

Direzione Progettazione e Realizzazione Lavor i

ITINERARIO RAGUSA-CATANIA

Collegamento viario compreso tra lo Svincolo della S.S. 514 "di Chiaramonte" con la S.S. 115 e lo Svincolo della S.S. 194 "Ragusana"

LOTTO 4 - Dallo svincolo n. 8 "Francofonte" (compreso) allo svincolo della "Ragusana" (escluso)

PROGETTO ESECUTIVO

COD. PA898

PROGETTAZIONE: ATI SINTAGMA - GP INGEGNERIA - COOPROGETTI -GDG - ICARIA - OMNISERVICE

VIADOTTI VIADOTTO SAN LEONARDO - CARR. DX Relazione di calcolo delle opere provvisionali

CODICE PROGET PROGETTO	TO LIV. PROG. N. PROG.	NOME FILE	//07STRRE05B			REVISIONE	SCALA:
L O 4 0		CODICE ELAB.	T04VI07S	TRRE	0 5	В	-
В	Revisione a seguito di Rapporto	di Verifica		Nov 2021	M. Botta	F. Durastanti	N.Granieri
Α	Emissione			Giu 2021	M. Botta	F. Durastanti	N.Granieri
RF\/	DESCRIZIONE			DATA	REDATTO	VERIFICATO	ΔΡΡΡΟΥΔΤΟ

Itinerario Ragusa - Catania

Collegamento viario compreso tra lo Svincolo della S.S. 514 di "Chiaramonte" con la S.S. 115 e lo Svincolo della "Ragusana"

PROGETTO ESECUTIVO

RELAZIONE DI CALCOLO

INDICE

1.	PREI	MESSA3
2.	DESC	CRIZIONE DELL'OPERA4
3.	NOR	MATIVA DI RIFERIMENTO5
4.	CAR	ATTERISTICHE DEI MATERIALI6
5.	CAR	ATTERIZZAZIONE GEOTECNICA8
6.	CAR	ATTERIZZAZIONE SISMICA10
6.	1 VIT	A NOMINALE E CLASSE D'USO
6.	2 PA	RAMETRI DI PERICOLOSITÀ SISMICA11
7.	MOI	DELLAZIONE NUMERICA13
7.	1 PR	OGRAMMI PER L'ANALISI AUTOMATICA13
7.	2 MC	DDELLI DI CALCOLO
7.	3 PA	RATIA DI PALI CON TIRANTI - SPALLA 1
7.	4 PA	RATIA DI PALI - SPALLA 2
		RATIA DI MICROPALI - PILA 1
7.	6 PA	LANCOLA - PILA 2
7.	7 PA	RATIA DI MICROPALI - PILA 321
7.	8 PA	RATIA DI MICROPALI - PILA 423
8.	ANA	LISI DEI CARICHI
	8.1	Peso Proprio
	8.2	Spinta statica delle terre
	8.3	Spinta statica dell'acqua
9.	RISU	LTATI28
9.	1 PA	RATIA DI PALI CON TIRANTI – SPALLA 1
	9.1.	1 Verifiche SLU pareti
	9.1.	2 Verifiche SLU geo
	9.1.	3 Verifiche SLE
	9.1.	4 Verifiche Tiranti
	9.1.	5 Verifiche Travi di ripartizione
	9.1.	6 Verifica di stabilità globale

Itinerario Ragusa - Catania

Collegamento viario compreso tra lo Svincolo della S.S. 514 di "Chiaramonte" con la S.S. 115 e lo Svincolo della "Ragusana" PROGETTO ESECUTIVO

RELAZIONE DI CALCOLO

9.2	PARATIA DI PALI – SPALLA 2	42
	9.2.1 Verifiche SLU pareti	42
	9.2.2 Verifiche SLU geo	46
	9.2.3 Verifiche SLE	47
	9.2.4 Verifica di stabilità globale	51
9.3	PARATIA DI MICROPALI – PILA 1	53
	9.3.1 Verifiche SLU pareti	53
	9.3.2 Verifiche SLU geo	57
	9.3.3 Verifiche SLE	58
9.4	PALANCOLA – PILA 2	61
	9.4.1 Verifiche SLU pareti	61
	9.4.2 Verifiche SLU geo	65
	9.4.3 Verifiche SLE	66
9.5	PARATIA DI MICROPALI – PILA 3	69
	9.5.1 Verifiche SLU pareti	69
	9.5.2 Verifiche SLU geo	73
	9.5.3 Verifiche SLE	74
9.6	PARATIA DI MICROPALI – PILA 4	77
	9.6.1 Verifiche SLU pareti	77
	9.6.2 Verifiche SLU geo	81
	9.6.3 Verifiche SLE	82
10.	VERIFICA STABILITÀ DELLO SCAVO	85
ALLE	GATO 1: RISULTATI PARATIA DI PALI CON TIRANTI – SPALLA 1	87
ALLE	GATO 2: RISULTATI PARATIA DI PALI – SPALLA 2	164
ALLE	GATO 3: RISULTATI PARATIA DI MICROPALI - PILA 1	210
ALLE	GATO 4: RISULTATI PALANCOLA - PILA 2	236
ALLE	GATO 5: RISULTATI PARATIA DI MICROPALI - PILA 3	261
	CATO E. DISTUTATI DADATIA DI MICDODALI. DILA 4	205

MANDANTI:

PROGETTO ESECUTIVO

RELAZIONE DI CALCOLO

1. PREMESSA

La presente relazione ha per oggetto il calcolo ed il dimensionamento delle paratie relative alla realizzazione del Viadotto San Leonardo, facente parte deprogettazione del Lotto 4 del "Collegamento autostradale Ragusa-Catania: ammodernamento a n° 4 corsie della s.s. 514 "di Chiaramonte" e della s.s. 194 ragusana dallo svincolo con la s.s. 115 allo svincolo con la s.s. 114".

Il viadotto San Leonardo si sviluppa tra la pk. 18+214 e la pk. 18+508;

Le azioni considerate nel calcolo sono quelle tipiche di una struttura interrata, determinate dall'interazione terreno – struttura derivanti dall'applicazione della Normativa D.M. del 14 gennaio 2008 – Norme tecniche per le costruzioni. Le verifiche eseguite nel presente elaborato fanno riferimento allo stesso D.M. del 2008.

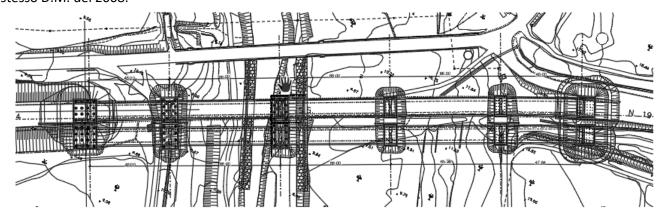


Figura 1: Pianta scavi viadotto San Leonardo

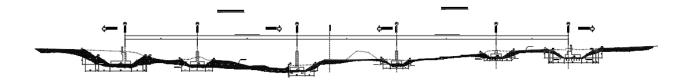


Figura 2: sezione longitudinale

PROGETTO ESECUTIVO

RELAZIONE DI CALCOLO

2. DESCRIZIONE DELL'OPERA

	Tipologia paratia	L palo (m)	Diametro palo/micropalo (mm)	micropalo (m)	
Spalla 1	tirantata	20	800	1	11
Spalla 2	libera	20	800	1	8
Pila 1	libera	12	240	0.45	4
Pila 2	libera	15	palancole	1	3,7
Pila 3	libera	8	240	0.45	3
Pila 4	libera	12	240	0.45	4,5

- Lo scavo per realizzare la spalla 1 è sostenuto da paratie di pali di diametro Φ800, interasse 1 m e lunghezza pari a 20 m. Inoltre, sono previsti 4 ordini di tiranti con interasse pari a 2 m .
- Lo scavo per realizzare la spalla 2 è sostenuto da paratie di pali di diametro Φ800, interasse 1 m e lunghezza pari a 20 m.
- Gli scavi per realizzare la pila 1 e 4 sono sostenuti da paratie di micropali di diametro Φ240, interasse 450 mm e lunghezza pari a 12 m.
- Lo scavo per la realizzazione della pila 2 è sostenuto da palancole in acciaio di lunghezza 15 m.
- Lo scavo per realizzare la pila 3 è sostenuto da paratie di micropali di diametro Φ240, interasse
 450 mm e lunghezza pari a 8 m.

RELAZIONE DI CALCOLO

3. NORMATIVA DI RIFERIMENTO

Il progetto è stato redatto sulla base delle seguenti normative e standard progettuali:

- **D.M. 14 gennaio 2008** pubblicato su S.O. n. 30 alla G.U. 4 febbraio 2008, n. 29 "Approvazione delle nuove norme tecniche per le costruzioni";
- Circolare n.ro 617 del 2 febbraio 2009 "Istruzioni per l'applicazione delle Nuove Norme tecniche per le costruzioni di cui al decreto ministeriale 14 gennaio 2008";
- UNI EN 1992-1-1:2005: "Eurocodice 2 Progettazione delle strutture di calcestruzzo parte 1 –
 Regole generali e regole per edifici";
- UNI EN 206-1 ottobre 2006 "Calcestruzzo: specificazione, prestazione, produzione e conformità";
- UNI EN 11104 marzo 2004 "Calcestruzzo: specificazione, prestazione, produzione e conformità", Istruzioni complementari per l'applicazione delle EN 206-1;

PROGETTO ESECUTIVO

RELAZIONE DI CALCOLO

4. **CARATTERISTICHE DEI MATERIALI**

Calcestruzzo per p	oali	C32/40
--------------------	------	--------

Resistenza cubica caratteristica	R_{ck}	=	40.0	N/mm ²
Modulo elastico	Ec	=	33345	N/mm ²
Classe di esposizione	XC2			
Copriferro			60	mm

Calcestruzzo per fondazione dei muri C32/40

Resistenza cubica caratteristica	R _{ck}	=	40.0	N/mm ²
Modulo elastico	Ec	=	33345	N/mm ²
Classe di esposizione	XA2			
Copriferro			40	mm

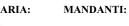
Acciaio per armatura B450C

Tensione caratteristica di snervamento	f_{yk}	\geq	450	N/mm ²
Tensione caratteristica di calcolo	f_{yd}	\geq	391.3	N/ mm ²
Modulo di elasticità	Es	=	210000	N/mm ²

Acciaio per trefoli dei tiranti attivi definitivi

Trefoli	0.6	u	
Boiacca di cemento (conforme alla norma	Classe	di	XA2
UNI EN 206-1/UNI 11104)	esposizione		
Resistenza caratteristica a trazione f _{ptk}	1860		MPa
Resistenza a trazione allo 0.1% f _{p(1)k}	1670		MPa

RELAZIONE DI CALCOLO


Miscela cementizia di iniezione per tiranti C32/40 N/mm²

Acciaio per carpenteria metallica

Travi di ripartizione tiranti

Acciaio S275

PROGETTO ESECUTIVO

RELAZIONE DI CALCOLO

5. **CARATTERIZZAZIONE GEOTECNICA**

Si riportano di seguito i parametri di resistenza e deformabilità dei terreni usati nel modello, in accordo con la caratterizzazione geotecnica.

Pila 2,3

Unità geologiche	descrizione	z strato	litotipo	γ	c'	φ'	z	Cu	E'	OCR	k ₀ (*)				
Olita geologicile	uescrizione	2 30 400	попро	[kN/m³]	[kPa]	[°]	[m da p.c.]	[kPa]	[MPa]	[-]	[-]				
a	a_fine	0-7	Alluvioni (grana fine)	18	10	25.5	2.5	100	10	≥10	1.81				
	a_iiile	0-7	Alluvioni (grana iine)	10 10	. 10	10	10 25.5	25.5	>5	25.5 >5	>5	100	20	≥5	1.28
							2.5				15	1.96			
		7 a 12					2.3		15	-13	2.76				
				ļ						7.5		15	6	0.88	
Qa	Argille siltoso		Argille	Argille 18	10	15	22.5	7.5	150		6	1.96			
٧٠	marnose	7012			16 15	22.3	12.5		25	3.5	0.88				
							12.3		25	3.3	1.38				
	1						22.5		40 70	2	0.88				
							>30	200		2	0.00				

Pila 1, spalla 1

	γ	γ	c'	φ'	Z	C _u	E'	OCR	k ₀ (*)		
Unità geologiche	descrizione	z strato	litotipo	[kN/m³]	[kPa]	[°]	[m da p.c.]	[kPa]	[MPa]	[-]	[-]
_	a fina	Fa 11	Alluniani (grana fina)	10	10	25.5	2.5	100	10	≥10	1.81
u u	a_fine	5a 11	Alluvioni (grana fine)	18 10	18 10		>5	100	20	≥5	1.28

Spalla 2

unità geotecnica	litotipo	Z	γ	c'	φ'	cu	E	OCR
-	-	(m)	(kN/m ³)	(kPa)	(°)	kPa	(Mpa)	-
a	Alluvioni (grana	-	18	10	25.5	100	10	10
	Pvl-GG alt /sabbia	0-10	16.5	0	44	-	87.5	
		>10					>150	-
	Pvl-R2 roccia	0-5	24	-	-	-	275	
Pvl		5 A 25					450	-
		>25					>700	
	Pvl -r2 roccia alterata	0-10	16.25	0	0	-	150	
		>10					>200	-

Pila 4

unità geotecnica	litotipo	Z	γ	c'	φ'	cu	E	OCR
-	-	(m)	(kN/m ³)	(kPa)	(°)	kPa	(Mpa)	-
	Pvl-GG alt /sabbia	0-10	16.5	0	44	-	87.5	
		>10					>150	_
	Pvl-R2 roccia	0-5	24	-	-	-	275	
PvI		5 A 25					450	-
		>25					>700	
	Pvl -r2 roccia alterata	0-10	16.25	0	0	-	150	
		>10					>200	_

Di seguito si riportano le sezioni geotecniche di riferimento per l'opera in esame.

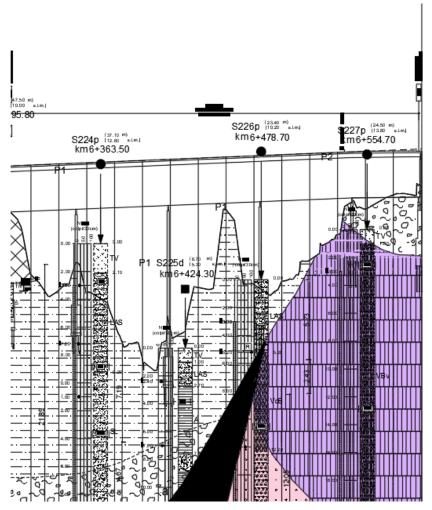


Figura 3: Sezioni geotecniche per l'opera in esame

L'opera non è interessata dalla falda.

RELAZIONE DI CALCOLO

6. CARATTERIZZAZIONE SISMICA

Le opere di sostegno inerenti alle pile non sono interessate dall'azione sismica in quanto provvisionali; invece, le paratie in corrispondenza delle spalle sono state verificate allo SLV, essendo definitive.

Nel seguente paragrafo è riportata la valutazione dei parametri di pericolosità sismica utili alla determinazione delle azioni sismiche di progetto dell'opera cui si riferisce il presente documento, in accordo a quanto specificato a riguardo dal D.M. 2008 e relativa circolare applicativa.

6.1 Vita nominale e classe d'uso

Per la valutazione dei parametri di pericolosità sismica è necessario definire, oltre alla localizzazione geografica del sito, la Vita nominale dell'opera strutturale (V_N) , intesa come il numero di anni nel quale la struttura, purché soggetta alla manutenzione ordinaria, deve potere essere usata per lo scopo al quale è destinata, e la Classe d'Uso a cui è associato un coefficiente d'uso (C_U) .

Per l'opera in oggetto si considera una vita nominale: $V_N = 50$ anni. Riguardo invece la Classe d'Uso, all'opera in oggetto corrisponde una Classe IV a cui è associato un coefficiente d'uso pari a (NTC – Tabella 2.4.II): $C_U = 2,0$.

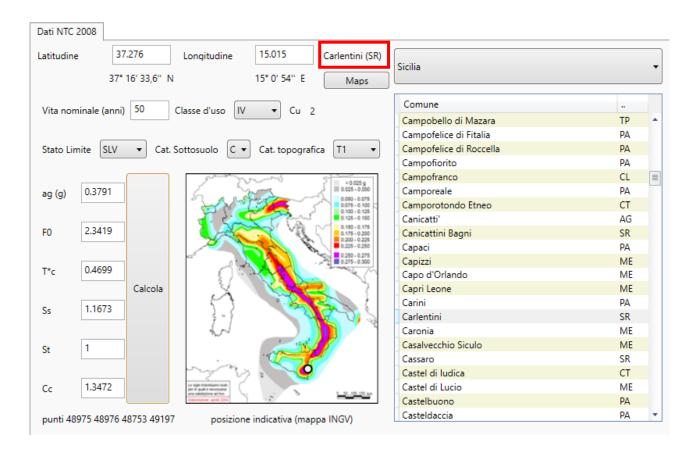
I parametri di pericolosità sismica vengono quindi valutate in relazione ad un periodo di riferimento V_R che si ricava per ciascun tipo di costruzione, moltiplicando la vita nominale V_N per il coefficiente d'uso C_U , ovvero:

$$V_R = V_N \cdot C_U$$

Pertanto, per l'opera in oggetto, il periodo di riferimento è pari a V_R =50x2 = 100 anni

Il calcolo viene eseguito con il metodo pseudo-statico. In queste condizioni l'azione sismica è rappresentata da una forza statica equivalente pari al prodotto delle forze di gravità per un opportuno coefficiente sismico.

PROGETTO ESECUTIVO

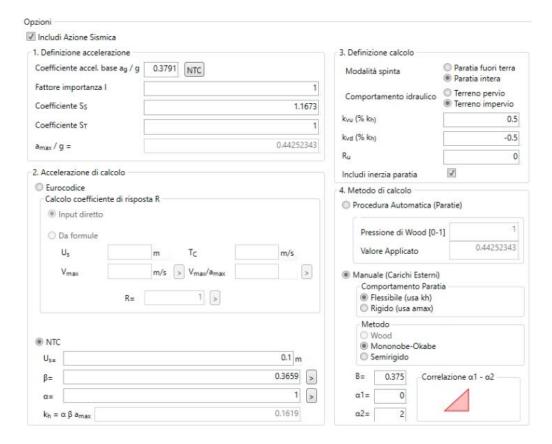

RELAZIONE DI CALCOLO

6.2 Parametri di pericolosità sismica

La valutazione dei parametri di pericolosità sismica, che ai sensi del D.M. 2008, costituiscono il dato base per la determinazione delle azioni sismiche di progetto su una costruzione (forme spettrali e/o forze inerziali) dipendono, come già in parte anticipato in precedenza, dalla localizzazione geografica del sito, dalle caratteristiche della costruzione (Periodo di riferimento per valutazione azione sismica / V_R) oltre che dallo Stato Limite di riferimento/Periodo di ritorno dell'azione sismica.

- Categoria sottosuolo C

Si ottiene per il sito in esame:



PROGETTO ESECUTIVO

RELAZIONE DI CALCOLO

I parametri sismici adottati per le paratie in corrispondenza della Spalla 1 e 2 sono:

PROGETTO ESECUTIVO

RELAZIONE DI CALCOLO

7. MODELLAZIONE NUMERICA

7.1 Programmi per l'analisi automatica

Lo stato tenso-deformativo della paratia e le verifiche strutturali sono state svolte con il codice di calcolo *PARATIEPLUS*.

7.2 Modelli di calcolo

Lo stato tenso-deformativo delle paratie è stato investigato mediante il software di calcolo PARATIE PLUS, programma non lineare agli elementi finiti per l'analisi di strutture di sostegno flessibili.

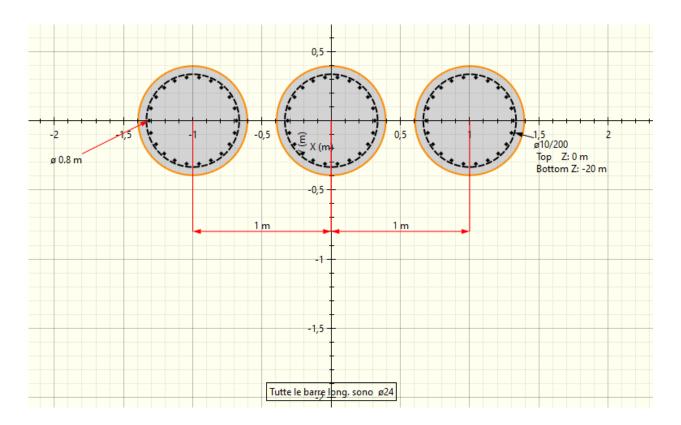
Si è considerato un comportamento piano nelle deformazioni, analizzando una striscia di parete di larghezza unitaria. La realizzazione dello scavo sostenuto da paratie è seguita in tutte le varie fasi attraverso un'analisi statica incrementale.

7.3 Paratia di pali con tiranti - Spalla 1

La paratia relativa alla spalla 1 del viadotto San Leonardo viene realizzata con pali in calcestruzzo C32/40, di diametro 800 mm ed interasse 1 m. Ciascun palo è armato con 22 ferri longitudinali Φ24 e staffe Φ12 con passo 20 cm. Inoltre, sono previsti 4 ordini di tiranti con passo pari a 2 m.

diametro palo [mm]	Armatura long		Staffe		
	n°	Ø	Ø	passo [cm]	
800	22	24	12	20	

Ordini tiranti	profondità da estradosso cordolo	n. trefoli	Interasse Tiranti	Inclinazione $lpha$	tipologia perforazione	Ø _{perforazione}	L _{libera}	L _{bulbo}	L _{tot}	Tiro iniziale
[-]	[m]	[-]	[m]	[°]	[-]	[mm]	[m]	[m]	[m]	[kN]
1	-1	4	2	20	IRS	200	10	4	14	250
2	-4	4	2	20	IRS	200	12	5	17	250
3	-7	4	2	20	IRS	200	12	5	17	250
4	-10.5	4	2	20	IRS	200	10	4	14	250



PROGETTO ESECUTIVO

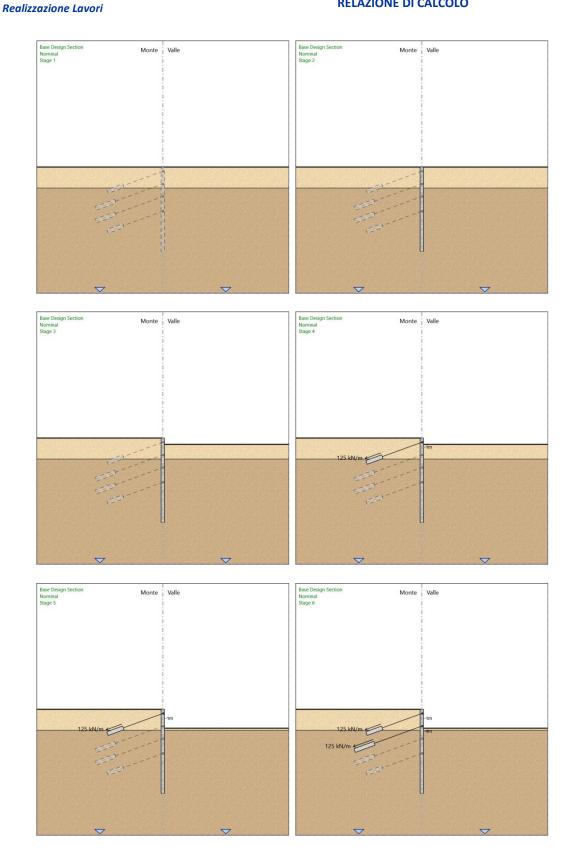
RELAZIONE DI CALCOLO

La paratia è lunga 20 m.

L'altezza di scavo è pari a 11 m.

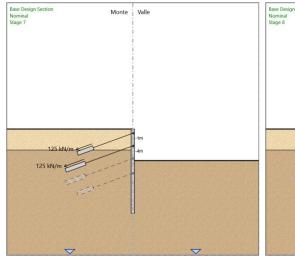
Nella modellazione è implementata la seguente successione di step:

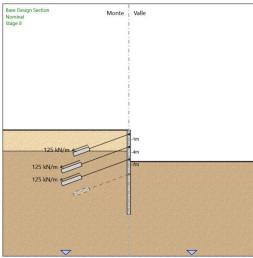
- Step 1. Inizializzazione geostatica.
- Step 2. Esecuzione paratia di pali.
- Step 3. Scavo 1.
- Step 4. Inserimento primo ordine di tiranti.
- Step 5. Scavo 2.
- Step 6. Inserimento secondo ordine di tiranti.
- Step 7. Scavo 3.
- Step 8. Inserimento terzo ordine di tiranti.
- Step 9. Scavo finale.
- Step 10. Inserimento quarto ordine di tiranti.
- Step 11. Sisma.

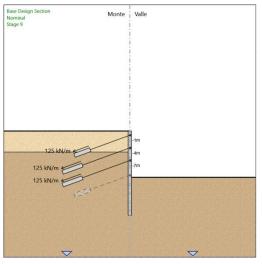


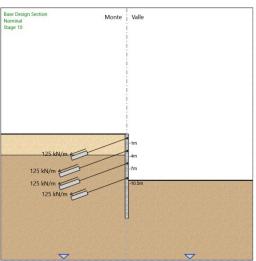
PROGETTO ESECUTIVO

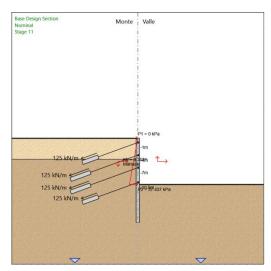
RELAZIONE DI CALCOLO






PROGETTO ESECUTIVO

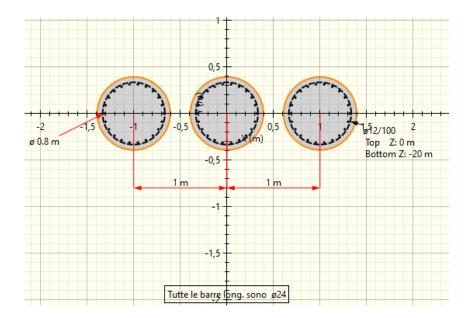

RELAZIONE DI CALCOLO



Per maggiori dettagli si rimanda agli allegati di calcolo.

MANDATARIA:

MANDANTI:


PROGETTO ESECUTIVO

RELAZIONE DI CALCOLO

7.4 Paratia di pali - Spalla 2

La paratia relativa alla spalla 2 del viadotto San Leonardo viene realizzata con pali in calcestruzzo C32/40, di diametro 800 mm ed interasse 1 m. Ciascun palo è armato con 22 ferri longitudinali Φ 24 e staffe Φ 12 con passo 10 cm.

diametro palo [mm]	Armatu	Armatura long		Staffe		
	n°	Ø	Ø	passo [cm]		
800	22	24	12	10		

La paratia è lunga 20 m.

L'altezza di scavo è pari a 8 m.

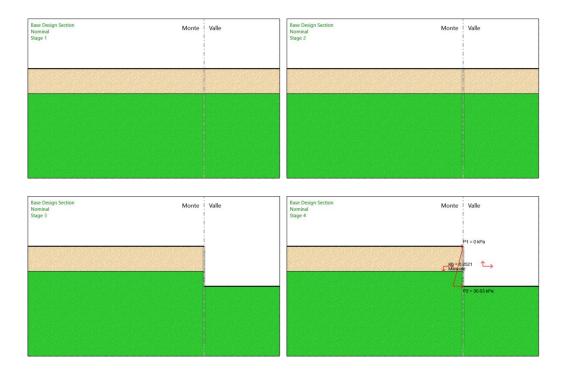
Nella modellazione è implementata la seguente successione di step:

Step 1. Inizializzazione geostatica.

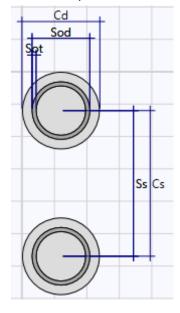
Step 2. Esecuzione paratia di pali.

Step 3. Scavo finale.

Step 4. Sisma.



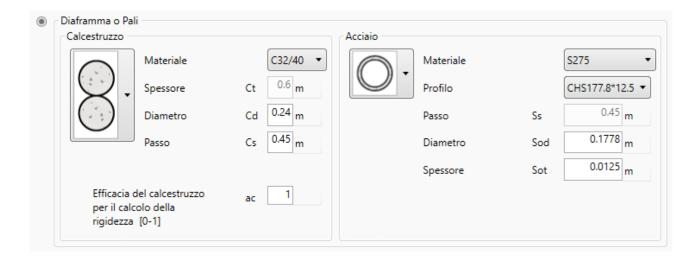
PROGETTO ESECUTIVO


RELAZIONE DI CALCOLO

Per maggiori dettagli si rimanda agli allegati di calcolo.

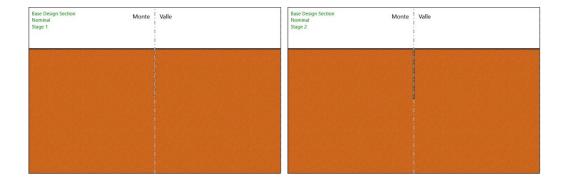
7.5 Paratia di micropali - Pila 1

La paratia provvisoria, prevista al fine di eseguire gli scavi necessari alla realizzazione della pila 1 del viadotto San Leonardo, viene realizzata con micropali di diametro 240 mm ed interasse 450 mm.



PROGETTO ESECUTIVO

RELAZIONE DI CALCOLO

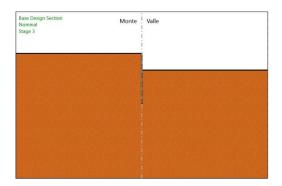


La paratia è lunga 12 m.

L'altezza di scavo è pari a 4 m.

Nella modellazione è implementata la seguente successione di step:

- Step 1. Inizializzazione geostatica.
- Step 2. Esecuzione paratia di micropali.
- Step 3. Scavo finale.



PROGETTO ESECUTIVO

RELAZIONE DI CALCOLO

Per maggiori dettagli si rimanda agli allegati di calcolo.

7.6 Palancola - Pila 2

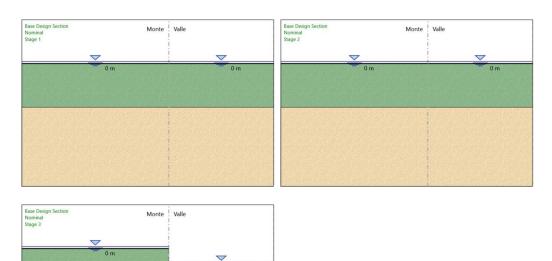
La palancola provvisoria, prevista al fine di eseguire gli scavi necessari alla realizzazione della pila 2 del viadotto San Leonardo, viene realizzata in acciaio S275 con sezioni di tipo AZ 46, unite da giunti di tipo Larsenn.

La paratia è lunga 15 m. La testa si trova a 0.5 m al di sopra del piano campagna, considerando un franco idraulico pari a 0,5 m.

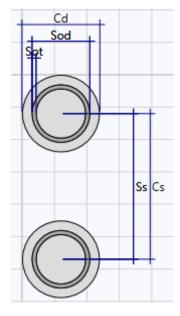
L'altezza di scavo è pari a 3.7 m.

Nella modellazione è implementata la seguente successione di step:

- Step 1. Inizializzazione geostatica.
- Step 2. Esecuzione palancola.
- Step 3. Scavo finale.



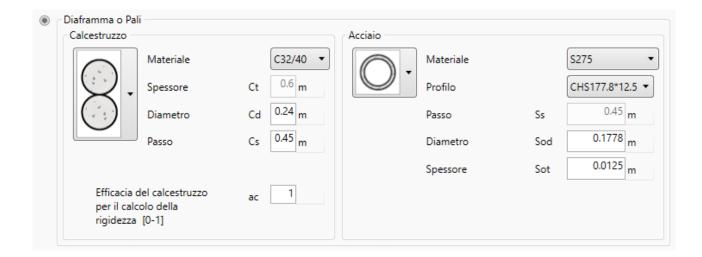
PROGETTO ESECUTIVO


RELAZIONE DI CALCOLO

Per maggiori dettagli si rimanda agli allegati di calcolo.

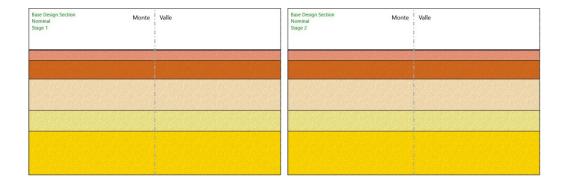
7.7 Paratia di micropali - Pila 3

La paratia provvisoria, prevista al fine di eseguire gli scavi necessari alla realizzazione della pila 3 del viadotto San Leonardo, viene realizzata con micropali di diametro 240 mm ed interasse 450 mm.



PROGETTO ESECUTIVO

RELAZIONE DI CALCOLO

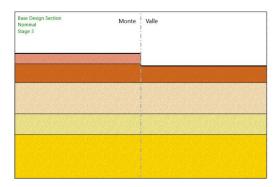


La paratia è lunga 8 m.

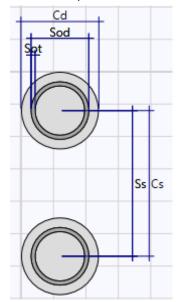
L'altezza di scavo è pari a 3 m.

Nella modellazione è implementata la seguente successione di step:

- Step 1. Inizializzazione geostatica.
- Step 2. Esecuzione paratia di micropali.
- Step 3. Scavo finale.



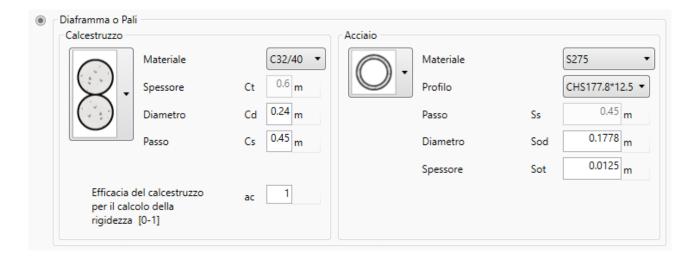
PROGETTO ESECUTIVO


RELAZIONE DI CALCOLO

Per maggiori dettagli si rimanda agli allegati di calcolo.

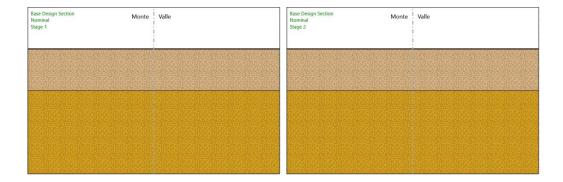
7.8 Paratia di micropali - Pila 4

La paratia provvisoria, prevista al fine di eseguire gli scavi necessari alla realizzazione della pila 4 del viadotto San Leonardo, viene realizzata con micropali di diametro 240 mm ed interasse 450 mm.



PROGETTO ESECUTIVO

RELAZIONE DI CALCOLO

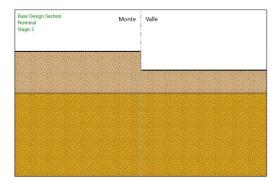


La paratia è lunga 12 m.

L'altezza di scavo è pari a 4.5 m.

Nella modellazione è implementata la seguente successione di step:

- Step 1. Inizializzazione geostatica.
- Step 2. Esecuzione paratia di micropali.
- Step 3. Scavo finale.



PROGETTO ESECUTIVO

RELAZIONE DI CALCOLO

Per maggiori dettagli si rimanda agli allegati di calcolo.

PROGETTO ESECUTIVO

RELAZIONE DI CALCOLO

8. ANALISI DEI CARICHI

8.1 Peso Proprio

Il peso proprio delle strutture è calcolato in base alla geometria degli elementi strutturali e al peso specifico assunto per i materiali:

$$\gamma_{cls}$$
=25 kN/m³ γ_{s} =78.5 kN/m³

8.2 Spinta statica delle terre

Nel modello di calcolo impiegato dal software di calcolo PARATIE, la spinta del terreno viene determinata investigando l'interazione statica tra terreno e la struttura deformabile a partire da uno stato di spinta a riposo del terreno sulla paratia.

I parametri che identificano il tipo di legge costitutiva possono essere distinti in due sottoclassi: parametri di spinta e parametri di deformabilità del terreno.

I parametri di spinta sono il coefficiente di spinta a riposo K_0 , il coefficiente di spinta attiva K_a e il coefficiente di spinta passiva K_p .

Il coefficiente di spinta a riposo fornisce lo stato tensionale presente in sito prima delle operazioni di scavo. Esso lega la tensione orizzontale efficace σ'_h a quella verticale σ'_v attraverso la relazione:

$$\sigma'_h = K_0 \cdot \sigma'_v$$

 K_0 dipende dalla resistenza del terreno, attraverso il suo angolo di attrito efficace ϕ' e dalla sua storia geologica. Si può assumere che:

$$K_0 = K_0^{NC} \cdot (OCR)^m$$

dove
 $K_0^{NC} = 1 - \text{sen } \phi'$

è il coefficiente di spinta a riposo per un terreno normalconsolidato (OCR=1). OCR è il grado di sovraconsolidazione e m è un parametro empirico, di solito compreso tra 0.4 e 0.7.

I coefficienti di spinta attiva e passiva sono forniti dalla teoria di Rankine per una parete liscia dalle seguenti espressioni:

$$K_a = tan^2(45 - \phi'/2)$$

 $K_p = tan^2(45 + \phi'/2)$

Per tener conto dell'angolo di attrito δ tra paratia e terreno il software PARATIE impiega per Ka e Kp la formulazione rispettivamente di Coulomb e Lancellotta.

PROGETTO ESECUTIVO

RELAZIONE DI CALCOLO

Formulazione di Coulomb per ka

$$k_{a} = \frac{cos^{2}(\phi' - \beta)}{cos^{2}\beta \cdot cos(\beta + \delta) \cdot \left\lceil 1 + \sqrt{\frac{sen(\delta + \phi') \cdot sen(\phi' - i)}{cos(\beta + \delta) \cdot cos(\beta - i)}} \right\rceil^{2}}$$

dove:

φ' è l'angolo di attrito del terreno

β è l'angolo d'inclinazione del diaframma rispetto all'orizzontale

δ è l'angolo di attrito paratia-terreno

i è l'angolo d'inclinazione del terreno a monte della paratia rispetto all'orizzontale

Il valore limite della tensione orizzontale sarà pari a

$$\sigma'_{h} = K_{a} \cdot \sigma'_{v} - 2 \cdot c' \cdot V K_{a}$$

$$\sigma'_{h} = K_{n} \cdot \sigma'_{v} + 2 \cdot c' \cdot V K_{n}$$

a seconda che il collasso avvenga in spinta attiva o passiva rispettivamente. c' è la coesione drenata del terreno.

Formulazione di Lancellotta per k_p

$$K_{P} = \left[\frac{\cos \delta}{1 - \sin \Phi'} (\cos \delta + \sqrt{\sin^2 \Phi' - \sin^2 \delta)}\right] e^{2\theta \tan \Phi'}$$

dove:

$$2\theta = \sin^{-1}\left(\frac{\sin\delta}{\sin\Phi'}\right) + \delta$$

8.3 Spinta statica dell'acqua

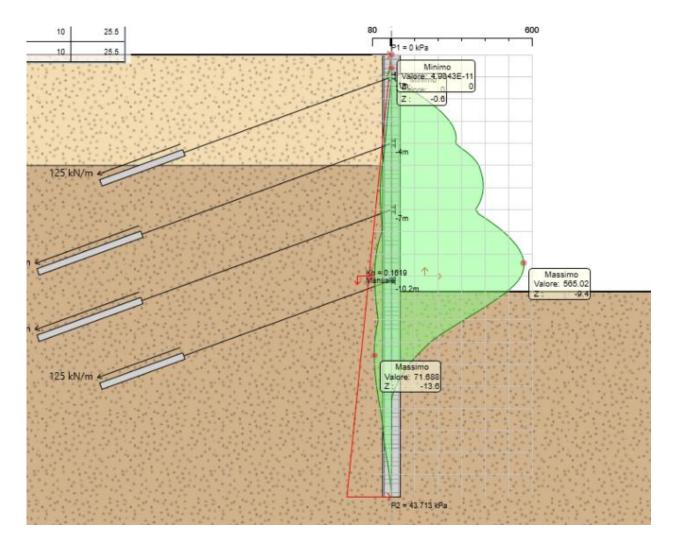
Le paratie di pali (spalla 1 e 2) non sono interessate dalla presenza di falda.

La palancola (pila 2) è interessata a monte da un tirante idrico alla quota dell'argine. A seguito dello scavo, quest'ultima sarà soggetta ad una spinta sbilanciata dell'acqua.

Le paratie di micropali (pila 1,3 e 4) non sono interessate dalla presenza di falda.

PROGETTO ESECUTIVO

RELAZIONE DI CALCOLO

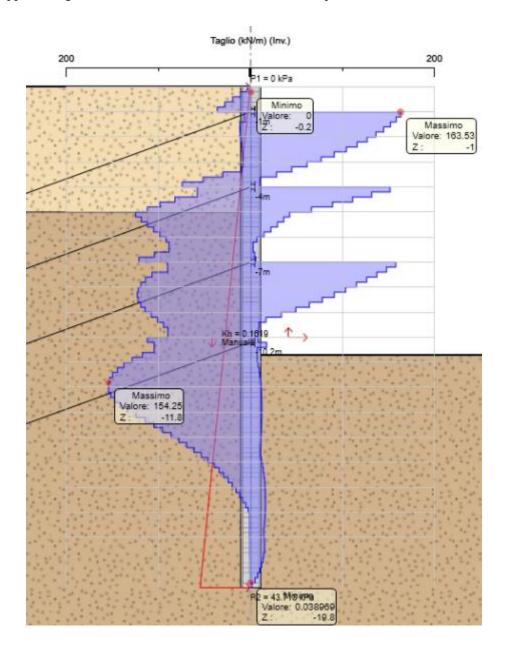

9. Risultati

Nei paragrafi seguenti si riportano i risultati delle analisi condotte per i diversi modelli implementati, con le indicazioni dei valori massimi delle sollecitazioni flettenti e taglianti e delle rispettive profondità. I valori riportati sono relativi all'analisi al metro lineare.

9.1Paratia di pali con tiranti - Spalla 1

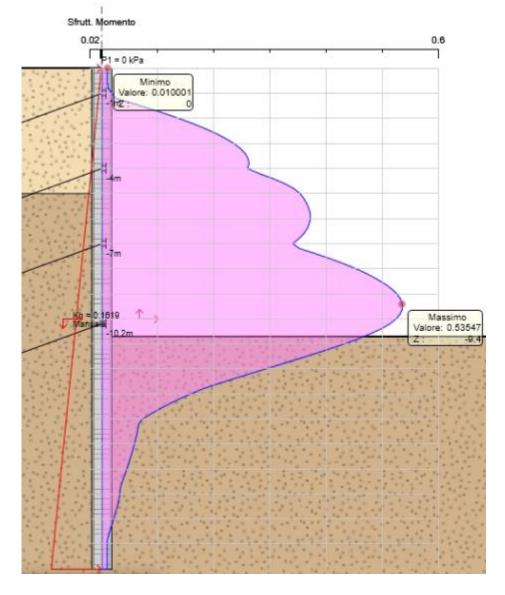
9.1.1 Verifiche SLU pareti

Dall'inviluppo del momento flettente si osserva che il massimo valore risulta pari a 565 kNm/m.

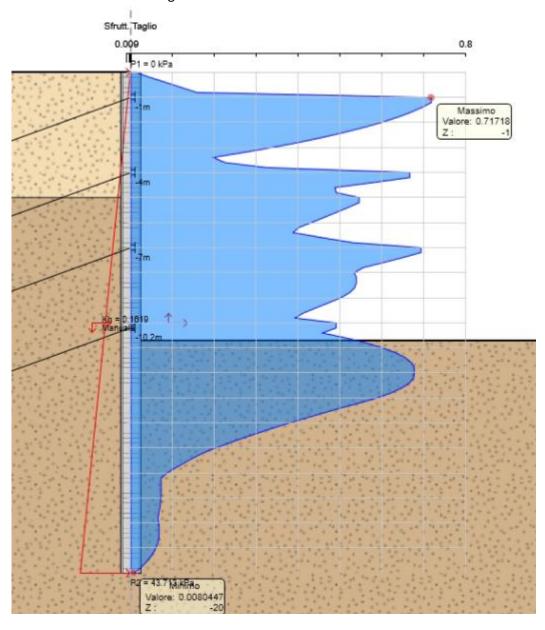


Dall'inviluppo del taglio si osserva che il massimo valore risulta pari a 163 kN/m.

Nel seguito si riportano i risultati delle verifiche strutturali dei pali a flessione e a taglio condotte mediante l'ausilio di Paratie plus. In particolare, si riportano i diagrammi dei tassi di sfruttamento, ottenuti come rapporto tra sollecitazione presente e resistenza disponibile in ogni sezione.



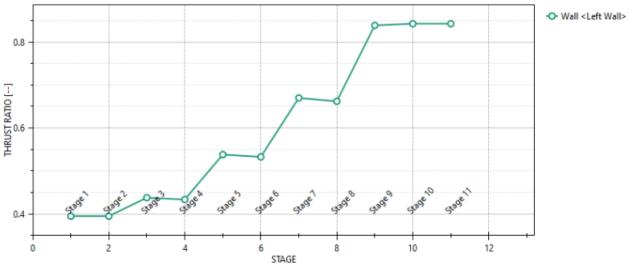
Tasso di sfruttamento a momento T.S.F.max = 0.53<1



Tasso di sfruttamento a taglio T.S.F.max = 0.71<1

PROGETTO ESECUTIVO

RELAZIONE DI CALCOLO

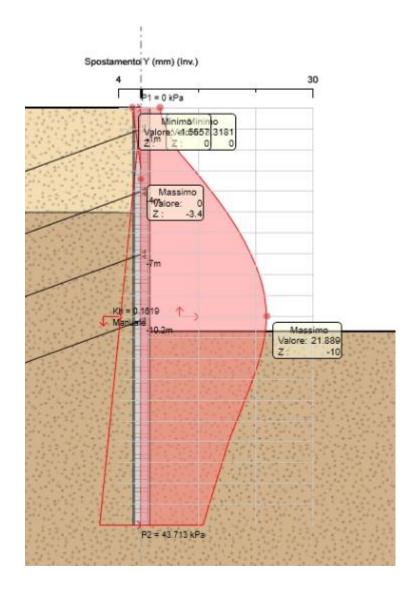

9.1.2 Verifiche SLU geo

Le verifiche geotecniche sono svolte valutando il coefficiente di sicurezza in termini di rapporto di mobilitazione della spinta passiva, cioè come rapporto tra spinta passiva mobilitata al piede della paratia e la spinta passiva mobilitabile. La verifica è soddisfatta se tale rapporto è inferiore all'unità.

Il massimo rapporto di mobilitazione della spinta passiva è circa il 85 %.

Massimi rapporti di mobilizzazione spinta passiva

D.A. <A2+M2+R1>



PROGETTO ESECUTIVO

RELAZIONE DI CALCOLO

9.1.3 Verifiche SLE

Dall'inviluppo degli spostamenti in combinazione SLE si osserva che lo spostamento massimo orizzontale della paratia vale 22 mm:

		m	mm
check 1	0.005H	0,1	100
check 2	1/100H _{scavo}	0,11	110

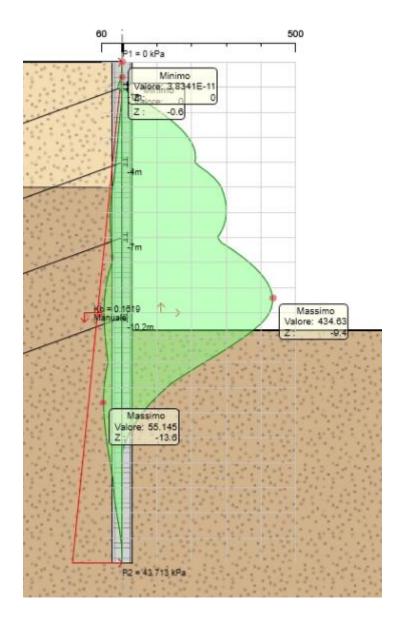
	limite spostamento paratia a SLE
m	mm
0,1	100

risultato sle mm 22

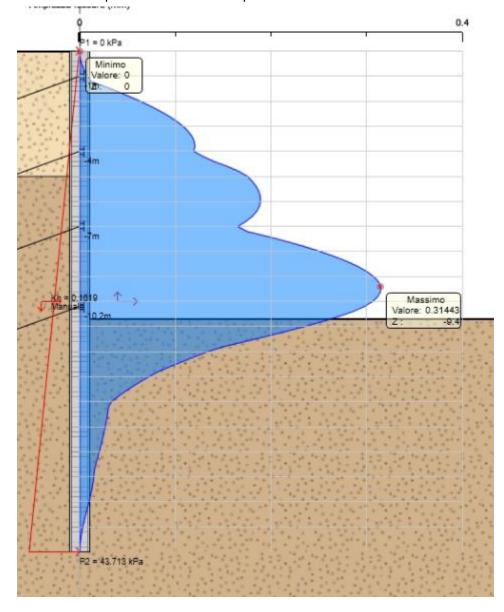
ok

MANDATARIA:

MANDANTI:



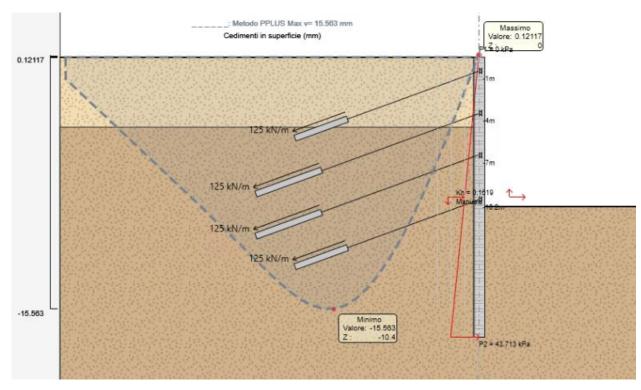
Dall'inviluppo del momento flettente si osserva che il massimo valore risulta pari a 434 kNm/m.

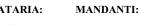


PROGETTO ESECUTIVO

RELAZIONE DI CALCOLO

L'ampiezza massima di apertura delle fessure è pari a 0.31 mm:





Il cedimento massimo risulta pari a 15 mm.

PROGETTO ESECUTIVO

RELAZIONE DI CALCOLO

9.1.4 Verifiche Tiranti

Tirante	Stage	Sollecitazione (kN)	Resistenza GEO (kN)	Resistenza STR (kN)	Sfruttamento GEO	Sfruttamento STR	Resistenza	Design Assumption
1	Stage 7	386.79	460.77	807.41	0.839	0.479	*	A1+M1+R1 (R3 per tiranti)
2	Stage 9	409.43	523.6	807.41	0.782	0.507	~	A1+M1+R1 (R3 per tiranti)
3	Stage 9	417.48	523.6	807.41	0.797	0.517	~	A1+M1+R1 (R3 per tiranti)
4	Stage 11	379.49	418.88	807.41	0.906	0.47	~	SISMICA GEO

Tabella 1: Inviluppo verifiche tiranti.

Tirante	Stage	Sollecitazione (kN)	Resistenza GEO (kN)	Resistenza STR (kN)	Sfruttamento GEO	Sfruttamento STR	Resistenza	Gerarchia delle Resisten:
1	Stage 4	325	460.77	807.41	0.705	0.403	*	✓
1	Stage 5	381	460.77	807.41	0.827	0.472	~	✓
1	Stage 6	354.71	460.77	807.41	0.77	0.439	*	*
1	Stage 7	386.79	460.77	807.41	0.839	0.479	~	*
1	Stage 8	376.1	460.77	807.41	0.816	0.466	~	*
1	Stage 9	369.16	460.77	807.41	0.801	0.457	*	*
1	Stage 10	369.03	460.77	807.41	0.801	0.457	~	*
1	Stage 11	369.03	460.77	807.41	0.801	0.457	~	✓
2	Stage 6	325	523.6	807.41	0.621	0.403	~	~
2	Stage 7	382.56	523.6	807.41	0.731	0.474	~	✓
2	Stage 8	365.65	523.6	807.41	0.698	0.453	~	✓
2	Stage 9	409.43	523.6	807.41	0.782	0.507	~	~
2	Stage 10	402.34	523.6	807.41	0.768	0.498	~	✓
2	Stage 11	402.34	523.6	807.41	0.768	0.498	~	✓
3	Stage 8	325	523.6	807.41	0.621	0.403	~	✓
3	Stage 9	417.48	523.6	807.41	0.797	0.517	*	*
3	Stage 10	403.9	523.6	807.41	0.771	0.5	4	~
3	Stage 11	403.9	523.6	807.41	0.771	0.5	~	✓
4	Stage 10	325	418.88	807.41	0.776	0.403	~	✓
4	Stage 11	325	418.88	807.41	0.776	0.403	~	~

Tabella 2: Verifiche tiranti (A1+M1+R1).

ranti Puntoni	Travi di Ripartizione in Acciaio	Travi di Ripartizio	ne in Calcestruzzo					
Tirante	Stage S	Sollecitazione (kN)	Resistenza GEO (kN)	Resistenza STR (kN)	Sfruttamento GEO	Sfruttamento STR	Resistenza	Gerarchia delle Resistenz
1	Stage 4	250	460.77	807.41	0.543	0.31	~	~
1	Stage 5	297.72	460.77	807.41	0.646	0.369	~	~
1	Stage 6	276.28	460.77	807.41	0.6	0.342	<	✓
1	Stage 7	303.83	460.77	807.41	0.659	0.376	*	*
1	Stage 8	294.78	460.77	807.41	0.64	0.365	*	~
1	Stage 9	292.13	460.77	807.41	0.634	0.362	*	~
1	Stage 10	291.58	460.77	807.41	0.633	0.361	*	~
1	Stage 11	304.29	460.77	807.41	0.66	0.377	*	✓
2	Stage 6	250	523.6	807.41	0.477	0.31	*	~
2	Stage 7	301.3	523.6	807.41	0.575	0.373	*	✓
2	Stage 8	287.65	523.6	807.41	0.549	0.356	~	✓
2	Stage 9	337.2	523.6	807.41	0.644	0.418	~	✓
2	Stage 10	331.09	523.6	807.41	0.632	0.41	~	✓
2	Stage 11	376.78	523.6	807.41	0.72	0.467	~	✓
3	Stage 8	250	523.6	807.41	0.477	0.31	~	✓
3	Stage 9	349.05	523.6	807.41	0.667	0.432	~	✓
3	Stage 10	337.81	523.6	807.41	0.645	0.418	*	*
3	Stage 11	417.05	523.6	807.41	0.797	0.517	*	*
4	Stage 10	250	418.88	807.41	0.597	0.31	*	*
4	Stage 11	379.49	418.88	807.41	0.906	0.47	×	~

Tabella 3: Verifiche tiranti (SISMICA GEO).

PROGETTO ESECUTIVO

RELAZIONE DI CALCOLO

9.1.5 Verifiche Travi di ripartizione

Trave di Ripartizione	Connessione	Sezione	Materiale	Passo orizz. (m)	D.A.	Stage	Carico distribuito(kN/ m)	Azione Assiale (kN)	Sfruttamento Momento	Sfruttamento Taglio	Instabilità
Default Waler	1	HE 200A	\$275	2	A2+M2+R1	Stage 4	125	0	0.27	0.289	(
Default Waler	1	HE 200A	\$275	2	A2+M2+R1	Stage 5	148.86	0	0.321	0.345	(
Default Waler	1	HE 200A	S275	2	A2+M2+R1	Stage 6	138.14	0	0.298	0.32	(
Default Waler	2	HE 200A	\$275	2	A2+M2+R1	Stage 6	125	0	0.27	0.289	(
Default Waler	1	HE 200A	\$275	2	A2+M2+R1	Stage 7	151.92	0	0.328	0.352	(
Default Waler	2	HE 200A	\$275	2	A2+M2+R1	Stage 7	150.65	0	0.325	0.349	(
Default Waler	1	HE 200A	S275	2	A2+M2+R1	Stage 8	147.39	0	0.318	0.341	(
Default Waler	2	HE 200A	S275	2	A2+M2+R1	Stage 8	143.83	0	0.31	0.333	(
Default Waler	3	HE 200A	S275	2	A2+M2+R1	Stage 8	125	0	0.27	0.289	(
Default Waler	1	HE 200A	S275	2	A2+M2+R1	Stage 9	146.07	0	0.315	0.338	(
Default Waler	2	HE 200A	S275	2	A2+M2+R1	Stage 9	168.6	0	0.364	0.39	(
Default Waler	3	HE 200A	\$275	2	A2+M2+R1	Stage 9	174.52	0	0.376	0.404	(
Default Waler	1	HE 200A	\$275	2	A2+M2+R1	Stage 10	145.79	0	0.314	0.338	(
Default Waler	2	HE 200A	\$275	2	A2+M2+R1	Stage 10	165.54	0	0.357	0.383	(
Default Waler	3	HE 200A	\$275	2	A2+M2+R1	Stage 10	168.91	0	0.364	0.391	(
Default Waler	4	HE 200A	S275	2	A2+M2+R1	Stage 10	125	0	0.27	0.289	(
Default Waler	1	HE 200A	\$275	2	A2+M2+R1	Stage 11	145.79	0	0.314	0.338	(
Default Waler	2	HE 200A	\$275	2	A2+M2+R1	Stage 11	165.54	0	0.357	0.383	(
Default Waler	3	HE 200A	\$275	2	A2+M2+R1	Stage 11	168.91	0	0.364	0.391	(
Default Waler	4	HE 200A	S275	2	A2+M2+R1	Stage 11	125	0	0.27	0.289	(

Tabella 4: Verifiche travi di ripartizione (A1+M1+R1).

Trave di Ripartizione	Connessione	Sezione	Materiale	Passo orizz. (m)	D.A.	Stage	Carico distribuito(kN/ m)	Azione Assiale (kN)	Sfruttamento Momento	Sfruttamento Taglio	Instabilità
Default Waler	1	HE 200A	S275	2	SISMICA GEO	Stage 4	125	0	0.27	0.289	
Default Waler	1	HE 200A	\$275	2	SISMICA GEO	Stage 5	148.86	0	0.321	0.345	
Default Waler	1	HE 200A	\$275	2	SISMICA GEO	Stage 6	138.14	0	0.298	0.32	
Default Waler	2	HE 200A	S275	2	SISMICA GEO	Stage 6	125	0	0.27	0.289	
Default Waler	1	HE 200A	S275	2	SISMICA GEO	Stage 7	151.92	0	0.328	0.352	
Default Waler	2	HE 200A	S275	2	SISMICA GEO	Stage 7	150.65	0	0.325	0.349	
Default Waler	1	HE 200A	S275	2	SISMICA GEO	Stage 8	147.39	0	0.318	0.341	
Default Waler	2	HE 200A	\$275	2	SISMICA GEO	Stage 8	143.83	0	0.31	0.333	
Default Waler	3	HE 200A	S275	2	SISMICA GEO	Stage 8	125	0	0.27	0.289	
Default Waler	1	HE 200A	S275	2	SISMICA GEO	Stage 9	146.07	0	0.315	0.338	
Default Waler	2	HE 200A	S275	2	SISMICA GEO	Stage 9	168.6	0	0.364	0.39	
Default Waler	3	HE 200A	S275	2	SISMICA GEO	Stage 9	174.52	0	0.376	0.404	
Default Waler	1	HE 200A	S275	2	SISMICA GEO	Stage 10	145.79	0	0.314	0.338	
Default Waler	2	HE 200A	S275	2	SISMICA GEO	Stage 10	165.54	0	0.357	0.383	
Default Waler	3	HE 200A	\$275	2	SISMICA GEO	Stage 10	168.91	0	0.364	0.391	
Default Waler	4	HE 200A	S275	2	SISMICA GEO	Stage 10	125	0	0.27	0.289	
Default Waler	1	HE 200A	S275	2	SISMICA GEO	Stage 11	152.14	0	0.328	0.352	
Default Waler	2	HE 200A	S275	2	SISMICA GEO	Stage 11	188.39	0	0.406	0.436	
Default Waler	3	HE 200A	\$275	2	SISMICA GEO	Stage 11	208.52	0	0.45	0.483	
Default Waler	4	HE 200A	\$275	2	SISMICA GEO	Stage 11	189.74	0	0.409	0.439	

Tabella 5: Verifiche travi di ripartizione (SISMICA GEO).

MANDATARIA:

RELAZIONE DI CALCOLO

9.1.6 Verifica di stabilità globale

Per le verifiche di stabilità globale è stato utilizzato il modulo VSP di PARATIE PLUS.

Questo tipo di verifica prende in esame la configurazione di scavo o, più in generale, del pendio, nella fase generica, prescindendo dalla sequenza costruttiva precedente. Questa tecnica, infatti, appartiene all'ambito dei metodi dell'equilibrio limite che operano indipendentemente dal comportamento deformativo dell'opera, o meglio, che prescindono dalla successione temporale delle deformazioni reversibili e irreversibili sviluppatesi prima della configurazione esaminata.

Per entrambi i casi è stato adottato il metodo rigoroso di **Morgenstern & Price**, appartenete alla famiglia dei metodi dell'equilibrio limite, basati sull'individuare una regione di terreno potenzialmente instabile, suddivisa in tanti conci verticali (slices) e mobilitata lungo una superficie di scorrimento. Questo metodo considera superfici di scorrimento di forma generica e ricerca il coefficiente di sicurezza associato ad una superficie imponendo le condizioni di equilibrio globale a traslazione e a rotazione. Al fine di rendere il problema staticamente determinato, si aggiungono (n-1) equazioni, ipotizzando che l'inclinazione delle forze tra i conci vari con la posizione x del concio, secondo una legge f(x) nota a meno di un moltiplicatore λ , introdotto come incognita aggiuntiva:

$$\frac{Xi}{Ei} = \lambda f(x)$$

Dove:

Xi: forza tangenziale agente sulla faccia i- esima del concio.

Ei: forza ortogonale alla faccia i-esima del concio.

λ: incognita.

f(x): funzione di forma che nel caso di M&P è sinusoidale.

La soluzione del problema è determinata mediante un processo iterativo.

Mediante la griglia quadrangolare dei centri definita nel programma, vengono considerate diverse superfici di scorrimento. Infine, viene individuata la superficie di scorrimento più gravosa, ovvero quella tale per cui il coefficiente di sicurezza è minimo.

La stabilità è stata studiata sia in condizioni statiche, sia in condizioni sismiche. In quest'ultimo caso, sono state considerate le condizioni peggiori, secondo cui Kv= -0,5Kh.

Nelle figure successive si riportano gli output grafici delle verifiche di stabilità globale sia in condizioni statica che in condizioni sismiche.

MANDATARIA:

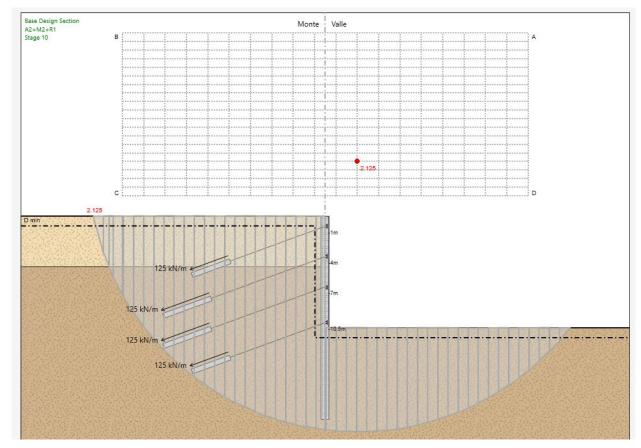


Figura 4: Verifica di stabilità globale in condizioni statiche.

In condizioni statiche, il coefficiente di sicurezza è pari a 2.125, pertanto la verifica di stabilità globale dello scavo è soddisfatta.

PROGETTO ESECUTIVO

RELAZIONE DI CALCOLO

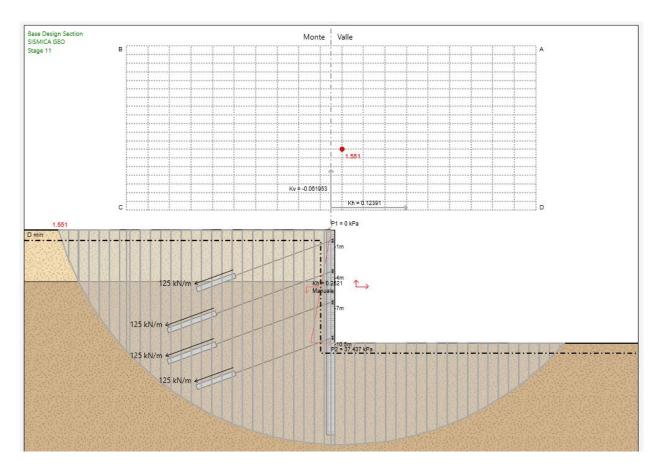
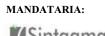
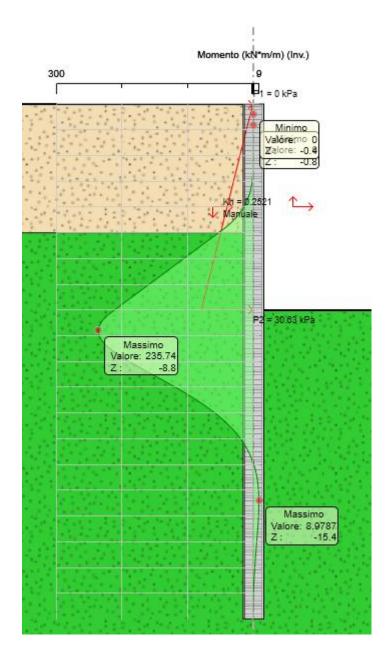
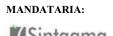



Figura 5: Verifica di stabilità globale in condizioni sismiche.

In condizioni sismiche, il coefficiente di sicurezza è pari a 1.55, pertanto la verifica di stabilità globale dello scavo è soddisfatta.

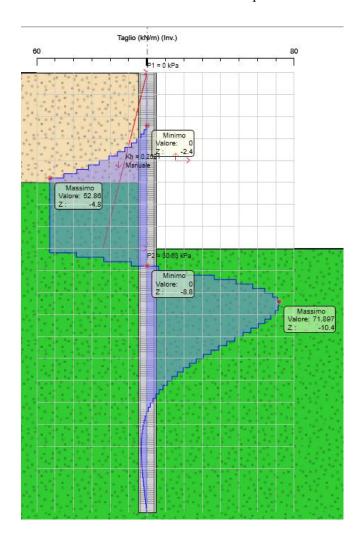




9.2 Paratia di pali - Spalla 2

9.2.1 Verifiche SLU pareti

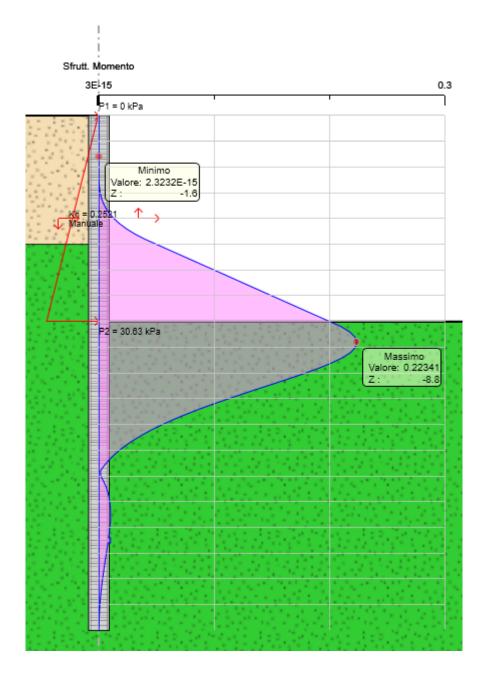
Dall'inviluppo del momento flettente si osserva che il massimo valore risulta pari a 236 kNm/m.



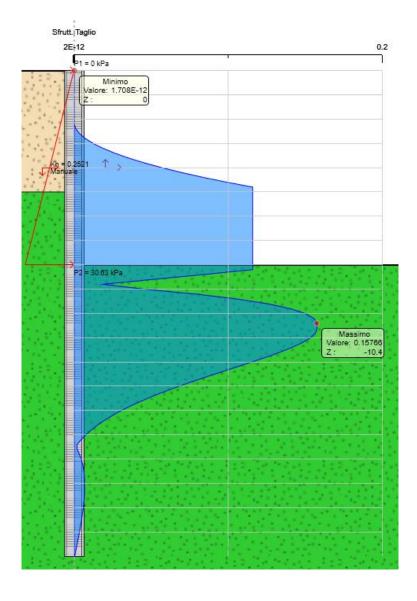
Dall'inviluppo del taglio si osserva che il massimo valore risulta pari a 72 kN/m.

Il taglio, all'inizio dello strato di roccia, risulta costante in quanto le tensioni orizzontali attive nella roccia sono nulle. Ciò accade poiché la coesione è molto alta; allora, le $\sigma_{ha} = \sigma'_{ha} = k_a * \sigma' v - 2c' \sqrt{k_a} < 0$. A favore di sicurezza si prendono $\sigma_h = 0$.

Nel seguito si riportano i risultati delle verifiche strutturali dei pali a flessione e a taglio condotte mediante l'ausilio di Paratie plus. In particolare, si riportano i diagrammi dei tassi di sfruttamento, ottenuti come rapporto tra sollecitazione presente e resistenza disponibile in ogni sezione.



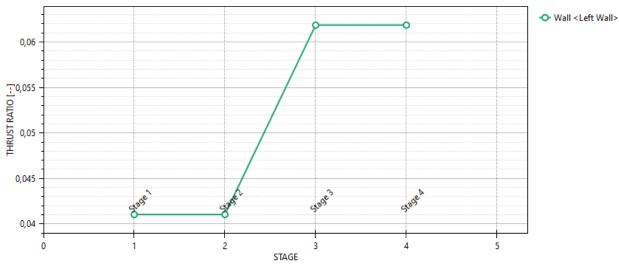
Tasso di sfruttamento a momento T.S.F.max = 0.22<1



Tasso di sfruttamento a taglio T.S.F.max = 0.16<1

PROGETTO ESECUTIVO

RELAZIONE DI CALCOLO


9.2.2 Verifiche SLU geo

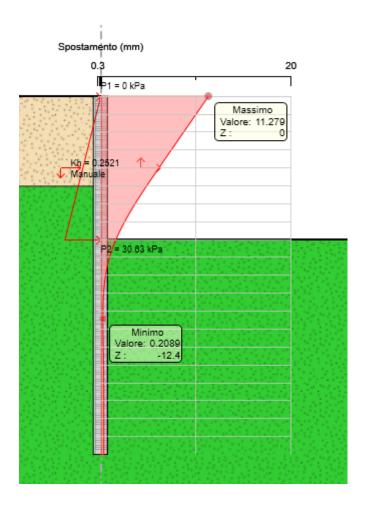
Le verifiche geotecniche sono svolte valutando il coefficiente di sicurezza in termini di rapporto di mobilitazione della spinta passiva, cioè come rapporto tra spinta passiva mobilitata al piede della paratia e la spinta passiva mobilitabile. La verifica è soddisfatta se tale rapporto è inferiore all'unità.

Il massimo rapporto di mobilitazione della spinta passiva è circa il 6.2 %.

Massimi rapporti di mobilizzazione spinta passiva

D.A. <A2+M2+R1>

MANDATARIA:



PROGETTO ESECUTIVO

RELAZIONE DI CALCOLO

9.2.3 Verifiche SLE

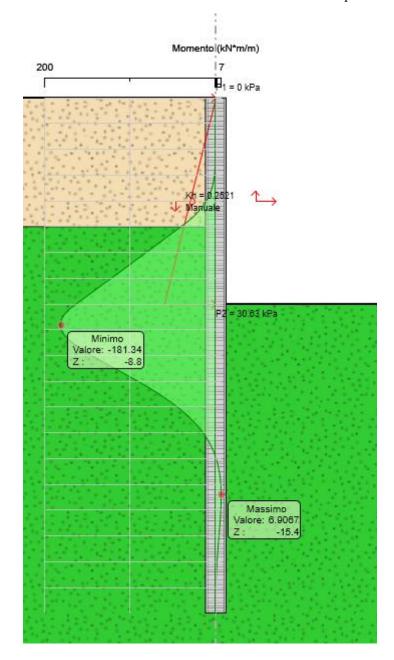
Dall'inviluppo degli spostamenti in combinazione SLE si osserva che lo spostamento massimo orizzontale della paratia vale 11 mm:

		m	mm
check 1	0.005H	0,1	100
check 2	1/100H _{scavo}	0,08	80

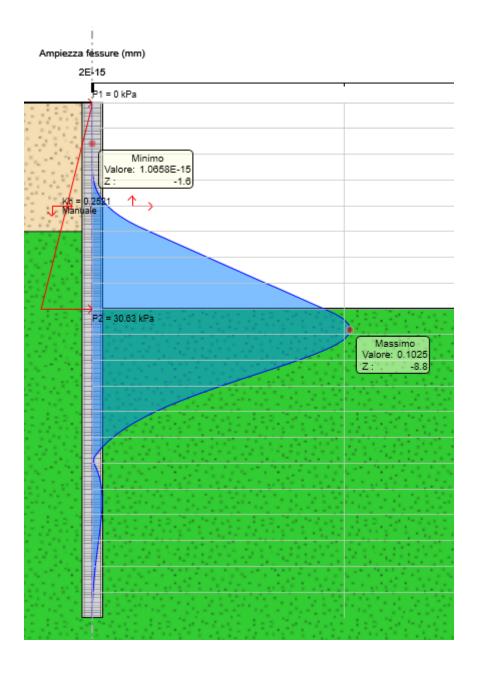
	limite spostamento paratia a SLE
m	mm
0,08	80

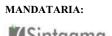
risultato sle mm 11

ok



Dall'inviluppo del momento flettente si osserva che il massimo valore risulta pari a 181 kNm/m.

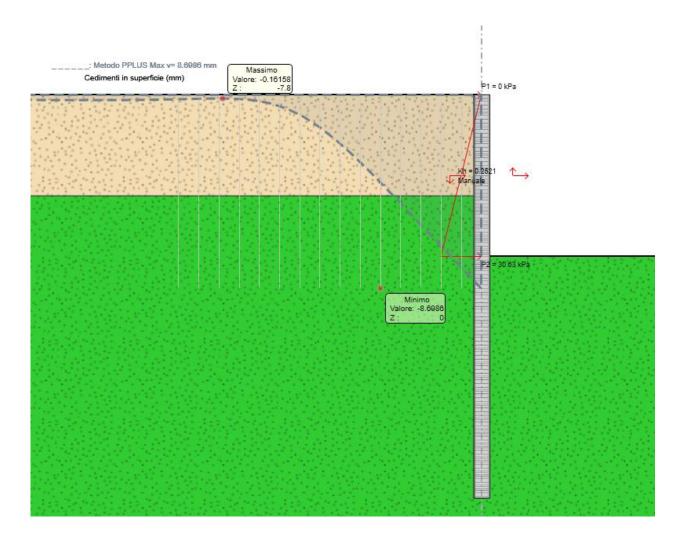




PROGETTO ESECUTIVO

RELAZIONE DI CALCOLO

L'ampiezza massima di apertura delle fessure è pari a 0.1 mm:



PROGETTO ESECUTIVO

RELAZIONE DI CALCOLO

Il cedimento massimo risulta pari a 8.7 mm.

PROGETTO ESECUTIVO RELAZIONE DI CALCOLO

9.2.4 Verifica di stabilità globale

Per le verifiche di stabilità globale è stato utilizzato il modulo VSP di PARATIE PLUS.

Questo tipo di verifica prende in esame la configurazione di scavo o, più in generale, del pendio, nella fase generica, prescindendo dalla sequenza costruttiva precedente. Questa tecnica, infatti, appartiene all'ambito dei metodi dell'equilibrio limite che operano indipendentemente dal comportamento deformativo dell'opera, o meglio, che prescindono dalla successione temporale delle deformazioni reversibili e irreversibili sviluppatesi prima della configurazione esaminata.

Per entrambi i casi è stato adottato il metodo rigoroso di **Morgenstern & Price**, appartenete alla famiglia dei metodi dell'equilibrio limite, basati sull'individuare una regione di terreno potenzialmente instabile, suddivisa in tanti conci verticali (*slices*) e mobilitata lungo una superficie di scorrimento. Questo metodo considera superfici di scorrimento di forma generica e ricerca il coefficiente di sicurezza associato ad una superficie imponendo le condizioni di equilibrio globale a traslazione e a rotazione. Al fine di rendere il problema staticamente determinato, si aggiungono (n-1) equazioni, ipotizzando che l'inclinazione delle forze tra i conci vari con la posizione x del concio, secondo una legge f(x) nota a meno di un moltiplicatore λ , introdotto come incognita aggiuntiva:

$$\frac{Xi}{Fi} = \lambda f(x)$$

Dove:

Xi: forza tangenziale agente sulla faccia i- esima del concio.

Ei: forza ortogonale alla faccia i-esima del concio.

λ: incognita.

f(x): funzione di forma che nel caso di M&P è sinusoidale.

La soluzione del problema è determinata mediante un processo iterativo.

Mediante la griglia quadrangolare dei centri definita nel programma, vengono considerate diverse superfici di scorrimento. Infine, viene individuata la superficie di scorrimento più gravosa, ovvero quella tale per cui il coefficiente di sicurezza è minimo.

La stabilità è stata studiata sia in condizioni statiche, sia in condizioni sismiche. In quest'ultimo caso, sono state considerate le condizioni peggiori, secondo cui Kv= -0,5Kh.

Nelle figure successive si riportano gli output grafici delle verifiche di stabilità globale sia in condizioni statica che in condizioni sismiche.

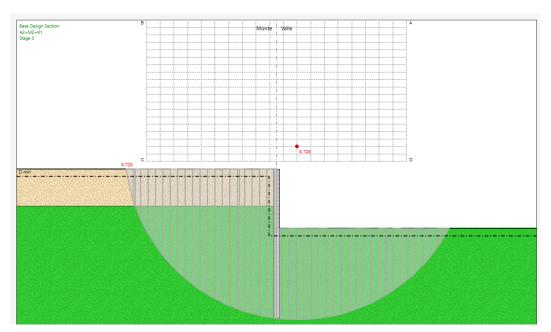


Figura 6: Verifica di stabilità globale in condizioni statiche.

In condizioni statiche, il coefficiente di sicurezza è pari a 8.73, pertanto la verifica di stabilità globale dello scavo è soddisfatta.

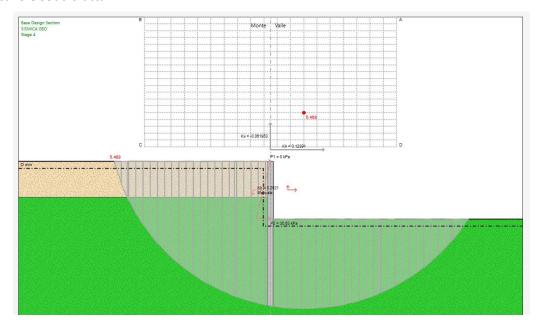
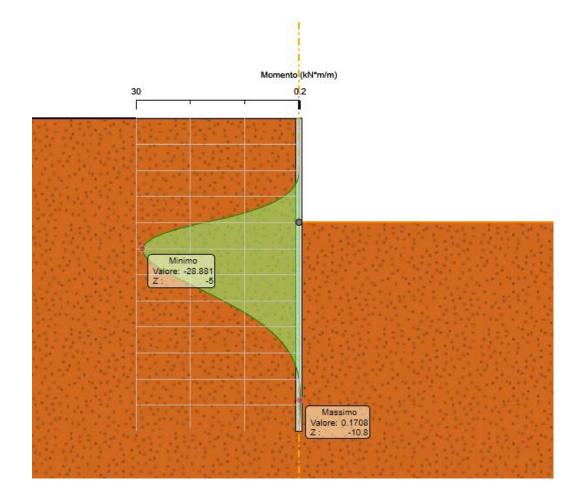


Figura 7: Verifica di stabilità globale in condizioni sismiche.

In condizioni sismiche, il coefficiente di sicurezza è pari a 1.55, pertanto la verifica di stabilità globale dello scavo è soddisfatta.


PROGETTO ESECUTIVO

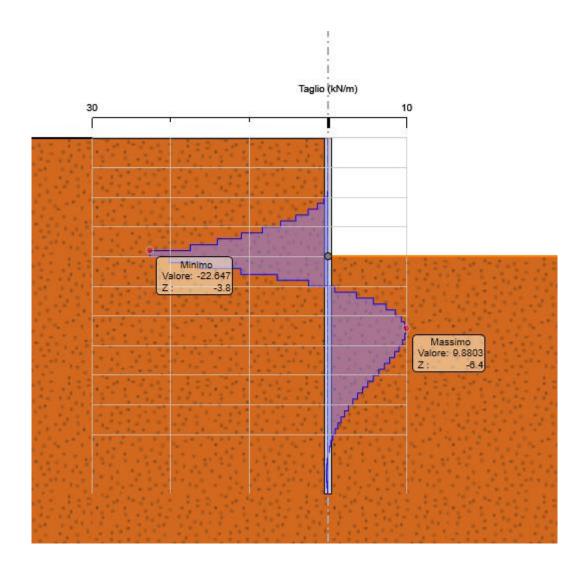
RELAZIONE DI CALCOLO

9.3 Paratia di micropali - Pila 1

9.3.1 **Verifiche SLU pareti**

Dall'inviluppo del momento flettente si osserva che il massimo valore risulta pari a 29 kNm/m.

MANDANTI:

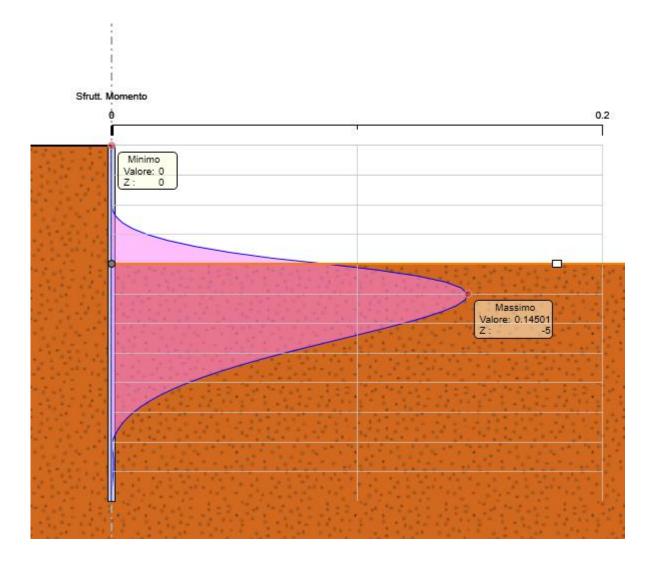


PROGETTO ESECUTIVO

RELAZIONE DI CALCOLO

Dall'inviluppo del taglio si osserva che il massimo valore risulta pari a 23 kN/m.

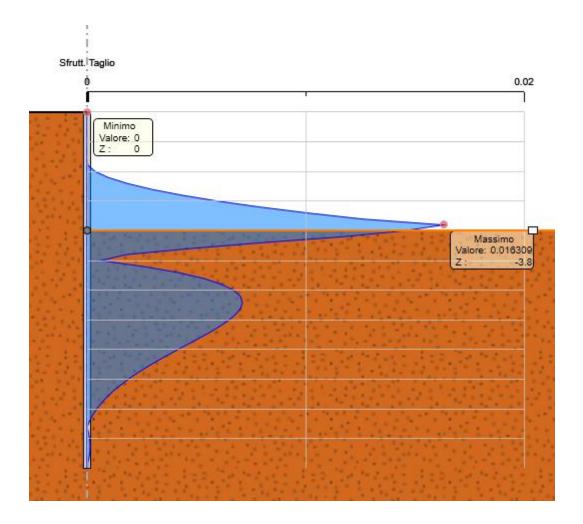
Nel seguito si riportano i risultati delle verifiche strutturali a flessione e a taglio delle palancole, condotte mediante l'ausilio di PARATIE PLUS. In particolare, si riportano i diagrammi dei tassi di sfruttamento sulle palancole, ottenuti come rapporto tra sollecitazione presente e resistenza disponibile in ogni sezione.



PROGETTO ESECUTIVO

RELAZIONE DI CALCOLO

Tasso di sfruttamento a momento T.S.F.max = 0.145<1



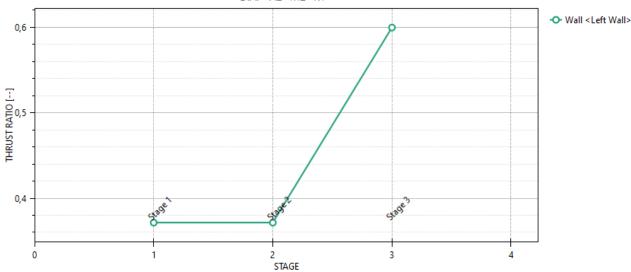
PROGETTO ESECUTIVO

RELAZIONE DI CALCOLO

Tasso di sfruttamento a taglio T.S.F.max = 0.016<1

PROGETTO ESECUTIVO

RELAZIONE DI CALCOLO

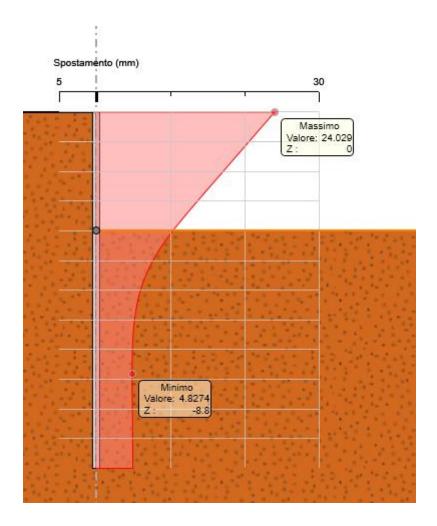

9.3.2 Verifiche SLU geo

Le verifiche geotecniche sono svolte valutando il coefficiente di sicurezza in termini di rapporto di mobilitazione della spinta passiva, cioè come rapporto tra spinta passiva mobilitata al piede della paratia e la spinta passiva mobilitabile. La verifica è soddisfatta se tale rapporto è inferiore all'unità.

Il massimo rapporto di mobilitazione della spinta passiva è pari al 60 %.

Massimi rapporti di mobilizzazione spinta passiva

D.A. <A2+M2+R1>



PROGETTO ESECUTIVO

RELAZIONE DI CALCOLO

9.3.3 **Verifiche SLE**

Dall'inviluppo degli spostamenti in combinazione SLE si osserva che lo spostamento massimo orizzontale della paratia vale 24 mm.

		m	mm
check 1	0.005H	0,06	60
check 2	1/100H _{scavo}	0,04	40

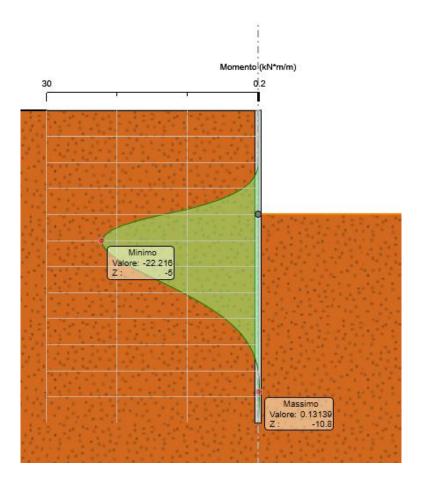
	limite spostamento paratia a SLE
m	mm
0,04	40

risultato sle mm 24

ok

MANDATARIA:

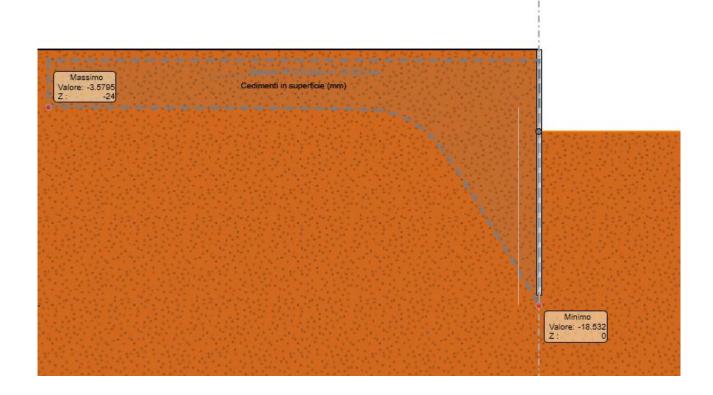
MANDANTI:



PROGETTO ESECUTIVO

RELAZIONE DI CALCOLO

Dall'inviluppo del momento flettente si osserva che il massimo valore risulta pari a 22 kNm/m.

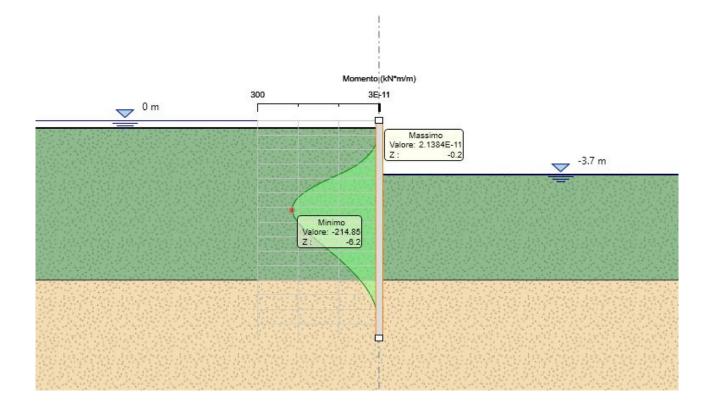

Itinerario Ragusa - Catania

Collegamento viario compreso tra lo Svincolo della S.S. 514 di "Chiaramonte" con la S.S. 115 e lo Svincolo della "Ragusana"

PROGETTO ESECUTIVO

RELAZIONE DI CALCOLO

Il cedimento massimo risulta pari a 18.5 mm.

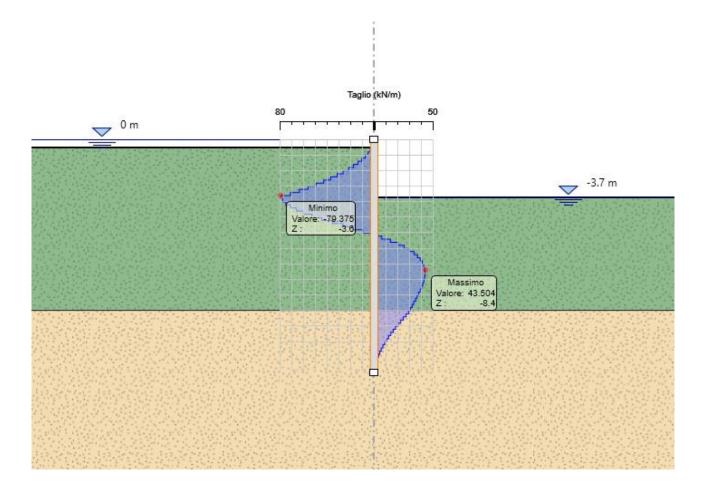

PROGETTO ESECUTIVO

RELAZIONE DI CALCOLO

9.4 Palancola - Pila 2

9.4.1 **Verifiche SLU pareti**

Dall'inviluppo del momento flettente si osserva che il massimo valore risulta pari a 215 kNm/m.

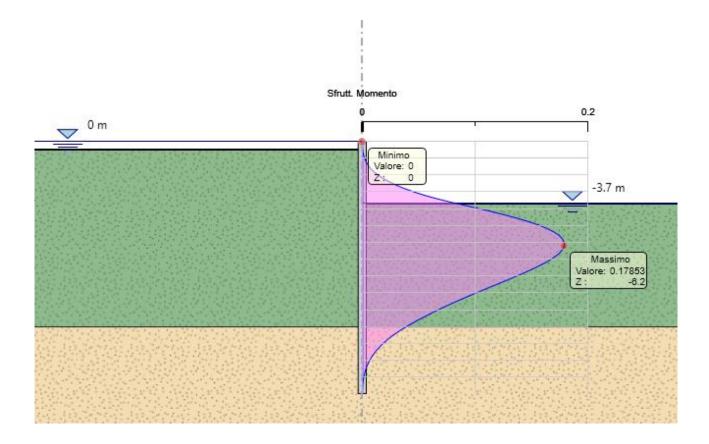


PROGETTO ESECUTIVO

RELAZIONE DI CALCOLO

Dall'inviluppo del taglio si osserva che il massimo valore risulta pari a 79 kN/m.

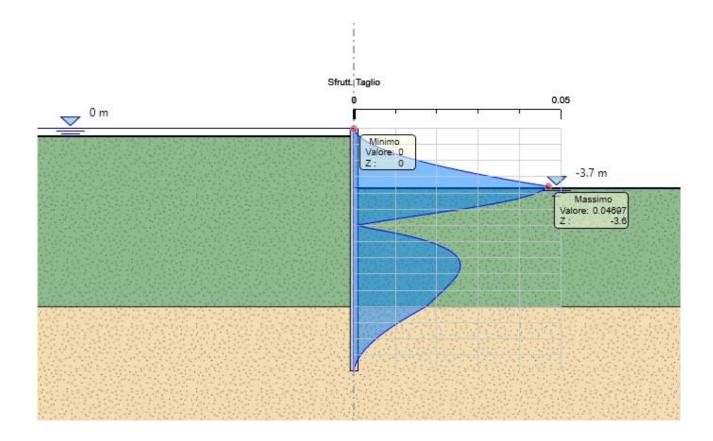
Nel seguito si riportano i risultati delle verifiche strutturali a flessione e a taglio delle palancole, condotte mediante l'ausilio di PARATIE PLUS. In particolare, si riportano i diagrammi dei tassi di sfruttamento sulle palancole, ottenuti come rapporto tra sollecitazione presente e resistenza disponibile in ogni sezione.



PROGETTO ESECUTIVO

RELAZIONE DI CALCOLO

Tasso di sfruttamento a momento T.S.F.max = 0.18<1

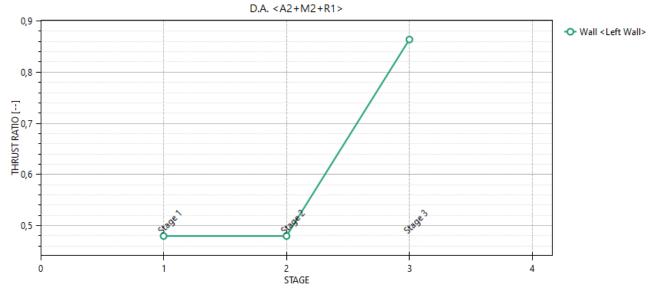


PROGETTO ESECUTIVO

RELAZIONE DI CALCOLO

Tasso di sfruttamento a taglio T.S.F.max = 0.047<1

PROGETTO ESECUTIVO

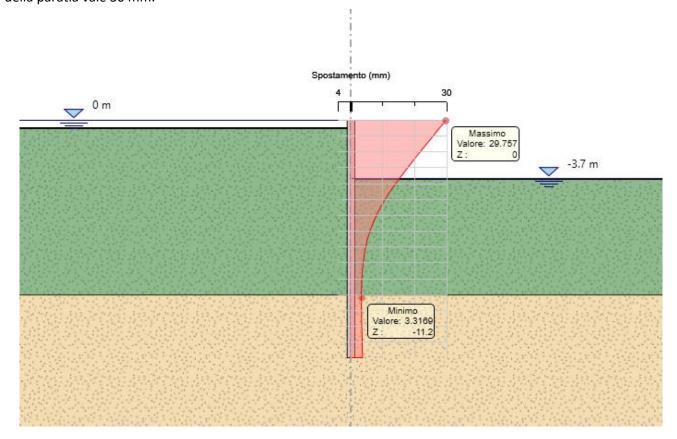

RELAZIONE DI CALCOLO

9.4.2 Verifiche SLU geo

Le verifiche geotecniche sono svolte valutando il coefficiente di sicurezza in termini di rapporto di mobilitazione della spinta passiva, cioè come rapporto tra spinta passiva mobilitata al piede della paratia e la spinta passiva mobilitabile. La verifica è soddisfatta se tale rapporto è inferiore all'unità.

Il massimo rapporto di mobilitazione della spinta passiva è circa 86 %.

Massimi rapporti di mobilizzazione spinta passiva



PROGETTO ESECUTIVO

RELAZIONE DI CALCOLO

Verifiche SLE 9.4.3

Dall'inviluppo degli spostamenti in combinazione SLE si osserva che lo spostamento massimo orizzontale della paratia vale 30 mm.

		m	mm
check 1	0.005H	0,075	75
check 2	1/100H _{scavo}	0,037	37

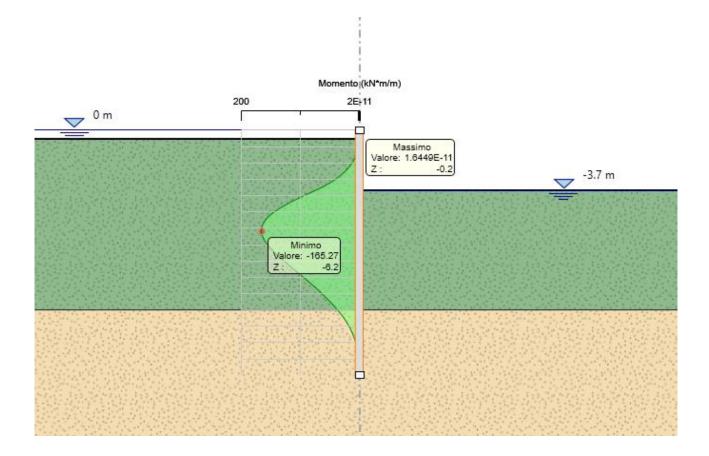
	limite spostamento paratia a SLE
m	mm
0,037	37

risultato sle mm 30

ok

MANDATARIA:

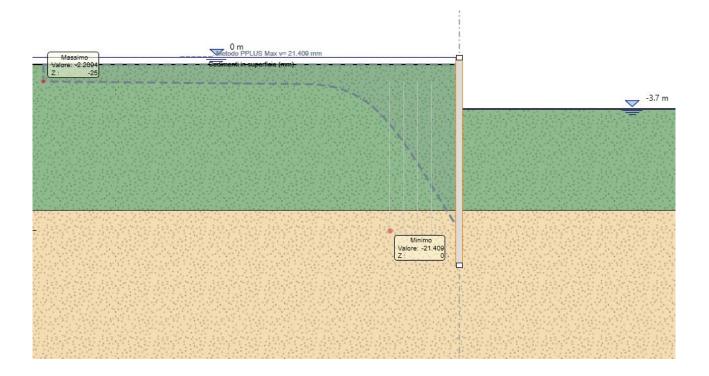
MANDANTI:



PROGETTO ESECUTIVO

RELAZIONE DI CALCOLO

Dall'inviluppo del momento flettente si osserva che il massimo valore risulta pari a 165 kNm/m.



PROGETTO ESECUTIVO

RELAZIONE DI CALCOLO

Il cedimento massimo risulta pari a 21 mm.


PROGETTO ESECUTIVO

RELAZIONE DI CALCOLO

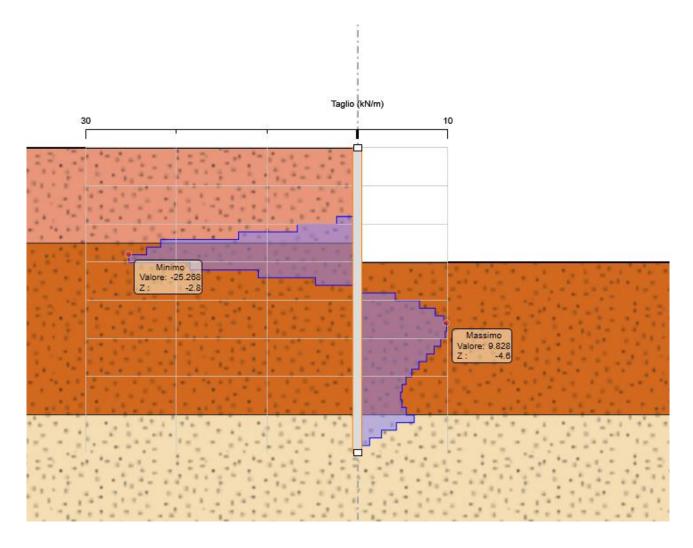
Paratia di micropali - Pila 3

9.5.1 Verifiche SLU pareti

Dall'inviluppo del momento flettente si osserva che il massimo valore risulta pari a 25 kNm/m.

MANDATARIA:

MANDANTI:

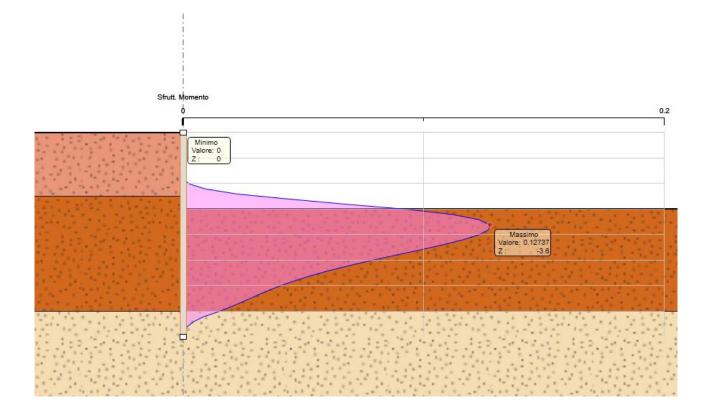


PROGETTO ESECUTIVO

RELAZIONE DI CALCOLO

Dall'inviluppo del taglio si osserva che il massimo valore risulta pari a 25 kN/m.

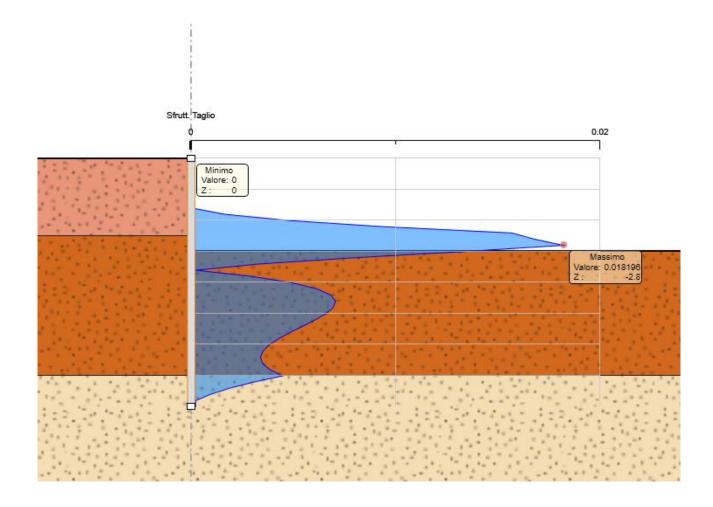
Nel seguito si riportano i risultati delle verifiche strutturali a flessione e a taglio delle palancole, condotte mediante l'ausilio di PARATIE PLUS. In particolare, si riportano i diagrammi dei tassi di sfruttamento sulle palancole, ottenuti come rapporto tra sollecitazione presente e resistenza disponibile in ogni sezione.



PROGETTO ESECUTIVO

RELAZIONE DI CALCOLO

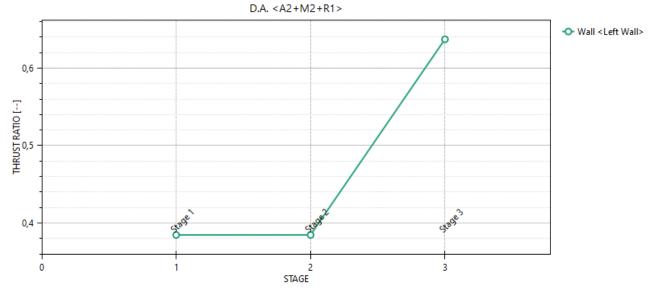
Tasso di sfruttamento a momento T.S.F.max = 0.13<1



RELAZIONE DI CALCOLO

Tasso di sfruttamento a taglio T.S.F.max = 0.018<1

PROGETTO ESECUTIVO

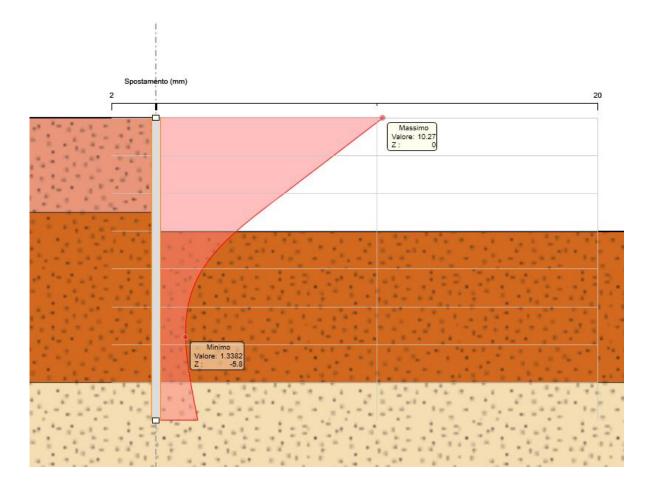

RELAZIONE DI CALCOLO

9.5.2 Verifiche SLU geo

Le verifiche geotecniche sono svolte valutando il coefficiente di sicurezza in termini di rapporto di mobilitazione della spinta passiva, cioè come rapporto tra spinta passiva mobilitata al piede della paratia e la spinta passiva mobilitabile. La verifica è soddisfatta se tale rapporto è inferiore all'unità.

Il massimo rapporto di mobilitazione della spinta passiva è circa 64 %.

Massimi rapporti di mobilizzazione spinta passiva



PROGETTO ESECUTIVO

RELAZIONE DI CALCOLO

Verifiche SLE 9.5.3

Dall'inviluppo degli spostamenti in combinazione SLE si osserva che lo spostamento massimo orizzontale della paratia vale 10 mm.

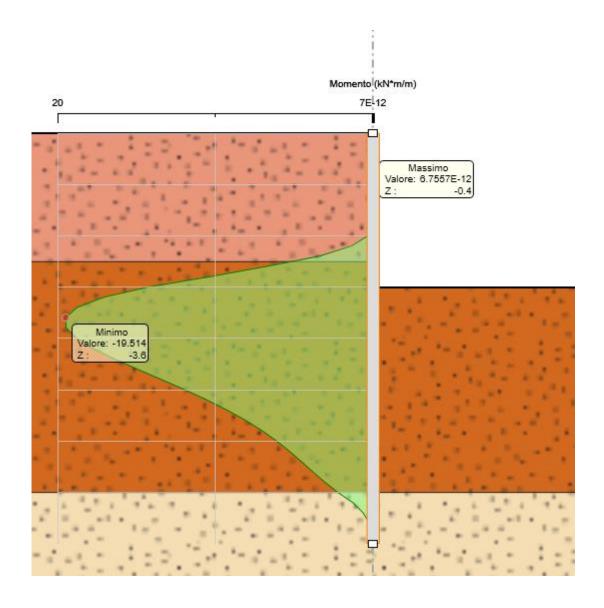
		m	mm
check 1	0.005H	0,04	40
check 2	1/100H _{scavo}	0,03	30

	limite				
	spostamento				
	paratia a SLE				
m	mm				
0,03	30				

risultato sle mm10

ok

MANDATARIA:

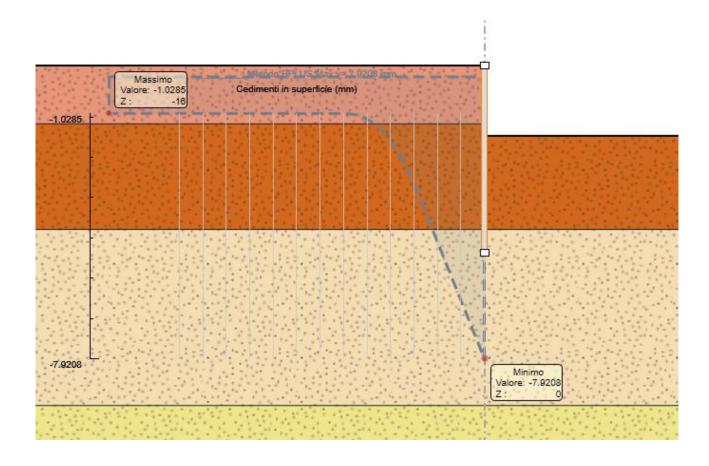


PROGETTO ESECUTIVO

RELAZIONE DI CALCOLO

Dall'inviluppo del momento flettente si osserva che il massimo valore risulta pari a 19.5 kNm/m.

MANDATARIA:

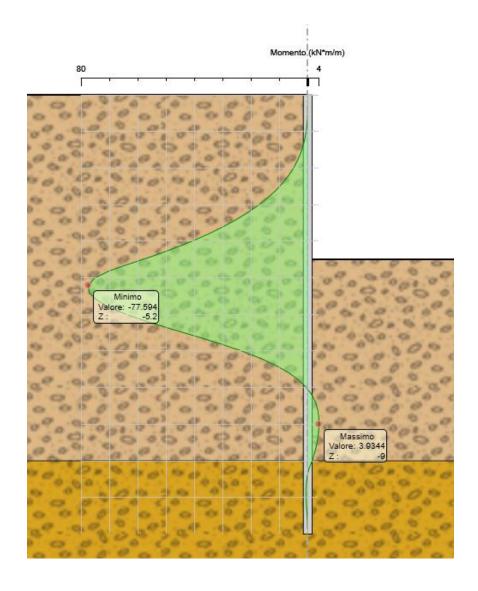

PROGETTO ESECUTIVO

RELAZIONE DI CALCOLO

Il cedimento massimo risulta pari a 8 mm.

Direzione Progettazione e

Realizzazione Lavori


PROGETTO ESECUTIVO

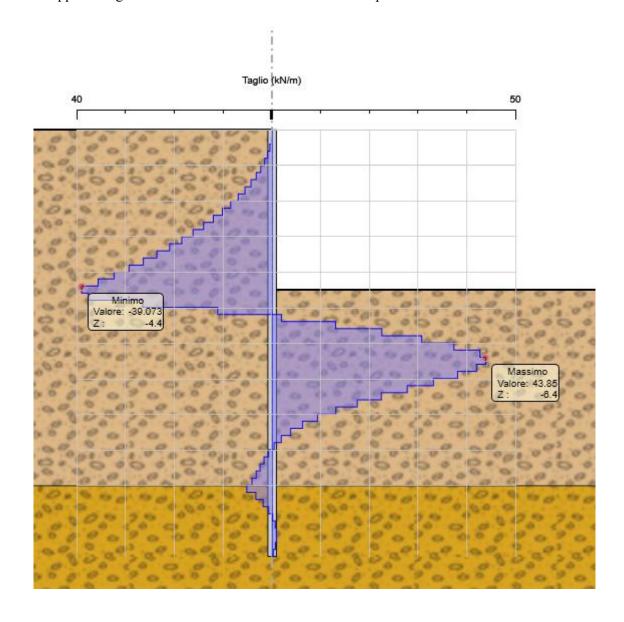
RELAZIONE DI CALCOLO

Paratia di micropali - Pila 4 9.6

9.6.1 **Verifiche SLU pareti**

Dall'inviluppo del momento flettente si osserva che il massimo valore risulta pari a 78 kNm/m.

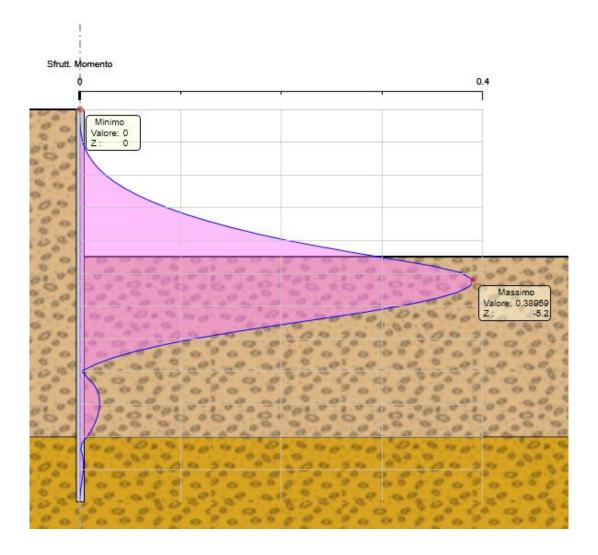
MANDATARIA:



PROGETTO ESECUTIVO

RELAZIONE DI CALCOLO

Dall'inviluppo del taglio si osserva che il massimo valore risulta pari a 44 kN/m.

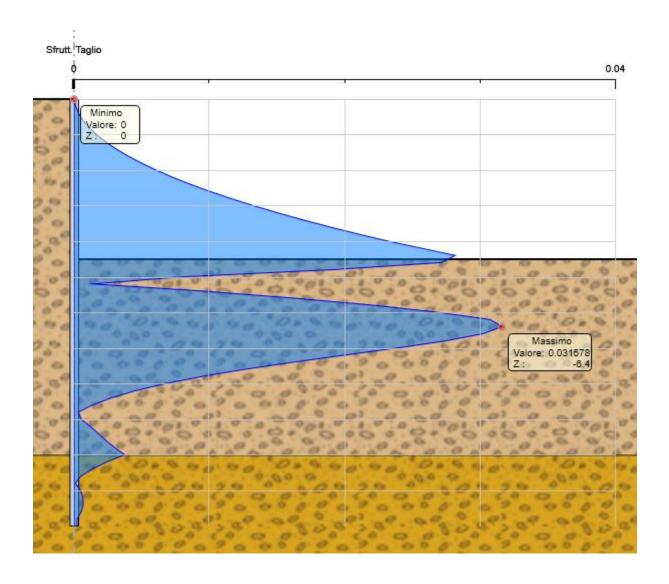


PROGETTO ESECUTIVO

RELAZIONE DI CALCOLO

Nel seguito si riportano i risultati delle verifiche strutturali a flessione e a taglio delle palancole, condotte mediante l'ausilio di PARATIE PLUS. In particolare, si riportano i diagrammi dei tassi di sfruttamento sulle palancole, ottenuti come rapporto tra sollecitazione presente e resistenza disponibile in ogni sezione.

Tasso di sfruttamento a momento T.S.F.max = 0.39<1



PROGETTO ESECUTIVO

RELAZIONE DI CALCOLO

Tasso di sfruttamento a taglio T.S.F.max = 0.03<1

PROGETTO ESECUTIVO

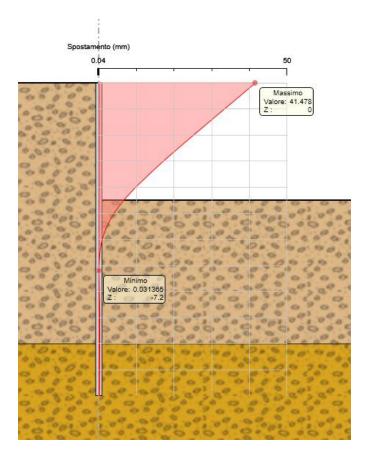
RELAZIONE DI CALCOLO

9.6.2 Verifiche SLU geo

Le verifiche geotecniche sono svolte valutando il coefficiente di sicurezza in termini di rapporto di mobilitazione della spinta passiva, cioè come rapporto tra spinta passiva mobilitata al piede della paratia e la spinta passiva mobilitabile. La verifica è soddisfatta se tale rapporto è inferiore all'unità.

Il massimo rapporto di mobilitazione della spinta passiva è circa 14 %.

Massimi rapporti di mobilizzazione spinta passiva



PROGETTO ESECUTIVO

RELAZIONE DI CALCOLO

Verifiche SLE 9.6.3

Dall'inviluppo degli spostamenti in combinazione SLE si osserva che lo spostamento massimo orizzontale della paratia vale 41.5 mm.

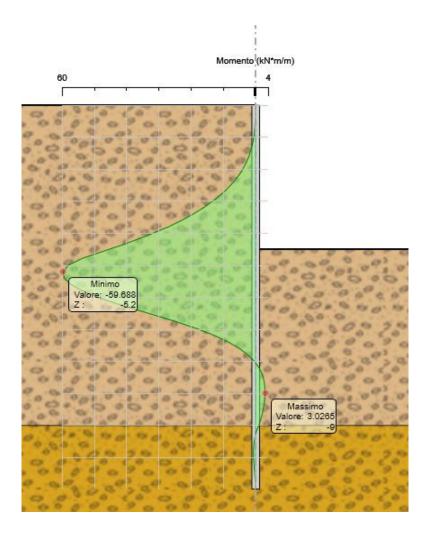
		m	mm
check 1	0.005H	0,06	60
check 2	1/100H _{scavo}	0,045	45

	limite spostamento paratia a SLE				
m	mm				
0,045	45				

risultato sle mm 41,5

ok

MANDATARIA:

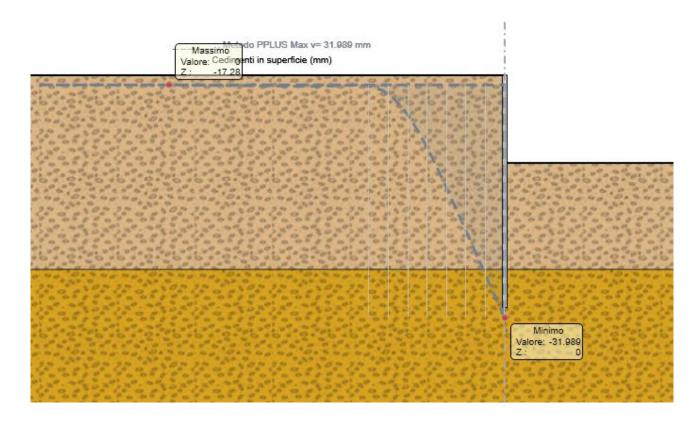


PROGETTO ESECUTIVO

RELAZIONE DI CALCOLO

Dall'inviluppo del momento flettente si osserva che il massimo valore risulta pari a 60 kNm/m.





PROGETTO ESECUTIVO

RELAZIONE DI CALCOLO

Il cedimento massimo risulta pari a 32 mm.

Direzione Progettazione e

Realizzazione Lavori

Itinerario Ragusa - Catania

Collegamento viario compreso tra lo Svincolo della S.S. 514 di "Chiaramonte" con la S.S. 115 e lo Svincolo della "Ragusana"

PROGETTO ESECUTIVO

RELAZIONE DI CALCOLO

10. VERIFICA stabilità DELLO SCAVO

Per le verifiche di stabilità dello scavo è stato utilizzato il modulo VSP di PARATIE PLUS 21.0.

Questo tipo di verifica prende in esame la configurazione di scavo nella fase generica, prescindendo dalla sequenza costruttiva precedente. Questa tecnica, infatti, appartiene all'ambito dei metodi dell'equilibrio limite che operano indipendentemente dal comportamento deformativo dell'opera, o meglio, che prescindono dalla successione temporale delle deformazioni reversibili e irreversibili sviluppatesi prima della configurazione esaminata.

Per la verifica è stato adottato il metodo rigoroso di Morgenstern & Price, appartenete alla famiglia dei metodi dell'equilibrio limite (LEM), basati sull'individuare una regione di terreno potenzialmente instabile, suddivisa in tanti conci verticali (slices) e mobilitata lungo una superficie di scorrimento. Questo metodo considera superfici di scorrimento di forma generica e ricerca il coefficiente di sicurezza associato ad una superficie imponendo le condizioni di equilibrio globale a traslazione e a rotazione. Queste ultime includono tutte le forze di interstriscia.

Al fine di rendere il problema staticamente determinato, si aggiungono (n-1) equazioni, ipotizzando che l'inclinazione delle forze tra i conci vari con la posizione x del concio, secondo una legge f(x) nota a meno di un moltiplicatore λ , introdotto come incognita aggiuntiva:

$$\frac{Xi}{Ei} = \lambda f(x)$$

Dove:

Xi: forza tangenziale agente sulla faccia i- esima del concio.

Ei: forza ortogonale alla faccia i-esima del concio.

λ: incognita.

f(x): funzione di forma che nel caso di M&P è sinusoidale.

La soluzione del problema è determinata mediante un processo iterativo.

Mediante la griglia quadrangolare dei centri definita nel programma, vengono considerate diverse superfici di scorrimento.

Infine, viene individuata la superficie di scorrimento più gravosa (superficie critica), ovvero quella tale per cui il coefficiente di sicurezza è minimo.

La stabilità è stata studiata nelle sole condizioni statiche, essendo lo scavo provvisorio, e sotto la combinazione dei coefficienti parziali A2+M2+R2.

La verifica risulterà soddisfatta se il coefficiente di sicurezza FS MIN≥ R2=1.1

Si sottolinea che, a favore di sicurezza, nella ricerca delle superfici di rottura critiche non sono stati considerati eventuali carichi a valle della regione di terreno potenzialmente instabile, essendo questi ultimi stabilizzanti.

MANDATARIA:

PROGETTO ESECUTIVO

RELAZIONE DI CALCOLO

Nello specifico, è stato studiato lo scavo provvisorio necessario per realizzare la spalla 2 in quanto considerato il peggiore.

Nella figura sottostante è riportata la superficie di rottura critica per la combinazione DA1C2; il fattore di sicurezza FS relativo a tali meccanismi, e quindi il minore tra tutti i fattori di sicurezza FS calcolati, è pari a:

 FS^{MIN} (DA1C2) = 1.803

Essendo soddisfatta la relazione:

 $FS^{MIN} \ge R2 = 1.1$,

la verifica di stabilità globale in campo statico risulta soddisfatta.

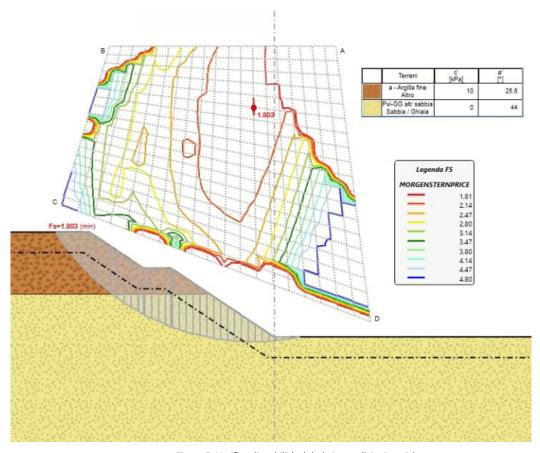


Figura 8: Verifica di stabilità globale in condizioni statiche.

PROGETTO ESECUTIVO

RELAZIONE DI CALCOLO

ALLEGATO 1: Risultati paratia di pali con tiranti – spalla 1

Descrizione della Stratigrafia e degli Strati di Terreno

Tipo: HORIZONTAL

Quota: 0 m OCR: 10

Tipo: HORIZONTAL

Quota : -5 m OCR : 5

Strato di Terreno	Terreno	γ dry	γ sat	ø'	øcvøp c'	Su Modulo El	astico Eu Evo	Eur	Ah Avexp Pa Rur/R	vc Rvc	Ku Kv	c Kur
		kN/m³	kN/m	3 •	° ° kPa	kPa	kPa	kPa	kPa	kPa ki	N/m³kN/ı	m³ kN/m³
1	a_fine_OCR10	18	18	25.5	10	Consta	int 1000	0 1600	0			
2	a_fine_OCR5	18	18	25.5	10	Consta	int 2000	03200	0			

Realizzazione Lavori

Itinerario Ragusa - Catania

Collegamento viario compreso tra lo Svincolo della S.S. 514 di "Chiaramonte" con la S.S. 115 e lo Svincolo della "Ragusana"

PROGETTO ESECUTIVO

RELAZIONE DI CALCOLO

Descrizione Pareti

X:0 m

Quota in alto: 0 m Quota di fondo: -20 m

Muro di sinistra

Armatura Lunghezza segmenti: 1 m

Rinforzo longitudinale 1

Lunghezza: 20 m Materiale:

Quota iniziale: 0 m

Barre 1

Numero di barre: 22 Diametro: 0.024 m

Distanza dal bordo: 0.085 m

Staffe 1

Numero di staffe: 2 Copertura: 0.06 m Diametro: 0.012 m Lunghezza: 20 m Quota iniziale: 0 m Passo : 0.2 m

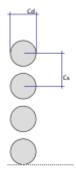
Sezione: palo 800

Area equivalente: 0.502654824574367 m

Inerzia equivalente: 0.0201 m⁴/m Materiale calcestruzzo: C32/40 Tipo sezione: Tangent

> Spaziatura: 1 m Diametro: 0.8 m Efficacia: 1

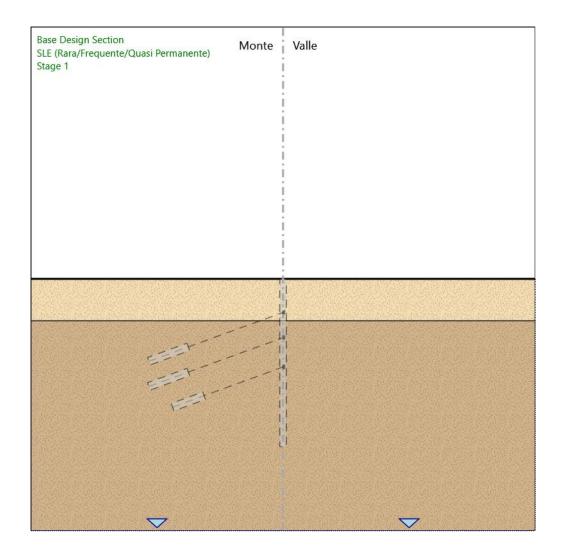
MANDATARIA:



Collegamento viario compreso tra lo Svincolo della S.S. 514 di "Chiaramonte" con la S.S. 115 e lo Svincolo della "Ragusana"

PROGETTO ESECUTIVO

RELAZIONE DI CALCOLO



Collegamento viario compreso tra lo Svincolo della S.S. 514 di "Chiaramonte" con la S.S. 115 e lo Svincolo della "Ragusana"

PROGETTO ESECUTIVO

RELAZIONE DI CALCOLO

Fasi di Calcolo Stage 1

Stage 1

Scavo

Muro di sinistra

Lato monte : 0 m

MANDATARIA:

Collegamento viario compreso tra lo Svincolo della S.S. 514 di "Chiaramonte" con la S.S. 115 e lo Svincolo della "Ragusana"

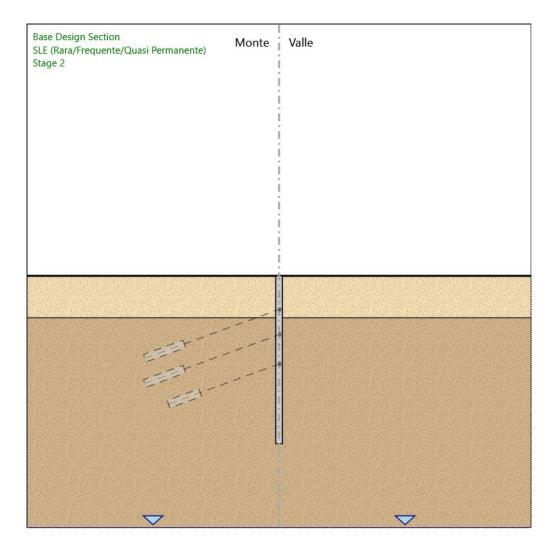
PROGETTO ESECUTIVO

RELAZIONE DI CALCOLO

Lato valle: 0 m

Linea di scavo di sinistra (Orizzontale) 0 m Linea di scavo di destra (Orizzontale) 0 m

MANDATARIA:



Collegamento viario compreso tra lo Svincolo della S.S. 514 di "Chiaramonte" con la S.S. 115 e lo Svincolo della "Ragusana"

PROGETTO ESECUTIVO

RELAZIONE DI CALCOLO

Stage 2

Stage 2

Scavo

Muro di sinistra

MANDATARIA:

Collegamento viario compreso tra lo Svincolo della S.S. 514 di "Chiaramonte" con la S.S. 115 e lo Svincolo della "Ragusana"

PROGETTO ESECUTIVO

RELAZIONE DI CALCOLO

Lato monte : 0 m Lato valle : 0 m

Linea di scavo di sinistra (Orizzontale)

0 m

Linea di scavo di destra (Orizzontale)

0 m

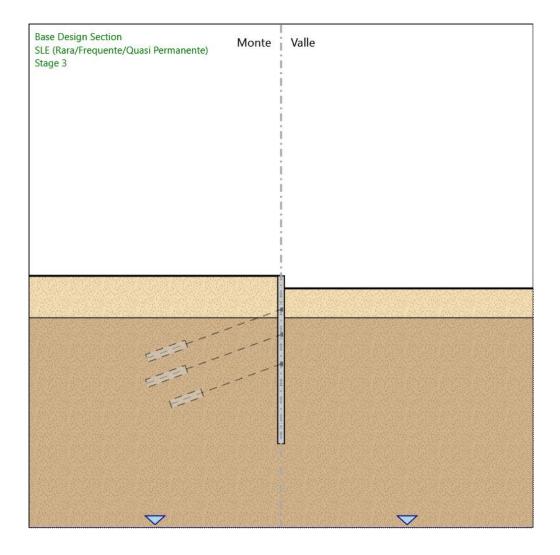
Elementi strutturali

Paratia: WallElement

X:0 m

Quota in alto : 0 m Quota di fondo : -20 m Sezione : palo 800

MANDATARIA:



PROGETTO ESECUTIVO

RELAZIONE DI CALCOLO

Stage 3

Stage 3

Scavo

Muro di sinistra

MANDATARIA:

Collegamento viario compreso tra lo Svincolo della S.S. 514 di "Chiaramonte" con la S.S. 115 e lo Svincolo della "Ragusana"

PROGETTO ESECUTIVO

RELAZIONE DI CALCOLO

Lato monte : 0 m Lato valle : -1.5 m

Linea di scavo di sinistra (Orizzontale)

0 m

Linea di scavo di destra (Orizzontale)

-1.5 m

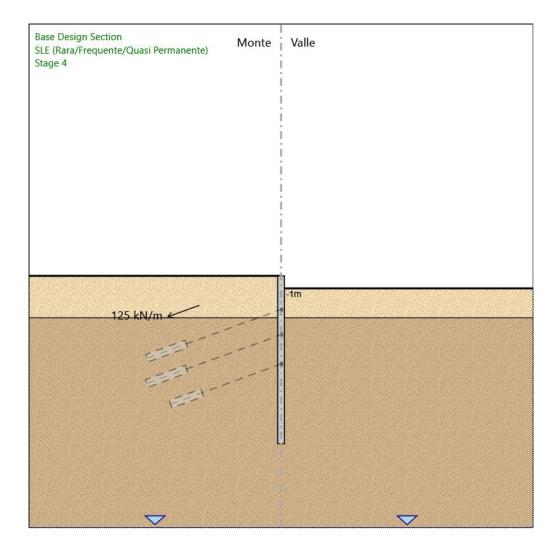
Elementi strutturali

Paratia: WallElement

X:0 m

Quota in alto : 0 m Quota di fondo : -20 m Sezione : palo 800

MANDATARIA:



PROGETTO ESECUTIVO

RELAZIONE DI CALCOLO

Stage 4

Stage 4

Scavo

Muro di sinistra

MANDATARIA:

Realizzazione Lavori

Itinerario Ragusa - Catania

Collegamento viario compreso tra lo Svincolo della S.S. 514 di "Chiaramonte" con la S.S. 115 e lo Svincolo della "Ragusana"

PROGETTO ESECUTIVO

RELAZIONE DI CALCOLO

Lato monte: 0 m Lato valle: -1.5 m

Linea di scavo di sinistra (Orizzontale)

0 m

Linea di scavo di destra (Orizzontale)

-1.5 m

Elementi strutturali

Paratia: WallElement

X:0 m

Quota in alto: 0 m Quota di fondo: -20 m Sezione: palo 800

Tirante: Tieback

X:0 m Z:-1 m

Lunghezza bulbo : 4 m Diametro bulbo: 0.2 m Lunghezza libera: 10 m Spaziatura orizzontale: 2 m

Precarico: 250 kN Angolo: 20° Sezione: 3 strands

> Tipo di barre: Barre trefoli Numero di barre: 4 Diametro: 0.01331 m

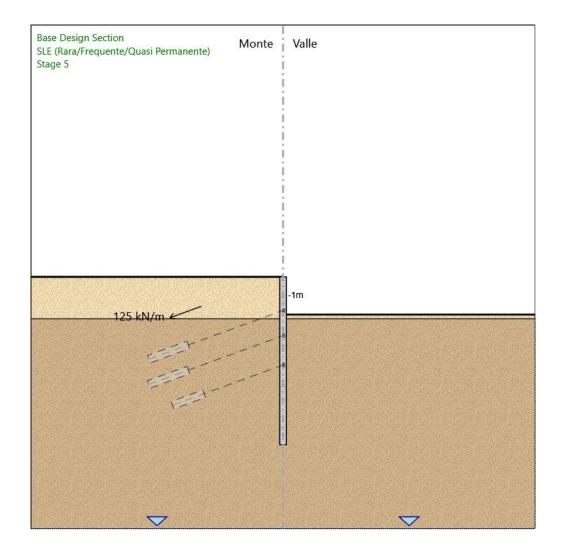
Area: 0.000556 m^2

Trave di Ripartizione : Default Waler

Sezione: HE 200 A HE 200A

Materiale: S275

MANDATARIA:



PROGETTO ESECUTIVO

RELAZIONE DI CALCOLO

Stage 5

Stage 5

Scavo

Muro di sinistra

MANDATARIA:

Realizzazione Lavori

Itinerario Ragusa - Catania

Collegamento viario compreso tra lo Svincolo della S.S. 514 di "Chiaramonte" con la S.S. 115 e lo Svincolo della "Ragusana"

PROGETTO ESECUTIVO

RELAZIONE DI CALCOLO

Lato monte: 0 m Lato valle: -4.5 m

Linea di scavo di sinistra (Orizzontale)

0 m

Linea di scavo di destra (Orizzontale)

-4.5 m

Elementi strutturali

Paratia: WallElement

X:0 m

Quota in alto: 0 m Quota di fondo: -20 m Sezione: palo 800

Tirante: Tieback

X:0 m Z:-1 m

Lunghezza bulbo: 4 m Diametro bulbo: 0.2 m Lunghezza libera: 10 m Spaziatura orizzontale: 2 m

Precarico: 250 kN Angolo: 20°

Sezione: 3 strands Tipo di barre: Barre trefoli

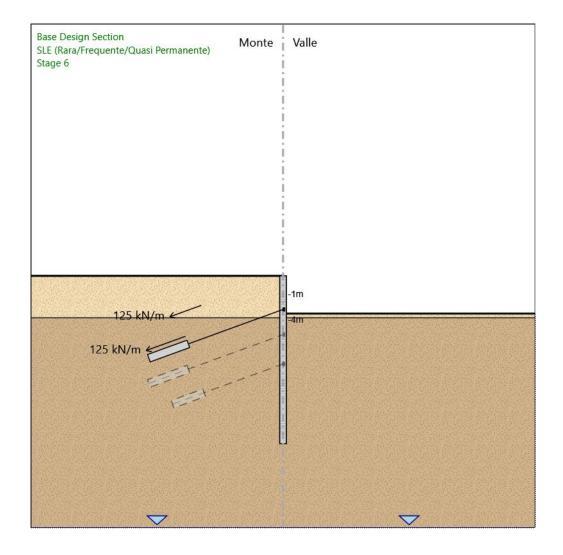
> Numero di barre: 4 Diametro: 0.01331 m Area: 0.000556 m^2

Trave di Ripartizione : Default Waler

Sezione: HE 200 A HE 200A

Materiale: S275

MANDATARIA:



PROGETTO ESECUTIVO

RELAZIONE DI CALCOLO

Stage 6

Stage 6

Scavo

Muro di sinistra

MANDATARIA:

Direzione Progettazione e

Realizzazione Lavori

Itinerario Ragusa - Catania

Collegamento viario compreso tra lo Svincolo della S.S. 514 di "Chiaramonte" con la S.S. 115 e lo Svincolo della "Ragusana"

PROGETTO ESECUTIVO

RELAZIONE DI CALCOLO

Lato monte: 0 m Lato valle: -4.5 m

Linea di scavo di sinistra (Orizzontale)

0 m

Linea di scavo di destra (Orizzontale)

-4.5 m

Elementi strutturali

Paratia: WallElement

X:0 m

Quota in alto: 0 m Quota di fondo: -20 m Sezione: palo 800

Tirante: Tieback

X:0 m Z:-1 m

Lunghezza bulbo : 4 m Diametro bulbo: 0.2 m Lunghezza libera: 10 m Spaziatura orizzontale: 2 m

Precarico: 250 kN Angolo: 20° Sezione: 3 strands

> Tipo di barre: Barre trefoli Numero di barre: 4

Diametro: 0.01331 m Area: 0.000556 m^2

Trave di Ripartizione : Default Waler

Sezione: HE 200 A HE 200A

Materiale: S275

Tirante: Tieback New

X:0 m Z:-4 m

Lunghezza bulbo : 5 m Diametro bulbo: 0.2 m Lunghezza libera: 12 m

MANDATARIA:

Collegamento viario compreso tra lo Svincolo della S.S. 514 di "Chiaramonte" con la S.S. 115 e lo Svincolo della "Ragusana"

PROGETTO ESECUTIVO

RELAZIONE DI CALCOLO

Spaziatura orizzontale : 2 m

Precarico: 250 kN Angolo: 20°

Sezione: 3 strands

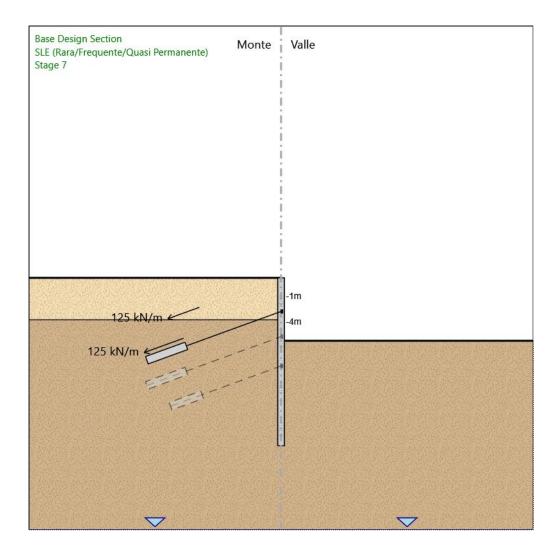
Tipo di barre : Barre trefoli Numero di barre: 4 Diametro: 0.01331 m Area: 0.000556 m^2

Trave di Ripartizione : Default Waler

Sezione: HE 200 A HE 200A

Materiale: S275

MANDATARIA:



PROGETTO ESECUTIVO

RELAZIONE DI CALCOLO

Stage 7

Stage 7

Scavo

Muro di sinistra

MANDATARIA:

Direzione Progettazione e

Realizzazione Lavori

Itinerario Ragusa - Catania

Collegamento viario compreso tra lo Svincolo della S.S. 514 di "Chiaramonte" con la S.S. 115 e lo Svincolo della "Ragusana"

PROGETTO ESECUTIVO

RELAZIONE DI CALCOLO

Lato monte: 0 m Lato valle: -7.5 m

Linea di scavo di sinistra (Orizzontale)

0 m

Linea di scavo di destra (Orizzontale)

-7.5 m

Elementi strutturali

Paratia: WallElement

X:0 m

Quota in alto: 0 m Quota di fondo: -20 m Sezione: palo 800

Tirante: Tieback

X:0 m Z:-1 m

Lunghezza bulbo : 4 m Diametro bulbo: 0.2 m Lunghezza libera: 10 m Spaziatura orizzontale: 2 m

Precarico: 250 kN Angolo: 20° Sezione: 3 strands

> Tipo di barre: Barre trefoli Numero di barre: 4

Diametro: 0.01331 m Area: 0.000556 m^2

Trave di Ripartizione : Default Waler

Sezione: HE 200 A HE 200A

Materiale: S275

Tirante: Tieback New

X:0 m Z:-4 m

Lunghezza bulbo : 5 m Diametro bulbo: 0.2 m Lunghezza libera: 12 m

MANDATARIA:

Collegamento viario compreso tra lo Svincolo della S.S. 514 di "Chiaramonte" con la S.S. 115 e lo Svincolo della "Ragusana"

PROGETTO ESECUTIVO

RELAZIONE DI CALCOLO

Spaziatura orizzontale: 2 m

Precarico: 250 kN Angolo: 20°

Sezione: 3 strands

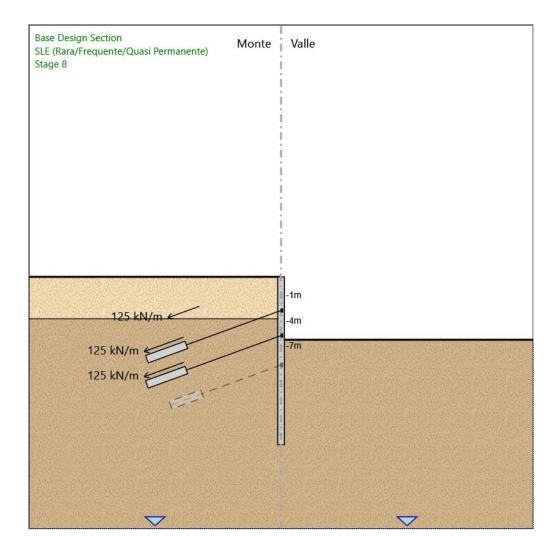
Tipo di barre : Barre trefoli Numero di barre: 4 Diametro: 0.01331 m Area: 0.000556 m^2

Trave di Ripartizione : Default Waler

Sezione: HE 200 A HE 200A

Materiale: S275

MANDATARIA:



PROGETTO ESECUTIVO

RELAZIONE DI CALCOLO

Stage 8

Stage 8

Scavo

Muro di sinistra

MANDATARIA:

Direzione Progettazione e

Realizzazione Lavori

Itinerario Ragusa - Catania

Collegamento viario compreso tra lo Svincolo della S.S. 514 di "Chiaramonte" con la S.S. 115 e lo Svincolo della "Ragusana"

PROGETTO ESECUTIVO

RELAZIONE DI CALCOLO

Lato monte: 0 m Lato valle: -7.5 m

Linea di scavo di sinistra (Orizzontale)

0 m

Linea di scavo di destra (Orizzontale)

-7.5 m

Elementi strutturali

Paratia: WallElement

X:0 m

Quota in alto: 0 m Quota di fondo: -20 m Sezione: palo 800

Tirante: Tieback

X:0 m Z:-1 m

Lunghezza bulbo: 4 m Diametro bulbo: 0.2 m Lunghezza libera: 10 m Spaziatura orizzontale: 2 m

Precarico: 250 kN Angolo: 20° Sezione: 3 strands

> Tipo di barre: Barre trefoli Numero di barre: 4

Diametro: 0.01331 m Area: 0.000556 m^2

Trave di Ripartizione : Default Waler

Sezione: HE 200 A HE 200A

Materiale: S275

Tirante: Tieback New

X:0 m Z:-4 m

Lunghezza bulbo : 5 m Diametro bulbo: 0.2 m Lunghezza libera: 12 m

MANDATARIA:

PROGETTO ESECUTIVO

RELAZIONE DI CALCOLO

Spaziatura orizzontale: 2 m

Precarico: 250 kN Angolo: 20°

Sezione: 3 strands

Tipo di barre : Barre trefoli Numero di barre: 4

Diametro: 0.01331 m Area: 0.000556 m^2

Trave di Ripartizione : Default Waler

Sezione: HE 200 A HE 200A

Materiale: S275

Tirante: Tieback_New_New

X:0 m Z:-7 m

Lunghezza bulbo : 5 m Diametro bulbo: 0.2 m Lunghezza libera: 12 m Spaziatura orizzontale: 2 m

Precarico: 250 kN Angolo: 20°

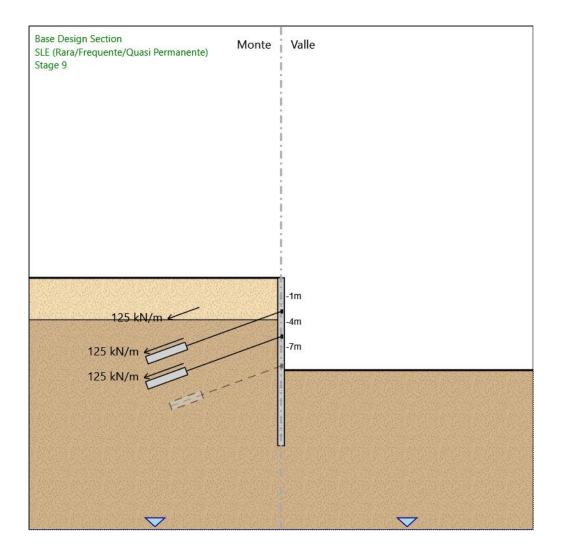
Sezione: 3 strands

Tipo di barre: Barre trefoli Numero di barre: 4 Diametro: 0.01331 m Area: 0.000556 m^2

Trave di Ripartizione : Default Waler

Sezione: HE 200 A HE 200A

Materiale: S275



PROGETTO ESECUTIVO

RELAZIONE DI CALCOLO

Stage 9

Stage 9

Scavo

Muro di sinistra

MANDATARIA:

Direzione Progettazione e

Realizzazione Lavori

Itinerario Ragusa - Catania

Collegamento viario compreso tra lo Svincolo della S.S. 514 di "Chiaramonte" con la S.S. 115 e lo Svincolo della "Ragusana"

PROGETTO ESECUTIVO

RELAZIONE DI CALCOLO

Lato monte: 0 m Lato valle: -11 m

Linea di scavo di sinistra (Orizzontale)

0 m

Linea di scavo di destra (Orizzontale)

-11 m

Elementi strutturali

Paratia: WallElement

X:0 m

Quota in alto: 0 m Quota di fondo: -20 m Sezione: palo 800

Tirante: Tieback

X:0 m Z:-1 m

Lunghezza bulbo : 4 m Diametro bulbo: 0.2 m Lunghezza libera: 10 m Spaziatura orizzontale: 2 m

Precarico: 250 kN Angolo: 20° Sezione: 3 strands

> Tipo di barre: Barre trefoli Numero di barre: 4

Diametro: 0.01331 m Area: 0.000556 m^2

Trave di Ripartizione : Default Waler

Sezione: HE 200 A HE 200A

Materiale: S275

Tirante: Tieback New

X:0 m Z:-4 m

Lunghezza bulbo : 5 m Diametro bulbo: 0.2 m Lunghezza libera: 12 m

MANDATARIA:

PROGETTO ESECUTIVO

RELAZIONE DI CALCOLO

Spaziatura orizzontale: 2 m

Precarico: 250 kN Angolo: 20°

Sezione: 3 strands

Tipo di barre : Barre trefoli

Numero di barre: 4 Diametro: 0.01331 m Area: 0.000556 m^2

Trave di Ripartizione : Default Waler

Sezione: HE 200 A HE 200A

Materiale: S275

Tirante: Tieback_New_New

X:0 m Z:-7 m

Lunghezza bulbo : 5 m Diametro bulbo: 0.2 m Lunghezza libera: 12 m Spaziatura orizzontale: 2 m

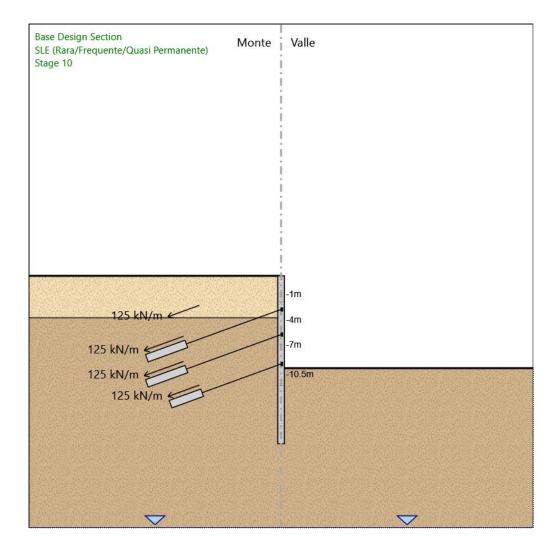
Precarico: 250 kN Angolo: 20° Sezione: 3 strands

> Tipo di barre: Barre trefoli Numero di barre: 4 Diametro: 0.01331 m Area: 0.000556 m^2

Trave di Ripartizione : Default Waler

Sezione: HE 200 A HE 200A

Materiale: S275



PROGETTO ESECUTIVO

RELAZIONE DI CALCOLO

Stage 10

Stage 10

Scavo

Muro di sinistra

Direzione Progettazione e

Realizzazione Lavori

Itinerario Ragusa - Catania

Collegamento viario compreso tra lo Svincolo della S.S. 514 di "Chiaramonte" con la S.S. 115 e lo Svincolo della "Ragusana"

PROGETTO ESECUTIVO

RELAZIONE DI CALCOLO

Lato monte: 0 m Lato valle: -11 m

Linea di scavo di sinistra (Orizzontale)

0 m

Linea di scavo di destra (Orizzontale)

-11 m

Elementi strutturali

Paratia: WallElement

X:0 m

Quota in alto: 0 m Quota di fondo: -20 m Sezione: palo 800

Tirante: Tieback

X:0 m Z:-1 m

Lunghezza bulbo : 4 m Diametro bulbo: 0.2 m Lunghezza libera: 10 m Spaziatura orizzontale: 2 m

Precarico: 250 kN Angolo: 20° Sezione: 3 strands

> Tipo di barre: Barre trefoli Numero di barre: 4

Diametro: 0.01331 m Area: 0.000556 m^2

Trave di Ripartizione : Default Waler

Sezione: HE 200 A HE 200A

Materiale: S275

Tirante: Tieback New

X:0 m Z:-4 m

Lunghezza bulbo : 5 m Diametro bulbo: 0.2 m Lunghezza libera: 12 m

MANDATARIA:

Itinerario Ragusa - Catania

Collegamento viario compreso tra lo Svincolo della S.S. 514 di "Chiaramonte" con la S.S. 115 e lo Svincolo della "Ragusana"

PROGETTO ESECUTIVO

RELAZIONE DI CALCOLO

Spaziatura orizzontale: 2 m

Precarico: 250 kN Angolo: 20°

Sezione: 3 strands

Tipo di barre : Barre trefoli Numero di barre: 4

Diametro: 0.01331 m Area: 0.000556 m^2

Trave di Ripartizione : Default Waler

Sezione: HE 200 A HE 200A

Materiale: S275

Tirante: Tieback_New_New

X:0 m Z:-7 m

Lunghezza bulbo : 5 m Diametro bulbo: 0.2 m Lunghezza libera: 12 m Spaziatura orizzontale: 2 m

Precarico: 250 kN Angolo: 20°

Sezione: 3 strands

Tipo di barre: Barre trefoli Numero di barre: 4

Diametro: 0.01331 m Area: 0.000556 m^2

Trave di Ripartizione : Default Waler

Sezione: HE 200 A HE 200A

Materiale: S275

Tirante: Tieback_New_New_New

X:0 m Z:-10.5 m

Lunghezza bulbo: 4 m Diametro bulbo: 0.2 m Lunghezza libera: 10 m Spaziatura orizzontale: 2 m

Precarico: 250 kN Angolo: 20°

MANDATARIA:

Itinerario Ragusa - Catania

Collegamento viario compreso tra lo Svincolo della S.S. 514 di "Chiaramonte" con la S.S. 115 e lo Svincolo della "Ragusana"

PROGETTO ESECUTIVO

RELAZIONE DI CALCOLO

Sezione: 3 strands

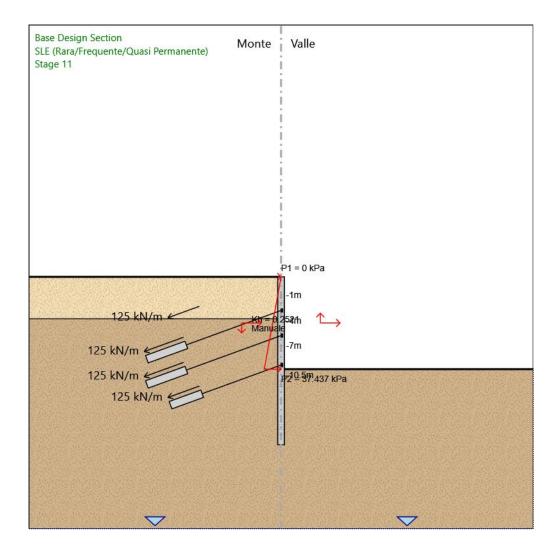
Tipo di barre : Barre trefoli

Numero di barre: 4 Diametro: 0.01331 m Area: 0.000556 m^2

Trave di Ripartizione : Default Waler

Sezione: HE 200 A HE 200A

Materiale: S275



PROGETTO ESECUTIVO

RELAZIONE DI CALCOLO

Stage 11

Stage 11

Scavo

Muro di sinistra

Direzione Progettazione e

Realizzazione Lavori

Itinerario Ragusa - Catania

Collegamento viario compreso tra lo Svincolo della S.S. 514 di "Chiaramonte" con la S.S. 115 e lo Svincolo della "Ragusana"

PROGETTO ESECUTIVO

RELAZIONE DI CALCOLO

Lato monte: 0 m Lato valle: -11 m

Linea di scavo di sinistra (Orizzontale)

0 m

Linea di scavo di destra (Orizzontale)

-11 m

Elementi strutturali

Paratia: WallElement

X:0 m

Quota in alto: 0 m Quota di fondo: -20 m Sezione: palo 800

Tirante: Tieback

X:0 m Z:-1 m

Lunghezza bulbo : 4 m Diametro bulbo: 0.2 m Lunghezza libera: 10 m Spaziatura orizzontale: 2 m

Precarico: 250 kN Angolo: 20° Sezione: 3 strands

> Tipo di barre: Barre trefoli Numero di barre: 4

Diametro: 0.01331 m Area: 0.000556 m^2

Trave di Ripartizione : Default Waler

Sezione: HE 200 A HE 200A

Materiale: S275

Tirante: Tieback New

X:0 m Z:-4 m

Lunghezza bulbo : 5 m Diametro bulbo: 0.2 m Lunghezza libera: 12 m

MANDATARIA:

Itinerario Ragusa - Catania

Realizzazione Lavori

Collegamento viario compreso tra lo Svincolo della S.S. 514 di "Chiaramonte" con la S.S. 115 e lo Svincolo della "Ragusana"

PROGETTO ESECUTIVO

RELAZIONE DI CALCOLO

Spaziatura orizzontale: 2 m

Precarico: 250 kN Angolo: 20°

Sezione: 3 strands

Tipo di barre : Barre trefoli Numero di barre: 4

Diametro: 0.01331 m Area: 0.000556 m^2

Trave di Ripartizione : Default Waler

Sezione: HE 200 A HE 200A

Materiale: S275

Tirante: Tieback_New_New

X:0 m Z:-7 m

Lunghezza bulbo : 5 m Diametro bulbo: 0.2 m Lunghezza libera: 12 m Spaziatura orizzontale: 2 m

Precarico: 250 kN Angolo: 20°

Sezione: 3 strands

Tipo di barre: Barre trefoli Numero di barre: 4 Diametro: 0.01331 m Area: 0.000556 m^2

Trave di Ripartizione : Default Waler

Sezione: HE 200 A HE 200A

Materiale: S275

Tirante: Tieback_New_New_New

X:0 m Z:-10.5 m

Lunghezza bulbo: 4 m Diametro bulbo: 0.2 m Lunghezza libera: 10 m Spaziatura orizzontale: 2 m

Precarico: 250 kN Angolo: 20°

MANDATARIA:

Itinerario Ragusa - Catania

Collegamento viario compreso tra lo Svincolo della S.S. 514 di "Chiaramonte" con la S.S. 115 e lo Svincolo della "Ragusana"

PROGETTO ESECUTIVO

RELAZIONE DI CALCOLO

Sezione: 3 strands

Tipo di barre : Barre trefoli

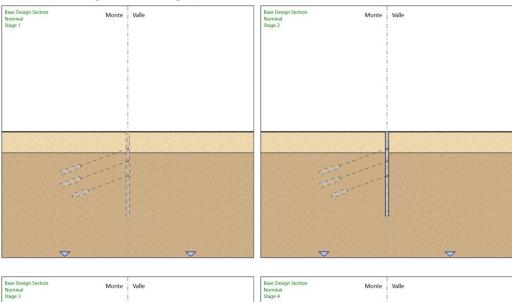
Numero di barre: 4 Diametro: 0.01331 m Area: 0.000556 m^2

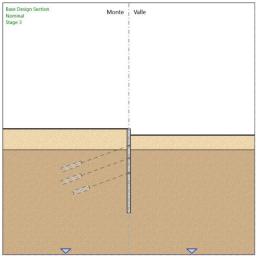
Trave di Ripartizione : Default Waler

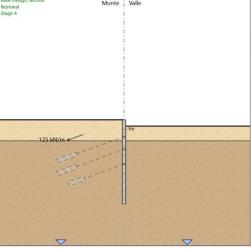
Sezione: HE 200 A HE 200A

Materiale: S275

MANDATARIA:



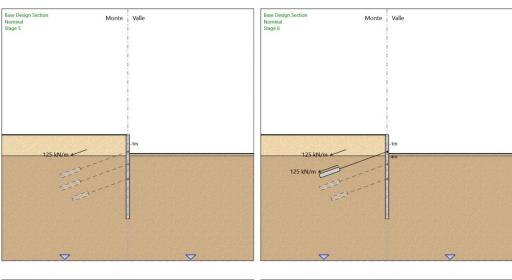


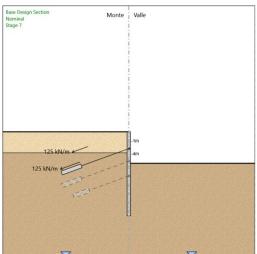

PROGETTO ESECUTIVO

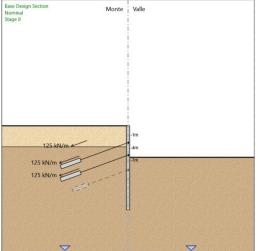
RELAZIONE DI CALCOLO

Tabella Configurazione Stage (Nominal)

Direzione Progettazione e

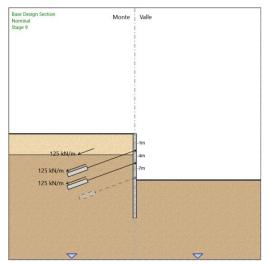

Realizzazione Lavori

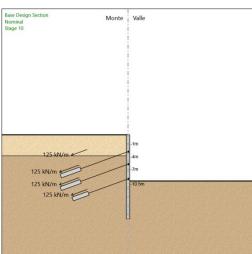

Itinerario Ragusa - Catania

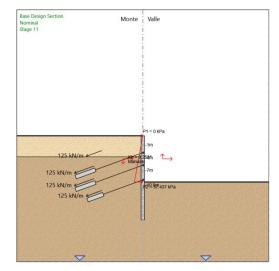

Collegamento viario compreso tra lo Svincolo della S.S. 514 di "Chiaramonte" con la S.S. 115 e lo Svincolo della "Ragusana"

PROGETTO ESECUTIVO

RELAZIONE DI CALCOLO




Itinerario Ragusa - Catania


Collegamento viario compreso tra lo Svincolo della S.S. 514 di "Chiaramonte" con la S.S. 115 e lo Svincolo della "Ragusana"

PROGETTO ESECUTIVO

RELAZIONE DI CALCOLO

PROGETTO ESECUTIVO

RELAZIONE DI CALCOLO

Descrizione Coefficienti Design Assumption

Nome	Carichi	Carichi	Carichi	Carichi	Carico	Pressio		Carichi			Carichi	Carichi	Carichi
	Permanenti	Permanenti	Variabili	Variabili	Sismico	ni	ni	Permane	Perman	Variabili	Permane	Perman	Variabili
	Sfavorevoli	Favorevoli	Sfavorevoli	Favorevoli	(F_seis	Acqua	Acqua	nti	enti	Destabili	nti	enti	Destabili
	(F_dead_load	(F_dead_loa	(F_live_load	(F_live_loa	m_load)	Lato	Lato	Destabili	Stabilizz	zzanti	Destabili	Stabilizz	zzanti
	_unfavour)	d_favour)	_unfavour)	d_favour)		Monte	Valle	zzanti	anti	(F_UPL_	zzanti	anti	(F_HYD_
						(F_Wat	(F_Wat	(F_UPL_	(F_UPL_	QDStab)	(F_HYD_	(F_HYD_	QDStab)
						erDR)	erRes)	GDStab)	GStab)		GDStab)	GStab)	
Simbolo	γG	γG	γQ	γQ	γQE	γG	γG	γGdst	γGstb	γQdst	γGdst	γGstb	γQdst
Nominal	1	1	1	1	1	1	1	1	1	1	1	1	1
SLE	1	1	1	1	0	1	1	1	1	1	1	1	1
(Rara/Frequ													
ente/Quasi													
Permanente													
)													
A1+M1+R1	1.3	1	1.5	1	0	1.3	1	1	1	1	1.3	0.9	1
(R3 per													
tiranti)													
A2+M2+R1	1	1	1.3	1	0	1	1	1	1	1	1.3	0.9	1
SISMICA STR	1	1	1	1	1	1	1	1	1	1	1	1	1
SISMICA	1	1	1	1	1	1	1	1	1	1	1.3	0.9	1
GEO													

Nome	Parziale su tan(ø')	Parziale su c'	Parziale su Su	Parziale su qu	Parziale su peso specifico
	(F_Fr)	(F_eff_cohe)	(F_Su)	(F_qu)	(F_gamma)
Simbolo	γф	γс	γcu	γqu	γγ
Nominal	1	1	1	1	1
SLE (Rara/Frequente/Quasi	1	1	1	1	1
Permanente)					
A1+M1+R1 (R3 per tiranti)	1	1	1	1	1
A2+M2+R1	1.25	1.25	1.4	1	1
SISMICA STR	1	1	1	1	1
SISMICA GEO	1.25	1.25	1.4	1	1

Nome	Parziale resistenza terreno (es.	Parziale resistenza Tiranti	Parziale resistenza Tiranti	Parziale elementi
	Kp) (F_Soil_Res_walls)	permanenti (F_Anch_P)	temporanei (F_Anch_T)	strutturali (F_wall)
Simbolo	γRe	үар	γat	
Nominal	1	1	1	1
SLE (Rara/Frequente/Quasi	1	1	1	1
Permanente)				
A1+M1+R1 (R3 per tiranti)	1	1.2	1.1	1
A2+M2+R1	1	1.2	1.1	1
SISMICA STR	1	1.2	1.1	1
SISMICA GEO	1	1.2	1.1	1

MANDATARIA:

Collegamento viario compreso tra lo Svincolo della S.S. 514 di "Chiaramonte" con la S.S. 115 e lo Svincolo della "Ragusana"

PROGETTO ESECUTIVO

RELAZIONE DI CALCOLO

Descrizione sintetica dei risultati delle Design Assumption (Inviluppi) Tabella Inviluppi Spostamento Left Wall

Tabella IIIViiappi sp		
Design Assumption: Nominal		
Z (m)	Lato sinistro (mm)	Lato destro (mm
0	-0.379	0
-0.114	0	0
-0.2	0	0.285
-0.4	0	0.95
-0.6	0	1.614
-0.8	0	2.278
-1	0	2.943
-1.2	0	3.608
-1.4	0	4.273
-1.6	0	4.935
-1.8	0	5.594
-2	0	6.249
-2.2	0	6.898
-2.4	0	7.541
-2.6	0	8.176
-2.8	0	8.804
-3	0	9.423
-3.2	0	10.032
-3.4	0	10.632
-3.6	0	11.223
-3.8	0	11.803
-4	0	12.373
-4.2	0	12.933
-4.4	0	13.482
-4.6	0	14.019
-4.8	0	14.542
-5	0	15.051
-5.2	0	15.545
-5.4	0	16.023
-5.6	0	16.486
-5.8	0	16.934
-6	0	17.365
-6.2	0	17.78
-6.4	0	18.179
-6.6	0	18.561
-6.8	0	18.928
-7	0	19.279
-7.2	0	19.615
-7.4	0	19.934
-7.6	0	20.235
-7.8	0	20.518
-8	0	20.78
-8.2	0	21.022
-8.4	0	21.242
-8.6	0	21.44
-8.8	0	21.615
-9	0	21.768
-9.2	0	21.897
-9.4	0	22.003
J. T	O	22.003

MANDATARIA:

Direzione Progettazione e

Realizzazione Lavori

Itinerario Ragusa - Catania

Collegamento viario compreso tra lo Svincolo della S.S. 514 di "Chiaramonte" con la S.S. 115 e lo Svincolo della "Ragusana"

PROGETTO ESECUTIVO

RELAZIONE DI CALCOLO

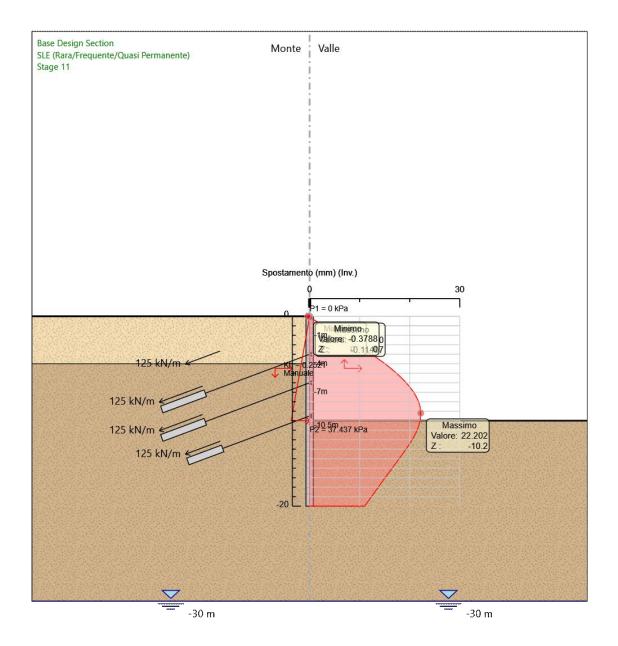
Design Assumption: Nominal I	nviluppi: Spostament	o Muro: LEFT
Z (m)	Lato sinistro (mm)	Lato destro (mm
-9.6	0	22.087
-9.8	0	22.147
-10	0	22.185
-10.2	0	22.202
-10.4	0	22.197
-10.5	0	22.188
-10.7	0	22.154
-10.9	0	22.1
-11.1	0	22.027
-11.3	0	21.935
-11.5	0	21.825
-11.7	0	21.697
-11.9	0	21.552
-12.1	0	21.39
-12.3	0	21.214
-12.5	0	21.023
-12.7	0	20.82
-12.9	0	20.605
-13.1	0	20.378
-13.3	0	20.143
-13.5	0	19.898
-13.7	0	19.647
-13.9	0	19.389
-14.1	0	19.125
-14.3	0	18.857
-14.5	0	18.586
-14.7	0	18.311
-14.9	0	18.034
-15.1	0	17.755
-15.3	0	17.475
-15.5	0	17.194
-15.7	0	16.913
-15.9	0	16.632
-16.1	0	16.351
-16.3	0	16.07
-16.5	0	15.79
-16.7	0	15.511
-16.9	0	15.233
-17.1	0	14.955
-17.3	0	14.679
-17.5	0	14.403
-17.7	0	14.128
-17.9	0	13.854
-18.1	0	13.581
-18.3	0	13.309
-18.5	0	13.037
-18.7	0	12.766
-18.9	0	12.495
-19.1	0	12.224
-19.3	0	11.954
-19.5	0	11.684
-19.7	0	11.414
-19.9	0	11.144

MANDATARIA:

MANDANTI:

-20

11.009



PROGETTO ESECUTIVO

RELAZIONE DI CALCOLO

Grafico Inviluppi Spostamento

Spostamento

MANDATARIA:

Collegamento viario compreso tra lo Svincolo della S.S. 514 di "Chiaramonte" con la S.S. 115 e lo Svincolo della "Ragusana"

PROGETTO ESECUTIVO

RELAZIONE DI CALCOLO

Tabella Inviluppi Momento WallElement

Design Assumption: Nomina		
Z (m)	Lato sinistro (kN*m/m)	Lato destro (kN*m/m)
0	0	0
-0.2	0.371	0
-0.4	1.699	0
-0.6	4.195	0
-0.8	7.713	0
-1	12.195	0
-1.2	0	18.06
-1.4	0	44.748
-1.6	0	71.125
-1.8	0	95.89
-2	0	118.879
-2.2	0	139.926
-2.4	0	158.864
-2.6	0	175.524
-2.8	0	189.734
-3	0	201.318
-3.2	0	210.099
-3.4	0	215.895
-3.6	0	219.175
-3.8	0	222.029
-4	0	222.026
-4.2	0	253.394
-4.4	0	286.438
-4.6	0	316.553
-4.8	0	343.488
-5	0	367.09
-5.2	0	387.204
-5.4	0	405.143
-5.6	0	420.809
-5.8	0	434.108
-6	0	444.945
-6.2	0	453.224
-6.4	0	458.85
-6.6	0	461.726
-6.8	0	461.758
-7	0	458.85
-7.2	0	495.806
-7.4	0	529.63
-7.6	0	560.228
-7.8	0	587.505
-8	0	611.364
-8.2	0	631.71
-8.4	0	648.448
-8.6	0	661.482
-8.8	0	670.716
-9	0	676.056
-9.2	0	677.406
-9.4	0	674.669
-9.6	0	667.752
-9.8	0	656.557

MANDATARIA:

Itinerario Ragusa - Catania

Collegamento viario compreso tra lo Svincolo della S.S. 514 di "Chiaramonte" con la S.S. 115 e lo Svincolo della "Ragusana"

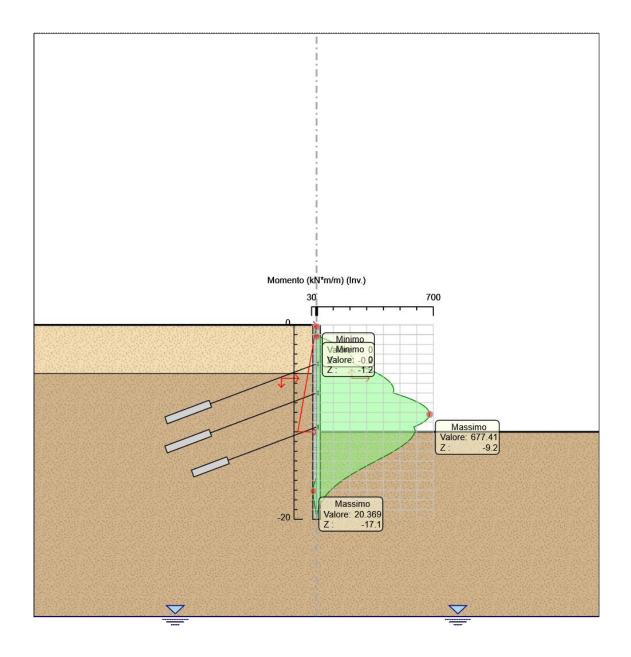
PROGETTO ESECUTIVO

RELAZIONE DI CALCOLO

ezione Progettuzione e	
Realizzazione Lavori	

Design Assumption: Nominal	* *	
Z (m)	Lato sinistro (kN*m/m)	
-10	0	640.991
-10.2	0	620.956
-10.4	0	596.358
-10.5	0	582.312
-10.7	0	588.579
-10.9	0	590.044
-11.1	0	587.018
-11.3	0	581.615
-11.5	0	573.992
-11.7	0	564.306
-11.9	0	552.715
-12.1	0	539.377
-12.3	0	524.45
-12.5	0	508.089
-12.7	0	490.454
-12.9	0	471.702
-13.1	0	451.99
-13.3	0	431.476
-13.5	0	410.317
-13.7	0	388.671
-13.9	0	366.695
-14.1	0	344.547
-14.3	0	322.384
-14.5	0	300.364
-14.7 -14.9	0 0	278.645
-14.9 -15.1	0	257.383 236.737
-15.1 -15.3	0	216.864
-15.5 -15.5	0	197.904
-15.7	0	179.857
-15.7	4.759	162.721
-16.1	9.681	146.491
-16.3	13.568	131.163
-16.5	16.501	116.733
-16.7	18.558	103.194
-16.9	19.82	90.537
-17.1	20.369	78.756
-17.3	20.287	67.841
-17.5	19.656	57.783
-17.7	18.56	48.573
-17.9	17.082	40.2
-18.1	15.307	32.653
-18.3	13.381	25.923
-18.5	11.756	19.997
-18.7	9.841	14.866
-18.9	7.775	10.516
-19.1	5.698	6.938
-19.3	3.751	4.12
-19.5	2.074	2.05
-19.7	0.808	0.717
-19.9	0.096	0.078
-20	0	0

MANDATARIA:



PROGETTO ESECUTIVO

RELAZIONE DI CALCOLO

Grafico Inviluppi Momento

Momento

MANDATARIA:

Collegamento viario compreso tra lo Svincolo della S.S. 514 di "Chiaramonte" con la S.S. 115 e lo Svincolo della "Ragusana"

PROGETTO ESECUTIVO

RELAZIONE DI CALCOLO

Tabella Inviluppi Taglio WallElement

Tabella III viiappi Te	agno wantierne	.110
Design Assumption: Nominal	l Inviluppi: Taglio	Muro: WallElement
Z (m)	Lato sinistro (kN/m)) Lato destro (kN/m)
0	1.856	0
-0.2	6.64	0
-0.4	12.479	0
-0.6	17.588	0
-0.8	22.414	0
-0.8	22.414	145.58
	0	
-1.2		145.58
-1.4	0	139.138
-1.6	0	131.887
-1.8	0	123.824
-2	0	114.942
-2.2	0	105.235
-2.4	0	94.692
-2.6	0	83.545
-2.8	0	73.886
-3	0	63.49
-3.2	0	52.344
-3.4	0	41.288
-3.6	3.652	29.652
-3.8	21.394	17.339
-4	21.394	180.158
-4.2	0	180.158
-4.4	0	165.733
-4.4 -4.6		
	0	150.576
-4.8	0	134.674
-5	0	118.011
-5.2	0	100.571
-5.4	0	89.69
-5.6	0	78.333
-5.8	0	66.497
-6	0	54.185
-6.2	8.472	41.394
-6.4	18.734	28.127
-6.6	29.436	14.382
-6.8	40.576	0.159
-7	40.576	184.778
-7.2	0	184.778
-7.4	0	169.124
-7.6	0	152.992
-7.8	0	136.382
-8	0	119.295
-8.2	0	101.731
-8.4	0	83.689
-8.6	0	65.17
-8.8	0	46.173
-9	13.067	28.676
-9.2	30.659	13.8
-9.4	48.673	0
-9.6	67.11	0
-9.8	85.969	0

MANDATARIA:

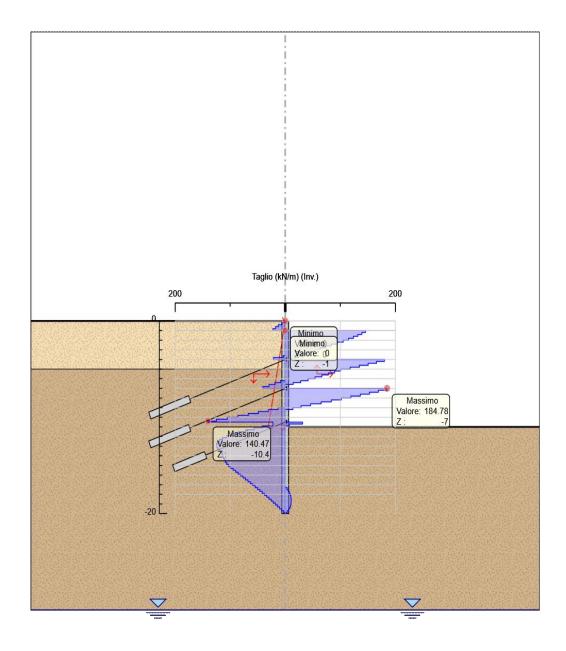
Collegamento viario compreso tra lo Svincolo della S.S. 514 di "Chiaramonte" con la S.S. 115 e lo Svincolo della "Ragusana"

PROGETTO ESECUTIVO

RELAZIONE DI CALCOLO

Design Assumption: Nominal	l Inviluppi: Taglio	Muro: WallFlement
Z (m)) Lato destro (kN/m)
-10	105.252	0
-10.2	124.957	0
-10.4	140.467	0
-10.5	140.467	31.336
-10.7	22.303	31.336
-10.7	41.456	7.326
-11.1	56.528	0
-11.3	71.946	0
-11.5	85.378	0
-11.7	96.834	0
-11.9	106.326	0
-12.1	113.864	0
-12.3	119.459	0
-12.5	123.119	0
-12.7	124.853	0
-12.9	124.853	0
-13.1	124.67	0
-13.3	122.575	0
-13.5 -13.5	118.577	0
	114.696	0
-13.7 13.0		0
-13.9 14.1	114.696	0
-14.1 -14.3	113.978	
	112.445	0
-14.5	110.105	0
-14.7 -14.9	108.597	0 0
	106.308	0
-15.1 15.2	103.23	0
-15.3	99.366	0
-15.5 15.7	94.799	
-15.7	90.237	0 0
-15.9 16.1	85.684	0
-16.1 16.2	81.148	0
-16.3	76.635	
-16.5	72.15	0
-16.7 16.0	67.698	0
-16.9	63.282	0 0.411
-17.1 17.2	58.906	
-17.3	54.575 50.289	3.154 5.481
-17.5 17.7		7.389
-17.7 -17.9	46.052 41.866	8.877
-17.9 -18.1	37.732	9.94
-18.3	33.652	10.579
-18.5 19.7	29.627	10.788
-18.7 -18.9	25.658	10.788
	21.745	10.568 10.384
-19.1 -19.2	17.89	
-19.3	14.091	9.737
-19.5	10.35	8.385
-19.7	6.667	6.328
-19.9 20	3.196	3.563 0.957
-20	0.776	0.957

MANDATARIA:



PROGETTO ESECUTIVO

RELAZIONE DI CALCOLO

Grafico Inviluppi Taglio

Taglio

MANDATARIA:

PROGETTO ESECUTIVO

RELAZIONE DI CALCOLO

Inviluppo Spinta Reale Efficace / Spinta Passiva

Design Assumptio	n Stage	Muro	Lato	Inviluppo Spinta Reale Efficace / Spinta Passiva
				%
A2+M2+R1	Stage 11	Left Wal	LEFT	24.4
SISMICA GEO	Stage 11	Left Wal	RIGHT	99.96

PROGETTO ESECUTIVO

RELAZIONE DI CALCOLO

Inviluppo Spinta Reale Efficace / Spinta Attiva

Design Assumption	Stage	Muro	Lato	Inviluppo Spinta Reale Efficace / Spinta Attiva
				%
SISMICA GEO	Stage 11	Left Wall	LEFT	123.06
SISMICA GEO	Stage 11	Left Wall	RIGHT	539.21

Itinerario Ragusa - Catania

Collegamento viario compreso tra lo Svincolo della S.S. 514 di "Chiaramonte" con la S.S. 115 e lo Svincolo della "Ragusana"

PROGETTO ESECUTIVO

RELAZIONE DI CALCOLO

Normative adottate per le verifiche degli Elementi Strutturali

Normative Verifiche

Calcestruzzo NTC Acciaio NTC Tirante NTC

Coefficienti per Verifica Tiranti

GEO FS	1
ξα3	1.8
VS	1.15

Itinerario Ragusa - Catania

Collegamento viario compreso tra lo Svincolo della S.S. 514 di "Chiaramonte" con la S.S. 115 e lo Svincolo della "Ragusana"

PROGETTO ESECUTIVO

RELAZIONE DI CALCOLO

Riepilogo Stage / Design Assumption per Inviluppo

Design Assumption	Stage 1 Stage 2 Stage 3 Stage 4 Stage 5 Stage 6 Stage 7 Stage 8 Stage 9 Stage 1	0 Stage 11
SLE (Rara/Frequente/Quasi Permanente	e)	V
A1+M1+R1 (R3 per tiranti)		V
A2+M2+R1		V
SISMICA STR		V
SISMICA GEO		V

Collegamento viario compreso tra lo Svincolo della S.S. 514 di "Chiaramonte" con la S.S. 115 e lo Svincolo della "Ragusana"

PROGETTO ESECUTIVO

RELAZIONE DI CALCOLO

Risultati Caver

Tabella Inviluppi Tasso di Sfruttamento Calcestruzzo - Caver : LEFT

Inviluppi Tasso di Sfruttamento Calcestruzzo - Ca	ver LEFT
Z (m)	Tasso di Sfruttamento Calcestruzzo - Caver
0	0
-0.2	0.001
-0.4	0.002
-0.6	0.006
-0.8	0.011
-1	0.018
-1.2	0.025
-1.4	0.065
-1.6	0.104
-1.8	0.14
-2	0.173
-2.2	0.204
-2.4	0.231
-2.6	0.256
-2.8	0.276
-3	0.293
-3.2	0.306
-3.4	0.314
-3.6	0.318
-3.8	0.317
-4	0.311
-4.2	0.355
-4.4	0.394
-4.6	0.427
-4.8	0.453
-5	0.473
-5.2	0.485
-5.4	0.496
-5.6	0.504
-5.8	0.51
-6	0.513
-6.2	0.513
-6.4	0.511
-6.6	0.506
-6.8	0.497
-7	0.485
-7.2	0.527
-7.4	0.566
-7.6	0.601
-7.8	0.632
-8	0.659
-8.2	0.683
-8.4 • <i>c</i>	0.702
-8.6	0.717
-8.8 -9	0.727
-9 -9.2	0.733 0.735
-9.2 -9.4	0.733
-9.4 -9.6	
-9.0	0.723

MANDATARIA:

Itinerario Ragusa - Catania

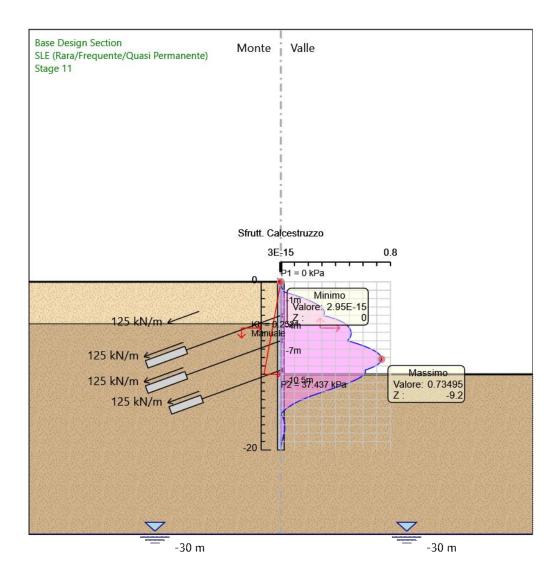
Collegamento viario compreso tra lo Svincolo della S.S. 514 di "Chiaramonte" con la S.S. 115 e lo Svincolo della "Ragusana"

PROGETTO ESECUTIVO

RELAZIONE DI CALCOLO

Inviluppi Tasso di Sfruttamento Calcestruzzo - Cave	
Z (m)	Tasso di Sfruttamento Calcestruzzo - Caver
-9.8	0.71
-10	0.69
-10.2	0.665
-10.4	0.633
-10.5	0.615
-10.7	0.618
-10.9	0.614
-11.1	0.603
-11.3	0.586
-11.5	0.565
-11.7	0.54
-11.9 12.1	0.512
-12.1 12.3	0.481
-12.3 -12.5	0.448
	0.413
-12.7 12.0	0.377
-12.9 13.1	0.341
-13.1 -13.3	0.305 0.269
-13.5 -13.5	0.234
-13.5 -13.7	0.202
-13.7	0.202
-13.5	0.171
-14.1	0.143
-14.5	0.095
-14.7	0.074
-14.9	0.055
-15.1	0.039
-15.3	0.025
-15.5	0.012
-15.7	0.002
-15.9	0.007
-16.1	0.014
-16.3	0.02
-16.5	0.024
-16.7	0.027
-16.9	0.029
-17.1	0.03
-17.3	0.03
-17.5	0.029
-17.7	0.027
-17.9	0.025
-18.1	0.022
-18.3	0.019
-18.5	0.016
-18.7	0.013
-18.9	0.01
-19.1	0.007
-19.3	0.005
-19.5	0.003
-19.7	0.001
-19.9	0
-20	0

MANDATARIA:



PROGETTO ESECUTIVO

RELAZIONE DI CALCOLO

Grafico Inviluppi Tasso di Sfruttamento Calcestruzzo - Caver

Inviluppi Tasso di Sfruttamento Calcestruzzo - Caver

MANDATARIA:

Collegamento viario compreso tra lo Svincolo della S.S. 514 di "Chiaramonte" con la S.S. 115 e lo Svincolo della "Ragusana"

PROGETTO ESECUTIVO

RELAZIONE DI CALCOLO

Tabella Inviluppi Tasso di Sfruttamento Armature - Caver : LEFT

Z (m) Tasso di Sfruttamento Armature - Caver 0 0 -0.2 0 -0.4 0.002 -0.6 0.004 -0.8 0.008 -1 0.012 -1.2 0.017 -1.4 0.045 -1.6 0.072 -1.8 0.097 -2 0.12 -2.2 0.142 -2.4 0.161 -2.6 0.178 -2.8 0.192 -3 0.204 -3.2 0.213 -3.4 0.219 -3.5 0.221 -4 0.219 -3.8 0.221 -4 0.216 -4.2 0.247 -4.4 0.274 -4.6 0.297 -4.8 0.315 -5 0.329 -5.2 0.338 -5.4 0.356 -5.5 0.357 -6.2 0.357 </th <th>Inviluppi Tasso di Sfruttamento Armature - Caver</th> <th>LEFT</th>	Inviluppi Tasso di Sfruttamento Armature - Caver	LEFT
0		
-0.2 -0.4 -0.6 -0.6 -0.8 -0.8 -0.8 -1 -0.12 -1.2 -1.14 -1.6 -1.6 -1.8 -1.8 -1.7 -1.8 -1.8 -1.8 -1.9 -1.8 -1.8 -1.9 -1.8 -1.9 -1.8 -1.8 -1.9 -1.9 -1.8 -1.8 -1.9 -1.9 -1.8 -1.8 -1.9 -1.9 -1.8 -1.8 -1.9 -1.9 -1.8 -1.8 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9		
-0.4 -0.6 -0.8 -0.8 -0.8 -0.008 -1 -1 -1.2 -0.17 -1.4 -1.6 -0.72 -1.8 -0.97 -2 -1.8 -0.997 -2 -2.2 -2.4 -2.4 -2.6 -2.8 -2.8 -2.8 -3.2 -3.4 -3.2 -3.4 -3.6 -3.8 -3.2 -3.4 -4 -4.6 -4.2 -4.4 -4.6 -4.2 -4.4 -4.6 -6.6 -5.5 -5.8 -5.6 -5.8 -5.8 -6.2 -5.8 -6.2 -6.357 -6.4 -6.6 -6.6 -6.8 -7 -7 -7.4 -9.94 -7.6 -7.8 -8.8 -8.6 -9 -9 -9.6 -9.9 -5.11 -9.2 -9.4 -9.6 -9.9 -5.10 -0.017 -0		
-0.6 -0.8 -0.08 -1 -1 -0.012 -1.2 -1.2 -1.4 -1.6 -1.6 -1.8 -1.8 -1.9 -1.8 -1.9 -1.8 -1.9 -1.9 -1.8 -1.9 -1.8 -1.9 -1.9 -1.8 -1.9 -1.9 -1.8 -1.9 -1.9 -1.8 -1.9 -1.8 -1.9 -1.9 -1.8 -1.9 -1.8 -1.9 -1.9 -1.8 -1.9 -1.9 -1.8 -1.9 -1.9 -1.18 -1.9 -1.18 -1.9 -1.18 -1.9 -1.18 -1.9 -1.18 -1.9 -1.18 -1.9 -1.18 -1.9 -1.18 -1.9 -1.18 -1.9 -1.18 -1.9 -1.18 -1.9 -1.9 -1.18 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9 -1.9		
-0.8 -1 -1.0.012 -1.2 -1.4 -1.6 -1.6 -1.8 -2 -2 -1.8 -2 -2 -1.18 -2.8 -3 -3 -3.2 -3.4 -3.6 -3.8 -3.8 -3.8 -3.8 -3.8 -3.8 -4 -4.2 -4.4 -4.4 -4.2 -4.4 -4.6 -6.6 -5.8 -5.8 -5.8 -5.8 -5.8 -6.2 -6.8 -7 -7.2 -7.4 -7.6 -6.8 -7 -7.2 -7.4 -7.6 -6.8 -8.8 -9 -9 -9.6 -9.5 -9 -9.5 -5.1 -5.1 -5.1 -5.1 -5.2 -5.3 -5.3 -5.4 -6.3 -7 -7.2 -7.4 -7.6 -6.8 -7.7 -7.8 -8.8 -8.6 -9 -9 -9.5 -9 -9.5 -5.1 -5.1 -5.1 -5.1 -5.2 -5.3 -5.3 -5.4 -7 -7.2 -7.4 -7.6 -7.8 -7.8 -7.9 -7.9 -9.9 -9.6 -5.90 -5.91 -5.91 -9.9 -9.6 -5.90 -5.90 -5.91 -5.90 -5.91 -5.91 -6.91 -7.91 -9.92 -9.55 -9.90 -9.55		
-1 -1.2 -1.4 -1.6 -1.6 -1.6 -1.6 -1.8 -1.8 -1.9 -1.2 -1.8 -1.9 -1.9 -1.8 -1.9 -1.9 -1.18 -1.9 -1.9 -1.18 -1.9 -1.9 -1.18 -1.9 -1.9 -1.9 -1.18 -1.9 -1.9 -1.18 -1.9 -1.9 -1.18 -1.9 -1.9 -1.18 -1.9 -1.9 -1.18 -1.9 -1.9 -1.18 -1.9 -1.9 -1.18 -1.9 -1.9 -1.18 -1.9 -1.9 -1.18 -1.9 -1.9 -1.18 -1.9 -1.18 -1.9 -1.18 -1.9 -1.18 -1.19		
-1.2		
-1.6 -1.8 -1.8 -1.8 -1.8 -1.8 -1.8 -1.8 -1.8		
-1.8	-1.4	0.045
-2	-1.6	0.072
-2.2 -2.4 -2.4 -2.6 -2.6 -2.8 -2.8 -2.8 -3.2 -3.2 -3.4 -3.4 -3.6 -3.8 -3.8 -3.2 -3.8 -4 -4 -4.2 -4.2 -4.4 -4.6 -5 -5 -5.2 -5.4 -5.6 -5.8 -5.8 -5.8 -6 -6.2 -6.2 -6.4 -6.6 -6.2 -6.8 -7 -7 -7.4 -7.6 -6.8 -7 -7.4 -7.6 -7.4 -8 -8 -8 -9 -9 -9.5 -9 -9 -9.5 -9.6 -9 -9.5 -9.6 -9.6 -9.5 -9 -9.5 -5.1 -1.78 -1.79 -1.70 -1.74 -1.75 -1.75 -1.74 -1.75 -1.75 -1.74 -1.75 -1.	-1.8	0.097
-2.4 0.161 -2.6 0.178 -2.8 0.192 -3 0.204 -3.2 0.213 -3.4 0.219 -3.6 0.221 -3.8 0.221 -4 0.216 -4.2 0.247 -4.4 0.274 -4.6 0.297 -4.8 0.315 -5 0.329 -5.2 0.338 -5.4 0.345 -5.6 0.351 -5.8 0.355 -6 0.357 -6.2 0.357 -6.2 0.357 -6.2 0.357 -6.4 0.356 -6.6 0.355 -6.6 0.357 -7 0.338 -7 0.338 -7 0.338 -7 0.338 -7 0.346 -7 0.338 -7 0.394 -7.6 0.346 -7 0.394 -7.6 0.418 -7.8 0.44 -8 0.459 -8.8 0.459 -8.8 0.459 -8.8 0.499 -8.8 0.506 -9 0.511 -9.2 0.512 -9.4 0.509 -9.6 0.509	-2	0.12
-2.6 -2.8 -2.8 -3 -3 -3 -2.04 -3.2 -3.4 -3.4 -3.6 -3.8 -3.8 -3.8 -3.8 -4 -4.2 -4.4 -4.2 -4.4 -4.6 -4.2 -4.8 -5 -5 -5.2 -5.4 -5.6 -5.6 -5.8 -6 -6.2 -6.4 -6.2 -6.4 -6.6 -6.8 -7 -7 -7.2 -7.4 -7.4 -7.6 -7.8 -7.8 -8.4 -8 -8 -8.2 -9 -9 -9.6 -9.6 -9.50 -9 -9.6 -5.12 -9.4 -9.6 -0.503	-2.2	0.142
-2.8 -3 -3 -2.2 -3.2 -3.4 -3.4 -3.6 -3.8 -3.8 -4 -4 -4.2 -4.4 -4.2 -4.4 -4.6 -6.6 -5.2 -5.4 -5.6 -6.2 -6.2 -6.4 -6.6 -6.2 -6.8 -6.6 -6.8 -7 -7 -7 -7.2 -7.4 -7.6 -7.4 -7.6 -7.8 -8 -8 -8 -8 -8 -8 -8 -9 -9 -9 -9 -9.5 -9 -9 -9.5 -9 -9 -9.5 -9 -9 -9.6 -9 -9 -9.6 -9 -9 -9.6 -9 -9 -9.6 -9 -9 -9.6 -9 -9 -9.6 -9 -9 -9.6 -9 -9 -9.6 -9 -9 -9.6 -9 -9 -9.6 -9 -9 -9.6 -9 -9 -9.6 -9 -9 -9.6 -9 -9.5 -9 -9 -9.5 -9 -9 -9.5 -9 -9 -9.5 -9 -9 -9.5 -9 -9 -9.5 -9 -9.5 -9 -9 -9.5 -9 -9 -9.5 -9 -9 -9.5 -9 -9 -9.5 -9 -9 -9.5 -9 -9.5 -9 -9 -9.5 -9 -9 -9.5 -9 -9 -9.5 -9 -9 -9.5 -9 -9 -9.5 -9 -9 -9.5 -9 -9 -9.5 -9 -9 -9.5 -9 -9 -9.5 -9 -9 -9.5 -9 -9 -9.5 -9 -9.5 -9 -9 -9.5 -9 -9 -9.5 -9 -9 -9.5 -9 -9 -9.5 -9 -9 -9.5 -9 -9 -9 -9.5 -9 -9 -9.5 -9 -9 -9.5 -9 -9 -9.5 -9 -9 -9.5 -9 -9 -9.5 -9 -9 -9.5 -9 -9 -9.5 -9 -9 -9.5 -9 -9 -9.5 -9 -9 -9.5 -9 -9 -9 -9.5 -9 -9 -9.5 -9 -9 -9.5 -9 -9 -9.5 -9 -9 -9.5 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9 -9	-2.4	0.161
-3	-2.6	0.178
-3.2	-2.8	0.192
-3.4 0.219 -3.6 0.221 -3.8 0.221 -4 0.216 -4.2 0.247 -4.4 0.274 -4.6 0.297 -4.8 0.315 -5 0.329 -5.2 0.338 -5.4 0.345 -5.6 0.351 -5.8 0.355 -6 0.357 -6.2 0.357 -6.2 0.357 -6.4 0.356 -6.6 0.352 -6.4 0.356 -6.6 0.352 -7 0.338 -7.2 0.367 -7.4 0.394 -7.6 0.418 -7.8 0.44 -8 0.459 -8.2 0.475 -8.4 0.489 -8.6 0.499 -8.8 0.506 -9 0.511 -9.2 0.509 -9.6 0.509		0.204
-3.6 -3.8 -3.8 -4 -4 -4.2 -4.2 -4.4 -4.4 -4.6 -4.6 -6.6 -5.2 -5.4 -5.8 -6 -6.2 -6.4 -6.6 -6.6 -6.6 -6.6 -7 -7 -7 -7 -8 -7.4 -7.6 -7.8 -7.8 -8 -8 -8 -9 -9 -9 -9.6 -9 -9 -9.6 -9.6 -9 -9.6 -9 -9.6 -0.21 -0.22		
-3.8 -4 -4 -4.2 -2.16 -4.2 -4.4 -4.4 -4.6 -4.8 -5.6 -5.2 -5.2 -5.8 -5.8 -6 -6.2 -6.4 -6.6 -6.6 -6.8 -7 -7 -7.2 -7.4 -7.4 -7.6 -7.8 -7.2 -7.4 -7.8 -8 -8 -8 -8 -8 -9 -8.2 -8.4 -8.6 -9 -9 -9.6 -9 -9 -9.6 -9.6 -9 -9.6 -9.6		
-4 0.216 -4.2 0.247 -4.4 0.274 -4.6 0.297 -4.8 0.315 -5 0.329 -5.2 0.338 -5.4 0.345 -5.6 0.351 -5.8 0.355 -6 0.357 -6.2 0.357 -6.4 0.356 -6.6 0.352 -6.8 0.346 -7 0.338 -7.2 0.367 -7.4 0.394 -7.6 0.418 -7.8 0.44 -8 0.459 -8.2 0.475 -8.4 0.489 -8.6 0.499 -8.8 0.506 -9 0.511 -9.2 0.509 -9.6 0.509		
-4.2 -4.4 -4.6 -4.8 -5 -5 -5 -5.2 -5.2 -5.6 -5.8 -5.8 -6 -6.2 -6.4 -6.6 -6.6 -6.8 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7		
-4.4 -4.6 -4.8 -0.297 -4.8 -0.315 -5 -5 -5 -5.2 -3.38 -5.4 -5.6 -5.8 -5.8 -6 -6 -6.2 -6.4 -6.6 -6.6 -6.6 -6.8 -7 -7 -7.2 -7.4 -7.6 -7.4 -7.6 -7.8 -8 -8.2 -8.2 -8.4 -8.6 -9 -8.8 -9 -8.8 -9 -9 -8.8 -9 -9 -9.6 -9.6 -5.9 -9 -9.6 -5.9 -9 -9.6 -5.9 -9 -9.6 -5.9		
-4.6 -4.8 -5.8 -5.2 -5.4 -5.6 -6.2 -6.4 -6.6 -6.8 -7 -7.2 -7.4 -7.6 -7.8 -7.8 -8.8 -8.2 -8.4 -8.6 -9 -9 -9.6 -9.6 -5.2 -5.2 -0.329 -3.38 -3.38 -3.38 -3.38 -3.35 -		
-4.8 -5 -5 -5.2 -5.2 -5.4 -5.4 -5.6 -5.8 -5.8 -6 -6 -6.2 -6.4 -6.6 -6.6 -6.8 -7 -7.2 -7.2 -7.4 -7.4 -7.6 -7.8 -7.8 -7.8 -8 -8 -8.2 -8.4 -8.6 -9 -9 -9.5 -9 -9.5 -5.2 -5.38 -5.38 -5.2 -5.8 -5.8 -5.8 -5.8 -5.8 -6 -7 -7.8 -7.8 -7.9 -7.9 -7.9 -7.9 -7.9 -7.9 -7.9 -7.9		
-5 0.329 -5.2 0.338 -5.4 0.345 -5.6 0.351 -5.8 0.355 -6 0.357 -6.2 0.357 -6.2 0.357 -6.4 0.356 -6.6 0.352 -6.8 0.346 -7 0.338 -7.2 0.367 -7.4 0.394 -7.6 0.418 -7.8 0.44 -8 0.459 -8.2 0.475 -8.4 0.489 -8.6 0.499 -8.8 0.506 -9 0.511 -9.2 0.509 -9.6 0.503		
-5.2		
-5.4 0.345 -5.6 0.351 -5.8 0.355 -6 0.357 -6.2 0.357 -6.4 0.356 -6.6 0.352 -6.8 0.346 -7 0.338 -7.2 0.367 -7.4 0.394 -7.6 0.418 -7.8 0.44 -8 0.459 -8.2 0.475 -8.4 0.489 -8.6 0.499 -8.8 0.506 -9 0.511 -9.2 0.509 -9.6 0.503		
-5.6 0.351 -5.8 0.355 -6 0.357 -6.2 0.357 -6.4 0.356 -6.6 0.352 -6.8 0.346 -7 0.338 -7.2 0.367 -7.4 0.394 -7.6 0.418 -7.8 0.44 -8 0.459 -8.2 0.475 -8.4 0.489 -8.6 0.499 -8.8 0.506 -9 0.511 -9.2 0.512 -9.4 0.509 -9.6 0.503		
-5.8		
-6 0.357 -6.2 0.357 -6.4 0.356 -6.6 0.352 -6.8 0.346 -7 0.338 -7.2 0.367 -7.4 0.394 -7.6 0.418 -7.8 0.44 -8 0.459 -8.2 0.475 -8.4 0.489 -8.6 0.499 -8.8 0.506 -9 0.511 -9.2 0.512 -9.4 0.509 -9.6 0.503		
-6.2 0.357 -6.4 0.356 -6.6 0.352 -6.8 0.346 -7 0.338 -7.2 0.367 -7.4 0.394 -7.6 0.418 -7.8 0.44 -8 0.459 -8.2 0.475 -8.4 0.499 -8.8 0.499 -8.8 0.506 -9 0.511 -9.2 0.512 -9.4 0.509 -9.6 0.503		
-6.4 0.356 -6.6 0.352 -6.8 0.346 -7 0.338 -7.2 0.367 -7.4 0.394 -7.6 0.418 -7.8 0.44 -8 0.459 -8.2 0.475 -8.4 0.489 -8.6 0.499 -8.8 0.506 -9 0.511 -9.2 0.512 -9.4 0.509 -9.6 0.503		
-6.60.352-6.80.346-70.338-7.20.367-7.40.394-7.60.418-7.80.44-80.459-8.20.475-8.40.489-8.60.499-8.80.506-90.511-9.20.512-9.40.509-9.60.503		
-6.8 0.346 -7 0.338 -7.2 0.367 -7.4 0.394 -7.6 0.418 -7.8 0.44 -8 0.459 -8.2 0.475 -8.4 0.489 -8.6 0.499 -8.8 0.506 -9 0.511 -9.2 0.512 -9.4 0.509 -9.6 0.503		
-7 0.338 -7.2 0.367 -7.4 0.394 -7.6 0.418 -7.8 0.44 -8 0.459 -8.2 0.475 -8.4 0.489 -8.6 0.499 -8.8 0.506 -9 0.511 -9.2 0.512 -9.4 0.509 -9.6 0.503		
-7.2 0.367 -7.4 0.394 -7.6 0.418 -7.8 0.44 -8 0.459 -8.2 0.475 -8.4 0.489 -8.6 0.499 -8.8 0.506 -9 0.511 -9.2 0.512 -9.4 0.509 -9.6 0.503		
-7.4 0.394 -7.6 0.418 -7.8 0.44 -8 0.459 -8.2 0.475 -8.4 0.489 -8.6 0.499 -8.8 0.506 -9 0.511 -9.2 0.512 -9.4 0.509 -9.6 0.503		
-7.8 0.44 -8 0.459 -8.2 0.475 -8.4 0.489 -8.6 0.499 -8.8 0.506 -9 0.511 -9.2 0.512 -9.4 0.509 -9.6 0.503	-7.4	0.394
-8 0.459 -8.2 0.475 -8.4 0.489 -8.6 0.499 -8.8 0.506 -9 0.511 -9.2 0.512 -9.4 0.509 -9.6 0.503	-7.6	0.418
-8.2 0.475 -8.4 0.489 -8.6 0.499 -8.8 0.506 -9 0.511 -9.2 0.512 -9.4 0.509 -9.6 0.503	-7.8	0.44
-8.4 0.489 -8.6 0.499 -8.8 0.506 -9 0.511 -9.2 0.512 -9.4 0.509 -9.6 0.503	-8	0.459
-8.6 0.499 -8.8 0.506 -9 0.511 -9.2 0.512 -9.4 0.509 -9.6 0.503	-8.2	0.475
-8.8 0.506 -9 0.511 -9.2 0.512 -9.4 0.509 -9.6 0.503	-8.4	0.489
-9 0.511 -9.2 0.512 -9.4 0.509 -9.6 0.503		0.499
-9.20.512-9.40.509-9.60.503		
-9.4 0.509 -9.6 0.503		
-9.6 0.503		
-9.8 0.494		
	-9.8	0.494

MANDATARIA:

Itinerario Ragusa - Catania

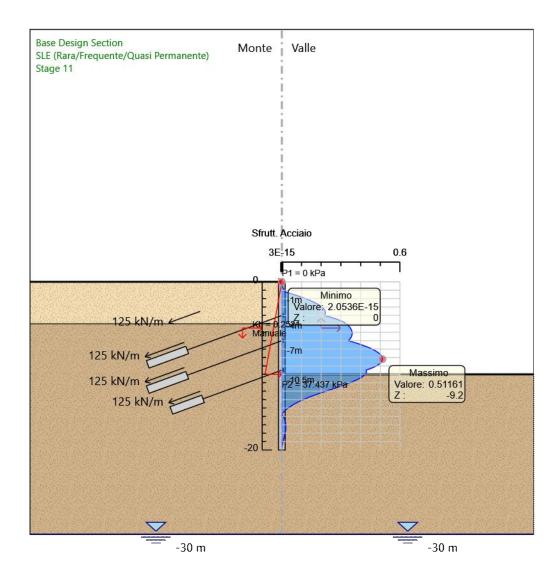
Collegamento viario compreso tra lo Svincolo della S.S. 514 di "Chiaramonte" con la S.S. 115 e lo Svincolo della "Ragusana"

PROGETTO ESECUTIVO

RELAZIONE DI CALCOLO

to the stress diefe in	
Inviluppi Tasso di Sfruttamento Armature - Cave	
Z (m)	Tasso di Sfruttamento Armature - Caver
-10	0.48
-10.2	0.463
-10.4	0.441
-10.5	0.428
-10.7	0.43
-10.9	0.427
-11.1 11.2	0.419
-11.3	0.408 0.393
-11.5 -11.7	0.376
-11.7	0.376
-11.5	0.335
-12.3	0.333
-12.5 -12.5	0.312
-12.7	0.263
-12.9	0.237
-13.1	0.212
-13.3	0.187
-13.5	0.163
-13.7	0.14
-13.9	0.119
-14.1	0.1
-14.3	0.082
-14.5	0.066
-14.7	0.051
-14.9	0.039
-15.1	0.027
-15.3	0.017
-15.5	0.009
-15.7	0.001
-15.9	0.005
-16.1	0.01
-16.3	0.014
-16.5	0.017
-16.7	0.019
-16.9	0.02
-17.1	0.021
-17.3	0.021
-17.5	0.02
-17.7	0.019
-17.9	0.017
-18.1	0.016
-18.3	0.013
-18.5	0.011
-18.7	0.009
-18.9	0.007
-19.1	0.005
-19.3	0.003
-19.5	0.002
-19.7	0.001
-19.9 -20	0
-20	0

MANDATARIA:



PROGETTO ESECUTIVO

RELAZIONE DI CALCOLO

Grafico Inviluppi Tasso di Sfruttamento Armature - Caver

Inviluppi

Tasso di Sfruttamento Armature - Caver

Collegamento viario compreso tra lo Svincolo della S.S. 514 di "Chiaramonte" con la S.S. 115 e lo Svincolo della "Ragusana"

PROGETTO ESECUTIVO

RELAZIONE DI CALCOLO

Tabella Inviluppi Apertura Fessure - Caver : LEFT

тавена птинаррг тре	
Inviluppi Apertura Fessure - Cav	er LEFT
Z (m)	Apertura Fessure - Caver (mm
0	0
-0.2	0
-0.4	0.001
-0.6	0.002
-0.8	0.003
-1	0.005
-1.2	0.009
-1.4	0.024
-1.6	0.038
-1.8	0.051
-2	0.064
-2.2	0.075
-2.4	0.085
-2.6	0.094
-2.8	0.102
-3	0.108
-3.2	0.113
-3.4	0.116
-3.6	0.117
-3.8	0.117
-4	0.115
-4.2	0.131
-4.4	0.145
-4.6	0.157
-4.8	0.167
-5	0.174
-5.2	0.179
-5.4	0.183
-5.6	0.186
-5.8	0.188
-6	0.189
-6.2	0.189
-6.4	0.188
-6.6	0.186
-6.8	0.183
-7	0.179
-7.2	0.194
-7.4	0.208
-7.6	0.221
-7.8	0.233
-8	0.243
-8.2	0.252
-8.4	0.259
-8.6	0.264
-8.8	0.268
-9	0.27
-9.2	0.271
-9.4	0.27
-9.6	0.267
-9.8	0.261

MANDATARIA:

Direzione Progettazione e

Realizzazione Lavori

Itinerario Ragusa - Catania

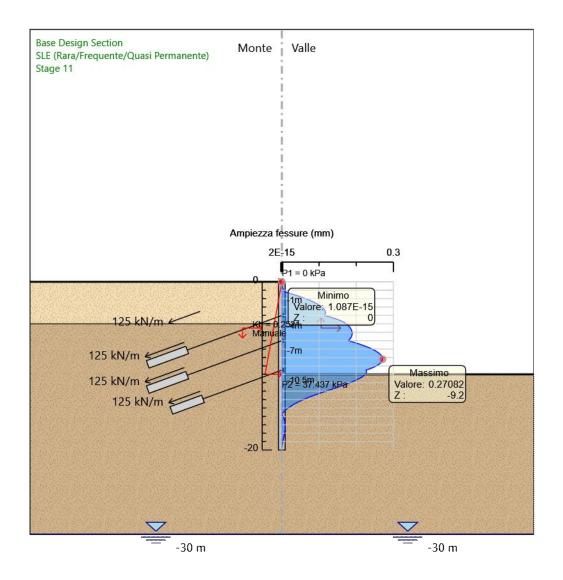
Collegamento viario compreso tra lo Svincolo della S.S. 514 di "Chiaramonte" con la S.S. 115 e lo Svincolo della "Ragusana"

PROGETTO ESECUTIVO

RELAZIONE DI CALCOLO

Inviluppi Apertura Fessure -	Caver LEFT
Z (m)	Apertura Fessure - Caver (mm)
-10	0.254
-10.2	0.245
-10.4	0.233
-10.5	0.227
-10.7	0.228
-10.9	0.226
-11.1	0.222
-11.3	0.216
-11.5	0.208
-11.7	0.199 0.189
-11.9 -12.1	0.189
-12.1	0.177
-12.5 -12.5	0.165
-12.7	0.132
-12.9	0.139
-13.1	0.112
-13.3	0.099
-13.5	0.086
-13.7	0.074
-13.9	0.063
-14.1	0.053
-14.3	0.043
-14.5	0.035
-14.7	0.027
-14.9	0.02
-15.1	0.014
-15.3	0.009
-15.5	0.005
-15.7	0.001
-15.9	0.002
-16.1	0.004
-16.3	0.006
-16.5	0.007
-16.7	0.008
-16.9	0.009
-17.1	0.009
-17.3	0.009
-17.5	0.009
-17.7	0.008
-17.9	0.007
-18.1	0.007
-18.3	0.006
-18.5 -18.7	0.005 0.004
-18.9	0.003
-19.1	0.003
-19.3	0.002
-19.5	0.001
-19.7	0
-19.9	0
-20	0

MANDATARIA:



PROGETTO ESECUTIVO

RELAZIONE DI CALCOLO

Grafico Inviluppi Apertura Fessure - Caver

Inviluppi Apertura Fessure - Caver

MANDATARIA:

Collegamento viario compreso tra lo Svincolo della S.S. 514 di "Chiaramonte" con la S.S. 115 e lo Svincolo della "Ragusana"

PROGETTO ESECUTIVO

RELAZIONE DI CALCOLO

Tabella Inviluppi Tasso di Sfruttamento a Momento - Caver : LEFT

Inviluppi Tasso di Sfruttamento a Momento - Cave	
Z (m)	Tasso di Sfruttamento a Momento - Caver
0	0
-0.2	0
-0.4	0.002
-0.6	0.004
-0.8	0.007
-1	0.012
-1.2	0.017
-1.4	0.042
-1.6	0.067
-1.8	0.091
-2	0.113
-2.2	0.133
-2.4	0.151
-2.6	0.166
-2.8	0.18
-3	0.191
-3.2	0.199
-3.4	0.205
-3.6	0.208
-3.8	0.21
-4	0.21
-4.2	0.24
-4.4	0.271
-4.6	0.3
-4.8	0.326
-5	0.348
-5.2	0.367
-5.4	0.384
-5.6	0.399
-5.8	0.411
-6	0.422
-6.2	0.43
-6.4	0.435
-6.6	0.438
-6.8	0.438
-7	0.435
-7.2	0.47
-7.4	0.502
-7.6	0.531
-7.8	0.557
-8	0.579
-8.2	0.599
-8.4	0.615
-8.6	0.627
-8.8	0.636
-9	0.641
-9.2	0.642
-9.4	0.639
-9.6	0.633
-9.8	0.622

MANDATARIA:

Itinerario Ragusa - Catania

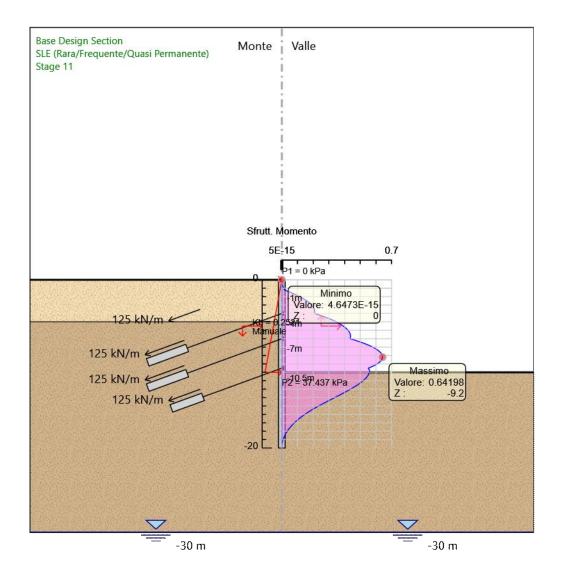
Collegamento viario compreso tra lo Svincolo della S.S. 514 di "Chiaramonte" con la S.S. 115 e lo Svincolo della "Ragusana"

PROGETTO ESECUTIVO

RELAZIONE DI CALCOLO

Inviluppi Tasso di Sfruttamento a Momento - Caver	
Z (m)	Tasso di Sfruttamento a Momento - Caver
-10	0.607
-10.2	0.588
-10.4	0.565
-10.5	0.552
-10.7	0.558
-10.9	0.559
-11.1	0.556
-11.3	0.551
-11.5	0.544
-11.7	0.535
-11.9	0.524
-12.1	0.511
-12.3 13.5	0.497
-12.5 -12.7	0.482 0.465
-12.9 -13.1	0.447 0.428
-13.1	0.428
-13.5	0.389
-13.7	0.368
-13.7	0.348
-13.9	0.348
-14.3	0.306
-14.5	0.285
-14.7	0.264
-14.9	0.244
-15.1	0.224
-15.3	0.206
-15.5	0.188
-15.7	0.17
-15.9	0.154
-16.1	0.139
-16.3	0.124
-16.5	0.111
-16.7	0.098
-16.9	0.086
-17.1	0.075
-17.3	0.064
-17.5	0.055
-17.7	0.046
-17.9	0.038
-18.1	0.031
-18.3	0.025
-18.5	0.019
-18.7	0.014
-18.9	0.01
-19.1	0.007
-19.3	0.004
-19.5	0.002
-19.7	0.001
-19.9	0
-20	0

MANDATARIA:



PROGETTO ESECUTIVO

RELAZIONE DI CALCOLO

Grafico Inviluppi Tasso di Sfruttamento a Momento - Caver

Inviluppi Tasso di Sfruttamento a Momento - Caver

MANDATARIA:

Collegamento viario compreso tra lo Svincolo della S.S. 514 di "Chiaramonte" con la S.S. 115 e lo Svincolo della "Ragusana"

PROGETTO ESECUTIVO

RELAZIONE DI CALCOLO

Tabella Inviluppi Tasso di Sfruttamento a Taglio - Caver: LEFT

Tabella iliviluppi Tasso di Silutta	illelito a Taglio - Cavel . LEFT
Inviluppi Tasso di Sfruttamento a Taglio - Cave	r LEFT
Z (m)	Tasso di Sfruttamento a Taglio - Caver
0	0.008
-0.2	0.029
-0.4	0.055
-0.6	0.077
-0.8	0.098
-1	0.638
-1.2	0.638
-1.4	0.61
-1.6	0.578
-1.8	0.543
-2	0.504
-2.2	0.462
-2.4	0.415
-2.6	0.366
-2.8	0.324
-3	0.278
-3.2	0.23
-3.4	0.181
-3.6	0.13
-3.8	0.094
-4	0.79
-4.2	0.79
-4.4	0.727
-4.6	0.66
-4.8	0.591
-5	0.518
-5.2	0.441
-5.4	0.393
-5.6	0.344
-5.8	0.292
-6	0.238
-6.2	0.182
-6.4	0.123
-6.6	0.129
-6.8	0.178
-7	0.81
-7.2	0.81
-7.4	0.742
-7.6	0.671
-7.8	0.598
-8	0.523
-8.2	0.446
-8.4	0.367
-8.6	0.286
-8.8	0.203
-9	0.126
-9.2	0.134
-9.4	0.213
-9.6	0.294
-9.8	0.377

MANDATARIA:

Itinerario Ragusa - Catania

Collegamento viario compreso tra lo Svincolo della S.S. 514 di "Chiaramonte" con la S.S. 115 e lo Svincolo della "Ragusana"

PROGETTO ESECUTIVO

RELAZIONE DI CALCOLO

Inviluppi Tasso di Sfruttamento a Taglio - Ca	
Z (m)	Tasso di Sfruttamento a Taglio - Caver
-10	0.462
-10.2	0.548
-10.4	0.616
-10.5	0.616
-10.7	0.137
-10.9	0.182
-11.1	0.248
-11.3	0.316
-11.5	0.374
-11.7	0.425
-11.9	0.466
-12.1	0.499
-12.3	0.524
-12.5	0.54
-12.7	0.548
-12.9	0.548
-13.1	0.547
-13.3	0.538
-13.5	0.52
-13.7	0.503
-13.9	0.503
-14.1	0.5
-14.3	0.493
-14.5	0.483
-14.7	0.476
-14.9 15.1	0.466
-15.1 15.2	0.453
-15.3	0.436
-15.5 -15.7	0.416
-15.7 -15.9	0.396 0.376
-15.5	0.356
-16.3	0.336
-16.5	0.316
-16.7	0.297
-16.9	0.278
-17.1	0.258
-17.3	0.239
-17.5	0.221
-17.7	0.202
-17.9	0.184
-18.1	0.165
-18.3	0.148
-18.5	0.13
-18.7	0.113
-18.9	0.095
-19.1	0.078
-19.3	0.062
-19.5	0.045
-19.7	0.029
-19.9	0.016
-20	0.004

MANDATARIA:

PROGETTO ESECUTIVO

RELAZIONE DI CALCOLO

Grafico Inviluppi Tasso di Sfruttamento a Taglio - Caver

Inviluppi Tasso di Sfruttamento a Taglio - Caver

MANDATARIA:

PROGETTO ESECUTIVO

RELAZIONE DI CALCOLO

Verifiche Tiranti SLE (Rara/Frequente/Quasi Permanente)

Design Assumption: SLE	Tipo Risultato:				NTC2008		
(Rara/Frequente/Quasi Permanente)	Verifiche Tiranti				(ITA)		
Tirante	Stage	Sollecitazione	Resistenza	Resistenza	Ratio GEO	Ratio Resistenza	Gerarchia delle
		(kN)	GEO (kN)	STR (kN)		STR	Resistenze
Tieback	Stage 4	250	995.257	807.409	0.251	0.31	NO
Tieback	Stage 5	293.074	995.257	807.409	0.294	0.363	NO
Tieback	Stage 6	272.854	995.257	807.409	0.274	0.338	NO
Tieback	Stage 7	297.531	995.257	807.409	0.299	0.369	NO
Tieback	Stage 8	289.307	995.257	807.409	0.291	0.358	NO
Tieback	Stage 9	282.505	995.257	807.409	0.284	0.35	NO
Tieback	Stage 10	284.265	995.257	807.409	0.286	0.352	NO
Tieback	Stage 11	284.265	995.257	807.409	0.286	0.352	NO
Tieback_New	Stage 6	250	1130.973	807.409	0.221	0.31	NO
Tieback_New	Stage 7	294.278	1130.973	807.409	0.26	0.364	NO
Tieback_New	Stage 8	281.27	1130.973	807.409	0.249	0.348	NO
Tieback_New	Stage 9	321.316	1130.973	807.409	0.284	0.398	NO
Tieback_New	Stage 10	315.54	1130.973	807.409	0.279	0.391	NO
Tieback_New	Stage 11	315.54	1130.973	807.409	0.279	0.391	NO
Tieback_New_New	Stage 8	250	1130.973	807.409	0.221	0.31	NO
Tieback_New_New	Stage 9	335.114	1130.973	807.409	0.296	0.415	NO
Tieback_New_New	Stage 10	321.985	1130.973	807.409	0.285	0.399	NO
Tieback_New_New	Stage 11	321.985	1130.973	807.409	0.285	0.399	NO
Tieback_New_New_New	Stage 10	250	904.779	807.409	0.276	0.31	NO
Tieback_New_New_New	Stage 11	250	904.779	807.409	0.276	0.31	NO

PROGETTO ESECUTIVO

RELAZIONE DI CALCOLO

Verifiche Tiranti A1+M1+R1 (R3 per tiranti)

Design Assumption: A1+M1+R1 (R3 per tiranti)	Tipo Risultato: Verifiche Tiranti				NTC2008 (ITA)			
Tirante	Stage	Sollecitazione	Resistenza	Resistenza	Ratio GEO	Ratio	Resistenza	Gerarchia delle
		(kN)	GEO (kN)	STR (kN)		STR		Resistenze
Tieback	Stage 4	325	460.767	807.409	0.705	0.403		
Tieback	Stage 5	380.996	460.767	807.409	0.827	0.472		
Tieback	Stage 6	354.711	460.767	807.409	0.77	0.439		
Tieback	Stage 7	386.791	460.767	807.409	0.839	0.479		
Tieback	Stage 8	376.1	460.767	807.409	0.816	0.466		
Tieback	Stage 9	367.256	460.767	807.409	0.797	0.455		
Tieback	Stage 10	369.544	460.767	807.409	0.802	0.458		
Tieback	Stage 11	369.544	460.767	807.409	0.802	0.458		
Tieback_New	Stage 6	325	523.599	807.409	0.621	0.403		
Tieback_New	Stage 7	382.561	523.599	807.409	0.731	0.474		
Tieback_New	Stage 8	365.65	523.599	807.409	0.698	0.453		
Tieback_New	Stage 9	417.711	523.599	807.409	0.798	0.517		
Tieback_New	Stage 10	410.202	523.599	807.409	0.783	0.508		
Tieback_New	Stage 11	410.202	523.599	807.409	0.783	0.508		
Tieback_New_New	Stage 8	325	523.599	807.409	0.621	0.403		
Tieback_New_New	Stage 9	435.649	523.599	807.409	0.832	0.54		
Tieback_New_New	Stage 10	418.58	523.599	807.409	0.799	0.518		
Tieback_New_New	Stage 11	418.58	523.599	807.409	0.799	0.518		
Tieback_New_New_New	Stage 10	325	418.879	807.409	0.776	0.403		
Tieback_New_New_New	Stage 11	325	418.879	807.409	0.776	0.403		

Collegamento viario compreso tra lo Svincolo della S.S. 514 di "Chiaramonte" con la S.S. 115 e lo Svincolo della "Ragusana"

PROGETTO ESECUTIVO

RELAZIONE DI CALCOLO

Verifiche Tiranti A2+M2+R1

Design Assumption:	Tipo Risultato:				NTC2008			
A2+M2+R1	Verifiche Tiranti				(ITA)			
Tirante	Stage	Sollecitazione	Resistenza	Resistenza STR	Ratio GEO	Ratio	Resistenza	Gerarchia delle
		(kN)	GEO (kN)	(kN)		STR		Resistenze
Tieback	Stage 4	250	460.767	807.409	0.543	0.31		
Tieback	Stage 5	297.718	460.767	807.409	0.646	0.369		
Tieback	Stage 6	276.284	460.767	807.409	0.6	0.342		
Tieback	Stage 7	303.831	460.767	807.409	0.659	0.376		
Tieback	Stage 8	294.776	460.767	807.409	0.64	0.365		
Tieback	Stage 9	290.725	460.767	807.409	0.631	0.36		
Tieback	Stage 10	292.214	460.767	807.409	0.634	0.362		
Tieback	Stage 11	292.214	460.767	807.409	0.634	0.362		
Tieback_New	Stage 6	250	523.599	807.409	0.477	0.31		
Tieback_New	Stage 7	301.308	523.599	807.409	0.575	0.373		
Tieback_New	Stage 8	287.659	523.599	807.409	0.549	0.356		
Tieback_New	Stage 9	349.181	523.599	807.409	0.667	0.432		
Tieback_New	Stage 10	342.915	523.599	807.409	0.655	0.425		
Tieback_New	Stage 11	342.915	523.599	807.409	0.655	0.425		
Tieback_New_New	Stage 8	250	523.599	807.409	0.477	0.31		
Tieback_New_New	Stage 9	373.849	523.599	807.409	0.714	0.463		
Tieback_New_New	Stage 10	360.071	523.599	807.409	0.688	0.446		
Tieback_New_New	Stage 11	360.071	523.599	807.409	0.688	0.446		
Tieback_New_New_New	Stage 10	250	418.879	807.409	0.597	0.31		
Tieback_New_New_New	Stage 11	250	418.879	807.409	0.597	0.31		

Collegamento viario compreso tra lo Svincolo della S.S. 514 di "Chiaramonte" con la S.S. 115 e lo Svincolo della "Ragusana"

PROGETTO ESECUTIVO

RELAZIONE DI CALCOLO

Verifiche Tiranti SISMICA STR

Design Assumption: SISMICA STR	Tipo Risultato: Verifiche Tiranti				NTC2008 (ITA)			
Tirante	Stage	Sollecitazione	Resistenza	Resistenza STR	Ratio GEO	Ratio	Resistenza	Gerarchia delle
		(kN)	GEO (kN)	(kN)		STR		Resistenze
Tieback	Stage 4	250	460.767	807.409	0.543	0.31		
Tieback	Stage 5	293.074	460.767	807.409	0.636	0.363		
Tieback	Stage 6	272.854	460.767	807.409	0.592	0.338		
Tieback	Stage 7	297.531	460.767	807.409	0.646	0.369		
Tieback	Stage 8	289.307	460.767	807.409	0.628	0.358		
Tieback	Stage 9	282.505	460.767	807.409	0.613	0.35		
Tieback	Stage 10	284.265	460.767	807.409	0.617	0.352		
Tieback	Stage 11	320.765	460.767	807.409	0.696	0.397		
Tieback_New	Stage 6	250	523.599	807.409	0.477	0.31		
Tieback_New	Stage 7	294.278	523.599	807.409	0.562	0.364		
Tieback_New	Stage 8	281.27	523.599	807.409	0.537	0.348		
Tieback_New	Stage 9	321.316	523.599	807.409	0.614	0.398		
Tieback_New	Stage 10	315.54	523.599	807.409	0.603	0.391		
Tieback_New	Stage 11	365.972	523.599	807.409	0.699	0.453		
Tieback_New_New	Stage 8	250	523.599	807.409	0.477	0.31		
Tieback_New_New	Stage 9	335.114	523.599	807.409	0.64	0.415		
Tieback_New_New	Stage 10	321.985	523.599	807.409	0.615	0.399		
Tieback_New_New	Stage 11	386.226	523.599	807.409	0.738	0.478		
Tieback_New_New_New	Stage 10	250	418.879	807.409	0.597	0.31		
Tieback New New New	Stage 11	327.306	418.879	807.409	0.781	0.405		

PROGETTO ESECUTIVO

RELAZIONE DI CALCOLO

Verifiche Tiranti SISMICA GEO

Design Assumption: SISMICA GEO	Tipo Risultato: Verifiche Tiranti				NTC2008			
Tirante	Stage	Sollecitazione	Resistenza	Resistenza STR	(ITA)	Ratio	Resistenza	Gerarchia delle
munic	Juge	(kN)	GEO (kN)	(kN)	natio GEO	STR	Resistenza	Resistenze
Tieback	Stage 4	250	460.767	807.409	0.543	0.31		
Tieback	Stage 5	297.718	460.767	807.409	0.646	0.369		
Tieback	Stage 6	276.284	460.767	807.409	0.6	0.342		
Tieback	Stage 7	303.831	460.767	807.409	0.659	0.376		
Tieback	Stage 8	294.776	460.767	807.409	0.64	0.365		
Tieback	Stage 9	290.725	460.767	807.409	0.631	0.36		
Tieback	Stage 10	292.214	460.767	807.409	0.634	0.362		
Tieback	Stage 11	317.762	460.767	807.409	0.69	0.394		
Tieback_New	Stage 6	250	523.599	807.409	0.477	0.31		
Tieback_New	Stage 7	301.308	523.599	807.409	0.575	0.373		
Tieback_New	Stage 8	287.659	523.599	807.409	0.549	0.356		
Tieback_New	Stage 9	349.181	523.599	807.409	0.667	0.432		
Tieback_New	Stage 10	342.915	523.599	807.409	0.655	0.425		
Tieback_New	Stage 11	403.389	523.599	807.409	0.77	0.5		
Tieback_New_New	Stage 8	250	523.599	807.409	0.477	0.31		
Tieback_New_New	Stage 9	373.849	523.599	807.409	0.714	0.463		
Tieback_New_New	Stage 10	360.071	523.599	807.409	0.688	0.446		
Tieback_New_New	Stage 11	456.524	523.599	807.409	0.872	0.565		
Tieback_New_New_New	Stage 10	250	418.879	807.409	0.597	0.31		
Tieback_New_New_New	Stage 11	403.241	418.879	807.409	0.963	0.499		

PROGETTO ESECUTIVO

RELAZIONE DI CALCOLO

Inviluppo Verifiche Tiranti (su tutte le D.A. attive)

	Tipo Risultato:								
	Verifiche Tiranti								
Tirante	Stage	Sollecitazione	Resistenza	Resistenza	Ratio	Ratio	Resistenza	Gerarchia delle	Design
		(kN)	GEO (kN)	STR (kN)	GEO	STR		Resistenze	Assumption
Tieback	Stage 7	386.791	460.767	807.409	0.839	0.479			A1+M1+R1 (R3 per tiranti)
Tieback_New	Stage 9	417.711	523.599	807.409	0.798	0.517			A1+M1+R1 (R3 per tiranti)
Tieback_New_New	Stage 11	456.524	523.599	807.409	0.872	0.565			SISMICA GEO
Tieback_New_New_New	Stage 11	403.241	418.879	807.409	0.963	0.499			SISMICA GEO

PROGETTO ESECUTIVO

RELAZIONE DI CALCOLO

Verifiche Travi di Ripartizione Nominal

Design Assumption:	Tipo Risultato: Verifiche Travi di								
Nominal	Ripartizione								
Trave di Ripartizione	Elemento strutturale	Sezione	Materiale	Stage	Carico distribuito	Assiale	Ratio	Ratio	Instabilità
					(kN/m)	(kN)	momento	taglio	
Default Waler	Tieback	HE	S275	Stage	125	0	0	0	0
		200A		4					
Default Waler	Tieback	HE	S275	Stage	146.537	0	0	0	0
		200A		5					
Default Waler	Tieback	HE	S275	Stage	136.427	0	0	0	0
		200A		6					
Default Waler	Tieback_New	HE	S275	Stage	125	0	0	0	0
- 6 1		200A		6		_	_	_	
Default Waler	Tieback	HE	S275	Stage	148.766	0	0	0	0
Defects Males	Ticked No	200A	C27F	7	147.120	0	0	0	0
Default Waler	Tieback_New	HE 200A	S275	Stage 7	147.139	0	0	0	0
Default Waler	Tieback	HE	S275	Stage	144.654	0	0	0	0
Delault Waler	Heback	200A	3273	8	144.054	U	O	U	U
Default Waler	Tieback_New	HE	S275	Stage	140.635	0	0	0	0
Deladie Waler		200A	0270	8	1.0.000	Ū	· ·	ŭ	•
Default Waler	Tieback New New	HE	S275	Stage	125	0	0	0	0
		200A		8					
Default Waler	Tieback	HE	S275	Stage	141.252	0	0	0	0
		200A		9					
Default Waler	Tieback_New	HE	S275	Stage	160.658	0	0	0	0
		200A		9					
Default Waler	Tieback_New_New	HE	S275	Stage	167.557	0	0	0	0
5 (), 11 (I	200A	6075	9	440.400				•
Default Waler	Tieback	HE	S275	Stage	142.132	0	0	0	0
Default Waler	Tieback New	200A HE	S275	10	157.77	0	0	0	0
Delault Walei	Heback_New	200A	32/3	Stage 10	137.77	U	U	U	U
Default Waler	Tieback New New	HE	S275	Stage	160.992	0	0	0	0
Delaale Waler	medack_new_new	200A	3273	10	100.552	Ü	Ü	Ü	·
Default Waler	Tieback New New New	HE	S275	Stage	125	0	0	0	0
		200A		10					
Default Waler	Tieback	HE	S275	Stage	160.382	0	0	0	0
		200A		11					
Default Waler	Tieback_New	HE	S275	Stage	182.986	0	0	0	0
		200A		11					
Default Waler	Tieback_New_New	HE	S275	Stage	193.113	0	0	0	0
- 6 1		200A		11		_	_	_	
Default Waler	Tieback_New_New_New	HE	S275	Stage	163.653	0	0	0	0
		200A		11					

PROGETTO ESECUTIVO

RELAZIONE DI CALCOLO

Verifiche Travi di Ripartizione SLE (Rara/Frequente/Quasi Permanente)

Design Assumption: SLE (Rara/Frequente/Quasi	Tipo Risultato: Verifiche Travi di Ripartizione	NTC2008 (ITA)							
Permanente)	Floreste de la colo	C		. (1	0	A ! - ! -	D. I.	D - 1.	1 1 - 1 - 12 12 1
Trave di Ripartizione	Elemento strutturale	Sezione	Material	e Stage	Carico distribuito	Assiale (kN)	Ratio		Instabilità
					(kN/m)	(KIV)	momento	tagiio	
Default Waler	Tieback	HE 200A	S275	Stage 4	125	0	0.27	0.289	0
Default Waler	Tieback	HE 200A	S275	Stage 5	146.537	0	0.316	0.339	0
Default Waler	Tieback	HE 200A	S275	Stage 6	136.427	0	0.294	0.316	0
Default Waler	Tieback_New	HE 200A	S275	Stage 6	125	0	0.27	0.289	0
Default Waler	Tieback	HE 200A	S275	Stage 7	148.766	0	0.321	0.344	0
Default Waler	Tieback_New	HE 200A	S275	Stage 7	147.139	0	0.317	0.341	0
Default Waler	Tieback	HE 200A	S275	Stage 8	144.654	0	0.312	0.335	0
Default Waler	Tieback_New	HE 200A	S275	Stage 8	140.635	0	0.303	0.326	0
Default Waler	Tieback_New_New	HE 200A	S275	Stage 8	125	0	0.27	0.289	0
Default Waler	Tieback	HE 200A	S275	Stage 9	141.252	0	0.305	0.327	0
Default Waler	Tieback_New	HE 200A	S275	Stage 9	160.658	0	0.347	0.372	0
Default Waler	Tieback_New_New	HE 200A	S275	Stage 9	167.557	0	0.361	0.388	0
Default Waler	Tieback	HE 200A	S275	Stage 10	142.132	0	0.307	0.329	0
Default Waler	Tieback_New	HE 200A	S275	Stage 10	157.77	0	0.34	0.365	0
Default Waler	Tieback_New_New	HE 200A	S275	Stage 10	160.992	0	0.347	0.373	0
Default Waler	Tieback_New_New_New	HE 200A	S275	Stage 10	125	0	0.27	0.289	0
Default Waler	Tieback	HE 200A	S275	Stage 11	142.132	0	0.307	0.329	0
Default Waler	Tieback_New	HE 200A	S275	Stage 11	157.77	0	0.34	0.365	0
Default Waler	Tieback_New_New	HE 200A	S275	Stage 11	160.992	0	0.347	0.373	0
Default Waler	Tieback_New_New_New	HE 200A	S275	Stage 11	125	0	0.27	0.289	0

MANDATARIA:

PROGETTO ESECUTIVO

RELAZIONE DI CALCOLO

Verifiche Travi di Ripartizione A1+M1+R1 (R3 per tiranti)

Design Assumption:	Tipo Risultato: Verifiche Travi di	NTC2008							
A1+M1+R1 (R3 per tiranti)	Ripartizione	(ITA)							
Trave di Ripartizione	Elemento strutturale	Sezione	Material	e Stage	Carico	Assiale	Ratio	Ratio	Instabilità
					distribuito	(kN)	momento	taglio	
					(kN/m)				
Default Waler	Tieback	HE 200A	S275	Stage 4	162.5	0	0.35	0.376	0
Default Waler	Tieback	HE 200A	S275	Stage 5	190.498	0	0.411	0.441	0
Default Waler	Tieback	HE 200A	S275	Stage 6	177.355	0	0.383	0.411	0
Default Waler	Tieback_New	HE 200A	S275	Stage 6	162.5	0	0.35	0.376	0
Default Waler	Tieback	HE 200A	S275	Stage 7	193.395	0	0.417	0.448	0
Default Waler	Tieback_New	HE 200A	S275	Stage 7	191.281	0	0.413	0.443	0
Default Waler	Tieback	HE 200A	S275	Stage 8	188.05	0	0.406	0.435	0
Default Waler	Tieback_New	HE 200A	S275	Stage 8	182.825	0	0.394	0.423	0
Default Waler	Tieback_New_New	HE 200A	S275	Stage 8	162.5	0	0.35	0.376	0
Default Waler	Tieback	HE 200A	S275	Stage 9	183.628	0	0.396	0.425	0
Default Waler	Tieback_New	HE 200A	S275	Stage 9	208.855	0	0.45	0.484	0
Default Waler	Tieback_New_New	HE 200A	S275	Stage 9	217.824	0	0.47	0.504	0
Default Waler	Tieback	HE 200A	S275	Stage 10	184.772	0	0.399	0.428	0
Default Waler	Tieback_New	HE 200A	S275	Stage 10	205.101	0	0.442	0.475	0
Default Waler	Tieback_New_New	HE 200A	S275	Stage 10	209.29	0	0.451	0.485	0
Default Waler	Tieback_New_New_New	HE 200A	S275	Stage 10	162.5	0	0.35	0.376	0
Default Waler	Tieback	HE 200A	S275	Stage 11	184.772	0	0.399	0.428	0
Default Waler	Tieback_New	HE 200A	S275	Stage 11	205.101	0	0.442	0.475	0
Default Waler	Tieback_New_New	HE 200A	S275	Stage 11	209.29	0	0.451	0.485	0
Default Waler	Tieback_New_New_New	HE 200A	S275	Stage 11	162.5	0	0.35	0.376	0

MANDATARIA:

PROGETTO ESECUTIVO

RELAZIONE DI CALCOLO

Verifiche Travi di Ripartizione A2+M2+R1

Design Assumption:	Tipo Risultato: Verifiche Travi di	NTC2008							
A2+M2+R1	Ripartizione	(ITA)							
Trave di Ripartizione	Elemento strutturale	Sezione	Materiale	Stage	Carico distribuito		Ratio		Instabilità
					(kN/m)	(kN)	momento	taglio	
Default Waler	Tieback	HE 200A	S275	Stage 4	125	0	0.27	0.289	0
Default Waler	Tieback	HE 200A	S275	Stage 5	148.859	0	0.321	0.345	0
Default Waler	Tieback	HE 200A	S275	Stage 6	138.142	0	0.298	0.32	0
Default Waler	Tieback_New	HE 200A	S275	Stage 6	125	0	0.27	0.289	0
Default Waler	Tieback	HE 200A	S275	Stage 7	151.915	0	0.328	0.352	0
Default Waler	Tieback_New	HE 200A	S275	Stage 7	150.654	0	0.325	0.349	0
Default Waler	Tieback	HE 200A	S275	Stage 8	147.388	0	0.318	0.341	0
Default Waler	Tieback_New	HE 200A	S275	Stage 8	143.83	0	0.31	0.333	0
Default Waler	Tieback_New_New	HE 200A	S275	Stage 8	125	0	0.27	0.289	0
Default Waler	Tieback	HE 200A	S275	Stage 9	145.362	0	0.314	0.337	0
Default Waler	Tieback_New	HE 200A	S275	Stage 9	174.59	0	0.377	0.404	0
Default Waler	Tieback_New_New	HE 200A	S275	Stage 9	186.924	0	0.403	0.433	0
Default Waler	Tieback	HE 200A	S275	Stage 10	146.107	0	0.315	0.338	0
Default Waler	Tieback_New	HE 200A	S275	Stage 10	171.458	0	0.37	0.397	0
Default Waler	Tieback_New_New	HE 200A	S275	Stage 10	180.036	0	0.388	0.417	0
Default Waler	Tieback_New_New_New	HE 200A	S275	Stage 10	125	0	0.27	0.289	0
Default Waler	Tieback	HE 200A	S275	Stage 11	146.107	0	0.315	0.338	0
Default Waler	Tieback_New	HE 200A	S275	Stage 11	171.458	0	0.37	0.397	0
Default Waler	Tieback_New_New	HE 200A	S275	Stage 11	180.036	0	0.388	0.417	0
Default Waler	Tieback_New_New_New	HE 200A	S275	Stage 11	125	0	0.27	0.289	0

MANDATARIA:

PROGETTO ESECUTIVO

RELAZIONE DI CALCOLO

Verifiche Travi di Ripartizione SISMICA STR

Design Assumption:	Tipo Risultato: Verifiche Travi di	NTC2008							
SISMICA STR	Ripartizione	(ITA)							
Trave di Ripartizione	Elemento strutturale	Sezione	Materiale	Stage	Carico distribuito	Assiale	Ratio	Ratio	Instabilità
					(kN/m)	(kN)	momento	taglio	
Default Waler	Tieback	HE 200A	S275	Stage 4	125	0	0.27	0.289	0
Default Waler	Tieback	HE 200A	S275	Stage 5	146.537	0	0.316	0.339	0
Default Waler	Tieback	HE 200A	S275	Stage 6	136.427	0	0.294	0.316	0
Default Waler	Tieback_New	HE 200A	S275	Stage 6	125	0	0.27	0.289	0
Default Waler	Tieback	HE 200A	S275	Stage 7	148.766	0	0.321	0.344	0
Default Waler	Tieback_New	HE 200A	S275	Stage 7	147.139	0	0.317	0.341	0
Default Waler	Tieback	HE 200A	S275	Stage 8	144.654	0	0.312	0.335	0
Default Waler	Tieback_New	HE 200A	S275	Stage 8	140.635	0	0.303	0.326	0
Default Waler	Tieback_New_New	HE 200A	S275	Stage 8	125	0	0.27	0.289	0
Default Waler	Tieback	HE 200A	S275	Stage 9	141.252	0	0.305	0.327	0
Default Waler	Tieback_New	HE 200A	S275	Stage 9	160.658	0	0.347	0.372	0
Default Waler	Tieback_New_New	HE 200A	S275	Stage 9	167.557	0	0.361	0.388	0
Default Waler	Tieback	HE 200A	S275	Stage 10	142.132	0	0.307	0.329	0
Default Waler	Tieback_New	HE 200A	S275	Stage 10	157.77	0	0.34	0.365	0
Default Waler	Tieback_New_New	HE 200A	S275	Stage 10	160.992	0	0.347	0.373	0
Default Waler	Tieback_New_New_New	HE 200A	S275	Stage 10	125	0	0.27	0.289	0
Default Waler	Tieback	HE 200A	S275	Stage 11	160.382	0	0.346	0.371	0
Default Waler	Tieback_New	HE 200A	S275	Stage 11	182.986	0	0.395	0.424	0
Default Waler	Tieback_New_New	HE 200A	S275	Stage 11	193.113	0	0.417	0.447	0
Default Waler	Tieback_New_New_New	HE 200A	S275	Stage 11	163.653	0	0.353	0.379	0

MANDATARIA:

PROGETTO ESECUTIVO

RELAZIONE DI CALCOLO

Verifiche Travi di Ripartizione SISMICA GEO

Design Assumption:	Tipo Risultato: Verifiche Travi di	NTC2008							
SISMICA GEO	Ripartizione	(ITA)							
Trave di Ripartizione	Elemento strutturale	Sezione	Materiale	Stage	Carico distribuito	Assiale	Ratio	Ratio	Instabilità
					(kN/m)	(kN)	momento	taglio	
Default Waler	Tieback	HE 200A	S275	Stage 4	125	0	0.27	0.289	0
Default Waler	Tieback	HE 200A	S275	Stage 5	148.859	0	0.321	0.345	0
Default Waler	Tieback	HE 200A	S275	Stage 6	138.142	0	0.298	0.32	0
Default Waler	Tieback_New	HE 200A	S275	Stage 6	125	0	0.27	0.289	0
Default Waler	Tieback	HE 200A	S275	Stage 7	151.915	0	0.328	0.352	0
Default Waler	Tieback_New	HE 200A	S275	Stage 7	150.654	0	0.325	0.349	0
Default Waler	Tieback	HE 200A	S275	Stage 8	147.388	0	0.318	0.341	0
Default Waler	Tieback_New	HE 200A	S275	Stage 8	143.83	0	0.31	0.333	0
Default Waler	Tieback_New_New	HE 200A	S275	Stage 8	125	0	0.27	0.289	0
Default Waler	Tieback	HE 200A	S275	Stage 9	145.362	0	0.314	0.337	0
Default Waler	Tieback_New	HE 200A	S275	Stage 9	174.59	0	0.377	0.404	0
Default Waler	Tieback_New_New	HE 200A	S275	Stage 9	186.924	0	0.403	0.433	0
Default Waler	Tieback	HE 200A	S275	Stage 10	146.107	0	0.315	0.338	0
Default Waler	Tieback_New	HE 200A	S275	Stage 10	171.458	0	0.37	0.397	0
Default Waler	Tieback_New_New	HE 200A	S275	Stage 10	180.036	0	0.388	0.417	0
Default Waler	Tieback_New_New_New	HE 200A	S275	Stage 10	125	0	0.27	0.289	0
Default Waler	Tieback	HE 200A	S275	Stage 11	158.881	0	0.343	0.368	0
Default Waler	Tieback_New	HE 200A	S275	Stage 11	201.694	0	0.435	0.467	0
Default Waler	Tieback_New_New	HE 200A	S275	Stage 11	228.262	0	0.493	0.529	0
Default Waler	Tieback_New_New_New	HE 200A	S275	Stage 11	201.621	0	0.435	0.467	0

MANDATARIA:

PROGETTO ESECUTIVO

RELAZIONE DI CALCOLO

ALLEGATO 2: Risultati paratia di pali – spalla 2

Descrizione della Stratigrafia e degli Strati di Terreno

Tipo : HORIZONTAL Quota : 0 m

OCR:1

Tipo: HORIZONTAL

Quota : -5 m OCR : 1

Strato di Terren	o Terreno	γ dry	γ sat	ø'	øcv øp	c' Su	Modulo Elastico Eu	Evc	Eur	Ah Av exp Pa Rur/Rvo	Rvc	Ku	Kvc	Kur
		kN/m³	kN/m	3 •		kPa kPa	1	kPa	kPa	kPa	kPa kl	N/m³k	N/m 31	kN/m³
1	a-	18	18	22.5		15	Constant	10000	16000					
2	Pvl - r2	24	24	50		36	Constant	2750004	440000)				

Itinerario Ragusa - Catania

Collegamento viario compreso tra lo Svincolo della S.S. 514 di "Chiaramonte" con la S.S. 115 e lo Svincolo della "Ragusana"

PROGETTO ESECUTIVO

RELAZIONE DI CALCOLO

Descrizione Pareti

X:5 m

Quota in alto: 0 m Quota di fondo: -20 m

Muro di sinistra

Armatura Lunghezza segmenti: 1 m

Rinforzo longitudinale 1

Lunghezza: 20 m Materiale: B450C Quota iniziale: 0 m

Barre 1

Numero di barre: 22 Diametro: 0.024 m

Distanza dal bordo: 0.085 m

Staffe 1

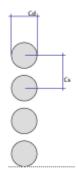
Numero di staffe: 2 Copertura: 0.06 m Diametro: 0.012 m Lunghezza: 20 m Quota iniziale: 0 m Passo : 0.1 m

Sezione: palo 800

Area equivalente: 0.502654824574367 m

Inerzia equivalente: 0.0201 m⁴/m Materiale calcestruzzo: C32/40 Tipo sezione: Tangent

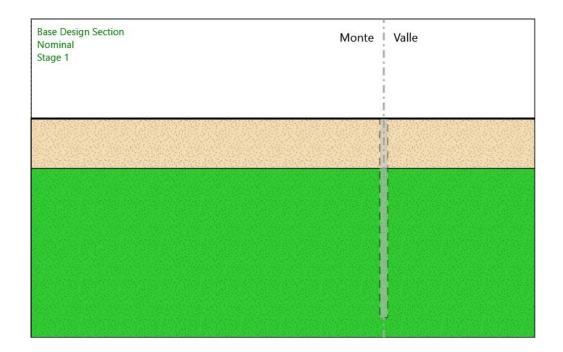
> Spaziatura: 1 m Diametro: 0.8 m Efficacia: 1



Collegamento viario compreso tra lo Svincolo della S.S. 514 di "Chiaramonte" con la S.S. 115 e lo Svincolo della "Ragusana"

PROGETTO ESECUTIVO

RELAZIONE DI CALCOLO



Collegamento viario compreso tra lo Svincolo della S.S. 514 di "Chiaramonte" con la S.S. 115 e lo Svincolo della "Ragusana"

PROGETTO ESECUTIVO

RELAZIONE DI CALCOLO

Fasi di Calcolo Stage 1

Stage 1

Scavo

Muro di sinistra

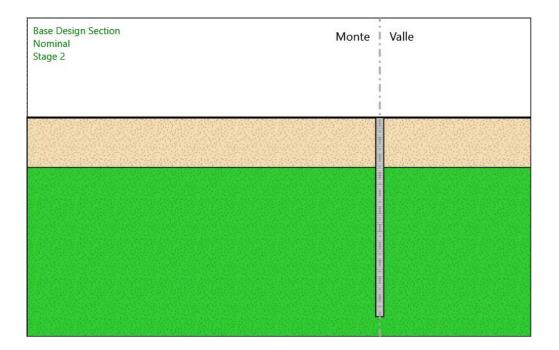
Lato monte: 0 m Lato valle: 0 m

Linea di scavo di sinistra (Orizzontale)

Linea di scavo di destra (Orizzontale)

0 m

MANDATARIA:



Collegamento viario compreso tra lo Svincolo della S.S. 514 di "Chiaramonte" con la S.S. 115 e lo Svincolo della "Ragusana"

PROGETTO ESECUTIVO

RELAZIONE DI CALCOLO

Stage 2

Stage 2

Scavo

Muro di sinistra

Lato monte: 0 m Lato valle: 0 m

Linea di scavo di sinistra (Orizzontale)

0 m

Linea di scavo di destra (Orizzontale)

0 m

MANDATARIA:

Itinerario Ragusa - Catania

Collegamento viario compreso tra lo Svincolo della S.S. 514 di "Chiaramonte" con la S.S. 115 e lo Svincolo della "Ragusana"

PROGETTO ESECUTIVO

RELAZIONE DI CALCOLO

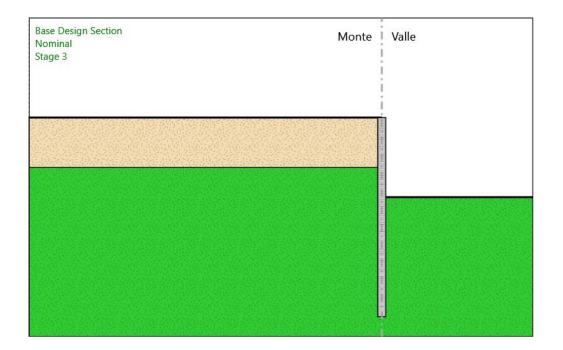
Elementi strutturali

Paratia: WallElement

X:5 m

Quota in alto : 0 m Quota di fondo : -20 m Sezione : palo 800

MANDATARIA:



Collegamento viario compreso tra lo Svincolo della S.S. 514 di "Chiaramonte" con la S.S. 115 e lo Svincolo della "Ragusana"

PROGETTO ESECUTIVO

RELAZIONE DI CALCOLO

Stage 3

Stage 3

Scavo

Muro di sinistra

Lato monte: 0 m Lato valle: -8 m

Linea di scavo di sinistra (Orizzontale)

0 m

Linea di scavo di destra (Orizzontale)

-8 m

Itinerario Ragusa - Catania

Collegamento viario compreso tra lo Svincolo della S.S. 514 di "Chiaramonte" con la S.S. 115 e lo Svincolo della "Ragusana"

PROGETTO ESECUTIVO

RELAZIONE DI CALCOLO

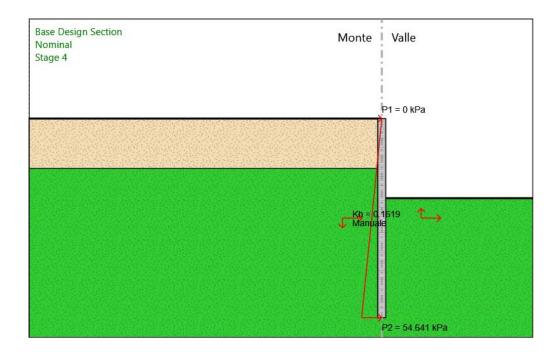
Elementi strutturali

Paratia: WallElement

X:5 m

Quota in alto: 0 m Quota di fondo: -20 m Sezione: palo 800

MANDATARIA:



PROGETTO ESECUTIVO

RELAZIONE DI CALCOLO

Stage 4

Stage 4

Scavo

Muro di sinistra

Lato monte: 0 m Lato valle: -8 m

Linea di scavo di sinistra (Orizzontale)

0 m

Linea di scavo di destra (Orizzontale)

-8 m

Itinerario Ragusa - Catania

Collegamento viario compreso tra lo Svincolo della S.S. 514 di "Chiaramonte" con la S.S. 115 e lo Svincolo della "Ragusana"

PROGETTO ESECUTIVO

RELAZIONE DI CALCOLO

Elementi strutturali

Paratia: WallElement

X:5 m

Quota in alto: 0 m Quota di fondo: -20 m Sezione: palo 800

MANDATARIA:



PROGETTO ESECUTIVO

RELAZIONE DI CALCOLO

Tabella Configurazione Stage (Nominal)

PROGETTO ESECUTIVO

RELAZIONE DI CALCOLO

Descrizione Coefficienti Design Assumption

Nome	Carichi	Carichi	Carichi	Carichi	Carico	Pressio		Carichi			Carichi	Carichi	Carichi
	Permanenti	Permanenti	Variabili	Variabili	Sismico	ni	ni	Permane	Perman	Variabili	Permane	Perman	Variabili
	Sfavorevoli	Favorevoli	Sfavorevoli	Favorevoli	(F_seis	Acqua	Acqua	nti	enti	Destabili	nti	enti	Destabili
	(F_dead_load	(F_dead_loa	(F_live_load	(F_live_loa	m_load)	Lato	Lato	Destabili	Stabilizz	zzanti	Destabili	Stabilizz	zzanti
	_unfavour)	d_favour)	_unfavour)	d_favour)		Monte	Valle	zzanti	anti	(F_UPL_	zzanti	anti	(F_HYD_
						(F_Wat	(F_Wat	(F_UPL_	(F_UPL_	QDStab)	(F_HYD_	(F_HYD_	QDStab)
						erDR)	erRes)	GDStab)	GStab)		GDStab)	GStab)	
Simbolo	γG	γG	γQ	γQ	γQE	γG	γG	γGdst	γGstb	γQdst	γGdst	γGstb	γQdst
Nominal	1	1	1	1	1	1	1	1	1	1	1	1	1
SLE	1	1	1	1	0	1	1	1	1	1	1	1	1
(Rara/Frequ													
ente/Quasi													
Permanente													
)													
A1+M1+R1	1.3	1	1.5	1	0	1.3	1	1	1	1	1.3	0.9	1
(R3 per													
tiranti)													
A2+M2+R1	1	1	1.3	1	0	1	1	1	1	1	1.3	0.9	1
SISMICA STR	1	1	1	1	1	1	1	1	1	1	1	1	1
SISMICA	1	1	1	1	1	1	1	1	1	1	1.3	0.9	1
GEO													

Nome	Parziale su tan(ø')	Parziale su c'	Parziale su Su	Parziale su qu	Parziale su peso specifico
	(F_Fr)	(F_eff_cohe)	(F_Su)	(F_qu)	(F_gamma)
Simbolo	үф	γс	γcu	γqu	γγ
Nominal	1	1	1	1	1
SLE (Rara/Frequente/Quasi	1	1	1	1	1
Permanente)					
A1+M1+R1 (R3 per tiranti)	1	1	1	1	1
A2+M2+R1	1.25	1.25	1.4	1	1
SISMICA STR	1	1	1	1	1
SISMICA GEO	1.25	1.25	1.4	1	1

Nome	Parziale resistenza terreno (es.	Parziale resistenza Tiranti	Parziale resistenza Tiranti	Parziale elementi
	Kp) (F_Soil_Res_walls)	permanenti (F_Anch_P)	temporanei (F_Anch_T)	strutturali (F_wall)
Simbolo	γRe	үар	γat	
Nominal	1	1	1	1
SLE (Rara/Frequente/Quasi	1	1	1	1
Permanente)				
A1+M1+R1 (R3 per tiranti)	1	1.2	1.1	1
A2+M2+R1	1	1.2	1.1	1
SISMICA STR	1	1.2	1.1	1
SISMICA GEO	1	1.2	1.1	1

Riepilogo Stage / Design Assumption per Inviluppo

MANDATARIA:

Direzione Progettazione e

Realizzazione Lavori

Itinerario Ragusa - Catania

Collegamento viario compreso tra lo Svincolo della S.S. 514 di "Chiaramonte" con la S.S. 115 e lo Svincolo della "Ragusana"

PROGETTO ESECUTIVO

RELAZIONE DI CALCOLO

Design Assumption	Stage 1	Stage 2	Stage 3	Stage 4
SLE (Rara/Frequente/Quasi Permanente)	V	٧	V	V
A1+M1+R1 (R3 per tiranti)	V	V	V	V
A2+M2+R1	V	V	V	V
SISMICA STR	V	V	V	V
SISMICA GEO	V	V	V	V

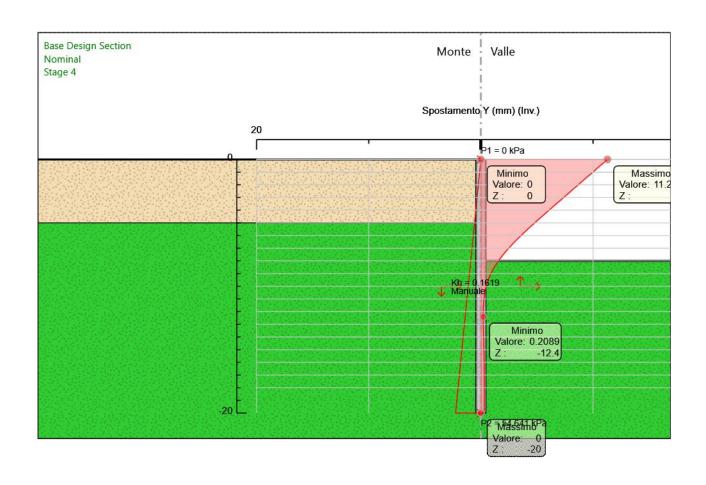
MANDATARIA:

Collegamento viario compreso tra lo Svincolo della S.S. 514 di "Chiaramonte" con la S.S. 115 e lo Svincolo della "Ragusana"

PROGETTO ESECUTIVO

RELAZIONE DI CALCOLO

Descrizione sintetica dei risultati delle Design Assumption (Inviluppi) Grafico Inviluppi Spostamento



PROGETTO ESECUTIVO

RELAZIONE DI CALCOLO

MANDATARIA:

Collegamento viario compreso tra lo Svincolo della S.S. 514 di "Chiaramonte" con la S.S. 115 e lo Svincolo della "Ragusana"

PROGETTO ESECUTIVO

RELAZIONE DI CALCOLO

Spostamento

MANDATARIA:

Collegamento viario compreso tra lo Svincolo della S.S. 514 di "Chiaramonte" con la S.S. 115 e lo Svincolo della "Ragusana"

PROGETTO ESECUTIVO

RELAZIONE DI CALCOLO

Tabella Inviluppi Momento WallElement

Salastad Dasim Assume	a laudinani. Beaucasta	Muno, MallElana
Selected Design Assumptions	• •	
Z (m)	Lato sinistro (kN*m/m)	
0	0	0
-0.2	0.041	0
-0.4	0.185	0
-0.6	0.454	0
-0.8	0.869	0
-1	1.454	0
-1.2	2.229	0
-1.4	3.217	0
-1.6	4.439	0
-1.8	5.918	0
-2 -2.2	7.674	0 0
-2.2 -2.4	9.788	0
-2.4 -2.6	12.356	0
-2.8	15.474 19.241	0
-2.o -3	23.752	0
-3.2	29.106	0
-3.4	35.397	0
-3.6	42.724	0
-3.8	51.183	0
-3.6 -4	60.871	0
-4.2	71.886	0
-4.4	84.323	0
-4.6	98.28	0
-4.8	113.854	0
-5	131.141	0
-5.2	149.056	0
-5.4	167.621	0
-5.6	186.857	0
-5.8	206.786	0
-6	227.431	0
-6.2	248.812	0
-6.4	270.953	0
-6.6	293.874	0
-6.8	317.598	0
-7	342.147	0
-7.2	367.566	0
-7.4	393.913	0
-7.6	421.245	0
-7.8	449.619	0
-8	479.091	0
-8.2	509.72	0
-8.4	533.974	0
-8.6	552.285	0
-8.8	565.082	0
-9	572.783	0
-9.2	575.781	0
-9.4	574.448	0
-9.6	569.13	0
-9.8	560.144	0

MANDATARIA:

Direzione Progettazione e

Realizzazione Lavori

Itinerario Ragusa - Catania

Collegamento viario compreso tra lo Svincolo della S.S. 514 di "Chiaramonte" con la S.S. 115 e lo Svincolo della "Ragusana"

PROGETTO ESECUTIVO

RELAZIONE DI CALCOLO

Selected Design Assumptions	s Inviluppi: Momento	Muro: WallElement
Z (m)	Lato sinistro (kN*m/m)	Lato destro (kN*m/n
-10	547.782	0
-10.2	532.307	0
-10.4	513.957	0
-10.6	492.941	0
-10.8	469.443	0
-11	443.642	0
-11.2	415.776	0
-11.4	386.046	0
-11.6	355.206	0
-11.8	323.942	0
-12	292.833	0
-12.2	262.352	0
-12.4	232.883	0
-12.6	204.73	0
-12.8	178.121	0
-13	153.222	0
-13.2	130.143	0
-13.4	108.948	0
-13.6	89.657	0
-13.8	72.259	0
-14	56.713	1.389
-14.2	42.957	3.627
-14.4	30.911	5.398
-14.6	20.482	6.754
-14.8	11.567	7.744
-15	4.056	8.417
-15.2	0	8.814
-15.4	0	8.979
-15.6	0	11.693
-15.8	0	14.2
-16	0	16.373
-16.2	0	17.8
-16.4	0	18.579
-16.6	0	18.801
-16.8	0	18.551
-17	0	17.909
-17.2	0	16.948
-17.4	0	15.736
-17.6	0	14.334
-17.8	0	12.801
-18	0	11.189
-18.2	0	9.546
-18.4	0	7.918
-18.6	0	6.345
-18.8	0	4.868
-19	0	3.524
-19.2	0	2.348
-19.4	0	1.374
-19.6	0	0.636
-19.8	0	0.167
-20	0	0

MANDATARIA:

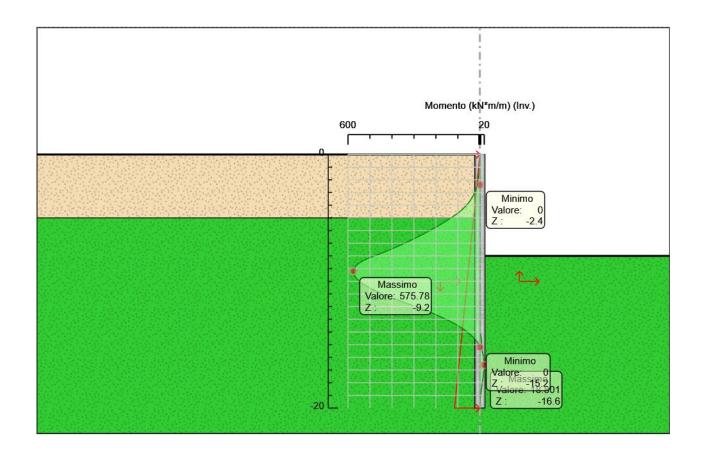
Collegamento viario compreso tra lo Svincolo della S.S. 514 di "Chiaramonte" con la S.S. 115 e lo Svincolo della "Ragusana"

PROGETTO ESECUTIVO

RELAZIONE DI CALCOLO

Grafico Inviluppi Momento

MANDATARIA:



PROGETTO ESECUTIVO

RELAZIONE DI CALCOLO

Collegamento viario compreso tra lo Svincolo della S.S. 514 di "Chiaramonte" con la S.S. 115 e lo Svincolo della "Ragusana"

PROGETTO ESECUTIVO

RELAZIONE DI CALCOLO

Momento

MANDATARIA:

Collegamento viario compreso tra lo Svincolo della S.S. 514 di "Chiaramonte" con la S.S. 115 e lo Svincolo della "Ragusana"

PROGETTO ESECUTIVO

RELAZIONE DI CALCOLO

Tabella Inviluppi Taglio WallElement

Selected Design Assumption		Muro: WallElement
Z (m)	Lato sinistro (kN/m) Lato destro (kN/m)
0	0.203	0
-0.2	0.719	0
-0.4	1.345	0
-0.6	2.079	0
-0.8	2.923	0
-1	3.877	0
-1.2	4.939	0
-1.4	6.111	0
-1.6	7.392	0
-1.8	8.782	0
-2	10.568	0
-2.2	12.839	0
-2.4	15.594	0
-2.6	18.833	0
-2.8	22.557	0
-3	26.765	0
-3.2	31.458	0
-3.4	36.635	0
-3.6	42.296	0
-3.8	48.442	0
-4	55.072	0
-4.2	62.186	0
-4.4	69.785	0
-4.6	77.869	0
-4.8	86.436	0
-5	89.575	0
-5.2	92.823	0
-5.4	96.181	0
-5.6	99.647	0
-5.8	103.223	0
-5.6 -6	106.908	0
-6.2	110.703	0
-6.4	114.607	0
-6.6	118.62	0
-6.8	122.742	0
-0.6 -7		0
-7 -7.2	127.096 131.736	0
-7.4	136.66	0
-7.6	141.869	0
-7.8	147.363	0
-8	153.142	0
-8.2	153.142	0
-8.4	121.274	0
-8.6	91.554	0
-8.8	63.987	6.477
-9	40.52	21.596
-9.2	21.187	36.693
-9.4	2.883	48.597
-9.6	0	57.654
-9.8	0	64.2

MANDATARIA:

Collegamento viario compreso tra lo Svincolo della S.S. 514 di "Chiaramonte" con la S.S. 115 e lo Svincolo della "Ragusana"

PROGETTO ESECUTIVO

RELAZIONE DI CALCOLO

cted Design Assumptions	Inviluppi: Taglio	Muro: WallElement
Z (m) L	Lato sinistro (kN/m) Lato destro (kN/m)
-10	0	77.373
-10.2	0	91.753
-10.4	0	105.082
-10.6	0	117.49
-10.8	0	129.002
-11	0	139.329
-11.2	0	148.652
-11.4	0	154.201
-11.6	0	156.316
-11.8	0	156.316
-12	0	155.549
-12.2	0	152.406
-12.4	0	147.342
-12.6	0	140.767
-12.8	0	133.045
-13	0	124.494
-13.2	0	115.392
-13.4	0	105.978
-13.6	0	96.455
-13.8	0	86.992
-14	0	77.729
-14.2	0	68.779
-14.4	0	60.229
-14.6	0	52.146
-14.8	0	44.577
-15	0	37.554
-15.2	0	31.094
-15.4	0.156	25.203
-15.6	0.963	19.877
-15.8	1.614	15.104
-16	2.126	10.865
-16.2	2.514	7.137
-16.4	2.792	3.895
-16.6	2.975	1.109
-16.8	3.627	0
-17	4.806	0
-17.2	6.062	0
-17.4	7.007	0
-17.6	7.665	0
-17.8	8.061	0
-18	8.214	0
-18.2	8.214	0
-18.4	8.142	0
-18.6	7.862	0
-18.8	7.385	0
-19	6.722	0
-19.2	5.881	0
-19.4	4.869	0
-19.6	3.689	0
-19.8	2.344	0
-20	0.836	0
-19.8	2.344	

MANDATARIA:

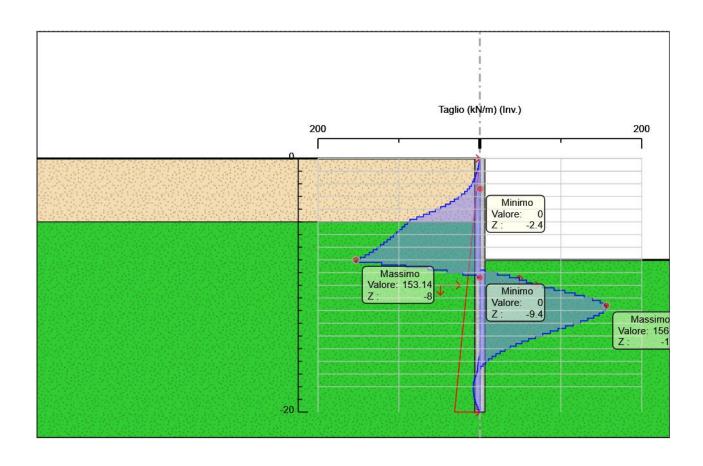
Collegamento viario compreso tra lo Svincolo della S.S. 514 di "Chiaramonte" con la S.S. 115 e lo Svincolo della "Ragusana"

PROGETTO ESECUTIVO

RELAZIONE DI CALCOLO

Grafico Inviluppi Taglio

MANDATARIA:



PROGETTO ESECUTIVO

RELAZIONE DI CALCOLO

Collegamento viario compreso tra lo Svincolo della S.S. 514 di "Chiaramonte" con la S.S. 115 e lo Svincolo della "Ragusana"

PROGETTO ESECUTIVO

RELAZIONE DI CALCOLO

Taglio

MANDATARIA:

PROGETTO ESECUTIVO

RELAZIONE DI CALCOLO

Inviluppo Spinta Reale Efficace / Spinta Passiva

Design Assumption	Stage	Muro	Lato	Inviluppo Spinta Reale Efficace / Spinta Passiva
				%
A2+M2+R1	Stage 1L	eft Wall	LEFT	4.1
SISMICA GEO	Stage 4L	eft Wall I	RIGHT	8.91

PROGETTO ESECUTIVO

RELAZIONE DI CALCOLO

Inviluppo Spinta Reale Efficace / Spinta Attiva

Design Assumption	Stage	Muro	Lato	Inviluppo Spinta Reale Efficace / Spinta Attiva
				%
SISMICA GEO	Stage 4L	eft Wall	LEFT	246.18
A2+M2+R1	Stage 1L	eft Wall	RIGHT	475.17

Itinerario Ragusa - Catania

Collegamento viario compreso tra lo Svincolo della S.S. 514 di "Chiaramonte" con la S.S. 115 e lo Svincolo della "Ragusana"

PROGETTO ESECUTIVO

RELAZIONE DI CALCOLO

Normative adottate per le verifiche degli Elementi Strutturali

Normative Verifiche

Calcestruzzo NTC Acciaio NTC Tirante NTC

Coefficienti per Verifica Tiranti

GEO FS	1
ξa3	1.8
γs	1.15

PROGETTO ESECUTIVO

RELAZIONE DI CALCOLO

Riepilogo Stage / Design Assumption per Inviluppo

Design Assumption	Stage 1	Stage 2	Stage 3	Stage 4
SLE (Rara/Frequente/Quasi Permanente)	V	٧	٧	V
A1+M1+R1 (R3 per tiranti)	V	V	V	V
A2+M2+R1	V	V	V	V
SISMICA STR	V	V	V	V
SISMICA GEO	V	V	V	V

Collegamento viario compreso tra lo Svincolo della S.S. 514 di "Chiaramonte" con la S.S. 115 e lo Svincolo della "Ragusana"

PROGETTO ESECUTIVO

RELAZIONE DI CALCOLO

Risultati Caver

Tabella Inviluppi Tasso di Sfruttamento Calcestruzzo - Caver : LEFT

Inviluppi Tasso di Sfruttamento Calcestruzzo -	
Z (m)	Tasso di Sfruttamento Calcestruzzo - Caver
0	0
-0.2	0
-0.4	0
-0.6	0
-0.8	0
-1	0
-1.2	0
-1.4	0
-1.6	0
-1.8	0
-2	0
-2 -2.2	0
-2.2 -2.4	0
-2.6	0
-2.8	0.001
-3	0.002
-3.2	0.003
-3.4	0.006
-3.6	0.009
-3.8	0.014
-4	0.02
-4.2	0.027
-4.4	0.037
-4.6	0.048
-4.8	0.061
-5	0.076
-5.2	0.092
-5.4	0.107
-5.6	0.123
-5.8	0.138
-6	0.153
-6.2	0.169
-6.4	0.184
-6.6	0.2
-6.8	0.215
-7	0.23
-7.2	0.246
-7.4	0.261
-7.6	0.276
-7.8	0.292
-8	0.307
-8.2	0.323
-8.4	0.334
-8.6	0.341
-8.8	0.343
-9	0.341
-9.2	0.335
-9.4	0.324
-9.6	0.31
3.0	0.31

MANDATARIA:

Itinerario Ragusa - Catania

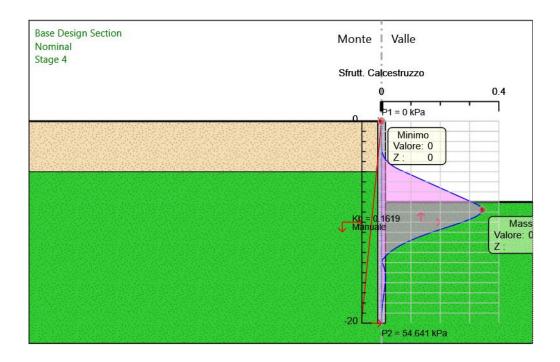
Collegamento viario compreso tra lo Svincolo della S.S. 514 di "Chiaramonte" con la S.S. 115 e lo Svincolo della "Ragusana"

PROGETTO ESECUTIVO

RELAZIONE DI CALCOLO

Inviluppi Tasso di Sfruttamento Calcestruzzo - Cav	
Z (m)	Tasso di Sfruttamento Calcestruzzo - Caver
-9.8	0.293
-10	0.275
-10.2	0.255
-10.4	0.234
-10.6	0.213
-10.8	0.192
-11 -11.2	0.172
-11.2 -11.4	0.152 0.134
-11.4	0.116
-11.8	0.1
-12	0.084
-12.2	0.07
-12.4	0.058
-12.6	0.046
-12.8	0.036
-13	0.027
-13.2	0.019
-13.4	0.013
-13.6	0.007
-13.8	0.002
-14	0.002
-14.2	0.005
-14.4	0.008
-14.6	0.01
-14.8	0.011
-15	0.012
-15.2	0.013
-15.4	0.013
-15.6	0.013
-15.8	0.013
-16	0.012
-16.2	0.012
-16.4	0.011
-16.6	0.01
-16.8	0.009
-17	0.008
-17.2	0.007
-17.4 -17.6	0.007 0.006
-17.6 -17.8	0.005
-18	0.003
-18.2	0.003
-18.4	0.003
-18.6	0.002
-18.8	0.002
-19	0.001
-19.2	0.001
-19.4	0
-19.6	0
-19.8	0
-20	0

MANDATARIA:



PROGETTO ESECUTIVO

RELAZIONE DI CALCOLO

Grafico Inviluppi Tasso di Sfruttamento Calcestruzzo - Caver

Inviluppi

Tasso di Sfruttamento Calcestruzzo - Caver

Collegamento viario compreso tra lo Svincolo della S.S. 514 di "Chiaramonte" con la S.S. 115 e lo Svincolo della "Ragusana"

PROGETTO ESECUTIVO

RELAZIONE DI CALCOLO

Tabella Inviluppi Tasso di Sfruttamento Armature - Caver : LEFT

Tabella Inviluppi Tasso di Sfruttam	
Inviluppi Tasso di Sfruttamento Armature - Cavo	
Z (m)	Tasso di Sfruttamento Armature - Caver
0	0
-0.2	0
-0.4	0
-0.6	0
-0.8	0
-1	0
-1.2	0
-1.4	0
-1.6	0
-1.8	0
-2	0
-2.2	0
-2.4	0
-2.6	0
-2.8	0 0.001
-3 -3.2	0.001
-3.4	0.002
-3.6	0.004
-3.8	0.01
-4	0.014
-4.2	0.019
-4.4	0.026
-4.6	0.033
-4.8	0.042
-5	0.053
-5.2	0.064
-5.4	0.075
-5.6	0.085
-5.8	0.096
-6	0.107
-6.2	0.117
-6.4	0.128
-6.6	0.139
-6.8	0.15
-7	0.16
-7.2	0.171
-7.4	0.182
-7.6	0.192
-7.8	0.203
-8	0.214
-8.2	0.225
-8.4	0.232
-8.6	0.237
-8.8	0.239
-9	0.238
-9.2	0.233
-9.4	0.226
-9.6	0.216
-9.8 10	0.204
-10	0.191

MANDATARIA:

Itinerario Ragusa - Catania

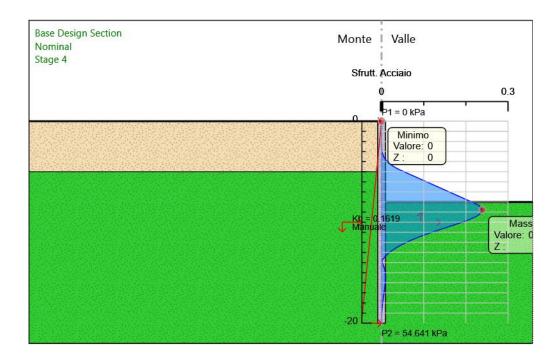
Collegamento viario compreso tra lo Svincolo della S.S. 514 di "Chiaramonte" con la S.S. 115 e lo Svincolo della "Ragusana"

PROGETTO ESECUTIVO

RELAZIONE DI CALCOLO

Inviluppi Tasso di Sfruttamento Armature - Cave	
Z (m)	Tasso di Sfruttamento Armature - Caver
-10.2	0.177
-10.4	0.163
-10.6	0.148
-10.8	0.134
-11	0.12
-11.2	0.106
-11.4	0.093
-11.6	0.081
-11.8	0.069
-12	0.059
-12.2	0.049
-12.4	0.04
-12.6	0.032
-12.8	0.025
-13	0.019
-13.2	0.013
-13.4	0.009
-13.6	0.005
-13.8	0.001
-14	0.001
-14.2	0.004
-14.4	0.005
-14.6	0.007
-14.8	0.008
-15 15 2	0.009
-15.2 -15.4	0.009 0.009
-15.6 -15.8	0.009 0.009
-16	0.009
-16.2	0.008
-16.2	0.008
-16.6	0.007
-16.8	0.006
-10.8	0.006
-17.2	0.005
-17.2	0.005
-17.6	0.004
-17.8	0.003
-18	0.003
-18.2	0.002
-18.4	0.002
-18.6	0.001
-18.8	0.001
-10.8	0.001
-19.2	0
-19.4	0
-19.4	0
-19.8	0
-20	0
20	ű

MANDATARIA:



PROGETTO ESECUTIVO

RELAZIONE DI CALCOLO

Grafico Inviluppi Tasso di Sfruttamento Armature - Caver

Inviluppi

Tasso di Sfruttamento Armature - Caver

Collegamento viario compreso tra lo Svincolo della S.S. 514 di "Chiaramonte" con la S.S. 115 e lo Svincolo della "Ragusana"

PROGETTO ESECUTIVO

RELAZIONE DI CALCOLO

Tabella Inviluppi Apertura Fessure - Caver: LEFT

Tabella Inviluppi Apertu	
Inviluppi Apertura Fessure - Cave	r LEFT
Z (m)	Apertura Fessure - Caver (mm
0	0
-0.2	0
-0.4	0
-0.6	0
-0.8	0
-1	0
-1.2	0
-1.4	0
-1.6	0
-1.8	0
-2	0
-2.2	0
-2.4	0
-2.6	0
-2.8	0
-3	0
-3.2	0.001
-3.4	0.002
-3.6 -3.8	0.003 0.004
-3.8 -4	0.004
-4 -4.2	0.008
-4.2	0.011
-4.6	0.011
-4.8	0.014
-5	0.023
-5.2	0.027
-5.4	0.032
-5.6	0.037
-5.8	0.041
-6	0.046
-6.2	0.05
-6.4	0.055
-6.6	0.06
-6.8	0.064
-7	0.069
-7.2	0.073
-7.4	0.078
-7.6	0.083
-7.8	0.087
-8	0.092
-8.2	0.096
-8.4	0.1
-8.6	0.102
-8.8	0.102
-9 0.2	0.102
-9.2	0.1
-9.4 -9.6	0.097 0.093
-9.8	0.093
-9.8 -10	0.082
-10	0.002

MANDATARIA:

Direzione Progettazione e

Realizzazione Lavori

Itinerario Ragusa - Catania

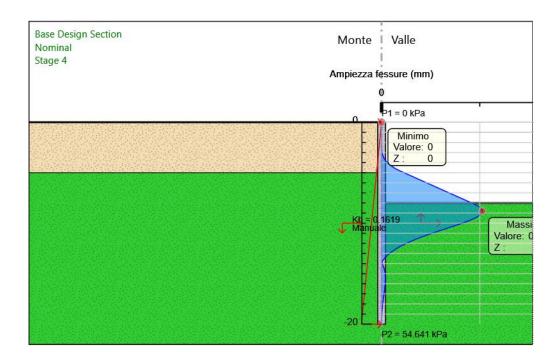
Collegamento viario compreso tra lo Svincolo della S.S. 514 di "Chiaramonte" con la S.S. 115 e lo Svincolo della "Ragusana"

PROGETTO ESECUTIVO

RELAZIONE DI CALCOLO

Inviluppi Apertura Fessure - Cave	r LEFT
Z (m)	Apertura Fessure - Caver (mm)
-10.2	0.076
-10.4	0.07
-10.6	0.064
-10.8	0.057
-11	0.051
-11.2	0.046
-11.4	0.04
-11.6	0.035
-11.8	0.03
-12	0.025
-12.2	0.021
-12.4	0.017
-12.6	0.014
-12.8	0.011
-13	0.008
-13.2	0.006
-13.4	0.004
-13.6	0.002
-13.8	0.001
-14	0.001
-14.2	0.002
-14.4	0.002
-14.6	0.003
-14.8	0.003
-15	0.004
-15.2	0.004
-15.4	0.004
-15.6	0.004
-15.8	0.004
-16	0.004
-16.2	0.003
-16.4	0.003
-16.6	0.003
-16.8	0.003
-17	0.002
-17.2	0.002
-17.4	0.002
-17.6	0.002
-17.8	0.001
-18	0.001
-18.2	0.001
-18.4	0.001
-18.6	0.001
-18.8	0
-19	0
-19.2	0
-19.4	0
-19.6	0
-19.8	0
-20	0

MANDATARIA:



PROGETTO ESECUTIVO

RELAZIONE DI CALCOLO

Grafico Inviluppi Apertura Fessure - Caver

Inviluppi Apertura Fessure - Caver

MANDATARIA:

Collegamento viario compreso tra lo Svincolo della S.S. 514 di "Chiaramonte" con la S.S. 115 e lo Svincolo della "Ragusana"

PROGETTO ESECUTIVO

RELAZIONE DI CALCOLO

Tahella Invilunni Tasso di Sfruttamento a Momento - Caver · LEET

Tabella Inviluppi Tasso di Sfruttamento a Momento - Caver : LEFT								
Inviluppi Tasso di Sfruttamento a Momento - Cave								
Z (m)	Tasso di Sfruttamento a Momento - Caver							
0	0.01							
-0.2	0.01							
-0.4	0.01							
-0.6	0.01							
-0.8	0.01							
-1	0.01							
-1.2	0.01							
-1.4	0.01							
-1.6	0.01							
-1.8	0.01							
-2	0.01							
-2.2	0.01							
-2.4	0.012							
-2.6	0.015							
-2.8	0.018							
-3	0.023							
-3.2	0.028							
-3.4	0.034							
-3.6	0.04							
-3.8	0.049							
-4	0.058							
-4.2	0.068							
-4.4	0.08							
-4.6	0.093							
-4.8	0.108							
-5	0.124							
-5.2	0.141							
-5.4	0.159							
-5.6	0.177							
-5.8	0.196							
-6	0.216							
-6.2	0.236							
-6.4	0.257							
-6.6	0.279							
-6.8	0.301							
-7	0.324							
-7.2	0.348							
-7.4	0.373							
-7.6	0.399							
-7.8	0.426							
-8	0.454							
-8.2	0.483							
-8.4	0.506							
-8.6	0.523							
-8.8	0.536							
-9	0.543							
-9.2	0.546							
-9.4	0.544							
-9.6	0.539							
-9.8	0.531							
-10	0.519							

MANDATARIA:

Itinerario Ragusa - Catania

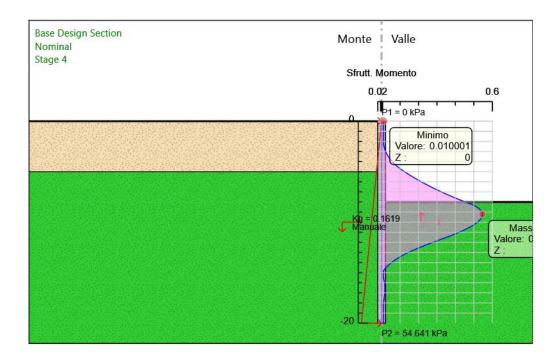
Collegamento viario compreso tra lo Svincolo della S.S. 514 di "Chiaramonte" con la S.S. 115 e lo Svincolo della "Ragusana"

PROGETTO ESECUTIVO

RELAZIONE DI CALCOLO

to the state of the second of	
Inviluppi Tasso di Sfruttamento a Momento - Cav	
Z (m)	Tasso di Sfruttamento a Momento - Caver
-10.2	0.504
-10.4	0.487
-10.6	0.467
-10.8	0.445
-11	0.42
-11.2	0.394
-11.4	0.366
-11.6	0.337
-11.8	0.307
-12	0.278
-12.2	0.249
-12.4	0.221
-12.6	0.194
-12.8	0.169
-13	0.145
-13.2	0.123
-13.4	0.103
-13.6	0.085
-13.8	0.068
-14	0.054
-14.2	0.041
-14.4	0.029
-14.6	0.019
-14.8	0.011
-15	0.01
-15.2	0.01
-15.4	0.01
-15.6	0.011
-15.8	0.013
-16 16 2	0.016
-16.2	0.017
-16.4	0.018
-16.6	0.018
-16.8	0.018
-17 -17.2	0.017 0.016
-17.2	0.015
-17.4	0.013
-17.8	0.014
-18	0.012
-18.2	0.01
-18.4	0.01
-18.6	0.01
-18.8	0.01
-19	0.01
-19.2	0.01
-19.4	0.01
-19.6	0.01
-19.8	0.01
-20	0.01
	

MANDATARIA:



PROGETTO ESECUTIVO

RELAZIONE DI CALCOLO

Grafico Inviluppi Tasso di Sfruttamento a Momento - Caver

Inviluppi Tasso di Sfruttamento a Momento - Caver

MANDATARIA:

Collegamento viario compreso tra lo Svincolo della S.S. 514 di "Chiaramonte" con la S.S. 115 e lo Svincolo della "Ragusana"

PROGETTO ESECUTIVO

RELAZIONE DI CALCOLO

Tabella Inviluppi Tasso di Sfruttamento a Taglio - Caver : LEFT

Tabella Inviluppi Tasso di Sfruttamento a Taglio - Caver : LEFT							
Inviluppi Tasso di Sfruttamento a Taglio - Cav							
Z (m)	Tasso di Sfruttamento a Taglio - Caver						
0	0						
-0.2	0.002						
-0.4	0.003						
-0.6	0.005						
-0.8	0.006						
-1	0.009						
-1.2	0.011						
-1.4	0.013						
-1.6	0.016						
-1.8	0.019						
-2	0.023						
-2.2	0.028						
-2.4	0.034						
-2.6	0.041						
-2.8	0.049						
-3	0.059						
-3.2	0.069						
-3.4	0.08						
-3.6	0.093						
-3.8	0.106						
-4	0.121						
-4.2	0.136						
-4.4	0.153						
-4.6	0.171						
-4.8	0.19						
-5	0.196						
-5.2	0.204						
-5.4	0.211						
-5.6	0.219						
-5.8	0.226						
-6	0.234						
-6.2	0.243						
-6.4	0.251						
-6.6	0.26						
-6.8	0.269						
-7	0.279						
-7.2	0.289						
-7.4	0.3						
-7.6	0.311						
-7.8	0.323						
-8	0.336						
-8.2	0.336						
-8.4	0.266						
-8.6	0.201						
-8.8	0.14						
-9	0.089						
-9.2	0.08						
-9.4	0.107						
-9.6	0.126						
-9.8	0.141						
-10	0.17						

MANDATARIA:

Itinerario Ragusa - Catania

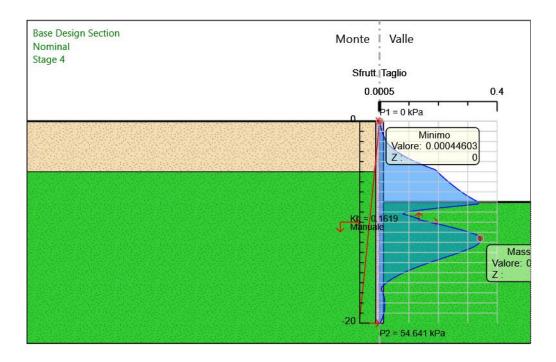
Collegamento viario compreso tra lo Svincolo della S.S. 514 di "Chiaramonte" con la S.S. 115 e lo Svincolo della "Ragusana"

PROGETTO ESECUTIVO

RELAZIONE DI CALCOLO

Inviluppi Tasso di Sfruttamento a Taglio - Caver	
Z (m)	Tasso di Sfruttamento a Taglio - Caver
-10.2	0.201
-10.4	0.23
-10.6	0.258
-10.8	0.283
-11	0.306
-11.2	0.326
-11.4	0.338
-11.6	0.343
-11.8	0.343
-12	0.341
-12.2	0.334
-12.4	0.323
-12.6	0.309
-12.8	0.292
-13	0.273
-13.2	0.253
-13.4	0.232
-13.6	0.212
-13.8	0.191
-14	0.17
-14.2	0.151
-14.4	0.132
-14.6	0.114
-14.8	0.098
-15	0.082
-15.2	0.068
-15.4	0.055
-15.6	0.044
-15.8	0.033
-16	0.024
-16.2	0.016
-16.4	0.009
-16.6	0.007
-16.8	0.008
-17	0.011
-17.2	0.013
-17.4	0.015
-17.6	0.017
-17.8	0.018
-18	0.018
-18.2	0.018
-18.4	0.018
-18.6	0.017
-18.8	0.016
-19	0.015
-19.2	0.013
-19.4	0.011
-19.6	0.008
-19.8	0.005
-20	0.002
20	5.502

MANDATARIA:



PROGETTO ESECUTIVO

RELAZIONE DI CALCOLO

Grafico Inviluppi Tasso di Sfruttamento a Taglio - Caver

Inviluppi Tasso di Sfruttamento a Taglio – Caver

MANDATARIA:

Collegamento viario compreso tra lo Svincolo della S.S. 514 di "Chiaramonte" con la S.S. 115 e lo Svincolo della "Ragusana"

PROGETTO ESECUTIVO

RELAZIONE DI CALCOLO

PROGETTO ESECUTIVO

RELAZIONE DI CALCOLO

ALLEGATO 3: Risultati paratia di micropali - pila 1

Descrizione della Stratigrafia e degli Strati di Terreno

Tipo: HORIZONTAL

Quota:0 m OCR:5

Strato di	Terreno Terre	no γ dry	γ y sat	ø'	øcvøp c'	Su M	odulo Elastico Eu	Evc	Eur	Ah Av exp Pa Rur/Rv	c Rvc	Ku	Kvc	Kur
		kN/m	¹³kN/m	1 ³ °	° ° kP	a kPa		kPa	kPa	kPa	kPa k	N/m³	kN/m³	kN/m³
	1 a_fi	ne 18	18	25.5	5 10)	Constant	10000	16000					

Descrizione Pareti

X:0 m

Quota in alto: 0 m Quota di fondo: -12 m

Muro di sinistra

Sezione: MICROPALI BERLINESE

Area equivalente: 0.0280978482079417 m

Inerzia equivalente: 0.0001 m⁴/m Materiale calcestruzzo: C32/40 Tipo sezione: Tangent

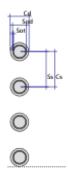
Spaziatura: 0.45 m Diametro: 0.24 m Efficacia: 1

Materiale acciaio: S275

Sezione: CHS177.8*12.5

Tipo sezione: O Spaziatura: 0.45 m Spessore: 0.0125 m Diametro: 0.1778 m

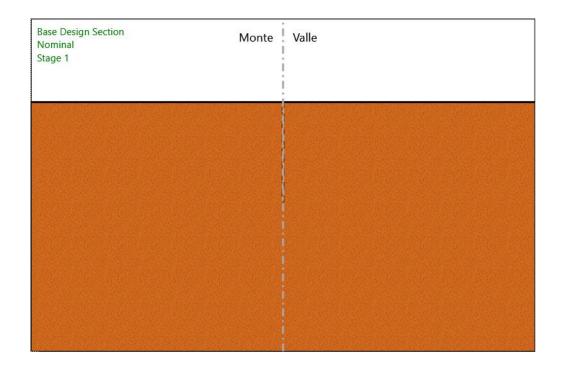
MANDATARIA:



Collegamento viario compreso tra lo Svincolo della S.S. 514 di "Chiaramonte" con la S.S. 115 e lo Svincolo della "Ragusana"

PROGETTO ESECUTIVO

RELAZIONE DI CALCOLO


Collegamento viario compreso tra lo Svincolo della S.S. 514 di "Chiaramonte" con la S.S. 115 e lo Svincolo della "Ragusana"

PROGETTO ESECUTIVO

RELAZIONE DI CALCOLO

Fasi di Calcolo

Stage 1

Stage 1

Scavo

Muro di sinistra

Lato monte: 0 m Lato valle: 0 m

Linea di scavo di sinistra (Orizzontale)

0 m

Linea di scavo di destra (Orizzontale)

MANDATARIA:

Collegamento viario compreso tra lo Svincolo della S.S. 514 di "Chiaramonte" con la S.S. 115 e lo Svincolo della "Ragusana"

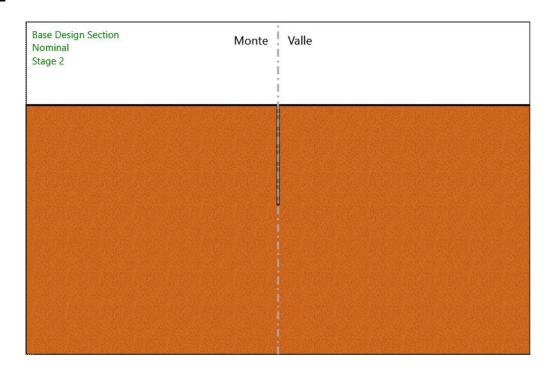
PROGETTO ESECUTIVO

RELAZIONE DI CALCOLO

0 m

MANDATARIA:

Direzione Progettazione e Realizzazione Lavori


Itinerario Ragusa - Catania

Collegamento viario compreso tra lo Svincolo della S.S. 514 di "Chiaramonte" con la S.S. 115 e lo Svincolo della "Ragusana"

PROGETTO ESECUTIVO

RELAZIONE DI CALCOLO

Stage 2

Stage 2

Scavo

Muro di sinistra

Lato monte : 0 m Lato valle: 0 m

Linea di scavo di sinistra (Orizzontale)

0 m

Linea di scavo di destra (Orizzontale)

0 m

Elementi strutturali

Paratia: WallElement

X:0 m

Quota in alto: 0 m Quota di fondo: -12 m

MANDATARIA:

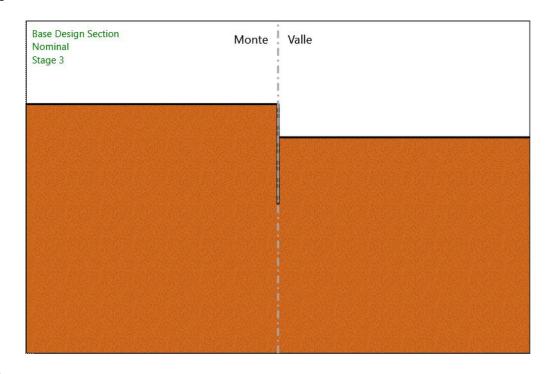
Collegamento viario compreso tra lo Svincolo della S.S. 514 di "Chiaramonte" con la S.S. 115 e lo Svincolo della "Ragusana"

PROGETTO ESECUTIVO

RELAZIONE DI CALCOLO

Sezione: MICROPALI BERLINESE

MANDATARIA:


Itinerario Ragusa - Catania

Collegamento viario compreso tra lo Svincolo della S.S. 514 di "Chiaramonte" con la S.S. 115 e lo Svincolo della "Ragusana"

PROGETTO ESECUTIVO

RELAZIONE DI CALCOLO

Stage 3

Stage 3

Scavo

Muro di sinistra

Lato monte: 0 m Lato valle: -4 m

Linea di scavo di sinistra (Orizzontale)

Linea di scavo di destra (Orizzontale)

-4 m

Elementi strutturali

Paratia: WallElement

X:0 m

Quota in alto: 0 m Quota di fondo : -12 m

MANDATARIA:

Collegamento viario compreso tra lo Svincolo della S.S. 514 di "Chiaramonte" con la S.S. 115 e lo Svincolo della "Ragusana"

PROGETTO ESECUTIVO

RELAZIONE DI CALCOLO

Sezione: MICROPALI BERLINESE

MANDATARIA:

PROGETTO ESECUTIVO

RELAZIONE DI CALCOLO

Tabella Configurazione Stage (Nominal)

PROGETTO ESECUTIVO

RELAZIONE DI CALCOLO

Descrizione Coefficienti Design Assumption

Nome	Carichi	Carichi	Carichi	Carichi	Carico	Pressio	Pressio	Carichi	Carichi	Carichi	Carichi	Carichi	Carichi
	Permanenti	Permanenti	Variabili	Variabili	Sismico	ni	ni	Permane	Perman	Variabili	Permane	Perman	Variabili
	Sfavorevoli	Favorevoli	Sfavorevoli	Favorevoli	(F_seis	Acqua	Acqua	nti	enti	Destabili	nti	enti	Destabili
	(F_dead_load	(F_dead_loa	(F_live_load	(F_live_loa	m_load)	Lato	Lato	Destabili	Stabilizz	zzanti	Destabili	Stabilizz	zzanti
	_unfavour)	d_favour)	_unfavour)	d_favour)		Monte	Valle	zzanti	anti	(F_UPL_	zzanti	anti	(F_HYD_
						(F_Wat	(F_Wat	(F_UPL_	(F_UPL_	QDStab)	(F_HYD_	(F_HYD_	QDStab)
						erDR)	erRes)	GDStab)	GStab)		GDStab)	GStab)	
Simbolo	γG	γG	γQ	γQ	γQE	γG	γG	γGdst	γGstb	γQdst	γGdst	γGstb	γQdst
Nominal	1	1	1	1	1	1	1	1	1	1	1	1	1
SLE	1	1	1	1	0	1	1	1	1	1	1	1	1
(Rara/Frequ													
ente/Quasi													
Permanente													
)	4.3	4	4 5	4	0	4.2	4	4	4	4	4.2	0.0	4
A1+M1+R1	1.3	1	1.5	1	0	1.3	1	1	1	1	1.3	0.9	1
(R3 per													
tiranti) A2+M2+R1	1	1	1.3	1	0	1	1	1	1	1	1.3	0.9	1
\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	1	1	1.3	1	U	_	1	1	1	1	1.5	0.5	_

Nome	Parziale su tan(ø')	Parziale su c'	Parziale su Su	Parziale su qu	Parziale su peso specifico
	(F_Fr)	(F_eff_cohe)	(F_Su)	(F_qu)	(F_gamma)
Simbolo	γф	γс	γcu	γqu	γγ
Nominal	1	1	1	1	1
SLE (Rara/Frequente/Quasi Permanente)	1	1	1	1	1
A1+M1+R1 (R3 per tiranti)	1	1	1	1	1
A2+M2+R1	1.25	1.25	1.4	1	1

Nome	Parziale resistenza terreno (es.	Parziale resistenza Tiranti	Parziale resistenza Tiranti	Parziale elementi
	Kp) (F_Soil_Res_walls)	permanenti (F_Anch_P)	temporanei (F_Anch_T)	strutturali (F_wall)
Simbolo	γRe	үар	γat	
Nominal	1	1	1	1
SLE (Rara/Frequente/Quasi Permanente)	1	1	1	1
A1+M1+R1 (R3 per tiranti)	1	1.2	1.1	1
A2+M2+R1	1	1.2	1.1	1

MANDATARIA:

PROGETTO ESECUTIVO

RELAZIONE DI CALCOLO

Descrizione sintetica dei risultati delle Design Assumption (Inviluppi)

Tabella Inviluppi Spostamento Left Wall

Design Assumption: Nominal		
Z (m)	Lato sinistro (mm)	Lato destro (mm)
0	0	24.029
-0.2	0	23.335
-0.4	0	22.641
-0.6	0	21.947
-0.8	0	21.253
-1	0	20.559
-1.2	0	19.865
-1.4	0	19.171
-1.6	0	18.477
-1.8	0	17.783
-2	0	17.089
-2.2	0	16.395
-2.4	0	15.701
-2.6	0	15.008
-2.8	0	14.316
-3	0	13.627
-3.2	0	12.942
-3.4	0	12.265
-3.6	0	11.597
-3.8	0	10.944
-4	0	10.31
-4.2	0	9.702
-4.4	0	9.126
-4.6	0	8.587
-4.8	0	8.087
-5	0	7.629
-5.2	0	7.214
-5.4	0	6.841
-5.6	0	6.509
-5.8	0	6.217
-6	0	5.962
-6.2	0	5.742
-6.4	0	5.554
-6.6	0	5.395
-6.8	0	5.263
-7	0	5.155
-7.2	0	5.067
-7.4	0	4.997
-7.6	0	4.943
-7.8	0	4.901
-8	0	4.871
-8.2	0	4.851
-8.4	0	4.837
-8.6	0	4.83
-8.8	0	4.827
-9	0	4.828
-9.2	0	4.832
J.L	•	1.032

MANDATARIA:

Collegamento viario compreso tra lo Svincolo della S.S. 514 di "Chiaramonte" con la S.S. 115 e lo Svincolo della "Ragusana"

PROGETTO ESECUTIVO

RELAZIONE DI CALCOLO

Inviluppi: Spostamento	Muro: LEFT
Lato sinistro (mm)	Lato destro (mm)
0	4.837
0	4.844
0	4.851
0	4.859
0	4.867
0	4.875
0	4.883
0	4.89
0	4.897
0	4.904
0	4.911
0	4.918
0	4.924
0	4.931
	0 0 0 0 0 0 0 0 0

MANDATARIA:

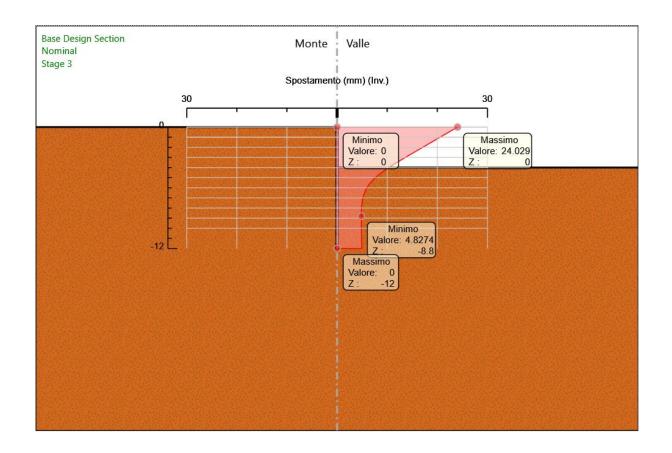
Collegamento viario compreso tra lo Svincolo della S.S. 514 di "Chiaramonte" con la S.S. 115 e lo Svincolo della "Ragusana"

PROGETTO ESECUTIVO

RELAZIONE DI CALCOLO

Grafico Inviluppi Spostamento

MANDATARIA:



Direzione Progettazione e Realizzazione Lavori

Collegamento viario compreso tra lo Svincolo della S.S. 514 di "Chiaramonte" con la S.S. 115 e lo Svincolo della "Ragusana"

PROGETTO ESECUTIVO

RELAZIONE DI CALCOLO

Spostamento

MANDATARIA:

Collegamento viario compreso tra lo Svincolo della S.S. 514 di "Chiaramonte" con la S.S. 115 e lo Svincolo della "Ragusana"

PROGETTO ESECUTIVO

RELAZIONE DI CALCOLO

Tabella Inviluppi Momento WallElement

Design Assumption: Nomina	l Inviluppi: Momento	Muro: WallElement
Z (m)	Lato sinistro (kN*m/m)	Lato destro (kN*m/m)
0	0	0
-0.2	0	0
-0.4	0	0
-0.6	0	0
-0.8	0	0
-1	0	0
-1.2	0	0
-1.4	0	0
-1.6	0.037	0
-1.8	0.18	0
-2	0.496	0
-2.2	1.054	0
-2.4	1.923	0
-2.6	3.169	0
-2.8	4.863	0
-3	7.072	0
-3.2	9.863	0
-3.4	13.306	0
-3.6	17.469	0
-3.8	22.42	0
-4	28.227	0
-4.2	33.929	0
-4.4	39.22	0
-4.6	43.795	0
-4.8	47.351	0
-5	49.838	0
-5.2	51.234	0
-5.4	51.497	0
-5.6	50.58	0
-5.8	48.735	0
-6	46.187	0
-6.2	43.133	0
-6.4	39.741	0
-6.6	36.155	0
-6.8	32.494	0
-7	28.857	0
-7.2	25.321	0
-7.4	21.946	0
-7.6	18.778	0
-7.8	15.849	0
-8	13.177	0
-8.2	10.775	0
-8.4	8.644	0
-8.6	6.781	0
-8.8	5.176	0
-9	3.817	0
-9.2	2.688	0
-9.4	1.77	0
-9.6	1.045	0

MANDATARIA:

Collegamento viario compreso tra lo Svincolo della S.S. 514 di "Chiaramonte" con la S.S. 115 e lo Svincolo della "Ragusana"

PROGETTO ESECUTIVO

RELAZIONE DI CALCOLO

Design Assumption: Nominal	Inviluppi: Momento	Muro: WallElement
Z (m)	Lato sinistro (kN*m/m)	Lato destro (kN*m/m)
-9.8	0.492	0
-10	0.09	0
-10.2	0	0.181
-10.4	0	0.342
-10.6	0	0.413
-10.8	0	0.415
-11	0	0.365
-11.2	0	0.283
-11.4	0	0.188
-11.6	0	0.097
-11.8	0	0.029
-12	0	0

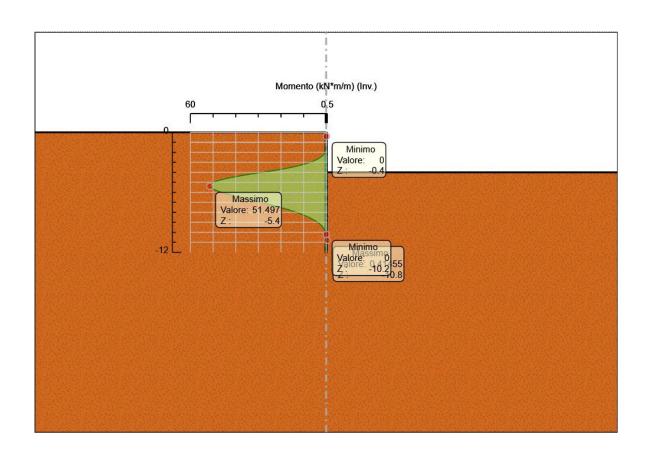
Collegamento viario compreso tra lo Svincolo della S.S. 514 di "Chiaramonte" con la S.S. 115 e lo Svincolo della "Ragusana"

PROGETTO ESECUTIVO

RELAZIONE DI CALCOLO

Grafico Inviluppi Momento

MANDATARIA:



PROGETTO ESECUTIVO

RELAZIONE DI CALCOLO

Momento

MANDATARIA:

Collegamento viario compreso tra lo Svincolo della S.S. 514 di "Chiaramonte" con la S.S. 115 e lo Svincolo della "Ragusana"

PROGETTO ESECUTIVO

RELAZIONE DI CALCOLO

Tabella Inviluppi Taglio WallElement

Design Assumption: Nominal	Inviluppi: Taglio	Muro: WallElemen
Z (m)	Lato sinistro (kN/m)	
0	0	0
-0.2	0	0
-0.4	0	0
-0.6	0	0
-0.8	0	0
-1	0	0
-1.2	0	0
-1.4	0.186	0
-1.6	0.713	0
-1.8	1.581	0
-2	2.791	0
-2.2	4.342	0
-2.4	6.234	0
-2.6	8.468	0
-2.8	11.043	0
-3	13.959	0
-3.2	17.216	0
-3.4	20.815	0
-3.6	24.755	0
-3.8	29.036	0
-4	29.036	0
-4.2	28.507	0
-4.4	26.455	0
-4.6	22.878	0
-4.8	17.777	0
-5	12.438	0.88
-5.2	6.978	3.608
-5.4	1.315	5.762
-5.6	0	9.223
-5.8	0	12.739
-6	0	15.272
-6.2	0	16.96
-6.4	0	17.93
-6.6	0	18.303
-6.8	0	18.303
-7	0	18.187
-7.2	0	17.681
-7.4	0	16.872
-7.6	0	15.839
-7.8	0	14.649
-8	0	13.357
-8.2	0	12.012
-8.4	0	10.655
-8.6	0	9.317
-8.8	0	8.023
-9	0	6.795
-9.2	0	5.646
-9.4	0	4.587
-9.6	0	3.626

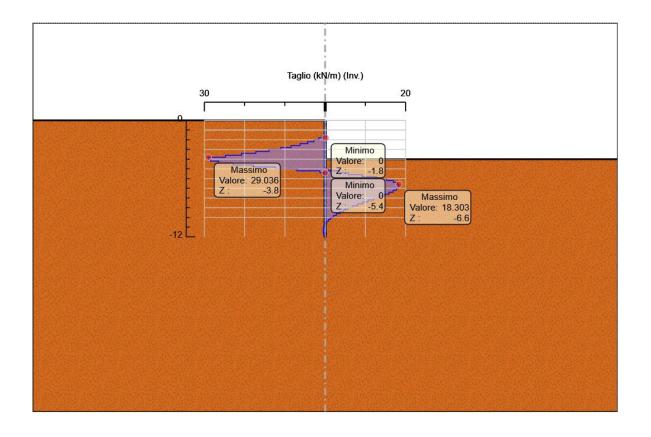
MANDATARIA:

Collegamento viario compreso tra lo Svincolo della S.S. 514 di "Chiaramonte" con la S.S. 115 e lo Svincolo della "Ragusana"

PROGETTO ESECUTIVO

RELAZIONE DI CALCOLO

Design Assumption: Nominal	Inviluppi: Taglio	Muro: WallElement
Z (m)	Lato sinistro (kN/m)	Lato destro (kN/m)
-9.8	0	2.766
-10	0	2.009
-10.2	0	1.356
-10.4	0	0.806
-10.6	0	0.356
-10.8	0.248	0.012
-11	0.408	0
-11.2	0.476	0
-11.4	0.476	0
-11.6	0.454	0
-11.8	0.342	0
-12	0.143	0



PROGETTO ESECUTIVO

RELAZIONE DI CALCOLO

Grafico Inviluppi Taglio

Collegamento viario compreso tra lo Svincolo della S.S. 514 di "Chiaramonte" con la S.S. 115 e lo Svincolo della "Ragusana"

PROGETTO ESECUTIVO

RELAZIONE DI CALCOLO

Taglio

MANDATARIA:

PROGETTO ESECUTIVO

RELAZIONE DI CALCOLO

Inviluppo Spinta Reale Efficace / Spinta Passiva

Design Assumption	Stage Muro	Lato Inviluppo Spinta Rea	ale Efficace / Spinta Passiva
			%
A2+M2+R1	Stage 3 Left Wall	LEFT	27.81
A2+M2+R1	Stage 3 Left Wall	RIGHT	59.95

PROGETTO ESECUTIVO

RELAZIONE DI CALCOLO

Inviluppo Spinta Reale Efficace / Spinta Attiva

Design Assumption	Stage Muro	Lato	Inviluppo Spinta Reale Efficace / Spinta Attiva
			%
A2+M2+R1	Stage 3 Left Wall	LEFT	208.44
A2+M2+R1	Stage 3 Left Wall	RIGHT	531.01

Itinerario Ragusa - Catania

Collegamento viario compreso tra lo Svincolo della S.S. 514 di "Chiaramonte" con la S.S. 115 e lo Svincolo della "Ragusana"

PROGETTO ESECUTIVO

RELAZIONE DI CALCOLO

Normative adottate per le verifiche degli Elementi Strutturali

Normative Verifiche

Calcestruzzo NTC NTC Acciaio NTC Tirante

Coefficienti per Verifica Tiranti

GEO FS 1.8 ξаЗ γs 1.15

Direzione Progettazione e

Realizzazione Lavori

Itinerario Ragusa - Catania

Collegamento viario compreso tra lo Svincolo della S.S. 514 di "Chiaramonte" con la S.S. 115 e lo Svincolo della "Ragusana"

PROGETTO ESECUTIVO

RELAZIONE DI CALCOLO

Riepilogo Stage / Design Assumption per Inviluppo

Design Assumption	Stage 1 Stage 2 Stage 3
SLE (Rara/Frequente/Quasi Permaner	nte) V
A1+M1+R1 (R3 per tiranti)	V
A2+M2+R1	V

PROGETTO ESECUTIVO

RELAZIONE DI CALCOLO

ALLEGATO 4: Risultati palancola - pila 2

Descrizione della Stratigrafia e degli Strati di Terreno

Tipo: HORIZONTAL

Quota:0 m OCR:5

Tipo: HORIZONTAL Quota:-11 m OCR: 15

Strato di Terreno	Terreno	γ dry	γ sat	ø'	øcvøp c'	Su Modulo	Elastico Eu	Evc	Eur	Ah Av exp Pa Rur/Rvo	Rvc	Ku	Kvc	Kur
	ı	kN/m³	kN/m	3 •	° ° kPa	kPa		kPa	kPa	kPa	kPa k	N/m³	kN/m³	kN/m³
1	a -argilla_fine	18	18	25.5	10	Con	stant :	10000	16000					
2	Qa	18	18	22.5	15	Con	stant :	150002	24000)				

Descrizione Pareti

X:5 m

Quota in alto: 0 m Quota di fondo: -15 m Muro di sinistra

Sezione: palancola

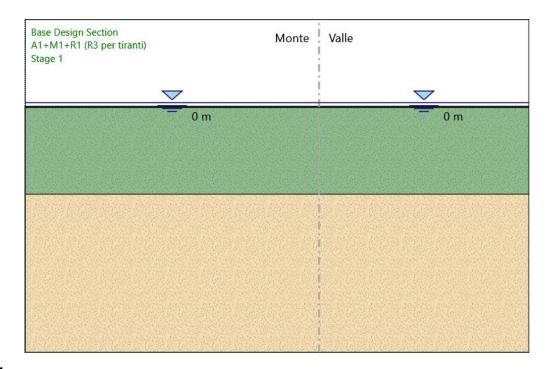
Area equivalente: 0.0291 m Inerzia equivalente: 0.0011 m⁴/m

Profilo palancola: AZ 46

Collegamento viario compreso tra lo Svincolo della S.S. 514 di "Chiaramonte" con la S.S. 115 e lo Svincolo della "Ragusana"

PROGETTO ESECUTIVO

RELAZIONE DI CALCOLO


PROGETTO ESECUTIVO

RELAZIONE DI CALCOLO

Fasi di Calcolo

Direzione Progettazione e

Realizzazione Lavori

Stage 1

Stage 1

Scavo

Muro di sinistra

Lato monte: -0.5 m Lato valle: -0.5 m

Linea di scavo di sinistra (Orizzontale)

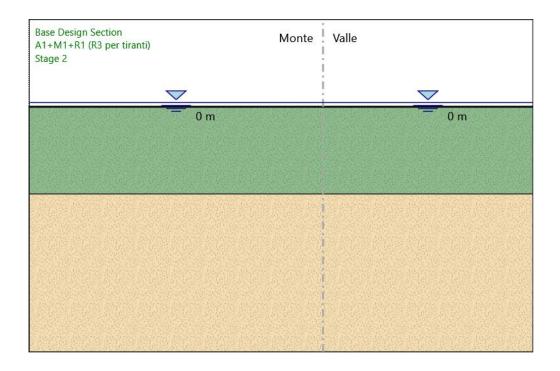
-0.5 m

Linea di scavo di destra (Orizzontale)

-0.5 m

MANDATARIA:

Collegamento viario compreso tra lo Svincolo della S.S. 514 di "Chiaramonte" con la S.S. 115 e lo Svincolo della "Ragusana"


PROGETTO ESECUTIVO

RELAZIONE DI CALCOLO

Falda acquifera

Falda di sinistra: 0 m Falda di destra: 0 m

Stage 2

Stage 2

Scavo

Muro di sinistra

Lato monte: -0.5 m Lato valle: -0.5 m

Linea di scavo di sinistra (Orizzontale)

-0.5 m

MANDATARIA:

Collegamento viario compreso tra lo Svincolo della S.S. 514 di "Chiaramonte" con la S.S. 115 e lo Svincolo della "Ragusana"

PROGETTO ESECUTIVO

RELAZIONE DI CALCOLO

Linea di scavo di destra (Orizzontale) -0.5 m

Falda acquifera

Falda di sinistra : 0 m Falda di destra : 0 m

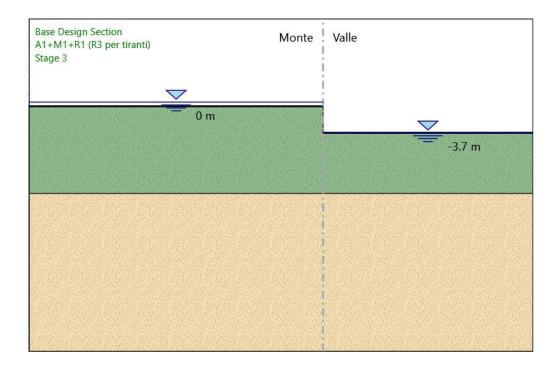
Elementi strutturali

Paratia: WallElement

X:5 m

Quota in alto : 0 m Quota di fondo : -15 m Sezione : palancola

MANDATARIA:



PROGETTO ESECUTIVO

RELAZIONE DI CALCOLO

Stage 3

Stage 3

Scavo

Muro di sinistra

Lato monte: -0.5 m Lato valle: -3.7 m

Linea di scavo di sinistra (Orizzontale)

-0.5 m

Linea di scavo di destra (Orizzontale)

-3.7 m

MANDATARIA:

Itinerario Ragusa - Catania

Collegamento viario compreso tra lo Svincolo della S.S. 514 di "Chiaramonte" con la S.S. 115 e lo Svincolo della "Ragusana"

PROGETTO ESECUTIVO

RELAZIONE DI CALCOLO

Falda acquifera

Falda di sinistra : 0 m Falda di destra : -3.7 m

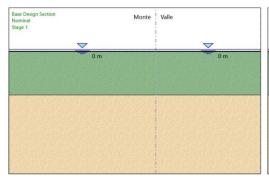
Elementi strutturali

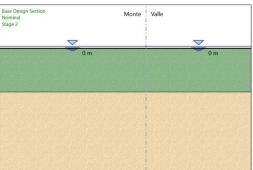
Paratia: WallElement

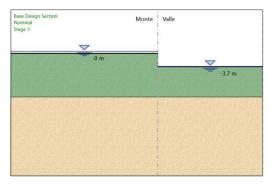
X:5 m

Quota in alto : 0 m Quota di fondo : -15 m Sezione : palancola

MANDATARIA:




Collegamento viario compreso tra lo Svincolo della S.S. 514 di "Chiaramonte" con la S.S. 115 e lo Svincolo della "Ragusana"


PROGETTO ESECUTIVO

RELAZIONE DI CALCOLO

Tabella Configurazione Stage (Nominal)

PROGETTO ESECUTIVO

RELAZIONE DI CALCOLO

Descrizione Coefficienti Design Assumption

Nome	Carichi	Carichi	Carichi	Carichi	Carico	Pressio	Pressio	Carichi	Carichi	Carichi	Carichi	Carichi	Carichi
	Permanenti	Permanenti	Variabili	Variabili	Sismico	ni	ni	Permane	Perman	Variabili	Permane	Perman	Variabili
	Sfavorevoli	Favorevoli	Sfavorevoli	Favorevoli	(F_seis	Acqua	Acqua	nti	enti	Destabili	nti	enti	Destabili
	(F_dead_load	(F_dead_loa	(F_live_load	(F_live_loa	m_load)	Lato	Lato	Destabili	Stabilizz	zzanti	Destabili	Stabilizz	zzanti
	_unfavour)	d_favour)	_unfavour)	d_favour)		Monte	Valle	zzanti	anti	(F_UPL_	zzanti	anti	(F_HYD_
						(F_Wat	(F_Wat	(F_UPL_	(F_UPL_	QDStab)	(F_HYD_	(F_HYD_	QDStab)
						erDR)	erRes)	GDStab)	GStab)		GDStab)	GStab)	
Simbolo	γG	γG	γQ	γQ	γQE	γG	γG	γGdst	γGstb	γQdst	γGdst	γGstb	γQdst
Nominal	1	1	1	1	1	1	1	1	1	1	1	1	1
SLE	1	1	1	1	0	1	1	1	1	1	1	1	1
(Rara/Frequ													
ente/Quasi													
Permanente													
)	4.3	4	4 5	4	0	4.2	4	4	4	4	4.2	0.0	4
A1+M1+R1	1.3	1	1.5	1	0	1.3	1	1	1	1	1.3	0.9	1
(R3 per													
tiranti) A2+M2+R1	1	1	1.3	1	0	1	1	1	1	1	1.3	0.9	1
\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	1	1	1.3	1	U	_	1	1	1	1	1.5	0.5	_

Nome	Parziale su tan(ø')	Parziale su c'	Parziale su Su	Parziale su qu	Parziale su peso specifico
	(F_Fr)	(F_eff_cohe)	(F_Su)	(F_qu)	(F_gamma)
Simbolo	γф	γс	γcu	γqu	γγ
Nominal	1	1	1	1	1
SLE (Rara/Frequente/Quasi Permanente)	1	1	1	1	1
A1+M1+R1 (R3 per tiranti)	1	1	1	1	1
A2+M2+R1	1.25	1.25	1.4	1	1

Nome	Parziale resistenza terreno (es.	Parziale resistenza Tiranti	Parziale resistenza Tiranti	Parziale elementi	
	Kp) (F_Soil_Res_walls)	permanenti (F_Anch_P)	temporanei (F_Anch_T)	strutturali (F_wall)	
Simbolo	γRe	үар	γat		
Nominal	1	1	1	1	
SLE (Rara/Frequente/Quasi Permanente)	1	1	1	1	
A1+M1+R1 (R3 per tiranti)	1	1.2	1.1	1	
A2+M2+R1	1	1.2	1.1	1	

MANDATARIA:

PROGETTO ESECUTIVO

RELAZIONE DI CALCOLO

Descrizione sintetica dei risultati delle Design Assumption (Inviluppi)

Tabella Inviluppi Spostamento Left Wall

Design Assumption: Nominal	Inviluppi: Spostament	o Muro: LEFT
Z (m)	Lato sinistro (mm)	Lato destro (mm)
0	0	29.757
-0.2	0	28.958
-0.4	0	28.159
-0.6	0	27.36
-0.8	0	26.561
-1	0	25.762
-1.2	0	24.963
-1.4	0	24.165
-1.6	0	23.368
-1.8	0	22.572
-2	0	21.777
-2.2	0	20.985
-2.4	0	20.195
-2.6	0	19.41
-2.8	0	18.628
-3	0	17.853
-3.2	0	17.085
-3.4	0	16.325
-3.6	0	15.576
-3.8	0	14.838
-4	0	14.115
-4.2	0	13.409
-4.4	0	12.72
-4.6	0	12.052
-4.8	0	11.406
-5	0	10.783
-5.2	0	10.185
-5.4	0	9.613
-5.6	0	9.068
-5.8	0	8.551
-6	0	8.062
-6.2	0	7.601
-6.4	0	7.169
-6.6	0	6.765
-6.8	0	6.389
-7	0	6.041
-7.2	0	5.719
-7.4	0	5.423
-7.6	0	5.152
-7.8	0	4.905
-8	0	4.682
-8.2	0	4.48
-8.4	0	4.298
-8.6	0	4.137
-8.8	0	3.994
-9 2.2	0	3.868
-9.2	0	3.758

MANDATARIA:

Collegamento viario compreso tra lo Svincolo della S.S. 514 di "Chiaramonte" con la S.S. 115 e lo Svincolo della "Ragusana"

PROGETTO ESECUTIVO

RELAZIONE DI CALCOLO

Design Assumption: Nominal	Inviluppi: Spostamento	o Muro: LEFT
Z (m)	Lato sinistro (mm)	Lato destro (mm
-9.4	0	3.663
-9.6	0	3.583
-9.8	0	3.515
-10	0	3.459
-10.2	0	3.414
-10.4	0	3.378
-10.6	0	3.352
-10.8	0	3.333
-11	0	3.322
-11.2	0	3.317
-11.4	0	3.317
-11.6	0	3.323
-11.8	0	3.332
-12	0	3.345
-12.2	0	3.361
-12.4	0	3.379
-12.6	0	3.399
-12.8	0	3.421
-13	0	3.445
-13.2	0	3.469
-13.4	0	3.494
-13.6	0	3.52
-13.8	0	3.546
-14	0	3.573
-14.2	0	3.6
-14.4	0	3.626
-14.6	0	3.653
-14.8	0	3.68
-15	0	3.707

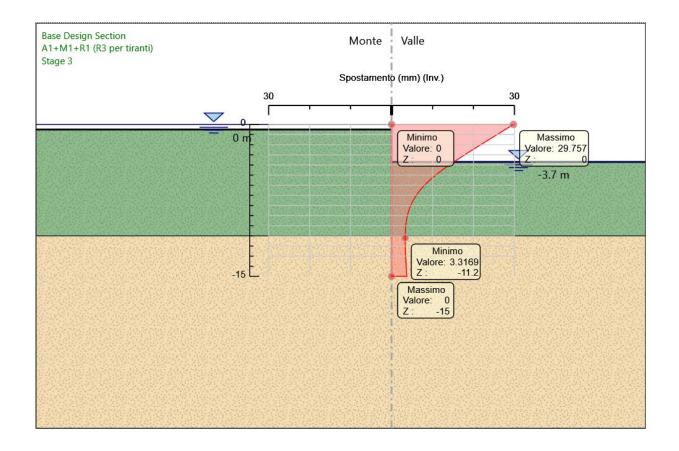
Collegamento viario compreso tra lo Svincolo della S.S. 514 di "Chiaramonte" con la S.S. 115 e lo Svincolo della "Ragusana"

PROGETTO ESECUTIVO

RELAZIONE DI CALCOLO

Grafico Inviluppi Spostamento

MANDATARIA:



PROGETTO ESECUTIVO

RELAZIONE DI CALCOLO

Spostamento

MANDATARIA:

Collegamento viario compreso tra lo Svincolo della S.S. 514 di "Chiaramonte" con la S.S. 115 e lo Svincolo della "Ragusana"

PROGETTO ESECUTIVO

RELAZIONE DI CALCOLO

Tabella Inviluppi Momento WallElement

Design Assumption: Nomina	al Inviluppi: Momento	Muro: WallElement
Z (m)	Lato sinistro (kN*m/m)	
0	0	0
-0.2	0	0
-0.4	0.104	0
-0.6	0.416	0
-0.8	1.033	0
-1	2.043	0
-1.2	3.536	0
-1.4	5.6	0
-1.6	8.326	0
-1.8	11.801	0
-2	16.116	0
-2.2	21.359	0
-2.4	27.619	0
-2.6	34.985	0
-2.8	43.547	0
-3	53.393	0
-3.2	64.612	0
-3.4	77.295	0
-3.6	91.529	0
-3.8	107.404	0
-4	122.944	0
-4.2	137.92	0
-4.4	152.116	0
-4.6	165.314	0
-4.8	177.298	0
-5	187.851	0
-5.2	196.756	0
-5.4	203.826	0
-5.6	209.12	0
-5.8	212.691	0
-6	214.588	0
-6.2	214.853	0
-6.4	213.521	0
-6.6	210.712	0
-6.8	206.63	0
-7 7.2	201.466	0
-7.2	195.392	0
-7.4	188.571	0
-7.6 7.9	181.146	0 0
-7.8	173.252	0
-8 0.2	165.008	
-8.2 -8.4	156.52 147.884	0 0
-8.6	139.183	0
-8.8	130.491	0
-8.8 -9	121.87	0
-9.2	113.374	0
-9.2 -9.4	105.048	0
-9.6	96.927	0
-9.0	30.327	J

MANDATARIA:

Collegamento viario compreso tra lo Svincolo della S.S. 514 di "Chiaramonte" con la S.S. 115 e lo Svincolo della "Ragusana"

PROGETTO ESECUTIVO

RELAZIONE DI CALCOLO

Design Assumption: Nominal Inviluppi: Momento Muro: WallElement Z (m) Lato sinistro (kN*m/m) Lato destro (kN*m/m) -9.8 89.042 81.412 0 -10 -10.2 74.055 0 -10.4 66.979 0 -10.6 60.188 0 -10.8 53.681 0 -11 0 47.453 -11.2 41.495 0 0 -11.4 36.009 -11.6 30.989 0 0 -11.8 26.427 -12 22.309 0 0 -12.2 18.622 -12.4 15.348 0 0 -12.6 12.467 -12.8 9.958 0 7.798 0 -13 -13.2 5.965 0 0 4.433 -13.4 -13.6 3.179 0 -13.8 2.176 0 0 -14 1.399 -14.2 0.823 0 0 -14.4 0.421

0.167

0.035

0

MANDATARIA:

MANDANTI:

-14.6

-14.8

-15

0

0

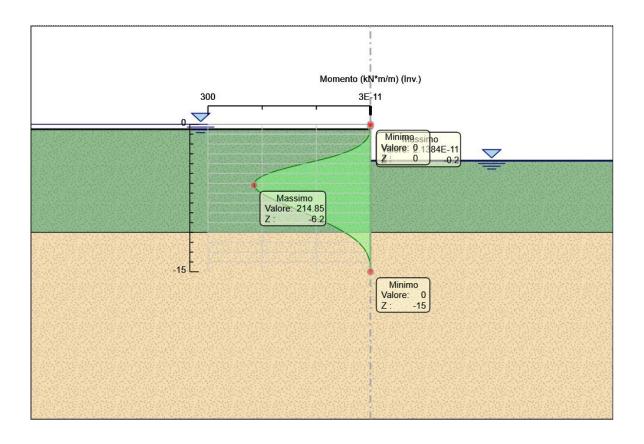
Collegamento viario compreso tra lo Svincolo della S.S. 514 di "Chiaramonte" con la S.S. 115 e lo Svincolo della "Ragusana"

PROGETTO ESECUTIVO

RELAZIONE DI CALCOLO

Grafico Inviluppi Momento

MANDATARIA:



PROGETTO ESECUTIVO

RELAZIONE DI CALCOLO

Momento

MANDATARIA:

Realizzazione Lavori

Collegamento viario compreso tra lo Svincolo della S.S. 514 di "Chiaramonte" con la S.S. 115 e lo Svincolo della "Ragusana"

PROGETTO ESECUTIVO

RELAZIONE DI CALCOLO

Tabella Inviluppi Taglio WallElement

Design Assumption: Nominal	I Inviluppi: Taglio	Muro: WallElemen
Z (m)	Lato sinistro (kN/m)	
0	0	0
-0.2	0.52	0
-0.4	1.56	0
-0.6	3.083	0
-0.8	5.051	0
-1	7.464	0
-1.2	10.323	0
-1.4	13.628	0
-1.6	17.378	0
-1.8	21.573	0
-2	26.214	0
-2.2	31.3	0
-2.4	36.831	0
-2.6	42.808	0
-2.8	49.231	0
-3	56.099	0
-3.2	63.412	0
-3.4	71.17	0
-3.6	79.375	0
-3.8	79.375	0
-4	77.7	0
-4.2	74.881	0
-4.4	70.979	0
-4.6	65.992	0
-4.8	59.92	0
-5	52.765	0
-5.2	44.524	0
-5.4	35.351	0
-5.6	26.47	0
-5.8	17.857	0
-6	9.484	0
-6.2	1.322	6.66
-6.4	0	14.044
-6.6	0	20.407
-6.8	0	25.823
-7	0	30.367
-7.2	0	34.109
-7.4	0	37.122
-7.6	0	39.471
-7.8	0	41.223
-8	0	42.439
-8.2	0	43.181
-8.4	0	43.504
-8.6	0	43.504
-8.8	0	43.461
-9	0	43.104
-9.2	0	42.479
-9.4	0	41.632
-9.6	0	40.602

MANDATARIA:

Realizzazione Lavori

Collegamento viario compreso tra lo Svincolo della S.S. 514 di "Chiaramonte" con la S.S. 115 e lo Svincolo della "Ragusana"

PROGETTO ESECUTIVO

RELAZIONE DI CALCOLO

Design Assumption: Nomina	l Inviluppi: Taglio	Muro: WallElemer
Z (m)	Lato sinistro (kN/m)) Lato destro (kN/m
-9.8	0	39.428
-10	0	38.146
-10.2	0	36.787
-10.4	0	35.381
-10.6	0	33.955
-10.8	0	32.534
-11	0	31.139
-11.2	0	29.79
-11.4	0	27.432
-11.6	0	25.1
-11.8	0	22.812
-12	0	20.586
-12.2	0	18.435
-12.4	0	16.372
-12.6	0	14.406
-12.8	0	12.546
-13	0	10.798
-13.2	0	9.167
-13.4	0	7.658
-13.6	0	6.272
-13.8	0	5.014
-14	0	3.884
-14.2	0	2.882
-14.4	0	2.011
-14.6	0	1.269
-14.8	0	0.658
-15	0	0.176

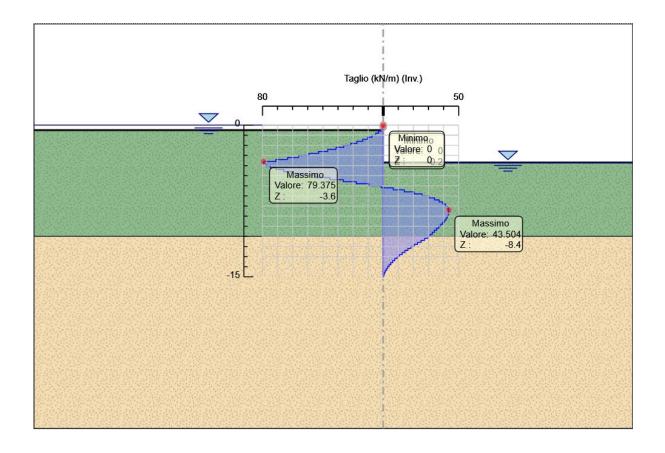
Collegamento viario compreso tra lo Svincolo della S.S. 514 di "Chiaramonte" con la S.S. 115 e lo Svincolo della "Ragusana"

PROGETTO ESECUTIVO

RELAZIONE DI CALCOLO

Grafico Inviluppi Taglio

MANDATARIA:



PROGETTO ESECUTIVO

RELAZIONE DI CALCOLO

Taglio

MANDATARIA:

PROGETTO ESECUTIVO

RELAZIONE DI CALCOLO

Inviluppo Spinta Reale Efficace / Spinta Passiva

Design Assumption	Stage	Muro	Lato	Inviluppo Spinta Reale Efficace / Spinta Passiva
				%
SLE (Rara/Frequente/Quasi Permanente	24.81			
SLE (Rara/Frequente/Quasi Permanente	66.07			

Svincolo della "Ragusana" PROGETTO ESECUTIVO

RELAZIONE DI CALCOLO

Inviluppo Spinta Reale Efficace / Spinta Attiva

GRUPPO FS ITALIANE

Direzione Progettazione e

Realizzazione Lavori

Design Assumption	Stage	Muro	Lato	Inviluppo Spinta Reale Efficace / Spinta Attiva
				%
SLE (Rara/Frequente/Quasi Permanente)	398.98			
SLE (Rara/Frequente/Quasi Permanente)	3074.19			

Realizzazione Lavori

Itinerario Ragusa - Catania

Collegamento viario compreso tra lo Svincolo della S.S. 514 di "Chiaramonte" con la S.S. 115 e lo Svincolo della "Ragusana"

PROGETTO ESECUTIVO

RELAZIONE DI CALCOLO

Normative adottate per le verifiche degli Elementi Strutturali

Normative Verifiche

Calcestruzzo NTC NTC Acciaio NTC Tirante

Coefficienti per Verifica Tiranti

GEO FS	1
ξα3	1.8
γs	1.15

Collegamento viario compreso tra lo Svincolo della S.S. 514 di "Chiaramonte" con la S.S. 115 e lo Svincolo della "Ragusana"

PROGETTO ESECUTIVO

RELAZIONE DI CALCOLO

Riepilogo Stage / Design Assumption per Inviluppo

Design Assumption	Stage 1Stage 2Stage 3
SLE (Rara/Frequente/Quasi Permanente)	V
A1+M1+R1 (R3 per tiranti)	V
A2+M2+R1	

PROGETTO ESECUTIVO

RELAZIONE DI CALCOLO

ALLEGATO 5: Risultati paratia di micropali - pila 3

Descrizione della Stratigrafia e degli Strati di Terreno

Tipo: HORIZONTAL

Quota:0 m OCR: 10

Tipo: HORIZONTAL Quota: -2.5 m

OCR : 5

Tipo: HORIZONTAL

Quota:-7 m OCR:6

Tipo: HORIZONTAL Quota: -14.5 m OCR: 3.5

Tipo: HORIZONTAL Quota: -19.5 m

OCR:2

Strato di Terreno	Terreno	γ dry	γ sat	ø'	øcvøp c'	Su Mod	lulo Elastico Eu	Evc	Eur	Ah Av exp Pa Rur/Rvo	Rvc K	u Kvc	Kur
		kN/m³	kN/m	3 •	°° kPa	kPa		kPa	kPa	kPa	kPa kN	/m³ kN/m³	kN/m³
1	a_fine_OCR10	18	18	25.5	10	C	Constant	10000	16000				
2	a_fine_OCR5	18	18	25.5	10	C	Constant	20000	32000	1			
3	Qa_OCR6	18	18	22.5	15	C	Constant	15000	24000	1			
4	Qa_OCR3.5	18	18	22.5	15	C	Constant	25000	40000	1			
5	Qa_OCR2	18	18	22.5	15	C	Constant	40000	64000	1			

MANDATARIA:

Collegamento viario compreso tra lo Svincolo della S.S. 514 di "Chiaramonte" con la S.S. 115 e lo Svincolo della "Ragusana"

PROGETTO ESECUTIVO

RELAZIONE DI CALCOLO

Descrizione Pareti

X:0 m

Quota in alto: 0 m Quota di fondo: -8 m Muro di sinistra

Sezione: MICROPALI BERLINESE

Area equivalente: 0.0280978482079417 m

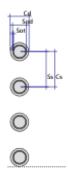
Inerzia equivalente : 0.0001 m⁴/m Materiale calcestruzzo: C32/40 Tipo sezione: Tangent Spaziatura: 0.45 m

Diametro: 0.24 m

Efficacia: 1 Materiale acciaio: S275

Sezione: CHS177.8*12.5

Tipo sezione: O Spaziatura: 0.45 m Spessore: 0.0125 m Diametro: 0.1778 m



Collegamento viario compreso tra lo Svincolo della S.S. 514 di "Chiaramonte" con la S.S. 115 e lo Svincolo della "Ragusana"

PROGETTO ESECUTIVO

RELAZIONE DI CALCOLO

Collegamento viario compreso tra lo Svincolo della S.S. 514 di "Chiaramonte" con la S.S. 115 e lo Svincolo della "Ragusana"

PROGETTO ESECUTIVO

RELAZIONE DI CALCOLO

Fasi di Calcolo

Stage 1

Base Design Section A1+M1+R1 (R3 per tiranti) Stage 1	Monte	Valle

Stage 1

Scavo

Muro di sinistra

Lato monte : 0 m Lato valle : 0 m

Linea di scavo di sinistra (Orizzontale)

0 m

Linea di scavo di destra (Orizzontale)

MANDATARIA:

Collegamento viario compreso tra lo Svincolo della S.S. 514 di "Chiaramonte" con la S.S. 115 e lo Svincolo della "Ragusana"

PROGETTO ESECUTIVO

RELAZIONE DI CALCOLO

0 m

MANDATARIA:

Direzione Progettazione e Realizzazione Lavori

Itinerario Ragusa - Catania

Collegamento viario compreso tra lo Svincolo della S.S. 514 di "Chiaramonte" con la S.S. 115 e lo Svincolo della "Ragusana"

PROGETTO ESECUTIVO

RELAZIONE DI CALCOLO

Stage 2

Base Design Section A1+M1+R1 (R3 per tiranti) Stage 2	Monte	Valle

Stage 2

Scavo

Muro di sinistra

Lato monte : 0 m Lato valle: 0 m

Linea di scavo di sinistra (Orizzontale)

0 m

Linea di scavo di destra (Orizzontale)

0 m

Elementi strutturali

Paratia: WallElement X:0 m

> Quota in alto: 0 m Quota di fondo: -8 m

MANDATARIA:

Collegamento viario compreso tra lo Svincolo della S.S. 514 di "Chiaramonte" con la S.S. 115 e lo Svincolo della "Ragusana"

PROGETTO ESECUTIVO

RELAZIONE DI CALCOLO

Sezione: MICROPALI BERLINESE

MANDATARIA:

Collegamento viario compreso tra lo Svincolo della S.S. 514 di "Chiaramonte" con la S.S. 115 e lo Svincolo della "Ragusana"

PROGETTO ESECUTIVO

RELAZIONE DI CALCOLO

Stage 3

Base Design Section A1+M1+R1 (R3 per tiranti) Stage 3	Monte	Valle					

Stage 3

Scavo

Muro di sinistra

Lato monte : 0 m Lato valle : -3 m

Linea di scavo di sinistra (Orizzontale)

0 m

Linea di scavo di destra (Orizzontale)

-3 m

Elementi strutturali

Paratia: WallElement

X:0 m

Quota in alto: 0 m Quota di fondo: -8 m

MANDATARIA:

Collegamento viario compreso tra lo Svincolo della S.S. 514 di "Chiaramonte" con la S.S. 115 e lo Svincolo della "Ragusana"

PROGETTO ESECUTIVO

RELAZIONE DI CALCOLO

Sezione: MICROPALI BERLINESE

MANDATARIA:

Collegamento viario compreso tra lo Svincolo della S.S. 514 di "Chiaramonte" con la S.S. 115 e lo Svincolo della "Ragusana"

PROGETTO ESECUTIVO

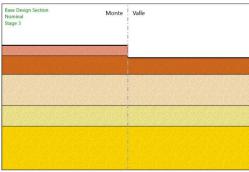

RELAZIONE DI CALCOLO

Tabella Configurazione Stage (Nominal)

Direzione Progettazione e

Realizzazione Lavori

Base Design Section Monte Nominal Stage 1	Valle	Base Design Section Monte Nominal Stage 2	Valle
Base Design Section Monte Nominal Stage 3	. Valle		

PROGETTO ESECUTIVO

RELAZIONE DI CALCOLO

Descrizione Coefficienti Design Assumption

Nome	Carichi	Carichi	Carichi	Carichi	Carico	Pressio	Pressio	Carichi	Carichi	Carichi	Carichi	Carichi	Carichi
	Permanenti	Permanenti	Variabili	Variabili	Sismico	ni	ni	Permane	Perman	Variabili	Permane	Perman	Variabili
	Sfavorevoli	Favorevoli	Sfavorevoli	Favorevoli	(F_seis	Acqua	Acqua	nti	enti	Destabili	nti	enti	Destabili
	(F_dead_load	(F_dead_loa	(F_live_load	(F_live_loa	m_load)	Lato	Lato	Destabili	Stabilizz	zzanti	Destabili	Stabilizz	zzanti
	_unfavour)	d_favour)	_unfavour)	d_favour)		Monte	Valle	zzanti	anti	(F_UPL_	zzanti	anti	(F_HYD_
						(F_Wat	(F_Wat	(F_UPL_	(F_UPL_	QDStab)	(F_HYD_	(F_HYD_	QDStab)
						erDR)	erRes)	GDStab)	GStab)		GDStab)	GStab)	
Simbolo	γG	γG	γQ	γQ	γQE	γG	γG	γGdst	γGstb	γQdst	γGdst	γGstb	γQdst
Nominal	1	1	1	1	1	1	1	1	1	1	1	1	1
SLE	1	1	1	1	0	1	1	1	1	1	1	1	1
(Rara/Frequ ente/Quasi													
Permanente													
)													
A1+M1+R1	1.3	1	1.5	1	0	1.3	1	1	1	1	1.3	0.9	1
(R3 per													
tiranti)													
A2+M2+R1	1	1	1.3	1	0	1	1	1	1	1	1.3	0.9	1

Nome	Parziale su tan(ø')	Parziale su c'	Parziale su Su	Parziale su qu	Parziale su peso specifico
	(F_Fr)	(F_eff_cohe)	(F_Su)	(F_qu)	(F_gamma)
Simbolo	γф	γс	γcu	γqu	γγ
Nominal	1	1	1	1	1
SLE (Rara/Frequente/Quasi Permanente)	1	1	1	1	1
A1+M1+R1 (R3 per tiranti)	1	1	1	1	1
A2+M2+R1	1.25	1.25	1.4	1	1

Nome	Parziale resistenza terreno (es. Kp)	Parziale resistenza Tiranti	Parziale resistenza Tiranti	Parziale elementi		
	(F_Soil_Res_walls)	permanenti (F_Anch_P)	temporanei (F_Anch_T)	strutturali (F_wall)		
Simbolo	γRe	үар	γat			
Nominal	1	1	1	1		
SLE	1	1	1	1		
(Rara/Frequente/Quasi						
Permanente)						
A1+M1+R1 (R3 per tiranti)	1	1.2	1.1	1		
A2+M2+R1	1	1.2	1.1	1		

MANDATARIA:

PROGETTO ESECUTIVO

RELAZIONE DI CALCOLO

Descrizione sintetica dei risultati delle Design Assumption (Inviluppi)

Tabella Inviluppi Spostamento Left Wall

Design Assumption: Nominal	Inviluppi: Spostament	o Muro: LEFT
Z (m)	Lato sinistro (mm)	Lato destro (mm)
0	0	10.27
-0.2	0	9.823
-0.4	0	9.376
-0.6	0	8.928
-0.8	0	8.481
-1	0	8.034
-1.2	0	7.586
-1.4	0	7.139
-1.6	0	6.692
-1.8	0	6.244
-2	0	5.797
-2.2	0	5.351
-2.4	0	4.908
-2.6	0	4.471
-2.8	0	4.048
-3	0	3.645
-3.2	0	3.269
-3.4	0	2.925
-3.6	0	2.618
-3.8	0	2.347
-4	0	2.114
-4.2	0	1.916
-4.4	0	1.753
-4.6	0	1.621
-4.8	0	1.519
-5	0	1.442
-5.2	0	1.388
-5.4	0	1.354
-5.6	0	1.338
-5.8	0	1.338
-6	0	1.352
-6.2	0	1.377
-6.4	0	1.413
-6.6	0	1.457
-6.8	0	1.509
-7	0	1.567
-7.2	0	1.629
-7.4	0	1.694
-7.6	0	1.76
-7.8	0	1.826
-8	0	1.893

MANDATARIA:

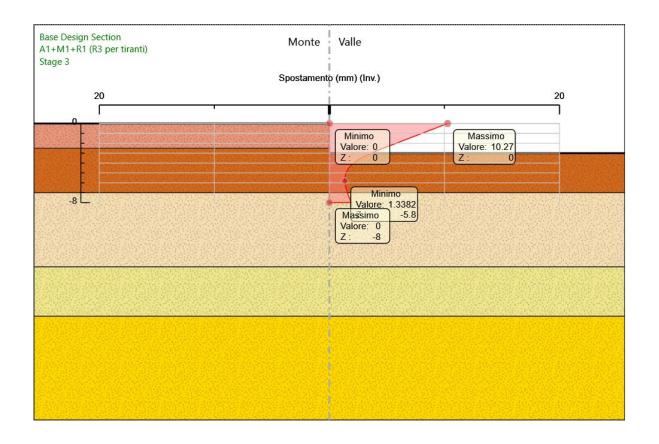
Collegamento viario compreso tra lo Svincolo della S.S. 514 di "Chiaramonte" con la S.S. 115 e lo Svincolo della "Ragusana"

PROGETTO ESECUTIVO

RELAZIONE DI CALCOLO

Grafico Inviluppi Spostamento

MANDATARIA:



Collegamento viario compreso tra lo Svincolo della S.S. 514 di "Chiaramonte" con la S.S. 115 e lo Svincolo della "Ragusana"

PROGETTO ESECUTIVO

RELAZIONE DI CALCOLO

Spostamento

MANDATARIA:

Realizzazione Lavori

Collegamento viario compreso tra lo Svincolo della S.S. 514 di "Chiaramonte" con la S.S. 115 e lo Svincolo della "Ragusana"

PROGETTO ESECUTIVO

RELAZIONE DI CALCOLO

Tabella Inviluppi Momento WallElement

Design Assumption, Namina	l Invilvania Managata	Mura WallFlamont
Design Assumption: Nominal		
Z (m)	Lato sinistro (kN*m/m)	
0	0	0
-0.2	0	0
-0.4	0	0
-0.6	0	0
-0.8	0	0
-1	0	0
-1.2	0	0
-1.4	0	0
-1.6	0.037	0
-1.8	0.18	0
-2	0.514	0
-2.2	1.822	0
-2.4	4.455	0
-2.6	8.809	0
-2.8	13.476	0
-3	18.529	0
-3.2	22.238	0
-3.4	24.437	0
-3.6	25.368	0
-3.8	25.295	0
-4	24.465	0
-4.2	23.099	0
-4.4	21.387	0
-4.6	19.486	0
-4.8	17.52	0
-5	15.586	0
-5.2	13.763	0
-5.4	12.09	0
-5.6	10.544	0
-5.8	9.193	0
-6	7.998	0
-6.2	6.932	0
-6.4	5.952	0
-6.6	5.005	0
-6.8	4.031	0
-7	2.958	0
-7.2	1.71	0
-7.4	0.856	0
-7.6	0.33	0
-7.8	0.066	0
-8	0	0



PROGETTO ESECUTIVO

RELAZIONE DI CALCOLO

Grafico Inviluppi Momento

Collegamento viario compreso tra lo Svincolo della S.S. 514 di "Chiaramonte" con la S.S. 115 e lo Svincolo della "Ragusana"

PROGETTO ESECUTIVO

RELAZIONE DI CALCOLO

Momento

MANDATARIA:

Realizzazione Lavori

Collegamento viario compreso tra lo Svincolo della S.S. 514 di "Chiaramonte" con la S.S. 115 e lo Svincolo della "Ragusana"

PROGETTO ESECUTIVO

RELAZIONE DI CALCOLO

Tabella Inviluppi Taglio WallElement

Design Assumption: Nomina		
Z (m)) Lato destro (kN/m)
0	0	0
-0.2	0	0
-0.4	0	0
-0.6	0	0
-0.8	0	0
-1	0	0
-1.2	0	0
-1.4	0.186	0
-1.6	0.713	0
-1.8	2.327	0
-2	6.683	0
-2.2	13.166	0
-2.4	21.771	0
-2.6	23.333	0
-2.8	25.268	0
-3	25.268	0
-3.2	18.545	0
-3.4	13.434	0
-3.6	9.271	0.366
-3.8	4.906	4.149
-4	0.246	6.829
-4.2	0	8.561
-4.4	0	9.508
-4.6	0	9.828
-4.8	0	9.828
-5	0	9.669
-5.2	0	9.166
-5.4	0	8.442
-5.6	0	7.793
-5.8	0	7.119
-6	0	6.43
-6.2	0	5.8
-6.4	0	5.294
-6.6	0	4.965
-6.8	0	5.364
-7	0	6.239
-7.2	0	6.239
-7.4	0	4.273
-7.6	0	2.631
-7.8	0	1.317
-8	0	0.33

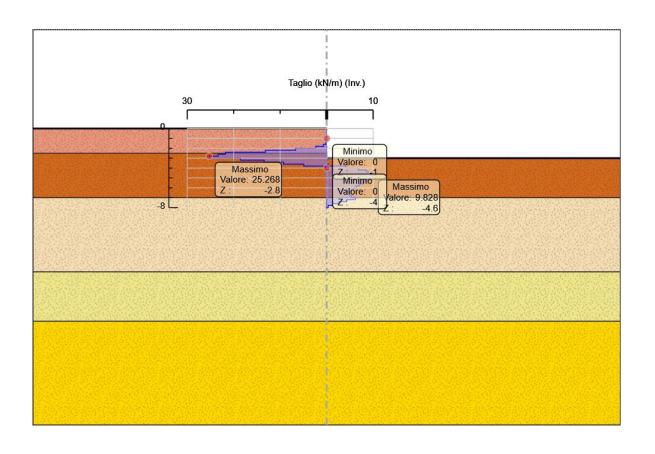
Collegamento viario compreso tra lo Svincolo della S.S. 514 di "Chiaramonte" con la S.S. 115 e lo Svincolo della "Ragusana"

PROGETTO ESECUTIVO

RELAZIONE DI CALCOLO

Grafico Inviluppi Taglio

MANDATARIA:



PROGETTO ESECUTIVO

RELAZIONE DI CALCOLO

Taglio

MANDATARIA:

PROGETTO ESECUTIVO

RELAZIONE DI CALCOLO

Inviluppo Spinta Reale Efficace / Spinta Passiva

Design Assumption	Stage Muro	Lato	Inviluppo Spinta Reale Efficace / Spinta Passiva
			%
A2+M2+R1	Stage 3 Left Wal	LEFT	26.74
A2+M2+R1	Stage 3 Left Wal	RIGH	Г 63.72

PROGETTO ESECUTIVO

RELAZIONE DI CALCOLO

Inviluppo Spinta Reale Efficace / Spinta Attiva

Design Assumption Stage M		Lato	Inviluppo Spinta Reale Efficace / Spinta Attiva
			%
A2+M2+R1	Stage 3 Left Wa	II LEFT	232.39
A2+M2+R1	Stage 3 Left Wa	II RIGH	Г 790.02

Realizzazione Lavori

Itinerario Ragusa - Catania

Collegamento viario compreso tra lo Svincolo della S.S. 514 di "Chiaramonte" con la S.S. 115 e lo Svincolo della "Ragusana"

PROGETTO ESECUTIVO

RELAZIONE DI CALCOLO

Normative adottate per le verifiche degli Elementi Strutturali

Normative Verifiche

Calcestruzzo NTC NTC Acciaio NTC Tirante

Coefficienti per Verifica Tiranti

GEO FS 1.8 ξаЗ γs 1.15

Direzione Progettazione e

Realizzazione Lavori

Itinerario Ragusa - Catania

Collegamento viario compreso tra lo Svincolo della S.S. 514 di "Chiaramonte" con la S.S. 115 e lo Svincolo della "Ragusana"

PROGETTO ESECUTIVO

RELAZIONE DI CALCOLO

Riepilogo Stage / Design Assumption per Inviluppo

Design Assumption	Stage 1Stage 2Stage 3
SLE (Rara/Frequente/Quasi Permanente)	V
A1+M1+R1 (R3 per tiranti)	V
A2+M2+R1	V

RELAZIONE DI CALCOLO

ALLEGATO 5: Risultati paratia di micropali - pila 4

Descrizione della Stratigrafia e degli Strati di Terreno

Tipo: HORIZONTAL

Quota:0 m OCR:0

Tipo: HORIZONTAL Quota: -10 m OCR:0

Strato di Terreno	Terreno	γ dry	γ sat	ø' øcv	øp c' Su l	Modulo Elastico Eu	Evc	Eur	Ah Av exp Pa Rur/Rvc	Rvc Ku	Kvc	Kur
		kN/m ³	kN/m ³		° kPa kPa		kPa	kPa	kPa l	kPa kN/m³	kN/m³	kN/m³
1	Pvl-GG_E87	16.5	16.5	44	0	Constant	87500	140000				
2	Pvl-GG E150	16.5	16.5	44	0	Constant	150000	240000)			

Collegamento viario compreso tra lo Svincolo della S.S. 514 di "Chiaramonte" con la S.S. 115 e lo Svincolo della "Ragusana"

PROGETTO ESECUTIVO

RELAZIONE DI CALCOLO

Descrizione Pareti

X:0 m

Quota in alto: 0 m Quota di fondo: -12 m

Muro di sinistra

Sezione: MICROPALI BERLINESE

Area equivalente: 0.0280978482079417 m

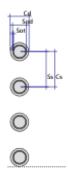
Inerzia equivalente : 0.0001 m⁴/m Materiale calcestruzzo: C32/40 Tipo sezione: Tangent Spaziatura: 0.45 m

Diametro: 0.24 m

Efficacia: 1 Materiale acciaio: S275

Sezione: CHS177.8*12.5

Tipo sezione: O Spaziatura: 0.45 m Spessore: 0.0125 m Diametro: 0.1778 m



Collegamento viario compreso tra lo Svincolo della S.S. 514 di "Chiaramonte" con la S.S. 115 e lo Svincolo della "Ragusana"

PROGETTO ESECUTIVO

RELAZIONE DI CALCOLO

Collegamento viario compreso tra lo Svincolo della S.S. 514 di "Chiaramonte" con la S.S. 115 e lo Svincolo della "Ragusana"

PROGETTO ESECUTIVO

RELAZIONE DI CALCOLO

Fasi di Calcolo

Stage 1

Base Design Section Nominal Stage 1	Monte	Valle

Stage 1

Scavo

Muro di sinistra

Lato monte: 0 m Lato valle: 0 m

Linea di scavo di sinistra (Orizzontale)

0 m

Linea di scavo di destra (Orizzontale)

MANDATARIA:

Collegamento viario compreso tra lo Svincolo della S.S. 514 di "Chiaramonte" con la S.S. 115 e lo Svincolo della "Ragusana"

PROGETTO ESECUTIVO

RELAZIONE DI CALCOLO

0 m

MANDATARIA:

Direzione Progettazione e Realizzazione Lavori

Itinerario Ragusa - Catania

Collegamento viario compreso tra lo Svincolo della S.S. 514 di "Chiaramonte" con la S.S. 115 e lo Svincolo della "Ragusana"

PROGETTO ESECUTIVO

RELAZIONE DI CALCOLO

Stage 2

Base Design Section Nominal Stage 2	Monte	Valle

Stage 2

Scavo

Muro di sinistra

Lato monte : 0 m Lato valle: 0 m

Linea di scavo di sinistra (Orizzontale)

0 m

Linea di scavo di destra (Orizzontale)

0 m

Elementi strutturali

Paratia: WallElement

X:0 m

Quota in alto: 0 m Quota di fondo: -12 m

MANDATARIA:

Collegamento viario compreso tra lo Svincolo della S.S. 514 di "Chiaramonte" con la S.S. 115 e lo Svincolo della "Ragusana"

PROGETTO ESECUTIVO

RELAZIONE DI CALCOLO

Sezione: MICROPALI BERLINESE

MANDATARIA:

Direzione Progettazione e Realizzazione Lavori

Itinerario Ragusa - Catania

Collegamento viario compreso tra lo Svincolo della S.S. 514 di "Chiaramonte" con la S.S. 115 e lo Svincolo della "Ragusana"

PROGETTO ESECUTIVO

RELAZIONE DI CALCOLO

Stage 3

Base Design Section Nominal Stage 3	Monte	Valle

Stage 3

Scavo

Muro di sinistra

Lato monte : 0 m Lato valle: -4.5 m

Linea di scavo di sinistra (Orizzontale)

Linea di scavo di destra (Orizzontale)

-4.5 m

Elementi strutturali

Paratia: WallElement X:0 m

> Quota in alto: 0 m Quota di fondo: -12 m

MANDATARIA:

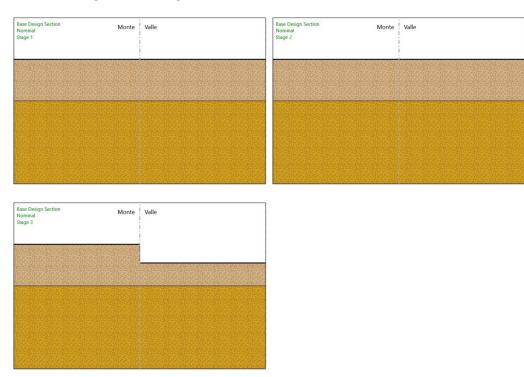
Collegamento viario compreso tra lo Svincolo della S.S. 514 di "Chiaramonte" con la S.S. 115 e lo Svincolo della "Ragusana"

PROGETTO ESECUTIVO

RELAZIONE DI CALCOLO

Sezione: MICROPALI BERLINESE

MANDATARIA:


Itinerario Ragusa - Catania

Collegamento viario compreso tra lo Svincolo della S.S. 514 di "Chiaramonte" con la S.S. 115 e lo Svincolo della "Ragusana"

PROGETTO ESECUTIVO

RELAZIONE DI CALCOLO

Tabella Configurazione Stage (Nominal)

PROGETTO ESECUTIVO

RELAZIONE DI CALCOLO

Descrizione Coefficienti Design Assumption

Nome	Carichi	Carichi	Carichi	Carichi	Carico	Pressio	Pressio	Carichi	Carichi	Carichi	Carichi	Carichi	Carichi
	Permanenti	Permanenti	Variabili	Variabili	Sismico	ni	ni	Permane	Perman	Variabili	Permane	Perman	Variabili
	Sfavorevoli	Favorevoli	Sfavorevoli	Favorevoli	(F_seis	Acqua	Acqua	nti	enti	Destabili	nti	enti	Destabili
	(F_dead_load	(F_dead_loa	(F_live_load	(F_live_loa	m_load)	Lato	Lato	Destabili	Stabilizz	zzanti	Destabili	Stabilizz	zzanti
	_unfavour)	d_favour)	_unfavour)	d_favour)		Monte	Valle	zzanti	anti	(F_UPL_	zzanti	anti	(F_HYD_
						(F_Wat	(F_Wat	(F_UPL_	(F_UPL_	QDStab)	(F_HYD_	(F_HYD_	QDStab)
						erDR)	erRes)	GDStab)	GStab)		GDStab)	GStab)	
Simbolo	γG	γG	γQ	γQ	γQE	γG	γG	γGdst	γGstb	γQdst	γGdst	γGstb	γQdst
Nominal	1	1	1	1	1	1	1	1	1	1	1	1	1
SLE	1	1	1	1	0	1	1	1	1	1	1	1	1
(Rara/Frequ ente/Quasi													
Permanente													
)													
A1+M1+R1	1.3	1	1.5	1	0	1.3	1	1	1	1	1.3	0.9	1
(R3 per													
tiranti)													
A2+M2+R1	1	1	1.3	1	0	1	1	1	1	1	1.3	0.9	1

Nome	Parziale su tan(ø')	Parziale su c'	Parziale su Su	Parziale su qu	Parziale su peso specifico
	(F_Fr)	(F_eff_cohe)	(F_Su)	(F_qu)	(F_gamma)
Simbolo	γф	γс	γcu	γqu	γγ
Nominal	1	1	1	1	1
SLE (Rara/Frequente/Quasi Permanente)	1	1	1	1	1
A1+M1+R1 (R3 per tiranti)	1	1	1	1	1
A2+M2+R1	1.25	1.25	1.4	1	1

Nome	Parziale resistenza terreno (es.	Parziale resistenza Tiranti	Parziale resistenza Tiranti	Parziale elementi
	Kp) (F_Soil_Res_walls)	permanenti (F_Anch_P)	temporanei (F_Anch_T)	strutturali (F_wall)
Simbolo	γRe	үар	γat	
Nominal	1	1	1	1
SLE (Rara/Frequente/Quasi Permanente)	1	1	1	1
A1+M1+R1 (R3 per tiranti)	1	1.2	1.1	1
A2+M2+R1	1	1.2	1.1	1

MANDATARIA:

Collegamento viario compreso tra lo Svincolo della S.S. 514 di "Chiaramonte" con la S.S. 115 e lo Svincolo della "Ragusana"

PROGETTO ESECUTIVO

RELAZIONE DI CALCOLO

Descrizione sintetica dei risultati delle Design Assumption (Inviluppi)

Tabella Inviluppi Spostamento Left Wall

Destruction New York		
Design Assumption: Nominal		
Z (m)	Lato sinistro (mm)	Lato destro (mm)
0	0	41.478
-0.2	0	39.833
-0.4	0	38.189
-0.6	0	36.545
-0.8	0	34.901
-1	0	33.257
-1.2	0	31.614
-1.4	0	29.973
-1.6	0	28.335
-1.8	0	26.7
-2	0	25.071
-2.2	0	23.45
-2.4	0	21.839
-2.6	0	20.24
-2.8	0	18.659
-3	0	17.098
-3.2	0	15.564
-3.4	0	14.06
-3.6	0	12.594
-3.8	0	11.172
-4	0	9.802
-4.2	0	8.493
-4.4	0	7.255
-4.6	0	6.097
-4.8	0	5.032
-5	0	4.07
-5.2	0	3.219
-5.4	0	2.481
-5.6	0	1.857
-5.8	0	1.343
-6	0	0.932
-6.2	0	0.616
-6.4	0	0.382
-6.6	0	0.219
-6.8	0	0.115
-7	0	0.056
-7.2	0	0.031
-7.4	0	0.032
-7.6	0	0.048
-7.8	0	0.075
-8	0	0.107
-8.2	0	0.139
-8.4	0	0.169
-8.6	0	0.195
-8.8	0	0.216
-9	0	0.232
-9.2	0	0.242
-	-	-

MANDATARIA:

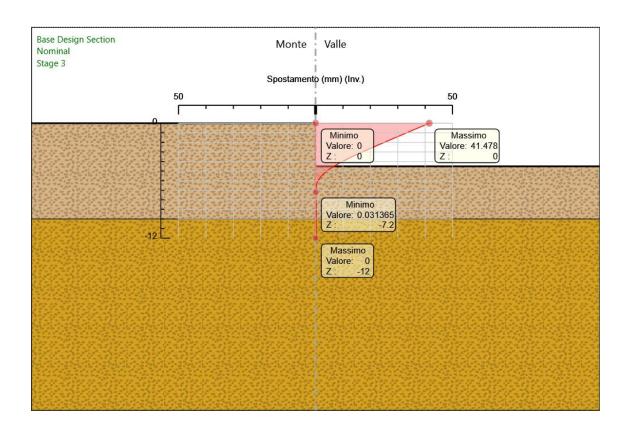
Collegamento viario compreso tra lo Svincolo della S.S. 514 di "Chiaramonte" con la S.S. 115 e lo Svincolo della "Ragusana"

PROGETTO ESECUTIVO

RELAZIONE DI CALCOLO

Design Assumption: Nominal	Inviluppi: Spostamento	Muro: LEFT
Z (m)	Lato sinistro (mm)	Lato destro (mm)
-9.4	0	0.246
-9.6	0	0.246
-9.8	0	0.241
-10	0	0.232
-10.2	0	0.221
-10.4	0	0.21
-10.6	0	0.199
-10.8	0	0.189
-11	0	0.179
-11.2	0	0.171
-11.4	0	0.163
-11.6	0	0.157
-11.8	0	0.15
-12	0	0.143

MANDATARIA:


Direzione Progettazione e Realizzazione Lavori

Collegamento viario compreso tra lo Svincolo della S.S. 514 di "Chiaramonte" con la S.S. 115 e lo Svincolo della "Ragusana"

PROGETTO ESECUTIVO

RELAZIONE DI CALCOLO

Grafico Inviluppi Spostamento

MANDATARIA:

Collegamento viario compreso tra lo Svincolo della S.S. 514 di "Chiaramonte" con la S.S. 115 e lo Svincolo della "Ragusana"

PROGETTO ESECUTIVO

RELAZIONE DI CALCOLO

Spostamento

MANDATARIA:

Collegamento viario compreso tra lo Svincolo della S.S. 514 di "Chiaramonte" con la S.S. 115 e lo Svincolo della "Ragusana"

PROGETTO ESECUTIVO

RELAZIONE DI CALCOLO

Tabella Inviluppi Momento WallElement

Design Assumption: Nominal	Inviluppi: Momento	Muro: WallElement
Z (m)	Lato sinistro (kN*m/m)	Lato destro (kN*m/m)
0	0	0
-0.2	0	0
-0.4	0.032	0
-0.6	0.127	0
-0.8	0.318	0
-1	0.636	0
-1.2	1.113	0
-1.4	1.781	0
-1.6	2.672	0
-1.8	3.817	0
-2	5.249	0
-2.2	6.999	0
-2.4	9.098	0
-2.6	11.58	0
-2.8	14.474	0
-3	17.815	0
-3.2	21.632	0
-3.4	25.959	0
-3.6	30.826	0
-3.8	36.266	0
-4	42.31	0
-4.2	48.99	0
-4.4	56.339	0
-4.6	64.387	0
-4.8	72.701	0
-5	80.377	0
-5.2	86.515	0
-5.4	90.212	0
-5.6	90.566	0
-5.8	88.175	0
-6	83.587	0
-6.2	77.254	0
-6.4	69.538	0
-6.6	60.72	0
-6.8	51.14	0
-7	41.52	0
-7.2	32.46	0
-7.4	24.296	0
-7.6	17.21	0
-7.8	11.268	0
-8	6.449	0
-8.2	2.685	1.455
-8.4	0	2.708
-8.6	0	3.471
-8.8	0	3.85
-9	0	4.084
-9.2	0	4.359
-9.4	0	4.285
-9.6	0	3.932

MANDATARIA:

Collegamento viario compreso tra lo Svincolo della S.S. 514 di "Chiaramonte" con la S.S. 115 e lo Svincolo della "Ragusana"

PROGETTO ESECUTIVO

RELAZIONE DI CALCOLO

Design Assumption: Nominal	Inviluppi: Momento	Muro: WallElement
Z (m)	Lato sinistro (kN*m/m)	Lato destro (kN*m/m)
-9.8	0	3.347
-10	0	2.555
-10.2	0	1.565
-10.4	0.214	0.831
-10.6	0.58	0.326
-10.8	0.718	0.012
-11	0.693	0
-11.2	0.565	0
-11.4	0.386	0
-11.6	0.204	0
-11.8	0.061	0
-12	0	0

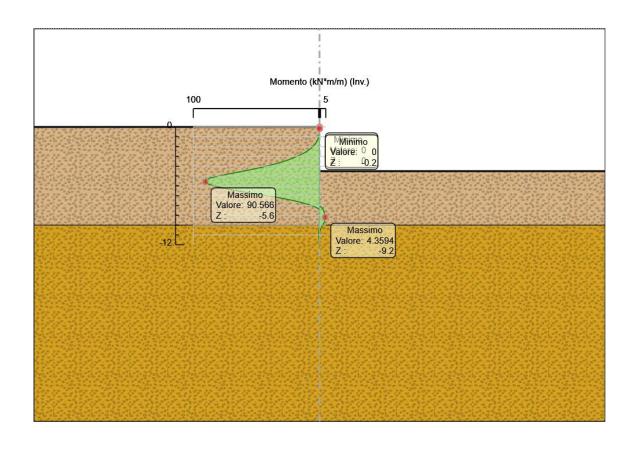
Collegamento viario compreso tra lo Svincolo della S.S. 514 di "Chiaramonte" con la S.S. 115 e lo Svincolo della "Ragusana"

PROGETTO ESECUTIVO

RELAZIONE DI CALCOLO

Grafico Inviluppi Momento

MANDATARIA:



PROGETTO ESECUTIVO

RELAZIONE DI CALCOLO

Momento

Direzione Progettazione e

Realizzazione Lavori

MANDATARIA:

Collegamento viario compreso tra lo Svincolo della S.S. 514 di "Chiaramonte" con la S.S. 115 e lo Svincolo della "Ragusana"

PROGETTO ESECUTIVO

RELAZIONE DI CALCOLO

Tabella Inviluppi Taglio WallElement

Design Assumption: Nomina	l Inviluppi: Taglio	Muro: WallElemen
Z (m)	Lato sinistro (kN/m)	
0	0	0
-0.2	0.159	0
-0.4	0.477	0
-0.6	0.954	0
-0.8	1.591	0
-1	2.386	0
-1.2	3.34	0
-1.4	4.454	0
-1.6	5.726	0
-1.8	7.158	0
-2	8.748	0
-2.2	10.498	0
-2.4	12.407	0
-2.6	14.474	0
-2.8	16.701	0
-3	19.087	0
-3.2	21.632	0
-3.4	24.336	0
-3.6	27.199	0
-3.8	30.221	0
-4	33.403	0
-4.2	36.743	0
-4.4	40.242	0
-4.6	41.566	0
-4.8	41.566	0
-5	38.382	0
-5.2	30.688	1.924
-5.4	18.485	13.04
-5.6	1.772	22.526
-5.8	0	30.718
-6	0	37.322
-6.2	0	42.668
-6.4	0	44.092
-6.6	0	47.9
-6.8	0	48.097
-7	0	48.097
-7.2	0	45.3
-7.4	0	40.82
-7.6	0	35.433
-7.8	0	29.709
-8	0	24.094
-8.2	0	18.821
-8.4	0	14.029
-8.6	0	9.844
-8.8	0	6.383
-9	0.718	3.59
-9.2	1.642	1.375
-9.4	2.457	0
-9.6	3.265	0
		-

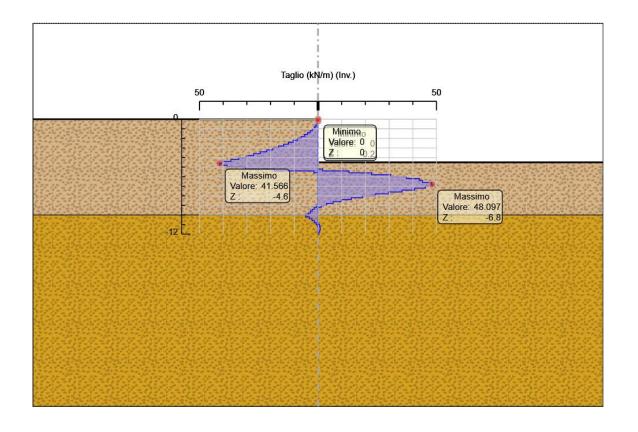
MANDATARIA:

Collegamento viario compreso tra lo Svincolo della S.S. 514 di "Chiaramonte" con la S.S. 115 e lo Svincolo della "Ragusana"

PROGETTO ESECUTIVO

RELAZIONE DI CALCOLO

Design Assumption: Nominal	Inviluppi: Taglio	Muro: WallElement
Z (m)	Lato sinistro (kN/m)	Lato destro (kN/m)
-9.8	4.151	0
-10	5.182	0
-10.2	5.182	0
-10.4	3.67	0
-10.6	2.528	0
-10.8	1.566	0.123
-11	0.8	0.64
-11.2	0.233	0.894
-11.4	0	0.912
-11.6	0	0.912
-11.8	0	0.713
-12	0	0.306



PROGETTO ESECUTIVO

RELAZIONE DI CALCOLO

Grafico Inviluppi Taglio

Collegamento viario compreso tra lo Svincolo della S.S. 514 di "Chiaramonte" con la S.S. 115 e lo Svincolo della "Ragusana"

PROGETTO ESECUTIVO

RELAZIONE DI CALCOLO

Taglio

MANDATARIA:

PROGETTO ESECUTIVO

RELAZIONE DI CALCOLO

Inviluppo Spinta Reale Efficace / Spinta Passiva

Design	n Assumption	Stage	Muro	Lato	Inviluppo Spinta Reale Efficace / Spinta Passiva
					%
A	2+M2+R1	Stage 3 L	eft Wall	LEFT	5.38
A2	2+M2+R1	Stage 3 L	eft Wall	RIGHT	13.76

PROGETTO ESECUTIVO

RELAZIONE DI CALCOLO

Inviluppo Spinta Reale Efficace / Spinta Attiva

Design Assumption	Stage Muro	Lato	Inviluppo Spinta Reale Efficace / Spinta Attiva	
			%	
A2+M2+R1	Stage 3 Left Wa	II LEFT	157.76	
A2+M2+R1	Stage 3 Left Wa	II RIGH	403.79	

Itinerario Ragusa - Catania

Collegamento viario compreso tra lo Svincolo della S.S. 514 di "Chiaramonte" con la S.S. 115 e lo Svincolo della "Ragusana"

PROGETTO ESECUTIVO

RELAZIONE DI CALCOLO

Normative adottate per le verifiche degli Elementi Strutturali

Normative Verifiche

Calcestruzzo NTC NTC Acciaio NTC Tirante

Coefficienti per Verifica Tiranti

GEO FS	1
ξα3	1.8
γs	1.15

PROGETTO ESECUTIVO

RELAZIONE DI CALCOLO

Riepilogo Stage / Design Assumption per Inviluppo

Design Assumption	Stage 1 Stage 2 Stage 3	
SLE (Rara/Frequente/Quasi Permanente)	V	
A1+M1+R1 (R3 per tiranti)	V	
A2+M2+R1	V	

Collegamento viario compreso tra lo Svincolo della S.S. 514 di "Chiaramonte" con la S.S. 115 e lo Svincolo della "Ragusana"

PROGETTO ESECUTIVO

RELAZIONE DI CALCOLO

MANDATARIA:

