	% Massa Modale	% Massa Modale
d'ingresso		[sec]	Modo Principale	Totale
0.00 [°] SLV	2	0.11	60.1	100.0

Autovalori, Periodi Masse Modali efficaci

Risultati angolo di ingresso del sisma: 0.00 [°] SLV

Modo	Periodo [sec]	R	Coefficente di Partecipazione	% L _i / L ₁	Massa Modale	% M _{mi} /M _{mtot}	% Σ M _{mi} /M _{mtot}
2	0.11	0.610	4.2348175049e+01		1.7933679199e+03	60.1	60.1
5	0.05	0.458	2.6399011612e+01	62.3	6.9690783691e+02	23.4	83.5
11	0.01	0.372	1.6443252563e+01	38.8	2.7038055420e+02	9.1	92.6
20	0.00	0.357	-8.3813066483e+00	19.8	7.0246299744e+01	2.4	94.9
29	0.00	0.352	6.8362216949e+00	16.1	4.6733928680e+01	1.6	96.5
8	0.01	0.381	5.7761917114e+00	13.6	3.3364391327e+01	1.1	97.6
38	0.00	0.351	-4.7123479843e+00	11.1	2.2206224442e+01	0.7	98.4
25	0.00	0.355	-4.4806900024e+00	10.6	2.0076581955e+01	0.7	99.0
21	0.00	0.356	3.0380942822e+00	7.2	9.2300167084e+00	0.3	99.4
44	0.00	0.350	-2.8843946457e+00	6.8	8.3197326660e+00	0.3	99.6
27	0.00	0.352	-2.3005859852e+00	5.4	5.2926959991e+00	0.2	99.8
18	0.00	0.358	-1.4387422800e+00	3.4	2.0699794292e+00	0.1	99.9
53	0.00	0.349	1.3732982874e+00	3.2	1.8859481812e+00	0.1	99.9
16	0.01	0.360	-9.5876365900e-01	2.3	9.1922777891e-01	0.0	100.0
36	0.00	0.351	5.6301081181e-01	1.3	3.1698116660e-01	0.0	100.0
31	0.00	0.351	-5.3273379803e-01	1.3	2.8380531073e-01	0.0	100.0
42	0.00	0.350	-1.6860923171e-01	0.4	2.8429072350e-02	0.0	100.0
46	0.00	0.350	1.2182935327e-01	0.3	1.4842391014e-02	0.0	100.0
51	0.00	0.349	-6.6353321075e-02	0.2	4.4027632102e-03	0.0	100.0
58	0.00	0.349	-3.2109878957e-02	0.1	1.0310442885e-03	0.0	100.0
61	0.00	0.348	1.2449644506e-02	0.0	1.5499364235e-04	0.0	100.0
64	0.00	0.348	5.5944272317e-03	0.0	3.1297615351e-05	0.0	100.0
67	0.00	0.348	2.2547473200e-03	0.0	5.0838852985e-06	0.0	100.0

Collegamento viario compreso tra lo Svincolo della S.S. 514 di "Chiaromonte" con la S.S. 115 e lo Svincolo della "Ragusana"

PROGETTO ESECUTIVO

Direzione Progettazione e Realizzazione Lavori

RELAZIONE DI CALCOLO

28	0.00	0.352	9.6424308140e-05	0.0	9.2976470967e-09	0.0	100.0
23	0.00	0.355	6.2299739511e-05	0.0	3.8812575376e-09	0.0	100.0
65	0.00	0.348	1.5431156498e-05	0.0	2.3812057881e-10	0.0	100.0
68	0.00	0.348	1.2738953956e-05	0.0	1.6228095256e-10	0.0	100.0
37	0.00	0.351	-6.1763912527e-06	0.0	3.8147807829e-11	0.0	100.0
32	0.00	0.351	-5.1413785513e-06	0.0	2.6433773573e-11	0.0	100.0
47	0.00	0.350	4.6067084440e-06	0.0	2.1221762195e-11	0.0	100.0
19	0.00	0.357	3.0561570838e-06	0.0	9.3400964046e-12	0.0	100.0
62	0.00	0.348	2.0790139388e-06	0.0	4.3222990291e-12	0.0	100.0
17	0.00	0.359	-1.9385197447e-06	0.0	3.7578586076e-12	0.0	100.0
43	0.00	0.350	-1.6115102426e-06	0.0	2.5969651776e-12	0.0	100.0
4	0.06	0.499	-1.3576428728e-06	0.0	1.8431942170e-12	0.0	100.0
9	0.01	0.380	-1.1092726027e-06	0.0	1.2304856569e-12	0.0	100.0
59	0.00	0.349	-9.4056775879e-07	0.0	8.8466771886e-13	0.0	100.0
14	0.01	0.362	4.0726277462e-07	0.0	1.6586296952e-13	0.0	100.0
52	0.00	0.349	-2.9285985192e-07	0.0	8.5766890280e-14	0.0	100.0
30	0.00	0.352	-2.5836421003e-08	0.0	6.6752067241e-16	0.0	100.0
6	0.03	0.431	-6.0230673782e-09	0.0	3.6277339179e-17	0.0	100.0
15	0.01	0.360	-3.5963609868e-09	0.0	1.2933812601e-17	0.0	100.0
57	0.00	0.349	-5.6228965928e-10	0.0	3.1616965247e-19	0.0	100.0
66	0.00	0.348	-5.4858562137e-10	0.0	3.0094619463e-19	0.0	100.0
63	0.00	0.348	1.8165427496e-10	0.0	3.2998276737e-20	0.0	100.0
60	0.00	0.348	1.3918464992e-10	0.0	1.9372366382e-20	0.0	100.0
45	0.00	0.350	1.7250433720e-11	0.0	2.9757746806e-22	0.0	100.0
10	0.01	0.372	3.5339308926e-14	0.0	1.2488667687e-27	0.0	100.0
26	0.00	0.355	-2.7278971352e-15	0.0	7.4414224131e-30	0.0	100.0
33	0.00	0.351	-4.5615598828e-16	0.0	2.0807827523e-31	0.0	100.0
39	0.00	0.350	-2.4823764298e-16	0.0	6.1621929428e-32	0.0	100.0
24	0.00	0.355	-2.4757801607e-16	0.0	6.1294871635e-32	0.0	100.0
35	0.00	0.351	-1.6048366645e-16	0.0	2.5755007758e-32	0.0	100.0
22	0.00	0.355	-1.4168349225e-16	0.0	2.0074212372e-32	0.0	100.0
48	0.00	0.349	-1.3706356280e-16	0.0	1.8786420107e-32	0.0	100.0
41	0.00	0.350	-1.0488509877e-16	0.0	1.1000883719e-32	0.0	100.0
54	0.00	0.349	-6.2498703208e-17	0.0	3.9060880146e-33	0.0	100.0
7	0.03	0.419	6.2356699457e-17	0.0	3.8883578863e-33	0.0	100.0
50	0.00	0.349	4.9435962927e-17	0.0	2.4439144688e-33	0.0	100.0
12	0.01	0.370	-4.4988944001e-17	0.0	2.0240051115e-33	0.0	100.0
56	0.00	0.349	3.4314499142e-17	0.0	1.1774848852e-33	0.0	100.0
13	0.01	0.369	3.2965615717e-17	0.0	1.0867318540e-33	0.0	100.0

Realizzazione Lavori

Collegamento viario compreso tra lo Svincolo della S.S. 514 di "Chiaromonte" con la S.S. 115 e lo Svincolo della "Ragusana"

PROGETTO ESECUTIVO

RELAZIONE DI CALCOLO

1	0.58	0.817	1.7205125131e-17	0.0	2.9601633942e-34	0.0	100.0
34	0.00	0.351	-7.6056866772e-18	0.0	5.7846467305e-35	0.0	100.0
40	0.00	0.350	4.3743035463e-18	0.0	1.9134531165e-35	0.0	100.0
3	0.08	0.548	-3.0871840434e-18	0.0	9.5307050104e-36	0.0	100.0
49	0.00	0.349	-2.0713921891e-18	0.0	4.2906655875e-36	0.0	100.0
55	0.00	0.349	-3.3837960701e-19	0.0	1.1450075893e-37	0.0	100.0

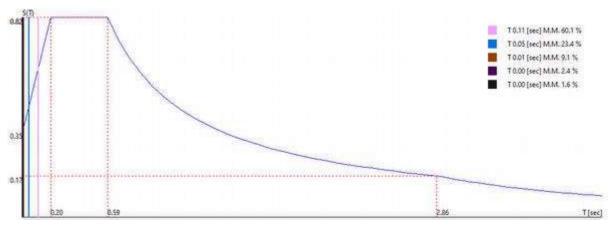
Spettro in accordo con TU 2008

- Tombino km 7+157 Lotto 1 Longitudine 14.6700 Latitudine 36.9915
- Tipo di Terreno B
- Coefficiente di amplificazione topografica (S_T) 1.0000
- Vita nominale della costruzione (V_N) 50.0 anni
- Classe d'uso II coefficiente Cu 2.0
- Classe di duttilità impostata Non Dissipativa
- Fattore di struttura massimo, C, per sisma orizzontale 1.00 (q_0 = C α_u/α_1)
- Fattore di duttilità α_u/α_1 per sisma orizzontale 1.00
- Fattore riduttivo regolarità in altezza K_R 1.00
- Fattore riduttivo per la presenza di setti Kw 1.00
- Fattore di struttura q per sisma orizzontale 1.00
- Fattore di struttura q per sisma verticale 1.00
- Smorzamento Viscoso (0.05 = 5%) 0.05

TU 2008 SLV H

- Probabilità di superamento (P_{VR}) 10.0 e periodo di ritorno (T_R) 949 (anni)
- S_s 1.104
- T_B 0.20 [sec]
- T_C 0.59 [sec]
- T_D 2.86 [sec]
- a_g/g 0.3142

MANDATARIA:


Realizzazione Lavori

Collegamento viario compreso tra lo Svincolo della S.S. 514 di "Chiaromonte" con la S.S. 115 e lo Svincolo della "Ragusana"

PROGETTO ESECUTIVO

RELAZIONE DI CALCOLO

- F_o 2.3568
- T_{c}^{*} 0.4563

0.00 [°] SLV

Sintesi dei risultati SLO per direzione d'ingresso del sisma.

Direzione	Modo Principale	Periodo	% Massa Modale	% Massa Modale
d'ingresso		[sec]	Modo Principale	Totale
0.00 [°] SLO	2	0.11	60.1	100.0

Autovalori, Periodi Masse Modali efficaci

Risultati angolo di ingresso del sisma: 0.00 [°] SLO

Modo	Periodo [sec]	R	Coefficente di Partecipazione	$% L_i / L_1 $	Massa Modale	M_{mi}/M_{mtot}	$\% \Sigma M_{mi}/M_{mtot}$
2	0.11	0.163	4.2348175049e+01		1.7933679199e+03	60.1	60.1
5	0.05	0.111	2.6399011612e+01	62.3	6.9690783691e+02	23.4	83.5
11	0.01	0.081	1.6443252563e+01	38.8	2.7038055420e+02	9.1	92.6
20	0.00	0.075	-8.3813066483e+00	19.8	7.0246299744e+01	2.4	94.9
29	0.00	0.074	6.8362216949e+00	16.1	4.6733928680e+01	1.6	96.5
8	0.01	0.084	5.7761917114e+00	13.6	3.3364391327e+01	1.1	97.6
38	0.00	0.073	-4.7123479843e+00	11.1	2.2206224442e+01	0.7	98.4
25	0.00	0.075	-4.4806900024e+00	10.6	2.0076581955e+01	0.7	99.0
21	0.00	0.075	3.0380942822e+00	7.2	9.2300167084e+00	0.3	99.4
44	0.00	0.073	-2.8843946457e+00	6.8	8.3197326660e+00	0.3	99.6
27	0.00	0.074	-2.3005859852e+00	5.4	5.2926959991e+00	0.2	99.8
18	0.00	0.076	-1.4387422800e+00	3.4	2.0699794292e+00	0.1	99.9
53	0.00	0.073	1.3732982874e+00	3.2	1.8859481812e+00	0.1	99.9
16	0.01	0.076	-9.5876365900e-01	2.3	9.1922777891e-01	0.0	100.0
36	0.00	0.073	5.6301081181e-01	1.3	3.1698116660e-01	0.0	100.0

Collegamento viario compreso tra lo Svincolo della S.S. 514 di "Chiaromonte" con la S.S. 115 e lo Svincolo della "Ragusana"

PROGETTO ESECUTIVO

Direzione Progettazione e Realizzazione Lavori

RELAZIONE DI CALCOLO

31	0.00	0.073	-5.3273379803e-01	1.3	2.8380531073e-01	0.0	100.0
42	0.00	0.073	-1.6860923171e-01	0.4	2.8429072350e-02	0.0	100.0
46	0.00	0.073	1.2182935327e-01	0.3	1.4842391014e-02	0.0	100.0
51	0.00	0.073	-6.6353321075e-02	0.2	4.4027632102e-03	0.0	100.0
58	0.00	0.073	-3.2109878957e-02	0.1	1.0310442885e-03	0.0	100.0
61	0.00	0.072	1.2449644506e-02	0.0	1.5499364235e-04	0.0	100.0
64	0.00	0.072	5.5944272317e-03	0.0	3.1297615351e-05	0.0	100.0
67	0.00	0.072	2.2547473200e-03	0.0	5.0838852985e-06	0.0	100.0
28	0.00	0.074	9.6424308140e-05	0.0	9.2976470967e-09	0.0	100.0
23	0.00	0.075	6.2299739511e-05	0.0	3.8812575376e-09	0.0	100.0
65	0.00	0.072	1.5431156498e-05	0.0	2.3812057881e-10	0.0	100.0
68	0.00	0.072	1.2738953956e-05	0.0	1.6228095256e-10	0.0	100.0
37	0.00	0.073	-6.1763912527e-06	0.0	3.8147807829e-11	0.0	100.0
32	0.00	0.073	-5.1413785513e-06	0.0	2.6433773573e-11	0.0	100.0
47	0.00	0.073	4.6067084440e-06	0.0	2.1221762195e-11	0.0	100.0
19	0.00	0.075	3.0561570838e-06	0.0	9.3400964046e-12	0.0	100.0
62	0.00	0.072	2.0790139388e-06	0.0	4.3222990291e-12	0.0	100.0
17	0.00	0.076	-1.9385197447e-06	0.0	3.7578586076e-12	0.0	100.0
43	0.00	0.073	-1.6115102426e-06	0.0	2.5969651776e-12	0.0	100.0
4	0.06	0.125	-1.3576428728e-06	0.0	1.8431942170e-12	0.0	100.0
9	0.01	0.083	-1.1092726027e-06	0.0	1.2304856569e-12	0.0	100.0
59	0.00	0.073	-9.4056775879e-07	0.0	8.8466771886e-13	0.0	100.0
14	0.01	0.077	4.0726277462e-07	0.0	1.6586296952e-13	0.0	100.0
52	0.00	0.073	-2.9285985192e-07	0.0	8.5766890280e-14	0.0	100.0
30	0.00	0.074	-2.5836421003e-08	0.0	6.6752067241e-16	0.0	100.0
6	0.03	0.101	-6.0230673782e-09	0.0	3.6277339179e-17	0.0	100.0
15	0.01	0.076	-3.5963609868e-09	0.0	1.2933812601e-17	0.0	100.0
57	0.00	0.073	-5.6228965928e-10	0.0	3.1616965247e-19	0.0	100.0
66	0.00	0.072	-5.4858562137e-10	0.0	3.0094619463e-19	0.0	100.0
63	0.00	0.072	1.8165427496e-10	0.0	3.2998276737e-20	0.0	100.0
60	0.00	0.072	1.3918464992e-10	0.0	1.9372366382e-20	0.0	100.0
45	0.00	0.073	1.7250433720e-11	0.0	2.9757746806e-22	0.0	100.0
10	0.01	0.081	3.5339308926e-14	0.0	1.2488667687e-27	0.0	100.0
26	0.00	0.075	-2.7278971352e-15	0.0	7.4414224131e-30	0.0	100.0
33	0.00	0.073	-4.5615598828e-16	0.0	2.0807827523e-31	0.0	100.0
39	0.00	0.073	-2.4823764298e-16	0.0	6.1621929428e-32	0.0	100.0
24	0.00	0.075	-2.4757801607e-16	0.0	6.1294871635e-32	0.0	100.0
35	0.00	0.073	-1.6048366645e-16	0.0	2.5755007758e-32	0.0	100.0
22	0.00	0.075	-1.4168349225e-16	0.0	2.0074212372e-32	0.0	100.0

PROGETTO ESECUTIVO

RELAZIONE DI CALCOLO Realizzazione Lavori

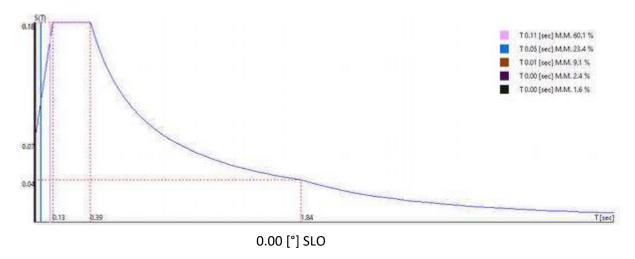
48	0.00	0.073	-1.3706356280e-16	0.0	1.8786420107e-32	0.0	100.0
41	0.00	0.073	-1.0488509877e-16	0.0	1.1000883719e-32	0.0	100.0
54	0.00	0.073	-6.2498703208e-17	0.0	3.9060880146e-33	0.0	100.0
7	0.03	0.097	6.2356699457e-17	0.0	3.8883578863e-33	0.0	100.0
50	0.00	0.073	4.9435962927e-17	0.0	2.4439144688e-33	0.0	100.0
12	0.01	0.080	-4.4988944001e-17	0.0	2.0240051115e-33	0.0	100.0
56	0.00	0.073	3.4314499142e-17	0.0	1.1774848852e-33	0.0	100.0
13	0.01	0.079	3.2965615717e-17	0.0	1.0867318540e-33	0.0	100.0
1	0.58	0.120	1.7205125131e-17	0.0	2.9601633942e-34	0.0	100.0
34	0.00	0.073	-7.6056866772e-18	0.0	5.7846467305e-35	0.0	100.0
40	0.00	0.073	4.3743035463e-18	0.0	1.9134531165e-35	0.0	100.0
3	0.08	0.142	-3.0871840434e-18	0.0	9.5307050104e-36	0.0	100.0
49	0.00	0.073	-2.0713921891e-18	0.0	4.2906655875e-36	0.0	100.0
55	0.00	0.073	-3.3837960701e-19	0.0	1.1450075893e-37	0.0	100.0

Spettro in accordo con TU 2008

- Tombino km 7+157 Lotto 1 Longitudine 14.6700 Latitudine 36.9915
- Tipo di Terreno B
- Coefficiente di amplificazione topografica (S_T) 1.0000
- Vita nominale della costruzione (V_N) 50.0 anni
- Classe d'uso II coefficiente C_U 2.0
- Classe di duttilità impostata Non Dissipativa
- Fattore di struttura massimo, C, per sisma orizzontale 1.00 (qo= C α_u/α_1)
- Fattore di duttilità α_u/α_1 per sisma orizzontale 1.00
- Fattore riduttivo regolarità in altezza K_R 1.00
- Fattore riduttivo per la presenza di setti K_W 1.00
- Fattore di struttura q per sisma orizzontale 1.00
- Fattore di struttura q per sisma verticale 1.00
- Smorzamento Viscoso (0.05 = 5%) 0.05

TU 2008 SLO H

Probabilità di superamento (PvR) 81.0 e periodo di ritorno (TR) 60 (anni)


PROGETTO ESECUTIVO

RELAZIONE DI CALCOLO

- Direzione Progettazione e Realizzazione Lavori
 - T_B 0.13 [sec]

S_s 1.200

- T_C 0.39 [sec]
- T_D 1.84 [sec]
- a_g/g 0.0598
- F_o 2.5018
- T_C* 0.2700

12.6 CARICHI APPLICATI AGLI ELEMENTI

Convenzioni adottate

I carichi applicati vengono raccolti nella tabella riportata alla fine del paragrafo e si intendono applicati nel sistema di riferimento locale dell'elemento.

Per la lettura della tabella si definiscono:

Nodol, NodoJ

I nodi iniziale/finale dell'asta o lato dell'elemento cui afferisce il carico

L

La distanza fra i suddetti nodi.

qxi, ..., qzj

Le componenti di un carico distribuito costante o variabile linearmente iniziali (indice i) e finale (indice j).

Collegamento viario compreso tra lo Svincolo della S.S. 514 di "Chiaromonte" con la S.S. 115 e lo Svincolo della "Ragusana" **PROGETTO ESECUTIVO**

RELAZIONE DI CALCOLO

xi, xj

Le distanze, misurate a partire dal Nodol, dei punti di applicazione dei carichi qxi..qzj relativi a carichi distribuiti applicati su porzioni di un'asta.

Px, ..., Pz xApp

Le componenti di un Carico Concentrato applicato a distanza xApp dal Nodol.

Mx, ..., Mz xApp

Le componenti di una Coppia Concentrata applicata a distanza xApp dal Nodol.

Var Termica Assiale, ..., Var Termica Farfalla 13

Le variazioni termiche (Assiali ed a Farfalla) misurate in gradi Celsius.

mxi, ..., mzj

Le componenti di coppie distribuite costanti o variabili lineramente iniziali (indice i) e finale (indice j).

 qS_x , qS_y , qS_z

carichi, per unità di superficie, applicati su elementi superficiali o facce di elementi solidi

Peso Proprio

Il valore del carico derivante dal peso proprio dell'elemento

Carichi distribuiti

Nodo I	Nodo J	L [m]	Condizione di carico	xi [m]	qxi [KN/m]	qyi [KN/m]	qzi [KN/m]	xj [m]	qxj [KN/m]	qyj [KN/m]	qzj [KN/m]
38	37	0.60	7	0.00	0.00	-6.00	-0.00	0.60	0.00	-6.00	-0.00
			6	0.00	0.00	-29.00	-0.00	0.60	0.00	-29.00	-0.00
			1	0.00	-15.00	0.00	0.00	0.60	-15.00	0.00	0.00
			3	0.00	0.00	-67.00	-0.00	0.60	0.00	-67.00	-0.00
37	45	3.90	1	0.00	0.00	15.00	0.00	3.90	0.00	15.00	0.00
44	52	3.90	1	0.00	0.00	15.00	0.00	3.90	0.00	15.00	0.00
			2	0.00	0.00	80.00	0.00	3.90	0.00	80.00	0.00
39	38	0.60	7	0.00	0.00	-6.00	-0.00	0.60	0.00	-6.00	-0.00
			6	0.00	0.00	-29.00	-0.00	0.60	0.00	-29.00	-0.00
			1	0.00	-15.00	0.00	0.00	0.60	-15.00	0.00	0.00
			3	0.00	0.00	-62.00	-0.00	0.60	0.00	-62.00	-0.00
45	53	3.90	1	0.00	0.00	15.00	0.00	3.90	0.00	15.00	0.00

Realizzazione Lavori

Collegamento viario compreso tra lo Svincolo della S.S. 514 di "Chiaromonte" con la S.S. 115 e lo Svincolo della "Ragusana"

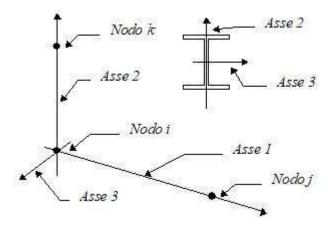
PROGETTO ESECUTIVO

RELAZIONE DI CALCOLO

52	60	3.90	1	0.00	0.00	15.00	0.00	3.90	0.00	15.00	0.00
			2	0.00	0.00	80.00	0.00	3.90	0.00	80.00	0.00
40	39	0.60	7	0.00	0.00	-6.00	-0.00	0.60	0.00	-6.00	-0.00
			6	0.00	0.00	-29.00	-0.00	0.60	0.00	-29.00	-0.00
			1	0.00	-15.00	0.00	0.00	0.60	-15.00	0.00	0.00
			3	0.00	0.00	-57.00	-0.00	0.60	0.00	-57.00	-0.00
61	37	0.80	1	0.00	0.00	15.00	0.00	0.80	0.00	15.00	0.00
41	40	0.60	7	0.00	0.00	-6.00	-0.00	0.60	0.00	-6.00	-0.00
			6	0.00	0.00	-29.00	-0.00	0.60	0.00	-29.00	-0.00
			1	0.00	-15.00	0.00	0.00	0.60	-15.00	0.00	0.00
			3	0.00	0.00	-52.00	-0.00	0.60	0.00	-52.00	-0.00
53	62	0.80	1	0.00	0.00	15.00	0.00	0.80	0.00	15.00	0.00
42	41	0.60	7	0.00	0.00	-6.00	-0.00	0.60	0.00	-6.00	-0.00
			6	0.00	0.00	-29.00	-0.00	0.60	0.00	-29.00	-0.00
			1	0.00	-15.00	0.00	0.00	0.60	-15.00	0.00	0.00
			3	0.00	0.00	-47.00	-0.00	0.60	0.00	-47.00	-0.00
43	42	0.60	7	0.00	0.00	-6.00	-0.00	0.60	0.00	-6.00	-0.00
			6	0.00	0.00	-29.00	-0.00	0.60	0.00	-29.00	-0.00
			1	0.00	-15.00	0.00	0.00	0.60	-15.00	0.00	0.00
			3	0.00	0.00	-42.00	-0.00	0.60	0.00	-42.00	-0.00
44	43	0.60	7	0.00	0.00	-6.00	-0.00	0.60	0.00	-6.00	-0.00
			6	0.00	0.00	-29.00	-0.00	0.60	0.00	-29.00	-0.00
			1	0.00	-15.00	0.00	0.00	0.60	-15.00	0.00	0.00
			3	0.00	0.00	-37.00	-0.00	0.60	0.00	-37.00	-0.00
46	45	0.60	1	0.00	-15.00	0.00	0.00	0.60	-15.00	0.00	0.00
47	46	0.60	1	0.00	-15.00	0.00	0.00	0.60	-15.00	0.00	0.00
48	47	0.60	1	0.00	-15.00	0.00	0.00	0.60	-15.00	0.00	0.00
49	48	0.60	1	0.00	-15.00	0.00	0.00	0.60	-15.00	0.00	0.00
50	49	0.60	1	0.00	-15.00	0.00	0.00	0.60	-15.00	0.00	0.00
51	50	0.60	1	0.00	-15.00	0.00	0.00	0.60	-15.00	0.00	0.00
52	51	0.60	1	0.00	-15.00	0.00	0.00	0.60	-15.00	0.00	0.00
54	53	0.60	1	0.00	-15.00	0.00	0.00	0.60	-15.00	0.00	0.00
			3	0.00	0.00	67.00	0.00	0.60	0.00	67.00	0.00
55	54	0.60	1	0.00	-15.00	0.00	0.00	0.60	-15.00	0.00	0.00
			3	0.00	0.00	62.00	0.00	0.60	0.00	62.00	0.00
56	55	0.60	1	0.00	-15.00	0.00	0.00	0.60	-15.00	0.00	0.00

PROGETTO ESECUTIVO

RFL	A 716	NIE				\sim
KFI/	47 II.	JIVE	171	L.AI	L.CJI	


Reali	zzazione La	vori			RELAZIONE DI CALCOLO								
				3	0.00	0.00	57.00	0.00	0.60	0.00	57.00	0.00	
	57	56	0.60	1	0.00	-15.00	0.00	0.00	0.60	-15.00	0.00	0.00	
				3	0.00	0.00	52.00	0.00	0.60	0.00	52.00	0.00	
	58	57	0.60	1	0.00	-15.00	0.00	0.00	0.60	-15.00	0.00	0.00	
				3	0.00	0.00	47.00	0.00	0.60	0.00	47.00	0.00	
	59	58	0.60	1	0.00	-15.00	0.00	0.00	0.60	-15.00	0.00	0.00	
				3	0.00	0.00	42.00	0.00	0.60	0.00	42.00	0.00	
	60	59	0.60	1	0.00	-15.00	0.00	0.00	0.60	-15.00	0.00	0.00	
				3	0.00	0.00	37.00	0.00	0.60	0.00	37.00	0.00	

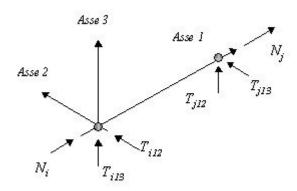
12.7 AZIONI TRAVI

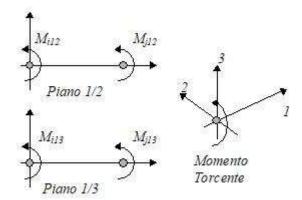
Convenzioni adottate

Le sollecitazioni nelle travi sono da intendersi nel sistema di riferimento locale dell'elemento, e si riferiscono all'asta. L'orientamento della trave nello spazio è definito a mezzo del nodo K.

La terna di riferimento locale dell'asta è così disposta:

Per quanto concerne i segni positivi assunti per le varie componenti di sollecitazione si assumono come positivi i versi e le sollecitazioni se così diretti:




Realizzazione Lavori

Collegamento viario compreso tra lo Svincolo della S.S. 514 di "Chiaromonte" con la S.S. 115 e lo Svincolo della "Ragusana"

PROGETTO ESECUTIVO

RELAZIONE DI CALCOLO

Per ogni trave vengono riportate, nelle varie combinazioni di carico, le componenti di sollecitazione alle estremità dell'asta.

Comb.	Nodo	N [kN] [T1-2 [kN]	T1-3 [kN]	Mt [kNm] [M1-3 [kNm]	M1-2 [kNm]
1	44	148.18	254.06	-0.00	-0.00	0.00	153.40
	52	-148.18	246.11	0.00	0.00	0.00	-137.90
2	44	148.18	254.06	-0.00	-0.00	0.00	153.40
	52	-148.18	246.11	0.00	0.00	0.00	-137.90
3	44	156.51	156.74	-0.00	-0.00	0.00	54.76
	52	-156.51	213.76	0.00	0.00	0.00	-165.98
4	44	109.77	188.19	-0.00	-0.00	0.00	113.63
	52	-109.77	182.31	0.00	0.00	0.00	-102.15
5	44	109.77	188.19	-0.00	-0.00	0.00	113.63
	52	-109.77	182.31	0.00	0.00	0.00	-102.15
6	44	109.77	188.19	-0.00	-0.00	0.00	113.63
	52	-109.77	182.31	0.00	0.00	0.00	-102.15
7	44	109.77	188.19	-0.00	-0.00	0.00	113.63
	52	-109.77	182.31	0.00	0.00	0.00	-102.15

PROGETTO ESECUTIVO

RELAZIONE DI CALCOLO

Comb.	Nodo	N [kN]	T1-2 [kN]	T1-3 [kN]	Mt [kNm]	M1-3 [kNm]	M1-2 [kNm]
8	44	109.77	188.19	-0.00	-0.00	0.00	113.63
	52	-109.77	182.31	0.00	0.00	0.00	-102.15
9	44	119.57	180.26	-0.00	-0.00	0.00	98.46
	52	-119.57	190.24	0.00	0.00	0.00	-117.94
1	52	148.18	246.11	-0.00	-0.00	0.00	137.90
	60	-148.18	254.06	0.00	0.00	0.00	-153.40
2	52	148.18	246.11	-0.00	-0.00	0.00	137.90
	60	-148.18	254.06	0.00	0.00	0.00	-153.40
3	52	123.28	140.42	-0.00	-0.00	0.00	25.21
	60	-123.28	230.08	0.00	0.00	0.00	-200.06
4	52	109.77	182.31	-0.00	-0.00	0.00	102.15
	60	-109.77	188.19	0.00	0.00	0.00	-113.63
5	52	109.77	182.31	-0.00	-0.00	0.00	102.15
	60	-109.77	188.19	0.00	0.00	0.00	-113.63
6	52	109.77	182.31	-0.00	-0.00	0.00	102.15
	60	-109.77	188.19	0.00	0.00	0.00	-113.63
7	52	109.77	182.31	-0.00	-0.00	0.00	102.15
	60	-109.77	188.19	0.00	0.00	0.00	-113.63
8	52	109.77	182.31	-0.00	-0.00	0.00	102.15
	60	-109.77	188.19	0.00	0.00	0.00	-113.63
9	52	112.43	172.21	-0.00	-0.00	0.00	83.65
	60	-112.43	198.29	0.00	0.00	0.00	-134.51

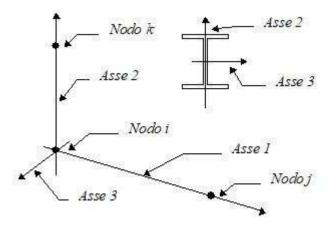
12.8 AZIONI PILASTRI

Convenzioni adottate

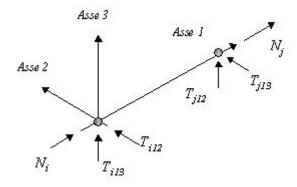
Le sollecitazioni nei pilastri sono da intendersi nel sistema di riferimento locale dell'elemento, e si riferiscono all'asta. L'orientamento del pilastro nello spazio è definito a mezzo del nodo K.

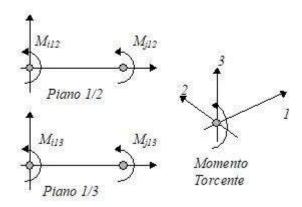
La terna di riferimento locale dell'asta è così disposta:

MANDATARIA:



Realizzazione Lavori


Collegamento viario compreso tra lo Svincolo della S.S. 514 di "Chiaromonte" con la S.S. 115 e lo Svincolo della "Ragusana"


PROGETTO ESECUTIVO

RELAZIONE DI CALCOLO

Per quanto concerne i segni positivi assunti per le varie componenti di sollecitazione si assumono come positivi i versi e le sollecitazioni se così diretti:

Per ogni pilastro vengono riportate, nelle varie combinazioni di carico, le componenti di sollecitazione alle estremità dell'asta.

RELAZIONE DI CALCOLO

Comb.	Nodo	N [kN]	T1-2 [kN]	T1-3 [kN]	Mt [kNm]	M1-3 [kNm]	M1-2 [kNm]
1	38	326.96	92.39	-0.00	0.00	-0.00	-10.44
	37	-339.11	-146.66	0.00	-0.00	0.00	82.16
2	38	326.96	92.39	-0.00	0.00	-0.00	-10.44
	37	-339.11	-146.66	0.00	-0.00	0.00	82.16
3	38	187.65	159.26	-0.00	0.00	-0.00	-64.58
	37	-196.65	-216.86	0.00	-0.00	0.00	177.32
4	38	242.19	68.43	-0.00	0.00	-0.00	-7.74
	37	-251.19	-108.63	0.00	-0.00	0.00	60.86
5	38	242.19	68.43	-0.00	0.00	-0.00	-7.74
	37	-251.19	-108.63	0.00	-0.00	0.00	60.86
6	38	242.19	68.43	-0.00	0.00	-0.00	-7.74
	37	-251.19	-108.63	0.00	-0.00	0.00	60.86
7	38	242.19	68.43	-0.00	0.00	-0.00	-7.74
	37	-251.19	-108.63	0.00	-0.00	0.00	60.86
8	38	242.19	68.43	-0.00	0.00	-0.00	-7.74
	37	-251.19	-108.63	0.00	-0.00	0.00	60.86
9	38	228.08	89.00	-0.00	0.00	-0.00	-21.55
	37	-237.08	-132.80	0.00	-0.00	0.00	88.08
1	39	314.81	42.17	-0.00	0.00	0.00	29.92
	38	-326.96	-92.39	0.00	-0.00	0.00	10.44
2	39	314.81	42.17	-0.00	0.00	0.00	29.92
	38	-326.96	-92.39	0.00	-0.00	0.00	10.44
3	39	181.29	104.00	-0.00	0.00	-0.00	14.02
	38	-190.29	-158.60	0.00	-0.00	0.00	64.58
4	39	233.19	31.23	-0.00	0.00	0.00	22.16
	38	-242.19	-68.43	0.00	-0.00	0.00	7.74
5	39	233.19	31.23	-0.00	0.00	0.00	22.16
	38	-242.19	-68.43	0.00	-0.00	0.00	7.74
6	39	233.19	31.23	-0.00	0.00	0.00	22.16
	38	-242.19	-68.43	0.00	-0.00	0.00	7.74
7	39	233.19	31.23	-0.00	0.00	0.00	22.16
	38	-242.19	-68.43	0.00	-0.00	0.00	7.74
8	39	233.19	31.23	-0.00	0.00	0.00	22.16

Comb.	Nodo	N [kN]	T1-2 [kN]	T1-3 [kN]	Mt [kNm]	M1-3 [kNm]	M1-2 [kNm]
	38	-242.19	-68.43	0.00	-0.00	0.00	7.74
9	39	219.77	48.03	-0.00	0.00	0.00	19.47
	38	-228.77	-88.83	0.00	-0.00	0.00	21.55
1	40	302.66	-4.00	-0.00	0.00	0.00	41.37
	39	-314.81	-42.17	0.00	-0.00	-0.00	-29.92
2	40	302.66	-4.00	-0.00	0.00	0.00	41.37
	39	-314.81	-42.17	0.00	-0.00	-0.00	-29.92
3	40	174.90	51.04	-0.00	0.00	0.00	64.08
	39	-183.90	-102.64	0.00	-0.00	0.00	-14.02
4	40	224.19	-2.97	-0.00	0.00	0.00	30.65
	39	-233.19	-31.23	0.00	-0.00	-0.00	-22.16
5	40	224.19	-2.97	-0.00	0.00	0.00	30.65
	39	-233.19	-31.23	0.00	-0.00	-0.00	-22.16
6	40	224.19	-2.97	-0.00	0.00	0.00	30.65
	39	-233.19	-31.23	0.00	-0.00	-0.00	-22.16
7	40	224.19	-2.97	-0.00	0.00	0.00	30.65
	39	-233.19	-31.23	0.00	-0.00	-0.00	-22.16
8	40	224.19	-2.97	-0.00	0.00	0.00	30.65
	39	-233.19	-31.23	0.00	-0.00	-0.00	-22.16
9	40	211.45	9.87	-0.00	0.00	0.00	37.63
	39	-220.45	-47.67	0.00	-0.00	-0.00	-19.47
1	41	290.51	-46.12	-0.00	0.00	0.00	26.33
	40	-302.66	4.00	0.00	-0.00	-0.00	-41.37
2	41	290.51	-46.12	-0.00	0.00	0.00	26.33
	40	-302.66	4.00	0.00	-0.00	-0.00	-41.37
3	41	168.47	0.36	-0.00	0.00	0.00	75.35
	40	-177.47	-48.96	0.00	-0.00	-0.00	-64.08
4	41	215.19	-34.17	-0.00	0.00	0.00	19.51
	40	-224.19	2.97	0.00	-0.00	-0.00	-30.65
5	41	215.19	-34.17	-0.00	0.00	0.00	19.51
	40	-224.19	2.97	0.00	-0.00	-0.00	-30.65
6	41	215.19	-34.17	-0.00	0.00	0.00	19.51

PROGETTO ESECUTIVO

Comb.	Nodo	N [kN]	T1-2 [kN]	T1-3 [kN]	Mt [kNm]	M1-3 [kNm]	M1-2 [kNm]
	40	-224.19	2.97	0.00	-0.00	-0.00	-30.65
7	41	215.19	-34.17	-0.00	0.00	0.00	19.51
	40	-224.19	2.97	0.00	-0.00	-0.00	-30.65
8	41	215.19	-34.17	-0.00	0.00	0.00	19.51
	40	-224.19	2.97	0.00	-0.00	-0.00	-30.65
9	41	203.13	-25.48	-0.00	0.00	0.00	31.97
	40	-212.13	-9.32	0.00	-0.00	-0.00	-37.63
1	42	278.36	-84.19	-0.00	0.00	0.00	-12.76
	41	-290.51	46.12	0.00	-0.00	-0.00	-26.33
2	42	278.36	-84.19	-0.00	0.00	0.00	-12.76
	41	-290.51	46.12	0.00	-0.00	-0.00	-26.33
3	42	161.99	-48.02	-0.00	0.00	0.00	60.00
	41	-170.99	2.42	0.00	-0.00	-0.00	-75.35
4	42	206.19	-62.37	-0.00	0.00	0.00	-9.45
	41	-215.19	34.17	0.00	-0.00	-0.00	-19.51
5	42	206.19	-62.37	-0.00	0.00	0.00	-9.45
	41	-215.19	34.17	0.00	-0.00	-0.00	-19.51
6	42	206.19	-62.37	-0.00	0.00	0.00	-9.45
	41	-215.19	34.17	0.00	-0.00	-0.00	-19.51
7	42	206.19	-62.37	-0.00	0.00	0.00	-9.45
	41	-215.19	34.17	0.00	-0.00	-0.00	-19.51
8	42	206.19	-62.37	-0.00	0.00	0.00	-9.45
	41	-215.19	34.17	0.00	-0.00	-0.00	-19.51
9	42	194.80	-58.02	-0.00	0.00	0.00	6.66
	41	-203.80	26.22	0.00	-0.00	-0.00	-31.97
1	43	266.21	-118.21	-0.00	0.00	0.00	-73.48
	42	-278.36	84.19	0.00	-0.00	-0.00	12.76
2	43	266.21	-118.21	-0.00	0.00	0.00	-73.48
	42	-278.36	84.19	0.00	-0.00	-0.00	12.76
3	43	155.46	-94.11	-0.00	0.00	0.00	16.18
	42	-164.46	51.51	0.00	-0.00	-0.00	-60.00
4	43	197.19	-87.57	-0.00	0.00	0.00	-54.43

PROGETTO ESECUTIVO

Comb.	Nodo	N [kN]	T1-2 [kN]	T1-3 [kN]	Mt [kNm]	M1-3 [kNm]	M1-2 [kNm]
	42	-206.19	62.37	0.00	-0.00	-0.00	9.45
5	43	197.19	-87.57	-0.00	0.00	0.00	-54.43
	42	-206.19	62.37	0.00	-0.00	-0.00	9.45
6	43	197.19	-87.57	-0.00	0.00	0.00	-54.43
	42	-206.19	62.37	0.00	-0.00	-0.00	9.45
7	43	197.19	-87.57	-0.00	0.00	0.00	-54.43
	42	-206.19	62.37	0.00	-0.00	-0.00	9.45
8	43	197.19	-87.57	-0.00	0.00	0.00	-54.43
	42	-206.19	62.37	0.00	-0.00	-0.00	9.45
9	43	186.46	-87.76	-0.00	0.00	0.00	-37.38
	42	-195.46	58.96	0.00	-0.00	-0.00	-6.66
1	44	254.06	-148.18	-0.00	0.00	0.00	-153.40
	43	-266.21	118.21	0.00	-0.00	-0.00	73.48
2	44	254.06	-148.18	-0.00	0.00	0.00	-153.40
	43	-266.21	118.21	0.00	-0.00	-0.00	73.48
3	44	148.85	-137.85	-0.00	0.00	0.00	-54.76
	43	-157.85	98.25	0.00	-0.00	-0.00	-16.18
4	44	188.19	-109.77	-0.00	0.00	0.00	-113.63
	43	-197.19	87.57	0.00	-0.00	-0.00	54.43
5	44	188.19	-109.77	-0.00	0.00	0.00	-113.63
	43	-197.19	87.57	0.00	-0.00	-0.00	54.43
6	44	188.19	-109.77	-0.00	0.00	0.00	-113.63
	43	-197.19	87.57	0.00	-0.00	-0.00	54.43
7	44	188.19	-109.77	-0.00	0.00	0.00	-113.63
	43	-197.19	87.57	0.00	-0.00	-0.00	54.43
8	44	188.19	-109.77	-0.00	0.00	0.00	-113.63
	43	-197.19	87.57	0.00	-0.00	-0.00	54.43
9	44	178.10	-114.66	-0.00	0.00	0.00	-98.46
	43	-187.10	88.86	0.00	-0.00	-0.00	37.38
1	46	565.13	-0.00	0.00	0.00	0.00	0.00
	45	-577.28	0.00	-0.00	-0.00	-0.00	-0.00
2	46	565.13	-0.00	0.00	0.00	0.00	0.00

Comb.	Nodo	N [kN]	T1-2 [kN]	T1-3 [kN]	Mt [kNm]	M1-3 [kNm]	M1-2 [kNm]
	45	-577.28	0.00	-0.00	-0.00	-0.00	-0.00
3	46	408.19	79.67	0.00	0.00	0.00	-123.45
	45	-417.19	-79.67	-0.00	-0.00	-0.00	171.13
4	46	418.61	-0.00	0.00	0.00	0.00	0.00
	45	-427.61	0.00	-0.00	-0.00	-0.00	-0.00
5	46	418.61	-0.00	0.00	0.00	0.00	0.00
	45	-427.61	0.00	-0.00	-0.00	-0.00	-0.00
6	46	418.61	-0.00	0.00	0.00	0.00	0.00
	45	-427.61	0.00	-0.00	-0.00	-0.00	-0.00
7	46	418.61	-0.00	0.00	0.00	0.00	0.00
	45	-427.61	0.00	-0.00	-0.00	-0.00	-0.00
8	46	418.61	-0.00	0.00	0.00	0.00	0.00
	45	-427.61	0.00	-0.00	-0.00	-0.00	-0.00
9	46	416.46	19.54	0.00	0.00	0.00	-30.13
	45	-425.46	-19.54	-0.00	-0.00	-0.00	41.83
1	47	552.98	-0.00	0.00	0.00	0.00	0.00
	46	-565.13	0.00	-0.00	-0.00	-0.00	-0.00
2	47	552.98	-0.00	0.00	0.00	0.00	0.00
	46	-565.13	0.00	-0.00	-0.00	-0.00	-0.00
3	47	399.19	79.08	0.00	0.00	0.00	-76.18
	46	-408.19	-79.08	-0.00	-0.00	-0.00	123.45
4	47	409.61	-0.00	0.00	0.00	0.00	0.00
	46	-418.61	0.00	-0.00	-0.00	-0.00	-0.00
5	47	409.61	-0.00	0.00	0.00	0.00	0.00
	46	-418.61	0.00	-0.00	-0.00	-0.00	-0.00
6	47	409.61	-0.00	0.00	0.00	0.00	0.00
	46	-418.61	0.00	-0.00	-0.00	-0.00	-0.00
7	47	409.61	-0.00	0.00	0.00	0.00	0.00
	46	-418.61	0.00	-0.00	-0.00	-0.00	-0.00
8	47	409.61	-0.00	0.00	0.00	0.00	0.00
	46	-418.61	0.00	-0.00	-0.00	-0.00	-0.00
9	47	407.46	19.39	0.00	0.00	0.00	-18.53
	46	-416.46	-19.39	-0.00	-0.00	-0.00	30.13

Comb.	Nodo	N [kN]	T1-2 [kN]	T1-3 [kN]	Mt [kNm]	M1-3 [kNm]	M1-2 [kNm]
1	48	540.83	-0.00	0.00	0.00	0.00	0.00
	47	-552.98	0.00	-0.00	-0.00	-0.00	-0.00
2	48	540.83	-0.00	0.00	0.00	0.00	0.00
	47	-552.98	0.00	-0.00	-0.00	-0.00	-0.00
3	48	390.19	77.80	0.00	0.00	0.00	-29.95
	47	-399.19	-77.80	-0.00	-0.00	-0.00	76.18
4	48	400.61	-0.00	0.00	0.00	0.00	0.00
	47	-409.61	0.00	-0.00	-0.00	-0.00	-0.00
5	48	400.61	-0.00	0.00	0.00	0.00	0.00
	47	-409.61	0.00	-0.00	-0.00	-0.00	-0.00
6	48	400.61	-0.00	0.00	0.00	0.00	0.00
	47	-409.61	0.00	-0.00	-0.00	-0.00	-0.00
7	48	400.61	-0.00	0.00	0.00	0.00	0.00
	47	-409.61	0.00	-0.00	-0.00	-0.00	-0.00
8	48	400.61	-0.00	0.00	0.00	0.00	0.00
	47	-409.61	0.00	-0.00	-0.00	-0.00	-0.00
9	48	398.46	19.06	0.00	0.00	0.00	-7.17
	47	-407.46	-19.06	-0.00	-0.00	-0.00	18.53
1	49	528.68	-0.00	0.00	0.00	0.00	0.00
	48	-540.83	0.00	-0.00	-0.00	-0.00	-0.00
2	49	528.68	-0.00	0.00	0.00	0.00	0.00
	48	-540.83	0.00	-0.00	-0.00	-0.00	-0.00
3	49	381.19	75.81	0.00	0.00	-0.00	16.66
	48	-390.19	-75.81	-0.00	-0.00	-0.00	29.95
4	49	391.61	-0.00	0.00	0.00	0.00	0.00
	48	-400.61	0.00	-0.00	-0.00	-0.00	-0.00
5	49	391.61	-0.00	0.00	0.00	0.00	0.00
	48	-400.61	0.00	-0.00	-0.00	-0.00	-0.00
6	49	391.61	-0.00	0.00	0.00	0.00	0.00
	48	-400.61	0.00	-0.00	-0.00	-0.00	-0.00
7	49	391.61	-0.00	0.00	0.00	0.00	0.00
	48	-400.61	0.00	-0.00	-0.00	-0.00	-0.00

PROGETTO ESECUTIVO

Comb.	Nodo	N [kN]	T1-2 [kN]	T1-3 [kN]	Mt [kNm]	M1-3 [kNm]	M1-2 [kNm]
8	49	391.61	-0.00	0.00	0.00	0.00	0.00
	48	-400.61	0.00	-0.00	-0.00	-0.00	-0.00
9	49	389.46	18.53	0.00	0.00	-0.00	4.16
	48	-398.46	-18.53	-0.00	-0.00	-0.00	7.17
1	50	516.53	-0.00	0.00	0.00	0.00	-0.00
	49	-528.68	0.00	-0.00	-0.00	-0.00	-0.00
2	50	516.53	-0.00	0.00	0.00	0.00	-0.00
	49	-528.68	0.00	-0.00	-0.00	-0.00	-0.00
3	50	372.19	73.11	0.00	0.00	-0.00	59.95
	49	-381.19	-73.11	-0.00	-0.00	0.00	-16.66
4	50	382.61	-0.00	0.00	0.00	0.00	-0.00
	49	-391.61	0.00	-0.00	-0.00	-0.00	-0.00
5	50	382.61	-0.00	0.00	0.00	0.00	-0.00
	49	-391.61	0.00	-0.00	-0.00	-0.00	-0.00
6	50	382.61	-0.00	0.00	0.00	0.00	-0.00
	49	-391.61	0.00	-0.00	-0.00	-0.00	-0.00
7	50	382.61	-0.00	0.00	0.00	0.00	-0.00
	49	-391.61	0.00	-0.00	-0.00	-0.00	-0.00
8	50	382.61	-0.00	0.00	0.00	0.00	-0.00
	49	-391.61	0.00	-0.00	-0.00	-0.00	-0.00
9	50	380.46	17.81	0.00	0.00	-0.00	14.74
	49	-389.46	-17.81	-0.00	-0.00	0.00	-4.16
1	51	504.38	-0.00	0.00	0.00	0.00	-0.00
	50	-516.53	0.00	-0.00	-0.00	-0.00	0.00
2	51	504.38	-0.00	0.00	0.00	0.00	-0.00
	50	-516.53	0.00	-0.00	-0.00	-0.00	0.00
3	51	363.19	69.70	0.00	0.00	-0.00	101.57
	50	-372.19	-69.70	-0.00	-0.00	0.00	-59.95
4	51	373.61	-0.00	0.00	0.00	0.00	-0.00
	50	-382.61	0.00	-0.00	-0.00	-0.00	0.00
5	51	373.61	-0.00	0.00	0.00	0.00	-0.00
	50	-382.61	0.00	-0.00	-0.00	-0.00	0.00

Comb.	Nodo	N [kN]	T1-2 [kN]	T1-3 [kN]	Mt [kNm]	M1-3 [kNm]	M1-2 [kNm]
6	51	373.61	-0.00	0.00	0.00	0.00	-0.00
	50	-382.61	0.00	-0.00	-0.00	-0.00	0.00
7	51	373.61	-0.00	0.00	0.00	0.00	-0.00
	50	-382.61	0.00	-0.00	-0.00	-0.00	0.00
8	51	373.61	-0.00	0.00	0.00	0.00	-0.00
	50	-382.61	0.00	-0.00	-0.00	-0.00	0.00
9	51	371.46	16.89	0.00	0.00	-0.00	24.84
	50	-380.46	-16.89	-0.00	-0.00	0.00	-14.74
1	52	492.23	-0.00	0.00	0.00	0.00	-0.00
-	51	-504.38	0.00	-0.00	-0.00	-0.00	0.00
2	52	492.23	-0.00	0.00	0.00	0.00	-0.00
	51	-504.38	0.00	-0.00	-0.00	-0.00	0.00
3	52	354.19	65.57	0.00	0.00	-0.00	140.77
	51	-363.19	-65.57	-0.00	-0.00	0.00	-101.57
4	52	364.61	-0.00	0.00	0.00	0.00	-0.00
	51	-373.61	0.00	-0.00	-0.00	-0.00	0.00
5	52	364.61	-0.00	0.00	0.00	0.00	-0.00
	51	-373.61	0.00	-0.00	-0.00	-0.00	0.00
6	52	364.61	-0.00	0.00	0.00	0.00	-0.00
	51	-373.61	0.00	-0.00	-0.00	-0.00	0.00
7	52	364.61	-0.00	0.00	0.00	0.00	-0.00
	51	-373.61	0.00	-0.00	-0.00	-0.00	0.00
8	52	364.61	-0.00	0.00	0.00	0.00	-0.00
	51	-373.61	0.00	-0.00	-0.00	-0.00	0.00
9	52	362.46	15.79	0.00	0.00	-0.00	34.28
	51	-371.46	-15.79	-0.00	-0.00	0.00	-24.84
1	54	326.96	-92.39	0.00	0.00	0.00	10.44
	53	-339.11	146.66	-0.00	-0.00	-0.00	-82.16
2	54	326.96	-92.39	0.00	0.00	0.00	10.44
	53	-339.11	146.66	-0.00	-0.00	-0.00	-82.16
3	54	307.16	-21.75	0.00	0.00	0.00	-50.56
	53	-316.16	61.95	-0.00	-0.00	-0.00	25.36

Comb.	Nodo	N [kN]	T1-2 [kN]	T1-3 [kN]	Mt [kNm]	M1-3 [kNm]	M1-2 [kNm]
4	54	242.19	-68.43	0.00	0.00	0.00	7.74
	53	-251.19	108.63	-0.00	-0.00	-0.00	-60.86
5	54	242.19	-68.43	0.00	0.00	0.00	7.74
	53	-251.19	108.63	-0.00	-0.00	-0.00	-60.86
6	54	242.19	-68.43	0.00	0.00	0.00	7.74
	53	-251.19	108.63	-0.00	-0.00	-0.00	-60.86
7	54	242.19	-68.43	0.00	0.00	0.00	7.74
	53	-251.19	108.63	-0.00	-0.00	-0.00	-60.86
8	54	242.19	-68.43	0.00	0.00	0.00	7.74
	53	-251.19	108.63	-0.00	-0.00	-0.00	-60.86
9	54	258.47	-57.00	0.00	0.00	0.00	-6.38
	53	-267.47	97.20	-0.00	-0.00	-0.00	-39.90
1	55	314.81	-42.17	0.00	0.00	-0.00	-29.92
	54	-326.96	92.39	-0.00	-0.00	-0.00	-10.44
2	55	314.81	-42.17	0.00	0.00	-0.00	-29.92
	54	-326.96	92.39	-0.00	-0.00	-0.00	-10.44
3	55	295.52	14.79	0.00	0.00	-0.00	-53.03
	54	-304.52	22.41	-0.00	-0.00	-0.00	50.56
4	55	233.19	-31.23	0.00	0.00	-0.00	-22.16
	54	-242.19	68.43	-0.00	-0.00	-0.00	-7.74
5	55	233.19	-31.23	0.00	0.00	-0.00	-22.16
	54	-242.19	68.43	-0.00	-0.00	-0.00	-7.74
6	55	233.19	-31.23	0.00	0.00	-0.00	-22.16
	54	-242.19	68.43	-0.00	-0.00	-0.00	-7.74
7	55	233.19	-31.23	0.00	0.00	-0.00	-22.16
	54	-242.19	68.43	-0.00	-0.00	-0.00	-7.74
8	55	233.19	-31.23	0.00	0.00	-0.00	-22.16
	54	-242.19	68.43	-0.00	-0.00	-0.00	-7.74
9	55	248.78	-19.97	0.00	0.00	-0.00	-29.56
	54	-257.78	57.17	-0.00	-0.00	-0.00	6.38
1	56	302.66	4.00	0.00	0.00	-0.00	-41.37
	55	-314.81	42.17	-0.00	-0.00	0.00	29.92

Comb.	Nodo	N [kN]	T1-2 [kN]	T1-3 [kN]	Mt [kNm]	M1-3 [kNm]	M1-2 [kNm]
2	56	302.66	4.00	0.00	0.00	-0.00	-41.37
	55	-314.81	42.17	-0.00	-0.00	0.00	29.92
3	56	283.92	47.63	0.00	0.00	-0.00	-30.75
	55	-292.92	-13.43	-0.00	-0.00	0.00	53.03
4	56	224.19	2.97	0.00	0.00	-0.00	-30.65
	55	-233.19	31.23	-0.00	-0.00	0.00	22.16
5	56	224.19	2.97	0.00	0.00	-0.00	-30.65
	55	-233.19	31.23	-0.00	-0.00	0.00	22.16
6	56	224.19	2.97	0.00	0.00	-0.00	-30.65
	55	-233.19	31.23	-0.00	-0.00	0.00	22.16
7	56	224.19	2.97	0.00	0.00	-0.00	-30.65
	55	-233.19	31.23	-0.00	-0.00	0.00	22.16
8	56	224.19	2.97	0.00	0.00	-0.00	-30.65
	55	-233.19	31.23	-0.00	-0.00	0.00	22.16
9	56	239.09	13.87	0.00	0.00	-0.00	-30.60
	55	-248.09	20.33	-0.00	-0.00	0.00	29.56
1	57	290.51	46.12	0.00	0.00	-0.00	-26.33
	56	-302.66	-4.00	-0.00	-0.00	0.00	41.37
2	57	290.51	46.12	0.00	0.00	-0.00	-26.33
	56	-302.66	-4.00	-0.00	-0.00	0.00	41.37
3	57	272.35	76.75	0.00	0.00	-0.00	2.40
	56	-281.35	-45.55	-0.00	-0.00	0.00	30.75
4	57	215.19	34.17	0.00	0.00	-0.00	-19.51
	56	-224.19	-2.97	-0.00	-0.00	0.00	30.65
5	57	215.19	34.17	0.00	0.00	-0.00	-19.51
	56	-224.19	-2.97	-0.00	-0.00	0.00	30.65
6	57	215.19	34.17	0.00	0.00	-0.00	-19.51
	56	-224.19	-2.97	-0.00	-0.00	0.00	30.65
7	57	215.19	34.17	0.00	0.00	-0.00	-19.51
	56	-224.19	-2.97	-0.00	-0.00	0.00	30.65
8	57	215.19	34.17	0.00	0.00	-0.00	-19.51
	56	-224.19	-2.97	-0.00	-0.00	0.00	30.65
9	57	229.41	44.52	0.00	0.00	-0.00	-14.06

Comb.	Nodo	N [kN]	T1-2 [kN]	T1-3 [kN]	Mt [kNm]	M1-3 [kNm]	M1-2 [kNm]
	56	-238.41	-13.32	-0.00	-0.00	0.00	30.60
1	58	278.36	84.19	0.00	0.00	-0.00	12.76
	57	-290.51	-46.12	-0.00	-0.00	0.00	26.33
2	58	278.36	84.19	0.00	0.00	-0.00	12.76
	57	-290.51	-46.12	-0.00	-0.00	0.00	26.33
3	58	260.82	102.17	0.00	0.00	-0.00	55.02
	57	-269.82	-73.97	-0.00	-0.00	0.00	-2.40
4	58	206.19	62.37	0.00	0.00	-0.00	9.45
	57	-215.19	-34.17	-0.00	-0.00	0.00	19.51
5	58	206.19	62.37	0.00	0.00	-0.00	9.45
	57	-215.19	-34.17	-0.00	-0.00	0.00	19.51
6	58	206.19	62.37	0.00	0.00	-0.00	9.45
	57	-215.19	-34.17	-0.00	-0.00	0.00	19.51
7	58	206.19	62.37	0.00	0.00	-0.00	9.45
	57	-215.19	-34.17	-0.00	-0.00	0.00	19.51
8	58	206.19	62.37	0.00	0.00	-0.00	9.45
	57	-215.19	-34.17	-0.00	-0.00	0.00	19.51
9	58	219.74	71.97	0.00	0.00	-0.00	20.62
	57	-228.74	-43.77	-0.00	-0.00	0.00	14.06
1	59	266.21	118.21	0.00	0.00	-0.00	73.48
	58	-278.36	-84.19	-0.00	-0.00	0.00	-12.76
2	59	266.21	118.21	0.00	0.00	-0.00	73.48
	58	-278.36	-84.19	-0.00	-0.00	0.00	-12.76
3	59	249.36	123.88	0.00	0.00	-0.00	121.66
	58	-258.36	-98.68	-0.00	-0.00	0.00	-55.02
4	59	197.19	87.57	0.00	0.00	-0.00	54.43
	58	-206.19	-62.37	-0.00	-0.00	0.00	-9.45
5	59	197.19	87.57	0.00	0.00	-0.00	54.43
	58	-206.19	-62.37	-0.00	-0.00	0.00	-9.45
6	59	197.19	87.57	0.00	0.00	-0.00	54.43
	58	-206.19	-62.37	-0.00	-0.00	0.00	-9.45
7	59	197.19	87.57	0.00	0.00	-0.00	54.43

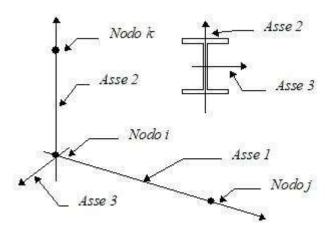
RELAZIONE DI CALCOLO

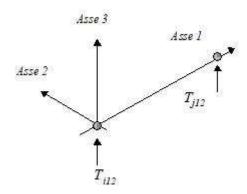
Comb.	Nodo	N [kN]	T1-2 [kN]	T1-3 [kN]	Mt [kNm]	M1-3 [kNm]	M1-2 [kNm]
	58	-206.19	-62.37	-0.00	-0.00	0.00	-9.45
8	59	197.19	87.57	0.00	0.00	-0.00	54.43
	58	-206.19	-62.37	-0.00	-0.00	0.00	-9.45
9	59	210.09	96.24	0.00	0.00	-0.00	70.79
	58	-219.09	-71.04	-0.00	-0.00	0.00	-20.62
1	60	254.06	148.18	0.00	0.00	-0.00	153.40
	59	-266.21	-118.21	-0.00	-0.00	0.00	-73.48
2	60	254.06	148.18	0.00	0.00	-0.00	153.40
	59	-266.21	-118.21	-0.00	-0.00	0.00	-73.48
3	60	237.96	141.94	0.00	0.00	-0.00	200.06
	59	-246.96	-119.74	-0.00	-0.00	0.00	-121.66
4	60	188.19	109.77	0.00	0.00	-0.00	113.63
	59	-197.19	-87.57	-0.00	-0.00	0.00	-54.43
5	60	188.19	109.77	0.00	0.00	-0.00	113.63
	59	-197.19	-87.57	-0.00	-0.00	0.00	-54.43
6	60	188.19	109.77	0.00	0.00	-0.00	113.63
	59	-197.19	-87.57	-0.00	-0.00	0.00	-54.43
7	60	188.19	109.77	0.00	0.00	-0.00	113.63
	59	-197.19	-87.57	-0.00	-0.00	0.00	-54.43
8	60	188.19	109.77	0.00	0.00	-0.00	113.63
	59	-197.19	-87.57	-0.00	-0.00	0.00	-54.43
9	60	200.45	117.33	0.00	0.00	-0.00	134.51
	59	-209.45	-95.13	-0.00	-0.00	0.00	-70.79

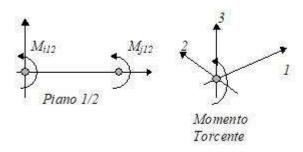
12.9 AZIONI TRAVI DI FONDAZIONE

Convenzioni adottate

Le sollecitazioni nelle travi di fondazione sono da intendersi nel sistema di riferimento locale dell'elemento, e si riferiscono all'asta. L'orientamento della trave nello spazio è definito a mezzo del nodo Κ.




PROGETTO ESECUTIVO


RELAZIONE DI CALCOLO

La terna di riferimento locale dell'asta è così disposta

Per quanto concerne i segni positivi assunti per le varie componenti di sollecitaione si assumono come positivi i versi e le sollecitazioni se così diretti:

La trave è da considerarsi appoggiata su un sottospazio elastico a comportamento bilatero (terreno alla Winkler).

Collegamento viario compreso tra lo Svincolo della S.S. 514 di "Chiaromonte" con la S.S. 115 e lo Svincolo della "Ragusana"

PROGETTO ESECUTIVO

Comb.	Nodo	Pressione [MPa]	Mt [kNm]	Taglio [kN]	MFlet. [kNm]
1	37	0.152	-0.00	-233.69	-124.27
	45	0.164	0.00	-288.64	214.86
2	37	0.152	-0.00	-233.69	-124.27
	45	0.164	0.00	-288.64	214.86
3	37	0.058	-0.00	-154.44	-190.01
	45	0.121	0.00	-137.37	67.05
4	37	0.113	-0.00	-173.11	-92.05
	45	0.121	0.00	-213.81	159.15
5	37	0.113	-0.00	-173.11	-92.05
	45	0.121	0.00	-213.81	159.15
6	37	0.113	-0.00	-173.11	-92.05
	45	0.121	0.00	-213.81	159.15
7	37	0.113	-0.00	-173.11	-92.05
	45	0.121	0.00	-213.81	159.15
8	37	0.113	-0.00	-173.11	-92.05
	45	0.121	0.00	-213.81	159.15
9	37	0.099	-0.00	-167.80	-114.65
	45	0.121	0.00	-195.25	136.89
1	45	0.164	-0.00	-288.64	-214.86
	53	0.152	0.00	-233.69	124.27
2	45	0.164	-0.00	-288.64	-214.86
	53	0.152	0.00	-233.69	124.27
3	45	0.121	-0.00	-279.82	-238.19
	53	0.167	0.00	-203.62	23.66
4	45	0.121	-0.00	-213.81	-159.15
	53	0.113	0.00	-173.10	92.05
5	45	0.121	-0.00	-213.81	-159.15
	53	0.113	0.00	-173.10	92.05
6	45	0.121	-0.00	-213.81	-159.15
	53	0.113	0.00	-173.10	92.05
7	45	0.121	-0.00	-213.81	-159.15
	53	0.113	0.00	-173.10	92.05
8	45	0.121	-0.00	-213.81	-159.15

Collegamento viario compreso tra lo Svincolo della S.S. 514 di "Chiaromonte" con la S.S. 115 e lo Svincolo della "Ragusana"

PROGETTO ESECUTIVO

Comb.	Nodo	Pressione [MPa]	Mt [kNm]	Taglio [kN]	MFlet. [kNm]
	53	0.113	0.00	-173.10	92.05
9	45	0.121	-0.00	-230.20	-178.72
	53	0.126	0.00	-180.86	75.57
1	61	0.151	-0.00	-0.00	0.00
	37	0.152	-0.00	-105.42	42.11
2	61	0.151	-0.00	-0.00	0.00
	37	0.152	-0.00	-105.42	42.11
3	61	0.038	-0.00	2.50	-0.00
	37	0.058	-0.00	-28.62	11.19
4	61	0.112	-0.00	-0.00	0.00
	37	0.113	-0.00	-78.09	31.20
5	61	0.112	-0.00	-0.00	0.00
	37	0.113	-0.00	-78.09	31.20
6	61	0.112	-0.00	-0.00	0.00
	37	0.113	-0.00	-78.09	31.20
7	61	0.112	-0.00	-0.00	0.00
	37	0.113	-0.00	-78.09	31.20
8	61	0.112	-0.00	-0.00	0.00
	37	0.113	-0.00	-78.09	31.20
9	61	0.094	-0.00	0.64	-0.00
	37	0.099	-0.00	-65.79	26.24
1	53	0.152	0.00	-105.42	-42.11
	62	0.151	-0.00	0.00	-0.00
2	53	0.152	0.00	-105.42	-42.11
	62	0.151	-0.00	0.00	-0.00
3	53	0.167	-0.00	-126.13	-50.51
	62	0.184	0.00	-2.50	-0.00
4	53	0.113	0.00	-78.09	-31.20
	62	0.112	-0.00	0.00	-0.00
5	53	0.113	0.00	-78.09	-31.20
	62	0.112	-0.00	0.00	-0.00
6	53	0.113	0.00	-78.09	-31.20

Collegamento viario compreso tra lo Svincolo della S.S. 514 di "Chiaromonte" con la S.S. 115 e lo Svincolo della "Ragusana"

PROGETTO ESECUTIVO

Comb.	Nodo	Pressione [MPa]	Mt [kNm]	Taglio [kN]	MFlet. [kNm]
	62	0.112	-0.00	0.00	-0.00
7	53	0.113	0.00	-78.09	-31.20
	62	0.112	-0.00	0.00	-0.00
8	53	0.113	0.00	-78.09	-31.20
	62	0.112	-0.00	0.00	-0.00
9	53	0.126	-0.00	-90.09	-36.01
	62	0.130	0.00	-0.64	-0.00

PROGETTO ESECUTIVO

RELAZIONE DI CALCOLO

13 ANALISI E VERIFICHE POZZETTO DI MONTE

13.1 PREMESSA

Nel presente capitolo si riportano le analisi e le verifiche strutturali effettuate nel pozzetto posto "lato monte" dell'attraversamento idraulico posto al km 6+540 lotto 1°. Il manufatto in progetto è costituito da dei setti in cemento armato gettato in opera di spessore 30cm. Le analisi e le verifiche sono state effettuate considerando il manufatto come un muro ad "U" trascurando il contributo del setto di collegamento posto lato monte. Normativa di riferimento, caratteristiche dei materiali, criteri di progettazione e di calcolo, carichi e materiali sono i medesimi utilizzati per la verifica del tombino al netto delle modifiche geometriche e si omettono per brevità.

Di seguito si riporta la sezione trasversale studiata.

Geometria sezione trasversale

Altezza esterna	2,10 [m]
Larghezza esterna	2,60 [m]
Lunghezza mensola fondazione sinistra	0,50 [m]
Lunghezza mensola di fondazione destra	0,50 [m]
Spessore piedritto sinistro	0,30[m]
Spessore piedritto destro	0,30[m]
Spessore fondazione	0,30 [m]

13.2 CARATTERISTICHE TERRENI

Di seguito si riportano i parametri geotecnici utilizzati per le analisi.

STRATO DI RINFIANCO

Descrizione	Rilevato	
Spessore dello strato	2,10	[m]
Peso di volume	20,00	[kN/m3]
Angolo di attrito	35,00	[°]
Coesione	0,00	[MPa]

STRATO DI FONDAZIONE

Descrizione	Formazio	Formazione Mc		
Peso di volume	23,00	[kN/m3]		
Angolo di attrito	30,00	[°]		
Coesione	0,175	[MPa]		

RELAZIONE DI CALCOLO

13.3 COMBINAZIONI DI CALCOLO

Numero di condizioni di carico ... : 4 Numero di combinazioni di carico . : 6

Condizione

1 G1k Strutturale

2 G2.2k_Spinta a riposo

3 E_Spinta sismica+X SLV

4 E_Spinta sismica+X SLO

5 Sisma OSLU

Sisma OSLO

Combinazioni di carico:

Combinazioni agli Stati Limite Ultimi

Combinazione di carico numero

SLU 1

Comb.\Cond 1 2

1 1.3 1.3

Combinazioni agli Stati Limite di Salvaguardia della Vita

Combinazione di carico numero

2 Sisma 0

Comb.\Cond 5 1 2 3

2 1 1 1 1

Combinazioni RARE Stati Limite di Esercizio

Combinazione di carico numero

3 **RARA**

Comb.\Cond 1 2

PROGETTO ESECUTIVO

RELAZIONE DI CALCOLO

3 1 1

Combinazioni FREQUENTI Stati Limite di Esercizio

Combinazione di carico numero

4 **FREQUENTE**

Comb.\Cond 2

4 1 1

Combinazioni QUASI PERMANENTI Stati Limite di Esercizio

Combinazione di carico numero

5 **QUASI PERMANENTE**

Comb.\Cond 2

5 1 1

Combinazioni agli Stati Limite di Operatività

Combinazione di carico numero

6

Comb.\Cond 2

6 1 1 1 1

Si fa presente che data l'assenza di carichi variabili considerati su tali strutture, le combinazioni allo stato limite di esercizio presentano i medesimi carichi e impegnano i pozzetti in egual modo. Si procede quindi alla verifica di una sola combinazione SLE.

13.4 INVILUPPO SOLLECITAZIONI

Sollecitazioni massime piedritti

Sforzo normale Min asta 35 34 -0.20 [kN] Comb. 1 Comb. 2 Max asta 42 2 20.47 [kN] 49.68 [kN] Comb. 2 Taglio piano 1-2 Min asta 42 2 -24.57 [kN] Comb. 1 Max asta 29 1

Collegamento viario compreso tra lo Svincolo della S.S. 514 di "Chiaromonte" con la S.S. 115 e lo Svincolo della "Ragusana"

PROGETTO ESECUTIVO

RELAZIONE DI CALCOLO

Taglio piano 1-3	Min asta 42 2	-0.00 [kN]	Comb. 1	Max asta 42 2	0.00 [kN]	Comb. 2
Momento torcente	Min asta 36 37	0.00 [kNm]	Comb. 1	Max asta 36 37	0.00 [kNm]	Comb. 1
Momento Flet. piano 1-2	Min asta 29 1	-46.86 [kNm]	Comb. 2	Max asta 42 2	17.14 [kNm]	Comb. 1
Momento Flet. piano 1-3	Min asta 42 2	-0.00 [kNm]	Comb. 2	Max asta 42 2	0.00 [kNm]	Comb. 1

Sollecitazioni massime soletta di fondazione

Taglio	Min trave 2 1	-15.92 [kN]	Comb. 1	Max trave 2 1	25.84 [kN]	Comb. 2
Pressioni sul terreno	Min trave 2 1	0.028 [MPa]	Comb. 2	Max trave 44 1	-0.021 [MPa]	Comb. 2
Momento flettente	Min trave 2 1	-45.94 [kNm]	Comb. 2	Max trave 44 1	4.01 [kNm]	Comb. 2
Momento torcente	Min trave 2 1	-0.00 [kNm]	Comb. 1	Max trave 2 43	0.00 [kNm]	Comb. 1

Pressioni massime su terreno

Combinazioni agli Stati Limite Ultimi

	Elemento	Combinazione	p [MPa]
Min	Trave di fondazione Sez. 1 Nodi: 2 1	1	-0.025
Max	Trave di fondazione Sez. 1 Nodi: 44 1	1	-0.013

Combinazioni agli Stati Limite di Salvaguardia della Vita

	Elemento	Combinazione	p [MPa]
Min	Trave di fondazione Sez. 1 Nodi: 2 1	2	-0.028
Max	Trave di fondazione Sez. 1 Nodi: 44 1	2	0.021

Combinazioni RARE Stati Limite di Esercizio

	Elemento	Combinazione	p [MPa]
Min	Trave di fondazione Sez. 1 Nodi: 2 1	3	-0.019
Max	Trave di fondazione Sez. 1 Nodi: 44 1	3	-0.010

Combinazioni FREQUENTI Stati Limite di Esercizio

	Elemento	Combinazione	p [MPa]
Min	Trave di fondazione Sez. 1 Nodi: 2 1	4	-0.019
Max	Trave di fondazione Sez. 1 Nodi: 44 1	4	-0.010

Combinazioni QUASI PERMANENTI Stati Limite di Esercizio

PROGETTO ESECUTIVO

RELAZIONE DI CALCOLO

	Elemento	Combinazione	p [MPa]
Min	Trave di fondazione Sez. 1 Nodi: 2 1	5	-0.019
Max	Trave di fondazione Sez. 1 Nodi: 44 1	5	-0.010

Combinazioni agli Stati Limite di Operatività

	Elemento	Combinazione	p [MPa]
Min	Trave di fondazione Sez. 1 Nodi: 2 1	6	-0.021
Max	Trave di fondazione Sez. 1 Nodi: 44 1	6	-0.003

13.5 SOLLECITAZIONI RARE

Come prima espresso, si riportano i risultati della sola combinazione suddetta, dato che mancando azioni variabili, non si distingue dalle altre SLE.

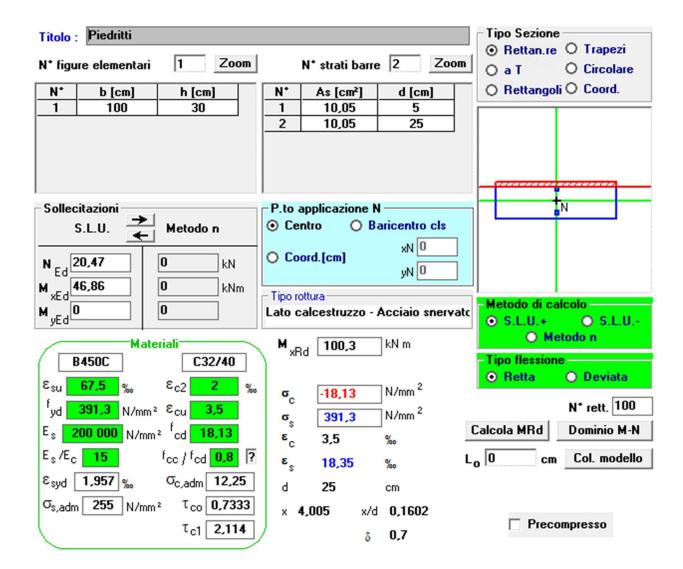
ь.	1	٠.	
\mathbf{p}	ied	ırı	ITTI
	·		

Sforzo normale	Min asta 36 37	-0.00 [kN]	Comb. 3	Max asta 42 2	15.75 [kN]	Comb. 3
Taglio piano 1-2	Min asta 42 2	-18.90 [kN]	Comb. 3	Max asta 29 1	18.90 [kN]	Comb. 3
Taglio piano 1-3	Min asta 42 2	-0.00 [kN]	Comb. 3	Max asta 33 32	0.00 [kN]	Comb. 3
Momento torcente	Min asta 36 37	0.00 [kNm]	Comb. 3	Max asta 36 37	0.00 [kNm]	Comb. 3
Momento Flet. piano 1-2	Min asta 29 1	-13.18 [kNm]	Comb. 3	Max asta 42 2	13.18 [kNm]	Comb. 3
Momento Flet. piano 1-3	Min asta 29 1	-0.00 [kNm]	Comb. 3	Max asta 42 2	0.00 [kNm]	Comb. 3
Soletta di fondazione						
Taglio	Min trave 2 1	-12.25 [kN]	Comb. 3	Max trave 2 1	12.25 [kN]	Comb. 3
Pressioni sul terreno	Min trave 2 1	0.019 [MPa]	Comb. 3	Max trave 44 1	0.010 [MPa]	Comb. 3
Momento flettente	Min trave 2 1	-14.14 [kNm]	Comb. 3	Max trave 44 1	-0.00 [kNm]	Comb. 3
Momento torcente	Min trave 2 1	-0.00 [kNm]	Comb. 3	Max trave 2 43	0.00 [kNm]	Comb. 3

13.6 VERIFICHE SLU/SLV

13.6.1 Piedritti – flessione

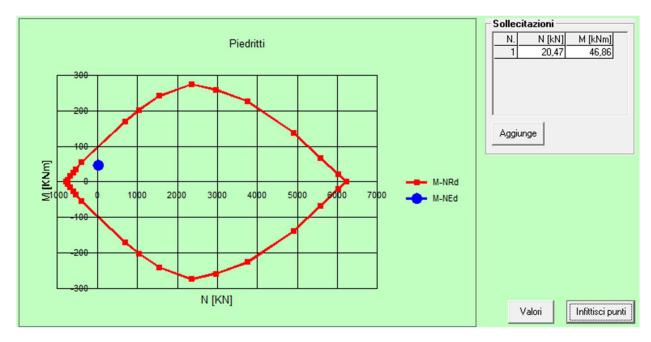
Base sezione B= 100,00cm Altezza sezione 30,00cm



PROGETTO ESECUTIVO

RELAZIONE DI CALCOLO

Afi = 5Ø16 = 10,05cmqAfs=5Ø16 = 10,05cmq



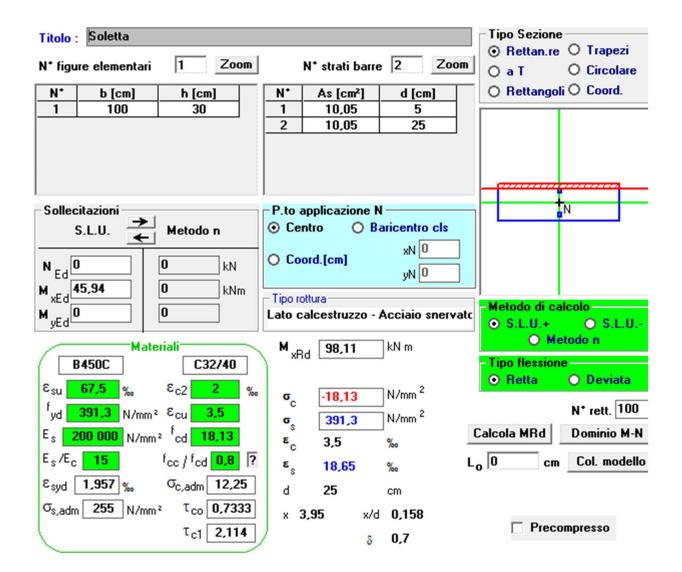
Collegamento viario compreso tra lo Svincolo della S.S. 514 di "Chiaromonte" con la S.S. 115 e lo

Svincolo della "Ragusana" PROGETTO ESECUTIVO

RELAZIONE DI CALCOLO

13.6.2 Piedritti – taglio

Verifica a taglio			par. 4.1	.2.1.3.1 NTC2008
Valore di calcolo dello sforzo di taglio	\mathbf{V}_{Ed}	49680	N	
resistenza calcestruzzo	Rck	40	N/mm²	
	fck	33,2	N/mm²	
coeff. parziale di sicurezza del cls	γс	1,5		
altezza	h	300	mm	
copriferro	С	50	mm	
altezza utile	d	250	mm	
larghezza minima sezione	\mathbf{b}_{w}	1000	mm	
armatura longitudinale	\mathbf{A}_{sl}	1004,8	mm2	
sezione calcestruzzo	\mathbf{A}_{c}	300000	mm2	
valore di calcolo dello sforzo normale	N_{Ed}	20470	N	
k=1+(200/d) ^{1/2} ≤2	k	1,8944272		
v_{min} =0,035 $k^{3/2}$ fc $k^{1/2}$	vmin	0,5258404		
$\rho_1 = A_{sl}/(b_w d) \le 0.02$	ρ ₁	0,0040192		rapporto geometrico di armatura longitudinale
σ_{cp} =N _{Ed} /A _c ≤0,2fcd	$\sigma_{\sf cp}$	0,0682333	N/mm²	tensione media di compressione della sezione
Resistenza a taglio	V_{Rd}	137359,32	N	
V_{Rd} ={(0,18*k*(100* ρ_1 *f _{ck})^1/3)/ γ_c +0,15* σ_c	_{:p} }*b _w *d≥(v _m	_{lin} +0,15*σ _{cp})*	b _w *d	VERIFICATA VERIFICATA

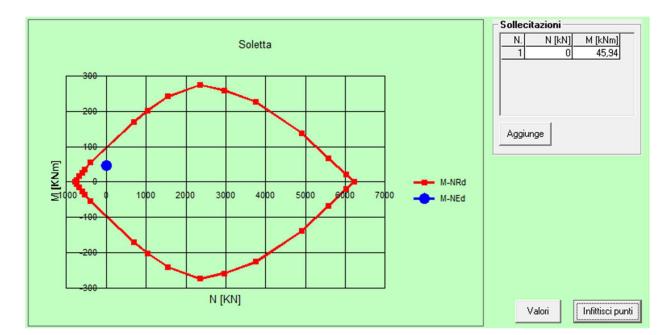

PROGETTO ESECUTIVO

RELAZIONE DI CALCOLO

13.6.3 Soletta – flessione

Base sezione B= 100,00cm Altezza sezione H= 30,00cm

Afi= 5016 = 10,05cmq Afs=5016 = 10,05cmq



Collegamento viario compreso tra lo Svincolo della S.S. 514 di "Chiaromonte" con la S.S. 115 e lo Svincolo della "Ragusana"

PROGETTO ESECUTIVO

RELAZIONE DI CALCOLO

13.6.4 Soletta – taglio

Verifica a taglio			par. 4.1.	2.1.3.1 NTC2008
Valore di calcolo dello sforzo di taglio	\mathbf{V}_{Ed}	25840	N	
resistenza calcestruzzo	Rck	40	N/mm²	
	fck	33,2	N/mm²	
coeff. parziale di sicurezza del cls	γс	1,5		
altezza	h	300	mm	
copriferro	С	50	mm	
altezza utile	d	250	mm	
larghezza minima sezione	b_{w}	1000	mm	
armatura longitudinale	\mathbf{A}_{sl}	1004,8	mm2	
sezione calcestruzzo	\mathbf{A}_{c}	300000	mm2	
valore di calcolo dello sforzo normale	N_{Ed}	0	N	
k=1+(200/d) ^{1/2} ≤2	k	1,8944272		
v_{min} =0,035 $k^{3/2}$ fc $k^{1/2}$	vmin	0,5258404		
$\rho_1 = A_{si}/(b_w d) \le 0.02$	ρ ₁	0,0040192		rapporto geometrico di armatura longitudinale
σ_{cp} =N _{Ed} /A _c ≤0,2fcd	$\sigma_{\sf cp}$	0	N/mm ²	tensione media di compressione della sezione
Resistenza a taglio	V_{Rd}	134800,57	N	
V_{Rd} ={(0,18*k*(100* ρ_1 *f _{ck})^1/3)/ γ_c +0,15* σ_c	. _p }*b _w *d≥(v _n	_{nin} +0,15*σ _{cp})*	b _w *d	VERIFICATA VERIFICATA

PROGETTO ESECUTIVO **RELAZIONE DI CALCOLO**

13.7 VERIFICHE SLE

13.7.1 Piedritti

<u>DETERMINAZIONE DELLE TENSIONI A SLS</u>			
Controllo tensionale per la Combinazione Caratteristica			
Momento sollecitante assunto in valore assoluto	M_{Ed}	13,2	[kNm]
Coefficiente di omogeneizzazione	n	15,0	[-]
Altezza della sezione trasversale di calcestruzzo	h	300	[mm]
Larghezza della sezione trasversale di calcestruzzo	b	1000	[mm]
Copriferro	d'	50	[mm]
Altezza utile della sezione	d	250	[mm]
Area dell'armatura tesa	As	1005	[mm ²] [mm ²
Area dell'armatura compressa	A's	1005	j
Posizione dell'asse neutro	X	69,63	[mm]
Momento d'inerzia della sezione rispetto a x	J	608931859, 6	j
Tensione ammissibile nel calcestruzzo nella combinazione caratteristica	σ c,caratt	19,92	[MPa] [MPa
Tensione ammissibile nell'acciaio per le combinazioni a SLS	$\sigma_{\scriptscriptstyle S}$	360]
Tensione nel calcestruzzo	σc	1,51	[MPa
Tensione nell'armatura tesa	σs	58,56	[MPa

DETERMINAZIONE DELLE TENSIONI A SLS			
Controllo tensionale per la Combinazione Quasi Permanente			.
Momento sollecitante assunto in valore assoluto	M_{Ed}	13,2	[kNm]
Coefficiente di omogeneizzazione	n	15,0	[-]
Altezza della sezione trasversale di calcestruzzo	j	300	[-]
Larghezza della sezione trasversale di calcestruzzo	b	1000	[-]
Copriferro	d'	50	[-]
Altezza utile della sezione	d'	250	[-] [mm²
Area dell'armatura tesa	As	1005] [mm²
Area dell'armatura compressa	A's	1005	j
Posizione dell'asse neutro	×	69,63 608931859,	[mm]
Momento d'inerzia della sezione rispetto a x Tensione ammissibile nel calcestruzzo nella combinazione quasi	J	6] [MPa
permanente	σ c,q.p.	14,94	
Tensione ammissibile nell'acciaio per le combinazioni a SLS	$\sigma_{\scriptscriptstyle S}$	360]
Tensione nel calcestruzzo	σc	1,51	[MPa]

Realizzazione Lavori

Collegamento viario compreso tra lo Svincolo della S.S. 514 di "Chiaromonte" con la S.S. 115 e lo Svincolo della "Ragusana"

PROGETTO ESECUTIVO

RELAZIONE DI CALCOLO

Tensione nell'armatura tesa

			•
CONTROLLO DI FESSURAZIONE A S	<u>LS</u>		
Altezza della sezione trasversale di calcestruzzo	h	300	ı [mm]
Larghezza della sezione trasversale di calcestruzzo	b	1000	[mm]
Copriferro	d'	50	[mm]
Altezza utile della sezione	d	250	[mm]
Area dell'armatura tesa	As	1005	$[mm^2]$
Area dell'armatura compressa	A's	1005	[mm ²]
Distanza tra il bordo del cls e l'armatura	С	50	[mm]
Distanza tra i baricentri delle barre	S	100	[mm]
Distanza massima di riferimento tra le barre	S _{rif.max}	290	[mm]
Calcolo dell'ampiezza delle fessure - Combinazione	e Quasi Perma	nente	
Momento sollecitante per la combinazione Quasi Permanente	M _{Ed,q.p.}	13,18	[kNm]
Durata del carico		lunga	[-]
Posizione dell'asse neutro dal lembo superiore	Х	69,63	[mm]
Tensione indotta nell'armatura tesa considerando la sezione fessurata	$\sigma_{\scriptscriptstyle S}$	58,56	[MPa]
Valore medio della resistenza a trazione efficace del calcestruzzo	$f_{\text{ct,eff}}$	3,1	[MPa]
Fattore dipendente dalla durata del carico	k _t	0,4	[-]
Altezza efficace	$h_{c,eff}$	76,7908888	[mm]
Area efficace del calcestruzzo teso attorno all'armatura	$A_{c,eff}$	76790,8888	[mm ²]
Rapporto geometrico sull'area efficace	$ ho_{ extsf{p,eff}}$	0,01309	[-]
Rapporto tra E _s /E _{cm}	α_{e}	5,94	[-]
Differenza tra la deformazione nell'acciaio e quella nel calcestruzzo	ϵ_{sm} - ϵ_{cm}	-0,000217	[-]
		0,000176	[-]
Determinazione del diametro equivalente delle barre tese	феq	16,00	[mm]
Coefficiente che tiene conto dell'aderenza migliorata delle barre	k_1	0,8	[-]
Coefficiente che tiene conto della flessione pura	k_2	0,5	[-]
	k ₃	3,4	[-]
	k ₄	0,425	[-]
Distanza massima tra le fessure	S _{r,max}	377,77	[mm]
		377,77	[mm]
Ampiezza delle fessure	Wk	0,0664	[mm]
Ampiezza massima delle fessure	W _{max}	0,2	[mm]
Calcolo dell'ampiezza delle fessure - Combina	zione Frequent	te	
Momento sollecitante per la combinazione Frequente	M _{Ed,freq.}	13,18	[kNm]
Durata del carico		lunga	[-]
Posizione dell'asse neutro dal lembo superiore	Х	69,63	[mm]
Tensione indotta nell'armatura tesa considerando la sezione fessurata	σ_{s}	58,56	[MPa]

Collegamento viario compreso tra lo Svincolo della S.S. 514 di "Chiaromonte" con la S.S. 115 e lo Svincolo della "Ragusana"

PROGETTO ESECUTIVO

RELAZIONE DI CALCOLO

Valore medio della resistenza a trazione efficace del calcestruzzo	$f_{\text{ct,eff}}$	3,1	[MPa]
Fattore dipendente dalla durata del carico	k_{t}	0,4	[-]
Altezza efficace	$h_{c,eff}$	76,7908888	[mm]
Area efficace del calcestruzzo teso attorno all'armatura	$A_{c,eff}$	76790,8888	$[mm^2]$
Rapporto geometrico sull'area efficace	$\rho_{\text{p,eff}}$	0,01309	[-]
Rapporto tra E _s /E _{cm}	$lpha_{ extsf{e}}$	5,94	[-]
Differenza tra la deformazione nell'acciaio e quella nel calcestruzzo	Esm - Ecm	-0,000217	[-]
		0,000176	[-]
Determinazione del diametro equivalente delle barre tese	феq	16,00	[mm]
Coefficiente che tiene conto dell'aderenza migliorata delle barre	k_1	0,8	[-]
Coefficiente che tiene conto della flessione pura	k ₂	0,5	[-]
	k ₃	3,4	[-]
	k ₄	0,425	[-]
Distanza massima tra le fessure	S _{r,max}	377,77	[mm]
		377,77	[mm]
Ampiezza delle fessure	Wk	0,0664	[mm]
Ampiezza massima delle fessure	W _{max}	0,3	[mm]

13.7.2 Soletta

DETERMINAZIONE DELLE TENSIONI A SLS			
Controllo tensionale per la Combinazione Caratteristica			
Momento sollecitante assunto in valore assoluto	M _{Ed}	14,1	[kNm]
Coefficiente di omogeneizzazione	n	15,0	[-]
Altezza della sezione trasversale di calcestruzzo	h	300	[mm]
Larghezza della sezione trasversale di calcestruzzo	b	1000	[mm]
Copriferro	d'	50	[mm]
Altezza utile della sezione	d	250	[mm]
Area dell'armatura tesa	As	1005] [mm²
Area dell'armatura compressa	A's	1005	j
Posizione dell'asse neutro	X	69,63 608931859,	[mm] [mm ⁴
Momento d'inerzia della sezione rispetto a x	J	6	j
Tensione ammissibile nel calcestruzzo nella combinazione caratteristica	σ c,caratt	19,92	[MPa] [MPa
Tensione ammissibile nell'acciaio per le combinazioni a SLS	σ_{s}	360] •
Tensione nel calcestruzzo	σc	1,62	[MPa]
Tensione nell'armatura tesa	σ_{s}	62,83	[MPa]

PROGETTO ESECUTIVO

RELAZIONE DI CALCOLO

DETERMINAZIONE DELLE TENSIONI A SLS			
Controllo tensionale per la Combinazione Quasi Permane	ente		
Momento sollecitante assunto in valore assoluto	M_{Ed}	14,1	[kNm]
Coefficiente di omogeneizzazione	n	15,0	[-]
Altezza della sezione trasversale di calcestruzzo	j	300	[-]
Larghezza della sezione trasversale di calcestruzzo	b	1000	[-]
Copriferro	d'	50	[-]
Altezza utile della sezione	d'	250	[-]
Area dell'armatura tesa	As	1005	[mm ²] [mm ²
Area dell'armatura compressa	A's	1005	j
Posizione dell'asse neutro	X	69,63 608931859,	[mm] [mm ⁴
Momento d'inerzia della sezione rispetto a x Tensione ammissibile nel calcestruzzo nella combinazione quasi	J	6	j [MPa
permanente	σ _{c,q,p.}	14,94] [MPa
Tensione ammissibile nell'acciaio per le combinazioni a SLS	σ_{s}	360]
Tensione nel calcestruzzo	σ c	1,62	[MPa]
Tensione nell'armatura tesa	σs	62,83	[MPa]

CONTROLLO DI FESSURAZIONE A SLS						
Altezza della sezione trasversale di calcestruzzo	h	300	[mm]			
Larghezza della sezione trasversale di calcestruzzo	b	1000	[mm]			
Copriferro	d'	50	[mm]			
Altezza utile della sezione	d	250	[mm]			
Area dell'armatura tesa	As	1005	[mm ²]			
Area dell'armatura compressa	A's	1005	[mm ²]			
Distanza tra il bordo del cls e l'armatura	С	50	[mm]			
Distanza tra i baricentri delle barre	S	100	[mm]			
Distanza massima di riferimento tra le barre	S _{rif.max}	290	[mm]			
Calcolo dell'ampiezza delle fessure - Combinazione	Quasi Permar	ente				
Momento sollecitante per la combinazione Quasi Permanente	M _{Ed,q.p.}	14,14	[kNm]			
Durata del carico		lunga	[-]			
Posizione dell'asse neutro dal lembo superiore	Х	69,63	[mm]			
Tensione indotta nell'armatura tesa considerando la sezione fessurata	$\sigma_{\scriptscriptstyle S}$	62,83	[MPa]			
Valore medio della resistenza a trazione efficace del calcestruzzo	$f_{\text{ct,eff}}$	3,1	[MPa]			
Fattore dipendente dalla durata del carico	k _t	0,4	[-]			
Altezza efficace	$h_{\text{c,eff}}$	76,7908888	[mm]			
Area efficace del calcestruzzo teso attorno all'armatura	$A_{c,eff}$	76790,8888	[mm ²]			
Rapporto geometrico sull'area efficace	$ ho_{ m p,eff}$	0,01309	[-]			

MANDATARIA:

MANDANTI:

PROGETTO ESECUTIVO

Rapporto tra E _s /E _{cm}	$lpha_{ t e}$	5,94	[-]
Differenza tra la deformazione nell'acciaio e quella nel calcestruzzo	Esm - Ecm	-0,000196	[-]
		0,000188	[-]
Determinazione del diametro equivalente delle barre tese	феq	16,00	[mm]
Coefficiente che tiene conto dell'aderenza migliorata delle barre	k_1	0,8	[-]
Coefficiente che tiene conto della flessione pura	k_2	0,5	[-]
	k ₃	3,4	[-]
	k_4	0,425	[-]
Distanza massima tra le fessure	S _{r,max}	377,77	[mm]
		377,77	[mm]
Ampiezza delle fessure	W k	0,0712	[mm]
Ampiezza massima delle fessure	W _{max}	0,2	[mm]
Calcolo dell'ampiezza delle fessure - Combina	zione Frequent	e	
Momento sollecitante per la combinazione Frequente	$M_{Ed,freq.}$	14,14	[kNm]
Durata del carico		lunga	[-]
Posizione dell'asse neutro dal lembo superiore	Х	69,63	[mm]
Tensione indotta nell'armatura tesa considerando la sezione fessurata	$\sigma_{\scriptscriptstyle S}$	62,83	[MPa]
Valore medio della resistenza a trazione efficace del calcestruzzo	$f_{\text{ct,eff}}$	3,1	[MPa]
Fattore dipendente dalla durata del carico	k _t	0,4	[-]
Altezza efficace	$h_{\text{c,eff}}$	76,7908888	[mm]
Area efficace del calcestruzzo teso attorno all'armatura	$A_{\text{c,eff}}$	76790,8888	[mm ²]
Rapporto geometrico sull'area efficace	$ ho_{ m p,eff}$	0,01309	[-]
Rapporto tra E _s /E _{cm}	α_{e}	5,94	[-]
Differenza tra la deformazione nell'acciaio e quella nel calcestruzzo	€sm - €cm	-0,000196	[-]
		0,000188	[-]
Determinazione del diametro equivalente delle barre tese	феq	16,00	[mm]
Coefficiente che tiene conto dell'aderenza migliorata delle barre	k_1	0,8	[-]
Coefficiente che tiene conto della flessione pura	k ₂	0,5	[-]
	k ₃	3,4	[-]
	k_4	0,425	[-]
Distanza massima tra le fessure	S _{r,max}	377,77	[mm]
		377,77	[mm]
Ampiezza delle fessure	Wk	0,0712	[mm]
Ampiezza massima delle fessure	W _{max}	0,3	[mm]

Collegamento viario compreso tra lo Svincolo della S.S. 514 di "Chiaromonte" con la S.S. 115 e lo Svincolo della "Ragusana"

PROGETTO ESECUTIVO

RELAZIONE DI CALCOLO

14 VERIFICHE GEOTECNICHE

14.1 APPROCCIO DI VERIFICA GEOTECNICA

I terreni di fondazione vengono verificati tramite le sollecitazioni ottenute dalle combinazioni dell'APPROCCIO 2 (A1+M1+R3) in cui i coefficienti del terreno sono unitari, ma vengono ridotte le resistenze globali tramite R3.

Tali azioni sono quindi quelle uscenti dal software con il quale è stata modellata la struttura in elevazione, dato che anche questa è stata approcciata con la medesima combinazione di coefficienti.

Per quanto riguarda l'azione derivante dall'analisi sismica, data la progettazione non dissipativa con q=1, non si prevede alcun incremento. Il YRd di maggiorazione è quindi pari ad 1.

14.2 VERIFICHE GEOTECNICHE TOMBINO

Per le caratteristiche dei terreni interessati e per la geometria del tombino, si rimanda ai capitoli precedenti.

14.2.1 Inviluppo delle sollecitazioni per la verifica

Pressioni massime su terreno di fondazione

Combinazioni agli Stati Limite Ultimi

	Elemento	Combinazione	p [MPa]
Min	Trave di fondazione Sez. 1 Nodi: 37 45	1	-0.164
Max	Trave di fondazione Sez. 1 Nodi: 45 53	1	-0.150

Combinazioni agli Stati Limite di Salvaguardia della Vita

	Elemento	Combinazione	p [MPa]
Min	Trave di fondazione Sez. 1 Nodi: 53 62	2	-0.163
Max	Trave di fondazione Sez. 1 Nodi: 61 37	2	-0.061

Combinazioni RARE Stati Limite di Esercizio

	Elemento	Combinazione	p [MPa]
Min	Trave di fondazione Sez. 1 Nodi: 37 45	3	-0.121
Max	Trave di fondazione Sez. 1 Nodi: 45 53	3	-0.111

Combinazioni FREQUENTI Stati Limite di Esercizio

PROGETTO ESECUTIVO

RELAZIONE DI CALCOLO

	Elemento	Combinazione	p [MPa]
Min	Trave di fondazione Sez. 1 Nodi: 37 45	4	-0.121
Max	Trave di fondazione Sez. 1 Nodi: 45 53	4	-0.111

Combinazioni QUASI PERMANENTI Stati Limite di Esercizio

	Elemento	Combinazione	p [MPa]
Min	Trave di fondazione Sez. 1 Nodi: 37 45	5	-0.121
Max	Trave di fondazione Sez. 1 Nodi: 45 53	5	-0.111

Combinazioni agli Stati Limite di Operatività

	Elemento	Combinazione	p [MPa]
Min	Trave di fondazione Sez. 1 Nodi: 53 62	6	-0.126
Max	Trave di fondazione Sez. 1 Nodi: 61 37	6	-0.099

14.2.2 Verifica di portanza

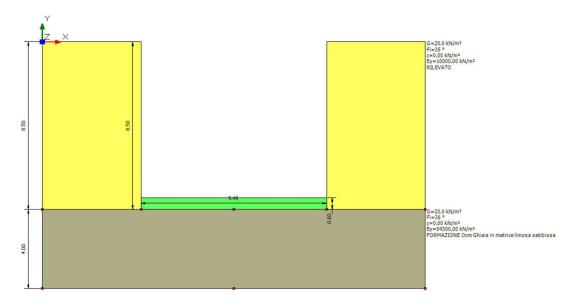


Figura 14-1"Stratigrafia"

DATI GENERALI

Normativa NTC 2008

Larghezza fondazione 9.4

Collegamento viario compreso tra lo Svincolo della S.S. 514 di "Chiaromonte" con la S.S. 115 e lo Svincolo della "Ragusana"

PROGETTO ESECUTIVO

RELAZIONE DI CALCOLO

Lunghezza fondazione 1.0 m Profondità piano di posa 8.5 m

Profondità falda 20.0

SISMA

Accelerazione massima (amax/g) 0.346

Effetto sismico secondo Paolucci, Pecker (1997)

Coefficiente sismico orizzontale 0.0971

Coefficienti sismici [N.T.C.]

Dati generali

Tipo opera: 2 - Opere ordinarie

Classe d'uso: Classe IV

Vita nominale: 50.0 [anni]

Vita di riferimento: 100.0 [anni]

Parametri sismici su sito di riferimento

Categoria sottosuolo: B Categoria topografica: T1

S.L.	TR	ag	F0	TC*
Stato limite	Tempo ritorno	[m/s²]	[-]	[sec]
	[anni]			
S.L.O.	60.0	0.588	2.503	0.269
S.L.D.	101.0	0.834	2.436	0.286
S.L.V.	949.0	3.079	2.357	0.455
S.L.C.	1950.0	4.423	2.344	0.517

Coefficienti sismici orizzontali e verticali

Opera: Stabilità dei pendii e Fondazioni

S.L.	amax	beta	kh	kv
Stato limite	[m/s²]	[-]	[-]	[sec]
S.L.O.	0.7056	0.2	0.0144	0.0072
S.L.D.	1.0008	0.2	0.0204	0.0102

Realizzazione Lavori

Collegamento viario compreso tra lo Svincolo della S.S. 514 di "Chiaromonte" con la S.S. 115 e lo

Svincolo della "Ragusana" PROGETTO ESECUTIVO

RELAZIONE DI CALCOLO

S.L.V.	3.3991	0.28	0.0971	0.0485
S.L.C.	4.423	1.0	0.4511	0.2255

STRATIGRAFIA TERRENO

Spe	ss Peso	Peso	Ang	Coesio	Coesio	Mod	Modu	Poiss	Coeff	Coeff.	Descrizion
ore	unità d	unità di	olo di	ne	ne non	ulo	lo	on	•	consolidazi	e
strato	volume	volume	attrito	[kN/m	drenata	Elastico	Edometr		consolid	one	
[m]	[kN/	saturo	[°]	2]	[kN/m	[kN/	ico		az.	secondaria	
	m³]	[kN/			2]	m²]	[kN/		primaria		
		m³]					m²]		[cmq		
									/s]		
8.5	20.0	20.0	35.0	0.0	0.0	1000	0.0	0.0	0.0	0.0	RILEVATO
						0.0					
4.0	20.0	21.0	36.0	0.0	0.0	5430	0.0	0.0	0.0	0.0	FORMAZI
						0.0					ONE Ocm
											Ghiaia in
											matrice
											limosa
											sabbiosa

Carichi di progetto agenti sulla fondazione

Nr.	Nome	Pressione	N	Mx	Му	Hx	Ну	Tipo
	combinazione	normale di progetto	[kN]	[kN·m]	[kN·m]	[kN]	[kN]	
		[kN/m²]						
1	A1+M1+R3	164.00	0.00	0.00	0.00	0.00	0.00	Progetto
2	Sisma	163.00	0.00	0.00	0.00	0.00	0.00	Progetto
3	S.L.E.	121.00	0.00	0.00	0.00	0.00	0.00	Servizio
4	S.L.O.	126.00	0.00	0.00	0.00	0.00	0.00	Servizio

Sisma + Coeff. parziali parametri geotecnici terreno + Resistenze

Nr	Correzione Sismica	0	efficace	non drenata			Coef. Rid. Capacità portante verticale	Coef.Rid.Capacità portante orizzontale
1	No	1	1	1	1	1	2.3	1.1
2	Si	1	1	1	1	1	2.3	1.1
3	No	1	1	1	1	1	1	1
4	No	1	1	1	1	1	1	1

CARICO LIMITE FONDAZIONE COMBINAZIONE...Sisma

Autore: HANSEN (1970)

Collegamento viario compreso tra lo Svincolo della S.S. 514 di "Chiaromonte" con la S.S. 115 e lo Svincolo della "Ragusana"

PROGETTO ESECUTIVO

RELAZIONE DI CALCOLO

Carico limite [Qult] 38242.92 kN/m²

Resistenza di progetto[Rd] 16627.36 kN/m²

Tensione [Ed] 163.0 kN/m²

Fattore sicurezza [Fs=Qult/Ed] 234.62 Condizione di verifica [Ed<=Rd] Verificata

COEFFICIENTE DI SOTTOFONDAZIONE BOWLES (1982)

Costante di Winkler 1529717.0 kN/m³

A1+M1+R3

Autore: HANSEN (1970) (Condizione drenata)

PARAMETRI GEOTECNICI DI CALCOLO

Peso unità di volume 20.0 kN/m³

Peso unità di volume saturo 21.0 kN/m³

Angolo di attrito 36.0 Coesione 0.0 kN/m²

Fattore [Nq] 37.75

Fattore [Nc] 50.59

Fattore [Ng] 40.05

Fattore forma [Sc] 8.02

Fattore profondità [Dc] 1.36

Fattore inclinazione carichi [Ic] 1.0

Fattore inclinazione pendio [Gc] 1.0

Fattore inclinazione base [Bc] 1.0

Fattore forma [Sq] 7.83

Fattore profondità [Dq] 1.22

Fattore inclinazione carichi [Iq] 1.0

Fattore inclinazione pendio [Gq] 1.0

Fattore inclinazione base [Bq] 1.0

Fattore profondità [Dg] 1.0

Fattore inclinazione carichi [Ig] 1.0

Fattore inclinazione pendio [Gg] 1.0

Collegamento viario compreso tra lo Svincolo della S.S. 514 di "Chiaromonte" con la S.S. 115 e lo Svincolo della "Ragusana"

PROGETTO ESECUTIVO

RELAZIONE DI CALCOLO

Fattore inclinazione	base [Bg]	1.0
----------------------	-----------	-----

Fattore correzione sismico inerziale [zq] 1.0 Fattore correzione sismico inerziale [zg] 1.0 Fattore correzione sismico inerziale [zc] 1.0

Carico limite 61468.25 kN/m²

Resistenza di progetto 26725.33 kN/m²

Condizione di verifica [Ed<=Rd] Verificata

Sisma

Autore: HANSEN (1970) (Condizione drenata)

PARAMETRI GEOTECNICI DI CALCOLO

Peso unità di volume 20.0 kN/m³

Peso unità di volume saturo 21.0 kN/m³

Angolo di attrito 36.0 ° Coesione 0.0 kN/m²

Fattore [Nq] 37.75

Fattore [Nc] 50.59

Fattore [Ng] 40.05

Fattore forma [Sc] 8.02

Fattore profondità [Dc] 1.36

Fattore inclinazione carichi [Ic] 1.0

Fattore inclinazione pendio [Gc] 1.0

Fattore inclinazione base [Bc] 1.0

Fattore forma [Sq] 7.83

Fattore profondità [Dq] 1.22

Fattore inclinazione carichi [Iq] 1.0

Fattore inclinazione pendio [Gq] 1.0

Fattore inclinazione base [Bq] 1.0

Fattore profondità [Dg] 1.0

Fattore inclinazione carichi [Ig] 1.0

Collegamento viario compreso tra lo Svincolo della S.S. 514 di "Chiaromonte" con la S.S. 115 e lo Svincolo della "Ragusana"

PROGETTO ESECUTIVO

RELAZIONE DI CALCOLO

Fattore inclinazione pendio [Gg] 1.0 Fattore inclinazione base [Bg] 1.0

Fattore correzione sismico inerziale [zq] 0.62 Fattore correzione sismico inerziale [zg] 0.58 Fattore correzione sismico inerziale [zc] 0.83

kN/m² Carico limite 38242.92

Resistenza di progetto 16627.36 kN/m²

Condizione di verifica [Ed<=Rd] Verificata

CEDIMENTI ELASTICI

Pressione normale di progetto 126.0 kN/m²

Spessore strato 4.0

Profondità substrato roccioso 30.0 m Modulo Elastico 54300.0 kN/m²

Coefficiente di Poisson 0.25

Coefficiente di influenza I1 0.07 Coefficiente di influenza I2 0.01 Coefficiente di influenza Is 0.08

Cedimento al centro della fondazione -0.77 mm

Coefficiente di influenza I1 0.05 Coefficiente di influenza I2 0.02 Coefficiente di influenza Is Cedimento al bordo -0.28 mm

I cedimenti sono ritenuti perfettamente compatibili con le funzionalità dell'opera.

14.2.3 Verifica di galleggiamento

La verifica viene trascurata, dato che dalle indagini geologiche svolte, non si è rinvenuta falda a profondità interferenti con l'opera in progetto.

Collegamento viario compreso tra lo Svincolo della S.S. 514 di "Chiaromonte" con la S.S. 115 e lo Svincolo della "Ragusana"

PROGETTO ESECUTIVO

RELAZIONE DI CALCOLO

14.3 VERIFICHE GEOTECNICHE POZZETTO DI MONTE

Per le caratteristiche dei terreni interessati e per la geometria del pozzetto, si rimanda ai capitoli precedenti.

14.3.1 Inviluppo delle sollecitazioni per la verifica

Pressioni massime su terreno

Combinazioni agli Stati Limite Ultimi

	Elemento	Combinazione	р [MPa]	
Min	Trave di fondazione Sez. 1 Nodi: 2 1	1	-0.025	
Max	Trave di fondazione Sez. 1 Nodi: 44 1	1	-0.013	

Combinazioni agli Stati Limite di Salvaguardia della Vita

	Elemento	Combinazione	р [MPa]	
Min	Trave di fondazione Sez. 1 Nodi: 2 1	2	-0.028	
Max	Trave di fondazione Sez. 1 Nodi: 44 1	2	0.021	

Combinazioni RARE Stati Limite di Esercizio

	Elemento	Combinazione	p [MPa]
Min	Trave di fondazione Sez. 1 Nodi: 2 1	3	-0.019
Max	Trave di fondazione Sez. 1 Nodi: 44 1	3	-0.010

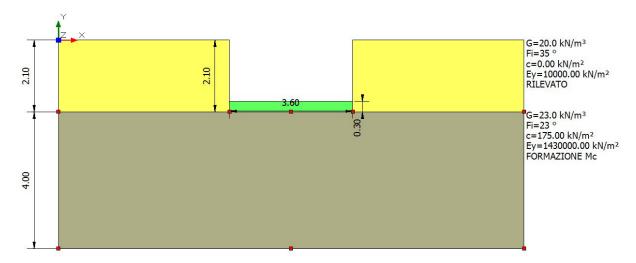
Combinazioni FREQUENTI Stati Limite di Esercizio

	Elemento	Combinazione	p [MPa]
Min	Trave di fondazione Sez. 1 Nodi: 2 1	4	-0.019
Max	Trave di fondazione Sez. 1 Nodi: 44 1	4	-0.010

Combinazioni QUASI PERMANENTI Stati Limite di Esercizio

	Elemento	Combinazione	p [MPa]	
Min	Trave di fondazione Sez. 1 Nodi: 2 1	5	-0.019	
Max	Trave di fondazione Sez. 1 Nodi: 44 1	5	-0.010	

Combinazioni agli Stati Limite di Operatività



PROGETTO ESECUTIVO

RELAZIONE DI CALCOLO

	Elemento	Combinazione	p [MPa]
Min	Trave di fondazione Sez. 1 Nodi: 2 1	6	-0.020
Max	Trave di fondazione Sez. 1 Nodi: 44 1	6	-0.005

14.3.2 Verifica di portanza

DATI GENERALI

Normativa NTC 2008

Larghezza fondazione 3.6 Lunghezza fondazione 1.0 m Profondità piano di posa 2.1

Profondità falda 20.0

SISMA

Accelerazione massima (amax/g) 0.322

Effetto sismico secondo Paolucci, Pecker (1997)

Coefficiente sismico orizzontale 0.0998

Coefficienti sismici [N.T.C.]

Collegamento viario compreso tra lo Svincolo della S.S. 514 di "Chiaromonte" con la S.S. 115 e lo Svincolo della "Ragusana"

PROGETTO ESECUTIVO

RELAZIONE DI CALCOLO

Dati generali

Tipo opera: 2 - Opere ordinarie

Classe d'uso: Classe IV

Vita nominale: 50.0 [anni]

Vita di riferimento: 100.0 [anni]

Parametri sismici su sito di riferimento

Categoria sottosuolo: A Categoria topografica: T1

S.L.	TR	ag	F0	TC*
Stato limite	Tempo ritorno	[m/s ²]	[-]	[sec]
	[anni]			
S.L.O.	60.0	0.598	2.505	0.269
S.L.D.	101.0	0.863	2.419	0.286
S.L.V.	949.0	3.158	2.361	0.456
S.L.C.	1950.0	4.54	2.345	0.519

Coefficienti sismici orizzontali e verticali

Opera: Opere di sostegno

S.L.	amax	beta	kh	kv
Stato limite	[m/s ²]	[-]	[-]	[sec]
S.L.O.	0.598	0.2	0.0122	0.0061
S.L.D.	0.863	0.2	0.0176	0.0088
S.L.V.	3.158	0.31	0.0998	0.0499
S.L.C.	4.54	1.0	0.463	0.2315

STRATIGRAFIA TERRENO

	Spess	Peso	Peso	Ang	Coesi	Coesi	Modul	Mod	Poiss	Coeff	Coeff.	Descrizio
	ore	unità di	unità di	olo di	one	one non	o Elastico	ulo	on	•	consolidazi	ne
	strato	volume	volume	attrito	[kN/m	drenata	[kN/m²	Edometr		consolid	one	
	[m]	[kN/	saturo	[°]	²]	[kN/m		ico		az.	secondaria	
		m³]	[kN/		•	2]	1	[kN/		primaria		
			m³]					m²]		[cmq		
										/s]		
Ī	2.1	20.0	20.0	35.0	0.0	0.0	10000.	0.0	0.0	0.0	0.0	RILEVATO
							0					
Ī	4.0	23.0	23.0	23.0	175.0	0.0	143000	0.0	0.0	0.0	0.0	FORMAZI
							0.0					ONE Mc

PROGETTO ESECUTIVO

RELAZIONE DI CALCOLO

Carichi di progetto agenti sulla fondazione

Nr.	Nome combinazione	Pressione normale di progetto [kN/m²]	N [kN]	Mx [kN·m]	My [kN·m]	Hx [kN]	Hy [kN]	Tipo
1	A1+M1+R3	25.00	0.00	0.00	0.00	0.00	0.00	Progetto
2	Sisma	28.00	0.00	0.00	0.00	0.00	0.00	Progetto
3	S.L.E.	19.00	0.00	0.00	0.00	0.00	0.00	Servizio
4	S.L.O.	20.00	0.00	0.00	0.00	0.00	0.00	Servizio

Sisma + Coeff. parziali parametri geotecnici terreno + Resistenze

Nr	Correzione Sismica		efficace	non drenata			Coef. Rid. Capacità portante	Coef.Rid.Capacità portante orizzontale
1	No	1	1	1	1	1	verticale 2.3	1.1
2	Si	1	1	1	1	1	2.3	1.1
3	No	1	1	1	1	1	1	1
		1	1	1	1	1	1	1
4	No	1	1	1	1	1	1	1

CARICO LIMITE FONDAZIONE COMBINAZIONE...Sisma

Autore: Meyerhof and Hanna (1978)

Carico limite [Qult] 511.91 kN/m²

Resistenza di progetto[Rd] 222.57 kN/m²

Tensione [Ed] 28.0 kN/m²

Fattore sicurezza [Fs=Qult/Ed] 18.28 Condizione di verifica [Ed<=Rd] Verificata

A1+M1+R3

Autore: Meyerhof and Hanna (1978) (Condizione drenata)

Strato 1 sopra, strato 2 sotto

Fattori di capacità portante strato 1

Fattore [Nq] 8.66

Fattore [Nc] 18.05

Collegamento viario compreso tra lo Svincolo della S.S. 514 di "Chiaromonte" con la S.S. 115 e lo Svincolo della "Ragusana"

PROGETTO ESECUTIVO RELAZIONE DI CALCOLO

Fattore [Ng] 1.56

Fattori di capacità portante strato 2

Fattore [Nq] 1.0

Fattore [Nc] 5.14

Carico limite strato 2 (qb) 140.3 kN/m²

Carico limite strato 1 (qt) 6089.34 kN/m²

Incremento carico limite strato 1 463.61 kN/m²

Coefficiente di punzonamento (ks) 0.84

Rapporto (q1/q2) 0.0

Carico limite 511.91 kN/m²

Resistenza di progetto 222.57 kN/m²

Condizione di verifica [Ed<=Rd] Verificata

Sisma

Autore: Meyerhof and Hanna (1978) (Condizione drenata)

Strato 1 sopra, strato 2 sotto

Fattori di capacità portante strato 1

Fattore [Nq] 8.66

Fattore [Nc] 18.05

Fattore [Ng] 1.56

Fattori di capacità portante strato 2

Fattore [Nq] 1.0

Fattore [Nc] 5.14

Carico limite strato 2 (qb) 140.3 kN/m²

Carico limite strato 1 (qt) 6089.34 kN/m²

463.61 kN/m² Incremento carico limite strato 1

Collegamento viario compreso tra lo Svincolo della S.S. 514 di "Chiaromonte" con la S.S. 115 e lo Svincolo della "Ragusana"

PROGETTO ESECUTIVO

RELAZIONE DI CALCOLO

Coefficiente di punzonamento (ks) 0.84

Rapporto (q1/q2)

Carico limite 511.91 kN/m²

222.57 kN/m² Resistenza di progetto

Condizione di verifica [Ed<=Rd] Verificata

CEDIMENTI ELASTICI

Pressione normale di progetto 20.0 kN/m²

Spessore strato 30.0

Profondità substrato roccioso 30.0 m Modulo Elastico 3000000.0 kN/m²

Coefficiente di Poisson 0.25

Coefficiente di influenza I1 0.25 Coefficiente di influenza 12 0.0 Coefficiente di influenza Is 0.25

Cedimento al centro della fondazione -0.01

Coefficiente di influenza I1 0.24 Coefficiente di influenza I2 0.01 Coefficiente di influenza Is 0.25 Cedimento al bordo 0.0 mm

I cedimenti sono ritenuti perfettamente compatibili con lea funzionalità dell'opera.

14.3.3 Verifica di galleggiamento

La verifica viene trascurata, dato che dalle indagini geologiche svolte, non si è rinvenuta falda a profondità interferenti con l'opera in progetto.

Collegamento viario compreso tra lo Svincolo della S.S. 514 di "Chiaromonte" con la S.S. 115 e lo Svincolo della "Ragusana"

PROGETTO ESECUTIVO

RELAZIONE DI CALCOLO

15 SINTESI DEI RISULTATI

Per maggiore chiarezza nella lettura dei tabulati di calcolo e nell'interpretazione dei risultati delle verifiche si esplicitano i seguenti aspetti riguardanti le armature degli elementi strutturali.

15.1 SOLETTE FONDAZIONE

La platea di fondazione in c.a. (sp= 60cm): armata con \emptyset 24/10 superiormente ed inferiormente in direzione trasversale all'asse e con \emptyset 12/10 superiormente e inferiormente in direzione longitudinale all'asse.

15.2 PARETI

Le pareti in c.a (sp = 60 cm): armata con \emptyset 20/10 superiormente ed inferiormente in direzione trasversale all'asse e con \emptyset 10/10 superiormente e inferiormente in direzione longitudinale all'asse.

15.3 SOLETTA COPERTURA

La soletta di copertura in c.a. (sp = 60 cm): armata con \emptyset 20/10 superiormente ed inferiormente in direzione trasversale all'asse e con \emptyset 10/10 superiormente e inferiormente in direzione longitudinale all'asse.

15.4 CONTROLLO DETTAGLI COSTRUTTIVI

Min 0,2%

Max 4%

SP 60cm

Massimo (Ø24/10)

%max,d 1,658761 - percentuale massima di progetto

verificato

Minimo (Ø10/10)

%min,d 0,287979 - percentuale minima di progetto

verificato

La verifica dello spessore minimo viene omessa in quanto trattasi di strutture scatolari non adibite ad uso abitativo e quindi non soggette a limite minimo così come indicato dal TU 2008 al 7.4.6.1.4.

Collegamento viario compreso tra lo Svincolo della S.S. 514 di "Chiaromonte" con la S.S. 115 e lo Svincolo della "Ragusana" **PROGETTO ESECUTIVO**

RELAZIONE DI CALCOLO

16 ACCETTABILITA' DEI CALCOLI

Per il controllo di accettabilità dei calcoli, si confronta il taglio in soletta dello scatolare ottenuto da semplici calcoli con il taglio ottenuto dall'output del software. Ciò permetterà di controllare il buon funzionamento di:

- Modellazione geometrica
- Modellazione dei vincoli
- Modellazione dei carichi
- Modellazione delle combinazioni di carico

Di seguito i dati necessari al calcolo manuale:

- (S) Spessore soletta=60cm
- (I) Larghezza di calcolo soletta=100cm
- (L) Lunghezza frame soletta=390x2cm
- (G1k) Peso strutturale=25x0,6=15kN/m
- (G2k) Peso ricoprimento=80kN/m

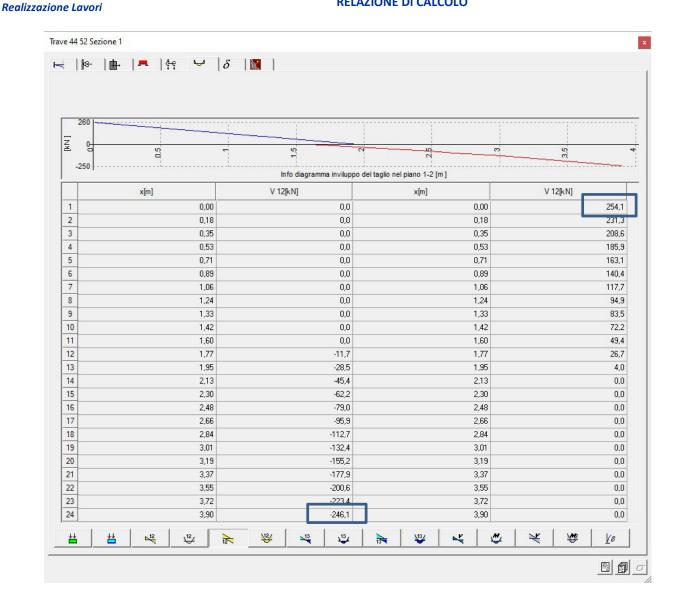
Si esegue la combinazione delle azioni per ottenere il carico distribuito totale:

P=1,35x15+1,35x80=128,25kN/m

Il taglio agli estremi della soletta di una canna è quindi così calcolabile

Vmax=(PxL/2)/2=250,09kN

Si riporta un estratto del software:



PROGETTO ESECUTIVO

RELAZIONE DI CALCOLO

I risultati sono del tutto in linea con i calcoli eseguiti a mano.

Collegamento viario compreso tra lo Svincolo della S.S. 514 di "Chiaromonte" con la S.S. 115 e lo Svincolo della "Ragusana"

PROGETTO ESECUTIVO

RELAZIONE DI CALCOLO

17 LICENZA SOFTWARE

LICENZA DI PRODOTTO

Numero di serie: 8904 CPRGTT

N.01 WinStrand 2021

Data di acquisto: 16 06 2021

Utente: Cooprogetti società cooperativa

Indirizzo: Via della Piaggiola, 152

Città: 06024 Gubbio (PG) Codice Fiscale: 00424850543 Partita I.V.A.: 00424850543

E-mail: assistenza@cooprogetti.it

Analisi Strutturale:	SI	Verifica Sezioni Miste:	SI
Verifica e Disegno CA:	SI	Verifica e Disegno Lastre:	SI
Verifiche Acciaio:	SI	Compositore Profili:	SI
Estensione G.D.L.:	SI	Gestore Sezioni C.A.:	SI
Pali:	SI	Verifiche e Disegno Nodi Acciaio:	NO
Preflex:	SI	Supporto Chiave Monoutente:	SI
Supporto Condivisione Software:	SI	Geo Fondazioni:	NO
Analisi non lineare:	SI	Murature:	SI
Verifica Resistenza al Fuoco:	SI	Edifici Esistenti:	SI
Verifica Aste Legno:	SI	Solai C.A.:	NO
Verifiche Acciaio Americane:	NO	Solaio Misto Legno Calcestruzzo:	NO
Verifiche Acciaio Australiane:	NO		

Scadenza InForma: 30 06 2022

ENEXSYS S.R.L. - Via Tizzano 46/2 -40033 Casalecchio di RenoTel 051/57.65.05 Fax 051/57.60.06

