

Direzione Progettazione e Realizzazione Lavor i

ITINERARIO RAGUSA-CATANIA

Collegamento viario compreso tra lo Svincolo della S.S. 514 "di Chiaramonte" con la S.S. 115 e lo Svincolo della S.S. 194 "Ragusana"

LOTTO 4 - Dallo svincolo n. 8 "Francofonte" (compreso) allo svincolo della "Ragusana" (escluso)

PROGETTO ESECUTIVO

COD. PA890

G.Lucibello G.Guastella

M.Leonardi

G.Parente

L.Ragnacci A.Strati

M.G.Liseno

PROGETTAZIONE: ATI SINTAGMA - GP INGEGNERIA - COOPROGETTI -GDG - ICARIA - OMNISERVICE

PROGETTISTA RESPONSABILE DELL'INTEGRAZIONE DELLE PRESTAZIONI SPECIALISTICHE:

Dott. Ing. Nando Granieri

Ordine degli Ingegneri della Prov. di Perugia n° A351

INGEGNEBI DELLA PROVINCIA Seziofe A DOTTORS INGEGNERE MANDO GRANIERI

SETTORE CIVILE E AMBIENTALE SETTORE INDUSTRIALE SETTORE DELL'INFORMAZIONE

IL GEOLOGO:

Dott. Geol. Giorgio Cerquiglini

Ordine dei Geologi della Regione Umbria n° 108

IL COORDINATORE PER LA SICUREZZA IN FASE DI PROGETTAZIONE:

Dott. Ing. Filippo Pambianco

Ordine degli Ingegneri della Provincia di Perugia n° A1373

VISTO IL RESPONSABILE DEL PROCEDIMENTO

Dott. Ing. Luigi Mupo

IL GRUPPO DI PROGETTAZIONE:

MANDATARIA: Dott. Ing. M.Abram F.Pambianco M.Briganti Botta N.Granieri Dott. Ina **M**Sintagma Dott. Ing. Dott. Ing. Dott. Ing. Dott. Arch. F.Durastanti V.Truffini A.Bracchini Dott. Ind. L.Gadliardini Dott. Ing. I Nani Dott. Geol. G.Cerquiglini

MANDANTI:

GPINGEGNERIA

ICARIA

OMNISERVICE

Dott. Ing. Dott. Ing. Dott. Ing. Dott. Ing.

Dott. Ing. Dott. Ing.

Dott. Ing.

A.Signorelli E.Moscatelli

E.A.E.Crimi M.Panfili P.Ghirelli Dott. Arch. Dott. Ing. Dott. Arch.

Dott. Ing. D.Pelle Dott. Ing. Dott. Ing. Dott. Ing

D.Carlaccini S.Sacconi C.Consorti

V.Rotisciani G.Pulli F.Macchioni Dott. Ing. Dott. Ing. F.Aloe A.Salvemini G.Verini Supplizi V.Piunno Dott. Ing. Dott. Ing. Geom C.Sugaroni

Dott. Ing. Dott. Arch.

Dott. Geol.

Dott. Ing.

Archeol.

Dott. Ing. P.Agnello

IL RESPONSABILE DI PROGETTO:

LOTTO 4 SOTTOVIA SOTTOVIA AL KM 3+248 - SEC. 90 RELAZIONE DI CALCOLO

CODICE PROGETTO PROGETTO LIV. PROG. N. PROG.		NOME FILE TO4ST02STRRE01C			REVISIONE	SCALA:
LO40		CODICE T04ST02STRRE01			С	-
С	REVISIONE A SEGUITO DI RAP	NOV 2021	M. BOTTA	F. DURASTANTI	N. GRANIERI	
В	REVISIONE A SEGUITO ISTRUTTORIA ANAS - SET 2021			M. BOTTA	F. DURASTANTI	N. GRANIERI
Α	EMISSIONE			M. BOTTA	F. DURASTANTI	N. GRANIERI
REV.	DESCRIZIONE		DATA	REDATTO	VERIFICATO	APPROVATO

Collegamento viario compreso tra lo Svincolo della S.S. 514 di "Chiaromonte" con la S.S. 115 e lo Svincolo della "Ragusana" PROGETTO ESECUTIVO

RELAZIONE DI CALCOLO SOTTOVIA AL KM 3+248 - SEC. 90

INDICE

1	P	PREMESSA4
2	ı	NORMATIVE DI RIFERIMENTO5
3	N	MATERIALI6
	3.1	CALCESTRUZZO6
		3.1.1 Magrone
		3.1.2 Fondazione6
		3.1.3 Elevazione
	3.2	ACCIAIO6
		3.2.1 Acciaio di armatura6
4		NQUADRAMENTO GEOTECNICO7
5	S	SCATOLARE8
	5.1	TERRENI8
	5.2	GEOMETRIA9
	5.3	METODI DI CALCOLO
		5.3.1 Calcolo del carico sulla calotta: pressione geostatica
		5.3.2 Spinta sui piedritti
		5.3.3 Strategia di soluzione
	5.4	CONDIZIONI DI CARICO
	5.5	AZIONE SISMICA
	5.6	COMBINAZIONI DI CARICO
	5.7	IMPOSTAZIONI DI PROGETTO
		5.7.1 Stato limite ultimo21
		5.7.2 Stato limite di esercizio
	5.8	INVILUPPO SOLLECITAZIONI

Collegamento viario compreso tra lo Svincolo della S.S. 514 di "Chiaromonte" con la S.S. 115 e lo Svincolo della "Ragusana" PROGETTO ESECUTIVO

RELAZIONE DI CALCOLO SOTTOVIA AL KM 3+248 - SEC. 90

5.9	INVILUPPO PRESSIONI TERRENO	. 25
5.1	0 VERIFICHE GEOTECNICHE	. 26
5.1	1 SCHEMA ARMATURE	. 29
5.1	2 VERIFICHE STRUTTURALI	. 29
	5.12.1Fondazione	29
	5.12.2Traverso	31
	5.12.3Piedritti	33
6	MURI D'IMBOCCO	.36
6.1	TERRENI	. 36
6.2	GEOMETRIA	. 37
6.3	METODI DI CALCOLO	. 37
	6.3.1 Spinta sui piedritti	37
	6.3.2 Strategia di soluzione	38
6.4	CONDIZIONI DI CARICO	. 39
	AZIONE SISMICA	
	COMBINAZIONI DI CARICO	
	IMPOSTAZIONI DI PROGETTO	
0.7	6.7.1 Stato limite ultimo	
	6.7.2 Stato limite di esercizio	
6.0		
	INVILUPPO SOLLECITAZIONI	
	INVILUPPO PRESSIONI TERRENO	
6.1	0 VERIFICHE GEOTECNICHE	. 49
6.1	1 SCHEMA ARMATURE	. 52
6.1	2 VERIFICHE STRUTTURALI	. 52
	6.12.1Fondazione	52

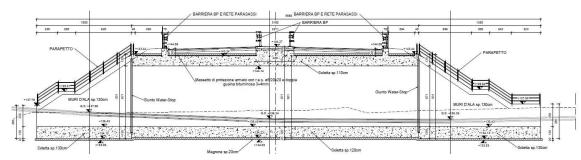
Collegamento viario compreso tra lo Svincolo della S.S. 514 di "Chiaromonte" con la S.S. 115 e lo Svincolo della "Ragusana"

PROGETTO ESECUTIVO

RELAZIONE DI CALCOLO SOTTOVIA AL KM 3+248 - SEC. 90

	6.12.2Piedritti	54
7	INCIDENZE	57
8	DICHIARAZIONI SECONDO §10.2 DELLE NTC2008	58
9	ALLEGATI	60
9	9.1 SCATOLARE	60
٥	9.2 MURLD'IMROCCO	1/10

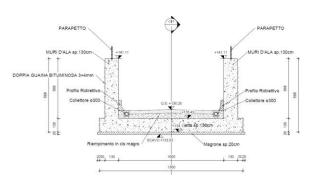
MANDATARIA:


PROGETTO ESECUTIVO

RELAZIONE DI CALCOLO SOTTOVIA AL KM 3+248 - SEC. 90

1 PREMESSA

La presente relazione si inserisce nell'ambito del progetto esecutivo «Itinerario Ragusa - Catania, Collegamento viario compreso tra lo Svincolo della S.S. 514 di "Chiaromonte" con la S.S. 115 e lo Svincolo della "Ragusana"».


In particolare questo documento riguarda la progettazione strutturale del sottovia al km 3+248 - sec. 90. L'opera in esame è costituita da uno scatolare gettato in opera di dimensioni interne di 10.00 x 6.71 m. Lo spessore della fondazione è pari a 120 cm mentre quello della soletta superiore e dei piedritti a 110 cm. Gli imbocchi dell'opera sono realizzati tramite muri ad U aventi fondazione e piedritti di spessore 130 cm.

Sezione longitudinale

Sezione trasversale sottovia

Sezione trasversale muri di imbocco

MANDATARIA:

Collegamento viario compreso tra lo Svincolo della S.S. 514 di "Chiaromonte" con la S.S. 115 e lo Svincolo della "Ragusana"

PROGETTO ESECUTIVO

RELAZIONE DI CALCOLO SOTTOVIA AL KM 3+248 - SEC. 90

2 NORMATIVE DI RIFERIMENTO

Di seguito si riportano le normative assunte come riferimento per la progettazione.

- Legge 5 novembre 1971, n. 1086 "Norme per la disciplina delle opere di conglomerato cementizio normale e precompresso ed a struttura metallica";
- Legge n. 64 del 02/02/1974 "Provvedimenti per le costruzioni con particolari prescrizioni per le zone sismiche";
- D.M. 9 gennaio 1996 "Norme tecniche per il calcolo, l'esecuzione ed il collaudo delle strutture in cemento armato normale e precompresso e per le strutture metalliche";
- Circolare Min. LL.PP. n. 252 del 15 ottobre 1996 istruzioni per l'applicazione "Norme tecniche per il calcolo, l'esecuzione ed il collaudo delle strutture in cemento armato normale e precompresso e per le strutture metalliche" di cui al D.M. 09.01.1996;
- D.M. 16 gennaio 1996 "Criteri generali per la verifica di sicurezza delle costruzioni e dei carichi e sovraccarichi";
- Circolare Min. LL.PP. n. 156 del 04 luglio 1996 Istruzioni per l'applicazione "Norme tecniche relative ai Criteri generali per la verifica di sicurezza delle costruzioni e dei carichi e sovraccarichi" di cui al D.M. 16 gennaio 1996;
 - UNI EN 206: Calcestruzzo Specificazione, prestazione, produzione e conformità;
 - EC 2: Progettazione delle strutture cementizie;
 - EC 7: Progettazione geotecnica;
 - OPCM 3274 della Presidenza Consiglio dei Ministri del 25 marzo 2003 "Normativa sismica";
- OPCM 3519 del 28.04.2006 "Criteri generali per l'individuazione delle zone sismiche e per la formazione e l'aggiornamento degli elenchi delle medesime zone";
 - D.M. 14 Gennaio 2008 "Norme Tecniche per le Costruzioni";
- Circolare 2 febbraio 2009, n. 617 istruzioni per l'applicazione delle "Nuove norme tecniche per le costruzioni" di cui al D.M. 14 gennaio 2008;

Collegamento viario compreso tra lo Svincolo della S.S. 514 di "Chiaromonte" con la S.S. 115 e lo Svincolo della "Ragusana" **PROGETTO ESECUTIVO**

RELAZIONE DI CALCOLO SOTTOVIA AL KM 3+248 - SEC. 90

3 MATERIALI

Di seguito si riportano le caratteristiche dei materiali previsti per le opere in progetto.

CALCESTRUZZO 3.1

3.1.1 Magrone

Classe di resistenza	C12/15

Fondazione 3.1.2

Classe di resistenza	C32/40
Resistenza cubica caratteristica, R_{ck}	40.00 MPa
Resistenza cilindrica caratteristica, f_{ck}	33.20 MPa
Resistenza di calcolo, f _{cd}	18.81 MPa
Classe di consistenza Slump	S4
Max dimensione aggregato	30 mm
Classe di esposizione	XA2
Copriferro	40 mm

3.1.3 Elevazione

Classe di resistenza	C32/40
Resistenza cubica caratteristica, R_{ck}	40.00 MPa
Resistenza cilindrica caratteristica, f_{ck}	33.20 MPa
Resistenza di calcolo, f _{cd}	18.81 MPa
Classe di consistenza Slump	S4
Max dimensione aggregato	25 mm
Classe di esposizione	XA2
Copriferro	40 mm

3.2 ACCIAIO

3.2.1 Acciaio di armatura

Tipo	B450C
Resistenza caratteristica, f _{yk}	450.0 MPa
Resistenza di calcolo, f _{yd}	391.3 MPa

Collegamento viario compreso tra lo Svincolo della S.S. 514 di "Chiaromonte" con la S.S. 115 e lo Svincolo della "Ragusana"

PROGETTO ESECUTIVO

RELAZIONE DI CALCOLO SOTTOVIA AL KM 3+248 - SEC. 90

4 INQUADRAMENTO GEOTECNICO

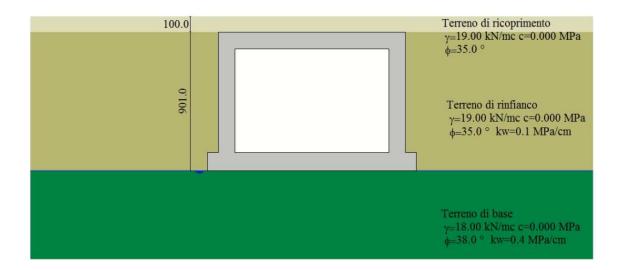
I dati relativi ai terreni e alla falda sono stati desunti dalla relazione geotecnica. Di seguito viene riportata la caratterizzazione geotecnica in corrispondenza dell'opera.

Strato	Unità geotecnica	z [m da p.c.]	γ (kN/m³)	φ' (°)	c' (kPa)	c _u (kPa)	σ _c (MPa)	RQD	GSI	E (MPa)
1	frana	0-3.0	-	-	-	-	-	-	-	-
2	Qc(a) – sabbia/calcareniti	3.0 – 13.1	17.5-18.5	38-42	0	-	-	-	-	50
3	Qa - argille	13.1 – 17.4	17-19	20-25	10-20	150	-	-	-	15-35

La falda è collocata a -4.80 m da p.c.

Per il terreno da rilevato si assume:

- γ = 19 kN/m³
- φ' = 35°
- c' = 0 kPa



RELAZIONE DI CALCOLO SOTTOVIA AL KM 3+248 - SEC. 90

SCATOLARE

Il calcolo dell'opera è stato effettuato tramite il software SCAT 10.0 distribuito dalla Aztec Informatica. È stata analizzata una striscia di scatolare della lunghezza di 1 m.

5.1 **TERRENI**

Strato (~ .	rico	nrima	nnta
311(11())	"	111111	,,,,,,,,	711()

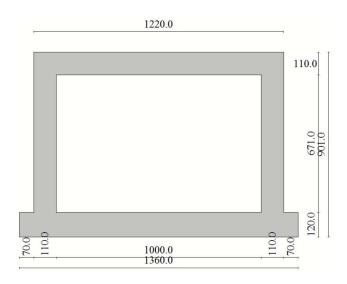
Descrizione	Terreno di ricoprimento	
Spessore dello strato	1.00	[m]
Peso di volume	19.0000	[kN/mc]
Peso di volume saturo	20.0000	[kN/mc]
Angolo di attrito	35.00	[°]
Coesione	0.000	[MPa]

Strato di rinfianco

Descrizione	Terreno di rinfianco	
Peso di volume	19.0000	[kN/mc]
Peso di volume saturo	20.0000	[kN/mc]
Angolo di attrito	35.00	[°]
Angolo di attrito terreno struttura	23.33	[°]
Coesione	0.000	[MPa]
Costante di Winkler	0.150	[MPa/cm]

Strato di base

Descrizione	Terreno di base	
Peso di volume	18.0000	[kN/mc]
Peso di volume saturo	19.0000	[kN/mc]
Angolo di attrito	38.00	[°]
Angolo di attrito terreno struttura	25.33	[°]
Coesione	0.000	[MPa]


PROGETTO ESECUTIVO

RELAZIONE DI CALCOLO SOTTOVIA AL KM 3+248 - SEC. 90

Costante di Winkler 0.400 [MPa/cm] Tensione ammissibile 8.000 [MPa]

Lo strato di ricoprimento comprende anche lo spessore del pacchetto stradale.

5.2 GEOMETRIA

Altezza esterna	9.01	[m]
Larghezza esterna	12.20	[m]
Lunghezza mensola di fondazione sinistra	0.70	[m]
Lunghezza mensola di fondazione destra	0.70	[m]
Spessore piedritto sinistro	1.10	[m]
Spessore piedritto destro	1.10	[m]
Spessore fondazione	1.20	[m]
Spessore traverso	1.10	[m]

5.3 **METODI DI CALCOLO**

Calcolo del carico sulla calotta: pressione geostatica

La pressione in calotta viene calcolata come prodotto tra il peso di volume del terreno per l'altezza del ricoprimento (Spessore dello strato di terreno superiore). Quindi la pressione in calotta è fornita dalla seguente relazione:

 $P_v = \gamma H$

MANDATARIA:

Collegamento viario compreso tra lo Svincolo della S.S. 514 di "Chiaromonte" con la S.S. 115 e lo Svincolo della "Ragusana"

PROGETTO ESECUTIVO

RELAZIONE DI CALCOLO SOTTOVIA AL KM 3+248 - SEC. 90

5.3.2 Spinta sui piedritti

5.3.2.1 Spinta in presenza di falda

Nel caso in cui a monte della parete sia presente la falda il diagramma delle pressioni sulla parete risulta modificato a causa della sottospinta che l'acqua esercita sul terreno. Il peso di volume del terreno al di sopra della linea di falda non subisce variazioni. Viceversa al di sotto del livello di falda va considerato il peso di volume di galleggiamento

$$\gamma_a = \gamma_{sat} - \gamma_w$$

dove γ_{sat} è il peso di volume saturo del terreno (dipendente dall'indice dei pori) e γ_w è il peso di volume dell'acqua. Quindi il diagramma delle pressioni al di sotto della linea di falda ha una pendenza minore. Al diagramma così ottenuto va sommato il diagramma triangolare legato alla pressione idrostatica esercitata dall'acqua.

5.3.2.2 Spinta a riposo

Si assume che sui piedritti agisca la spinta calcolata in condizioni di riposo. Il coefficiente di spinta a riposo è espresso dalla relazione

$$K_0 = 1 - \sin \phi$$

dove φ rappresenta l'angolo d'attrito interno del terreno di rinfianco.

Quindi la pressione laterale, ad una generica profondità z e la spinta totale sulla parete di altezza H valgono

$$\sigma = \gamma z K_0 + p_v K_0$$

 $S = 1/2 \gamma H^2 K_0 + p_v K_0 H$

dove p_v è la pressione verticale agente in corrispondenza della calotta.

5.3.2.3 Spinta in presenza di sisma: formula di Wood

Spinta del terreno nel caso di strutture rigide. Nel caso di strutture rigide completamente vincolate, in modo tale che non può svilupparsi nel terreno uno stato di spinta attiva, nonché nel caso di muri verticali con terrapieno a superficie orizzontale, l'incremento dinamico di spinta del terreno può essere calcolato come:

$$\Delta P_d = \alpha \gamma H^2$$

 $\alpha = a_g/g * S_S * \beta_m * S_T$

H è l'altezza sulla quale agisce la spinta. Il punto di applicazione va preso a metà altezza.

5.3.3 Strategia di soluzione

A partire dal tipo di terreno, dalla geometria e dai sovraccarichi agenti il programma è in grado di conoscere tutti i carichi agenti sulla struttura per ogni combinazione di carico.

La struttura scatolare viene schematizzata come un telaio piano e viene risolta mediante il metodo degli elementi finiti (FEM). Più dettagliatamente il telaio viene discretizzato in una serie di elementi connessi fra di loro nei nodi.

Collegamento viario compreso tra lo Svincolo della S.S. 514 di "Chiaromonte" con la S.S. 115 e lo Svincolo della "Ragusana"

PROGETTO ESECUTIVO

RELAZIONE DI CALCOLO SOTTOVIA AL KM 3+248 - SEC. 90

Il terreno di rinfianco e di fondazione viene invece schematizzato con una serie di elementi molle non reagenti a trazione (modello di Winkler). L'area della singola molla è direttamente proporzionale alla costante di Winkler del terreno e all'area di influenza della molla stessa.

A partire dalla matrice di rigidezza del singolo elemento, Ke, si assembla la matrice di rigidezza di tutta la struttura K. Tutti i carichi agenti sulla struttura vengono trasformati in carichi nodali (reazioni di incastro perfetto) ed inseriti nel vettore dei carichi nodali p.

Indicando con u il vettore degli spostamenti nodali (incogniti), la relazione risolutiva può essere scritta nella forma

$$Ku = p$$

Da questa equazione matriciale si ricavano gli spostamenti incogniti u

$$u = K^{-1} p$$

Noti gli spostamenti nodali è possibile risalire alle sollecitazioni nei vari elementi.

La soluzione del sistema viene fatta per ogni combinazione di carico agente sullo scatolare. Il successivo calcolo delle armature nei vari elementi viene condotto tenendo conto delle condizioni più gravose che si possono verificare nelle sezioni fra tutte le combinazioni di carico.

5.4 CONDIZIONI DI CARICO

Convenzioni adottate

Origine in corrispondenza dello spigolo inferiore sinistro della struttura

Carichi verticali positivi se diretti verso il basso

Carichi orizzontali positivi se diretti verso destra

Coppie concentrate positive se antiorarie

Ascisse X (espresse in m) positive verso destra

Ordinate Y (espresse in m) positive verso l'alto

Carichi concentrati espressi in kN

Coppie concentrate espressi in kNm

Carichi distribuiti espressi in kN/m

Simbologia adottata e unità di misura

Forze concentrate

- X ascissa del punto di applicazione dei carichi verticali concentrati
- Y ordinata del punto di applicazione dei carichi orizzontali concentrati
- F_v componente Y del carico concentrato
- F_x componente X del carico concentrato
- M momento

Forze distribuite

X_i, X_f ascisse del punto iniziale e finale per carichi distribuiti verticali

Y_i, Y_f ordinate del punto iniziale e finale per carichi distribuiti orizzontali

V_{ni} componente normale del carico distribuito nel punto iniziale

V_{nf} componente normale del carico distribuito nel punto finale

V_{ti} componente tangenziale del carico distribuito nel punto iniziale

V_{tf} componente tangenziale del carico distribuito nel punto finale

Dte variazione termica lembo esterno espressa in gradi centigradi

Dti variazione termica lembo interno espressa in gradi centigradi

MANDATARIA:

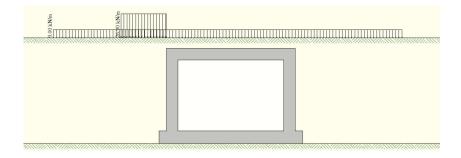
RELAZIONE DI CALCOLO SOTTOVIA AL KM 3+248 - SEC. 90

Condizione di carico n°1 (Peso Proprio)

Condizione di carico n°2 (Spinta terreno sinistra)

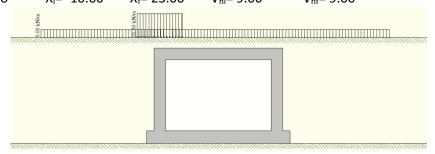
Condizione di carico n°3 (Spinta terreno destra)

Condizione di carico n°4 (Sisma da sinistra)


Condizione di carico n°5 (Sisma da destra)

Condizione di carico n°6 (Spinta falda)

Per il carico stradale è stato considerato lo schema di carico 1 delle NTC2008, e nel dettaglio i carichi relativi alla corsia n° 1, ovvero la più caricata. Il carico è stato ricavato distribuendo il carico tandem (2Q1k = 600 kN) attraverso la pavimentazione (con una pendenza di 45°), poi attraverso il ricoprimento (con pendenza pari all'angolo di attrito del terreno) e infine attraverso la soletta di copertura, fino all'asse dell'elemento (con una pendenza di 45°). A tale pressione è stato aggiunto il carico distribuito q_{1k} pari a 9 kN/m². Di tale carico stradale sono state considerate tre posizioni in modo tale da massimizzare le sollecitazioni sui vari elementi costituenti la struttura.


Condizione di carico n° 7 (Stradale 1)

Distr	Terreno	$X_i = -3.60$	$X_f = 0.70$	$V_{ni} = 26.90$	$V_{nf} = 26.90$
Distr	Terreno	$X_i = -10.00$	$X_f = 23.00$	$V_{ni} = 9.00$	$V_{nf} = 9.00$

Condizione di carico n° 8 (Stradale 2)

Distr Terreno $X_i = -0.90$ $X_f = 3.40$ $V_{ni} = 26.90$ $V_{nf} = 26.90$ Distr Terreno $X_i = -10.00$ $X_f = 23.00$ $V_{ni} = 9.00$ $V_{nf} = 9.00$



PROGETTO ESECUTIVO

RELAZIONE DI CALCOLO SOTTOVIA AL KM 3+248 - SEC. 90

Condizione di carico n° 9 (Stradale 3)

Distr Terreno $X_i = 4.65$ $X_f = 8.95$ $V_{ni} = 26.90$ $V_{nf} = 26.90$ $V_{ni} = 9.00$ Distr Terreno $X_i = -10.00$ $X_f = 23.00$ $V_{nf} = 9.00$

La forza di frenatura è stata ricavata dalla formula 5.1.4 delle NTC2008, sotto riportata.

$$180 \text{ kN} \le q_3 = 0.6 (2Q_{1k}) + 0.10q_{1k} \cdot w_1 \cdot L \le 900 \text{ kN}$$

Tale forza è stata poi ripartita trasversalmente, con il metodo precedentemente illustrato, e longitudinalmente (sulla luce L dello scatolare).

$$q_3 = 0.6*(2*300) + 0.1*9*3*12.20 = 392.9 \text{ kN}$$

 $p = q_3 / (B*L) = 392.9 / (5.14*12.20) = 6.3 \text{ kN/m}^2$

Condizione di carico n° 10 (Frenatura)

 $X_i = 0.70$ $V_{ti} = 6.30$ Distr Traverso $X_f = 12.90$ $V_{ni} = 0.00$ $V_{nf} = 0.00$ $V_{tf} = 6.30$

I fenomeni di ritiro sono stati considerati agenti solo sulla soletta di copertura ed applicati nel modello come una variazione termica uniforme equivalente pari a: ΔT_{ritiro} = -10.0 °C.

Condizione di carico n° 11 (Ritiro)

Term Traverso Dte= -10.00 Dti= -10.00

Alla soletta superiore si è applicata una variazione termica uniforme pari a $\Delta t=\pm 15$ °C ed una variazione nello spessore tra estradosso ed intradosso pari a Δt=±5°C.

Condizione di carico n° 12 (Term 1)

Term Traverso Dte= 15.00 Dti= 20.00

Condizione di carico n° 13 (Term 2)

Term Traverso Dte= -20.00 Dti= -15.00

5.5 **AZIONE SISMICA**

Per la definizione dell'azione sismica sono stati considerati i seguenti parametri:

Sito Latitudine: 37.2315; Longitudine: 14.8961

Vita nominale, V_N 50 anni Coefficiente d'uso, Cu 2.00 Categoria stratigrafica В

Collegamento viario compreso tra lo Svincolo della S.S. 514 di "Chiaromonte" con la S.S. 115 e lo Svincolo della "Ragusana"

PROGETTO ESECUTIVO

RELAZIONE DI CALCOLO SOTTOVIA AL KM 3+248 - SEC. 90

Categoria topografica

T1

Accelerazione al suolo $a_g = 3.76 \text{ [m/s}^2]$

Coefficiente di amplificazione per tipo di sottosuolo (S) 1.04 Coefficiente di amplificazione topografica (St) 1.00 Coefficiente riduzione (β_m) 1.00 Rapporto intensità sismica verticale/orizzontale 0.50

Coefficiente di intensità sismica orizzontale (percento) $k_h=(a_g/g^*\beta_m^*St^*Ss)=39.96$

Coefficiente di intensità sismica verticale (percento) $k_v=0.50 * k_h = 19.98$

Forma diagramma incremento sismico Rettangolare

Spinta sismica Wood

5.6 COMBINAZIONI DI CARICO

Simbologia adottata

- γ Coefficiente di partecipazione della condizione
- Ψ Coefficiente di combinazione della condizione
- C Coefficiente totale di partecipazione della condizione

Norme Tecniche 2008 – Approccio 2 (A1+M1+R3)

Simbologia adottata

$\gamma_{\sf G1sfav}$	Coefficiente parziale sfavorevole sulle azioni permanenti
γ_{G1fav}	Coefficiente parziale favorevole sulle azioni permanenti
γ_{G2sfav}	$Coefficiente\ parziale\ sfavorevole\ sulle\ azioni\ permanenti\ non\ strutturali$

 γ_{G2fav} Coefficiente parziale favorevole sulle azioni permanenti non strutturali

 γ_Q Coefficiente parziale sulle azioni variabili

 $\begin{array}{ll} \gamma_{\text{tan}\phi'} & \text{Coefficiente parziale di riduzione dell'angolo di attrito drenato} \\ \gamma_{\text{c'}} & \text{Coefficiente parziale di riduzione della coesione drenata} \\ \gamma_{\text{cu}} & \text{Coefficiente parziale di riduzione della coesione non drenata} \end{array}$

 γ_{qu} Coefficiente parziale di riduzione del carico ultimo

Coefficienti parziali per le azioni o per l'effetto delle azioni:

Carichi	Effetto		A1
Permanenti	Favorevole	$\gamma_{\sf G1fav}$	1.00
Permanenti	Sfavorevole	$\gamma_{\sf G1sfav}$	1.35
Permanenti non strutturali	Favorevole	$\gamma_{\sf G2fav}$	0.00
Permanenti non strutturali	Sfavorevole	$\gamma_{\sf G2sfav}$	1.50
Variabili	Favorevole	γ_{Qfav}	0.00
Variabili	Sfavorevole	γQsfav	1.35

Coefficienti parziali per i parametri geotecnici del terreno:

Parametri		M1
Tangente dell'angolo di attrito	$\gamma_{tan\phi'}$	1.00
Coesione efficace	γ _{c'}	1.00

PROGETTO ESECUTIVO

RELAZIONE DI CALCOLO SOTTOVIA AL KM 3+248 - SEC. 90

Resistenza non drenata Resistenza a compressione Peso dell'unità di volume	uniassiale	$egin{array}{lll} \gamma_{cu} & 1.00 \\ \gamma_{qu} & 1.00 \\ \gamma_{\gamma} & 1.00 \end{array}$)
Coeff. di combinazione	Ψ_0 = 0.75	Ψ₁= 0.75	Ψ_2 = 0.00
Combinazione n° 1 SLU (Ap	proccio 2)		
	γ	Ψ	С
Peso Proprio	1.35	1.00	1.35
Spinta terreno sinistra	1.35	1.00	1.35
Spinta terreno destra	1.35	1.00	1.35
Spinta falda	1.35	1.00	1.35
Stradale 1	1.35	1.00	1.35
Frenatura	1.35	1.00	1.35
Ritiro	1.35	0.89	1.20
Term 1	1.35	0.67	0.90
Combinazione n° 2 SLU (Ap	proccio 2)		
	γ	Ψ	С
Peso Proprio	1.35	1.00	1.35
Spinta terreno sinistra	1.35	1.00	1.35
Spinta terreno destra	1.35	1.00	1.35
Spinta falda	1.35	1.00	1.35
Stradale 1	1.35	1.00	1.35
Frenatura	1.35	1.00	1.35
Ritiro	1.35	0.89	1.20
Term 2	1.35	0.67	0.90
Combinazione n° 3 SLU (Ap	proccio 2)		
	γ	Ψ	С
Peso Proprio	1.35	1.00	1.35
Spinta terreno sinistra	1.35	1.00	1.35
Spinta terreno destra	1.35	1.00	1.35
Spinta falda	1.35	1.00	1.35
Stradale 2	1.35	1.00	1.35
Frenatura	1.35	1.00	1.35
Ritiro	1.35	0.89	1.20
Term 1	1.35	0.67	0.90
Combinazione n° 4 SLU (Ap) T (
	γ	Ψ	C
Peso Proprio	1.35	1.00	1.35
Spinta terreno sinistra	1.35	1.00	1.35
Spinta terreno destra	1.35	1.00	1.35
Spinta falda	1.35	1.00	1.35
Stradale 2	1.35	1.00	1.35
Frenatura	1.35	1.00	1.35

MANDATARIA:

MANDANTI:

PROGETTO ESECUTIVO

Direzione Progettazione e Realizzazione Lavori

RELAZIONE DI CALCOLO SOTTOVIA AL KM 3+248 - SEC. 90

	4.05		4.00
Ritiro	1.35	0.89	1.20
Term 2	1.35	0.67	0.90
Combinazione n° 5 SLU (Appr	occio 2)		
COMBINAZIONE II 3 3LO (Appr		Ψ	С
Peso Proprio	γ 1.35	1.00	1.35
Spinta terreno sinistra	1.35	1.00	1.35
Spinta terreno destra	1.35	1.00	1.35
Spinta falda	1.35	1.00	1.35
Stradale 3	1.35	1.00	1.35
Frenatura	1.35	1.00	1.35
Ritiro	1.35	0.89	1.20
Term 1	1.35	0.67	0.90
Combinazione n° 6 SLU (Appr	occio 2)		
	γ	Ψ	С
Peso Proprio	1.35	1.00	1.35
Spinta terreno sinistra	1.35	1.00	1.35
Spinta terreno destra	1.35	1.00	1.35
Spinta falda	1.35	1.00	1.35
Stradale 3	1.35	1.00	1.35
Frenatura	1.35	1.00	1.35
Ritiro	1.35	0.89	1.20
Term 2	1.35	0.67	0.90
Carabinasiana nº 7 SIII / Aran	:- 2\		
Combinazione n° 7 SLU (Appr		Ψ	С
Doco Droprio	γ 1.35	1.00	1.35
Peso Proprio Spinta terreno sinistra	1.35	1.00	1.35
Spinta terreno destra	1.35	1.00	1.35
Spinta falda	1.35	1.00	1.35
Stradale 1	1.35	0.75	1.01
Frenatura	1.35	0.75	1.01
Ritiro	1.35	0.75	1.20
Term 1	1.35	1.11	1.50
Term 1	1.55	1.11	1.50
Combinazione n° 8 SLU (Appr	occio 2)		
	γ	Ψ	С
Peso Proprio	1.35	1.00	1.35
Spinta terreno sinistra	1.35	1.00	1.35
Spinta terreno destra	1.35	1.00	1.35
Spinta falda	1.35	1.00	1.35
Stradale 1	1.35	0.75	1.01
Frenatura	1.35	0.75	1.01
Ritiro	1.35	0.89	1.20
Term 2	1.35	1.11	1.50

MANDATARIA:

MANDANTI:

Collegamento viario compreso tra lo Svincolo della S.S. 514 di "Chiaromonte" con la S.S. 115 e lo Svincolo della "Ragusana"

PROGETTO ESECUTIVO

RELAZIONE DI CALCOLO SOTTOVIA AL KM 3+248 - SEC. 90

Combinazione n°	9 SIII (Ann	roccio 2)
COMBINAZIONE	J JEO (/ IDD	TOCCIO 21

	γ	Ψ	С
Peso Proprio	1.35	1.00	1.35
Spinta terreno sinistra	1.35	1.00	1.35
Spinta terreno destra	1.35	1.00	1.35
Spinta falda	1.35	1.00	1.35
Stradale 2	1.35	0.75	1.01
Frenatura	1.35	0.75	1.01
Ritiro	1.35	0.89	1.20
Term 1	1.35	1.11	1.50

Combinazione n° 10 SLU (Approccio 2)

	γ	Ψ	С
Peso Proprio	1.35	1.00	1.35
Spinta terreno sinistra	1.35	1.00	1.35
Spinta terreno destra	1.35	1.00	1.35
Spinta falda	1.35	1.00	1.35
Stradale 2	1.35	0.75	1.01
Frenatura	1.35	0.75	1.01
Ritiro	1.35	0.89	1.20
Term 2	1.35	1.11	1.50

Combinazione n° 11 SLU (Approccio 2)

	γ	Ψ	С
Peso Proprio	1.35	1.00	1.35
Spinta terreno sinistra	1.35	1.00	1.35
Spinta terreno destra	1.35	1.00	1.35
Spinta falda	1.35	1.00	1.35
Stradale 3	1.35	0.75	1.01
Frenatura	1.35	0.75	1.01
Ritiro	1.35	0.89	1.20
Term 1	1.35	1.11	1.50

Combinazione n° 12 SLU (Approccio 2) - Sisma Vert. positivo

	γ	Ψ	С
Peso Proprio	1.00	1.00	1.00
Spinta terreno sinistra	1.00	1.00	1.00
Spinta terreno destra	1.00	1.00	1.00
Sisma da sinistra	1.00	1.00	1.00
Spinta falda	1.00	1.00	1.00
Term 1	1.00	0.50	0.50

Combinazione n° 13 SLU (Approccio 2) - Sisma Vert. negativo

	γ	Ψ	С
Peso Proprio	1.00	1.00	1.00
Spinta terreno sinistra	1.00	1.00	1.00
Spinta terreno destra	1.00	1.00	1.00

Collegamento viario compreso tra lo Svincolo della S.S. 514 di "Chiaromonte" con la S.S. 115 e lo Svincolo della "Ragusana"

PROGETTO ESECUTIVO

Direzione Progettazione e Realizzazione Lavori

RELAZIONE DI CALCOLO SOTTOVIA AL KM 3+248 - SEC. 90

Sisma da sinistra	1.00	1.00	1.00
Spinta falda	1.00	1.00	1.00
Term 1	1.00	0.50	0.50

Combinazione n° 14 SLU (Approccio 2) - Sisma Vert. positivo

	γ	Ψ	С
Peso Proprio	1.00	1.00	1.00
Spinta terreno sinistra	1.00	1.00	1.00
Spinta terreno destra	1.00	1.00	1.00
Sisma da sinistra	1.00	1.00	1.00
Spinta falda	1.00	1.00	1.00
Term 2	1.00	0.50	0.50

Combinazione n° 15 SLU (Approccio 2)

	γ	Ψ	С
Peso Proprio	1.35	1.00	1.35
Spinta terreno sinistra	1.35	1.00	1.35
Spinta terreno destra	1.35	1.00	1.35
Spinta falda	1.35	1.00	1.35
Stradale 3	1.35	0.75	1.01
Frenatura	1.35	0.75	1.01
Ritiro	1.35	0.89	1.20
Term 2	1.35	1.11	1.50

Combinazione n° 16 SLU (Approccio 2) - Sisma Vert. negativo

	γ	Ψ	С
Peso Proprio	1.00	1.00	1.00
Spinta terreno sinistra	1.00	1.00	1.00
Spinta terreno destra	1.00	1.00	1.00
Sisma da sinistra	1.00	1.00	1.00
Spinta falda	1.00	1.00	1.00
Term 2	1.00	0.50	0.50

Combinazione n° 17 SLE (Quasi Permanente)

	γ	Ψ	С
Peso Proprio	1.00	1.00	1.00
Spinta terreno sinistra	1.00	1.00	1.00
Spinta terreno destra	1.00	1.00	1.00
Spinta falda	1.00	1.00	1.00
Ritiro	1.00	1.00	1.00

Combinazione n° 18 SLE (Frequente)

	γ	Ψ	С
Peso Proprio	1.00	1.00	1.00
Spinta terreno sinistra	1.00	1.00	1.00
Spinta terreno destra	1.00	1.00	1.00
Spinta falda	1.00	1.00	1.00

Realizzazione Lavori

Collegamento viario compreso tra lo Svincolo della S.S. 514 di "Chiaromonte" con la S.S. 115 e lo Svincolo della "Ragusana"

PROGETTO ESECUTIVO

RELAZIONE DI CALCOLO SOTTOVIA AL KM 3+248 - SEC. 90

Ritiro	1.00	1.00	1.00
Stradale 1	1.00	0.75	0.75
Stradate 1	2.00	0.75	0.75
Combinazione n° 19 SLE (Frequ	iente)		
	γ	Ψ	С
Peso Proprio	1.00	1.00	1.00
Spinta terreno sinistra	1.00	1.00	1.00
Spinta terreno destra	1.00	1.00	1.00
Spinta falda	1.00	1.00	1.00
Ritiro	1.00	1.00	1.00
Stradale 2	1.00	0.75	0.75
Combinazione n° 20 SLE (Frequ	<u>iente)</u>		
	γ	Ψ	С
Peso Proprio	1.00	1.00	1.00
Spinta terreno sinistra	1.00	1.00	1.00
Spinta terreno destra	1.00	1.00	1.00
Spinta falda	1.00	1.00	1.00
Ritiro	1.00	1.00	1.00
Stradale 3	1.00	0.75	0.75
Combinazione n° 21 SLE (Frequ	<u>iente)</u>		
	γ	Ψ	С
Peso Proprio	1.00	1.00	1.00
Spinta terreno sinistra	1.00	1.00	1.00
Spinta terreno destra	1.00	1.00	1.00
Spinta falda	1.00	1.00	1.00
Ritiro	1.00	1.00	1.00
Frenatura	1.00	0.75	0.75
Combinazione n° 22 SLE (Frequ	<u>iente)</u>		
	γ	Ψ	С
Peso Proprio	1.00	1.00	1.00
Spinta terreno sinistra	1.00	1.00	1.00
Spinta terreno destra	1.00	1.00	1.00
Spinta falda	1.00	1.00	1.00
Ritiro	1.00	1.00	1.00
Term 1	1.00	0.75	0.75
Combinazione n° 23 SLE (Frequ			_
	γ	Ψ	С
Peso Proprio	1.00	1.00	1.00
Spinta terreno sinistra	1.00	1.00	1.00
Spinta terreno destra	1.00	1.00	1.00
Spinta falda	1.00	1.00	1.00
Ritiro	1.00	1.00	1.00
Term 2	1.00	0.75	0.75

MANDATARIA:

MANDANTI:

Collegamento viario compreso tra lo Svincolo della S.S. 514 di "Chiaromonte" con la S.S. 115 e lo Svincolo della "Ragusana"

PROGETTO ESECUTIVO

RELAZIONE DI CALCOLO SOTTOVIA AL KM 3+248 - SEC. 90

Combinazione n° 24 SLE (Rara)			
	γ	Ψ	С
Peso Proprio	1.00	1.00	1.00
Spinta terreno sinistra	1.00	1.00	1.00
Spinta terreno destra	1.00	1.00	1.00
Spinta falda	1.00	1.00	1.00
Ritiro	1.00	1.00	1.00
Stradale 1	1.00	1.00	1.00
Frenatura	1.00	0.75	0.75
Term 2	1.00	0.75	0.75
Terrii Z	1.00	0.73	0.75
Combinazione n° 25 SLE (Rara)			
COMBINAZIONE II 23 SEZ (Nara)	γ	Ψ	С
Peso Proprio	1.00	1.00	1.00
Spinta terreno sinistra	1.00	1.00	1.00
Spinta terreno destra	1.00	1.00	1.00
Spinta falda	1.00	1.00	1.00
Ritiro	1.00	1.00	1.00
Stradale 2			
Frenatura	1.00 1.00	1.00 0.75	1.00 0.75
Term 2		0.75	
Term 2	1.00	0.75	0.75
Combinazione n° 26 SLE (Rara)			
COMBINAZIONE II ZO SEE (Kara)	γ	Ψ	С
Peso Proprio	1.00	1.00	1.00
Spinta terreno sinistra	1.00	1.00	1.00
Spinta terreno destra	1.00	1.00	1.00
Spinta falda	1.00	1.00	1.00
Ritiro	1.00	1.00	1.00
Stradale 3	1.00	1.00	1.00
Frenatura	1.00	0.75	0.75
Term 2	1.00	0.75	0.75
Term 2	1.00	0.73	0.73
Combinazione n° 27 SLE (Rara)			
	γ	Ψ	С
Peso Proprio	1.00	1.00	1.00
Spinta terreno sinistra	1.00	1.00	1.00
Spinta terreno destra	1.00	1.00	1.00
Spinta falda	1.00	1.00	1.00
Ritiro	1.00	1.00	1.00
Frenatura	1.00	1.00	1.00
Stradale 1	1.00	0.75	0.75
Term 2	1.00	0.75	0.75
TOTALL Z	1.00	0.75	0.75
Combinazione n° 28 SLE (Rara)			
	γ	Ψ	С
	•	-	-

MANDATARIA:

MANDANTI:

PROGETTO ESECUTIVO

Direzione Progettazione e Realizzazione Lavori

RELAZIONE DI CALCOLO SOTTOVIA AL KM 3+248 - SEC. 90

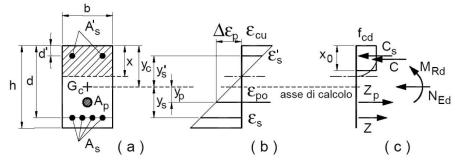
Peso Proprio	1.00	1.00	1.00
Spinta terreno sinistra	1.00	1.00	1.00
Spinta terreno destra	1.00	1.00	1.00
Spinta falda	1.00	1.00	1.00
Ritiro	1.00	1.00	1.00
Term 1	1.00	1.00	1.00
Stradale 3	1.00	0.75	0.75
Frenatura	1.00	0.75	0.75
Combinazione n° 29 SLE (Rara))¥(
Combinazione n° 29 SLE (Rara)	γ	Ψ	С
Combinazione n° 29 SLE (Rara) Peso Proprio	γ 1.00	Ψ 1.00	C 1.00
	•	_	•
Peso Proprio	1.00	1.00	1.00
Peso Proprio Spinta terreno sinistra	1.00 1.00	1.00 1.00	1.00 1.00
Peso Proprio Spinta terreno sinistra Spinta terreno destra	1.00 1.00 1.00	1.00 1.00 1.00	1.00 1.00 1.00
Peso Proprio Spinta terreno sinistra Spinta terreno destra Spinta falda	1.00 1.00 1.00 1.00	1.00 1.00 1.00 1.00	1.00 1.00 1.00 1.00

5.7 IMPOSTAZIONI DI PROGETTO

5.7.1 Stato limite ultimo

Frenatura

Coefficiente di sicurezza calcestruzzo γ _c	1.50
Fattore di riduzione da resistenza cubica a cilindrica	0.83
Fattore di riduzione per carichi di lungo periodo	0.85
Coefficiente di sicurezza acciaio	1.15


1.00

5.7.1.1 Verifica a pressoflessione

La determinazione della capacità resistente a flessione/pressoflessione della generica sezione, viene effettuata con i criteri di cui al punto 4.1.2.1.2.4 delle NTC2008, secondo quanto riportato schematicamente nelle figure seguito, tenendo conto dei valori delle resistenze e deformazioni di calcolo riportate al paragrafo dedicato alle caratteristiche dei materiali:

0.75

0.75

La verifica consisterà nel controllare il soddisfacimento della seguente condizione:

RELAZIONE DI CALCOLO SOTTOVIA AL KM 3+248 - SEC. 90

$$M_{Rd} = M_{Rd}(N_{Ed}) \ge M_{Ed}$$

dove

 M_{Rd} è il valore di calcolo del momento resistente corrispondente a N_{Ed};

 $N_{\rm Ed}$ è il valore di calcolo della componente assiale (sforzo normale) dell'azione;

è il valore di calcolo della componente flettente dell'azione.

5.7.1.2 Verifica a taglio

La resistenza a taglio V_{Rd} della membratura priva di armatura specifica risulta pari a:

$$V_{Rd} = \left\{ 0.18 \cdot k \cdot \frac{\left(100 \cdot \rho_1 \cdot f_{ck}\right)^{1/3}}{\gamma_c + 0.15 \cdot \sigma_{cp}} \right\} \cdot b_w \cdot d \ge v_{min} + 0.15 \cdot \sigma_{cp} \cdot b_w d$$

$$v_{\min} = 0.035 \cdot k^{3/2} \cdot f_{ck}^{1/2};$$

$$k = 1 + (200/d)^{1/2} \le 2$$

 $\rho_1 = A_{sw}/(b_w * d)$

d = altezza utile per piedritti soletta superiore ed inferiore;

b_w= larghezza utile della sezione ai fini del taglio.


In presenza di armatura, invece, la resistenza a taglio V_{Rd} è il minimo tra la resistenza a taglio trazione V_{Rsd} e la resistenza a taglio compressione V_{Rcd}

$$V_{Rsd} = 0.9 \cdot d \cdot \frac{A_{sw}}{s} \cdot f_{yd} \cdot (ctg\alpha + ctg\theta) \cdot sin \alpha$$

$$V_{Rcd} = 0.9 \cdot d \cdot b_{W} \cdot \alpha_{c} \cdot f_{cd}' \cdot \frac{\left(ctg\alpha + ctg\theta\right)}{\left(1 + ctg^{2}\theta\right)}$$

con $1 \le \operatorname{ctg} \vartheta \le 2,5$.

Per quanto riguarda in particolare le verifiche a taglio per elementi armati a taglio, si è fatto riferimento al metodo del traliccio ad inclinazione variabile, in accordo a quanto prescritto al punto 4.1.2.1.3 delle NTC2008, considerando ai fini delle verifiche, un angolo θ di inclinazione delle bielle compresse del traliccio resistente tale da rispettare la condizione. $1 \le \text{ctg } \theta \le 2,5$ $45^{\circ} \ge \theta \ge 21.8^{\circ}$.

- Se la cotθ* è compresa nell'intervallo (1,0-2,5) è possibile valutare resistente V_{Rd} (= V_{Rcd} = V_{Rsd})
- Se la cot0* è maggiore di 2.5 la crisi è da attribuirsi all'armatura trasv€ e il taglio resistente V_{Rd} (= V_{Rsd}) coincide con il massimo taglio soppo dalle armature trasversali valutabile per una $\cot \theta = 2.5$.
- Se la cot0* è minore di 1.0 la crisi è da attribuirsi alle bielle compress taglio resistente V_{Rd}(=V_{Rcd}) coincide con il massimo taglio sopportato bielle di calcestruzzo valutabile per una $\cot \theta = 1,0$.

L'angolo effettivo di inclinazione delle bielle (θ) assunto nelle verifiche è stato in particolare valutato, nell'ambito di un problema di verifica, tenendo conto di quanto di seguito indicato:

Realizzazione Lavori

Collegamento viario compreso tra lo Svincolo della S.S. 514 di "Chiaromonte" con la S.S. 115 e lo Svincolo della "Ragusana" **PROGETTO ESECUTIVO**

RELAZIONE DI CALCOLO SOTTOVIA AL KM 3+248 - SEC. 90

$$\cot \theta^* = \sqrt{\frac{v \cdot \alpha_c}{\omega_{\text{cw}}} - 1}$$

con

 θ^* angolo di inclinazione delle bielle cui corrisponde la crisi contemporanea di bielle compresse ed armature;

$$v = f'_{cd} / f_{cd} = 0.5;$$

f'cd = resistenza a compressione ridotta del calcestruzzo d'anima;

f_{cd} = resistenza a compressione di calcolo del calcestruzzo d'anima;

 α_c = coefficiente maggiorativo che tiene conto dell'eventuale compressione del calcestruzzo;

 ω_{sw} : Percentuale meccanica di armatura trasversale.

5.7.2 Stato limite di esercizio

Criteri di scelta per verifiche tensioni di esercizio:

Ambiente poco aggressivo

Limite tensioni di compressione nel calcestruzzo (comb. rare) $0.60 f_{ck} = 19.9 MPa$ $0.45 f_{ck} = 14.9 MPa$ Limite tensioni di compressione nel calcestruzzo (comb. quasi perm.) $0.80 f_{vk} = 360 MPa$ Limite tensioni di trazione nell'acciaio (comb. rare)

Criteri verifiche a fessurazione:

Armatura poco sensibile

Apertura limite fessure espresse in [mm]

Apertura limite fessure $w_1 = 0.20$ $w_2 = 0.30$ $w_3 = 0.40$

SLE frequente: $w < w_2$ SLE quasi permanente: $W \le W_1$

Copriferro sezioni 5.00 [cm]

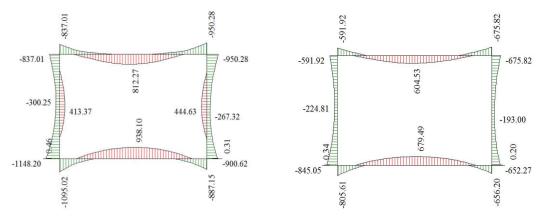
INVILUPPO SOLLECITAZIONI 5.8

<u>Inviluppo sollecitazioni fondazione</u>							
X [m]	M_{min} [kNm]	M_{max} [kNm]	V_{min} [kN]	V_{max} [kN]	N_{min} [kN]	N_{max} [kN]	
0.00	0.00	0.00	4.23	10.59	-78.87	-0.33	
3.37	-129.18	340.86	-398.33	-228.18	240.63	604.26	
6.80	300.57	937.37	-23.52	7.48	240.63	645.40	
10.23	-80.89	389.01	237.77	384.67	240.63	686.53	
13.60	0.00	0.00	-11.15	-4.81	-0.36	77.12	
Inviluppo	sollecitazioni tra	averso _					
X [m]	M_{min} [kNm]	M_{max} [kNm]	V_{min} [kN]	$V_{max}[kN]$	N_{min} [kN]	$N_{max}[kN]$	
1.25	-837.01	-239.26	217.38	478.98	79.71	480.53	
3.94	-119.07	434.39	107.25	277.75	92.40	510.04	

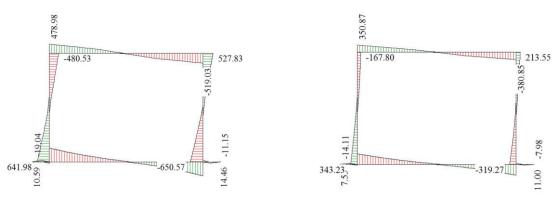
PROGETTO ESECUTIVO

Direzione Progettazione e Realizzazione Lavori

RELAZIONE DI CALCOLO SOTTOVIA AL KM 3+248 - SEC. 90


6.80	31.34	809.48	-35.09	0.00	93.29	541.52
9.52	-137.24	335.55	-307.00	-117.75	93.29	571.41
12.35	-950.28	-303.98	-519.03	-233.79	93.29	602.51

Inviluppo sollecitazioni piedritto sinistro

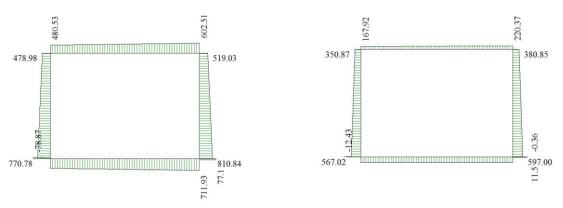

Y [m] N	√l _{min} [kNm]	M _{max} [kNm]	$V_{min}[kN]$	$V_{max}[kN]$	N_{min} [kN]	$N_{max} [kN]$
0.60	-1148.20	-519.97	240.96	641.98	390.34	770.78
4.53	-312.68	413.37	-39.05	64.32	303.86	624.88
8.46	-837.01	-239.26	-480.53	-79.71	217.38	478.98

Inviluppo sollecitazioni piedritto destro

Y [m]	M _{min} [kNm]	M_{max} [kNm]	V_{min} [kN]	V_{max} [kN]	N_{min} [kN]	N_{max} [kN]
0.60	-900.62	-517.00	-650.57	-240.96	406.75	810.84
4.53	-272.80	444.63	-18.63	56.99	320.27	664.93
8.46	-950.28	-303.98	93.29	527.83	233.79	519.03

Inviluppo momento flettente (a sinistra SLU, a destra SLE)

Inviluppo taglio (a sinistra SLU, a destra SLE)

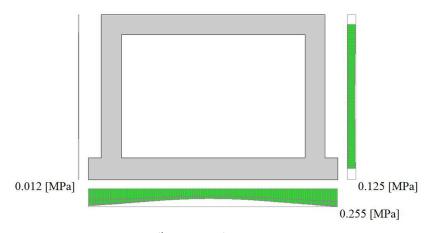


Realizzazione Lavori

Collegamento viario compreso tra lo Svincolo della S.S. 514 di "Chiaromonte" con la S.S. 115 e lo Svincolo della "Ragusana"

PROGETTO ESECUTIVO

RELAZIONE DI CALCOLO SOTTOVIA AL KM 3+248 - SEC. 90



Inviluppo sforzo normale (a sinistra SLU, a destra SLE)

5.9 INVILUPPO PRESSIONI TERRENO

Inviluppo pressioni sul terreno di fondazione

$\sigma_{tmax}\left[MPa\right]$	σ_{tmin} [MPa]	X [m]
0.242	0.097	0.00
0.177	0.100	3.37
0.141	0.087	6.80
0.185	0.102	10.23
0.255	0.110	13.60

Inviluppo pressione terreno

PROGETTO ESECUTIVO

RELAZIONE DI CALCOLO SOTTOVIA AL KM 3+248 - SEC. 90

5.10 VERIFICHE GEOTECNICHE

Nel seguente paragrafo si riporta la verifica di capacità portante della fondazione.

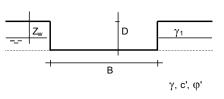
Verifica in tensioni efficaci

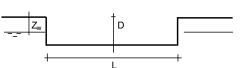
 $\mathsf{qlim} = \mathsf{c'} \cdot \mathsf{Nc} \cdot \mathsf{sc} \cdot \mathsf{dc} \cdot \mathsf{ic} \cdot \mathsf{bc} \cdot \mathsf{gc} + \mathsf{q} \cdot \mathsf{Nq} \cdot \mathsf{sq} \cdot \mathsf{dq} \cdot \mathsf{iq} \cdot \mathsf{bq} \cdot \mathsf{gq} + 0, \\ 5 \cdot \gamma \cdot \mathsf{B} \cdot \mathsf{N\gamma} \cdot \mathsf{s\gamma} \cdot \mathsf{d\gamma} \cdot \mathsf{i\gamma} \cdot \mathsf{b\gamma} \cdot \mathsf{g\gamma}$

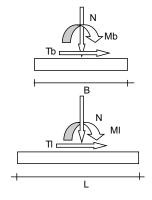
D = Profondità del piano di appoggio

 e_B = Eccentricità in direzione B (e_B = Mb/N)

 e_L = Eccentricità in direzione L (e_L = MI/N) (per fondazione nastriforme e_L = 0; L* = L)

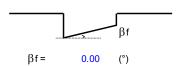

 B^* = Larghezza fittizia della fondazione (B^* = B - 2^*e_B)

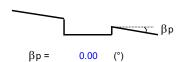

 L^* = Lunghezza fittizia della fondazione (L^* = L - 2^*e_L)


(per fondazione nastriforme le sollecitazioni agenti sono riferite all'unità di lunghezza)

coefficienti parziali

			azioni		proprietà del terreno		resistenze	
Metodo di calcolo		permanenti	temporanee variabili	tan φ'	c'	qlim	scorr	
	A1+M1+R1	0	1.30	1.50	1.00	1.00	1.00	1.00
Stato Limite Ultimo	A2+M2+R2	0	1.00	1.30	1.25	1.25	1.80	1.00
	SISMA	0	1.00	1.00	1.25	1.25	1.80	1.00
	A1+M1+R3	•	1.30	1.50	1.00	1.00	2.30	1.10
	SISMA	0	1.00	1.00	1.00	1.00	2.30	1.10
Tensioni Ammissibili		1.00	1.00	1.00	1.00	3.00	3.00	
Definiti dal Progettista		1.35	1.50	1.00	1.00	1.40	1.00	




(Per fondazione nastriforme L = 100 m)

10.00

(m)

B = 13.60 (m) L = 31.80 (m)

D

PROGETTO ESECUTIVO

RELAZIONE DI CALCOLO SOTTOVIA AL KM 3+248 - SEC. 90

Peso unità di volume del terreno

19.00 (kN/mc) 18.00 (kN/mc)

Valori caratteristici di resistenza del terreno

Valori di progetto 0.00 (kN/mq) 0.00 (kN/mq) 38.00 φ' 38.00 (°) (°)

Profondità della falda

Zw 11.80 (m) 0.00 (m) B* = 13.60 (m) e_B = 0.00 (m) L* = 31.80 (m) $e_L =$

q : sovraccarico alla profondità D

190.00 q = (kN/mq)

γ: peso di volume del terreno di fondazione

9.32 (kN/mc) γ =

Nc, Nq, Nγ: coefficienti di capacità portante

Nq = $tan^2(45 + \phi'/2)^*e^{(\pi^*tg\phi')}$

Nq = 48.93

 $Nc = (Nq - 1)/tan\phi'$

Nc = 61.35

 $N\gamma = 2*(Nq + 1)*tan\phi'$

78.02

s_c, s_q, s_y: fattori di forma

 $s_c = 1 + B*Nq / (L*Nc)$

1.34

 $s_{\alpha} = 1 + B*tan\phi' / L*$

1.33

 $s_{\nu} = 1 - 0.4*B* / L*$

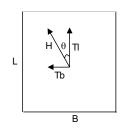
0.83

$i_c,\,i_q,\,i_\gamma:\underline{fattori\ di\ inclinazione\ del\ carico}$

 $\theta = arctg(Tb/TI) =$ $m_b = (2 + B^* / L^*) / (1 + B^* / L^*)$ 1.70 90.00 (°)

 $m_l = (2 + L^* / B^*) / (1 + L^* / B^*)$ 1.30 m = 1.70

(m=2 nel caso di fondazione nastriforme e $i_q = (1 - H/(N + B*L* c' \cot q\phi'))^m$ $m=(m_b sin^2 \theta + m_l cos^2 \theta)$ in tutti gli altri casi)


Realizzazione Lavori

RELAZIONE DI CALCOLO SOTTOVIA AL KM 3+248 - SEC. 90

$$i_c = i_q - (1 - i_q)/(Nq - 1)$$

$$i_{\gamma}$$
 = (1 - H/(N + B*L* c' cotg ϕ '))^(m+1)

$$i_{\gamma} = 1.00$$

d_c, d_q, d_y : fattori di profondità del piano di appoggio

per D/B*
$$\leq$$
 1; d_q = 1 +2 D tan ϕ ' (1 - sen ϕ ')² / B*
per D/B*> 1; d_q = 1 +(2 tan ϕ ' (1 - sen ϕ ')²) * arctan (D / B*)

$$d_{q} = 1.17$$

$$d_c = d_q - (1 - d_q) / (N_c tan\phi')$$

$$d_c = 1.17$$

$$d_{v} = 1$$

$$d_v = 1.00$$

$b_c,\,b_q,\,b_\gamma$: fattori di inclinazione base della fondazione

$$b_q = (1 - \beta_f \tan \varphi')^2$$

$$\beta_f + \beta_p = 0.00$$

$$\beta_f + \beta_p < 45^\circ$$

$$b_c = b_q - (1 - b_q) / (N_c \tan \varphi)$$

$$b_{\gamma} = b_{q}$$

$$b_{\gamma} = 1.00$$

gc, gq, gy: fattori di inclinazione piano di campagna

$$g_q = (1 - \tan \beta_p)^2$$

$$\beta_f + \beta_p = 0.00$$

$$\beta_f + \beta_p < 45^\circ$$

$$g_c = g_q - (1 - g_q) / (N_c \tan \varphi')$$

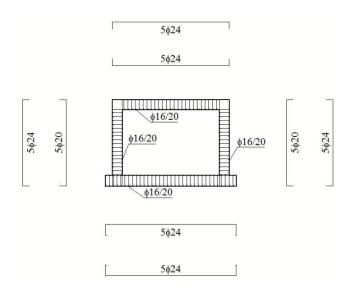
$$g_{\gamma} = g_{q}$$

$$g_{\gamma} = 1.00$$

Carico limite unitario

$$q_{lim} = 18609.54$$
 (kN/m²)

MANDATARIA:


RELAZIONE DI CALCOLO SOTTOVIA AL KM 3+248 - SEC. 90

 $R_d = q_{lim} / \gamma_R = 18.609 / 2.3 = 8.091 MPa > 0.255 MPa = E_d$

La verifica di capacità portante risulta dunque soddisfatta.

5.11 SCHEMA ARMATURE

Nello schema sottostante vengono riportate le armature progettate (riferite alla profondità di calcolo pari a 1 m). L'armatura a taglio della fondazione, della soletta e dei piedritti è costituita da spilli ϕ 12/20x40 in corrispondenza degli incastri, e da spilli ϕ 12/40x40 nella parte centrale degli elementi.

5.12 VERIFICHE STRUTTURALI

Simbologia adottata ed unità di misura

- X Ascissa/Ordinata sezione, espresso in cm
- A_{fi} Area armatura inferiore, espresse in cmg
- A_{fs} Area armatura superiore, espresse in cma
- CS Coeff. di sicurezza sezione
- A_{fi} Area armatura inferiore, espressa in cmq
- A_{fs} Area armatura superiore, espressa in cmq
- $\sigma_{\!f\!i}$ Tensione nell'armatura disposta in corrispondenza del lembo inferiore, espresse in MPa
- σ_{is} Tensione nell'armatura disposta in corrispondenza del lembo superiore, espresse in MPa
- σ_{c} Tensione nel calcestruzzo, espresse in MPa

5.12.1 Fondazione

5.12.1.1 Inviluppo verifiche SLU

MANDATARIA:

PROGETTO ESECUTIVO

RELAZIONE DI CALCOLO SOTTOVIA AL KM 3+248 - SEC. 90

Verifica a presso-flessione

Base sezion	ne	B = 100 cm			
Altezza sez	ione	H = 120.00 cm			
Χ	A_fi	A_fs	CS		
0.00	22.62	22.62	17.40		
3.37	22.62	22.62	1.84		
6.80	22.62	22.62	1.29		
10.23	22.62	22.62	1.66		
13.60	22.62	22.62	71.37		

Verifica a taglio

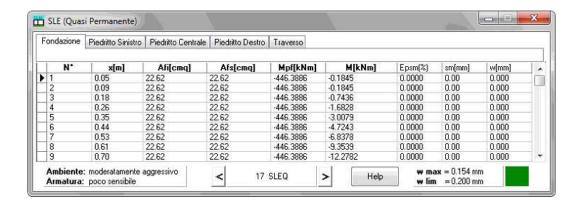
Larghezza sezione	b =	100	cm
Altezza sezione	h =	120	cm
Copriferro di calcolo	c =	5.0	cm
Area di una staffa	As =	1.13	cm ²
Numero bracci	nb =	5	
As x nb =	$A_{sw} =$	5.65	cm ²
Passo delle staffe	p =	40	cm
Inclinazione del puntone compresso	θ =	21.8	0
Angolo inclinazione staffe	a=	90	0
Sforzo di compressione agente (+)	$N_{ed} =$	0	kN
Coefficiente di maggiorazione f(Ned)	a _c =	1.00	
Braccio delle armature	d =	115	cm
Resistenza di calcolo a compressione	$f'_{cd} =$	94.07	daN/cm ²
Tensione di compressione	σ_{cp} =	0.00	daN/cm ²
Resistenza a taglio-trazione	$V_{Rsd} =$	1430.26	kN
Resistenza a taglio-compressione	$V_{Rcd} =$	20984.45	kN
Resistenza a taglio della sezione	$V_{Rd} =$	1430.26	kN

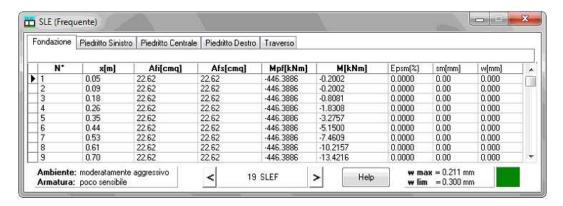
 V_{Rd} = 1430.3 kN > V_{Ed} = 398.3 kN Verifica soddisfatta

5.12.1.2 Inviluppo verifiche SLE

Verifica delle tensioni

Base sezione		B = 100	B = 100 cm				
Altezza sezione		H = 120	H = 120.00 cm				
Х	A_fi	A_{fs}	σ_{c}	σ_{fi}	σ_{fs}		
0.00	22.62	22.62	0.000	2.610	2.884		
3.37	22.62	22.62	1.672	21.710	52.536		
6.80	22.62	22.62	4.687	57.255	229.801		
10.23	22.62	22.62	1.927	24.757	66.553		
13.60	22.62	22.62	0.010	0.144	0.157		




PROGETTO ESECUTIVO

RELAZIONE DI CALCOLO SOTTOVIA AL KM 3+248 - SEC. 90

Le tensioni del calcestruzzo e dell'acciaio sono sotto i limiti previsti dalla normativa.

Verifica a fessurazione

5.12.2 Traverso

5.12.2.1 Inviluppo verifiche SLU

Verifica a presso-flessione

Base sezio	ne	B = 100 cm			
Altezza sez	ione	H = 110.00 cm			
Χ	A_fi	A_fs	CS		
1.25	22.62	22.62	1.07		
3.94	22.62	22.62	1.46		
6.80	22.62	22.62	1.24		
9.52	22.62	22.62	1.70		
12.35	22.62	22.62	1.12		

PROGETTO ESECUTIVO

RELAZIONE DI CALCOLO SOTTOVIA AL KM 3+248 - SEC. 90

Verifica a taglio

Larghezza sezione	b =	100	cm
Altezza sezione	h =	110	cm
Copriferro di calcolo	c =	5.0	cm
Area di una staffa	As =	1.13	cm ²
Numero bracci	nb =	5	
As x nb =	$A_{sw} =$	5.65	cm ²
Passo delle staffe	p =	40	cm
Inclinazione del puntone compresso	θ =	21.8	0
Angolo inclinazione staffe	a=	90	•
Sforzo di compressione agente (+)	$N_{ed} =$	0	kN
Coefficiente di maggiorazione f(Ned)	a _c =	1.00	
Braccio delle armature	d =	105	cm
Resistenza di calcolo a compressione	$f'_{cd} =$	94.07	daN/cm²
Tensione di compressione	σ_{cp} =	0.00	daN/cm²
Resistenza a taglio-trazione	$V_{Rsd} =$	1305.89	kN
Resistenza a taglio-compressione	$V_{Rcd} =$	19159.72	kN
Resistenza a taglio della sezione	$V_{Rd} =$	1305.89	kN

 V_{Rd} = 1305.9 kN > V_{Ed} = 519.0 kN

Verifica soddisfatta

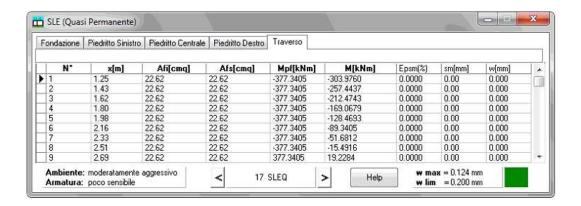
5.12.2.2 Inviluppo verifiche SLE

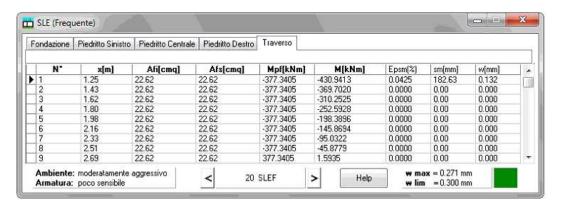
Verifica delle tensioni

Base sezione		B = 100	B = 100 cm				
Altezza sezione		H = 110	H = 110.00 cm				
Χ	A_fi	A_fs	σ_{c}	σ_{fi}	σ_{fs}		
1.25	22.62	22.62	4.669	55.633	232.362		
3.94	22.62	22.62	2.500	118.425	30.070		
6.80	22.62	22.62	4.729	245.125	55.890		
9.52	22.62	22.62	2.502	117.407	30.157		
12.35	22.62	22.62	5.348	64.038	259.623		

Le tensioni del calcestruzzo e dell'acciaio sono sotto i limiti previsti dalla normativa.

MANDATARIA:





PROGETTO ESECUTIVO

RELAZIONE DI CALCOLO SOTTOVIA AL KM 3+248 - SEC. 90

Verifica a fessurazione

5.12.3 Piedritti

5.12.3.1 Inviluppo verifiche SLU

Verifica a presso-flessione

Base sezione		B = 100 cm		
Altezza sezione		H = 110.00 cm		
Χ	A_{fi}	A_fs	CS	
0.60	15.71	22.62	1.07	
4.53	15.71	22.62	2.35	
8.46	15.71	22.62	1.08	

Verifica a taglio

100 Larghezza sezione h = cm Altezza sezione h = 110 cm

MANDANTI:

Realizzazione Lavori

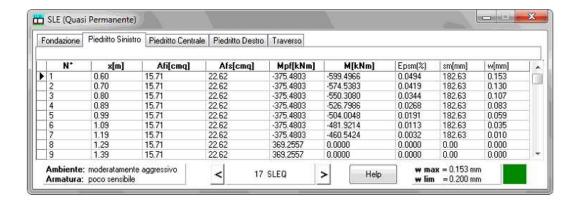
Collegamento viario compreso tra lo Svincolo della S.S. 514 di "Chiaromonte" con la S.S. 115 e lo

Svincolo della "Ragusana" **PROGETTO ESECUTIVO**

RELAZIONE DI CALCOLO SOTTOVIA AL KM 3+248 - SEC. 90

Copriferro di calcolo	c =	5.0	cm
Area di una staffa	As =	1.13	cm ²
Numero bracci	nb =	5	
As x nb =	$A_{sw} =$	5.65	cm ²
Passo delle staffe	p =	40	cm
Inclinazione del puntone compresso	θ =	21.8	•
Angolo inclinazione staffe	a=	90	0
Sforzo di compressione agente (+)	$N_{ed} =$	0	kN
Coefficiente di maggiorazione f(Ned)	a _c =	1.00	
Braccio delle armature	d =	105	cm
Resistenza di calcolo a compressione	f' cd =	94.07	daN/cm ²
Tensione di compressione	σ_{cp} =	0.00	daN/cm²
Resistenza a taglio-trazione	$V_{Rsd} =$	1305.89	kN
Resistenza a taglio-compressione	$V_{Rcd} =$	19159.72	kN
Resistenza a taglio della sezione	$V_{Rd} =$	1305.89	kN

 $V_{Rd} = 1305.9 \text{ kN} > V_{Ed} = 650.6 \text{ kN}$ Verifica soddisfatta

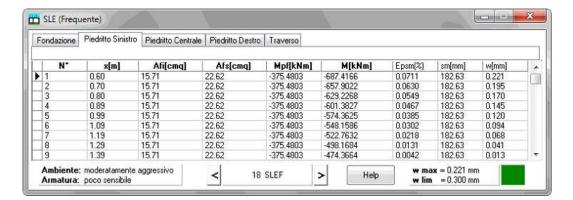

5.12.3.2 Inviluppo verifiche SLE

Verifica delle tensioni

Base sezione		B = 100 cm			
Altezza sezione		H = 110.00 cm			
Χ	A_fi	A_fs	σ_{c}	σ_{fi}	σ_{fs}
0.60	15.71	22.62	7.039	87.110	282.236
4.53	15.71	22.62	1.831	24.859	28.755
8.46	15.71	22.62	4.924	60.729	201.840

Le tensioni del calcestruzzo e dell'acciaio sono sotto i limiti previsti dalla normativa.

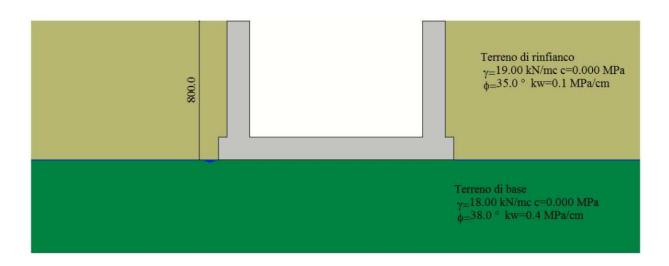
Verifica a fessurazione



PROGETTO ESECUTIVO

Direzione Progettazione e Realizzazione Lavori

RELAZIONE DI CALCOLO SOTTOVIA AL KM 3+248 - SEC. 90


RELAZIONE DI CALCOLO SOTTOVIA AL KM 3+248 - SEC. 90

MURI D'IMBOCCO

Il calcolo dell'opera è stato effettuato tramite il software SCAT 10.0 distribuito dalla Aztec Informatica. È stata analizzata una striscia di muro della lunghezza di 1 m.

I muri di imbocco presentano altezze variabili; per questo motivo come sezione di calcolo si considera la sezione in corrispondenza di 2/3h', dove h'=h_{max}-h_{min}.

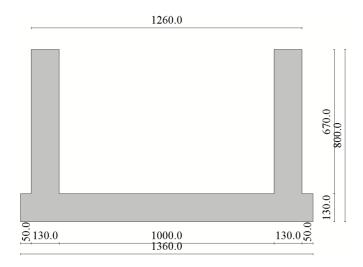
6.1 **TERRENI**

|--|

Descrizione	Terreno di rinfianco	
Peso di volume	19.0000	[kN/mc]
Peso di volume saturo	20.0000	[kN/mc]
Angolo di attrito	35.00	[°]
Angolo di attrito terreno struttura	23.33	[°]
Coesione	0.000	[MPa]
Costante di Winkler	0.150	[MPa/cm]

Strato di base

Descrizione	Terreno di base	
Peso di volume	18.0000	[kN/mc]
Peso di volume saturo	19.0000	[kN/mc]
Angolo di attrito	38.00	[°]
Angolo di attrito terreno struttura	25.33	[°]
Coesione	0.000	[MPa]
Costante di Winkler	0.400	[MPa/cm]
Tensione ammissibile	6.100	[MPa]



RELAZIONE DI CALCOLO SOTTOVIA AL KM 3+248 - SEC. 90

GEOMETRIA 6.2

Altezza esterna	8.00	[m]
Larghezza esterna	12.60	[m]
Lunghezza mensola di fondazione sinistra	0.50	[m]
Lunghezza mensola di fondazione destra	0.50	[m]
Spessore piedritto sinistro	1.30	[m]
Spessore piedritto destro	1.30	[m]
Spessore fondazione	1.30	[m]

6.3 **METODI DI CALCOLO**

6.3.1 Spinta sui piedritti

6.3.1.1 Spinta in presenza di falda

Nel caso in cui a monte della parete sia presente la falda il diagramma delle pressioni sulla parete risulta modificato a causa della sottospinta che l'acqua esercita sul terreno. Il peso di volume del terreno al di sopra della linea di falda non subisce variazioni. Viceversa al di sotto del livello di falda va considerato il peso di volume di galleggiamento

$$\gamma_a = \gamma_{sat} - \gamma_w$$

dove γ_{sat} è il peso di volume saturo del terreno (dipendente dall'indice dei pori) e γ_w è il peso di volume dell'acqua. Quindi il diagramma delle pressioni al di sotto della linea di falda ha una pendenza minore. Al diagramma così ottenuto va sommato il diagramma triangolare legato alla pressione idrostatica esercitata dall'acqua.

Collegamento viario compreso tra lo Svincolo della S.S. 514 di "Chiaromonte" con la S.S. 115 e lo Svincolo della "Ragusana" **PROGETTO ESECUTIVO**

RELAZIONE DI CALCOLO SOTTOVIA AL KM 3+248 - SEC. 90

6.3.1.2 Spinta a riposo

Si assume che sui piedritti agisca la spinta calcolata in condizioni di riposo. Il coefficiente di spinta a riposo è espresso dalla relazione

$$K_0 = 1 - \sin \phi$$

dove o rappresenta l'angolo d'attrito interno del terreno di rinfianco.

Quindi la pressione laterale, ad una generica profondità z e la spinta totale sulla parete di altezza H valgono

$$\sigma = \gamma z K_0 + p_v K_0$$

 $S = 1/2 \gamma H^2 K_0 + p_v K_0 H$

dove p_v è la pressione verticale agente in corrispondenza della calotta.

6.3.1.3 Spinta in presenza di sisma: metodo di Wood

Spinta del terreno nel caso di strutture rigide.

Nel caso di strutture rigide completamente vincolate, in modo tale che non può svilupparsi nel terreno uno stato di spinta attiva, nonché nel caso di muri verticali con terrapieno a superficie orizzontale, l'incremento dinamico di spinta del terreno può essere calcolato come:

$$\Delta P_d = \alpha \gamma H^2$$

$$\alpha = a_g/g * S_s * \beta_m * S_t$$

H è l'altezza sulla quale agisce la spinta. Il punto di applicazione va preso a metà altezza.

6.3.2 Strategia di soluzione

A partire dal tipo di terreno, dalla geometria e dai sovraccarichi agenti il programma è in grado di conoscere tutti i carichi agenti sulla struttura per ogni combinazione di carico.

La struttura scatolare viene schematizzata come un telaio piano e viene risolta mediante il metodo degli elementi finiti (FEM). Più dettagliatamente il telaio viene discretizzato in una serie di elementi connessi fra di loro nei nodi.

Il terreno di rinfianco e di fondazione viene invece schematizzato con una serie di elementi molle non reagenti a trazione (modello di Winkler). L'area della singola molla è direttamente proporzionale alla costante di Winkler del terreno e all'area di influenza della molla stessa.

A partire dalla matrice di rigidezza del singolo elemento, Ke, si assembla la matrice di rigidezza di tutta la struttura K. Tutti i carichi agenti sulla struttura vengono trasformati in carichi nodali (reazioni di incastro perfetto) ed inseriti nel vettore dei carichi nodali p.

Indicando con u il vettore degli spostamenti nodali (incogniti), la relazione risolutiva può essere scritta nella forma

$$Ku = p$$

Da questa equazione matriciale si ricavano gli spostamenti incogniti u

$$u = K^{-1} p$$

Noti gli spostamenti nodali è possibile risalire alle sollecitazioni nei vari elementi.

Collegamento viario compreso tra lo Svincolo della S.S. 514 di "Chiaromonte" con la S.S. 115 e lo Svincolo della "Ragusana" **PROGETTO ESECUTIVO**

RELAZIONE DI CALCOLO SOTTOVIA AL KM 3+248 - SEC. 90

La soluzione del sistema viene fatta per ogni combinazione di carico agente sullo scatolare. Il successivo calcolo delle armature nei vari elementi viene condotto tenendo conto delle condizioni più gravose che si possono verificare nelle sezioni fra tutte le combinazioni di carico.

6.4 **CONDIZIONI DI CARICO**

Convenzioni adottate

Origine in corrispondenza dello spigolo inferiore sinistro della struttura

Carichi verticali positivi se diretti verso il basso

Carichi orizzontali positivi se diretti verso destra

Coppie concentrate positive se antiorarie

Ascisse X (espresse in m) positive verso destra

Ordinate Y (espresse in m) positive verso l'alto

Carichi concentrati espressi in kN

Coppie concentrate espressi in kNm

Carichi distribuiti espressi in kN/m

Simbologia adottata e unità di misura

Forze concentrate

- ascissa del punto di applicazione dei carichi verticali concentrati
- Υ ordinata del punto di applicazione dei carichi orizzontali concentrati
- F_{v} componente Y del carico concentrato
- componente X del carico concentrato F_x
- momento

Forze distribuite

X_i, X_f ascisse del punto iniziale e finale per carichi distribuiti verticali

Y_i, Y_f ordinate del punto iniziale e finale per carichi distribuiti orizzontali

componente normale del carico distribuito nel punto iniziale

componente normale del carico distribuito nel punto finale V_{nf}

componente tangenziale del carico distribuito nel punto iniziale

componente tangenziale del carico distribuito nel punto finale V_{tf}

 D_{te} variazione termica lembo esterno espressa in gradi centigradi

variazione termica lembo interno espressa in gradi centigradi

Condizione di carico n°1 (Peso Proprio)

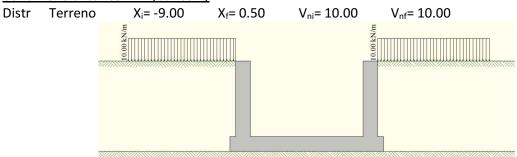
Condizione di carico n°2 (Spinta terreno sinistra)

Condizione di carico n°3 (Spinta terreno destra)

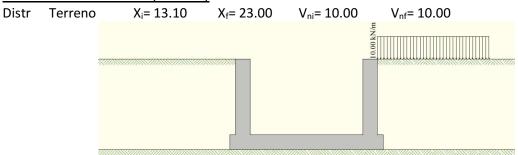
Condizione di carico n°4 (Sisma da sinistra)

Condizione di carico n°5 (Sisma da destra)

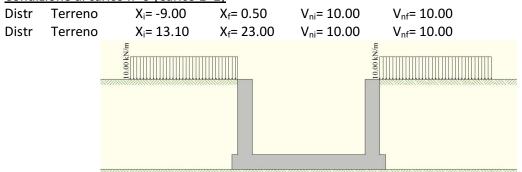
Condizione di carico n°6 (Spinta falda)



PROGETTO ESECUTIVO


RELAZIONE DI CALCOLO SOTTOVIA AL KM 3+248 - SEC. 90

Per il calcolo della struttura è stato considerato un carico da cantiere di 10 kN/m².


Condizione di carico n° 7 (Carico 1)

Condizione di carico n° 8 (Carico 2)

Condizione di carico n° 9 (Carico 1+2)

6.5 AZIONE SISMICA

Per la definizione dell'azione sismica sono stati considerati i seguenti parametri:

Sito Latitudine: 37.2315; Longitudine: 14.8961

Accelerazione al suolo $a_g = 3.76 \text{ [m/s}^2]$

Coefficiente di amplificazione per tipo di sottosuolo (S) 1.04

Collegamento viario compreso tra lo Svincolo della S.S. 514 di "Chiaromonte" con la S.S. 115 e lo

Svincolo della "Ragusana" **PROGETTO ESECUTIVO**

RELAZIONE DI CALCOLO SOTTOVIA AL KM 3+248 - SEC. 90

Coefficiente di amplificazione topografica (St) 1.00 Coefficiente riduzione (β_m) 1.00 Rapporto intensità sismica verticale/orizzontale 0.50

Coefficiente di intensità sismica orizzontale (percento) $k_h = (a_g/g * \beta_m * St * Ss) = 39.96$ $k_v = 0.50 * k_h = 19.98$ Coefficiente di intensità sismica verticale (percento)

Forma diagramma incremento sismico Rettangolare

Wood Spinta sismica

6.6 **COMBINAZIONI DI CARICO**

Simbologia adottata

- Coefficiente di partecipazione della condizione
- Ψ Coefficiente di combinazione della condizione
- С Coefficiente totale di partecipazione della condizione

Norme Tecniche 2008 - Approccio 2 (A1+M1+R3)

Simbologia adottata

γ_{G1sfav}	Coefficiente parziale sfavorevole sulle azioni permanenti
γ_{G1fav}	Coefficiente parziale favorevole sulle azioni permanenti
$\gamma_{\sf G2sfav}$	Coefficiente parziale sfavorevole sulle azioni permanenti non strutturali
γG2fav	Coefficiente parziale favorevole sulle azioni permanenti non strutturali
γα	Coefficiente parziale sulle azioni variabili
$\gamma_{tan\phi'}$	Coefficiente parziale di riduzione dell'angolo di attrito drenato
γ _{c'}	Coefficiente parziale di riduzione della coesione drenata
γ_{cu}	Coefficiente parziale di riduzione della coesione non drenata
γ_{qu}	Coefficiente parziale di riduzione del carico ultimo

Coefficienti parziali per le azioni o per l'effetto delle azioni:

Carichi	Effetto		A1
Permanenti	Favorevole	γ_{G1fav}	1.00
Permanenti	Sfavorevole	γ_{G1sfav}	1.35
Permanenti non strutturali	Favorevole	γ_{G2fav}	0.00
Permanenti non strutturali	Sfavorevole	γG2sfav	1.50
Variabili	Favorevole	γ_{Qfav}	0.00
Variabili	Sfavorevole	γ_{Qsfav}	1.35

Coefficienti parziali per i parametri geotecnici del terreno:

Parametri		M1
Tangente dell'angolo di attrito	$\gamma_{tan\phi'}$	1.00
Coesione efficace	$\gamma_{c'}$	1.00
Resistenza non drenata	γ_{cu}	1.00
Resistenza a compressione uniassiale	γ_{qu}	1.00
Peso dell'unità di volume	γ_{γ}	1.00

RELAZIONE DI CALCOLO SOTTOVIA AL KM 3+248 - SEC. 90

Coeff. di combinazione	Ψ ₀ = 0.75	Ψ₁= 0.75	Ψ ₂ = 0.00			
Combinazione n° 1 SLU (A)	oproccio 2)					
	γ	Ψ	С			
Peso Proprio	1.35	1.00	1.35			
Spinta terreno sinistra	1.35	1.00	1.35			
Spinta terreno destra	1.35	1.00	1.35			
Spinta falda	1.35	1.00	1.35			
Carico 1		1.00				
Carico 1	1.35	1.00	1.35			
Combinazione n° 2 SLU (A)	oproccio 2)					
	γ	Ψ	С			
Peso Proprio	1.35	1.00	1.35			
Spinta terreno sinistra	1.35	1.00	1.35			
Spinta terreno destra	1.35	1.00	1.35			
Spinta falda	1.35	1.00	1.35			
Carico 2	1.35	1.00	1.35			
Combinazione n° 3 SLU (A)	oproccio 2)					
	γ	Ψ	С			
Peso Proprio	1.35	1.00	1.35			
Spinta terreno sinistra	1.35	1.00	1.35			
Spinta terreno destra	1.35	1.00	1.35			
Spinta falda	1.35	1.00	1.35			
Carico 1+2	1.35	1.00	1.35			
Combinazione n° 4 SLU (A)	oproccio 2) - Sis		<u>vo</u>			
	γ	Ψ	С			
Peso Proprio	1.00	1.00	1.00			
Spinta terreno sinistra	1.00	1.00	1.00			
Spinta terreno destra	1.00	1.00	1.00			
Spinta falda	1.00	1.00	1.00			
Sisma da sinistra	1.00	1.00	1.00			
0 11 1 0 7 0 11 / 1						
Combinazione n° 5 SLU (A)						
	γ	Ψ	С			
Peso Proprio	1.00	1.00	1.00			
Spinta terreno sinistra	1.00	1.00	1.00			
Spinta terreno destra	1.00	1.00	1.00			
Spinta falda	1.00	1.00	1.00			
Sisma da sinistra	1.00	1.00	1.00			
Combinazione nº 6 SIE (Quesi Dermananta)						
Combinazione n° 6 SLE (Quasi Permanente)						
Dana Duannia	γ	Ψ	C 1.00			
Peso Proprio	1.00	1.00	1.00			
Spinta terreno sinistra	1.00	1.00	1.00			

Realizzazione Lavori

Collegamento viario compreso tra lo Svincolo della S.S. 514 di "Chiaromonte" con la S.S. 115 e lo Svincolo della "Ragusana"

PROGETTO ESECUTIVO

RELAZIONE DI CALCOLO SOTTOVIA AL KM 3+248 - SEC. 90

adzione Edvori			
Spinta terreno destra	1.00	1.00	1.00
Spinta falda	1.00	1.00	1.00
0 1:			
Combinazione n° 7 SLE (Freq),T(•
Peso Proprio	γ 1.00	Ψ 1.00	C 1.00
Spinta terreno sinistra	1.00	1.00	1.00
Spinta terreno destra	1.00	1.00	1.00
Spinta falda	1.00	1.00	1.00
Carico 1	1.00	0.75	0.75
Combinazione n° 8 SLE (Freq	<u>uente)</u>		
	γ	Ψ	С
Peso Proprio	1.00	1.00	1.00
Spinta terreno sinistra	1.00	1.00	1.00
Spinta terreno destra	1.00	1.00	1.00
Spinta falda	1.00	1.00	1.00
Carico 2	1.00	0.75	0.75
Combinazione n° 9 SLE (Freq	uente)		
	<u>αεπτεγ</u> γ	Ψ	С
Peso Proprio	1.00	1.00	1.00
Spinta terreno sinistra	1.00	1.00	1.00
Spinta terreno destra	1.00	1.00	1.00
Spinta falda	1.00	1.00	1.00
Carico 1+2	1.00	0.75	0.75
Combinazione n° 10 SLE (Rar)**	•
	γ	Ψ	C
Peso Proprio	1.00	1.00	1.00
Spinta terreno sinistra	1.00	1.00	1.00
Spinta terreno destra	1.00	1.00	1.00
Spinta falda Carico 1	1.00 1.00	1.00 1.00	1.00 1.00
Carico 1	1.00	1.00	1.00
Combinazione n° 11 SLE (Rar	ra)		
	γ	Ψ	С
Peso Proprio	1.00	1.00	1.00
Spinta terreno sinistra	1.00	1.00	1.00
Spinta terreno destra	1.00	1.00	1.00
Spinta falda	1.00	1.00	1.00
Carico 2	1.00	1.00	1.00
0 1:	,		
Combinazione n° 12 SLE (Rar)II(_
Dono Droveis	γ	Ψ 1.00	C 1.00
Peso Proprio	1.00	1.00	1.00
Spinta terreno sinistra	1.00	1.00	1.00

MANDATARIA:

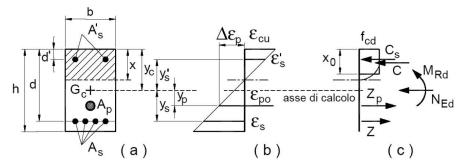
MANDANTI:

PROGETTO ESECUTIVO

Direzione Proaettazione e Realizzazione Lavori

RELAZIONE DI CALCOLO SOTTOVIA AL KM 3+248 - SEC. 90

Spinta terreno destra	1.00	1.00	1.00
Spinta falda	1.00	1.00	1.00
Carico 1+2	1.00	1.00	1.00


IMPOSTAZIONI DI PROGETTO

Stato limite ultimo 6.7.1

Coefficiente di sicurezza calcestruzzo γ_c	1.50
Fattore di riduzione da resistenza cubica a cilindrica	0.83
Fattore di riduzione per carichi di lungo periodo	0.85
Coefficiente di sicurezza acciaio	1.15

6.7.1.1 Verifica a pressoflessione

La determinazione della capacità resistente a flessione/pressoflessione della generica sezione, viene effettuata con i criteri di cui al punto 4.1.2.1.2.4 delle NTC2008, secondo quanto riportato schematicamente nelle figure seguito, tenendo conto dei valori delle resistenze e deformazioni di calcolo riportate al paragrafo dedicato alle caratteristiche dei materiali:

La verifica consisterà nel controllare il soddisfacimento della seguente condizione:

$$M_{Rd} = M_{Rd}(N_{Ed}) \ge M_{Ed}$$

dove

 M_{Rd} è il valore di calcolo del momento resistente corrispondente a N_{Ed};

è il valore di calcolo della componente assiale (sforzo normale) dell'azione;

è il valore di calcolo della componente flettente dell'azione. M_{Ed}

6.7.1.2 Verifica a taglio

La resistenza a taglio V_{Rd} della membratura priva di armatura specifica risulta pari a:

$$V_{Rd} = \left\{ 0.18 \cdot k \cdot \frac{\left(100 \cdot \rho_1 \cdot f_{ck}\right)^{1/3}}{\gamma_c + 0.15 \cdot \sigma_{cp}} \right\} \cdot b_w \cdot d \ge v_{min} + 0.15 \cdot \sigma_{cp} \cdot b_w d$$

$$v_{\min} = 0.035 \cdot k^{3/2} \cdot f_{ck}^{-1/2};$$

$$k = 1 + (200/d)^{1/2} \le 2;$$

MANDATARIA:

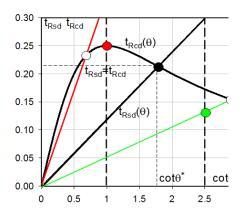
PROGETTO ESECUTIVO

RELAZIONE DI CALCOLO SOTTOVIA AL KM 3+248 - SEC. 90

 $\rho_1 = A_{sw}/(b_w * d)$

d = altezza utile per piedritti soletta superiore ed inferiore;

b_w= larghezza utile della sezione ai fini del taglio.


In presenza di armatura, invece, la resistenza a taglio V_{Rd} è il minimo tra la resistenza a taglio trazione V_{Rsd} e la resistenza a taglio compressione V_{Rcd}

$$V_{Rsd} = 0.9 \cdot d \cdot \frac{A_{SW}}{s} \cdot f_{yd} \cdot (ctg\alpha + ctg\theta) \cdot sin \alpha$$

$$V_{Rcd} = 0.9 \cdot d \cdot b_{W} \cdot \alpha_{c} \cdot f_{cd}' \cdot \frac{(ctg\alpha + ctg\theta)}{(1 + ctg^{2}\theta)}$$

con $1 \le \operatorname{ctg} \vartheta \le 2,5$.

Per quanto riguarda in particolare le verifiche a taglio per elementi armati a taglio, si è fatto riferimento al metodo del traliccio ad inclinazione variabile, in accordo a quanto prescritto al punto 4.1.2.1.3 delle NTC2008, considerando ai fini delle verifiche, un angolo θ di inclinazione delle bielle compresse del traliccio resistente tale da rispettare la condizione. $1 \le \text{ctg } \theta \le 2,5$ $45^{\circ} \ge \theta \ge 21.8^{\circ}$.

- Se la $\cot\theta^*$ è compresa nell'intervallo (1,0-2,5) è possibile valutare resistente V_{Rd} (= V_{Rcd} = V_{Rsd})
- Se la cotθ* è maggiore di 2.5 la crisi è da attribuirsi all'armatura trasve e il taglio resistente V_{Rd} (= V_{Rsd}) coincide con il massimo taglio soppo dalle armature trasversali valutabile per una $\cot \theta = 2.5$.
- Se la cot0* è minore di 1.0 la crisi è da attribuirsi alle bielle compress taglio resistente V_{Rd}(=V_{Rcd}) coincide con il massimo taglio sopportato bielle di calcestruzzo valutabile per una $\cot \theta = 1,0$.

L'angolo effettivo di inclinazione delle bielle (θ) assunto nelle verifiche è stato in particolare valutato, nell'ambito di un problema di verifica, tenendo conto di quanto di seguito indicato:

$$\cot \theta^* = \sqrt{\frac{v \cdot \alpha_c}{\omega_{sw}} - 1}$$

 θ^* angolo di inclinazione delle bielle cui corrisponde la crisi contemporanea di bielle compresse ed armature;

$$v = f'_{cd} / f_{cd} = 0.5;$$

f'cd = resistenza a compressione ridotta del calcestruzzo d'anima;

 f_{cd} = resistenza a compressione di calcolo del calcestruzzo d'anima;

 α_c = coefficiente maggiorativo che tiene conto dell'eventuale compressione del calcestruzzo;

 ω_{sw} : Percentuale meccanica di armatura trasversale.

6.7.2 Stato limite di esercizio

Criteri di scelta per verifiche tensioni di esercizio:

Ambiente poco aggressivo

RELAZIONE DI CALCOLO SOTTOVIA AL KM 3+248 - SEC. 90

Limite tensioni di compressione nel calcestruzzo (comb. rare) $0.60 f_{ck} = 19.9 MPa$ Limite tensioni di compressione nel calcestruzzo (comb. quasi perm.) $0.45 f_{ck} = 14.9 MPa$ Limite tensioni di trazione nell'acciaio (comb. rare) $0.80 \, f_{yk} = 360 \, MPa$

Criteri verifiche a fessurazione:

Armatura poco sensibile

Apertura limite fessure espresse in [mm]

Apertura limite fessure $w_1 = 0.20$ $w_2 = 0.30$ $w_3 = 0.40$

SLE frequente: $W \le W_2$ SLE quasi permanente: $w < w_1$

Copriferro sezioni 5.00 [cm]

6.8 **INVILUPPO SOLLECITAZIONI**

Inviluppo sollecitazioni fondazione									
X [m]	M _{min} [k	Nm] M _{max}	[kNm] V	min [kN]	$V_{max}[kN]$	N _{min} [kN	N_{max} [kN]		
1.15	-245	3.29 -5	09.14	-394.85	-246.01	218.5	5 668.14		
3.37	-176	8.39	-71.52	-360.10	-140.22	218.5	5 696.95		
6.80	-99	1.37	85.31	-96.88	16.45	218.5	5 741.51		
10.23	-114	2.64	-71.52	148.00	238.68	218.5	5 786.08		
12.45	-170	2.02 -4	186.16	249.03	351.50	218.5	5 814.81		
<u>Invilup</u>	Inviluppo sollecitazioni piedritto sinistro								
۲ [m] ۸	/l _{min} [kNm]	M_{max} [kNm]	V_{min} [kN]	V_{max} [kN]	N_{min} [kN]	N_{max} [kN]		
0.65	-2527.77	-536.29	218.8	5	760.75	191.15	322.48		
4.33	-564.94	-67.07	54.7	3	325.68	95.57	161.24		
8.00	0.00	0.00	0.00)	0.00	0.00	0.00		
Inviluppo sollecitazioni piedritto destro									
Y [m] N	$Y[m]M_{min}[kNm] M_{max}[kNm] V_{min}[kN] V_{max}[kN] N_{min}[kN] N_{max}[kN]$								

-724.31

-171.62

-2.00

0.65

4.33

8.00

-1763.27

-205.25

0.00

-536.29

-67.07

0.00

-218.85

-54.73

0.00

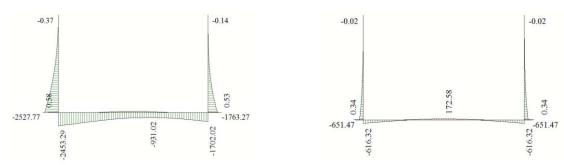
191.15

95.57

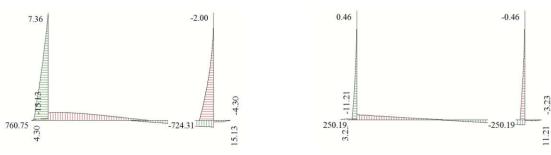
0.00

322.48

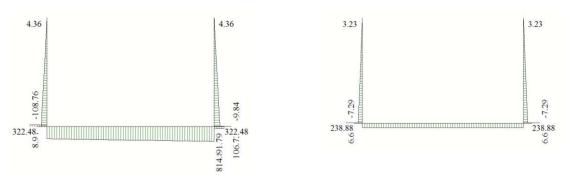
161.24


0.00

Realizzazione Lavori


Collegamento viario compreso tra lo Svincolo della S.S. 514 di "Chiaromonte" con la S.S. 115 e lo Svincolo della "Ragusana"

PROGETTO ESECUTIVO


RELAZIONE DI CALCOLO SOTTOVIA AL KM 3+248 - SEC. 90

Inviluppo momento flettente (a sinistra SLU, a destra SLE)

Inviluppo taglio (a sinistra SLU, a destra SLE)

Inviluppo sforzo normale (a sinistra SLU, a destra SLE)

6.9 INVILUPPO PRESSIONI TERRENO

Inviluppo pressioni sul terreno di fondazione

X [m]	$\sigma_{tmin}\left[MPa\right]$	$\sigma_{tmax}\left[MPa\right]$
0.00	0.000	0.103
3.37	0.047	0.108
6.80	0.073	0.137
10.23	0.078	0.115
13.60	0.000	0.103

PROGETTO ESECUTIVO

RELAZIONE DI CALCOLO SOTTOVIA AL KM 3+248 - SEC. 90

Inviluppo pressione terreno

PROGETTO ESECUTIVO

RELAZIONE DI CALCOLO SOTTOVIA AL KM 3+248 - SEC. 90

6.10 VERIFICHE GEOTECNICHE

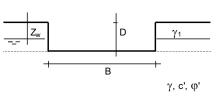
Nel seguente paragrafo si riporta la verifica di capacità portante della fondazione.

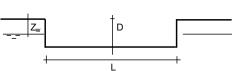
Verifica in tensioni efficaci

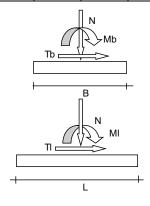
D = Profondità del piano di appoggio

 e_B = Eccentricità in direzione B (e_B = Mb/N)

 e_L = Eccentricità in direzione L (e_L = MI/N) (per fondazione nastriforme $e_L = 0$; $L^* = L$)

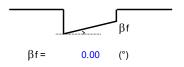

 B^* = Larghezza fittizia della fondazione (B^* = B - 2^*e_B)


 L^* = Lunghezza fittizia della fondazione (L^* = L - 2^*e_L)


(per fondazione nastriforme le sollecitazioni agenti sono riferite all'unità di lunghezza)

coefficienti parziali

			azioni		proprietà d	el terreno	resist	enze
Metodo	di calcolo		permanenti	anenti temporanee variabili tan φ' c' qlim scorr		scorr		
	A1+M1+R1	0	1.30	1.50	1.00	1.00	1.00	1.00
mite	A2+M2+R2	0	1.00	1.30	1.25	1.25	1.80	1.00
Stato Limite Ultimo	SISMA	0	1.00	1.00	1.25	1.25	1.80	1.00
Stat L	A1+M1+R3	•	1.30	1.50	1.00	1.00	2.30	1.10
	SISMA	0	1.00	1.00	1.00	1.00	2.30	1.10
Tension	i Ammissibili	0	1.00	1.00	1.00	1.00	3.00	3.00
Definiti d	al Progettista	0	1.35	1.50	1.00	1.00	1.40	1.00



(Per fondazione nastriforme L = 100 m)

13.60 (m) 13.50 (m) D 6.70 (m)

PROGETTO ESECUTIVO

RELAZIONE DI CALCOLO SOTTOVIA AL KM 3+248 - SEC. 90

Peso unità di volume del terreno

19.00 (kN/mc) γ1 18.00 (kN/mc)

Valori caratteristici di resistenza del terreno

Valori di progetto 0.00 (kN/mq) 0.00 (kN/mq) 38.00 φ' 38.00 (°) (°)

Profondità della falda

Zw 8.50 (m) 0.00 (m) B* = 13 60 (m) e_B = 0.00 (m) L* = 13.50 (m) $e_L =$

q : sovraccarico alla profondità D

127.30 q = (kN/mq)

γ: peso di volume del terreno di fondazione

9.32 (kN/mc) γ =

Nc, Nq, Nγ: coefficienti di capacità portante

Nq = $\tan^2(45 + \phi'/2)^*e^{(\pi^*tg\phi')}$

Nq = 48.93

 $Nc = (Nq - 1)/tan\phi'$

Nc = 61.35

 $N\gamma = 2*(Nq + 1)*tan\phi'$

78.02

s_c, s_q, s_y: fattori di forma

 $s_c = 1 + B*Nq / (L*Nc)$

1.79

 $s_{\alpha} = 1 + B*tan\phi' / L*$

1.78

 $s_{\nu} = 1 - 0.4*B* / L*$

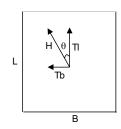
0.60

 $i_c,\,i_q,\,i_\gamma:\underline{fattori\ di\ inclinazione\ del\ carico}$

 $\theta = arctg(Tb/TI) =$ $m_b = (2 + B^* / L^*) / (1 + B^* / L^*)$ 1.50 90.00 (°)

 $m_l = (2 + L^* / B^*) / (1 + L^* / B^*)$ 1.50 m = 1.50

(m=2 nel caso di fondazione nastriforme e $i_q = (1 - H/(N + B*L* c' \cot q\phi'))^m$ $m=(m_b sin^2 \theta + m_l cos^2 \theta)$ in tutti gli altri casi)



Realizzazione Lavori

RELAZIONE DI CALCOLO SOTTOVIA AL KM 3+248 - SEC. 90

$$i_c = i_q - (1 - i_q)/(Nq - 1)$$

$$i_{\gamma}$$
 = (1 - H/(N + B*L* c' cotg ϕ '))^(m+1)

d_c, d_q, d_y : fattori di profondità del piano di appoggio

per D/B*
$$\leq$$
 1; d_q = 1 +2 D $\tan \varphi'$ (1 - $\sec \varphi'$)² / B*
per D/B*> 1; d_q = 1 +(2 $\tan \varphi'$ (1 - $\sec \varphi'$)²) * \arctan (D / B*)

$$d_q = 1.11$$

$$d_c = d_q - (1 - d_q) / (N_c \tan \varphi)$$

$$d_c = 1.12$$

$$d_{v} = 1$$

$$d_v = 1.00$$

$b_c,\,b_q,\,b_\gamma$: fattori di inclinazione base della fondazione

$$b_q = (1 - \beta_f \tan \varphi')^2$$

$$\beta_f + \beta_p = 0.00$$

$$\beta_f + \beta_p < 45^\circ$$

$$b_q = 1.00$$

$$b_c = b_q - (1 - b_q) / (N_c \tan \varphi)$$

$$b_{\gamma} = b_{q}$$

$$b_{\gamma} = 1.00$$

gc, gq, gy: fattori di inclinazione piano di campagna

$$g_q = (1 - \tan \beta_p)^2$$

$$\beta_f + \beta_p = 0.00$$

$$\beta_f + \beta_p < 45^\circ$$

$$g_c = g_q - (1 - g_q) / (N_c \tan \varphi')$$

$$g_{\gamma} = g_{q}$$

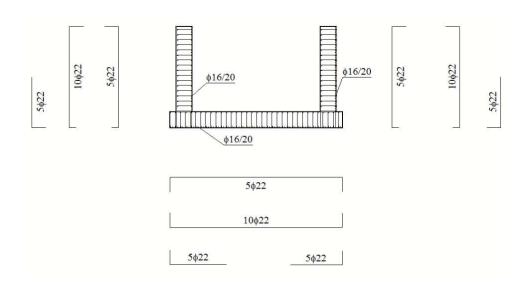
$$g_{\gamma} = 1.00$$

Carico limite unitario

$$q_{lim} = 15287.85$$
 (kN/m²)

MANDATARIA:

MANDANTI:


RELAZIONE DI CALCOLO SOTTOVIA AL KM 3+248 - SEC. 90

 $R_d = q_{lim} / \gamma_R = 15.287 / 2.3 = 6.647 MPa > 0.137 MPa = E_d$

La verifica di capacità portante risulta dunque soddisfatta.

6.11 SCHEMA ARMATURE

Nello schema sottostante vengono riportate le armature progettate (riferite alla profondità di calcolo pari a 1 m). L'armatura a taglio della fondazione e dei piedritti è costituita da spilli ϕ 12/20x40 in corrispondenza degli incastri, e da spilli ϕ 12/40x40 nella parte centrale degli elementi.

6.12 VERIFICHE STRUTTURALI

Simbologia adottata ed unità di misura

- X Ascissa/Ordinata sezione, espresso in cm
- A_{fi} Area armatura inferiore, espresse in cmq
- A_{fs} Area armatura superiore, espresse in cmq
- CS Coeff. di sicurezza sezione
- A_{fi} Area armatura inferiore, espressa in cmq
- A_{fs} Area armatura superiore, espressa in cmq
- $\sigma_{\!f\!i}$ Tensione nell'armatura disposta in corrispondenza del lembo inferiore, espresse in MPa
- $\sigma_{\!f\!s}$ Tensione nell'armatura disposta in corrispondenza del lembo superiore, espresse in MPa
- σ_c Tensione nel calcestruzzo, espresse in MPa

6.12.1 Fondazione

6.12.1.1 Inviluppo verifiche SLU

MANDATARIA:

PROGETTO ESECUTIVO

RELAZIONE DI CALCOLO SOTTOVIA AL KM 3+248 - SEC. 90

Verifica a presso-flessione

Base sezione		B = 100	cm
Altezza sezione		H = 130	0.00 cm
Χ	A_{fi}	A_fs	CS
0.00	57.02	19.01	11.23
3.37	57.02	19.01	1.50
6.80	38.01	19.01	2.53
10.23	38.01	19.01	1.92
13.60	57.02	19.01	38.52

Verifica a taglio

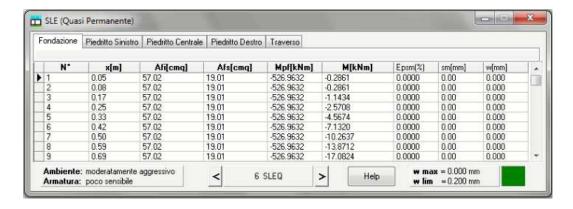
Larghezza sezione	b =	100	cm
Altezza sezione	h =	130	cm
Copriferro di calcolo	c =	5.0	cm
Area di una staffa	As =	1.13	cm ²
Numero bracci	nb =	5	
As x nb =	$A_{sw} =$	5.65	cm ²
Passo delle staffe	p =	40	cm
Inclinazione del puntone compresso	θ =	21.8	0
Angolo inclinazione staffe	a=	90	0
Sforzo di compressione agente (+)	$N_{ed} =$	0	kN
Coefficiente di maggiorazione f(Ned)	a _c =	1.00	
Braccio delle armature	d =	125	cm
Resistenza di calcolo a compressione	$f'_{cd} =$	94.07	daN/cm ²
Tensione di compressione	σ_{cp} =	0.00	daN/cm²
Resistenza a taglio-trazione	$V_{Rsd} =$	1554.63	kN
Resistenza a taglio-compressione	$V_{Rcd} =$	22809.19	kN
Resistenza a taglio della sezione	$V_{Rd} =$	1554.63	kN

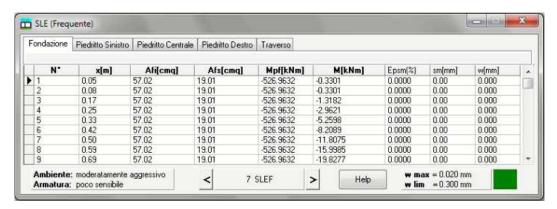
Verifica soddisfatta $V_{Rd} = 1554.6 \text{ kN} > V_{Ed} = 394.9 \text{ kN}$

6.12.1.2 Inviluppo verifiche SLE

Verifica delle tensioni

Base sezior	ne	B = 100	cm		
Altezza sez	sezione H = 130.00 cm).00 cm		
Χ	A_{fi}	A_fs	σ_{c}	σ_{fi}	σ_{fs}
0.00	57.02	19.01	0.005	0.589	2.069
3.37	57.02	19.01	0.758	8.148	10.595
6.80	38.01	19.01	1.000	13.297	27.538
10.23	38.01	19.01	0.809	10.678	11.227


PROGETTO ESECUTIVO


RELAZIONE DI CALCOLO SOTTOVIA AL KM 3+248 - SEC. 90

13.60 57.02 19.01 0.005 0.589 2.069

Le tensioni del calcestruzzo e dell'acciaio sono sotto i limiti previsti dalla normativa.

Verifica a fessurazione

6.12.2 Piedritti

6.12.2.1 Inviluppo verifiche SLU

Verifica a presso-flessione

Base sezione		B = 100 cm		
Altezza sezi	a sezione H = 130		0.00 cm	
Χ	A_{fi}	A_fs	CS	
0.65	19.01	57.02	1.09	
4.33	19.01	38.01	2.03	
8.00	19.01	38.01	1000.00	

PROGETTO ESECUTIVO

RELAZIONE DI CALCOLO SOTTOVIA AL KM 3+248 - SEC. 90

Verifica a taglio

Larghezza sezione	b =	100	cm
Altezza sezione	h =	130	cm
Copriferro di calcolo	c =	5.0	cm
Area di una staffa	As =	1.13	cm²
Numero bracci	nb =	5	
As x nb =	$A_{sw} =$	5.65	cm ²
Passo delle staffe	p =	40	cm
Inclinazione del puntone compresso	θ =	21.8	•
Angolo inclinazione staffe	a=	90	0
Sforzo di compressione agente (+)	$N_{ed} =$	0	kN
Coefficiente di maggiorazione f(Ned)	a _c =	1.00	
Braccio delle armature	d =	125	cm
Resistenza di calcolo a compressione	$f'_{cd} =$	94.07	daN/cm²
Tensione di compressione	σ_{cp} =	0.00	daN/cm²
Resistenza a taglio-trazione	$V_{Rsd} =$	1554.63	kN
Resistenza a taglio-compressione	$V_{Rcd} =$	22809.19	kN
Resistenza a taglio della sezione	$V_{Rd} =$	1554.63	kN

 $V_{Rd} = 1554.6 \text{ kN} > V_{Ed} = 760.8 \text{ kN}$

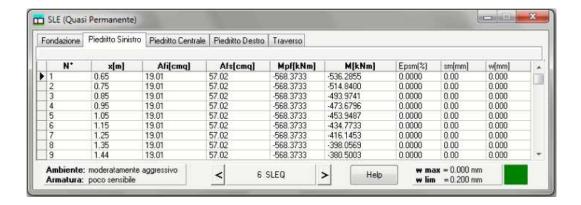
Verifica soddisfatta

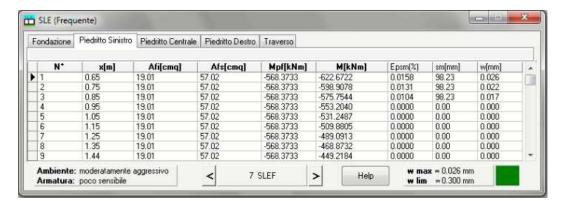
6.12.2.2 Inviluppo verifiche SLE

Verifica delle tensioni

Base sezior	ne	B = 100	cm		
Altezza sezione H = 130.00 cm		0.00 cm			
Χ	A_{fi}	A_fs	σ_{c}	σ_{fi}	σ_{fs}
0.65	19.01	57.02	2.944	39.064	83.089
4.33	19.01	38.01	0.511	6.983	9.543
8.00	19.01	38.01	0.000	0.000	0.000

Le tensioni del calcestruzzo e dell'acciaio sono sotto i limiti previsti dalla normativa.





PROGETTO ESECUTIVO

RELAZIONE DI CALCOLO SOTTOVIA AL KM 3+248 - SEC. 90

Verifica a fessurazione

Collegamento viario compreso tra lo Svincolo della S.S. 514 di "Chiaromonte" con la S.S. 115 e lo Svincolo della "Ragusana" **PROGETTO ESECUTIVO**

RELAZIONE DI CALCOLO SOTTOVIA AL KM 3+248 - SEC. 90

INCIDENZE

Nel presente capitolo si riportano le incidenze delle opere calcolate.

Scatolare:

soletta di fondazione: 70 kg/mc 70 kg/mc soletta di copertura: piedritti: 70 kg/mc

Muri d'ala

soletta di fondazione: 80 kg/mc 70 kg/mc piedritti:

Collegamento viario compreso tra lo Svincolo della S.S. 514 di "Chiaromonte" con la S.S. 115 e lo Svincolo della "Ragusana"

PROGETTO ESECUTIVO

RELAZIONE DI CALCOLO SOTTOVIA AL KM 3+248 - SEC. 90

8 DICHIARAZIONI SECONDO §10.2 DELLE NTC2008

Tipo di analisi svolta

L'analisi strutturale e le verifiche sono condotte con l'ausilio di un codice di calcolo automatico. La verifica della sicurezza degli elementi strutturali è stata valutata con i metodi della scienza delle costruzioni.

La struttura viene discretizzata in elementi tipo trave. Per simulare il comportamento del terreno di fondazione e di rinfianco vengono inserite delle molle alla Winkler non reagenti a trazione. L'analisi che viene effettuata è un'analisi al passo per tener conto delle molle che devono essere eliminate (molle in trazione). L'analisi fornisce i risultati in termini di spostamenti. Dagli spostamenti si risale alle sollecitazioni nodali ed alle pressioni sul terreno.

Il calcolo viene eseguito secondo le seguenti fasi:

- calcolo delle eventuali pressioni in calotta (per gli scatolari);
- calcolo della spinta del terreno;
- calcolo delle sollecitazioni sugli elementi strutturali (fondazione, piedritti e traverso);
- progetto delle armature e relative verifiche dei materiali.

L'analisi strutturale sotto le azioni sismiche è condotta con il metodo dell'analisi statica equivalente secondo le disposizioni del capitolo 7 del DM 14/01/2008.

La verifica delle sezioni degli elementi strutturali è eseguita con il metodo degli Stati Limite. Le combinazioni di carico adottate sono esaustive relativamente agli scenari di carico più gravosi cui l'opera sarà soggetta.

Origine e caratteristiche dei codici di calcolo

Il codice di calcolo utilizzato è SCAT (Analisi Strutture Scatolari, versione 10.0), prodotto dalla Aztec Informatica srl.

Modalità di presentazione dei risultati

La relazione di calcolo strutturale presenta i dati di calcolo tale da garantirne la leggibilità, la corretta interpretazione e la riproducibilità. La relazione di calcolo illustra in modo esaustivo i dati in ingresso ed i risultati delle analisi in forma tabellare.

Informazioni generali sull'elaborazione

Il software prevede una serie di controlli automatici che consentono l'individuazione di errori di modellazione, di non rispetto di limitazioni geometriche e di armatura e di presenza di elementi non verificati. Il codice di calcolo consente di visualizzare e controllare, sia in forma grafica che tabellare, i dati del modello strutturale, in modo da avere una visione consapevole del comportamento corretto del modello strutturale.

Giudizio motivato di accettabilità dei risultati

I risultati delle elaborazioni sono stati sottoposti a controlli. Tale valutazione ha compreso il confronto con i risultati di semplici calcoli, eseguiti con metodi tradizionali. Inoltre sulla base di considerazioni

Collegamento viario compreso tra lo Svincolo della S.S. 514 di "Chiaromonte" con la S.S. 115 e lo Svincolo della "Ragusana" **PROGETTO ESECUTIVO**

RELAZIONE DI CALCOLO SOTTOVIA AL KM 3+248 - SEC. 90

riguardanti gli stati tensionali e deformativi determinati, si è valutata la validità delle scelte operate in sede di schematizzazione e di modellazione della struttura e delle azioni.

PROGETTO ESECUTIVO

RELAZIONE DI CALCOLO SOTTOVIA AL KM 3+248 - SEC. 90

ALLEGATI

9.1 SCATOLARE

Geometria scatolare

Descrizione:	Scatolare semplice	
Altezza esterna	9.01	[m]
Larghezza esterna	12.20	[m]
Lunghezza mensola di fondazione sinistra	0.70	[m]
Lunghezza mensola di fondazione destra	0.70	[m]
Spessore piedritto sinistro	1.10	[m]
Spessore piedritto destro	1.10	[m]
Spessore fondazione	1.20	[m]
Spessore traverso	1.10	[m]

Caratteristiche strati terreno

Strato di ricoprimento		
Descrizione	Terreno di ricoprimento	
Spessore dello strato	1.00	[m]
Peso di volume	19.0000	[kN/mc]
Peso di volume saturo	20.0000	[kN/mc]
Angolo di attrito	35.00	[°]
Coesione	0.000	[MPa]
Strato di rinfianco		
Descrizione	Terreno di rinfianco	
Peso di volume	19.0000	[kN/mc]
Peso di volume saturo	20.0000	[kN/mc]
Angolo di attrito	35.00	[°]
Angolo di attrito terreno struttura	23.33	[°]
Coesione	0.000	[MPa]
Costante di Winkler	0.150	[MPa/cm]
Strato di base		
Descrizione	Terreno di base	
Peso di volume	18.0000	[kN/mc]
Peso di volume saturo	19.0000	[kN/mc]
Angolo di attrito	38.00	[°]
Angolo di attrito terreno struttura	25.33	[°]
Coesione	0.000	[MPa]
Costante di Winkler	0.400	[MPa/cm]
Tensione ammissibile	8.000	[MPa]
	Falda	
	Falua	
Quota falda (rispetto al piano di posa)	0.00	[m]

Caratteristiche materiali utilizzati

40.000	[MPa]
25.0000	[kN/mc]
33149.080	[MPa]
391.300	[MPa]
12.207	[MPa]
0.729	[MPa]
2.096	[MPa]
0.50	
15.00	
0.0000100	
	25.0000 33149.080 391.300 12.207 0.729 2.096 0.50 15.00

Condizioni di carico

Convenzioni adottate

Origine in corrispondenza dello spigolo inferiore sinistro della struttura

MANDATARIA:

Collegamento viario compreso tra lo Svincolo della S.S. 514 di "Chiaromonte" con la S.S. 115 e lo Svincolo della "Ragusana"

PROGETTO ESECUTIVO

Direzione Progettazione e Realizzazione Lavori

RELAZIONE DI CALCOLO SOTTOVIA AL KM 3+248 - SEC. 90

Carichi verticali positivi se diretti verso il basso Carichi orizzontali positivi se diretti verso destra Coppie concentrate positive se antiorarie Ascisse X (espresse in m) positive verso destra Ordinate Y (espresse in m) positive verso l'alto Carichi concentrati espressi in kN Coppie concentrate espressi in kNm Carichi distribuiti espressi in kN/m

Simbologia adottata e unità di misura

Forze concentrate

ascissa del punto di applicazione dei carichi verticali concentrati ordinata del punto di applicazione dei carichi orizzontali concentrati

componente Y del carico concentrato

componente X del carico concentrato

Forze distribuite

ascisse del punto iniziale e finale per carichi distribuiti verticali Xi. Xf ordinate del punto iniziale e finale per carichi distribuiti orizzontali componente normale del carico distribuito nel punto iniziale componente normale del carico distribuito nel punto finale Vni V_{nf} V_{ti} componente tangenziale del carico distribuito nel punto iniziale componente tangenziale del carico distribuito nel punto finale variazione termica lembo esterno espressa in gradi centigradi variazione termica lembo interno espressa in gradi centigradi

Condizione di carico n°1 (Peso Proprio)

Condizione di carico n°2 (Spinta terreno sinistra)

Condizione di carico n°3 (Spinta terreno destra)

Condizione di carico n°4 (Sisma da sinistra)

Condizione di carico n°5 (Sisma da destra)

Condizione di carico n°6 (Spinta falda)

Condizione di	i carico n° 7 (Stradale 1)		
Distr	Terreno	X _i = -3.60	$X_{f} = 0.70$
Distr	Terreno	$X_i = -10.00$	$X_f = 23.00$
Condizione d	i carico n° 8 (Stradale 2)		
Distr	Terreno	$X_i = -0.90$	X _f = 3.40
Distr	Terreno	X _i = -10.00	X _f = 23.00
Condizione d	i carico nº 9 (Stradale 3)		
Distr	Terreno	X _i = 4.65	X _f = 8.95
Distr	Terreno	X _i = -10.00	X _f = 23.00
Condizione di	i carico nº 10 (Frenatura)		
Distr	Traverso	$X_i = 0.70$	X _f = 12.90
Condizione d	i carico nº 11 (Ritiro)		
Term	Traverso	D _{te} = -10.00	$D_{ti} = -10.00$
Condizione d	i carico n° 12 (Term 1)		
Term	Traverso	D _{te} = 15.00	D _{ti} = 20.00
Condizione d	i carico n° 13 (Term 2)		
Term	Traverso	D _{te} = -20.00	$D_{ti} = -15.00$

Impostazioni di progetto

V_{ni}= 26.90

V_{ni}= 26.90

V_{ni}= 26.90

 $V_{ni} = 0.00$

 $V_{ni} = 9.00$

V_{nf}= 26.90

V_{nf}= 26.90

 $V_{nf} = 9.00$

V_{nf}= 26.90

 $V_{nf} = 0.00$

Verifica materiali:

Coefficiente di sicurezza calcestruzzo γ_c	1.50
Fattore riduzione da resistenza cubica a cilindrica	0.83
Fattore di riduzione per carichi di lungo periodo	0.85
Coefficiente di sicurezza acciaio	1.15
Coefficiente di sicurezza per la sezione	1.00

Verifica Taglio - Metodo dell'inclinazione variabile del traliccio

 $V_{Rd} = [0.18*k*(100.0*\rho_l*fck)^{1/3}/\gamma_c + 0.15*\sigma_{cp}]*bw*d > (vmin+0.15*\sigma_{cp})*b_w*d$

 $V_{Rsd}=0.9*d*A_{sw}/s*fyd*(ctg\alpha+ctg\theta)*sin\alpha$

 V_{Rcd} =0.9*d*b_w* α_c *fcd'*(ctg(θ)+ctg(α)/(1.0+ctg θ ²)

altezza utile sezione [mm] larghezza minima sezione [mm] b_w σ_{cp} tensione media di compressione [N/mmq]

V_{ti}= 6.30 V_{tf}= 6.30

Direzione Progettazione e Realizzazione Lavori

Itinerario Ragusa - Catania

Collegamento viario compreso tra lo Svincolo della S.S. 514 di "Chiaromonte" con la S.S. 115 e lo Svincolo della "Ragusana"

PROGETTO ESECUTIVO

RELAZIONE DI CALCOLO SOTTOVIA AL KM 3+248 - SEC. 90

0.60 f_{ck} 0.45 f_{ck}

0.80 f_{yk}

 A_{sw} α_{c}

rapporto geometrico di armatura area armatuta trasversale [mmq] interasse tra due armature trasversali consecutive [mm] coefficiente maggiorativo, funzione di fcd e σ_{cp}

fcd'=0.5*fcd k=1+(200/d)^{1/2} vmin=0.035*k^{3/2}*fck^{1/2}

Stato Limite di Esercizio

<u>Criteri di scelta per verifiche tensioni di esercizio:</u> Ambiente moderatamente aggressivo Limite tensioni di compressione nel calcestruzzo (comb. rare) Limite tensioni di compressione nel calcestruzzo (comb. quasi perm.)

Limite tensioni di trazione nell'acciaio (comb. rare)

Criteri verifiche a fessurazione:

Armatura poco sensibile
Apertura limite fessure espresse in [mm]
Apertura limite fessure w1=0.20 w2

w2=0.30 w3=0.40

Verifiche secondo:

Norme Tecniche 2008 - Approccio 2

Copriferro sezioni 5.00 [cm]

MANDATARIA:

Realizzazione Lavori

Collegamento viario compreso tra lo Svincolo della S.S. 514 di "Chiaromonte" con la S.S. 115 e lo Svincolo della "Ragusana"

PROGETTO ESECUTIVO

RELAZIONE DI CALCOLO SOTTOVIA AL KM 3+248 - SEC. 90

Descrizione combinazioni di carico

Simbologia adottata

Coefficiente di partecipazione della condizione Coefficiente di combinazione della condizione Coefficiente totale di partecipazione della condizione

Norme Tecniche 2008

Simbologia adottata

Coefficiente parziale sfavorevole sulle azioni permanenti Coefficiente parziale favorevole sulle azioni permanenti γ_{G1fav}

Coefficiente parziale sfavorevole sulle azioni permanenti non strutturali γG2sfav $Coefficiente\ parziale\ favorevole\ sulle\ azioni\ permanenti\ non\ strutturali$

Coefficiente parziale sulle azioni variabili γα

Coefficiente parziale di riduzione dell'angolo di attrito drenato γ_{tanφ}' Coefficiente parziale di riduzione della coesione drenata Coefficiente parziale di riduzione della coesione non drenata Coefficiente parziale di riduzione del carico ultimo γ_{au}

Coefficienti di partecipazione combinazioni statiche

Coefficienti parziali per le azioni o per l'effet	to delle azioni:			
Carichi	Effetto		A1	A2
Permanenti	Favorevole	γG1fav	1.00	1.00
Permanenti	Sfavorevole	γG1sfav	1.35	1.00
Permanenti non strutturali	Favorevole	γG2fav	0.00	0.00
Permanenti non strutturali	Sfavorevole	γG2sfav	1.50	1.30
Variabili	Favorevole	γQfav	0.00	0.00
Variabili	Sfavorevole	γQsfav	1.35	1.30
Coefficienti parziali per i parametri geotecni	ci del terreno:			
Parametri			M1	M2
Tangente dell'angolo di attrito		γ _{tanφ'}	1.00	1.25
Coesione efficace		γ _{c'}	1.00	1.25
Resistenza non drenata		γ _{cu}	1.00	1.40
Resistenza a compressione uniassiale		γqu	1.00	1.60

Coefficienti di partecipazione combinazioni sismiche

Peso dell'unità di volume

Coefficienti parziali per le azioni o per Carichi	Effetto		A1	A2

Permanenti	Favorevole	γG1fav	1.00	1.00
Permanenti	Sfavorevole	γG1sfav	1.00	1.00
Permanenti	Favorevole	γ _{G2fav}	0.00	0.00
Permanenti	Sfavorevole	γG2sfav	1.00	1.00
Variabili	Favorevole	γQfav	0.00	0.00
Variabili	Sfavorevole	γosfav	1.00	1.00

1.00

1.00

Coefficienti parziali per i parametri geotecnici del terreno:			
Parametri		M1	M2
Tangente dell'angolo di attrito	γ _{tanφ'}	1.00	1.25
Coesione efficace	γ _{c'}	1.00	1.25
Resistenza non drenata	γ _{cu}	1.00	1.40
Resistenza a compressione uniassiale	γ _{qu}	1.00	1.60
Peso dell'unità di volume	γ.,	1.00	1.00

Carichi	Effetto		A1	A2
Permanenti	Favorevole	γG1fav	1.00	1.00
Permanenti	Sfavorevole	γG1sfav	1.35	1.00
Permanenti non strutturali	Favorevole	γ _{G2fav}	0.00	0.00
Permanenti non strutturali	Sfavorevole	γ _{G2sfav}	1.50	1.30
Variabili	Favorevole	γ_{Qfav}	0.00	0.00
Variabili	Sfavorevole	γQsfav	1.35	1.30
Coefficienti parziali per i parametri geotecr	nici del terreno:			
Parametri			M1	M2
T 1 1 10 1 10 10 10 10 10 10 10 10 10 10				4.05

Parametri		M1	M2
Tangente dell'angolo di attrito	γ _{tanφ'}	1.00	1.25
Coesione efficace	γ _{c'}	1.00	1.25
Resistenza non drenata	γ _{cu}	1.00	1.40
Resistenza a compressione uniassiale	γqu	1.00	1.60
Peso dell'unità di volume	γ_{v}	1.00	1.00

Realizzazione Lavori

Collegamento viario compreso tra lo Svincolo della S.S. 514 di "Chiaromonte" con la S.S. 115 e lo

Svincolo della "Ragusana"

PROGETTO ESECUTIVO

RELAZIONE DI CALCOLO SOTTOVIA AL KM 3+248 - SEC. 90

A1 1.00 1.00 0.00 1.00

0.00 1.00

M1 1.00

1.00 1.00 1.00 1.00 A2 1.00 1.00 0.00

1.00

1.00

M2 1.25

1.25 1.40

1.00

Coefficienti di partecipazione combinazioni sismiche

Coefficienti parziali per le azioni o per l'effetto de	elle azioni:		
Carichi	Effetto		
Permanenti	Favorevole		γ _{G1fav}
Permanenti	Sfavorevole		γG1sfav
Permanenti	Favorevole		γG2fav
Permanenti	Sfavorevole		γG2sfav
Variabili	Favorevole		
Variabili	Sfavorevole		γQfav
Valiabili	Siavoievoie		γOsfav
Coefficienti parziali per i parametri geotecnici de	l terreno:		
Parametri			
Tangente dell'angolo di attrito			$\gamma_{tan\phi'}$
Coesione efficace			γ _{c'}
Resistenza non drenata			γ_{cu}
Resistenza a compressione uniassiale			γ_{qu}
Peso dell'unità di volume			γγ
Coeff di combinazione	W 0.75)¥(0.75	W 0.00
Coeff. di combinazione	Ψ ₀ = 0.75	Ψ ₁ = 0.75	Ψ ₂ = 0.00
Combinazione n° 1 SLU (Approccio 2)	γ	Ψ	С
Peso Proprio	1.35	1.00	1.35
Spinta terreno sinistra	1.35	1.00	1.35
Spinta terreno destra	1.35	1.00	1.35
Spinta falda	1.35	1.00	1.35
Stradale 1	1.35	1.00	1.35
Frenatura	1.35	1.00	1.35
Ritiro	1.35	0.89	1.20
Term 1	1.35	0.67	0.90
Combinazione n° 2 SLU (Approccio 2)			
-	γ	Ψ	С
Peso Proprio	1.35	1.00	1.35
Spinta terreno sinistra	1.35	1.00	1.35
Spinta terreno destra	1.35	1.00	1.35
Spinta falda	1.35	1.00	1.35
Stradale 1	1.35	1.00	1.35
Frenatura	1.35	1.00	1.35
Ritiro Term 2	1.35 1.35	0.89 0.67	1.20 0.90
Combination and 2 CHI (Agreements 2)			
Combinazione n° 3 SLU (Approccio 2)	γ	Ψ	С
Peso Proprio	1.35	1.00	1.35
Spinta terreno sinistra	1.35	1.00	1.35
Spinta terreno destra	1.35	1.00	1.35
Spinta falda	1.35	1.00	1.35
Stradale 2	1.35	1.00	1.35
Frenatura	1.35	1.00	1.35
Ritiro	1.35	0.89	1.20
Term 1	1.35	0.67	0.90
Combinazione n° 4 SLU (Approccio 2)			
Peso Proprio	γ 1.35	Ψ 1.00	C 1.35
Spinta terreno sinistra	1.35	1.00	1.35
Spinta terreno destra	1.35	1.00	1.35
Spinta falda	1.35	1.00	1.35
Stradale 2	1.35	1.00	1.35
Frenatura	1.35	1.00	1.35
Ritiro	1.35	0.89	1.20
Term 2	1.35	0.67	0.90
Combinazione n° 5 SLU (Approccio 2)			
Peso Proprio	γ 1.35	Ψ 1.00	C 1.35
Spinta terreno sinistra	1.35	1.00	1.35
Spinta terreno destra	1.35	1.00	1.35
Spinta falda	1.35	1.00	1.35
Stradale 3	1.35	1.00	1.35
Frenatura	1.35	1.00	1.35
Ritiro	1.35	0.89	1.20
Term 1	1.35	0.67	0.90

Combinazione n° 6 SLU (Approccio 2)

Svincolo della "Ragusana"

PROGETTO ESECUTIVO

Direzione Progettazione e Realizzazione Lavori

RELAZIONE DI CALCOLO SOTTOVIA AL KM 3+248 - SEC. 90

		Ψ	С
Peso Proprio	γ 1.35	1.00	1.35
Spinta terreno sinistra	1.35	1.00	1.35
Spinta terreno destra	1.35	1.00	1.35
Spinta falda	1.35	1.00	1.35
Stradale 3	1.35	1.00	1.35
Frenatura	1.35	1.00	1.35
Ritiro	1.35	0.89	1.20
Term 2	1.35	0.67	0.90
Combinazione n° 7 SLU (Approccio 2)			
	γ	Ψ	С
Peso Proprio	1.35	1.00	1.35
Spinta terreno sinistra	1.35	1.00	1.35
Spinta terreno destra	1.35	1.00	1.35
Spinta falda Stradale 1	1.35	1.00	1.35
Frenatura	1.35 1.35	0.75 0.75	1.01 1.01
Ritiro	1.35	0.89	1.20
Term 1	1.35	1.11	1.50
Combinazione n° 8 SLU (Approccio 2)			
COMBINAZIONE II & SEO (Approcció 2)	γ	Ψ	С
Peso Proprio	1.35	1.00	1.35
Spinta terreno sinistra	1.35	1.00	1.35
Spinta terreno destra	1.35	1.00	1.35
Spinta falda	1.35	1.00	1.35
Stradale 1	1.35	0.75	1.01
Frenatura Ritiro	1.35	0.75 0.89	1.01
Term 2	1.35 1.35	0.89 1.11	1.20 1.50
rerm 2	1.55	1.11	1.50
Combinazione n° 9 SLU (Approccio 2)		Ψ	С
Peso Proprio	γ 1.35	1.00	1.35
Spinta terreno sinistra	1.35	1.00	1.35
Spinta terreno destra	1.35	1.00	1.35
Spinta falda	1.35	1.00	1.35
Stradale 2	1.35	0.75	1.01
Frenatura	1.35	0.75	1.01
Ritiro	1.35	0.89	1.20
Term 1	1.35	1.11	1.50
Combinazione n° 10 SLU (Approccio 2)			
	γ	Ψ	C
Peso Proprio	1.35	1.00	1.35
Spinta terreno sinistra Spinta terreno destra	1.35 1.35	1.00 1.00	1.35 1.35
Spinta falda	1.35	1.00	1.35
Stradale 2	1.35	0.75	1.01
Frenatura	1.35	0.75	1.01
Ritiro	1.35	0.89	1.20
Term 2	1.35	1.11	1.50
Combinations ** 11 CHI/Approprie 3)			
Combinazione n° 11 SLU (Approccio 2)	γ	Ψ	С
Peso Proprio	1.35	1.00	1.35
Spinta terreno sinistra	1.35	1.00	1.35
Spinta terreno destra	1.35	1.00	1.35
Spinta falda	1.35	1.00	1.35
Stradale 3	1.35	0.75	1.01
Frenatura	1.35	0.75	1.01
Ritiro Term 1	1.35 1.35	0.89 1.11	1.20 1.50
Combinazione n° 12 SLU (Approccio 2)	γ	Ψ	С
Peso Proprio	1.35	1.00	1.35
Spinta terreno sinistra	1.35	1.00	1.35
Spinta terreno destra	1.35	1.00	1.35
Spinta falda	1.35	1.00	1.35
Stradale 3	1.35	0.75	1.01
Frenatura	1.35	0.75	1.01
Ritiro	1.35	0.89	1.20
Term 2	1.35	1.11	1.50
Combinazione n° 13 SLU (Approccio 2) - Sisma Vert. positivo			
	γ	Ψ	С
Peso Proprio	1.00	1.00	1.00

MANDATARIA:

Svincolo della "Ragusana" PROGETTO ESECUTIVO

Direzione Progettazione e Realizzazione Lavori

RELAZIONE DI CALCOLO SOTTOVIA AL KM 3+248 - SEC. 90

Spinta terreno sinistra	1.00	1.00	1.00
Spinta terreno destra	1.00	1.00	1.00
Sisma da sinistra	1.00	1.00	1.00
Spinta falda	1.00	1.00	1.00
Term 1	1.00	0.50	0.50
Combinazione n° 14 SLU (Approccio 2) - Sisma Vert. negativo	0		
	γ	Ψ	С
Peso Proprio	1.00	1.00	1.00
Spinta terreno sinistra	1.00	1.00	1.00
Spinta terreno destra	1.00 1.00	1.00 1.00	1.00 1.00
Sisma da sinistra Spinta falda	1.00	1.00	1.00
Term 1	1.00	0.50	0.50
Combinazione n° 15 SLU (Approccio 2) - Sisma Vert. positivo	<u>!</u>		
Peso Proprio	γ 1.00	Ψ 1.00	C 1.00
Spinta terreno sinistra	1.00	1.00	1.00
Spinta terreno dinistra	1.00	1.00	1.00
Sisma da sinistra	1.00	1.00	1.00
Spinta falda	1.00	1.00	1.00
Term 2	1.00	0.50	0.50
Combinazione n° 16 SLU (Approccio 2) - Sisma Vert. negativo	<u>0</u>		
David Davids	γ	Ψ	C
Peso Proprio	1.00	1.00	1.00
Spinta terreno sinistra	1.00	1.00	1.00
Spinta terreno destra	1.00	1.00	1.00
Sisma da sinistra	1.00	1.00	1.00
Spinta falda	1.00	1.00	1.00
Term 2	1.00	0.50	0.50
Combinazione n° 17 SLE (Quasi Permanente)			
COMBINAZIONE II 17 SEE (Quasi Fermanente)	γ	Ψ	С
Peso Proprio	1.00	1.00	1.00
Spinta terreno sinistra	1.00	1.00	1.00
Spinta terreno destra	1.00	1.00	1.00
Spinta falda	1.00	1.00	1.00
Ritiro	1.00	1.00	1.00
Combinazione n° 18 SLE (Frequente)	γ	Ψ	С
Peso Proprio	1.00	1.00	1.00
Spinta terreno sinistra	1.00	1.00	1.00
Spinta terreno destra	1.00	1.00	1.00
Spinta falda	1.00	1.00	1.00
Ritiro	1.00	1.00	1.00
Stradale 1	1.00	0.75	0.75
Combinazione n° 19 SLE (Frequente)	γ	Ψ	С
Peso Proprio	1.00	1.00	1.00
Spinta terreno sinistra	1.00	1.00	1.00
Spinta terreno destra	1.00	1.00	1.00
Spinta falda	1.00	1.00	1.00
Ritiro	1.00	1.00	1.00
Stradale 2	1.00	0.75	0.75
Combinazione n° 20 SLE (Frequente)	γ	Ψ	С
Peso Proprio	1.00	1.00	1.00
Spinta terreno sinistra	1.00	1.00	1.00
Spinta terreno destra	1.00	1.00	1.00
Spinta falda	1.00	1.00	1.00
Ritiro	1.00	1.00	1.00
Stradale 3	1.00	0.75	0.75
Combinazione n° 21 SLE (Frequente)			
	γ	Ψ	C
Peso Proprio	1.00	1.00	1.00
Spinta terreno sinistra	1.00	1.00	1.00
Spinta terreno destra	1.00	1.00	1.00
Spinta falda	1.00	1.00	1.00
Ritiro	1.00	1.00	1.00
Frenatura	1.00	0.75	0.75

Svincolo della "Ragusana"

PROGETTO ESECUTIVO

Direzione Progettazione e Realizzazione Lavori

RELAZIONE DI CALCOLO SOTTOVIA AL KM 3+248 - SEC. 90

Combinazione n° 22 SLE (Frequente)			
	γ	Ψ	С
Peso Proprio	1.00	1.00	1.00
Spinta terreno sinistra	1.00	1.00	1.00
Spinta terreno destra	1.00	1.00	1.00
Spinta falda		1.00	
Ritiro	1.00		1.00
	1.00	1.00	1.00
Term 1	1.00	0.75	0.75
Combinazione n° 23 SLE (Frequente)		177	
Peso Proprio	γ 1.00	Ψ 1.00	C 1.00
Spinta terreno sinistra	1.00	1.00	1.00
Spinta terreno destra	1.00	1.00	1.00
Spinta falda	1.00	1.00	1.00
Ritiro	1.00	1.00	1.00
Term 2	1.00	0.75	0.75
Combinazione n° 24 SLE (Rara)			
	γ	Ψ	C
Peso Proprio	1.00	1.00	1.00
Spinta terreno sinistra	1.00	1.00	1.00
Spinta terreno destra	1.00	1.00	1.00
Spinta falda	1.00	1.00	1.00
Ritiro	1.00	1.00	1.00
Stradale 1	1.00	1.00	1.00
Frenatura	1.00	0.75	0.75
Term 2	1.00	0.75	0.75
Combinazione n° 25 SLE (Rara)		Ψ	С
Peso Proprio	γ 1.00	1.00	1.00
Spinta terreno sinistra	1.00	1.00	1.00
Spinta terreno destra	1.00	1.00	1.00
Spinta falda	1.00	1.00	1.00
Ritiro	1.00	1.00	1.00
Stradale 2	1.00	1.00	1.00
Frenatura	1.00	0.75	0.75
Term 2	1.00	0.75	0.75
TCIII 2	1.00	0.73	0.75
Combinazione n° 26 SLE (Rara)			_
	γ	Ψ	C
Peso Proprio	1.00	1.00	1.00
Spinta terreno sinistra	1.00	1.00	1.00
Spinta terreno destra	1.00	1.00	1.00
Spinta falda	1.00	1.00	1.00
Ritiro	1.00	1.00	1.00
Stradale 3	1.00	1.00	1.00
Frenatura	1.00	0.75	0.75
Term 2	1.00	0.75	0.75
Combinazione n° 27 SLE (Rara)	γ	Ψ	С
Peso Proprio	1.00	1.00	1.00
Spinta terreno sinistra	1.00	1.00	1.00
Spinta terreno destra	1.00	1.00	1.00
Spinta falda	1.00	1.00	1.00
Ritiro	1.00	1.00	1.00
Frenatura	1.00	1.00	1.00
Stradale 1	1.00	0.75	0.75
Term 2	1.00	0.75	0.75
Combinazione n° 28 SLE (Rara)			
Roca Prantia	γ 1.00	Ψ	C 1.00
Peso Proprio	1.00	1.00	1.00
Spinta terreno sinistra	1.00	1.00	1.00
Spinta terreno destra	1.00	1.00	1.00
Spinta falda	1.00	1.00	1.00
Ritiro	1.00	1.00	1.00
Term 1	1.00	1.00	1.00
Stradale 3	1.00	0.75	0.75
Frenatura	1.00	0.75	0.75
Combinazione n° 29 SLE (Rara)	~	Ψ	С
Peso Proprio	γ 1.00	Ψ 1.00	1.00
Spinta terreno sinistra	1.00	1.00	1.00
Spinta terreno sinistra			
	1 00	1 // / /	1 00
Spinta falda	1.00 1.00	1.00 1.00	1.00 1.00

MANDATARIA:

Realizzazione Lavori

Collegamento viario compreso tra lo Svincolo della S.S. 514 di "Chiaromonte" con la S.S. 115 e lo Svincolo della "Ragusana"

PROGETTO ESECUTIVO

RELAZIONE DI CALCOLO SOTTOVIA AL KM 3+248 - SEC. 90

Ritiro	1.00	1.00	1.00
Term 2	1.00	1.00	1.00
Stradale 3	1.00	0.75	0.75
Frenatura	1.00	0.75	0.75

Svincolo della "Ragusana"

PROGETTO ESECUTIVO

Direzione Proaettazione e Realizzazione Lavori

RELAZIONE DI CALCOLO SOTTOVIA AL KM 3+248 - SEC. 90

Analisi della spinta e verifiche

Simbologia adottata ed unità di misura

Origine in corrispondenza dello spigolo inferiore sinistro della struttura Le forze orizzontali sono considerate positive se agenti verso destra Le forze verticali sono considerate positive se agenti verso il basso

ascisse (espresse in m) positive verso destra

ordinate (espresse in m) positive verso l'alto momento espresso in kNm М

taglio espresso in kN sforzo normale espresso in kN spostamento direzione X espresso in cm SN их spostamento direzione Y espresso in cm σ_t pressione sul terreno espressa in MPa

<u>Tipo di analisi</u>

Pressione in calotta Spinta sui piedritti

Pressione geostatica

a Riposo [combinazione 1] a Riposo [combinazione 2]

a Riposo [combinazione 3]

a Riposo [combinazione 4]

a Riposo [combinazione 5]

a Riposo [combinazione 6] a Riposo [combinazione 7]

a Riposo [combinazione 8]

a Riposo [combinazione 9]

a Riposo [combinazione 10]

a Riposo [combinazione 11] a Riposo [combinazione 12]

a Riposo [combinazione 13]

a Riposo [combinazione 14]

a Riposo [combinazione 15] a Riposo [combinazione 16]

a Riposo [combinazione 17]

a Riposo [combinazione 18] a Riposo [combinazione 19]

a Riposo [combinazione 20]

a Riposo [combinazione 21] a Riposo [combinazione 22]

a Riposo [combinazione 23] a Riposo [combinazione 24]

a Riposo [combinazione 25]

a Riposo [combinazione 26] a Riposo [combinazione 27]

a Riposo [combinazione 28]

a Riposo [combinazione 29]

Combinazioni SLU

 $\label{eq:acceleration} \mbox{Accelerazione al suolo a_g = } \\ \mbox{Coefficiente di amplificazione per tipo di sottosuolo (S)}$

Coefficiente di amplificazione topografica (St)

Coefficiente riduzione (β_m)

Rapporto intensità sismica verticale/orizzontale Coefficiente di intensità sismica orizzontale (percento)

Coefficiente di intensità sismica verticale (percento)

Combinazioni SLE

 $\label{eq:acceleration} \mbox{Accelerazione al suolo a_g = } \\ \mbox{Coefficiente di amplificazione per tipo di sottosuolo (S)}$

Coefficiente di amplificazione topografica (St)

Coefficiente riduzione (β_m)

Rapporto intensità sismica verticale/orizzontale

Coefficiente di intensità sismica orizzontale (percento) Coefficiente di intensità sismica verticale (percento)

Forma diagramma incremento sismico

Angolo diffusione sovraccarico

3.76 [m/s^2] 1.04

1.00 1.00

0.50

 $k_h=(a_g/g^*\beta_m^*St^*Ss) = 39.96$ $k_v=0.50 * k_h = 19.98$

1.06 [m/s^2]

1.20 1 00

1.00

 $k_h=(a_g/g^*\beta_m^*St^*Ss) = 13.02$ $k_v=0.50 * k_h = 6.51$

Rettangolare

0.00 [°]

Coefficienti di spinta

N°combinazione	Statico	Sismico
1	0.426	0.000
2	0.426	0.000
3	0.426	0.000
4	0.426	0.000
5	0.426	0.000
6	0.426	0.000
7	0.426	0.000
8	0.426	0.000
9	0.426	0.000
10	0.426	0.000

Collegamento viario compreso tra lo Svincolo della S.S. 514 di "Chiaromonte" con la S.S. 115 e lo

Svincolo della "Ragusana" PROGETTO ESECUTIVO

Direzione Progettazione e Realizzazione Lavori

RELAZIONE DI CALCOLO SOTTOVIA AL KM 3+248 - SEC. 90

11	0.426	0.000
12	0.426	0.000
13	0.426	1.070
14	0.426	1.070
15	0.426	1.070
16	0.426	1.070
17	0.426	0.000
18	0.426	0.000
19	0.426	0.000
20	0.426	0.000
21	0.426	0.000
22	0.426	0.000
23	0.426	0.000
24	0.426	0.000
25	0.426	0.000
26	0.426	0.000
27	0.426	0.000
28	0.426	0.000
29	0.426	0.000

<u>Discretizzazione strutturale</u>	
Numero elementi fondazione	142
Numero elementi traverso	59
Numero elementi piedritto sinistro	80
Numero elementi piedritto destro	80
Numero molle fondazione	143
Numero molle piedritto sinistro	81
Numero molle piedritto destro	81

Collegamento viario compreso tra lo Svincolo della S.S. 514 di "Chiaromonte" con la S.S. 115 e lo

Svincolo della "Ragusana" **PROGETTO ESECUTIVO**

RELAZIONE DI CALCOLO SOTTOVIA AL KM 3+248 - SEC. 90

Analisi della combinazione n° 1

Pressione in calotta(solo peso terreno) 25.6500 [kPa]

Carichi verticali in calotta

Xi	Xj	Q[kPa]
-20.00	-10.00	25.6500
-10.00	-3.60	37.8000
-3.60	0.70	74.1150
0.70	23.00	37.8000
23.00	33.00	25,6500

Spinte sui piedritti

Pressione sup. 31.6044 [kPa] Pressione inf. 130.1536 [kPa] Pressione sup. 16.1188 [kPa] Pressione inf. 114.6681 [kPa] Piedritto sinistro Piedritto destro

<u>Falda</u>

0.00[kN] Spinta Sottospinta 0.00[kPa]

Analisi della combinazione n° 2

Pressione in calotta(solo peso terreno) 25.6500 [kPa]

Carichi verticali in calotta

Xi	Xj	Q[kPa]
-20.00	-10.00	25.6500
-10.00	-3.60	37.8000
-3.60	0.70	74.1150
0.70	23.00	37.8000
23.00	33.00	25.6500

Spinte sui piedritti

Pressione sup. 31.6044 [kPa] Pressione inf. 130.1536 [kPa] Piedritto destro Pressione sup. 16.1188 [kPa] Pressione inf. 114.6681 [kPa]

<u>Falda</u> Spinta

0.00[kN] Sottospinta 0.00[kPa]

Analisi della combinazione nº 3

Pressione in calotta(solo peso terreno) 25.6500 [kPa]

Carichi verticali in calotta

Xi	Xj	Q[kPa]
-20.00	-10.00	25.6500
-10.00	-0.90	37.8000
-0.90	3.40	74.1150
3.40	23.00	37.8000
23.00	33.00	25.6500

Spinte sui piedritti

Pressione sup. 22.2131 [kPa] Pressione inf. 120.7623 [kPa] Pressione sup. 16.1188 [kPa] Pressione inf. 114.6681 [kPa] Piedritto sinistro

<u>Falda</u>

Spinta 0.00[kN] Sottospinta 0.00[kPa]

Analisi della combinazione nº 4

Pressione in calotta(solo peso terreno) 25.6500 [kPa]

Collegamento viario compreso tra lo Svincolo della S.S. 514 di "Chiaromonte" con la S.S. 115 e lo Svincolo della "Ragusana"

PROGETTO ESECUTIVO

Direzione Progettazione e Realizzazione Lavori

RELAZIONE DI CALCOLO SOTTOVIA AL KM 3+248 - SEC. 90

Carichi verticali in calotta

Xi	Xj	Q[kPa]
-20.00	-10.00	25.6500
-10.00	-0.90	37.8000
-0.90	3.40	74.1150
3.40	23.00	37.8000
23.00	33.00	25.6500

Spinte sui piedritti

Pressione sup. 22.2131 [kPa] Pressione inf. 120.7623 [kPa] Piedritto sinistro Piedritto destro Pressione sup. 16.1188 [kPa] Pressione inf. 114.6681 [kPa]

<u>Falda</u>

0.00[kN] 0.00[kPa] Spinta Sottospinta

Analisi della combinazione n° 5

Pressione in calotta(solo peso terreno) 25.6500 [kPa]

Carichi verticali in calotta

Xi	Xj	Q[kPa]
-20.00	-10.00	25.6500
-10.00	4.65	37.8000
4.65	8.95	74.1150
8.95	23.00	37.8000
23.00	33.00	25 6500

Spinte sui piedritti

Piedritto sinistro Pressione sup. 16.1188 [kPa] Pressione inf. 114.6681 [kPa] Pressione sup. 16.1188 [kPa] Pressione inf. 114.6681 [kPa] Piedritto destro

Falda

Spinta 0.00[kN] Sottospinta 0.00[kPa]

Analisi della combinazione n° 6

Pressione in calotta(solo peso terreno) 25.6500 [kPa]

Carichi verticali in calotta

Xi	Xj	Q[kPa]
-20.00	-10.00	25.6500
-10.00	4.65	37.8000
4.65	8.95	74.1150
8.95	23.00	37.8000
23.00	33.00	25.6500

Spinte sui piedritti

Pressione sup. 16.1188 [kPa] Pressione inf. 114.6681 [kPa] Pressione sup. 16.1188 [kPa] Pressione inf. 114.6681 [kPa] Piedritto sinistro Piedritto destro

<u>Falda</u>

0.00[kN] Spinta . Sottospinta 0.00[kPa]

Analisi della combinazione n° 7

Pressione in calotta(solo peso terreno) 25.6500 [kPa]

Carichi verticali in calotta

Xi	Xj	Q[kPa]
-20.00	-10.00	25.6500
-10.00	-3.60	34.7625
-3.60	0.70	61.9987

Collegamento viario compreso tra lo Svincolo della S.S. 514 di "Chiaromonte" con la S.S. 115 e lo

Svincolo della "Ragusana" **PROGETTO ESECUTIVO**

Direzione Progettazione e Realizzazione Lavori

RELAZIONE DI CALCOLO SOTTOVIA AL KM 3+248 - SEC. 90

0.70 23.00 34.7625 23.00 33.00 25.6500

Spinte sui piedritti

Pressione sup. 26.4377 [kPa] Pressione inf. 124.9870 [kPa] Pressione sup. 14.8235 [kPa] Pressione inf. 113.3728 [kPa] Piedritto sinistro Piedritto destro

Falda

Spinta 0.00[kN] Sottospinta 0.00[kPa]

Analisi della combinazione n° 8

Pressione in calotta(solo peso terreno) 25.6500 [kPa]

Carichi verticali in calotta

Xi	Xj	Q[kPa]
-20.00	-10.00	25.6500
-10.00	-3.60	34.7625
-3.60	0.70	61.9987
0.70	23.00	34.7625
23.00	33.00	25.6500

Spinte sui piedritti

Piedritto sinistro Pressione sup. 26.4377 [kPa] Pressione inf. 124.9870 [kPa] Piedritto destro Pressione sup. 14.8235 [kPa] Pressione inf. 113.3728 [kPa]

<u>Falda</u>

0.00[kN] Spinta . Sottospinta 0.00[kPa]

Analisi della combinazione n° 9

Pressione in calotta(solo peso terreno) 25.6500 [kPa]

Carichi verticali in calotta

Xi	Xj	Q[kPa]
-20.00	-10.00	25.6500
-10.00	-0.90	34.7625
-0.90	3.40	61.9987
3.40	23.00	34.7625
23.00	33.00	25.6500

Spinte sui piedritti

Piedritto sinistro Pressione sup. 19.3942 [kPa] Pressione inf. 117.9435 [kPa] Piedritto destro Pressione sup. 14.8235 [kPa] Pressione inf. 113.3728 [kPa]

<u>Falda</u>

0.00[kN] 0.00[kPa] Spinta Sottospinta

Analisi della combinazione n° 10

Pressione in calotta(solo peso terreno) 25.6500 [kPa]

Carichi verticali in calotta

Xi	Xj	Q[kPa]
-20.00	-10.00	25.6500
-10.00	-0.90	34.7625
-0.90	3.40	61.9987
3.40	23.00	34.7625
23.00	33.00	25 6500

Spinte sui piedritti

Realizzazione Lavori

Collegamento viario compreso tra lo Svincolo della S.S. 514 di "Chiaromonte" con la S.S. 115 e lo

Svincolo della "Ragusana" **PROGETTO ESECUTIVO**

RELAZIONE DI CALCOLO SOTTOVIA AL KM 3+248 - SEC. 90

Piedritto sinistro Pressione sup. 19.3942 [kPa] Pressione inf. 117.9435 [kPa] Piedritto destro Pressione sup. 14.8235 [kPa] Pressione inf. 113.3728 [kPa]

<u>Falda</u>

0.00[kN] Spinta Sottospinta 0.00[kPa]

Analisi della combinazione nº 11

Pressione in calotta(solo peso terreno) 25.6500 [kPa]

Carichi verticali in calotta

Xi	Xj	Q[kPa]
-20.00	-10.00	25.6500
-10.00	4.65	34.7625
4.65	8.95	61.9987
8.95	23.00	34.7625
23.00	33.00	25.6500

Spinte sui piedritti

Pressione sup. 14.8235 [kPa] Pressione inf. 113.3728 [kPa] Piedritto sinistro Piedritto destro Pressione sup. 14.8235 [kPa] Pressione inf. 113.3728 [kPa]

Falda

0.00[kN] Sottospinta 0.00[kPa]

Analisi della combinazione nº 12

Pressione in calotta(solo peso terreno) 25.6500 [kPa]

Carichi verticali in calotta

Xi	Xj	Q[kPa]
-20.00	-10.00	25.6500
-10.00	4.65	34.7625
4.65	8.95	61.9987
8.95	23.00	34.7625
23.00	33.00	25.6500

Spinte sui piedritti

Pressione sup. 14.8235 [kPa] Pressione inf. 113.3728 [kPa] Pressione sup. 14.8235 [kPa] Pressione inf. 113.3728 [kPa] Piedritto sinistro Piedritto destro

Falda

Spinta 0.00[kN] Sottospinta 0.00[kPa]

Analisi della combinazione n° 13

Pressione in calotta(solo peso terreno) 19.0000 [kPa]

Carichi verticali in calotta

Xi -20.00 Xj 33.00 Q[kPa] 19.0000

Spinte sui piedritti

Pressione sup. 8.1020 [kPa] Pressione inf. 81.1015 [kPa] Piedritto sinistro Piedritto destro Pressione sup. 8.1020 [kPa] Pressione inf. 81.1015 [kPa]

Spinte sismiche sui piedritti

Piedritto sinistro Pressione sup. 83.5950 [kPa] Pressione inf. 83.5950 [kPa]

Falda

Collegamento viario compreso tra lo Svincolo della S.S. 514 di "Chiaromonte" con la S.S. 115 e lo Svincolo della "Ragusana"

PROGETTO ESECUTIVO

RELAZIONE DI CALCOLO SOTTOVIA AL KM 3+248 - SEC. 90

Spinta 0.00[kN] Sottospinta 0.00[kPa]

Analisi della combinazione n° 14

Pressione in calotta(solo peso terreno) 19.0000 [kPa]

Carichi verticali in calotta

Q[kPa] 33.00 -20.00 19.0000

Spinte sui piedritti

Piedritto sinistro Pressione sup. 8.1020 [kPa] Pressione inf. 81.1015 [kPa] Pressione sup. 8.1020 [kPa] Pressione inf. 81.1015 [kPa] Piedritto destro

Spinte sismiche sui piedritti

Pressione sup. 83.5950 [kPa] Pressione inf. 83.5950 [kPa] Piedritto sinistro

<u>Falda</u>

0.00[kN] 0.00[kPa] Spinta Sottospinta

Analisi della combinazione n° 15

Pressione in calotta(solo peso terreno) 19.0000 [kPa]

Carichi verticali in calotta

Q[kPa] -20.00 33.00 19.0000

Spinte sui piedritti

Piedritto sinistro Pressione sup. 8.1020 [kPa] Pressione inf. 81.1015 [kPa] Pressione sup. 8.1020 [kPa] Pressione inf. 81.1015 [kPa] Piedritto destro

Spinte sismiche sui piedritti

Piedritto sinistro Pressione sup. 83.5950 [kPa] Pressione inf. 83.5950 [kPa]

Falda

Spinta 0.00[kN] Sottospinta 0.00[kPa]

Analisi della combinazione n° 16

Pressione in calotta(solo peso terreno) 19.0000 [kPa]

Carichi verticali in calotta

Xj 33.00 Q[kPa] 19.0000 -20.00

Spinte sui piedritti

Pressione sup. 8.1020 [kPa] Pressione inf. 81.1015 [kPa] Piedritto sinistro Piedritto destro Pressione sup. 8.1020 [kPa] Pressione inf. 81.1015 [kPa]

Spinte sismiche sui piedritti

Piedritto sinistro Pressione sup. 83.5950 [kPa] Pressione inf. 83.5950 [kPa]

Falda

Collegamento viario compreso tra lo Svincolo della S.S. 514 di "Chiaromonte" con la S.S. 115 e lo Svincolo della "Ragusana"

PROGETTO ESECUTIVO

RELAZIONE DI CALCOLO SOTTOVIA AL KM 3+248 - SEC. 90

Spinta 0.00[kN] Sottospinta 0.00[kPa]

Analisi della combinazione n° 17

Pressione in calotta(solo peso terreno) 19.0000 [kPa]

Carichi verticali in calotta

Q[kPa] 33.00 19.0000 -20.00

Spinte sui piedritti

Pressione sup. 8.1020 [kPa] Pressione inf. 81.1015 [kPa] Pressione sup. 8.1020 [kPa] Pressione inf. 81.1015 [kPa] Piedritto sinistro Piedritto destro

Falda

Spinta 0.00[kN] Sottospinta 0.00[kPa]

Analisi della combinazione n° 18

Pressione in calotta(solo peso terreno) 19.0000 [kPa]

Carichi verticali in calotta

Xi	Xj	Q[kPa]
-20.00	-10.00	19.0000
-10.00	-3.60	25.7500
-3.60	0.70	45.9250
0.70	23.00	25.7500
23.00	33.00	19.0000

Spinte sui piedritti

Pressione sup. 19.5835 [kPa] Pressione inf. 92.5830 [kPa] Pressione sup. 10.9804 [kPa] Pressione inf. 83.9799 [kPa] Piedritto sinistro Piedritto destro

<u>Falda</u> Spinta

0.00[kN] Sottospinta 0.00[kPa]

Analisi della combinazione n° 19

Pressione in calotta(solo peso terreno) 19.0000 [kPa]

Carichi verticali in calotta

Xi	Xj	Q[kPa]
-20.00	-10.00	19.0000
-10.00	-0.90	25.7500
-0.90	3.40	45.9250
3.40	23.00	25.7500
23.00	33.00	19.0000

Spinte sui piedritti

Piedritto sinistro Pressione sup. 14.3661 [kPa] Pressione inf. 87.3655 [kPa] Piedritto destro Pressione sup. 10.9804 [kPa] Pressione inf. 83.9799 [kPa]

<u>Falda</u>

0.00[kN] Spinta Sottospinta 0.00[kPa]

Analisi della combinazione n° 20

Pressione in calotta(solo peso terreno) 19.0000 [kPa]

Realizzazione Lavori

Collegamento viario compreso tra lo Svincolo della S.S. 514 di "Chiaromonte" con la S.S. 115 e lo

Svincolo della "Ragusana" **PROGETTO ESECUTIVO**

RELAZIONE DI CALCOLO SOTTOVIA AL KM 3+248 - SEC. 90

Carichi verticali in calotta

Xj	Q[kPa]
-10.00	19.0000
4.65	25.7500
8.95	45.9250
23.00	25.7500
33.00	19.0000
	-10.00 4.65 8.95 23.00

Spinte sui piedritti

Piedritto sinistro Pressione sup. 10.9804 [kPa] Pressione inf. 83.9799 [kPa] Piedritto destro Pressione sup. 10.9804 [kPa] Pressione inf. 83.9799 [kPa]

<u>Falda</u>

Spinta Sottospinta 0.00[kN] 0.00[kPa]

Analisi della combinazione n° 21

Pressione in calotta(solo peso terreno) 19.0000 [kPa]

Carichi verticali in calotta

Q[kPa] -20.00 33.00 19.0000

Spinte sui piedritti

Pressione sup. 8.1020 [kPa] Pressione inf. 81.1015 [kPa] Pressione sup. 8.1020 [kPa] Pressione inf. 81.1015 [kPa] Piedritto sinistro Piedritto destro

<u>Falda</u> Spinta 0.00[kN] Sottospinta 0.00[kPa]

Analisi della combinazione n° 22

Pressione in calotta(solo peso terreno) 19.0000 [kPa]

Carichi verticali in calotta

Q[kPa] 33.00 -20.00 19.0000

Spinte sui piedritti

Pressione sup. 8.1020 [kPa] Pressione inf. 81.1015 [kPa] Pressione sup. 8.1020 [kPa] Pressione inf. 81.1015 [kPa] Piedritto sinistro Piedritto destro

Falda Spinta

0.00[kN] Sottospinta 0.00[kPa]

Analisi della combinazione n° 23

Pressione in calotta(solo peso terreno) 19.0000 [kPa]

Carichi verticali in calotta

Q[kPa] 33.00 -20.00 19.0000

Spinte sui piedritti

Pressione sup. 8.1020 [kPa] Pressione inf. 81.1015 [kPa] Piedritto sinistro Pressione sup. 8.1020 [kPa] Pressione inf. 81.1015 [kPa] Piedritto destro

Falda

0.00[kN]

Collegamento viario compreso tra lo Svincolo della S.S. 514 di "Chiaromonte" con la S.S. 115 e lo

Svincolo della "Ragusana"

PROGETTO ESECUTIVO

RELAZIONE DI CALCOLO SOTTOVIA AL KM 3+248 - SEC. 90

Sottospinta 0.00[kPa]

Analisi della combinazione n° 24

Pressione in calotta(solo peso terreno) 19.0000 [kPa]

Carichi verticali in calotta

Xi	Xį	Q[kPa]
20.00	40.00	40 0000
-20.00	-10.00	19.0000
-10.00	-3.60	28.0000
-10.00	-3.00	28.0000
-3.60	0.70	54.9000
0.70	23.00	28.0000
23.00	33.00	19 0000

Piedritto sinistro Pressione sup. 23.4107 [kPa] Pressione inf. 96.4101 [kPa] Piedritto destro Pressione sup. 11.9399 [kPa] Pressione inf. 84.9393 [kPa]

Falda

0.00[kN] 0.00[kPa] Spinta Sottospinta

Analisi della combinazione n° 25

Pressione in calotta(solo peso terreno) 19.0000 [kPa]

Carichi verticali in calotta

Xi	Xj	Q[kPa]
-20.00	-10.00	19.0000
-10.00	-0.90	28.0000
-0.90	3.40	54.9000
3.40	23.00	28.0000
23.00	33.00	19.0000

Spinte sui piedritti

Piedritto sinistro Pressione sup. 16.4541 [kPa] Pressione inf. 89.4536 [kPa] Piedritto destro Pressione sup. 11.9399 [kPa] Pressione inf. 84.9393 [kPa]

Falda

Spinta 0.00[kN] Sottospinta 0.00[kPa]

Analisi della combinazione n° 26

Pressione in calotta(solo peso terreno) 19.0000 [kPa]

Carichi verticali in calotta

Xi	Xj	Q[kPa]
-20.00	-10.00	19.0000
-10.00	4.65	28.0000
4.65	8.95	54.9000
8.95	23.00	28.0000
23.00	33.00	19 0000

Spinte sui piedritti

Piedritto sinistro Pressione sup. 11.9399 [kPa] Pressione inf. 84.9393 [kPa] Piedritto destro Pressione sup. 11.9399 [kPa] Pressione inf. 84.9393 [kPa]

<u>Falda</u>

0.00[kN] Spinta . Sottospinta 0.00[kPa]

Analisi della combinazione n° 27

Collegamento viario compreso tra lo Svincolo della S.S. 514 di "Chiaromonte" con la S.S. 115 e lo Svincolo della "Ragusana"

PROGETTO ESECUTIVO

RELAZIONE DI CALCOLO SOTTOVIA AL KM 3+248 - SEC. 90

Pressione in calotta(solo peso terreno) 19.0000 [kPa]

Carichi verticali in calotta

Xi	Xj	Q[kPa]
-20.00	-10.00	19.0000
-10.00	-3.60	25.7500
-3.60	0.70	45.9250
0.70	23.00	25.7500
23.00	33.00	19.0000

Spinte sui piedritti

Pressione sup. 19.5835 [kPa] Pressione inf. 92.5830 [kPa] Piedritto sinistro Pressione sup. 10.9804 [kPa] Pressione inf. 83.9799 [kPa] Piedritto destro

<u>Falda</u> Spinta 0.00[kN] Sottospinta 0.00[kPa]

Analisi della combinazione n° 28

Pressione in calotta(solo peso terreno) 19.0000 [kPa]

Carichi verticali in calotta

Xi	Xj	Q[kPa]
-20.00	-10.00	19.0000
-10.00	4.65	25.7500
4.65	8.95	45.9250
8.95	23.00	25.7500
23.00	33.00	19.0000

Spinte sui piedritti

Piedritto sinistro Pressione sup. 10.9804 [kPa] Pressione inf. 83.9799 [kPa] Piedritto destro Pressione sup. 10.9804 [kPa] Pressione inf. 83.9799 [kPa]

<u>Falda</u> Spinta

0.00[kN] Sottospinta 0.00[kPa]

Analisi della combinazione n° 29

Pressione in calotta(solo peso terreno) 19.0000 [kPa]

Carichi verticali in calotta

Xi	Xj	Q[kPa]
-20.00	-10.00	19.0000
-10.00	4.65	25.7500
4.65	8.95	45.9250
8.95	23.00	25.7500
23.00	33.00	19.0000

Spinte sui piedritti

Pressione sup. 10.9804 [kPa] Pressione inf. 83.9799 [kPa] Piedritto sinistro Piedritto destro Pressione sup. 10.9804 [kPa] Pressione inf. 83.9799 [kPa]

<u>Falda</u>

Spinta Sottospinta 0.00[kN] 0.00[kPa]

Realizzazione Lavori

Collegamento viario compreso tra lo Svincolo della S.S. 514 di "Chiaromonte" con la S.S. 115 e lo

Svincolo della "Ragusana"

PROGETTO ESECUTIVO

RELAZIONE DI CALCOLO SOTTOVIA AL KM 3+248 - SEC. 90

Spostamenti

Spostamenti fondazione (Combinazione n° 1)		
X [m]	u _x [cm]	u _y [cm]
0.00	0.095	0.550
3.37 6.80	0.093 0.089	0.415 0.327
10.23	0.086	0.424
13.60	0.084	0.582
Spostamenti traverso (Combinazione n° 1)		
X [m]	u _x [cm]	u _y [cm]
1.25	0.135	0.519
3.94 6.80	0.144 0.152	0.637 0.698
9.52	0.160	0.644
12.35	0.169	0.541
Spostamenti piedritto sinistro (Combinazione	n° 1)	
		u [cm]
Y [m] 0.60	u _x [cm] 0.095	u _y [cm] 0.507
4.53	0.066	0.514
8.46	0.135	0.519
Spostamenti piedritto destro (Combinazione n	<u>° 1)</u>	
Y [m] 0.60	u _x [cm] 0.084	u _y [cm] 0.529
4.53	0.168	0.536
8.46	0.169	0.541
Spostamenti fondazione (Combinazione n° 2)		
X [m]	u _x [cm]	u _y [cm]
0.00	0.167	0.486
3.37	0.165	0.411
6.80 10.23	0.161 0.157	0.344 0.437
13.60	0.154	0.437
Spostamenti traverso (Combinazione n° 2)	0.134	0.372
X [m]	u _x [cm]	u _y [cm]
1.25 3.94	0.454 0.379	0.481 0.651
6.80	0.298	0.733
9.52	0.220	0.672
12.35	0.140	0.542
Spostamenti piedritto sinistro (Combinazione i	n° 2)	
Y [m]	u _x [cm]	u _y [cm]
0.60	0.167	0.469
4.53	0.256	0.476
8.46	0.454	0.481
Spostamenti piedritto destro (Combinazione n	<u>° 2)</u>	
Y [m]	u _x [cm]	u _y [cm]
0.60	0.155	0.530
4.53 8.46	0.192 0.140	0.537 0.542
Spostamenti fondazione (Combinazione n° 3)		
	[]	[]
X [m] 0.00	u _x [cm] 0.051	u _y [cm] 0.605
3.37	0.049	0.442
6.80	0.046	0.333
10.23	0.043	0.423
13.60	0.041	0.581
Spostamenti traverso (Combinazione n° 3)		
X [m]	u _x [cm]	u _y [cm]
1.25	0.065	0.565
3.94	0.073	0.684

Collegamento viario compreso tra lo Svincolo della S.S. 514 di "Chiaromonte" con la S.S. 115 e lo

Svincolo della "Ragusana" PROGETTO ESECUTIVO

Direzione Progettazione e Realizzazione Lavori

6.80	0.082	0.736
9.52	0.091	0.664
12.35	0.099	0.540
Spostamenti piedritto sinistro (Combinazione n° 3)		
Y [m] 0.60	u _x [cm]	u _y [cm]
4.53	0.051 -0.004	0.552 0.559
8.46	0.065	0.565
Spostamenti piedritto destro (Combinazione n° 3)		
Y [m]	u _x [cm]	u _y [cm]
0.60	0.041	0.528
4.53 8.46	0.121 0.099	0.535 0.540
Spostamenti fondazione (Combinazione n° 4)		
X [m]	u _x [cm]	u _y [cm]
0.00 3.37	0.122 0.120	0.544 0.439
6.80	0.117	0.459
10.23	0.113	0.436
13.60	0.111	0.570
Spostamenti traverso (Combinazione n° 4)		
X [m]	u _x [cm]	u _y [cm]
1.25	0.377	0.529
3.94 6.80	0.302 0.221	0.700 0.772
9.52	0.144	0.693
12.35	0.064	0.540
Spostamenti piedritto sinistro (Combinazione n° 4)		
Y [m]	u _x [cm]	u _y [cm]
0.60 4.53	0.122 0.182	0.516 0.523
8.46	0.377	0.529
Spostamenti piedritto destro (Combinazione n° 4)		
Y [m]	u _x [cm]	u _y [cm]
0.60	0.111	0.527
4.53	0.143	0.534
8.46	0.064	0.540
Spostamenti fondazione (Combinazione n° 5)		
X [m]	u _x [cm]	u _y [cm]
0.00	0.013	0.588
3.37	0.011	0.432
6.80 10.23	0.008 0.005	0.337 0.450
13.60	0.003	0.637
Spostamenti traverso (Combinazione n° 5)		
X [m]	u _x [cm]	u _y [cm]
1.25	0.057	0.551
3.94 6.80	0.066 0.075	0.712 0.800
9.52	0.083	0.729
12.35	0.091	0.587
Spostamenti piedritto sinistro (Combinazione n° 5)		
Y [m]	u _x [cm]	u _y [cm]
0.60 4.53	0.013 -0.038	0.537 0.545
4.33 8.46	0.057	0.551
Spostamenti piedritto destro (Combinazione n° 5)		
Y [m]	u _x [cm]	u _y [cm]
0.60	0.003	0.573

Collegamento viario compreso tra lo Svincolo della S.S. 514 di "Chiaromonte" con la S.S. 115 e lo

Svincolo della "Ragusana"

PROGETTO ESECUTIVO

Direzione Progettazione e Realizzazione Lavori

RELAZIONE DI CALCOLO SOTTOVIA AL KM 3+248 - SEC. 90

4.53 8.46	0.112 0.091	0.581 0.587	
Spostamenti fondazione (Combinaz	ione n° 6)		
V []	[]		
X [m] 0.00	u _x [cm] 0.060	u _y [cm] 0.533	
3.37	0.058	0.430	
6.80	0.055	0.450	
10.23	0.053	0.461	
13.60	0.049	0.401	
Spostamenti traverso (Combinazion		0.023	
X [m]	u _x [cm]	u _y [cm]	
1.25	0.338	0.518	
3.94	0.262	0.731	
6.80	0.182	0.840	
9.52	0.105	0.760	
12.35	0.025	0.586	
Spostamenti piedritto sinistro (Com	binazione n° 6)		
Y [m]	u _x [cm]	u _y [cm]	
0.60	0.060	0.505	
4.53	0.118	0.512	
8.46	0.338	0.518	
Spostamenti piedritto destro (Comb	oinazione n° 6)		
Y [m]	u _x [cm]	u _y [cm]	
0.60	0.049	0.572	
4.53	0.109	0.580	
8.46	0.025	0.586	
Spostamenti fondazione (Combinaz	ione n° 7)		
X [m]	u _x [cm]	u _v [cm]	
0.00	0.052	0.563	
3.37	0.050	0.408	
6.80	0.047	0.313	
10.23	0.044	0.411	
13.60	0.042	0.577	
Spostamenti traverso (Combinazion			
			
X [m]	u _x [cm]	u _y [cm]	
1.25	0.006	0.523	
3.94	0.042	0.628	
6.80	0.081	0.685	
9.52	0.118	0.632	
12.35	0.156	0.532	
Spostamenti piedritto sinistro (Com	binazione n° 7)		
Y [m]	u _x [cm]	u _y [cm]	
0.60	0.052	0.511	
4.53	-0.023	0.518	
8.46	0.006	0.523	
Spostamenti piedritto destro (Comb			
Y [m]	u _x [cm]	u _y [cm]	
0.60	0.042	0.520	
4.53	0.145	0.527	
8.46	0.156	0.532	
Spostamenti fondazione (Combinaz	ione n° 8)		
V [m1	u [em]	اسم]	
X [m]	u _x [cm]	u _y [cm]	
0.00	0.172	0.464	
3.37	0.170	0.403	
6.80	0.166	0.342	
10.23	0.162	0.432	
13.60	0.160	0.560	
Spostamenti traverso (Combinazione n° 8)			
X [m]	u _x [cm]	u _y [cm]	
1.25	0.527	0.464	

MANDATARIA:

Collegamento viario compreso tra lo Svincolo della S.S. 514 di "Chiaromonte" con la S.S. 115 e lo

Svincolo della "Ragusana"

PROGETTO ESECUTIVO

Direzione Progettazione e Realizzazione Lavori

3.94	0.423	0.657
6.80	0.423	0.748
9.52	0.207	0.682
12.35	0.097	0.532
Constant and distance in the Country of the Country		
Spostamenti piedritto sinistro (Combinazione n° 8)	l	
Y [m]	u _x [cm]	u _y [cm]
0.60 4.53	0.172 0.287	0.452 0.459
8.46	0.527	0.464
Spostamenti piedritto destro (Combinazione n° 8)		
Y [m]	u _x [cm]	u _y [cm]
0.60 4.53	0.160 0.184	0.520 0.527
8.46	0.097	0.532
Spostamenti fondazione (Combinazione n° 9)		
X [m]	u _x [cm]	u _v [cm]
0.00	0.037	0.600
3.37	0.035	0.427
6.80	0.032	0.319
10.23 13.60	0.029 0.027	0.412 0.577
15.60	0.027	0.577
Spostamenti traverso (Combinazione n° 9)		
X [m]	u _x [cm]	u _y [cm]
1.25	-0.022	0.554
3.94	0.014	0.660
6.80 9.52	0.053 0.090	0.709 0.645
12.35	0.128	0.533
Spostamenti piedritto sinistro (Combinazione n° 9)	l .	
Y [m]	u _x [cm]	u _y [cm]
0.60	0.037	0.541
4.53	-0.051	0.549
8.46	-0.022	0.554
Spostamenti piedritto destro (Combinazione nº 9)		
Y [m]	u _x [cm]	u _v [cm]
0.60	0.027	0.521
4.53	0.129	0.527
8.46	0.128	0.533
Spostamenti fondazione (Combinazione n° 10)		
X [m]	u _x [cm]	u _y [cm]
0.00 3.37	0.127 0.125	0.514 0.425
6.80	0.121	0.346
10.23	0.118	0.429
13.60	0.116	0.551
Spostamenti traverso (Combinazione n° 10)		
X [m]	u _x [cm]	u _y [cm]
1.25	0.439	0.505
3.94	0.335	0.695
6.80	0.224	0.777
9.52 12.35	0.119 0.009	0.697 0.526
12.33	0.003	0.320
Spostamenti piedritto sinistro (Combinazione n° 10	<u>o)</u>	
Y [m]	u _x [cm]	u _y [cm]
0.60	0.127	0.492
4.53 8.46	0.210 0.439	0.499 0.505
		0.305
Spostamenti piedritto destro (Combinazione n° 10	1	
Y [m]	u _x [cm]	u _y [cm]
• •		,

Collegamento viario compreso tra lo Svincolo della S.S. 514 di "Chiaromonte" con la S.S. 115 e lo

Svincolo della "Ragusana"

PROGETTO ESECUTIVO

Direzione Progettazione e **RELAZIONE DI CALCOLO SOTTOVIA AL KM 3+248 - SEC. 90** Realizzazione Lavori

0.60	0.116	0.513
4.53	0.127	0.520
8.46	0.009	0.526
Spostamenti fondazione (Combinazione n° 11)		
X [m]	u _x [cm]	u _y [cm]
0.00	0.010	υ _γ [c11] 0.587
3.37	0.010	0.420
6.80	0.008	0.420
10.23	0.003	0.432
13.60	0.002	0.620
15100	0.001	0.020
Spostamenti traverso (Combinazione n° 11)		
X [m]	u _x [cm]	u _y [cm]
1.25	-0.025	0.543
3.94	0.012	0.680
6.80	0.051	0.757
9.52	0.087	0.693
12.35	0.125	0.568
Spostamenti piedritto sinistro (Combinazione nº 3	<u>11)</u>	
Y [m]	u _x [cm]	u _y [cm]
0.60	0.010	0.530
4.53	-0.074	0.537
8.46	-0.025	0.543
Spostamenti piedritto destro (Combinazione n° 1	<u>1)</u>	
Y [m]	u _x [cm]	u _y [cm]
0.60	0.001	0.555
4.53	0.124	0.562
8.46	0.125	0.568
Spostamenti fondazione (Combinazione n° 12)		
Spostamenti ionadzione (combinazione ii 12)		
X [m]	u _x [cm]	u _v [cm]
0.00	0.075	0.507
3.37	0.073	0.419
6.80	0.070	0.348
10.23	0.067	0.447
13.60	0.065	0.591
15100	0.005	0.001
Spostamenti traverso (Combinazione n° 12)		
X [m]	u _x [cm]	u _y [cm]
1.25	0.400	0.497
3.94	0.296	0.719
6.80	0.185	0.828
9.52	0.080	0.746
12.35	-0.030	0.559
Spostamenti piedritto sinistro (Combinazione nº 3	12)	
Y [m]	u _x [cm]	u _y [cm]
0.60	0.075	0.485
4.53	0.155	0.492
8.46	0.400	0.497
	2)	
Spostamenti piedritto destro (Combinazione n° 1	<u>2)</u>	
Y [m]	u _x [cm]	u _y [cm]
0.60	0.065	0.546
4.53	0.094	0.553
8.46	-0.030	0.559
	-	
Spostamenti fondazione (Combinazione n° 13)		
W.F. 1	for 2	
X [m]	u _x [cm]	u _y [cm]
0.00	0.770	0.383
3.37	0.767	0.332
6.80	0.762	0.282
10.23	0.756	0.338
13.60	0.753	0.397
Spostamenti traverso (Combinazione n° 13)		
and the state of t		
X [m]	u _x [cm]	u _y [cm]
• •		

Collegamento viario compreso tra lo Svincolo della S.S. 514 di "Chiaromonte" con la S.S. 115 e lo

Svincolo della "Ragusana" PROGETTO ESECUTIVO

Direzione Progettazione e Realizzazione Lavori

1.25	0.742	0.382
3.94	0.762	0.402
6.80	0.783	0.424
9.52	0.802	0.406
12.35	0.822	0.393
Spostamenti piedritto sinistro (Combinazione r	<u>n° 13)</u>	
Y [m]	u _x [cm]	u _y [cm]
0.60	0.770	0.373
4.53	0.790	0.378
8.46	0.742	0.382
Spostamenti piedritto destro (Combinazione n'	° 13)	
	_ ,	
Y [m]	u _x [cm]	u _y [cm]
0.60	0.753	0.384
4.53	0.749	0.389
8.46	0.822	0.393
Spostamenti fondazione (Combinazione n° 14)		
Spostamenti ionaazione (combinazione ii 14)		
X [m]	u _x [cm]	u _v [cm]
0.00	0.778	0.271
3.37	0.775	0.250
6.80	0.770	0.217
10.23	0.764	0.256
13.60	0.761	0.286
Spectamenti travarca (Cambinazione nº 14)		
Spostamenti traverso (Combinazione n° 14)		
X [m]	u _x [cm]	u _v [cm]
1.25	0.750	0.278
3.94	0.770	0.276
6.80	0.791	0.287
9.52	0.811	0.279
12.35	0.831	0.289
Construction of the circles (Construction	-0.14)	
Spostamenti piedritto sinistro (Combinazione r	<u>1° 14)</u>	
Y [m]	u _x [cm]	u _y [cm]
0.60	0.778	0.271
4.53	0.813	0.275
8.46	0.750	0.278
Spostamenti piedritto destro (Combinazione n'	<u>° 14)</u>	
W. 1		
Y [m] 0.60	u _x [cm] 0.761	u _y [cm] 0.282
4.53	0.742	0.282
8.46	0.831	0.289
Spostamenti fondazione (Combinazione n° 15)		
V []		
X [m] 0.00	u _x [cm] 0.802	u _y [cm] 0.354
3.37	0.799	0.334
6.80	0.794	0.292
10.23	0.788	0.344
13.60	0.784	0.386
Spostamenti traverso (Combinazione n° 15)		
V. 1		
X [m]	u _x [cm]	u _y [cm]
1.25 3.94	0.895 0.868	0.365 0.412
6.80	0.840	0.412
9.52	0.812	0.420
12.35	0.783	0.389
6	0.45)	
Spostamenti piedritto sinistro (Combinazione r	1 131	
Y [m]	u _x [cm]	u _y [cm]
0.60	0.802	0.356
4.53	0.880	0.361
8.46	0.895	0.365
Spostamenti piedritto destro (Combinazione n'	<u>° 15)</u>	

Collegamento viario compreso tra lo Svincolo della S.S. 514 di "Chiaromonte" con la S.S. 115 e lo

Svincolo della "Ragusana"

PROGETTO ESECUTIVO

Direzione Progettazione e Realizzazione Lavori

Y [m] 0.60	u _x [cm] 0.784	u _y [cm] 0.380
4.53 8.46	0.747 0.783	0.385 0.389
Spostamenti fondazione (Combinazione n° 16)		
X [m]	u _x [cm]	u _y [cm]
0.00	0.810 0.807	0.242 0.250
3.37 6.80	0.807	0.250
10.23	0.796	0.261
13.60	0.792	0.275
Spostamenti traverso (Combinazione n° 16)		
_		
X [m]	u _x [cm]	u _y [cm] 0.261
1.25 3.94	0.904 0.877	0.286
6.80	0.848	0.307
9.52	0.820	0.294
12.35	0.791	0.286
Spostamenti piedritto sinistro (Combinazione n'	2 161	
Y [m] 0.60	u _x [cm]	u _y [cm]
4.53	0.810 0.903	0.254 0.258
4.53 8.46	0.903	0.258
		0.261
Spostamenti piedritto destro (Combinazione n°	<u>16)</u>	
Y [m]	u _x [cm]	u _y [cm]
0.60	0.792	0.279
4.53	0.741	0.283
8.46	0.791	0.286
Spostamenti fondazione (Combinazione n° 17)		
X [m]	u _x [cm]	u _y [cm]
0.00	0.004	0.373
3.37	0.002	0.289
6.80	0.000	0.231
10.23 13.60	-0.002 -0.004	0.289 0.373
Spostamenti traverso (Combinazione n° 17)		
X [m]	u _x [cm]	u _y [cm]
1.25	0.057	0.355
3.94	0.029	0.435
6.80	0.000	0.477
9.52	-0.028	0.439
12.35	-0.057	0.355
Spostamenti piedritto sinistro (Combinazione n	<u>° 17)</u>	
Y [m]	u _x [cm]	u _y [cm]
0.60	0.004	0.347
4.53 8.46	-0.004 0.057	0.351 0.355
Spostamenti piedritto destro (Combinazione n°		
Y [m]	u _x [cm]	u _y [cm]
0.60	-0.004	0.347
4.53	0.004	0.351
8.46	-0.057	0.355
Spostamenti fondazione (Combinazione n° 18)		
X [m]	u _x [cm]	u _y [cm]
0.00	0.058	0.394
3.37 6.80	0.057 0.054	0.307 0.245
10.23	0.054	0.245
13.60	0.051	0.306
	0.030	0.337
Spostamenti traverso (Combinazione n° 18)		

Collegamento viario compreso tra lo Svincolo della S.S. 514 di "Chiaromonte" con la S.S. 115 e lo

Svincolo della "Ragusana"

PROGETTO ESECUTIVO

Direzione Progettazione e Realizzazione Lavori

X [m] 1.25	u _x [cm] 0.126	ս _չ [cm] 0.377
3.94	0.098	0.464
6.80	0.069	0.510
9.52	0.040	0.467
12.35	0.011	0.378
Spostamenti piedritto sinistro (Combinazione n° 18	1	
Y [m]	u _x [cm]	u _v [cm]
0.60	0.058	0.368
4.53	0.059	0.373
8.46	0.126	0.377
Spostamenti piedritto destro (Combinazione n° 18)		
Y [m]	u _x [cm]	u _v [cm]
0.60	0.050	0.369
4.53	0.063	0.374
8.46	0.011	0.378
Spostamenti fondazione (Combinazione n° 19)		
X [m]	u _x [cm]	u _y [cm]
0.00	0.027	0.430
3.37	0.026	0.324
6.80 10.23	0.023 0.021	0.249 0.304
13.60	0.021	0.304
13.00	0.015	0.332
Spostamenti traverso (Combinazione n° 19)		
X [m]	u _x [cm]	u _y [cm]
1.25	0.067	0.406
3.94	0.040	0.492
6.80 9.52	0.010 -0.018	0.531 0.478
12.35	-0.018	0.478
12.53	-0.047	0.374
Spectamenti piedritta cinictra (Combinazione nº 10	1	
Spostamenti piedritto sinistro (Combinazione nº 19	1	
Y [m]	u _x [cm]	u _v [cm]
0.60	0.027	0.396
4.53	0.007	0.402
8.46	0.067	0.406
Spostamenti piedritto destro (Combinazione n° 19)		
Y [m]	u _x [cm]	u _v [cm]
0.60	0.019	0.365
4.53	0.025	0.370
8.46	-0.047	0.374
Spostamenti fondazione (Combinazione n° 20)		
Spostamenti fondazione (combinazione n' 20)		
X [m]	u _x [cm]	u _y [cm]
0.00	0.004	0.422
3.37	0.002	0.319
6.80	0.000	0.251
10.23 13.60	-0.002 -0.004	0.319 0.422
Spostamenti traverso (Combinazione n° 20)	-0.004	0.422
Spostamenti traverso (Combinazione il 20)		
X [m]	u _x [cm]	u _y [cm]
X [m] 1.25	0.057	0.399
X [m] 1.25 3.94	0.057 0.030	0.399 0.508
X [m] 1.25 3.94 6.80	0.057 0.030 0.000	0.399
X [m] 1.25 3.94	0.057 0.030	0.399 0.508 0.568
X [m] 1.25 3.94 6.80 9.52	0.057 0.030 0.000 -0.028	0.399 0.508 0.568 0.513
X [m] 1.25 3.94 6.80 9.52	0.057 0.030 0.000 -0.028 -0.057	0.399 0.508 0.568 0.513
X [m] 1.25 3.94 6.80 9.52 12.35	0.057 0.030 0.000 -0.028 -0.057	0.399 0.508 0.568 0.513 0.399
X [m] 1.25 3.94 6.80 9.52 12.35 Spostamenti piedritto sinistro (Combinazione n° 20 Y [m]	0.057 0.030 0.000 -0.028 -0.057	0.399 0.508 0.568 0.513 0.399
X [m] 1.25 3.94 6.80 9.52 12.35	0.057 0.030 0.000 -0.028 -0.057	0.399 0.508 0.568 0.513 0.399
X [m] 1.25 3.94 6.80 9.52 12.35 Spostamenti piedritto sinistro (Combinazione n° 20 Y [m] 0.60	0.057 0.030 0.000 -0.028 -0.057	0.399 0.508 0.568 0.513 0.399 u _V [cm] 0.389
X [m] 1.25 3.94 6.80 9.52 12.35 Spostamenti piedritto sinistro (Combinazione n° 20 Y [m] 0.60 4.53	0.057 0.030 0.000 -0.028 -0.057 u _x [cm] 0.004 -0.016 0.057	0.399 0.508 0.568 0.513 0.399 u _y [cm] 0.389 0.395

Realizzazione Lavori

Collegamento viario compreso tra lo Svincolo della S.S. 514 di "Chiaromonte" con la S.S. 115 e lo

Svincolo della "Ragusana"

PROGETTO ESECUTIVO

Y [m] 0.60 4.53 8.46	u _x [cm] -0.004 0.016 -0.057	u _y [cm] 0.389 0.395 0.399
Spostamenti fondazione (Combinazione n° 21)		
X [m]	u _x [cm]	u _y [cm]
0.00	0.027 0.026	0.349
3.37 6.80	0.026	0.281 0.232
10.23	0.021	0.297
13.60	0.020	0.394
Spostamenti traverso (Combinazione n° 21)		
X [m]	u _x [cm]	u _y [cm]
1.25	0.143	0.337
3.94 6.80	0.116 0.086	0.427 0.474
9.52	0.058	0.441
12.35	0.029	0.371
Spostamenti piedritto sinistro (Combinazione n°	<u>21)</u>	
Y [m]	u _x [cm]	u _v [cm]
0.60	0.027	0.330
4.53	0.051	0.334
8.46	0.143	0.337
Spostamenti piedritto destro (Combinazione n° 2	11)	
Y [m]	u _x [cm]	u _y [cm]
0.60 4.53	0.020	0.363
4.53 8.46	0.053 0.029	0.367 0.371
Spostamenti fondazione (Combinazione n° 22)		
X [m] 0.00	u _x [cm] 0.003	u _y [cm] 0.389
3.37	0.002	0.286
6.80	0.000	0.223
10.23 13.60	-0.002 -0.003	0.286 0.389
Spostamenti traverso (Combinazione n° 22)	-0.003	0.369
X [m]	u _x [cm]	u _y [cm]
1.25 3.94	-0.015 -0.008	0.363 0.435
6.80	0.000	0.475
9.52	0.007	0.439
12.35	0.015	0.363
Spostamenti piedritto sinistro (Combinazione n°	<u>22)</u>	
Y [m]	u _x [cm]	u _y [cm]
0.60	0.003	0.355
4.53 8.46	-0.041 -0.015	0.360 0.363
Spostamenti piedritto destro (Combinazione n° 2	2)	
Y [m]	u _x [cm]	u _y [cm]
0.60 4.53	-0.003 0.041	0.355 0.360
4.55 8.46	0.015	0.363
Spostamenti fondazione (Combinazione n° 23)		
X [m]	u _x [cm]	u _y [cm]
0.00	0.004	0.363
3.37	0.002	0.290
6.80 10.23	0.000 -0.002	0.236 0.290
13.60	-0.002	0.363
Spostamenti traverso (Combinazione n° 23)		

Realizzazione Lavori

Collegamento viario compreso tra lo Svincolo della S.S. 514 di "Chiaromonte" con la S.S. 115 e lo

Svincolo della "Ragusana"

PROGETTO ESECUTIVO

X [m] 1.25 3.94 6.80 9.52 12.35	u _x [cm] 0.130 0.067 0.000 -0.064 -0.130	υ _γ [cm] 0.350 0.458 0.511 0.463 0.350
Spostamenti piedritto sinistro (Combinazione n° 23)		
Y [m]	u _x [cm]	u _y [cm]
0.60 4.53	0.004 0.023	0.342 0.346
8.46	0.130	0.350
Spostamenti piedritto destro (Combinazione n° 23)	famal	
Y [m] 0.60	u _x [cm] -0.004	u _y [cm] 0.342
4.53 8.46	-0.023 -0.130	0.346 0.350
Spostamenti fondazione (Combinazione n° 24)		
X [m]	u _x [cm]	u _y [cm]
0.00 3.37	0.128 0.126	0.360 0.306
6.80	0.123	0.256
10.23 13.60	0.120 0.118	0.323 0.420
Spostamenti traverso (Combinazione n° 24)		
X [m]	u _x [cm]	u _y [cm]
1.25 3.94	0.350 0.287	0.357 0.487
6.80	0.220	0.549
9.52 12.35	0.156 0.089	0.502 0.399
Spostamenti piedritto sinistro (Combinazione n° 24) Y [m] 0.60 4.53	u _x [cm] 0.128 0.197	u _v [cm] 0.348 0.353
Y [m] 0.60 4.53 8.46	u _x [cm] 0.128	0.348
Y [m] 0.60 4.53 8.46 Spostamenti piedritto destro (Combinazione n° 24)	u _x [cm] 0.128 0.197 0.350	0.348 0.353 0.357
Y [m] 0.60 4.53 8.46	u _x [cm] 0.128 0.197	0.348 0.353
Y [m] 0.60 4.53 8.46 Spostamenti piedritto destro (Combinazione n° 24) Y [m]	u _x [cm] 0.128 0.197 0.350 u _x [cm]	0.348 0.353 0.357 u _v [cm]
Y [m] 0.60 4.53 8.46 Spostamenti piedritto destro (Combinazione n° 24) Y [m] 0.60 4.53	u _x [cm] 0.128 0.197 0.350 u _x [cm] 0.118 0.139	0.348 0.353 0.357 u _V [cm] 0.390 0.395
Y [m] 0.60 4.53 8.46 Spostamenti piedritto destro (Combinazione n° 24) Y [m] 0.60 4.53 8.46	u _x [cm] 0.128 0.197 0.350 u _x [cm] 0.118 0.139	0.348 0.353 0.357 u _V [cm] 0.390 0.395
Y [m] 0.60 4.53 8.46 Spostamenti piedritto destro (Combinazione n° 24) Y [m] 0.60 4.53 8.46 Spostamenti fondazione (Combinazione n° 25) X [m] 0.00	u _x [cm] 0.128 0.197 0.350 u _x [cm] 0.118 0.139 0.089 u _x [cm]	0.348 0.353 0.357 u _V [cm] 0.390 0.395 0.399 u _V [cm] 0.406
Y [m] 0.60 4.53 8.46 Spostamenti piedritto destro (Combinazione n° 24) Y [m] 0.60 4.53 8.46 Spostamenti fondazione (Combinazione n° 25) X [m] 0.00 3.37 6.80	u _x [cm] 0.128 0.197 0.350 u _x [cm] 0.118 0.139 0.089 u _x [cm] 0.089	0.348 0.353 0.357 u _V [cm] 0.390 0.395 0.399 u _V [cm] 0.406 0.327 0.261
Y [m] 0.60 4.53 8.46 Spostamenti piedritto destro (Combinazione n° 24) Y [m] 0.60 4.53 8.46 Spostamenti fondazione (Combinazione n° 25) X [m] 0.00 3.37 6.80 10.23	u _x [cm] 0.128 0.197 0.350 u _x [cm] 0.118 0.139 0.089 u _x [cm] 0.090 0.089 0.086 0.084	u _Y [cm] 0.399 u _Y [cm] 0.399 0.395 0.399
Y [m] 0.60 4.53 8.46 Spostamenti piedritto destro (Combinazione n° 24) Y [m] 0.60 4.53 8.46 Spostamenti fondazione (Combinazione n° 25) X [m] 0.00 3.37 6.80	u _x [cm] 0.128 0.197 0.350 u _x [cm] 0.118 0.139 0.089 u _x [cm] 0.089	0.348 0.353 0.357 u _V [cm] 0.390 0.395 0.399 u _V [cm] 0.406 0.327 0.261
Y [m] 0.60 4.53 8.46 Spostamenti piedritto destro (Combinazione n° 24) Y [m] 0.60 4.53 8.46 Spostamenti fondazione (Combinazione n° 25) X [m] 0.00 3.37 6.80 10.23 13.60 Spostamenti traverso (Combinazione n° 25)	u _x [cm] 0.128 0.197 0.350 u _x [cm] 0.118 0.139 0.089 u _x [cm] 0.090 0.089 0.086 0.084 0.082	u _y [cm] 0.399 u _y [cm] 0.399 u _y [cm] 0.406 0.327 0.261 0.321
Y [m] 0.60 4.53 8.46 Spostamenti piedritto destro (Combinazione n° 24) Y [m] 0.60 4.53 8.46 Spostamenti fondazione (Combinazione n° 25) X [m] 0.00 3.37 6.80 10.23 13.60 Spostamenti traverso (Combinazione n° 25) X [m] 1.25	u _x [cm] 0.128 0.197 0.350 u _x [cm] 0.118 0.139 0.089 u _x [cm] 0.090 0.089 0.086 0.084 0.082	0.348 0.353 0.357 u _Y [cm] 0.390 0.395 0.399 u _V [cm] 0.406 0.327 0.261 0.321 0.415
Y [m] 0.60 4.53 8.46 Spostamenti piedritto destro (Combinazione n° 24) Y [m] 0.60 4.53 8.46 Spostamenti fondazione (Combinazione n° 25) X [m] 0.00 3.37 6.80 10.23 13.60 Spostamenti traverso (Combinazione n° 25) X [m]	u _x [cm] 0.128 0.197 0.350 u _x [cm] 0.118 0.139 0.089 u _x [cm] 0.090 0.089 0.086 0.084 0.082	u _y [cm] 0.390 0.395 0.399 u _y [cm] 0.406 0.327 0.261 0.321 0.415
Y [m] 0.60 4.53 8.46 Spostamenti piedritto destro (Combinazione n° 24) Y [m] 0.60 4.53 8.46 Spostamenti fondazione (Combinazione n° 25) X [m] 0.00 3.37 6.80 10.23 13.60 Spostamenti traverso (Combinazione n° 25) X [m] 1.25 3.94	u _x [cm] 0.128 0.197 0.350 u _x [cm] 0.118 0.139 0.089 u _x [cm] 0.090 0.089 0.086 0.084 0.082 u _x [cm] 0.280 0.217	U _Y [cm] 0.399 u _Y [cm] 0.406 0.327 0.261 0.321 0.415
Y [m] 0.60 4.53 8.46 Spostamenti piedritto destro (Combinazione n° 24) Y [m] 0.60 4.53 8.46 Spostamenti fondazione (Combinazione n° 25) X [m] 0.00 3.37 6.80 10.23 13.60 Spostamenti traverso (Combinazione n° 25) X [m] 1.25 3.94 6.80 9.52	u _x [cm] 0.128 0.197 0.350 u _x [cm] 0.118 0.139 0.089 u _x [cm] 0.090 0.089 0.086 0.084 0.082 u _x [cm] 0.280 0.217 0.150 0.086	U _V [cm] 0.399 U _V [cm] 0.390 0.395 0.399 U _V [cm] 0.406 0.327 0.261 0.321 0.415 U _V [cm] 0.395 0.578
Y [m] 0.60 4.53 8.46 Spostamenti piedritto destro (Combinazione n° 24) Y [m] 0.60 4.53 8.46 Spostamenti fondazione (Combinazione n° 25) X [m] 0.00 3.37 6.80 10.23 13.60 Spostamenti traverso (Combinazione n° 25) X [m] 1.25 3.94 6.80 9.52	u _x [cm] 0.128 0.197 0.350 u _x [cm] 0.118 0.139 0.089 0.089 0.086 0.084 0.082 u _x [cm] 0.280 0.217 0.150 0.086 0.086	U _V [cm] 0.399 U _V [cm] 0.390 0.395 0.399 U _V [cm] 0.406 0.327 0.261 0.321 0.415 U _V [cm] 0.395 0.578
Y [m]	u _x [cm] 0.128 0.197 0.350 u _x [cm] 0.118 0.139 0.089 0.089 0.086 0.084 0.082 u _x [cm] 0.280 0.217 0.150 0.086 0.020	U _V [cm] 0.399 U _V [cm] 0.390 0.395 0.399 U _V [cm] 0.406 0.327 0.261 0.321 0.415 U _V [cm] 0.395 0.578 0.578 0.517 0.396
Y [m] 0.60 4.53 8.46 Spostamenti piedritto destro (Combinazione n° 24) Y [m] 0.60 4.53 8.46 Spostamenti fondazione (Combinazione n° 25) X [m] 0.00 3.37 6.80 10.23 13.60 Spostamenti traverso (Combinazione n° 25) X [m] 1.25 3.94 6.80 9.52 12.35 Spostamenti piedritto sinistro (Combinazione n° 25)	u _x [cm] 0.128 0.197 0.350 u _x [cm] 0.118 0.139 0.089 u _x [cm] 0.090 0.089 0.086 0.084 0.082 u _x [cm] 0.280 0.217 0.150 0.086 0.086	u _γ [cm] 0.395 0.399 u _γ [cm] 0.390 0.395 0.399 u _γ [cm] 0.406 0.327 0.261 0.321 0.415 u _γ [cm] 0.395 0.524 0.578 0.517 0.396

Realizzazione Lavori

Collegamento viario compreso tra lo Svincolo della S.S. 514 di "Chiaromonte" con la S.S. 115 e lo

Svincolo della "Ragusana"

PROGETTO ESECUTIVO

Spostamenti piedritto destro (Combinazione n° 2	: <u>5)</u>	
Y [m]	u _x [cm]	u _y [cm]
0.60	0.082	0.386
4.53 8.46	0.095 0.020	0.391 0.396
8.46	0.020	0.396
Spostamenti fondazione (Combinazione n° 26)		
X [m]	u _x [cm]	u _y [cm]
0.00 3.37	0.041 0.040	0.399 0.321
6.80	0.040	0.263
10.23	0.035	0.340
13.60	0.034	0.456
Spostamenti traverso (Combinazione n° 26)		
X [m]	u _x [cm]	u _y [cm]
1.25 3.94	0.246 0.183	0.387 0.547
6.80	0.116	0.629
9.52	0.052	0.566
12.35	-0.015	0.429
Spostamenti piedritto sinistro (Combinazione n°	26)	
Y [m]	_	u [em]
Y [m] 0.60	u _x [cm] 0.041	u _y [cm] 0.377
4.53	0.082	0.383
8.46	0.246	0.387
Spostamenti piedritto destro (Combinazione nº 2	<u>(6)</u>	
Y [m]	u _x [cm]	u _y [cm]
0.60 4.53	0.034 0.066	0.418 0.424
8.46	-0.015	0.429
Spostamenti fondazione (Combinazione n° 27)		
X [m]	u _x [cm]	u _y [cm]
0.00	0.118	0.344
3.37	0.116	0.297
6.80 10.23	0.114 0.111	0.252 0.320
13.60	0.111	0.420
Spostamenti traverso (Combinazione n° 27)		
X [m] 1.25	u _x [cm] 0.358	u _y [cm] 0.343
3.94	0.295	0.474
6.80	0.228	0.537
9.52	0.164	0.493
12.35	0.097	0.397
Spostamenti piedritto sinistro (Combinazione n°	<u>27)</u>	
Y [m]	u [cm]	u [cm]
y [m] 0.60	u _x [cm] 0.118	u _y [cm] 0.335
4.53	0.196	0.340
8.46	0.358	0.343
Spostamenti piedritto destro (Combinazione n° 2	<u>(7)</u>	
Y [m]	u _x [cm]	u _y [cm]
0.60 4.53	0.109 0.138	0.388 0.393
4.53 8.46	0.138 0.097	0.393
Spostamenti fondazione (Combinazione n° 28)		
X [m]	u _x [cm]	u _y [cm]
0.00	0.007	0.431
3.37	0.006	0.311
6.80 10.23	0.004 0.002	0.240 0.320
13.60	0.002	0.456

Realizzazione Lavori

Collegamento viario compreso tra lo Svincolo della S.S. 514 di "Chiaromonte" con la S.S. 115 e lo

Svincolo della "Ragusana"

PROGETTO ESECUTIVO

Spostamenti traverso (Combinazione n° 28)		
X [m]	u _x [cm]	u _v [cm]
1.25	-0.001	0.401
3.94	0.017	0.505
6.80	0.037	0.563
9.52	0.056	0.515
12.35	0.076	0.419
Spostamenti piedritto sinistro (Combinazione nº 2	28)	
Y [m]	u _x [cm]	u _v [cm]
0.60	0.007	0.391
4.53	-0.047	0.396
8.46	-0.001	0.401
Spostamenti piedritto destro (Combinazione n° 28	<u>8)</u>	
Y [m]	u _x [cm]	u _v [cm]
0.60	0.000	0.409
4.53	0.084	0.415
8.46	0.076	0.419
Spostamenti fondazione (Combinazione n° 29)		
X [m]	u _x [cm]	u _y [cm]
0.00	0.054	0.376
3.37	0.053	0.310
6.80	0.050	0.258
10.23	0.048	0.331
13.60	0.047	0.438
Spostamenti traverso (Combinazione n° 29)		
X [m]	u _x [cm]	u _v [cm]
1.25	0.289	0.369
3.94	0.215	0.530
6.80	0.135	0.610
9.52	0.059	0.550
12.35	-0.019	0.414
Spostamenti piedritto sinistro (Combinazione nº 2	<u>29)</u>	
Y [m]	u _x [cm]	u _y [cm]
0.60	0.054	0.360
4.53	0.112	0.365
8.46	0.289	0.369
Spostamenti piedritto destro (Combinazione n° 29	<u>9)</u>	
Y [m]	u _x [cm]	u _v [cm]
0.60	0.047	0.404
4.53	0.069	0.410
8.46	-0.019	0.414

Realizzazione Lavori

Collegamento viario compreso tra lo Svincolo della S.S. 514 di "Chiaromonte" con la S.S. 115 e lo Svincolo della "Ragusana"

PROGETTO ESECUTIVO

RELAZIONE DI CALCOLO SOTTOVIA AL KM 3+248 - SEC. 90

Sollecitazioni

Sollecitazioni for	ndazione (Combinazione n° 1)		
X [m]	M [kNm]	V [kN]	N [kN]
0.00	0.0000	9.6273	-9.2330
3.37	234.6121	-355.0331	397.1900
6.80	841.6678	-5.0488	397.1900
			397.1900
10.23	308.4079	353.2300	
13.60	0.0000	-10.1772	8.1542
Sollecitazioni tra	verso (Combinazione n° 1)		
X [m]	M [kNm]	V [kN]	N [kN]
1.25	-620.6467	399.6277	227.1475
3.94	182.4198	198.4005	249.9895
6.80	443.3483	-16.2061	274.3503
9.52	122.1052	-220.0021	297.4839
12.35	-800.5341	-432.0398	321.5530
Sollecitazioni pie	edritto sinistro (Combinazione	<u>n° 1)</u>	
Y [m]	M [kNm]	V [kN]	N [kN]
0.60	-882.6596	406.4230	691.4302
4.53	-129.1702	5.1714	545.5289
8.46	-620.6467	-227.1475	399.6277
	1 1	0.43	
<u>sonecitazioni pie</u>	edritto destro (Combinazione r	1 11	
Y [m]	M [kNm]	V [kN]	N [kN]
0.60	-749.3151	-389.0358	723.8423
4.53	-82.7064	31.3428	577.9411
8.46	-800.5341	306.3937	432.0398
Sollecitazioni for	ndazione (Combinazione n° 2)		
X [m]	M [kNm]	V [kN]	N [kN]
0.00	0.0000	8.5131	-16.2525
3.37	53.9480	-384.0111	446.6570
6.80	745.8550	-20.4312	446.6570
10.23	224.2260	361.5575	446.6570
13.60	0.0000	-10.0113	15.0393
		10.0113	15.0353
Sollecitazioni tra	verso (Combinazione n° 2)		
X [m]	M [kNm]	V [kN]	N [kN]
1.25	-423.6387	386.8974	170.6610
3.94	345.2378	185.6702	193.5030
6.80	569.7031	-28.9364	217.8637
9.52	213.8336	-232.7324	240.9973
12.35	-744.8325	-444.7701	265.0665
Sollecitazioni pie	edritto sinistro (Combinazione	<u>n° 2)</u>	
Y [m]	M [kNm]	V [kN]	N [kN]
0.60	-1129.6356	462.9095	678.6999
4.53	-154.1541	61.6579	532.7986
8.46	-423.6387	-170.6610	386.8974
Sollecitazioni pie	edritto destro (Combinazione r	<u>n° 2)</u>	
Y [m]	M [kNm]	V [kN]	N [kN]
7 [m] 0.60	-861.6150	v (KN) -431.6177	N [KN] 736.5726
4.53	-861.6150 -91.5767	-431.6177 17.3029	590.6714
4.53 8.46	-91.5767 -744.8325	265.0665	444.7701
	,	203.0003	444.7701
Sollecitazioni for	ndazione (Combinazione n° 3)		
X [m]	M [kNm]	V [kN]	N [kN]
0.00	0.0000	10.5922	-4.9909 364 5775
3.37	280.2627	-370.0625	364.5775
6.80	896.4808	0.7272	364.5775
10.23	335.7537	361.9946	364.5775
13.60	0.0000	-10.1632	4.0007
Sollecitazioni tra	verso (Combinazione n° 3)		
X [m]	M [kNm]	V [kN]	N [kN]
1.25	-625.0501	470.0365	191.2430
3.94	241.3542	190.7321	214.0850
3.74	241.3342	130./321	214.0850

Collegamento viario compreso tra lo Svincolo della S.S. 514 di "Chiaromonte" con la S.S. 115 e lo

Svincolo della "Ragusana" PROGETTO ESECUTIVO

Direzione Progettazione e Realizzazione Lavori

6.80	480.3181	-23.8745	238.4458
9.52	138.2169	-227.6705	261.5794
12.35	-806.1240	-439.7082	285.6485
12.55	500.1240	433.7002	203.0403
Sollecitazioni pied	dritto sinistro (Combinazione	n° 3)	
	•	<u></u>	
Y [m]	M [kNm]	V [kN]	N [kN]
0.60	-882.8567	369.5684	761.8390
4.53	-202.2220	4.3896	615.9378
8.46	-625.0501	-191.2430	470.0365
Sollecitazioni pied	<u>dritto destro (Combinazione r</u>	<u>1° 3)</u>	
Y [m]	M [kNm]	V [kN]	N [kN]
0.60	-740.1779	-360.5769	731.5107
4.53	-136.9445	34.1368	585.6095
8.46	-806.1240	276.7297	439.7082
Collocitazioni fon	dazione (Combinazione n° 4)		
3011ecitazioni ion	dazione (combinazione ii 4)		
X [m]	M [kNm]	V [kN]	N [kN]
0.00	0.0000	9.5246	-11.9180
3.37	104.1287	-398.3308	412.0299
6.80	801.9641	-13.6942	412.0299
10.23	250.6245	370.4995	412.0299
13.60	0.0000	-9.9681	10.7989
Sollecitazioni trav	rerso (Combinazione n° 4)		
· <u></u>	_		
X [m]	M [kNm]	V [kN]	N [kN]
1.25	-434.2016	458.8209	135.8067
3.94	402.0809	179.5165	158.6487
6.80	608.9203	-35.0901	183.0094
9.52	236.3127	-238.8861	206.1430
12.35	-739.7682	-450.9238	230.2122
Callacitazioni nio	dritto sinistro (Combinazione	n° 4)	
Soliecitazioni piet	dritto siriistro (combinazione	11_4/	
Y [m]	M [kNm]	V [kN]	N [kN]
0.60	-1124.0570	423.9479	750.6234
4.53	-229.1704	59.6043	604.7222
8.46	-434.2016	-135.8067	458.8209
Sollecitazioni pied	dritto destro (Combinazione r	<u>1° 4)</u>	
Y [m]	M [kNm]	V [kN]	N [kN]
0.60	-853.3935	-401.2310	742.7263
4.53	-152.8337	21.0934	596.8251
8.46	-739.7682	230.2122	450.9238
Sollecitazioni fon	dazione (Combinazione n° 5)		
v (1	84 EL ** 3	V (1 * 12	A. El A.2
X [m]	M [kNm]	V [kN]	N [kN]
0.00	0.0000	10.2973	-1.2184
3.37 6.80	302.5491 937.3669	-371.8210 -5.4624	336.8139 336.8139
10.23	373.4895	-5.4624 375.8589	336.8139
13.60	0.0000	-11.1483	0.3035
	0.0000	11.1.00	3.3033
Sollecitazioni trav	rerso (Combinazione n° 5)		
X [m]	M [kNm]	V [kN]	N [kN]
1.25	-745.9009	478.9760	198.6303
3.94	270.2724	277.7488	221.4723
6.80	674.5440	-14.9350	245.8330
9.52	228.3211	-296.8083	268.9666
12.35	-911.6798	-508.8460	293.0358
C-1114 : : :	deither einiehen (C. 11 :		
Sollecitazioni pied	dritto sinistro (Combinazione	<u>n 5)</u>	
V [m]	AA Flaktuur 1	V II-NI	AT FLAT
Y [m]	M [kNm]	V [kN]	N [kN]
0.60 4.53	-835.9390 -254.8750	338.0323 -18.7162	770.7785 624.8772
4.53 8.46	-254.8750 -745.9009	-18.7162 -198.6303	478.9760
5.40	7-3.3003	150.0303	470.5700
Sollecitazioni nie	dritto destro (Combinazione r	n° 5)	
pict	22222 (20monidatione)	<u>-</u> _	
Y [m]	M [kNm]	V [kN]	N [kN]
0.60	-743.6325	-336.5103	800.6485

Collegamento viario compreso tra lo Svincolo della S.S. 514 di "Chiaromonte" con la S.S. 115 e lo

Svincolo della "Ragusana" PROGETTO ESECUTIVO

Direzione Progettazione e Realizzazione Lavori

4.53 8.46	-204.7721 -911.6798	45.3617 284.8359	654.7473 508.8460
			300.0400
Soliecitazioni for	ndazione (Combinazione n° 6)		
X [m]	M [kNm]	V [kN]	N [kN]
0.00 3.37	0.0000 141.1087	9.3234 -397.4207	-5.8140 370.3019
6.80	848.8820	-17.8927	370.3019
10.23	290.3398	384.6706	370.3019
13.60	0.0000	-10.9400	4.8082
Sollecitazioni tra	verso (Combinazione n° 6)		
X [m]	M [kNm]	V [kN]	N [kN]
1.25	-554.4197	468.7884	135.7379
3.94 6.80	434.3927 809.4842	267.5612 -25.1226	158.5799 182.9407
9.52	335.5510	-306.9959	206.0743
12.35	-833.2807	-519.0336	230.1434
Sollecitazioni nie	edritto sinistro (Combinazione	p° 6\	
30ilecitazioni pie	editto silistro (combinazione	<u>11 01</u>	
Y [m]	M [kNm]	V [kN]	N [kN]
0.60	-1056.5656	376.1160	760.5909
4.53 8.46	-302.5961 -554.4197	35.7227 -135.7379	614.6896 468.7884
6.40	-334.4137	-133.7375	400.7664
Sollecitazioni pie	edritto destro (Combinazione	<u>n° 6)</u>	
Y [m]	M [kNm]	V [kN]	N [kN]
0.60 4.53	-854.8041 -237.8960	-365.4937 29.9929	810.8361 664.9349
8.46	-833.2807	230.1434	519.0336
Sollecitazioni for	ndazione (Combinazione n° 7)		
X [m]	M [kNm]	V [kN]	N [kN]
0.00	0.0000	9.8601	-5.0465
3.37	304.3479	-333.9309	355.0473
6.80	862.7979	0.4763 340.2776	355.0473
10.23 13.60	341.6364 0.0000	-10.1012	355.0473 4.0822
Sollecitazioni tra	verso (Combinazione n° 7)		
v (1	A A Flation 1	A FLAIT	AL FLAD
X [m] 1.25	M [kNm] -742.3097	V [kN] 388.9798	N [kN] 249.0286
3.94	43.1145	195.9105	266.1601
6.80	309.3709	-9.9958	284.4306
9.52	16.2560	-205.5298	301.7808
12.35	-853.2633	-408.9714	319.8327
Sollecitazioni nie	edritto sinistro (Combinazione	n° 7\	
	(<u></u>	
Y [m]	M [kNm]	V [kN]	N [kN]
0.60 4.53	-753.0898 -144.5347	360.0938 -24.8962	680.7823 534.8811
8.46	-742.3097	-249.0286	388.9798
Sollecitazioni pie	edritto destro (Combinazione		
V [ma]	AA FI-AL1	V FLAD	AL FLASS
Y [m] 0.60	M [kNm] -678.5581	V [kN] -350.9652	N [kN] 700.7739
4.53	-111.0843	45.1924	554.8727
8.46	-853.2633	305.8404	408.9714
Sollecitazioni for	ndazione (Combinazione n° 8)		
X [m]	M [kNm]	V [kN]	N [kN]
0.00	0.0000	8.1150	-16.7284
3.37	16.1494	-380.4134	428.5401
6.80	709.1616	-23.5225	428.5401
10.23 13.60	205.1535 0.0000	353.5728 -9.7936	428.5401 15.5644
	verso (Combinazione n° 8)	-3.7330	13.3044
Soncertazioni tid	(combinazione ii o)		
X [m]	M [kNm]	V [kN]	N [kN]
1.25	-421.2633	370.9062	147.6922

Collegamento viario compreso tra lo Svincolo della S.S. 514 di "Chiaromonte" con la S.S. 115 e lo

Svincolo della "Ragusana"

PROGETTO ESECUTIVO

Direzione Progettazione e Realizzazione Lavori

3.94	315.6201	177.8369	164.8237
6.80	530.1085	-28.0695	183.0942
9.52	187.8332	-223.6035	200.4444
12.35	-732.8345	-427.0451	218.4963
Sollecitazioni pie	dritto sinistro (Combinazione	<u>n° 8)</u>	
Y [m]	M [kNm]	V [kN]	N [kN]
0.60	-1148.1984	445.2684	662.7087
4.53	-202.1471	64.3218	516.8074
8.46	-421.2633	-147.6922	370.9062
Sollecitazioni pie	dritto destro (Combinazione r	<u>n° 8)</u>	
Y [m]	M [kNm]	V [kN]	N [kN]
0.60	-859.5498	-412.9757	718.8476
4.53	-155.1341	30.8211	572.9463
8.46	-732.8345	218.4963	427.0451
Sollecitazioni fon	idazione (Combinazione n° 9)		
X [m]	M [kNm]	V [kN]	N [kN]
0.00	0.0000	10.4985	-3.5558
3.37	325.2921	-347.6429	341.3465
6.80	898.6047	2.9413	341.3465
10.23	360.7813	346.4893	341.3465
13.60	0.0000	-10.1051	2.6287
Sollecitazioni tra	verso (Combinazione n° 9)		
X [m]	M [kNm]	// [LN]	N [kN]
	M [kNm] -746.9886	V [kN]	
1.25 3.94	-746.9886 83.4157	440.8469 189.2197	237.5002 254.6317
6.80	330.5078	-16.6866	272.9023
9.52	19.1939	-212.2206	290.2525
12.35	-869,2604	-415.6622	308.3043
12.00	003.200 .	11510022	500.50 15
Sollecitazioni pie	dritto sinistro (Combinazione	<u>n° 9)</u>	
Y [m]	M [kNm]	V [kN]	N [kN]
0.60	-771.8878	344.9024	732.6494
4.53 8.46	-180.5551 -746.9886	-22.3527 -235.5215	586.7482 440.8469
6.40	-740.9000	-255.5215	440.6409
Sollecitazioni pie	dritto destro (Combinazione i	<u>1° 9)</u>	
Y [m]	M [kNm]	V [kN]	N [kN]
0.60	-672.9394	-338.7179	707.4647
4.53	-136.5652	48.3892	561.5635
8.46	-869.2604	296.8044	415.6622
Sollecitazioni fon	idazione (Combinazione n° 10	1	
X [m]	M [kNm]	V [kN]	N [kN]
0.00	0.0000	8.9984	-12.3524
3.37	67.2590	-388.2932	399.0364
6.80	752.2266	-14.5292	399.0364
10.23	214.1958	362.6745	399.0364
13.60	0.0000	-9.6495	11.2686
Sollecitazioni tra	verso (Combinazione n° 10)		
V [m]	NA FlaNin-1	V [LN]	81 Fl.813
X [m]	M [kNm]	V [kN]	N [kN]
1.25 3.94	-447.0105 348.8532	427.9861	126.2099
3.94 6.80	348.8532 559.1080	176.3588 -29.5475	143.3414 161.6120
9.52	212.8125	-225.0815	178.9622
12.35	-712.0381	-428.5231	197.0140
12.33	-/12.0301	-420.3231	157.0140
Sollecitazioni pie	dritto sinistro (Combinazione	<u>n° 10)</u>	
Y [m]	M [kNm]	V [kN]	N [kN]
0.60	-1125.2237	411.3888	719.7886
4.53	-257.9264	58.1231	573.8873
8.46	-447.0105	-126.2099	427.9861
Sollecitazioni pie	dritto destro (Combinazione r	<u>n° 10)</u>	
Y [m]	M [kNm]	V [kN]	N [kN]

Collegamento viario compreso tra lo Svincolo della S.S. 514 di "Chiaromonte" con la S.S. 115 e lo

Svincolo della "Ragusana"

PROGETTO ESECUTIVO

Direzione Progettazione e Realizzazione Lavori

RELAZIONE DI CALCOLO SOTTOVIA AL KM 3+248 - SEC. 90

0.60	-868.4878	-387.7678	720.3256
4.53	-209.9396	26.9550	574.4244
8.46	-712.0381	197.0140	428.5231
8.46	-/12.0381	197.0140	428.5231
Sollecitazioni fo	ndazione (Combinazione n° 11	1	
Soliecitazioni lo	indazione (Combinazione ii 11	1	
X [m]	M [kNm]	V [kN]	N [kN]
0.00	0.0000	10.2679	-0.9386
3.37	340.8559	-349.1507	321.8596
6.80	928.8255	-1.8820	321.8596
10.23	389.0074	356.8749	321.8596
13.60	0.0000	-10.8474	0.0644
Sollecitazioni tra	averso (Combinazione n° 11)		
X [m]	M [kNm]	V [kN]	N [kN]
1.25	-837.0066	447.3290	245.1027
3.94	105.1267	254.2597	262.2342
6.80	475.5620	-10.2046	280.5048
9.52	85.5514	-264.2965	297.8550
12.35	-950.2776	-467.7382	315.9068
Sollecitazioni pie	edritto sinistro (Combinazione	<u>n° 11)</u>	
Y [m]	M [kNm]	V [kN]	N [kN]
0.60	-738.2337	322.7982	739.1315
4.53	-219.7680	-39.0458	593.2302
8.46	-837.0066	-242.8936	447.3290
Sollecitazioni pie	edritto destro (Combinazione r	<u>n° 11)</u>	
W.F. 1		V [] N]	N. FLAG
Y [m] 0.60	M [kNm] -675.6607	V [kN] -321.7952	N [kN] 759.5407
4.53	-185.5966	56.9886	
4.53 8.46	-185.5966 -950.2776	304.6580	613.6394 467.7382
8.40	-550.2770	304.0300	407.7382
Sollecitazioni fo	ndazione (Combinazione n° 12	1	
X [m]	M [kNm]	V [kN]	N [kN]
0.00	0.0000	8.8753	-7.3074
3.37	98.0962	-386.8790	367.1483
6.80	787.3410	-16.6549	367.1483
10.23	240.6754	374.0438	367.1483
13.60	0.0000	-10.3497	6.3101
Sollecitazioni tra	averso (Combinazione n° 12)		
X [m]	M [kNm]	V [kN]	N [kN]
1.25	-541.0218	436.0705	127.2175
3.94	370.8743	243.0012	144.3490
6.80	709.0620	-21.4631	162.6195
9.52	288.4283	-275.5550	179.9697
12.35	-779.2623	-273.3330 -478.9967	198.0216
12.55	-175.2025	-478.3307	136.0210
Sollecitazioni nie	edritto sinistro (Combinazione	n° 12)	
Soncertazioni più	editito simistro (combinazione	<u>11 12)</u>	
Y [m]	M [kNm]	V [kN]	N [kN]
0.60	-1070.1282	374.4557	727.8730
4.53	-312.6812	39.1528	581.9717
8.46	-541.0218	-127.2175	436.0705
Sollecitazioni pie	edritto destro (Combinazione r	<u>n° 12)</u>	
Y [m]	M [kNm]	V [kN]	N [kN]
0.60	-874.3004	-360.8382	770.7992
4.53	-272.7966	30.2758	624.8979
8.46	-779.2623	198.0216	478.9967
Sollecitazioni fo	ndazione (Combinazione n° 13	1	
X [m]	M [kNm]	V [kN]	N [kN]
0.00	0.0000	6.7030	-74.9682
3.37	23.4123	-283.6487	579.9305
6.80	504.8481	3.2397	621.0663
10.23	34.7845	296.1099	662.2021
13.60	0.0000	-6.9473	73.2813
15.00	0.0000	-0.5473	/3.2013
Sollecitazioni tra	averso (Combinazione n° 13)		
X [m]	M [kNm]	V [kN]	N [kN]
	[. []	is [Kis]

MANDATARIA:

Collegamento viario compreso tra lo Svincolo della S.S. 514 di "Chiaromonte" con la S.S. 115 e lo

Svincolo della "Ragusana"

PROGETTO ESECUTIVO

Direzione Progettazione e Realizzazione Lavori

1.25 3.94 6.80 9.52			
3.94 6.80	C20 0112	202 2072	477.0024
6.80	-628.9113	282.2673	477.9021
6.80	-58.3418	142.6248	507.4157
	136.8912	-6.3025	538.8917
9.52			
	-72.5900	-147.7277	568.7822
12.35	-698.8691	-294.8724	599.8814
12.33	-038.8031	-254.8724	333.6614
Sollecitazioni piedi	ritto sinistro (Combinazione i	<u>n° 13)</u>	
Y [m]	M [kNm]	V [kN]	N [kN]
0.60	-837.9933	614.5151	541.6046
4.53	339.8476	5.7389	411.9360
8.46	-628.9113	-477.9021	282.2673
	ritto destro (Combinazione n		
Soliecitazioni pieul	itto destro (Combinazione n	13)	
Y [m]	M [kNm]	V [kN]	N [kN]
0.60	-827.9047	-629.3044	554.2097
4.53	374.0111	6.6423	424,5410
8.46	-698.8691	525.9647	294.8724
0.40	030.0031	323.3047	254.0724
Sollecitazioni fond	azione (Combinazione n° 14)	!	
X [m]	M [kNm]	V [kN]	N [kN]
0.00	0.0000	4.7435	-75.7374
3.37	-39.9300	-229.1106	576.5341
6.80	352.5300	1.6615	617.6699
10.23	-26.5124	237.7728	658.8057
13.60	0.0000	-4.9979	74.0597
Sollecitazioni trave	erso (Combinazione n° 14)		
	130 (Combinazione II 14)		
X [m]	M [kNm]	V [kN]	N [kN]
1.25	-565.7183	221.3689	480.5293
3.94	-119.0721	111.2400	510.0430
6.80	31.3440	-6.2113	541.5190
9.52	-137.2379	-117.7461	571.4094
12.35	-634.6635	-233.7914	602.5087
12.33	-034.0033	-233.7314	002.3087
Y [m] 0.60 4.53	M [kNm] -754.1503 413.3655	V [kN] 611.8879 3.1116	N [kN] 394.3316 307.8502
8.46	-565.7183	-480.5293	221.3689
Sollecitazioni piedi	ritto destro (Combinazione n	<u>° 14)</u>	
Y [m]	M [kNm]	V [kN]	N [kN]
0.60	-740.7717	-625.1296	406.7541
4.53	444.6283	9.4325	320.2728
8.46	-634.6635	527.8330	233.7914
Sollecitazioni fond	azione (Combinazione n° 15)	1	
		•	
X [m]	M [kNm]	V [kN]	N [kN]
	0.0000	6.1930	-78.0993
	-65.8338	-297.5554	604.2633
0.00 3.37	452.8887	-2.2004	
3.37		-2.2004	645.3991
3.37 6.80			
3.37 6.80 10.23	-19.5957	302.3619	686.5349
3.37 6.80 10.23 13.60	-19.5957 0.0000		
3.37 6.80 10.23 13.60	-19.5957	302.3619	686.5349
3.37 6.80 10.23 13.60	-19.5957 0.0000	302.3619	686.5349
3.37 6.80 10.23 13.60 <u>Sollecitazioni trave</u> X [m]	-19.5957 0.0000 erso (Combinazione n° 15)	302.3619 -6.7630	686.5349 76.3463
3.37 6.80 10.23 13.60 Sollecitazioni trave X [m] 1.25	-19.5957 0.0000 erso (Combinazione n° 15) M [kNm] -535.1659	302.3619 -6.7630 V [kN] 278.2801	686.5349 76.3463 N [kN] 450.4381
3.37 6.80 10.23 13.60 Sollecitazioni trave X [m] 1.25 3.94	-19.5957 0.0000 erso (Combinazione n° 15) M [kNm] -535.1659 24.6948	302.3619 -6.7630 V [kN] 278.2801 138.6375	686.5349 76.3463 N [kN] 450.4381 479.9518
3.37 6.80 10.23 13.60 Sollecitazioni trave X [m] 1.25 3.94 6.80	-19.5957 0.0000 erso (Combinazione n° 15) M [kNm] -535.1659 24.6948 208.5071	302.3619 -6.7630 V [kN] 278.2801 138.6375 -10.2898	686.5349 76.3463 N [kN] 450.4381 479.9518 511.4278
3.37 6.80 10.23 13.60 Sollecitazioni trave X [m] 1.25 3.94 6.80 9.52	-19.5957 0.0000 erso (Combinazione n° 15) M [kNm] -535.1659 24.6948 208.5071 -11.8193	302.3619 -6.7630 V [kN] 278.2801 138.6375 -10.2898 -151.7150	686.5349 76.3463 N [kN] 450.4381 479.9518 511.4278 541.3182
3.37 6.80 10.23 13.60 Sollecitazioni trave	-19.5957 0.0000 erso (Combinazione n° 15) M [kNm] -535.1659 24.6948 208.5071	302.3619 -6.7630 V [kN] 278.2801 138.6375 -10.2898	686.5349 76.3463 N [kN] 450.4381 479.9518 511.4278
3.37 6.80 10.23 13.60 Sollecitazioni trave X [m] 1.25 3.94 6.80 9.52 12.35	-19.5957 0.0000 erso (Combinazione n° 15) M [kNm] -535.1659 24.6948 208.5071 -11.8193 -649.3824	302.3619 -6.7630 V [kN] 278.2801 138.6375 -10.2898 -151.7150 -298.8596	686.5349 76.3463 N [kN] 450.4381 479.9518 511.4278 541.3182
3.37 6.80 10.23 13.60 Sollecitazioni trave X [m] 1.25 3.94 6.80 9.52 12.35	-19.5957 0.0000 erso (Combinazione n° 15) M [kNm] -535.1659 24.6948 208.5071 -11.8193 -649.3824	302.3619 -6.7630 V [kN] 278.2801 138.6375 -10.2898 -151.7150 -298.8596	686.5349 76.3463 N [kN] 450.4381 479.9518 511.4278 541.3182 572.4175
3.37 6.80 10.23 13.60 Sollecitazioni trave X [m] 1.25 3.94 6.80 9.52 12.35 Sollecitazioni piedi Y [m]	-19.5957 0.0000 erso (Combinazione n° 15) M [kNm] -535.1659 24.6948 208.5071 -11.8193 -649.3824 ritto sinistro (Combinazione n	302.3619 -6.7630 V [kN] 278.2801 138.6375 -10.2898 -151.7150 -298.8596	686.5349 76.3463 N [kN] 450.4381 479.9518 511.4278 541.3182 572.4175
3.37 6.80 10.23 13.60 Sollecitazioni trave X [m] 1.25 3.94 6.80 9.52 12.35 Sollecitazioni piedi Y [m] 0.60	-19.5957 0.0000 erso (Combinazione n° 15) M [kNm] -535.1659 24.6948 208.5071 -11.8193 -649.3824 ritto sinistro (Combinazione u	302.3619 -6.7630 V [kN] 278.2801 138.6375 -10.2898 -151.7150 -298.8596 V [kN] 641.9790	686.5349 76.3463 N [kN] 450.4381 479.9518 511.4278 541.3182 572.4175 N [kN] 537.6174
3.37 6.80 10.23 13.60 Sollecitazioni trave X [m] 1.25 3.94 6.80 9.52 12.35	-19.5957 0.0000 erso (Combinazione n° 15) M [kNm] -535.1659 24.6948 208.5071 -11.8193 -649.3824 ritto sinistro (Combinazione n	302.3619 -6.7630 V [kN] 278.2801 138.6375 -10.2898 -151.7150 -298.8596	686.5349 76.3463 N [kN] 450.4381 479.9518 511.4278 541.3182 572.4175
3.37 6.80 10.23 13.60 Sollecitazioni trave X [m] 1.25 3.94 6.80 9.52 12.35 Sollecitazioni piedi Y [m] 0.60	-19.5957 0.0000 erso (Combinazione n° 15) M [kNm] -535.1659 24.6948 208.5071 -11.8193 -649.3824 ritto sinistro (Combinazione u	302.3619 -6.7630 V [kN] 278.2801 138.6375 -10.2898 -151.7150 -298.8596 V [kN] 641.9790	686.5349 76.3463 N [kN] 450.4381 479.9518 511.4278 541.3182 572.4175

Collegamento viario compreso tra lo Svincolo della S.S. 514 di "Chiaromonte" con la S.S. 115 e lo

Svincolo della "Ragusana" PROGETTO ESECUTIVO

Direzione Progettazione e Realizzazione Lavori

RELAZIONE DI CALCOLO SOTTOVIA AL KM 3+248 - SEC. 90

Y [m]	M [kNm]	V [kN]	N [kN]
0.60	-900.6193	-650.5723	558.1969
4.53	360.3086	-5.1665	428.5283
8.46	-649.3824	502.0754	298.8596
Sollecitazioni fo	ndazione (Combinazione n° 16	1	
X [m]	M [kNm]	V [kN]	N [kN]
0.00	0.0000	4.2335	-78.8684
3.37	-129.1761	-243.0173	600.8670
6.80	300.5706	-3.7785	642.0028
10.23	-80.8926	244.0247	683.1386
13.60	0.0000	-4.8136	77.1247
Sollecitazioni tra	everso (Combinazione n° 16)		
X [m]	M [kNm]	V [kN]	N [kN]
1.25	-471.9730	217.3816	453.0653
3.94	-36.0354	107.2527	482.5790
6.80	102.9600	-10.1985	514.0550
9.52	-76.4673	-121.7333	543.9455
12.35	-585.1768	-237.7787	575.0447
Sollecitazioni pie Y [m] 0.60	edritto sinistro (Combinazione M [kNm] -876.2716	<u>n° 16)</u> V [kN] 639.3518	N [kN] 390.3443
4.53	399.1775	30.5756	303.8630
8.46	-471.9730	-453.0653	217.3816
Sollecitazioni pie	edritto destro (Combinazione r	<u>n° 16)</u>	
Y [m]	M [kNm]	V [kN]	N [kN]
0.60	-813.4862	-646.3975	410.7414
4.53	430.9258	-2.3763	324.2600
8.46	-585.1768	503.9437	237.7787
	ndazione (Combinazione n° 17		
X [m]	M [kNm]	V [kN]	N [kN]
0.00	0.0000	6.5274	-0.3496
3.37	138.5223	-236.3218	257.4048
6.80	530.4065	4.5300	257.4048
10.23	138.5223	247.6426	257.4048
13.60	0.0000	-6.5274	-0.3496
Sollecitazioni tra	everso (Combinazione n° 17)		
X [m]	M [kNm]	V [kN]	N [kN]
1.25	-303.9760	258.0750	96.6545
3.94	221.4361	133.1893	96.6545
6.80	412.1821	0.0000	96.6545
9.52	240.1693	-126.4800	96.6545
12.35	-303.9760	-258.0750	96.6545
Sollecitazioni pie	edritto sinistro (Combinazione	<u>n° 17)</u>	
Y [m]	M [kNm]	V [kN]	N [kN]
0.60	-599.4966	257.7543	474.2250
4.53			
	-103.1129	15.3540	366.1500
8.46	-303.9760	-96.6545	258.0750
Sollecitazioni pie	edritto destro (Combinazione r	<u>n° 17)</u>	
Y [m]	M [kNm]	V [kN]	N [kN]
0.60	-599.4966	-257.7543	474.2250
4.53	-103.1129	-15.3540	366.1500
8.46	-303.9760	96.6545	258.0750
Callacitaniani fa	ndariana /Cambinariana nº 19		
	ndazione (Combinazione n° 18	1	
3011eCitazioni 101			
X [m]	M [kNm]	V [kN]	N [kN]
	M [kNm] 0.0000	V [kN] 6.9032	N [kN] -5.6682
X [m] 0.00	0.0000	6.9032	-5.6682
X [m] 0.00 3.37	0.0000 131.1689	6.9032 -260.7459	-5.6682 299.0222
X [m] 0.00 3.37 6.80	0.0000 131.1689 568.8719	6.9032 -260.7459 1.7926	-5.6682 299.0222 299.0222
X [m] 0.00 3.37 6.80 10.23	0.0000 131.1689 568.8719 153.1872	6.9032 -260.7459 1.7926 265.6949	-5.6682 299.0222 299.0222 299.0222
X [m] 0.00 3.37 6.80	0.0000 131.1689 568.8719	6.9032 -260.7459 1.7926	-5.6682 299.0222 299.0222

MANDATARIA:

Sollecitazioni traverso (Combinazione n° 18)

Collegamento viario compreso tra lo Svincolo della S.S. 514 di "Chiaromonte" con la S.S. 115 e lo

Svincolo della "Ragusana"

PROGETTO ESECUTIVO

Direzione Progettazione e Realizzazione Lavori

X [m]	M [kNm]	V [kN]	N [kN]
1.25	-346.5321	291.8528	134,5398
3.94	245.2534	148.8385	134.5398
6.80	453.1344	-3.6847	134.5398
9.52	246.1297	-148.5247	134.5398
12.35	-387.4322	-299.2222	134.5398
Sollecitazioni pie	edritto sinistro (Combinazione	n° 18)	
Y [m]	M [kNm]	V [kN]	N [kN]
0.60	-687.4166	304.6903	508.0028
4.53	-85.4308	22.5076	399.9278
8.46	-346.5321	-134.5398	291.8528
0.10	5 1015521	15 115050	231.0320
Sollecitazioni pie	edritto destro (Combinazione n	<u>° 18)</u>	
V [ma]	M [kNm]	V [LN]	NI FLANT
Y [m]		V [kN]	N [kN]
0.60	-636.4380	-294.1662	515.3722
4.53	-81.3844	-7.4230	407.2972
8.46	-387.4322	134.5398	299.2222
Sollecitazioni fo	ndazione (Combinazione n° 19)		
X [m]	M [kNm]	V [kN]	N [kN]
0.00	0.0000	7.5257	-2.6291
3.37	165.5886	-267.2972	278.1542
6.80	600.4402	7.4818	278.1542
10.23	162.4076	271.8721	278.1542
13.60	0.0000	-6.8652	1.8736
13.00	0.0000	-0.8032	1.8750
Sollecitazioni tra	averso (Combinazione n° 19)		
v (1	NA (II.NI)	M (LAI)	NI FLANT
X [m]	M [kNm]	V [kN]	N [kN]
1.25	-361.0273	333.3254	117.4379
3.94	272.2751	146.9349	117.4379
6.80	474.7036	-5.5883	117.4379
9.52	262.5210	-150.4283	117.4379
12.35	-376.4281	-301.1258	117.4379
		0.441	
Sollecitazioni pie	edritto sinistro (Combinazione	n° 19)	
Sollecitazioni pie	edritto sinistro (Combinazione	<u>n° 19)</u>	
Sollecitazioni pie Y [m]	edritto sinistro (Combinazione M [kNm]	<u>n° 19)</u> V [kN]	N [kN]
			N [kN] 549.4754
Y [m]	M [kNm]	V [kN]	
Y [m] 0.60 4.53	M [kNm] -675.1676 -126.8450	V [kN] 280.7833 19.1051	549.4754 441.4004
Y [m] 0.60	M [kNm] -675.1676	V [kN] 280.7833	549.4754
Y [m] 0.60 4.53 8.46	M [kNm] -675.1676 -126.8450	V [kN] 280.7833 19.1051 -117.4379	549.4754 441.4004
Y [m] 0.60 4.53 8.46 Sollecitazioni pie	M [kNm] -675.1676 -126.8450 -361.0273 edritto destro (Combinazione n	V [kN] 280.7833 19.1051 -117.4379	549.4754 441.4004 333.3254
Y [m] 0.60 4.53 8.46 Sollecitazioni pie	M [kNm] -675.1676 -126.8450 -361.0273 edritto destro (Combinazione n M [kNm]	V [kN] 280.7833 19.1051 -117.4379 V [kN]	549.4754 441.4004 333.3254 N [kN]
Y [m] 0.60 4.53 8.46 Sollecitazioni pie Y [m] 0.60	M [kNm] -675.1676 -126.8450 -361.0273 edritto destro (Combinazione n M [kNm] -639.5331	V [kN] 280.7833 19.1051 -117.4379 V [kN] -276.2806	549.4754 441.4004 333.3254 N [kN] 517.2758
Y [m] 0.60 4.53 8.46 Sollecitazioni pie Y [m] 0.60 4.53	M [kNm] -675.1676 -126.8450 -361.0273 edritto destro (Combinazione n M [kNm] -639.5331 -118.3558	V [kN] 280.7833 19.1051 -117.4379 * 19) V [kN] -276.2806 -9.2882	549.4754 441.4004 333.3254 N [kN] 517.2758 409.2008
Y [m] 0.60 4.53 8.46 Sollecitazioni pie Y [m] 0.60	M [kNm] -675.1676 -126.8450 -361.0273 edritto destro (Combinazione n M [kNm] -639.5331	V [kN] 280.7833 19.1051 -117.4379 V [kN] -276.2806	549.4754 441.4004 333.3254 N [kN] 517.2758
Y [m] 0.60 4.53 8.46 Sollecitazioni pie Y [m] 0.60 4.53	M [kNm] -675.1676 -126.8450 -361.0273 edritto destro (Combinazione n M [kNm] -639.5331 -118.3558	V [kN] 280.7833 19.1051 -117.4379 * 19) V [kN] -276.2806 -9.2882	549.4754 441.4004 333.3254 N [kN] 517.2758 409.2008
Y [m] 0.60 4.53 8.46 Sollecitazioni pie Y [m] 0.60 4.53 8.46	M [kNm] -675.1676 -126.8450 -361.0273 edritto destro (Combinazione n M [kNm] -639.5331 -118.3558	V [kN] 280.7833 19.1051 -117.4379 * 19) V [kN] -276.2806 -9.2882 117.4379	549.4754 441.4004 333.3254 N [kN] 517.2758 409.2008
Y [m] 0.60 4.53 8.46 Sollecitazioni pie Y [m] 0.60 4.53 8.46 Sollecitazioni for	M [kNm] -675.1676 -126.8450 -361.0273 edritto destro (Combinazione n M [kNm] -639.5331 -118.3558 -376.4281	V [kN] 280.7833 19.1051 -117.4379 V [kN] -276.2806 -9.2882 117.4379	549.4754 441.4004 333.3254 N [kN] 517.2758 409.2008 301.1258
Y [m] 0.60 4.53 8.46 Sollecitazioni pie Y [m] 0.60 4.53 8.46 Sollecitazioni for X [m]	M [kNm] -675.1676 -126.8450 -361.0273 edritto destro (Combinazione n M [kNm] -639.5331 -118.3558 -376.4281 ndazione (Combinazione n° 20) M [kNm]	V [kN] 280.7833 19.1051 -117.4379 V [kN] -276.2806 -9.2882 117.4379 V [kN]	549.4754 441.4004 333.3254 N [kN] 517.2758 409.2008 301.1258
Y [m] 0.60 4.53 8.46 Sollecitazioni pie Y [m] 0.60 4.53 8.46 Sollecitazioni for X [m] 0.00	M [kNm] -675.1676 -126.8450 -361.0273 edritto destro (Combinazione n M [kNm] -639.5331 -118.3558 -376.4281 mdazione (Combinazione n° 20) M [kNm] 0.0000	V [kN] 280.7833 19.1051 -117.4379 *19) V [kN] -276.2806 -9.2882 117.4379 V [kN] 7.3903	549.4754 441.4004 333.3254 N [kN] 517.2758 409.2008 301.1258 N [kN] -0.3560
Y [m] 0.60 4.53 8.46 Sollecitazioni pie Y [m] 0.60 4.53 8.46 Sollecitazioni for X [m] 0.00 3.37	M [kNm] -675.1676 -126.8450 -361.0273 edritto destro (Combinazione n M [kNm] -639.5331 -118.3558 -376.4281 ndazione (Combinazione n° 20) M [kNm] 0.0000 181.3140	V [kN] 280.7833 19.1051 -117.4379 * 19] V [kN] -276.2806 -9.2882 117.4379 V [kN] 7.3903 -267.5756	549.4754 441.4004 333.3254 N [kN] 517.2758 409.2008 301.1258 N [kN] -0.3560 262.1693
Y [m] 0.60 4.53 8.46 Sollecitazioni pie Y [m] 0.60 4.53 8.46 Sollecitazioni for X [m] 0.00	M [kNm] -675.1676 -126.8450 -361.0273 edritto destro (Combinazione n M [kNm] -639.5331 -118.3558 -376.4281 mdazione (Combinazione n° 20) M [kNm] 0.0000	V [kN] 280.7833 19.1051 -117.4379 *19) V [kN] -276.2806 -9.2882 117.4379 V [kN] 7.3903	549.4754 441.4004 333.3254 N [kN] 517.2758 409.2008 301.1258 N [kN] -0.3560
Y [m] 0.60 4.53 8.46 Sollecitazioni pie Y [m] 0.60 4.53 8.46 Sollecitazioni for X [m] 0.00 3.37	M [kNm] -675.1676 -126.8450 -361.0273 edritto destro (Combinazione n M [kNm] -639.5331 -118.3558 -376.4281 ndazione (Combinazione n° 20) M [kNm] 0.0000 181.3140	V [kN] 280.7833 19.1051 -117.4379 * 19] V [kN] -276.2806 -9.2882 117.4379 V [kN] 7.3903 -267.5756	549.4754 441.4004 333.3254 N [kN] 517.2758 409.2008 301.1258 N [kN] -0.3560 262.1693
Y [m] 0.60 4.53 8.46 Sollecitazioni pie Y [m] 0.60 4.53 8.46 Sollecitazioni for X [m] 0.00 X [m] 0.00 3.37 6.80	M [kNm] -675.1676 -126.8450 -361.0273 edritto destro (Combinazione n M [kNm] -639.5331 -118.3558 -376.4281 mdazione (Combinazione n° 20) M [kNm] 0.0000 181.3140 623.6200	V [kN] 280.7833 19.1051 -117.4379 V [kN] -276.2806 -9.2882 117.4379 V [kN] 7.3903 -267.5756 4.9136	549.4754 441.4004 333.3254 N [kN] 517.2758 409.2008 301.1258 N [kN] -0.3560 262.1693
Y [m] 0.60 4.53 8.46 Sollecitazioni pie Y [m] 0.60 4.53 8.46 Sollecitazioni for X [m] 0.00 3.37 6.80 10.23 13.60	M [kNm] -675.1676 -126.8450 -361.0273 edritto destro (Combinazione n M [kNm] -639.5331 -118.3558 -376.4281 ndazione (Combinazione n° 20) M [kNm] 0.0000 181.3140 623.6200 181.3140 0.0000	V [kN] 280.7833 19.1051 -117.4379 *19) V [kN] -276.2806 -9.2882 117.4379 V [kN] 7.3903 -267.5756 4.9136 280.0757	549.4754 441.4004 333.3254 N [kN] 517.2758 409.2008 301.1258 N [kN] -0.3560 262.1693 262.1693 262.1693
Y [m] 0.60 4.53 8.46 Sollecitazioni pie Y [m] 0.60 4.53 8.46 Sollecitazioni for X [m] 0.00 3.37 6.80 10.23 13.60	M [kNm] -675.1676 -126.8450 -361.0273 edritto destro (Combinazione n M [kNm] -639.5331 -118.3558 -376.4281 ndazione (Combinazione n° 20) M [kNm] 0.0000 181.3140 623.6200 181.3140	V [kN] 280.7833 19.1051 -117.4379 *19) V [kN] -276.2806 -9.2882 117.4379 V [kN] 7.3903 -267.5756 4.9136 280.0757	549.4754 441.4004 333.3254 N [kN] 517.2758 409.2008 301.1258 N [kN] -0.3560 262.1693 262.1693 262.1693
Y [m] 0.60 4.53 8.46 Sollecitazioni pie Y [m] 0.60 4.53 8.46 Sollecitazioni for X [m] 0.00 3.37 6.80 10.23 13.60	M [kNm] -675.1676 -126.8450 -361.0273 edritto destro (Combinazione n M [kNm] -639.5331 -118.3558 -376.4281 ndazione (Combinazione n° 20) M [kNm] 0.0000 181.3140 623.6200 181.3140 0.0000	V [kN] 280.7833 19.1051 -117.4379 *19) V [kN] -276.2806 -9.2882 117.4379 V [kN] 7.3903 -267.5756 4.9136 280.0757	549.4754 441.4004 333.3254 N [kN] 517.2758 409.2008 301.1258 N [kN] -0.3560 262.1693 262.1693 262.1693
Y [m] 0.60 4.53 8.46 Sollecitazioni pie Y [m] 0.60 4.53 8.46 Sollecitazioni for X [m] 0.00 3.37 6.80 10.23 13.60 Sollecitazioni tra	M [kNm] -675.1676 -126.8450 -361.0273 edritto destro (Combinazione n M [kNm] -639.5331 -118.3558 -376.4281 M [kNm] 0.0000 181.3140 623.6200 181.3140 0.0000 neerso (Combinazione n° 20)	V [kN] 280.7833 19.1051 -117.4379 *19) V [kN] -276.2806 -9.2882 117.4379 V [kN] 7.3903 -267.5756 4.9136 280.0757 -7.3903	549.4754 441.4004 333.3254 N [kN] 517.2758 409.2008 301.1258 N [kN] -0.3560 262.1693 262.1693 262.1693 -0.3560
Y [m] 0.60 4.53 8.46 Sollecitazioni pie Y [m] 0.60 4.53 8.46 Sollecitazioni for X [m] 0.00 3.37 6.80 10.23 13.60 Sollecitazioni tra X [m] 1.25	M [kNm] -675.1676 -126.8450 -361.0273 edritto destro (Combinazione n M [kNm] -639.5331 -118.3558 -376.4281 M [kNm] 0.0000 181.3140 623.6200 181.3140 0.0000 Merso (Combinazione n° 20) M [kNm] -430.9413	V [kN] 280.7833 19.1051 -117.4379 *19] V [kN] -276.2806 -9.2882 117.4379 V [kN] 7.3903 -267.5756 4.9136 280.0757 -7.3903 V [kN]	549.4754 441.4004 333.3254 N [kN] 517.2758 409.2008 301.1258 N [kN] -0.3560 262.1693 262.1693 262.1693 -0.3560 N [kN] 120.9033
Y [m] 0.60 4.53 8.46 Sollecitazioni pie Y [m] 0.60 4.53 8.46 Sollecitazioni for X [m] 0.00 3.37 6.80 10.23 13.60 Sollecitazioni tra X [m] 1.25 3.94	M [kNm] -675.1676 -126.8450 -361.0273 edritto destro (Combinazione n M [kNm] -639.5331 -118.3558 -376.4281 M [kNm] 0.0000 181.3140 623.6200 181.3140 0.0000 verso (Combinazione n° 20) M [kNm] -430.9413 287.2364	V [kN] 280.7833 19.1051 -117.4379 V [kN] -276.2806 -9.2882 117.4379 V [kN] 7.3903 -267.5756 4.9136 280.0757 -7.3903 V [kN] 338.9138 195.8995	549.4754 441.4004 333.3254 N [kN] 517.2758 409.2008 301.1258 N [kN] -0.3560 262.1693 262.1693 -0.3560 N [kN] 120.9033 120.9033
Y [m] 0.60 4.53 8.46 Sollecitazioni pie Y [m] 0.60 4.53 8.46 Sollecitazioni for X [m] 0.00 3.37 6.80 10.23 13.60 Sollecitazioni tra X [m] 1.25 3.94 6.80	M [kNm] -675.1676 -126.8450 -361.0273 edritto destro (Combinazione n M [kNm] -639.5331 -118.3558 -376.4281 M [kNm] 0.0000 181.3140 623.6200 181.3140 0.0000 M [kNm] 0.0000 Merso (Combinazione n° 20) M [kNm] -430.9413 287.2364 583.2840	V [kN] 280.7833 19.1051 -117.4379 * 19) V [kN] -276.2806 -9.2882 117.4379 V [kN] 7.3903 -267.5756 4.9136 280.0757 -7.3903 V [kN] 338.9138 195.8995 0.0000	549.4754 441.4004 333.3254 N [kN] 517.2758 409.2008 301.1258 N [kN] -0.3560 262.1693 262.1693 262.1693 262.1693 120.9033 120.9033 120.9033
Y [m] 0.60 4.53 8.46 Sollecitazioni pie Y [m] 0.60 4.53 8.46 Sollecitazioni for X [m] 0.00 3.37 6.80 10.23 13.60 Sollecitazioni tra X [m] 1.25 3.94 6.80 9.52	M [kNm] -675.1676 -126.8450 -361.0273 edritto destro (Combinazione n M [kNm] -639.5331 -118.3558 -376.4281 ndazione (Combinazione n° 20) M [kNm] 0.0000 181.3140 623.6200 181.3140 0.0000 M [kNm] -430.9413 287.2364 583.2840 314.9476	V [kN] 280.7833 19.1051 -117.4379 *19] V [kN] -276.2806 -9.2882 117.4379 V [kN] 7.3903 -267.5756 4.9136 280.0757 -7.3903 V [kN] 338.9138 195.8995 0.0000 -188.2162	N [kN] 517.2758 409.2008 301.1258 N [kN] -0.3560 262.1693 262.1693 262.1693 120.9033 120.9033 120.9033 120.9033
Y [m] 0.60 4.53 8.46 Sollecitazioni pie Y [m] 0.60 4.53 8.46 Sollecitazioni for X [m] 0.00 3.37 6.80 10.23 13.60 Sollecitazioni tra X [m] 1.25 3.94 6.80	M [kNm] -675.1676 -126.8450 -361.0273 edritto destro (Combinazione n M [kNm] -639.5331 -118.3558 -376.4281 M [kNm] 0.0000 181.3140 623.6200 181.3140 0.0000 M [kNm] 0.0000 Merso (Combinazione n° 20) M [kNm] -430.9413 287.2364 583.2840	V [kN] 280.7833 19.1051 -117.4379 * 19) V [kN] -276.2806 -9.2882 117.4379 V [kN] 7.3903 -267.5756 4.9136 280.0757 -7.3903 V [kN] 338.9138 195.8995 0.0000	549.4754 441.4004 333.3254 N [kN] 517.2758 409.2008 301.1258 N [kN] -0.3560 262.1693 262.1693 262.1693 262.1693 120.9033 120.9033 120.9033
Y [m] 0.60 4.53 8.46 Sollecitazioni pie Y [m] 0.60 4.53 8.46 Sollecitazioni for X [m] 0.00 3.37 6.80 10.23 13.60 Sollecitazioni tra X [m] 1.25 3.94 6.80 9.52	M [kNm] -675.1676 -126.8450 -361.0273 edritto destro (Combinazione n M [kNm] -639.5331 -118.3558 -376.4281 ndazione (Combinazione n° 20) M [kNm] 0.0000 181.3140 623.6200 181.3140 0.0000 M [kNm] -430.9413 287.2364 583.2840 314.9476	V [kN] 280.7833 19.1051 -117.4379 *19] V [kN] -276.2806 -9.2882 117.4379 V [kN] 7.3903 -267.5756 4.9136 280.0757 -7.3903 V [kN] 338.9138 195.8995 0.0000 -188.2162	N [kN] 517.2758 409.2008 301.1258 N [kN] -0.3560 262.1693 262.1693 262.1693 120.9033 120.9033 120.9033 120.9033
Y [m] 0.60 4.53 8.46 Sollecitazioni pie Y [m] 0.60 4.53 8.46 Sollecitazioni for X [m] 0.00 3.37 6.80 10.23 13.60 Sollecitazioni tra X [m] 1.25 3.94 6.80 9.52 12.35	M [kNm] -675.1676 -126.8450 -361.0273 edritto destro (Combinazione n M [kNm] -639.5331 -118.3558 -376.4281 ndazione (Combinazione n° 20) M [kNm] 0.0000 181.3140 623.6200 181.3140 0.0000 M [kNm] -430.9413 287.2364 583.2840 314.9476	V [kN] 280.7833 19.1051 -117.4379 V [kN] -276.2806 -9.2882 117.4379 V [kN] 7.3903 -267.5756 4.9136 280.0757 -7.3903 V [kN] 338.9138 195.8995 0.0000 -188.2162 -338.9138	N [kN] 517.2758 409.2008 301.1258 N [kN] -0.3560 262.1693 262.1693 262.1693 120.9033 120.9033 120.9033 120.9033
Y [m] 0.60 4.53 8.46 Sollecitazioni pie Y [m] 0.60 4.53 8.46 Sollecitazioni for X [m] 0.00 3.37 6.80 10.23 13.60 Sollecitazioni tra X [m] 1.25 3.94 6.80 9.52 12.35	M [kNm] -675.1676 -126.8450 -361.0273 edritto destro (Combinazione n M [kNm] -639.5331 -118.3558 -376.4281 M [kNm] 0.0000 181.3140 623.6200 181.3140 0.0000 Merso (Combinazione n° 20) M [kNm] -430.9413 287.2364 583.2840 314.9476 -430.9413	V [kN] 280.7833 19.1051 -117.4379 * 19) V [kN] -276.2806 -9.2882 117.4379 V [kN] 7.3903 -267.5756 4.9136 280.0757 -7.3903 V [kN] 338.9138 195.8995 0.0000 -188.2162 -338.9138	N [kN] 517.2758 409.2008 301.1258 N [kN] -0.3560 262.1693 262.1693 262.1693 120.9033 120.9033 120.9033 120.9033
Y [m] 0.60 4.53 8.46 Sollecitazioni pie Y [m] 0.60 4.53 8.46 Sollecitazioni for X [m] 0.00 3.37 6.80 10.23 13.60 Sollecitazioni tra X [m] 1.25 3.94 6.80 9.52 12.35	M [kNm] -675.1676 -126.8450 -361.0273 edritto destro (Combinazione n M [kNm] -639.5331 -118.3558 -376.4281 andazione (Combinazione n° 20) M [kNm] 0.0000 181.3140 623.6200 181.3140 0.0000 M [kNm] -430.9413 287.2364 583.2840 314.9476 -430.9413 edritto sinistro (Combinazione n M [kNm]	V [kN] 280.7833 19.1051 -117.4379 * 19) V [kN] -276.2806 -9.2882 117.4379 V [kN] 7.3903 -267.5756 4.9136 280.0757 -7.3903 V [kN] 338.9138 195.8995 0.0000 -188.2162 -338.9138	549.4754 441.4004 333.3254 N [kN] 517.2758 409.2008 301.1258 N [kN] -0.3560 262.1693 262.1693 262.1693 120.9033 120.9033 120.9033 120.9033 120.9033
Y [m] 0.60 4.53 8.46 Sollecitazioni pie Y [m] 0.60 4.53 8.46 Sollecitazioni for X [m] 0.00 3.37 6.80 10.23 13.60 Sollecitazioni tra X [m] 1.25 3.94 6.80 9.52 12.35 Sollecitazioni pie Y [m] 0.60	M [kNm] -675.1676 -126.8450 -361.0273 edritto destro (Combinazione n M [kNm] -639.5331 -118.3558 -376.4281 mdazione (Combinazione n° 20) M [kNm] 0.0000 181.3140 623.6200 181.3140 0.0000 MENM] -430.9413 287.2364 583.2840 314.9476 -430.9413 edritto sinistro (Combinazione n° 40) M [kNm] -644.4050	V [kN] 280.7833 19.1051 -117.4379 *19) V [kN] -276.2806 -9.2882 117.4379 V [kN] 7.3903 -267.5756 4.9136 280.0757 -7.3903 V [kN] 338.9138 195.8995 0.0000 -188.2162 -338.9138	549.4754 441.4004 333.3254 N [kN] 517.2758 409.2008 301.1258 N [kN] -0.3560 262.1693 262.1693 262.1693 -0.3560 N [kN] 120.9033 120.9033 120.9033 120.9033
Y [m] 0.60 4.53 8.46 Sollecitazioni pie Y [m] 0.60 4.53 8.46 Sollecitazioni for X [m] 0.00 3.37 6.80 10.23 13.60 Sollecitazioni tra X [m] 1.25 3.94 6.80 9.52 12.35 Sollecitazioni pie Y [m] 0.60 4.53	M [kNm] -675.1676 -126.8450 -361.0273 edritto destro (Combinazione n M [kNm] -639.5331 -118.3558 -376.4281 mdazione (Combinazione n° 20) M [kNm] 0.0000 181.3140 623.6200 181.3140 0.0000 mverso (Combinazione n° 20) M [kNm] -430.9413 287.2364 583.2840 314.9476 -430.9413 edritto sinistro (Combinazione n M [kNm] -644.4050 -157.9942	V [kN] 280.7833 19.1051 -117.4379 *19) V [kN] -276.2806 -9.2882 117.4379 V [kN] 7.3903 -267.5756 4.9136 280.0757 -7.3903 V [kN] 338.9138 195.8995 0.0000 -188.2162 -338.9138 *195.8995 0.0000 -188.2162 -338.9138	549.4754 441.4004 333.3254 N [kN] 517.2758 409.2008 301.1258 N [kN] -0.3560 262.1693 262.1693 -0.3560 N [kN] 120.9033 120.9033 120.9033 120.9033 120.9033 120.9033 120.9033
Y [m] 0.60 4.53 8.46 Sollecitazioni pie Y [m] 0.60 4.53 8.46 Sollecitazioni for X [m] 0.00 3.37 6.80 10.23 13.60 Sollecitazioni tra X [m] 1.25 3.94 6.80 9.52 12.35 Sollecitazioni pie Y [m] 0.60	M [kNm] -675.1676 -126.8450 -361.0273 edritto destro (Combinazione n M [kNm] -639.5331 -118.3558 -376.4281 mdazione (Combinazione n° 20) M [kNm] 0.0000 181.3140 623.6200 181.3140 0.0000 MENM] -430.9413 287.2364 583.2840 314.9476 -430.9413 edritto sinistro (Combinazione n° 40) M [kNm] -644.4050	V [kN] 280.7833 19.1051 -117.4379 *19) V [kN] -276.2806 -9.2882 117.4379 V [kN] 7.3903 -267.5756 4.9136 280.0757 -7.3903 V [kN] 338.9138 195.8995 0.0000 -188.2162 -338.9138	549.4754 441.4004 333.3254 N [kN] 517.2758 409.2008 301.1258 N [kN] -0.3560 262.1693 262.1693 262.1693 -0.3560 N [kN] 120.9033 120.9033 120.9033 120.9033
Y [m] 0.60 4.53 8.46 Sollecitazioni pie Y [m] 0.60 4.53 8.46 Sollecitazioni for X [m] 0.00 3.37 6.80 10.23 13.60 Sollecitazioni tra X [m] 1.25 3.94 6.80 9.52 12.35 Sollecitazioni pie Y [m] 0.60 4.53 8.46	M [kNm] -675.1676 -126.8450 -361.0273 edritto destro (Combinazione n M [kNm] -639.5331 -118.3558 -376.4281 mdazione (Combinazione n° 20) M [kNm] 0.0000 181.3140 623.6200 181.3140 0.0000 mverso (Combinazione n° 20) M [kNm] -430.9413 287.2364 583.2840 314.9476 -430.9413 edritto sinistro (Combinazione n M [kNm] -644.4050 -157.9942	V [kN] 280.7833 19.1051 -117.4379 *19) V [kN] -276.2806 -9.2882 117.4379 V [kN] 7.3903 -267.5756 4.9136 280.0757 -7.3903 V [kN] 338.9138 195.8995 0.0000 -188.2162 -338.9138 V [kN] 262.5253 4.1687 -120.9033	549.4754 441.4004 333.3254 N [kN] 517.2758 409.2008 301.1258 N [kN] -0.3560 262.1693 262.1693 -0.3560 N [kN] 120.9033 120.9033 120.9033 120.9033 120.9033 120.9033 140.9033

Collegamento viario compreso tra lo Svincolo della S.S. 514 di "Chiaromonte" con la S.S. 115 e lo

Svincolo della "Ragusana"

PROGETTO ESECUTIVO

Direzione Progettazione e Realizzazione Lavori

Y [m]	M [kNm]	V [kN]	N [kN]
0.60	-644.4050	-262.5253	555.0638
4.53	-157.9942	-4.1687	446.9888
8.46	-430.9413	120.9033	338.9137
Sollecitazioni fo	ndazione (Combinazione n° 21	1	
<u>SOMECHALION 10</u>	Hadelone (Combinatione ii E1	•	
X [m]	M [kNm]	V [kN]	N [kN]
0.00	0.0000	6.0989	-2.6607
3.37	96.1989	-244.5498	266.6115
6.80	525.8883	-7.5071	266.6115
10.23	168.3566	241.4661	266.6115
13.60	0.0000	-6.8956	1,9365
15.00	0.0000	-0.6950	1.9303
Sollecitazioni tra	averso (Combinazione n° 21)		
X [m]	M [kNm]	V [kN]	N [kN]
1.25	-239.2607	245.3827	79.7137
3.94	252.0635	120.4970	92.4037
6.80	406.4553	-12.6923	105.9374
9.52	199.9195	-139.1723	118.7894
12.35	-380.1450	-139.1723	132.1612
Sollecitazioni pi	edritto sinistro (Combinazione	n° 21 <u>)</u>	
Y [m]	M [kNm]	V [kN]	N [kN]
0.60	-656.4183	269.2722	461.5327
4.53	-104.9609	32.2116	353.4577
8.46	-239.2607	-79.7137	245.3827
5.70	233.2007	13.1131	243.3027
Sollecitazioni pi	edritto destro (Combinazione r	<u>° 21)</u>	
Y [m]	M [kNm]	V [kN]	N [kN]
0.60	-559.5170	-264.6750	486.9173
4.53	-70.7053	-1.4285	378.8423
8.46	-380.1450	132.1612	270.7673
0.40	-300.1430	132.1012	2/0./0/3
Sollecitazioni fo	ndazione (Combinazione n° 22)	1	
Y [m]	M [IANIma]	V [FN]	NI FLAIT
X [m]	M [kNm]	V [kN]	N [kN]
0.00	0.0000	6.8108	-0.3268
3.37	197.1486	-228.1831	240.6303
6.80	572.8248	4.3775	240.6303
10.23	197.1486	239.4181	240.6303
13.60	0.0000	-6.8108	-0.3268
Sollecitazioni tra	averso (Combinazione n° 22)		
w.f. 1	***************************************	V [] N]	
X [m]	M [kNm]	V [kN]	N [kN]
1.25	-454.8153	258.0750	145.9449
3.94	70.5968	133.1893	145.9449
6.80	261.3429	0.0000	145.9449
9.52	89.3301	-126.4800	145.9449
12.35	-454.8153	-258.0750	145.9449
Sollecitazioni pi	edritto sinistro (Combinazione	<u>n° 22)</u>	
Y [m]	M [kNm]	V [kN]	N [kN]
0.60	-519.9672	240.9571	474.2250
4.53	-102.2614		
4.53 8.46	-102.2614 -454.8153	-11.8864 -144.5858	366.1500 258.0750
	edritto destro (Combinazione r		
Y [m]	M [kNm]	V [kN]	N [kN]
0.60	-519.9672	-240.9571	474.2250
4.53	-102.2614	11.8864	366.1500
8.46	-454.8153	144.5858	258.0750
Sollecitazioni fo	ndazione (Combinazione n° 23'	1	
		•	
X [m]	M [kNm]	V [kN]	N [kN]
0.00	0.0000	6.3484	-0.3483
3.37	101.4838	-241.4636	256.4506
6.80	503.6077	4.6264	256.4506
10.23	101.4838	252.8386	256.4506
13.60	0.0000	-6.3484	-0.3483
	averso (Combinazione n° 23)		

Collegamento viario compreso tra lo Svincolo della S.S. 514 di "Chiaromonte" con la S.S. 115 e lo

Svincolo della "Ragusana"

PROGETTO ESECUTIVO

Direzione Progettazione e Realizzazione Lavori

X [m] 1.25 3.94 6.80 9.52 12.35	M [kNm] -337.9593 187.4527 378.1988 206.1860 -337.9593	V [kN] 258.0750 133.1893 0.0000 -126.4800 -258.0750	N [kN] 93.2933 93.2933 93.2933 93.2933 93.2933
Sollecitazioni pie	dritto sinistro (Combinazione	<u>n° 23)</u>	
Y [m]	M [kNm]	V [kN]	N [kN]
0.60	-649.7412	256.7989	474.2250
4.53 8.46	-150.2915 -337.9593	18.6319 -93.2933	366.1500 258.0750
			238.0730
Sollecitazioni pie	dritto destro (Combinazione r	<u>1° 23)</u>	
Y [m]	M [kNm]	V [kN]	N [kN]
0.60 4.53	-649.7412 -150.2915	-256.7989 -18.6319	474.2250 366.1500
8.46	-337.9593	93.2933	258.0750
Sollecitazioni fon	dazione (Combinazione n° 24	1	
X [m]	M [kNm]	V [kN]	N [kN]
0.00 3.37	0.0000 34.4029	6.3039 -285.3537	-12.4276 330.8005
6.80	547.5202	-14.5698	330.8005
10.23	157.9279	268.8041	330.8005
13.60	0.0000	-7.3515	11.5291
Sollecitazioni trav	verso (Combinazione n° 24)		
X [m]	M [kNm]	V [kN]	N [kN]
1.25 3.94	-319.4823	288.2577 139.2006	126.0834
6.80	254.5331 425.5787	-19.7673	138.7734 152.3072
9.52	166.5061	-170.7273	165.1592
12.35	-538.8991	-327.7923	178.5309
Y [m] 0.60 4.53 8.46	dritto sinistro (Combinazione M [kNm] -845.0535 -121.1694 -319.4823	n° 24) V [kN] 343.2281 46.0047 -126.0834	N [kN] 504.4077 396.3327 288.2577
Sollecitazioni pie	dritto destro (Combinazione r	<u>n° 24)</u>	
Y [m]	M [kNm]	V [kN]	N [kN]
0.60	-648.5644	-319.2714	543.9423
4.53 8.46	-82.3701 -538.8991	13.8762 178.5309	435.8673 327.7923
0.40	-336.6331	176.5305	327.7323
Sollecitazioni fon	dazione (Combinazione n° 25	1	
X [m]	M [kNm]	V [kN]	N [kN]
0.00	0.0000	7.1122	-8.8059
3.37 6.80	77.8098 589.7639	-294.6988 -7.8396	303.3898 303.3898
10.23	173.1296	276.3865	303.3898
13.60	0.0000	-7.2696	7.9818
Sollecitazioni trav	verso (Combinazione n° 25)		
X [m]	M [kNm]	V [kN]	N [kN]
1.25 3.94	-335.8176 292.3561	343.1087 136.2165	102.4374 115.1274
6.80	454.8544	-22.7513	128.6612
9.52	187.6652	-173.7113	141.5132
12.35	-526.1849	-330.7763	154.8849
	1	0.051	
	dritto sinistro (Combinazione		
Y [m] 0.60	M [kNm] -832.3601	V [kN] 312.1956	N [kN] 559.2587
4.53	-832.3601 -176.7119	42.3114	451.1837
8.46	-335.8176	-102.4374	343.1087

Collegamento viario compreso tra lo Svincolo della S.S. 514 di "Chiaromonte" con la S.S. 115 e lo

Svincolo della "Ragusana"

PROGETTO ESECUTIVO

Direzione Progettazione e Realizzazione Lavori

Sollecitazioni pie	edritto destro (Combinazione r	<u>n° 25)</u>	
Y [m]	M [kNm]	V [kN]	N [kN]
0.60	-648.4805	-295.4080	546.9263
4.53	-133.1762	14.5707	438.8513
8.46	-526.1849	154.8849	330.7763
6.40	-320.1645	134.0045	330.7703
Sollecitazioni for	ndazione (Combinazione n° 26	1	
X [m]	M [kNm]	V [kN]	N [kN]
0.00	0.0000	6.9801	-4.0262
3.37	107.0890	-293.5881	272.0929
6.80	624.5086	-10.3414	272.0929
10.23	200.6361	287.3119	272.0929
13.60	0.0000	-7.9724	3.2872
Sollecitazioni tra	verso (Combinazione n° 26)		
X [m]	M [kNm]	V [kN]	N [kN]
1.25	-427.2351	350.8738	103.0319
3.94	314.9494	201.8167	115.7219
6.80 9.52	603.1728	-14.9862 -223.7812	129.2557
	261.9663 -593.5814	-380.8462	142.1077
12.35	-593.5814	-380.8462	155.4794
Sollecitazioni pie	edritto sinistro (Combinazione	n° 26)	
V []	AA DA LA	V [1 * 12	A1 E1 - 12
Y [m] 0.60	M [kNm] -779.6607	V [kN] 276.1191	N [kN] 567.0238
4.53	-779.6607	23.9760	458.9488
4.55 8.46	-427.2351	-103.0319	350.8738
			330.0730
Sollecitazioni pie	edritto destro (Combinazione r	<u>1° 26)</u>	
Y [m]	M [kNm]	V [kN]	N [kN]
0.60	-652.2661	-268.8057	596.9962
4.53	-195.9906	19.3475	488.9212
8.46	-593.5814	155.4794	380.8462
Sollecitazioni for	ndazione (Combinazione n° 27	1	
X [m]	M [kNm]	V [kN]	N [kN]
0.00	0.0000	6.0276	-11.5056
3.37	21.8678	-280.1413	320.2208
6.80	533.1311	-17.9281	320.2208
10.23	163.6934	260.5708	320.2208
13.60	0.0000	-7.3426	10.6358
Sollecitazioni tra	verso (Combinazione n° 27)		
V []	NA [IsNima]	V (LAI)	N [kN]
X [m] 1.25	M [kNm] -282.5569	V [kN] 272.5596	107.5037
3.94	257.4126	129.5453	124.4237
6.80	410.0323	-22.9779	142.4687
9.52	150.5501	-167.8179	159.6047
12.35	-537.6116	-318.5154	177.4337
Sollecitazioni pie	edritto sinistro (Combinazione	<u>n- 27)</u>	
Y [m]	M [kNm]	V [kN]	N [kN]
0.60	-835.9444	331.7263	488.7096
4.53	-127.7071	49.5436	380.6346
8.46	-282.5569	-107.5037	272.5596
Sollecitazioni pie	edritto destro (Combinazione r	<u>1° 27)</u>	
Y [m]	M [kNm]	V [kN]	N [kN]
0.60	-621.9301	-309.5850	534.6654
4.53	-78.3615	16.3695	426.5904
8.46	-537.6116	177.4337	318.5154
Sollecitazioni for	ndazione (Combinazione n° 28	1	
X [m]	M [kNm]	V [kN]	N [kN]
0.00	0.0000	7.5471	-0.6993
3.37	240.3233	-260.3182	241.0275
6.80	679.2161	-1.3612	241.0275
10.23	275.9835	266.0594	241.0275
13.60	0.0000	-7.9763	0.0446

Realizzazione Lavori

Collegamento viario compreso tra lo Svincolo della S.S. 514 di "Chiaromonte" con la S.S. 115 e lo

Svincolo della "Ragusana"

PROGETTO ESECUTIVO

Sollecitazioni tra	averso (Combinazione n° 28)		
X [m]	M [kNm]	V [kN]	N [kN]
1.25	-591.9214	331.3553	167.9223
3.94	105.9565	188.3410	180.6123
6.80	380.3545	-7.5584	194.1461
9.52	91.4592	-195.7747	206.9981
12.35	-675.8201	-346.4722	220.3698
12.33	-075.5201	-340.4722	220.3036
Sollecitazioni pie	edritto sinistro (Combinazione	<u>n° 28)</u>	
Y [m]	M [kNm]	V [kN]	N [kN]
0.60	-563.3383	241.7268	547.5053
4.53	-166.3746	-24.1109	439.4303
8.46	-591.9214	-167.7952	331.3553
Sollecitazioni pie	edritto destro (Combinazione r	<u>n° 28)</u>	
Y [m]	M [kNm]	V [kN]	N [kN]
0.60	-516.9992	-240.9829	562.6222
4.53	-141.0597	37.4001	454.5472
8.46	-675.8201	213.5465	346.4722
Sollecitazioni for	ndazione (Combinazione n° 29	1	
X [m]	M [kNm]	V [kN]	N [kN]
0.00	0.0000	6.5844	-5.2766
3.37	74.3337	-286.2828	272.9611
6.80	583.9822	-12.1476	272.9611
10.23	178.7276	277.0648	272.9611
13.60	0.0000	-7.6666	4.5352
Sollecitazioni tra	averso (Combinazione n° 29)		
X [m]	M [kNm]	V [kN]	N [kN]
1.25	-391.6387	323.1022	93.3720
3.94	284.0736	180.0879	106.0620
6.80	534.8322	-15.8116	119.5958
9.52	223.4884	-204.0278	132.4478
12.35	-567.1474	-354.7253	145.8195
Sollecitazioni pie	edritto sinistro (Combinazione	<u>n° 29)</u>	
Y [m]	M [kNm]	V [kN]	N [kN]
0.60	-790.3538	278.2377	539.2522
4.53	-225.8897	29.8652	431.1772
8.46	-391.6387	-93.3720	323.1022
Sollecitazioni pie	edritto destro (Combinazione r	<u>n° 29)</u>	
Y [m]	M [hNim]	// [FVI]	NI FLAIT
7 [m] 0.60	M [kNm] -647.0887	V [kN] -268.4260	N [kN] 570.8753
4.53	-647.0887 -195.5744	-268.4260 20.5783	462.8003
4.53 8.46	-195.5744 -567.1474	20.5783 145.8195	462.8003 354.7253
0.40	-307.1474	143.6195	354.7253

Collegamento viario compreso tra lo Svincolo della S.S. 514 di "Chiaromonte" con la S.S. 115 e lo Svincolo della "Ragusana"

PROGETTO ESECUTIVO

Direzione Progettazione e Realizzazione Lavori

RELAZIONE DI CALCOLO SOTTOVIA AL KM 3+248 - SEC. 90

Pressioni terreno

Pressioni sul terreno di fondazione (Combinazione n° 1)	
X [m]	$\sigma_t [\text{MPa}]$
0.00	0.220
3.37	0.166
6.80	0.131
10.23	0.169
13.60	0.233
Pressioni sul terreno di fondazione (Combinazione n° 2)	
X [m]	σ _t [MPa] 0.195
0.00 3.37	0.195
6.80	0.165
10.23	0.138
13.60	0.229
Pressioni sul terreno di fondazione (Combinazione n° 3)	
X [m]	$\sigma_t [\text{MPa}]$
0.00	0.242
3.37	0.177
6.80	0.133
10.23 13.60	0.169 0.232
Pressioni sul terreno di fondazione (Combinazione n° 4)	
X [m]	$\sigma_t [\text{MPa}]$
0.00	0.218
3.37	0.175
6.80	0.140
10.23	0.174
13.60	0.228
Pressioni sul terreno di fondazione (Combinazione n° 5)	
X [m]	σ_t [MPa]
0.00	0.235
3.37	0.173
6.80	0.135
10.23 13.60	0.180 0.255
Pressioni sul terreno di fondazione (Combinazione n° 6)	0.233
	σ. [MDa]
X [m] 0.00	σ _t [MPa] 0.213
3.37	0.213
6.80	0.172
10.23	0.141
13.60	0.250
Pressioni sul terreno di fondazione (Combinazione n° 7)	
X [m]	σ _t [MPa]
0.00 3.37	0.225
3.37 6.80	0.163 0.125
10.23 13.60	0.164 0.231
Pressioni sul terreno di fondazione (Combinazione n° 8)	
X [m]	$\sigma_t [\text{MPa}]$
0.00	0.185
3.37	0.161
6.80	0.137
10.23 13.60	0.173 0.224
Pressioni sul terreno di fondazione (Combinazione n° 9)	
X [m]	σ _t [MPa]
0.00	0.240
3.37	0.171
6.80	0.128
10.23	0.165
13.60	0.231
Pressioni sul terreno di fondazione (Combinazione n° 10)	1

Collegamento viario compreso tra lo Svincolo della S.S. 514 di "Chiaromonte" con la S.S. 115 e lo

Svincolo della "Ragusana" **PROGETTO ESECUTIVO**

Direzione Progettazione e Realizzazione Lavori

azione Lavori	
0.00	0.205
0.00 3.37	0.206 0.170
6.80	0.170
10.23	0.171
13.60	0.221
Pressioni sul terreno di fondazione (Combinazione n°	11)
	<u></u>
X [m]	σ _t [MPa]
0.00 3.37	0.235 0.168
6.80	0.108
10.23	0.173
13.60	0.248
Pressioni sul terreno di fondazione (Combinazione n°	12)
X [m]	σ _t [MPa]
0.00	0.203
3.37	0.168
6.80	0.139
10.23	0.179
13.60	0.237
Pressioni sul terreno di fondazione (Combinazione n°	13)
X [m]	σt [MPa]
0.00	0.153
3.37	0.133
6.80 10.23	0.113 0.135
13.60	0.153
Pressioni sul terreno di fondazione (Combinazione n°	14)
	171
X [m]	σ_t [MPa]
0.00	0.108
3.37	0.100
6.80 10.23	0.087 0.102
13.60	0.102
Pressioni sul terreno di fondazione (Combinazione n°	<u>15)</u>
X [m]	a [MDa]
0.00	σ _t [MPa] 0.142
3.37	0.133
6.80	0.117
10.23	0.137
13.60	0.155
Pressioni sul terreno di fondazione (Combinazione n°	<u>16)</u>
X [m]	σt [MPa]
0.00	0.097
3.37	0.100
6.80	0.091
10.23	0.105
13.60	0.110
Pressioni sul terreno di fondazione (Combinazione n°	<u>17)</u>
X [m]	σ _t [MPa]
0.00 3.37	0.149 0.115
6.80	0.115
10.23	0.032
13.60	0.149
Pressioni sul terreno di fondazione (Combinazione n°	18)
X [m]	σt [MPa]
0.00	0.158
3.37	0.123
6.80	0.098
10.23	0.122
13.60	0.159
Pressioni sul terreno di fondazione (Combinazione n°	<u>19)</u>
X [m]	$\sigma_t [\text{MPa}]$
0.00	0.172
3.37	0.129
6.80	0.099
10.23	0.122
13.60	0.157

Collegamento viario compreso tra lo Svincolo della S.S. 514 di "Chiaromonte" con la S.S. 115 e lo Svincolo della "Ragusana"

PROGETTO ESECUTIVO

Direzione Progettazione e Realizzazione Lavori

Pressioni sul terreno di fondazione (Combi	nazione n° 20)
X [m]	σ _t [MPa]
0.00	0.169
3.37	0.128
6.80	0.100
10.23	0.128
13.60	0.169
Pressioni sul terreno di fondazione (Combi	nazione n° 21)
X [m]	σ _t [MPa]
0.00	0.139
3.37	0.112
6.80	0.093
10.23	0.119
13.60	0.158
Pressioni sul terreno di fondazione (Combi	nazione n° 22)
X [m]	σ_t [MPa]
0.00	0.156
3.37	0.115
6.80	0.089
10.23 13.60	0.115 0.156
Pressioni sul terreno di fondazione (Combi	nazione n° 23)
X [m]	σt [MPa]
0.00	0.145
3.37	0.116
6.80 10.23	0.094 0.116
13.60	0.115
Pressioni sul terreno di fondazione (Combi	nazione n° 24 <u>)</u>
X [m]	σ _t [MPa]
0.00	0.144
3.37	0.122
6.80	0.102
10.23	0.129
13.60	0.168
Pressioni sul terreno di fondazione (Combi	nazione n° 25)
X [m]	σ _t [MPa]
0.00	0.163
3.37	0.131
6.80	0.104
10.23	0.129
13.60	0.166
Pressioni sul terreno di fondazione (Combi	nazione n° 26)
X [m]	σ _t [MPa]
0.00	0.160
3.37	0.128
6.80	0.105
10.23 13.60	0.136 0.182
Pressioni sul terreno di fondazione (Combi	
X [m]	σ _t [MPa]
0.00	0.138
3.37	0.119
6.80	0.101 0.128
10.23 13.60	0.128
Pressioni sul terreno di fondazione (Combi	
X [m]	σt [MPa]
0.00	0.173
3.37 6.80	0.125
10.23	0.096 0.128
13.60	0.128
Pressioni sul terreno di fondazione (Combi	
X [m] 0.00	σ _t [MPa] 0.151
0.00	0.151

Realizzazione Lavori

Collegamento viario compreso tra lo Svincolo della S.S. 514 di "Chiaromonte" con la S.S. 115 e lo Svincolo della "Ragusana"

PROGETTO ESECUTIVO

RELAZIONE DI CALCOLO SOTTOVIA AL KM 3+248 - SEC. 90

0.124 0.103 0.132 0.175 3.37 6.80 10.23 13.60

Collegamento viario compreso tra lo Svincolo della S.S. 514 di "Chiaromonte" con la S.S. 115 e lo Svincolo della "Ragusana"

PROGETTO ESECUTIVO

RELAZIONE DI CALCOLO SOTTOVIA AL KM 3+248 - SEC. 90

Verifiche combinazioni SLU

Simbologia adottata ed unità di misura

N° Indice sezione

Ascissa/Ordinata sezione, espresso in cm

Momento flettente, espresso in kNm Taglio, espresso in kN М

Sforzo normale, espresso in kN Sforzo normale ultimo, espressa in kN

V N N_u M_u Momento ultimo, espressa in kNm

Area armatura inferiore, espresse in cmq Area armatura superiore, espresse in cmq

A_{fi} A_{fs} CS

Coeff. di sicurezza sezione Aliquota taglio assorbita dal calcestruzzo in elementi senza armature trasversali, espressa in kN

Aliquota taglio assorbita dal calcestruzzo in elementi con armature trasversali, espressa in kN

Aliquota taglio assorbita armature trasversali, espressa in kN Area armature trasversali nella sezione, espressa in cmq V_{Rsd}

Verifica sezioni fondazione [Combinazione n° 1 - SLU (Approccio 2)]

Base sezione B = 100 cm

Altezza sezione	H = 120.00 cm
Verifiche presso-fless	ione

N°	X	M	N	N_u	M_u	A_{fi}	A_fs	CS
1	0.00	0.00 (9.96)	-9.23	-378.08	-774.79	22.62	22.62	40.95
2	3.37	-234.61 (-602.07)	397.19	984.20	-1491.88	22.62	22.62	2.48
3	6.80	-841.67 (-842.36)	397.19	613.46	-1301.02	22.62	22.62	1.54
4	10.23	-308.41 (-674.00)	397.19	833.43	-1414.26	22.62	22.62	2.10
5	13.60	0.00 (10.53)	8.15	752.35	-1372.52	22.62	22.62	92.27

Verifich	Verifiche taglio								
N°	X	V	V_{Rd}	V_{Rsd}	V_{Rcd}	A_{sw}			
1	0.00	9.63	393.99	0.00	0.00	0.00			
2	3.37	-355.03	452.41	0.00	0.00	0.00			
3	6.80	-5.05	452.41	0.00	0.00	0.00			
4	10.23	353.23	452.41	0.00	0.00	0.00			
5	13.60	-10.18	396.48	0.00	0.00	0.00			

Verifica sezioni traverso [Combinazione n° 1 - SLU (Approccio 2)]

B = 100 cm H = 110.00 cm Altezza sezione

Verifiche presso-flessione

1011110	and presso nessione							
N°	X	M	N	N_u	M_u	A_{fi}	A_fs	CS
1	1.25	-620.65 (-800.53)	227.15	293.87	-1035.70	22.62	22.62	1.29
2	3.94	182.42 (369.91)	249.99	888.94	1315.37	22.62	22.62	3.56
3	6.80	443.35 (445.08)	274.35	778.92	1263.66	22.62	22.62	2.84
4	9.52	122.11 (330.01)	297.48	1403.90	1557.38	22.62	22.62	4.72
5	12.35	-800.53 (-800.53)	321.55	444.43	-1106.46	22.62	22.62	1.38

Verific	che taglio					
N°	X	V	V_{Rd}	V_{Rsd}	V_{Rcd}	A_{sw}
1	1.25	399.63	400.90	0.00	0.00	0.00
2	3.94	198.40	404.17	0.00	0.00	0.00
3	6.80	-16.21	407.66	0.00	0.00	0.00
4	9.52	-220.00	410.97	0.00	0.00	0.00
5	12.35	-432.04	414.42	0.00	4445.64	0.00

Verifica sezioni piedritto sinistro [Combinazione n° 1 - SLU (Approccio 2)]

B = 100 cm Base sezione H = 110.00 cm Altezza sezione

Verifiche p	resso-flessione							
N°	X	M	N	N_u	M_u	A_{fi}	A_{fs}	CS
1	0.60	-882.66 (-882.66)	691.43	1103.91	-1409.22	15.71	22.62	1.60
2	4.53	-129.17 (-134.06)	545.53	12718.35	-3125.38	15.71	22.62	23.31
3	8.46	-620.65 (-835.30)	399.63	551.76	-1153.30	15.71	22.62	1.38

verifici	ie tagiio					
N°	X	V	V_{Rd}	V_{Rsd}	V_{Rcd}	A_{sw}
1	0.60	406.42	467.38	0.00	0.00	0.00
2	4.53	5.17	446.49	0.00	0.00	0.00
3	8.46	-227.15	425.60	0.00	0.00	0.00

Collegamento viario compreso tra lo Svincolo della S.S. 514 di "Chiaromonte" con la S.S. 115 e lo Svincolo della "Ragusana"

PROGETTO ESECUTIVO

RELAZIONE DI CALCOLO SOTTOVIA AL KM 3+248 - SEC. 90

Verifica sezioni niedritto	destro (Con	nhinazione nº	1 - SIII (Annroccio	211

Base sezione	B = 100 cm
Altezza sezione	H = 110.00 cm

Verifiche p	resso-flessione							
N°	X	M	N	N_u	M_u	Afi	A_{fs}	CS
1	0.60	-749.32 (-800.53)	723.84	1397.09	-1545.11	15.71	22.62	1.93
2	4.53	-82.71 (-112.33)	577.94	14319.58	-2783.07	15.71	22.62	24.78
3	8.46	-800.53 (-800.53)	432.04	645.99	-1196.97	15.71	22.62	1.50

Verifich	ne taglio					
N°	X	V	V_{Rd}	V_{Rsd}	V_{Rcd}	A_{sw}
1	0.60	-389.04	472.02	0.00	0.00	0.00
2	4.53	31.34	451.13	0.00	0.00	0.00
3	8.46	306.39	430.24	0.00	0.00	0.00

Verifica sezioni fondazione [Combinazione n° 2 - SLU (Approccio 2)]

Base sezione	B = 100 cm
Altezza sezione	H = 120.00 cm

Verifi	che presso-flessione							
N°	X	M	N	N_u	M_u	A_{fi}	A_{fs}	CS
1	0.00	0.00 (-8.81)	-16.25	-548.04	-680.19	22.62	22.62	33.72
2	3.37	-53.95 (-451.40)	446.66	1987.07	-2008.17	22.62	22.62	4.45
3	6.80	-745.86 (-749.64)	446.66	846.74	-1421.12	22.62	22.62	1.90
4	10.23	-224.23 (-598.44)	446.66	1194.18	-1599.98	22.62	22.62	2.67
5	13.60	0.00 (10.36)	15.04	2024.24	-2027.31	22.62	22.62	134.60

Verific	he taglio					
N°	X	V	V_{Rd}	V_{Rsd}	V_{Rcd}	A_{sw}
1	0.00	8.51	392.98	0.00	0.00	0.00
2	3.37	-384.01	459.52	0.00	0.00	0.00
3	6.80	-20.43	459.52	0.00	0.00	0.00
4	10.23	361.56	459.52	0.00	0.00	0.00
5	13.60	-10.01	397.47	0.00	0.00	0.00

Verifica sezioni traverso [Combinazione n° 2 - SLU (Approccio 2)]

Base sezione	B = 100 cm
Altezza sezione	H = 110.00 cm

Verific	he presso-flession	<u>e</u>						
N°	X	M	N	N_u	M_u	A_{fi}	A_{fs}	CS
1	1.25	-423.64 (-744.83)	170.66	230.48	-1005.90	22.62	22.62	1.35
2	3.94	345.24 (520.70)	193.50	404.15	1087.52	22.62	22.62	2.09
3	6.80	569.70 (575.29)	217.86	413.51	1091.93	22.62	22.62	1.90
4	9.52	213.83 (433.77)	241.00	674.93	1214.78	22.62	22.62	2.80
5	12.35	-744.83 (-744.83)	265.07	383.58	-1077.86	22.62	22.62	1.45

veriti	cne taglio					
N°	X	V	V_{Rd}	V_{Rsd}	V_{Rcd}	A_{sw}
1	1.25	386.90	392.81	0.00	0.00	0.00
2	3.94	185.67	396.08	0.00	0.00	0.00
3	6.80	-28.94	399.57	0.00	0.00	0.00
4	9.52	-232.73	402.88	0.00	0.00	0.00
5	12.35	-444.77	406.33	0.00	4433.93	0.00

Verifica sezioni piedritto sinistro [Combinazione n° 2 - SLU (Approccio 2)]

Base sezione	B = 100 cm
Altezza sezione	H = 110.00 cm

Verific	he presso-flessio	one .						
N°	X	М	N	N_u	M_u	A_{fi}	A_fs	CS
1	0.60	-1129.64 (-1129.64)	678.70	747.40	-1243.97	15.71	22.62	1.10
2	4.53	-154.15 (-212.42)	532.80	8728.78	-3480.07	15.71	22.62	16.38
3	8.46	-423.64 (-584.91)	386.90	856.20	-1294.40	15.71	22.62	2.21
Verific	he taglio							

1	0.60	462.91	465.56	0.00	0.00	0.00
2	4.53	61.66	444.66	0.00	0.00	0.00
3	8.46	-170.66	423.77	0.00	0.00	0.00

Collegamento viario compreso tra lo Svincolo della S.S. 514 di "Chiaromonte" con la S.S. 115 e lo Svincolo della "Ragusana"

PROGETTO ESECUTIVO

RELAZIONE DI CALCOLO SOTTOVIA AL KM 3+248 - SEC. 90

Verifica sezioni piedritto destro [Combinazione n° 2 - SLU (Approccio 2)]

B = 100 cm Base sezione Altezza sezione

Verifiche presso-flessione

N°	X	M	N	Nu	M_u	Afi	Afs	CS
1	0.60	-861.61 (-861.61)	736.57	1270.86	-1486.60	15.71	22.62	1.73
2	4.53	-91.58 (-107.93)	590.67	14696.60	-2685.37	15.71	22.62	24.88
3	8.46	-744.83 (-861.61)	444.77	609.04	-1179.85	15.71	22.62	1.37

Verifiche taglio A_{sw} 0.00 0.00 0.60 0.00 1 -431.62 473.84 0.00 4.53 17.30 452.95 0.00

Verifica sezioni fondazione [Combinazione n° 3 - SLU (Approccio 2)]

B = 100 cm Base sezione Altezza sezione H = 120.00 cm

Verific	he presso-flession	<u>ie</u>						
N°	X	M	N	N_u	M_u	A_{fi}	A_{fs}	CS
1	0.00	0.00 (-10.96)	-4.99	-238.51	-852.46	22.62	22.62	47.79
2	3.37	-280.26 (-663.28)	364.58	755.24	-1374.01	22.62	22.62	2.07
3	6.80	-896.48 (-896.60)	364.58	506.67	-1246.04	22.62	22.62	1.39
4	10.23	-335.75 (-710.42)	364.58	687.13	-1338.95	22.62	22.62	1.88
5	13.60	0.00 (-10.52)	4.00	307.16	-1143.33	22.62	22.62	76.78

Verific	che taglio					
N°	X	V	V_{Rd}	V_{Rsd}	V_{Rcd}	A_{sw}
1	0.00	10.59	394.60	0.00	0.00	0.00
2	3.37	-370.06	447.72	0.00	0.00	0.00
3	6.80	0.73	447.72	0.00	0.00	0.00
4	10.23	361.99	447.72	0.00	0.00	0.00
5	13.60	-10.16	395.89	0.00	0.00	0.00

Verifica sezioni traverso [Combinazione n° 3 - SLU (Approccio 2)]

B = 100 cm Base sezione Altezza sezione H = 110.00 cm

Verific	he presso-flessione							
N°	X	M	N	N_u	M_u	A_{fi}	A_fs	CS
1	1.25	-625.05 (-806.12)	191.24	239.66	-1010.22	22.62	22.62	1.25
2	3.94	241.35 (421.60)	214.09	598.66	1178.94	22.62	22.62	2.80
3	6.80	480.32 (483.93)	238.45	575.55	1168.08	22.62	22.62	2.41
4	9.52	138.22 (353.37)	261.58	1018.92	1376.45	22.62	22.62	3.90
5	12.35	-806.12 (-806.12)	285.65	381.61	-1076.93	22.62	22.62	1.34

Verific	<u>Verifiche taglio</u>											
N°	X	V	V_{Rd}	V_{Rsd}	V_{Rcd}	A_{sw}						
1	1.25	470.04	395.76	0.00	4418.62	0.00						
2	3.94	190.73	399.03	0.00	0.00	0.00						
3	6.80	-23.87	402.52	0.00	0.00	0.00						
4	9.52	-227.67	405.83	0.00	0.00	0.00						
5	12.35	-439.71	409.28	0.00	4438.20	0.00						

Verifica sezioni piedritto sinistro [Combinazione n° 3 - SLU (Approccio 2)]

B = 100 cm Base sezione H = 110.00 cm Altezza sezione

Verific	he presso-flessione							
N°	Χ	M	N	N_u	M_u	A_{fi}	A_{fs}	CS
1	0.60	-882.86 (-882.86)	761.84	1290.80	-1495.85	15.71	22.62	1.69
2	4.53	-202.22 (-206.37)	615.94	10340.83	-3464.70	15.71	22.62	16.79
3	8.46	-625.05 (-805.77)	470.04	717.60	-1230.16	15.71	22.62	1.53

Verifich	<u>Verifiche taglio</u>											
N°	X	V	V_{Rd}	V_{Rsd}	V_{Rcd}	A_{sw}						
1	0.60	369.57	477.46	0.00	0.00	0.00						
2	4.53	4.39	456.57	0.00	0.00	0.00						
3	8.46	-191.24	435.68	0.00	0.00	0.00						

Collegamento viario compreso tra lo Svincolo della S.S. 514 di "Chiaromonte" con la S.S. 115 e lo Svincolo della "Ragusana"

PROGETTO ESECUTIVO

RELAZIONE DI CALCOLO SOTTOVIA AL KM 3+248 - SEC. 90

		itto destro [Combinazione n° 3	- SEO (Approcció 2)					
Base se Altezza	zione sezione	B = 100 cm H = 110.00 cm						
	e presso-fles							
N° 1	X 0.60	-740.18 (-806.12)	N 731.51	N _u 1405.73	M _u -1549.12	A _{fi} 15.71	A _{fs} 22.62	CS 1.92
2	4.53	-136.94 (-169.20)	585.61	11516.73	-3327.60	15.71	22.62	19.67
3	8.46	-806.12 (-806.12)	439.71	655.24	-1201.26	15.71	22.62	1.49
	e taglio							
N°	X	V	V _{Rd}	V _{Rsd}	V _{Rcd}	A _{sw}		
1 2	0.60 4.53	-360.58 34.14	473.12 452.23	0.00 0.00	0.00 0.00	0.00 0.00		
3	8.46	276.73	431.34	0.00	0.00	0.00		
<u>Verifica</u>	sezioni fonda	azione [Combinazione n° 4 - SL	U (Approccio 2)]					
Base se Altezza	zione sezione	B = 100 cm H = 120.00 cm						
	e presso-fles						_	
N° 1	X 0.00	0.00 (-9.86)	N -11.92	N _u -457.42	M _u -730.63	A _{fi} 22.62	A _{fs} 22.62	CS 38.38
2	3.37	-104.13 (-516.40)	412.03	1334.06	-1671.99	22.62	22.62	3.24
3	6.80	-801.96 (-804.08)	412.03	685.74	-1338.23	22.62	22.62	1.66
4 5	10.23 13.60	-250.62 (-634.09) 0.00 (10.32)	412.03 10.80	961.99 1113.90	-1480.44 -1558.65	22.62 22.62	22.62 22.62	2.33 103.15
		, ,						
	e taglio					_		
N° 1	X 0.00	V 9.52	V _{Rd} 393.60	V _{Rsd} 0.00	V _{Rcd} 0.00	A _{sw} 0.00		
2	3.37	-398.33	454.54	0.00	0.00	0.00		
3	6.80	-13.69	454.54	0.00	0.00	0.00		
4 5	10.23 13.60	370.50 -9.97	454.54 396.86	0.00 0.00	0.00 0.00	0.00 0.00		
<u>Verifica</u>	sezioni trave	rso [Combinazione n° 4 - SLU (.	Approccio 2)]	0.00	0.00	0.00		
Base se		rso [Combinazione n° 4 - SLU (, B = 100 cm H = 110.00 cm	Approccio 2}]		0.00	5.65		
Base se Altezza <u>Verifich</u>	zione sezione e presso-fles	B = 100 cm H = 110.00 cm <u>sione</u>						CS
Base se Altezza <u>Verifich</u> N°	zione sezione	B = 100 cm H = 110.00 cm sione	Approccio 2)] N 135.81	N _u 180.34	M _u -982.34	A _{fi} 22.62	A _{fs} 22.62	CS 1.33
Base se Altezza <u>Verifich</u> N° 1 2	zione sezione e presso-fles X 1.25 3.94	B = 100 cm H = 110.00 cm sione M -434.20 (-739.77) 402.08 (571.72)	N	N_{u}	M _u -982.34 1032.20	A _{fi} 22.62 22.62	22.62 22.62	1.33 1.81
Base se Altezza <u>Verifich</u> N° 1 2	zione sezione e presso-fles X 1.25 3.94 6.80	B = 100 cm H = 110.00 cm sione M -434.20 (-739.77) 402.08 (571.72) 608.92 (616.91)	N 135.81 158.65 183.01	N _u 180.34 286.43 309.41	M _u -982.34 1032.20 1043.00	A _{fi} 22.62 22.62 22.62	22.62 22.62 22.62	1.33 1.81 1.69
Base se Altezza <u>Verifich</u> N° 1 2 3	zione sezione e presso-fles X 1.25 3.94	B = 100 cm H = 110.00 cm sione M -434.20 (-739.77) 402.08 (571.72)	N 135.81 158.65	N _u 180.34 286.43	M _u -982.34 1032.20	A _{fi} 22.62 22.62	22.62 22.62	1.33 1.81
Base se Altezza Verifich N° 1 2 3 4 5	zione sezione le presso-fles X 1.25 3.94 6.80 9.52 12.35	B = 100 cm H = 110.00 cm sione M -434.20 (-739.77) 402.08 (571.72) 608.92 (616.91) 236.31 (462.06)	N 135.81 158.65 183.01 206.14	N _u 180.34 286.43 309.41 506.69	M _u -982.34 1032.20 1043.00 1135.71	A _{fi} 22.62 22.62 22.62 22.62 22.62	22.62 22.62 22.62 22.62	1.33 1.81 1.69 2.46
Base se Altezza Verifich N° 1 2 3 4 5	zione sezione le presso-fles X 1.25 3.94 6.80 9.52 12.35	B = 100 cm H = 110.00 cm Sione M -434.20 (-739.77) 402.08 (571.72) 608.92 (616.91) 1236.31 (462.06) -739.77 (-739.77)	N 135.81 158.65 183.01 206.14 230.21	N _u 180.34 286.43 309.41 506.69 327.17	M _u -982.34 1032.20 1043.00 1135.71 -1051.35	A _{fi} 22.62 22.62 22.62 22.62 22.62	22.62 22.62 22.62 22.62	1.33 1.81 1.69 2.46
Base se Altezza Verifich N° 1 2 3 4 5	zione sezione Le presso-fles X 1.25 3.94 6.80 9.52 12.35	B = 100 cm H = 110.00 cm Sione M -434.20 (-739.77) 402.08 (571.72) 608.92 (616.91) 236.31 (462.06) -739.77 (-739.77)	N 135.81 158.65 183.01 206.14 230.21	N _u 180.34 286.43 309.41 506.69 327.17	M _u -982.34 1032.20 1043.00 1135.71 -1051.35	A _{fi} 22.62 22.62 22.62 22.62 22.62 A _{sw}	22.62 22.62 22.62 22.62	1.33 1.81 1.69 2.46
Base se Altezza Verifich N° 1 2 3 4 5 Verifich N° 1 2	zione sezione le presso-fles X 1.25 3.94 6.80 9.52 12.35	B = 100 cm H = 110.00 cm Sione M	N 135.81 158.65 183.01 206.14 230.21 V _{Rd} 387.82 391.09	N _u 180.34 286.43 309.41 506.69 327.17 V _{Rtd} 0.00 0.00	M _u -982.34 1032.20 1043.00 1135.71 -1051.35 V _{Rcd} 4407.13 0.00	A _{ri} 22.62 22.62 22.62 22.62 22.62 24.62 20.00 0.00	22.62 22.62 22.62 22.62	1.33 1.81 1.69 2.46
Base se Altezza Verifich N° 1 2 3 4 5 Verifich N° 1 2 3	zione sezione le presso-fles X 1.25 3.94 6.80 9.52 12.35 le taglio X 1.25 3.94 6.80	B = 100 cm H = 110.00 cm Sione M -434.20 (-739.77) 402.08 (571.72) 608.92 (616.91) 236.31 (462.06) -739.77 (-739.77) V 458.82 179.52 -35.09	N 135.81 158.65 183.01 206.14 230.21 V _{Rd} 387.82 391.09 394.58	N _u 180.34 286.43 309.41 506.69 327.17 V _{Rtd} 0.00 0.00 0.00	M _u -982.34 1032.20 1043.00 1135.71 -1051.35 V _{Rcd} 4407.13 0.00 0.00	A _{fi} 22.62 22.62 22.62 22.62 22.62 20.62	22.62 22.62 22.62 22.62	1.33 1.81 1.69 2.46
Base se Altezza Verifich N° 1 2 3 4 5 5 Verifich N° 1 2	zione sezione le presso-fles X 1.25 3.94 6.80 9.52 12.35	B = 100 cm H = 110.00 cm Sione M	N 135.81 158.65 183.01 206.14 230.21 V _{Rd} 387.82 391.09	N _u 180.34 286.43 309.41 506.69 327.17 V _{Rtd} 0.00 0.00	M _u -982.34 1032.20 1043.00 1135.71 -1051.35 V _{Rcd} 4407.13 0.00	A _{ri} 22.62 22.62 22.62 22.62 22.62 24.62 20.00 0.00	22.62 22.62 22.62 22.62	1.33 1.81 1.69 2.46
Base se Altezza Verifich N° 1 2 3 4 5 Verifich N° 1 2 3 4 5 5	zione sezione !e presso-fles X 1.25 3.94 6.80 9.52 12.35 !e taglio X 1.25 3.94 6.80 9.52 12.35	B = 100 cm H = 110.00 cm Sione M -434.20 (-739.77) 402.08 (571.72) 608.92 (616.91) 236.31 (462.06) -739.77 (-739.77) V 458.82 179.52 -35.09 -238.89 -450.92	N 135.81 158.65 183.01 206.14 230.21 V _{Rd} 387.82 391.09 394.58 397.89 401.34	N _u 180.34 286.43 309.41 506.69 327.17 V _{Rsd} 0.00 0.00 0.00 0.00	M _u -982.34 1032.20 1043.00 1135.71 -1051.35 V _{Rcd} 4407.13 0.00 0.00 0.00	A _{fi} 22.62 22.62 22.62 22.62 22.62 A _{sw} 0.00 0.00 0.00 0.00	22.62 22.62 22.62 22.62	1.33 1.81 1.69 2.46
Base see Altezza Altezza Verifich N° 1 2 3 4 5 Verifich N° 1 5 Verifich 1 2 3 4 5 Verifich Verifich	zione sezione Re presso-fles X 1.25 3.94 6.80 9.52 12.35 Re taglio X 1.25 3.94 6.80 9.52 12.35	B = 100 cm H = 110.00 cm Sione M -434.20 (-739.77) 402.08 (571.72) 608.92 (616.91) 236.31 (462.06) -739.77 (-739.77) V 458.82 179.52 -35.09 -238.89 -450.92 sitto sinistro [Combinazione n°	N 135.81 158.65 183.01 206.14 230.21 V _{Rd} 387.82 391.09 394.58 397.89 401.34	N _u 180.34 286.43 309.41 506.69 327.17 V _{Rsd} 0.00 0.00 0.00 0.00	M _u -982.34 1032.20 1043.00 1135.71 -1051.35 V _{Rcd} 4407.13 0.00 0.00 0.00	A _{fi} 22.62 22.62 22.62 22.62 22.62 A _{sw} 0.00 0.00 0.00 0.00	22.62 22.62 22.62 22.62	1.33 1.81 1.69 2.46
Base se Altezza Verifich N° 1 2 3 4 5 Verifich N° 1 2 3 4 5 Verifich N° 1 2 3 4 5 Verifich Base se	zione sezione Re presso-fles X 1.25 3.94 6.80 9.52 12.35 Re taglio X 1.25 3.94 6.80 9.52 12.35	B = 100 cm H = 110.00 cm Sione M -434.20 (-739.77) 402.08 (571.72) 608.92 (616.91) 236.31 (462.06) -739.77 (-739.77) V 458.82 179.52 -35.09 -238.89 -450.92	N 135.81 158.65 183.01 206.14 230.21 V _{Rd} 387.82 391.09 394.58 397.89 401.34	N _u 180.34 286.43 309.41 506.69 327.17 V _{Rsd} 0.00 0.00 0.00 0.00	M _u -982.34 1032.20 1043.00 1135.71 -1051.35 V _{Rcd} 4407.13 0.00 0.00 0.00	A _{fi} 22.62 22.62 22.62 22.62 22.62 A _{sw} 0.00 0.00 0.00 0.00	22.62 22.62 22.62 22.62	1.33 1.81 1.69 2.46
Base se Altezza Verifich N° 1 2 3 4 5 Verifich N° 1 2 3 4 5 Verifich S Verifica Base se Altezza Verifich	zione sezione (e presso-fles	B = 100 cm H = 110.00 cm M -434.20 (-739.77) 402.08 (571.72) 608.92 (616.91) 236.31 (462.06) -739.77 (-739.77) V 458.82 179.52 -35.09 -238.89 -450.92 iitto sinistro [Combinazione n° B = 100 cm H = 110.00 cm	N 135.81 158.65 183.01 206.14 230.21 V _{Rd} 387.82 391.09 394.58 397.89 401.34	N _u 180.34 286.43 309.41 506.69 327.17 V _{Rsd} 0.00 0.00 0.00 0.00 0.00	M _u -982.34 1032.20 1043.00 1135.71 -1051.35 V _{Rcd} 4407.13 0.00 0.00 0.00 4426.70	A _{fi} 22.62 22.62 22.62 22.62 22.62 20.00 0.00	22.62 22.62 22.62 22.62 22.62	1.33 1.81 1.69 2.46 1.42
Base se Altezza Verifich 1 2 3 4 5 Verifich N° 1 2 3 4 5 Verifich R Base se Altezza Verifich N°	zione sezione (e presso-fles	B = 100 cm H = 110.00 cm Sione M -434.20 (-739.77) 402.08 (571.72) 608.92 (616.91) 236.31 (462.06) -739.77 (-739.77) V 458.82 179.52 -35.09 -238.89 -450.92 itto sinistro [Combinazione n°. B = 100 cm H = 110.00 cm Sione	N 135.81 158.65 183.01 206.14 230.21 V _{Rd} 387.82 391.09 394.58 397.89 401.34	N _u 180.34 286.43 309.41 506.69 327.17 V _{Red} 0.00 0.00 0.00 0.00 0.00 0.00	M _u -982.34 1032.20 1043.00 1135.71 -1051.35 V _{Rcd} 4407.13 0.00 0.00 0.00 4426.70	A _{Fi} 22.62 22.62 22.62 22.62 22.62 A _{Sw} 0.00 0.00 0.00 0.00 0.00	22.62 22.62 22.62 22.62 22.62	1.33 1.81 1.69 2.46 1.42
Base se Altezza Verifich Verifich Verifich Verifica Base se Altezza Verifich	zione sezione (e presso-fles	B = 100 cm H = 110.00 cm M -434.20 (-739.77) 402.08 (571.72) 608.92 (616.91) 236.31 (462.06) -739.77 (-739.77) V 458.82 179.52 -35.09 -238.89 -450.92 sitto sinistro [Combinazione n°. B = 100 cm H = 110.00 cm Sione M -1124.06 (-1124.06)	N 135.81 158.65 183.01 206.14 230.21 V _{Rd} 387.82 391.09 394.58 397.89 401.34	N _u 180.34 286.43 309.41 506.69 327.17 V _{Rsd} 0.00 0.00 0.00 0.00 0.00	M _u -982.34 1032.20 1043.00 1135.71 -1051.35 V _{Rcd} 4407.13 0.00 0.00 0.00 4426.70	A _{fi} 22.62 22.62 22.62 22.62 22.62 20.00 0.00	22.62 22.62 22.62 22.62 22.62	1.33 1.81 1.69 2.46 1.42
Base se Altezza Verifich 1 2 3 4 5 Verifich N° 1 2 2 3 4 5 Verifich N° 1 2 2 3 4 5 Verifica 1 2 2 3 4 5 Verifica 1 5	zione sezione le presso-fles	B = 100 cm H = 110.00 cm Sione M -434.20 (-739.77) 402.08 (571.72) 608.92 (616.91) 236.31 (462.06) -739.77 (-739.77) V 458.82 179.52 -35.09 -238.89 -450.92 itto sinistro [Combinazione n°. B = 100 cm H = 110.00 cm Sione	N 135.81 158.65 183.01 206.14 230.21 V _{Rd} 387.82 391.09 394.58 397.89 401.34 4 - SLU (Approccio 2)]	N _u 180.34 286.43 309.41 506.69 327.17 V _{Red} 0.00 0.00 0.00 0.00 0.00 0.00	M _u -982.34 1032.20 1043.00 1135.71 -1051.35 V _{Rcd} 4407.13 0.00 0.00 0.00 4426.70	A _{Fi} 22.62 22.62 22.62 22.62 22.62 20.00 0.00	22.62 22.62 22.62 22.62 22.62 22.62	1.33 1.81 1.69 2.46 1.42
Base se Altezza Verifich 1 2 3 4 5 Verifich N° 1 2 3 4 5 Verifica Base se Altezza Werifich N° 1 2 3 4 5	zione sezione Re presso-fles X 1.25 3.94 6.80 9.52 12.35 Re taglio X 1.25 3.94 6.80 9.52 12.35 Sezioni piedr zione sezione le presso-fles X 0.60 4.53 8.46	B = 100 cm H = 110.00 cm M -434.20 (-739.77) 402.08 (571.72) 608.92 (616.91) 236.31 (462.06) -739.77 (-739.77) V 458.82 179.52 -35.09 -238.89 -450.92 iitto sinistro [Combinazione n° - B = 100 cm H = 110.00 cm Sione M -1124.06 (-1124.06) -229.17 (-285.50)	N 135.81 158.65 183.01 206.14 230.21 V _{Rd} 387.82 391.09 394.58 397.89 401.34 4 - SLU (Approccio 2)]	N _u 180.34 286.43 309.41 506.69 327.17 V _{Rsd} 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.	M _u -982.34 1032.20 1043.00 1135.71 -1051.35 V _{Rcd} 4407.13 0.00 0.00 0.00 4426.70 M _u -1299.89 -3295.55	A _{fi} 22.62 22.62 22.62 22.62 22.62 20.00 0.00	22.62 22.62 22.62 22.62 22.62 22.62 22.62	1.33 1.81 1.69 2.46 1.42
Base se Altezza Verifich 1 2 3 4 5 Verifich N° 1 2 3 4 5 Verifica Base se Altezza Werifich N° 1 2 3 4 5	zione sezione Re presso-fles X 1.25 3.94 6.80 9.52 12.35 Re taglio X 1.25 3.94 6.80 9.52 12.35 Sezioni piedr zione sezione le presso-fles X 0.60 4.53	B = 100 cm H = 110.00 cm M -434.20 (-739.77) 402.08 (571.72) 608.92 (616.91) 236.31 (462.06) -739.77 (-739.77) V 458.82 179.52 -35.09 -238.89 -450.92 iitto sinistro [Combinazione n° - B = 100 cm H = 110.00 cm Sione M -1124.06 (-1124.06) -229.17 (-285.50)	N 135.81 158.65 183.01 206.14 230.21 V _{Rd} 387.82 391.09 394.58 397.89 401.34 4 - SLU (Approccio 2)]	N _u 180.34 286.43 309.41 506.69 327.17 V _{Rsd} 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.	M _u -982.34 1032.20 1043.00 1135.71 -1051.35 V _{Rcd} 4407.13 0.00 0.00 0.00 4426.70 M _u -1299.89 -3295.55 -1443.12	A _{fi} 22.62 22.62 22.62 22.62 22.62 20.00 0.00	22.62 22.62 22.62 22.62 22.62 22.62 22.62	1.33 1.81 1.69 2.46 1.42
Base se Altezza Verifich 1 2 3 4 5 Verifica Base se Altezza Verifich N° 1 2 3 4 5 Verifica Uverifica Verifica	zione sezione (e presso-fles	B = 100 cm H = 110.00 cm M -434.20 (-739.77) 402.08 (571.72) 608.92 (616.91) 236.31 (462.06) -739.77 (-739.77) V 458.82 179.52 -35.09 -238.89 -450.92 iitto sinistro [Combinazione n° B = 100 cm H = 110.00 cm Sione M -1124.06 (-1124.06) -229.17 (-285.50) -434.20 (-562.54)	N 135.81 158.65 183.01 206.14 230.21 V _{Rd} 387.82 391.09 394.58 397.89 401.34 4 - SLU (Approccio 2)]	N _u 180.34 286.43 309.41 506.69 327.17 V _{Rsd} 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.	M _u -982.34 1032.20 1043.00 1135.71 -1051.35 V _{Rcd} 4407.13 0.00 0.00 0.00 4426.70 M _u -1299.89 -3295.55	A _{fi} 22.62 22.62 22.62 22.62 22.62 20.00 0.00	22.62 22.62 22.62 22.62 22.62 22.62 22.62	1.33 1.81 1.69 2.46 1.42

Collegamento viario compreso tra lo Svincolo della S.S. 514 di "Chiaromonte" con la S.S. 115 e lo Svincolo della "Ragusana"

PROGETTO ESECUTIVO

Direzione Progettazione e Realizzazione Lavori

RELAZIONE DI CALCOLO SOTTOVIA AL KM 3+248 - SEC. 90

uzione	247011							
3	8.46	-135.81	434.07	0.00	0.00	0.00		
,	0.40	155.01	.54.07	0.00	5.00	0.00		
Verifica	sezioni piedri	tto destro [Combinazione n° 4	- SLU (Approccio 2)]					
Base se	zione	B = 100 cm						
Altezza	sezione	H = 110.00 cm						
Verifich	e presso-flessi	<u>ione</u>						
N° 1	X 0.60	M -853.39 (-853.39)	N 742.73	N _u 1309.35	Mu -1504.44	A _{fi} 15.71	A _{fs} 22.62	CS 1.76
1 2	4.53	-152.83 (-172.77)	596.83	11502.46	-3329.69	15.71	22.62	19.27
3	8.46	-739.77 (-853.39)	450.92	628.08	-1188.67	15.71	22.62	1.39
<u>Verifich</u> N°	<u>e taglio</u> X	V	V_{Rd}	V_{Rsd}	V_{Rcd}	^		
1	0.60	-401.23	474.72	0.00	0.00	A _{sw} 0.00		
2	4.53	21.09	453.83	0.00	0.00	0.00		
3	8.46	230.21	432.94	0.00	0.00	0.00		
Verifica	sezioni fonda	zione [Combinazione n° 5 - SLI	U (Approccio 2)]					
Base se	zione	B = 100 cm						
Altezza	sezione	H = 120.00 cm						
	e presso-flessi	ione						
N° 1	X 0.00	M 0.00 (10.66)	N -1.22	N _u -77.85	M _u -941.88	A _{fi} 22.62	A _{fs} 22.62	CS 63.89
2	3.37	-302.55 (-687.38)	336.81	645.60	-941.86 -1317.56	22.62	22.62	1.92
3	6.80	-937.37 (-938.10)	336.81	433.93	-1208.60	22.62	22.62	1.29
4 5	10.23 13.60	-373.49 (-762.50) 0.00 (-11.54)	336.81 0.30	563.28 21.94	-1275.18 -996.50	22.62 22.62	22.62 22.62	1.67 72.28
		,						
Verifich	e taglio							
N°	Х	V	V _{Rd}	V _{Rsd}	V _{Rcd}	A _{sw}		
1 2	0.00 3.37	10.30 -371.82	395.14 443.73	0.00 0.00	0.00 0.00	0.00 0.00		
3	6.80	-5.46	443.73	0.00	0.00	0.00		
4 5	10.23 13.60	375.86 -11.15	443.73 395.36	0.00 0.00	0.00 0.00	0.00 0.00		
Verifica	sezioni traver	so [Combinazione n° 5 - SLU (/	Approccio 2)]					
Base se		B = 100 cm						
Altezza	sezione	H = 110.00 cm						
	e presso-flessi							
N° 1	X 1.25	-745.90 (-911.68)	N 198.63	N _u 217.87	M _u -999.98	A _{fi} 22.62	A _{fs} 22.62	CS 1.10
2	3.94	270.27 (532.75)	221.47	463.75	1115.53	22.62	22.62	2.09
3 4	6.80 9.52	674.54 (675.34) 228.32 (508.80)	245.83 268.97	394.17 631.33	1082.83 1194.30	22.62 22.62	22.62 22.62	1.60 2.35
5	12.35	-911.68 (-911.68)	293.04	339.84	-1057.30	22.62	22.62	1.16
Verifich								
N° 1	X 1.25	V 478.98	V _{Rd} 396.82	V _{Rsd} 0.00	V _{Rcd} 4420.15	A _{sw} 0.00		
2	3.94	277.75	400.09	0.00	0.00	0.00		
3	6.80	-14.94	403.58	0.00	0.00	0.00		
4 5	9.52 12.35	-296.81 -508.85	406.89 410.34	0.00 0.00	0.00 4439.73	0.00 0.00		
Verifica	sezioni piedri	tto sinistro [Combinazione n° !	5 - SLU (Approccio 2)]					
Base se		B = 100 cm						
Altezza	sezione	H = 110.00 cm						
	e presso-flessi		N.I	N.I	8.4	Α.	Α.	CC
N° 1	X 0.60	M -835.94 (-835.94)	N 770.78	N _u 1445.26	M _u -1567.44	A _{fi} 15.71	A _{fs} 22.62	CS 1.88
2	4.53	-254.87 (-272.56)	624.88	7792.65	-3399.03	15.71	22.62	12.47
3	8.46	-745.90 (-835.94)	478.98	700.25	-1222.12	15.71	22.62	1.46
.,								
<u>Verifich</u> N°	<u>e taglio</u> X	V	V_{Rd}	V_{Rsd}	V_{Rcd}	A_{sw}		
1	0.60	338.03	478.74	0.00	0.00	0.00		

MANDATARIA:

Collegamento viario compreso tra lo Svincolo della S.S. 514 di "Chiaromonte" con la S.S. 115 e lo

Svincolo della "Ragusana" PROGETTO ESECUTIVO

Direzione Progettazione e Realizzazione Lavori

RELAZIONE DI CALCOLO SOTTOVIA AL KM 3+248 - SEC. 90

2 3	4.53 8.46	-18.72 -198.63	457.85 436.96	0.00 0.00	0.00 0.00	0.00 0.00		
<u>Verifica</u>	a sezioni piedr	itto destro [Combinazione n° 5	- SLU (Approccio 2)]					
Base se Altezza	zione sezione	B = 100 cm H = 110.00 cm						
<u>Verifich</u> N°	ne presso-fles		N	N	M	Δ.	Λ.	CS
1	0.60	-743.63 (-911.68)	800.65	N _u 1329.37	M _u -1513.72	A _{fi} 15.71	A _{fs} 22.62	1.66
2	4.53 8.46	-204.77 (-247.64) -911.68 (-911.68)	654.75 508.85	9260.30 675.79	-3502.44 -1210.78	15.71 15.71	22.62 22.62	14.14 1.33
	ne taglio							
N° 1	0.60	V -336.51	V _{Rd} 483.02	V _{Rsd} 0.00	V _{Rcd} 0.00	A _{sw} 0.00		
2	4.53 8.46	45.36 284.84	462.13 441.24	0.00 0.00	0.00 0.00	0.00 0.00		
Verifica Base se		azione [Combinazione n° 6 - SL B = 100 cm	U (Approccio 2)]					
	sezione	H = 120.00 cm						
<u>Verifich</u> N°	ne presso-fless X	<u>sione</u> M	N	N_{u}	Mu	A _{fi}	Afs	CS
1 2	0.00 3.37	0.00 (9.65) -141.11 (-552.44)	-5.81 370.30	-300.37 1008.34	-818.04 -1504.31	22.62 22.62	22.62 22.62	51.66 2.72
3	6.80	-848.88 (-851.81)	370.30	551.78	-1269.27	22.62	22.62	1.49
4 5	10.23 13.60	-290.34 (-688.47) 0.00 (-11.32)	370.30 4.81	732.81 410.34	-1362.46 -1196.45	22.62 22.62	22.62 22.62	1.98 85.34
Verifich	ne taglio							
N° 1	X 0.00	V 9.32	V _{Rd} 394.48	V _{Rsd} 0.00	V _{Rcd} 0.00	A _{sw} 0.00		
2	3.37	-397.42	448.54	0.00	0.00	0.00		
3 4 5	6.80 10.23 13.60	-17.89 384.67 -10.94	448.54 448.54 396.00	0.00 0.00 0.00	0.00 0.00 0.00	0.00 0.00 0.00		
Base se		rso [Combinazione n° 6 - SLU (B = 100 cm H = 110.00 cm	Approccio 2)]					
	ne presso-fles							
N° 1	X 1.25	-554.42 (-833.28)	N 135.74	N _u 158.33	M _u -972.00	A _{fi} 22.62	A _{fs} 22.62	CS 1.17
2	3.94	434.39 (687.24)	158.58	232.31	1006.76 1003.84	22.62	22.62	1.46
3	6.80 9.52	809.48 (812.27) 335.55 (625.66)	182.94 206.07	226.09 349.78	1061.97	22.62 22.62	22.62 22.62	1.24 1.70
5	12.35	-833.28 (-833.28)	230.14	284.88	-1031.47	22.62	22.62	1.24
	ne taglio	V	V	.,	V			
N° 1	X 1.25	V 468.79	V _{Rd} 387.81	V _{Rsd} 0.00	V _{Rcd} 4407.11	A _{sw} 0.00		
2	3.94 6.80	267.56 -25.12	391.08 394.57	0.00 0.00	0.00 0.00	0.00 0.00		
4 5	9.52 12.35	-307.00 -519.03	397.88 401.33	0.00 0.00	0.00 4426.69	0.00 0.00		
				0.00	1120.03	0.00		
Base se		itto sinistro [Combinazione n° B = 100 cm	6 - SLU (Approccio 2)]					
	sezione	H = 110.00 cm						
<u>Verifich</u> N°	ne presso-fles: X	M	N	$N_{\rm u}$	M_{u}	A_{fi}	A_{fs}	CS
1 2	0.60 4.53	-1056.57 (-1056.57) -302.60 (-336.35)	760.59 614.69	969.66 5483.46	-1347.00 -3000.51	15.71 15.71	22.62 22.62	1.27 8.92
3	8.46	-554.42 (-682.69)	468.79	904.07	-1316.59	15.71	22.62	1.93
	ne taglio							
N°	Χ	V	V_{Rd}	V_{Rsd}	V_{Rcd}	Asw		

Collegamento viario compreso tra lo Svincolo della S.S. 514 di "Chiaromonte" con la S.S. 115 e lo

Svincolo della "Ragusana" PROGETTO ESECUTIVO

Direzione Progettazione e Realizzazione Lavori

RELAZIONE DI CALCOLO SOTTOVIA AL KM 3+248 - SEC. 90

u2.0	e Luvoii							
	0.50	276.42	477.00	0.00	0.00	0.00		
1 2	0.60 4.53	376.12 35.72	477.28 456.39	0.00 0.00	0.00 0.00	0.00 0.00		
3	8.46	-135.74	435.50	0.00	0.00	0.00		
Verific	ca sezioni piedr	itto destro [Combinazione n° 6	5 - SLU (Approccio 2)]					
	sezione	B = 100 cm						
Aitezz	a sezione	H = 110.00 cm						
	che presso-fles							
N°	X	M	N 810.84	N _u	M _u	A _{fi}	A _{fs}	CS 1 87
1 2	0.60 4.53	-854.80 (-854.80) -237.90 (-266.24)	810.84 664.93	1519.42 8687.12	-1601.81 -3478.32	15.71 15.71	22.62 22.62	1.87 13.06
3	8.46	-833.28 (-854.80)	519.03	758.45	-1249.09	15.71	22.62	1.46
Verific	che taglio							
N°	X	V	V_{Rd}	V_{Rsd}	V_{Rcd}	A_{sw}		
1	0.60	-365.49	484.47	0.00	0.00	0.00		
2 3	4.53 8.46	29.99 230.14	463.58 442.69	0.00 0.00	0.00 0.00	0.00 0.00		
Verific	ca sezioni fonda	azione [Combinazione n° 7 - SL	U (Approccio 2)]					
Dana a		D - 100 am						
	sezione a sezione	B = 100 cm H = 120.00 cm						
	che presso-fles:		N	N		Δ.	Δ.	CS
N° 1	0.00	0.00 (10.21)	N -5.05	N _u -244.62	M _u -849.06	A _{fi} 22.62	A _{fs} 22.62	CS 48.47
2	3.37	-304.35 (-649.97)	355.05	748.73	-1370.66	22.62	22.62	2.11
3	6.80	-862.80 (-862.95)	355.05	514.28	-1249.96	22.62	22.62	1.45
4 5	10.23 13.60	-341.64 (-693.82)	355.05 4.08	684.47 319.88	-1337.58 -1149.88	22.62 22.62	22.62 22.62	1.93 78.36
J	15.00	0.00 (-10.45)	4.06	315.00	-1145.00	22.02	22.02	78.30
Verific N°	che taglio X	V	V_{Rd}	V_{Rsd}	V_{Rcd}	A_{sw}		
1	0.00	9.86	394.59	0.00	0.00	0.00		
2	3.37	-333.93	446.35	0.00	0.00	0.00		
3 4	6.80 10.23	0.48 340.28	446.35 446.35	0.00 0.00	0.00 0.00	0.00 0.00		
5	13.60	-10.10	395.90	0.00	0.00	0.00		
Verific	ca sezioni trave	rso [Combinazione n° 7 - SLU (Approccio 2)]					
		D 400						
	sezione a sezione	B = 100 cm H = 110.00 cm						
,	a sectione	11 110.00 0						
	che presso-fles							
N° 1	X 1.25	-742.31 (-853.26)	N 249.03	N _u 303.61	Mu -1040.27	A _{fi} 22.62	A _{fs} 22.62	CS 1.22
2	3.94	43.11 (228.25)	266.16	2315.82	1985.97	22.62	22.62	8.70
3	6.80	309.37 (309.95)	284.43	1448.30	1578.25	22.62	22.62	5.09
4 5	9.52 12.35	16.26 (210.48) -853.26 (-853.26)	301.78 319.83	3579.30 408.39	2496.44 -1089.52	22.62 22.62	22.62 22.62	11.86 1.28
3	12.55	033.20 (033.20)	313.03	400.33	1005.52	22.02	22.02	1.20
Verif:	cho taglic							
Verific N°	che taglio X	V	V_{Rd}	V_{Rsd}	V_{Rcd}	A_{sw}		
1	1.25	388.98	404.03	0.00	0.00	0.00		
2	3.94	195.91	406.49	0.00	0.00	0.00		
3 4	6.80 9.52	-10.00 -205.53	409.10 411.59	0.00 0.00	0.00	0.00 0.00		
5	9.52 12.35	-205.53 -408.97	411.59	0.00	0.00 0.00	0.00		
Verific	ca sezioni piedr	itto sinistro [Combinazione n°	7 - SLU (Approccio 2)]					
		D 400						
	sezione a sezione	B = 100 cm H = 110.00 cm						
	che presso-fles							
N° 1	0.60	M -753.09 (-753.09)	N 680.78	N _u 1396.52	Mս -1544.85	A _{fi} 15.71	A _{fs} 22.62	CS 2.05
2	4.53	-144.53 (-168.06)	534.88	10885.27	-3420.19	15.71	22.62	20.35
3	8.46	-742.31 (-753.09)	388.98	609.52	-1180.07	15.71	22.62	1.57
<u>Verif</u> ic	che taglio							

Collegamento viario compreso tra lo Svincolo della S.S. 514 di "Chiaromonte" con la S.S. 115 e lo

Svincolo della "Ragusana" PROGETTO ESECUTIVO

Direzione Progettazione e Realizzazione Lavori

RELAZIONE DI CALCOLO SOTTOVIA AL KM 3+248 - SEC. 90

N°	X	V 200.00	V _{Rd}	V _{Rsd}	V _{Rcd}	A _{sw}		
1 2	0.60 4.53	360.09 -24.90	465.85 444.96	0.00 0.00	0.00 0.00	0.00 0.00		
3	8.46	-249.03	424.07	0.00	0.00	0.00		
Verifica	a sezioni pied	ritto destro [Combinazione n° 7	- SLU (Approccio 2)]					
Base se		B = 100 cm H = 110.00 cm						
	ne presso-fles							
N°	Х	M	N	N_{u}	M_{u}	A_{fi}	A_fs	CS
1 2	0.60 4.53	-678.56 (-853.26) -111.08 (-153.79)	700.77 554.87	1190.24 11836.63	-1449.23 -3280.69	15.71 15.71	22.62 22.62	1.70 21.33
3	8.46	-853.26 (-853.26)	408.97	553.07	-1153.90	15.71	22.62	1.35
Vorifiel	ne taglio							
N°	X	V	V_{Rd}	V_{Rsd}	V_{Rcd}	A_{sw}		
1	0.60	-350.97	468.72	0.00	0.00	0.00		
2	4.53 8.46	45.19 305.84	447.83 426.94	0.00 0.00	0.00 0.00	0.00 0.00		
		lazione [Combinazione n° 8 - SL	U (Approccio 2)]					
Base se Altezza	ezione i sezione	B = 100 cm H = 120.00 cm						
	ne presso-fles							
N° 1	0.00	0.00 (8.40)	N -16.73	N _u -572.55	M _u -666.55	A _{fi} 22.62	A _{fs} 22.62	CS 34.23
2	3.37	-16.15 (-409.88)	428.54	2230.78	-2133.63	22.62	22.62	5.21
3	6.80	-709.16 (-713.89)	428.54	855.92	-1425.84	22.62	22.62	2.00
4 5	10.23 13.60	-205.15 (-571.10) 0.00 (10.14)	428.54 15.56	1204.62 2188.39	-1605.35 -2111.81	22.62 22.62	22.62 22.62	2.81 140.60
		(,						
<u>Verificl</u> N°	ne taglio X	V	V_{Rd}	$V_{ m Rsd}$	V_{Rcd}	A_{sw}		
1	0.00	8.12	392.91	0.00	0.00	0.00		
2	3.37	-380.41	456.92	0.00	0.00	0.00		
3 4	6.80 10.23	-23.52 353.57	456.92 456.92	0.00 0.00	0.00 0.00	0.00 0.00		
5	13.60	-9.79	397.55	0.00	0.00	0.00		
Verifica	a sezioni trave	erso [Combinazione n° 8 - SLU (Approccio 2)]					
Base se Altezza	ezione I sezione	B = 100 cm H = 110.00 cm						
	ne presso-fles							
N° 1	X 1.25	-421.26 (-732.83)	N 147.69	N _u 199.82	M _u -991.49	A _{fi} 22.62	A _{fs} 22.62	CS 1.35
2	3.94	315.62 (483.68)	164.82	364.20	1068.75	22.62	22.62	2.21
3	6.80	530.11 (535.59) 187.83 (399.14)	183.09	365.58	1069.40	22.62	22.62	2.00
4 5	9.52 12.35	-732.83 (-732.83)	200.44 218.50	590.01 311.23	1174.88 -1043.85	22.62 22.62	22.62 22.62	2.94 1.42
Verifich N°	<u>ne taglio</u> X	V	V_{Rd}	V_{Rsd}	V_{Rcd}	A_{sw}		
1	1.25	370.91	389.52	0.00	0.00	0.00		
2	3.94 6.80	177.84 -28.07	391.98 394.59	0.00 0.00	0.00 0.00	0.00 0.00		
4	9.52	-28.07	397.08	0.00	0.00	0.00		
5	12.35	-427.05	399.66	0.00	4424.27	0.00		
V		with sining County	9 (111/4 : 22					
		ritto sinistro [Combinazione n°	8 - SLU (Approccio 2)					
Base se Altezza	ezione i sezione	B = 100 cm H = 110.00 cm						
	ne presso-fles		A.I					66
N° 1	X 0.60	-1148.20 (-1148.20)	N 662.71	N _u 707.25	M _u -1225.36	A _{fi} 15.71	A _{fs} 22.62	CS 1.07
2	4.53	-202.15 (-262.93)	516.81	6217.19	-3163.06	15.71	22.62	12.03
3	8.46	-421.26 (-560.83)	370.91	855.99	-1294.31	15.71	22.62	2.31

Collegamento viario compreso tra lo Svincolo della S.S. 514 di "Chiaromonte" con la S.S. 115 e lo

Svincolo della "Ragusana" PROGETTO ESECUTIVO

Direzione Progettazione e Realizzazione Lavori

RELAZIONE DI CALCOLO SOTTOVIA AL KM 3+248 - SEC. 90

Verifich N° 1 2 3	x 0.60 4.53 8.46	V 445.27 64.32 -147.69	V _{Rd} 463.27 442.38 421.48	V _{Rsd} 0.00 0.00 0.00	V _{Rcd} 0.00 0.00 0.00	A _{sw} 0.00 0.00 0.00		
<u>Verifica</u>	sezioni piedr	ritto destro [Combinazione n° 8	- SLU (Approccio 2)]					
Base se Altezza	zione sezione	B = 100 cm H = 110.00 cm						
<u>Verifich</u> N°	e presso-fles		N	N	M	Δ.	Δ.	CS
1	0.60	-859.55 (-859.55)	N 718.85	N _u 1225.78	M _u -1465.71	A _{fi} 15.71	A _{fs} 22.62	1.71
2 3	4.53 8.46	-155.13 (-184.26) -732.83 (-859.55)	572.95 427.05	10691.59 579.33	-3438.43 -1166.08	15.71 15.71	22.62 22.62	18.66 1.36
<u>Verifich</u> N°	e taglio	V	v	V	V			
1	0.60	-412.98	V _{Rd} 471.30	V _{Rsd} 0.00	V _{Rcd} 0.00	A _{sw} 0.00		
2	4.53 8.46	30.82 218.50	450.41 429.52	0.00 0.00	0.00 0.00	0.00 0.00		
Vorifica	sazioni fand	azione [Combinazione n° 9 - SL	II (Approceio 21)					
Base se		B = 100 cm H = 120.00 cm	O (Approccio 2))					
Verifich	e presso-fles							
N° 1	X 0.00	M 0.00 (10.87)	N -3.56	N _u -186.56	M _u -881.38	A _{fi} 22.62	A _{fs} 22.62	CS 52.47
2	3.37 6.80	-325.29 (-685.10) -898.60 (-898.60)	341.35 341.35	660.21 465.22	-1325.09 -1224.70	22.62 22.62	22.62 22.62	1.93 1.36
4 5	10.23 13.60	-360.78 (-719.40) 0.00 (-10.46)	341.35 2.63	618.57 194.48	-1303.65 -1085.32	22.62 22.62	22.62 22.62	1.81 73.98
3	15.55	0.00 (10.10)	2.03	25 11 10	1505.52	22.02	22.02	75.50
<u>Verifich</u> N°	<u>e taglio</u> X	V	V_{Rd}	V_{Rsd}	V_{Rcd}	A_{sw}		
1	0.00	10.50	394.80	0.00	0.00	0.00		
2	3.37 6.80	-347.64 2.94	444.38 444.38	0.00 0.00	0.00 0.00	0.00 0.00		
4 5	10.23 13.60	346.49 -10.11	444.38 395.69	0.00 0.00	0.00 0.00	0.00 0.00		
Vorifica	sozioni travo	erso [Combinazione n° 9 - SLU (Approccio 211					
Base se	zione	B = 100 cm	Approceio 271					
	sezione e presso-fles	H = 110.00 cm						
N°	Х	M	N 227 50	N _u	M _u	A _{fi}	A _{fs}	CS
1 2	1.25 3.94	-746.99 (-869.26) 83.42 (262.23)	237.50 254.63	281.37 1603.24	-1029.82 1651.07	22.62 22.62	22.62 22.62	1.18 6.30
3 4	6.80 9.52	330.51 (332.40) 19.19 (219.74)	272.90 290.25	1199.93 2987.41	1461.53 2261.69	22.62 22.62	22.62 22.62	4.40 10.29
5	12.35	-869.26 (-869.26)	308.30	382.03	-1077.13	22.62	22.62	1.24
	e taglio							
N° 1	X 1.25	V 440.85	V _{Rd} 402.38	V _{Rsd} 0.00	V _{Rcd} 4428.22	A _{sw} 0.00		
2 3	3.94 6.80	189.22 -16.69	404.84 407.45	0.00 0.00	0.00 0.00	0.00 0.00		
4	9.52	-212.22	409.94	0.00	0.00	0.00		
5	12.35	-415.66	412.52	0.00	4442.90	0.00		
Verifica	sezioni niedr	ritto sinistro [Combinazione n°	9 - SLU (Approccio 2)1					
Base se	zione	B = 100 cm						
	sezione	H = 110.00 cm						
N°	e presso-fles	M	N	Nu	Mu	Afi	Afs	CS
1 2	0.60 4.53	-771.89 (-771.89) -180.56 (-201.68)	732.65 586.75	1521.14 10126.62	-1602.61 -3480.75	15.71 15.71	22.62 22.62	2.08 17.26
3	8.46	-746.99 (-771.89)	440.85	697.17	-1220.69	15.71	22.62	1.58

MANDATARIA:

Collegamento viario compreso tra lo Svincolo della S.S. 514 di "Chiaromonte" con la S.S. 115 e lo Svincolo della "Ragusana"

PROGETTO ESECUTIVO

Direzione Progettazione e Realizzazione Lavori

RELAZIONE DI CALCOLO SOTTOVIA AL KM 3+248 - SEC. 90

Verifiche taglio N° 1 0.6 2 4.5 3 8.4	3 -22.35	V _{Rd} 473.28 452.39 431.50	V _{Rsd} 0.00 0.00 0.00	V _{Rcd} 0.00 0.00 0.00	A _{sw} 0.00 0.00 0.00		
Verifica sezioni	piedritto destro [Combinazione n°	9 - SLU (Approccio 2)]					
Base sezione Altezza sezione	B = 100 cm H = 110.00 cm						
Verifiche presso							
1 0.6		N 707.46	N _u 1172.98	M _u -1441.23	A _{fi} 15.71	A _{fs} 22.62	CS 1.66
2 4.5 3 8.4		561.56 415.66	10610.88 551.40	-3444.47 -1153.13	15.71 15.71	22.62 22.62	18.90 1.33
Verifiche taglio							
N° 1 0.6		V _{Rd} 469.67	V _{Rsd} 0.00	V _{Rcd} 0.00	A _{sw} 0.00		
2 4.5 3 8.4		448.78 427.89	0.00 0.00	0.00 0.00	0.00 0.00		
	fondazione [Combinazione n° 10 -	SLU (Approccio 2)]					
Base sezione Altezza sezione	B = 100 cm H = 120.00 cm						
Verifiche presso N°	o <u>-flessione</u> X M	N	N_u	M_u	A_{fi}	A_fs	CS
1 0.0 2 3.3	0.00 (-9.31)	-12.35 399.04	-479.92 1490.75	-718.11 -1752.66	22.62 22.62	22.62 22.62	38.85 3.74
3 6.8	0 -752.23 (-754.52)	399.04	715.96	-1353.79	22.62	22.62	1.79
4 10.2 5 13.6		399.04 11.27	1023.42 1183.53	-1512.07 -1594.50	22.62 22.62	22.62 22.62	2.56 105.03
Verifiche taglio							
N° 2	X V 0 9.00	V _{Rd} 393.54	V _{Rsd} 0.00	V _{Rcd} 0.00	A _{sw} 0.00		
2 3.3	7 -388.29	452.67	0.00	0.00	0.00		
4 10.2	3 362.67	452.67 452.67	0.00	0.00	0.00		
5 13.6	0 -9.65	396.93	0.00	0.00	0.00		
Verifica sezioni	traverso [Combinazione n° 10 - SLL	J (Approccio 2)]					
Base sezione Altezza sezione	B = 100 cm H = 110.00 cm						
Verifiche presso	o-flessione						
N° 1.2	M 5 -447.01 (-712.04)	N 126.21	N _u 173.56	M _u -979.15	A _{fi} 22.62	A _{fs} 22.62	CS 1.38
2 3.9 3 6.8	4 348.85 (515.51)	143.34 161.61	287.10 296.52	1032.51 1036.94	22.62 22.62	22.62 22.62	2.00 1.83
4 9.5	2 212.81 (425.51)	178.96	470.50	1118.71	22.62	22.62	2.63
5 12.3	5 -712.04 (-712.04)	197.01	285.48	-1031.75	22.62	22.62	1.45
Verifiche taglio N°	x v	V_Rd	V_{Rsd}	V_{Rcd}	A_{sw}		
1 1.2	5 427.99	386.45	0.00	4405.14	0.00		
2 3.9 3 6.8		388.90 391.52	0.00 0.00	0.00 0.00	0.00 0.00		
4 9.5 5 12.3		394.00 396.59	0.00 0.00	0.00 4419.82	0.00 0.00		
. 12.0		,			0.00		
Verifica sezioni	piedritto sinistro [Combinazione n	' 10 - SLU (Approccio 2)]					
Base sezione Altezza sezione	B = 100 cm H = 110.00 cm						
Verifiche presso	o-flessione						
N° 1 1 0.6	M 0 -1125.22 (-1125.22)	N 719.79	N _u 816.13	M _u -1275.83	A _{fi} 15.71	A _{fs} 22.62	CS 1.13
2 4.5 3 8.4	3 -257.93 (-312.85)	573.89 427.99	5520.16 1044.13	-3009.29 -1381.51	15.71 15.71	22.62 22.62	9.62 2.44
. 0.4		.27.55					

Collegamento viario compreso tra lo Svincolo della S.S. 514 di "Chiaromonte" con la S.S. 115 e lo Svincolo della "Ragusana"

PROGETTO ESECUTIVO

RELAZIONE DI CALCOLO SOTTOVIA AL KM 3+248 - SEC. 90

N°	<u>ne taglio</u> X	V	V_{Rd}	V_{Rsd}	V_{Rcd}	A_{sw}		
1	0.60	411.39	471.44	0.00	0.00	0.00		
2	4.53	58.12	450.55	0.00	0.00	0.00		
3	8.46	-126.21	429.66	0.00	0.00	0.00		
		itto destro [Combinazione n° 1	0 - SLU (Approccio 2)]					
Base se Altezza	zione sezione	B = 100 cm H = 110.00 cm						
Verifich	ne presso-fles	sione						
N°	Х	M	N	N_{u}	M_{u}	A_{fi}	A_fs	CS
1 2	0.60 4.53	-868.49 (-868.49) -209.94 (-235.41)	720.33 574.42	1209.34 8464.51	-1458.09 -3468.95	15.71 15.71	22.62 22.62	1.68 14.74
3	8.46	-712.04 (-868.49)	428.52	574.18	-1163.69	15.71	22.62	1.34
Verifich N°	<u>ne taglio</u> X	V	V_{Rd}	V_{Rsd}	V_{Rcd}	A_{sw}		
1	0.60	-387.77	471.52	0.00	0.00	0.00		
2	4.53	26.96	450.62	0.00	0.00	0.00		
3	8.46	197.01	429.73	0.00	0.00	0.00		
Verifica	a sezioni fonda	azione [Combinazione n° 11 - S	LU (Approccio 2)]					
Base se Altezza	ezione sezione	B = 100 cm H = 120.00 cm						
Verifich	ne presso-fles	sione_						
N°	Х	M	N	Nu	Mu	Afi	A_fs	CS
1	0.00	0.00 (-10.63)	-0.94	-61.61	-950.92	22.62	22.62	65.64
2	3.37 6.80	-340.86 (-702.23) -928.83 (-929.20)	321.86 321.86	591.01 415.32	-1289.46 -1199.01	22.62 22.62	22.62 22.62	1.84 1.29
4	10.23	-389.01 (-758.37)	321.86	535.03	-1260.64	22.62	22.62	1.66
5	13.60	0.00 (-11.23)	0.06	4.59	-987.57	22.62	22.62	71.37
Verifich N°	<u>ne taglio</u> X	V	V_{Rd}	V_{Rsd}	V_{Rcd}	۸		
1	0.00	10.27	395.18	0.00	0.00	A _{sw} 0.00		
2	3.37	-349.15	441.58	0.00	0.00	0.00		
3	6.80	-1.88	441.58	0.00	0.00	0.00		
4	10.23	356.87	441.58	0.00	0.00	0.00		
5	13.60	-10.85	395.32	0.00	0.00	0.00		
<u>Verifica</u>	a sezioni trave	rso [Combinazione n° 11 - SLU	(Approccio 2)]					
Base se		B = 100 cm						
Altezza	sezione	H = 110.00 cm						
	ne presso-fles							
N° 1	X 1.25	-837.01 (-950.28)	N 245.10	N _u 263.45	M _u -1021.40	A _{fi} 22.62	A _{fs} 22.62	CS 1.07
2	3.94	105.13 (345.40)	262.23	1059.50	1395.53	22.62	22.62	4.04
3	6.80	475.56 (475.66)	280.50	732.27	1241.73	22.62	22.62	2.61
4	9.52	85.55 (335.31)	297.85	1368.73	1540.86	22.62	22.62	4.60
5	12.35	-950.28 (-950.28)	315.91	353.64	-1063.79	22.62	22.62	1.12
<u>V</u> erifich	ne taglio							
N°	X	V	V_{Rd}	V_{Rsd}	V_{Rcd}	A_{sw}		
1	1.25	447.33	403.47	0.00	4429.79	0.00		
2	3.94	254.26	405.92	0.00	0.00	0.00		
3 4	6.80 9.52	-10.20 -264.30	408.54 411.03	0.00 0.00	0.00 0.00	0.00 0.00		
5	12.35	-264.30 -467.74	413.61	0.00	4444.47	0.00		
<u>Verifica</u>	a sezioni piedr	itto sinistro [Combinazione n°	11 - SLU (Approccio 2)]					
Base se	ezione	B = 100 cm						
	sezione	H = 110.00 cm						
	ne presso-fles			••			Ā	66
N° 1	X 0.60	M -738.23 (-837.01)	N 739.13	N _u 1341.81	Mս -1519.49	A _{fi} 15.71	A _{fs} 22.62	CS 1.82
2	4.53	-219.77 (-256.67)	593.23	7877.23	-3408.16	15.71	22.62	13.28

MANDATARIA:

Collegamento viario compreso tra lo Svincolo della S.S. 514 di "Chiaromonte" con la S.S. 115 e lo Svincolo della "Ragusana"

PROGETTO ESECUTIVO

Direzione Progettazione e Realizzazione Lavori

RELAZIONE DI CALCOLO SOTTOVIA AL KM 3+248 - SEC. 90

3	8.46	-837.01 (-837.01)	447.33	637.64	-1193.10	15.71	22.62	1.43		
<u>Verifich</u> N° 1	ne taglio X 0.60	V 322.80	V _{Rd} 474.21	V _{Rsd} 0.00	V _{Rcd} 0.00	A _{sw} 0.00				
2	4.53 8.46	-39.05 -242.89	474.21 453.32 432.43	0.00 0.00 0.00	0.00 0.00 0.00	0.00 0.00 0.00				
Verifica sezioni piedritto destro [Combinazione n° 11 - SLU (Approccio 2)]										
Base se Altezza	zione sezione	B = 100 cm H = 110.00 cm								
Verifich	ne presso-fles	sione_								
N° 1	X 0.60	M -675.66 (-950.28)	N 759.54	Nu 1139.58	Mu -1425.75	A _{fi} 15.71	A _{fs} 22.62	CS 1.50		
2	4.53	-185.60 (-239.45)	613.64	8941.27	-3489.01	15.71	22.62	14.57		
3	8.46	-950.28 (-950.28)	467.74	572.37	-1162.85	15.71	22.62	1.22		
<u>Verifich</u> N°	ne taglio X	V	V_{Rd}	V_Rsd	V_{Rcd}	A_{sw}				
1	0.60	-321.80	477.13	0.00	0.00	0.00				
2 3	4.53 8.46	56.99 304.66	456.24 435.35	0.00 0.00	0.00 0.00	0.00 0.00				
Verifica	sezioni fonda	azione [Combinazione n° 12 - S	LU (Approccio 2)]							
Base se Altezza	zione sezione	B = 100 cm H = 120.00 cm								
<u>Verifich</u> N°	ne presso-fles X	sione M	N	Nu	Mu	A_{fi}	A_fs	CS		
1	0.00	0.00 (9.19)	-7.31	-357.86	-786.04	22.62	22.62	48.97		
2	3.37 6.80	-98.10 (-498.52) -787.34 (-790.04)	367.15 367.15	1168.69 601.82	-1586.86 -1295.03	22.62 22.62	22.62 22.62	3.18 1.64		
4	10.23	-240.68 (-627.81)	367.15	824.33	-1409.58	22.62	22.62	2.25		
5	13.60	0.00 (-10.71)	6.31	557.71	-1272.32	22.62	22.62	88.38		
Verifich	ne taglio									
N° 1	X	V	V _{Rd} 394.26	V _{Rsd}	V _{Rcd}	A _{sw}				
2	0.00 3.37	8.88 -386.88	448.09	0.00 0.00	0.00 0.00	0.00 0.00				
3	6.80	-16.65	448.09	0.00	0.00	0.00				
4 5	10.23 13.60	374.04 -10.35	448.09 396.22	0.00 0.00	0.00 0.00	0.00 0.00				
Verifica	sezioni trave	rso [Combinazione n° 12 - SLU	(Approccio 2)]							
Base se Altezza	zione sezione	B = 100 cm H = 110.00 cm								
	e presso-fles			N	.,					
N° 1	X 1.25	M -541.02 (-779.26)	N 127.22	N _u 158.71	Mս -972.17	A _{fi} 22.62	A _{fs} 22.62	CS 1.25		
2	3.94 6.80	370.87 (600.51) 709.06 (711.36)	144.35 162.62	243.24 229.89	1011.90 1005.62	22.62 22.62	22.62 22.62	1.69 1.41		
4	9.52	288.43 (548.83)	179.97	347.96	1061.11	22.62	22.62	1.93		
5	12.35	-779.26 (-779.26)	198.02	259.02	-1019.32	22.62	22.62	1.31		
Verifich	ne taglio									
N°	X	V	V_{Rd}	V_{Rsd}	V_{Rcd}	A_{sw}				
1 2	1.25 3.94	436.07 243.00	386.59 389.05	0.00 0.00	4405.35 0.00	0.00 0.00				
3	6.80	-21.46	391.66	0.00	0.00	0.00				
4 5	9.52 12.35	-275.56 -479.00	394.15 396.73	0.00	0.00 4420.03	0.00				
5	12.35	-479.00	396.73	0.00	4420.03	0.00				
<u>Verifica</u>	sezioni piedr	ritto sinistro [Combinazione n°	12 - SLU (Approccio 2)	ı						
Base se Altezza	zione sezione	B = 100 cm H = 110.00 cm								
<u>Verifich</u> N°	ne presso-fles X	sione M	N	N	NA.	Λ.	Λ.	CS		
1	0.60	-1070.13 (-1070.13)	727.87	N _u 891.57	M _u -1310.80	A _{fi} 15.71	A _{fs} 22.62	1.22		

Collegamento viario compreso tra lo Svincolo della S.S. 514 di "Chiaromonte" con la S.S. 115 e lo

Svincolo della "Ragusana" PROGETTO ESECUTIVO

Direzione Progettazione e Realizzazione Lavori

RELAZIONE DI CALCOLO SOTTOVIA AL KM 3+248 - SEC. 90

2	4.53	-312.68 (-349.68)	581.97	4636.22	-2785.69	15.71	22.62	7.97
3	8.46	-541.02 (-661.24)	436.07	852.49	-1292.68	15.71	22.62	1.95
Verifich	ne taglio							
N°	X	V	V_{Rd}	V_{Rsd}	V_{Rcd}	A_{sw}		
1	0.60	374.46	472.60	0.00	0.00	0.00		
2	4.53 8.46	39.15 -127.22	451.71 430.82	0.00 0.00	0.00 0.00	0.00 0.00		
3	0.40	-127.22	430.82	0.00	0.00	0.00		
Verifica	ı sezioni piedr	itto destro [Combinazione n° 1	2 - SLU (Approccio 2)]					
Base se Altezza	zione sezione	B = 100 cm H = 110.00 cm						
	ne presso-fles							
N° 1	X 0.60	M -874.30 (-874.30)	N 770.80	N _u 1338.09	M _u -1517.76	A _{fi} 15.71	A _{fs} 22.62	CS 1.74
2	4.53	-272.80 (-301.41)	624.90	6749.42	-3255.45	15.71	22.62	10.80
3	8.46	-779.26 (-874.30)	479.00	659.11	-1203.05	15.71	22.62	1.38
Verifich	ne taglio							
N°	X	V 200.84	V _{Rd}	V _{Rsd}	V _{Rcd}	A _{sw}		
1 2	0.60 4.53	-360.84 30.28	478.74 457.85	0.00 0.00	0.00 0.00	0.00 0.00		
3	8.46	198.02	436.96	0.00	0.00	0.00		
		azione [Combinazione n° 13 - S	LU (Approccio 2) - Sism	a Vert. positivo]				
Base se Altezza	zione sezione	B = 100 cm H = 120.00 cm						
	e presso-fles							-
N° 1	X 0.00	0.00 (6.94)	N -74.97	N _u -1378.94	M _u -217.76	A _{fi} 22.62	A _{fs} 22.62	CS 18.65
2	3.37	-23.41 (-316.99)	579.93	6997.66	-3824.90	22.62	22.62	12.07
3	6.80	-504.85 (-504.85)	621.07	3163.14	-2571.23	22.62	22.62	5.09
	10.23	-34.78 (-341.26)	662.20	7697.54	-3966.84	22.62	22.62	11.62
5	13.60	0.00 (-7.19)	73.28	17828.71	-2813.61	22.62	22.62	246.82
/erifich	ne taglio							
N°	Х	V	V_{Rd}	V_{Rsd}	V_{Rcd}	A_{sw}		
L	0.00	6.70	384.69	0.00	0.00	0.00		
2	3.37 6.80	-283.65 3.24	478.68 484.59	0.00 0.00	0.00 0.00	0.00 0.00		
1	10.23	296.11	490.50	0.00	0.00	0.00		
5	13.60	-6.95	405.70	0.00	0.00	0.00		
Verifica	sezioni trave	rso [Combinazione n° 13 - SLU	(Approccio 2) - Sisma \	/ert. positivo l				
Base se		B = 100 cm		<u> </u>				
	sezione	H = 110.00 cm						
<u>Verifich</u> N°	ne presso-fles: X		N	N	M	Δ.	Δ.	CS
1	1.25	M -628.91 (-698.87)	N 477.90	N _u 904.46	M _u -1322.66	A _{fi} 22.62	A _{fs} 22.62	1.89
2	3.94	-58.34 (-193.12)	507.42	9567.53	-3641.40	22.62	22.62	18.86
3	6.80	136.89 (137.13)	538.89	12887.03	3279.32	22.62	22.62	23.91
4	9.52	-72.59 (-212.19)	568.78	9786.11	-3650.86	22.62	22.62	17.21
5	12.35	-698.87 (-698.87)	599.88	1291.42	-1504.52	22.62	22.62	2.15
Verifich N°	ne taglio	V	V	V				
N 1	X 1.25	V 282.27	V _{Rd} 436.80	V _{Rsd} 0.00	V _{Rcd} 0.00	A _{sw} 0.00		
2	3.94	142.62	441.03	0.00	0.00	0.00		
3	6.80	-6.30	445.54	0.00	0.00	0.00		
4	9.52	-147.73	449.82	0.00	0.00	0.00		
5	12.35	-294.87	454.27	0.00	0.00	0.00		
Verifica	ı sezioni piedr	itto sinistro [Combinazione n° :	13 - SLU (Approccio 2)	- Sisma Vert. positivo]				
Base se Altezza	zione sezione	B = 100 cm H = 110.00 cm						
	ne presso-fles							
N°	Х	М	N	N_{u}	Mu	Afi	Afs	CS

MANDATARIA:

Collegamento viario compreso tra lo Svincolo della S.S. 514 di "Chiaromonte" con la S.S. 115 e lo

Svincolo della "Ragusana" **PROGETTO ESECUTIVO**

Direzione Progettazione e Realizzazione Lavori

RELAZIONE DI CALCOLO SOTTOVIA AL KM 3+248 - SEC. 90

uzione	LUVOIT							
1 2	0.60 4.53	-837.99 (-837.99) 339.85 (339.85)	541.60 411.94	828.20 1801.78	-1281.43 1486.47	15.71 15.71	22.62 22.62	1.53 4.37
3	8.46	-628.91 (-837.99)	282.27	358.26	-1063.61	15.71	22.62	1.27
Verifich	ne taglio							
N°	X	V	V_{Rd}	V_{Rsd}	V_{Rcd}	A_{sw}		
1	0.60	614.52	445.93	0.00	4491.28	0.00		
2 3	4.53 8.46	5.74 -477.90	427.36 408.79	0.00 0.00	0.00 4437.50	0.00 0.00		
3	6.40	-4/7.90	408.79	0.00	4437.30	0.00		
Verifica	a sezioni piedr	ritto destro [Combinazione n° 1	3 - SLU (Approccio 2) -	Sisma Vert. positivo]				
Base se Altezza	ezione I sezione	B = 100 cm H = 110.00 cm						
Verifich	ne presso-fles	sione_						
N°	Х	М	N	Nu	Mu	Afi	A_fs	CS
1 2	0.60 4.53	-827.90 (-827.90) 374.01 (374.01)	554.21	871.12 1551.84	-1301.32 1367.14	15.71 15.71	22.62 22.62	1.57 3.66
3	4.55 8.46	-698.87 (-827.90)	424.54 294.87	382.89	-1075.02	15.71	22.62	1.30
		,						
Vorifiel	no taglio							
N°	<u>he taglio</u> X	V	V_{Rd}	V_{Rsd}	V_{Rcd}	A_{sw}		
1	0.60	-629.30	447.73	0.00	4493.89	0.00		
2	4.53	6.64	429.16	0.00	0.00	0.00		
3	8.46	525.96	410.60	0.00	4440.11	0.00		
Verific	e sezioni fond	azione [Combinazione n° 14 - S	III (Approccio 2) - Sism	as Vert negative]				
vermee	a scalonii tondi	azione (combinazione ii 14 c	EO (Approceio 2) Sisti	id vert. Hegativoj				
Base se		B = 100 cm						
Altezza	sezione	H = 120.00 cm						
Verifich	ne presso-fles	sione						
N°	Х		N	N_u	M_u	A_{fi}	A_{fs}	CS
1	0.00	0.00 (-4.91)	-75.74	-1354.91	-231.14	22.62	22.62	18.14
2 3	3.37 6.80	39.93 (277.06) -352.53 (-352.53)	576.53 617.67	8510.93 6520.93	4090.02 -3721.77	22.62 22.62	22.62 22.62	14.76 10.56
4	10.23	26.51 (272.61)	658.81	10260.87	4245.85	22.62	22.62	15.57
5	13.60	0.00 (5.17)	74.06	17390.01	-2966.79	22.62	22.62	238.18
Verifich	ne taglio							
N°	X	V	V_{Rd}	V_{Rsd}	V_{Rcd}	A_{sw}		
1	0.00	4.74	384.58	0.00	0.00	0.00		
2 3	3.37 6.80	-229.11 1.66	478.19 484.10	0.00 0.00	0.00 0.00	0.00 0.00		
4	10.23	237.77	490.02	0.00	0.00	0.00		
5	13.60	-5.00	405.81	0.00	0.00	0.00		
Verifica	a sezioni trave	rso [Combinazione n° 14 - SLU	(Approccio 2) - Sisma	Vert. negativo]				
D		D 100						
Base se	ezione i sezione	B = 100 cm H = 110.00 cm						
AITCZZO	SCEIONE	11 - 110.00 cm						
	ne presso-fles							
N° 1	X 1 25	M EEE 72 (624 66)	N 490 E2	N _u	M _u	A _{fi}	A _{fs}	CS 2.20
1 2	1.25 3.94	-565.72 (-634.66) -119.07 (-224.19)	480.53 510.04	1055.01 8032.58	-1393.41 -3530.79	22.62 22.62	22.62 22.62	2.20 15.75
3	6.80	31.34 (31.77)	541.52	17741.15	1041.00	22.62	22.62	32.76
4	9.52	-137.24 (-248.51)	571.41	8149.92	-3544.43	22.62	22.62	14.26
5	12.35	-634.66 (-634.66)	602.51	1538.56	-1620.67	22.62	22.62	2.55
	ne taglio							
N°	X	V 224.27	V _{Rd}	V _{Rsd}	V _{Rcd}	A _{sw}		
1 2	1.25 3.94	221.37 111.24	437.18 441.41	0.00 0.00	0.00 0.00	0.00 0.00		
3	6.80	-6.21	445.91	0.00	0.00	0.00		
4	9.52	-117.75	450.19	0.00	0.00	0.00		
5	12.35	-233.79	454.65	0.00	0.00	0.00		

 $\underline{\text{Verifica sezioni piedritto sinistro [Combinazione n° 14 - SLU (Approccio 2) - Sisma Vert. negativo]}$

B = 100 cm H = 110.00 cm Base sezione Altezza sezione

Verifiche presso-flessione

Collegamento viario compreso tra lo Svincolo della S.S. 514 di "Chiaromonte" con la S.S. 115 e lo

Svincolo della "Ragusana"

PROGETTO ESECUTIVO

Direzi	one	Proget	tazi	one e
Re	alizz	azione	Lav	ori

RELAZIONE DI CALCOLO SOTTOVIA AL KM 3+248 - SEC. 90

N°	~	М	N	N	M	Δ.	Δ.	CS
N 1	X 0.60	-754.15 (-754.15)	394.33	N _u 619.44	M _u -1184.66	A _{fi} 15.71	A _{fs} 22.62	CS 1.57
2	4.53	413.37 (413.37)	307.85	723.69	971.73	15.71	22.62	2.35
3	8.46	-565.72 (-754.15)	221.37	304.95	-1038.90	15.71	22.62	1.38
	ne taglio	.,	.,	.,	.,			
N° 1	X 0.60	V 611.89	V _{Rd} 424.84	V _{Rsd} 0.00	V _{Rcd} 4460.74	A _{sw} 0.00		
2	4.53	3.11	412.46	0.00	0.00	0.00		
3	8.46	-480.53	400.07	0.00	4424.87	0.00		
Verifica	sezioni piedr	itto destro [Combinazione n° 1	4 - SLU (Approccio 2) -	Sisma Vert. negativo]				
D		D 100						
Base se Altezza	sezione	B = 100 cm H = 110.00 cm						
	_							
<u>Verifich</u> N°	ne presso-fless X	sione M	N	Nu	Mu	Afi	A_fs	CS
1	0.60	-740.77 (-740.77)	406.75	661.10	-1203.97	15.71	22.62	1.63
2	4.53	444.63 (444.63)	320.27	687.51	954.46	15.71	22.62	2.15
3	8.46	-634.66 (-740.77)	233.79	331.81	-1051.35	15.71	22.62	1.42
Verifich	ne taglio							
N°	X	V	V_{Rd}	V_{Rsd}	V_{Rcd}	A_{sw}		
1	0.60	-625.13	426.62	0.00	4463.31	0.00		
2	4.53	9.43	414.24	0.00	0.00	0.00		
3	8.46	527.83	401.85	0.00	4427.45	0.00		
Verifica	sezioni fonda	azione [Combinazione n° 15 - S	LU (Approccio 2) - Sism	a Vert. positivo]				
Base se	zione	B = 100 cm						
	sezione	H = 120.00 cm						
	ne presso-fless							
N°	X	M	N 70.10	N _u	M _u	A _{fi}	A _{fs}	CS
1	0.00	0.00 (-6.41)	-78.10	-1376.99	-218.85	22.62	22.62	17.87
1 2	0.00 3.37	0.00 (-6.41) 65.83 (373.80)	-78.10 604.26	-1376.99 5612.45	-218.85 3471.92	22.62 22.62	22.62 22.62	17.87 9.29
1 2 3	0.00 3.37 6.80	0.00 (-6.41) 65.83 (373.80) -452.89 (-453.28)	-78.10 604.26 645.40	-1376.99 5612.45 4345.96	-218.85 3471.92 -3052.26	22.62 22.62 22.62	22.62 22.62 22.62	17.87 9.29 6.73
1 2	0.00 3.37	0.00 (-6.41) 65.83 (373.80)	-78.10 604.26	-1376.99 5612.45	-218.85 3471.92	22.62 22.62	22.62 22.62	17.87 9.29
1 2 3 4	0.00 3.37 6.80 10.23	0.00 (-6.41) 65.83 (373.80) -452.89 (-453.28) 19.60 (332.54)	-78.10 604.26 645.40 686.53	-1376.99 5612.45 4345.96 8419.17	-218.85 3471.92 -3052.26 4078.03	22.62 22.62 22.62 22.62	22.62 22.62 22.62 22.62	17.87 9.29 6.73 12.26
1 2 3 4 5	0.00 3.37 6.80 10.23 13.60	0.00 (-6.41) 65.83 (373.80) -452.89 (-453.28) 19.60 (332.54)	-78.10 604.26 645.40 686.53	-1376.99 5612.45 4345.96 8419.17	-218.85 3471.92 -3052.26 4078.03	22.62 22.62 22.62 22.62	22.62 22.62 22.62 22.62	17.87 9.29 6.73 12.26
1 2 3 4 5	0.00 3.37 6.80 10.23 13.60	0.00 (-6.41) 65.83 (373.80) -452.89 (-453.28) 19.60 (332.54) 0.00 (7.00)	-78.10 604.26 645.40 686.53 76.35	-1376.99 5612.45 4345.96 8419.17 17958.97	-218.85 3471.92 -3052.26 4078.03 -2768.13	22.62 22.62 22.62 22.62 22.62	22.62 22.62 22.62 22.62	17.87 9.29 6.73 12.26
1 2 3 4 5 <u>Verifich</u> N°	0.00 3.37 6.80 10.23 13.60	0.00 (-6.41) 65.83 (373.80) -452.89 (-453.28) 19.60 (332.54) 0.00 (7.00)	-78.10 604.26 645.40 686.53 76.35	-1376.99 5612.45 4345.96 8419.17 17958.97	-218.85 3471.92 -3052.26 4078.03 -2768.13	22.62 22.62 22.62 22.62 22.62 22.62	22.62 22.62 22.62 22.62	17.87 9.29 6.73 12.26
1 2 3 4 5	0.00 3.37 6.80 10.23 13.60	0.00 (-6.41) 65.83 (373.80) -452.89 (-453.28) 19.60 (332.54) 0.00 (7.00)	-78.10 604.26 645.40 686.53 76.35	-1376.99 5612.45 4345.96 8419.17 17958.97	-218.85 3471.92 -3052.26 4078.03 -2768.13	22.62 22.62 22.62 22.62 22.62	22.62 22.62 22.62 22.62	17.87 9.29 6.73 12.26
1 2 3 4 5 <u>Verifich</u> N° 1	0.00 3.37 6.80 10.23 13.60 ne taglio X	0.00 (-6.41) 65.83 (373.80) -452.89 (-453.28) 19.60 (332.54) 0.00 (7.00) V 6.19	-78.10 604.26 645.40 686.53 76.35	-1376.99 5612.45 4345.96 8419.17 17958.97 V _{Rtd} 0.00	-218.85 3471.92 -3052.26 4078.03 -2768.13 V _{Rcd} 0.00	22.62 22.62 22.62 22.62 22.62 22.62	22.62 22.62 22.62 22.62	17.87 9.29 6.73 12.26
1 2 3 4 5 Verifich N° 1 2 3 4	0.00 3.37 6.80 10.23 13.60 ne taglio X 0.00 3.37 6.80 10.23	0.00 (-6.41) 65.83 (373.80) -452.89 (-453.28) 19.60 (332.54) 0.00 (7.00) V 6.19 -297.56 -2.20 302.36	-78.10 604.26 645.40 686.53 76.35 V _{Rd} 384.24 482.18 488.09 494.00	-1376.99 5612.45 4345.96 8419.17 17958.97 V _{Rsd} 0.00 0.00 0.00 0.00	-218.85 3471.92 -3052.26 4078.03 -2768.13 V _{Rcd} 0.00 0.00 0.00 0.00	22.62 22.62 22.62 22.62 22.62 22.62 A _{sw} 0.00 0.00 0.00	22.62 22.62 22.62 22.62	17.87 9.29 6.73 12.26
1 2 3 4 5 <u>Verifich</u> N° 1 2 3	0.00 3.37 6.80 10.23 13.60 x 0.00 3.37 6.80	0.00 (-6.41) 65.83 (373.80) -452.89 (-453.28) 19.60 (332.54) 0.00 (7.00) V 6.19 -297.56 -2.20	-78.10 604.26 645.40 686.53 76.35 V _{Rd} 384.24 482.18 488.09	-1376.99 5612.45 4345.96 8419.17 17958.97 V _{Rod} 0.00 0.00 0.00	-218.85 3471.92 -3052.26 4078.03 -2768.13 V _{Rcd} 0.00 0.00 0.00	22.62 22.62 22.62 22.62 22.62 22.62 Asw 0.00 0.00 0.00	22.62 22.62 22.62 22.62	17.87 9.29 6.73 12.26
1 2 3 4 5 Verifich N° 1 2 3 4	0.00 3.37 6.80 10.23 13.60 ne taglio X 0.00 3.37 6.80 10.23	0.00 (-6.41) 65.83 (373.80) -452.89 (-453.28) 19.60 (332.54) 0.00 (7.00) V 6.19 -297.56 -2.20 302.36	-78.10 604.26 645.40 686.53 76.35 V _{Rd} 384.24 482.18 488.09 494.00	-1376.99 5612.45 4345.96 8419.17 17958.97 V _{Rsd} 0.00 0.00 0.00 0.00	-218.85 3471.92 -3052.26 4078.03 -2768.13 V _{Rcd} 0.00 0.00 0.00 0.00	22.62 22.62 22.62 22.62 22.62 22.62 A _{sw} 0.00 0.00 0.00	22.62 22.62 22.62 22.62	17.87 9.29 6.73 12.26
1 2 3 4 5 5 Verifich N° 1 2 3 4 5	0.00 3.37 6.80 10.23 13.60 x 0.00 3.37 6.80 10.23 13.60	0.00 (-6.41) 65.83 (373.80) -452.89 (-453.28) 19.60 (332.54) 0.00 (7.00) V 6.19 -297.56 -2.20 302.36 -6.76	-78.10 604.26 645.40 686.53 76.35 V _{Rd} 384.24 482.18 488.09 494.00 406.14	-1376.99 5612.45 4345.96 8419.17 17958.97 V _{Rsd} 0.00 0.00 0.00 0.00 0.00	-218.85 3471.92 -3052.26 4078.03 -2768.13 V _{Rcd} 0.00 0.00 0.00 0.00	22.62 22.62 22.62 22.62 22.62 22.62 A _{sw} 0.00 0.00 0.00	22.62 22.62 22.62 22.62	17.87 9.29 6.73 12.26
1 2 3 4 5 5 Verifich N° 1 2 3 4 5	0.00 3.37 6.80 10.23 13.60 x 0.00 3.37 6.80 10.23 13.60	0.00 (-6.41) 65.83 (373.80) -452.89 (-453.28) 19.60 (332.54) 0.00 (7.00) V 6.19 -297.56 -2.20 302.36	-78.10 604.26 645.40 686.53 76.35 V _{Rd} 384.24 482.18 488.09 494.00 406.14	-1376.99 5612.45 4345.96 8419.17 17958.97 V _{Rsd} 0.00 0.00 0.00 0.00 0.00	-218.85 3471.92 -3052.26 4078.03 -2768.13 V _{Rcd} 0.00 0.00 0.00 0.00	22.62 22.62 22.62 22.62 22.62 22.62 A _{sw} 0.00 0.00 0.00	22.62 22.62 22.62 22.62	17.87 9.29 6.73 12.26
1 2 3 4 5 5 Verifich N° 1 2 3 4 5	0.00 3.37 6.80 10.23 13.60 Metaglio X 0.00 3.37 6.80 10.23 13.60	0.00 (-6.41) 65.83 (373.80) -452.89 (-453.28) 19.60 (332.54) 0.00 (7.00) V 6.19 -297.56 -2.20 302.36 -6.76 rso [Combinazione n° 15 - SLU	-78.10 604.26 645.40 686.53 76.35 V _{Rd} 384.24 482.18 488.09 494.00 406.14	-1376.99 5612.45 4345.96 8419.17 17958.97 V _{Rsd} 0.00 0.00 0.00 0.00 0.00	-218.85 3471.92 -3052.26 4078.03 -2768.13 V _{Rcd} 0.00 0.00 0.00 0.00	22.62 22.62 22.62 22.62 22.62 22.62 A _{sw} 0.00 0.00 0.00	22.62 22.62 22.62 22.62	17.87 9.29 6.73 12.26
1 2 3 4 5 5 Verifich N° 1 2 3 4 5 5 Verifica Base see	0.00 3.37 6.80 10.23 13.60 Metaglio X 0.00 3.37 6.80 10.23 13.60	0.00 (-6.41) 65.83 (373.80) -452.89 (-453.28) 19.60 (332.54) 0.00 (7.00) V 6.19 -297.56 -2.20 302.36 -6.76	-78.10 604.26 645.40 686.53 76.35 V _{Rd} 384.24 482.18 488.09 494.00 406.14	-1376.99 5612.45 4345.96 8419.17 17958.97 V _{Rsd} 0.00 0.00 0.00 0.00 0.00	-218.85 3471.92 -3052.26 4078.03 -2768.13 V _{Rcd} 0.00 0.00 0.00 0.00	22.62 22.62 22.62 22.62 22.62 22.62 A _{sw} 0.00 0.00 0.00	22.62 22.62 22.62 22.62	17.87 9.29 6.73 12.26
1 2 3 4 5 Verifict N° 1 2 3 4 5 Verifica Base se Altezza	0.00 3.37 6.80 10.23 13.60 Me taglio X 0.00 3.37 6.80 10.23 13.60 A sezioni trave eszione	0.00 (-6.41) 65.83 (373.80) -452.89 (-453.28) 19.60 (332.54) 0.00 (7.00) V 6.19 -297.56 -2.20 302.36 -6.76 rso [Combinazione n° 15 - SLU] B = 100 cm H = 110.00 cm	-78.10 604.26 645.40 686.53 76.35 V _{Rd} 384.24 482.18 488.09 494.00 406.14	-1376.99 5612.45 4345.96 8419.17 17958.97 V _{Rsd} 0.00 0.00 0.00 0.00 0.00	-218.85 3471.92 -3052.26 4078.03 -2768.13 V _{Rcd} 0.00 0.00 0.00 0.00	22.62 22.62 22.62 22.62 22.62 22.62 A _{sw} 0.00 0.00 0.00	22.62 22.62 22.62 22.62	17.87 9.29 6.73 12.26
1 2 3 4 5 Verifich N° 1 2 3 4 5 Verifica Base se Altezza Verifich	0.00 3.37 6.80 10.23 13.60 N	0.00 (-6.41) 65.83 (373.80) -452.89 (-453.28) 19.60 (332.54) 0.00 (7.00) V 6.19 -297.56 -2.20 302.36 -6.76 rso [Combinazione n° 15 - SLU B = 100 cm H = 110.00 cm	-78.10 604.26 645.40 686.53 76.35 V _{Rd} 384.24 482.18 488.09 494.00 406.14	-1376.99 5612.45 4345.96 8419.17 17958.97 VRod 0.00 0.00 0.00 0.00 0.00 0.00 0.00	-218.85 3471.92 -3052.26 4078.03 -2768.13 V _{Rcd} 0.00 0.00 0.00 0.00 0.00	22.62 22.62 22.62 22.62 22.62 22.62 A _{sw} 0.00 0.00 0.00 0.00	22.62 22.62 22.62 22.62 22.62 22.62	17.87 9.29 6.73 12.26 238.51
1 2 3 4 5 Verifich N° 1 2 3 4 5 Verifica Base se Altezza	0.00 3.37 6.80 10.23 13.60 The taglio X 0.00 3.37 6.80 10.23 13.60 a sezioni trave experience a sezione the presso-fless X	0.00 (-6.41) 65.83 (373.80) -452.89 (-453.28) 19.60 (332.54) 0.00 (7.00) V 6.19 -297.56 -2.20 302.36 -6.76 rso [Combinazione n° 15 - SLU] B = 100 cm H = 110.00 cm	-78.10 604.26 645.40 686.53 76.35 V _{Rd} 384.24 482.18 488.09 494.00 406.14	-1376.99 5612.45 4345.96 8419.17 17958.97 V _{Rsd} 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Vert. positivo 1	-218.85 3471.92 -3052.26 4078.03 -2768.13 V _{Rcd} 0.00 0.00 0.00 0.00 0.00 0.00	22.62 22.62 22.62 22.62 22.62 20.00 0.00	22.62 22.62 22.62 22.62 22.62	17.87 9.29 6.73 12.26 238.51
1 2 3 4 5 Verifich N° 1 2 3 4 5 Verifica Base se Altezza Verifich N° 1	0.00 3.37 6.80 10.23 13.60 Me taglio X 0.00 3.37 6.80 10.23 13.60 A sezioni trave exione sezione sezione sezione sezione 10.25	0.00 (-6.41) 65.83 (373.80) -452.89 (-453.28) 19.60 (332.54) 0.00 (7.00) V 6.19 -297.56 -2.20 302.36 -6.76 rso [Combinazione n° 15 - SLU B = 100 cm H = 110.00 cm sione M -535.17 (-649.38)	-78.10 604.26 645.40 686.53 76.35 VRd 384.24 482.18 488.09 494.00 406.14 (Approccio 2) - Sisma V	-1376.99 5612.45 4345.96 8419.17 17958.97 VRdd 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Vert. positivo]	-218.85 3471.92 -3052.26 4078.03 -2768.13 V _{Rcd} 0.00 0.00 0.00 0.00 0.00 0.00	22.62 22.62 22.62 22.62 22.62 22.62 Asw 0.00 0.00 0.00 0.00 0.00	22.62 22.62 22.62 22.62 22.62 22.62	17.87 9.29 6.73 12.26 238.51
1 2 3 4 5 Verifich N° 1 2 3 4 5 Verifica Base se Altezza	0.00 3.37 6.80 10.23 13.60 Ne taglio X 0.00 3.37 6.80 10.23 13.60 a sezioni trave e sezione ne presso-fless X 1.25 3.94	0.00 (-6.41) 65.83 (373.80) -452.89 (-453.28) 19.60 (332.54) 0.00 (7.00) V 6.19 -297.56 -2.20 302.36 -6.76 rso [Combinazione n° 15 - SLU] B = 100 cm H = 110.00 cm	-78.10 604.26 645.40 686.53 76.35 V _{Rd} 384.24 482.18 488.09 494.00 406.14 (Approccio 2) - Sisma V	-1376.99 5612.45 4345.96 8419.17 17958.97 VRed 0.00 0.00 0.00 0.00 0.00 0.00 Vert. positivo l	-218.85 3471.92 -3052.26 4078.03 -2768.13 VRcd 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.	22.62 22.62 22.62 22.62 22.62 22.62 Asw 0.00 0.00 0.00 0.00 0.00	22.62 22.62 22.62 22.62 22.62	17.87 9.29 6.73 12.26 238.51
1 2 3 4 5 5 Verifice N° 1 2 3 4 4 5 5 Verifica Base se Altezza Verifich N° 1 2	0.00 3.37 6.80 10.23 13.60 Me taglio X 0.00 3.37 6.80 10.23 13.60 A sezioni trave exione sezione sezione sezione sezione sezione sezione sezione 10.25	0.00 (-6.41) 65.83 (373.80) -452.89 (-453.28) 19.60 (332.54) 0.00 (7.00) V 6.19 -297.56 -2.20 302.36 -6.76 B = 100 cm H = 110.00 cm Sione M -535.17 (-649.38) 24.69 (155.71)	-78.10 604.26 645.40 686.53 76.35 VRd 384.24 482.18 488.09 494.00 406.14 (Approccio 2) - Sisma V	-1376.99 5612.45 4345.96 8419.17 17958.97 VRdd 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0	-218.85 3471.92 -3052.26 4078.03 -2768.13 V _{Rcd} 0.00 0.00 0.00 0.00 0.00 0.00	22.62 22.62 22.62 22.62 22.62 22.62 Asw 0.00 0.00 0.00 0.00 0.00	22.62 22.62 22.62 22.62 22.62 22.62 22.62	17.87 9.29 6.73 12.26 238.51
Verificates	0.00 3.37 6.80 10.23 13.60 **Mathematical Residual Resid	0.00 (-6.41) 65.83 (373.80) -452.89 (-453.28) 19.60 (332.54) 0.00 (7.00) V 6.19 -297.56 -2.20 302.36 -6.76 rso [Combinazione n° 15 - SLU B = 100 cm H = 110.00 cm Ssione M -535.17 (-649.38) 24.69 (155.71) 208.51 (209.53)	-78.10 604.26 645.40 686.53 76.35 V _{Rd} 384.24 482.18 488.09 494.00 406.14 (Approccio 2) - Sisma V	-1376.99 5612.45 4345.96 8419.17 17958.97 V _{Rsd} 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.	-218.85 3471.92 -3052.26 4078.03 -2768.13 VRcd 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.	22.62 22.62 22.62 22.62 22.62 22.62 20.00 0.00	22.62 22.62 22.62 22.62 22.62 22.62 22.62 22.62 22.62	17.87 9.29 6.73 12.26 238.51 CS 2.05 22.95 17.20
1 2 3 4 5 5 Verifich N° 1 2 3 4 5 5 Verifica Base se Altezza Verifich 1 2 3 4 4 5 1 2 3 4 4	0.00 3.37 6.80 10.23 13.60 **Example of the taglio of t	0.00 (-6.41) 65.83 (373.80) -452.89 (-453.28) 19.60 (332.54) 0.00 (7.00) V 6.19 -297.56 -2.20 302.36 -6.76 rso [Combinazione n° 15 - SLU B = 100 cm H = 110.00 cm sione M -535.17 (-649.38) 24.69 (155.71) 208.51 (209.53) -11.82 (-155.19)	-78.10 604.26 645.40 686.53 76.35 VRd 384.24 482.18 488.09 494.00 406.14 (Approccio 2) - Sisma V	-1376.99 5612.45 4345.96 8419.17 17958.97 VRed 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.	-218.85 3471.92 -3052.26 4078.03 -2768.13 V _{Rcd} 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.	22.62 22.62 22.62 22.62 22.62 22.62 20.00 0.00	22.62 22.62 22.62 22.62 22.62 22.62 22.62 22.62 22.62 22.62 22.62	17.87 9.29 6.73 12.26 238.51 CS 2.05 22.95 17.20 22.13
1 2 3 4 5 5 Verifical Sase See Altezza Verifical Sase See Altezza Verifical Sase See See See See See See See See See S	0.00 3.37 6.80 10.23 13.60 x 0.00 3.37 6.80 10.23 13.60 2.23 13.60 2.22ione sezione sezione sezione sezione 1.25 3.94 6.80 9.52 12.35	0.00 (-6.41) 65.83 (373.80) -452.89 (-453.28) 19.60 (332.54) 0.00 (7.00) V 6.19 -297.56 -2.20 302.36 -6.76 rso [Combinazione n° 15 - SLU B = 100 cm H = 110.00 cm sione M -535.17 (-649.38) 24.69 (155.71) 208.51 (209.53) -11.82 (-155.19)	-78.10 604.26 645.40 686.53 76.35 VRd 384.24 482.18 488.09 494.00 406.14 (Approccio 2) - Sisma V	-1376.99 5612.45 4345.96 8419.17 17958.97 VRed 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.	-218.85 3471.92 -3052.26 4078.03 -2768.13 V _{Rcd} 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.	22.62 22.62 22.62 22.62 22.62 22.62 20.00 0.00	22.62 22.62 22.62 22.62 22.62 22.62 22.62 22.62 22.62 22.62 22.62	17.87 9.29 6.73 12.26 238.51 CS 2.05 22.95 17.20 22.13
1 2 3 4 5 5 Verifical Sase See Altezza Verifical Sase See Altezza Verifical Sase See See See See See See See See See S	0.00 3.37 6.80 10.23 13.60 **Example of the taglio of t	0.00 (-6.41) 65.83 (373.80) -452.89 (-453.28) 19.60 (332.54) 0.00 (7.00) V 6.19 -297.56 -2.20 302.36 -6.76 rso [Combinazione n° 15 - SLU B = 100 cm H = 110.00 cm sione M -535.17 (-649.38) 24.69 (155.71) 208.51 (209.53) -11.82 (-155.19)	-78.10 604.26 645.40 686.53 76.35 VRd 384.24 482.18 488.09 494.00 406.14 (Approccio 2) - Sisma V	-1376.99 5612.45 4345.96 8419.17 17958.97 VRed 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.	-218.85 3471.92 -3052.26 4078.03 -2768.13 V _{Rcd} 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.	22.62 22.62 22.62 22.62 22.62 22.62 20.00 0.00	22.62 22.62 22.62 22.62 22.62 22.62 22.62 22.62 22.62 22.62 22.62	17.87 9.29 6.73 12.26 238.51 CS 2.05 22.95 17.20 22.13
1 2 3 4 5 5 Verificate Base se Altezza Verificate 1 2 3 4 5 5 5 Verificate 1 5 5 5 5 5 5 5 5 5 5 6 6 6 6 6 6 6 6 6	0.00 3.37 6.80 10.23 13.60 Me taglio X 0.00 3.37 6.80 10.23 13.60 A sezioni trave Ezione In e presso-fless X 1.25 3.94 6.80 9.52 12.35	0.00 (-6.41) 65.83 (373.80) -452.89 (-453.28) 19.60 (332.54) 0.00 (7.00) V 6.19 -297.56 -2.20 302.36 -6.76 B = 100 cm H = 110.00 cm sione M -535.17 (-649.38) 24.69 (155.71) 208.51 (209.53) -11.82 (-155.19) -649.38 (-649.38)	-78.10 604.26 645.40 686.53 76.35 VRd 384.24 482.18 488.09 494.00 406.14 (Approccio 2) - Sisma V	-1376.99 5612.45 4345.96 8419.17 17958.97 VRed 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.	-218.85 3471.92 -3052.26 4078.03 -2768.13 V _{Rcd} 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.	22.62 22.62 22.62 22.62 22.62 22.62 A _{Sw} 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.	22.62 22.62 22.62 22.62 22.62 22.62 22.62 22.62 22.62 22.62 22.62	17.87 9.29 6.73 12.26 238.51 CS 2.05 22.95 17.20 22.13
Verifice 1 2 3 4 5	0.00 3.37 6.80 10.23 13.60 **Mathematical Residual Resid	0.00 (-6.41) 65.83 (373.80) -452.89 (-453.28) 19.60 (332.54) 0.00 (7.00) V 6.19 -297.56 -2.20 302.36 -6.76 B = 100 cm H = 110.00 cm sione M -535.17 (-649.38) 24.69 (155.71) 208.51 (209.53) -11.82 (-155.19) -649.38 (-649.38) V 278.28 138.64	-78.10 604.26 645.40 686.53 76.35 VRd 384.24 482.18 488.09 494.00 406.14 (Approccio 2) - Sisma V	-1376.99 5612.45 4345.96 8419.17 17958.97 VRsd 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.	-218.85 3471.92 -3052.26 4078.03 -2768.13 V _{Rcd} 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.	22.62 22.62 22.62 22.62 22.62 22.62 A _{sw} 0.00 0.00 0.00 0.00 0.00 0.00 A _{fi} 22.62 22.62 22.62 22.62 22.62 22.62 22.62 0.00 0.00	22.62 22.62 22.62 22.62 22.62 22.62 22.62 22.62 22.62 22.62 22.62	17.87 9.29 6.73 12.26 238.51 CS 2.05 22.95 17.20 22.13
1 2 3 4 5 5 Verifice Base se Altezza Verifice N° 1 2 3 4 5 5 Verifice N° 1 2 3 4 5 5 Verifice N° 1 2 3 4 5 5 Verifice N° 1 2 3 3 4 5 5 Verifice N° 1 2 4 V	0.00 3.37 6.80 10.23 13.60 Me taglio X 0.00 3.37 6.80 10.23 13.60 A sezioni trave sezione sezione sezione 1.25 3.94 6.80 9.52 12.35 Me taglio X 1.25 3.94 6.80 9.52 12.35	0.00 (-6.41) 65.83 (373.80) -452.89 (-453.28) 19.60 (332.54) 0.00 (7.00) V 6.19 -297.56 -2.20 302.36 -6.76 B = 100 cm H = 110.00 cm Sione M -535.17 (-649.38) 24.69 (155.71) 208.51 (209.53) -11.82 (-155.19) -649.38 (-649.38) V 278.28 138.64 -10.29	-78.10 604.26 645.40 686.53 76.35 VRd 384.24 482.18 488.09 494.00 406.14 (Approccio 2) - Sisma \(\) N 450.44 479.95 511.43 541.32 572.42 VRd 432.87 437.10 441.60	-1376.99 5612.45 4345.96 8419.17 17958.97 VRsd 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.	-218.85 3471.92 -3052.26 4078.03 -2768.13 V _{Rcd} 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.	22.62 22.62 22.62 22.62 22.62 22.62 22.62 22.62 22.62 22.62 22.62 22.62 22.62 22.62 22.62 20.62	22.62 22.62 22.62 22.62 22.62 22.62 22.62 22.62 22.62 22.62 22.62	17.87 9.29 6.73 12.26 238.51 CS 2.05 22.95 17.20 22.13
Verification 1 2 3 4 5	0.00 3.37 6.80 10.23 13.60 **Mathematical Residual Resid	0.00 (-6.41) 65.83 (373.80) -452.89 (-453.28) 19.60 (332.54) 0.00 (7.00) V 6.19 -297.56 -2.20 302.36 -6.76 rso [Combinazione n° 15 - SLU B = 100 cm H = 110.00 cm Sione M -535.17 (-649.38) 24.69 (155.71) 208.51 (209.53) -11.82 (-155.19) -649.38 (-649.38) V 278.28 138.64 -10.29 -151.71	-78.10 604.26 645.40 686.53 76.35 VRd 384.24 482.18 488.09 494.00 406.14 (Approccio 2) - Sisma V N 450.44 479.95 511.43 541.32 572.42 VRd 432.87 437.10 441.60 445.88	-1376.99 5612.45 4345.96 8419.17 17958.97 V _{Rsd} 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.	-218.85 3471.92 -3052.26 4078.03 -2768.13 VRcd 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.	22.62 22.62 22.62 22.62 22.62 22.62 22.62 20.00 0.00	22.62 22.62 22.62 22.62 22.62 22.62 22.62 22.62 22.62 22.62 22.62	17.87 9.29 6.73 12.26 238.51 CS 2.05 22.95 17.20 22.13
1 2 3 4 5 5 Verifice Base se Altezza Verifice N° 1 2 3 4 5 5 Verifice N° 1 2 3 4 5 5 Verifice N° 1 2 3 4 5 5 Verifice N° 1 2 3 3 4 5 5 Verifice N° 1 2 4 V	0.00 3.37 6.80 10.23 13.60 Me taglio X 0.00 3.37 6.80 10.23 13.60 A sezioni trave sezione sezione sezione 1.25 3.94 6.80 9.52 12.35 Me taglio X 1.25 3.94 6.80 9.52 12.35	0.00 (-6.41) 65.83 (373.80) -452.89 (-453.28) 19.60 (332.54) 0.00 (7.00) V 6.19 -297.56 -2.20 302.36 -6.76 B = 100 cm H = 110.00 cm Sione M -535.17 (-649.38) 24.69 (155.71) 208.51 (209.53) -11.82 (-155.19) -649.38 (-649.38) V 278.28 138.64 -10.29	-78.10 604.26 645.40 686.53 76.35 VRd 384.24 482.18 488.09 494.00 406.14 (Approccio 2) - Sisma \(\) N 450.44 479.95 511.43 541.32 572.42 VRd 432.87 437.10 441.60	-1376.99 5612.45 4345.96 8419.17 17958.97 VRsd 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.	-218.85 3471.92 -3052.26 4078.03 -2768.13 V _{Rcd} 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.	22.62 22.62 22.62 22.62 22.62 22.62 22.62 22.62 22.62 22.62 22.62 22.62 22.62 22.62 22.62 20.62	22.62 22.62 22.62 22.62 22.62 22.62 22.62 22.62 22.62 22.62 22.62	17.87 9.29 6.73 12.26 238.51 CS 2.05 22.95 17.20 22.13

Verifica sezioni piedritto sinistro [Combinazione n° 15 - SLU (Approccio 2) - Sisma Vert. positivo]

B = 100 cm Base sezione H = 110.00 cm Altezza sezione

Collegamento viario compreso tra lo Svincolo della S.S. 514 di "Chiaromonte" con la S.S. 115 e lo

Svincolo della "Ragusana" **PROGETTO ESECUTIVO**

Direzione Progettazione e Realizzazione Lavori

RELAZIONE DI CALCOLO SOTTOVIA AL KM 3+248 - SEC. 90

Verifiche N° 1 2	e presso-fless X 0.60 4.53 8.46	-960.11 (-960.11) 325.66 (329.51) -535.17 (-960.11)	N 537.62 407.95 278.28	N _u 678.75 1896.00 300.52	M _u -1212.15 1531.46 -1036.84	A _{fi} 15.71 15.71 15.71	A _{fs} 22.62 22.62 22.62	CS 1.26 4.65 1.08
Verifiche N° 1 2 3	e taglio X 0.60 4.53 8.46	V 641.98 33.20 -450.44	V _{Rd} 445.35 426.79 408.22	V _{Rsd} 0.00 0.00 0.00	V _{Rcd} 4490.45 0.00 4436.67	A _{sw} 0.00 0.00 0.00		
		itto destro [Combinazione n° 1	.5 - SLU (Approccio 2) -	· Sisma Vert. positivo]				
Base sez Altezza s		B = 100 cm H = 110.00 cm						
Verifiche N° 1 2 3	e presso-fless X 0.60 4.53 8.46	oione M -900.62 (-900.62) 360.31 (360.66) -649.38 (-900.62)	N 558.20 428.53 298.86	Nu 780.52 1719.57 351.98	M _u -1259.33 1447.22 -1060.69	A _{fi} 15.71 15.71 15.71	A _{fs} 22.62 22.62 22.62	CS 1.40 4.01 1.18
Verifiche N° 1 2 3	e taglio X 0.60 4.53 8.46	V -650.57 -5.17 502.08	V _{Rd} 448.30 429.74 411.17	V _{Rsd} 0.00 0.00 0.00	V _{Rcd} 4494.72 0.00 4440.94	A _{sw} 0.00 0.00 0.00		
Verifica	sezioni fonda	ızione [Combinazione n° 16 - S	LU (Approccio 2) - Sisn	na Vert. negativo]				
Base sez Altezza s		B = 100 cm H = 120.00 cm						
Verifiche N° 1 2 3 4 5	e presso-fless X 0.00 3.37 6.80 10.23 13.60	M 0.00 (4.38) 129.18 (380.70) -300.57 (-301.06) 80.89 (333.46) 0.00 (-4.98)	N -78.87 600.87 642.00 683.14 77.12	N _u -1353.99 5378.09 8803.40 8330.82 17530.15	M _u -231.65 3407.47 -4128.21 4066.50 -2917.86	A _{fi} 22.62 22.62 22.62 22.62 22.62 22.62	A _{fs} 22.62 22.62 22.62 22.62 22.62 22.62	CS 17.40 8.95 13.71 12.19 230.43
Verifiche								
N° 1 2 3 4 5	X 0.00 3.37 6.80 10.23 13.60	V 4.23 -243.02 -3.78 244.02 -4.81	V _{Rd} 384.13 481.69 487.60 493.51 406.25	V _{Rsd} 0.00 0.00 0.00 0.00 0.00 0.00	V _{Rcd} 0.00 0.00 0.00 0.00 0.00 0.00	A _{sw} 0.00 0.00 0.00 0.00 0.00 0.00		
Verifica	sezioni trave	rso [Combinazione n° 16 - SLU	(Approccio 2) - Sisma	Vert. negativo]				
Base sez Altezza s		B = 100 cm H = 110.00 cm						
<u>Verifiche</u> N°	e presso-fless X	ione M	N	Nu	$M_{\rm u}$	A_{fi}	A_fs	CS
1 2 3 4 5	1.25 3.94 6.80 9.52 12.35	-471.97 (-585.18) -36.04 (-137.39) 102.96 (104.17) -76.47 (-191.51) -585.18 (-585.18)	453.07 482.58 514.06 543.95 575.04	1092.46 12037.65 14502.97 10283.38 1639.00	-1411.01 -3427.09 2938.94 -3620.44 -1667.88	22.62 22.62 22.62 22.62 22.62	22.62 22.62 22.62 22.62 22.62	2.41 24.94 28.21 18.91 2.85
<u>Verifiche</u> N°	<u>e taglio</u> X	V	V_{Rd}	V_{Rsd}	V_{Rcd}	A_{sw}		
1 2 3 4 5	1.25 3.94 6.80 9.52 12.35	217.38 107.25 -10.20 -121.73 -237.78	VRd 433.25 437.47 441.98 446.26 450.71	V Rsd 0.00 0.00 0.00 0.00 0.00	V _{Rcd} 0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00		

 $\underline{\text{Verifica sezioni piedritto sinistro [Combinazione } n^{\circ} \, 16 \, \text{-} \, \text{SLU (Approccio 2) - Sisma Vert. negativo]}}$

B = 100 cm Base sezione Altezza sezione H = 110.00 cm

Collegamento viario compreso tra lo Svincolo della S.S. 514 di "Chiaromonte" con la S.S. 115 e lo Svincolo della "Ragusana"

PROGETTO ESECUTIVO

Direzione Progettazione e Realizzazione Lavori

RELAZIONE DI CALCOLO SOTTOVIA AL KM 3+248 - SEC. 90

Verific	he presso-fles	sione						
N°	Х		N	Nu	M _{II}	A_{fi}	A_{fs}	CS
1	0.60	-876.27 (-876.27)	390.34	503.86	-1131.09	15.71	22.62	1.29
2	4.53	399.18 (402.51)	303.86	739.14	979.11	15.71	22.62	2.43
3	8.46	-471.97 (-876.27)	217.38	251.59	-1014.16	15.71	22.62	1.16
Verific	he taglio							
N°	X	V	V_{Rd}	V_{Rsd}	V_{Rcd}	A_{sw}		
1	0.60	639.35	424.27	0.00	4459.91	0.00		
2	4.53	30.58	411.89	0.00	0.00	0.00		
3	8.46	-453.07	399.50	0.00	4424.04	0.00		
Verific	a sezioni piedr	itto destro [Combinazione n° 1	6 - SLU (Approccio 2) -	Sisma Vert. negativo]				
	ezione	B = 100 cm						
Altezza	a sezione	H = 110.00 cm						
Verific	he presso-fles	sione						
N°	X	M	N	Nu	Mu	A_{fi}	A_{fs}	CS
1	0.60	-813.49 (-813.49)	410.74	591.65	-1171.78	15.71	22.62	1.44
2	4.53	430.93 (431.00)	324.26	735.22	977.24	15.71	22.62	2.27
3	8.46	-585.18 (-813.49)	237.78	303.46	-1038.21	15.71	22.62	1.28
Verific	he taglio							
N°	x	V	V_{Rd}	V_{Rsd}	V_{Rcd}	A_{sw}		
1	0.60	-646.40	427.19	0.00	4464.14	0.00		
2	4.53	-2.38	414.81	0.00	0.00	0.00		
3	8 46	503 94	402 42	0.00	4428 27	0.00		

Collegamento viario compreso tra lo Svincolo della S.S. 514 di "Chiaromonte" con la S.S. 115 e lo Svincolo della "Ragusana"

PROGETTO ESECUTIVO

RELAZIONE DI CALCOLO SOTTOVIA AL KM 3+248 - SEC. 90

Verifiche combinazioni SLE

Simbologia adottata ed unità di misura
--

Indice sezione

Ascissa/Ordinata sezione, espresso in m

Momento flettente, espresso in kNm Taglio, espresso in kN М

V N

Sforzo normale, espresso in kN Area armatura inferiore, espressa in cmq

Area armatura superiore, espressa in cmq

Tensione nell'armatura disposta in corrispondenza del lembo inferiore, espresse in MPa Tensione nell'armatura disposta in corrispondenza del lembo superiore, espresse in MPa

 A_{fs} σ_{fi} σ_{fs} σ_{c}

Tensione nel calcestruzzo, espresse in MPa

Tensione tangenziale nel calcestruzzo, espresse in MPa Area armature trasversali nella sezione, espressa in cmq

Verifica sezioni fondazione [Combinazione n° 17 - SLE (Quasi Permanente)]

Base sezione B = 100 cm

Altezza sezione	H = 120.00 cn

Verific	he presso-flessi	<u>one</u>						
N°	X	M	N	A_{fi}	A_{fs}	σ_{fs}	σ_{fi}	σ_{c}
1	0.00	0.00	-0.35	22.62	22.62	0.15	0.00	0.00
2	3.37	-138.52	257.40	22.62	22.62	13.58	12.39	0.90
3	6.80	-530.41	257.40	22.62	22.62	166.02	45.67	3.69
4	10.23	-138.52	257.40	22.62	22.62	13.58	12.39	0.90
5	13.60	0.00	-0.35	22.62	22.62	0.15	0.00	0.00

Verifiche taglio

N°	X	V	τ_{c}	A_{sw}
1	0.00	6.53	-0.011	0.00
2	3.37	-236.32	-0.242	0.00
3	6.80	4.53	0.005	0.00
4	10.23	247.64	0.253	0.00
5	13.60	-6.53	0.011	0.00

Verifica sezioni traverso [Combinazione n° 17 - SLE (Quasi Permanente)]

Base sezione B = 100 cm H = 110.00 cm

Verifiche presso-flessione

N°	X	M	N	A_{fi}	A_{fs}	σ_{fs}	$\sigma_{\rm fi}$	σ_{c}
1	1.25	-303.98	96.65	22.62	22.62	117.26	28.76	2.40
2	3.94	221.44	96.65	22.62	22.62	21.39	80.27	1.77
3	6.80	412.18	96.65	22.62	22.62	38.36	165.84	3.24
4	9.52	240.17	96.65	22.62	22.62	23.07	88.66	1.91
5	12.35	-303.98	96.65	22.62	22.62	117.26	28.76	2.40

Verifiche taglio

N°	X	V	τ_{c}	A_{sw}
1	1.25	258.08	0.289	0.00
2	3.94	133.19	0.149	0.00
3	6.80	0.00	0.000	0.00
4	9.52	-126.48	-0.142	0.00
5	12 35	-258 NR	₌0 289	0.00

Verifica sezioni piedritto sinistro [Combinazione n° 17 - SLE (Quasi Permanente)]

Base sezione B = 100 cm Altezza sezione H = 110.00 cm

Verifiche presso-flessione

N°	X	M	N	Afi	Afs	σ_{fs}	σfi	σ_c
1	0.60	-599.50	474.22	15.71	22.62	178.69	63.10	5.01
2	4.53	-103.11	366.15	15.71	22.62	2.43	11.44	0.81
3	8.46	-303.98	258.07	15.71	22.62	87.43	32.15	2.54

Verifiche taglio

N°	X	V	τ_{c}	A_{sw}
1	0.60	257.75	0.289	0.00
2	4.53	15.35	0.017	0.00
3	8.46	-96.65	-0.108	0.00

Collegamento viario compreso tra lo Svincolo della S.S. 514 di "Chiaromonte" con la S.S. 115 e lo Svincolo della "Ragusana"

PROGETTO ESECUTIVO

RELAZIONE DI CALCOLO SOTTOVIA AL KM 3+248 - SEC. 90

Varifica cazioni niadritta	doctro [Combinaziono nº 17	CLE (Quaci Bormanonto)

Base se Altezza	zione sezione	B = 100 cm H = 110.00 cm						
Verifich	ne presso-fles	sione						
N°	Х	M	N	A_{fi}	A_{fs}	σ_{fs}	$\sigma_{\rm fi}$	σ_{c}
1	0.60	-599.50	474.23	15.71	22.62	178.69	63.10	5.01
2	4.53	-103.11	366.15	15.71	22.62	2.43	11.44	0.81
3	8.46	-303.98	258.07	15.71	22.62	87.43	32.15	2.54
Verifich	ne taglio							
N°	X	V	τ_c		A_{sw}			
1	0.60	-257.75	-0.289		0.00			
2	4.53	-15.35	-0.017		0.00			
3	8.46	96.65	0.108		0.00			

Verifica sezioni fondazione [Combinazione n° 18 - SLE (Frequente)]

Base sezione	B = 100 cm
Altezza sezione	H = 120.00 cm

verimo	che presso-flessi	<u>one</u>						
N°	X	M	N	A_{fi}	A_{fs}	σ_{fs}	$\sigma_{\rm fi}$	σ_c
1	0.00	0.00	-5.67	22.62	22.62	1.36	1.15	0.00
2	3.37	-131.17	299.02	22.62	22.62	8.04	11.59	0.83
3	6.80	-568.87	299.02	22.62	22.62	173.66	49.27	3.96
4	10.23	-153.19	299.02	22.62	22.62	13.56	13.66	0.99
5	13.60	0.00	4 86	22.62	22.62	0.05	0.07	0.00

Verifiche taglio							
N°	X	V	τ_{c}	A_{sw}			
1	0.00	6.90	-0.013	0.00			
2	3.37	-260.75	-0.267	0.00			
3	6.80	1.79	0.002	0.00			
4	10.23	265.69	0.272	0.00			
5	13.60	-6.94	0.011	0.00			

Verifica sezioni traverso [Combinazione n° 18 - SLE (Frequente)]

Base sezione	B = 100 cm
Altezza sezione	H = 110.00 cm

N°	Х	M	N	Afi	A_{fs}	σ_{fs}	$\sigma_{\rm fi}$	σ_c
1	1.25	-346.53	134.54	22.62	22.62	128.88	33.21	2.75
2	3.94	245.25	134.54	22.62	22.62	24.10	83.60	1.97
3	6.80	453.13	134.54	22.62	22.62	42.70	176.69	3.58
4	9.52	246.13	134.54	22.62	22.62	24.18	83.99	1.97
5	12.35	-387.43	134.54	22.62	22.62	147.22	36.86	3.07

N°	X	V	τ_{c}	A_{sw}
1	1.25	291.85	0.327	0.00
2	3.94	148.84	0.167	0.00
3	6.80	-3.68	-0.004	0.00
4	9.52	-148.52	-0.166	0.00
5	12.35	-299.22	-0.335	0.00

Verifica sezioni piedritto sinistro [Combinazione n° 18 - SLE (Frequente)]

B = 100 cm

Altezza	sezione	H = 110.00 cm					
Verifich	e presso-fless	ione					
N°	X	M	N	A_{fi}	A_{fs}	σ_{fs}	σ_{fi}
1	0.60	-687.42	508.00	15.71	22.62	211.43	71.99
2	4.53	-85.43	399.93	15.71	22.62	0.04	10.47

1	0.00	-007.42	308.00	13.71	22.02	211.43	/1.55
2	4.53	-85.43	399.93	15.71	22.62	0.04	10.47
3	8.46	-346.53	291.85	15.71	22.62	100.09	36.63
verifici	ne taglio						
N°	X	V	τ_c		A_{sw}		
1	0.60	304.69	0.341		0.00		
2	4.53	22.51	0.025		0.00		

-0.151

-134.54

Base sezione

0.00

σ_c 5.74 0.73

2.90

Realizzazione Lavori

Collegamento viario compreso tra lo Svincolo della S.S. 514 di "Chiaromonte" con la S.S. 115 e lo

Svincolo della "Ragusana" **PROGETTO ESECUTIVO**

RELAZIONE DI CALCOLO SOTTOVIA AL KM 3+248 - SEC. 90

Verifica sezioni i	niedritto destro	[Combinazione n°:	18 - SIF	(Frequente)]

B = 100 cm Base sezione H = 110.00 cm Altezza sezione

Verifiche presso-flessione

Μ A_{fi} 15.71 σ_{fs} 187.54 0.60 -636.44 515.37 22.62 67.10 5.32 1 -81.38 407.30 15.71 22.62 0.34 0.72 4.53 10.31 3 8.46 -387.43 299.22 15.71 22.62 116.80 40.71 3.24

Verifiche taglio N°

-294.17 -0.330 0.00 4.53 -7.42 -0.008 0.00 0.151

Verifica sezioni fondazione [Combinazione n° 19 - SLE (Frequente)]

Base sezione B = 100 cm Altezza sezione H = 120.00 cm

Verifiche presso-flessio N° M 0.00 0.00 22.62 22.62 0.66 0.00 -2.63 0.50 2 3 37 -165 59 278 15 22 62 22.62 19 59 14 92 1 10 6.80 -600.44 278.15 22.62 22.62 190.49 51.53 4.17 3 4 5 10.23 -162.41 278.15 22.62 22.62 18.57 14.61 1.07 0.00 22.62 13.60 1.87 22.62 0.01 0.03 0.00

Verifiche taglio N°

V A_{sw} 0.00 1 0.00 7.53 -0.012 -267.30 -0.273 0.00 3.37 6.80 7.48 0.008 0.00 271.87 4 10.23 0.278 0.00

Verifica sezioni traverso [Combinazione n° 19 - SLE (Frequente)]

B = 100 cmBase sezione

Altezza sezione H = 110.00 cm

Verifiche presso-flessione N° 1.25 -361.03 117.44 22.62 22.62 138.75 34.20 2.86 117.44 3.94 272.28 22.62 22.62 26.28 98.97 2.17 6.80 117.44 22.62 22.62 44.29 189.78 3.73 22.62 22.62 4 9.52 262.52 117.44 22.62 25.41 94.61 2.09 12.35 117.44 22.62 145.66 5 -376.43 35.57 2.98

Verifiche taglio

N° A_{sw} 0.00 1.25 333.33 0.373 1 0.165 3.94 146.93 0.00 3 6.80 -5.59 -0.006 0.00 -150.43 -0.169 0.00 9.52

Verifica sezioni piedritto sinistro [Combinazione n° 19 - SLE (Frequente)]

Base sezione B = 100 cmH = 110.00 cm Altezza sezione

Verifiche presso-flessione

15.71 1 0.60 -675.17 549.48 22.62 198.46 71.20 5.65 4.53 -126.85 441.40 15.71 22.62 3.25 14.00 0.99 -361.03 333.33

Verifiche taglio

N° Х 0.00 0.60 280.78 0.315 4.53 19.11 0.021 0.00

Collegamento viario compreso tra lo Svincolo della S.S. 514 di "Chiaromonte" con la S.S. 115 e lo Svincolo della "Ragusana"

PROGETTO ESECUTIVO

Direzione Progettazione e Realizzazione Lavori

3

RELAZIONE DI CALCOLO SOTTOVIA AL KM 3+248 - SEC. 90

3 8.46 -117.44 -0.132 0.00

Verifica sezioni p	piedritto destro	[Combinazione n°	19 - SLE	(Frequente)]

Base sezione B = 100 cm Altezza sezione H = 110.00 cm

Verifiche presso-flessione

N° Ν σ_{fs} σfi σ_{c} 5.35 0.92 0.60 -639.53 517.28 15.71 22.62 188.56 67.42 409.20 15.71 22.62 13.04 4.53 -118.36 3.12 111.59

0.00

0.132

<u>Verifica sezioni fondazione [Combinazione n° 20 - SLE (Frequente)]</u>

117.44

Base sezione B = 100 cmAltezza sezione H = 120.00 cm

8.46

Verifiche presso-flessione N° M N 22.62 0.13 0.00 0.00 0.00 -0.36 22.62 0.02 1 2 3.37 -181.31 262.17 22.62 22.62 27.03 16.44 1.23 6.80 262.17 22.62 22.62 203.01 53.16 4.32 -623.62 10.23 -181.31 262.17 22.62 22.62 27.03 1.23 5 13.60 0.00 -0.36 22.62 22.62 0.13 0.02 0.00

Verifiche taglio N° 1 0.00 7.39 -0.011 0.00 -0.274 3.37 -267.58 0.00 6.80 0.005 0.00 4 10.23 280.08 0.287 0.00 0.011 0.00 5 13.60 -7.39

Verifica sezioni traverso [Combinazione n° 20 - SLE (Frequente)]

Base sezione B = 100 cmAltezza sezione H = 110.00 cm

Verifiche presso-flessione

N° M 1.25 -430.94 120.90 22.62 22.62 169.44 40.48 3.40 287.24 583.28 22.62 22.62 22.62 22.62 27.68 53.97 2.29 4.57 2 3.94 120.90 105.00 120.90 237.86 6.80 3 9.52 314.95 120.90 22.62 22.62 30.16 117.41 2.50 5 12.35 -430.94 120.90 22.62 22.62 169.44 40.48 3.40

Verifiche taglio N° 0.00 1.25 338.91 0.380 0.00 195.90 0.219 3.94 6.80 0.00 0.000 0.00 -188.22 4 9.52 -0.211 0.00 -0.380 12.35 -338.91 0.00

Verifica sezioni piedritto sinistro [Combinazione n° 20 - SLE (Frequente)]

Base sezione B = 100 cm Altezza sezione H = 110.00 cm

Verifiche presso-flessione Ν N° M 0.60 -644.41 555.06 15.71 22.62 183.91 68.23 5.39 4.53 -157.99 446.99 15.71 22.62 8.18 16.93 1.21 -430.94 338.91 22.62 128.81 45.34 8.46 15.71 3.60

 $\frac{\text{Verifiche taglio}}{N^{\circ} \qquad X \qquad \qquad V \qquad \qquad \tau_c$

Collegamento viario compreso tra lo Svincolo della S.S. 514 di "Chiaromonte" con la S.S. 115 e lo

Svincolo della "Ragusana" PROGETTO ESECUTIVO

Direzione Progettazione e Realizzazione Lavori

RELAZIONE DI CALCOLO SOTTOVIA AL KM 3+248 - SEC. 90

1	0.60	262.53	0.294		0.00			
2	4.53	4.17	0.005		0.00			
3	8.46	-120.90	-0.135		0.00			
Verific	a sezioni piedr	itto destro [Combinaz	ione n° 20 - SLE (Fre	quente)]				
D		D 100						
Base s	ezione a sezione	B = 100 cm H = 110.00 cm						
AILEZZ	a sezione	H = 110.00 CIII						
Verific	he presso-fles	sione						
N°	Х	M	N	Afi	A_{fs}	σ_{fs}	σ_{fi}	σ_c
1	0.60	-644.41	555.06	15.71	22.62	183.91	68.23	5.39
2	4.53	-157.99	446.99	15.71	22.62	8.18	16.93	1.21
3	8.46	-430.94	338.91	15.71	22.62	128.81	45.34	3.60
Verific	he taglio							
N°	X	V	τ_{c}		A_{sw}			
1	0.60	-262.53	-0.294		0.00			
2	4.53	-4.17	-0.005		0.00			
3	8.46	120.90	0.135		0.00			
Verific	a sezioni fonda	azione [Combinazione	n° 21 - SLE (Freguen	te)]				
_								
Base s		B = 100 cm						
Aitezza	a sezione	H = 120.00 cm						
Verific	he presso-fles	sione						
N°	X	M	N	Afi	A_{fs}	σ_{fs}	σ_{fi}	σ_{c}
1	0.00	0.00	-2.66	22.62	22.62	0.68	0.50	0.00
2	3.37	-96.20	266.61	22.62	22.62	3.33	8.55	0.61
3	6.80	-525.89	266.61	22.62	22.62	162.42	45.43	3.66
4	10.23	-168.36	266.61	22.62	22.62	21.95	15.21	1.13
5	13.60	0.00	1.94	22.62	22.62	0.02	0.03	0.00
Verific	he taglio							
N°	X	V	τ_{c}		A_{sw}			
1	0.00	6.10	-0.011		0.00			
2	3.37	-244.55	-0.250		0.00			
3 4	6.80 10.23	-7.51 241.47	-0.008 0.247		0.00 0.00			
5	13.60	-6.90	0.011		0.00			
3	15.00	0.50	0.011		0.00			
\/::E:-			24 (15 (5	1				
verific	a sezioni trave	rso [Combinazione n°	21 - SLE (Frequente)	1				
Base s	ezione	B = 100 cm						
	a sezione	H = 110.00 cm						
	he presso-fles:							
N° 1	X 1.25	M -239.26	N 79.71	A _{fi} 22.62	A _{fs} 22.62	σ _{fs} 91.58	σ _{fi} 22.70	σ _c 1.89
2	3.94	252.06	92.40	22.62	22.62	24.06	94.82	2.00
3	6.80	406.46	105.94	22.62	22.62	38.03	161.42	3.20
4	9.52	199.92	118.79	22.62	22.62	19.77	66.40	1.61
5	12.35	-380.14	132.16	22.62	22.62	144.42	36.17	3.01
Verific	he taglio							
N°	<u>ne tagiio</u> X	V	τ_{c}		A _{sw}			
1	1.25	245.38	0.275		0.00			
2	3.94	120.50	0.135		0.00			
3	6.80	-12.69	-0.014		0.00			
4	9.52	-139.17	-0.156		0.00			
5	12.35	-270.77	-0.303		0.00			
Verific	a sezioni piedr	itto sinistro [Combina	zione n° 21 - SLE (Fre	equente)]				
_								
Base s		B = 100 cm						
AITEZZ	a sezione	H = 110.00 cm						
<u>Verific</u>	he presso-fles:	sione						
N°	Х	M	N	Afi	A_{fs}	σ_{fs}	σfi	σ_{c}
1	0.60	-656.42	461.53	15.71	22.62	206.23	68.49	5.48
2	4.53	-104.96	353.46	15.71	22.62	3.06	11.50	0.82
3	8.46	-239.26	245.38	15.71	22.62	61.39	25.62	2.00

Collegamento viario compreso tra lo Svincolo della S.S. 514 di "Chiaromonte" con la S.S. 115 e lo

Svincolo della "Ragusana"

PROGETTO ESECUTIVO

Direzione Progettazione e Realizzazione Lavori

RELAZIONE DI CALCOLO SOTTOVIA AL KM 3+248 - SEC. 90

N° 1	X 0.60	V 269.27	τ _c 0.302		A _{sw} 0.00			
2	4.53	32.21	0.036		0.00			
3	8.46	-79.71	-0.089		0.00			
/erifica	sezioni piedi	ritto destro [Combinaz	ione n° 21 - SLE (Freg	uente)]				
Base se Altezza	zione sezione	B = 100 cm H = 110.00 cm						
	ne presso-fles							
N° 1	X 0.60	M -559.52	N 486.92	A _{fi} 15.71	A _{fs} 22.62	σ _{fs} 158.80	σ _{fi} 59.28	თ 4.68
2	4.53	-70.71	378.84	15.71	22.62	0.61	9.28	0.65
3	8.46	-380.14	270.77	15.71	22.62	118.79	39.70	3.18
Verifich	ne taglio							
N°	X	V	τ_{c}		A_{sw}			
1	0.60	-264.67	-0.297		0.00			
2	4.53	-1.43	-0.002		0.00			
3	8.46	132.16	0.148		0.00			
Verifica	sezioni fond	azione [Combinazione	n° 22 - SLE (Frequent	:e)]				
Base se		B = 100 cm						
	sezione	H = 120.00 cm						
Verifich N°	ne presso-fles X	<u>sione</u> M	N	A_{fi}	A_{fs}	σ_{fs}	σ _{fi}	σ _c
1	0.00	0.00	-0.33	22.62	22.62	0.14	0.01	0.00
2	3.37	-197.15	240.63	22.62	22.62	36.05	17.91	1.36
3	6.80	-572.82	240.63	22.62	22.62	186.51	48.83	3.97
4	10.23	-197.15	240.63	22.62	22.62	36.05	17.91	1.36
5	13.60	0.00	-0.33	22.62	22.62	0.14	0.01	0.00
	ne taglio	.,						
N° 1	0.00	V 6.81	τ _c -0.011		A _{sw} 0.00			
2	3.37	-228.18	-0.233		0.00			
3	6.80	4.38	0.004		0.00			
4	10.23	239.42	0.245		0.00			
5	13.60	-6.81	0.011		0.00			
· · · · · · · · · · · · · · · · · · ·			22. (15./5					
Base se		erso [Combinazione n°	22 - SEE (Frequente))					
	sezione	H = 110.00 cm						
<u>Verifich</u> N°	<u>ne presso-fles</u> X		N	Δ.	Δ.	-	a .	-
N 1	1.25	M -454.82	N 145.94	A _{fi} 22.62	A _{fs} 22.62	σ _{fs} 175.19	σ _{fi} 43.05	თ _ა 3.60
2	3.94	70.60	145.94	22.62	22.62	7.31	7.46	0.54
3	6.80	261.34	145.94	22.62	22.62	25.72	88.59	2.10
4	9.52	89.33	145.94	22.62	22.62	9.33	14.11	0.70
5	12.35	-454.82	145.94	22.62	22.62	175.19	43.05	3.60
Verifich	ne taglio							
N°	X	V	τ _c		Asw			
1	1.25	258.07	0.289		0.00			
2 3	3.94 6.80	133.19 0.00	0.149 0.000		0.00 0.00			
3 4	6.80 9.52	-126.48	-0.142		0.00			
5	12.35	-258.08	-0.289		0.00			

MANDATARIA:

N° 1

B = 100 cm

H = 110.00 cm

M -519.97

-102.26

-454.82

Base sezione

Altezza sezione Verifiche presso-flessione

X 0.60

4.53

8.46

N 474.23

366.15

258.07

A_{fi} 15.71

15.71

15.71

A_{fs} 22.62 22.62

σ_{fs} 143.71

2.32 154.43

σ_{fi} 55.27

11.36

46.71

σ_c 4.35

0.80

Realizzazione Lavori

Collegamento viario compreso tra lo Svincolo della S.S. 514 di "Chiaromonte" con la S.S. 115 e lo

Svincolo della "Ragusana"

PROGETTO ESECUTIVO

RELAZIONE DI CALCOLO SOTTOVIA AL KM 3+248 - SEC. 90

Verific N° 1 2	h <u>e taglio</u> X 0.60 4.53 8.46	V 240.96 -11.89 -144.59	τ _c 0.270 -0.013 -0.162		A _{sw} 0.00 0.00 0.00			
<u>Verifica</u>	a sezioni piedri	itto destro [Combinazi	one n° 22 - SLE (Fred	uente)]				
Base se Altezza	ezione a sezione	B = 100 cm H = 110.00 cm						
Verific	he presso-fless	sione_						
N° 1	X	M 510.07	N 474.23	A _{fi} 15.71	A _{fs}	σ _{fs}	σ _{fi}	σ _c
2	0.60 4.53	-519.97 -102.26	366.15	15.71	22.62 22.62	143.71 2.32	55.27 11.36	4.35 0.80
3	8.46	-454.82	258.07	15.71	22.62	154.43	46.71	3.78
<u>Verificl</u> N°	he taglio X	V	τ.		۸			
1	0.60	-240.96	τ _c -0.270		A _{sw} 0.00			
2	4.53	11.89	0.013		0.00			
3	8.46	144.59	0.162		0.00			
Verifica	a sezioni fonda	zione [Combinazione	n° 23 - SLE (Frequen	te)]				
								
Base se Altezza	ezione a sezione	B = 100 cm H = 120.00 cm						
Verific	he presso-fless	ione						
N°	Х	M	N	A_{fi}	A_{fs}	σ_{fs}	σ_{fi}	σ_{c}
1	0.00	0.00	-0.35	22.62	22.62	0.16	0.00	0.00
2	3.37	-101.48	256.45	22.62	22.62	4.68	8.96	0.64
3	6.80	-503.61	256.45	22.62	22.62	155.32	43.52	3.50
4 5	10.23 13.60	-101.48 0.00	256.45 -0.35	22.62 22.62	22.62 22.62	4.68 0.16	8.96 0.00	0.64 0.00
Verific	he taglio							
N°	Х	V	$ au_c$		Asw			
1 2	0.00 3.37	6.35 -241.46	-0.011 -0.247		0.00 0.00			
3	6.80	4.63	0.005		0.00			
4	10.23	252.84	0.259		0.00			
5	13.60	-6.35	0.011		0.00			
Verifica	a sezioni travei	rso [Combinazione n°]	23 - SLE (Frequente)	l				
Base se Altezza	ezione a sezione	B = 100 cm H = 110.00 cm						
	he presso-fless							
N°	X 1 25	M 227.06	N 93.29	A _{fi}	A _{fs}	σ _{fs} 133.18	σ _{fi}	σ _c
1 2	1.25 3.94	-337.96 187.45	93.29 93.29	22.62 22.62	22.62 22.62	133.18	31.72 65.73	2.66 1.50
3	6.80	378.20	93.29	22.62	22.62	35.28	151.25	2.97
4	9.52	206.19	93.29	22.62	22.62	19.97	74.10	1.64
5	12.35	-337.96	93.29	22.62	22.62	133.18	31.72	2.66
	he taglio	.,	_		Δ			
N° 1	X 1.25	V 258.08	τ _c 0.289		A _{sw} 0.00			
2	3.94	133.19	0.149		0.00			
3	6.80	0.00	0.000		0.00			
4	9.52	-126.48	-0.142		0.00			
5	12.35	-258.07	-0.289		0.00			
Verifica	a sezioni piedri	itto sinistro [Combinaz	zione n° 23 - SLE (Fre	quente)]				
Base se Altezza	ezione a sezione	B = 100 cm H = 110.00 cm						
.,								
	he presso-fless		NI.	۸	۸.	~ .		-
<u>Verificl</u> N° 1	he presso-fless X 0.60	<u>sione</u> M -649.74	N 474.23	A _{fi} 15.71	A _{fs} 22.62	σ _{fs} 200.93	σ _{fi} 67.98	σ _c 5.43

MANDATARIA:

Collegamento viario compreso tra lo Svincolo della S.S. 514 di "Chiaromonte" con la S.S. 115 e lo

Svincolo della "Ragusana" **PROGETTO ESECUTIVO**

Direzione Progettazione e Realizzazione Lavori

RELAZIONE DI CALCOLO SOTTOVIA AL KM 3+248 - SEC. 90

2	4.53 8.46	-150.29 -337.96	366.15 258.08	15.71 15.71	22.62 22.62	11.55 102.42	16.06 35.48	1.16 2.82
3	8.40	-337.30	236.06	15.71	22.02	102.42	33.40	2.02
	ne taglio							
N°	X	V	τ _c		A _{sw}			
1	0.60	256.80	0.288		0.00			
2	4.53	18.63	0.021		0.00			
3	8.46	-93.29	-0.105		0.00			
Verifica	a sezioni piedi	ritto destro [Combina	izione n° 23 - SLE (Freg	uente)]				
Base se		B = 100 cm H = 110.00 cm						
	ne presso-fles							
N°	Х	M	N	A_{fi}	A_{fs}	σ_{fs}	σ_{fi}	σ_{c}
1	0.60	-649.74	474.23	15.71	22.62	200.93	67.98	5.43
2	4.53	-150.29	366.15	15.71	22.62	11.55	16.06	1.16
3	8.46	-337.96	258.08	15.71	22.62	102.42	35.48	2.82
Verifich	ne taglio							
N°	X	V	τ_{c}		A_{sw}			
1	0.60	-256.80	-0.288		0.00			
2	4.53	-18.63	-0.021		0.00			
3	8.46	93.29	0.105		0.00			
Verific:	sezioni fond	azione [Combinazion	e n° 24 - SLF (Rara)ì					
Base se		B = 100 cm	en 24 - SEE (Nara))					
	sezione	H = 120.00 cm						
	ne presso-fles	sione						
N°	Х	M	N	A_{fi}	A_{fs}	σ_{fs}	σ_{fi}	σ_{c}
1	0.00	0.00	-12.43	22.62	22.62	2.88	2.61	0.00
2	3.37	-34.40	330.80	22.62	22.62	2.19	5.64	0.39
3	6.80	-547.52	330.80	22.62	22.62	158.99	47.91	3.82
4 5	10.23 13.60	-157.93 0.00	330.80 11.53	22.62 22.62	22.62 22.62	11.93 0.13	14.01 0.14	1.01 0.01
	15.00	0.00	11.55	22.02	22.02	0.13	0.11	5.01
Verifich	ne taglio							
N°	X	V	τ_c		A_{sw}			
1	0.00	6.30	-0.014		0.00			
2	3.37	-285.35	-0.292		0.00			
3	6.80	-14.57	-0.015		0.00			
4	10.23	268.80	0.275		0.00			
5	13.60	-7.35	0.011		0.00			
Verifica	a sezioni trave	erso [Combinazione n	° 24 - SLE (Rara)]					
Base se Altezza	ezione sezione	B = 100 cm H = 110.00 cm						
<u>Verifich</u> N°	ne presso-fles		N	٨٠	Δ.	<i>-</i>	-	-
N 1	X 1.25	M -319.48	N 126.08	A _{fi} 22.62	A _{fs} 22.62	σ _{fs} 118.42	σ _{fi} 30.65	σ _c 2.54
2	3.94	254.53	138.77	22.62	22.62	25.00	86.92	2.04
3	6.80	425.58	152.31	22.62	22.62	40.56	160.82	3.38
4	9.52	166.51	165.16	22.62	22.62	17.12	43.18	1.34
5	12.35	-538.90	178.53	22.62	22.62	206.47	51.11	4.27
Verifich	ne taglio							
N°	Х	V	τ_{c}		A_{sw}			
1	1.25	288.26	0.323		0.00			
2	3.94	139.20	0.156		0.00			
3	6.80	-19.77	-0.022		0.00			
4	9.52	-170.73	-0.191		0.00			
5	12.35	-327.79	-0.367		0.00			

Verifica sezioni piedritto sinistro [Combinazione n° 24 - SLE (Rara)]

B = 100 cm H = 110.00 cm Base sezione Altezza sezione

Verifiche presso-flessione

Collegamento viario compreso tra lo Svincolo della S.S. 514 di "Chiaromonte" con la S.S. 115 e lo

Svincolo della "Ragusana" **PROGETTO ESECUTIVO**

Direzione Progettazione e Realizzazione Lavori

RELAZIONE DI CALCOLO SOTTOVIA AL KM 3+248 - SEC. 90

N°	X	M	N	Afi	Afs	σ_{fs}	σ_{fi}	σ_c
1	0.60	-845.05	504.41	15.71	22.62	282.24	87.11	7.04
2	4.53	-121.17	396.33	15.71	22.62	3.94	13.21	0.94
3	8.46	-319.48	288.26	15.71	22.62	88.85	33.93	2.67
Verifich	ne taglio							
N°	Х	V	τ_{c}		A_{sw}			
1	0.60	343.23	0.385		0.00			
2	4.53	46.00	0.052		0.00			
3	8.46	-126.08	-0.141		0.00			
3	8.40	-120.00	-0.141		0.00			
Verifica	a sezioni piedr	itto destro [Combinaz	ione n° 24 - SLE (Rara)]				
				_				
Base se	ezione	B = 100 cm						
Altezza	sezione	H = 110.00 cm						
Verifich	ne presso-fles	sione_						
N°	X	M	N	A_{fi}	A_{fs}	σ_{fs}	σ_{fi}	σ_{c}
1	0.60	-648.56	543.94	15.71	22.62	187.74	68.54	5.42
2	4.53	-82.37	435.87	15.71	22.62	0.65	10.74	0.75
3	8.46	-538.90	327.79	15.71	22.62	178.83	55.63	4.49
-								
<u>Ve</u> rifich	ne taglio							
N°	X	V	τ_{c}		A_{sw}			
1	0.60	-319.27	-0.358		0.00			
2	4.53	13.88	0.016		0.00			
3	8.46	178.53	0.200		0.00			
Verifica	sezioni fonda	azione [Combinazione	n° 25 - SLF (Rara)]					
* 0111100	J SCEIGIII TOTICI	acrone recombinations	TO DEC (Mara)					
Base se	ezione	B = 100 cm						
	sezione	H = 120.00 cm						
Verifich	ne presso-fles	sione						
N°	Х	M	N	A_{fi}	A_{fs}	σ_{fs}	σ_{fi}	σ_{c}
1	0.00	0.00	-8.81	22.62	22.62	2.06	1.84	0.00
2	3.37	-77.81	303.39	22.62	22.62	0.43	7.54	0.53
3	6.80	-589.76	303.39	22.62	22.62	181.30	51.00	4.10
4	10.23	-173.13	303.39	22.62	22.62	18.99	15.55	1.14
5	13.60	0.00	7.98	22.62	22.62	0.09	0.10	0.01
3	13.00	0.00	7.50	22.02	22.02	0.05	0.10	0.01
Verifich	ne taglio							
N°	X	V	τ_c		Asw			
1	0.00	7.11	-0.014		0.00			
2	3.37	-294.70	-0.301		0.00			
3	6.80	-7.84	-0.008		0.00			
4	10.23	276.39	0.283		0.00			
5	13.60	-7.27	0.011		0.00			
Vorifi -	cozioni tro	rca [Cambinanians = 0	2E CIE/Dava\1					
verifica	sezioni trave	rso [Combinazione n°	23 - SEE (Rara))					
Base se	zione	B = 100 cm						
	sezione	H = 110.00 cm						
AILE22d	SCLIUITE	11 - 110.00 (111						
Verifich	ne presso-fles	sione						
N°	X	M	N	Afi	Afs	60	Gr.	c
						σ _{fs}	σ _{fi}	σ _c
1	1.25	-335.82	102.44	22.62	22.62	130.41	31.69	2.65
2	3.94	292.36	115.13	22.62	22.62	28.04	108.42	2.32
3	6.80	454.85	128.66	22.62	22.62	42.74	178.63	3.59
4	9.52	187.67	141.51	22.62	22.62	18.91	56.71	1.51
5	12.35	-526.18	154.88	22.62	22.62	205.44	49.56	4.15
Verifiel	ne taglio							
		V	_		Λ.			
N°	1 2F	V 242.11	τ _c		A _{sw}			
1	1.25	343.11	0.384		0.00			
2	3.94	136.22	0.153		0.00			
3	6.80	-22.75	-0.025		0.00			
4	9.52	-173.71	-0.195		0.00			
5	12.35	-330.78	-0.371		0.00			

Verifica sezioni piedritto sinistro [Combinazione n° 25 - SLE (Rara)]

Base sezione B = 100 cm Altezza sezione H = 110.00 cm

Collegamento viario compreso tra lo Svincolo della S.S. 514 di "Chiaromonte" con la S.S. 115 e lo

Svincolo della "Ragusana" PROGETTO ESECUTIVO

Direzione Progettazione e Realizzazione Lavori

RELAZIONE DI CALCOLO SOTTOVIA AL KM 3+248 - SEC. 90

Verific	he presso-fles	sione						
N°	Х	M	N	A_{fi}	A_fs	σ_{fs}	σ_{fi}	σ_{c}
1	0.60	-832.36	559.26	15.71	22.62	266.32	86.56	6.95
2	4.53	-176.71	451.18	15.71	22.62	12.09	18.87	1.36
3	8.46	-335.82	343.11	15.71	22.62	86.39	35.94	2.80
Verific	he taglio							
N°	X	V	τ_{c}		A_{sw}			
1	0.60	312.20	0.350		0.00			
2	4.53	42.31	0.047		0.00			
3	8.46	-102.44	-0.115		0.00			
Verifica	a sezioni piedi	ritto destro [Combinaz	ione n° 25 - SLE (Rara	<u>a)]</u>				
Base se	ezione a sezione	B = 100 cm H = 110.00 cm						
	he presso-fles							
N°	Х	M	N	Afi	Afs	σ_{fs}	$\sigma_{\rm fi}$	σ_c
1	0.60	-648.48	546.93	15.71	22.62	187.16	68.56	5.42
2	4.53	-133.18	438.85	15.71	22.62	4.21	14.53	1.03
3	8.46	-526.18	330.78	15.71	22.62	172.60	54.45	4.39
	he taglio							
N°	X	V 205.41	τ _c		A _{sw}			
1 2	0.60	-295.41	-0.331		0.00			
3	4.53 8.46	14.57 154.88	0.016 0.174		0.00 0.00			
	0.10	15 1100	0.17		0.00			
Verifica	a sezioni fond	azione [Combinazione	n° 26 - SLE (Rara)]					
Base se		B = 100 cm						
Altezza	sezione	H = 120.00 cm						
Verific	he presso-fles	sione						
N°	Х	M	N	A_{fi}	A_{fs}	σ_{fs}	σ_{fi}	σ_{c}
1	0.00	0.00	-4.03	22.62	22.62	0.96	0.82	0.00
2	3.37	-107.09	272.09	22.62	22.62	4.86	9.46	0.67
3	6.80	-624.51	272.09	22.62	22.62	201.45	53.37	4.33
4 5	10.23 13.60	-200.64 0.00	272.09 3.29	22.62 22.62	22.62 22.62	32.52 0.03	18.22 0.04	1.37 0.00
3	13.00	0.00	3.23	22.02	22.02	0.03	0.04	0.00
	he taglio							
N°	Χ	V	τ _c		A _{sw}			
1 2	0.00	6.98	-0.011 -0.300		0.00			
3	3.37 6.80	-293.59 -10.34	-0.300 -0.011		0.00 0.00			
4	10.23	287.31	0.294		0.00			
5	13.60	-7.97	0.010		0.00			
Verifica	a sezioni trave	erso [Combinazione n°	26 - SLE (Rara)]					
Base se Altezza	ezione a sezione	B = 100 cm H = 110.00 cm						
Verific	he presso-fles	sione						
N°	X	M	N	Afi	A_{fs}	σ_{fs}	$\sigma_{\rm fi}$	σ_{c}
1	1.25	-427.24	103.03	22.62	22.62	171.33	39.81	3.36
2	3.94	314.95	115.72	22.62	22.62	30.07	118.42	2.50
3	6.80	603.17	129.26	22.62	22.62	55.89	245.13	4.73
4 5	9.52 12.35	261.97 -593.58	142.11 155.48	22.62 22.62	22.62 22.62	25.72 235.58	89.60 55.55	2.10 4.67
Verific	he taglio							
N°	X	V	τ_{c}		A _{sw}			
1	1.25	350.87	0.393		0.00			
2	3.94	201.82	0.226		0.00			
3	6.80	-14.99	-0.017		0.00			
			0.351		0.00			
4	9.52	-223.78	-0.251		0.00			
4 5	9.52 12.35	-223.78 -380.85	-0.427		0.00			

Verifica sezioni piedritto sinistro [Combinazione n° 26 - SLE (Rara)]

Collegamento viario compreso tra lo Svincolo della S.S. 514 di "Chiaromonte" con la S.S. 115 e lo

Svincolo della "Ragusana" PROGETTO ESECUTIVO

Direzione Progettazione e Realizzazione Lavori

RELAZIONE DI CALCOLO SOTTOVIA AL KM 3+248 - SEC. 90

Base se Altezza	zione sezione	B = 100 cm H = 110.00 cm						
	ne presso-fles							
N° 1	X 0.60	M -779.66	N 567.02	A _{fi} 15.71	A _{fs} 22.62	σ _{fs} 241.48	σ _{fi} 81.56	σ _c 6.51
2	4.53	-230.93	458.95	15.71	22.62	27.35	24.86	1.83
3	8.46	-427.24	350.87	15.71	22.62	125.01	45.09	3.57
	ne taglio	.,						
N° 1	X 0.60	V 276.12	τ _c 0.309		A _{sw} 0.00			
2	4.53	23.98	0.027		0.00			
3	8.46	-103.03	-0.115		0.00			
Verifica	sezioni piedr	ritto destro [Combinaz	ione n° 26 - SLE (Rar	<u>a)]</u>				
Base se	zione	B = 100 cm						
	sezione	H = 110.00 cm						
	ne presso-fles	sione						
N°	Х	M	N	Afi	Afs	σ_{fs}	σ_{fi}	σ_{c}
1	0.60	-652.27	597.00	15.71	22.62	179.90	69.34	5.45
2	4.53	-195.99	488.92	15.71	22.62	14.22	20.93	1.51
3	8.46	-593.58	380.85	15.71	22.62	193.27	61.52	4.95
Verifich	ne taglio							
N°	X	V	τ_{c}		A_{sw}			
1	0.60	-268.81	-0.301		0.00			
2	4.53	19.35	0.022		0.00			
3	8.46	155.48	0.174		0.00			
Verifica	sezioni fond:	azione [Combinazione	n° 27 - SLF (Rara)]					
<u>**C1111CC</u>	- SCEIGIII TOTICI	azione jeomomazione	n z/ szz (nara/)					
Base se	zione	B = 100 cm						
Altezza	sezione	H = 120.00 cm						
	ne presso-fles							
N°	Х	М	N	A _{fi}	A_{fs}	σ_{fs}	$\sigma_{\rm fi}$	σ_{c}
1	0.00	0.00	-11.51	22.62	22.62	2.68	2.41	0.00
2	3.37	-21.87	320.22	22.62	22.62	2.69	4.89	0.33
3	6.80	-533.13	320.22	22.62	22.62	155.17	46.63	3.72
4	10.23	-163.69	320.22	22.62	22.62	14.42	14.59	1.06
5	13.60	0.00	10.64	22.62	22.62	0.12	0.13	0.01
Verifich	ne taglio							
N°	X	V	τ_{c}		A_{sw}			
1	0.00	6.03	-0.014		0.00			
2	3.37	-280.14	-0.287		0.00			
3	6.80	-17.93	-0.018		0.00			
4	10.23	260.57	0.267		0.00			
5	13.60	-7.34	0.011		0.00			
Verifica	sezioni trave	erso [Combinazione n°	27 - SLE (Rara)]					
Da		D = 100						
Base se	sezione sezione	B = 100 cm H = 110.00 cm						
Aitezza	sezione	n = 110.00 cm						
Verifich	ne presso-fles	sione						
N°	Х	M	N	Afi	A_fs	σ_{fs}	$\sigma_{\rm fi}$	σ_{c}
1	1.25	-282.56	107.50	22.62	22.62	105.52	27.04	2.24
2	3.94	257.41	124.42	22.62	22.62	25.05	90.97	2.06
3	6.80	410.03	142.47	22.62	22.62	39.01	155.79	3.25
4	9.52	150.55	159.60	22.62	22.62	15.54	37.26	1.21
5	12.35	-537.61	177.43	22.62	22.62	206.11	50.98	4.26
v. ·c ·								
	ne taglio	**						
N°	X 1.25	V 272 F6	τ _c		A _{sw}			
1	1.25 3.94	272.56	0.305		0.00			
2		129.55	0.145		0.00			
					0.00			
3	6.80	-22.98	-0.026		0.00			
3 4 5					0.00 0.00 0.00			

Collegamento viario compreso tra lo Svincolo della S.S. 514 di "Chiaromonte" con la S.S. 115 e lo

Svincolo della "Ragusana" PROGETTO ESECUTIVO

Direzione Progettazione e Realizzazione Lavori

Base sezione Altezza sezione

RELAZIONE DI CALCOLO SOTTOVIA AL KM 3+248 - SEC. 90

Verifica sezioni piedritto sinistro	[Combinazione n° 27 - SLE (Rara)]

B = 100 cm

H = 110.00 cm

N° M A_{fi} 15.71 A_{fs} 22.62 σ_{fs} 281.13 σ_{fi} 86.04 σ_c 6.96 0.60 -835.94 488.71 1 -127.71 380.63 15.71 22.62 5.66 13.74 0.98 4.53 3 8.46 -282.56 272.56 15.71 22.62 75.48 30.14 2.36

 $\begin{tabular}{c|cccc} $Verifiche \ \ $taglio$ & V & τ_c & A_{6w} \\ \hline 1 & 0.60 & 331.73 & 0.372 & 0.00 \\ 2 & 4.53 & 49.54 & 0.056 & 0.00 \\ 3 & 8.46 & -107.50 & -0.120 & 0.00 \\ \hline \end{tabular}$

Verifica sezioni piedritto destro [Combinazione n° 27 - SLE (Rara)]

Base sezione B = 100 cmAltezza sezione H = 110.00 cm

Verifiche presso-flessione N° X Ν M σ_{fi} σ 5.20 0.72 0.60 -621.93 534.67 15.71 22.62 177.68 65.84 -78.36 426.59 15.71 22.62 0.77 10.38 4.53 3 318.52 180.00 8.46 -537.61 15.71 22.62 55.39 4.48

Verifica sezioni fondazione [Combinazione n° 28 - SLE (Rara)]

Base sezione B = 100 cmAltezza sezione H = 120.00 cm

Verifiche presso-flessione N° Х Μ Ν σfi 0.00 0.00 -0.70 22.62 22.62 0.20 0.11 0.00 1 3.37 -240.32 241.03 22.62 22.62 52.54 21.71 1.67 3 6.80 -679.22 241.03 22.62 22.62 229.80 57.25 4.69 10.23 -275.98 241.03 22.62 22.62 66.55 24.76 1.93 5 13.60 0.00 0.04 22.62 22.62 0.03 0.01 0.00

Verifiche taglio N° X 0.00 0.00 7.55 -0.011 3.37 -260.32 -0.266 0.00 -0.001 10.23 266.06 0.272 0.00 0.00 -7.98 0.010 13.60

Verifica sezioni traverso [Combinazione n° 28 - SLE (Rara)]

Base sezione B = 100 cmAltezza sezione H = 110.00 cm

Verifiche presso-flessione N° 1.25 -591.92 167.92 22.62 22.62 232.36 55.63 4.67 2 3.94 105.96 180.61 22.62 22.62 22.62 11.06 15.73 0.83 22.62 37.17 194.15 132.43 3.04 3 6.80 380.35 9.52 91.46 207.00 22.62 22.62 9.44 0.69 5 12.35 -675.82 220.37 22.62 22.62 259.62 64.04 5.35

Verifiche taglio N° A_{sw} 0.00 0.00 0.371 1 1.25 331.36 3.94 0.211 188.34 6.80 -0.008 0.00 -195.77 4 9.52 -0.219 0.00 -346.47 -0.388 0.00 12.35

Realizzazione Lavori

Collegamento viario compreso tra lo Svincolo della S.S. 514 di "Chiaromonte" con la S.S. 115 e lo

Svincolo della "Ragusana" PROGETTO ESECUTIVO

RELAZIONE DI CALCOLO SOTTOVIA AL KM 3+248 - SEC. 90

 $\begin{array}{ll} \text{Base sezione} & \quad \text{B = 100 cm} \\ \text{Altezza sezione} & \quad \text{H = 110.00 cm} \end{array}$

Verifiche presso-flessione

Μ Ν A_{fi} 15.71 A_{fs} 22.62 σ_{fs} 149.78 0.60 -563.34 547.51 60.12 4.71 1 -166.37 439.43 15.71 22.62 10.42 17.77 1.28 4.53 3 8.46 -591.92 331.36 15.71 22.62 201.84 60.73 4.92

Verifiche taglio N°

Verifica sezioni piedritto destro [Combinazione n° 28 - SLE (Rara)]

Base sezione B = 100 cm Altezza sezione H = 110.00 cm

Altezza sezione H = 110.00 cm

Verifiche presso-flessie N° Ν M 0.60 -517.00 562.62 15.71 22.62 127.13 4.31 55.53 4 53 -141 06 454 55 15.71 22 62 4 83 15 33 1 09 3 8.46 -675.82 346.47 15.71 22.62 236.50 68.90 5.61

Verifiche taglio N°

Verifica sezioni fondazione [Combinazione n° 29 - SLE (Rara)]

Base sezione B = 100 cm Altezza sezione H = 120.00 cm

Verifiche presso-flessione

Ν° X 0.00 A_{fi} 22.62 A_{fs} 22.62 σ_{fs} 1.25 σ_c 0.00 0.00 -5.28 1.08 3.37 -74.33 272.96 22.62 22.62 0.71 7.04 0.49 3 6.80 -583 98 272 96 22.62 22 62 184 80 50 15 4.06 272.96 22.62 10.23 -178.73 22.62 24.64 1.20 16.18 13.60 0.00 4.54 22.62 22.62 0.05 0.06 0.00

Verifiche taglio N°

-0.012 0.00 3.37 6.80 2 -286.28 -0.293 0.00 -0.012 0.00 -12.15 3 10.23 277.06 0.283 0.00 5 13.60 -7.67 0.010 0.00

Verifica sezioni traverso [Combinazione n° 29 - SLE (Rara)]

Base sezione B = 100 cm Altezza sezione H = 110.00 cm

Altezza sezione H = 110.00 ci

Verifiche presso-flessione N° X

Х Μ Ν A_{fi} 22.62 σ_{fs} 157.27 σ_{fi} 36.47 σ_c 3.08 1.25 -391.64 93.37 22.62 1 3.94 284.07 106.06 22.62 22.62 27.15 106.48 2.26 3 6.80 534.83 119.60 22.62 22.62 22.62 49.66 216.35 4.20 9.52 22.62 22.10 1.79 5 12.35 -567.15 145.82 22.62 22.62 225.64 53.02 4.46

Verifiche taglio

N° Х 1.25 323.10 0.362 0.00 3.94 180.09 0.202 0.00 -15.81 -0.018 0.00 6.80 9.52 -204.03 -0.229 0.00

Collegamento viario compreso tra lo Svincolo della S.S. 514 di "Chiaromonte" con la S.S. 115 e lo Svincolo della "Ragusana"

PROGETTO ESECUTIVO

Direzione Progettazione e Realizzazione Lavori

RELAZIONE DI CALCOLO SOTTOVIA AL KM 3+248 - SEC. 90

12.35 -354.73 -0.397 0.00

Verifica sezioni piedritto sinistro [Combinazione n° 29 - SLE (Rara)]

Base sezione Altezza sezione B = 100 cm H = 110.00 cm

Verifiche presso-flessione

N° Μ 0.60 -790.35 15.71 15.71 539.25 22.62 251.36 82.29 6.60 -225.89 4.53 431.18 22.62 28.76 24.36 1.80 114.33

Verifiche taglio N° 1 A_{sw} 0.00 Х $\begin{matrix} \tau_c \\ 0.312 \end{matrix}$ 0.60 278.24 2 4.53 29.87 0.033 0.00 8.46 -93.37 -0.105 0.00

Verifica sezioni piedritto destro [Combinazione n° 29 - SLE (Rara)]

Base sezione B = 100 cm Altezza sezione H = 110.00 cm

Verifiche presso-flessione σ_{fs} 182.27 N° M Ν 0.60 -647.09 570.88 15.71 22.62 68.63 5.41 1 4.53 8.46 -195.57 -567.15 462.80 354.73 15.71 15.71 22.62 22.62 1.52 4.73 2 16.11 20.91 186.38 58.67

Verifiche taglio N° A_{sw} 0.00 0.00 τ_c -0.301 1 0.60 -268.43 4.53 20.58 0.023 8.46 145.82 0.163

Collegamento viario compreso tra lo Svincolo della S.S. 514 di "Chiaromonte" con la S.S. 115 e lo Svincolo della "Ragusana"

PROGETTO ESECUTIVO

RELAZIONE DI CALCOLO SOTTOVIA AL KM 3+248 - SEC. 90

Verifiche fessurazione

Simbologia adottata ed unità di misura N° Indice sezione

Ascissa/Ordinata sezione, espresso in m

M_p M_n Momento, espresse in kNm Momento, espresse in kNm

 w_k

Ampiezza fessure, espresse in mm Apertura limite fessure, espresse in mm Wlim

Distanza media tra le fessure, espresse in mm

Deformazione nelle fessure, espresse in [%]

Veri	fica fessurazio	ne fondazione [Co	mbinazione n° 17	' - SLE (Quasi Perma	nente)]					
N°	х	A_{fi}	A_{fs}	Мр	Mn	М	w	***		
1	0.05	22.62	22.62	446.39	-446.39	-0.18	0.00	w _{lim} 0.20	s _m 0.00	ε _{sm} 0.000000
2	3.37	22.62	22.62	446.39	-446.39	-138.52	0.00	0.20	0.00	0.000000
3	6.80	22.62	22.62	446.39	-446.39	-530.41	0.10	0.20	182.63	0.000033
4	10.23	22.62	22.62	446.39	-446.39	-138.52	0.00	0.20	0.00	0.000000
5	13.55	22.62	22.62	446.39	-446.39 -446.39	-158.52	0.00	0.20	0.00	0.000000
,	13.33	22.02	22.02	440.35	-440.33	-0.16	0.00	0.20	0.00	0.000000
Verit	fica fessurazio	ne traverso [Comb	oinazione n° 17 - S	SLE (Quasi Permaner	nte)]					
B.10	V				N 4					
N°	X	A _{fi}	A _{fs}	Mp	Mn	M	W	W _{lim}	S _m	ε _{sm}
1	1.25	22.62	22.62	377.34	-377.34	-303.98	0.00	0.20	0.00	0.000000
2	3.94 6.80	22.62 22.62	22.62 22.62	377.34 377.34	-377.34 -377.34	221.44 412.18	0.00 0.12	0.20 0.20	0.00 182.63	0.000000 0.000039
4	9.52	22.62	22.62	377.34 377.34	-377.34 -377.34	240.17	0.12	0.20	0.00	0.000039
5	12.35	22.62	22.62	377.34	-377.34	-303.98	0.00	0.20	0.00	0.000000
5	12.55	22.02	22.02	377.34	-577.54	-303.36	0.00	0.20	0.00	0.000000
<u>Verit</u>	fica fessurazio	ne piedritto sinistr	o [Combinazione	n° 17 - SLE (Quasi P	ermanente)]					
N°	Х	A_{fi}	A_{fs}	Мр	Mn	М	w	w_{lim}	s _m	ϵ_{sm}
1	0.60	15.71	22.62	369.26	-375.48	-599.50	0.15	0.20	182.63	0.000048
2	4.53	15.71	22.62	369.26	-375.48	-103.11	0.00	0.20	0.00	0.000000
3	8.46	15.71	22.62	369.26	-375.48	-303.98	0.00	0.20	0.00	0.000000
Varit	fica fessurazion	ne njedritto destro	o (Combinazione	n° 17 - SLE (Quasi Pe	urmanenta)]					
N°	X	A _{fi}	Afs	Mp	Mn	M	W	Wlim	S _m	E _{sm}
1	0.60	15.71	22.62	369.26	-375.48	-599.50	0.15	0.20	182.63	0.000048
2	4.53 8.46	15.71 15.71	22.62 22.62	369.26 369.26	-375.48 -375.48	-103.11 -303.98	0.00 0.00	0.20 0.20	0.00 0.00	0.000000
3	6.40	13.71	22.02	305.20	-373.46	-303.56	0.00	0.20	0.00	0.000000
Verif	fica fessurazio	ne fondazione [Co	mbinazione n° 18	3 - SLE (Frequente)]						
N°	Х	A_{fi}	A_{fs}	Мр	Mn	М	w	W _{lim}	S _m	$\epsilon_{\sf sm}$
1	0.05	22.62	22.62	446.39	-446.39	-0.25	0.00	0.30	0.00	0.000000
2	3.37	22.62	22.62	446.39	-446.39	-131.17	0.00	0.30	0.00	0.000000
3	6.80	22.62	22.62	446.39	-446.39	-568.87	0.12	0.30	182.63	0.000038
4	10.23	22.62	22.62	446.39	-446.39	-153.19	0.00	0.30	0.00	0.000000
5	13.55	22.62	22.62	446.39	-446.39	-0.17	0.00	0.30	0.00	0.000000
<u>Verit</u>	fica fessurazio	ne traverso [Comb	oinazione n° 18 - S	SLE (Frequente)]						
B.10	.,	_								
N°	X	A _{fi}	A _{fs}	Mp	Mn	M	W	W _{lim}	S _m	ε _{sm}
1	1.25	22.62	22.62	377.34	-377.34	-346.53	0.00	0.30	0.00	0.000000
2	3.94	22.62	22.62	377.34	-377.34	245.25	0.00	0.30	0.00	0.000000
3	6.80	22.62	22.62	377.34	-377.34	453.13	0.15	0.30	182.63	0.000047
4	9.52	22.62	22.62	377.34	-377.34	246.13	0.00	0.30	0.00	0.000000
5	12.35	22.62	22.62	377.34	-377.34	-387.43	0.08	0.30	182.63	0.000025
<u>Verit</u>	fica fessurazio	ne piedritto sinistr	o [Combinazione	n° 18 - SLE (Frequer	nte)]					
N°	Х	A_{fi}	A_{fs}	Мр	Mn	М	w	W _{lim}	s _m	$\epsilon_{\sf sm}$
1	0.60	15.71	22.62	369.26	-375.48	-687.42	0.22	0.30	182.63	0.000070
2	4.53	15.71	22.62	369.26	-375.48	-85.43	0.00	0.30	0.00	0.000000
3	8.46	15.71	22.62	369.26	-375.48	-346.53	0.00	0.30	0.00	0.000000

Verifica fessurazione piedritto destro [Combinazione n° 18 - SLE (Frequente)]

Realizzazione Lavori

Collegamento viario compreso tra lo Svincolo della S.S. 514 di "Chiaromonte" con la S.S. 115 e lo Svincolo della "Ragusana"

PROGETTO ESECUTIVO

RELAZIONE DI CALCOLO SOTTOVIA AL KM 3+248 - SEC. 90

N°	Х	Afi	A_{fs}	Mp	Mn	M	w	Wlim	Sm	ϵ_{sm}
1	0.60	15.71	22.62	369.26	-375.48	-636.44	0.17	0.30	182.63	0.000054
2	4.53	15.71	22.62	369.26	-375.48	-81.38	0.00	0.30	0.00	0.000000
3	8.46	15.71	22.62	369.26	-375.48	0.00	0.00	0.30	0.00	0.000000
Varif	ina fannuunuinu	a fandasiana [Ca		CLE /Framuenta)]						
verif	ica fessurazion	e fondazione [Coi	mbinazione n° 19	- SLE (Frequente)]						
N°	Х	A_{fi}	A_fs	Мр	Mn	М	w	W/-	S _m	c
1	0.05	22.62	22.62	446.39	-446.39	-0.20	0.00	w _{lim} 0.30	0.00	ϵ_{sm} 0.000000
2	3.37	22.62	22.62	446.39	-446.39	-165.59	0.00	0.30	0.00	0.000000
3	6.80	22.62	22.62	446.39	-446.39	-600.44	0.16	0.30	182.63	0.000050
4	10.23	22.62	22.62	446.39	-446.39	-162.41	0.00	0.30	0.00	0.000000
5	13.55	22.62	22.62	446.39	-446.39	-0.18	0.00	0.30	0.00	0.000000
	15.55	22.02	22.02	110.55	. 10.55	0.10	0.00	0.50	0.00	0.00000
Verif	ica fessurazion	e traverso [Comb	inazione n° 19 - S	LE (Freguente)]						
N°	Х	A_{fi}	A_{fs}	Мр	Mn	M	w	W _{lim}	Sm	ϵ_{sm}
1	1.25	22.62	22.62	377.34	-377.34	-361.03	0.00	0.30	0.00	0.000000
2	3.94	22.62	22.62	377.34	-377.34	272.28	0.00	0.30	0.00	0.000000
3	6.80	22.62	22.62	377.34	-377.34	474.70	0.18	0.30	182.63	0.000056
4	9.52	22.62	22.62	377.34	-377.34	262.52	0.00	0.30	0.00	0.000000
5	12.35	22.62	22.62	377.34	-377.34	-376.43	0.00	0.30	0.00	0.000000
Verif	ica fessurazion	e piedritto sinistr	o [Combinazione	n° 19 - SLE (Freguer	nte)]					
N°	Х	Afi	A_{fs}	Mp	Mn	M	w	Wlim	Sm	ϵ_{sm}
1	0.60	15.71	22.62	369.26	-375.48	-675.17	0.19	0.30	182.63	0.000061
2	4.53	15.71	22.62	369.26	-375.48	-126.85	0.00	0.30	0.00	0.000000
3	8.46	15.71	22.62	369.26	-375.48	-361.03	0.00	0.30	0.00	0.000000
Vorif	ina fannuunuinuu		. [Cambinaziona	° 10 CLF /Framusan	ha\1					
verii	ica ressurazion	e piedritto destro	Compinazione i	n° 19 - SLE (Frequent	te)I					
N°	Х	A_{fi}	Λ.	Мр	Mn	М	w	***	•	
1	0.60	15.71	A _{fs} 22.62	369.26	-375.48	-639.53	0.17	w _{lim} 0.30	s _m 182.63	ϵ_{sm} 0.000055
2	4.53	15.71	22.62	369.26	-375.48	-118.36	0.00	0.30	0.00	0.000000
3	8.46	15.71	22.62	369.26	-375.48	0.00	0.00	0.30	0.00	0.000000
3	0.40	15.71	22.02	303.20	373.40	0.00	0.00	0.50	0.00	0.000000
Verif	ica fessurazion	e fondazione [Co	mbinazione n° 20	- SLE (Frequente)]						
N°	X	A_{fi}	A_{fs}	Mp	Mn	M	w	W _{lim}	s _m	ϵ_{sm}
1	0.05	22.62	22.62	446.39	-446.39	-0.13	0.00	0.30	0.00	0.000000
2	3.37	22.62	22.62	446.39	-446.39	-181.31	0.00	0.30	0.00	0.000000
3	6.80	22.62	22.62	446.39	-446.39	-623.62	0.19	0.30	182.63	0.000059
4	10.23	22.62	22.62	446.39	-446.39	-181.31	0.00	0.30	0.00	0.000000
5	13.55	22.62	22.62	446.39	-446.39	-0.13	0.00	0.30	0.00	0.000000
Verif	ica fessurazion	e traverso [Comb	inazione n° 20 - S	LE (Frequente)]						
		,								
N°	Х	A_{fi}	A_fs	Мр	Mn	М	w	W _{lim}	s _m	$\epsilon_{\sf sm}$
1	1.25	22.62	22.62	377.34	-377.34	-430.94	0.13	0.30	182.63	0.000042
2	3.94	22.62	22.62	377.34	-377.34	287.24	0.00	0.30	0.00	0.000000
3	6.80	22.62	22.62	377.34	-377.34	583.28	0.27	0.30	182.63	0.000085
4	9.52	22.62	22.62	377.34	-377.34	314.95	0.00	0.30	0.00	0.000000
5	12.35	22.62	22.62	377.34	-377.34	-430.94	0.13	0.30	182.63	0.000042
Vorif	ina fannuunuinu		a [Cambinasiana	n° 20 - SLE (Freguer	sta\1					
veril	ica iessuidzion	e pieuritto SINISTA	o (combinazione	20 - SEE (FIEGUER	ice ji					
N°	Х	Afi	Afs	Мр	Mn	М	w	Wlim	Sm	c
1	0.60	15.71	22.62	369.26	-375.48	-644.41	0.16	0.30	182.63	ε _{sm} 0.000052
2	4.53	15.71	22.62	369.26	-375.48	-157.99	0.00	0.30	0.00	0.000032
3	8.46	15.71	22.62	369.26	-375.48	-430.94	0.03	0.30	182.63	0.000010
-										
Verif	ica fessurazion	e piedritto destro	[Combinazione r	n° 20 - SLE (Frequent	te)]					
		_								
N°	Х	Afi	A _{fs}	Мр	Mn	М	w	W _{lim}	Sm	ϵ_{sm}
1		1 . 71	22.62	260.26		CAA 41	0.16	0.30		
	0.60	15.71	22.62	369.26	-375.48	-644.41			182.63	0.000052
2	4.53	15.71	22.62	369.26	-375.48	-157.99	0.00	0.30	0.00	0.000000

MANDATARIA:

Collegamento viario compreso tra lo Svincolo della S.S. 514 di "Chiaromonte" con la S.S. 115 e lo

Svincolo della "Ragusana" PROGETTO ESECUTIVO

RELAZIONE DI CALCOLO SOTTOVIA AL KM 3+248 - SEC. 90

N°	х		^	N.4	Mn	М				-
	0.05	A _{fi}	A _{fs}	Mp 446.39	-446.39	-0.22	w 0.00	w _{lim} 0.30	s _m 0.00	ε _{sm} 0.000000
	3.37	22.62 22.62	22.62 22.62	446.39	-446.39	-96.20	0.00	0.30	0.00	0.000000
	6.80	22.62	22.62	446.39	-446.39	-525.89	0.10	0.30	182.63	0.000030
	10.23	22.62	22.62	446.39	-446.39	-168.36	0.00	0.30	0.00	0.000000
	13.55	22.62	22.62	446.39	-446.39	-0.15	0.00	0.30	0.00	0.000000
eri	fica fessurazion	ne traverso [Comb	inazione n° 21 - S	ilF (Frequente)]						
l°	X	A _{fi}	Afs	Мр	Mn	М	w	Wlim	e	Esm
•	1.25	22.62	22.62	377.34	-377.34	-239.26	0.00	0.30	s _m 0.00	0.000000
	3.94	22.62	22.62	377.34	-377.34	252.06	0.00	0.30	0.00	0.000000
	6.80	22.62	22.62	377.34	-377.34	406.46	0.11	0.30	182.63	0.000036
	9.52	22.62	22.62	377.34	-377.34	199.92	0.00	0.30	0.00	0.000000
	12.35	22.62	22.62	377.34	-377.34	-380.14	0.07	0.30	182.63	0.000023
eri	fica fessurazior	ne piedritto sinistr	o [Combinazione	n° 21 - SLE (Frequen	te)]					
۰	Х	Afi	A_fs	Мр	Mn	М	w	Wlim	Sm	€ _{sm}
	0.60	15.71	22.62	369.26	-375.48	-656.42	0.21	0.30	182.63	0.000066
	4.53	15.71	22.62	369.26	-375.48	-104.96	0.00	0.30	0.00	0.000000
	8.46	15.71	22.62	369.26	-375.48	-239.26	0.00	0.30	0.00	0.000000
eri	fica fessurazior	ne piedritto destro	(Combinazione	n° 21 - SLE (Frequent	<u>e)]</u>					
•	Х	A_{fi}	A_fs	Мр	Mn	М	w	w_{lim}	S _m	ϵ_{sm}
	0.60	15.71	22.62	369.26	-375.48	-559.52 -70.71	0.11	0.30	182.63	0.000034 0.000000
	4.53 8.46	15.71 15.71	22.62 22.62	369.26 369.26	-375.48 -375.48	-70.71	0.00 0.00	0.30 0.30	0.00 182.63	0.000000
	5.40	15.71	22.02	303.20	-373.40	-300.14	0.00	0.50	182.03	0.00001
/eri	fica fessurazior	ne fondazione [Co	mbinazione n° 22	- SLE (Frequente)]						
N° L	X 0.05	A _{fi} 22.62	A _{fs} 22.62	Mp 446.39	Mn -446.39	M -0.16	w 0.00	w _{lim} 0.30	s _m 0.00	$\epsilon_{sm} \\ 0.000000$
	3.37	22.62	22.62	446.39	-446.39	-197.15	0.00	0.30	0.00	0.000000
	6.80	22.62	22.62	446.39	-446.39	-572.82	0.15	0.30	182.63	0.000048
	10.23	22.62	22.62	446.39	-446.39	-197.15	0.00	0.30	0.00	0.000000
	13.55	22.62	22.62	446.39	-446.39	-0.16	0.00	0.30	0.00	0.000000
eri	fica fessurazior	ne traverso [Comb	inazione n° 22 - S	LE (Frequente)]						
l°	х	A_{fi}	A_fs	Мр	Mn	М	w	W _{lim}	S _m	ϵ_{sm}
	1.25	22.62	22.62	377.34	-377.34	-454.82	0.14	0.30	182.63	0.000046
	3.94	22.62	22.62	377.34	-377.34	70.60	0.00	0.30	0.00	0.000000
	6.80 9.52	22.62 22.62	22.62 22.62	377.34 377.34	-377.34 -377.34	261.34 89.33	0.00 0.00	0.30 0.30	0.00 0.00	0.000000 0.000000
	12.35	22.62	22.62	377.34	-377.34	-454.82	0.14	0.30	182.63	0.000046
eri	fica fessurazior	ne piedritto sinistr	o [Combinazione	n° 22 - SLE (Frequen	te)]					
				n° 22 - SLE (Frequen		М	w	Wlim	Sm	3
	Х	A_{fi}	A_fs	Мр	Mn	M -519.97	w 0.07	W _{lim} 0.30	s _m 182.63	€sm 0.000023
۰						M -519.97 -102.26	w 0.07 0.00	W _{lim} 0.30 0.30	s _m 182.63 0.00	£ _{sm} 0.000023 0.000000
۰	X 0.60	A _{fi} 15.71	A _{fs} 22.62	Mp 369.26	Mn -375.48	-519.97	0.07	0.30	182.63	0.000023
•	X 0.60 4.53 8.46	A _{fi} 15.71 15.71 15.71	A _{fs} 22.62 22.62 22.62	Mp 369.26 369.26	Mn -375.48 -375.48 -375.48	-519.97 -102.26	0.07 0.00	0.30 0.30	182.63 0.00	0.000023 0.000000
erit	X 0.60 4.53 8.46	A _{fi} 15.71 15.71 15.71	A _{fs} 22.62 22.62 22.62	Mp 369.26 369.26 369.26	Mn -375.48 -375.48 -375.48	-519.97 -102.26	0.07 0.00	0.30 0.30	182.63 0.00	0.000023 0.000000
eri:	X 0.60 4.53 8.46 fica fessurazion	A _{fi} 15.71 15.71 15.71	A _{fs} 22.62 22.62 22.62 20.62	Mp 369.26 369.26 369.26	Mn -375.48 -375.48 -375.48	-519.97 -102.26 -454.82	0.07 0.00 0.10	0.30 0.30 0.30	182.63 0.00 182.63	0.000023 0.000000 0.000031
erit	X 0.60 4.53 8.46 fica fessurazion X 0.60 4.53	A _{fi} 15.71 15.71 15.71 15.71 ne piedritto destro A _{fi} 15.71 15.71	A ₁₅ 22.62 22.62 22.62 20.62 20.62 A ₁₅ 20.62 20.62	Mp 369.26 369.26 369.26 ** 22 - SLE (Frequent Mp 369.26 369.26	Mn -375.48 -375.48 -375.48 -375.48 -375.48 -375.48	-519.97 -102.26 -454.82 M -519.97 -102.26	0.07 0.00 0.10 w 0.07 0.00	0.30 0.30 0.30 .30 .30 0.30	182.63 0.00 182.63 S _m 182.63 0.00	0.000023 0.000000 0.000031 \$\varepsilon_{sm}\$ 0.000023 0.000000
l°	X 0.60 4.53 8.46 fica fessurazion X 0.60	A _{fi} 15.71 15.71 15.71 15.71 ne piedritto destro A _{fi} 15.71	A _{fs} 22.62 22.62 22.62 20.62	Mp 369.26 369.26 369.26 1° 22 - SLE (Frequent Mp 369.26	Mn -375.48 -375.48 -375.48 -375.48	-519.97 -102.26 -454.82 M -519.97	0.07 0.00 0.10 w 0.07	0.30 0.30 0.30 .30	182.63 0.00 182.63 S _m 182.63	$\begin{array}{c} 0.000023 \\ 0.000000 \\ 0.000031 \\ \\ \epsilon_{sm} \\ 0.000023 \end{array}$
erii	X 0.60 4.53 8.46 fica fessurazion X 0.60 4.53 8.46	A _{fi} 15.71 15.71 15.71 15.71 15.71 15.71 15.71	A _{fs} 22.62 22.62 22.62 22.62 22.62 22.62 22.62 22.62	Mp 369.26 369.26 369.26 ** 22 - SLE (Frequent Mp 369.26 369.26	Mn -375.48 -375.48 -375.48 -375.48 -375.48 -375.48	-519.97 -102.26 -454.82 M -519.97 -102.26	0.07 0.00 0.10 w 0.07 0.00	0.30 0.30 0.30 .30 .30 0.30	182.63 0.00 182.63 S _m 182.63 0.00	0.000023 0.000000 0.000031 \$\varepsilon_{sm}\$ 0.000023 0.000000
erit	X 0.60 4.53 8.46 fica fessurazion X 0.60 4.53 8.46	A _{fi} 15.71 15.71 15.71 15.71 15.71 15.71 15.71	A _{fs} 22.62 22.62 22.62 22.62 22.62 22.62 22.62 22.62	Mp 369.26 369.26 369.26 ** 22 - SLE (Frequent Mp 369.26 369.26 369.26	Mn -375.48 -375.48 -375.48 -375.48 -375.48 -375.48	-519.97 -102.26 -454.82 M -519.97 -102.26	0.07 0.00 0.10 w 0.07 0.00	0.30 0.30 0.30 .30 .30 0.30	182.63 0.00 182.63 S _m 182.63 0.00	0.000023 0.000000 0.000031 \$\varepsilon_{sm}\$ 0.000023 0.000000

MANDATARIA:

Collegamento viario compreso tra lo Svincolo della S.S. 514 di "Chiaromonte" con la S.S. 115 e lo

Svincolo della "Ragusana" PROGETTO ESECUTIVO

Direzione Progettazione e Realizzazione Lavori

RELAZIONE DI CALCOLO SOTTOVIA AL KM 3+248 - SEC. 90

zazioi	ne Lavori			TTE ETTE	DIVE DI CALCO	20 0011011	TAL KIVI S	240 320.	30	
	2.27	22.52	22.52	445.20	445.20	404.40	0.00	0.00	0.00	0.00000
2	3.37 6.80	22.62 22.62	22.62 22.62	446.39 446.39	-446.39 -446.39	-101.48 -503.61	0.00 0.08	0.30 0.30	0.00 182.63	0.000000 0.000025
4	10.23	22.62	22.62	446.39	-446.39	-101.48	0.00	0.30	0.00	0.000023
5	13.55	22.62	22.62	446.39	-446.39	-0.20	0.00	0.30	0.00	0.000000
Verif	fica fessurazio	ne traverso [Comb	inazione n° 23 - S	LE (Frequente)]						
N°	Х	Afi	A_fs	Мр	Mn	М	w	Wlim	Sm	ϵ_{sm}
1	1.25	22.62	22.62	377.34	-377.34	-337.96	0.00	0.30	0.00	0.000000
2	3.94 6.80	22.62 22.62	22.62 22.62	377.34 377.34	-377.34 -377.34	187.45 378.20	0.00 0.09	0.30 0.30	0.00 182.63	0.000000 0.000028
4	9.52	22.62	22.62	377.34	-377.34	206.19	0.00	0.30	0.00	0.000000
5	12.35	22.62	22.62	377.34	-377.34	-337.96	0.00	0.30	0.00	0.000000
Verif	fica fessurazio	ne piedritto sinistr	o [Combinazione	n° 23 - SLE (Frequen	ite)]					
N°	Х	A_{fi}	A_fs	Мр	Mn	М	w	W _{lim}	S _m	$\epsilon_{\sf sm}$
1	0.60	15.71	22.62	369.26	-375.48	-649.74	0.20	0.30	182.63	0.000063
2	4.53	15.71	22.62	369.26	-375.48	-150.29	0.00	0.30	0.00	0.000000
3	8.46	15.71	22.62	369.26	-375.48	-337.96	0.00	0.30	0.00	0.000000
<u>Verif</u>	fica fessurazio	ne piedritto destro	Combinazione i	n° 23 - SLE (Frequent	<u>:e)]</u>					
N°	Х	Afi	A_fs	Мр	Mn	М	w	Wlim	Sm	$\epsilon_{\sf sm}$
1	0.60	15.71	22.62	369.26	-375.48	-649.74	0.20	0.30	182.63	0.000063
2	4.53	15.71	22.62	369.26	-375.48	-150.29	0.00	0.30	0.00	0.000000
3	8.46	15.71	22.62	369.26	-375.48	-337.96	0.00	0.30	0.00	0.000000
<u>Verif</u>	fica fessurazio	ne fondazione [Co	mbinazione n° 24	- SLE (Rara)]						
N°	Х	A_{fi}	A_fs	Мр	Mn	М	w	W _{lim}	s _m	$\epsilon_{\sf sm}$
1	0.05	22.62	22.62	446.39	-446.39	-0.34	0.00	100.00	0.00	0.000000
2	3.37	22.62	22.62	446.39	-446.39	-34.40	0.00	100.00	0.00	0.000000
3 4	6.80 10.23	22.62 22.62	22.62 22.62	446.39 446.39	-446.39 -446.39	-547.52 -157.93	0.09 0.00	100.00 100.00	182.63 0.00	0.000027 0.000000
5	13.55	22.62	22.62	446.39	-446.39	-0.15	0.00	100.00	0.00	0.000000
<u>Verif</u>	fica fessurazio	ne traverso [Comb	inazione n° 24 - S	LE (Rara)]						
N°	V	Δ.	Δ.	N.A.	B.4 m					
1	X 1.25	A _{fi} 22.62	A _{fs} 22.62	Mp 377.34	Mn -377.34	M -319.48	0.00	W _{lim} 100.00	s _m 0.00	ε _{sm} 0.000000
2	3.94	22.62	22.62	377.34	-377.34	254.53	0.00	100.00	0.00	0.000000
3	6.80	22.62	22.62	377.34	-377.34	425.58	0.11	100.00	182.63	0.000035
4	9.52	22.62	22.62	377.34	-377.34	166.51	0.00	100.00	0.00	0.000000
5	12.35	22.62	22.62	377.34	-377.34	-538.90	0.21	100.00	182.63	0.000066
<u>Verif</u>	fica fessurazio	ne piedritto sinistr	o [Combinazione	n° 24 - SLE (Rara)]						
N°	х	A_{fi}	A_fs	Мр	Mn	М	w	W _{lim}	S _m	$\epsilon_{\sf sm}$
1	0.60	15.71	22.62	369.26	-375.48	-845.05	0.35	100.00	182.63	0.000111
2	4.53	15.71	22.62	369.26	-375.48	-121.17	0.00	100.00	0.00	0.000000
3	8.46	15.71	22.62	369.26	-375.48	-319.48	0.00	100.00	0.00	0.000000
Verif	fica fessurazio	ne piedritto destro	[Combinazione r	n° 24 - SLE (Rara)]						
N°	Х	Afi	A_fs	Мр	Mn	М	w	Wlim	Sm	€sm
1	0.60	15.71	22.62	369.26	-375.48	-648.56	0.17	100.00	182.63	0.000055
2	4.53	15.71	22.62	369.26	-375.48	-82.37	0.00	100.00	0.00	0.000000
3	8.46	15.71	22.62	369.26	-375.48	-538.90	0.15	100.00	182.63	0.000049
<u>Verif</u>	fica fessurazio	ne fondazione [Co	mbinazione n° 25	- SLE (Rara)]						
N°	Х	A _{fi}	A_fs	Мр	Mn	М	w	W _{lim}	S _m	$\epsilon_{\sf sm}$
1	0.05	22.62	22.62	446.39	-446.39	-0.27	0.00	100.00	0.00	0.000000
2	3.37	22.62	22.62	446.39	-446.39	-77.81	0.00	100.00	0.00	0.000000
3	6.80	22.62	22.62	446.39	-446.39	-589.76	0.14	100.00	182.63	0.000044
4	10.23	22.62	22.62	446.39	-446.39 -446.39	-173.13 -0.15	0.00	100.00	0.00	0.000000
5	13.55	22.62	22.62	446.39	-446.39	-0.15	0.00	100.00	0.00	0.000000

MANDATARIA:

Realizzazione Lavori

Collegamento viario compreso tra lo Svincolo della S.S. 514 di "Chiaromonte" con la S.S. 115 e lo

Svincolo della "Ragusana"

PROGETTO ESECUTIVO

RELAZIONE DI CALCOLO SOTTOVIA AL KM 3+248 - SEC. 90

Verif	ica fessurazio	ne traverso [Comb	inazione n° 25 - S	LE (Rara)]						
N° 1 2 3 4 5	X 1.25 3.94 6.80 9.52 12.35	A _{fi} 22.62 22.62 22.62 22.62 22.62	A _{fs} 22.62 22.62 22.62 22.62 22.62 22.62	Mp 377.34 377.34 377.34 377.34	Mn -377.34 -377.34 -377.34 -377.34	M -335.82 292.36 454.85 187.67 -526.18	w 0.00 0.00 0.15 0.00 0.21	W _{lim} 100.00 100.00 100.00 100.00 100.00	s _m 0.00 0.00 182.63 0.00 182.63	ε _{sm} 0.000000 0.000000 0.000048 0.000000 0.000066
Vorif	iaa faasuussia		o (Combinaziono	n° 25 - SLE (Rara)]						
N° 1 2 3	X 0.60 4.53 8.46	A _{fi} 15.71 15.71 15.71	A _{fs} 22.62 22.62 22.62	Mp 369.26 369.26 369.26	Mn -375.48 -375.48 -375.48	M -832.36 -176.71 -335.82	0.32 0.00 0.00	W _{lim} 100.00 100.00 100.00	s _m 182.63 0.00 0.00	0.000102 0.000000 0.000000
<u>Verif</u>	ica fessurazio	ne piedritto destro	Combinazione ı	<u>1° 25 - SLE (Rara)]</u>						
N° 1 2 3	X 0.60 4.53 8.46	A _{fi} 15.71 15.71 15.71	A _{fs} 22.62 22.62 22.62	Mp 369.26 369.26 369.26	Mn -375.48 -375.48 -375.48	M -648.48 -133.18 -526.18	w 0.17 0.00 0.14	W _{lim} 100.00 100.00 100.00	s _m 182.63 0.00 182.63	ϵ_{sm} 0.000054 0.000000 0.000044
<u>Verif</u>	ica fessurazio	ne fondazione [Co	mbinazione n° 26	- SLE (Rara)]						
N° 1 2 3 4 5	X 0.05 3.37 6.80 10.23 13.55	A _{fi} 22.62 22.62 22.62 22.62 22.62	A _{fs} 22.62 22.62 22.62 22.62 22.62	Mp 446.39 446.39 446.39 446.39	Mn -446.39 -446.39 -446.39 -446.39	M -0.18 -107.09 -624.51 -200.64 -0.09	w 0.00 0.00 0.18 0.00 0.00	Wlim 100.00 100.00 100.00 100.00 100.00	s _m 0.00 0.00 182.63 0.00 0.00	Esm 0.000000 0.000000 0.000058 0.000000 0.000000
Verif N° 1 2	ica fessurazio X 1.25 3.94	ne traverso (Comb A _{fi} 22.62 22.62	ninazione n° <u>26 - S</u> A _{fs} 22.62 22.62	SLE (Rara)] Mp 377.34 377.34	Mn -377.34 -377.34	M -427.24 314.95	w 0.14 0.00	W _{lim} 100.00 100.00	s _m 182.63 0.00	ε _{sm} 0.000043 0.000000
3 4 5	6.80 9.52 12.35	22.62 22.62 22.62	22.62 22.62 22.62	377.34 377.34 377.34	-377.34 -377.34 -377.34	603.17 261.97 -593.58	0.28 0.00 0.27	100.00 100.00 100.00	182.63 0.00 182.63	0.000090 0.000000 0.000084
Verif	ica fessurazio	ne piedritto sinistr	o [Combinazione	n° 26 - SLE (Rara)]						
N° 1 2 3	X 0.60 4.53 8.46	A _{fi} 15.71 15.71 15.71	A _{fs} 22.62 22.62 22.62	Mp 369.26 369.26 369.26	Mn -375.48 -375.48 -375.48	M -779.66 -230.93 -427.24	w 0.28 0.00 0.02	Wlim 100.00 100.00 100.00	s _m 182.63 0.00 182.63	ε _{sm} 0.000088 0.000000 0.000007
Verif	ica fessurazio	ne piedritto destro) [Combinazione i	n° 26 - SLE (Rara)]						
N° 1 2 3	X 0.60 4.53 8.46	A _{fi} 15.71 15.71 15.71	A _{fs} 22.62 22.62 22.62	Mp 369.26 369.26 369.26	Mn -375.48 -375.48 -375.48	M -652.27 -195.99 -593.58	w 0.16 0.00 0.18	W _{lim} 100.00 100.00 100.00	s _m 182.63 0.00 182.63	ε _{sm} 0.000049 0.000000 0.000058
Verif	ica fessurazio	ne fondazione [Co	mbinazione n° 27	- SLE (Rara)]						
N°	X 0.05	A _{fi} 22.62	A _{fs} 22.62	Mp 446.39	Mn -446.39	M -0.33	w 0.00	w _{lim} 100.00	s _m 0.00	ε _{sm} 0.000000
2 3 4 5	3.37 6.80 10.23 13.55	22.62 22.62 22.62 22.62	22.62 22.62 22.62 22.62	446.39 446.39 446.39 446.39	-446.39 -446.39 -446.39 -446.39	-21.87 -533.13 -163.69 -0.14	0.00 0.08 0.00 0.00	100.00 100.00 100.00 100.00	0.00 182.63 0.00 0.00	0.000000 0.000024 0.000000 0.000000
<u>Verif</u>	ica fessurazio	ne traverso [Comb	inazione n° 27 - S	SLE (Rara)]						
N° 1 2	X 1.25 3.94	A _{fi} 22.62 22.62	A _{fs} 22.62 22.62	Mp 377.34 377.34	Mn -377.34 -377.34	M -282.56 257.41	w 0.00 0.00	W _{lim} 100.00 100.00	s _m 0.00 0.00	ε _{sm} 0.000000 0.000000

MANDATARIA:

Collegamento viario compreso tra lo Svincolo della S.S. 514 di "Chiaromonte" con la S.S. 115 e lo

Svincolo della "Ragusana" PROGETTO ESECUTIVO

Direzione Progettazione e Realizzazione Lavori

RELAZIONE DI CALCOLO SOTTOVIA AL KM 3+248 - SEC. 90

zazior	ne Lavori			TTEL TEL	DIVE DI CALCO	20 3011011	CAL KIN 3	240 520.	30	
3 4	6.80 9.52	22.62 22.62	22.62 22.62	377.34 377.34	-377.34 -377.34	410.03 150.55	0.10 0.00	100.00 100.00	182.63 0.00	0.000032 0.000000
5	12.35	22.62	22.62	377.34	-377.34	-537.61	0.21	100.00	182.63	0.000066
Verif	ica fessurazior	e piedritto sinistr	ro [Combinazione	n° 27 - SLE (Rara)]						
N°	Х	A_{fi}	A_{fs}	Мр	Mn	М	w	W _{lim}	S _m	ϵ_{sm}
1	0.60	15.71	22.62	369.26	-375.48	-835.94	0.35	100.00	182.63	0.000111
2	4.53 8.46	15.71 15.71	22.62 22.62	369.26 369.26	-375.48 -375.48	-127.71 -282.56	0.00 0.00	100.00 100.00	0.00 0.00	0.000000
3	0.40	13.71	22.02	303.20	373.40	202.30	0.00	100.00	0.00	0.00000
Verifi	ica fessurazior	e piedritto destro	Combinazione i	n° 27 - SLE (Rara)]						
N° 1	X 0.60	A _{fi} 15.71	A _{fs} 22.62	Mp 369.26	Mn -375.48	M -621.93	w 0.15	w _{lim} 100.00	s _m 182.63	$\epsilon_{\text{sm}} \\ 0.000048$
2	4.53	15.71	22.62	369.26	-375.48	-78.36	0.00	100.00	0.00	0.000048
3	8.46	15.71	22.62	369.26	-375.48	-537.61	0.16	100.00	182.63	0.000049
<u>Verif</u> i	ica fessurazior	e fondazione [Co	mbinazione n° 28	- SLE (Rara)]						
N°	х	Afi	A_fs	Мр	Mn	М	w	Wlim	Sm	$\epsilon_{\sf sm}$
1	0.05	22.62	22.62	446.39	-446.39	-0.12	0.00	100.00	0.00	0.000000
2	3.37	22.62	22.62	446.39	-446.39	-240.32	0.00	100.00	0.00	0.000000
3	6.80	22.62	22.62	446.39	-446.39	-679.22	0.24	100.00	182.63	0.000076
4 5	10.23 13.55	22.62 22.62	22.62 22.62	446.39 446.39	-446.39 -446.39	-275.98 -0.08	0.00 0.00	100.00 100.00	0.00 0.00	0.000000
,	15.55	22.02	22.02	440.33	-440.35	-0.06	0.00	100.00	0.00	0.00000
Verif	ica fessurazior	e traverso [Comb	oinazione n° 28 - S	LE (Rara)]						
N°	Х	A_{fi}	A_fs	Мр	Mn	М	w	W _{lim}	S _m	ϵ_{sm}
1	1.25	22.62	22.62	377.34	-377.34	-591.92	0.26	100.00	182.63	0.000082
2	3.94	22.62	22.62	377.34	-377.34	105.96	0.00	100.00	0.00	0.000000
3 4	6.80 9.52	22.62 22.62	22.62 22.62	377.34 377.34	-377.34 -377.34	380.35 91.46	0.04 0.00	100.00 100.00	182.63 0.00	0.000013 0.000000
5	12.35	22.62	22.62	377.34	-377.34	-675.82	0.31	100.00	182.63	0.000098
Verifi	ica fessurazion	e niedritta sinistr	ro [Combinazione	n° 28 - SLE (Rara)]						
N° 1	X 0.60	A _{fi} 15.71	A _{fs} 22.62	Mp 369.26	Mn -375.48	M -563.34	w 0.09	W _{lim} 100.00	s _m 182.63	ϵ_{sm} 0.000028
2	4.53	15.71	22.62	369.26	-375.48	-166.37	0.00	100.00	0.00	0.000028
3	8.46	15.71	22.62	369.26	-375.48	-591.92	0.20	100.00	182.63	0.000064
Verifi	ica fessurazior	e piedritto destro	o (Combinazione i	n° 28 - SLE (Rara)]						
'										
N° 1	X 0.60	A _{fi} 15.71	A _{fs} 22.62	Mp 369.26	Mn -375.48	M -517.00	w 0.03	W _{lim} 100.00	s _m 182.63	ϵ_{sm} 0.000009
2	4.53	15.71	22.62	369.26	-375.48	-141.06	0.00	100.00	0.00	0.000000
3	8.46	15.71	22.62	369.26	-375.48	-675.82	0.27	100.00	182.63	0.000085
Verifi	ica fessurazior	e fondazione [Co	mbinazione n° 29	- SLE (Rara)]						
N°	х	Afi	A_fs	Мр	Mn	М	14/	146:		c
1	0.05	22.62	22.62	446.39	-446.39	-0.21	w 0.00	W _{lim} 100.00	s _m 0.00	ϵ_{sm} 0.000000
2	3.37	22.62	22.62	446.39	-446.39	-74.33	0.00	100.00	0.00	0.000000
3	6.80	22.62	22.62	446.39	-446.39	-583.98	0.15	100.00	182.63	0.000046
4	10.23	22.62	22.62	446.39	-446.39	-178.73	0.00	100.00	0.00	0.000000
5	13.55	22.62	22.62	446.39	-446.39	-0.11	0.00	100.00	0.00	0.000000
<u>Verif</u> i	ica fessurazior	e traverso [Comb	oinazione n° 29 - S	LE (Rara)]						
N°	х	A_{fi}	A_fs	Мр	Mn	М	w	W _{lim}	S _m	ϵ_{sm}
1	1.25	22.62	22.62	377.34	-377.34	-391.64	0.10	100.00	182.63	0.000033
2	3.94	22.62	22.62	377.34	-377.34	284.07	0.00	100.00	0.00	0.000000
3	6.80	22.62	22.62	377.34	-377.34	534.83	0.23	100.00	182.63	0.000072
4 5	9.52 12.35	22.62 22.62	22.62 22.62	377.34 377.34	-377.34 -377.34	223.49 -567.15	0.00 0.25	100.00 100.00	0.00 182.63	0.000000 0.000078
ی	12.33	22.02	22.02	3//.34	-3//.34	-307.15	0.23	100.00	102.03	0.000078

MANDATARIA:

MANDANTI:

Collegamento viario compreso tra lo Svincolo della S.S. 514 di "Chiaromonte" con la S.S. 115 e lo Svincolo della "Ragusana"

PROGETTO ESECUTIVO

RELAZIONE DI CALCOLO SOTTOVIA AL KM 3+248 - SEC. 90

Verifi	ca fessurazior	ne piedritto sinistr	o [Combinazione	n° 29 - SLE (Rara)]						
N°	Х	A_{fi}	A_fs	Мр	Mn	M	w	W _{lim}	S _m	ϵ_{sm}
1	0.60	15.71	22.62	369.26	-375.48	-790.35	0.30	100.00	182.63	0.000094
2	4.53	15.71	22.62	369.26	-375.48	-225.89	0.00	100.00	0.00	0.000000
3	8.46	15.71	22.62	369.26	-375.48	0.00	0.00	100.00	0.00	0.000000
<u>Verifi</u>	ica fessurazior	ne piedritto destro	Combinazione ı	n° 29 - SLE (Rara)]						
N°	Х	Afi	A_{fs}	Мр	Mn	М	w	Wlim	Sm	€sm
1	0.60	15.71	22.62	369.26	-375.48	-647.09	0.16	100.00	182.63	0.000051
2	4.53	15.71	22.62	369.26	-375.48	-195.57	0.00	100.00	0.00	0.000000
3	8.46	15.71	22.62	369.26	-375.48	-567.15	0.17	100.00	182.63	0.000054

Collegamento viario compreso tra lo Svincolo della S.S. 514 di "Chiaromonte" con la S.S. 115 e lo Svincolo della "Ragusana"

PROGETTO ESECUTIVO

RELAZIONE DI CALCOLO SOTTOVIA AL KM 3+248 - SEC. 90

Inviluppo spostamenti nodali

Inviluppo spostamenti fonda	azione					
X [m] 0.00 3.37 6.80 10.23 13.51	u _{Xmin} [cr 0.00: 0.00: 0.00: -0.00: -0.00:	34 21 00 23	u _{Xmax} [cm] 0.8100 0.8071 0.8017 0.7960 0.7921	u _{Ymin} [cm] 0.2419 0.2495 0.2171 0.2559 0.2751	u _{Ymax} [cm] 0.6053 0.4417 0.3535 0.4615 0.6370	
Inviluppo spostamenti trave		.,	0.7321	0.2751	0.5570	
X [m] 1.25 3.94 6.80 9.52 12.35	u _{Xmin} [c: -0.02- -0.00 -0.00 -0.06 -0.12	46 78 00 36	u _{Xmax} [cm] 0.9039 0.8770 0.8480 0.8203 0.8309	υ _{γπίπ} [cm] 0.2609 0.2765 0.2873 0.2793 0.2857	u _{Ymax} [cm] 0.5650 0.7311 0.8399 0.7596 0.5872	
Inviluppo spostamenti piedr	itto sinistro					
Y [m] 0.60 4.53 8.46	u _{Xmin} [ci 0.00 -0.07 -0.02	34 37	u _{Xmax} [cm] 0.8102 0.9033 0.9039	u _{Ymin} [cm] 0.2543 0.2581 0.2609	u _{Ymax} [cm] 0.5517 0.5592 0.5650	
Y [m] 0.60 4.53 8.46	u _{Xmin} (cr -0.00 -0.02 -0.12	37 31	u _{Xmax} [cm] 0.7923 0.7487 0.8309	u _{Ymin} [cm] 0.2787 0.2827 0.2857	u _{Ymax} [cm] 0.5731 0.5809 0.5872	
			Inviluppo sollecitazio	ni nodali		
Inviluppo sollecitazioni fond	<u>azione</u>					
X [m] 0.00 3.37 6.80 10.23 13.60	M _{min} [kNm] 0.00 -129.18 300.57 -80.89 0.00	M _{max} [kNm] 0.00 340.86 937.37 389.01 0.00	V _{min} [kN 4.2: -398.3: -23.5: 237.7: -11.15	3 10.59 3 -228.18 2 7.48 7 384.67	N _{min} [kN] -78.87 240.63 240.63 240.63 -0.36	N _{max} [kN] -0.33 604.26 645.40 686.53 77.12
Inviluppo sollecitazioni trave	<u>erso</u>					
X [m] 1.25 3.94 6.80 9.52 12.35	M _{min} [kNm] -837.01 -119.07 31.34 -137.24 -950.28	M _{max} [kNm] -239.26 434.39 809.48 335.55 -303.98	V _{min} [kN 217.38 107.29 -35.09 -307.00 -519.03	8 478.98 5 277.75 9 0.00 0 -117.75	N _{min} [kN] 79.71 92.40 93.29 93.29	N _{max} [kN] 480.53 510.04 541.52 571.41 602.51
Inviluppo sollecitazioni pied	ritto sinistro					
Y [m] M _{min} [kN 0.60 -1148. 4.53 -312. 8.46 -837.	20 68	ax [kNm] -519.97 413.37 -239.26	V _{min} [kN] 240.96 -39.05 -480.53	V _{max} [kN] 641.98 64.32 -79.71	N _{min} [kN] 390.34 303.86 217.38	N _{max} [kN] 770.78 624.88 478.98
Inviluppo sollecitazioni pied	ritto destro					
Y [m] M _{min} [kN 0.60 -900 4.53 -272 8.46 -950	62 80	_{ax} [kNm] -517.00 444.63 -303.98	V _{min} [kN] -650.57 -18.63 93.29	V _{max} [kN] -240.96 56.99 527.83	N _{min} [kN] 406.75 320.27 233.79	N _{max} [kN] 810.84 664.93 519.03
			Inviluppo pressioni t	terreno		
Inviluppo pressioni sul terre	no di fondazione					
X [m] 0.00 3.37 6.80 10.23		σ _{tmin} [MP 0.0 0.1 0.0 0.1	97 00 87	σ _{tmax} [MPa] 0.242 0.177 0.141 0.185		

Collegamento viario compreso tra lo Svincolo della S.S. 514 di "Chiaromonte" con la S.S. 115 e lo

Svincolo della "Ragusana"

PROGETTO ESECUTIVO

RELAZIONE DI CALCOLO SOTTOVIA AL KM 3+248 - SEC. 90

13.60 0.110 0.255

Inviluppo verifiche stato limite ultimo (SLU)

Base sezione	B = 100 cm				
Altezza sezione	H = 120.00 cm				
X	A _{fi}	A _{fs}	CS 17.40		
0.00 3.37	22.62 22.62	22.62 22.62	17.40 1.84		
6.80	22.62	22.62	1.29		
10.23	22.62	22.62	1.66		
13.60	22.62	22.62	71.37		
Х	V_{Rd}		V_{Rsd}	V_{Rcd}	A_{sw}
0.00	393.99		0.00	0.00	0.00
3.37 6.80	452.41 452.41		0.00 0.00	0.00 0.00	0.00 0.00
10.23	452.41		0.00	0.00	0.00
13.60	396.48		0.00	0.00	0.00
Verifica sezioni trav	erso (Inviluppo)				
Base sezione Altezza sezione	B = 100 cm H = 110.00 cm				
X	A _{fi}	A_fs	CS		
1.25	22.62	22.62	1.07		
3.94	22.62	22.62	1.46		
6.80	22.62	22.62	1.24		
9.52 12.35	22.62 22.62	22.62 22.62	1.70 1.12		
12.53	22.02	22.02	1.12		
X	V_{Rd}		V_{Rsd}	V_{Rcd}	A_{sw}
1.25	400.90		0.00	0.00	0.00
3.94 6.80	404.17 407.66		0.00 0.00	0.00 0.00	0.00 0.00
9.52	410.97		0.00	0.00	0.00
12.35	414.42		0.00	4445.64	0.00
Verifica sezioni pied	ritto sinistro (Inviluppo)				
Base sezione	B = 100 cm				
Altezza sezione	H = 110.00 cm				
Y	Afi	A _{fs}	CS		
0.60 4.53	15.71 15.71	22.62 22.62	1.07 2.35		
8.46	15.71	22.62	1.08		
Y	V_{Rd}		V_{Rsd}	V_{Rcd}	A_{sw}
0.60 4.53	467.38 446.49		0.00 0.00	0.00 0.00	0.00 0.00
4.53 8.46	425.60		0.00	0.00	0.00
Verifica sezioni pied	ritto destro (Inviluppo)				
Base sezione Altezza sezione	B = 100 cm H = 110.00 cm				
Y	A_{fi}	A_fs	CS		
0.60	15.71	22.62	1.40		
4.53	15.71 15.71	22.62 22.62	2.15 1.18		
8 46	13./1	22.02	1.10		
8.46					
Υ	V _{Rd}		V _{Rsd}	V _{Rcd}	A _{sw}
	V _{Rd} 472.02 451.13		V _{Rsd} 0.00 0.00	V _{Rcd} 0.00 0.00	A _{sw} 0.00 0.00

Inviluppo verifiche stato limite esercizio (SLE)

PROGETTO ESECUTIVO

Verifica sezioni fond	aazione (IIIVIIUppo)				
Base sezione Altezza sezione	B = 100 cm H = 120.00 cm				
Х	A_{fi}	A_fs	G	G **	G .
0.00	22.62	22.62	თ _c 0.000	σ _{fi} 2.610	σ _{fs} 2.884
3.37	22.62	22.62	1.672	21.710	52.536
6.80	22.62	22.62	4.687	57.255	229.801
10.23	22.62	22.62	1.927	24.757	66.553
13.60	22.62	22.62	0.010	0.144	0.157
Х	$ au_c$		A_{sw}		
0.00	-0.01		0.00		
3.37	-0.30		0.00		
6.80	-0.02		0.00		
10.23	0.29		0.00		
13.60	0.01		0.00		
Verifica sezioni trav	erso (Inviluppo)				
Base sezione	B = 100 cm				
Altezza sezione	H = 110.00 cm				
Х	Afi	Afs	σ_{c}	σ _{fi}	σfs
1.25	22.62	22.62	4.669	55.633	232.362
3.94	22.62	22.62	2.500	118.425	30.070
6.80	22.62	22.62	4.729	245.125	55.890
9.52	22.62	22.62	2.502	117.407	30.157
12.35	22.62	22.62	5.348	64.038	259.623
Х	τ_{c}		A_{sw}		
1.25	0.39		0.00		
3.94	0.23		0.00		
6.80	-0.03		0.00		
9.52	-0.25		0.00		
12.35	-0.43		0.00		
Verifica sezioni piec	Iritto sinistro (Inviluppo)				
Base sezione	B = 100 cm				
Altezza sezione	H = 110.00 cm				
Υ	A_{fi}	A_fs	σ_{c}	σ_{fi}	σ_{fs}
0.60	15.71	22.62	7.039	87.110	282.236
4.53	15.71	22.62	1.831	24.859	28.755
8.46	15.71	22.62	4.924	60.729	201.840
Υ	$ au_{c}$		A_{sw}		
0.60	0.38		0.00		
4.53	0.06		0.00		
8.46	-0.19		0.00		
Verifica sezioni pied	Iritto destro (Inviluppo)				
Base sezione Altezza sezione	B = 100 cm H = 110.00 cm				
Υ	A_{fi}	Afs	σ_c	σ _{fi}	σ_{fs}
0.60	15.71	22.62	5.454	69.345	200.931
4.53	15.71	22.62	1.517	20.932	16.109
8.46	15.71	22.62	5.611	68.897	236.502
Υ	τ_{c}		A _{sw}		
0.60	-0.36		0.00		
4.53	0.04		0.00		
8.46	0.24		0.00		

Collegamento viario compreso tra lo Svincolo della S.S. 514 di "Chiaromonte" con la S.S. 115 e lo

Svincolo della "Ragusana"

PROGETTO ESECUTIVO

RELAZIONE DI CALCOLO SOTTOVIA AL KM 3+248 - SEC. 90

9.2 MURI D'IMBOCCO

Geometria scatolare

Descrizione:	Scatolare tipo vasca	
Altezza esterna	8.00	[m]
Larghezza esterna	12.60	[m]
Lunghezza mensola di fondazione sinistra	0.50	[m]
Lunghezza mensola di fondazione destra	0.50	[m]
Spessore piedritto sinistro	1.30	[m]
Spessore piedritto destro	1.30	[m]
Spessore fondazione	1.30	[m]

Caratteristiche strati terreno

	Strato	di	rin	fianco
--	--------	----	-----	--------

Descrizione	Terreno di rinfianco	
Peso di volume	19.0000	[kN/mc]
Peso di volume saturo	20.0000	[kN/mc]
Angolo di attrito	35.00	[°]
Angolo di attrito terreno struttura	23.33	[°]
Coesione	0.000	[MPa]
Costante di Winkler	0.150	[MPa/cm]

Strato di base

Descrizione	Terreno di base	
Peso di volume	18.0000	[kN/mc]
Peso di volume saturo	19.0000	[kN/mc]
Angolo di attrito	38.00	[°]
Angolo di attrito terreno struttura	25.33	[°]
Coesione	0.000	[MPa]
Costante di Winkler	0.400	[MPa/cm]
Tensione ammissibile	6.100	[MPa]

Falda

Quota falda (rispetto al piano di posa) 0.00 [m]

Caratteristiche materiali utilizzati

Materiale calcestruzzo

Materiale Calcestrazzo		
R _{ck} calcestruzzo	40.000	[MPa]
Peso specifico calcestruzzo	25.0000	[kN/mc]
Modulo elastico E	33149.080	[MPa]
Tensione ammissibile acciaio	391.300	[MPa]
Tensione ammissibile cls (σ _{amm})	12.207	[MPa]
Tensione tang.ammissibile cls (τ _{c0})	0.729	[MPa]
Tensione tang.ammissibile cls (τ_{c1})	2.096	[MPa]
Coeff. omogeneizzazione cls teso/compresso (n')	0.50	
Coeff. omogeneizzazione acciaio/cls (n)	15.00	
Coefficiente dilatazione termica	0.0000120	

Condizioni di carico

Origine in corrispondenza dello spigolo inferiore sinistro della struttura Carichi verticali positivi se diretti verso il basso Carichi orizzontali positivi se diretti verso destra Coppie concentrate positive se antiorarie Ascisse X (espresse in m) positive verso destra Ordinate Y (espresse in m) positive verso l'alto Carichi concentrati espressi in kN Coppie concentrate espressi in kNm

Carichi distribuiti espressi in kN/m Simbologia adottata e unità di misura

Forze concentrate

- ascissa del punto di applicazione dei carichi verticali concentrati
- ordinata del punto di applicazione dei carichi orizzontali concentrati componente Y del carico concentrato
- componente X del carico concentrato

Collegamento viario compreso tra lo Svincolo della S.S. 514 di "Chiaromonte" con la S.S. 115 e lo

Svincolo della "Ragusana" PROGETTO ESECUTIVO

Direzione Progettazione e Realizzazione Lavori

RELAZIONE DI CALCOLO SOTTOVIA AL KM 3+248 - SEC. 90

M	momento
Forzo	dictribuito

orze distribuite

 $\begin{array}{ll} X_{iy} \ X_f & \text{ascisse del punto iniziale e finale per carichi distribuiti verticali} \\ Y_{iy} \ Y_f & \text{ordinate del punto iniziale e finale per carichi distribuiti orizzontali} \\ V_{ni} & \text{componente normale del carico distribuito nel punto iniziale} \\ V_{tf} & \text{componente normale del carico distribuito nel punto finale} \\ V_{tf} & \text{componente tangenziale del carico distribuito nel punto iniziale} \\ V_{tf} & \text{componente tangenziale del carico distribuito nel punto finale} \\ V_{te} & \text{variazione termica lembo esterno espressa in gradi centigradi} \\ \end{array}$

Condizione di carico n°1 (Peso Proprio)

Condizione di carico n°2 (Spinta terreno sinistra)

Condizione di carico n°3 (Spinta terreno destra)

Condizione di carico n°4 (Sisma da sinistra)

Condizione di carico n°5 (Sisma da destra)

Condizione di carico n°6 (Spinta falda)

Condizione di carico n° 7 (Carico 1)

Distr	Terreno	X _i = -9.00	X _f = 0.50	V _{ni} = 10.00	V _{nf} = 10.00
		•		···	
	i carico nº 8 (Carico 2)				
Distr	Terreno	X _i = 13.10	X _f = 23.00	V _{ni} = 10.00	V _{nf} = 10.00
Condizione d	i carico nº 9 (Carico 1+2)				
Distr	Terreno	$X_i = -9.00$	$X_f = 0.50$	V _{ni} = 10.00	V_{nf} = 10.00
Distr	Terreno	X _i = 13.10	X _f = 23.00	V _{ni} = 10.00	V_{nf} = 10.00

Impostazioni di progetto

Verifica materiali:

Stato Limite Ultimo

Coefficiente di sicurezza calcestruzzo γ_c	1.50
Fattore riduzione da resistenza cubica a cilindrica	0.83
Fattore di riduzione per carichi di lungo periodo	0.85
Coefficiente di sicurezza acciaio	1.15
Coefficiente di sicurezza per la sezione	1.00

Verifica Taglio - Metodo dell'inclinazione variabile del traliccio

 $V_{Rd} = [0.18*k^*(100.0*\rho_l*fck)^{1/3}/\gamma_c + 0.15*\sigma_{cp}]*bw*d>(vmin+0.15*\sigma_{cp})*b_w*d$

 $V_{Rsd}=0.9*d*A_{sw}/s*fyd*(ctg\alpha+ctg\theta)*sin\alpha$

 $\rm V_{Rcd} = 0.9*d*b_w*\alpha_c*fcd'*(ctg(\theta)+ctg(\alpha)/(1.0+ctg\theta^2)$ con:

d altezza utile sezione [mm]
bw larghezza minima sezione [mm]
σ_{cp} tensione media di compressione [N/mmq]
ρ
rapporto geometrico di armatura
area armatuta trasversale [mmq]

interasse tra due armature trasversali consecutive [mm] $\alpha_c \qquad \qquad \text{coefficiente maggiorativo, funzione di fcd e } \sigma_{cp}$

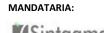
 $\begin{array}{l} \text{fcd'=0.5*fcd} \\ \text{k=1+(200/d)}^{1/2} \\ \text{vmin=0.035*k}^{3/2*fck}^{1/2} \end{array}$

Stato Limite di Esercizio

Criteri di scelta per verifiche tensioni di esercizio:

Ambiente moderatamente aggressivo
Limite tensioni di compressione nel calcestruzzo (comb. rare)
Limite tensioni di compressione nel calcestruzzo (comb. quasi perm.)
Limite tensioni di trazione nell'acciaio (comb. rare)

Criteri verifiche a fessurazione:


Armatura poco sensibile

Apertura limite fessure espresse in [mm]

Apertura limite fessure w1=0.20 w2=0.30 w3=0.40

Verifiche secondo

Norme Tecniche 2008 - Approccio 2

 $\begin{array}{c} 0.60 \ f_{ck} \\ 0.45 \ f_{ck} \end{array}$

0.80 f_{vk}

PROGETTO ESECUTIVO

RELAZIONE DI CALCOLO SOTTOVIA AL KM 3+248 - SEC. 90

Copriferro sezioni 5.00 [cm]

Collegamento viario compreso tra lo Svincolo della S.S. 514 di "Chiaromonte" con la S.S. 115 e lo Svincolo della "Ragusana"

PROGETTO ESECUTIVO

RELAZIONE DI CALCOLO SOTTOVIA AL KM 3+248 - SEC. 90

Descrizione combinazioni di carico

Simbologia adottata

Coefficiente di partecipazione della condizione Coefficiente di combinazione della condizione Coefficiente totale di partecipazione della condizione

Norme Tecniche 2008

Simbologia adottata

Coefficiente parziale sfavorevole sulle azioni permanenti Coefficiente parziale favorevole sulle azioni permanenti γ_{G1fav}

Coefficiente parziale sfavorevole sulle azioni permanenti non strutturali γG2sfav $Coefficiente\ parziale\ favorevole\ sulle\ azioni\ permanenti\ non\ strutturali$

Coefficiente parziale sulle azioni variabili γα

Coefficiente parziale di riduzione dell'angolo di attrito drenato γ_{tanφ}' Coefficiente parziale di riduzione della coesione drenata Coefficiente parziale di riduzione della coesione non drenata γ_{cu} Coefficiente parziale di riduzione del carico ultimo γ_{au}

Coefficienti di partecipazione combinazioni statiche

Coefficienti parziali per le azioni o per l'effe Carichi	tto delle azioni: Effetto		A1	A2
Permanenti	Favorevole	Ϋ́G1fav	1.00	1.00
Permanenti	Sfavorevole	γG1sfav	1.35	1.00
Permanenti non strutturali	Favorevole	γG2fav	0.00	0.00
Permanenti non strutturali	Sfavorevole	γG2sfav	1.50	1.30
Variabili	Favorevole	γQfav	0.00	0.00
Variabili	Sfavorevole	γ_{Qsfav}	1.35	1.30
Coefficienti parziali per i parametri geotecn	ici del terreno:			
Parametri			M1	M2
Tangente dell'angolo di attrito		γ _{tanφ'}	1.00	1.25
Coesione efficace		γ _{c'}	1.00	1.25
Resistenza non drenata		γ _{cu}	1.00	1.40

Coefficienti di partecipazione combinazioni sismiche

Resistenza a compressione uniassiale

Peso dell'unità di volume

Coefficienti parziali per le azioni o per l'effetto delle azioni:				
Carichi	Effetto		A1	A2
Permanenti	Favorevole	γG1fav	1.00	1.00
Permanenti	Sfavorevole	γG1sfav	1.00	1.00
Permanenti	Favorevole	γG2fav	0.00	0.00
Permanenti	Sfavorevole	γ _{G2sfav}	1.00	1.00
Variabili	Favorevole	$\gamma_{ m Qfav}$	0.00	0.00
Variabili	Sfavorevole	γ̈Osfav	0.00	1.00

Parametri		M1	M2
Tangente dell'angolo di attrito	$\gamma_{tan\phi'}$	1.00	1.25
Coesione efficace	γ _{c'}	1.00	1.25
Resistenza non drenata	$\gamma_{ m cu}$	1.00	1.40
Resistenza a compressione uniassiale	γqu	1.00	1.60
Peso dell'unità di volume	γ_{γ}	1.00	1.00

Coefficienti di partecipazione combinazioni statiche

Coefficienti parziali per i parametri geotecnici del terreno:

Carichi	Effetto		A1	A2
Permanenti	Favorevole	γG1fav	1.00	1.00
Permanenti	Sfavorevole	γG1sfav	1.35	1.00
Permanenti non strutturali	Favorevole	γG2fav	0.00	0.00
Permanenti non strutturali	Sfavorevole	γG2sfav	1.50	1.30
Variabili	Favorevole	γQfav	0.00	0.00
Variabili	Sfavorevole	γ_{Qsfav}	1.35	1.30
Coefficienti parziali per i parametri geotecnici	del terreno:			
Parametri			M1	M2

Parametri		M1	M2
Tangente dell'angolo di attrito	γ _{tanφ'}	1.00	1.25
Coesione efficace	γ _{c'}	1.00	1.25
Resistenza non drenata	$\gamma_{ m cu}$	1.00	1.40
Resistenza a compressione uniassiale	γ _{qu}	1.00	1.60
Peso dell'unità di volume	$\gamma_{\rm Y}$	1.00	1.00

1.00

1.00

 γ_{qu}

1.60

1.00

Collegamento viario compreso tra lo Svincolo della S.S. 514 di "Chiaromonte" con la S.S. 115 e lo

Svincolo della "Ragusana"

PROGETTO ESECUTIVO

RELAZIONE DI CALCOLO SOTTOVIA AL KM 3+248 - SEC. 90

A1 1.00 1.00 0.00 1.00

0.00 0.00

1.00

1.00 1.00 1.00 1.00 A2 1.00 1.00 0.00

1.00

1.00

M2 1.25

1.25 1.40

1.00

Coefficienti di partecipazione combinazioni sismiche

Coefficienti parziali per le azioni o per l'effetto delle azioni	<u>i:</u>		
Carichi	Effetto		
Permanenti	Favorevole		γG1fav
Permanenti	Sfavorevole		γG1sfav
Permanenti	Favorevole		γG2fav
Permanenti	Sfavorevole		γG2sfav
Variabili	Favorevole		γofav
Variabili	Sfavorevole		γQsfav
			1
Coefficienti parziali per i parametri geotecnici del terreno:			
Parametri			
Tangente dell'angolo di attrito			γtanφ'
Coesione efficace			γ _{c'}
Resistenza non drenata			γ _{cu}
Resistenza a compressione uniassiale			γ_{qu}
Peso dell'unità di volume			γγ
Coeff. di combinazione	Ψ ₀ = 0.75	Ψ ₁ = 0.75	Ψ ₂ = 0.00
	10-0.73	11-0.73	1 2- 0.00
Combinazione n° 1 SLU (Approccio 2)	~	Ψ	С
Peso Proprio	γ 1.35	1.00	1.35
Spinta terreno sinistra	1.35	1.00	1.35
Spinta terreno destra	1.35	1.00	1.35
Spinta falda	1.35	1.00	1.35
Carico 1	1.35	1.00	1.35
canco i	1.55	1.00	1.33
Combinazione n° 2 SLU (Approccio 2)			
	γ	Ψ	С
Peso Proprio	1.35	1.00	1.35
Spinta terreno sinistra	1.35	1.00	1.35
Spinta terreno destra	1.35	1.00	1.35
Spinta falda	1.35	1.00	1.35
Carico 2	1.35	1.00	1.35
Cambinaniana v ^o 2 CIII (Annua via 2)			
Combinazione n° 3 SLU (Approccio 2)	γ	Ψ	С
Peso Proprio	1.35	1.00	1.35
Spinta terreno sinistra	1.35	1.00	1.35
Spinta terreno destra	1.35	1.00	1.35
Spinta falda	1.35	1.00	1.35
Carico 1+2	1.35	1.00	1.35
Combinazione n° 4 SLU (Approccio 2) - Sisma Vert. positivo	='	***	_
	γ	Ψ	C
Peso Proprio	1.00	1.00	1.00
Spinta terreno sinistra	1.00	1.00	1.00
Spinta terreno destra	1.00	1.00	1.00
Spinta falda	1.00	1.00	1.00
Sisma da sinistra	1.00	1.00	1.00
Combinazione n° 5 SLU (Approccio 2) - Sisma Vert. negativ	<u>'0</u>		
	γ	Ψ	С
Peso Proprio	1.00	1.00	1.00
Spinta terreno sinistra	1.00	1.00	1.00
Spinta terreno destra	1.00	1.00	1.00
Spinta falda	1.00	1.00	1.00
Sisma da sinistra	1.00	1.00	1.00
Combinazione n° 6 SLE (Quasi Permanente)			
	γ	Ψ	C
Peso Proprio	1.00	1.00	1.00
Spinta terreno sinistra	1.00	1.00	1.00
Spinta terreno destra	1.00	1.00	1.00
Spinta falda	1.00	1.00	1.00
Combinazione n° 7 SLE (Frequente)			
	γ	Ψ	С
Peso Proprio	1.00	1.00	1.00
Spinta terreno sinistra	1.00	1.00	1.00
Spinta terreno destra	1.00	1.00	1.00
Spinta falda	1.00	1.00	1.00
Carico 1	1.00	0.75	0.75

Collegamento viario compreso tra lo Svincolo della S.S. 514 di "Chiaromonte" con la S.S. 115 e lo Svincolo della "Ragusana"

PROGETTO ESECUTIVO

Combinazione n° 8 SLE (Frequente)			
	γ	Ψ	С
Peso Proprio	1.00	1.00	1.00
Spinta terreno sinistra	1.00	1.00	1.00
Spinta terreno destra	1.00	1.00	1.00
Spinta falda	1.00	1.00	1.00
Carico 2	1.00	0.75	0.75
Combinazione n° 9 SLE (Frequente)			
	γ	Ψ	С
Peso Proprio	1.00	1.00	1.00
Spinta terreno sinistra	1.00	1.00	1.00
Spinta terreno destra	1.00	1.00	1.00
Spinta falda	1.00	1.00	1.00
Carico 1+2	1.00	0.75	0.75
Combinazione n° 10 SLE (Rara)			
COMBINAZIONE II TO SEE (Nata)	γ	Ψ	С
Peso Proprio	1.00	1.00	1.00
Spinta terreno sinistra	1.00	1.00	1.00
Spinta terreno destra	1.00	1.00	1.00
Spinta falda	1.00	1.00	1.00
Carico 1	1.00	1.00	1.00
Combinazione n° 11 SLE (Rara)			
COMBINAZIONE II 11 SEE (Kara)		Ψ	C
Peso Proprio	γ 1.00	1.00	1.00
Spinta terreno sinistra	1.00	1.00	1.00
Spinta terreno destra	1.00	1.00	1.00
Spinta falda	1.00	1.00	1.00
Carico 2	1.00	1.00	1.00
Combinazione n° 12 SLE (Rara)			_
	γ	Ψ	С
Peso Proprio	1.00	1.00	1.00
Spinta terreno sinistra	1.00	1.00	1.00
Spinta terreno destra	1.00	1.00	1.00
Spinta falda	1.00	1.00	1.00
Carico 1+2	1.00	1.00	1.00

Collegamento viario compreso tra lo Svincolo della S.S. 514 di "Chiaromonte" con la S.S. 115 e lo

Svincolo della "Ragusana"

PROGETTO ESECUTIVO

Direzione Progettazione e Realizzazione Lavori

RELAZIONE DI CALCOLO SOTTOVIA AL KM 3+248 - SEC. 90

Analisi della spinta e verifiche

Simbologia adottata ed unità di misura

Origine in corrispondenza dello spigolo inferiore sinistro della struttura Le forze orizzontali sono considerate positive se agenti verso destra Le forze verticali sono considerate positive se agenti verso il basso

ascisse (espresse in m) positive verso destra

pressione sul terreno espressa in MPa

ordinate (espresse in m) positive verso l'alto momento espresso in kNm М

taglio espresso in kN sforzo normale espresso in kN spostamento direzione X espresso in cm SN их иу spostamento direzione Y espresso in cm

Tipo di analisi

 σ_t

Pressione in calotta Spinta sui piedritti

a Riposo [combinazione 2] a Riposo [combinazione 3] a Riposo [combinazione 4] a Riposo [combinazione 5] a Riposo [combinazione 6] a Riposo [combinazione 7] a Riposo [combinazione 8] a Riposo [combinazione 9] a Riposo [combinazione 10] a Riposo [combinazione 11] a Riposo [combinazione 12]

Pressione geostatica

a Riposo [combinazione 1]

Sisma

Combinazioni SLU

Accelerazione al suolo ag =

Coefficiente di amplificazione per tipo di sottosuolo (S) Coefficiente di amplificazione topografica (St) Coefficiente riduzione (β_{m})

Rapporto intensità sismica verticale/orizzontale Coefficiente di intensità sismica orizzontale (percento)

Coefficiente di intensità sismica verticale (percento)

Combinazioni SLE

Accelerazione al suolo a_g =

Coefficiente di amplificazione per tipo di sottosuolo (S)

Coefficiente di amplificazione topografica (St)

Coefficiente riduzione (β_m)

Rapporto intensità sismica verticale/orizzontale

Coefficiente di intensità sismica orizzontale (percento) Coefficiente di intensità sismica verticale (percento)

Forma diagramma incremento sismico

Spinta sismica

Coefficienti di spinta

Angolo diffusione sovraccarico

3.76 [m/s^2] 1.00

1.00 0.50

 $k_h = (a_g/g * \beta_m * St * Ss) = 39.96$

k_v=0.50 * k_h = 19.98

1.06 [m/s^2] 1 20 1.00

1.00 0.50

 $k_h=(a_g/g*\beta_m*St*Ss) = 13.02$ $k_v=0.50*k_h = 6.51$ Rettangolare

Wood

35.00 [°]

142 74

75

N°combinazione	Statico	Sismico
1	0.426	0.000
2	0.426	0.000
3	0.426	0.000
4	0.426	1.070
5	0.426	1.070
6	0.426	0.000
7	0.426	0.000
8	0.426	0.000
9	0.426	0.000
10	0.426	0.000

0.426

0.426

Discretizzazione strutturale

Numero elementi fondazione Numero elementi piedritto sinistro Numero elementi piedritto destro Numero molle piedritto sinistro Numero molle piedritto destro

11

12

0.000

0.000

Collegamento viario compreso tra lo Svincolo della S.S. 514 di "Chiaromonte" con la S.S. 115 e lo

Svincolo della "Ragusana"

PROGETTO ESECUTIVO

RELAZIONE DI CALCOLO SOTTOVIA AL KM 3+248 - SEC. 90

Analisi della combinazione n° 1

Pressione in calotta(solo peso terreno) 0.0000 [kPa]

Carichi verticali in calotta

Xi	Xj	Q[kPa]
-19.00	-9.00	0.0000
-9.00	0.50	13.5000
0.50	33.00	0.0000

Spinte sui piedritti

Pressione sup. 5.7567 [kPa] Pressione inf. 93.2588 [kPa] Pressione sup. 0.0000 [kPa] Pressione inf. 87.5021 [kPa] Piedritto sinistro Piedritto destro

<u>Falda</u> Spinta Sottospinta 0.00[kN] 0.00[kPa]

Analisi della combinazione n° 2

Pressione in calotta(solo peso terreno) 0.0000 [kPa]

Carichi verticali in calotta

Xi	Xj	Q[kPa]
-19.00	13.10	0.0000
13.10	23.00	13.5000
23.00	33.00	0.0000

Spinte sui piedritti

Pressione sup. 0.0000 [kPa] Pressione inf. 87.5021 [kPa] Pressione sup. 5.7567 [kPa] Pressione inf. 93.2588 [kPa] Piedritto sinistro Piedritto destro

Falda

Spinta 0.00[kN] Sottospinta 0.00[kPa]

Analisi della combinazione n° 3

Pressione in calotta(solo peso terreno) 0.0000 [kPa]

Carichi verticali in calotta

Xi	Xj	Q[kPa]
-19.00	-9.00	0.0000
-9.00	0.50	13.5000
0.50	13.10	0.0000
13.10	23.00	13.5000
23.00	33.00	0.0000

Spinte sui piedritti

Pressione sup. 5.7567 [kPa] Pressione inf. 93.2588 [kPa] Pressione sup. 5.7567 [kPa] Pressione inf. 93.2588 [kPa] Piedritto sinistro Piedritto destro

<u>Falda</u>

0.00[kN] Spinta Sottospinta 0.00[kPa]

Analisi della combinazione n° 4

Pressione in calotta(solo peso terreno) 0.0000 [kPa]

Carichi verticali in calotta

Q[kPa] 33.00 -19.00 0.0000

PROGETTO ESECUTIVO

RELAZIONE DI CALCOLO SOTTOVIA AL KM 3+248 - SEC. 90

Spinte sui piedritti

Pressione sup. 0.0000 [kPa] Pressione inf. 64.8164 [kPa] Pressione sup. 0.0000 [kPa] Pressione inf. 64.8164 [kPa] Piedritto sinistro Piedritto destro

Spinte sismiche sui piedritti

Piedritto sinistro Pressione sup. 60.7409 [kPa] Pressione inf. 60.7409 [kPa]

<u>Falda</u>

Spinta Sottospinta 0.00[kN] 0.00[kPa]

Analisi della combinazione n° 5

Pressione in calotta(solo peso terreno) 0.0000 [kPa]

Carichi verticali in calotta

Q[kPa] -19.00 33.00 0.0000

Spinte sui piedritti

Piedritto sinistro Pressione sup. 0.0000 [kPa] Pressione inf. 64.8164 [kPa] Piedritto destro Pressione sup. 0.0000 [kPa] Pressione inf. 64.8164 [kPa]

Spinte sismiche sui piedritti

Piedritto sinistro Pressione sup. 60.7409 [kPa] Pressione inf. 60.7409 [kPa]

Falda

Spinta 0.00[kN] Sottospinta 0.00[kPa]

Analisi della combinazione n° 6

Pressione in calotta(solo peso terreno) 0.0000 [kPa]

Carichi verticali in calotta

Xi -19.00 Q[kPa] Xj 33.00 0.0000

Spinte sui piedritti

Pressione sup. 0.0000 [kPa] Pressione inf. 64.8164 [kPa] Piedritto sinistro Piedritto destro Pressione sup. 0.0000 [kPa] Pressione inf. 64.8164 [kPa]

Falda

0.00[kN] Sottospinta 0.00[kPa]

Analisi della combinazione n° 7

Pressione in calotta(solo peso terreno) 0.0000 [kPa]

Carichi verticali in calotta

Xi -19.00 Q[kPa] 0.0000 Xj -9.00 -9.00 0.50 7.5000 0.50 33.00 0.0000

Spinte sui piedritti

MANDATARIA:

MANDANTI:

Realizzazione Lavori

Collegamento viario compreso tra lo Svincolo della S.S. 514 di "Chiaromonte" con la S.S. 115 e lo

Svincolo della "Ragusana" **PROGETTO ESECUTIVO**

RELAZIONE DI CALCOLO SOTTOVIA AL KM 3+248 - SEC. 90

Piedritto sinistro Pressione sup. 3.1982 [kPa] Pressione inf. 68.0146 [kPa] Piedritto destro Pressione sup. 0.0000 [kPa] Pressione inf. 64.8164 [kPa]

<u>Falda</u>

0.00[kN] Spinta Sottospinta 0.00[kPa]

Analisi della combinazione n° 8

Pressione in calotta(solo peso terreno) 0.0000 [kPa]

Carichi verticali in calotta

Xj	Q[kPa]
13.10	0.0000
23.00	7.5000
33.00	0.0000
	13.10 23.00

Spinte sui piedritti

Piedritto sinistro Pressione sup. 0.0000 [kPa] Pressione inf. 64.8164 [kPa] Piedritto destro Pressione sup. 3.1982 [kPa] Pressione inf. 68.0146 [kPa]

<u>Falda</u>

0.00[kN] Spinta Sottospinta 0.00[kPa]

Analisi della combinazione n° 9

Pressione in calotta(solo peso terreno) 0.0000 [kPa]

Carichi verticali in calotta

Xi	Xj	Q[kPa]
-19.00	-9.00	0.0000
-9.00	0.50	7.5000
0.50	13.10	0.0000
13.10	23.00	7.5000
23.00	33.00	0.0000

Spinte sui piedritti

Pressione sup. 3.1982 [kPa] Pressione inf. 68.0146 [kPa] Piedritto sinistro Piedritto destro Pressione sup. 3.1982 [kPa] Pressione inf. 68.0146 [kPa]

Falda

Spinta 0.00[kN] Sottospinta 0.00[kPa]

Analisi della combinazione n° 10

Pressione in calotta(solo peso terreno) 0.0000 [kPa]

Carichi verticali in calotta

Xi	Xj	Q[kPa]
-19.00	-9.00	0.0000
-9.00	0.50	10.0000
0.50	33.00	0.0000

Spinte sui piedritti

Pressione sup. 4.2642 [kPa] Pressione inf. 69.0806 [kPa] Piedritto sinistro Piedritto destro Pressione sup. 0.0000 [kPa] Pressione inf. 64.8164 [kPa]

Falda

Spinta 0.00[kN] Sottospinta 0.00[kPa]

Analisi della combinazione n° 11

PROGETTO ESECUTIVO

RELAZIONE DI CALCOLO SOTTOVIA AL KM 3+248 - SEC. 90

Pressione in calotta(solo peso terreno) 0.0000 [kPa]

Carichi verticali in calotta

Xi	Xj	Q[kPa]
-19.00	13.10	0.0000
13.10	23.00	10.0000
23.00	33.00	0.0000

Spinte sui piedritti

Piedritto sinistro Pressione sup. 0.0000 [kPa] Pressione inf. 64.8164 [kPa] Piedritto destro Pressione sup. 4.2642 [kPa] Pressione inf. 69.0806 [kPa]

<u>Falda</u>

0.00[kN] 0.00[kPa] Spinta Sottospinta

Analisi della combinazione n° 12

Pressione in calotta(solo peso terreno) 0.0000 [kPa]

Carichi verticali in calotta

Xi	Xj	Q[kPa]
-19.00	-9.00	0.0000
-9.00	0.50	10.0000
0.50	13.10	0.0000
13.10	23.00	10.0000
23.00	33.00	0.0000

Spinte sui piedritti

Pressione sup. 4.2642 [kPa] Pressione inf. 69.0806 [kPa] Pressione sup. 4.2642 [kPa] Pressione inf. 69.0806 [kPa] Piedritto sinistro Piedritto destro

<u>Falda</u> Spinta Sottospinta 0.00[kN] 0.00[kPa]

Collegamento viario compreso tra lo Svincolo della S.S. 514 di "Chiaromonte" con la S.S. 115 e lo

Svincolo della "Ragusana"

PROGETTO ESECUTIVO

RELAZIONE DI CALCOLO SOTTOVIA AL KM 3+248 - SEC. 90

Spostamenti

Spostamenti fondazione (Combinazione n° 1)		
X [m]	u _x [cm]	u _y [cm]
0.00	0.094	0.238
3.37	0.092	0.265
6.80	0.090	0.254
10.23	0.087	0.269
13.60	0.085	0.258
13.50	0.005	0.230
Spostamenti piedritto sinistro (Combinazione n° 1)		
Y [m]	u _x [cm]	u _v [cm]
0.65	0.094	0.255
4.33	0.211	0.257
8.00	0.369	0.258
Spostamenti piedritto destro (Combinazione n° 1)		
Y [m]	u _x [cm]	u _v [cm]
0.65	0.085	0.268
4.33	0.002	0.270
8.00	-0.113	0.271
Spostamenti fondazione (Combinazione n° 2)		
X [m]	u _x [cm]	u _y [cm]
0.00	-0.085	0.258
3.37	-0.087	0.269
6.80	-0.090	0.254
10.23 13.60	-0.092 -0.094	0.265 0.238
15.00	-0.054	0.238
Spostamenti piedritto sinistro (Combinazione n° 2)		
Y [m]	u _x [cm]	u _y [cm]
0.65	-0.085	0.268
4.33	-0.002	0.270
8.00	0.113	0.271
Spostamenti piedritto destro (Combinazione n° 2)		
Y [m]	u _x [cm]	u _v [cm]
0.65	-0.094	0.255
4.33	-0.211	0.257
8.00	-0.369	0.258
Spostamenti fondazione (Combinazione n° 3)		
<u> </u>		
X [m]	u _x [cm]	u _y [cm]
0.00	0.004	0.240
3.37	0.003	0.269
6.80	0.000	0.260
10.23 13.60	-0.003 -0.004	0.269 0.240
15.00	-0.004	0.240
Spostamenti piedritto sinistro (Combinazione n° 3)		
-	_	
Y [m]	u _x [cm]	u _y [cm]
0.65 4.33	0.004	0.258
4.33 8.00	0.125 0.286	0.260 0.261
Spostamenti piedritto destro (Combinazione n° 3)	0.250	0.201
		_
Y [m]	u _x [cm]	u _y [cm]
0.65	-0.004 -0.125	0.258
4.33 8.00	-0.125 -0.286	0.260 0.261
Sportsmonti fondazione / Cambinatione al		
Spostamenti fondazione (Combinazione n° 4)		
X [m]	u _x [cm]	u _y [cm]
0.00	1.025	-0.154
3.37	1.022	0.230
6.80	1.016	0.341

Realizzazione Lavori

Collegamento viario compreso tra lo Svincolo della S.S. 514 di "Chiaromonte" con la S.S. 115 e lo

Svincolo della "Ragusana"

PROGETTO ESECUTIVO

10.23 13.60	1.010 1.005	0.288 0.049
Spostamenti piedritto sinistro (Combinazione	n° 4)	
Y [m]	u _x [cm]	u [em]
0.65	1.025	u _y [cm] 0.007
4.33	1.733	0.008
8.00	2.592	0.009
Spostamenti piedritto destro (Combinazione i	n <u>° 4)</u>	
Y [m]	u _x [cm]	u _y [cm]
0.65	1.006	0.151
4.33 8.00	0.560 0.044	0.152 0.153
Spostamenti fondazione (Combinazione n° 5)		
X [m]	u _x [cm]	u _y [cm]
0.00	1.036	-0.347
3.37 6.80	1.033 1.027	0.118 0.279
10.23	1.027	0.231
13.60	1.017	-0.022
Spostamenti piedritto sinistro (Combinazione	<u>n° 5)</u>	
Y [m]	u _x [cm]	u _y [cm]
0.65	1.037	-0.158
4.33 8.00	1.837 2.789	-0.157 -0.156
		-0.130
Spostamenti piedritto destro (Combinazione i	<u>nˇ 5)</u>	
Y [m]	u _x [cm]	u _y [cm]
0.65	1.017	0.084
4.33 8.00	0.558 0.031	0.085 0.086
Spostamenti fondazione (Combinazione n° 6)		
X [m]	u _x [cm]	u _y [cm]
0.00	0.003	0.194
3.37	0.002	0.195
6.80	0.000	0.182
10.23 13.60	-0.002 -0.003	0.195 0.194
13.60	-0.003	0.194
Spostamenti piedritto sinistro (Combinazione	n° 6)	
		Fau. 3
Y [m] 0.65	u _x [cm] 0.003	u _y [cm] 0.199
4.33	0.003	0.199
8.00	0.133	0.201
postamenti piedritto destro (Combinazione i	<u>n° 6)</u>	
V []	المسم] ال	,, [ama]
Y [m] 0.65	u _x [cm] -0.003	u _y [cm] 0.199
4.33	-0.003	0.199
8.00	-0.133	0.201
Spostamenti fondazione (Combinazione n° 7)		
X [m] 0.00	u _x [cm]	u _y [cm]
0.00 3.37	0.057 0.055	0.181 0.196
6.80	0.054	0.187
10.23	0.052	0.198
13.60	0.050	0.192
	4.50	
Spostamenti piedritto sinistro (Combinazione	<u>n° 7)</u>	
Y [m]	u _x [cm]	u _y [cm]
0.65	0.057	0.191

Realizzazione Lavori

Collegamento viario compreso tra lo Svincolo della S.S. 514 di "Chiaromonte" con la S.S. 115 e lo

Svincolo della "Ragusana"

PROGETTO ESECUTIVO

4.33	0.135	0.193		
8.00	0.242	0.193		
Spostamenti piedritto destro (Combinazione n°	7)			
				
Y [m]	u _x [cm]	u _y [cm]		
0.65	0.050	0.199		
4.33	-0.009	0.201		
8.00	-0.090	0.201		
Spostamenti fondazione (Combinazione n° 8)				
X [m]	u _x [cm]	u _y [cm]		
0.00	-0.050	0.192		
3.37 6.80	-0.052 -0.054	0.198 0.187		
10.23	-0.055	0.196		
13.60	-0.057	0.181		
Spostamenti piedritto sinistro (Combinazione n	<u>° 8)</u>			
Y [m]	u [cm]	u [cm]		
0.65	u _x [cm] -0.050	u _y [cm] 0.199		
4.33	0.009	0.201		
8.00	0.090	0.201		
Spostamenti piedritto destro (Combinazione n°	8)			
				
Y [m]	u _x [cm]	u _y [cm]		
0.65 4.33	-0.057 -0.135	0.191 0.193		
8.00	-0.133	0.193		
Spostamenti fondazione (Combinazione n° 9)				
X [m]	u _x [cm]	u _y [cm]		
0.00	0.003	0.182		
3.37	0.002	0.198		
6.80	0.000	0.190		
10.23 13.60	-0.002 -0.003	0.198 0.182		
15.00	-0.003	0.162		
Spostamenti piedritto sinistro (Combinazione n	<u>° 9)</u>			
Y [m]	u _x [cm]	u _y [cm]		
0.65	0.003	0.193		
4.33	0.084	0.194		
8.00	0.192	0.195		
Spostamenti piedritto destro (Combinazione nº	9)			
Y [m]	u _x [cm]	u _y [cm]		
0.65	-0.003	0.193		
4.33	-0.084	0.194		
8.00	-0.192	0.195		
Spostamenti fondazione (Combinazione n° 10)				
		, ,		
X [m]	u _x [cm]	u _y [cm]		
0.00 3.37	0.069 0.068	0.176 0.196		
6.80	0.066	0.188		
10.23	0.064	0.199		
13.60	0.063	0.191		
Spostamenti piedritto sinistro (Combinazione n° 10)				
Y [m]	u _x [cm]	u _y [cm]		
0.65	0.069	0.189		
4.33	0.157	0.191		
8.00	0.273	0.191		
Spostamenti piedritto destro (Combinazione n° 10)				
		, ,		
Y [m] 0.65	u _x [cm] 0.063	u _y [cm] 0.199		
0.65 4.33	0.063	0.199		
8.00	-0.083	0.201		
				

Collegamento viario compreso tra lo Svincolo della S.S. 514 di "Chiaromonte" con la S.S. 115 e lo

Svincolo della "Ragusana"

PROGETTO ESECUTIVO

Spostamenti fondazione (Combinazione n° 11)		
X [m]	u _x [cm]	u _γ [cm]
0.00	-0.063	0.191
3.37	-0.064	0.199
6.80	-0.066	0.188
10.23	-0.068	0.196
13.60	-0.069	0.176
Spostamenti piedritto sinistro (Combinazione nº 11	1	
Y [m]	u _x [cm]	u _y [cm]
0.65	-0.063	0.199
4.33	-0.001	0.200
8.00	0.083	0.201
Spostamenti piedritto destro (Combinazione n° 11)		
Y [m]	u _x [cm]	u _γ [cm]
0.65	-0.069	0.189
4.33	-0.157	0.191
8.00	-0.273	0.191
Spostamenti fondazione (Combinazione n° 12)		
X [m]	u _x [cm]	u _y [cm]
0.00	0.003	0.178
3.37	0.002	0.199
6.80	0.000	0.193
10.23	-0.002	0.199
13.60	-0.003	0.178
Spostamenti piedritto sinistro (Combinazione n° 12	1	
Y [m]	u _x [cm]	u _y [cm]
0.65	0.003	0.191
4.33	0.093	0.193
8.00	0.212	0.193
Spostamenti piedritto destro (Combinazione n° 12)		
Y [m]	u _x [cm]	u _y [cm]
0.65	-0.003	0.191
4.33	-0.093	0.193
8.00	-0.212	0.193

Collegamento viario compreso tra lo Svincolo della S.S. 514 di "Chiaromonte" con la S.S. 115 e lo Svincolo della "Ragusana"

PROGETTO ESECUTIVO

RELAZIONE DI CALCOLO SOTTOVIA AL KM 3+248 - SEC. 90

Sollecitazioni

Sollecitazioni fo	ndazione (Combinazione n° 1)		
X [m]	M [kNm]	V [kN]	N [kN]
0.00	0.0000	3.9679	-9.8429
3.37	-200.0075	-210.6241	327.9171
6.80	185.3055	-6.4822	327.9171
10.23	-122.8220	199.8251	327.9171
13.60	0.0000	-4.3034	8.9407
15.00	0.0000	4.3034	0.5407
Sollecitazioni pi	edritto sinistro (Combinazione	<u>n° 1)</u>	
Y [m]	M [kNm]	V [kN]	N [kN]
0.65	-879.4815	337.7600	322.4813
4.33	-129.4189	95.0411	161.2406
8.00	0.0000	0.0000	0.0000
Sollecitazioni pi	edritto destro (Combinazione r	<u>° 1)</u>	
Y [m]	M [kNm]	V [kN]	N [kN]
0.65	-750.4243	-318.9764	322.4812
4.33	-90.5449	-73.8851	161.2406
8.00	0.0000	0.0000	0.0000
Sollecitazioni fo	ndazione (Combinazione n° 2)		
X [m]	M [kNm]	V [kN]	N [kN]
		4.3034	8.9407
0.00	0.0000		
3.37	-122.8220	-189.2929	327.9171
6.80	185.3055	16.4547	327.9171
10.23	-200.0075	221.0109	327.9171
13.60	0.0000	-3.9679	-9.8429
Callanitaniani	adaithe sinisten (Combinations	° 21	
Sollecitazioni pi	edritto sinistro (Combinazione	<u>n 2)</u>	
Y [m]	M [kNm]	V [kN]	N [kN]
0.65	-750.4243	318.9764	322.4813
4.33	-90.5449	73.8851	161.2406
8.00	0.0000	0.0000	0.0000
Sollecitazioni pi	edritto destro (Combinazione r	<u>n° 2)</u>	
Y [m]	M [kNm]	V [kN]	N [kN]
0.65	-879.4815	-337.7600	322.4813
4.33	-129.4189	-95.0411	161.2406
8.00	0.0000	0.0000	0.0000
Sollecitazioni fo	ndazione (Combinazione n° 3)		
X [m]	M [kNm]	V [kN]	N [kN]
0.00	0.0000	3.9941	-0.4640
3.37	-205.7659	-206.4759	337.2960
6.80	153.5032	5.1011	337.2960
10.23	-205.7659	217.0357	337.2960
13.60	0.0000	-3.9941	-0.4640
Collocitazioni ni	odritta cinietra (Combinaziona	n° 21	
Soliecitazioni pi	edritto sinistro (Combinazione	11 31	
Y [m]	M [kNm]	V [kN]	N [kN]
0.65	-879.4815	337.7600	322.4812
4.33	-129.4189	95.0411	161.2406
8.00	0.0000	0.0000	0.0000
Sollecitazioni pi	edritto destro (Combinazione r	<u>° 3)</u>	
Y [m]	M [kNm]	V [kN]	N [kN]
0.65	-879.4815	-337.7600	322.4812
4.33	-129.4189	-95.0411	161.2406
8.00	0.0000	0.0000	0.0000
Sollecitazioni fo	ndazione (Combinazione n° 4)		
X [m]	M [kNm]	V [kN]	N [kN]
0.00	0.0000	0.0000	-107.5513
3.37	-1565.4889	-360.1021	696.9492
6.80	-755.1610	-76.0484	741.5130

Collegamento viario compreso tra lo Svincolo della S.S. 514 di "Chiaromonte" con la S.S. 115 e lo

Svincolo della "Ragusana" PROGETTO ESECUTIVO

Direzione Progettazione e Realizzazione Lavori

10.23 13.60	-1033.5487 0.0000	238.6800	786.0768
15.60	0.0000	-0.8144	105.5112
Sollecitazioni pi	edritto sinistro (Combinazione	n° 4)	
Y [m]	M [kNm]	V [kN]	N [kN]
0.65	-2527.7721	760.7516	286.6028
4.33	-564.9419	325.6803	143.3014
8.00	0.0000	0.0000	0.0000
Sollecitazioni pi	edritto destro (Combinazione r	<u>n° 4)</u>	
Y [m]	M [kNm]	V [kN]	N [kN]
0.65 4.33	-1763.2662 -205.2452	-724.3145 -171.6219	286.6028 143.3014
4.33 8.00	0.0000	-1.9981	0.0000
Sollecitazioni fo	ndazione (Combinazione n° 5)		
X [m] 0.00	M [kNm] 0.0000	V [kN] 0.0000	N [kN] -108.7643
3.37	-1768.3854	-312.0181	695.7362
6.80	-991.3723	-96.8850	740.2999
10.23	-1142.6354	184.2638	784.8637
13.60	0.0000	0.0000	106.7276
	edritto sinistro (Combinazione		
Y [m]	M [kNm]	V [kN]	N [kN]
0.65	-2527.7721	760.7516	191.1472
4.33	-564.9419	325.6803	95.5736
3.00	0.0000	0.0000	0.0000
Sollecitazioni pi	edritto destro (Combinazione r	<u>1° 5)</u>	
/ [m]	M [kNm]	V [kN]	N [kN]
0.65	-1736.4188	-721.8850	191.1472
4.33 3.00	-193.7418 0.0000	-166.8858 -1.4056	95.5736 0.0000
Sollecitazioni fo	ndazione (Combinazione n° 6)		
X [m]	M [kNm]	V [kN]	N [kN]
0.00	0.0000	3.2250	-0.3006
3.37	-71.5239	-141.5733	218.5498
6.80	172.5829	3.5761	218.5498
10.23 13.60	-71.5239 0.0000	149.2292 -3.2250	218.5498 -0.3006
Sollecitazioni pi	edritto sinistro (Combinazione	<u>n° 6)</u>	
Y [m]	M [kNm]	V [kN]	N [kN]
0.65	-536.2855	218.8505	238.8750
4.33 3.00	-67.0703 0.0000	54.7297 0.0000	119.4375 0.0000
Sollecitazioni pi	edritto destro (Combinazione r	n <u>° 6)</u>	
/ [m]	M [kNm]	V [kN]	N [kN]
0.65	-536.2855	-218.8505	238.8750
4.33	-67.0703	-54.7297	119.4375
3.00	0.0000	0.0000	0.0000
Sollecitazioni fo	ndazione (Combinazione n° 7)		
X [m]	M [kNm]	V [kN]	N [kN]
0.00	0.0000	3.0098	-5.9434
3.37	-128.8442	-152.5089	236.4136
6.80	146.8361	-2.9556	236.4136
10.23	-84.3489	148.0038	236.4136
13.60	0.0000	-3.2050	5.2930
Sollecitazioni pi	edritto sinistro (Combinazione	<u>n° 7)</u>	
Y [m]	M [kNm]	V [kN]	N [kN]
r (m) 0.65	-622.6722	V [KN] 242.3571	N [KN] 238.8750
	022.0722	272.33/1	230.0730

Collegamento viario compreso tra lo Svincolo della S.S. 514 di "Chiaromonte" con la S.S. 115 e lo

Svincolo della "Ragusana" PROGETTO ESECUTIVO

Direzione Progettazione e Realizzazione Lavori

4.33	-88.6670	66.4830	119.4375
8.00	0.0000	0.0000	0.0000
Sollecitazioni pie	edritto destro (Combinazione n	<u>1° 7)</u>	
Y [m]	M [kNm]	V [kN]	N [kN]
0.65	-548.5002	-231.1206	238.8750
4.33	-67.0703	-54.7297	119.4375
8.00	0.0000	0.0000	0.0000
Sollecitazioni for	ndazione (Combinazione n° 8)		
X [m]	M [kNm]	V [kN]	N [kN]
0.00	0.0000	3.2050	5.2930
3.37 6.80	-84.3489 146.8361	-140.2370 10.2799	236.4136 236.4136
10.23	-128.8442	160.1895	236.4136
13.60	0.0000	-3.0098	-5.9434
Sollecitazioni pie	edritto sinistro (Combinazione	<u>n° 8)</u>	
Y [m]	M [kNm]	V [kN]	N [kN]
0.65	-548.5002	231.1206	238.8750
4.33	-67.0703	54.7297	119.4375
8.00	0.0000	0.0000	0.0000
Sollecitazioni pie	edritto destro (Combinazione n	<u>° 8)</u>	
Y [m]	M [kNm]	V [kN]	N [kN]
0.65	-622.6722	-242.3571	238.8750
4.33	-88.6670	-66.4830	119.4375
8.00	0.0000	0.0000	0.0000
Sollecitazioni for	ndazione (Combinazione n° 9)		
X [m]	M [kNm]	V [kN]	N [kN]
0.00	0.0000	3.0252	-0.3329
3.37	-132.1953	-150.1021	242.0241
6.80	128.4253	3.7280	242.0241
10.23 13.60	-132.1953 0.0000	157.8827 -3.0252	242.0241 -0.3329
15.00	0.0000	-3.0232	-0.5325
Sollecitazioni pie	edritto sinistro (Combinazione	<u>n° 9)</u>	
V [ma]	NA [Ichina]	V [[M]	NI FLAIT
Y [m] 0.65	M [kNm] -622.6722	V [kN] 242.3571	N [kN] 238.8750
4.33	-88.6670	66.4830	119.4375
8.00	0.0000	0.0000	0.0000
Sallacitazioni nic	edritto destro (Combinazione n		
,			
Y [m]	M [kNm]	V [kN]	N [kN]
0.65 4.33	-622.6722 -88.6670	-242.3571 -66.4830	238.8750 119.4375
8.00	0.0000	0.0000	0.0000
Sollecitazioni for	ndazione (Combinazione n° 10)	1	
X [m]	M [kNm]	V [kN]	N [kN]
0.00	0.0000	2.9392	-7.2910
3.37	-148.1537	-156.0178	242.9016
6.80	137.2633	-4.8016	242.9016
10.23	-90.9792	148.0186	242.9016
13.60	0.0000	-3.1877	6.6228
Sollecitazioni pie	edritto sinistro (Combinazione	n° 10)	
v ()	Ad flating?	V flati	NI FLAIT
Y [m] 0.65	M [kNm] -651 4678	V [kN] 250 1926	N [kN] 238 8750
0.65 4.33	-651.4678 -95.8659	250.1926 70.4008	238.8750 119.4375
4.55 8.00	0.0000	0.0000	0.0000
			0.0000
	edritto destro (Combinazione n		
Y [m]	M [kNm]	V [kN]	N [kN]
0.65 4.33	-555.8699 -67.0703	-236.2788 -54.7297	238.8750 119.4375
4.33 8.00	0.0000	-54.7297	0.0000
5.50	0.0000	0.0000	0.0000

Collegamento viario compreso tra lo Svincolo della S.S. 514 di "Chiaromonte" con la S.S. 115 e lo Svincolo della "Ragusana"

PROGETTO ESECUTIVO

RELAZIONE DI CALCOLO SOTTOVIA AL KM 3+248 - SEC. 90

Sollecitazioni fo	ndazione (Combinazione n° 11	1	
X [m]	M [kNm]	V [kN]	N [kN]
0.00	0.0000	3.1877	6.6228
3.37	-90.9792	-140.2169	242.9016
6.80	137.2633	12.1887	242.9016
10.23	-148.1537	163.7118	242.9016
13.60	0.0000	-2.9392	-7.2910
Sollecitazioni pi	edritto sinistro (Combinazione	n° 11)	
Y [m]	M [kNm]	V [kN]	N [kN]
0.65	-555.8699	236.2788	238.8750
4.33	-67.0703	54.7297	119.4375
8.00	0.0000	0.0000	0.0000
Sollecitazioni pi	edritto destro (Combinazione r	<u>n° 11)</u>	
Y [m]	M [kNm]	V [kN]	N [kN]
0.65	-651.4678	-250.1926	238.8750
4.33	-95.8659	-70.4008	119.4375
8.00	0.0000	0.0000	0.0000
Sollecitazioni fo	ndazione (Combinazione n° 12	1	
X [m]	M [kNm]	V [kN]	N [kN]
0.00	0.0000	2.9586	-0.3437
3.37	-152.4192	-152.9451	249.8489
6.80	113.7061	3.7786	249.8489
10.23	-152.4192	160.7672	249.8489
13.60	0.0000	-2.9586	-0.3437
Sollecitazioni pi	edritto sinistro (Combinazione	n° 12)	
Y [m]	M [kNm]	V [kN]	N [kN]
0.65	-651.4678	250.1926	238.8750
4.33	-95.8659	70.4008	119.4375
8.00	0.0000	0.0000	0.0000
Sollecitazioni pi	edritto destro (Combinazione r	<u>n° 12)</u>	
Y [m]	M [kNm]	V [kN]	N [kN]
0.65	-651.4678	-250.1926	238.8750
4.33	-95.8659	-70.4008	119.4375

0.0000

8.00

0.0000

0.0000

Collegamento viario compreso tra lo Svincolo della S.S. 514 di "Chiaromonte" con la S.S. 115 e lo Svincolo della "Ragusana"

PROGETTO ESECUTIVO

Direzione Progettazione e Realizzazione Lavori

RELAZIONE DI CALCOLO SOTTOVIA AL KM 3+248 - SEC. 90

Pressioni terreno

Description of the state of the	
Pressioni sul terreno di fondazione (Combinazione n° 1)	
X [m]	σ _t [MPa]
0.00	0.095
3.37	0.106
6.80 10.23	0.102
	0.107
13.60	0.103
<u>Pressioni sul terreno di fondazione (Combinazione n° 2)</u>	
X [m] 0.00	σt [MPa]
3.37	0.103 0.107
6.80	0.107
10.23	0.106
13.60	0.095
Pressioni sul terreno di fondazione (Combinazione n° 3)	
X [m]	σ _t [MPa]
0.00	0.096
3.37	0.108
6.80	0.104
10.23	0.108
13.60	0.096
Pressioni sul terreno di fondazione (Combinazione n° 4)	
X [m]	σ _t [MPa]
0.00 3.37	0.000
6.80	0.092 0.137
10.23	0.115
13.60	0.020
Pressioni sul terreno di fondazione (Combinazione n° 5)	
X [m]	σ _t [MPa]
0.00	0.000
3.37	0.047
6.80	0.111
10.23	0.092
13.60	0.000
Pressioni sul terreno di fondazione (Combinazione n° 6)	
X [m] 0.00	σ _t [MPa] 0.077
3.37	0.077
6.80	0.073
10.23	0.078
13.60	0.077
Pressioni sul terreno di fondazione (Combinazione n° 7)	
X [m]	$\sigma_t [\text{MPa}]$
0.00	0.072
3.37	0.078
6.80	0.075
10.23 13.60	0.079 0.077
Pressioni sul terreno di fondazione (Combinazione n° 8)	
X [m]	σ _t [MPa]
0.00	0.077
3.37	0.079
6.80	0.075
10.23	0.078
13.60	0.072
Pressioni sul terreno di fondazione (Combinazione n° 9)	
X [m]	σt [MPa]
0.00	0.073
3.37	0.079
6.80	0.076
10.23	0.079
13.60	0.073
Pressioni sul terreno di fondazione (Combinazione n° 10)	-
X [m]	σ _t [MPa]

Collegamento viario compreso tra lo Svincolo della S.S. 514 di "Chiaromonte" con la S.S. 115 e lo

Svincolo della "Ragusana" PROGETTO ESECUTIVO

Direzione Progettazione e Realizzazione Lavori

0.00	0.071
3.37	0.078
6.80	0.075
10.23	0.080
13.60	0.077
Pressioni sul terreno di	fondazione (Combinazione n° 11)
X [m]	σ _t [MPa]
0.00	0.077
3.37	0.080
6.80	0.075
10.23	0.078
13.60	0.071
<u>Pressioni sul terreno di</u>	fondazione (Combinazione n° 12)
X [m]	σ _t [MPa]
0.00	0.071
3.37	0.080
6.80	0.077
10.23	0.080
13.60	0.071

PROGETTO ESECUTIVO

Direzione Progettazione e Realizzazione Lavori

RELAZIONE DI CALCOLO SOTTOVIA AL KM 3+248 - SEC. 90

Verifiche combinazioni SLU

Simbologia adottata ed unità di misura

N° Indice sezione

Ascissa/Ordinata sezione, espresso in cm

Momento flettente, espresso in kNm Taglio, espresso in kN М

V N Nu Sforzo normale, espresso in kN Sforzo normale ultimo, espressa in kN

Momento ultimo, espressa in kNm

Area armatura inferiore, espresse in cmq Area armatura superiore, espresse in cmq

A_{fi} A_{fs} CS

Coeff. di sicurezza sezione Aliquota taglio assorbita dal calcestruzzo in elementi senza armature trasversali, espressa in kN

Aliquota taglio assorbita dal calcestruzzo in elementi con armature trasversali, espressa in kN

Aliquota taglio assorbita armature trasversali, espressa in kN Area armature trasversali nella sezione, espressa in cmq V_{Rsd}

Verifica sezioni fondazione [Combinazione n° 1 - SLU (Approccio 2)]

B = 100 cm Base sezione

Altezza sezione	H = 130.00 cm
Verifiche presso-fless	sione

N°	Х	M	N	N_u	M_u	A_{fi}	A_fs	CS
1	0.00	0.00 (4.46)	-9.84	-379.20	-673.86	57.02	19.01	38.52
2	3.37	200.01 (436.96)	327.92	3155.74	4205.12	57.02	19.01	9.62
3	6.80	-185.31 (-186.44)	327.92	8172.53	-4646.62	38.01	19.01	24.92
4	10.23	122.82 (347.63)	327.92	3304.72	3503.34	38.01	19.01	10.08
5	13.60	0.00 (4.84)	8.94	763.69	-1347.35	57.02	19.01	85.42

Verific	he taglio					
N°	X	V	V_{Rd}	V_{Rsd}	V_{Rcd}	A_{sw}
1	0.00	3.97	420.55	0.00	0.00	0.00
2	3.37	-210.62	570.61	0.00	0.00	0.00
3	6.80	-6.48	469.26	0.00	0.00	0.00
4	10.23	199.83	504.45	0.00	0.00	0.00
5	13.60	-4.30	423.25	0.00	0.00	0.00

Verifica sezioni piedritto sinistro [Combinazione n° 1 - SLU (Approccio 2)]

B = 100 cm H = 130.00 cm Altezza sezione

Verific	he presso-flessione							
N°	X	M	N	N_u	M_u	A_{fi}	A_{fs}	CS
1	0.65	-879.48 (-879.48)	322.48	1191.58	-3249.73	19.01	57.02	3.70
2	4.33	-129.42 (-236.34)	161.24	1916.78	-2809.54	19.01	38.01	11.89
3	8.00	0.00 (0.00)	0.00	0.00	0.00	19.01	38.01	1000.00
Varific	he taglio							

verillici	ile tagilo					
N°	X	V	V_{Rd}	V_{Rsd}	V_{Rcd}	A_{sw}
1	0.65	337.76	569.83	0.00	0.00	0.00
2	4.33	95.04	480.41	0.00	0.00	0.00
3	8.00	0.00	421.97	0.00	0.00	0.00

Verifica sezioni piedritto destro [Combinazione n° 1 - SLU (Approccio 2)]

B = 100 cm Base sezione Altezza sezione H = 130.00 cm

Verific	he presso-flessione							
N°	X	M	N	N_u	M_u	Afi	A_{fs}	CS
1	0.65	-750.42 (-750.42)	322.48	1452.08	-3379.03	19.01	57.02	4.50
2	4.33	-90.54 (-173.67)	161.24	3219.66	-3467.76	19.01	38.01	19.97
3	8.00	0.00 (0.00)	0.00	0.00	0.00	19.01	38.01	1000.00

Verifich	ne taglio					
N°	X	V	V_{Rd}	V_{Rsd}	V_{Rcd}	A_{sw}
1	0.65	-318.98	569.83	0.00	0.00	0.00
2	4.33	-73.89	480.41	0.00	0.00	0.00
3	8.00	0.00	421.97	0.00	0.00	0.00

Verifica sezioni fondazione [Combinazione n° 2 - SLU (Approccio 2)]

Base sezione B = 100 cm

PROGETTO ESECUTIVO

Direzione Progettazione e Realizzazione Lavori

RELAZIONE DI CALCOLO SOTTOVIA AL KM 3+248 - SEC. 90

	sezione	H = 130.00 cm						
	ne presso-fless	<u>ione</u>						
N°	Х	M	N	N_u	Mu	A_{fi}	A_{fs}	CS
1	0.00	0.00 (-4.84)	8.94	763.69	-1347.35	57.02	19.01	85.42
2	3.37	122.82 (335.78)	327.92	4621.43	4732.19	57.02	19.01	14.09
3	6.80	-185.31 (-186.44)	327.92	8172.53	-4646.62	38.01	19.01	24.92
4	10.23	200.01 (448.64)	327.92	2140.70	2928.83	38.01	19.01	6.53
5	13.60	0.00 (4.46)	-9.84	-379.20	-673.86	57.02	19.01	38.52
	ne taglio							
٧°	Х	V	V _{Rd}	V _{Rsd}	V _{Rcd}	A _{sw}		
L	0.00	4.30	423.25	0.00	0.00	0.00		
2	3.37	-189.29	570.61	0.00	0.00	0.00		
3 1	6.80	16.45	469.26	0.00	0.00	0.00		
;	10.23 13.60	221.01 -3.97	504.45 420.55	0.00 0.00	0.00 0.00	0.00 0.00		
/erifica	a sezioni piedri	tto sinistro [Combinazione n°	2 - SLU (Approccio 2)]					
	ezione sezione	B = 100 cm H = 130.00 cm						
	ne presso-fless							
۱°	X	M	N	N _u	M _u	A _{fi}	Afs	CS
	0.65	-750.42 (-750.42)	322.48	1452.08	-3379.03	19.01	57.02	4.50
	4.33	-90.54 (-173.67)	161.24	3219.66	-3467.76	19.01	38.01	19.97
	8.00	0.00 (0.00)	0.00	0.00	0.00	19.01	38.01	1000.00
	ne taglio							
l°	Х	V	V_{Rd}	V_{Rsd}	V_{Rcd}	A_{sw}		
	0.65	318.98	569.83	0.00	0.00	0.00		
	4.33	73.89	480.41	0.00	0.00	0.00		
	8.00	0.00	421.97	0.00	0.00	0.00		
Altezza <u>/erifich</u>	ezione sezione ne presso-fless	B = 100 cm H = 130.00 cm ione						
N°	Х	M	N	Nu	Mu	Afi	A_{fs}	CS
	0.65	-879.48 (-879.48)	322.48	1191.58	-3249.73	19.01	57.02	3.70
	4.33 8.00	-129.42 (-236.34) 0.00 (0.00)	161.24 0.00	1916.78 0.00	-2809.54 0.00	19.01 19.01	38.01 38.01	11.89 1000.00
ا منائن ما	a a da alia							
•	<u>ne taglio</u> X	V	V_{Rd}	V_{Rsd}	V_{Rcd}	A_{sw}		
	0.65	-337.76	569.83	0.00	0.00	0.00		
	4.33 8.00	-95.04 0.00	480.41 421.97	0.00 0.00	0.00 0.00	0.00 0.00		
		zione [Combinazione n° 3 - SLI						
	ezione sezione	B = 100 cm H = 130.00 cm						
<u>erifich</u>	ne presso-fless X	<u>ione</u> M	N	NI	Mu	۸	۸.	CS
	0.00	0.00 (4.49)	-0.46	N _u -23.61	-888.43	A _{fi} 57.02	A _{fs} 19.01	50.88
!	3.37	205.77 (438.05)	-0.46 337.30	-23.61 3270.18	-888.43 4247.02	57.02 57.02	19.01	9.70
	6.80	-153.50 (-153.50)	337.30	11311.36	-5147.80	38.01	19.01	9.70 33.54
	10.23	205.77 (449.93)	337.30	2232.16	2977.55	38.01	19.01	6.62
	10.23	0.00 (4.49)	-0.46	-23.61	-888.43	57.02	19.01	50.88
	13.60							
erifich	13.60 ne taglio X	V	V_{Rd}	V_{Rsd}	V_{Rcd}	A_{sw}		
<u>'erifich</u> I°	ne taglio	V 3.99	V _{Rd} 421.90	V _{Rsd} 0.00	V _{Rcd} 0.00	A _{sw} 0.00		
<u>'erifich</u> I°	ne taglio X							
/erifich	n <u>e taglio</u> X 0.00	3.99	421.90	0.00 0.00 0.00	0.00 0.00 0.00	0.00 0.00 0.00		
1 5 <u>/erifich</u> N° L 2 3	ne taglio X 0.00 3.37 6.80 10.23	3.99 -206.48 5.10 217.04	421.90 571.96 470.61 505.81	0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00		
3 1 5 Verifich N° L 2 3 4	ne taglio X 0.00 3.37 6.80	3.99 -206.48 5.10	421.90 571.96 470.61	0.00 0.00 0.00	0.00 0.00 0.00	0.00 0.00 0.00		

Verifica sezioni piedritto sinistro [Combinazione n° 3 - SLU (Approccio 2)]

PROGETTO ESECUTIVO

Direzione Progettazione e Realizzazione Lavori

RELAZIONE DI CALCOLO SOTTOVIA AL KM 3+248 - SEC. 90

Base sezione Altezza sezion		= 100 cm = 130.00 cm						
Verifiche pres	sso-flessione							
N° 1 0.	.65	M -879.48 (-879.48)	N 322.48	N _u 1191.58	M _u -3249.73	A _{fi} 19.01	A _{fs} 57.02	CS 3.70
	.33	-129.42 (-236.34)	161.24	1916.78	-2809.54	19.01	38.01	11.89
3 8.	.00	0.00 (0.00)	0.00	0.00	0.00	19.01	38.01	1000.00
Verifiche tagli								
N° 1 0.	.65	V 337.76	V _{Rd} 569.83	V _{Rsd} 0.00	V _{Rcd} 0.00	A _{sw} 0.00		
	.33	95.04	480.41	0.00	0.00	0.00		
3 8.	.00	0.00	421.97	0.00	0.00	0.00		
Verifica sezior	ni piedritto d	estro [Combinazione n° 3	- SLU (Approccio 2)]					
Base sezione Altezza sezion		= 100 cm = 130.00 cm						
Verifiche pres								
N° 1 0.	.65	M -879.48 (-879.48)	N 322.48	N _u 1191.58	M _u -3249.73	A _{fi} 19.01	A _{fs} 57.02	CS 3.70
	.33	-129.42 (-236.34)	161.24	1916.78	-2809.54	19.01	38.01	11.89
3 8.	.00	0.00 (0.00)	0.00	0.00	0.00	19.01	38.01	1000.00
Verifiche tagli	<u>io</u>							
N°	X	V	V _{Rd}	V _{Rsd}	V _{Rcd}	Asw		
	.65 .33	-337.76 -95.04	569.83 480.41	0.00 0.00	0.00 0.00	0.00 0.00		
	.00	0.00	457.16	0.00	0.00	0.00		
Verifica sezion Base sezione Altezza sezion Verifiche pres	B ne H	= 100 cm = 130.00 cm	U (Approccio 2) - Sisma	Vert. positivo				
N°	X	М	N	Nu	Mu	Afi	Afs	CS
	.00	0.00 (0.00)	-107.55	-1195.16	-181.49	57.02	19.01	11.23
	.37	1565.49 (1970.60)	696.95	1140.35	3224.29	57.02	19.01 19.01	1.64 4.00
	.80 .23	755.16 (840.72) 1033.55 (1302.06)	741.51 786.08	2964.40 1591.57	3360.99 2636.29	38.01 38.01	19.01	2.02
	.60	0.00 (0.92)	105.51	21346.84	-3103.70	57.02	19.01	204.41
Verifiche tagli	io							
N°	X	V	V_{Rd}	V_{Rsd}	V_{Rcd}	A_{sw}		
	.00	0.00	406.61	0.00	0.00	0.00		
	.37 .80	-360.10 -76.05	623.84	0.00 0.00	0.00 0.00	0.00 0.00		
	.23	238.68	564.11 570.53	0.00	0.00	0.00		
5 13.	.60	-0.81	437.03	0.00	0.00	0.00		
Verifica sezior	ni piedritto si	nistro [Combinazione n° 4	4 - SLU (Approccio 2) - S	Sisma Vert. positivo]				
Base sezione Altezza sezion		= 100 cm = 130.00 cm						
Verifiche pres N°		8.4	NI.	NI .	8.4	۸~	۸٠	CC
	.65	M -2527.77 (-2527.77)	N 286.60	N _u 319.37	M _u -2816.78	A _{fi} 19.01	A _{fs} 57.02	CS 1.11
	.33	-564.94 (-931.33)	143.30	299.75	-1948.09	19.01	38.01	2.09
3 8.	.00	0.00 (0.00)	0.00	0.00	0.00	19.01	38.01	1000.00
Verifiche tagli	<u>io</u>							
N°	X	V	V _{Rd}	V _{Rsd}	V _{Rcd}	A _{sw}		
	.65	760.75 325.68	564.65 477.83	0.00 0.00	5272.92 0.00	0.00 0.00		
	.33	325.68 0.00	477.83 457.16	0.00	0.00	0.00		

Verifica sezioni piedritto destro [Combinazione n° 4 - SLU (Approccio 2) - Sisma Vert. positivo]

B = 100 cm Base sezione Altezza sezione H = 130.00 cm

MANDATARIA:

Collegamento viario compreso tra lo Svincolo della S.S. 514 di "Chiaromonte" con la S.S. 115 e lo

Svincolo della "Ragusana" PROGETTO ESECUTIVO

Direzione Progettazione e Realizzazione Lavori

	he presso-fless	ione						
N°	X	M	N	N _u	Mu	A_{fi}	A_{fs}	CS
1	0.65	-1763.27 (-1763.27)	286.60	469.99	-2891.54	19.01	57.02	1.64
2	4.33	-205.25 (-398.32)	143.30	795.96	-2212.44	19.01	38.01	5.55
3	8.00	0.00 (-2.25)	0.00	0.00	-1788.41	19.01	38.01	795.61
Verific	he taglio							
N°	Х	V	V_{Rd}	V_{Rsd}	V_{Rcd}	A_{sw}		
1	0.65	-724.31	564.65	0.00	5272.92	0.00		
2	4.33	-171.62	477.83	0.00	0.00	0.00		
3	8.00	-2.00	457.16	0.00	0.00	0.00		
Verifica	a sezioni fonda	azione [Combinazione n° 5 - SLI	J (Approccio 2) - Sisma	Vert. negativo				
Base se	ezione	B = 100 cm						
Altezza	sezione	H = 130.00 cm						
<u>Verificl</u> N°	he presso-fless			A.I				66
1	0.00	0.00 (0.00)	N -108.76	N _u -1216.81	M _u -168.42	A _{fi} 57.02	A _{fs} 19.01	CS 11.30
2	3.37	1768.39 (2119.41)	695.74	1042.49	3175.72	57.02	19.01	1.50
3	6.80	991.37 (1100.37)	740.30	1875.33	2787.46	38.01	19.01	2.53
4	10.23	1142.64 (1349.93)	784.86	1506.38	2590.91	38.01	19.01	1.92
5	13.60	0.00 (0.00)	106.73	21380.41	-3016.42	57.02	19.01	202.38
	he taglio	.,	.,		.,			
N°	0.00	V 0.00	V _{Rd}	V _{Rsd}	V _{Rcd}	A _{sw}		
1 2	3.37	0.00 -312.02	406.43 623.66	0.00 0.00	0.00 0.00	0.00 0.00		
3	6.80	-96.88	563.93	0.00	0.00	0.00		
4	10.23	184.26	570.36	0.00	0.00	0.00		
5	13.60	0.00	437.20	0.00	0.00	0.00		
Verifica	a sezioni piedr	itto sinistro [Combinazione nº !	5 - SLU (Approccio 2) -	Sisma Vert. negativol				
			5 - SLU (Approccio 2) -	Sisma Vert. negativo]				
Base se	ezione	B = 100 cm	5 - SLU (Approccio 2) -	Sisma Vert. negativo]				
Base se			5 - SLU (Approccio 2) -	Sisma Vert. negativo]				
Base se Altezza	ezione a sezione	B = 100 cm H = 130.00 cm	5 - SLU (Approccio 2) -	Sisma Vert. negativo]				
Base se Altezza	ezione	B = 100 cm H = 130.00 cm	5 - SLU (Approccio 2) - N	Sisma Vert. negativo] Nu	Μυ	As	A ts	CS
Base se Altezza Verifici	ezione a sezione he presso-fles:	B = 100 cm H = 130.00 cm <u>sione</u>			Mu -2761.92	А _й 19.01	As 57.02	CS 1.09
Base se Altezza <u>Verificl</u> N°	ezione a sezione he presso-fles: X	B = 100 cm H = 130.00 cm Sione M -2527.77 (-2527.77) -564.94 (-931.33)	N 191.15 95.57	Nu				
Base se Altezza Verifici N°	ezione a sezione he presso-fles: X 0.65	B = 100 cm H = 130.00 cm Sione M -2527.77 (-2527.77)	N 191.15	Nu 208.85	-2761.92	19.01	57.02	1.09
Base se Altezza Verifici N° 1	ezione a sezione he presso-fles: X 0.65 4.33	B = 100 cm H = 130.00 cm Sione M -2527.77 (-2527.77) -564.94 (-931.33)	N 191.15 95.57	Nu 208.85 194.14	-2761.92 -1891.83	19.01 19.01	57.02 38.01	1.09 2.03
Base se Altezza Verifici N° 1 2	ezione a sezione he presso-fles: X 0.65 4.33 8.00	B = 100 cm H = 130.00 cm Sione M -2527.77 (-2527.77) -564.94 (-931.33)	N 191.15 95.57	Nu 208.85 194.14	-2761.92 -1891.83	19.01 19.01	57.02 38.01	1.09 2.03
Base so Altezza Verifica N° 1 2 3	ezione n sezione he presso-fless X 0.65 4.33 8.00	B = 100 cm H = 130.00 cm Sione M -2527.77 (-2527.77) -564.94 (-931.33)	N 191.15 95.57 0.00	Nu 208.85 194.14 0.00	-2761.92 -1891.83 0.00	19.01 19.01 19.01	57.02 38.01	1.09 2.03
Base so Altezza Verificl N° 1 2 3	ezione n sezione he presso-fless X 0.65 4.33 8.00 he taglio X	B = 100 cm H = 130.00 cm sione M -2527.77 (-2527.77) -564.94 (-931.33) 0.00 (0.00)	N 191.15 95.57 0.00	N _u 208.85 194.14 0.00	-2761.92 -1891.83 0.00 V _{Rcd}	19.01 19.01 19.01 A _{sw}	57.02 38.01	1.09 2.03
Base so Altezza Verifica N° 1 2 3	ezione n sezione he presso-fless X 0.65 4.33 8.00	B = 100 cm H = 130.00 cm Sione M -2527.77 (-2527.77) -564.94 (-931.33) 0.00 (0.00)	N 191.15 95.57 0.00	Nu 208.85 194.14 0.00	-2761.92 -1891.83 0.00	19.01 19.01 19.01	57.02 38.01	1.09 2.03
Base se Altezza Verifici N° 1 2 3 Verifici N° 1	ezione a sezione he presso-fles: X 0.65 4.33 8.00 he taglio X 0.65	B = 100 cm H = 130.00 cm Sione M -2527.77 (-2527.77) -564.94 (-931.33) 0.00 (0.00) V 760.75	N 191.15 95.57 0.00 V _{Rd} 550.88	Nu 208.85 194.14 0.00 V _{Rtd} 0.00	-2761.92 -1891.83 0.00 V _{Rcd} 5252.98	19.01 19.01 19.01 A _{sw} 0.00	57.02 38.01	1.09 2.03
Base so Altezza Verifici N° 1 2 3 Verifici N° 1 2	ezione la sezione he presso-fles: X 0.65 4.33 8.00 he taglio X 0.65 4.33	B = 100 cm H = 130.00 cm Sione M -2527.77 (-2527.77) -564.94 (-931.33) 0.00 (0.00) V 760.75 325.68	N 191.15 95.57 0.00 V _{Rd} 550.88 470.94	Nu 208.85 194.14 0.00 V _{Rud} 0.00 0.00	-2761.92 -1891.83 0.00 V _{Rcd} 5252.98 0.00	19.01 19.01 19.01 A _{sw} 0.00 0.00	57.02 38.01	1.09 2.03
Base so Altezza Verifici N° 1 2 3 Verifici N° 1 2	ezione la sezione he presso-fles: X 0.65 4.33 8.00 he taglio X 0.65 4.33	B = 100 cm H = 130.00 cm Sione M -2527.77 (-2527.77) -564.94 (-931.33) 0.00 (0.00) V 760.75 325.68	N 191.15 95.57 0.00 V _{Rd} 550.88 470.94	Nu 208.85 194.14 0.00 V _{Rud} 0.00 0.00	-2761.92 -1891.83 0.00 V _{Rcd} 5252.98 0.00	19.01 19.01 19.01 A _{sw} 0.00 0.00	57.02 38.01	1.09 2.03
Base St Altezza Verifici N° 1 2 3 Verifici N° 1 2 3	ezione a sezione he presso-fless X 0.65 4.33 8.00 he taglio X 0.65 4.33 8.00	B = 100 cm H = 130.00 cm Sione M -2527.77 (-2527.77) -564.94 (-931.33) 0.00 (0.00) V 760.75 325.68 0.00	N 191.15 95.57 0.00 V _{Rd} 550.88 470.94 457.16	Nu 208.85 194.14 0.00 V _{Red} 0.00 0.00 0.00	-2761.92 -1891.83 0.00 V _{Rcd} 5252.98 0.00	19.01 19.01 19.01 A _{sw} 0.00 0.00	57.02 38.01	1.09 2.03
Base St Altezza Verifici N° 1 2 3 Verifici N° 1 2 3	ezione a sezione he presso-fless X 0.65 4.33 8.00 he taglio X 0.65 4.33 8.00	B = 100 cm H = 130.00 cm Sione M -2527.77 (-2527.77) -564.94 (-931.33) 0.00 (0.00) V 760.75 325.68	N 191.15 95.57 0.00 V _{Rd} 550.88 470.94 457.16	Nu 208.85 194.14 0.00 V _{Red} 0.00 0.00 0.00	-2761.92 -1891.83 0.00 V _{Rcd} 5252.98 0.00	19.01 19.01 19.01 A _{sw} 0.00 0.00	57.02 38.01	1.09 2.03
Base so Altezza Verifici N° 1 2 3 Verifici N° 1 2 3	ezione n sezione he presso-fles:	B = 100 cm H = 130.00 cm Sione M -2527.77 (-2527.77) -564.94 (-931.33) 0.00 (0.00) V 760.75 325.68 0.00	N 191.15 95.57 0.00 V _{Rd} 550.88 470.94 457.16	Nu 208.85 194.14 0.00 V _{Red} 0.00 0.00 0.00	-2761.92 -1891.83 0.00 V _{Rcd} 5252.98 0.00	19.01 19.01 19.01 A _{sw} 0.00 0.00	57.02 38.01	1.09 2.03
Base so Altezza Verifici N° 1 2 3 Verifici N° 1 2 3	ezione n sezione he presso-fles:	B = 100 cm H = 130.00 cm Sione M -2527.77 (-2527.77) -564.94 (-931.33) 0.00 (0.00) V 760.75 325.68 0.00 itto destro [Combinazione n° 5	N 191.15 95.57 0.00 V _{Rd} 550.88 470.94 457.16	Nu 208.85 194.14 0.00 V _{Red} 0.00 0.00 0.00	-2761.92 -1891.83 0.00 V _{Rcd} 5252.98 0.00	19.01 19.01 19.01 A _{sw} 0.00 0.00	57.02 38.01	1.09 2.03
Base so Altezza Verifici 1 2 3 Verifici N° 1 2 3 Verifici Base so Altezza	ezione n sezione he presso-fless X 0.65 4.33 8.00 he taglio X 0.65 4.33 8.00 a sezioni piedr ezione a sezione	B = 100 cm H = 130.00 cm Sione M -2527.77 (-2527.77) -564.94 (-931.33) 0.00 (0.00) V 760.75 325.68 0.00 Sitto destro [Combinazione n* 5] B = 100 cm H = 130.00 cm	N 191.15 95.57 0.00 V _{Rd} 550.88 470.94 457.16	Nu 208.85 194.14 0.00 V _{Red} 0.00 0.00 0.00	-2761.92 -1891.83 0.00 V _{Rcd} 5252.98 0.00	19.01 19.01 19.01 A _{sw} 0.00 0.00	57.02 38.01	1.09 2.03
Base so Altezza Verific! 1 2 3 Verific! 1 2 3 Verific: Base so Altezza Verific!	ezione he presso-fles: X 0.65 4.33 8.00 he taglio X 0.65 4.33 8.00 he taglio esione he sezione he sezione he presso-fles:	B = 100 cm H = 130.00 cm Sione M -2527.77 (-2527.77) -564.94 (-931.33) 0.00 (0.00) V 760.75 325.68 0.00 itto destro [Combinazione n° 5] B = 100 cm H = 130.00 cm	N 191.15 95.57 0.00 V _{Rd} 550.88 470.94 457.16	Nu 208.85 194.14 0.00 V _{Red} 0.00 0.00 0.00 0.00	-2761.92 -1891.83 0.00 V _{Rcd} 5252.98 0.00 0.00	19.01 19.01 19.01 A _{sw} 0.00 0.00 0.00	57.02 38.01 38.01	1.09 2.03 1000.00
Base so Altezza Verifici N° 1 2 3 Verifici N° 1 2 3 Verifici N° 1 2 3	ezione he presso-fless X 0.65 4.33 8.00 he taglio X 0.65 4.33 8.00 he taglio x 0.65 4.33 8.00	B = 100 cm H = 130.00 cm Sione M -2527.77 (-2527.77) -564.94 (-931.33) 0.00 (0.00) V 760.75 325.68 0.00 Sitto destro [Combinazione n* 5] B = 100 cm H = 130.00 cm	N 191.15 95.57 0.00 V _{Rd} 550.88 470.94 457.16 - SLU (Approccio 2) - S	Nu 208.85 194.14 0.00 V _{Rod} 0.00 0.00 0.00 0.00	-2761.92 -1891.83 0.00 V _{Rcd} 5252.98 0.00 0.00	19.01 19.01 19.01 A _{sw} 0.00 0.00 0.00	57.02 38.01 38.01	1.09 2.03 1000.00
Base so Altezza Verifici N° 1 2 3 Verifici N° 1 2 3 Verifici Base so Altezza Verifici N° 1 1 2 3	ezione a sezione he presso-fless X 0.65 4.33 8.00 he taglio X 0.65 4.33 8.00 a sezioni piedr ezione a sezione he presso-fless X 0.65	B = 100 cm H = 130.00 cm Sione M -2527.77 (-2527.77) -564.94 (-931.33) 0.00 (0.00) V 760.75 325.68 0.00 itto destro [Combinazione n° 5] B = 100 cm H = 130.00 cm Sione M -1736.42 (-1736.42)	N 191.15 95.57 0.00 V _{Rd} 550.88 470.94 457.16 - SLU (Approccio 2) - S	Nu 208.85 194.14 0.00 VRod 0.00 0.00 0.00 0.00	-2761.92 -1891.83 0.00 V _{Rcd} 5252.98 0.00 0.00	19.01 19.01 19.01 A _{sw} 0.00 0.00 0.00	57.02 38.01 38.01 A ₆ 57.02	1.09 2.03 1000.00
Base so Altezza Verifici N° 1 2 3 Verifici N° 1 2 3 Verifici Base so Altezza Verifici N° 1 2 3	ezione n sezione he presso-fles: X 0.65 4.33 8.00 he taglio X 0.65 4.33 8.00 a sezioni piedre ezione sezione he presso-fles: X 0.65 4.33	B = 100 cm H = 130.00 cm Sione M -2527.77 (-2527.77) -564.94 (-931.33) 0.00 (0.00) V 760.75 325.68 0.00 Sitto destro [Combinazione n° 5 B = 100 cm H = 130.00 cm Sione M -1736.42 (-1736.42) -193.74 (-381.49)	N 191.15 95.57 0.00 V _{Rd} 550.88 470.94 457.16 - SLU (Approccio 2) - S	Nu 208.85 194.14 0.00 V _{Rsd} 0.00 0.00 0.00 0.00 0.00 Sisma Vert. negativo]	-2761.92 -1891.83 0.00 V _{Rcd} 5252.98 0.00 0.00	19.01 19.01 19.01 A _{sw} 0.00 0.00 0.00 0.00	57.02 38.01 38.01 A _{fs} 57.02 38.01	1.09 2.03 1000.00
Base so Altezza Verifici N° 1 2 3 Verifici N° 1 2 3 Verifici Base so Altezza Verifici N° 1 1 2 3	ezione a sezione he presso-fless X 0.65 4.33 8.00 he taglio X 0.65 4.33 8.00 a sezioni piedr ezione a sezione he presso-fless X 0.65	B = 100 cm H = 130.00 cm Sione M -2527.77 (-2527.77) -564.94 (-931.33) 0.00 (0.00) V 760.75 325.68 0.00 itto destro [Combinazione n° 5] B = 100 cm H = 130.00 cm Sione M -1736.42 (-1736.42)	N 191.15 95.57 0.00 V _{Rd} 550.88 470.94 457.16 - SLU (Approccio 2) - S	Nu 208.85 194.14 0.00 VRod 0.00 0.00 0.00 0.00	-2761.92 -1891.83 0.00 V _{Rcd} 5252.98 0.00 0.00	19.01 19.01 19.01 A _{sw} 0.00 0.00 0.00	57.02 38.01 38.01 A ₆ 57.02	1.09 2.03 1000.00
Base so Altezza Verifici N° 1 2 3 Verifici N° 1 2 3 Verifici Base so Altezza Verifici N° 1 2 3	ezione n sezione he presso-fles: X 0.65 4.33 8.00 he taglio X 0.65 4.33 8.00 a sezioni piedre ezione sezione he presso-fles: X 0.65 4.33	B = 100 cm H = 130.00 cm Sione M -2527.77 (-2527.77) -564.94 (-931.33) 0.00 (0.00) V 760.75 325.68 0.00 Sitto destro [Combinazione n° 5 B = 100 cm H = 130.00 cm Sione M -1736.42 (-1736.42) -193.74 (-381.49)	N 191.15 95.57 0.00 V _{Rd} 550.88 470.94 457.16 - SLU (Approccio 2) - S	Nu 208.85 194.14 0.00 V _{Rsd} 0.00 0.00 0.00 0.00 0.00 Sisma Vert. negativo]	-2761.92 -1891.83 0.00 V _{Rcd} 5252.98 0.00 0.00	19.01 19.01 19.01 A _{sw} 0.00 0.00 0.00 0.00	57.02 38.01 38.01 A _{fs} 57.02 38.01	1.09 2.03 1000.00
Base so Altezza Verifici 1 2 3 Verifici 1 2 3 Verifici Base so Altezza Verifici 1 2 3	ezione n sezione he presso-fles: X 0.65 4.33 8.00 he taglio X 0.65 4.33 8.00 a sezioni piedre ezione sezione he presso-fles: X 0.65 4.33	B = 100 cm H = 130.00 cm Sione M -2527.77 (-2527.77) -564.94 (-931.33) 0.00 (0.00) V 760.75 325.68 0.00 Sitto destro [Combinazione n° 5 B = 100 cm H = 130.00 cm Sione M -1736.42 (-1736.42) -193.74 (-381.49)	N 191.15 95.57 0.00 V _{Rd} 550.88 470.94 457.16 - SLU (Approccio 2) - S	Nu 208.85 194.14 0.00 V _{Rsd} 0.00 0.00 0.00 0.00 0.00 Sisma Vert. negativo]	-2761.92 -1891.83 0.00 V _{Rcd} 5252.98 0.00 0.00	19.01 19.01 19.01 A _{sw} 0.00 0.00 0.00 0.00	57.02 38.01 38.01 A _{fs} 57.02 38.01	1.09 2.03 1000.00
Base so Altezza Verifici N° 1 2 3 Verifici Base so Altezza Verifici N° 1 2 3 Verifici N° 1 2 3	ezione he presso-fles: X 0.65 4.33 8.00 he taglio X 0.65 4.33 8.00 a sezioni piedr ezione a sezione he presso-fles: X 0.65 4.33 8.00 he taglio X 0.65 A:33 8.00	B = 100 cm H = 130.00 cm Sione M -2527.77 (-2527.77) -564.94 (-931.33) 0.00 (0.00) V 760.75 325.68 0.00 Sitto destro [Combinazione n* 5 B = 100 cm H = 130.00 cm -1736.42 (-1736.42) -193.74 (-381.49) 0.00 (-1.58)	N 191.15 95.57 0.00 V _{Rd} 550.88 470.94 457.16 - SLU (Approccio 2) - 5 N 191.15 95.57 0.00	Nu 208.85 194.14 0.00 VRud 0.00 0.00 0.00 0.00 0.00 0.00 5isma Vert. negativo] Nu 309.54 517.06 0.00	-2761.92 -1891.83 0.00 V _{Rcd} 5252.98 0.00 0.00 	19.01 19.01 19.01 A _{sw} 0.00 0.00 0.00 0.00 19.01 19.01 19.01 19.01	57.02 38.01 38.01 A _{fs} 57.02 38.01	1.09 2.03 1000.00
Base so Altezza Verifici N° 1 2 3 Verifici N° 1 2 3 Verifici Base so Altezza Verifici N° 1 2 3	ezione he presso-fles: X 0.65 4.33 8.00 he taglio X 0.65 4.33 8.00 a sezioni piedr ezione a sezione he presso-fles: X 0.65 4.33 8.00 he taglio be presso-fles: X 0.65 4.33 8.00	B = 100 cm H = 130.00 cm Sione M -2527.77 (-2527.77) -564.94 (-931.33) 0.00 (0.00) V 760.75 325.68 0.00 sitto destro [Combinazione n* 5 B = 100 cm H = 130.00 cm Sione M -1736.42 (-1736.42) -193.74 (-381.49) 0.00 (-1.58) V -721.89	N 191.15 95.57 0.00 V _{Rd} 550.88 470.94 457.16 - SLU (Approccio 2) - S	Nu 208.85 194.14 0.00 VRsd 0.00 0.00 0.00 0.00 Sisma Vert. negativo 0.00 0.00 VRsd 0.00 0.00 VRsd 0.00 VRsd 0.00	-2761.92 -1891.83 0.00 V _{Rcd} 5252.98 0.00 0.00 .000	19.01 19.01 19.01 A _{sw} 0.00 0.00 0.00 19.01 A _i 19.01 19.01 19.01 19.01	57.02 38.01 38.01 A _{fs} 57.02 38.01	1.09 2.03 1000.00
Base so Altezza Verifici N° 1 2 3 Verifici Base so Altezza Verifici Base so Altezza Verifici N° 1 2 3	ezione he presso-fles:	B = 100 cm H = 130.00 cm Sione M -2527.77 (-2527.77) -564.94 (-931.33) 0.00 (0.00) V 760.75 325.68 0.00 Sitto destro [Combinazione n° 5 B = 100 cm H = 130.00 cm Sione M -1736.42 (-1736.42) -193.74 (-381.49) 0.00 (-1.58) V -721.89 -166.89	N 191.15 95.57 0.00 V _{Rd} 550.88 470.94 457.16 - SLU (Approccio 2) - S N 191.15 95.57 0.00	Nu 208.85 194.14 0.00 VRsd 0.00 0.00 Sisma Vert. negativo] Nu 309.54 517.06 0.00 VRsd 0.00 0.00	-2761.92 -1891.83 0.00 V _{Rcd} 5252.98 0.00 0.00 	19.01 19.01 19.01 A _{sw} 0.00 0.00 0.00 0.00 A _{fi} 19.01 19.01 19.01 19.01 0.00 0.00	57.02 38.01 38.01 A _{fs} 57.02 38.01	1.09 2.03 1000.00
Base so Altezza Verifici N° 1 2 3 Verifici N° 1 2 3 Verifici Base so Altezza Verifici N° 1 2 3	ezione he presso-fles: X 0.65 4.33 8.00 he taglio X 0.65 4.33 8.00 a sezioni piedr ezione a sezione he presso-fles: X 0.65 4.33 8.00 he taglio be presso-fles: X 0.65 4.33 8.00	B = 100 cm H = 130.00 cm Sione M -2527.77 (-2527.77) -564.94 (-931.33) 0.00 (0.00) V 760.75 325.68 0.00 sitto destro [Combinazione n* 5 B = 100 cm H = 130.00 cm Sione M -1736.42 (-1736.42) -193.74 (-381.49) 0.00 (-1.58) V -721.89	N 191.15 95.57 0.00 V _{Rd} 550.88 470.94 457.16 - SLU (Approccio 2) - S	Nu 208.85 194.14 0.00 VRsd 0.00 0.00 0.00 0.00 Sisma Vert. negativo 0.00 0.00 VRsd 0.00 0.00 VRsd 0.00 VRsd 0.00	-2761.92 -1891.83 0.00 V _{Rcd} 5252.98 0.00 0.00 .000	19.01 19.01 19.01 A _{sw} 0.00 0.00 0.00 19.01 A _i 19.01 19.01 19.01 19.01	57.02 38.01 38.01 A _{fs} 57.02 38.01	1.09 2.03 1000.00

Realizzazione Lavori

Collegamento viario compreso tra lo Svincolo della S.S. 514 di "Chiaromonte" con la S.S. 115 e lo

Svincolo della "Ragusana"

PROGETTO ESECUTIVO

RELAZIONE DI CALCOLO SOTTOVIA AL KM 3+248 - SEC. 90

Verifiche combinazioni SLE

Simbologia adottata e	d unità di misura
-----------------------	-------------------

Indice sezione

Ascissa/Ordinata sezione, espresso in m

Momento flettente, espresso in kNm Taglio, espresso in kN М

V N

Sforzo normale, espresso in kN Area armatura inferiore, espressa in cmq

Area armatura superiore, espressa in cmq

Tensione nell'armatura disposta in corrispondenza del lembo inferiore, espresse in MPa Tensione nell'armatura disposta in corrispondenza del lembo superiore, espresse in MPa

 A_{fs} σ_{fi} σ_{fs} σ_{c}

Tensione nel calcestruzzo, espresse in MPa

Tensione tangenziale nel calcestruzzo, espresse in MPa Area armature trasversali nella sezione, espressa in cma

<u>Verifica sezioni fondazione [Combinazione n° 6 - SLE (Quasi Permanente)]</u>

Base sezione B = 100 cm H = 130.00 cm

Altezza sezione

Verifich	e presso-flessione	
N°	V	M

N°	X	M	N	A_{fi}	A_{fs}	σ_{fs}	σ_{fi}	σ_{c}
1	0.00	0.00	-0.30	57.02	19.01	0.20	0.01	0.00
2	3.37	71.52	218.55	57.02	19.01	5.65	0.94	0.40
3	6.80	-172.58	218.55	38.01	19.01	27.54	13.30	1.00
4	10.23	71.52	218.55	38.01	19.01	5.70	1.05	0.40
5	13.60	0.00	-0.30	57.02	19.01	0.20	0.01	0.00

Verifiche	taglio

N°	X	V	τ_c	A_{sw}
1	0.00	3.23	-0.009	0.00
2	3.37	-141.57	-0.133	0.00
3	6.80	3.58	0.003	0.00
4	10.23	149.23	0.140	0.00
5	13.60	-3.23	0.009	0.00

Verifica sezioni piedritto sinistro [Combinazione n° 6 - SLE (Quasi Permanente)]

Base sezione B = 100 cm H = 130.00 cm

Verifiche presso-flessione

N°	X	M	N	A_{fi}	A_{fs}	σ_{fs}	σ_{fi}	σ_{c}
1	0.65	-536.29	238.88	19.01	57.02	65.45	32.64	2.45
2	4.33	-67.07	119.44	19.01	38.01	4.10	4.96	0.36
3	8.00	0.00	0.00	19.01	38.01	0.00	0.00	0.00

Verifiche taglio

N°	X	V	τ_c	A_{sw}
1	0.65	218.85	0.206	0.00
2	4.33	54.73	0.052	0.00
3	8.00	0.00	0.000	0.00

Verifica sezioni piedritto destro [Combinazione n° 6 - SLE (Quasi Permanente)]

B = 100 cm Base sezione H = 130.00 cm Altezza sezione

Verifiche presso-flessione

N°	X	M	N	A_{fi}	A_{fs}	σ_{fs}	σ_{fi}	σ_{c}
1	0.65	-536.29	238.87	19.01	57.02	65.45	32.64	2.45
2	4.33	-67.07	119.44	19.01	38.01	4.10	4.96	0.36
3	8.00	0.00	0.00	19.01	38.01	0.00	0.00	0.00

Verifiche taglio

N-	Х	V	τ_{c}	A _{sw}
1	0.65	-218.85	-0.206	0.00
2	4.33	-54.73	-0.052	0.00
3	8.00	0.00	0.000	0.00

Verifica sezioni fondazione [Combinazione n° 7 - SLE (Frequente)]

Base sezione B = 100 cm Altezza sezione H = 130.00 cm

Collegamento viario compreso tra lo Svincolo della S.S. 514 di "Chiaromonte" con la S.S. 115 e lo

Svincolo della "Ragusana" PROGETTO ESECUTIVO

Direzione Progettazione e Realizzazione Lavori

RELAZIONE DI CALCOLO SOTTOVIA AL KM 3+248 - SEC. 90

Verifich	ne presso-fless	sione						
N°	Х	M	N	A_{fi}	A_{fs}	σ_{fs}	σ_{fi}	σ_{c}
1	0.00	0.00	-5.94	57.02	19.01	1.71	0.47	0.00
2	3.37	128.84	236.41	57.02	19.01	9.09	5.85	0.65
3	6.80	-146.84	236.41	38.01	19.01	15.34	11.04	0.81
4	10.23	84.35	236.41	38.01	19.01	6.56	1.72	0.46
5	13.60	0.00	5.29	57.02	19.01	0.05	0.06	0.00
Verifich	ne taglio							
N°	Х	V	τ_c		A_{sw}			
1	0.00	3.01	-0.010		0.00			
2	3.37	-152.51	-0.144		0.00			
3	6.80	-2.96	-0.003		0.00			
4	10.23	148.00	0.139		0.00			
5	13.60	-3.21	0.010		0.00			
		itto sinistro [Combina	zione n° 7 - SLE (Freq	uente)]				
Base se Altezza	ezione i sezione	B = 100 cm H = 130.00 cm						
Verifich	ne presso-fless	sione						
N°	Χ	М	N	Afi	Afs	σ_{fs}	$\sigma_{\rm fi}$	σ_{c}
1	0.65	-622.67	238.87	19.01	57.02	78.67	37.46	2.82
2	4.33	-88.67	119.44	19.01	38.01	8.10	6.48	0.47
3	8.00	0.00	0.00	19.01	38.01	0.00	0.00	0.00
Verifich	ne taglio							
N°	X	V	τ_{c}		Asw			
1	0.65	242.36	0.228		0.00			
2	4.33	66.48	0.063		0.00			
3	8.00	0.00	0.000		0.00			
Verifica	a sezioni piedri	itto destro [Combinaz	ione n° 7 - SLE (Frequ	uente)]				
Base se	ezione	B = 100 cm						
	ezione i sezione	B = 100 cm H = 130.00 cm						
Altezza	sezione	H = 130.00 cm						
Altezza <u>Verifich</u>	sezione he presso-fless	H = 130.00 cm	N	Δ.	Δ.			_
Altezza <u>Verifich</u> N°	sezione he presso-fless X	H = 130.00 cm sione M	N 238 87	A _{fi}	A _{fs}	∇f₅ 67.32	Ծ _{fi} 33 32	σ _c 2.50
Altezza <u>Verifich</u> N° 1	n sezione ne presso-fless X 0.65	H = 130.00 cm sione M -548.50	238.87	19.01	57.02	67.32	33.32	2.50
Verifich N° 1 2	n sezione ne presso-fless X 0.65 4.33	H = 130.00 cm sione M -548.50 -67.07	238.87 119.44	19.01 19.01	57.02 38.01	67.32 4.10	33.32 4.96	2.50 0.36
Altezza <u>Verifich</u> N° 1	n sezione ne presso-fless X 0.65	H = 130.00 cm sione M -548.50	238.87	19.01	57.02	67.32	33.32	2.50
Altezza Verifich N° 1 2 3	n sezione he presso-fless X 0.65 4.33 8.00	H = 130.00 cm sione M -548.50 -67.07	238.87 119.44	19.01 19.01	57.02 38.01	67.32 4.10	33.32 4.96	2.50 0.36
Verifich N° 1 2 3	n sezione ne presso-fless X 0.65 4.33 8.00	H = 130.00 cm Sione M -548.50 -67.07 0.00	238.87 119.44 0.00	19.01 19.01	57.02 38.01 38.01	67.32 4.10	33.32 4.96	2.50 0.36
Verifich N° 1 2 3 Verifich N°	ne presso-fless X 0.65 4.33 8.00 he taglio X	H = 130.00 cm sione M -548.50 -67.07 0.00	238.87 119.44 0.00	19.01 19.01	57.02 38.01 38.01	67.32 4.10	33.32 4.96	2.50 0.36
Verifich N° 1 2 3 Verifich N° 1	ne presso-fless	H = 130.00 cm sione M -548.50 -67.07 0.00 V -231.12	238.87 119.44 0.00 τ _c -0.218	19.01 19.01	57.02 38.01 38.01 A _{sw} 0.00	67.32 4.10	33.32 4.96	2.50 0.36
Verifich N° 1 2 3 Verifich N° 1 2 3	ne presso-fless	H = 130.00 cm sione M -548.50 -67.07 0.00 V -231.12 -54.73	238.87 119.44 0.00 	19.01 19.01	57.02 38.01 38.01 A _{sw} 0.00 0.00	67.32 4.10	33.32 4.96	2.50 0.36
Verifich N° 1 2 3 Verifich N° 1	ne presso-fless	H = 130.00 cm sione M -548.50 -67.07 0.00 V -231.12	238.87 119.44 0.00 τ _c -0.218	19.01 19.01	57.02 38.01 38.01 A _{sw} 0.00	67.32 4.10	33.32 4.96	2.50 0.36
Verifich N° 1 2 3 Verifich N° 1 2 3	ne presso-fless	H = 130.00 cm sione M -548.50 -67.07 0.00 V -231.12 -54.73	238.87 119.44 0.00 	19.01 19.01	57.02 38.01 38.01 A _{sw} 0.00 0.00	67.32 4.10	33.32 4.96	2.50 0.36
Verifich N° 1 2 3 Verifich N° 1 2 3	ne presso-fless	H = 130.00 cm M -548.50 -67.07 0.00 V -231.12 -54.73 0.00	238.87 119.44 0.00 T _c -0.218 -0.052 0.000	19.01 19.01 19.01	57.02 38.01 38.01 A _{sw} 0.00 0.00	67.32 4.10	33.32 4.96	2.50 0.36
Verifich N° 1 2 3 Verifich N° 1 2 3	ne presso-fless	H = 130.00 cm sione M -548.50 -67.07 0.00 V -231.12 -54.73	238.87 119.44 0.00 T _c -0.218 -0.052 0.000	19.01 19.01 19.01	57.02 38.01 38.01 A _{sw} 0.00 0.00	67.32 4.10	33.32 4.96	2.50 0.36
Verifice Verifice Verifice Verifice Verifice	ne presso-fless	H = 130.00 cm Sione M -548.50 -67.07 0.00 V -231.12 -54.73 0.00	238.87 119.44 0.00 T _c -0.218 -0.052 0.000	19.01 19.01 19.01	57.02 38.01 38.01 A _{sw} 0.00 0.00	67.32 4.10	33.32 4.96	2.50 0.36
Verification N° 1 2 3 3 Verifi	ne presso-fless	H = 130.00 cm Sione M -548.50 -67.07 0.00 V -231.12 -54.73 0.00 szione [Combinazione] B = 100 cm	238.87 119.44 0.00 T _c -0.218 -0.052 0.000	19.01 19.01 19.01	57.02 38.01 38.01 A _{sw} 0.00 0.00	67.32 4.10	33.32 4.96	2.50 0.36
Verification N° 1 2 3 3 Verifi	ne presso-fless	H = 130.00 cm Sione M -548.50 -67.07 0.00 V -231.12 -54.73 0.00	238.87 119.44 0.00 T _c -0.218 -0.052 0.000	19.01 19.01 19.01	57.02 38.01 38.01 A _{sw} 0.00 0.00	67.32 4.10	33.32 4.96	2.50 0.36
Verificate Verificate Verificate Verificate Verificate Verificate Alterza	ne presso-fless	H = 130.00 cm Sione M -548.50 -67.07 0.00 V -231.12 -54.73 0.00 Exione [Combinazione] B = 100 cm H = 130.00 cm	238.87 119.44 0.00 T _c -0.218 -0.052 0.000	19.01 19.01 19.01	57.02 38.01 38.01 A _{sw} 0.00 0.00	67.32 4.10	33.32 4.96	2.50 0.36
Verificate Verificate Verificate Verificate Verificate Verificate Alterza	ne presso-fless	H = 130.00 cm Sione M -548.50 -67.07 0.00 V -231.12 -54.73 0.00 Exione [Combinazione] B = 100 cm H = 130.00 cm	238.87 119.44 0.00 T _c -0.218 -0.052 0.000	19.01 19.01 19.01	57.02 38.01 38.01 A _{sw} 0.00 0.00	67.32 4.10	33.32 4.96	2.50 0.36
Verifich N° 1 2 3 Verifich N° 1 2 3 Verifich N° 1 2 3 Verifica Base se Altezza Verifich	ne presso-fless	H = 130.00 cm Sione M -548.50 -67.07 0.00 V -231.12 -54.73 0.00 Exione [Combinazione] B = 100 cm H = 130.00 cm	238.87 119.44 0.00 T _C -0.218 -0.052 0.000	19.01 19.01 19.01	57.02 38.01 38.01 A _{sw} 0.00 0.00 0.00	67.32 4.10 0.00	33.32 4.96 0.00	2.50 0.36 0.00
Verifice N° 1 2 3 Verifice N° 1 2 3 Verifice N° 1 2 3 Verifice Uerifice N° 1 2 1 1 1 1	ne presso-fless	H = 130.00 cm sione M -548.50 -67.07 0.00 V -231.12 -54.73 0.00 zzione [Combinazione] B = 100 cm H = 130.00 cm sione M 0.00 84.35	238.87 119.44 0.00 Tc -0.218 -0.052 0.000 n* 8 - SLE (Frequents)	19.01 19.01 19.01 19.01 46 57.02 57.02	57.02 38.01 38.01 38.01 A _{3w} 0.00 0.00 0.00 0.00 19.01	67.32 4.10 0.00	33.32 4.96 0.00 σ ₆ 0.06 1.50	2.50 0.36 0.00 σ _c 0.00 0.45
Verification 3	ne presso-fless	H = 130.00 cm sione M -548.50 -67.07 0.00 V -231.12 -54.73 0.00 sizione [Combinazione B = 100 cm H = 130.00 cm sione M 0.00 84.35 -146.84	238.87 119.44 0.00 Tc -0.218 -0.052 0.000 n° 8 - SLE (Frequents) N 5.29 236.41 236.41	19.01 19.01 19.01 19.01 19.01	57.02 38.01 38.01 38.01 A _{sw} 0.00 0.00 0.00 0.00 19.01 19.01 19.01	67.32 4.10 0.00	от 0.06 1.50 11.04	2.50 0.36 0.00 σ _c 0.00 0.45 0.81
Verification N° 1 2 3 3 Serification N° 1 2 3 3 Serification N° 1 2 3 Serification N° 1 2 3 Serification N° 1 2 3 3 4 4 Serification N° 1 2 3 3 4	ne taglio x 0.65 4.33 8.00 x 0.65 4.33 8.00 x 0.65 4.33 8.00 a sezioni fonda ezione s sezione he presso-fless X 0.00 3.37 6.80 10.23	H = 130.00 cm Sione	238.87 119.44 0.00 Tc -0.218 -0.052 0.000 n* 8 - SLE (Frequents N 5.29 236.41 236.41 236.41	19.01 19.01 19.01 19.01 19.01	57.02 38.01 38.01 38.01 A _{sw} 0.00 0.00 0.00 0.00 19.01 19.01 19.01	67.32 4.10 0.00 67.5 0.05 6.48 15.34 9.53	33.32 4.96 0.00	2.50 0.36 0.00 0.00 0.45 0.81 0.68
Verification 3	ne presso-fless	H = 130.00 cm sione M -548.50 -67.07 0.00 V -231.12 -54.73 0.00 sizione [Combinazione B = 100 cm H = 130.00 cm sione M 0.00 84.35 -146.84	238.87 119.44 0.00 Tc -0.218 -0.052 0.000 n° 8 - SLE (Frequents) N 5.29 236.41 236.41	19.01 19.01 19.01 19.01 19.01	57.02 38.01 38.01 38.01 A _{sw} 0.00 0.00 0.00 0.00 19.01 19.01 19.01	67.32 4.10 0.00	от 0.06 1.50 11.04	2.50 0.36 0.00 σ _c 0.00 0.45 0.81
Verification N° 1 2 3 3 Serification N° 1 2 3 3 Serification N° 1 2 3 Serification N° 1 2 3 Serification N° 1 2 3 3 4 4 Serification N° 1 2 3 3 4	ne taglio x 0.65 4.33 8.00 x 0.65 4.33 8.00 x 0.65 4.33 8.00 a sezioni fonda ezione s sezione he presso-fless X 0.00 3.37 6.80 10.23	H = 130.00 cm Sione	238.87 119.44 0.00 Tc -0.218 -0.052 0.000 n* 8 - SLE (Frequents N 5.29 236.41 236.41 236.41	19.01 19.01 19.01 19.01 19.01	57.02 38.01 38.01 38.01 A _{sw} 0.00 0.00 0.00 0.00 19.01 19.01 19.01	67.32 4.10 0.00 67.5 0.05 6.48 15.34 9.53	33.32 4.96 0.00	2.50 0.36 0.00 0.00 0.45 0.81 0.68
Verification Ve	ne taglio x 0.65 4.33 8.00 x 0.65 4.33 8.00 x 0.65 4.33 8.00 a sezioni fonda ezione s sezione he presso-fless X 0.00 3.37 6.80 10.23 13.60	H = 130.00 cm Sione	238.87 119.44 0.00 Tc -0.218 -0.052 0.000 n* 8 - SLE (Frequents N 5.29 236.41 236.41 236.41	19.01 19.01 19.01 19.01 19.01	57.02 38.01 38.01 38.01 A _{sw} 0.00 0.00 0.00 0.00 19.01 19.01 19.01	67.32 4.10 0.00 67.5 0.05 6.48 15.34 9.53	33.32 4.96 0.00	2.50 0.36 0.00 0.00 0.45 0.81 0.68
Verificate N° 1 2 3 Verificate N° 1 2 3 Verificate N° 1 2 3 Verificate Legan Verificate N° 1 2 3 Verificate Verificate N° 1 2 3 Verificate Verificate N° 1 2 3 Verificate Verifi	ne taglio a sezione Ne taglio X 0.65 4.33 8.00 Ne taglio X 0.65 4.33 8.00 A sezione a sezione ne presso-fless X 0.00 3.37 6.80 10.23 13.60	H = 130.00 cm sione M -548.50 -67.07 0.00 V -231.12 -54.73 0.00 zzione [Combinazione] B = 100 cm H = 130.00 cm sione M 0.00 84.35 -146.84 128.84 0.00	238.87 119.44 0.00 Tc -0.218 -0.052 0.000 n* 8 - SLE (Frequents N 5.29 236.41 236.41 236.41 -5.94	19.01 19.01 19.01 19.01 19.01	57.02 38.01 38.01 38.01 A _{sw} 0.00 0.00 0.00 19.01 19.01 19.01 19.01 19.01	67.32 4.10 0.00 67.5 0.05 6.48 15.34 9.53	33.32 4.96 0.00	2.50 0.36 0.00 0.00 0.45 0.81 0.68
Verificate N° 1 2 3 Verificate N° 1 1 2 3 Verificate N° 1 1 2 3 Verificate N°	ne taglio a sezione ne presso-fless X 0.65 4.33 8.00 ne taglio X 0.65 4.33 8.00 a sezioni fonda ezione a sezione ne presso-fless X 0.00 3.37 6.80 10.23 13.60 ne taglio X	H = 130.00 cm sione M -548.50 -67.07 0.00 V -231.12 -54.73 0.00 szione [Combinazione H = 130.00 cm M 0.00 84.35 -146.84 128.84 0.00	238.87 119.44 0.00 Tc -0.218 -0.052 0.000 n* 8 - SLE (Frequents N 5.29 236.41 236.41 236.41 -5.94	19.01 19.01 19.01 19.01 19.01	57.02 38.01 38.01 38.01 A _{sw} 0.00 0.00 0.00 0.00 19.01 19.01 19.01 19.01 19.01 19.01	67.32 4.10 0.00 67.5 0.05 6.48 15.34 9.53	33.32 4.96 0.00	2.50 0.36 0.00 0.00 0.45 0.81 0.68
Verifich N° 1 2 3 4 5	ne presso-fless	H = 130.00 cm sione M -548.50 -67.07 0.00 V -231.12 -54.73 0.00 szione [Combinazione] B = 100 cm H = 130.00 cm sione M 0.00 84.35 -146.84 128.84 0.00 V 3.21	238.87 119.44 0.00 Tc -0.218 -0.052 0.000 n° 8 - SLE (Frequents N 5.29 236.41 236.41 236.41 -5.94	19.01 19.01 19.01 19.01 19.01	57.02 38.01 38.01 38.01 A _{sw} 0.00 0.00 0.00 0.00 19.01 19.01 19.01 19.01 19.01 19.01	67.32 4.10 0.00 67.5 0.05 6.48 15.34 9.53	33.32 4.96 0.00	2.50 0.36 0.00 0.00 0.45 0.81 0.68
Verifich N° 1 2 3 4 5	ne taglio	H = 130.00 cm sione M -548.50 -67.07 0.00 V -231.12 -54.73 0.00 szione [Combinazione] B = 100 cm H = 130.00 cm sione M 0.00 84.35 -146.84 128.84 0.00 V 3.21 -140.24	238.87 119.44 0.00 Tc -0.218 -0.052 0.000 n* 8 - SLE (Frequents N 5.29 236.41 236.41 236.41 -5.94	19.01 19.01 19.01 19.01 19.01	57.02 38.01 38.01 A _{sw} 0.00 0.00 0.00 19.01 19.01 19.01 19.01 19.01 0.00 0.00	67.32 4.10 0.00 67.5 0.05 6.48 15.34 9.53	33.32 4.96 0.00	2.50 0.36 0.00 0.00 0.45 0.81 0.68
Verifice N° 1 2 3 Verifice N° 1 2 3 Verifice Base se Altezza Verifice N° 1 2 3 Verifice 1 2 3 4 5	ne taglio a sezione Ne taglio X 0.65 4.33 8.00 Ne taglio X 0.65 4.33 8.00 A sezione a sezione a sezione ne presso-fless X 0.00 3.37 6.80 0.00 3.37 6.80	H = 130.00 cm sione M -548.50 -67.07 0.00 V -231.12 -54.73 0.00 szione [Combinazione B = 100 cm H = 130.00 cm sione M 0.00 84.35 -146.84 128.84 0.00 V 3.21 -140.24 10.28	238.87 119.44 0.00 Tc -0.218 -0.052 0.000 n* 8 - SLE (Frequents N 5.29 236.41 236.41 236.41 -5.94 Tc -0.010 -0.132 0.010	19.01 19.01 19.01 19.01 19.01	57.02 38.01 38.01 38.01 A _{sw} 0.00 0.00 0.00 0.00 19.01 19.01 19.01 19.01 19.01 19.01 0.00 0.00	67.32 4.10 0.00 67.5 0.05 6.48 15.34 9.53	33.32 4.96 0.00	2.50 0.36 0.00 0.00 0.45 0.81 0.68
Verification 1 2 3 4 5	ne taglio x 0.65 4.33 8.00 ne taglio X 0.65 4.33 8.00 ne taglio x 0.65 4.33 8.00 a sezioni fonda ezione ne presso-fless x 0.00 3.37 6.80 10.23 13.60 ne taglio x 0.00 3.37 6.80 10.23	H = 130.00 cm sione M -548.50 -67.07 0.00 V -231.12 -54.73 0.00 szione [Combinazione] B = 100 cm H = 130.00 cm sione M 0.00 84.35 -146.84 128.84 0.00 V 3.21 -140.24 10.28 160.19	238.87 119.44 0.00 Tc -0.218 -0.052 0.000 n* 8 - SLE (Frequente N 5.29 236.41 236.41 236.41 -5.94 Tc -0.010 -0.132 0.010 0.151	19.01 19.01 19.01 19.01 19.01	57.02 38.01 38.01 38.01 A _{sw} 0.00 0.00 0.00 0.00 19.01 19.01 19.01 19.01 19.01 19.01 0.00 0.00	67.32 4.10 0.00 67.5 0.05 6.48 15.34 9.53	33.32 4.96 0.00	2.50 0.36 0.00 0.00 0.45 0.81 0.68
Verifice N° 1 2 3 Verifice N° 1 2 3 Verifice Base se Altezza Verifice N° 1 2 3 Verifice 1 2 3 4 5	ne taglio a sezione Ne taglio X 0.65 4.33 8.00 Ne taglio X 0.65 4.33 8.00 A sezione a sezione a sezione ne presso-fless X 0.00 3.37 6.80 0.00 3.37 6.80	H = 130.00 cm sione M -548.50 -67.07 0.00 V -231.12 -54.73 0.00 szione [Combinazione B = 100 cm H = 130.00 cm sione M 0.00 84.35 -146.84 128.84 0.00 V 3.21 -140.24 10.28	238.87 119.44 0.00 Tc -0.218 -0.052 0.000 n* 8 - SLE (Frequents N 5.29 236.41 236.41 236.41 -5.94 Tc -0.010 -0.132 0.010	19.01 19.01 19.01 19.01 19.01	57.02 38.01 38.01 38.01 A _{sw} 0.00 0.00 0.00 0.00 19.01 19.01 19.01 19.01 19.01 19.01 0.00 0.00	67.32 4.10 0.00 67.5 0.05 6.48 15.34 9.53	33.32 4.96 0.00 6.00 1.00 1.04 7.47	2.50 0.36 0.00 0.00 0.45 0.81 0.68

Verifica sezioni piedritto sinistro [Combinazione n° 8 - SLE (Frequente)]

MANDATARIA:

Collegamento viario compreso tra lo Svincolo della S.S. 514 di "Chiaromonte" con la S.S. 115 e lo

Svincolo della "Ragusana" **PROGETTO ESECUTIVO**

Direzione Progettazione e Realizzazione Lavori

RELAZIONE DI CALCOLO SOTTOVIA AL KM 3+248 - SEC. 90

Altezza :	zione sezione	B = 100 cm H = 130.00 cm						
	e presso-fless	<u>ione</u>						
N°	Х	M	N	Afi	Afs	σ_{fs}	$\sigma_{\rm fi}$	σ_{c}
1 2	0.65 4.33	-548.50 -67.07	238.88 119.44	19.01 19.01	57.02 38.01	67.32 4.10	33.32 4.96	2.50 0.36
3	8.00	0.00	0.00	19.01	38.01	0.00	0.00	0.00
Verifich	e taglio							
N°	X	V	τ_c		A _{sw}			
1	0.65	231.12	0.218		0.00			
2	4.33	54.73	0.052		0.00			
3	8.00	0.00	0.000		0.00			
Verifica	sezioni niedri	tto destro [Combinazi	one n° 8 - SLF (Frequ	iente)]				
vermea	Sezioni pican		one ii o bee (rreq	<u>actice/j</u>				
Base sez Altezza :		B = 100 cm H = 130.00 cm						
Allezza	sezione	H = 130.00 CIII						
Verifich	e presso-fless	ione						
N°	Χ	M	N	A_{fi}	A_fs	σ_{fs}	σ_{fi}	σ_{c}
1	0.65	-622.67	238.88	19.01	57.02	78.67	37.46	2.82
2	4.33	-88.67	119.44	19.01	38.01	8.10	6.48	0.47
3	8.00	0.00	0.00	19.01	38.01	0.00	0.00	0.00
V:6 ,	o toal:-							
Verifich N°	<u>e taglio</u> X	V	-		Δ.			
1	0.65	-242.36	τ _c -0.228		A _{sw} 0.00			
2	4.33	-66.48	-0.063		0.00			
3	8.00	0.00	0.000		0.00			
V::6:		-i [Cbii	- ° O . C.I.E. / E	- 11				
verifica	sezioni tonda	zione [Combinazione	n 9-SLE (Frequente	<u>211</u>				
Base sez Altezza :		B = 100 cm H = 130.00 cm						
Verifich N°	e presso-fless	ione						
	X 0.00	M	N 0.22	A _{fi}	A _{fs}	σ _{fs}	σ _{fi}	σ _c
1	0.00	M 0.00	-0.33	57.02	19.01	0.23	0.01	0.00
1 2	0.00 3.37	M 0.00 132.20	-0.33 242.02	57.02 57.02	19.01 19.01	0.23 9.32	0.01 6.02	0.00 0.66
1	0.00	M 0.00	-0.33	57.02	19.01	0.23	0.01	0.00
1 2 3	0.00 3.37 6.80	M 0.00 132.20 -128.43	-0.33 242.02 242.02	57.02 57.02 38.01	19.01 19.01 19.01	0.23 9.32 9.21	0.01 6.02 9.44	0.00 0.66 0.68
1 2 3 4 5	0.00 3.37 6.80 10.23 13.60	M 0.00 132.20 -128.43 132.20	-0.33 242.02 242.02 242.02	57.02 57.02 38.01 38.01	19.01 19.01 19.01 19.01	0.23 9.32 9.21 9.78	0.01 6.02 9.44 7.70	0.00 0.66 0.68 0.70
1 2 3 4 5	0.00 3.37 6.80 10.23 13.60	M 0.00 132.20 -128.43 132.20 0.00	-0.33 242.02 242.02 242.02 -0.33	57.02 57.02 38.01 38.01	19.01 19.01 19.01 19.01 19.01	0.23 9.32 9.21 9.78	0.01 6.02 9.44 7.70	0.00 0.66 0.68 0.70
1 2 3 4 5 Verifich	0.00 3.37 6.80 10.23 13.60 e taglio	M 0.00 132.20 -128.43 132.20 0.00	-0.33 242.02 242.02 242.02 -0.33	57.02 57.02 38.01 38.01	19.01 19.01 19.01 19.01 19.01	0.23 9.32 9.21 9.78	0.01 6.02 9.44 7.70	0.00 0.66 0.68 0.70
1 2 3 4 5 Verifiche N° 1	0.00 3.37 6.80 10.23 13.60 e taglio X 0.00	M 0.00 132.20 -128.43 132.20 0.00 V 3.03	-0.33 242.02 242.02 242.02 -0.33 -T _c -0.010	57.02 57.02 38.01 38.01	19.01 19.01 19.01 19.01 19.01 19.01	0.23 9.32 9.21 9.78	0.01 6.02 9.44 7.70	0.00 0.66 0.68 0.70
1 2 3 4 5 <u>Verificher</u> N° 1 2	0.00 3.37 6.80 10.23 13.60 e taglio X 0.00 3.37	M 0.00 132.20 -128.43 132.20 0.00 V 3.03 -150.10	-0.33 242.02 242.02 242.02 -0.33 -0.010 -0.141	57.02 57.02 38.01 38.01	19.01 19.01 19.01 19.01 19.01 19.01 0.00	0.23 9.32 9.21 9.78	0.01 6.02 9.44 7.70	0.00 0.66 0.68 0.70
1 2 3 4 5 Verifiche N° 1	0.00 3.37 6.80 10.23 13.60 e taglio X 0.00	M 0.00 132.20 -128.43 132.20 0.00 V 3.03	-0.33 242.02 242.02 242.02 -0.33 -T _c -0.010	57.02 57.02 38.01 38.01	19.01 19.01 19.01 19.01 19.01 19.01	0.23 9.32 9.21 9.78	0.01 6.02 9.44 7.70	0.00 0.66 0.68 0.70
1 2 3 4 5 Verifiche N° 1 2 3	0.00 3.37 6.80 10.23 13.60 e taglio X 0.00 3.37 6.80	M 0.00 132.20 -128.43 132.20 0.00 V 3.03 -150.10 3.73	-0.33 242.02 242.02 242.02 -0.33 -0.010 -0.141 0.004	57.02 57.02 38.01 38.01	19.01 19.01 19.01 19.01 19.01 19.01 Asw 0.00 0.00 0.00	0.23 9.32 9.21 9.78	0.01 6.02 9.44 7.70	0.00 0.66 0.68 0.70
1 2 3 4 5 Verifiche N° 1 2 3	0.00 3.37 6.80 10.23 13.60 e taglio X 0.00 3.37 6.80 10.23	M 0.00 132.20 -128.43 132.20 0.00 V 3.03 -150.10 3.73 157.88	-0.33 242.02 242.02 242.02 -0.33 -0.010 -0.141 0.004 0.149	57.02 57.02 38.01 38.01	19.01 19.01 19.01 19.01 19.01 19.01 0.00	0.23 9.32 9.21 9.78	0.01 6.02 9.44 7.70	0.00 0.66 0.68 0.70
1 2 3 4 5 5 Verifich N° 1 2 3 4 5	0.00 3.37 6.80 10.23 13.60 e taglio X 0.00 3.37 6.80 10.23 13.60	M 0.00 132.20 -128.43 132.20 0.00 V 3.03 -150.10 3.73 157.88 -3.03	-0.33 242.02 242.02 242.02 -0.33	57.02 57.02 38.01 38.01 57.02	19.01 19.01 19.01 19.01 19.01 19.01 0.00	0.23 9.32 9.21 9.78	0.01 6.02 9.44 7.70	0.00 0.66 0.68 0.70
1 2 3 4 5 5 Verifich N° 1 2 3 4 5	0.00 3.37 6.80 10.23 13.60 e taglio X 0.00 3.37 6.80 10.23 13.60	M 0.00 132.20 -128.43 132.20 0.00 V 3.03 -150.10 3.73 157.88	-0.33 242.02 242.02 242.02 -0.33	57.02 57.02 38.01 38.01 57.02	19.01 19.01 19.01 19.01 19.01 19.01 0.00	0.23 9.32 9.21 9.78	0.01 6.02 9.44 7.70	0.00 0.66 0.68 0.70
1 2 3 4 5 5 Verifich: N° 1 2 3 4 4 5 5 Verifica Base sez	0.00 3.37 6.80 10.23 13.60 e taglio X 0.00 3.37 6.80 10.23 13.60 sezioni piedri	M 0.00 132.20 -128.43 132.20 0.00 V 3.03 -150.10 3.73 157.88 -3.03 tto sinistro [Combina:	-0.33 242.02 242.02 242.02 -0.33	57.02 57.02 38.01 38.01 57.02	19.01 19.01 19.01 19.01 19.01 19.01 0.00	0.23 9.32 9.21 9.78	0.01 6.02 9.44 7.70	0.00 0.66 0.68 0.70
1 2 3 4 5 5 Verifich N° 1 2 3 4 5	0.00 3.37 6.80 10.23 13.60 e taglio X 0.00 3.37 6.80 10.23 13.60 sezioni piedri	M 0.00 132.20 -128.43 132.20 0.00 V 3.03 -150.10 3.73 157.88 -3.03	-0.33 242.02 242.02 242.02 -0.33	57.02 57.02 38.01 38.01 57.02	19.01 19.01 19.01 19.01 19.01 19.01 0.00	0.23 9.32 9.21 9.78	0.01 6.02 9.44 7.70	0.00 0.66 0.68 0.70
1 2 3 4 5 Verifich: N° 1 2 3 4 5 Verifica Base sea Altezza: Verifich:	0.00 3.37 6.80 10.23 13.60 **Eaglio** **X** 0.00 3.37 6.80 10.23 13.60 **sezioni piedri zione sezione e presso-fless	M 0.00 132.20 -128.43 132.20 0.00 V 3.03 -150.10 3.73 157.88 -3.03 ttto sinistro [Combina: B = 100 cm H = 130.00 cm	-0.33 242.02 242.02 242.02 -0.33 Tc -0.010 -0.141 0.004 0.149 0.010	57.02 57.02 38.01 38.01 57.02	19.01 19.01 19.01 19.01 19.01 19.01 A _{sw} 0.00 0.00 0.00 0.00 0.00	0.23 9.32 9.21 9.78 0.23	0.01 6.02 9.44 7.70 0.01	0.00 0.66 0.68 0.70 0.00
1 2 3 4 5 5 Verifich: N° 1 2 3 4 4 5 5 Verifica Base sez Altezza : Verifich: N° 1	0.00 3.37 6.80 10.23 13.60 **Example of the control of the contro	M 0.00 132.20 -128.43 132.20 0.00 V 3.03 -150.10 3.73 157.88 -3.03 tto sinistro [Combina: B = 100 cm H = 130.00 cm	-0.33 242.02 242.02 242.02 -0.33 -0.010 -0.141 0.004 0.149 0.010 ione n° 9 - SLE (Frequency Suppose	57.02 57.02 38.01 38.01 57.02	19.01 19.01 19.01 19.01 19.01 19.01 0.00 0.00	0.23 9.32 9.21 9.78 0.23	0.01 6.02 9.44 7.70 0.01	0.00 0.66 0.68 0.70 0.00
1 2 3 4 5 5 Verifich: N° 1 2 3 4 5 5 Verifica Base sez Altezza : Verifich: N° 1	0.00 3.37 6.80 10.23 13.60 **Example of the control of the contr	M 0.00 132.20 -128.43 132.20 0.00 V 3.03 -150.10 3.73 157.88 -3.03 tto sinistro [Combina: B = 100 cm H = 130.00 cm ione M -622.67	-0.33 242.02 242.02 242.02 -0.33 -0.010 -0.141 0.004 0.149 0.010 ione n° 9 - SLE (Frequency Suppose	57.02 57.02 38.01 38.01 57.02	19.01 19.01 19.01 19.01 19.01 19.01 0.00 0.00	0.23 9.32 9.21 9.78 0.23	0.01 6.02 9.44 7.70 0.01	0.00 0.66 0.68 0.70 0.00
1 2 3 4 5 5 Verifich: N° 1 2 3 4 4 5 5 Verifica Base sez Altezza : Verifich: N° 1	0.00 3.37 6.80 10.23 13.60 **Example of the control of the contro	M 0.00 132.20 -128.43 132.20 0.00 V 3.03 -150.10 3.73 157.88 -3.03 tto sinistro [Combina: B = 100 cm H = 130.00 cm	-0.33 242.02 242.02 242.02 -0.33 -0.010 -0.141 0.004 0.149 0.010 ione n° 9 - SLE (Frequency Suppose	57.02 57.02 38.01 38.01 57.02	19.01 19.01 19.01 19.01 19.01 19.01 0.00 0.00	0.23 9.32 9.21 9.78 0.23	0.01 6.02 9.44 7.70 0.01	0.00 0.66 0.68 0.70 0.00
1 2 3 4 5 5 Verifich: N° 1 2 3 4 5 5 Verifica Base sea Altezza: Verifich: N° 1 2 2 3 1 1 2 2 1 2 2 1 2 2 2 2 2 2 2 2	0.00 3.37 6.80 10.23 13.60 **Eaglio** **X** 0.00 3.37 6.80 10.23 13.60 **Sezioni piedri zione sezione **e presso-fless X 0.65 4.33	M 0.00 132.20 -128.43 132.20 0.00 V 3.03 -150.10 3.73 157.88 -3.03 ttto sinistro [Combina: B = 100 cm H = 130.00 cm ione M -622.67 -88.67	-0.33 242.02 242.02 242.02 -0.33 -0.010 -0.141 0.004 0.149 0.010 cione n° 9 - SLE (Frequency States of the control of the co	57.02 57.02 38.01 38.01 57.02	19.01 19.01 19.01 19.01 19.01 19.01 0.00 0.00	0.23 9.32 9.21 9.78 0.23 σ _{fs} 78.67 8.10	0.01 6.02 9.44 7.70 0.01	0.00 0.66 0.68 0.70 0.00
1 2 3 4 5 5 Verifich: N° 1 2 3 4 4 5 5 Verifica Base se: Altezza: Verifich: N° 1 2 3 4 5 5 Verifich: N° 1 2 3 5 Verifich: N° 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	0.00 3.37 6.80 10.23 13.60 x 0.00 3.37 6.80 10.23 13.60 sezioni piedri zione sezione e presso-fless X 0.65 4.33 8.00	M 0.00 132.20 -128.43 132.20 0.00 V 3.03 -150.10 3.73 157.88 -3.03 tto sinistro [Combinazi B = 100 cm H = 130.00 cm ione M -622.67 -88.67 0.00	-0.33 242.02 242.02 242.02 -0.33 -0.010 -0.141 0.004 0.149 0.010 sione n° 9 - SLE (Frequency of the control o	57.02 57.02 38.01 38.01 57.02	19.01 19.01 19.01 19.01 19.01 19.01 0.00 0.00	0.23 9.32 9.21 9.78 0.23 σ _{fs} 78.67 8.10	0.01 6.02 9.44 7.70 0.01	0.00 0.66 0.68 0.70 0.00
1 2 3 4 5 5 Verifich. N° 1 2 3 4 4 5 5 Verifica Base sea Altezza: Verifich. N° 1 2 3 3 Verifich. N° 1	0.00 3.37 6.80 10.23 13.60 E taglio X 0.00 3.37 6.80 10.23 13.60 Sezioni piedri zione sezione e presso-fless X 0.65 4.33 8.00 E taglio X	M 0.00 132.20 -128.43 132.20 0.00 V 3.03 -150.10 3.73 157.88 -3.03 tto sinistro [Combina: B = 100 cm H = 130.00 cm ione M -622.67 -88.67 0.00	-0.33 242.02 242.02 242.02 -0.33 -0.010 -0.141 0.004 0.149 0.010 ione n° 9 - SLE (Free	57.02 57.02 38.01 38.01 57.02	19.01 19.01 19.01 19.01 19.01 19.01 0.00 0.00	0.23 9.32 9.21 9.78 0.23 σ _{fs} 78.67 8.10	0.01 6.02 9.44 7.70 0.01	0.00 0.66 0.68 0.70 0.00
1 2 3 4 5 5 Verifich. N° 1 2 3 4 5 5 Verifica. Base sea Altezza : Verifich. N° 1 2 3 3 Verifich. N° 1 1 2 1 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0.00 3.37 6.80 10.23 13.60 **Example of the control of the contr	M 0.00 132.20 -128.43 132.20 0.00 V 3.03 -150.10 3.73 157.88 -3.03 tto sinistro [Combina; B = 100 cm H = 130.00 cm ione M -622.67 -88.67 0.00 V 242.36	-0.33 242.02 242.02 242.02 -0.33 -0.010 -0.141 0.004 0.149 0.010 sione n° 9 - SLE (Frequency of the control o	57.02 57.02 38.01 38.01 57.02	19.01 19.01 19.01 19.01 19.01 19.01 19.01 0.00 0.00	0.23 9.32 9.21 9.78 0.23 σ _{fs} 78.67 8.10	0.01 6.02 9.44 7.70 0.01	0.00 0.66 0.68 0.70 0.00
1 2 3 4 5 5 Verifich: N° 1 2 3 4 5 5 Verifica Base sez Altezza: Verifich: N° 1 2 3 5 Verifich: N° 1 2 3 5 Verifich: N° 1 2 1 2 1 1 2 1 1 2 1 1 2 1 1 1 1 1 1	0.00 3.37 6.80 10.23 13.60 **Eaglio** **X** 0.00 3.37 6.80 10.23 13.60 **sezioni piedri* zione sezione e presso-fless **X** 0.65 4.33 8.00 **e taglio** X 0.65 4.33 8.00	M 0.00 132.20 -128.43 132.20 0.00 V 3.03 -150.10 3.73 157.88 -3.03 tto sinistro [Combinaz B = 100 cm H = 130.00 cm ione M -622.67 -88.67 0.00 V 242.36 66.48	-0.33 242.02 242.02 242.02 -0.33 -0.010 -0.141 0.004 0.149 0.010 ione n° 9 - SLE (Fred N 238.87 119.44 0.00 -0.228 0.063	57.02 57.02 38.01 38.01 57.02	19.01 19.01 19.01 19.01 19.01 19.01 19.01 0.00 0.00	0.23 9.32 9.21 9.78 0.23 σ _{fs} 78.67 8.10	0.01 6.02 9.44 7.70 0.01	0.00 0.66 0.68 0.70 0.00
1 2 3 4 5 5 Verifich. N° 1 2 3 4 5 5 Verifica. Base sea Altezza : Verifich. N° 1 2 3 3 Verifich. N° 1 1 2 1 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0.00 3.37 6.80 10.23 13.60 **Example of the control of the contr	M 0.00 132.20 -128.43 132.20 0.00 V 3.03 -150.10 3.73 157.88 -3.03 tto sinistro [Combina; B = 100 cm H = 130.00 cm ione M -622.67 -88.67 0.00 V 242.36	-0.33 242.02 242.02 242.02 -0.33 -0.010 -0.141 0.004 0.149 0.010 sione n° 9 - SLE (Frequency of the control o	57.02 57.02 38.01 38.01 57.02	19.01 19.01 19.01 19.01 19.01 19.01 19.01 0.00 0.00	0.23 9.32 9.21 9.78 0.23 σ _{fs} 78.67 8.10	0.01 6.02 9.44 7.70 0.01	0.00 0.66 0.68 0.70 0.00
1 2 3 4 5 5 Verifich: N° 1 2 3 4 5 5 Verifica Base sez Altezza: Verifich: N° 1 2 3 5 Verifich: N° 1 2 3 5 Verifich: N° 1 2 1 2 1 1 2 1 1 2 1 1 2 1 1 1 1 1 1	0.00 3.37 6.80 10.23 13.60 **Eaglio** **X** 0.00 3.37 6.80 10.23 13.60 **sezioni piedri* zione sezione e presso-fless **X** 0.65 4.33 8.00 **e taglio** X 0.65 4.33 8.00	M 0.00 132.20 -128.43 132.20 0.00 V 3.03 -150.10 3.73 157.88 -3.03 tto sinistro [Combinaz B = 100 cm H = 130.00 cm ione M -622.67 -88.67 0.00 V 242.36 66.48	-0.33 242.02 242.02 242.02 -0.33 -0.010 -0.141 0.004 0.149 0.010 ione n° 9 - SLE (Fred N 238.87 119.44 0.00 -0.228 0.063	57.02 57.02 38.01 38.01 57.02	19.01 19.01 19.01 19.01 19.01 19.01 19.01 0.00 0.00	0.23 9.32 9.21 9.78 0.23 σ _{fs} 78.67 8.10	0.01 6.02 9.44 7.70 0.01	0.00 0.66 0.68 0.70 0.00

Verifica sezioni piedritto destro [Combinazione n° 9 - SLE (Frequente)]

Base sezione B = 100 cm Altezza sezione H = 130.00 cm

Collegamento viario compreso tra lo Svincolo della S.S. 514 di "Chiaromonte" con la S.S. 115 e lo Svincolo della "Ragusana"

PROGETTO ESECUTIVO

Direzione Progettazione e Realizzazione Lavori

RELAZIONE DI CALCOLO SOTTOVIA AL KM 3+248 - SEC. 90

N°	X	<u>sione</u> M	N	A_{fi}	A_{fs}	σ_{fs}	$\sigma_{\rm fi}$	σ_{c}
1	0.65	-622.67	238.88	19.01	57.02	78.67	37.46	2.82
2	4.33	-88.67	119.44	19.01	38.01	8.10	6.48	0.47
3	8.00	0.00	0.00	19.01	38.01	0.00	0.00	0.00
/erifich	e taglio							
٧°	X	V	τ_{c}		A _{sw}			
1	0.65	-242.36	-0.228		0.00			
2	4.33	-66.48	-0.063		0.00			
3	8.00	0.00	0.000		0.00			
Verifica	sezioni fond	azione [Combinazione	n° 10 - SLE (Rara)]					
Base se: Altezza	zione sezione	B = 100 cm H = 130.00 cm						
Verifich	e presso-fles	sione						
N°	Х	M	N	A_{fi}	A_{fs}	σ_{fs}	σ_{fi}	σ
1	0.00	0.00	-7.29	57.02	19.01	2.07	0.59	0.00
2	3.37	148.15	242.90	57.02	19.01	10.30	7.92	0.74
3	6.80	-137.26	242.90	38.01	19.01	11.56	10.18	0.74
4	10.23	90.98	242.90	38.01	19.01	7.01	2.17	0.49
5	13.60	0.00	6.62	57.02	19.01	0.06	0.08	0.0
Verifich	e taglio							
N°	X	V	τ_{c}		A_{sw}			
1	0.00	2.94	-0.011		0.00			
2	3.37	-156.02	-0.147		0.00			
3	6.80	-4.80	-0.005		0.00			
4	10.23	148.02	0.139		0.00			
5	13.60	-3.19	0.010		0.00			
	sezioni piedi	ritto sinistro [Combina	zione n° 10 - SLE (Rai	<u>ra)]</u>				
<u>Verifica</u> Base se:	zione	ritto sinistro [Combina B = 100 cm H = 130.00 cm	zione n° 10 - SLE (Ra	<u>ra)]</u>				
<u>Verifica</u> Base se: Altezza	zione	B = 100 cm H = 130.00 cm	zione n° 10 - SLE (Ra	r <u>a)]</u>				
<u>Verifica</u> Base se: Altezza <u>Verifich</u>	zione sezione	B = 100 cm H = 130.00 cm	zione n° 10 - SLE (Rai	ra)] A _{fi}	A_fs	$\sigma_{f_{5}}$	$\sigma_{\rm fi}$	$\sigma_{\!\scriptscriptstyle 0}$
Verifica Base se: Altezza Verifich N°	zione sezione e presso-fles	B = 100 cm H = 130.00 cm			A _{fs} 57.02	σ _{fs} 83.09	Ծ _{fi} 39.06	
Verifica Base ser Altezza Verifich N° 1 2	zione sezione <u>e presso-fles</u> X 0.65 4.33	B = 100 cm H = 130.00 cm sione M -651.47 -95.87	N 238.88 119.44	A _{fi} 19.01 19.01	57.02 38.01	83.09 9.54	39.06 6.98	2.94 0.51
Verifica Base ser Altezza Verifich N° 1 2	zione sezione <u>e presso-fles</u> X 0.65	B = 100 cm H = 130.00 cm sione M -651.47	N 238.88	A _{fi} 19.01	57.02	83.09	39.06	2.94 0.51
Verifica Base se: Altezza Verifich N° 1 2 3 Verifich	zione sezione e presso-fles X 0.65 4.33 8.00	B = 100 cm H = 130.00 cm sione M -651.47 -95.87 0.00	N 238.88 119.44 0.00	A _{fi} 19.01 19.01	57.02 38.01 38.01	83.09 9.54	39.06 6.98	2.94 0.51
Verifica Base se: Altezza Verifich N° 1 2 3 Verifich N°	zione sezione e presso-fles X 0.65 4.33 8.00 e taglio X	B = 100 cm H = 130.00 cm sione M -651.47 -95.87 0.00	N 238.88 119.44 0.00	A _{fi} 19.01 19.01	57.02 38.01 38.01	83.09 9.54	39.06 6.98	2.94 0.51
Verifica Base se: Altezza Verifich N° 1 2 3 Verifich N° 1	zione sezione e presso-fles X 0.65 4.33 8.00 e taglio X 0.65	B = 100 cm H = 130.00 cm sione M -651.47 -95.87 0.00	N 238.88 119.44 0.00 τ _c 0.235	A _{fi} 19.01 19.01	57.02 38.01 38.01 A _{sw} 0.00	83.09 9.54	39.06 6.98	თ, 2.94 0.51 0.00
Verifica Base sea Altezza Verifich N° 1 2 3 Verifich N° 1 2 3	zione sezione e presso-fles X 0.65 4.33 8.00 e taglio X 0.65 4.33	B = 100 cm H = 130.00 cm sione M -651.47 -95.87 0.00 V 250.19 70.40	N 238.88 119.44 0.00 Tc 0.235 0.066	A _{fi} 19.01 19.01	57.02 38.01 38.01 A _{sw} 0.00 0.00	83.09 9.54	39.06 6.98	2.94 0.51
Verifica Base sea Altezza Verifich N° 1 2 3 Verifich N° 1 2 3	zione sezione e presso-fles X 0.65 4.33 8.00 e taglio X 0.65	B = 100 cm H = 130.00 cm sione M -651.47 -95.87 0.00	N 238.88 119.44 0.00 τ _c 0.235	A _{fi} 19.01 19.01	57.02 38.01 38.01 A _{sw} 0.00	83.09 9.54	39.06 6.98	2.94 0.51
Verifica Base se: Altezza Verifich N° 1 2 3 Verifich N° 1 2 3	zione sezione <u>e presso-fles</u> X 0.65 4.33 8.00 <u>e taglio</u> X 0.65 4.33 8.00	B = 100 cm H = 130.00 cm sione M -651.47 -95.87 0.00 V 250.19 70.40	N 238.88 119.44 0.00 \$\text{\text{tc}}\$ 0.235 0.066 0.000	A ₆ 19.01 19.01 19.01	57.02 38.01 38.01 A _{sw} 0.00 0.00	83.09 9.54	39.06 6.98	2.94 0.51
Base se: Base sesese Verifich Verifich Verifich Verifich Verifica Base se:	zione sezione e presso-fles X 0.65 4.33 8.00 e taglio X 0.65 4.33 8.00 sezioni piedi	B = 100 cm H = 130.00 cm Sione M -651.47 -95.87 0.00 V 250.19 70.40 0.00	N 238.88 119.44 0.00 \$\text{\text{tc}}\$ 0.235 0.066 0.000	A ₆ 19.01 19.01 19.01	57.02 38.01 38.01 A _{sw} 0.00 0.00	83.09 9.54	39.06 6.98	2.94 0.51
Base se: Altezza Verifich Verifich Verifich Verifich Verifich Verifica Verifica Verifica Verifica	zione sezione e presso-fles X 0.65 4.33 8.00 e taglio X 0.65 4.33 8.00 sezioni piedr zione sezione e presso-fles	B = 100 cm H = 130.00 cm Sione M -651.47 -95.87 0.00 V 250.19 70.40 0.00 ritto destro [Combinaz B = 100 cm H = 130.00 cm	N 238.88 119.44 0.00 7c 0.235 0.066 0.000 ione n° 10 - SLE (Ram	A _{fi} 19.01 19.01 19.01	57.02 38.01 38.01 A _{vw} 0.00 0.00 0.00	83.09 9.54 0.00	39.06 6.98 0.00	2.94 0.55 0.00
Werifica Werifich Werifich Werifich Werifich Werifich Werifica Werifica Werifich Werifich Werifich	zione sezione e presso-fles X 0.65 4.33 8.00 e taglio X 0.65 4.33 8.00 sezioni piedi zione sezione sezione e presso-fles X	B = 100 cm H = 130.00 cm sione M -651.47 -95.87 0.00 V 250.19 70.40 0.00 ritto destro [Combinaz B = 100 cm H = 130.00 cm	N 238.88 119.44 0.00 7c 0.235 0.066 0.000 ione n° 10 - SLE (Rara	A ₆ 19.01 19.01 19.01	57.02 38.01 38.01 Asw 0.00 0.00 0.00	83.09 9.54 0.00	39.06 6.98 0.00	2.94 0.55 0.00
Werifica Base se: Altezza Verifich N° 1 2 3 3 Werifich N° 1 2 3 Werifich Altezza Werifich N°	zione sezione e presso-fles X 0.65 4.33 8.00 e taglio X 0.65 4.33 8.00 sezioni piedi zione sezione e presso-fles X 0.65	B = 100 cm H = 130.00 cm sione M -651.47 -95.87 0.00 V 250.19 70.40 0.00 ritto destro [Combinaz B = 100 cm H = 130.00 cm sione M -555.87	N 238.88 119.44 0.00 \$\tau_c \tau_c \	A _{fi} 19.01 19.01 19.01 19.01 A _{fi} 19.01	57.02 38.01 38.01 A _{sw} 0.00 0.00 0.00 0.00	83.09 9.54 0.00	39.06 6.98 0.00	2.94 0.5: 0.00
Base se: Altezza Verifich N° 1 2 3 Werifich N° 1 2 3 Base se: Altezza Werifica N° 1 2 2 3	zione sezione e <u>presso-fles</u> X 0.65 4.33 8.00 e <u>taglio</u> X 0.65 4.33 8.00 sezioni piede zione sezione e <u>presso-fles</u> X 0.65 4.33 8.00	B = 100 cm H = 130.00 cm Sione M -651.47 -95.87 0.00 V 250.19 70.40 0.00 ritto destro [Combinaz B = 100 cm H = 130.00 cm sione M -555.87 -67.07	N 238.88 119.44 0.00 7c 0.235 0.066 0.000 ione n° 10 - SLE (Rara N 238.87 119.44	A ₆ 19.01 19.01 19.01 A ₆ 19.01 19.01	57.02 38.01 38.01 0.00 0.00 0.00 0.00 0.00 38.01	83.09 9.54 0.00 oris 68.45 4.10	39.06 6.98 0.00 σ _{fi} 33.73 4.96	2.94 0.5: 0.00 0.00
Base se: Altezza Verifich N° 1 2 3 Verifich N° 1 2 3 Verifica N° 1 2 Altezza Verifich N° 1 2 3	zione sezione e presso-fles X 0.65 4.33 8.00 e taglio X 0.65 4.33 8.00 sezioni piedi zione sezione e presso-fles X 0.65	B = 100 cm H = 130.00 cm sione M -651.47 -95.87 0.00 V 250.19 70.40 0.00 ritto destro [Combinaz B = 100 cm H = 130.00 cm sione M -555.87	N 238.88 119.44 0.00 \$\tau_c \tau_c \	A _{fi} 19.01 19.01 19.01 19.01 A _{fi} 19.01	57.02 38.01 38.01 A _{sw} 0.00 0.00 0.00 0.00	83.09 9.54 0.00	39.06 6.98 0.00	2.94 0.5: 0.00 0.00
Werifica Base se: Altezza Verifich 1 2 3 Verifich 1 2 3 Verifich N° 1 2 3 Verifich N° 1 2 Werifich N°	zione sezione e presso-fles	B = 100 cm H = 130.00 cm Sione M -651.47 -95.87 0.00 V 250.19 70.40 0.00 ritto destro [Combinaz B = 100 cm H = 130.00 cm sione M -555.87 -67.07 0.00	N 238.88 119.44 0.00 7c 0.235 0.066 0.000 ione n° 10 - SLE (Rara N 238.87 119.44	A ₆ 19.01 19.01 19.01 A ₆ 19.01 19.01	57.02 38.01 38.01 0.00 0.00 0.00 0.00 0.00 38.01 38.01	83.09 9.54 0.00 oris 68.45 4.10	39.06 6.98 0.00 σ _{fi} 33.73 4.96	2.9·0.5: 0.00
Verifica Base se: Altezza Verifich 1 2 3 Verifich 1 2 3 Verifich 1 2 3 Verifich 1 2 3 Verifich N°	zione sezione e presso-fles X 0.65 4.33 8.00 e taglio X 0.65 4.33 8.00 sezioni piedi zione sezione e presso-fles X 0.65 4.33 8.00	B = 100 cm H = 130.00 cm sione M -651.47 -95.87 0.00 V 250.19 70.40 0.00 ritto destro [Combinaz B = 100 cm H = 130.00 cm sione M -555.87 -67.07 0.00	N 238.88 119.44 0.00 0.235 0.066 0.000 ione n° 10 - SLE (Rara N 238.87 119.44 0.00	A ₆ 19.01 19.01 19.01 A ₆ 19.01 19.01	57.02 38.01 38.01 38.01 A _{sw} 0.00 0.00 0.00 0.00 38.01 38.01	83.09 9.54 0.00 oris 68.45 4.10	39.06 6.98 0.00 σ _{fi} 33.73 4.96	2.94 0.51
Base se: Altezza Verifica N° 1 2 3 Verifica N° 1 2 3 Verifica Base se: Altezza	zione sezione e presso-fles	B = 100 cm H = 130.00 cm Sione M -651.47 -95.87 0.00 V 250.19 70.40 0.00 ritto destro [Combinaz B = 100 cm H = 130.00 cm sione M -555.87 -67.07 0.00	N 238.88 119.44 0.00 7c 0.235 0.066 0.000 ione n° 10 - SLE (Rara N 238.87 119.44 0.00	A ₆ 19.01 19.01 19.01 A ₆ 19.01 19.01	57.02 38.01 38.01 0.00 0.00 0.00 0.00 0.00 38.01 38.01	83.09 9.54 0.00 oris 68.45 4.10	39.06 6.98 0.00 σ _{fi} 33.73 4.96	2.94 0.51 0.00 0.00
Verifica Base se: Altezza Verifich 1 2 3 Verifich 1 2 3 Verifich 1 2 3 Verifich 1 2 3 Verifich N°	zione sezione e presso-fles X 0.65 4.33 8.00 e taglio X 0.65 4.33 8.00 sezioni piedi zione sezione e presso-fles X 0.65 4.33 8.00	B = 100 cm H = 130.00 cm sione M -651.47 -95.87 0.00 V 250.19 70.40 0.00 ritto destro [Combinaz B = 100 cm H = 130.00 cm sione M -555.87 -67.07 0.00	N 238.88 119.44 0.00 0.235 0.066 0.000 ione n° 10 - SLE (Rara N 238.87 119.44 0.00	A ₆ 19.01 19.01 19.01 A ₆ 19.01 19.01	57.02 38.01 38.01 38.01 A _{sw} 0.00 0.00 0.00 0.00 38.01 38.01	83.09 9.54 0.00 oris 68.45 4.10	39.06 6.98 0.00 σ _{fi} 33.73 4.96	2.94 0.51 0.00 0.00

Verifica sezioni fondazione [Combinazione n° 11 - SLE (Rara)]

B = 100 cm Altezza sezione H = 130.00 cm

Verifiche presso-flessione

Collegamento viario compreso tra lo Svincolo della S.S. 514 di "Chiaromonte" con la S.S. 115 e lo

Svincolo della "Ragusana"

PROGETTO ESECUTIVO

Direzione Progettazione e Realizzazione Lavori

RELAZIONE DI CALCOLO SOTTOVIA AL KM 3+248 - SEC. 90

N° 1 2 3 4	X 0.00 3.37 6.80 10.23	M 0.00 90.98 -137.26 148.15	N 6.62 242.90 242.90 242.90	A _{fi} 57.02 57.02 38.01 38.01	A _{fs} 19.01 19.01 19.01 19.01	Gfs 0.06 6.90 11.56 10.91	σ _{fi} 0.08 1.88 10.18 10.38	σ _c 0.01 0.48 0.74 0.79
5	13.60	0.00	-7.29	57.02	19.01	2.07	0.59	0.00
	ne taglio							
N°	X	V	τ _c		A _{sw}			
1 2	0.00 3.37	3.19 -140.22	-0.010 -0.132		0.00 0.00			
3	6.80	12.19	0.011		0.00			
4	10.23	163.71	0.154		0.00			
5	13.60	-2.94	0.011		0.00			
Verifica	sezioni piedri	itto sinistro [Combinaz	tione n° 11 - SLE (Ran	<u>a)]</u>				
Base se Altezza	zione sezione	B = 100 cm H = 130.00 cm						
	e presso-fless							
N° 1	X 0.65	M	N 220 07	A _{fi}	A _{fs}	σ _{fs} 68.45	σ _{fi}	σ _c
2	4.33	-555.87 -67.07	238.87 119.44	19.01 19.01	57.02 38.01	4.10	33.73 4.96	2.53 0.36
3	8.00	0.00	0.00	19.01	38.01	0.00	0.00	0.00
-			- · · · -					-
.,								
<u>Verifich</u> N°	<u>ne taglio</u> X	V	τ.		A_{sw}			
1	0.65	236.28	τ _c 0.222		0.00			
2	4.33	54.73	0.052		0.00			
3	8.00	0.00	0.000		0.00			
Base se		B = 100 cm H = 130.00 cm	one n° 11 - SLE (Rara	П				
Verifich	ne presso-fless	ione						
N°	Х	M	N	A_{fi}	A_{fs}	σ_{fs}	σ_{fi}	σ_{c}
1	0.65	-651.47	238.87	19.01	57.02	83.09	39.06	2.94
2	4.33	-95.87	119.44	19.01	38.01	9.54	6.98	0.51
3	8.00	0.00	0.00	19.01	38.01	0.00	0.00	0.00
	ne taglio							
N°	X	V	τ _c		Asw			
1 2	0.65 4.33	-250.19 -70.40	-0.235 -0.066		0.00 0.00			
3	8.00	0.00	0.000		0.00			
Verifica	ı sezioni fonda	ızione [Combinazione ı	n° 12 - SLE (Rara)]					
Base se	zione	B = 100 cm						
	sezione	H = 130.00 cm						
						_	_	
	ne presso-fless		N.I.		Afs	σ_{fs}	σfi	
N°	Х	M	N -0.34	A _{fi} 57 02	19 01	0.24		σ _c 0.00
		M 0.00	N -0.34 249.85	57.02	19.01 19.01	0.24 10.59	0.01 8.15	0.00 0.76
N° 1 2 3	X 0.00 3.37 6.80	M 0.00 152.42 -113.71	-0.34 249.85 249.85	57.02 57.02 38.01	19.01 19.01	10.59 5.25	0.01 8.15 8.21	0.00 0.76 0.58
N° 1 2 3	X 0.00 3.37 6.80 10.23	M 0.00 152.42 -113.71 152.42	-0.34 249.85 249.85 249.85	57.02 57.02 38.01 38.01	19.01 19.01 19.01	10.59 5.25 11.23	0.01 8.15 8.21 10.68	0.00 0.76 0.58 0.81
N° 1 2 3	X 0.00 3.37 6.80	M 0.00 152.42 -113.71	-0.34 249.85 249.85	57.02 57.02 38.01	19.01 19.01	10.59 5.25	0.01 8.15 8.21	0.00 0.76 0.58
N° 1 2 3	X 0.00 3.37 6.80 10.23	M 0.00 152.42 -113.71 152.42	-0.34 249.85 249.85 249.85	57.02 57.02 38.01 38.01	19.01 19.01 19.01	10.59 5.25 11.23	0.01 8.15 8.21 10.68	0.00 0.76 0.58 0.81
N° 1 2 3 4 5	X 0.00 3.37 6.80 10.23	M 0.00 152.42 -113.71 152.42	-0.34 249.85 249.85 249.85	57.02 57.02 38.01 38.01	19.01 19.01 19.01	10.59 5.25 11.23	0.01 8.15 8.21 10.68	0.00 0.76 0.58 0.81
N° 1 2 3 4 5	X 0.00 3.37 6.80 10.23 13.60	M 0.00 152.42 -113.71 152.42 0.00	-0.34 249.85 249.85 249.85 -0.34	57.02 57.02 38.01 38.01	19.01 19.01 19.01 19.01	10.59 5.25 11.23	0.01 8.15 8.21 10.68	0.00 0.76 0.58 0.81
N° 1 2 3 4 5	X 0.00 3.37 6.80 10.23 13.60 ne taglio X 0.00	M 0.00 152.42 -113.71 152.42 0.00	-0.34 249.85 249.85 249.85 -0.34 -0.011	57.02 57.02 38.01 38.01	19.01 19.01 19.01 19.01 A _{SW} 0.00	10.59 5.25 11.23	0.01 8.15 8.21 10.68	0.00 0.76 0.58 0.81
N° 1 2 3 4 5 Verifich N° 1 2	X 0.00 3.37 6.80 10.23 13.60 Ne taglio X 0.00 3.37	M 0.00 152.42 -113.71 152.42 0.00 V 2.96 -152.95	-0.34 249.85 249.85 249.85 -0.34 -0.011 -0.144	57.02 57.02 38.01 38.01	19.01 19.01 19.01 19.01 19.01	10.59 5.25 11.23	0.01 8.15 8.21 10.68	0.00 0.76 0.58 0.81
N° 1 2 3 4 5 Verifich N° 1 2 3	X 0.00 3.37 6.80 10.23 13.60 X 0.00 3.37 6.80	M 0.00 152.42 -113.71 152.42 0.00 V 2.96 -152.95 3.78	-0.34 249.85 249.85 249.85 -0.34	57.02 57.02 38.01 38.01	19.01 19.01 19.01 19.01 19.01 Asw 0.00 0.00	10.59 5.25 11.23	0.01 8.15 8.21 10.68	0.00 0.76 0.58 0.81
N° 1 2 3 4 5 Verifich N° 1 2 3 4	X 0.00 3.37 6.80 10.23 13.60 X 0.00 3.37 6.80 10.23	M 0.00 152.42 -113.71 152.42 0.00 V 2.96 -152.95 3.78 160.77	-0.34 249.85 249.85 249.85 -0.34	57.02 57.02 38.01 38.01	19.01 19.01 19.01 19.01 19.01 A _{sw} 0.00 0.00 0.00	10.59 5.25 11.23	0.01 8.15 8.21 10.68	0.00 0.76 0.58 0.81
N° 1 2 3 4 5 Verifich N° 1 2 3	X 0.00 3.37 6.80 10.23 13.60 X 0.00 3.37 6.80	M 0.00 152.42 -113.71 152.42 0.00 V 2.96 -152.95 3.78	-0.34 249.85 249.85 249.85 -0.34	57.02 57.02 38.01 38.01	19.01 19.01 19.01 19.01 19.01 Asw 0.00 0.00	10.59 5.25 11.23	0.01 8.15 8.21 10.68	0.00 0.76 0.58 0.81

Verifica sezioni piedritto sinistro [Combinazione n° 12 - SLE (Rara)]

Base sezione B = 100 cm Altezza sezione H = 130.00 cm

MANDATARIA:

PROGETTO ESECUTIVO

Direzione Progettazione e Realizzazione Lavori

Verific	he presso-fles	<u>sione</u>						
N°	Х	M	N	A_{fi}	A_{fs}	σ_{fs}	$\sigma_{\rm fi}$	σ_{c}
1	0.65	-651.47	238.88	19.01	57.02	83.09	39.06	2.94
2	4.33	-95.87	119.44	19.01	38.01	9.54	6.98	0.51
3	8.00	0.00	0.00	19.01	38.01	0.00	0.00	0.00
Verific	he taglio							
N°	X	V	τ_{c}		A_{sw}			
1	0.65	250.19	0.235		0.00			
2	4.33	70.40	0.066		0.00			
3	8.00	0.00	0.000		0.00			
Altezz <u>Verific</u>	ezione a sezione <u>:he presso-fles</u>							
N° 1	X 0.65	M -651.47	N 238.87	A _{fi} 19.01	A _{fs} 57.02	σ _{fs} 83.09	თ _{fi} 39.06	σ _c 2.94
2	4.33	-051.47 -95.87	119.44	19.01	38.01	9.54	6.98	0.51
3	4.33 8.00	0.00	0.00	19.01	38.01	0.00	0.00	0.00
		0.00	0.00	15.01	36.01	0.00	0.00	0.00
	he taglio							
N°	X	V	τ _c		A _{sw}			
1	0.65	-250.19	-0.235		0.00			
2	4.33 8.00	-70.40 0.00	-0.066 0.000		0.00 0.00			

PROGETTO ESECUTIVO

RELAZIONE DI CALCOLO SOTTOVIA AL KM 3+248 - SEC. 90

Verifiche fessurazione

Simbologia adottata ed unità di misura
--

- Indice sezione
- Ascissa/Ordinata sezione, espresso in m
- M_p M_n Momento, espresse in kNm Momento, espresse in kNm
- Ampiezza fessure, espresse in mm Apertura limite fessure, espresse in mm w_k Wlim
- Distanza media tra le fessure, espresse in mm
- Deformazione nelle fessure, espresse in [%]

Verifica fessurazione fondazione [Combinazione n° 6 - SLE	(Quasi Permanente)]
------------------------------------	-------------------------	---------------------

N°	Х	A_{fi}	A_{fs}	Мр	Mn	M	w	W _{lim}	S _m	ϵ_{sm}
1	0.05	57.02	19.01	568.37	-526.96	-0.29	0.00	0.20	0.00	0.000000
2	3.37	57.02	19.01	568.37	-526.96	71.52	0.00	0.20	0.00	0.000000
3	6.80	38.01	19.01	541.64	-521.02	-172.58	0.00	0.20	0.00	0.000000
4	10.23	38.01	19.01	541.64	-521.02	71.52	0.00	0.20	0.00	0.000000
5	13.55	57.02	19.01	568.37	-526.96	-0.29	0.00	0.20	0.00	0.000000

<u>Verifica fessurazione piedritto sinistro [Combinazione n° 6 - SLE (Quasi Permanente)]</u>

N°	X	A_{fi}	A_{fs}	Mp	Mn	M	w	W _{lim}	Sm	ϵ_{sm}
1	0.65	19.01	57.02	526.96	-568.37	-536.29	0.00	0.20	0.00	0.000000
2	4.33	19.01	38.01	521.02	-541.64	-67.07	0.00	0.20	0.00	0.000000
3	8.00	19.01	38.01	521.02	-541.64	0.00	0.00	0.20	0.00	0.000000

<u>Verifica fessurazione piedritto destro [Combinazione nº 6 - SLE (Quasi Permanente)]</u>

N°	Х	Afi	Afs	Мр	Mn	М	w	Wlim	Sm	$\epsilon_{\sf sm}$
1	0.65	19.01	57.02	526.96	-568.37	-536.29	0.00	0.20	0.00	0.000000
2	4.33	19.01	38.01	521.02	-541.64	-67.07	0.00	0.20	0.00	0.000000
3	8.00	19.01	38.01	521.02	-541.64	0.00	0.00	0.20	0.00	0.000000

<u>Verifica fessurazione fondazione [Combinazione n° 7 - SLE (Frequente)]</u>

N° X	Afi	A_{fs}	Мр	Mn	M	w	Wlim	Sm	ϵ_{sm}
1 0.05	57.02	19.01	568.37	-526.96	-0.33	0.00	0.30	0.00	0.000000
2 3.37	57.02	19.01	568.37	-526.96	128.84	0.00	0.30	0.00	0.000000
3 6.80	38.01	19.01	541.64	-521.02	-146.84	0.00	0.30	0.00	0.000000
4 10.23	38.01	19.01	541.64	-521.02	84.35	0.00	0.30	0.00	0.000000
5 13.55	57.02	19.01	568.37	-526.96	-0.29	0.00	0.30	0.00	0.000000

Verifica fessurazione piedritto sinistro [Combinazione n° 7 - SLE (Frequente)]

N°	Х	A_{fi}	A_fs	Мр	Mn	М	w	W _{lim}	s _m	ϵ_{sm}
1	0.65	19.01	57.02	526.96	-568.37	-622.67	0.03	0.30	98.23	0.000015
2	4.33	19.01	38.01	521.02	-541.64	-88.67	0.00	0.30	0.00	0.000000
3	8.00	19.01	38.01	521.02	-541.64	0.00	0.00	0.30	0.00	0.000000

Verifica fessurazione piedritto destro [Combinazione n° 7 - SLE (Frequente)]

N°	Х	A_{fi}	A_fs	Мр	Mn	M	w	W _{lim}	Sm	$\epsilon_{\sf sm}$
1	0.65	19.01	57.02	526.96	-568.37	-548.50	0.00	0.30	0.00	0.000000
2	4.33	19.01	38.01	521.02	-541.64	-67.07	0.00	0.30	0.00	0.000000
3	8.00	19.01	38.01	521.02	-541.64	0.00	0.00	0.30	0.00	0.000000

Verifica fessurazione fondazione [Combinazione n° 8 - SLE (Frequente)]

N°	Х	Afi	A_{fs}	Mp	Mn	M	w	Wlim	Sm	ϵ_{sm}
1	0.05	57.02	19.01	568.37	-526.96	-0.29	0.00	0.30	0.00	0.000000
2	3.37	57.02	19.01	568.37	-526.96	84.35	0.00	0.30	0.00	0.000000
3	6.80	38.01	19.01	541.64	-521.02	-146.84	0.00	0.30	0.00	0.000000
4	10.23	38.01	19.01	541.64	-521.02	128.84	0.00	0.30	0.00	0.000000
5	13.55	57.02	19.01	568.37	-526.96	-0.33	0.00	0.30	0.00	0.000000

Verifica fessurazione piedritto sinistro [Combinazione n° 8 - SLE (Frequente)]

Мр Mn

Collegamento viario compreso tra lo Svincolo della S.S. 514 di "Chiaromonte" con la S.S. 115 e lo

Svincolo della "Ragusana" PROGETTO ESECUTIVO

Direzione Progettazione e Realizzazione Lavori

RELAZIONE DI CALCOLO SOTTOVIA AL KM 3+248 - SEC. 90

zioi	ie Lavori									
1 2	0.65 4.33	19.01 19.01	57.02 38.01	526.96 521.02	-568.37 -541.64	-548.50 -67.07	0.00 0.00	0.30 0.30	0.00 0.00	0.000000
3	8.00	19.01	38.01	521.02	-541.64	0.00	0.00	0.30	0.00	0.000000
			fo li	10.015/5	.,					
) [Combinazione i	n° 8 - SLE (Frequente						
N° 1	X	A _{fi}	A _{fs}	Mp	Mn	M	W	W _{lim}	S _m	ε _{sm}
1 2	0.65 4.33	19.01 19.01	57.02 38.01	526.96 521.02	-568.37 -541.64	-622.67 -88.67	0.03 0.00	0.30 0.30	98.23 0.00	0.000015 0.000000
3	8.00	19.01	38.01	521.02	-541.64	0.00	0.00	0.30	0.00	0.000000
Verif	ica fessurazio	ne fondazione [Co	mbinazione n° 9	- SLE (Frequente)]						
N° 1	X	A _{fi}	A _{fs}	Mp	Mn	M	w 0.00	W _{lim}	S _m	£ _{sm}
2	0.05 3.37	57.02 57.02	19.01 19.01	568.37 568.37	-526.96 -526.96	-0.33 132.20	0.00 0.00	0.30 0.30	0.00 0.00	0.000000
3	6.80	38.01	19.01	541.64	-521.02	-128.43	0.00	0.30	0.00	0.000000
4	10.23	38.01	19.01	541.64	-521.02	132.20	0.00	0.30	0.00	0.000000
5	13.55	57.02	19.01	568.37	-526.96	-0.33	0.00	0.30	0.00	0.000000
· · · · · · · · · · · · · · · · · · ·			[Ckii	- ° 0 . CI 5 / 5	-11					
			o (Combinazione	n° 9 - SLE (Frequent	_					
N°	X	A _{fi}	A _{fs}	Mp	Mn	M	W	Wlim	S _m	£sm
<u>l</u>	0.65	19.01	57.02	526.96	-568.37	-622.67	0.03	0.30	98.23	0.000015
	4.33 8.00	19.01 19.01	38.01 38.01	521.02 521.02	-541.64 -541.64	-88.67 0.00	0.00 0.00	0.30 0.30	0.00 0.00	0.000000
•	0.00	15.01	30.01	321.02	341.04	0.00	0.00	0.50	0.00	0.000000
/erif	ica fessurazio	ne piedritto destro	Combinazione	n° 9 - SLE (Frequente	2)]					
N°	х	A_{fi}	A_{fs}	Мр	Mn	М	w	\mathbf{w}_{lim}	S _m	$\epsilon_{\sf sm}$
1	0.65	19.01	57.02	526.96	-568.37	-622.67	0.03	0.30	98.23	0.000015
2	4.33	19.01	38.01	521.02	-541.64	-88.67	0.00	0.30	0.00	0.000000
3	8.00	19.01	38.01	521.02	-541.64	0.00	0.00	0.30	0.00	0.000000
Verif	ica fessurazio	ne fondazione [Co	mbinazione n° 10	- SLE (Rara)]						
N°					N.4					
N 1	X 0.05	A _{fi} 57.02	A _{fs} 19.01	Mp 568.37	Mn -526.96	M -0.34	w 0.00	w _{lim} 100.00	s _m 0.00	ϵ_{sm} 0.000000
2	3.37	57.02	19.01	568.37	-526.96	148.15	0.00	100.00	0.00	0.000000
3	6.80	38.01	19.01	541.64	-521.02	-137.26	0.00	100.00	0.00	0.000000
4	10.23	38.01	19.01	541.64	-521.02	90.98	0.00	100.00	0.00	0.000000
5	13.55	57.02	19.01	568.37	-526.96	-0.29	0.00	100.00	0.00	0.000000
	ica fessurazioi	ne piedritto sinistr	o Combinazione	n° 10 - SLE (Rara)]						
٧°	X	A _{fi}	Afs	Mp	Mn	M	w	W _{lim}	Sm	ϵ_{sm}
1 2	0.65	19.01	57.02	526.96	-568.37	-651.47	0.03	100.00	98.23	0.000019
3	4.33 8.00	19.01 19.01	38.01 38.01	521.02 521.02	-541.64 -541.64	-95.87 0.00	0.00 0.00	100.00 100.00	0.00 0.00	0.000000 0.000000
Verif	ica fessurazio	ne piedritto destro	Combinazione i	n° 10 - SLE (Rara)]						
۷°	X	A _{fi}	A _{fs}	Mp	Mn	M	w 0.00	Wlim	S _m	£sm
<u>l</u>	0.65 4.33	19.01 19.01	57.02 38.01	526.96 521.02	-568.37 -541.64	-555.87 -67.07	0.00 0.00	100.00 100.00	0.00 0.00	0.000000 0.000000
3	8.00	19.01	38.01	521.02	-541.64	0.00	0.00	100.00	0.00	0.000000
/erif	ica fessurazio	ne fondazione [Co	mbinazione n° 11	- SLE (Rara)]						
N° 1	X 0.05	A _{fi}	A _{fs}	Mp	Mn -526.96	M -0.29	w 0.00	W _{lim}	s _m	£ _{sm}
<u>l</u>	0.05 3.37	57.02 57.02	19.01 19.01	568.37 568.37	-526.96 -526.96	-0.29 90.98	0.00 0.00	100.00 100.00	0.00 0.00	0.000000
<u>2</u> 3	6.80	38.01	19.01	541.64	-526.96 -521.02	-137.26	0.00	100.00	0.00	0.000000
4	10.23	38.01	19.01	541.64	-521.02	148.15	0.00	100.00	0.00	0.000000
5	13.55	57.02	19.01	568.37	-526.96	-0.34	0.00	100.00	0.00	0.000000

Verifica fessurazione piedritto sinistro [Combinazione n° 11 - SLE (Rara)]

PROGETTO ESECUTIVO

Direzione Progettazione e Realizzazione Lavori

N° 1 2 3	X 0.65 4.33 8.00	A _{fi} 19.01 19.01 19.01	A _{fs} 57.02 38.01 38.01	Mp 526.96 521.02 521.02	Mn -568.37 -541.64 -541.64	M -555.87 -67.07 0.00	w 0.00 0.00 0.00	W _{lim} 100.00 100.00 100.00	Sm 0.00 0.00 0.00	£sm 0.000000 0.000000 0.000000
Verif	fica fessurazio	ne piedritto destro	[Combinazione r	n° 11 - SLE (Rara)]						
N° 1 2 3	X 0.65 4.33 8.00	A _{fi} 19.01 19.01 19.01	A _{fs} 57.02 38.01 38.01	Mp 526.96 521.02 521.02	Mn -568.37 -541.64 -541.64	M -651.47 -95.87 0.00	w 0.03 0.00 0.00	W _{lim} 100.00 100.00 100.00	s _m 98.23 0.00 0.00	\$\varepsilon_{\sum sm}\$0.000019 0.000000 0.000000
Verif	fica fessurazio	ne fondazione [Co	mbinazione n° 12	- SLE (Rara)]						
N° 1 2 3 4 5	X 0.05 3.37 6.80 10.23 13.55	A _{fi} 57.02 57.02 38.01 38.01 57.02	A _{fs} 19.01 19.01 19.01 19.01 19.01	Mp 568.37 568.37 541.64 541.64 568.37	Mn -526.96 -526.96 -521.02 -521.02 -526.96	M -0.34 152.42 -113.71 152.42 -0.34	w 0.00 0.00 0.00 0.00 0.00	Wlim 100.00 100.00 100.00 100.00 100.00	s _m 0.00 0.00 0.00 0.00 0.00	Esm 0.000000 0.000000 0.000000 0.000000 0.000000
Verit	fica fessurazio	ne piedritto sinistr	o [Combinazione	n° 12 - SLE (Rara)]						
N° 1 2 3	X 0.65 4.33 8.00	A _{fi} 19.01 19.01 19.01	A _{fs} 57.02 38.01 38.01	Mp 526.96 521.02 521.02	Mn -568.37 -541.64 -541.64	M -651.47 -95.87 0.00	w 0.03 0.00 0.00	W _{lim} 100.00 100.00 100.00	s _m 98.23 0.00 0.00	$\begin{array}{c} \epsilon_{\text{sm}} \\ 0.000019 \\ 0.000000 \\ 0.000000 \end{array}$
Verit	fica fessurazio	ne piedritto destro	[Combinazione	n° 12 - SLE (Rara)]						
N° 1 2 3	X 0.65 4.33 8.00	A _{fi} 19.01 19.01 19.01	A _{fs} 57.02 38.01 38.01	Mp 526.96 521.02 521.02	Mn -568.37 -541.64 -541.64	M -651.47 -95.87 0.00	w 0.03 0.00 0.00	W _{lim} 100.00 100.00 100.00	s _m 98.23 0.00 0.00	Esm 0.000019 0.000000 0.000000

Realizzazione Lavori

Collegamento viario compreso tra lo Svincolo della S.S. 514 di "Chiaromonte" con la S.S. 115 e lo

Svincolo della "Ragusana"

PROGETTO ESECUTIVO

RELAZIONE DI CALCOLO SOTTOVIA AL KM 3+248 - SEC. 90

Inviluppo spostamenti nodali

Inviluppo sp	ostamenti fondazione						
	W. F. 1	. 1					
	X [m]	u _{Xmin} [cm]	u _{Xmax} [cm]		u _{Ymin} [cm]	u _{Ymax} [cm]	
	0.00	-0.0852	1.0364		-0.3473	0.2582	
	3.37	-0.0869	1.0331		0.1181	0.2693	
	6.80	-0.0895	1.0274		0.1824	0.3415	
	10.23	-0.0921	1.0213		0.1952	0.2883	
	13.52	-0.0938	1.0169		-0.0224	0.2582	
	13.32	-0.0536	1.0103		-0.0224	0.2382	
Inviluppo sp	ostamenti piedritto sinistro						
	Y [m]	u _{Xmin} [cm]	u _{Xmax} [cm]		u _{Ymin} [cm]	u _{Ymax} [cm]	
	0.65	-0.0852	1.0366		-0.1578	0.2683	
	4.33	-0.0015	1.8371		-0.1566	0.2704	
	8.00	0.0834	2.7893		-0.1562	0.2711	
Inviluppo sp	ostamenti piedritto destro						
	Y [m]	u _{Xmin} [cm]	u _{Xmax} [cm]		u _{Ymin} [cm]	u _{Ymax} [cm]	
	0.65	-0.0938	1.0172		0.0843	0.2683	
	4.33	-0.2114	0.5605		0.0855	0.2704	
	8.00	-0.3692	0.0445		0.0859	0.2711	
			Inviluppo so	llecitazioni noda	li		
Inviluppo so	llecitazioni fondazione						
X [m]	M _{min} [kNm] M _{max} [k	(Nm]	V _{min} [kN]	V _{max} [kN]	N _{min} [kN]	N _{max} [kN]
0.00	0.00)	0.00	0.00	4.30	-108.76	8.94
3.37	-1768.39		1.52	-360.10	-140.22	218.55	696.95
6.80	-991.37		5.31	-96.88	16.45	218.55	741.51
10.23	-1142.64		1.52	148.00	238.68	218.55	786.08
13.60	-1142.64		0.00	-4.30	0.00	-9.84	106.73
Inviluppo so	llecitazioni piedritto sinistro						
Y [m]	M _{min} [kNm]	M _{max} [kNm]	V _{min} [kN]		V _{max} [kN]	N _{min} [kN]	N _{max} [kN]
0.65	-2527.77	-536.29	218.85		760.75	191.15	322.48
4.33	-564.94	-67.07	54.73		325.68	95.57	161.24
8.00	0.00	0.00	0.00		0.00	0.00	0.00
Inviluppo so	llecitazioni piedritto destro						
Y [m]	M _{min} [kNm]	M _{max} [kNm]	V _{min} [kN]		V _{max} [kN]	N _{min} [kN]	N _{max} [kN]
0.65	-1763.27	-536.29	-724.31		-218.85	191.15	322.48
4.33	-205.25	-67.07	-171.62		-54.73	95.57	161.24
8.00	0.00	0.00	-2.00		0.00	0.00	0.00
			Inviluppo p	ressioni terreno			
Inviluppo pr	essioni sul terreno di fondazio	<u>ne</u>					
	X [m]		o _{tmin} [MPa]		σ _{tmax} [MPa]		
	0.00		0.000		0.103		
	3.37		0.047		0.103		
	6.80		0.073		0.137		
			0.078				
	10.23				0.115		
	13.60		0.000		0.103		

Inviluppo verifiche stato limite ultimo (SLU)

Verifica sezioni fondazione (Inviluppo)

Base sezione Altezza sezione	B = 100 cm H = 130.00 cm		
х	A_{fi}	A_fs	CS
0.00	57.02	19.01	11.23
3.37	57.02	19.01	1.50
6.80	38.01	19.01	2.53
10.23	38.01	19.01	1.92
13.60	57.02	19.01	38.52

Realizzazione Lavori

Collegamento viario compreso tra lo Svincolo della S.S. 514 di "Chiaromonte" con la S.S. 115 e lo

Svincolo della "Ragusana" **PROGETTO ESECUTIVO**

RELAZIONE DI CALCOLO SOTTOVIA AL KM 3+248 - SEC. 90

Х	V_{Rd}		V_{Rsd}	V_Rcd	A_{sw}
0.00	420.55		0.00	0.00	0.00
3.37	570.61		0.00	0.00	0.00
6.80	469.26		0.00	0.00	0.00
10.23	504.45		0.00	0.00	0.00
13.60	423.25		0.00	0.00	0.00
Verifica sezioni pied	Iritto sinistro (Inviluppo)				
Base sezione	B = 100 cm				
Altezza sezione	H = 130.00 cm				
Υ	A_{fi}	A_fs	CS		
0.65	19.01	57.02	1.09		
4.33	19.01	38.01	2.03		
8.00	19.01	38.01	1000.00		
Υ	V_{Rd}		V_{Rsd}	V_{Rcd}	A_{sw}
0.65	569.83		0.00	0.00	0.00
4.33	480.41		0.00	0.00	0.00
8.00	421.97		0.00	0.00	0.00
Verifica sezioni piec	lritto destro (Inviluppo)				
Base sezione	B = 100 cm				
Altezza sezione	H = 130.00 cm				
Υ	Afi	Afs	CS		
0.65	19.01	57.02	1.62		
4.33	19.01	38.01	5.41		
8.00	19.01	38.01	795.61		
γ	V _{Rd}		V _{Rsd}	V _{Rcd}	A _{sw}
0.65	569.83		0.00	0.00	0.00
4.33	480.41		0.00	0.00	0.00
8.00	421.97		0.00	0.00	0.00

Inviluppo verifiche stato limite esercizio (SLE)

Verifica sezioni fondazione (Inviluppo)

Base sezione Altezza sezione	B = 100 cm H = 130.00 cm				
Х	A_{fi}	A_fs	σ_{c}	$\sigma_{\rm fi}$	σ_{fs}
0.00	57.02	19.01	0.005	0.589	2.069
3.37	57.02	19.01	0.758	8.148	10.595
6.80	38.01	19.01	1.000	13.297	27.538
10.23	38.01	19.01	0.809	10.678	11.227
13.60	57.02	19.01	0.005	0.589	2.069
X	$ au_{c}$		A _{sw}		
0.00	-0.01		0.00		
3.37	-0.15		0.00		
6.80	0.01		0.00		
10.23	0.15		0.00		
13.60	0.01		0.00		

Verifica sezioni piedritto sinistro (Inviluppo)

Base sezione Altezza sezione	B = 100 cm H = 130.00 cm				
Υ	A_{fi}	A_fs	σ_{c}	$\sigma_{\rm fi}$	σ_{fs}
0.65	19.01	57.02	2.944	39.064	83.089
4.33	19.01	38.01	0.511	6.983	9.543
8.00	19.01	38.01	0.000	0.000	0.000
Y	το		Asw		
0.65	0.24		0.00		
4.33	0.07		0.00		
8.00	0.00		0.00		

PROGETTO ESECUTIVO

RELAZIONE DI CALCOLO SOTTOVIA AL KM 3+248 - SEC. 90

Verifica sezioni piedritto destro (Inviluppo)

Base sezione	B = 100 cm				
Altezza sezione	H = 130.00 cm				
		_			
Y	Afi	A_{fs}	σ_{c}	$\sigma_{\rm fi}$	σ_{fs}
0.65	19.01	57.02	2.944	39.064	83.089
4.33	19.01	38.01	0.511	6.983	9.543
8.00	19.01	38.01	0.000	0.000	0.000
Υ	τ_c		A_{sw}		
0.65	-0.24		0.00		
4.33	-0.07		0.00		
8.00	0.00		0.00		

