

Direzione Progettazione e Realizzazione Lavori

ITINERARIO RAGUSA-CATANIA

Collegamento viario compreso tra lo Svincolo della S.S. 514 "di Chiaramonte" con la S.S. 115 e lo Svincolo della S.S. 194 "Ragusana"

LOTTO 4 - Dallo svincolo n. 8 "Francofonte" (compreso) allo svincolo della "Ragusana" (escluso)

PROGETTO ESECUTIVO

COD. PA898

PROGETTAZIONE: ATI SINTAGMA - GP INGEGNERIA - COOPROGETTI -GDG - ICARIA - OMNISERVICE

OPERE IN SOTTERRANEO GALLERIA ARTIFICIALE FRANCOFONTE: ELABORATI GENERALI Relazione Tecnica e di calcolo Opere imbocco Sud

CODICE PROGET	LIV. PROG. N. PROG.	NOME FILE	A000STRE03C			REVISIONE	SCALA:
	O408Z E 2101 CODICE ELAB. T04GA00OSTRE03		С	1:1.000			
С	Revisione a seguito di Rapporto	di Verifica		Nov 2021	M.Rinaldi	E.Moscatelli	N.Granieri
В	Revisione a seguito istruttoria A	NAS		Sett 2021	M.Rinaldi	E.Moscatelli	N.Granieri
Α	Emissione			Giu 2021	M.Rinaldi	E.Moscatelli	N.Granieri
REV.	DESCRIZIONE			DATA	REDATTO	VERIFICATO	APPROVATO

Realizzazione Lavori

Collegamento viario compreso tra lo Svincolo della S.S. 514 di "Chiaromonte" con la S.S. 115 e lo Svincolo della "Ragusana"

PROGETTO ESECUTIVO

RELAZIONE TECNICA E DI CALCOLO OPERE IMBOCCO SUD

INDICE

1		INTRODUZIONE	3
2		NORMATIVA DI RIFERIMENTO	4
3		MATERIALI	5
4		CRITERI DI VALUTAZIONE DELLE CONDIZIONI DI SICUREZZA	7
	4.1	1 INTRODUZIONE	7
	4.3	OPERE DI SOSTEGNO – PARATIE	10
		4.3.1 Criteri di analisi	. 10
	4.4	VERIFICHE STRUTTURALI	15
		4.4.1 Calcolo del copriferro per le verifiche strutturali	. 17
5		PARAMETRI GEOTECNICI	. 18
	5. 1	1 CARATTERIZZAZIONE GEOTECNICA	18
6		PARAMETRI SISMICI	. 19
7		ANALISI PARATIE	.22
	7. 1	1 IMBOCCO SUD H = 17.5 M	22
		7.1.1 Verifiche strutturali pali	. 24
		7.1.2 Spostamenti	. 29
		7.1.4 Stabilità globale	. 30
		7.1.5 Verifica Tiranti	. 31
	7.3	3 IMBOCCO SUD H = 15 M	35
		7.3.1 Verifiche strutturali pali	. 37
		7.3.2 Spostamenti	. 43
		7.3.4 Stabilità globale	. 44
		7.3.6 Verifica Tiranti	. 45
	7.5	5 IMBOCCO SUD H = 13.5 M	49
		7.5.1 Verifiche strutturali pali	. 51
		7.5.2 Spostamenti	. 57
		7.5.3 Stabilità globale	. 58
		7.5.5 Verifica Tiranti	. 59
	7.7	7 IMBOCCO SUD H = 9.0 M	63
		7.7.1 Verifiche strutturali pali	. 65

Realizzazione Lavori

Collegamento viario compreso tra lo Svincolo della S.S. 514 di "Chiaromonte" con la S.S. 115 e lo Svincolo della "Ragusana"

PROGETTO ESECUTIVO

RELAZIONE TECNICA E DI CALCOLO OPERE IMBOCCO SUD

	7.7.2 Spostamenti	/1
	7.7.3 Stabilità globale	72
	7.7.5 Verifica Tiranti	73
7.	.9 IMBOCCO SUD H = 6.0 M	77
	7.9.1 Verifiche strutturali pali	79
	7.9.2 Spostamenti	85
	7.9.3 Stabilità globale	86
	7.9.5 Verifica Tiranti	87
7.	.11 IMBOCCO SUD H = 4.5 M	90
	7.11.1Verifiche strutturali pali	92
	7.11.3Spostamenti	97
	7.11.4Stabilità globale	98
	7.11.5 Verifica Tiranti	99
7.	.13 IMBOCCO SUD H = 2.5 M	102
	7.13.1Verifiche strutturali pali	104
	7.13.3Spostamenti	109
	7.13.4Stabilità globale	110
7.	.15 VERIFICA TRAVI DI RIPARTIZIONE	111
8	GESTIONE DELLE FASI ESECUTIVE DELLA GALLERIA	112
9	RISOLUZIONE INTERFERENZE TIRANTI	113
10	VALORI SOGLIA MONITORAGGIO	117
11	ALLEGATI DI CALCOLO	118
1:	1.1 FRANCOFONTE NORD	118
	11.1.1H 17.5 m	118
	11.1.3H 15 m	121
	11.1.5H 13.5 m	124
	11.1.7H 9m	127
	11.1.8H 6 m	129
	11.1.10 H 4.5 m	132
	11.1.11 H 2.5 m	134

Collegamento viario compreso tra lo Svincolo della S.S. 514 di "Chiaromonte" con la S.S. 115 e lo Svincolo della "Ragusana"

PROGETTO ESECUTIVO

RELAZIONE TECNICA E DI CALCOLO OPERE IMBOCCO SUD

1 INTRODUZIONE

Nella presente relazione si riportano i calcoli di dimensionamento relativi alle paratie di imbocco provvisionali e tratti definitivi per la realizzazione della galleria Francofonte, da realizzare nell'ambito del progetto esecutivo del collegamento autostradale Ragusa – Catania, lotto 4.

Per la paratia imbocco sud è prevista una paratia provvisionale di pali con diametro 1000 mm interasse 1.20 m di lunghezza massima 24 m (H max scavo 17.5 m).

Si prevedono un massimo di tre ordini di tiranti con interasse 3.6 m. L'azione di contrasto dei tiranti è distribuita sui micropali dalle travi di collegamento e ripartizione previste lungo ciascun ordine, costituite da un doppio profilato in acciaio S355 della serie HEB200.

Collegamento viario compreso tra lo Svincolo della S.S. 514 di "Chiaromonte" con la S.S. 115 e lo Svincolo della "Ragusana"

PROGETTO ESECUTIVO

RELAZIONE TECNICA E DI CALCOLO OPERE IMBOCCO SUD

2 NORMATIVA DI RIFERIMENTO

La progettazione è conforme alle normative italiane vigenti:

- **Legge 5 novembre 1971, n. 1086** (G.U. 21 dicembre 1971, n. 321) "Norme per la disciplina delle opere di conglomerato cementizio armato, normale e precompresso ed a struttura metallica"
- **Legge 2 febbraio 1974, n. 64** (G.U. 21 marzo 1974 n. 76) "Provvedimenti per le costruzioni con particolari prescrizioni per le zone sismiche"
- Raccomandazioni A.I.C.A.P. (1993) "Ancoraggi nei terreni e nelle rocce"
- "Istruzioni per la Progettazione, l'Esecuzione ed il Controllo di Strutture di Calcestruzzo Armato con Barre di Materiale Composito Fibrorinforzato", CNR
- **D.M. Infrastrutture e trasporti 14 gennaio 2008** (G.U. 4 febbraio 2008, n. 30, S.O.) "Nuove Norme Tecniche per le Costruzioni"
- **Circolare 2 febbraio 2009, n. 617** del ministero delle Infrastrutture e dei Trasporti "Istruzioni per l'applicazione delle "Nuove Norme Tecniche per le costruzioni" " di cui al D.M. 14 gennaio 2008.

Collegamento viario compreso tra lo Svincolo della S.S. 514 di "Chiaromonte" con la S.S. 115 e lo Svincolo della "Ragusana"

PROGETTO ESECUTIVO

RELAZIONE TECNICA E DI CALCOLO OPERE IMBOCCO SUD

3 **MATERIALI**

Calcestruzzi

CLS MAGRO UNI EN 206-1

- Classe di resistenza: C12/15

CLS PER OPERE STRUTTURALI UNI EN 206-1

- Classe di resistenza: C25/30 - Classe di lavorabilità: S5 - Classe di esposizione: XC2 (I) - Diametro max inerti: 25mm

CLS PROIETTATO

- Destinazione d'uso UNI 14487-1

- Classe di resistenza: C25/30 - Classe di lavorabilità: S4

- Classe di esposizione: XC2 (I)

- Categoria di ispezione: 1 - Diametro max inerti: 10mm

- Rapporto max A/C: 0.60

Acciaio

BARRE Ø ≤26mm

B450C controllato in stabilimento

- tensione caratteristica a rottura, ftk: 540MPa
- tensione caratteristica di snervamento, fyk: 450MPa

TIRANTI A TREFOLI

- Diametro trefolo: Ø0.6"
- Tensione caratteristica di rottura, fptk: 1860 MPa
- Tensione caratteristica corrisp. ad una deformazione dell'1% sotto carico, fp(1)k: 1670MPa

ACCIAIO PER PROFILATI

- Profilati in acciaio, spessori ≤ 40 mm: S275J0W

Miscele di iniezione

- Rapporto A/C<=0.5
- Classe C20/25
- Additivo fluidificante e antiritiro

Collegamento viario compreso tra lo Svincolo della S.S. 514 di "Chiaromonte" con la S.S. 115 e lo Svincolo della "Ragusana"

PROGETTO ESECUTIVO

RELAZIONE TECNICA E DI CALCOLO OPERE IMBOCCO SUD

Drenaggi

- Tubi in PVC, Ø50/40mm, larghezza fessure 1mm, distanza fessure massima:10mm
- Rivestiti con tessuto-non-tessuto 500gr/mq

Per maggiori dettagli si faccia riferimento alla tabella materiali nell'elaborato T04GN00OSTSC01.

Per maggiori dettagli circa le caratteristiche dei tiranti definitivi si veda la tavola T04GA00OSTDC01.

Realizzazione Lavori

Collegamento viario compreso tra lo Svincolo della S.S. 514 di "Chiaromonte" con la S.S. 115 e lo Svincolo della "Ragusana"

PROGETTO ESECUTIVO

RELAZIONE TECNICA E DI CALCOLO OPERE IMBOCCO SUD

CRITERI DI VALUTAZIONE DELLE CONDIZIONI DI SICUREZZA

INTRODUZIONE

Per ogni stato limite ultimo deve essere rispettata la condizione

$$E_d \leq R_d \tag{6.2.1}$$

dove Ed è il valore di progetto dell'azione o dell'effetto dell'azione

$$E_d = E \left[\gamma_F F_k; \frac{X_k}{\gamma_M}; a_d \right]$$

ovvero

$$E_d = \gamma_E E \left[F_k; \frac{X_k}{\gamma_M}; a_d \right]$$

con $\gamma_E = \gamma_F$

e dove R_d è il valore di progetto della resistenza del sistema geotecnico:

$$R_{d} = \frac{1}{\gamma_{R}} R \left[\gamma_{F} F_{k}; \frac{X_{k}}{\gamma_{M}}; a_{d} \right]$$

Effetto delle azioni e resistenza sono espresse in funzione delle azioni di progetto $\gamma_F \cdot F_k$, dei parametri di progetto X_k/γ_M e della geometria di progetto a_d. L'effetto delle azioni può anche essere valutato direttamente come $E_d=E_k\cdot\gamma_E$. Nella formulazione della resistenza R_d , compare esplicitamente un coefficiente γ_R che opera direttamente sulla resistenza del sistema.

La verifica della suddetta condizione deve essere effettuata impiegando diverse combinazioni di gruppi di coefficienti parziali, rispettivamente definiti per le azioni (A1 e A2), per i parametri geotecnici (M1 e M2) e per le resistenze (R1, R2 e R3).

I diversi gruppi di coefficienti di sicurezza parziali sono scelti nell'ambito di due approcci progettuali distinti e alternativi.

Nel primo approccio progettuale (Approccio 1) sono previste due diverse combinazioni di gruppi di coefficienti: la prima combinazione è generalmente più severa nei confronti del dimensionamento strutturale delle opere a contatto con il terreno, mentre la seconda combinazione è generalmente più severa nei riguardi del dimensionamento geotecnico.

Nel secondo approccio progettuale (Approccio 2) è prevista un'unica combinazione di gruppi di coefficienti, da adottare sia nelle verifiche strutturali sia nelle verifiche geotecniche.

Azioni

I coefficienti parziali γ_F relativi alle azioni sono indicati nella Tab. 6.2.I delle NTC-2008. Ad essi deve essere fatto riferimento con le precisazioni riportate nel § 2.6.1 delle NTC-2008. Si deve comunque intendere che il terreno e l'acqua costituiscono carichi permanenti (strutturali) quando, nella modellazione utilizzata, contribuiscono al comportamento dell'opera con le loro caratteristiche di peso, resistenza e rigidezza.

Collegamento viario compreso tra lo Svincolo della S.S. 514 di "Chiaromonte" con la S.S. 115 e lo Svincolo della "Ragusana"

PROGETTO ESECUTIVO

RELAZIONE TECNICA E DI CALCOLO OPERE IMBOCCO SUD

Nella valutazione della combinazione delle azioni i coefficienti di combinazione ψ_{ij} devono essere assunti come specificato nel Cap. 2 delle NTC-2008.

Tab. 6.2.I – Coefficienti parziali per le azioni o per l'effetto delle azioni

	Effetto	Coefficiente Parziale γ_F (o γ_E)	EQU	(A1)	(A2)
Carichi permanenti G ₁	Favorevole	γ_{G1}	0,9	1,0	1,0
	Sfavorevole		1,1	1,3	1,0
Carichi permanenti G ₂ ^(l)	Favorevole	γ_{G2}	0,8	0,8	0,8
	Sfavorevole		1,5	1,5	1,3
Azioni variabili Q	Favorevole	Yα	0,0	0,0	0,0
	Sfavorevole		1,5	1,5	1,3

⁽i) Per i carichi permanenti Gε si applica quanto indicato alla Tabella 2.6.I. Per la spinta delle terre si fa riferimento ai coefficienti γα

Resistenze

Il valore di progetto della resistenza R_d può essere determinato:

- a) in modo analitico, con riferimento al valore caratteristico dei parametri geotecnici del terreno, diviso per il valore del coefficiente parziale γ_{M} specificato nella successiva Tab. 6.2.II delle NTC-2008 e tenendo conto, ove necessario, dei coefficienti parziali γ_R specificati nei paragrafi relativi a ciascun tipo di opera;
- b) in modo analitico, con riferimento a correlazioni con i risultati di prove in sito, tenendo conto dei coefficienti parziali y riportati nelle tabelle contenute nei paragrafi relativi a ciascun tipo di opera;
- c) sulla base di misure dirette su prototipi, tenendo conto dei coefficienti parziali 78 riportati nelle tabelle contenute nei paragrafi relativi a ciascun tipo di opera.

Tab. 6.2.II – Coefficienti parziali per i parametri geotecnici del terreno

Parametro	Grandezza alla quale applicare il coefficiente parziale	Coefficiente parziale γ_M	(M1)	(M2)
Tangente dell'angolo di resi- stenza al taglio	tan φ' _k	$\gamma_{\phi'}$	1,0	1,25
Coesione efficace	c′ _k	Υe	1,0	1,25
Resistenza non drenata	c _{uk}	You	1,0	1,4
Peso dell'unità di volume	Ϋ́r	Υγ	1,0	1,0

Collegamento viario compreso tra lo Svincolo della S.S. 514 di "Chiaromonte" con la S.S. 115 e lo Svincolo della "Ragusana"

PROGETTO ESECUTIVO

RELAZIONE TECNICA E DI CALCOLO OPERE IMBOCCO SUD

Per gli ammassi rocciosi e per i terreni a struttura complessa, nella valutazione della resistenza caratteristica occorre tener conto della natura e delle caratteristiche geometriche e di resistenza delle discontinuità strutturali.

Nelle sezioni che seguono saranno descritte in maggiore dettaglio le metodologie applicate ai casi esaminati: stabilità dei pendii, opere di materiali sciolti e fronti di scavo, opere di sostegno.

Sisma

Nel paragrafo. 7.11.6.3.2 de DM 14/01/2008 si specifica che per le paratie devono essere soddisfatte le condizioni di sicurezza nei confronti dei possibili stati limite ultimi (SLV) verificando il rispetto della condizione [6.2.1] con i coefficienti di sicurezza parziali prescritti al paragrafo 7.11.1. Quindi, le verifiche agli stati limite ultimi in presenza di azioni sismiche devono essere eseguite ponendo pari a 1 i coefficienti parziali γ_R indicati nel capitolo 7, oppure con i γ_R indicati nel capitolo 6 laddove non espressamente specificato. Come riporta la circolare C7.11.1 :

Le verifiche agli stati limite ultimi in presenza di azioni sismiche (SL V) devono essere effettuate adottando valori unitari dei coefficienti parziali dei gruppi A ed M per il calcolo delle azioni e dei parametri geotecnici di progetto e i soli coefficienti parziali del gruppo R per il calcolo delle resistenze di progetto. A quest'ultimo fine, devono essere impiegati i valori dei coefficienti γ_R

riportati nel presente Capitolo 7. Nel caso in cui non fossero espressamente indicati, si fa riferimento ai valori di γ_R indicati nel Capitolo 6.

Realizzazione Lavori

Collegamento viario compreso tra lo Svincolo della S.S. 514 di "Chiaromonte" con la S.S. 115 e lo Svincolo della "Ragusana"

PROGETTO ESECUTIVO

RELAZIONE TECNICA E DI CALCOLO OPERE IMBOCCO SUD

4.3 **OPERE DI SOSTEGNO – PARATIE**

4.3.1 Criteri di analisi

Le analisi sono condotte con riferimento alle Norme Tecniche 2008.

La verifica di stabilità globale dell'insieme terreno-opera è effettuata secondo l'Approccio 1, con la Combinazione 2: (A2+M2+R2), tenendo conto dei coefficienti parziali riportati nelle Tabelle 6.2.I e 6.2.II e 6.8.I.

Le rimanenti verifiche devono essere effettuate secondo l'Approccio 1 considerando le due combinazioni di coefficienti:

- Combinazione 1: (A1+M1+R1)

- Combinazione 2: (A2+M2+R1)

tenendo conto dei valori dei coefficienti parziali riportati nelle Tabelle 6.2.I, 6.2.II, 6.5.I e 6.8.I

Tab. 6.8.I - Coefficienti parziali per le verifiche di sicurezza di opere di materiali sciolti e di fronti di scavo

COEFFICIENTE	R2
YR	1,1

Sono state condotte analisi di tipo sismico di salvaguardia della vita (SLV) riferite alle condizioni di fine costruzione, come previsto dalle NTC 2008.

Questo approccio schematizza le azioni dinamiche con forze statiche equivalenti, pari al prodotto del coefficiente sismico (kh) per il peso delle masse accelerate dal sisma.

In aderenza a quanto riportato dal NTC 2008 relativamente alle paratie, la componente orizzontale ah dell'accelerazione equivalente è legata all'accelerazione di picco dalla relazione:

$$a_h = k_h \cdot g = \alpha \cdot \beta \cdot a_{\text{max}}$$
 - paragr. 7.11.6.3.1

dove g è l'accelerazione di gravità, k_h il coefficiente sismico in direzione orizzontale, $\alpha \le 1$ è un coefficiente che tiene conto della deformabilità dei terreni interagenti con l'opera; β≤1 è un coefficiente funzione della capacità dell'opera di subire spostamenti senza cadute di resistenza.

L'accelerazione di picco a_{max}, è pari a:

$$a_{\text{max}} = S_s \cdot S_T \cdot a_g$$
 - paragr. 7.11.10

dove a_a è l'accelerazione orizzontale massima attesa su sito di riferimento, S_S è il coefficiente di amplificazione stratigrafica e S_T di amplificazione topografica.

Il coefficiente α viene ricavato dall'altezza complessiva H delle paratie in funzione della categoria di suolo con riferimento al diagramma riportato nella figura seguente.

Collegamento viario compreso tra lo Svincolo della S.S. 514 di "Chiaromonte" con la S.S. 115 e lo Svincolo della "Ragusana"

PROGETTO ESECUTIVO

RELAZIONE TECNICA E DI CALCOLO OPERE IMBOCCO SUD

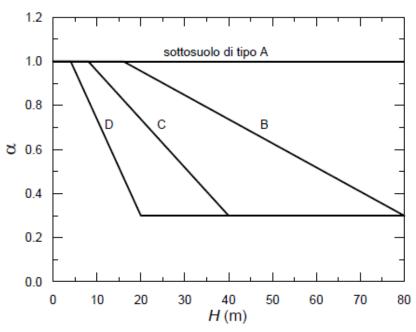


Fig. 7.11.2 – Diagramma per la valutazione del coefficiente di deformabilità α

Il coefficiente β viene ricavato dal diagramma in figura seguente, sulla base della stima degli spostamenti massimi della paratia considerati ammissibili.

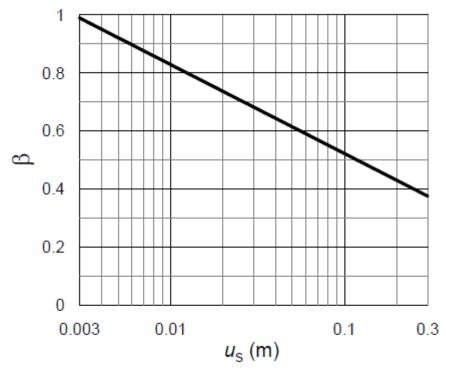


Fig. 7.11.3 – Diagramma per la valutazione del coefficiente di spostamento β.

Realizzazione Lavori

Collegamento viario compreso tra lo Svincolo della S.S. 514 di "Chiaromonte" con la S.S. 115 e lo Svincolo della "Ragusana"

PROGETTO ESECUTIVO

RELAZIONE TECNICA E DI CALCOLO OPERE IMBOCCO SUD

Il valore dell'accelerazione orizzontale massima è valutato in funzione della ubicazione geografica del sito (comuni di appartenenza) e in funzione del periodo di riferimento V_R (pari al prodotto della vita nominale V_N per il coefficiente di utilizzo C_U).

Gli stati limite considerati sono SLV (Stato Limite di Salvaguardia della Vita) e SLD (Stato Limite di Danno).

Tiranti di ancoraggio.

Per il dimensionamento geotecnico, deve risultare rispettata la condizione (6.2.1) con specifico riferimento ad uno stato limite di sfilamento della fondazione dell'ancoraggio. La verifica di tale condizione può essere effettuata con riferimento alla combinazione

A1+M1+R3

tenendo conto dei coefficienti parziali riportati nelle Tab. 6.2.I, 6.2.II e 6.6.I.

Tab. 6.6.I - Coefficienti parziali per la resistenza degli ancoraggi

	Simbolo	Coefficiente parziale
Temporanei	γ_R	1,1
Permanenti	γ_R	1,2

La resistenza caratteristica allo sfilamento Rak dell'ancoraggio può essere dedotta da:

- a) risultati di prove di progetto su ancoraggi di prova;
- b) metodi di calcolo analitici, dove R_{ak} è calcolata a partire dai valori caratteristici dei parametri geotecnici.

Nel caso in esame si è utilizzato l'approccio b), in cui il valore della resistenza caratteristica Rak è il minore dei valori derivanti dall'applicazione dei fattori di correlazione ξ_{a3} e ξ_{a4} rispettivamente al valor medio e al valor minimo delle resistenze R_{a,c} ottenute dal calcolo.

Per la valutazione dei fattori ξ_{a3} e ξ_{a4} , si deve tenere conto che i profili di indagine sono solo quelli che consentono la completa identificazione del modello geotecnico di sottosuolo per il terreno di fondazione dell'ancoraggio.

$$R_{ak} = Min\left\{\frac{(R_{a,c})_{medio}}{\xi_{a3}}; \frac{(R_{a,c})_{min}}{\xi_{a4}}\right\}$$

Tab. 6.6.III - Fattori di correlazione per derivare la resistenza caratteristica dalle prove geotecniche, in funzione del numero n di profili di indagine

Numero di profili di indagine	1	2	3	4	≥5
ξ_{a3}	1,80	1,75	1,70	1,65	1,60
ξ_{a4}	1,80	1,70	1,65	1,60	1,55

Collegamento viario compreso tra lo Svincolo della S.S. 514 di "Chiaromonte" con la S.S. 115 e lo Svincolo della "Ragusana"

PROGETTO ESECUTIVO

Direzione Progettazione e Realizzazione Lavori

RELAZIONE TECNICA E DI CALCOLO OPERE IMBOCCO SUD

Per la valutazione della resistenza caratteristica allo sfilamento, si è fatto ricorso al metodo di Bustamante e Doix.

La resistenza laterale R_k è così determinata:

 $R_k = \tau_{lim} \pi D_e L$

in cui:

 au_{lim} : resistenza caratteristica lungo la superficie laterale del bulbo;

 $D_e = \alpha D$

D = diametro di perforazione

 α = coefficiente maggiorativo

L = lunghezza del bulbo

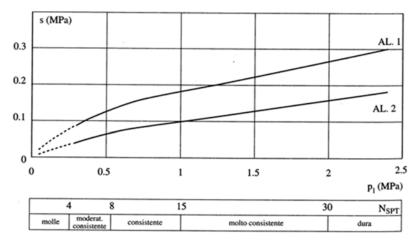


Fig. 13.17. Abaco per il calcolo di s per argille e limi

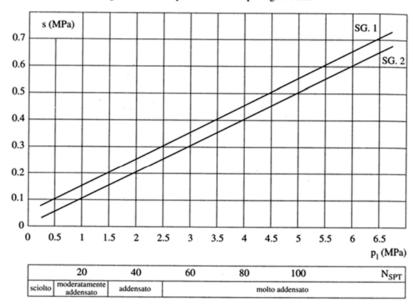


Fig. 13.16. Abaco per il calcolo di s per sabbie e ghiaie

Collegamento viario compreso tra lo Svincolo della S.S. 514 di "Chiaromonte" con la S.S. 115 e lo Svincolo della "Ragusana"

PROGETTO ESECUTIVO

Direzione Progettazione e Realizzazione Lavori

RELAZIONE TECNICA E DI CALCOLO OPERE IMBOCCO SUD

Valori del coefficiente α (Vs = Ls* π *ds²/4)

TERRENO	Valor	i di α	Quantità minima di miscela consigliata		
	IRS	IGU	IRS	IGU	
Ghiaia	1.8	1.3 - 1.4	1.5 Vs	1.5 Vs	
Ghiaia sabbiosa	1.6 - 1.8	1.2 - 1.4	1.5 Vs	1.5 Vs	
sabbia ghiaiosa	1.5 - 1.6	1.2 - 1.3	1.5 Vs	1.5 Vs	
Sabbia grossa	1.4 - 1.5	1.1 - 1.2	1.5 Vs	1.5 Vs	
Sabbia media	1.4 - 1.5	1.1 - 1.2	1.5 Vs	1.5 Vs	
Sabbia fine	1.4 - 1.5	1.1 -1.2	1.5 Vs	1.5 Vs	
Sabbia limosa	1.4 - 1.5	1.1 - 1.2	(1.5 - 2) Vs	1.5 Vs	
Limo	1.4 - 1.6	1.1 - 1.2	2 Vs	1.5 Vs	
Argilla	1.8 - 2.0	1.2	(2.5 - 3) Vs	(1.5 - 2) Vs	
Marne	1.8	1.1 - 1.2	(1.5 - 2) V: com	•	
Calcari marnosi	1.8	1.1 - 1.2	(2 - 6) Vs o più per strati fratturati		
Calcari alterati o fratturati	1.8	1.1 - 1.2			
Roccia alterata e/o fratturata	1.2	1.1	(1.1 - 1.5) Vs per strat poco fratturati; 2 Vs o più per strati fratturati		

Indicazioni per la scelta del valore di s

TERRENO	Tipo di i	niezione
TERRENO	IRS	IGU
Da ghiaia a sabbia limosa	SG1	SG2
Limo e argilla	AL1	AL2
Mama, calcare marnoso, calcare tenero fratturato	MC1	MC2
Roccia alterata e/o fratturata	≥ R1	≥ R2

Cautelativamente per le verifiche dei tiranti sono stati presi i valori :

 α = coefficiente maggiorativo = 1.2

S = 0.2 Mpa

Tali valori saranno confermati a seguito di indagini di seconda fase o tramite campi prova.

Collegamento viario compreso tra lo Svincolo della S.S. 514 di "Chiaromonte" con la S.S. 115 e lo Svincolo della "Ragusana"

PROGETTO ESECUTIVO

RELAZIONE TECNICA E DI CALCOLO OPERE IMBOCCO SUD

4.4 VERIFICHE STRUTTURALI

I modelli geotecnici, descritti ai paragrafi precedenti, relativamente alle combinazioni di carico previste dalla normativa NTC 2008, hanno consentito di ricavare le azioni di calcolo.

Nei paragrafi successivi sono illustrati i metodi di calcolo assunti per la valutazione delle resistenze di progetto e le relative verifiche strutturali riguardanti i suddetti elementi.

Gli <u>elementi in c.a.</u> sono stati oggetto di verifiche strutturali agli stati limite ultimi (SLU).

Le **verifiche agli SLU** sono state eseguite verificando la seguente condizione:

 $R_d \geq E_d\,$

dove:

- R_d è la resistenza di progetto, valutata in base alle resistenze di progetto dei materiali ed in riferimento al comportamento degli elementi monodimensionali inflessi (prevalenza delle sollecitazioni flessionali e di taglio);
- E_d è l'azione di calcolo relativa alle combinazioni di carico tipo STR.

Sono state distinte due condizioni di verifica:

Verifiche a pressoflessione:

Le ipotesi adottate nel calcolo possono essere così riassunte:

- 1. conservazione delle sezioni piane;
- 2. perfetta aderenza tra acciaio e calcestruzzo;
- 3. resistenza a trazione del calcestruzzo nulla;
- 4. rottura del calcestruzzo determinata dal raggiungimento della sua capacità deformativa ultima a compressione;
- 5. rottura dell'armatura tesa determinata dal raggiungimento della sua capacità deformativa ultima;

Collegamento viario compreso tra lo Svincolo della S.S. 514 di "Chiaromonte" con la S.S. 115 e lo Svincolo della "Ragusana"

PROGETTO ESECUTIVO

Direzione Progettazione e Realizzazione Lavori

RELAZIONE TECNICA E DI CALCOLO OPERE IMBOCCO SUD

Caratteristiche di calcolo dei materiali:

1. Calcestruzzo:

- Gallerie artificiali (C25/30):

$$f_{\text{cd}} = \alpha_{\text{cc}} \cdot f_{\text{ck,cyl}} \ / \ \gamma_{\text{c}} = \text{14.1 N/mm}^2$$

- Imbocchi (C25/30):

$$f_{cd} = \alpha_{cc} \cdot f_{ck,cyl} / \gamma_c = 14.1 \text{ N/mm}^2$$

ove:

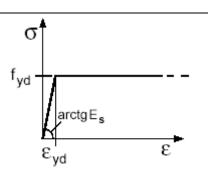
- γ_c = 1.5 (fattore di sicurezza)
- α_{cc} = 0.85 (coefficiente riduttivo per gli effetti di lunga durata)

$$\epsilon_{c2}$$
 = 0.20 %

$$\epsilon_{cu}$$
 = 0.35 %

2. Acciaio:

$$f_{yd} = f_{yk} / \gamma_s = 391.30 \text{ N/mm}^2$$


 $E_s = 206000 \text{ N/mm}^2$

ove:

- $\gamma_s = 1.15$ (fattore di sicurezza)

$$\varepsilon_{yd} = f_{yd} / E_{sd} = 0.19 \%$$

$$\epsilon_{\text{ud}}$$
 = 1.0 %

Realizzazione Lavori

Collegamento viario compreso tra lo Svincolo della S.S. 514 di "Chiaromonte" con la S.S. 115 e lo Svincolo della "Ragusana"

PROGETTO ESECUTIVO

RELAZIONE TECNICA E DI CALCOLO OPERE IMBOCCO SUD

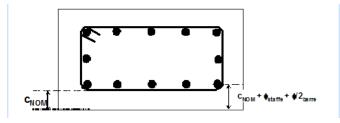
Verifiche a taglio

Le verifiche nei confronti delle sollecitazioni di taglio sono condotte considerando:

- Criterio di verifica: $V_{Rd} = min(V_{Rsd}; V_{Rcd}) \ge V_{Ed}$
- Ipotesi di calcolo: la resistenza viene valutata sulla base di una schematizzazione a traliccio. Gli elementi resistenti dell'ideale traliccio sono:
 - 1. le armature trasversali (inclinate di un angolo " α ")
 - 2. le armature longitudinali
 - 3. il corrente compresso di calcestruzzo
 - 4. i puntoni d'anima inclinati di un angolo " θ ".

La valutazione della resistenza, in maniera cautelativa, è stata eseguita assumendo una "sezione quadrata inscritta":

$$\begin{split} V_{Rsd} &= 0.9 \cdot d \cdot A_{sw} \cdot f_{yd} \cdot (\text{ctg } \alpha + \text{ctg } \theta) \cdot \sin \alpha \, / \, s \\ V_{Rcd} &= 0.9 \cdot d \cdot b_w \cdot \alpha_{cd} \cdot f_{cd}' \cdot (\text{ctg } \alpha + \text{ctg } \theta) \, / \, (1 + \text{ctg}^2 \, \theta) \end{split}$$


con:

- d altezza utile della sezione (nei pali è pari al lato del quadrato inscritto)
- b_w larghezza minima della sezione (nei pali è pari al lato del quadrato inscritto)
- A_{sw} area dell'armatura trasversale
- $f'_{cd} = 0.5 f_{cd} = 8.70 \text{ N/mm}^2$ resistenza a compressione ridotta del calcestruzzo d'anima;
- α_{cd} fattore maggiorativo dipendente dallo sforzo di compressione medio agente nella sezione di verifica; cautelativamente è stato posto pari ad α_{cd} = 1 relativo alle sezioni non compresse (N_{Ed} =0).

4.4.1 Calcolo del copriferro per le verifiche strutturali

Il valore del copriferro nominale, in accordo alla definizione data sia dalle NTC, rappresenta la porzione netta di calcestruzzo a ricoprimento delle armature sia esse longitudinali che staffe. La distanza (d), invece, indica la distanza tra il baricentro dell'armatura principale e la superficie esterna dell'elemento che viene impiegata nel dimensionamento strutturale in c.a. Il valore di d potrà essere opportunamente calcolato a partire dal copriferro nominale cui bisognerà aggiungere il diametro delle staffe e il semidiametro dell'armatura principale resistente :

• d = copriferro per le verifiche strutturali = C nom + ϕ staffe + ϕ barre / 2

Nello specifico il valore di **d** è pari : 7 cm + ϕ 12 + ϕ 24/2 = **9.4 cm**

MANDATARIA:

MANDANTI:

Collegamento viario compreso tra lo Svincolo della S.S. 514 di "Chiaromonte" con la S.S. 115 e lo Svincolo della "Ragusana"

PROGETTO ESECUTIVO

RELAZIONE TECNICA E DI CALCOLO OPERE IMBOCCO SUD

PARAMETRI GEOTECNICI

Ai fini dei calcoli progettuali delle opere in esame è stata utilizzata la seguente caratterizzazione geotecnica delle formazioni geologiche interessate dalle opere.

CARATTERIZZAZIONE GEOTECNICA 5.1

Nella tabella seguente si riportano i valori delle caratteristiche fisico – meccaniche delle formazioni interessate dalla realizzazione delle opere.

Tabella 5-1 Parametri geotecnici di calcolo.

Formazione	Tratto	γ	c'	φ'	E
Formazione	Tratto	kN/m³	kPa	•	MPa
Qcs	Opere aperto	19,0÷21,0	0	38÷42	50÷150
Qa	Opere aperto	17,0÷19,0	10÷20	20÷25	10÷100

Le formazioni presenti lungo il tratto in oggetto sono:

- Qcs Sabbie con vari gradi di cementazione. Quando la cementazione è consistente. la composizione di tale litotipo passa da granulare a lapidea ed il materiale tende alle calcareniti di colore avana biancastro.
- Qa materiale dal comportamento essenzialmente a grana fine di tipo argilloso e limoso

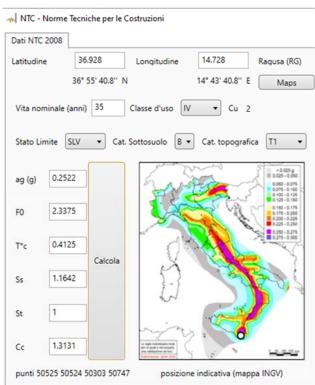
Nel corso delle indagini è stato misurato il livello piezometrico in corrispondenza dei piezometri installati. È stata rilevata la presenza di falda a profondità variabili, come indicato nel profilo geologico.

Per maggiori dettagli circa la caratterizzazione dei litotipi e le prove di laboratorio si rimanda alla relazione Geotecnica Generale T04GE00GETRE01 e al profilo geotecnicoT04GE00GETFG02

Collegamento viario compreso tra lo Svincolo della S.S. 514 di "Chiaromonte" con la S.S. 115 e lo Svincolo della "Ragusana"

PROGETTO ESECUTIVO

RELAZIONE TECNICA E DI CALCOLO OPERE IMBOCCO SUD


PARAMETRI SISMICI

Sito in Esame: latitudine: 36,928 [°]; longitudine: 14,728 [°]

Classe d'uso: IV. Costruzioni con funzioni pubbliche o strategiche importanti, anche con riferimento alla gestione della protezione civile in caso di calamità. Industrie con attività particolarmente pericolose per l'ambiente. Reti viarie di tipo A o B, di cui al DM 5/11/2001, n. 6792, "Norme funzionali e geometriche per la costruzione delle strade", e di tipo C quando appartenenti ad itinerari di collegamento tra capoluoghi di provincia non altresì serviti da strade di tipo A o B. Ponti e reti ferroviarie di importanza critica per il mantenimento delle vie di comunicazione, particolarmente dopo un evento sismico. Dighe connesse al funzionamento di acquedotti e a impianti di produzione di energia elettrica.

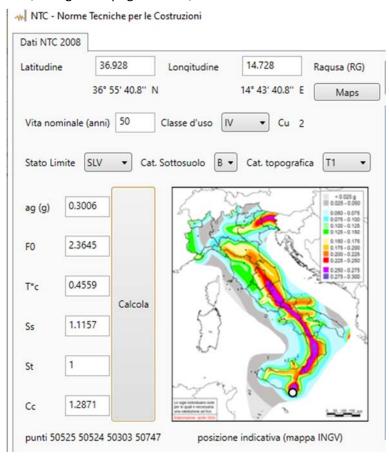
Vita nominale: 10 [anni] – opere provvisionali

Categoria sottosuolo: B; Categoria topografica: T1; Periodo di riferimento: 35 anni

La categoria di suolo è definita nella relazione sismica T04GE06GEORE01.

Collegamento viario compreso tra lo Svincolo della S.S. 514 di "Chiaromonte" con la S.S. 115 e lo Svincolo della "Ragusana"

PROGETTO ESECUTIVO


RELAZIONE TECNICA E DI CALCOLO OPERE IMBOCCO SUD

Sito in Esame: latitudine: 36,928 [°]; longitudine: 14,728 [°]

Classe d'uso: IV. Costruzioni con funzioni pubbliche o strategiche importanti, anche con riferimento alla gestione della protezione civile in caso di calamità. Industrie con attività particolarmente pericolose per l'ambiente. Reti viarie di tipo A o B, di cui al DM 5/11/2001, n. 6792, "Norme funzionali e geometriche per la costruzione delle strade", e di tipo C quando appartenenti ad itinerari di collegamento tra capoluoghi di provincia non altresì serviti da strade di tipo A o B. Ponti e reti ferroviarie di importanza critica per il mantenimento delle vie di comunicazione, particolarmente dopo un evento sismico. Dighe connesse al funzionamento di acquedotti e a impianti di produzione di energia elettrica.

Vita nominale: 50 [anni] – opere definitive

Categoria sottosuolo: B; Categoria topografica: T1; Periodo di riferimento: 50 anni

La categoria di suolo è definita nella relazione sismica T04GE06GEORE01.

MANDATARIA:

Collegamento viario compreso tra lo Svincolo della S.S. 514 di "Chiaromonte" con la S.S. 115 e lo Svincolo della "Ragusana"

PROGETTO ESECUTIVO

RELAZIONE TECNICA E DI CALCOLO OPERE IMBOCCO SUD

Parametri sismici

	Н	Н	Н	Н	Н	Н	Н
H (m)	24	20	18	14	10	8	6
u (m)	0.12	0.1	0.09	0.07	0.05	0.04	0.03
β	0.3428	0.3659	0.3792	0.4110	0.4536	0.4818	0.5183
α	1	1	1	1	1	1	1
α*β	> 0.2	> 0.2	> 0.2	> 0.2	> 0.2	> 0.2	> 0.2
cat sott Suolo	В	В	В	В	В	В	В
cat topog.	T1						
ag	0.2522	0.3006	0.3006	0.3006	0.3006	0.3006	0.3006
F0	2.3375	2.3375	2.3645	2.3645	2.3645	2.3645	2.3645
SS	1.1642	1.1642	1.1157	1.1157	1.1157	1.1157	1.1157
ST	1	1	1	1	1	1	1
amax	0.2936	0.35	0.3354	0.3354	0.3354	0.3354	0.3354
kh	0.1006	0.128	0.1272	0.1378	0.1521	0.1616	0.1738
kv	0	0	0	0	0	0	0

La spinta sismica viene calcolata con la teoria di Mononobe Okabe. Tale teoria è basata su un equilibrio limite di un cuneo di terreno soggetto ad un'azione orizzontale, in aggiunta al peso. Non è altro che un'estensione del metodo di Coulomb (risalente al 1776).

Questa teoria si usa per opere "flessibili" che accettano "grandi" spostamenti, ovvero che non si comportano come opere rigide.

Il diagramma di spinta viene applicato solo alla parte di opera fuori terra.

Nel paragrafo. 7.11.6.3.2 de DM 14/01/2008 si specifica che per le paratie devono essere soddisfatte le condizioni di sicurezza nei confronti dei possibili stati limite ultimi (SLV) verificando il rispetto della condizione [6.2.1] con i coefficienti di sicurezza parziali prescritti al paragrafo 7.11.1. Quindi, le verifiche agli stati limite ultimi in presenza di azioni sismiche devono essere eseguite ponendo pari a 1 i coefficienti parziali γ_R indicati nel capitolo 7, oppure con i γ_R indicati nel capitolo 6 laddove non espressamente specificato. Come riporta la circolare C7.11.1:

Le verifiche agli stati limite ultimi in presenza di azioni sismiche (SL V) devono essere effettuate adottando valori unitari dei coefficienti parziali dei gruppi A ed M per il calcolo delle azioni e dei parametri geotecnici di progetto e i soli coefficienti parziali del gruppo R per il calcolo delle resistenze di progetto. A quest'ultimo fine, devono essere impiegati i valori dei coefficienti γ_R

riportati nel presente Capitolo 7. Nel caso in cui non fossero espressamente indicati, si fa riferimento ai valori di γ_R indicati nel Capitolo 6.

Collegamento viario compreso tra lo Svincolo della S.S. 514 di "Chiaromonte" con la S.S. 115 e lo Svincolo della "Ragusana"

PROGETTO ESECUTIVO

RELAZIONE TECNICA E DI CALCOLO OPERE IMBOCCO SUD

ANALISI PARATIE

Si riportano, di seguito, i principali risultati delle analisi numeriche condotte per le sezioni rappresentative dell'imbocco Sud della Galleria Francofonte. I calcoli sono stati effettuati con il codice ParatiePlus.

7.1 **IMBOCCO SUD H = 17.5 M**

La paratia è costituita da una successione di pali Ø1000, posti ad interasse di 1.20 m, di lunghezza massima pari a 24 m. La parati sarà contrastata con ordini di tiranti posti ad interasse di 3.60 m con inclinazione α = 15°. Tale azione di contrasto verrà distribuita sui micropali dalle travi di collegamento e ripartizione previste lungo ciascun ordine, costituite da un doppio profilato in acciaio S275 della serie HEB200.

Per il dimensionamento della paratia si è considerata un'altezza di scavo massima pari a 17.5 m.

La stratigrafia di calcolo, a partire da p.c., è costituita da:

Stratigrafia [da p.c.]	Formazione	γ (kN/m ³)	c' (kPa)	φ' (°)	E (MPa)
da 0 a 30 m	Qcs	21	0	40	80

Si considera la falda a 25,0 m dal piano campagna.

La valutazione dei coefficienti di spinta attiva è stata effettuata facendo ricorso alla teoria di Mononobe-Okabe (rapporto δ/ϕ' =0.5) mentre la valutazione dei coefficienti di spinta passiva è stata effettuata con la teoria di Caquot-Kerisel considerando a favore di sicurezza un rapporto $\delta/\phi'=0$.

Nel calcolo sono state considerate le seguenti fasi:

- 1. Inizializzazione del modello con fase geostatica e realizzazione della paratia
- 2. Scavo per la realizzazione del primo tirante
- 3. Messa in opera del tirante
- 4. Realizzazione degli ordini di tiranti successivi con modalità analoghe alla realizzazione del primo e ripetizione delle fasi 3 e 4 fino al raggiungimento della quota di fondo scavo
- 5. Scavo finale
- 6. Applicazione del sisma
- 7. Stabilità globale

Collegamento viario compreso tra lo Svincolo della S.S. 514 di "Chiaromonte" con la S.S. 115 e lo Svincolo della "Ragusana"

PROGETTO ESECUTIVO

RELAZIONE TECNICA E DI CALCOLO OPERE IMBOCCO SUD

Le fasi sopra riportate, nel calcolo sono ripetute per le diverse combinazioni:

SLU: A1+M1+R1SLU: A2+M2+R2

SLE

In allegato sono riportati tutti i dettagli dei calcoli eseguiti.

Di seguito si riporta un'immagine esplicativa del modello di calcolo:

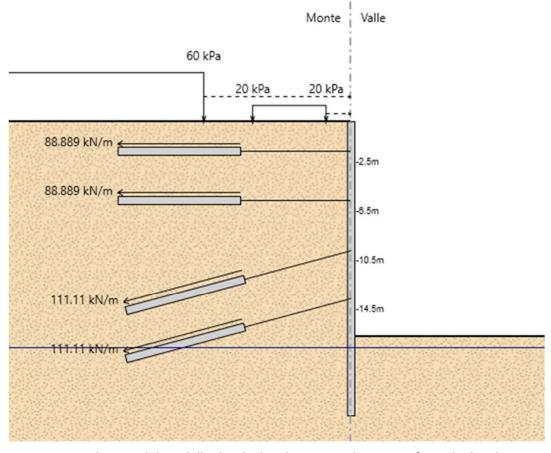


Figura 7.1 Figura esplicativa del modello di calcolo adottato per la sezione frontale di imbocco.

Collegamento viario compreso tra lo Svincolo della S.S. 514 di "Chiaromonte" con la S.S. 115 e lo Svincolo della "Ragusana"

PROGETTO ESECUTIVO

RELAZIONE TECNICA E DI CALCOLO OPERE IMBOCCO SUD

7.1.1 Verifiche strutturali pali

Si riportano, di seguito, le sollecitazioni massime agenti sui micropali e le verifiche strutturali, valutate per la combinazione <u>A1+M1+R1</u> attraverso il software ParatiePLUS.

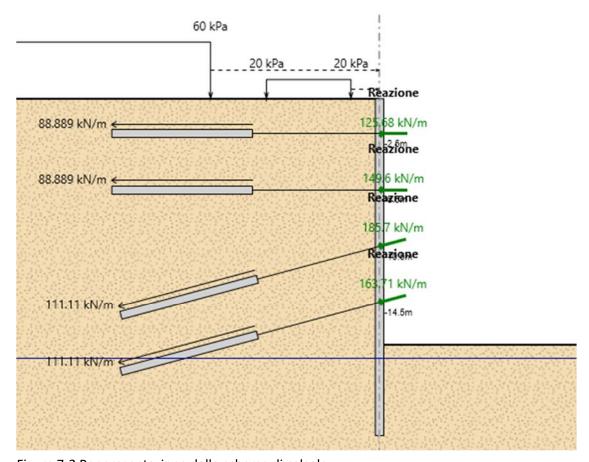


Figura 7-2 Rappresentazione dello schema di calcolo.

Realizzazione Lavori

Collegamento viario compreso tra lo Svincolo della S.S. 514 di "Chiaromonte" con la S.S. 115 e lo Svincolo della "Ragusana"

PROGETTO ESECUTIVO

RELAZIONE TECNICA E DI CALCOLO OPERE IMBOCCO SUD

Figura 7-3 Momento flettente agente sulla paratia per ogni fase costruttiva - inviluppo

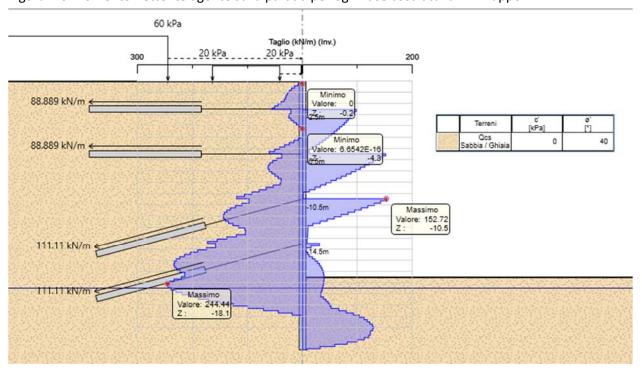


Figura 7-4 Taglio agente sulla paratia per ogni fase costruttiva - inviluppo

Direzione Progettazione e

Realizzazione Lavori

Itinerario Ragusa - Catania

Collegamento viario compreso tra lo Svincolo della S.S. 514 di "Chiaromonte" con la S.S. 115 e lo Svincolo della "Ragusana"

PROGETTO ESECUTIVO

RELAZIONE TECNICA E DI CALCOLO OPERE IMBOCCO SUD

A metro lineare, le massime sollecitazioni di calcolo sono pari a:

 $M_d = 663 \text{ kNm/m}$ $V_d = 244 \text{ kN/m}$

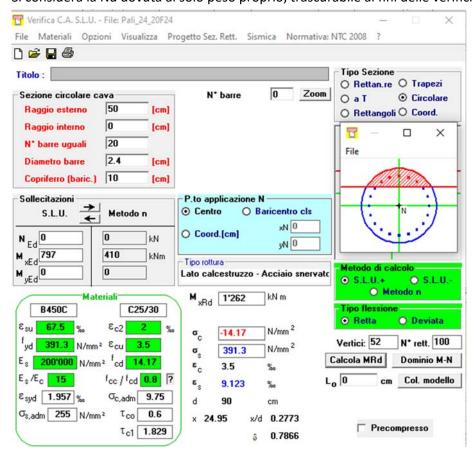
Sul singolo palo (interasse 1.20 m):

 $M_d = 797 \text{ kNm}$

 $V_d = 293 \text{ kN}$

Si riportano le verifiche agli SLU.

Collegamento viario compreso tra lo Svincolo della S.S. 514 di "Chiaromonte" con la S.S. 115 e lo Svincolo della "Ragusana"


PROGETTO ESECUTIVO

Direzione Progettazione e Realizzazione Lavori

RELAZIONE TECNICA E DI CALCOLO OPERE IMBOCCO SUD

7.1.1.1 Pressoflessione

Palo ϕ 1000 (classe di resistenza C25/30) armato con **20 \phi24** (FeB450C). Si considera la Nd dovuta al solo peso proprio, trascurabile ai fini delle verifiche.

La verifica è soddisfatta.

MANDATARIA:

Collegamento viario compreso tra lo Svincolo della S.S. 514 di "Chiaromonte" con la S.S. 115 e lo Svincolo della "Ragusana"

PROGETTO ESECUTIVO

Direzione Progettazione e Realizzazione Lavori

RELAZIONE TECNICA E DI CALCOLO OPERE IMBOCCO SUD

7.1.1.2 Taglio

Sezione quadrata inscritta di lato 70 cm; armature costituita da staffe **\$\phi12\$ passo 20 cm** (acciaio B450C).

					· · · · · · · · · · · · · · · · · · ·
Taglio resistente nelle sezioni con	armatur	<u>a trasve</u>	ersale a	<u>taglio</u>	
Taglio agente	$V_{Ed} =$	293	kN		
Altezza della sezione		h =	700	mm	
Copriferro della sezione		$\delta =$	100	mm	
Altezza utile della sezione		d =	600	mm	
Diametro delle staffe		$d_w =$	12	mm	
Numero di braccia		$n_w =$	2		
Area totale staffe		$A_{sw} =$	226.08	mm^2	
Passo delle staffe		s =	200	mm	
Inclinazione delle staffe		$\alpha =$	90	deg	
In clinazione delle bielle compresse		$\theta =$	21.8	deg	$\cot(\theta) = 2.50$
Larghezza minima della sezione		$\mathbf{b_w} =$	700	mm	
Coeff. maggiorativo per sezion i compresse		$\alpha_c =$	1.2		
Resistenza di calcolo a "taglio-trazione"	$V_{Rsd} =$	597.2	kN		Δ
			V	$T_{Rsd} = 0$	$9 \cdot d \cdot \frac{A_{sw}}{s} \cdot f_{yd} \cdot (ctg\alpha + ctg\theta) \cdot \sin \alpha$
Posistanas # salasla s !!taglia			L		3
Resistenza di calcolo a "taglio- compressione"	$V_{Rcd} =$	1103.4	kN V.	. = 0.9	$9 \cdot d \cdot b_{w} \cdot \alpha_{c} \cdot f'_{cd} \cdot (ctg\alpha + ctg\theta) / (1 + ctg^{2}\theta)$
			L R	.cd - 0,5	w oc I ed (eigo i eigo)/(I reig 0)
Basistana a tanka dalla amina	V =	507.2	LN		
Resistenza a taglio della sezione	$V_{Rd} =$	39/.2	$V_{\mathbb{R}}$	$_{\rm d} = { m m}$	in (V _{Rsd} , V _{Red})
Esito della verifica	soddisfat	ta			

La verifica è soddisfatta.

MANDATARIA:

Collegamento viario compreso tra lo Svincolo della S.S. 514 di "Chiaromonte" con la S.S. 115 e lo Svincolo della "Ragusana"

PROGETTO ESECUTIVO

RELAZIONE TECNICA E DI CALCOLO OPERE IMBOCCO SUD

7.1.2 __ Spostamenti

Il massimo spostamento, in condizioni di esercizio, in assenza di sisma, è pari a 21 mm.

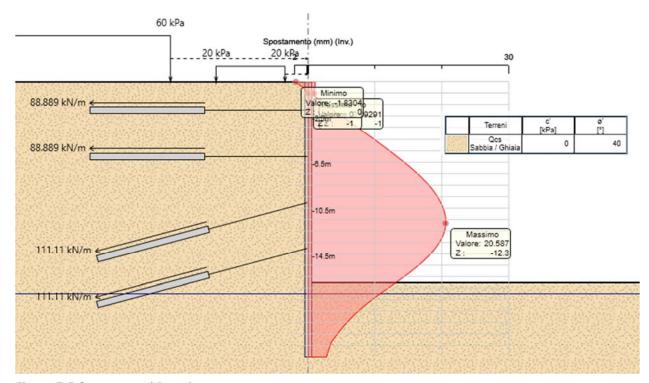


Figura 7-5 Spostamenti Paratia

Realizzazione Lavori

Collegamento viario compreso tra lo Svincolo della S.S. 514 di "Chiaromonte" con la S.S. 115 e lo Svincolo della "Ragusana"

PROGETTO ESECUTIVO

RELAZIONE TECNICA E DI CALCOLO OPERE IMBOCCO SUD

7.1.4 __ Stabilità globale

Come indicato al punto 6.5.3.1.2 del D.M. 2008, le verifiche di stabilità globale sono state condotte per la combinazione A2+M2+R2, in fase statica e fase sismica. Il metodo di calcolo adottato è quello di Bishop. Si riporta la figura del FS minimo ottenuto.

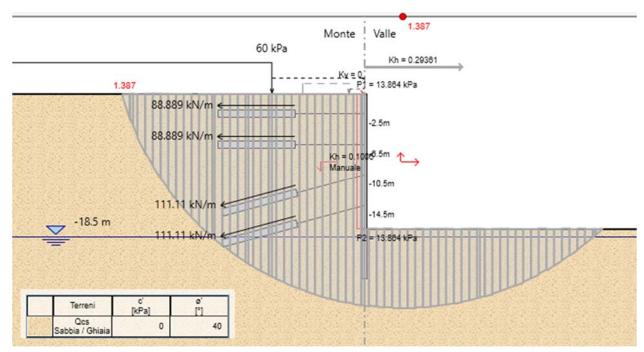


Figura 7-6 Stabilità globale – Fase sismica - Paratia imbocco Sud

MANDATARIA:

Collegamento viario compreso tra lo Svincolo della S.S. 514 di "Chiaromonte" con la S.S. 115 e lo Svincolo della "Ragusana"

PROGETTO ESECUTIVO

RELAZIONE TECNICA E DI CALCOLO OPERE IMBOCCO SUD

7.1.5 Verifica Tiranti

Nella tabella seguente si riportano le sollecitazioni ottenute sui tiranti.

Ordine	Interasse (m)	Inclinazione (°)	Trefoli	Pre Tensione (kN)	Reazione (kN)	N esercizio (kN)
T1	3.6	0	4	320	452.4	348.0
T2	3.6	0	4	320	538.6	414.3
T3	3.6	15	5	400	668.5	514.3
T4	3.6	15	5	400	589.4	453.3

Si riportano di seguito le verifica, che dalle analisi numeriche, risulta essere più sollecitata, sia per i tiranti a 4 trefoli sia per i tiranti a 5 trefoli.

Numero trefoli:	n =	4	
Area singolo trefolo At:		140	(mm ²)
Area complessiva dell'acciaio (A = n⋅At):		559.064	(mm ²)
Diametro equivalente dei trefoli Deq = $(A \cdot 4/\pi)^{0.5}$	Deq =	26.68	(mm)
Tensione caratteristica di rottura dell'acciaio (f _{ptk})		1860	(MPa)
Tensione caratt. all'1% di deformazione dell'acciaio $(f_{p(1)k})$		1670	(MPa)
N _G Azione permanente sul tirante:		538.6	kN
N _Q Azione variabile sul tirante:		0	kN
Nt Azione di calcolo ($N_G \cdot \gamma_g + N_Q \cdot \gamma_q$):		538.56	kN

Collegamento viario compreso tra lo Svincolo della S.S. 514 di "Chiaromonte" con la S.S. 115 e lo Svincolo della "Ragusana"

PROGETTO ESECUTIVO

RELAZIONE TECNICA E DI CALCOLO OPERE IMBOCCO SUD

Aderenza Malta -Terreno L = Nt·Fs / (Ds·p·s _d)		
D (cm) Diametro della perforazione = 200	(mm)	
α (-) Coeff. moltiplicativo =		
Ds (cm) Diametro di calcolo (Ds = $\alpha \cdot D$) = 240	(mm)	
s _k (MPa) tensione unitaria media di aderenza malta - terreno = 0.20		
s _k (MPa) tensione unitaria minima di aderenza malta - terreno = 0.20	(MPa)	
s_d (MPa) tensione unitaria di progetto aderenza malta - terreno = 0.10 $s_d = Min(s_{med}/\xi_3 \gamma_s; s_{min}/\xi_4 \gamma_s)$	(MPa)	
Lunghezza di ancoraggio L = 7.0	(m)	
γ_R = 1.1 (tiranti provvisionali) ξ_3 = 1.80 ξ_4 = 1.80		

Verifica a trazione dell'armatura

 $N = N_G + N_Q = 538.56$ (kN)

UNI EN 1537 $N \leq 0.65 \cdot f_{ptk} \cdot n \cdot At = 675.91 \quad (kN)$

Verifica nel rispetto della gerarchia delle resistenze par.6.6.2 NTC2008

Tensione caratt. all'1% di deformazione dell'acciaio $(f_{p(1)k})$	1670	MPa
Diametro del trefolo	13.34	mm
Resistenza caratt. al limite di snervamento della lungh. libera	933.64	kN
Resistenza a sfilamento della fondazione	675.91	kN

Le verifiche sono soddisfatte.

Realizzazione Lavori

Collegamento viario compreso tra lo Svincolo della S.S. 514 di "Chiaromonte" con la S.S. 115 e lo Svincolo della "Ragusana"

PROGETTO ESECUTIVO

RELAZIONE TECNICA E DI CALCOLO OPERE IMBOCCO SUD

Numero trefoli:	n =	5	
Area singolo trefolo At:		140	(mm ²)
Area complessiva dell'acciaio (A = n·At):		698.83	(mm ²)
Diametro equivalente dei trefoli Deq = $(A \cdot 4/\pi)^{0.5}$	Deq =	29.83	(mm)
Tensione caratteristica di rottura dell'acciaio (f _{ptk})		1860	(MPa)
Tensione caratt. all'1% di deformazione dell'acciaio $(f_{p(1)k})$		1670	(MPa)
N _G Azione permanente sul tirante:		668.52	kN
N _Q Azione variabile sul tirante:		0	kN
Nt Azione di calcolo ($N_G \cdot \gamma_g + N_Q \cdot \gamma_q$):		668.52	kN
Aderenza Malta -Terreno L = Nt·Fs / (Ds·p·s _d)			
D (cm) Diametro della perforazione =		200	(mm)
α (-) Coeff. moltiplicativo =		1.2	
Ds (cm) Diametro di calcolo (Ds = α ·D) =		240	(mm)
$\mathbf{s}_{\mathbf{k}}$ (MPa) tensione unitaria media di aderenza malta - terre	eno =	0.20	(MPa)
$\mathbf{s}_{\mathbf{k}}$ (MPa) tensione unitaria minima di aderenza malta - ter	reno =	0.20	(MPa)
s _d (MPa) tensione unitaria di progetto aderenza malta - te	rreno =	0.10	(MPa)
s_d = Min($s_{med}/\xi_3 \gamma_s$; $s_{min}/\xi_4 \gamma_s$) Lunghezza di ancoraggio	L =	8.8	(m)
γ_R = 1.1 (tiranti provvisionali) ξ_3 = 1.80 ξ_4 = 1	.80		
Verifica a trazione dell'armatura			
$N = N_G + N_Q =$ 668.52 (kN)			
UNI EN 1537 $N \le 0.65 \cdot f_{ptk} \cdot n \cdot At = 844.89$) (kN)		

Verifica nel rispetto della gerarchia delle resistenze par.6.6.2 NTC2008

Tensione caratt. all'1% di deformazione dell'acciaio $(f_{p(1)k})$ 1670 MPa 13.34 Diametro del trefolo mm Resistenza caratt. al limite di snervamento della lungh. libera 1167.05 kΝ Resistenza a sfilamento della fondazione 844.89 kΝ

Le verifiche sono soddisfatte.

Realizzazione Lavori

Collegamento viario compreso tra lo Svincolo della S.S. 514 di "Chiaromonte" con la S.S. 115 e lo Svincolo della "Ragusana"

PROGETTO ESECUTIVO

RELAZIONE TECNICA E DI CALCOLO OPERE IMBOCCO SUD

La lunghezza libera del tirante si ottiene dalla seguente relazione:

$$Llibera = (h + t - hi)sen(45 - \phi/2)/(sen(45 + \alpha + \phi/2))$$

La lunghezza così ottenuta deve essere aumentata in base alle NTC 2008 (7.11.12) di:

$$L_e = L_{\rm s} \left(1 + 1, 5 \cdot \frac{a_{\rm max}}{g} \right)$$

Quindi si ha:

Lunghezza libera T1		Lunghezza libera T	
hi = prodonfità T1	2.5 m	hi = prodonfità T2	6.5 m
h = fuori terra paratia	16.5 m	h = fuori terra para	tia 16.5 m
t = infissione paratia	7.5 m	t = infissione parat	ia 7.5 m
i = inclinazione tirante	0 °	i = inclinazione tira	inte 0 °
Φ = angolo attrito	32 °	φ = angolo attrito	32 °
ag/g	0.2522	ag/g	0.2522
kp	29 °	kp	29 °
L libera	11.9 m	L libera	9.7 m
L libera sisma	16.0 m	L libera sisma	13.0 m
Lunghezza libera T3		Lunghezza libera T4	
hi = prodonfità T3	10.5 m	hi = prodonfità T3	14.5 m
h = fuori terra paratia	16.5 m	h = fuori terra par	16.5 m
t = infissione paratia	7.5 m	t = infissione par	7.5 m
i = inclinazione tirante			
T = INCHIAZIONE INAME	15 °	ı = ınclınazıone fı	15 °
	15 ° 32 °	i = inclinazione ti	15 ° 32 °
Φ = angolo attrito	32 °	Φ = angolo attritc	32 °
		Φ = angolo attrito	
Φ = angolo attrito ag/g	32 ° 0.2522	Φ = angolo attritc ag/g	32 ° 0.2522
Φ = angolo attrito ag/g	32 ° 0.2522	Φ = angolo attritc ag/g	32 ° 0.2522

Si riporta in forma tabellare i risultati ottenuti delle lunghezze caratteristiche dei tiranti.

Ordine	Inclinazione Tirante (°)	Lunghezza Libera (m)	Lunghezza Ancoraggio (m)	Lunghezza Totale (m)
T1	var	16	7	23
T2	var	13	7	20
Т3	15	9	9	18
T4	15	7	9	16

Collegamento viario compreso tra lo Svincolo della S.S. 514 di "Chiaromonte" con la S.S. 115 e lo Svincolo della "Ragusana"

PROGETTO ESECUTIVO

RELAZIONE TECNICA E DI CALCOLO OPERE IMBOCCO SUD

7.3 IMBOCCO SUD H = 15 M

La paratia è costituita da una successione di pali $\emptyset 1000$, posti ad interasse di 1.20 m, di lunghezza massima pari a 20 m. La parati sarà contrastata con ordini di tiranti posti ad interasse di 3.60 m con inclinazione $\alpha = 15^\circ$. Tale azione di contrasto verrà distribuita sui micropali dalle travi di collegamento e ripartizione previste lungo ciascun ordine, costituite da un doppio profilato in acciaio S275 della serie HEB200.

Per il dimensionamento della paratia si è considerata un'altezza di scavo massima pari a 15 m.

La stratigrafia di calcolo, a partire da p.c., è costituita da:

Stratigrafia [da p.c.]	Formazione	γ(kN/m³)	c' (kPa)	φ' (°)	E (MPa)
da 0 a 30 m	Qcs	21	0	40	80

Si considera la falda a 25,0 m dal piano campagna.

La valutazione dei coefficienti di spinta attiva è stata effettuata facendo ricorso alla teoria di Mononobe-Okabe (rapporto δ/ϕ' =0.5) mentre la valutazione dei coefficienti di spinta passiva è stata effettuata con la teoria di Caquot-Kerisel considerando a favore di sicurezza un rapporto δ/ϕ' =0.

Nel calcolo sono state considerate le seguenti fasi:

- 1. Inizializzazione del modello con fase geostatica e realizzazione della paratia
- 2. Scavo per la realizzazione del primo tirante
- 3. Messa in opera del tirante
- 4. Realizzazione degli ordini di tiranti successivi con modalità analoghe alla realizzazione del primo e ripetizione delle fasi 3 e 4 fino al raggiungimento della quota di fondo scavo
- 5. Scavo finale
- 6. Applicazione del sisma
- 7. Stabilità globale

PROGETTO ESECUTIVO

RELAZIONE TECNICA E DI CALCOLO OPERE IMBOCCO SUD

Le fasi sopra riportate, nel calcolo sono ripetute per le diverse combinazioni:

SLU: A1+M1+R1 SLU: A2+M2+R2

SLE

In allegato sono riportati tutti i dettagli dei calcoli eseguiti.

Di seguito si riporta un'immagine esplicativa del modello di calcolo:

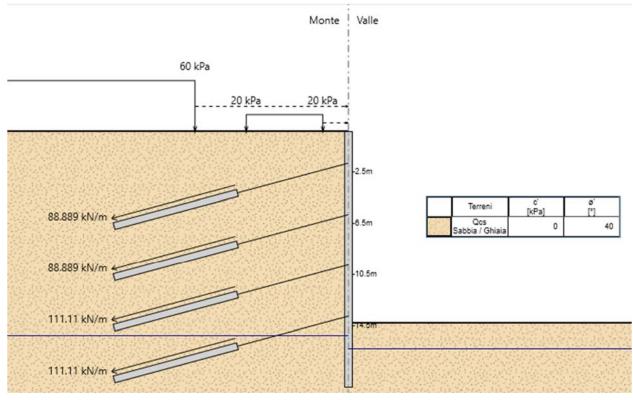


Figura 7.7 Figura esplicativa del modello di calcolo adottato per la sezione frontale di imbocco.

Collegamento viario compreso tra lo Svincolo della S.S. 514 di "Chiaromonte" con la S.S. 115 e lo Svincolo della "Ragusana"

PROGETTO ESECUTIVO

RELAZIONE TECNICA E DI CALCOLO OPERE IMBOCCO SUD

7.3.1 Verifiche strutturali pali

Si riportano, di seguito, le sollecitazioni massime agenti sui micropali e le verifiche strutturali, valutate per la combinazione <u>A1+M1+R1</u> attraverso il software ParatiePLUS.

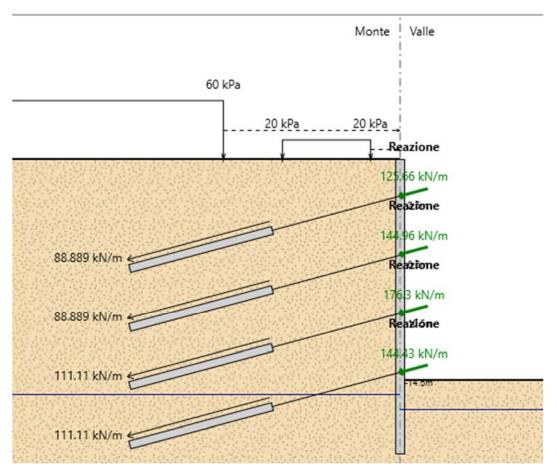


Figura 7-8 Rappresentazione dello schema di calcolo.

Collegamento viario compreso tra lo Svincolo della S.S. 514 di "Chiaromonte" con la S.S. 115 e lo Svincolo della "Ragusana"

PROGETTO ESECUTIVO

RELAZIONE TECNICA E DI CALCOLO OPERE IMBOCCO SUD

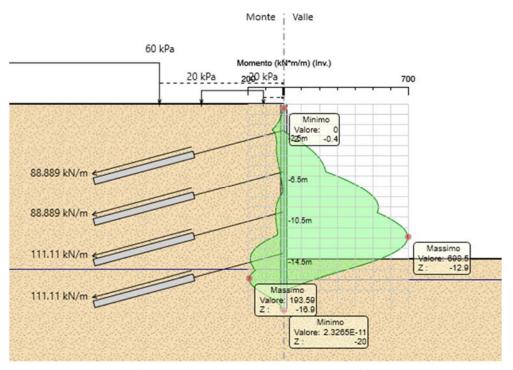


Figura 7-9 Momento flettente agente sulla paratia per ogni fase costruttiva - inviluppo

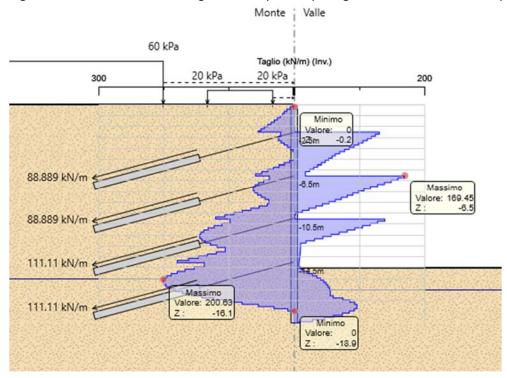


Figura 7-10 Taglio agente sulla paratia per ogni fase costruttiva - inviluppo

Collegamento viario compreso tra lo Svincolo della S.S. 514 di "Chiaromonte" con la S.S. 115 e lo Svincolo della "Ragusana"

PROGETTO ESECUTIVO

RELAZIONE TECNICA E DI CALCOLO OPERE IMBOCCO SUD

A metro lineare, le massime sollecitazioni di calcolo sono pari a:

 $M_d = 696 \text{ kNm/m}$ $V_d = 200 \text{ kN/m}$

Direzione Progettazione e

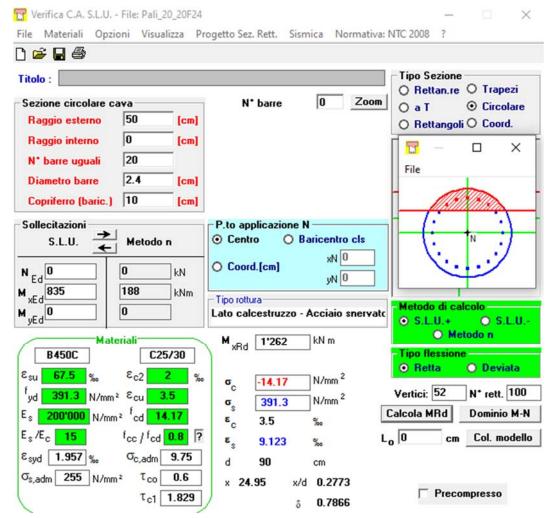
Realizzazione Lavori

Sul singolo palo (interasse 1.20 m):

 M_d = 835 kNm

 $V_d = 240 \text{ kN}$

Si riportano le verifiche agli SLU.


Collegamento viario compreso tra lo Svincolo della S.S. 514 di "Chiaromonte" con la S.S. 115 e lo Svincolo della "Ragusana"

PROGETTO ESECUTIVO

RELAZIONE TECNICA E DI CALCOLO OPERE IMBOCCO SUD

7.3.1.1 Pressoflessione

Palo ϕ 1000 (classe di resistenza C25/30) armato con **20 \phi24** (FeB450C). Si considera la Nd dovuta al solo peso proprio, trascurabile ai fini delle verifiche.

La verifica è soddisfatta.

PROGETTO ESECUTIVO

Direzione Progettazione e Realizzazione Lavori

RELAZIONE TECNICA E DI CALCOLO OPERE IMBOCCO SUD

7.3.1.2 Taglio

Sezione quadrata inscritta di lato 70 cm; armature costituita da staffe **\$\phi12\$ passo 20 cm** (acciaio B450C).

Taglio resistente nelle sezioni con	armatur	a trasvo	ersale a	a taglio
Taglio agente	$V_{Ed} =$	240	kN	
Altezza della sezione		h =	700	mm
Copriferro della sezione		$\delta =$	100	mm
Altezza utile della sezione		d =	600	mm
Diametro delle staffe		$d_w =$	12	mm
Numero di braccia		$n_w =$	2	
Area totale staffe		$A_{sw} =$	226.08	3 mm^2
Passo delle staffe		s =	200	mm
Inclinazione delle staffe		α =	90	deg
Inclinazione delle bielle compresse		$\theta =$	21.8	$deg cot(\theta) = 2.50$
Larghezza minima della sezione		$\mathbf{b_w} =$	700	mm
Coeff. maggiorativo per sezioni compresse		α _c =	1.2	
Resistenza di calcolo a "taglio-trazione"	$\mathbf{v}_{\mathbf{R}\mathbf{s}\mathbf{d}}$ =	597.2	kN \[$V_{Rsd} = 0.9 \cdot d \cdot \frac{A_{sw}}{s} \cdot f_{yd} \cdot (ctg\alpha + ctg\theta) \cdot \sin\alpha$
Resistenza di calcolo a "taglio- compressione"	$V_{Red} =$	1103.4	kN V	$V_{\text{Red}} = 0.9 \cdot d \cdot b_{\text{w}} \cdot \alpha_{\text{e}} \cdot f'_{\text{ed}} \cdot (\text{ctg}\alpha + \text{ctg}\theta) / (1 + \text{ctg}^2\theta)$
Resistenza a taglio della sezione	$V_{Rd} =$	597.2	kN V	$V_{\rm Rd} = \min \left(V_{\rm Rsd}, V_{\rm Red} \right)$
Esito della verifica	soddisfat	ta		

La verifica è soddisfatta.

MANDATARIA:

Collegamento viario compreso tra lo Svincolo della S.S. 514 di "Chiaromonte" con la S.S. 115 e lo Svincolo della "Ragusana"

PROGETTO ESECUTIVO

Direzione Progettazione e Realizzazione Lavori

RELAZIONE TECNICA E DI CALCOLO OPERE IMBOCCO SUD

7.3.1.3 Fessurazione

	Verica apertura fessure sezione circolare NTC Par.C.4.1.2.2.4.5				
$\sigma_{\rm s}$	95.0 N/mm²	Tensione massima armatura tesa sezione fessurata			
R _{ck}	30 N/mm²	Resistenza caratteristica cubica cls			
Ψ _{long}	24 mm	Diametro barre longitudinali			
Φtrasv	12 mm	Diametro staffe o spirale			
n	20	Numero ferri longitudinali			
С	100 mm	Copriferro			
D	1000 mm	Diametro			
k _t	0.4	k _t =0.6; 0.4 carichi breve durata/lunga durata			
k_2	0.5	k ₂ =0.5; 1.0 caso flessione/trazione semplice			
k ₁	0.8	k ₁ =0.8; 1.6 barre aderenza migliorata/lisce			
W	0.3 mm	Valore limite apertura fessure			
δ	76 mm	Ricoprimento del calcestruzzo			
f _{ck}	24.9 N/mm²	Resistenza caratteristica cilindrica cls			
i	126 mm	Interasse ferri longitudinali			
A _{c_eff}	28149 mm²	Area efficace del calcestruzzo			
A _{s_long}	452 mm²	Area barra longitudinale			
E _s	210000 N/mm²	Modulo elastico acciaio da c.a.			
f _{ctm}	2.6 N/mm²	Resistenza a trazione media cls			
E _{cm}	31447 N/mm²	Modulo elastico medio cls			
α_{e}	6.68	Rapporto E _s /E _{cm}			
f _{cm}	32.9 N/mm²	Resistenza media cls			
ρ _{eff}	1.61 %	Rapporto area acciaio/area efficace			
ε _{sm}	0.03 %	Deformazione unitaria media			
k ₃	3.4	Coefficiente			
k ₄	0.4	Coefficiente			
∆s _{max}	512.3 mm	Distanza massima tra le fessure			
W_d		Valore di calcolo apertura fessure			

La verifica è soddisfatta.

PROGETTO ESECUTIVO

RELAZIONE TECNICA E DI CALCOLO OPERE IMBOCCO SUD

7.3.2 __ Spostamenti

Il massimo spostamento, in condizioni di esercizio, in assenza di sisma, è pari a 16 mm.

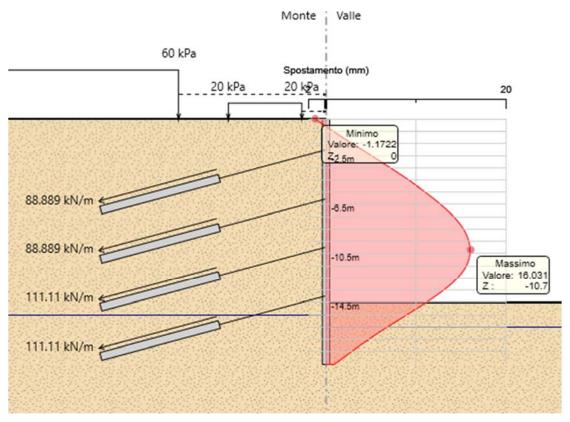


Figura 7-11 Spostamenti Paratia

Realizzazione Lavori

Collegamento viario compreso tra lo Svincolo della S.S. 514 di "Chiaromonte" con la S.S. 115 e lo Svincolo della "Ragusana"

PROGETTO ESECUTIVO

RELAZIONE TECNICA E DI CALCOLO OPERE IMBOCCO SUD

7.3.4 __ Stabilità globale

Come indicato al punto 6.5.3.1.2 del D.M. 2008, le verifiche di stabilità globale sono state condotte per la combinazione A2+M2+R2, in fase statica e fase sismica. Il metodo di calcolo adottato è quello di Bishop. Si riporta la figura del FS minimo ottenuto.

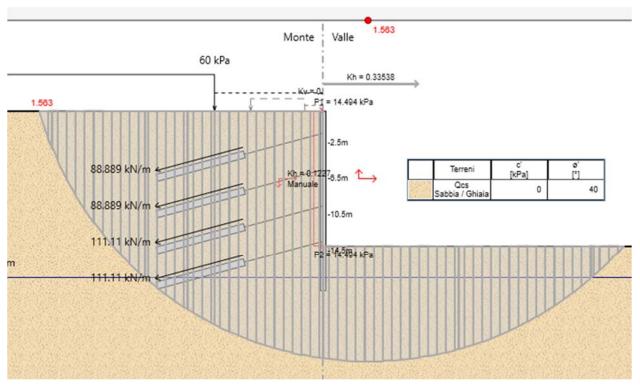


Figura 7-12 Stabilità globale – Fase sismica - Paratia imbocco Sud

Collegamento viario compreso tra lo Svincolo della S.S. 514 di "Chiaromonte" con la S.S. 115 e lo Svincolo della "Ragusana"

PROGETTO ESECUTIVO

RELAZIONE TECNICA E DI CALCOLO OPERE IMBOCCO SUD

7.3.6 Verifica Tiranti

Nella tabella seguente si riportano le sollecitazioni ottenute sui tiranti.

Ordine	Interasse (m)	Inclinazione (°)	Trefoli	Pre Tensione (kN)	Reazione (kN)	N esercizio (kN)
T1	3.6	15	4	320	452.4	348.0
T2	3.6	15	4	320	521.9	401.4
T3	3.6	15	5	400	634.7	488.2
T4	3.6	15	5	400	519.9	400.0

Si riportano di seguito le verifica, che dalle analisi numeriche, risulta essere più sollecitata, sia per i tiranti a 4 trefoli sia per i tiranti a 5 trefoli.

Numero trefoli:	n =	4	
Area singolo trefolo At:		140	(mm ²)
Area complessiva dell'acciaio (A = n·At):		559.064	(mm ²)
Diametro equivalente dei trefoli Deq = $(A \cdot 4/\pi)^{0.5}$	Deq =	26.68	(mm)
Tensione caratteristica di rottura dell'acciaio (f _{ptk})		1860	(MPa)
Tensione caratt. all'1% di deformazione dell'acciaio $(f_{p(1)k})$		1670	(MPa)
N _G Azione permanente sul tirante:		521.9	kN
N _Q Azione variabile sul tirante:		0	kN
Nt Azione di calcolo ($N_G \cdot \gamma_g + N_Q \cdot \gamma_q$):		521.856	kN

Collegamento viario compreso tra lo Svincolo della S.S. 514 di "Chiaromonte" con la S.S. 115 e lo Svincolo della "Ragusana"

PROGETTO ESECUTIVO

RELAZIONE TECNICA E DI CALCOLO OPERE IMBOCCO SUD

Aderenza Malta -Terreno L = Nt·Fs / (Ds·p·s _d)				
D (cm) Diametro della perforazione =	200	(mm)		
α (-) Coeff. moltiplicativo =	1.2			
Ds (cm) Diametro di calcolo (Ds = α ·D) =	240	(mm)		
s _k (MPa) tensione unitaria media di aderenza malta - terreno = 0	.20	(MPa)		
s _k (MPa) tensione unitaria minima di aderenza malta - terreno = 0.20				
s_d (MPa) tensione unitaria di progetto aderenza malta - terreno = $s_d = Min(s_{med}/\xi_3 \gamma_s; s_{min}/\xi_4 \gamma_s)$.09	(MPa)		
Lunghezza di ancoraggio L =	7.5	(m)		
γ_R = 1.2 (tiranti definitivi) ξ_3 = 1.80 ξ_4 = 1.80				

Verifica a trazione dell'armatura

 $N = N_G + N_Q =$ 521.856 (kN)

UNI EN 1537 $N \leq 0.65 \cdot f_{ptk} \cdot n \cdot At = 675.91 \quad (kN)$

Verifica nel rispetto della gerarchia delle resistenze par.6.6.2 NTC2008

Tensione caratt. all'1% di deformazione dell'acciaio (f _{p(1)k})	1670	MPa
Diametro del trefolo	13.34	mm
Resistenza caratt. al limite di snervamento della lungh. libera	933.64	kN
Resistenza a sfilamento della fondazione	675.91	kN

Le verifiche sono soddisfatte.

Collegamento viario compreso tra lo Svincolo della S.S. 514 di "Chiaromonte" con la S.S. 115 e lo Svincolo della "Ragusana"

PROGETTO ESECUTIVO

RELAZIONE TECNICA E DI CALCOLO OPERE IMBOCCO SUD

Numero trefoli:	n =	5	
Area singolo trefolo At:		140	(mm ²)
Area complessiva dell'acciaio (A = n·At):		698.83	(mm ²)
Diametro equivalente dei trefoli Deq = $(A \cdot 4/\pi)^{0.5}$	Deq =	29.83	(mm)
Tensione caratteristica di rottura dell'acciaio (f _{ptk})		1860	(MPa)
Tensione caratt. all'1% di deformazione dell'acciaio (f _{p(1)k})	1670	(MPa)
N _G Azione permanente sul tirante:		634.7	kN
N _Q Azione variabile sul tirante:		0	kN
Nt Azione di calcolo (N_{G} · γ_{g} + N_{Q} · γ_{q}):		634.68	kN
Aderenza Malta -Terreno L = Nt·Fs / (Ds·p·s _d)			
D (cm) Diametro della perforazione =		200	(mm)
α (-) Coeff. moltiplicativo =		1.2	
Ds (cm) Diametro di calcolo (Ds = α ·D) =		240	(mm)
s_k (MPa) tensione unitaria media di aderenza malta - terr	eno =	0.20	(MPa)
s_k (MPa) tensione unitaria minima di aderenza malta - te	rreno =	0.20	(MPa)
s _d (MPa) tensione unitaria di progetto aderenza malta - te	erreno =	0.09	(MPa)
s _d = Min(s _{med} /ξ ₃ γ _s ; s _{min} /ξ ₄ γ _s) Lunghezza di ancoraggio	L =	9.0	(m)
γ_R = 1.2 (tiranti definitivi) ξ_3 = 1.80 ξ_4 = 1.80			
Verifica a trazione dell'armatura			
$N = N_G + N_Q = 634.68$ (kN)			
UNI EN 1537 $N \le 0.65 \cdot f_{ptk} \cdot n \cdot At = 844.8$	9 (kN)		
Verifica nel rispetto della gerarchia delle resistenze	par.6.6.2 NTC	22008	
Tensione caratt. all'1% di deformazione dell'acciaio ($f_{p(1)k}$) Diametro del trefolo	167 13.3		

MANDATARIA:

MANDANTI:

Resistenza a sfilamento della fondazione

Le verifiche sono soddisfatte.

Resistenza caratt. al limite di snervamento della lungh. libera

1167.05

844.89

kΝ

kΝ

PROGETTO ESECUTIVO

Direzione Progettazione e Realizzazione Lavori

RELAZIONE TECNICA E DI CALCOLO OPERE IMBOCCO SUD

La lunghezza libera del tirante si ottiene dalla seguente relazione:

$$Llibera = (h+t-hi)sen(45-\phi/2)/(sen(45+\alpha+\phi/2)$$

La lunghezza così ottenuta deve essere aumentata in base alle NTC 2008 (7.11.12) di:

$$L_e = L_{\rm s} \left(1 + 1, 5 \cdot \frac{a_{\rm max}}{g} \right)$$

Quindi si ha:

Lunghezza libera T1		Lunghezza libera T	2
hi = prodonfità T1	2.5 m	hi = prodonfità T2	6.5 m
h = fuori terra paratia	15 m	h = fuori terra parat	tia 15 m
t = infissione paratia	5 m	t = infissione parati	ia 5 m
i = inclinazione tirante	15 °	i = inclinazione tira	nte 0 °
Φ = angolo attrito	32 °	Φ = angolo attrito	32 °
ag/g	0.2522	ag/g	0.2522
kp	29 °	kp	29 °
L libera	8.7 m	L libera	7.5 m
L libera sisma	12.0 m	L libera sisma	10.0 m
Lunghezza libera T3		Lunghezza libera T4	<u> </u>
hi = prodonfità T3	10.5 m	hi = prodonfità T3	14.5 m
h = fuori terra paratia	15 m	h = fuori terra paı	15 m
t = infissione paratia	5 m	t = infissione par	5 m
i = inclinazione tirante	15 °	i = inclinazione ti	15 °
φ = angolo attrito	32 °	Φ = angolo attritc	32 °
ag/g	0.2522		0.2522
kp	29 °	kp	29 °
L libera	4.7 m	L libera	2.7 m
L libera sisma	7.0 m	L libera sisma	4.0 m

Si riporta in forma tabellare i risultati ottenuti delle lunghezze caratteristiche dei tiranti.

Ordine	Inclinazione Tirante (°)	Lunghezza Libera (m)	Lunghezza Ancoraggio (m)	Lunghezza Totale (m)
T1	var	16	8	24
T2	var	13	8	21
Т3	15	9	9	18
T4	15	7	9	16

Collegamento viario compreso tra lo Svincolo della S.S. 514 di "Chiaromonte" con la S.S. 115 e lo Svincolo della "Ragusana"

PROGETTO ESECUTIVO

RELAZIONE TECNICA E DI CALCOLO OPERE IMBOCCO SUD

7.5 IMBOCCO SUD H = 13.5 M

La paratia è costituita da una successione di pali Ø1000, posti ad interasse di 1.20 m, di lunghezza massima pari a 18 m. La parati sarà contrastata con ordini di tiranti posti ad interasse di 3.60 m con inclinazione α = 15°. Tale azione di contrasto verrà distribuita sui micropali dalle travi di collegamento e ripartizione previste lungo ciascun ordine, costituite da un doppio profilato in acciaio S275 della serie HEB200.

Per il dimensionamento della paratia si è considerata un'altezza di scavo massima pari a 13.5 m.

La stratigrafia di calcolo, a partire da p.c., è costituita da:

Stratigrafia [da p.c.]	Formazione	γ(kN/m³)	c' (kPa)	φ' (°)	E (MPa)
da 0 a 30 m	Qcs	21	0	40	80

Si considera la falda a 25,0 m dal piano campagna.

La valutazione dei coefficienti di spinta attiva è stata effettuata facendo ricorso alla teoria di Mononobe-Okabe (rapporto δ/ϕ' =0.5) mentre la valutazione dei coefficienti di spinta passiva è stata effettuata con la teoria di Caquot-Kerisel considerando a favore di sicurezza un rapporto $\delta/\phi'=0$.

Nel calcolo sono state considerate le seguenti fasi:

- 1. Inizializzazione del modello con fase geostatica e realizzazione della paratia
- 2. Scavo per la realizzazione del primo tirante
- 3. Messa in opera del tirante
- 4. Realizzazione degli ordini di tiranti successivi con modalità analoghe alla realizzazione del primo e ripetizione delle fasi 3 e 4 fino al raggiungimento della quota di fondo scavo
- 5. Scavo finale
- 6. Applicazione del sisma
- 7. Stabilità globale

MANDATARIA:

PROGETTO ESECUTIVO

RELAZIONE TECNICA E DI CALCOLO OPERE IMBOCCO SUD

Le fasi sopra riportate, nel calcolo sono ripetute per le diverse combinazioni:

SLU: A1+M1+R1 SLU: A2+M2+R2

SLE

In allegato sono riportati tutti i dettagli dei calcoli eseguiti.

Di seguito si riporta un'immagine esplicativa del modello di calcolo:

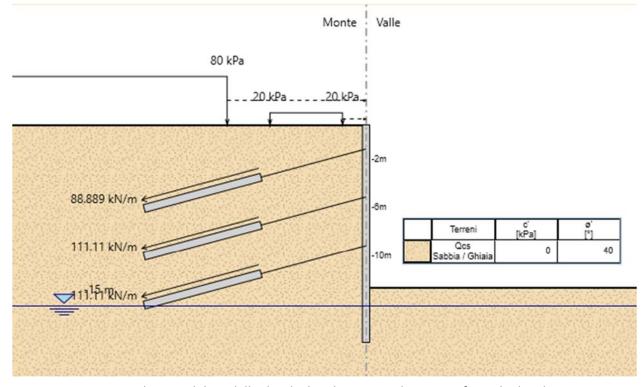


Figura 7.13 Figura esplicativa del modello di calcolo adottato per la sezione frontale di imbocco.

PROGETTO ESECUTIVO

RELAZIONE TECNICA E DI CALCOLO OPERE IMBOCCO SUD

7.5.1 Verifiche strutturali pali

Si riportano, di seguito, le sollecitazioni massime agenti sui micropali e le verifiche strutturali, valutate per la combinazione <u>A1+M1+R1</u> attraverso il software ParatiePLUS.

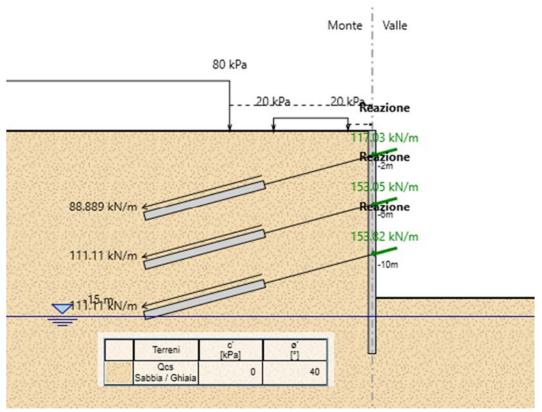


Figura 7-14 Rappresentazione dello schema di calcolo.

Collegamento viario compreso tra lo Svincolo della S.S. 514 di "Chiaromonte" con la S.S. 115 e lo Svincolo della "Ragusana"

PROGETTO ESECUTIVO

RELAZIONE TECNICA E DI CALCOLO OPERE IMBOCCO SUD

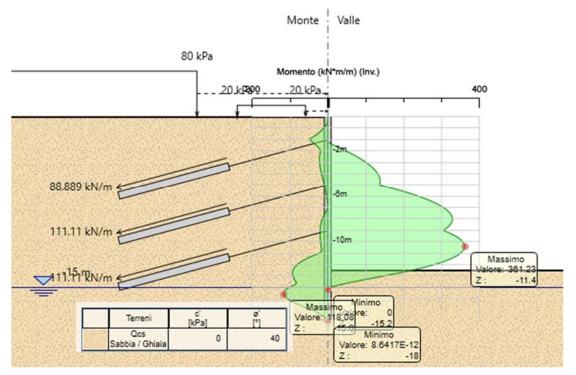


Figura 7-15 Momento flettente agente sulla paratia per ogni fase costruttiva - inviluppo

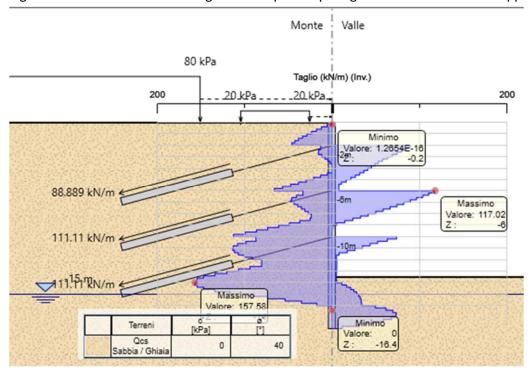


Figura 7-16 Taglio agente sulla paratia per ogni fase costruttiva - inviluppo

Collegamento viario compreso tra lo Svincolo della S.S. 514 di "Chiaromonte" con la S.S. 115 e lo Svincolo della "Ragusana"

PROGETTO ESECUTIVO

RELAZIONE TECNICA E DI CALCOLO OPERE IMBOCCO SUD

A metro lineare, le massime sollecitazioni di calcolo sono pari a:

 $M_d = 361 \text{ kNm/m}$

 $V_d = 158 \text{ kN/m}$

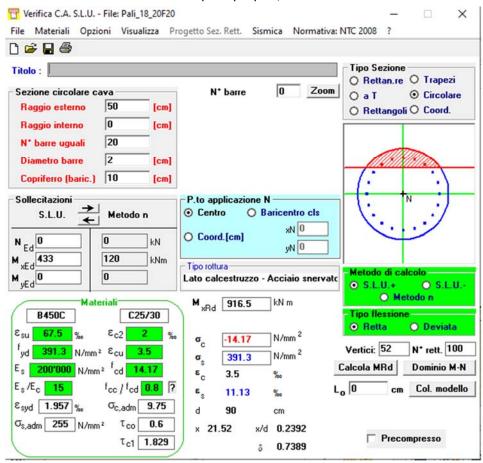
Sul singolo palo (interasse 1.20 m):

 M_d = 433 kNm

 $V_d = 190 \text{ kN}$

Si riportano le verifiche agli SLU.

PROGETTO ESECUTIVO


Direzione Progettazione e Realizzazione Lavori

RELAZIONE TECNICA E DI CALCOLO OPERE IMBOCCO SUD

7.5.1.1 Pressoflessione

Palo ϕ 1000 (classe di resistenza C25/30) armato con **20 \phi20** (FeB450C).

Si considera la Nd dovuta al solo peso proprio, trascurabile ai fini delle verifiche.

La verifica è soddisfatta.

Collegamento viario compreso tra lo Svincolo della S.S. 514 di "Chiaromonte" con la S.S. 115 e lo Svincolo della "Ragusana"

PROGETTO ESECUTIVO

RELAZIONE TECNICA E DI CALCOLO OPERE IMBOCCO SUD

7.5.1.2 Taglio

Sezione quadrata inscritta di lato 70 cm; armature costituita da staffe **\$\phi12\$ passo 20 cm** (acciaio B450C).

Taglio resistente nelle sezioni con	armatur	a trasve	ersale a	a taglio
				- mg.uv
Taglio agente	$V_{Ed} =$	190	kN	
Altezza della sezione		h =	700	mm
Copriferro della sezione		$\delta =$	100	mm
Altezza utile della sezione		d =	600	mm
Diametro delle staffe		$d_w =$	12	mm
Numero di braccia		$n_w =$	2	
Area totale staffe		$A_{sw} =$	226.08	3 mm ²
Passo delle staffe		s =	200	mm
Inclinazione delle staffe		α =	90	deg
In clin azione delle bielle compresse		$\theta =$	21.8	$deg cot(\theta) = 2.50$
Larghezza minima della sezione		$\mathbf{b_w} =$	700	mm
Coeff. maggiorativo per sezioni compresse		α _c =	1.2	
Resistenza di calcolo a "taglio-trazione"	$V_{Rsd} =$	597.2	kN \	$V_{Rsd} = 0.9 \cdot d \cdot \frac{A_{sw}}{s} \cdot f_{yd} \cdot (ctg\alpha + ctg\theta) \cdot \sin\alpha$
Resistenza di calcolo a "taglio- compressione"	$V_{Red} =$	1103.4	kN V	$V_{\text{Red}} = 0.9 \cdot d \cdot b_{\text{w}} \cdot \alpha_{\text{c}} \cdot f'_{\text{ed}} \cdot (\text{ctg}\alpha + \text{ctg}\theta) / (1 + \text{ctg}^2\theta)$
Resistenza a taglio della sezione	$V_{Rd} =$	597.2	kN V	$V_{Rd} = \min (V_{Rsd}, V_{Red})$
Esito della verifica	soddisfat	ta		

La verifica è soddisfatta.

MANDATARIA:

Realizzazione Lavori

Collegamento viario compreso tra lo Svincolo della S.S. 514 di "Chiaromonte" con la S.S. 115 e lo Svincolo della "Ragusana"

PROGETTO ESECUTIVO

RELAZIONE TECNICA E DI CALCOLO OPERE IMBOCCO SUD

7.5.1.3 Fessurazione

	Verica apertura fessure sezione circolare NTC Par.C.4.1.2.2.4.5				
$\sigma_{\rm s}$	100.0 N/mm²	Tensione massima armatura tesa sezione fessurata			
R _{ck}	30 N/mm²	Resistenza caratteristica cubica cls			
Ψ _{long}	24 mm	Diametro barre longitudinali			
φ _{trasv}	12 mm	Diametro staffe o spirale			
n	20	Numero ferri longitudinali			
С	50 mm	Copriferro			
D	1000 mm	Diametro			
k _t	0.4	k _t =0.6; 0.4 carichi breve durata/lunga durata			
k ₂	0.5	k ₂ =0.5; 1.0 caso flessione/trazione semplice			
k ₁	0.8	k ₁=0.8; 1.6 barre aderenza migliorata/lisce			
W	0.3 mm	Valore limite apertura fessure			
δ	26 mm	Ricoprimento del calcestruzzo			
f _{ck}	24.9 N/mm²	Resistenza caratteristica cilindrica cls			
i	141 mm	Interasse ferri longitudinali			
A _{c_eff}	17530 mm²	Area efficace del calcestruzzo			
A _{s_long}	452 mm²	Area barra longitudinale			
E _s	210000 N/mm²	Modulo elastico acciaio da c.a.			
f _{ctm}	2.6 N/mm²	Resistenza a trazione media cls			
E _{cm}	31447 N/mm²	Modulo elastico medio cls			
α_{e}	6.68	Rapporto E _s /E _{cm}			
f _{cm}	32.9 N/mm²	Resistenza media cls			
ρ _{eff}	2.58 %	Rapporto area acciaio/area efficace			
ε _{sm}	0.03 %	Deformazione unitaria media			
k ₃	3.4	Coefficiente			
k ₄	0.4	Coefficiente			
Δs _{max}	246.5 mm	Distanza massima tra le fessure			
W_d		Valore di calcolo apertura fessure			

La verifica è soddisfatta.

PROGETTO ESECUTIVO

RELAZIONE TECNICA E DI CALCOLO OPERE IMBOCCO SUD

7.5.2 __ Spostamenti

Il massimo spostamento, in condizioni di esercizio, in assenza di sisma, è pari a 6.5 mm.

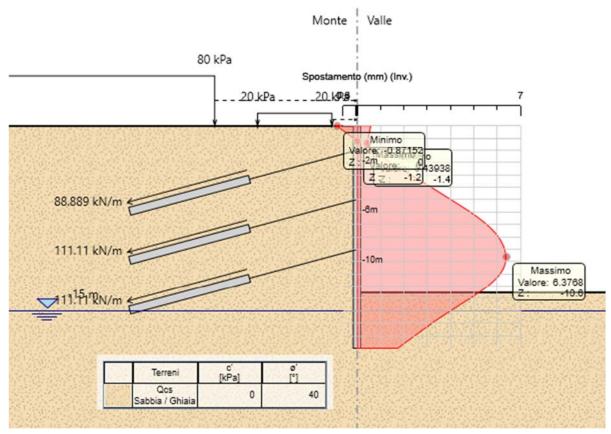


Figura 7-17 Spostamenti Paratia

Realizzazione Lavori

Collegamento viario compreso tra lo Svincolo della S.S. 514 di "Chiaromonte" con la S.S. 115 e lo Svincolo della "Ragusana"

PROGETTO ESECUTIVO

RELAZIONE TECNICA E DI CALCOLO OPERE IMBOCCO SUD

7.5.3 __ Stabilità globale

Come indicato al punto 6.5.3.1.2 del D.M. 2008, le verifiche di stabilità globale sono state condotte per la combinazione A2+M2+R2, in fase statica e fase sismica. Il metodo di calcolo adottato è quello di Bishop. Si riporta la figura del FS minimo ottenuto.

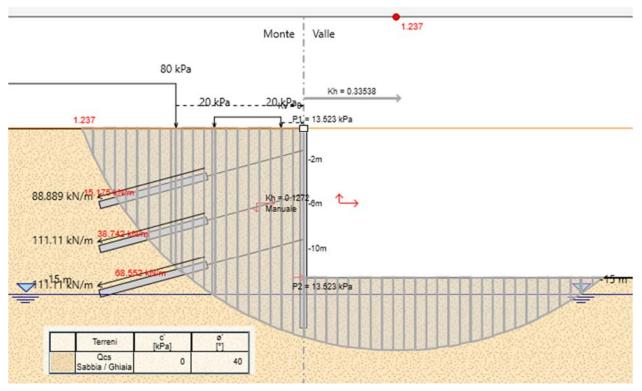


Figura 7-18 Stabilità globale – Fase sismica - Paratia imbocco Sud

Collegamento viario compreso tra lo Svincolo della S.S. 514 di "Chiaromonte" con la S.S. 115 e lo Svincolo della "Ragusana"

PROGETTO ESECUTIVO

RELAZIONE TECNICA E DI CALCOLO OPERE IMBOCCO SUD

7.5.5 Verifica Tiranti

Nella tabella seguente si riportano le sollecitazioni ottenute sui tiranti.

Ordine	Interasse (m)	Inclinazione (°)	Trefoli	Pre Tensione (kN)	Reazione (kN)	N esercizio (kN)
T2	3.6	15	4	320	421.3	324.0
T3	3.6	15	5	400	551.0	423.7
T4	3.6	15	5	400	553.8	426.0

Si riportano di seguito le verifica, che dalle analisi numeriche, risulta essere più sollecitata, sia per i tiranti a 4 trefoli sia per i tiranti a 5 trefoli.

Numero trefoli:	n =	4	
Area singolo trefolo At:		140	(mm ²)
Area complessiva dell'acciaio (A = n·At):		559.064	(mm ²)
Diametro equivalente dei trefoli Deq = $(A \cdot 4/\pi)^{0.5}$	Deq =	26.68	(mm)
Tensione caratteristica di rottura dell'acciaio (f _{ptk})		1860	(MPa)
Tensione caratt. all'1% di deformazione dell'acciaio (f _{p(1)k})			
N _G Azione permanente sul tirante:		421.3	kN
N _Q Azione variabile sul tirante:		0	kN
Nt Azione di calcolo ($N_G \cdot \gamma_g + N_Q \cdot \gamma_q$):		421.272	kN

Collegamento viario compreso tra lo Svincolo della S.S. 514 di "Chiaromonte" con la S.S. 115 e lo Svincolo della "Ragusana"

PROGETTO ESECUTIVO

RELAZIONE TECNICA E DI CALCOLO OPERE IMBOCCO SUD

Aderenza Malta -Terreno L = Nt·Fs / (Ds·p·s _d)					
D (cm) Diametro della perforazione =	200	(mm)			
α (-) Coeff. moltiplicativo =	1.2				
Ds (cm) Diametro di calcolo (Ds = $\alpha \cdot D$) = 240					
s _k (MPa) tensione unitaria media di aderenza malta - terreno =	0.20	(MPa)			
s _k (MPa) tensione unitaria minima di aderenza malta - terreno =	0.20	(MPa)			
s_d (MPa) tensione unitaria di progetto aderenza malta - terreno = s_d = Min($s_{med}/\xi_3 \gamma_s$; $s_{min}/\xi_4 \gamma_s$)	0.09	(MPa)			
Lunghezza di ancoraggio L =	6.0	(m)			
γ_R = 1.2 (tiranti definitivi) ξ_3 = 1.80 ξ_4 = 1.80					

Verifica a trazione dell'armatura

 $N = N_G + N_Q =$ 421.272 (kN)

UNI EN 1537 $N \leq 0.65 \cdot f_{ptk} \cdot n \cdot At =$ 675.91 (kN)

Verifica nel rispetto della gerarchia delle resistenze par.6.6.2 NTC2008

Tensione caratt. all'1% di deformazione dell'acciaio (f _{p(1)k})	1670	MPa
Diametro del trefolo	13.34	mm
Resistenza caratt. al limite di snervamento della lungh. libera	933.64	kN
Resistenza a sfilamento della fondazione	675.91	kN

Le verifiche sono soddisfatte.

Collegamento viario compreso tra lo Svincolo della S.S. 514 di "Chiaromonte" con la S.S. 115 e lo Svincolo della "Ragusana"

PROGETTO ESECUTIVO

RELAZIONE TECNICA E DI CALCOLO OPERE IMBOCCO SUD

Numero trefoli:	ı	n =	5		
Area singolo trefolo At:		•	140	(mm²))
Area complessiva dell'acciaio (A = n	·At):		698.83	(mm²))
Diametro equivalente dei trefoli Deq = (A·	$4/\pi)^{0.5}$	Deq =	29.83	(mm)	
Tensione caratteristica di rottura dell'acci	aio (f _{ptk})		1860	(MPa))
Tensione caratt. all'1% di deformazione d	lell'acciaio (f _{p(1)k})		1670	(MPa))
N _G Azione permanente sul tirante:			553	3.752	kN
N _Q Azione variabile sul tirante:				0	kN
Nt Azione di calcolo $(N_G \cdot \gamma_g + N_Q \cdot \gamma_q)$:			553	3.752	kN
Aderenza Malta -Terreno L =	Nt·Fs / (Ds·p·s _d))			
D (cm) Diametro della perforazione =				200	(mm)
α (-) Coeff. moltiplicativo =					
Ds (cm) Diametro di calcolo (Ds = α ·D) = 240					
s_k (MPa) tensione unitaria media di ad	derenza malta - te	erreno =		0.20	(MPa)
s_k (MPa) tensione unitaria minima di a	aderenza malta -	terreno =	•	0.20	(MPa)
s _d (MPa) tensione unitaria di progetto aderenza malta - terreno = 0.09 (
s_d = Min(s $_{med}/\xi_3 \gamma_s$; s $_{min}/\xi_4 \gamma_s$) Lunghezza di ancoraggio		L,=		7.9	(m)
γ_R = 1.2 (tiranti definitivi) ξ_3 =	1.80 $\xi_4 = 1.8$	80			
Verifica a trazione dell'armatura					
$N = N_G + N_Q = 534.42$	(kN)				
UNI EN 1537 $ N \leq 0.65 \cdot f_{ptk} \cdot n \cdot $	At = 844	l.89 (kN)			

Verifica nel rispetto della gerarchia delle resistenze par.6.6.2 NTC2008

Tensione caratt. all'1% di deformazione dell'acciaio $(f_{p(1)k})$	1670	MPa
Diametro del trefolo	13.34	mm
Resistenza caratt. al limite di snervamento della lungh. libera	933.64	kN
Resistenza a sfilamento della fondazione	675.91	kN

Le verifiche sono soddisfatte.

MANDANTI:

PROGETTO ESECUTIVO

Direzione Progettazione e Realizzazione Lavori

RELAZIONE TECNICA E DI CALCOLO OPERE IMBOCCO SUD

La lunghezza libera del tirante si ottiene dalla seguente relazione:

$$Llibera = (h + t - hi)sen(45 - \phi/2)/(sen(45 + \alpha + \phi/2))$$

La lunghezza così ottenuta deve essere aumentata in base alle NTC 2008 (7.11.12) di:

$$L_e = L_{\rm s} \left(1 + 1, 5 \cdot \frac{a_{\rm max}}{g} \right)$$

Quindi si ha:

Lunghezza libera		Lunghezza libera		Lunghezza libera	
hi = prodonfità T2	2.5 m	hi = prodonfità T3	6.5 m	hi = prodonfità T4	10.5 m
h = fuori terra paratia	13.5 m	h = fuori terra paratia	13.5 m	h = fuori terra paratia	13.5 m
t = infissione paratia	4.5 m	t = infissione paratia	4.5 m	t = infissione paratia	4.5 m
i = inclinazione tirante	15 °	i = inclinazione tirante	15 °	i = inclinazione tirante	15 °
φ = angolo attrito	32 °	Φ = angolo attrito	32 °	Φ = angolo attrito	32 °
ag/g	0.3006	ag/g	0.3006	ag/g	0.3006
kp	29 °	kp	29 °	kp	29 °
L libera	7.7 m	L libera	5.7 m	L libera	3.7 m
L libera sisma	11.0 m	L libera sisma	8.0 m	L libera sisma	5.0 m

Si riporta in forma tabellare i risultati ottenuti delle lunghezze caratteristiche dei tiranti.

Ordine	Inclinazione Tirante (°)	Lunghezza Libera (m)	Lunghezza Ancoraggio (m)	Lunghezza Totale (m)
T2	15	13	7	20
Т3	15	9	9	18
T4	15	7	9	16

Collegamento viario compreso tra lo Svincolo della S.S. 514 di "Chiaromonte" con la S.S. 115 e lo Svincolo della "Ragusana"

PROGETTO ESECUTIVO

RELAZIONE TECNICA E DI CALCOLO OPERE IMBOCCO SUD

7.7 IMBOCCO SUD H = 9.0 M

La paratia è costituita da una successione di pali $\emptyset 1000$, posti ad interasse di 1.20 m, di lunghezza massima pari a 14 m. La parati sarà contrastata con ordini di tiranti posti ad interasse di 3.60 m con inclinazione $\alpha = 15^{\circ}$. Tale azione di contrasto verrà distribuita sui micropali dalle travi di collegamento e ripartizione previste lungo ciascun ordine, costituite da un doppio profilato in acciaio S275 della serie HEB200.

Per il dimensionamento della paratia si è considerata un'altezza di scavo massima pari a 9.0 m.

La stratigrafia di calcolo, a partire da p.c., è costituita da:

Stratigrafia [da p.c.]	Formazione	γ(kN/m³)	c' (kPa)	φ' (°)	E (MPa)
da 0 a 30 m	Qcs	21	0	40	80

Si considera la falda a 25,0 m dal piano campagna.

La valutazione dei coefficienti di spinta attiva è stata effettuata facendo ricorso alla teoria di Mononobe-Okabe (rapporto $\delta/\phi'=0.5$) mentre la valutazione dei coefficienti di spinta passiva è stata effettuata con la teoria di Caquot-Kerisel considerando a favore di sicurezza un rapporto $\delta/\phi'=0$.

Nel calcolo sono state considerate le seguenti fasi:

- 1. Inizializzazione del modello con fase geostatica e realizzazione della paratia
- 2. Scavo per la realizzazione del primo tirante
- 3. Messa in opera del tirante
- 4. Realizzazione degli ordini di tiranti successivi con modalità analoghe alla realizzazione del primo e ripetizione delle fasi 3 e 4 fino al raggiungimento della quota di fondo scavo
- 5. Scavo finale
- 6. Applicazione del sisma
- 7. Stabilità globale

Collegamento viario compreso tra lo Svincolo della S.S. 514 di "Chiaromonte" con la S.S. 115 e lo Svincolo della "Ragusana"

PROGETTO ESECUTIVO

RELAZIONE TECNICA E DI CALCOLO OPERE IMBOCCO SUD

Le fasi sopra riportate, nel calcolo sono ripetute per le diverse combinazioni:

SLU: A1+M1+R1 SLU: A2+M2+R2

SLE

In allegato sono riportati tutti i dettagli dei calcoli eseguiti.

Di seguito si riporta un'immagine esplicativa del modello di calcolo:

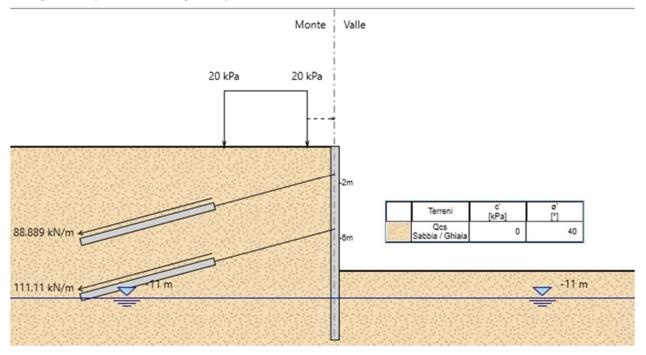


Figura 7.19 Figura esplicativa del modello di calcolo adottato per la sezione frontale di imbocco.

Collegamento viario compreso tra lo Svincolo della S.S. 514 di "Chiaromonte" con la S.S. 115 e lo Svincolo della "Ragusana"

PROGETTO ESECUTIVO

RELAZIONE TECNICA E DI CALCOLO OPERE IMBOCCO SUD

7.7.1 Verifiche strutturali pali

Si riportano, di seguito, le sollecitazioni massime agenti sui micropali e le verifiche strutturali, valutate per la combinazione <u>A1+M1+R1</u> attraverso il software ParatiePLUS.

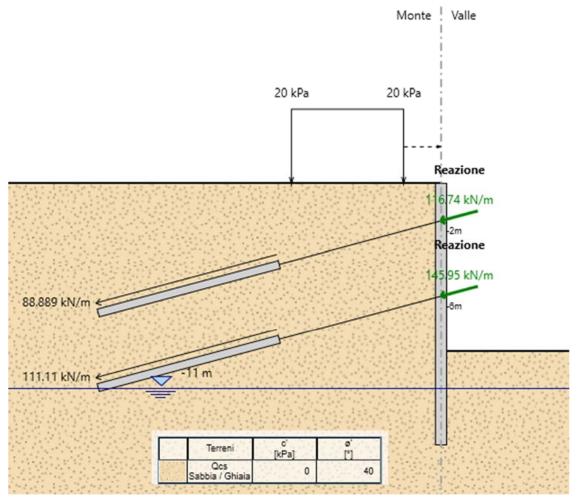


Figura 7-20 Rappresentazione dello schema di calcolo.

Collegamento viario compreso tra lo Svincolo della S.S. 514 di "Chiaromonte" con la S.S. 115 e lo Svincolo della "Ragusana"

PROGETTO ESECUTIVO

RELAZIONE TECNICA E DI CALCOLO OPERE IMBOCCO SUD

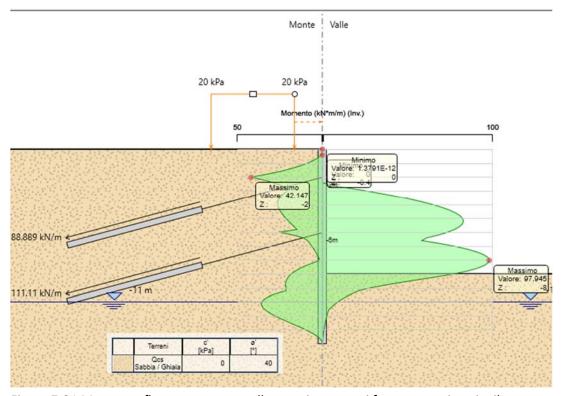


Figura 7-21 Momento flettente agente sulla paratia per ogni fase costruttiva - inviluppo

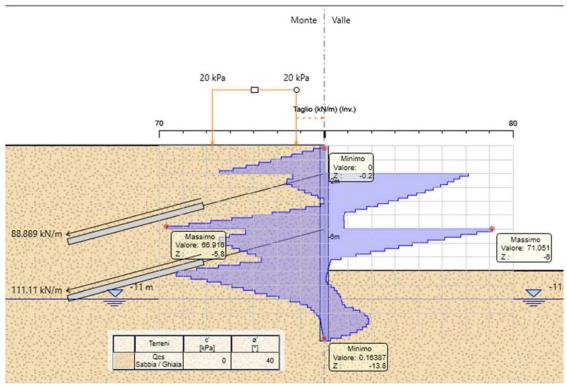


Figura 7-22 Taglio agente sulla paratia per ogni fase costruttiva - inviluppo

Collegamento viario compreso tra lo Svincolo della S.S. 514 di "Chiaromonte" con la S.S. 115 e lo Svincolo della "Ragusana"

PROGETTO ESECUTIVO

Direzione Progettazione e Realizzazione Lavori

RELAZIONE TECNICA E DI CALCOLO OPERE IMBOCCO SUD

A metro lineare, le massime sollecitazioni di calcolo sono pari a:

 $M_d = 98 \text{ kNm/m}$

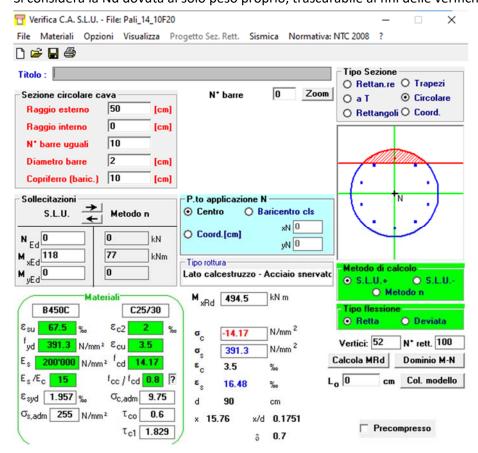
 $V_d = 71 \text{ kN/m}$

Sul singolo palo (interasse 1.20 m):

 M_d = 118 kNm

 $V_d = 86 \text{ kN}$

Si riportano le verifiche agli SLU.


PROGETTO ESECUTIVO

Direzione Progettazione e Realizzazione Lavori

RELAZIONE TECNICA E DI CALCOLO OPERE IMBOCCO SUD

7.7.1.1 Pressoflessione

Palo ϕ 1000 (classe di resistenza C25/30) armato con **10 \phi20** (FeB450C). Si considera la Nd dovuta al solo peso proprio, trascurabile ai fini delle verifiche.

La verifica è soddisfatta.

MANDATARIA:

PROGETTO ESECUTIVO

Direzione Progettazione e Realizzazione Lavori

RELAZIONE TECNICA E DI CALCOLO OPERE IMBOCCO SUD

7.7.1.2 Taglio

Sezione quadrata inscritta di lato 70 cm; armature costituita da staffe **\$\phi12\$ passo 20 cm** (acciaio B450C).

Taglio resistente nelle sezioni con	armatur	a trasvo	ersale a	taglio	
Taglio agente	$V_{Ed} =$	86	kN		
Altezza della sezione		h =	700	mm	
Copriferro della sezione		$\delta =$	100	mm	
Altezza utile della sezione		d =	600	mm	
Diametro delle staffe		$d_w =$	12	mm	
Numero di braccia		$n_w =$	2		
Area totale staffe		$A_{sw} =$	226.08	mm^2	
Passo delle staffe		s =	200	mm	
Inclinazione delle staffe		α =	90	deg	
Inclinazione delle bielle compresse		$\theta =$	21.8	deg	$\cot(\theta) = 2.50$
Larghezza minima della sezione		$\mathbf{b}_{\mathbf{w}} =$	700	mm	
Coeff. maggiorativo per sezion i compresse		α _c =	1.2		
Resistenza di calcolo a "taglio-trazione"	$V_{Rsd}=$	597.2	kN \[\]	$V_{Rsd} = 0$	$0.9 \cdot d \cdot \frac{A_{sw}}{s} \cdot f_{yd} \cdot (ctg\alpha + ctg\theta) \cdot \sin \alpha$
Resistenza di calcolo a "taglio- compressione"	$V_{Rcd} =$	1103.4	kN V	Red = 0,	$9 \cdot d \cdot b_{w} \cdot \alpha_{c} \cdot f'_{cd} \cdot (ctg\alpha + ctg\theta)/(1 + ctg^{2}\theta)$
Resistenza a taglio della sezione	$V_{Rd} =$	597.2	kN V	$t_{\rm d} = m$	$\sin \left(\mathrm{V}_{Rsd}, \mathrm{V}_{Red} \right)$
Esito della verifica	soddisfat	ta			

La verifica è soddisfatta.

MANDATARIA:

Realizzazione Lavori

Collegamento viario compreso tra lo Svincolo della S.S. 514 di "Chiaromonte" con la S.S. 115 e lo Svincolo della "Ragusana"

PROGETTO ESECUTIVO

RELAZIONE TECNICA E DI CALCOLO OPERE IMBOCCO SUD

7.7.1.3 Fessurazione

	Verica apertura fessure sezione circolare NTC Par.C.4.1.2.2.4.5				
	84.0 N/mm²				
σ_{s}					
R _{ck}	30 N/mm²	Resistenza caratteristica cubica cls			
φ _{long}	24 mm	Diametro barre longitudinali			
φ _{trasv}	12 mm	Diametro staffe o spirale			
n	20	Numero ferri longitudinali			
С	100 mm	Copriferro			
D	1000 mm	Diametro			
k _t	0.4	k _t =0.6; 0.4 carichi breve durata/lunga durata			
k ₂	0.5	k ₂ =0.5; 1.0 caso flessione/trazione semplice			
k ₁	0.8	k ₁ =0.8; 1.6 barre aderenza migliorata/lisce			
W	0.3 mm	Valore limite apertura fessure			
δ	76 mm	Ricoprimento del calcestruzzo			
f _{ck}	24.9 N/mm²	Resistenza caratteristica cilindrica cls			
i	126 mm	Interasse ferri longitudinali			
A _{c_eff}	28149 mm²	Area efficace del calcestruzzo			
A _{s_long}	452 mm²	Area barra longitudinale			
Es	210000 N/mm ²	Modulo elastico acciaio da c.a.			
f _{ctm}	2.6 N/mm²	Resistenza a trazione media cls			
E _{cm}	31447 N/mm²	Modulo elastico medio cls			
α_{e}	6.68	Rapporto E _s /E _{cm}			
f _{cm}	32.9 N/mm²	Resistenza media cls			
Peff	1.61 %	Rapporto area acciaio/area efficace			
ε _{sm}	0.02 %	Deformazione unitaria media			
k ₃	3.4	Coefficiente			
k ₄	0.4	Coefficiente			
∆s _{max}	512.3 mm	Distanza massima tra le fessure			
w _d		Valore di calcolo apertura fessure			

La verifica è soddisfatta.

PROGETTO ESECUTIVO

RELAZIONE TECNICA E DI CALCOLO OPERE IMBOCCO SUD

7.7.2 __ Spostamenti

Il massimo spostamento, in condizioni di esercizio, in assenza di sisma, è pari a 1.7 mm.

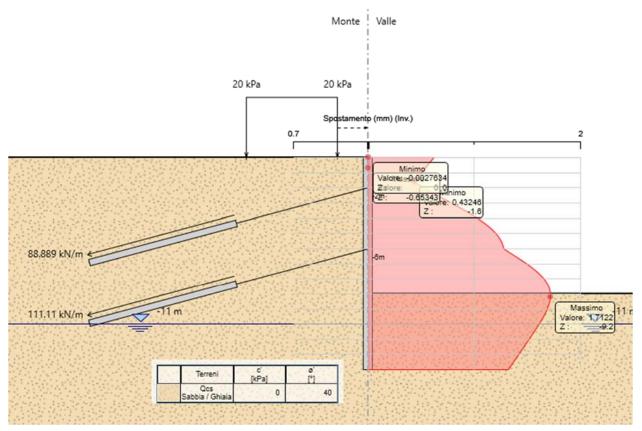


Figura 7-23 Spostamenti Paratia

Realizzazione Lavori

Collegamento viario compreso tra lo Svincolo della S.S. 514 di "Chiaromonte" con la S.S. 115 e lo Svincolo della "Ragusana"

PROGETTO ESECUTIVO

RELAZIONE TECNICA E DI CALCOLO OPERE IMBOCCO SUD

7.7.3 __ Stabilità globale

Come indicato al punto 6.5.3.1.2 del D.M. 2008, le verifiche di stabilità globale sono state condotte per la combinazione A2+M2+R2, in fase statica e fase sismica. Il metodo di calcolo adottato è quello di Bishop. Si riporta la figura del FS minimo ottenuto.

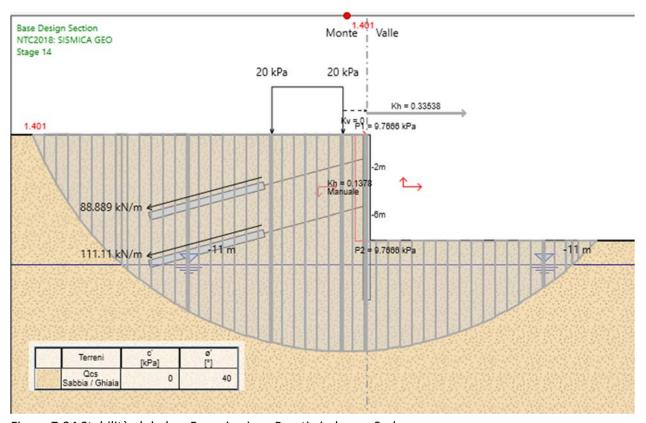


Figura 7-24 Stabilità globale – Fase sismica - Paratia imbocco Sud

Collegamento viario compreso tra lo Svincolo della S.S. 514 di "Chiaromonte" con la S.S. 115 e lo Svincolo della "Ragusana"

PROGETTO ESECUTIVO

RELAZIONE TECNICA E DI CALCOLO OPERE IMBOCCO SUD

7.7.5 Verifica Tiranti

Nella tabella seguente si riportano le sollecitazioni ottenute sui tiranti.

Ordine	Interasse (m)	Inclinazione (°)	Trefoli	Pre Tensione (kN)	Reazione (kN)	N esercizio (kN)
T2	3.6	15	4	320	320 420.3	
T3	3.6	15	5	400	525.4	404.1

Si riportano di seguito le verifica, che dalle analisi numeriche, risulta essere più sollecitata, sia per i tiranti a 4 trefoli sia per i tiranti a 5 trefoli.

Numero trefoli:	n =		4	
Area singolo trefolo At:		•	140	(mm ²)
Area complessiva dell'acciaio (A = n·At):		5	559.064	(mm²)
Diametro equivalente dei trefoli Deq = $(A \cdot 4/\pi)^{0.5}$	Deq =		26.68	(mm)
Tensione caratteristica di rottura dell'acciaio (f _{ptk})			1860	(MPa)
Tensione caratt. all'1% di deformazione dell'acciaio $(f_{p(1)k})$			1670	(MPa)
N _G Azione permanente sul tirante:		•	420.3	kN
N _Q Azione variabile sul tirante:			0	kN
Nt Azione di calcolo (N_{G} · γ_{g} + N_{Q} · γ_{q}):		4	120.264	kN

Collegamento viario compreso tra lo Svincolo della S.S. 514 di "Chiaromonte" con la S.S. 115 e lo Svincolo della "Ragusana"

PROGETTO ESECUTIVO

RELAZIONE TECNICA E DI CALCOLO OPERE IMBOCCO SUD

Aderenza Malta -Terreno L = Nt·Fs / (Ds·p·s _d)		
D (cm) Diametro della perforazione =	200	(mm)
α (-) Coeff. moltiplicativo =	1.2	
Ds (cm) Diametro di calcolo (Ds = α ·D) =	240	(mm)
s _k (MPa) tensione unitaria media di aderenza malta - terreno =).20	(MPa)
s _k (MPa) tensione unitaria minima di aderenza malta - terreno =).20	(MPa)
s_d (MPa) tensione unitaria di progetto aderenza malta - terreno = $s_d = Min(s_{med}/\xi_3 \gamma_s; s_{min}/\xi_4 \gamma_s)$	0.09	(MPa)
Lunghezza di ancoraggio	6.0	(m)
γ_R = 1.2 (tiranti definitivi) ξ_3 = 1.80 ξ_4 = 1.80		

Verifica a trazione dell'armatura

 $N = N_G + N_Q =$ 420.264 (kN)

UNI EN 1537 $N \leq 0.65 {\cdot} f_{ptk} {\cdot} n {\cdot} At =$ 675.91 (kN)

Verifica nel rispetto della gerarchia delle resistenze par.6.6.2 NTC2008

Tensione caratt. all'1% di deformazione dell'acciaio (f _{p(1)k})	1670	MPa
Diametro del trefolo	13.34	mm
Resistenza caratt. al limite di snervamento della lungh. libera	933.64	kN
Resistenza a sfilamento della fondazione	675.91	kN

Le verifiche sono soddisfatte.

Realizzazione Lavori

Collegamento viario compreso tra lo Svincolo della S.S. 514 di "Chiaromonte" con la S.S. 115 e lo Svincolo della "Ragusana"

PROGETTO ESECUTIVO

RELAZIONE TECNICA E DI CALCOLO OPERE IMBOCCO SUD

Numero trefoli:	n =	5	
Area singolo trefolo At:	•	140	(mm ²)
Area complessiva dell'acciaio (A = n·At):		698.83	(mm ²)
Diametro equivalente dei trefoli Deq = $(A \cdot 4/\pi)^{0.5}$	Deq =	29.83	(mm)
Tensione caratteristica di rottura dell'acciaio (f _{ptk})		1860	(MPa)
Tensione caratt. all'1% di deformazione dell'acciaio ($f_{p(1)k}$) N_{G} Azione permanente sul tirante:	,	1670 525.4	(MPa) kN
N _Q Azione variabile sul tirante:		0	kN
Nt Azione di calcolo ($N_G \cdot \gamma_g + N_Q \cdot \gamma_q$):		525.42	kN
Aderenza Malta -Terreno L = Nt·Fs / (Ds·p·s _d)			
D (cm) Diametro della perforazione =		200	(mm)
α (-) Coeff. moltiplicativo =		1.2	
Ds (cm) Diametro di calcolo (Ds = α ·D) =		240	(mm)
s_k (MPa) tensione unitaria media di aderenza malta - terre	eno =	0.20	(MPa)
s_k (MPa) tensione unitaria minima di aderenza malta - ten	reno =	0.20	(MPa)
s _d (MPa) tensione unitaria di progetto aderenza malta - te	rreno =	0.09	(MPa)
s_d = Min($s_{med}/\xi_3 \gamma_s$; $s_{min}/\xi_4 \gamma_s$) Lunghezza di ancoraggio	L =	8.0	(m)
$\gamma_R = 1.2$ (tiranti definitivi) $\xi_3 = 1.80$ $\xi_4 = 1.80$			
Verifica a trazione dell'armatura			
$N = N_G + N_Q = 525.42$ (kN)			
UNI EN 1537 $N \le 0.65 \cdot f_{ptk} \cdot n \cdot At = 844.89$) (kN)		

Verifica nel rispetto della gerarchia delle resistenze par.6.6.2 NTC2008

Tensione caratt. all'1% di deformazione dell'acciaio $(f_{p(1)k})$	1670	MPa
Diametro del trefolo	13.34	mm
Resistenza caratt. al limite di snervamento della lungh. libera	933.64	kN
Resistenza a sfilamento della fondazione	675.91	kN

Le verifiche sono soddisfatte.

Realizzazione Lavori

Collegamento viario compreso tra lo Svincolo della S.S. 514 di "Chiaromonte" con la S.S. 115 e lo Svincolo della "Ragusana"

PROGETTO ESECUTIVO

RELAZIONE TECNICA E DI CALCOLO OPERE IMBOCCO SUD

La lunghezza libera del tirante si ottiene dalla seguente relazione:

$$Llibera = (h+t-hi)sen(45-\phi/2)/(sen(45+\alpha+\phi/2)$$

La lunghezza così ottenuta deve essere aumentata in base alle NTC 2008 (7.11.12) di:

$$L_e = L_{\rm s} \left(1 + 1, 5 \cdot \frac{a_{\rm max}}{g} \right)$$

Quindi si ha:

Lunghezza libera T2		Lunghezza libera T3	
hi = prodonfità T2	2.5 m	hi = prodonfità T4	6.5 m
h = fuori terra paratia	13.5 m	h = fuori terra paratia	13.5 m
t = infissione paratia	4.5 m	t = infissione paratia	4.5 m
i = inclinazione tirante	15 °	i = inclinazione tirante	15 °
Φ = angolo attrito	32 °	Φ = angolo attrito	32 °
ag/g	0.2522	ag/g	0.2522
kp	29 °	kp	29 °
L libera	7.7 m	L libera	5.7 m
L libera sisma	11.0 m	L libera sisma	8.0 m

Si riporta in forma tabellare i risultati ottenuti delle lunghezze caratteristiche dei tiranti.

Ordine	Inclinazione Tirante (°)	Lunghezza Libera (m)	Lunghezza Ancoraggio (m)	Lunghezza Totale (m)
T2	15	13	13 7	
Т3	15	9	9	18

Collegamento viario compreso tra lo Svincolo della S.S. 514 di "Chiaromonte" con la S.S. 115 e lo Svincolo della "Ragusana"

PROGETTO ESECUTIVO

RELAZIONE TECNICA E DI CALCOLO OPERE IMBOCCO SUD

7.9 IMBOCCO SUD H = 6.0 M

La paratia è costituita da una successione di pali \emptyset 1000, posti ad interasse di 1.20 m, di lunghezza massima pari a 10 m. La parati sarà contrastata con ordini di tiranti posti ad interasse di 3.60 m con inclinazione α = 15°. Tale azione di contrasto verrà distribuita sui micropali dalle travi di collegamento e ripartizione previste lungo ciascun ordine, costituite da un doppio profilato in acciaio S275 della serie HEB200.

Per il dimensionamento della paratia si è considerata un'altezza di scavo massima pari a 6.0 m.

La stratigrafia di calcolo, a partire da p.c., è costituita da:

Stratigrafia [da p.c.]	Formazione	γ(kN/m³)	c' (kPa)	φ' (°)	E (MPa)
da 0 a 30 m	Qcs	21	0	40	80

Si considera la falda a 25,0 m dal piano campagna.

La valutazione dei coefficienti di spinta attiva è stata effettuata facendo ricorso alla teoria di Mononobe-Okabe (rapporto $\delta/\phi'=0.5$) mentre la valutazione dei coefficienti di spinta passiva è stata effettuata con la teoria di Caquot-Kerisel considerando a favore di sicurezza un rapporto $\delta/\phi'=0$.

Nel calcolo sono state considerate le seguenti fasi:

- 1. Inizializzazione del modello con fase geostatica e realizzazione della paratia
- 2. Scavo per la realizzazione del primo tirante
- 3. Messa in opera del tirante
- 4. Realizzazione degli ordini di tiranti successivi con modalità analoghe alla realizzazione del primo e ripetizione delle fasi 3 e 4 fino al raggiungimento della quota di fondo scavo
- 5. Scavo finale
- 6. Applicazione del sisma
- 7. Stabilità globale

Collegamento viario compreso tra lo Svincolo della S.S. 514 di "Chiaromonte" con la S.S. 115 e lo Svincolo della "Ragusana"

PROGETTO ESECUTIVO

RELAZIONE TECNICA E DI CALCOLO OPERE IMBOCCO SUD

Le fasi sopra riportate, nel calcolo sono ripetute per le diverse combinazioni:

SLU: A1+M1+R1 SLU: A2+M2+R2

SLE

In allegato sono riportati tutti i dettagli dei calcoli eseguiti.

Di seguito si riporta un'immagine esplicativa del modello di calcolo:

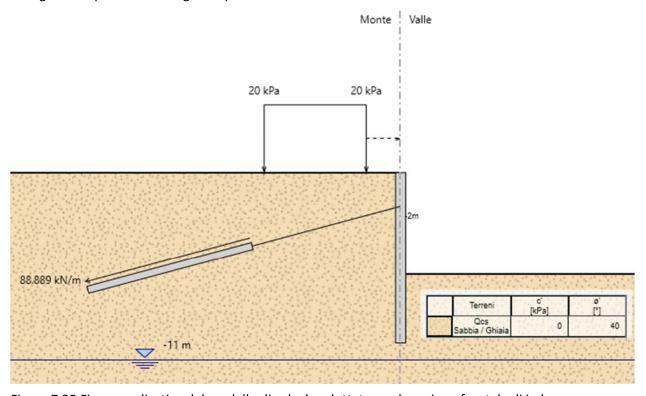


Figura 7.25 Figura esplicativa del modello di calcolo adottato per la sezione frontale di imbocco.

Collegamento viario compreso tra lo Svincolo della S.S. 514 di "Chiaromonte" con la S.S. 115 e lo Svincolo della "Ragusana"

PROGETTO ESECUTIVO

RELAZIONE TECNICA E DI CALCOLO OPERE IMBOCCO SUD

7.9.1 Verifiche strutturali pali

Si riportano, di seguito, le sollecitazioni massime agenti sui micropali e le verifiche strutturali, valutate per la combinazione <u>A1+M1+R1</u> attraverso il software ParatiePLUS.

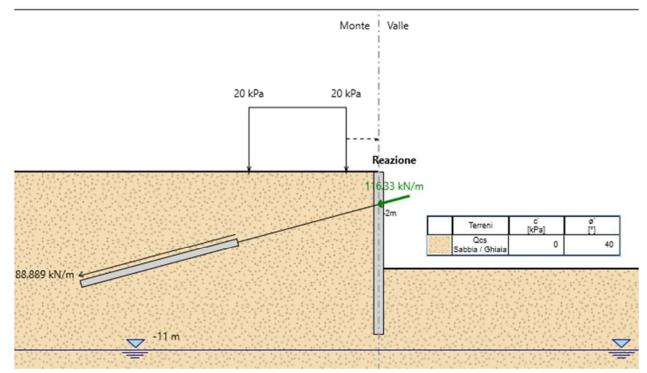


Figura 7-26 Rappresentazione dello schema di calcolo.

Realizzazione Lavori

Collegamento viario compreso tra lo Svincolo della S.S. 514 di "Chiaromonte" con la S.S. 115 e lo Svincolo della "Ragusana"

PROGETTO ESECUTIVO

RELAZIONE TECNICA E DI CALCOLO OPERE IMBOCCO SUD

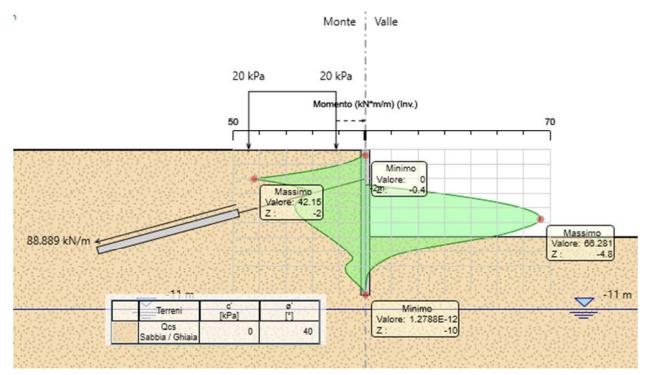


Figura 7-27 Momento flettente agente sulla paratia per ogni fase costruttiva - inviluppo

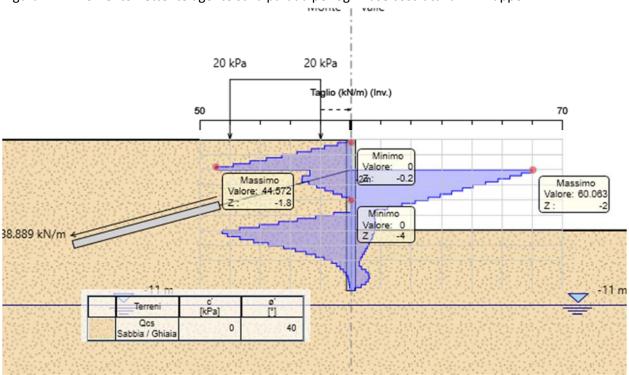


Figura 7-28 Taglio agente sulla paratia per ogni fase costruttiva - inviluppo

Collegamento viario compreso tra lo Svincolo della S.S. 514 di "Chiaromonte" con la S.S. 115 e lo Svincolo della "Ragusana"

PROGETTO ESECUTIVO

Direzione Progettazione e Realizzazione Lavori

RELAZIONE TECNICA E DI CALCOLO OPERE IMBOCCO SUD

A metro lineare, le massime sollecitazioni di calcolo sono pari a:

 $M_d = 66 \text{ kNm/m}$

 $V_d = 60 \text{ kN/m}$

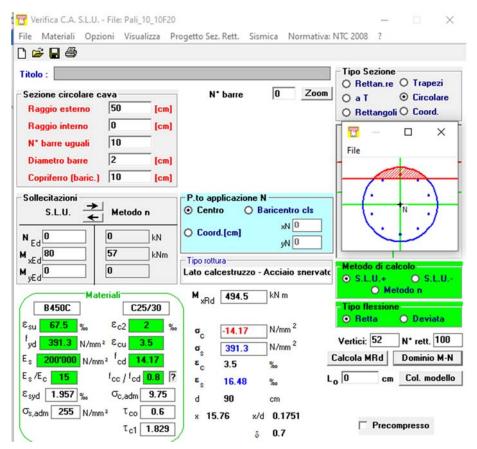
Sul singolo palo (interasse 1.20 m):

 M_d = 80 kNm

 $V_d = 72 \text{ kN}$

Si riportano le verifiche agli SLU.

Collegamento viario compreso tra lo Svincolo della S.S. 514 di "Chiaromonte" con la S.S. 115 e lo Svincolo della "Ragusana"


PROGETTO ESECUTIVO

Direzione Progettazione e Realizzazione Lavori

RELAZIONE TECNICA E DI CALCOLO OPERE IMBOCCO SUD

7.9.1.1 Pressoflessione

Palo ϕ 1000 (classe di resistenza C25/30) armato con **10 \phi20** (FeB450C). Si considera la Nd dovuta al solo peso proprio, trascurabile ai fini delle verifiche.

La verifica è soddisfatta.

Collegamento viario compreso tra lo Svincolo della S.S. 514 di "Chiaromonte" con la S.S. 115 e lo Svincolo della "Ragusana"

PROGETTO ESECUTIVO

Direzione Progettazione e Realizzazione Lavori

RELAZIONE TECNICA E DI CALCOLO OPERE IMBOCCO SUD

7.9.1.2 Taglio

Sezione quadrata inscritta di lato 70 cm; armature costituita da staffe **\$\phi12\$ passo 20 cm** (acciaio B450C).

Taglio resistente nelle sezioni con	armatur	a trasvo	ersale a	taglio	
Taglio agente	$V_{Ed} =$	72	kN		
Altezza della sezione		h =	700	mm	
Copriferro della sezione		$\delta =$	100	mm	
Altezza utile della sezione		d =	600	mm	
Diametro delle staffe		$d_w =$	12	mm	
Numero di braccia		$n_w =$	2		
Area totale staffe		$A_{sw} =$	226.08	mm^2	
Passo delle staffe		s =	200	mm	
Inclinazione delle staffe		α =	90	deg	
Inclinazione delle bielle compresse		θ =	21.8	deg	$\cot(\theta) = 2.50$
Larghezza minima della sezione		$\mathbf{b_w} =$	700	mm	
Coeff. maggiorativo per sezion i compresse		α _c =	1.2		
Resistenza di calcolo a "taglio-trazione"	$V_{Rsd}=$	597.2	kN \	$V_{Rsd} = 0$	$0.9 \cdot d \cdot \frac{A_{sw}}{s} \cdot f_{yd} \cdot (ctg\alpha + ctg\theta) \cdot \sin \alpha$
Resistenza di calcolo a "taglio- compressione"	$V_{Rcd} =$	1103.4	kN V	ked = 0,	$9 \cdot d \cdot b_{w} \cdot \alpha_{c} \cdot f'_{cd} \cdot (ctg\alpha + ctg\theta)/(1 + ctg^{2}\theta)$
Resistenza a taglio della sezione	$V_{Rd} =$	597.2	kN V	$t_{\rm d} = m$	$\sin \left(\mathrm{V}_{\mathrm{Rsd}}, \mathrm{V}_{\mathrm{Red}} \right)$
Esito della verifica	soddisfat	ta			

La verifica è soddisfatta.

MANDATARIA:

Collegamento viario compreso tra lo Svincolo della S.S. 514 di "Chiaromonte" con la S.S. 115 e lo Svincolo della "Ragusana"

PROGETTO ESECUTIVO

Direzione Progettazione e Realizzazione Lavori

RELAZIONE TECNICA E DI CALCOLO OPERE IMBOCCO SUD

7.9.1.3 Fessurazione

	Verica apertura fessure sezione circolare NTC Par.C.4.1.2.2.4.5					
$\sigma_{\rm s}$	63.0 N/mm²	Tensione massima armatura tesa sezione fessurata				
R _{ck}	30 N/mm²	Resistenza caratteristica cubica cls				
Ψ _{long}	24 mm	Diametro barre longitudinali				
φ _{trasv}	12 mm	Diametro staffe o spirale				
n	20	Numero ferri longitudinali				
С	100 mm	Copriferro				
D	1000 mm	Diametro				
k _t	0.4	k _t =0.6; 0.4 carichi breve durata/lunga durata				
k_2	0.5	k ₂ =0.5; 1.0 caso flessione/trazione semplice				
k ₁	0.8	k ₁ =0.8; 1.6 barre aderenza migliorata/lisce				
W	0.3 mm	Valore limite apertura fessure				
δ	76 mm	Ricoprimento del calcestruzzo				
f _{ck}	24.9 N/mm²	Resistenza caratteristica cilindrica cls				
i	126 mm	Interasse ferri longitudinali				
A _{c_eff}	28149 mm²	Area efficace del calcestruzzo				
A _{s_long}	452 mm²	Area barra longitudinale				
Es	210000 N/mm ²	Modulo elastico acciaio da c.a.				
f _{ctm}	2.6 N/mm²	Resistenza a trazione media cls				
E _{cm}	31447 N/mm²	Modulo elastico medio cls				
α_{e}	6.68	Rapporto E _s /E _{cm}				
f _{cm}	32.9 N/mm²	Resistenza media cls				
ρ _{eff}	1.61 %	Rapporto area acciaio/area efficace				
ε _{sm}	0.02 %	Deformazione unitaria media				
k ₃	3.4	Coefficiente				
k ₄	0.4	Coefficiente				
Δs _{max}	512.3 mm	Distanza massima tra le fessure				
W _d		Valore di calcolo apertura fessure				

La verifica è soddisfatta.

Collegamento viario compreso tra lo Svincolo della S.S. 514 di "Chiaromonte" con la S.S. 115 e lo Svincolo della "Ragusana"

PROGETTO ESECUTIVO

RELAZIONE TECNICA E DI CALCOLO OPERE IMBOCCO SUD

7.9.2 __ Spostamenti

Il massimo spostamento, in condizioni di esercizio, in assenza di sisma, è pari a circa 0.85 mm.

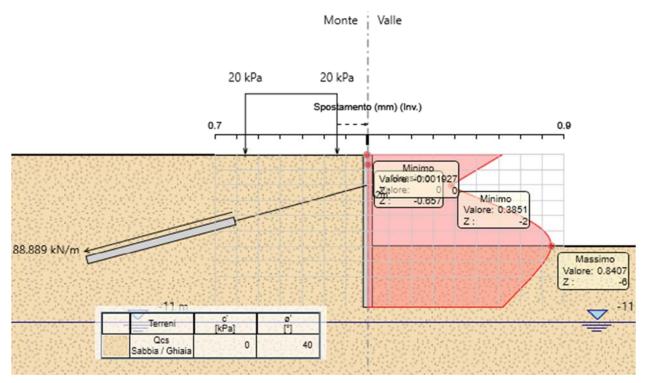


Figura 7-29 Spostamenti Paratia

Realizzazione Lavori

Collegamento viario compreso tra lo Svincolo della S.S. 514 di "Chiaromonte" con la S.S. 115 e lo Svincolo della "Ragusana"

PROGETTO ESECUTIVO

RELAZIONE TECNICA E DI CALCOLO OPERE IMBOCCO SUD

7.9.3 __ Stabilità globale

Come indicato al punto 6.5.3.1.2 del D.M. 2008, le verifiche di stabilità globale sono state condotte per la combinazione A2+M2+R2, in fase statica e fase sismica. Il metodo di calcolo adottato è quello di Bishop. Si riporta la figura del FS minimo ottenuto.

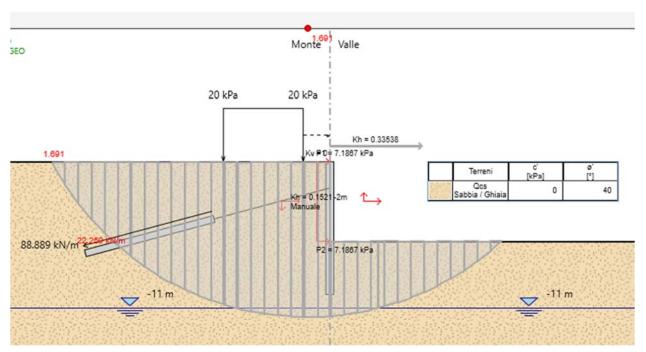


Figura 7-30 Stabilità globale - Fase sismica - Paratia imbocco Sud

Collegamento viario compreso tra lo Svincolo della S.S. 514 di "Chiaromonte" con la S.S. 115 e lo Svincolo della "Ragusana"

PROGETTO ESECUTIVO

RELAZIONE TECNICA E DI CALCOLO OPERE IMBOCCO SUD

7.9.5 Verifica Tiranti

Nella tabella seguente si riportano le sollecitazioni ottenute sui tiranti.

Ordine	Interasse (m)	Inclinazione (°)	Trefoli	Pre Tensione (kN)	Reazione (kN)	N esercizio (kN)
T2	3.6	15	4	320	419.2	322.6

Si riportano di seguito le verifica, che dalle analisi numeriche, risulta essere più sollecitata.

Numero trefoli:	n =	4	
Area singolo trefolo At:		140	(mm ²)
Area complessiva dell'acciaio (A = n·At):		559.064	(mm ²)
Diametro equivalente dei trefoli Deq = $(A \cdot 4/\pi)^{0.5}$	Deq =	26.68	(mm)
Tensione caratteristica di rottura dell'acciaio (f _{ptk})		1860	(MPa)
Tensione caratt. all'1% di deformazione dell'acciaio $(f_{p(1)k})$		1670	(MPa)
N _G Azione permanente sul tirante:		419.2	kN
N _Q Azione variabile sul tirante:		0	kN
Nt Azione di calcolo ($N_G \cdot \gamma_g + N_Q \cdot \gamma_q$):		419.2	kN

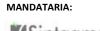
Collegamento viario compreso tra lo Svincolo della S.S. 514 di "Chiaromonte" con la S.S. 115 e lo Svincolo della "Ragusana"

PROGETTO ESECUTIVO

RELAZIONE TECNICA E DI CALCOLO OPERE IMBOCCO SUD

Aderenza Malta -Terreno L = Nt·Fs / (Ds·p·s _d)		
D (cm) Diametro della perforazione =	200	(mm)
α (-) Coeff. moltiplicativo =	1.2	
Ds (cm) Diametro di calcolo (Ds = α ·D) =	240	(mm)
s _k (MPa) tensione unitaria media di aderenza malta - terreno = 0.20		
s _k (MPa) tensione unitaria minima di aderenza malta - terreno = 0.20		
s_d (MPa) tensione unitaria di progetto aderenza malta - terreno = s_d = Min($s_{med}/\xi_3 \gamma_s$; $s_{min}/\xi_4 \gamma_s$)	0.09	(MPa)
Lunghezza di ancoraggio	6.0	(m)
γ_R = 1.2 (tiranti definitivi) ξ_3 = 1.80 ξ_4 = 1.80		

Verifica a trazione dell'armatura


 $N = N_G + N_Q =$ 419.2 (kN)

UNI EN 1537 $N \leq 0.65 \cdot f_{ptk} \cdot n \cdot At = 675.91 \quad (kN)$

Verifica nel rispetto della gerarchia delle resistenze par.6.6.2 NTC2008

Tensione caratt. all'1% di deformazione dell'acciaio (f _{p(1)k})	1670	MPa
Diametro del trefolo	13.34	mm
Resistenza caratt. al limite di snervamento della lungh. libera	933.64	kN
Resistenza a sfilamento della fondazione	675.91	kN

Le verifiche sono soddisfatte.

Realizzazione Lavori

Collegamento viario compreso tra lo Svincolo della S.S. 514 di "Chiaromonte" con la S.S. 115 e lo Svincolo della "Ragusana"

PROGETTO ESECUTIVO

RELAZIONE TECNICA E DI CALCOLO OPERE IMBOCCO SUD

La lunghezza libera del tirante si ottiene dalla seguente relazione:

11.0 m

Llibera =
$$(h + t - hi)sen(45 - \phi/2)/(sen(45 + \alpha + \phi/2))$$

La lunghezza così ottenuta deve essere aumentata in base alle NTC 2008 (7.11.12) di:

$$L_e = L_{\rm s} \left(1 + 1, 5 \cdot \frac{a_{\rm max}}{g} \right)$$

Quindi si ha:

Lunghezza libera T2

L libera sisma

hi = prodonfità T2	2.5 m
h = fuori terra paratia	13.5 m
t = infissione paratia	4.5 m
i = inclinazione tirante	15 °
Φ = angolo attrito	32 °
ag/g	0.2522
kp	29 °
L libera	7.7 m

Si riporta in forma tabellare i risultati ottenuti delle lunghezze caratteristiche dei tiranti.

Ordine	Inclinazione	Lunghezza	Lunghezza	Lunghezza
	Tirante (°)	Libera (m)	Ancoraggio (m)	Totale (m)
T2	15	13	7	20

Collegamento viario compreso tra lo Svincolo della S.S. 514 di "Chiaromonte" con la S.S. 115 e lo Svincolo della "Ragusana"

PROGETTO ESECUTIVO

RELAZIONE TECNICA E DI CALCOLO OPERE IMBOCCO SUD

7.11 IMBOCCO SUD H = 4.5 M

La paratia è costituita da una successione di pali $\emptyset 1000$, posti ad interasse di 1.20 m, di lunghezza massima pari a 8 m. La parati sarà contrastata con ordini di tiranti posti ad interasse di 3.60 m con inclinazione $\alpha = 15^\circ$. Tale azione di contrasto verrà distribuita sui micropali dalle travi di collegamento e ripartizione previste lungo ciascun ordine, costituite da un doppio profilato in acciaio S275 della serie HEB200.

Per il dimensionamento della paratia si è considerata un'altezza di scavo massima pari a 4.5 m.

La stratigrafia di calcolo, a partire da p.c., è costituita da:

Stratigrafia [da p.c.]	Formazione	γ(kN/m³)	c' (kPa)	φ' (°)	E (MPa)
da 0 a 30 m	Qcs	21	0	40	80

Si considera la falda a 25,0 m dal piano campagna.

La valutazione dei coefficienti di spinta attiva è stata effettuata facendo ricorso alla teoria di Mononobe-Okabe (rapporto $\delta/\phi'=0.5$) mentre la valutazione dei coefficienti di spinta passiva è stata effettuata con la teoria di Caquot-Kerisel considerando a favore di sicurezza un rapporto $\delta/\phi'=0$.

Nel calcolo sono state considerate le seguenti fasi:

- 1. Inizializzazione del modello con fase geostatica e realizzazione della paratia
- 2. Scavo per la realizzazione del primo tirante
- 3. Messa in opera del tirante
- 4. Realizzazione degli ordini di tiranti successivi con modalità analoghe alla realizzazione del primo e ripetizione delle fasi 3 e 4 fino al raggiungimento della quota di fondo scavo
- 5. Scavo finale
- 6. Applicazione del sisma
- 7. Stabilità globale

Collegamento viario compreso tra lo Svincolo della S.S. 514 di "Chiaromonte" con la S.S. 115 e lo Svincolo della "Ragusana"

PROGETTO ESECUTIVO

RELAZIONE TECNICA E DI CALCOLO OPERE IMBOCCO SUD

Le fasi sopra riportate, nel calcolo sono ripetute per le diverse combinazioni:

SLU: A1+M1+R1SLU: A2+M2+R2

SLE

In allegato sono riportati tutti i dettagli dei calcoli eseguiti.

Di seguito si riporta un'immagine esplicativa del modello di calcolo:

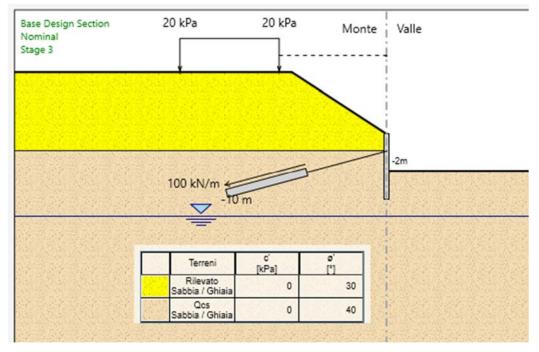


Figura 7.31 Figura esplicativa del modello di calcolo adottato per la sezione frontale di imbocco.

Collegamento viario compreso tra lo Svincolo della S.S. 514 di "Chiaromonte" con la S.S. 115 e lo Svincolo della "Ragusana"

PROGETTO ESECUTIVO

RELAZIONE TECNICA E DI CALCOLO OPERE IMBOCCO SUD

7.11.1 Verifiche strutturali pali

Si riportano, di seguito, le sollecitazioni massime agenti sui micropali e le verifiche strutturali, valutate per la combinazione <u>A1+M1+R1</u> attraverso il software ParatiePLUS.

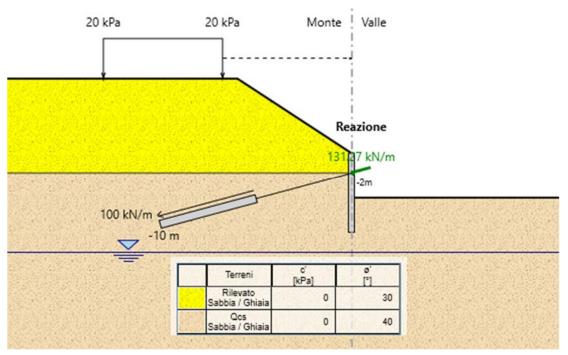


Figura 7-32 Rappresentazione dello schema di calcolo.

Realizzazione Lavori

Collegamento viario compreso tra lo Svincolo della S.S. 514 di "Chiaromonte" con la S.S. 115 e lo Svincolo della "Ragusana"

PROGETTO ESECUTIVO

RELAZIONE TECNICA E DI CALCOLO OPERE IMBOCCO SUD

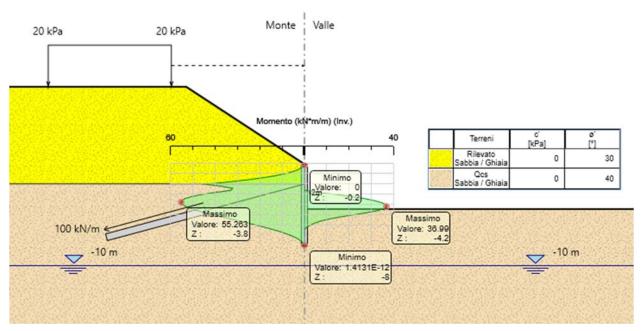


Figura 7-33 Momento flettente agente sulla paratia per ogni fase costruttiva - inviluppo

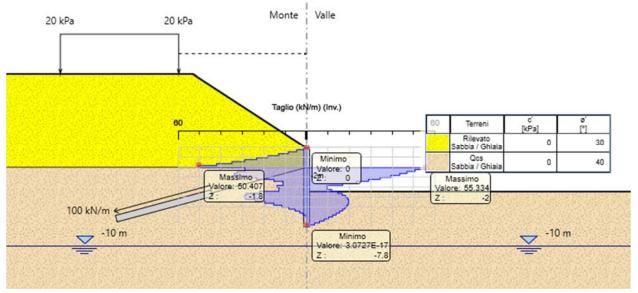


Figura 7-34 Taglio agente sulla paratia per ogni fase costruttiva - inviluppo

Direzione Progettazione e

Realizzazione Lavori

Itinerario Ragusa - Catania

Collegamento viario compreso tra lo Svincolo della S.S. 514 di "Chiaromonte" con la S.S. 115 e lo Svincolo della "Ragusana"

PROGETTO ESECUTIVO

RELAZIONE TECNICA E DI CALCOLO OPERE IMBOCCO SUD

A metro lineare, le massime sollecitazioni di calcolo sono pari a:

 $M_d = 60 \text{ kNm/m}$ $V_d = 75 \text{ kN/m}$

Sul singolo palo (interasse 1.20 m):

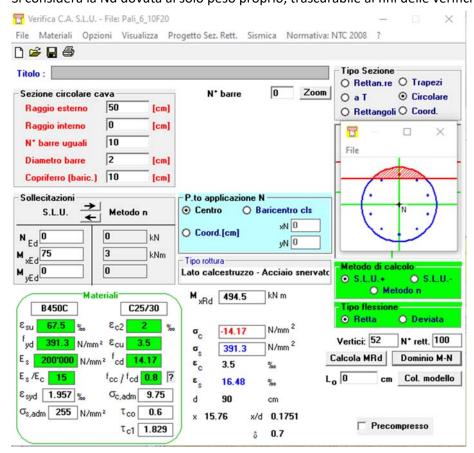
 $M_d = 75 \text{ kNm}$

 $V_d = 90 \text{ kN}$

Si riportano le verifiche agli SLU.

Collegamento viario compreso tra lo Svincolo della S.S. 514 di "Chiaromonte" con la S.S. 115 e lo Svincolo della "Ragusana"

PROGETTO ESECUTIVO


Direzione Progettazione e

Realizzazione Lavori

RELAZIONE TECNICA E DI CALCOLO OPERE IMBOCCO SUD

7.11.1.1 Pressoflessione

Palo ϕ 1000 (classe di resistenza C25/30) armato con **10 \phi20** (FeB450C). Si considera la Nd dovuta al solo peso proprio, trascurabile ai fini delle verifiche.

La verifica è soddisfatta.

MANDATARIA:

Collegamento viario compreso tra lo Svincolo della S.S. 514 di "Chiaromonte" con la S.S. 115 e lo Svincolo della "Ragusana"

PROGETTO ESECUTIVO

Direzione Progettazione e Realizzazione Lavori

RELAZIONE TECNICA E DI CALCOLO OPERE IMBOCCO SUD

7.11.1.2 Taglio

Sezione quadrata inscritta di lato 70 cm; armature costituita da staffe **\$\phi12\$ passo 20 cm** (acciaio B450C).

Taglio resistente nelle sezioni con	armatur	a trasve	ersale a	glio	<u>·</u>
Taglio agente	$V_{Ed} =$	90	kN		
Altezza della sezione		h =	700	nm	
Copriferro della sezione		$\delta =$	100	nm	
Altezza utile della sezione		d =	600	nm	
Diametro delle staffe		$d_w =$	12	nm	
Numero di braccia		$n_w =$	2		
Area totale staffe		$A_{sw} =$	226.08	nm²	
Passo delle staffe		s =	200	nm	
Inclinazione delle staffe		$\alpha =$	90	eg	
In clin azione delle bielle compresse		$\theta =$	21.8	$eg \qquad cot(\theta) = 2.50$	
Larghezza minima della sezione		$\mathbf{b_w} =$	700	nm	
Coeff. maggiorativo per sezion i compresse		$\alpha_c =$	1.2		
Resistenza di calcolo a "taglio-trazione"	$V_{Rsd} =$	597.2	kN \	$d_{d} = 0.9 \cdot d \cdot \frac{A_{sw}}{s} \cdot f_{yd} \cdot (ctg\alpha)$	$+ \operatorname{ctg} \theta) \cdot \sin \alpha$
Resistenza di calcolo a "taglio- compressione"	$V_{Red} =$	1103.4	kN V	$= 0.9 \cdot d \cdot b_{w} \cdot \alpha_{c} \cdot f'_{cd} \cdot (ctgo)$	$(1 + \operatorname{ctg}\theta)/(1 + \operatorname{ctg}^2\theta)$
Resistenza a taglio della sezione	$V_{Rd} =$	597.2	kN V	$= \min \left(V_{Rsd}, V_{Red} \right)$	
Esito della verifica	soddisfat	ta			

La verifica è soddisfatta.

MANDATARIA:

Realizzazione Lavori

Collegamento viario compreso tra lo Svincolo della S.S. 514 di "Chiaromonte" con la S.S. 115 e lo Svincolo della "Ragusana"

PROGETTO ESECUTIVO

RELAZIONE TECNICA E DI CALCOLO OPERE IMBOCCO SUD

7.11.3 _ Spostamenti

Il massimo spostamento, in condizioni di esercizio, in assenza di sisma, è pari a circa 1.4 mm.

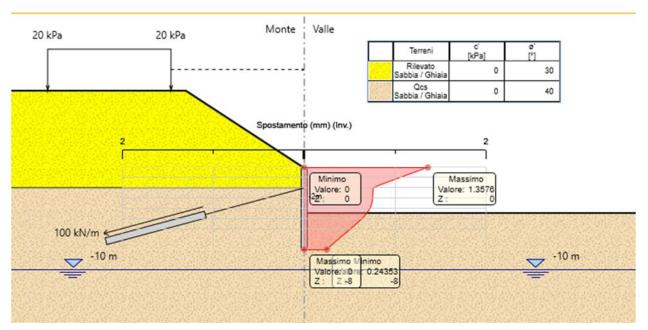


Figura 7-35 Spostamenti Paratia

Realizzazione Lavori

Collegamento viario compreso tra lo Svincolo della S.S. 514 di "Chiaromonte" con la S.S. 115 e lo Svincolo della "Ragusana"

PROGETTO ESECUTIVO

RELAZIONE TECNICA E DI CALCOLO OPERE IMBOCCO SUD

7.11.4 _ Stabilità globale

Come indicato al punto 6.5.3.1.2 del D.M. 2008, le verifiche di stabilità globale sono state condotte per la combinazione A2+M2+R2, in fase statica e fase sismica. Il metodo di calcolo adottato è quello di Bishop. Si riporta la figura del FS minimo ottenuto.

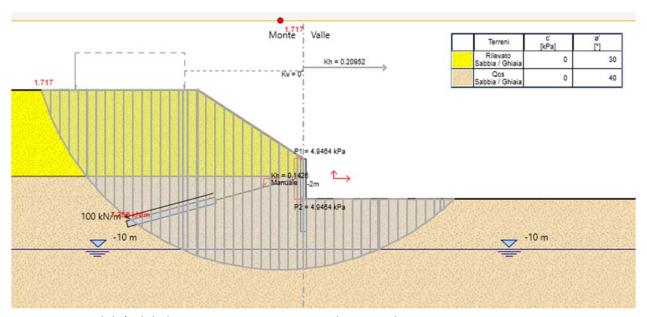


Figura 7-36 Stabilità globale – Fase sismica - Paratia imbocco Sud

MANDATARIA:

Collegamento viario compreso tra lo Svincolo della S.S. 514 di "Chiaromonte" con la S.S. 115 e lo Svincolo della "Ragusana"

PROGETTO ESECUTIVO

RELAZIONE TECNICA E DI CALCOLO OPERE IMBOCCO SUD

7.11.5 Verifica Tiranti

Nella tabella seguente si riportano le sollecitazioni ottenute sui tiranti.

Ordine	Interasse (m)	Inclinazione (°)	Trefoli	Pre Tensione (kN)	Reazione (kN)	N esercizio (kN)
T7/8	3.6	15	4	360	473.4	363.6

Si riportano di seguito le verifica, che dalle analisi numeriche, risulta essere più sollecitata, sia per i tiranti a 4 trefoli sia per i tiranti a 5 trefoli.

Numero trefoli:	n =	4	
Area singolo trefolo At:		140	(mm ²)
Area complessiva dell'acciaio (A = n·At):		559.064	(mm²)
Diametro equivalente dei trefoli Deq = $(A \cdot 4/\pi)^{0.5}$	Deq =	26.68	(mm)
Tensione caratteristica di rottura dell'acciaio (f _{ptk})		1860	(MPa)
Tensione caratt. all'1% di deformazione dell'acciaio $(f_{p(1)k})$		1670	(MPa)
N _G Azione permanente sul tirante:		473.4	kN
N _Q Azione variabile sul tirante:		0	kN
Nt Azione di calcolo ($N_G \cdot \gamma_a + N_Q \cdot \gamma_a$):		473.4	kN

Collegamento viario compreso tra lo Svincolo della S.S. 514 di "Chiaromonte" con la S.S. 115 e lo Svincolo della "Ragusana"

PROGETTO ESECUTIVO

RELAZIONE TECNICA E DI CALCOLO OPERE IMBOCCO SUD

Aderenza Malta -Terreno L = Nt·Fs / (Ds·p·s _d)	
D (cm) Diametro della perforazione =	00 (mm)
α (-) Coeff. moltiplicativo =	.2
Ds (cm) Diametro di calcolo (Ds = $\alpha \cdot D$) = 24	10 (mm)
s _k (MPa) tensione unitaria media di aderenza malta - terreno = 0.1	15 (MPa)
s _k (MPa) tensione unitaria minima di aderenza malta - terreno = 0.1	15 (MPa)
s_d (MPa) tensione unitaria di progetto aderenza malta - terreno = 0.0 s_d = Min($s_{med}/\xi_3 \gamma_s$; $s_{min}/\xi_4 \gamma_s$))8 (MPa)
	. 3 (m)
γ_R = 1.1 (tiranti provvisionali) ξ_3 = 1.80 ξ_4 = 1.80	

Verifica a trazione dell'armatura

 $N = N_G + N_Q = 473.4$ (kN)

UNI EN 1537 $N \leq 0.65 \cdot f_{ptk} \cdot n \cdot At = 675.91 \quad (kN)$

Verifica nel rispetto della gerarchia delle resistenze par.6.6.2 NTC2008

Tensione caratt. all'1% di deformazione dell'acciaio $(f_{p(1)k})$	1670	MPa
Diametro del trefolo	13.34	mm
Resistenza caratt. al limite di snervamento della lungh. libera	933.64	kN
Resistenza a sfilamento della fondazione	675.91	kN

Le verifiche sono soddisfatte.

Realizzazione Lavori

Collegamento viario compreso tra lo Svincolo della S.S. 514 di "Chiaromonte" con la S.S. 115 e lo Svincolo della "Ragusana"

PROGETTO ESECUTIVO

RELAZIONE TECNICA E DI CALCOLO OPERE IMBOCCO SUD

La lunghezza libera del tirante si ottiene dalla seguente relazione:

$$Llibera = (h + t - hi)sen(45 - \phi/2)/(sen(45 + \alpha + \phi/2))$$

La lunghezza così ottenuta deve essere aumentata in base alle NTC 2008 (7.11.12) di:

$$L_e = L_{\rm s} \left(1 + 1, 5 \cdot \frac{a_{\rm max}}{g} \right)$$

Quindi si ha:

Lunghezza libera

hi = prodonfità T1 h = fuori terra paratia t = infissione paratia i = inclinazione tirante φ = angolo attrito ag/g kp	2.5 m 3.5 m 4.5 m 15 ° 32 ° 0.2522 29 °
L libera	2.7 m
L libera sisma	4.0 m

Si riporta in forma tabellare i risultati ottenuti delle lunghezze caratteristiche dei tiranti.

Ordine	Inclinazione	Lunghezza	Lunghezza	Lunghezza
	Tirante (°)	Libera (m)	Ancoraggio (m)	Totale (m)
T7/8	15	5	9	14

Collegamento viario compreso tra lo Svincolo della S.S. 514 di "Chiaromonte" con la S.S. 115 e lo Svincolo della "Ragusana"

PROGETTO ESECUTIVO

RELAZIONE TECNICA E DI CALCOLO OPERE IMBOCCO SUD

7.13 IMBOCCO SUD H = 2.5 M

La paratia è costituita da una successione di pali Ø1000, posti ad interasse di 1.20 m, di lunghezza massima pari a 8 m. La parati sarà contrastata con ordini di tiranti posti ad interasse di 3.60 m con inclinazione α = 15°. Tale azione di contrasto verrà distribuita sui micropali dalle travi di collegamento e ripartizione previste lungo ciascun ordine, costituite da un doppio profilato in acciaio S275 della serie HEB200.

Per il dimensionamento della paratia si è considerata un'altezza di scavo massima pari a 2.5 m.

La stratigrafia di calcolo, a partire da p.c., è costituita da:

Stratigrafia [da p.c.]	Formazione	γ(kN/m³)	c' (kPa)	φ' (°)	E (MPa)
da 0 a 30 m	Qcs	21	0	40	80

Si considera la falda a 25,0 m dal piano campagna.

La valutazione dei coefficienti di spinta attiva è stata effettuata facendo ricorso alla teoria di Mononobe-Okabe (rapporto δ/ϕ' =0.5) mentre la valutazione dei coefficienti di spinta passiva è stata effettuata con la teoria di Caquot-Kerisel considerando a favore di sicurezza un rapporto $\delta/\phi'=0$.

Nel calcolo sono state considerate le seguenti fasi:

- 1. Inizializzazione del modello con fase geostatica e realizzazione della paratia
- 2. Scavo per la realizzazione del primo tirante
- 3. Messa in opera del tirante
- 4. Realizzazione degli ordini di tiranti successivi con modalità analoghe alla realizzazione del primo e ripetizione delle fasi 3 e 4 fino al raggiungimento della quota di fondo scavo
- 5. Scavo finale
- 6. Applicazione del sisma
- 7. Stabilità globale

Collegamento viario compreso tra lo Svincolo della S.S. 514 di "Chiaromonte" con la S.S. 115 e lo Svincolo della "Ragusana"

PROGETTO ESECUTIVO

RELAZIONE TECNICA E DI CALCOLO OPERE IMBOCCO SUD

Le fasi sopra riportate, nel calcolo sono ripetute per le diverse combinazioni:

SLU: A1+M1+R1 SLU: A2+M2+R2

SLE

In allegato sono riportati tutti i dettagli dei calcoli eseguiti.

Di seguito si riporta un'immagine esplicativa del modello di calcolo:

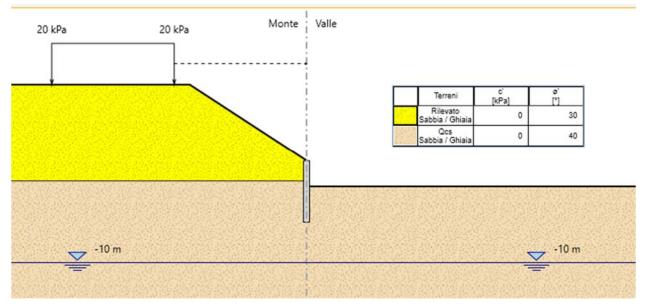


Figura 7.37 Figura esplicativa del modello di calcolo adottato per la sezione frontale di imbocco.

Collegamento viario compreso tra lo Svincolo della S.S. 514 di "Chiaromonte" con la S.S. 115 e lo Svincolo della "Ragusana"

PROGETTO ESECUTIVO

RELAZIONE TECNICA E DI CALCOLO OPERE IMBOCCO SUD

7.13.1 Verifiche strutturali pali

Si riportano, di seguito, le sollecitazioni massime agenti sui micropali e le verifiche strutturali, valutate per la combinazione <u>A1+M1+R1</u> attraverso il software ParatiePLUS.

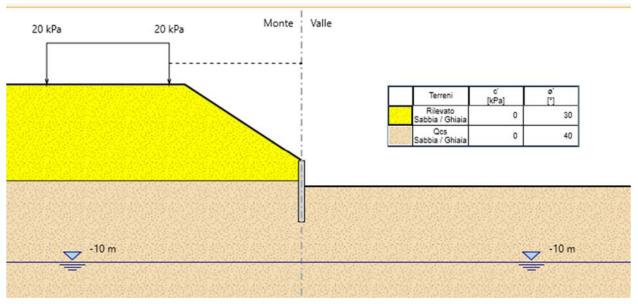


Figura 7-38 Rappresentazione dello schema di calcolo.

Realizzazione Lavori

Collegamento viario compreso tra lo Svincolo della S.S. 514 di "Chiaromonte" con la S.S. 115 e lo Svincolo della "Ragusana"

PROGETTO ESECUTIVO

RELAZIONE TECNICA E DI CALCOLO OPERE IMBOCCO SUD

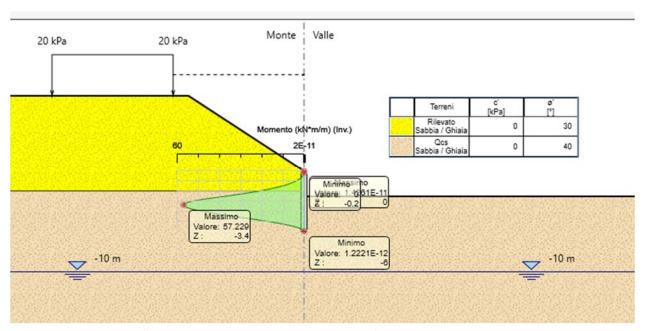


Figura 7-39 Momento flettente agente sulla paratia per ogni fase costruttiva - inviluppo

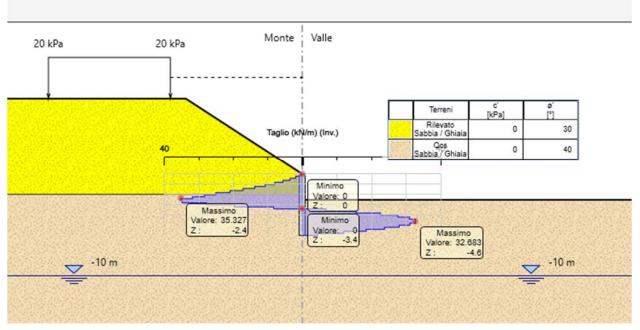


Figura 7-40 Taglio agente sulla paratia per ogni fase costruttiva - inviluppo

Direzione Progettazione e

Realizzazione Lavori

Itinerario Ragusa - Catania

Collegamento viario compreso tra lo Svincolo della S.S. 514 di "Chiaromonte" con la S.S. 115 e lo Svincolo della "Ragusana"

PROGETTO ESECUTIVO

RELAZIONE TECNICA E DI CALCOLO OPERE IMBOCCO SUD

A metro lineare, le massime sollecitazioni di calcolo sono pari a:

 $M_d = 58 \text{ kNm/m}$

 $V_d = 35 \text{ kN/m}$

Sul singolo palo (interasse 1.20 m):

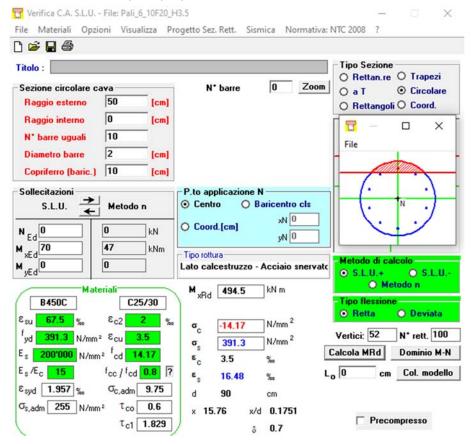
 $M_d = 70 \text{ kNm}$

 $V_d = 42 \text{ kN}$

Si riportano le verifiche agli SLU.

Realizzazione Lavori

Collegamento viario compreso tra lo Svincolo della S.S. 514 di "Chiaromonte" con la S.S. 115 e lo Svincolo della "Ragusana"


PROGETTO ESECUTIVO

RELAZIONE TECNICA E DI CALCOLO OPERE IMBOCCO SUD

7.13.1.1 Pressoflessione

Palo φ1000 (classe di resistenza C25/30) armato con 10 φ20 (FeB450C).

Si considera la Nd dovuta al solo peso proprio, trascurabile ai fini delle verifiche.

La verifica è soddisfatta.

MANDATARIA:

Collegamento viario compreso tra lo Svincolo della S.S. 514 di "Chiaromonte" con la S.S. 115 e lo Svincolo della "Ragusana"

PROGETTO ESECUTIVO

Direzione Progettazione e Realizzazione Lavori

RELAZIONE TECNICA E DI CALCOLO OPERE IMBOCCO SUD

7.13.1.2 Taglio

Sezione quadrata inscritta di lato 70 cm; armature costituita da staffe **\$\phi12\$ passo 20 cm** (acciaio B450C).

Taglio resistente nelle sezioni con	armatur	a trasvo	ersale a	taglio	
Taglio agente	$V_{Ed} =$	42	kN		
Altezza della sezione		h =	700	mm	
Copriferro della sezione		$\delta =$	100	mm	
Altezza utile della sezione		d =	600	mm	
Diametro delle staffe		$\mathbf{d}_{\mathbf{w}} =$	12	mm	
Numero di braccia		$n_w =$	2		
Area totale staffe		$A_{sw} =$	226.08	mm^2	
Passo delle staffe		s =	200	mm	
Inclinazione delle staffe		α =	90	deg	
Inclinazione delle bielle compresse		$\theta =$	21.8	deg	$\cot(\theta) = 2.50$
Larghezza minima della sezione		$\mathbf{b}_{\mathbf{w}} =$	700	mm	
Coeff. maggiorativo per sezion i compresse		α _c =	1.2		
Resistenza di calcolo a "taglio-trazione"	$V_{Rsd}=$	597.2	kN \[\]	$V_{Rsd} = 0$	$0.9 \cdot d \cdot \frac{A_{sw}}{s} \cdot f_{yd} \cdot (ctg\alpha + ctg\theta) \cdot \sin \alpha$
Resistenza di calcolo a "taglio- compressione"	$V_{Rcd} =$	1103.4	kN V	Red = 0,	$9 \cdot d \cdot b_{w} \cdot \alpha_{c} \cdot f'_{cd} \cdot (ctg\alpha + ctg\theta)/(1 + ctg^{2}\theta)$
Resistenza a taglio della sezione	$V_{Rd} =$	597.2	kN V	$t_{\rm d} = m$	$\sin \left(\mathrm{V}_{Rsd}, \mathrm{V}_{Red} \right)$
Esito della verifica	soddisfat	ta			

La verifica è soddisfatta.

MANDATARIA:

Realizzazione Lavori

Collegamento viario compreso tra lo Svincolo della S.S. 514 di "Chiaromonte" con la S.S. 115 e lo Svincolo della "Ragusana"

PROGETTO ESECUTIVO

RELAZIONE TECNICA E DI CALCOLO OPERE IMBOCCO SUD

7.13.3 _ Spostamenti

Il massimo spostamento, in condizioni di esercizio, in assenza di sisma, è pari a circa 1.6 mm.

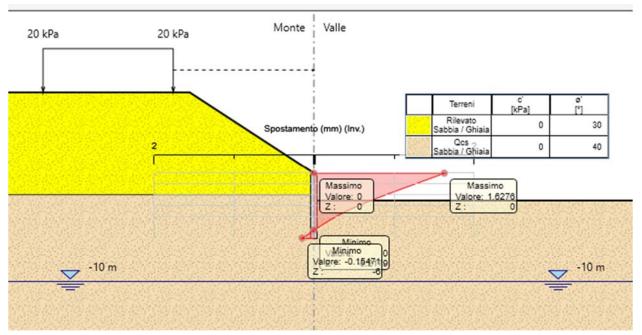


Figura 7-41 Spostamenti Paratia

Realizzazione Lavori

Collegamento viario compreso tra lo Svincolo della S.S. 514 di "Chiaromonte" con la S.S. 115 e lo Svincolo della "Ragusana"

PROGETTO ESECUTIVO

RELAZIONE TECNICA E DI CALCOLO OPERE IMBOCCO SUD

7.13.4 _ Stabilità globale

Come indicato al punto 6.5.3.1.2 del D.M. 2008, le verifiche di stabilità globale sono state condotte per la combinazione A2+M2+R2, in fase statica e fase sismica. Il metodo di calcolo adottato è quello di Bishop. Si riporta la figura del FS minimo ottenuto.

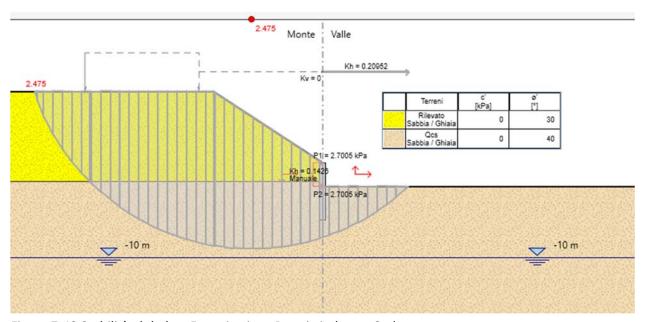


Figura 7-42 Stabilità globale – Fase sismica - Paratia imbocco Sud

MANDATARIA:

Realizzazione Lavori

Collegamento viario compreso tra lo Svincolo della S.S. 514 di "Chiaromonte" con la S.S. 115 e lo Svincolo della "Ragusana"

PROGETTO ESECUTIVO

RELAZIONE TECNICA E DI CALCOLO OPERE IMBOCCO SUD

7.15 VERIFICA TRAVI DI RIPARTIZIONE

Per la verifica delle travi di ripartizione in acciaio (S275), necessarie alla ripartizione dell'azione dei tiranti, costituite da n. 2 travi HEB200 accoppiate, si adotta cautelativamente lo schema strutturale a trave continua appoggiata in corrispondenza delle teste dei tiranti e sottoposta ad un carico uniformemente distribuito pari a Nq / i, dove Nq è il tiro agente nel tirante e i è l'interasse.

In questo modo le azioni flettenti e taglianti sono determinate come segue:

$$M = \frac{Nq}{i} \cdot \frac{i^2}{10} \qquad V = \frac{Nq}{i} \cdot \frac{i}{2}$$

La massima sollecitazione di calcolo attesa nei tiranti, in condizioni statiche e sismiche, ricavata con il programma Paratie, è data dalla seconda fila di tiranti della berlinese imbocco nord che, sempre per la combinazione A1+M1+R1, presenta un'azione pari a:

 $N_a = 668.5 \text{ kN}$

da cui si ricavano le azioni massime pari a:

 $M_{Ed} = 240.7 \text{ kNm}$

 $V_{Ed} = 334.3 \text{ kN}$

Verifica a flessione

 $M_{pl,Rd} = 2 \times W_{pl} f_{yk} / \gamma_{M0} = 298 \text{ kNm}$

in cui

 $W_{pl} = 642.5 \text{ cm}^3$

 $f_{yk} = 275 \text{ MPa}$

 $\gamma_{M0} = 1.05$

Risulta: $M_{pl,Rd} \ge M_{Ed} \rightarrow Verifica soddisfatta$.

Verifica a taglio

$$V_{c,Rd} = 2 \times A_v f_{vk} / (\gamma_{M0} \sqrt{3}) = 751 \text{ kN}$$

in cui

 $A_v = 25.0 \text{ cm}^2 \text{ calcolata in base alla (4.2.19) della NTC 2008.}$

 $f_{vk} = 275 \text{ MPa}$

 $\gamma_{M0} = 1.05$

Risulta: $V_{c,Rd} \ge V_{Ed} \rightarrow Verifica soddisfatta$.

Collegamento viario compreso tra lo Svincolo della S.S. 514 di "Chiaromonte" con la S.S. 115 e lo Svincolo della "Ragusana"

PROGETTO ESECUTIVO

RELAZIONE TECNICA E DI CALCOLO OPERE IMBOCCO SUD

8 GESTIONE DELLE FASI ESECUTIVE DELLA GALLERIA

In questo paragrafo si illustrano le fasi di realizzazione previste per la galleria Francofonte. In particolare, si prevede di scavare la galleria partendo dall'imbocco est (Nord) verso l'imbocco ovest (sud), facendo in modo di garantire sempre almeno una distanza reciproca tra i fonti di scavo delle due canne almeno pari a 5 diametri.

La fasistica può essere riassunta come segue:

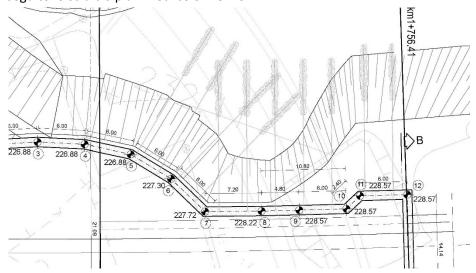
- 1. realizzazione della paratia d'imbocco Est (sud);
- 2. realizzazione degli infilaggi, della dima e della GA01 carr. DX;
- 3. inizio scavo GN01 carr. DX;
- 4. realizzazione degli infilaggi, della dima Galleria Artificiale GA01 carr. SX;
- 5. realizzazione muro in terra rinforzata per il ritombamento delle Gallerie Artificiali GA01;
- 6. ritombamento delle Gallerie Artificiali GA01;
- 7. inizio scavo GN01 carr. SX;
- 8. realizzazione paratie di imbocco Ovest (Sud);
- 9. realizzazione degli infilaggi, della dima e della Gallerie Artificiali GA02 carr. DX e SX;
- 10. realizzazione muro in terra rinforzata per il ritombamento delle Gallerie Artificiali GA02;
- 11. ritombamento delle Gallerie Artificiali GA02.

Per le fasi relative allo svincolo Francofonte Ovest si rimanda all'elaborato T04CA01CANPE04.

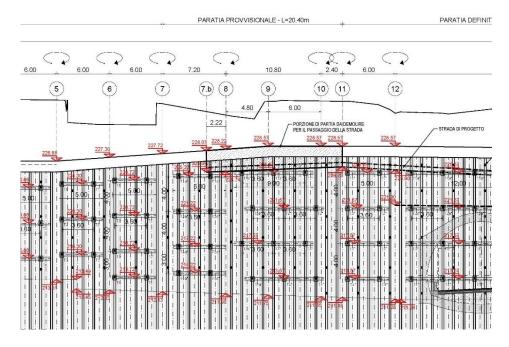
Realizzazione Lavori

Collegamento viario compreso tra lo Svincolo della S.S. 514 di "Chiaromonte" con la S.S. 115 e lo Svincolo della "Ragusana"

PROGETTO ESECUTIVO


RELAZIONE TECNICA E DI CALCOLO OPERE IMBOCCO SUD

RISOLUZIONE INTERFERENZE TIRANTI

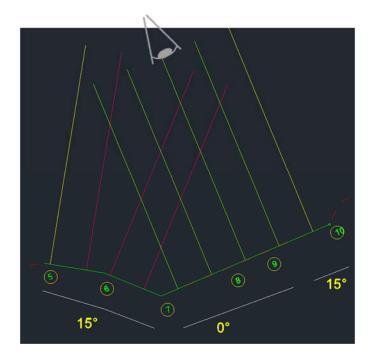

In questo paragrafo si rende evidenza su come è stata risolta la risoluzione di interferenza tra i tiranti della paratia d'imbocco nord nei tratti 5-7 e 7-9 e tratti 15-17 e 17-19 e interferenza sul tirante al punto

Si riportano gli stralci del tratto 5-7 e 7-9 ma per simmetria vale lo stesso discorso per i tratti 15-17 e 17-19.

Si riporta di seguito lo stralcio planimetrico 5-7 e 7-9

Si riporta di seguito lo stralcio della sviluppata nel tratto 5-7 e 7-9.

Collegamento viario compreso tra lo Svincolo della S.S. 514 di "Chiaromonte" con la S.S. 115 e lo Svincolo della "Ragusana"

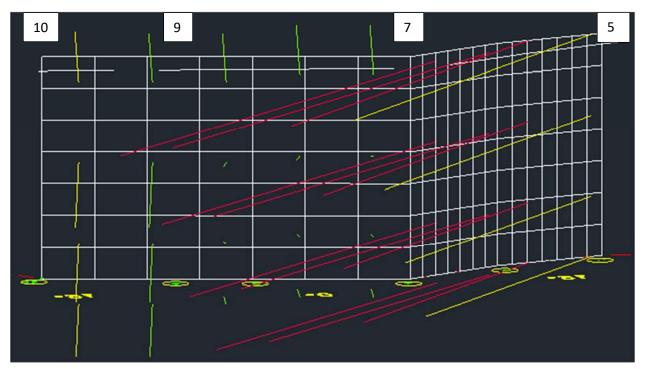

PROGETTO ESECUTIVO

RELAZIONE TECNICA E DI CALCOLO OPERE IMBOCCO SUD

Nel tratto di paratia 6-7 i tiranti sono inclinati di 15° rispetto l'orizzontale mentre nel tratto di paratia 7-9 i tiranti sono orizzontali. Questo permette di risolvere l'interferenza planimetrica che si era creata di sovrapposizione dei tiranti, permettendo la loro corretta esecuzione.

Inoltre questo problema geometrico è stato studiato con un semplice 3d dei tiranti di modo da garantire la corretta risoluzione geometrica.

Nella vista planimetrica sotto riportata si evidenziano in rosso e verde i tiranti interferenti, mentre in giallo i tiranti che non interferiscono. E' stato inserito con un simbolo il punto di vista dal quale si allega lo screenshot del 3D.


Collegamento viario compreso tra lo Svincolo della S.S. 514 di "Chiaromonte" con la S.S. 115 e lo Svincolo della "Ragusana"

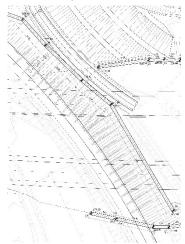
PROGETTO ESECUTIVO

RELAZIONE TECNICA E DI CALCOLO OPERE IMBOCCO SUD

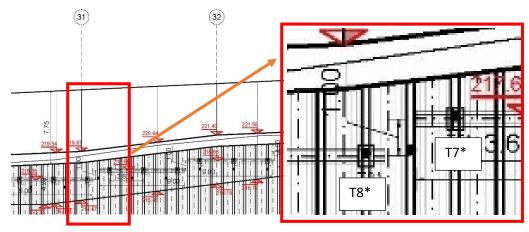
Si riporta una vista 3D, con punto di vista come se fossimo all'interno del terreno (come indicato nella planimetria sopra riportata).

Si può facilmente riscontrare che i tiranti posizionati nel tratto 7-9 (VERDE) con inclinazione 0° rispetto l'orizzontale non interferiscono con i tiranti posizionati nel tratto 5-7 (ROSSI) che hanno inclinazione 15° rispetto l'orizzontale. Per maggiori dettagli visionare gli elaborati di dettaglio (planimetria e sviluppata).

Questo permette di risolvere l'interferenza planimetrica che si era creata di sovrapposizione dei tiranti, permettendo la loro corretta esecuzione.


Realizzazione Lavori

Collegamento viario compreso tra lo Svincolo della S.S. 514 di "Chiaromonte" con la S.S. 115 e lo Svincolo della "Ragusana"


PROGETTO ESECUTIVO

RELAZIONE TECNICA E DI CALCOLO OPERE IMBOCCO SUD

Si riporta di seguito lo stralcio planimetrico del punto 31

Si riporta di seguito lo stralcio della sviluppata nel punto 31

Tipo	n° trefoli	LL	LA	L	N ₀	β	Øp	Iniezion
		[m]	[m]	[m]	[kN]	[°]	[mm]	
T7*	4	5.00	9.00	14.00	320	15	200	IRS
T8*	4	5.00	9.00	14.00	320	25	200	IRS
L =L L =L IRS	unghezza unghezza unghezza = iniezioni TIRANTI P	bulbo di a totale ripetute e		β =Inclina: piano or	sione iniziale zione rispetto izzontale etro perforaz	al	ıti	

Il tirante provvisionale T8*, posizionati vicino al punto 31, è stato inclinato di 25° rispetto l'orizzontale, in modo da non interferire con il vicino tirante T7* che invece è inclinato di 15° rispetto l'orizzontale. Inoltre il tirante T8* si trova ad una quota di 1 metro inferiore rispetto al tirante T7*.

Questo permette di risolvere l'interferenza planimetrica che si era creata di sovrapposizione dei tiranti, permettendo la loro corretta esecuzione.

Collegamento viario compreso tra lo Svincolo della S.S. 514 di "Chiaromonte" con la S.S. 115 e lo Svincolo della "Ragusana"

PROGETTO ESECUTIVO

RELAZIONE TECNICA E DI CALCOLO OPERE IMBOCCO SUD

10 VALORI SOGLIA MONITORAGGIO

Oggetto di questo paragrafo è identificare i valori soglia di allerta e di allarme per ciascuna sezione di calcolo rappresentative della paratia in oggetto.

Di seguito si riporta la tabella dei valori soglia degli spostamenti della paratia

Valori monitoraggio spostamenti paratia					
sez H	Valori di Esercizio	Soglia di Allerta	Soglia di Allarme		
m	SLE	120 % SLE	150 % SLE		
-	mm	mm	mm		
17.5	21	25.2	37.8		
15	16	19.2	28.8		
13.5	10	12	18		
9	10	12	18		
6	10	12	18		
4.5	10	12	18		
2.5	10	12	18		

Di seguito si riporta la tabella dei valori soglia delle celle di carico dei tiranti della paratia

Valori monitoraggio carico tiranti paratia					
ord T	Valori di Esercizio	Soglia di Allerta	Soglia di Allarme		
-	SLE	110 % SLE	80 % Sfilamento di progetto		
-	kN	kN	kN		
T1/T1b/T1*/T1a*	348	382.8	426.4		
T2/T2*/T2a*	385	423.5	426.4		
T3/T3a*	488	536.8	548		
T4/Ta*/T4a*	400	440	548		
T7*/T8*	363	399.3	548		

Per maggiori dettagli vedere l'elaborato specifico sul monitoraggio

Collegamento viario compreso tra lo Svincolo della S.S. 514 di "Chiaromonte" con la S.S. 115 e lo Svincolo della "Ragusana"

PROGETTO ESECUTIVO

Direzione Progettazione e Realizzazione Lavori

RELAZIONE TECNICA E DI CALCOLO OPERE IMBOCCO SUD

11 ALLEGATI DI CALCOLO

11.1 FRANCOFONTE NORD

11.1.1 H 17.5 m

* 1: Defining general settings

UNIT m kN

TITLE New Project

DELTA 0.2

option param itemax 40

option control hinges 0 0.0001 0.001

* 2: Defining wall(s)

WALL LeftWall_32 0 -24 0 1

* 3: Defining surfaces for wall(s)

SOIL 0 L LeftWall 32 -24 0 1 0

SOIL 0_R LeftWall_32 -24 0 2 180

- * 4: Defining soil layers
- * Soil Profile (Qcs_2_8_L_0)

LDATA Qcs_2_8_L_0 0 LeftWall_32

ATREST 0.5 0.5 1

WEIGHT 21 11 10

PERMEABILITY 0.0001

RESISTANCE 0 40 0 0 0

KSCALE 0.0

YOUNG 80000 1.28E+05

ENDL

- * 5: Defining structural materials
- * Steel material: 110 Name=Fe360 E=206000200 kPa

MATERIAL Fe360 110 2.06E+08

* Concrete material: 105 Name=C20/25 E=29962000 kPa

MATERIAL C2025_105 2.9962E+07

* Rebar material: 126 Name=acciaio armonico E=200100000 kPa

MATERIAL acciaioarmonico 126 2.001E+08

- * 6: Defining structural elements
- * 6.1: Beams and combined Wall Elements

BEAM WallElement_33 LeftWall_32 -24 0 C2025_105 0.6 00 00 0

* 6.2: Supports

WIRE Tieback_466 LeftWall_32 -2.5 acciaioarmonico_126 1.1032E-05 88.889 0 0 0 0 $\,$ WIRE Tieback_New_847 LeftWall_32 -6.5 acciaioarmonico_126 1.1032E-05 88.889 0 0 0 WIRE Tieback_New_New_1048 LeftWall_32 -10.5 acciaioarmonico_126 1.1032E-05 111.11 15 0 0 $WIRE\ Tieback_New_New_1249\ LeftWall_32\ -14.5\ acciaioarmonico_126\ 1.1032E-05\ 111.11\ 15\ 0\ 0$

* 6.3: Strips

STRIP LeftWall 32 2 12 2 6 0 20 45 STRIP LeftWall_32 1 13 12 68 0 60 45

* 7: Defining Steps

STEP Stage1_31

Collegamento viario compreso tra lo Svincolo della S.S. 514 di "Chiaromonte" con la S.S. 115 e lo Svincolo della "Ragusana"

PROGETTO ESECUTIVO

Direzione Progettazione e Realizzazione Lavori

RELAZIONE TECNICA E DI CALCOLO OPERE IMBOCCO SUD

CHANGE Qcs_2_8_L_0 U-FRICT=40 LeftWall_32 CHANGE Qcs_2_8_L_0 D-FRICT=40 LeftWall_32 CHANGE Qcs_2_8_L_0 U-KA=0.179 LeftWall_32 CHANGE Qcs_2_8_L_0 U-KP=9.529 LeftWall_32 CHANGE Qcs_2_8_L_0 D-KA=0.179 LeftWall_32 CHANGE Qcs_2_8_L_0 D-KP=9.529 LeftWall_32 CHANGE Qcs_2_8_L_0 U-COHE=0 LeftWall_32 CHANGE Qcs 2 8 L 0 U-ADHES=0 LeftWall 32 CHANGE Qcs_2_8_L_0 D-COHE=0 LeftWall_32 CHANGE Qcs_2_8_L_0 D-ADHES=0 LeftWall_32 SETWALL LeftWall_32 GEOM 0 0

SURCHARGE 0 0 0 0 WATER -5 0 -24 0 0 ADD WallElement_33 ENDSTEP

STEP Stage2_165 SETWALL LeftWall 32 GEOM 0 0 SURCHARGE 0 0 0 0

WATER -5 0 -24 0 0

ENDSTEP

STEP Stage3_266 SETWALL LeftWall_32 GEOM 0 -3 SURCHARGE 0 0 0 0 WATER -5 0 -24 0 0 ENDSTEP

STEP T1_366 SETWALL LeftWall_32 GEOM 0 -3 SURCHARGE 0 0 0 0 WATER -5 0 -24 0 0 ADD Tieback_466 ENDSTEP

STEP Stage5_467 SETWALL LeftWall 32 GEOM 0 -7 SURCHARGE 0 0 0 0 WATER -6 1 -24 0 0 ENDSTEP

STEP T2_747 SETWALL LeftWall 32 GEOM 0 -7 SURCHARGE 0 0 0 0 WATER -6 1 -24 0 0

ADD Tieback_New_847

ENDSTEP

STEP Stage7_848 SETWALL LeftWall_32 GEOM 0 -11 SURCHARGE 0 0 0 0

MANDATARIA:

Collegamento viario compreso tra lo Svincolo della S.S. 514 di "Chiaromonte" con la S.S. 115 e lo Svincolo della "Ragusana"

PROGETTO ESECUTIVO

RELAZIONE TECNICA E DI CALCOLO OPERE IMBOCCO SUD

Direzione Progettazione e Realizzazione Lavori

WATER -10 1 -24 0 0 ENDSTEP

STEP T3_948 SETWALL LeftWall_32 GEOM 0 -11 SURCHARGE 0.0.0.0 WATER -10 1 -24 0 0 ADD Tieback_New_New_1048

STEP Stage9_1049 SETWALL LeftWall_32 GEOM 0 -15 SURCHARGE 0 0 0 0 WATER -14 1 -24 0 0

ENDSTEP

ENDSTEP

STEP T4_1149 SETWALL LeftWall_32 GEOM 0 -15 SURCHARGE 0 0 0 0 WATER -14 1 -24 0 0 ADD Tieback_New_New_New_1249 ENDSTEP

STEP Stage11_1250 SETWALL LeftWall_32 GEOM 0 -16.5 SURCHARGE 0 0 0 0 WATER -16 1 -24 0 0 ENDSTEP

STEP Stage13_3453 SETWALL LeftWall_32 GEOM 0 -17.5 SURCHARGE 0 0 0 0 WATER -18.5 0 -24 0 0 ENDSTEP

STEP Stage14_4455 SETWALL LeftWall 32 GEOM 0 -17.5 SURCHARGE 0 0 0 0 WATER -18.5 0 -24 0 0 ENDSTEP

MANDATARIA:

Collegamento viario compreso tra lo Svincolo della S.S. 514 di "Chiaromonte" con la S.S. 115 e lo Svincolo della "Ragusana"

PROGETTO ESECUTIVO

Direzione Progettazione e Realizzazione Lavori

RELAZIONE TECNICA E DI CALCOLO OPERE IMBOCCO SUD

11.1.3 H 15 m

* 1: Defining general settings UNIT m kN TITLE New Project DELTA 0.2

option param itemax 40

option control hinges 0 0.0001 0.001

* 2: Defining wall(s)

WALL LeftWall_32 0 -20 0 1

* 3: Defining surfaces for wall(s) SOIL 0_L LeftWall_32 -20 0 1 0 SOIL 0_R LeftWall_32 -20 0 2 180

* 4: Defining soil layers

* Soil Profile (Qcs_2_8_L_0)

LDATA Qcs_2_8_L_0 0 LeftWall_32

ATREST 0.5 0.5 1

WEIGHT 21 11 10

PERMEABILITY 0.0001

RESISTANCE 0 40 0 0 0

KSCALE 00

YOUNG 80000 1.28E+05

ENDL

- * 5: Defining structural materials
- * Steel material: 110 Name=Fe360 E=206000200 kPa

MATERIAL Fe360_110 2.06E+08

* Concrete material: 105 Name=C20/25 E=29962000 kPa

MATERIAL C2025 105 2.9962E+07

* Rebar material: 126 Name=acciaio armonico E=200100000 kPa

MATERIAL acciaioarmonico_126 2.001E+08

- * 6: Defining structural elements
- * 6.1: Beams and combined Wall Elements

BEAM WallElement_33 LeftWall_32 -20 0 C2025_105 0.6 00 00 0

* 6.2: Supports

WIRE Tieback_466 LeftWall_32 -2.5 acciaioarmonico_126 1.1032E-05 88.889 15 0 0 WIRE Tieback_New_847 LeftWall_32 -6.5 acciaioarmonico_126 1.1032E-05 88.889 15 0 0 $\,$ $WIRE\ Tieback_New_New_1048\ LeftWall_32\ -10.5\ acciaioarmonico_126\ 1.1032E-05\ 111.11\ 15\ 0\ 0$ WIRE Tieback_New_New_New_1249 LeftWall_32 -14.5 acciaioarmonico_126 1.1032E-05 111.11 15 0 0

* 6.3: Strips

STRIP LeftWall 32 2 11 2 6 0 20 45 STRIP LeftWall_32 1 12 12 68 0 60 45

* 7: Defining Steps

STEP Stage1 31

CHANGE Qcs_2_8_L_0 U-FRICT=40 LeftWall_32

CHANGE Qcs_2_8_L_0 D-FRICT=40 LeftWall_32

CHANGE Qcs_2_8_L_0 U-KA=0.179 LeftWall_32

MANDATARIA:

Collegamento viario compreso tra lo Svincolo della S.S. 514 di "Chiaromonte" con la S.S. 115 e lo Svincolo della "Ragusana"

PROGETTO ESECUTIVO

Direzione Progettazione e Realizzazione Lavori

RELAZIONE TECNICA E DI CALCOLO OPERE IMBOCCO SUD

CHANGE Qcs_2_8_L_0 U-KP=9.529 LeftWall_32 CHANGE Qcs_2_8_L_0 D-KA=0.179 LeftWall_32 CHANGE Qcs_2_8_L_0 D-KP=9.529 LeftWall_32 CHANGE Qcs_2_8_L_0 U-COHE=0 LeftWall_32 CHANGE Qcs_2_8_L_0 U-ADHES=0 LeftWall_32 CHANGE Qcs_2_8_L_0 D-COHE=0 LeftWall_32 CHANGE Qcs_2_8_L_0 D-ADHES=0 LeftWall_32 SETWALL LeftWall 32 GEOM 0 0

SURCHARGE 0 0 0 0

WATER -5 0 -20 0 0

ADD WallElement_33

ENDSTEP

STEP Stage2_165 SETWALL LeftWall_32 GEOM 0 0 SURCHARGE 0 0 0 0 WATER -5 0 -20 0 0 ENDSTEP

STEP Stage3_266 SETWALL LeftWall 32 SURCHARGE 0 0 0 0 WATER -5 0 -20 0 0

ENDSTEP

ENDSTEP

ENDSTEP

STEP T1 366 SETWALL LeftWall_32 GEOM 0 -3 SURCHARGE 0 0 0 0 WATER -5 0 -20 0 0 ADD Tieback_466

STEP Stage5_467 SETWALL LeftWall_32 GEOM 0 -7 SURCHARGE 0 0 0 0 WATER -6 1 -20 0 0

STEP T2_747 SETWALL LeftWall 32 GEOM 0 -7

SURCHARGE 0 0 0 0 WATER -6 1 -20 0 0 ADD Tieback_New_847

ENDSTEP

STEP Stage7_848 SETWALL LeftWall_32 GEOM 0 -11 SURCHARGE 0 0 0 0 WATER -10 1 -20 0 0 ENDSTEP

MANDATARIA:

Collegamento viario compreso tra lo Svincolo della S.S. 514 di "Chiaromonte" con la S.S. 115 e lo Svincolo della "Ragusana"

PROGETTO ESECUTIVO

RELAZIONE TECNICA E DI CALCOLO OPERE IMBOCCO SUD

Direzione Progettazione e Realizzazione Lavori

STEP T3_948 SETWALL LeftWall_32 GEOM 0 -11 SURCHARGE 0 0 0 0 WATER -10 1 -20 0 0 ADD Tieback_New_New_1048 ENDSTEP

STEP Stage9_1049 SETWALL LeftWall_32 GEOM 0 -15 SURCHARGE 0 0 0 0 WATER -15 0 -20 0 0 ENDSTEP

STEP T4_1149 SETWALL LeftWall_32 GEOM 0 -15 SURCHARGE 0 0 0 0 WATER -15 0 -20 0 0 ADD Tieback_New_New_New_1249 ENDSTEP

STEP Stage11_1250 SETWALL LeftWall_32 GEOM 0 -15 SURCHARGE 0 0 0 0 WATER -16 1 -20 0 0 ENDSTEP

STEP Stage14_4455 SETWALL LeftWall_32 GEOM 0 -15 SURCHARGE 0 0 0 0 WATER -18.5 0 -20 0 0 ENDSTEP

MANDATARIA:

Collegamento viario compreso tra lo Svincolo della S.S. 514 di "Chiaromonte" con la S.S. 115 e lo Svincolo della "Ragusana"

PROGETTO ESECUTIVO

Direzione Progettazione e Realizzazione Lavori

RELAZIONE TECNICA E DI CALCOLO OPERE IMBOCCO SUD

11.1.5 H 13.5 m

* 1: Defining general settings

UNIT m kN

TITLE New Project

DELTA 0.2

option param itemax 40

option control hinges 0 0.0001 0.001

* 2: Defining wall(s)

WALL LeftWall_32 0 -18 0 1

* 3: Defining surfaces for wall(s)

SOIL 0_L LeftWall_32 -18 0 1 0

SOIL 0_R LeftWall_32 -18 0 2 180

- * 4: Defining soil layers
- * Soil Profile (Qcs_2_8_L_0)

LDATA Qcs_2_8_L_0 0 LeftWall_32

ATREST 0.5 0.5 1

WEIGHT 21 11 10

PERMEABILITY 0.0001

RESISTANCE 0 40 0 0 0

KSCALE 00

YOUNG 80000 1.28E+05

ENDL

- * 5: Defining structural materials
- * Steel material: 110 Name=Fe360 E=206000200 kPa

MATERIAL Fe360_110 2.06E+08

* Concrete material: 105 Name=C20/25 E=29962000 kPa

MATERIAL C2025 105 2.9962E+07

* Rebar material: 126 Name=acciaio armonico E=200100000 kPa

MATERIAL acciaioarmonico_126 2.001E+08

- * 6: Defining structural elements
- * 6.1: Beams and combined Wall Elements

BEAM WallElement_33 LeftWall_32 -18 0 C2025_105 0.6 00 00 0

* 6.2: Supports

WIRE Tieback_466 LeftWall_32 -2 acciaioarmonico_126 1.1032E-05 88.889 15 0 0 WIRE Tieback_New_847 LeftWall_32 -6 acciaioarmonico_126 1.1032E-05 111.11 15 0 0 $\,$ $WIRE\ Tieback_New_New_1048\ LeftWall_32\ -10\ acciaioarmonico_126\ 1.1032E-05\ 111.11\ 15\ 0\ 0$

* 6.3: Strips

STRIP LeftWall 32 2 10 2 6 0 20 45 STRIP LeftWall_32 1 10 11.5 38.5 0 80 45

* 7: Defining Steps

STEP Stage1 31

CHANGE Qcs_2_8_L_0 U-FRICT=40 LeftWall_32

CHANGE Qcs_2_8_L_0 D-FRICT=40 LeftWall_32

CHANGE Qcs_2_8_L_0 U-KA=0.179 LeftWall_32

MANDATARIA:

Collegamento viario compreso tra lo Svincolo della S.S. 514 di "Chiaromonte" con la S.S. 115 e lo Svincolo della "Ragusana"

PROGETTO ESECUTIVO

Direzione Progettazione e Realizzazione Lavori

RELAZIONE TECNICA E DI CALCOLO OPERE IMBOCCO SUD

CHANGE Qcs_2_8_L_0 U-KP=9.529 LeftWall_32 CHANGE Qcs_2_8_L_0 D-KA=0.179 LeftWall_32 CHANGE Qcs_2_8_L_0 D-KP=9.529 LeftWall_32 CHANGE Qcs_2_8_L_0 U-COHE=0 LeftWall_32 CHANGE Qcs_2_8_L_0 U-ADHES=0 LeftWall_32 CHANGE Qcs_2_8_L_0 D-COHE=0 LeftWall_32 CHANGE Qcs_2_8_L_0 D-ADHES=0 LeftWall_32 SETWALL LeftWall 32 GEOM 0 0

SURCHARGE 0 0 0 0

WATER -5 0 -18 0 0 ADD WallElement_33

ENDSTEP

STEP Stage2_165 SETWALL LeftWall_32 GEOM 0 0 SURCHARGE 0 0 0 0 WATER -5 0 -18 0 0 ENDSTEP

STEP Stage3_266 SETWALL LeftWall_32 SURCHARGE 0 0 0 0 WATER -5 0 -18 0 0

ENDSTEP

STEP T1 366 SETWALL LeftWall_32 GEOM 0 -2.5 SURCHARGE 0 0 0 0 WATER -5 0 -18 0 0 ADD Tieback_466 ENDSTEP

STEP Stage5_467 SETWALL LeftWall_32 GEOM 0 -6.5 SURCHARGE 0 0 0 0 WATER -6 1 -18 0 0 ENDSTEP

STEP T2_747 SETWALL LeftWall 32 GEOM 0 -6.5 SURCHARGE 0 0 0 0 WATER -6 1 -18 0 0 ADD Tieback_New_847

ENDSTEP

STEP Stage7_848 SETWALL LeftWall_32 GEOM 0 -10.5 SURCHARGE 0 0 0 0 WATER -10 1 -18 0 0 ENDSTEP

Collegamento viario compreso tra lo Svincolo della S.S. 514 di "Chiaromonte" con la S.S. 115 e lo Svincolo della "Ragusana"

PROGETTO ESECUTIVO

RELAZIONE TECNICA E DI CALCOLO OPERE IMBOCCO SUD

Direzione Progettazione e Realizzazione Lavori

STEP T3_948 SETWALL LeftWall_32 GEOM 0 -10.5 SURCHARGE 0 0 0 0 WATER -10 1 -18 0 0 ADD Tieback_New_New_1048 ENDSTEP

STEP Stage9_1049 SETWALL LeftWall_32 GEOM 0 -13.5 SURCHARGE 0 0 0 0 WATER -15 0 -18 0 0 ENDSTEP

STEP Stage14_4455 SETWALL LeftWall_32 GEOM 0 -13.5 SURCHARGE 0 0 0 0 WATER -15 0 -18 0 0

Collegamento viario compreso tra lo Svincolo della S.S. 514 di "Chiaromonte" con la S.S. 115 e lo Svincolo della "Ragusana"

PROGETTO ESECUTIVO

Direzione Progettazione e Realizzazione Lavori

RELAZIONE TECNICA E DI CALCOLO OPERE IMBOCCO SUD

11.1.7 H 9m

* 1: Defining general settings UNIT m kN TITLE New Project DELTA 0.2

option param itemax 40

option control hinges 0 0.0001 0.001

* 2: Defining wall(s) WALL LeftWall_32 0 -14 0 1

* 3: Defining surfaces for wall(s) SOIL 0_L LeftWall_32 -14 0 1 0 SOIL 0_R LeftWall_32 -14 0 2 180

* 4: Defining soil layers

* Soil Profile (Qcs_2_8_L_0)

LDATA Qcs_2_8_L_0 0 LeftWall_32

ATREST 0.5 0.5 1

WEIGHT 21 11 10

PERMEABILITY 0.0001

RESISTANCE 0 40 0 0 0

KSCALE 00

YOUNG 80000 1.28E+05

ENDL

- * 5: Defining structural materials
- * Steel material: 110 Name=Fe360 E=206000200 kPa

MATERIAL Fe360_110 2.06E+08

* Concrete material: 105 Name=C20/25 E=29962000 kPa

MATERIAL C2025 105 2.9962E+07

* Rebar material: 126 Name=acciaio armonico E=200100000 kPa

MATERIAL acciaioarmonico_126 2.001E+08

- * 6: Defining structural elements
- * 6.1: Beams and combined Wall Elements

BEAM WallElement_33 LeftWall_32 -14 0 C2025_105 0.6 00 00 0

* 6.2: Supports

WIRE Tieback_466 LeftWall_32 -2 acciaioarmonico_126 1.1032E-05 88.889 15 0 0 WIRE Tieback_New_847 LeftWall_32 -6 acciaioarmonico_126 1.1032E-05 111.11 15 0 0 $\,$

* 6.3: Strips

STRIP LeftWall_32 2 8 2 6 0 20 45

* 7: Defining Steps

CHANGE Qcs_2_8_L_0 U-FRICT=40 LeftWall_32

CHANGE Qcs 2 8 L 0 D-FRICT=40 LeftWall 32

CHANGE Qcs_2_8_L_0 U-KA=0.179 LeftWall_32

CHANGE Qcs_2_8_L_0 U-KP=9.529 LeftWall_32 CHANGE Qcs_2_8_L_0 D-KA=0.179 LeftWall_32

CHANGE Qcs_2_8_L_0 D-KP=9.529 LeftWall_32

CHANGE Qcs_2_8_L_0 U-COHE=0 LeftWall_32 CHANGE Qcs_2_8_L_0 U-ADHES=0 LeftWall_32

MANDATARIA:

Collegamento viario compreso tra lo Svincolo della S.S. 514 di "Chiaromonte" con la S.S. 115 e lo Svincolo della "Ragusana"

PROGETTO ESECUTIVO

RELAZIONE TECNICA E DI CALCOLO OPERE IMBOCCO SUD

CHANGE Qcs_2_8_L_0 D-COHE=0 LeftWall_32 CHANGE Qcs_2_8_L_0 D-ADHES=0 LeftWall_32

SETWALL LeftWall_32

GEOM 0 0

Direzione Progettazione e

Realizzazione Lavori

SURCHARGE 0 0 0 0

WATER -5 0 -14 0 0

ADD WallElement_33

ENDSTEP

STEP Stage2_165

SETWALL LeftWall_32

GEOM 0 0

SURCHARGE 0 0 0 0

WATER -5 0 -14 0 0

ENDSTEP

STEP Stage3_266

SETWALL LeftWall_32

GEOM 0 -2.5

SURCHARGE 0 0 0 0

WATER -5 0 -14 0 0

ENDSTEP

STEP T1_366

SETWALL LeftWall_32

GEOM 0 -2.5

SURCHARGE 0 0 0 0

WATER -5 0 -14 0 0

ADD Tieback 466

ENDSTEP

STEP Stage5_467

SETWALL LeftWall_32

GEOM 0 -6.5

SURCHARGE 0 0 0 0

WATER -11 0 -14 0 0

ENDSTEP

STEP T2_747

SETWALL LeftWall_32

GEOM 0 -6.5

SURCHARGE 0 0 0 0

WATER -11 0 -14 0 0

ADD Tieback_New_847

ENDSTEP

STEP Stage7_848

SETWALL LeftWall_32

GEOM 0 -9

SURCHARGE 0 0 0 0

WATER -11 0 -14 0 0

ENDSTEP

STEP Stage14 4455

SETWALL LeftWall_32

GEOM 0 -9

SURCHARGE 0 0 0 0

WATER -11 0 -14 0 0

Collegamento viario compreso tra lo Svincolo della S.S. 514 di "Chiaromonte" con la S.S. 115 e lo Svincolo della "Ragusana"

PROGETTO ESECUTIVO

Direzione Progettazione e Realizzazione Lavori

RELAZIONE TECNICA E DI CALCOLO OPERE IMBOCCO SUD

CHANGE Qcs_2_8_L_0 U-KAED=0.26188 LeftWall_32 CHANGE Qcs_2_8_L_0 U-KAEW=0.34846 LeftWall_32 CHANGE Qcs_2_8_L_0 U-KPED=9.4651 LeftWall_32 CHANGE Qcs_2_8_L_0 U-KPEW=8.6453 LeftWall_32 CHANGE Qcs_2_8_L_0 D-KAED=0.23929 LeftWall_32 CHANGE Qcs_2_8_L_0 D-KAEW=0.33147 LeftWall_32 CHANGE Qcs_2_8_L_0 D-KPED=8.1369 LeftWall_32 CHANGE Qcs 2 8 L 0 D-KPEW=7.2859 LeftWall 32 EQK USER 0.1378 0.0689 -0.0689 0 0.66 0 0.66 0 0

* Defining seismic surcharge pressures on wall LeftWall_32

- min elevation = -9
- max elevation = 0
- average gamma = 21
- kh = 0.1378
- deltaQ = 87.899175

DLOAD step LeftWall_32 -9 9.7666 0 9.7666

- * Include pressure contribution from wall: LeftWall 32

DLOAD step LeftWall_32 -9 2.067 0 2.067

ENDSTEP

11.1.8 H 6 m

* 1: Defining general settings

UNIT m kN

TITLE New Project

DELTA 0.2

option param itemax 40

option control hinges 0 0.0001 0.001

* 2: Defining wall(s)

WALL LeftWall_32 0 -10 0 1

* 3: Defining surfaces for wall(s)

SOIL 0_L LeftWall_32 -10 0 1 0

SOIL 0_R LeftWall_32 -10 0 2 180

- * 4: Defining soil layers
- * Soil Profile (Qcs_2_8_L_0)

LDATA Qcs_2_8_L_0 0 LeftWall_32

ATREST 0.5 0.5 1

WEIGHT 21 11 10

PERMEABILITY 0.0001

RESISTANCE 0 40 0 0 0

KSCALE 00

YOUNG 80000 1.28E+05

ENDL

- * 5: Defining structural materials
- * Steel material: 110 Name=Fe360 E=206000200 kPa

MATERIAL Fe360_110 2.06E+08

* Concrete material: 105 Name=C20/25 E=29962000 kPa

MATERIAL C2025 105 2.9962E+07

* Rebar material: 126 Name=acciaio armonico E=200100000 kPa

MATERIAL acciaioarmonico_126 2.001E+08

Direzione Progettazione e

Realizzazione Lavori

Collegamento viario compreso tra lo Svincolo della S.S. 514 di "Chiaromonte" con la S.S. 115 e lo Svincolo della "Ragusana"

PROGETTO ESECUTIVO

RELAZIONE TECNICA E DI CALCOLO OPERE IMBOCCO SUD

- * 6: Defining structural elements
- * 6.1: Beams and combined Wall Elements

BEAM WallElement_33 LeftWall_32 -10 0 C2025_105 0.6 00 00 0

* 6.2: Supports

WIRE Tieback_466 LeftWall_32 -2 acciaioarmonico_126 1.1032E-05 88.889 15 0 0

* 6.3: Strips

STRIP LeftWall_32 2 6 2 6 0 20 45

* 7: Defining Steps

STEP Stage1_31

CHANGE Qcs_2_8_L_0 U-FRICT=40 LeftWall_32

CHANGE Qcs_2_8_L_0 D-FRICT=40 LeftWall_32

CHANGE Qcs_2_8_L_0 U-KA=0.179 LeftWall_32

CHANGE Qcs_2_8_L_0 U-KP=9.529 LeftWall_32

CHANGE Qcs_2_8_L_0 D-KA=0.179 LeftWall_32

CHANGE Qcs_2_8_L_0 D-KP=9.529 LeftWall_32

CHANGE Qcs_2_8_L_0 U-COHE=0 LeftWall_32 CHANGE Qcs_2_8_L_0 U-ADHES=0 LeftWall_32

CHANGE Qcs_2_8_L_0 D-COHE=0 LeftWall_32

CHANGE Qcs_2_8_L_0 D-ADHES=0 LeftWall_32

SETWALL LeftWall_32

GEOM 0 0

SURCHARGE 0 0 0 0

WATER -5 0 -10 0 0

ADD WallElement_33

ENDSTEP

STEP Stage2_165

SETWALL LeftWall_32

GEOM 0 0

SURCHARGE 0 0 0 0

WATER -5 0 -10 0 0

ENDSTEP

STEP Stage3_266

SETWALL LeftWall 32

GEOM 0 -2.5

SURCHARGE 0 0 0 0

WATER -5 0 -10 0 0

ENDSTEP

STEP T1_366

SETWALL LeftWall 32

GEOM 0 -2.5

SURCHARGE 0 0 0 0

WATER -5 0 -10 0 0 ADD Tieback_466

ENDSTEP

STEP Stage5_467

SETWALL LeftWall_32

GEOM 0 -6

SURCHARGE 0 0 0 0

Collegamento viario compreso tra lo Svincolo della S.S. 514 di "Chiaromonte" con la S.S. 115 e lo Svincolo della "Ragusana"

PROGETTO ESECUTIVO

RELAZIONE TECNICA E DI CALCOLO OPERE IMBOCCO SUD

WATER -11 0 -10 0 0 ENDSTEP

Direzione Progettazione e

Realizzazione Lavori

STEP Stage14 4455 SETWALL LeftWall_32 GEOM 0 -6

SURCHARGE 0.0.0.0

WATER -11 0 -10 0 0 CHANGE Qcs_2_8_L_0 U-KAED=0.27224 LeftWall_32 CHANGE Qcs_2_8_L_0 U-KAEW=0.37124 LeftWall_32 CHANGE Qcs_2_8_L_0 U-KPED=9.4477 LeftWall_32 CHANGE Qcs_2_8_L_0 U-KPEW=8.5202 LeftWall_32 CHANGE Qcs_2_8_L_0 D-KAED=0.24762 LeftWall_32 CHANGE Qcs_2_8_L_0 D-KAEW=0.35572 LeftWall_32 CHANGE Qcs_2_8_L_0 D-KPED=7.9783 LeftWall_32 CHANGE Qcs_2_8_L_0 D-KPEW=7.0119 LeftWall_32 EQK USER 0.1521 0.07605 -0.07605 0 0.66 0 0.66 0 0

* Defining seismic surcharge pressures on wall LeftWall_32

- min elevation = -6
- max elevation = 0
- average gamma = 21
- kh = 0.1521
- deltaQ = 43.12035

DLOAD step LeftWall_32 -6 7.1867 0 7.1867

- * Include pressure contribution from wall: LeftWall_32
- * Include wall contribution

DLOAD step LeftWall_32 -6 2.2815 0 2.2815

ENDSTEP

Collegamento viario compreso tra lo Svincolo della S.S. 514 di "Chiaromonte" con la S.S. 115 e lo Svincolo della "Ragusana"

PROGETTO ESECUTIVO

Direzione Progettazione e Realizzazione Lavori

RELAZIONE TECNICA E DI CALCOLO OPERE IMBOCCO SUD

11.1.10 H 4.5 m

* 1: Defining general settings

UNIT m kN

TITLE New Project

DELTA 0.2

option param itemax 40

option control hinges 0 0.0001 0.001

* 2: Defining wall(s)

WALL LeftWall_32 0 -8 0 1

* 3: Defining surfaces for wall(s)

SOIL 0_L LeftWall_32 -8 0 1 0

SOIL 0_R LeftWall_32 -8 0 2 180

* 4: Defining soil layers

* Soil Profile (Rilevato_33617_8_L_0)

LDATA Rilevato_33617_8_L_0 8 LeftWall_32

ATREST 0.5 0.5 1

WEIGHT 20 10 10

PERMEABILITY 0.0001

RESISTANCE 0 30 0 0 0

KSCALE 00

YOUNG 30000 48000

ENDL

* Soil Profile (Qcs_2_33618_L_0)

LDATA Qcs_2_33618_L_0 -2 LeftWall_32

ATREST 0.5 0.5 1

PERMEABILITY 0.0001

RESISTANCE 20 32 0 0 0

KSCALE 00

YOUNG 80000 1.28E+05

ENDL

- * 5: Defining structural materials
- * Steel material: 110 Name=Fe360 E=206000200 kPa

MATERIAL Fe360_110 2.06E+08

* Concrete material: 105 Name=C20/25 E=29962000 kPa

MATERIAL C2025 105 2.9962E+07

* Rebar material: 126 Name=acciaio armonico E=200100000 kPa

MATERIAL acciaioarmonico_126 2.001E+08

- * 6: Defining structural elements
- * 6.1: Beams and combined Wall Elements

BEAM WallElement_33 LeftWall_32 -8 0 C2025_105 0.6 00 00 0

* 6.2: Supports

WIRE Tieback 35554 LeftWall 32 -2 acciaioarmonico 126 1.0296E-05 100 15 0 0

* 6.3: Strips

Collegamento viario compreso tra lo Svincolo della S.S. 514 di "Chiaromonte" con la S.S. 115 e lo Svincolo della "Ragusana"

PROGETTO ESECUTIVO

Direzione Progettazione e Realizzazione Lavori

RELAZIONE TECNICA E DI CALCOLO OPERE IMBOCCO SUD

STRIP LeftWall_32 2 5 13 12 7.5 20 45

* 7: Defining Steps

STEP Stage 1 31

CHANGE Rilevato_33617_8_L_0 U-FRICT=30 LeftWall_32

CHANGE Rilevato_33617_8_L_0 D-FRICT=30 LeftWall_32

CHANGE Rilevato_33617_8_L_0 U-KA=0.333 LeftWall_32

CHANGE Rilevato 33617 8 L 0 U-KP=4.288 LeftWall 32

CHANGE Rilevato_33617_8_L_0 D-KA=0.333 LeftWall_32

CHANGE Rilevato_33617_8_L_0 D-KP=4.288 LeftWall_32

CHANGE Qcs_2_33618_L_0 U-FRICT=32 LeftWall_32

CHANGE Qcs_2_33618_L_0 D-FRICT=32 LeftWall_32

CHANGE Qcs_2_33618_L_0 U-KA=0.307 LeftWall_32 CHANGE Qcs_2_33618_L_0 U-KP=4.845 LeftWall_32

CHANGE Qcs_2_33618_L_0 D-KA=0.307 LeftWall_32

CHANGE Qcs_2_33618_L_0 D-KP=4.845 LeftWall_32

CHANGE Rilevato_33617_8_L_0 U-COHE=0 LeftWall_32

CHANGE Rilevato_33617_8_L_0 U-ADHES=0 LeftWall_32

CHANGE Rilevato_33617_8_L_0 D-COHE=0 LeftWall_32

CHANGE Rilevato_33617_8_L_0 D-ADHES=0 LeftWall_32

CHANGE Qcs_2_33618_L_0 U-COHE=20 LeftWall_32

CHANGE Qcs_2_33618_L_0 U-ADHES=0 LeftWall_32

CHANGE Qcs_2_33618_L_0 D-COHE=20 LeftWall_32

CHANGE Qcs_2_33618_L_0 D-ADHES=0 LeftWall_32

SETWALL LeftWall_32

GEOM 0 0

SURCHARGE 0 0 0 0

WATER -10 0 -8 0 0

ADD WallElement 33

ENDSTEP

STEP Stage2_27336

SETWALL LeftWall_32

GEOM 0 -2.5

SURCHARGE 0 0 0 0

WATER -10 0 -8 0 0

ENDSTEP

STEP T1_30007

SETWALL LeftWall_32

GFOM 0 -2 5

SURCHARGE 0 0 0 0

WATER -10 0 -8 0 0

ADD Tieback 35554

ENDSTEP

STEP stageC_35303

SETWALL LeftWall 32

GEOM 0 -3.5

SURCHARGE 0 0 0 0

WATER -10 0 -8 0 0

ENDSTEP

STEP Stage3 29516

SETWALL LeftWall_32

GEOM 0 -4.5

SURCHARGE 0 0 0 0

WATER -10 0 -8 0 0

Collegamento viario compreso tra lo Svincolo della S.S. 514 di "Chiaromonte" con la S.S. 115 e lo Svincolo della "Ragusana"

PROGETTO ESECUTIVO

Direzione Progettazione e RELAZIONE TECNICA E DI CALCOLO OPERE IMBOCCO SUD Realizzazione Lavori

ENDSTEP

STEP Stage6_45006

SETWALL LeftWall 32

GEOM 0 -4.5

SURCHARGE 0 0 0 0

WATER -10 0 -8 0 0

CHANGE Rilevato 33617 8 L 0 U-KAED=0.44995 LeftWall 32

CHANGE Rilevato_33617_8_L_0 U-KAEW=0.57207 LeftWall_32

CHANGE Rilevato_33617_8_L_0 U-KPED=4.1749 LeftWall_32

CHANGE Rilevato_33617_8_L_0 U-KPEW=3.6338 LeftWall_32

CHANGE Rilevato_33617_8_L_0 D-KAED=0.40491 LeftWall_32

CHANGE Rilevato_33617_8_L_0 D-KAEW=0.53586 LeftWall_32

CHANGE Rilevato_33617_8_L_0 D-KPED=3.5532 LeftWall_32

CHANGE Rilevato_33617_8_L_0 D-KPEW=2.9867 LeftWall_32

CHANGE Qcs_2_33618_L_0 U-KAED=0.41781 LeftWall_32

CHANGE Qcs_2_33618_L_0 U-KAEW=0.56779 LeftWall_32 CHANGE Qcs_2_33618_L_0 U-KPED=4.7373 LeftWall_32

CHANGE Qcs_2_33618_L_0 U-KPEW=3.9949 LeftWall_32

CHANGE Ocs 2 33618 L 0 D-KAED=0.37612 LeftWall 32

CHANGE Qcs_2_33618_L_0 D-KAEW=0.53865 LeftWall_32

CHANGE Qcs_2_33618_L_0 D-KPED=4.0361 LeftWall_32 CHANGE Qcs_2_33618_L_0 D-KPEW=3.2579 LeftWall_32

EQK USER 0.1426 0.0713 -0.0713 33.111 0.5 0 0.5 0 0

* Defining seismic surcharge pressures on wall LeftWall_32

- min elevation = -4.5
- max elevation = 0
- average gamma = 18.888888888889
- kh = 0.2154
- deltaQ = 20.4541875

DLOAD step LeftWall_32 -4.5 4.5454 0 4.5454

- * Include pressure contribution from wall: LeftWall_32
- * Include wall contribution

DLOAD step LeftWall_32 -4.5 2.139 0 2.139 ENDSTEP

11.1.11 H 2.5 m

* 1: Defining general settings

UNIT m kN

TITLE New Project

DELTA 0.2

option param itemax 40

option control hinges 0 0.0001 0.001

* 2: Defining wall(s)

WALL LeftWall_32 0 -6 0 1

* 3: Defining surfaces for wall(s)

SOIL 0_L LeftWall_32 -6 0 1 0

SOIL 0_R LeftWall_32 -6 0 2 180

- * 4: Defining soil layers

* Soil Profile (Rilevato_33617_8_L_0)

LDATA Rilevato_33617_8_L_0 8 LeftWall_32 ATREST 0.5 0.5 1

WEIGHT 20 10 10

MANDATARIA:

Direzione Progettazione e

Realizzazione Lavori

Collegamento viario compreso tra lo Svincolo della S.S. 514 di "Chiaromonte" con la S.S. 115 e lo Svincolo della "Ragusana"

PROGETTO ESECUTIVO

RELAZIONE TECNICA E DI CALCOLO OPERE IMBOCCO SUD

PERMEABILITY 0.0001 RESISTANCE 0 30 0 0 0 KSCALE 00 YOUNG 30000 48000 ENDL

* Soil Profile (Qcs_2_33618_L_0)

LDATA Qcs_2_33618_L_0 -2 LeftWall_32 ATREST 0.5 0.5 1 WEIGHT 21 11 10 PERMEABILITY 0.0001 RESISTANCE 0 40 0 0 0

KSCALE 00

YOUNG 80000 1.28E+05

ENDL

- * 5: Defining structural materials
- * Steel material: 110 Name=Fe360 E=206000200 kPa

MATERIAL Fe360 110 2.06E+08

* Concrete material: 105 Name=C20/25 E=29962000 kPa

MATERIAL C2025_105 2.9962E+07

- * 6: Defining structural elements
- * 6.1: Beams and combined Wall Elements

BEAM WallElement_33 LeftWall_32 -6 0 C2025_105 0.6 00 00 0

- * 6.2: Supports
- * 6.3: Strips

STRIP LeftWall_32 2 2 13 12 7.5 20 45

* 7: Defining Steps

CHANGE Rilevato_33617_8_L_0 U-FRICT=30 LeftWall_32 CHANGE Rilevato_33617_8_L_0 D-FRICT=30 LeftWall_32 CHANGE Rilevato_33617_8_L_0 U-KA=0.333 LeftWall_32

CHANGE Rilevato_33617_8_L_0 U-KP=4.62 LeftWall_32

CHANGE Rilevato 33617 8 L 0 D-KA=0.333 LeftWall 32

CHANGE Rilevato_33617_8_L_0 D-KP=4.62 LeftWall_32

CHANGE Qcs 2 33618 L 0 U-FRICT=40 LeftWall 32

CHANGE Qcs 2 33618 L 0 D-FRICT=40 LeftWall 32

CHANGE Qcs_2_33618_L_0 U-KA=0.217 LeftWall_32

CHANGE Qcs_2_33618_L_0 U-KP=9.529 LeftWall_32 CHANGE Qcs_2_33618_L_0 D-KA=0.217 LeftWall_32

CHANGE Qcs_2_33618_L_0 D-KP=9.529 LeftWall_32

CHANGE Rilevato_33617_8_L_0 U-COHE=0 LeftWall_32

CHANGE Rilevato_33617_8_L_0 U-ADHES=0 LeftWall_32

CHANGE Rilevato_33617_8_L_0 D-COHE=0 LeftWall_32

CHANGE Rilevato_33617_8_L_0 D-ADHES=0 LeftWall_32

CHANGE Qcs_2_33618_L_0 U-COHE=0 LeftWall_32 CHANGE Qcs_2_33618_L_0 U-ADHES=0 LeftWall_32

CHANGE Qcs_2_33618_L_0 D-COHE=0 LeftWall_32

CHANGE Qcs_2_33618_L_0 D-ADHES=0 LeftWall_32

SETWALL LeftWall_32

Collegamento viario compreso tra lo Svincolo della S.S. 514 di "Chiaromonte" con la S.S. 115 e lo Svincolo della "Ragusana"

PROGETTO ESECUTIVO

RELAZIONE TECNICA E DI CALCOLO OPERE IMBOCCO SUD

Direzione Progettazione e Realizzazione Lavori

GEOM 0.0 SURCHARGE 0 0 0 0 WATER -10 0 -6 0 0 ADD WallElement 33 ENDSTEP

STEP Stage2_27336 SETWALL LeftWall 32 GEOM 0 -2.5 SURCHARGE 0 0 0 0 WATER -10 0 -6 0 0 ENDSTEP

SETWALL LeftWall_32 GEOM 0 -2.5 SURCHARGE 0 0 0 0

STEP Stage6 45006

CHANGE Rilevato_33617_8_L_0 U-KAED=0.44995 LeftWall_32 CHANGE Rilevato 33617 8 L 0 U-KAEW=0.57207 LeftWall 32 CHANGE Rilevato_33617_8_L_0 U-KPED=4.4984 LeftWall_32 CHANGE Rilevato_33617_8_L_0 U-KPEW=3.9156 LeftWall_32 CHANGE Rilevato 33617 8 L 0 D-KAED=0.40491 LeftWall 32 CHANGE Rilevato_33617_8_L_0 D-KAEW=0.53586 LeftWall_32 CHANGE Rilevato_33617_8_L_0 D-KPED=3.829 LeftWall_32 CHANGE Rilevato 33617 8 L 0 D-KPEW=3.2179 LeftWall 32 CHANGE Qcs_2_33618_L_0 U-KAED=0.30746 LeftWall_32 CHANGE Qcs_2_33618_L_0 U-KAEW=0.3921 LeftWall_32 CHANGE Qcs_2_33618_L_0 U-KPED=9.4596 LeftWall_32 CHANGE Qcs_2_33618_L_0 U-KPEW=8.6036 LeftWall_32 CHANGE Qcs_2_33618_L_0 D-KAED=0.27768 LeftWall_32 CHANGE Qcs_2_33618_L_0 D-KAEW=0.36684 LeftWall_32 CHANGE Qcs_2_33618_L_0 D-KPED=8.0843 LeftWall_32 CHANGE Qcs_2_33618_L_0 D-KPEW=7.1946 LeftWall_32 EQK USER 0.1426 0.0713 -0.0713 33.111 0.66 0 0.66 0 0

- * Defining seismic surcharge pressures on wall LeftWall 32 min elevation = -2.5
- max elevation = 0
- average gamma = 20.2
- kh = 0.1426
- deltaQ = 6.75121875

DLOAD step LeftWall 32 -2.5 2.7005 0 2.7005

- * Include pressure contribution from wall: LeftWall_32
- * Include wall contribution

DLOAD step LeftWall 32 -2.5 2.139 0 2.139

ENDSTEP

