

Direzione Progettazione e Realizzazione Lavor i

ITINERARIO RAGUSA-CATANIA

Collegamento viario compreso tra lo Svincolo della S.S. 514 "di Chiaramonte" con la S.S. 115 e lo Svincolo della S.S. 194 "Ragusana"

LOTTO 4 - Dallo svincolo n. 8 "Francofonte" (compreso) allo svincolo della "Ragusana" (escluso)

PROGETTO ESECUTIVO

COD. PA898

PROGETTAZIONE: ATI SINTAGMA - GP INGEGNERIA - COOPROGETTI -GDG - ICARIA - OMNISERVICE

OPERE D'ARTE MINORI ATTRAVERSAMENTO IDRAULICO DAL KM 10+264 AL KM 10+280 Relazione di calcolo spalle e fondazioni

CODICE PROGETTO PROGETTO LIV. PROG. N. PROG.		NOME FILE TO40M02STRRE02A		REVISIONE	SCALA:		
LO40		CODICE ELAB.	T040M02S	TRRE	0 2	Α	-
Α	Emissione			Giu 2021	P. Castraberte	F. Durastanti	N.Granieri
REV.	DESCRIZIONE			DATA	REDATTO	VERIFICATO	APPROVATO

Collegamento viario compreso tra lo Svincolo della S.S. 514 di "Chiaromonte" con la S.S. 115 e lo Svincolo della "Ragusana" PROGETTO ESECUTIVO

RELAZIONE DI CALCOLO SPALLE

INDICE

1	P	PREMESSA4
2	C	CLASSE D'USO E VITA NOMINALE DELL'OPERA5
3	C	CONCEZIONE STRUTTURALE6
4	N	NORMATIVA DI RIFERIMENTO9
4.	.1	DOCUMENTAZIONE DI RIFERIMENTO
5	C	CARATTERISTICHE DEI MATERIALI
5.	.1	CALCESTRUZZO
5.	.2	ACCIAIO PER ARMATURE ORDINARIE
6	II	NQUADRAMENTO GEOTECNICO12
6	.1	STRATIGRAFIA DI CALCOLO
6	.2	PARAMETRI GEOTECNICI
6	.3	CARATTERISTICHE DEL TERRENO DEL RILEVATO
7	Δ	AZIONI DI CALCOLO
7.	.1	PESO PROPRIO DEGLI ELEMENTI STRUTTURALI
7.	.2	PESO DEL TERRENO A MONTE DELL'OPERA
7.	.3	SPINTA STATICA DEL TERRENO A MONTE
7.	.4	INCREMENTO DI SPINTA DOVUTO AL SOVRACCARICO STRADALE
7.	.5	INCREMENTO DI SPINTA SULLA SPALLA DOVUTO AL SISMA
7.	.6	FORZE DI INERZIA DELLA STRUTTURA E DEL TERRENO AD ESSA SOLIDALE
7.	.7	AZIONI TRASMESSE DALL'IMPALCATO
7.	.8	AZIONE DI FRENAMENTO SUL PARAGHIAIA
7.	.9	URTO DEI VEICOLI IN SVIO
8	Δ	AZIONE SISMICA (E)
9	C	COMBINAZIONE DELLE AZIONI18

Collegamento viario compreso tra lo Svincolo della S.S. 514 di "Chiaromonte" con la S.S. 115 e lo Svincolo della "Ragusana"

PROGETTO ESECUTIVO

RELAZIONE DI CALCOLO SPALLE

10	CRITERI GENERALI DI VERIFICA DELLE SEZIONI IN C.A	.9
10	0.1 VERIFICA AGLI STATI LIMITE ULTIMI	.9
	10.1.1Verifiche a flessione e pressoflessione	.9
	10.1.2 Verifiche a taglio	.9
10	0.2 VERIFICA AGLI STATI LIMITE DI ESERCIZIO	20
11	CRITERI GENERALI DI VERIFICA GEOTECNICI	:1
11	1 CRITERI DI VERIFICA DELLA PALIFICATA DI FONDAZIONE	!1
	11.1.1Definizione del modello di calcolo	!1
	11.1.2Calcolo della capacità portante dei pali	!4
12	ANALISI STRUTTURALE: CRITERI GENERALI2	:6
12	.1 CODICI DI CALCOLO2	26
13	VERIFICA DELLE SPALLE	. 7
13	3.1 GEOMETRIA MURO FRONTALE E PARAGHIAIA2	2 7
13	3.2 VERIFICHE DEL PARAGHIAIA	10
	13.2.1Verifiche agli Stati Limite Ultimi (SLU/SLV)	0
13	3.3 VERIFICA DEL MURO FRONTALE	4
	13.3.1Verifiche agli Stati Limite Ultimi (SLU/SLV)	34
13	3.4 VERIFICA PALI DI FONDAZIONE	8
	13.4.1Caratteristiche geometriche e meccaniche	8
	13.4.2Azioni di progetto	8
	13.4.3Risultati dell'analisi	10
	13.4.4Verifica di capacità portante dei pali	12
	13.4.5 Verifica a carico limite orizzontale	16
	13.4.6Riassunto verifiche geotecniche	18
	13.4.7Verifica dei cedimenti massimi	19

Collegamento viario compreso tra lo Svincolo della S.S. 514 di "Chiaromonte" con la S.S. 115 e lo Svincolo della "Ragusana"

PROGETTO ESECUTIVO

RELAZIONE DI CALCOLO SPALLE

	13.4.8Veri	fica a flessione, testa palo	49
	13.4.9Veri	fica a taglio, testa palo	50
	13.4.10	Verifica a fessurazione – Combinazione SLE frequente	51
	13.4.11	Verifica a fessurazione – Combinazione SLE quasi permanente	52
13	3.5 PLATEA D	I FONDAZIONE	54
	13.5.1Plate	ea a monte	54
	13.5.2Plate	ea a valle	57
13	3.6 GEOMETR	RIA DEL MURO DI RISVOLTO	59
13	3.7 VERIFICHE	EMURO DI RISVOLTO	60
	13.7.1Veri	fiche agli Stati Limite Ultimi (SLU/SLV) – Sezione 1	60
	13.7.2Veri	fiche agli Stati Limite Ultimi (SLU/SLV) – Sezione 2	65
	13.7.3Veri	fiche agli Stati Limite di Esercizio (SLE) – Sezione 1	70
	13.7.4Veri	fiche agli Stati Limite di Esercizio (SLE) – Sezione 2	73
14	VERIFICA D	DEI BAGGIOLI	76
15	CONCLUSIO	ONI	79

Collegamento viario compreso tra lo Svincolo della S.S. 514 di "Chiaromonte" con la S.S. 115 e lo Svincolo della "Ragusana"

PROGETTO ESECUTIVO

RELAZIONE DI CALCOLO SPALLE

1 PREMESSA

La presente relazione illustra l'analisi e le verifiche strutturali effettuate per la progettazione delle spalle dell'Attraversamento idraulico al km 9+611 (Lotto 7), previsto nell'ambito dei lavori di collegamento autostradale Ragusa-Catania: ammodernamento a n° 4 corsie della S.S. 514 "Di Chiaramonte" e della S.S. 194 Ragusana dallo svincolo con la S.S. 115 allo svincolo con la S.S. 114.

Collegamento viario compreso tra lo Svincolo della S.S. 514 di "Chiaromonte" con la S.S. 115 e lo Svincolo della "Ragusana"

PROGETTO ESECUTIVO

RELAZIONE DI CALCOLO SPALLE

2 CLASSE D'USO E VITA NOMINALE DELL'OPERA

L'opera in oggetto è progettata per una vita nominale V_N pari a 50~anni.

Ai fini del calcolo delle azioni sismiche è stata considerata una classe d'uso IV ("Ponti e reti ferroviarie di importanza critica per il mantenimento delle vie di comunicazione, particolarmente dopo un evento sismico") ai sensi del D.M 17 gennaio 2018, da cui scaturisce un coefficiente d'uso $\mathcal{C}_U=2$.

Pertanto, le azioni sismiche sull'opera vengono valutate in relazione ad un periodo di riferimento $V_R = V_N \cdot C_U = 50 \cdot 2 = 100 \ anni.$

Collegamento viario compreso tra lo Svincolo della S.S. 514 di "Chiaromonte" con la S.S. 115 e lo Svincolo della "Ragusana"

PROGETTO ESECUTIVO

RELAZIONE DI CALCOLO SPALLE

3 CONCEZIONE STRUTTURALE

L'attraversamento idraulico in oggetto presenta due impalcati con una larghezza carrabile di 9.75m e due cordoli da 0.75m per una larghezza complessiva di 11.25m. L'opera in progetto prevede la realizzazione di un impalcato in semplice appoggio di lunghezza pari a 16.4m (oltre il retrotrave), vincolato in corrispondenza delle spalle.

La soluzione srutturale adottata prevede, per l'impalcato, l'impiego di 3 travi a "V", in calcestruzzo armato precompresso pre-teso, di altezza pari a 1.35mcollegate tra loro mediante soletta collaborante e traversi gettati in opera. Le travi prefabbricate hanno interasse trasversale di 3.15m e lunghezza complessiva di 17.80m.

Le spalle Sp1, previste in sede progettuale come spalle fisse, presentano un muro frontale di spessore 2.75m ed altezza 4.32m. Il muro paraghiaia ha un'altezza variabile di $2.20 \div 2.45m$ e spessore 60cm; i muri di risvolto sono a sezione variabile con inclinazione di 1/10 del paramento interno fino alla sommità, sulla quale si attestano i cordoli stradali per le barriere di sicurezza.

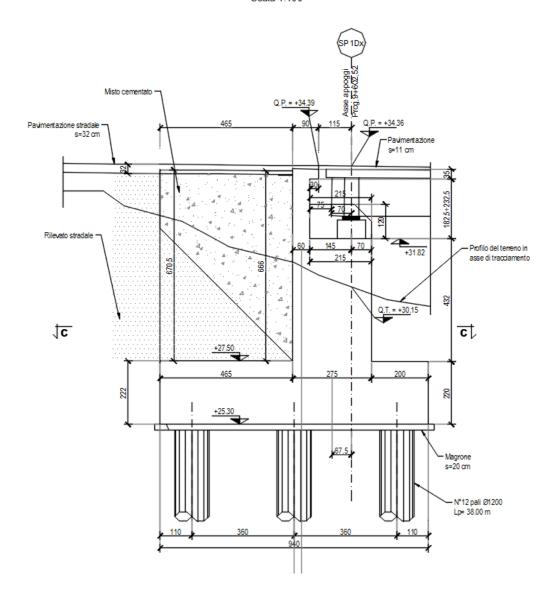
La platea di fondazione, di dimensioni in pianta 9.40x13.45x2.20m poggia su una palificata di n. 12 pali trivellati $\phi 1200mm$ e lunghezza 38m.

Le spalle Sp2, previste in sede progettuale come spalle mobili, presentano un muro frontale di spessore 2.75m ed altezza 4.26m. Il muro paraghiaia ha un'altezza variabile di $2.12 \div 2.38m$ e spessore 60cm; i muri di risvolto sono a sezione variabile con inclinazione di 1/10 del paramento interno fino alla sommità, sulla quale si attestano i cordoli stradali per le barriere di sicurezza.

La platea di fondazione, di dimensioni in pianta 9.40x13.45x2.20m poggia su una palificata di n. 12 pali trivellati $\phi 1200mm$ e lunghezza 38m.

In corrispondenza della spalla Sp1 (fissa) sono previsti appoggi in acciaio e teflon del tipo fisso e unidirezionale trasversale (U_T), mentre per la spalla Sp2 (mobile) sono previsti appoggi in acciaio e teflon del tipo unidirezionale longitudinale (U_L) e multidirezionale (M).

Le figure riportate di seguito mostrano la sezione, la vista frontale e la planimetria della spalla Sp1.


PROGETTO ESECUTIVO

RELAZIONE DI CALCOLO SPALLE

Figura 3.1: Sezione spalla Sp1

Spalla Sp1 Dx Sezione A-A

Scala 1:100

PROGETTO ESECUTIVO

RELAZIONE DI CALCOLO SPALLE

Figura 3.2: Vista frontale spalla Sp1

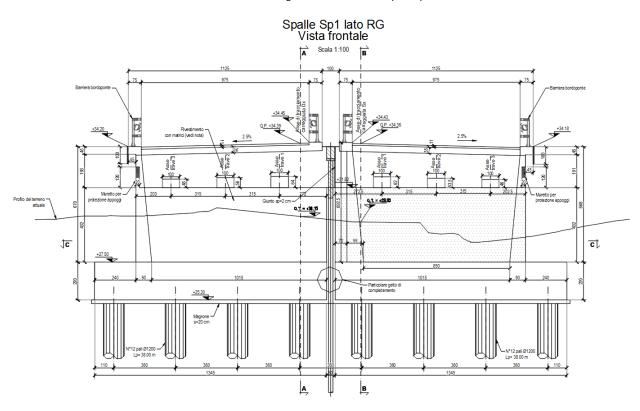
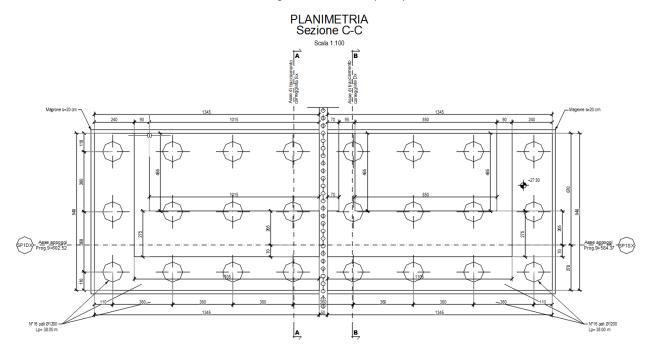



Figura 3.3: Planimetria spalla Sp1

Collegamento viario compreso tra lo Svincolo della S.S. 514 di "Chiaromonte" con la S.S. 115 e lo Svincolo della "Ragusana"

PROGETTO ESECUTIVO

RELAZIONE DI CALCOLO SPALLE

4 NORMATIVA DI RIFERIMENTO

Il progetto è sviluppato nell'osservanza della vigente normativa tecnica.

- D. Min. Infrastrutture 17 gennaio 2018 Aggiornamento delle "Norme tecniche per le costruzioni";
- Circolare 21gennaio 2019 n.7: Istruzioni per l'applicazione delle "Aggiornamento delle "Norme tecniche per le costruzioni" di cui al D. Min. 17 gennaio 2018;
- UNI EN 1992-1-1:2005: "Eurocodice 2 Progettazione delle strutture di calcestruzzo parte 1 Regole generali e regole per edifici";
- UNI EN 1998-2:2006: "Eurocodice 8 Progettazione delle strutture per la resistenza sismica Parte 2: Ponti";
- UNI EN 206-1:2006, "Calcestruzzo Parte 1: Specificazione, prestazione, produzione e conformità";
- UNI 11104:2004, "Calcestruzzo Specificazione, prestazione, produzione e conformità Istruzioni complementari per l'applicazione della EN 206-1";

Model Code 1990, CEB-FIP.

Il metodo di calcolo adottato è quello semiprobabilistico agli stati limite, con applicazione di coefficienti parziali per le azioni o per l'effetto delle azioni, variabili in ragione dello stato limite indagato.

4.1 DOCUMENTAZIONE DI RIFERIMENTO

Per il progetto dell'opera in esame si è fatto riferimento ai seguenti elaborati progettuali:

- Relazione geotecnica;
- Relazione sismica;
- Relazione tecnica e di calcolo Impalcato;
- Profili geotecnici;
- Elaborati grafici.

PROGETTO ESECUTIVO

RELAZIONE DI CALCOLO SPALLE

5 CARATTERISTICHE DEI MATERIALI

Per la realizzazione delle spalle dell'opera in oggetto sono previsti i seguenti materiali:

5.1 CALCESTRUZZO

Tabella 5.1: Caratteristiche del calcestruzzo per magrone

Classe di resistenza minima:	C_{min}	C12/15
------------------------------	-----------	--------

Tabella 5.2: Caratteristiche del calcestruzzo per pali di fondazione

Conforme alla norma UNI EN 206-1/UNI11	Classe di esposizione		
Cemento resistente ai solfati secondo UNI	XA2		
Classe di resistenza minima:	C_{min}	C32/40	
Classe di consistenza:	S	S4	
Dimensione massima aggregati [mm]	D_{max}	25	
Classe di contenuto in clouri	Cl	0.20	
Copriferro [mm]	С	60	

Tabella 5.3: Caratteristiche del calcestruzzo fondazioni spalle e muri d'ala

Conforme alla norma UNI EN 206-1/UNI11	Classe di esposizione		
Cemento resistente ai solfati secondo UNI	XA2		
Classe di resistenza minima:	C_{min}	C32/40	
Classe di consistenza:	S	S4	
Dimensione massima aggregati [mm]	D_{max}	30	
Classe di contenuto in clouri	Cl	0.20	
Copriferro [mm]	С	40	

Tabella 5.4: Caratteristiche del calcestruzzo per elevazione spalle e muri d'ala

Conforme alla norma UNI EN 206-1/UNI111	Classe di esposizione		
Cemento resistente ai solfati secondo UNI S	XA2		
Classe di resistenza minima:	C_{min}	C32/40	
Classe di consistenza:	S	S4	
Dimensione massima aggregati [mm]	D_{max}	25	
Classe di contenuto in clouri	Cl	0.20	
Copriferro [mm]	С	40	

Per garantire la durabilità delle strutture in calcestruzzo e per la definizione della classe di resistenza di queste ultime in funzione delle condizioni ambientali, si farà riferimento alle indicazioni contenute nelle norme UNI EN 206-1 ed UNI 11104.

Collegamento viario compreso tra lo Svincolo della S.S. 514 di "Chiaromonte" con la S.S. 115 e lo Svincolo della "Ragusana"

PROGETTO ESECUTIVO

RELAZIONE DI CALCOLO SPALLE

5.2 ACCIAIO PER ARMATURE ORDINARIE

Tabella 5.5: Caratteristiche dell'acciaio per armatura ordinaria

Acciaio in barre ad aderenza migliorata tipo B450C controllato in stabilimento					
Tensione caratteristica di snervamento	f_{yk}	$\geq 450N/mm^2$			
Tensione caratteristica di rottura	f_{tk}	$\geq 540N/mm^2$			

MANDANTI:

PROGETTO ESECUTIVO

RELAZIONE DI CALCOLO SPALLE

6 INQUADRAMENTO GEOTECNICO

Nel presente paragrafo si riporta il modello geotecnico utilizzato per il calcolo delle palificate di fondazione delle spalle dell'Attraverso idraulico al km 10+264.

6.1 STRATIGRAFIA DI CALCOLO

Secondo quanto riportato negli elaborati geotecnici, le stratigrafie assunte per i calcoli delle opere fondazionali delle spalle sono illustrate nelle tabelle seguenti, con il piano campagna posto al piano di posa della platea di fondazione

Tabella 6.1: Stratigrafie di calcolo – Attraversamento idraulico al km 3+544

Litotipi	Spessori Litotipi		
a (grana grossa)	(m)	2.5	
Qa1	(m)	12.5	
Qa2	(m)	> 10	

La falda si trova alpiano di intradosso della platea di fondazione.

6.2 PARAMETRI GEOTECNICI

Nella tabella seguente si riportano i parametri geotecnici caratteristici dei litotipi interessati dal manufatto in esame, assunti in sede di calcolo delle opere fondazionali.

Tabella 6.2: Parametri geotecnici di calcolo

Litotipi	Parametri geotecnici di calcolo					
Litotipi	$\gamma' [kN/m^3]$	c'[kPa]	φ ′ [°]	$c_u [kPa]$		
a (grana grossa)	21	0	38	-		
Qa1	19	10	25	150		
Qa2	19	10	25	200		

6.3 CARATTERISTICHE DEL TERRENO DEL RILEVATO

Il rilevato stradale, posto al di sopra del piano di appoggio della platea di fondazione, sarà composto da terreno con le seguenti caratteristiche

Tabella 6.3: Parametri geotecnici terreno rilevato

Litotipi	Parametri geotecnici di calcolo				
Litotipi	$\gamma [kN/m^3]$	c'[kPa]	φ ′ [°]	c _u [kPa]	
Terreno rilevato	19	0	35	-	

L'angolo di attrito tra il muro e il terreno viene considerato pari a $\delta=\varphi'$

Collegamento viario compreso tra lo Svincolo della S.S. 514 di "Chiaromonte" con la S.S. 115 e lo Svincolo della "Ragusana"

PROGETTO ESECUTIVO

RELAZIONE DI CALCOLO SPALLE

7 AZIONI DI CALCOLO

Il calcolo degli elementi delle spalle è stato condotto tenendo conto delle seguenti azioni agenti sull'opera:

- Peso proprio della struttura;
- Peso del terreno a monte dell'opera;
- Spinte del terreno a monte dell'opera;
- Spinta dovuta al sovraccarico stradale;
- Incremento di spinta sismica del terreno a tergo della spalla;
- Forze di inerzia della struttura e del terreno solidale con l'opera;
- Azioni trasmesse dall'impalcato;
- Forza di frenamento (per il calcolo locale del paraghiaia);
- Azione dei veicoli in svio (per il calcolo dei muri di risvolto).

7.1 PESO PROPRIO DEGLI ELEMENTI STRUTTURALI

Sono considerati i seguenti pesi specifici dei materiali:

Tabella 7.1: Peso proprio della struttura

Peso specifico calcestruzzo	γ_{cls}	$25 kN/m^3$
-----------------------------	----------------	--------------

7.2 PESO DEL TERRENO A MONTE DELL'OPERA

Il terreno preso in considerazione è quello gravante sulla platea di fondazione a monte, costituito dal rilevato stradale:

Tabella 7.2: Peso del terreno a monte dell'opera

Peso specifico terreno rilevato	γ_t	$19 kN/m^3$
---------------------------------	------------	--------------

7.3 SPINTA STATICA DEL TERRENO A MONTE

L'entità e la distribuzione delle spinte del terreno sulla spalla dipendono dallo spostamento relativo che lo stesso può subire. Avendo previsto una platea su pali, si può considerare che le deformazioni del terreno siano impedite dalla struttura che non cede in nessun punto; per questo motivo la pressione esercitata è una spinta a riposo espressa secondo la teoria di Coulomb dalla seguente relazione:

$$S = \frac{1}{2} \cdot \gamma_t \cdot H^2 \cdot K_0$$

 K_0 rappresenta il coefficiente di spinta a riposo di Coulomb e vale:

$$K_0 = 1 - sen(\varphi')$$

Dove φ' è l'angolo di attrito interno del terreno.

Il diagramma delle pressioni del terreno sulla parete risulta triangolare con il vertice in alto; il punto di applicazione della risultante si trova quindi in corrispondenza del baricentro del diagramma delle pressioni $(1/3 \cdot H)$ rispetto alla base della platea).

7.4 INCREMENTO DI SPINTA DOVUTO AL SOVRACCARICO STRADALE

La presenza di un sovraccarico stradale uniformemente distribuito sul rilevato comporta un'ulteriore spinta sulla spalla risultante da un diagramma delle pressioni costante con la profondità.

Collegamento viario compreso tra lo Svincolo della S.S. 514 di "Chiaromonte" con la S.S. 115 e lo Svincolo della "Ragusana"

PROGETTO ESECUTIVO

RELAZIONE DI CALCOLO SPALLE

Intendendo per q il sovraccarico per metro lineare di proiezione orizzontale del valore di $20 \, kN/m^3$, la spinta in esame vale:

$$S_q = q \cdot H \cdot K_0$$

7.5 **INCREMENTO DI SPINTA SULLA SPALLA DOVUTO AL SISMA**

In condizioni sismiche l'entità e la distribuzione delle spinte del terreno sulla spalla dipendono dall'intensità del sisma, valutata a partire dalla risposta locale del terreno di fondazione dalla deformabilità dell'opera.

Il D.M. Infrastrutture 17/01/2018 consente l'utilizzo di metodi pseudo-statici per il calcolo dell'incremento di spinta sull'opera dovuto al sisma. Il metodo applicato in sede di progettazione è quello di Mononobe-Okabe, basato sull'equilibrio limite globale di un cuneo di terreno soggetto alle forze indotte dal sisma, ipotizzando che l'opera possa subire movimenti tali da produrre nel terreno retrostante un regime di spinta attiva e che il terreno interno al cuneo di spinta si comporti come come un corpo rigido.

La spinta sismica (statica + dinamica) vale:

$$S_S = \frac{1}{2} \cdot \gamma_t \cdot H^2 \cdot (1 \pm k_v) \cdot K_a'$$

Dove, se $\beta \leq \varphi' - \theta$

$$K_a' = \frac{\cos^2(\varphi' - \beta - \theta)}{\cos\theta \cdot \cos^2\beta \cdot \cos(\beta + \delta + \theta) \cdot \left[1 + \sqrt{\frac{\sin(\delta + \varphi') \cdot \sin(\varphi' - i - \psi)}{\cos(\beta + \delta + \theta) \cdot \cos(\beta - i)}}\right]^2}$$

Altrimenti, se $\beta > \varphi' - \theta$

$$K'_{a} = \frac{\cos^{2}(\varphi' - \beta - \theta)}{\cos \theta \cdot \cos^{2} \beta \cdot \cos(\beta + \delta + \theta)}$$

Nelle relazioni sopra elencate, i simboli hanno i seguenti significati:

- β = angolo tra l'intradosso della parete e la verticale;
- θ = angolo definito come $\tan(\theta) = \frac{k_h}{1+k_n}$

I valori di k_h e k_v sono esplicitati nel capitolo dedicato all'azione sismica.

La normativa prescrive di applicare separatamente la spinta statica da quella dinamica, quest'ultima valutata come incremento di spinta. Per valutare tale incremento, si calcola la differenza tra la spinta sismica totale e la spinta statica attiva ($\Delta S_d = S_S - S_a$) e questo valore si applica attraverso un diagramma delle pressioni del terreno costante, per cui il punto di applicazione si trova in corrispondenza a $0.5 \cdot H$.

7.6 FORZE DI INERZIA DELLA STRUTTURA E DEL TERRENO AD ESSA SOLIDALE

In presenza di sisma, l'opera è soggetta alle forze di inerzia della parete e del terreno a monte solidale con la stessa, ovvero quella porzione di terreno posta al di sopra della platea di fondazione. L'intensità delle forze di inerzia è pari a $F_h = k_h \cdot W$ e $F = \pm k_v \cdot W$ rispettivamente per la componente orizzontale e per quella verticale (W è il peso dell'elemento considerato).

7.7 AZIONI TRASMESSE DALL'IMPALCATO

Le caratteristiche di sollecitazione, agenti sulle sottostrutture, per ognuno dei casi di carico elementari considerati, sono riportate nella tabella presente in questo paragrafo. La terna di assi di

Collegamento viario compreso tra lo Svincolo della S.S. 514 di "Chiaromonte" con la S.S. 115 e lo Svincolo della "Ragusana"

PROGETTO ESECUTIVO

RELAZIONE DI CALCOLO SPALLE

riferimento per le sollecitazioni è costitutida da x nella direzione dell'asse longitudinale dell'impalcato, da y disposto trasversalmente all'impalcato e da z verticale positivo verso l'alto.

I casi elementari di carico sono definiti nel modo seguente:

G1: peso proprio dei componenti strutturali;

G2: peso proprio dei carichi portati; Q3: azioni variabili da frenatura:

Q5SCAR: azioni da vento con impalcato a vuoto; Q5CAR: azioni da vento con impalcato carico; Q7: resistenze parassite dei vincoli;

Q8: azioni eccezionali da urto;

SX-PR-SLV(RS): azione sismica di progetto longitudinale; azione sismica di progetto trasversale; SY-PR-SLV(RS): SZ-PR-SLV(RS): azione sismica di progetto verticale;

azioni da traffico caratteristiche con Fz massimo e associati; MOB K Fz (max): MOB K Mx (max): azioni da traffico caratteristiche con Mx massimo e associati;

MOB FreqFz (max): azioni da traffico frequenti con Fz massimo e associati; azioni da traffico frequenti con M massimo e associati. MOB FreqMx (max):

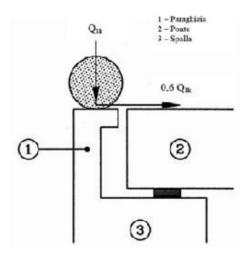
Carico	Fx	Fy	Fz	M

Carico	Fx	Fy	Fz	Mx	My
	(kN)	(kN)	(kN)	(kNm)	(kNm)
G1	0.00	0.00	-1387.53	0.00	0.00
G2	0.00	0.00	-393.80	0.00	0.00
Q3	409.14	0.00	0.00	0.00	0.00
Q5SCAR	0.00	20.45	0.00	-19.94	0.00
Q5CAR	0.00	51.92	0.00	-128.50	0.00
Q7	53.44	0.00	0.00	0.00	0.00
Q8_S1	0.00	600.00	-200.00	-2745.00	0.00
Q8_S2	0.00	0.00	0.00	0.00	0.00
SX-PR-SLV(RS)	2485.47	0.00	0.00	0.00	0.00
SY-PR-SLV(RS)	0.00	1242.74	0.00	-1864.10	0.00
SZ-PR-SLV(RS)	0.00	0.00	1351.77	0.00	0.00
MOB_K Fz (max)	0.00	0.00	-1626.86	2342.03	0.00
MOB_K Mx (max)	0.00	0.00	-1341.55	3122.97	0.00
MOB_Freq Fz (max)	0.00	0.00	-1059.71	1477.06	0.00
MOB_Freq Mx (max)	0.00	0.00	-875.58	1973.18	0.00

Tabella 7.3: Spalla Sp1 – Azioni elementari impalcato

7.8 **AZIONE DI FRENAMENTO SUL PARAGHIAIA**

La circolare 21/01/2019, al paragrafo C5.1.3.3.5.2, definisce che per il il calcolo dei muri paraghiaia si deve considerare un'azione orizzontale longitudinale di frenamento, applicata alla testa del muro paraghiaia. Il valore caratteristico di tale azione deve essere uguale al 60% del carico asse Q_{1k} , pertanto si considera un carico orizontale di 180kN concomitante con un carico verticale di 300kN.



PROGETTO ESECUTIVO

RELAZIONE DI CALCOLO SPALLE

Figura 7.4: Azione di frenamento sul paraghiaia

7.9 URTO DEI VEICOLI IN SVIO

Per determinare le azioni locali derivanti dall'urto sulla barriera occorre partire dal sistema di ancoraggio della barriera. La barriera presa a riferimento è costituita in acciaio S275 con elementi longitudinali a doppia onda, dissipatori e montanti a U 140x70x7 con piastra di base dello spessore di $15 \ mm$, posti ad interasse longitudinale di $1.333 \ m$ ed ancorati alla struttura tramite tirafondi.

Le azioni massime che tale barriera trasmette al cordolo sottostante si valutano dalla plasticizzazione della sezione di base dei montanti. Il momento di plasticizzazione della sezione di base si calcola come prodotto del modulo plastico per la tensione di snervamento del materiale, cioè:

$$M_p = w_p \cdot f_y = 24.34 \, kNm$$

dove $w_p = 88.52 \ cm^3$ nel caso di un profilo a $U \ 140x70x7$ e $f_v = 275 \ MPa$ per l'acciaio S275.

Il valore del taglio plastico V_p agente alla base, corrispondente alla massima forza orizzontale sopportabile dal montante, viene calcolato dividendo il momento M_p per l'altezza di applicazione della forza; tale altezza risulta pari al baricentro delle aree degli elementi longitudinali della barriera ed è posta a circa $78.3\ cm$ dalla base del montante subito al di sopra del fazzoletto di rinforzo.

$$V_p = \frac{M_p}{h} = \frac{24.43}{0.783} = 31.20 \, kN$$

Le azioni V_p e M_p si considerano come valori in esercizio per il cordolo e devono essere moltiplicati per 1.50 al fine di ottenere i carichi di progetto per la struttura ai sensi del paragrafo 4.7.3.3 delle EN 1991-2 (così come modificato dagli annessi nazionali).

L'azione di calcolo sarà quindi uguale a:

$$V_{pd} = V_p \cdot 1.5 = 46.64 \, kN$$

Applicata orizzontalmente ad un'altezza di 78.3cm dalla testa del muro di risvolto.

Collegamento viario compreso tra lo Svincolo della S.S. 514 di "Chiaromonte" con la S.S. 115 e lo Svincolo della "Ragusana"

PROGETTO ESECUTIVO

RELAZIONE DI CALCOLO SPALLE

8 AZIONE SISMICA (E)

L'opera in oggetto è progettata per una vita nominale $_N$ pari a 50 anni e considerando una classe d'uso IV ("Ponti e reti ferroviarie di importanza critica per il mantenimento delle vie di comunicazione, particolarmente dopo un evento sismico") ai sensi del D.M. 17 gennaio 2018, da cui scaturisce un coefficiente d'uso $C_{II}=2$.

Come descritto nel capitolo precedente, l'azione sismica è applicata tramite metodi quasi statici per mezzo dei coefficienti k_h e k_v definiti come:

 $k_h = \beta_m \cdot \frac{a_{max}}{g}$ è il coefficiente di spinta sismica orizzontale;

 $k_v = 0.5 \cdot k_h$ è il coefficiente di spinta sismica verticale;

 a_{max} è l'accelerazione orizzontale massima attesa al sito;

g è l'accelerazione di gravità;

 β_m è il coefficiente di riduzione dell'accelerazione massima attesa al sito.

Quest'ultimo parametro, nel caso di muri di sostegno e spalle che non siano in grado di subire spostamenti relativi rispetto al terreno, assume valore unitario.

Viste le caratteristiche del sito, si è reso necessario valutare l'azione sismica locale tramite specifiche analisi sismiche. Tale analisi ha evidenziato un'accelerazione orizzontale massima attesa al sito agli SLV pari a:

$$a_{max} = 0.446 \cdot g$$

Il procedimento per la valutazione di questo valore è riportato nella relazione specialistica dedicata.

Alla luce dei dati presentati in questo capitolo si definiscono i coefficienti $k_h=0.446$ e $k_v=0.223$ agli Stati Limite di Salvaguardia della Vita SLV.

PROGETTO ESECUTIVO

RELAZIONE DI CALCOLO SPALLE

9 COMBINAZIONE DELLE AZIONI

Ai fini delle verifiche agli stati limite, la combinazione delle azioni è effettuata secondo quanto disposto dal D.M. Infrastrutture 17 gennaio 2018.

In particolare, si fa riferimento alle seguenti combinazioni:

Combinazione fondamentale (SLU):

$$\gamma_{\mathsf{G1}} \cdot \mathsf{G_1} + \gamma_{\mathsf{G2}} \cdot \mathsf{G_2} + \gamma_{\mathsf{p}} \cdot \mathsf{P} + \gamma_{\mathsf{Q1}} \cdot \mathsf{Q_{k1}} + \gamma_{\mathsf{Q2}} \cdot \psi_{\mathsf{02}} \cdot \mathsf{Q_{k2}} + \gamma_{\mathsf{Q3}} \cdot \psi_{\mathsf{03}} \cdot \mathsf{Q_{k3}} + \dots$$

- Combinazione sismica:

$$E + G_1 + G_2 + P + \psi_{21} \cdot Q_{k1} + \psi_{22} \cdot Q_{k2} + \dots$$

- Combinazione eccezionale:

$$G_1 + G_2 + P + A_d + \psi_{21} \cdot Q_{k1} + \psi_{22} \cdot Q_{k2} + \dots$$

Combinazione Rara (SLE irreversibile):

$$G_1 + G_2 + P + Q_{k1} + \psi_{02} \cdot Q_{k2} + \psi_{03} \cdot Q_{k3} + \dots$$

- Combinazione Frequente (SLE reversibile):

$$G_1 + G_2 + P + \psi_{11} \cdot Q_{k1} + \psi_{22} \cdot Q_{k2} + \psi_{23} \cdot Q_{k3} + \dots$$

- Combinazione Quasi Permanente (SLE per gli effetti a lungo termine):

$$G_1 + G_2 + P + \psi_{21} \cdot Q_{k1} + \psi_{22} \cdot Q_{k2} + \psi_{23} \cdot Q_{k3} + \dots$$

I coefficienti di combinazione sono esplicitati nei capitoli di verifica dei singoli elementi strutturali.

PROGETTO ESECUTIVO

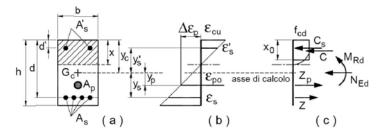
RELAZIONE DI CALCOLO SPALLE

10 CRITERI GENERALI DI VERIFICA DELLE SEZIONI IN C.A.

Il presente paragrafo illustra nel dettaglio i criteri generali adottati per le verifiche strutturali condotte. Ulteriori dettagli di carattere specifico, laddove impiegati, sono dichiarati e motivati nelle relative risultanze delle verifiche.

Per le sezioni in cemento armato si effettuano:

- Verifiche per gli Stati Limite Ultimi a presso-flessione ed a taglio;
- Verifiche per gli Stati Limite di Esercizio per la fessurazione.


10.1 VERIFICA AGLI STATI LIMITE ULTIMI

10.1.1 Verifiche a flessione e pressoflessione

La verifica alle sollecitazione che provocano tensioni normali (sforzo normale, flessione semplice e flessione composta) è stata fatta con uno specifico programma in cui, inserendo le caratteristiche geometriche della sezione, delle armature e delle sollecitazioni desunte dai precitati tabulati di calcolo, si ottiene, per i materiali ipotizzati, il momento resistente che dovrà risultare maggiore del momento agente.

Con riferimento alla sezione pressoinflessa retta, la capacità, in termini di resistenza e duttilità, si determina in base alle ipotesi di calcolo e ai modelli $\sigma - \varepsilon$:

Figura 10.1: Schema verifica a pressoflessione

Le verifiche a pressoflessione vengono condotte confrontando le resistenze ultime e le sollecitazioni massime agenti, valutando il corrispondente fattore di sicurezza (FS) come rapporto tra la sollecitazione resistente e quella massima agente.

$$FS = \frac{M_{Rd}}{M_{Ed}} \ge 1$$

Le verifiche flessionali agli SLU sono eseguite adottando le seguenti ipotesi:

- Conservazione delle sezioni piane;
- Perfetta aderenza tra acciaio e calcestruzzo;
- Resistenza a trazione del calcestruzzo nulla;
- Rottura del calcestruzzo determinata dal raggiungimento della sua capacità deformativa ultima a compressione;
- Rottura dell'armatura tesa determinata dal raggiungimento della sua capacità deformativa ultima.

10.1.2 Verifiche a taglio

Per la verifica di resistenza agli SLU, con riferimento alle sollecitazioni taglianti, deve risultare:

RELAZIONE DI CALCOLO SPALLE

$$FS = \frac{V_{Rd}}{V_{Ed}} \ge 1$$

Si fariferiemnto ai seguenti valori della resistenza di calcolo:

- $V_{Rd,c} = \max \left\{ \left[\frac{0.18}{\gamma_c} \cdot k \cdot (100 \cdot \rho_I \cdot f_{ck})^{\frac{1}{3}} + k_1 \cdot \sigma_{cp} \right] \cdot b_w \cdot d; \left(\nu_{min} + 0.15 \cdot \sigma_{cp} \right) \cdot b_w \cdot d \right\},$ resistenza di calcolo dell'elemento privo di armatura a taglio;
- $V_{Rd,s} = 0.9 \cdot d \cdot \frac{A_{sw}}{s} \cdot f_{yd} \cdot \left(ctg(\alpha) + ctg(\theta)\right) \cdot \sin \alpha$, valore di progetto dello sforzo di taglio che può essere sopportato dall'armatura a taglio alla tensione di snervamento;
- $V_{Rd,max} = 0.9 \cdot d \cdot b_w \cdot f'_{cd} \cdot \frac{ctg(\alpha) + ctg(\theta)}{1 + ctg^2(\theta)}$, valore di progetto del massimo di sforzo di taglio che può essere sopportato dall'elemento, limitato dalla rottura delle bielle compresse.

Nelle espressioni precedenti, i simboli hanno i seguenti significati:

- $k = 1 + \sqrt{\frac{200}{d}} \le 2.0$, con d espresso in mm;
- $\rho_l = \frac{A_{Sl}}{b_{w} \cdot d} \le 0.02$ è il rapporto geometrico di armatura longitudinale;
- A_{SI} è l'area dell'armatura tesa;
- b_w è la larghezza minima della sezione in zona tesa;
- $\sigma_{cp} = \frac{N_{Ed}}{A_c} < 0.2 \cdot f_{cd}$ è la tensione media di compressione della sezione;
- A_c è l'area della sezione in calcestruzzo;
- $v_{min} = 0.035 \cdot k^{3/2} \cdot f_{ck}^{1/2};$
- A_{sw} è l'area della sezione trasversale dell'armatura a taglio;
- s è il passo delle staffe;
- f_{yd} è la tensione di snervamento di progetto dell'armatura a taglio
- α è l'inclinazione dell'armatura resistente a taglio rispetto all'asse dell'elemento;
- θ è l'inclinazione della bielal di calcestruzzo compressa e deve essere $1 \le \cot \theta \le 2.5$

10.2 VERIFICA AGLI STATI LIMITE DI ESERCIZIO

Per gli Stati Limite di Esercizio occorre verificare che l'ampiezza delle fessure k, per gli elementi con armature lente, sia al di sotto del valore limite fissato per le classi di esposizione in oggetto. In particolare, devono essere rispettati i seguenti limiti:

 $w_k = 0.2mm;$ Combinazione di carico quasi permanente:

Combinazione di carico frequente: $w_k = 0.3mm$;

Collegamento viario compreso tra lo Svincolo della S.S. 514 di "Chiaromonte" con la S.S. 115 e lo Svincolo della "Ragusana"

PROGETTO ESECUTIVO

RELAZIONE DI CALCOLO SPALLE

11 CRITERI GENERALI DI VERIFICA GEOTECNICI

Il presente paragrafo illustra nel dettaglio i criteri generali di calcolo adottati per le verifiche geotecniche condotte sulle opere fondazionali dell'attraversamento idraulico.

11.1 CRITERI DI VERIFICA DELLA PALIFICATA DI FONDAZIONE

Le verifiche geotecniche delle spalle dell'opera constano del dimensionamento geotecnico della palificata di fondazione, in termini di diametro, lunghezza, numero e disposizione dei pali.

In particolare, si esegue la seguente procedura di calcolo:

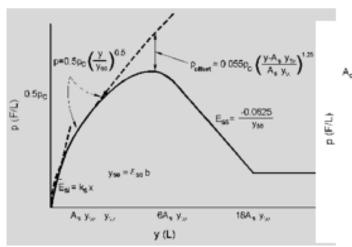
- Calcolo delle azioni risultanti dalle combinazioni di carico descritte in precedenza (F_x , F_y , F_z , M_x , M_y e M_z) all'intradosso della zattera di fondazione;
- Calcolo delle azioni interne (momento e taglio) dei pali;
- Dimensionamento dei pali ai fini del soddisfacimento delle verifiche di resistenza e di capacità portante degli stessi.

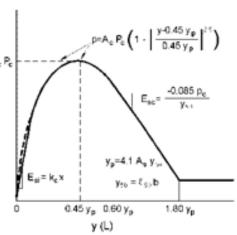
11.1.1 Definizione del modello di calcolo

Il calcolo delle azioni interne è effettuato tramite il software GROUP. Il programma si basa sul metodo delle curve di trasferimento, note anche come curve t-z, p-y e T-q; tali curve, valutate a partire da prove a scala reale ridotta e da analisi numeriche, esprimono l'andamento della reazione del terreno in funzione degli spostamenti accumulati. Essendo un palo soggetto a carico laterale un problma complesso di interazione struttura-terreno dipendente da molteplici fattori (rigidezza del terreno e della struttura, natura del carico, ecc.) e fortemente non lineare, questo metodo si rivela molto funzionale alla risoluzione del problema. Esso riassume, infatti, tutte le variabili in gioco all'interno di una sola curva.

Il programma, utilizzando un database di curve interno, genera delle curve per lo specifico problema in esame e, attraverso un processo iterativo, risolve la risposta del gruppo di pali soddisfacendo congruenza ed equilibrio.

Vista la stratigrafia del problema, i modelli utilizzati sono quello di Reese, Cox e Koop (1975) per le argille dure sotto falda e quello di Cox e Reese (1975) per le sabbie sopra e sotto falda, come mostrato dagli schemi seguenti.





PROGETTO ESECUTIVO

RELAZIONE DI CALCOLO SPALLE

Modello Reese, Cox e Koop (1975) per argille dure sotto falda

Carichi statici

Carichi ciclici

$$p_{u1} = (3 c_u D + \sigma' D + 2.83 c_u z)$$

$$p_{u2} = 11 c_u D \alpha$$

$$\alpha = 1/(1+\tan\delta)$$

 $p_u = min (p_{u1}; p_{u2})$

resistenza laterale unitaria ultima

z profondità da p.c.

σ' pressione geostatica verticale efficace a

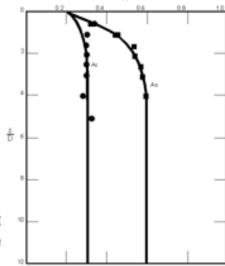
lla profondità z

c_u coesione non drenata

D diametro del palo

y spostamento orizzontale

y₅₀ = 2.5 ε₅₀ D = spostamento orizzontale per p=0

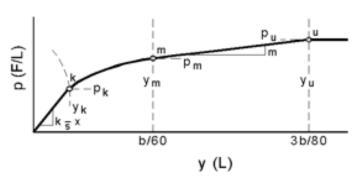

ε₅₀ deformazione unitaria corrispondente ad una n

pari al 50% della resistenza al taglio

Ks pendenza del tratto iniziale della curva carichi statici

K_o pendenza del tratto iniziale della curva carichi ciclici

A parametro empirico



RELAZIONE DI CALCOLO SPALLE

Modello per sabbie Cox e Reese (1975)

1- calcolo di p = min(p_{u1};p_{u2})

$$\begin{aligned} \text{pu}_1 &= \gamma \cdot z \cdot \frac{\mathsf{K}_0 \cdot z \cdot \tan \phi \cdot \sin \beta}{\tan(\beta - \phi) \cdot \cos \alpha} \cdot \mathsf{A}_1 + \frac{\tan \beta}{\tan(\beta - \phi)} \cdot \left(\mathsf{D} \cdot \mathsf{A}_3 + z \cdot \tan \beta \cdot \tan \alpha \cdot \mathsf{A}_3^2 \right) + \\ &+ \gamma \cdot z \cdot \left[+ \mathsf{K}_0 \cdot z \cdot \tan \beta \cdot (\tan \phi \cdot \sin \beta - \tan \alpha) \cdot \mathsf{A}_1 - \mathsf{K}_3 \cdot \mathsf{D} \right] \\ \text{pu}_2 &= \mathsf{K}_3 \cdot \mathsf{D} \cdot \gamma \cdot z \cdot \left(\tan^{\beta} \beta - 1 \right) + \mathsf{K}_0 \cdot \mathsf{D} \cdot \tan \phi \cdot \tan^{4} \beta \\ &= \mathsf{A}_1 = \left(4 \cdot \mathsf{A}_2^3 - 3 \cdot \mathsf{A}_2^2 + 1 \right) \end{aligned}$$

$$A_2 = (\tan \beta \cdot \tan \delta) I(\tan \beta \cdot \tan \delta + 1)$$

dove:

pu resistenza laterale unitaria ultima

y spostamento orizzontale

γ peso di volume efficace

z profondità da p.c.

Ko coefficiente di spinta a riposo

φ angolo di attrito

β 45+ φ/2

α φ/2

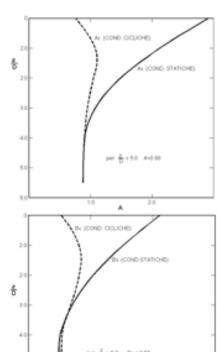
D diametro del palo

Ka tan2(45+¢/2)

 δ inclinazione del piano campagna rispetto all'orizzontale

2- calcolo di p_u= A_i. p.

3- calcolo di g_m= B_i. p


4- definizione del tratto iniziale della curva p-y

5- definizione del tratto parabolico della curva p-y p=Cy^{1/n}

dove:

n=p_m/my_m

 $C=p_m/(y_m)^{1/n}$

PROGETTO ESECUTIVO

RELAZIONE DI CALCOLO SPALLE

11.1.2 Calcolo della capacità portante dei pali

La capacità portante dei pali è valutata seguendo l'approccio proposto da Bustamante e Doix (1985). Essa è calcolata secondo la formula:

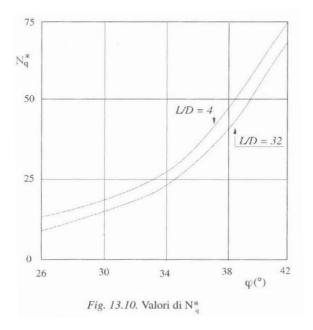
$$Q_{amm} = Q_{B,lim} + Q_{L,lim} = q_{lim}A_b + \sum_{i=1}^{n} (\pi \cdot D \cdot \Delta H_i \cdot \tau_{lim,i})$$

Dove:

- Q_{B,lim} portata limite di base (calcolata);

- Q_{L,lim} portata limite laterale (calcolata);

- q_{lim} portata unitaria limite di base;


- A_b area di base;

- ΔH_i altezza del concio unitario di palo;

- $\tau_{lim,i}$ attrito laterale unitario limite del concio i-esimo di palo.

Il coefficiente N_q è valutato assumendo il meccanismo di rottura ipotizzato da Berezantzev, mostrato nella figura seguente. Nel caso di pali di grande diametro la capacità alla base si mobilita completamente per cedimenti tali per cui la struttura sopportata dai pali ha già raggiunto lo Stato Limite Ultimo. Per tenere conto di quest'aspetto, al fine di limitare i cedimenti agli SLE, si fa uso di coefficienti N_q^* inferiori rispetto al corrispettivo per pali di piccolo diametro.

Figura 11-1. Coefficiente N_q^{\ast} di Berezantzev, funzione dell'angolo d'attrito e del rapporto L/D

Il coefficiente N_c assume significato in condizioni non drenate ($\Phi'=0^\circ$, c=Cu). In tali condizioni, si assume solitamente $N_c=9$, e la capacità di base si valuta come:

$$q_{lim} = \sigma_v + 9 C_u$$

Collegamento viario compreso tra lo Svincolo della S.S. 514 di "Chiaromonte" con la S.S. 115 e lo Svincolo della "Ragusana"

PROGETTO ESECUTIVO

RELAZIONE DI CALCOLO SPALLE

La portata laterale è definita nel seguente modo:

Per terreni granulari si ha:

$$\tau_{lim} = \mu k \sigma'_v$$

dove:

- k coefficiente uguale al rapporto tra tensione verticale (litostatica) e sforzo orizzontale, dipendente dalla tecnologia di palo utilizzata. Nel caso di pali trivellati in calcestruzzo si assume k=0.5;
- σ'_{v} pressione litostatica verticale efficace;
- μ coefficiente d'attrito, dipendente dalla tecnologia di palo utilizzata. Nel caso di pali trivellati in calcestruzzo si assume μ = tan φ'.
- Per terreni coesivi si ha:

$$\tau_{lim} = \alpha \, C_u$$

dove:

α coefficiente riduttivo della coesione non drenata, dipendente dalla tecnologia di palo utilizzata e dal valore della coesione non drenata.

MANDANTI:

Collegamento viario compreso tra lo Svincolo della S.S. 514 di "Chiaromonte" con la S.S. 115 e lo Svincolo della "Ragusana"

PROGETTO ESECUTIVO

RELAZIONE DI CALCOLO SPALLE

12 ANALISI STRUTTURALE: CRITERI GENERALI

12.1 CODICI DI CALCOLO

Tutti i codici di calcolo automatico utilizzati per l'analisi e la verifica delle strutture sono di sicura ed accertata validità e sono impiegati conformemente alle loro caratteristiche.

Per i calcoli e le modellazioni di cui alla presente relazione sono impiegati i codici di calcolo brevemente descritti di seguito.

- Codici di calcolo interni in Excel e Visual Basic, messi a punto e testati dallo studio;
- VcaSlu, software gratuito prodotto dal prof. Piero Gelfi per la verifica delle sezioni in c.a. e c.a.p.;
- Ensoft GROUP v7, software per il calcolo di gruppi di pali.

PROGETTO ESECUTIVO

RELAZIONE DI CALCOLO SPALLE

13 VERIFICA DELLE SPALLE

Le verifiche agli SLU e agli SLE sono state condotte sui seguenti elementi strutturali costituenti la spalla:

- Paraghiaia;
- Muro frontale;
- Muro di risvolto;
- Pali di fondazione;
- Platea di fondazione.

Le verifiche dei singoli elementi costituenti la spalla, ad eccezione dei pali, sono state condotte mediante un modello piano, facendo riferimento alla maggiore sezione della palla e riconducendo i carichi agenti sull'opera per metro lineare di struttura.

13.1 GEOMETRIA MURO FRONTALE E PARAGHIAIA

La geometria di verifica generica del muro frontale e del paraghiaia è mostrata nella seguente figura.

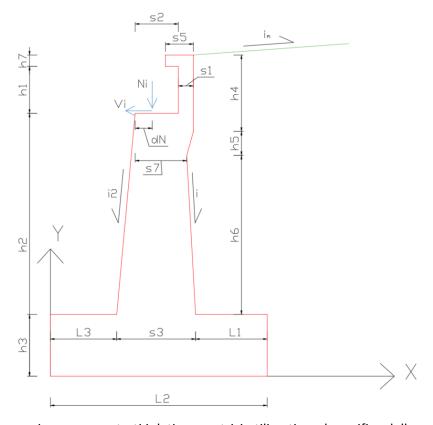


Figura 13.1: Geometria generica muro frontale

Nelle tabelle successive sono mostrati i dati geometrici utilizzati per la verifica della spalla con altezza maggiore (equivalente ad una maggiore spinta del terreno), la cui geometria è graficamente riportata nell'immagine che segue.

PROGETTO ESECUTIVO

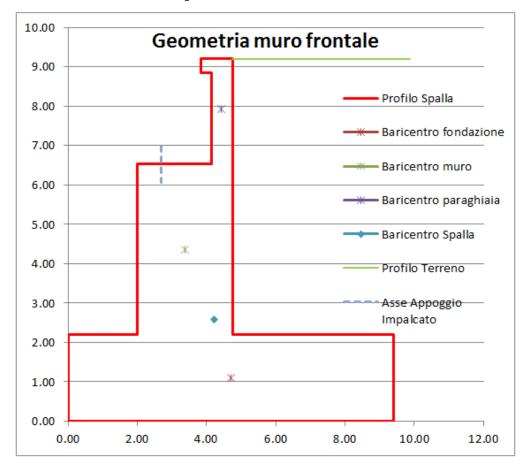
RELAZIONE DI CALCOLO SPALLE

Tabella 13.2: Parametri geometrici spalla (dati di input)

PARAMETRI GEOMETRICI SPALLA		
Altezza paraghiaia (lato valle)	h1	2.33 m
Altezza paraghiaia (lato monte)	h4	2.68 m
Spessore paraghiaia	s1	0.60 m
Altezza testa paraghiaia	h7	0.35 m
Spessore testa paraghiaia	s5	0.90 m
Spessore transizione	s6	0.00 m
Inclinazione muro monte	i	0.00%
Inclinazione terreno a monte	i _m	0.00%
Altezza muro (lato valle)	h2	4.32 m
Altezza muro (lato monte)	h6	4.32 m
Spessore piano appoggio	s2	2.15 m
Spessore muro alla base	s3	2.75 m
Altezza fondazione	h3	2.20 m
Sbalzo fondazione contro terra	L1	4.65 m
Larghezza totale fondazione	L2	9.40 m

Tabella 13.3: Parametri geometrici spalla (dati calcolati)

PARAMETRI GEOMETRICI CALCOLATI		
Sbalzo fondazione valle	L3	2.00 m
Altezza transizione	h5	0.00 m
Lunghezza quantità da disegno	s7	2.75 m
Inclinazione muro valle	i ₂	0.00%
Area platea fondazione	A _f	20.68 mq
Area muro (fino ad h2)	A _m	11.88 mq
Area paraghiaia (fino ad h2)	Ap	1.71 mq
Area totale	Α	34.27 mq
BARICENTRO (rispetto ad assi mostrati	in figura)	
Baricentro platea fondazione	X _G	4.700 m
Baricenti o piatea fondazione	Уg	1.100 m
Baricentro muro (fino ad h2)	X _G	3.375 m
baricentio muro (imo au 112)	Уg	4.360 m
Baricentro paraghiaia (fino ad h2)	X _G	4.422 m
baricentro paraginala (ililo ad 112)	Уg	7.929 m
Baricentro totale spalla	X _G	4.227 m
baricenti o totale spalia	Уg	2.571 m
CALCOLO PESI (al metro lineare di spalla	a)	
Peso fondazione	P _f	517.00 kN/m
Peso muro (fino ad h2)	P _m	297.00 kN/m
Peso paraghiaia (fino ad h2)	Pp	42.75 kN/m
Peso totale spalla	Р	856.75 kN/m



PROGETTO ESECUTIVO

RELAZIONE DI CALCOLO SPALLE

Figura 13.4: Geometria di verifica del muro frontale

PROGETTO ESECUTIVO

RELAZIONE DI CALCOLO SPALLE

13.2 VERIFICHE DEL PARAGHIAIA

Il paraghiaia viene calcolato per unità di lunghezza, considerando agenti i pesi propri, il sovraccarico stradale a monte della parete, la spinta del terreno, le spinte sismiche, le forze di inerzia e l'azione di frenamento.

Vista la geometia a mensola della struttura e la natura dei carichi applicati, le verifiche sono condotte alla sezione di incastro tra il paraghiaia e il muro a spessore maggiore.

13.2.1 Verifiche agli Stati Limite Ultimi (SLU/SLV)

Nelle tabelle seguenti sono riportate le azioni agenti sul paraghiaia e le reazioni da esse causate alla base dell'elemento. Queste reazioni sono mostrate in forma caratteristica, prima di essere combinate secondo i coefficienti parziali.

Tabella 13.5: Coefficienti di spinta terreno

Stato limite sismico SLV
Tipologia di verifica Resistenza strutturale
Elemento paraghiaia
Combinazione A1+M1+R3
verifica prevista

CALCOLO SPINTE TERRENO			
Angolo attrito interno di progetto	Ψd	35.00 °	0.61 rad
Inclinazione muro a monte	β	0.00 °	0.00 rad
Angolo attrito terreno-muro	δ	23.33 °	0.41 rad
Inclinazione terreno a monte	im	0.00 °	0.00 rad
Coefficiente di spinta a riposo	K ₀	0.43	
Coefficiente di spinta attiva	K _A	0.24	
k _h + k _v negativo (spinta	sismica verso l'alto)		
Inclinazione della risultante della forza peso e delle forze di inerzia agenti sul cuneo	θ	29.86 °	0.52 rad
Coefficiente di spinta attiva sismica	K _{AE}	1.04	Mononobe-Okabe
Delta spinta sismica	ΔK_{AE}	0.561	
Angolo del cuneo sismico	α_{AE}	19.50 °	0.34 rad
	C _{1E}	4.00	
	C2E	15.96	
k _h + k _v positivo (spinta s	ismica verso il basso)		
Inclinazione della risultante della forza peso e delle forze di inerzia agenti sul cuneo	θ	20.04 °	0.35 rad
Coefficiente di spinta attiva sismica	K _{AE}	0.57	Mononobe-Okabe
Delta spinta sismica	ΔK_{AE}	0.451	
Angolo del cuneo sismico	α_{AE}	42.27 °	0.74 rad
	C _{1E}	2.20	
	Car	4.79	

Coefficienti parziali azioni						
		Favorevoli	Sfavorevoli			
	G1	1	1.3			
A1	G2	0.8	1.5			
	Q	0	1.5			
Cor	efficienti par	ziali geotecr	nici			
	Yφ	1				
	Yo	1				
M1	You	1				
	Yy	1				
Coefficienti parziali di resistenza						
R3	Vp	1				

Tabella 13.6: Dati geometrici e carichi statici Paraghiaia (SLU)

PARAMETRI GEOMETRICI								
Altezza paraghiaia	h1+h7	2.68 m						
Altezza muro	h2	4.32 m						
Altezza platea fondazione	h3	2.20 m						
Altezza complessiva	h	2.68 m						
Posizione incastro	ΧĮ	4.45 m]					
Posizione incastro	Υı	6.52 m						
Desirione appearie	Xa	2.70 m						
Posizione appoggio	y _a	6.52 m				Contributi	al piede d	el paraghiaia
CARICHI STATICI			x [m]	y [m]	angolo [°]	N [kN/m]	T [kN/m]	M [kNm/m]
Peso proprio paraghiaia	G1a	42.75 kN/m	4.42	7.93	90.00	42.75	0.00	-1.18
Peso proprio muro	G1b	0.00 kN/m	3.38	4.36	90.00	0.00	0.00	0.00
Peso proprio platea	G1c	0.00 kN/m	4.70	1.10	90.00	0.00	0.00	0.00
Peso terreno piede muro	G1t	0.00 kN/m	7.08	2.20	90.00	0.00	0.00	0.00
Spinta a riposo	SO SO	28.99 kN/m	4.75	7.41	23.33	11.48	26.62	-20.29
Sovraspinta pavimentazione	S _{G2}	0.00 kN/m	4.75	7.86	23.33	0.00	0.00	0.00
Sovraspinta traffico	S _{q1}	22.81 kN/m	4.75	7.86	23.33	9.04	20.95	-25.31
Impronta su paraghiaia	Fr ₁	125.00 kN/m	4.30	9.20	90.00	125.00	0.00	-18.75
Frenamento Orizzontale	Fr ₂	75.00 kN/m	4.30	9.20	0.00	0.00	75.00	-200.63

Collegamento viario compreso tra lo Svincolo della S.S. 514 di "Chiaromonte" con la S.S. 115 e lo Svincolo della "Ragusana"

PROGETTO ESECUTIVO

RELAZIONE DI CALCOLO SPALLE

Tabella 13.7: Carichi sismici Paraghiaia (SLV)

CARICHI SISMICI k _v negativo	•	•	x [m]	y [m]	angolo [°]	N [kN/m]	T [kN/m]	M [kNm/m]
Peso proprio paraghiaia	G1a	42.75 kN/m	4.42	7.93	90.00	42.75	0.00	-1.18
Peso proprio muro	G1b	0.00 kN/m	3.38	4.36	90.00	0.00	0.00	0.00
Peso proprio platea	G1c	0.00 kN/m	4.70	1.10	90.00	0.00	0.00	0.00
Peso terreno piede muro	G1t	0.00 kN/m	7.08	2.20	90.00	0.00	0.00	0.00
Inerzia paraghiaia orizzontale	G1a _{ih}	19.07 kN/m	4.42	7.93	0.00	0.00	19.07	-26.86
Inerzia paraghiaia verticale	G1a _{iv}	-9.53 kN/m	4.42	7.93	90.00	-9.53	0.00	0.26
Inerzia muro orizzontale	G1b _{ih}	0.00 kN/m	3.38	4.36	0.00	0.00	0.00	0.00
Inerzia muro verticale	G1b _{iv}	0.00 kN/m	3.38	4.36	90.00	0.00	0.00	0.00
Inerzia platea orizzontale	G1c _{ih}	0.00 kN/m	4.70	1.10	0.00	0.00	0.00	0.00
Inerzia platea verticale	G1c _{iv}	0.00 kN/m	4.70	1.10	90.00	0.00	0.00	0.00
Inerzia terreno piede muro orizzontale	G1t _{ih}	0.00 kN/m	7.08	2.20	0.00	0.00	0.00	0.00
Inerzia terreno piede muro verticale	G1t _{iv}	0.00 kN/m	7.08	2.20	90.00	0.00	0.00	0.00
Spinta attiva	SA	16.61 kN/m	4.75	7.41	23.33	6.58	15.26	-11.63
Delta Spinta sismica (Mononobe-Okabe)	ΔS	38.15 kN/m	4.75	7.86	23.33	15.11	35.03	-42.32
Sovraspinta pavimentazione	S _{G2}	0.00 kN/m	4.75	7.86	23.33	0.00	0.00	0.00
Sovraspinta traffico	S _{q1}	22.81 kN/m	4.75	7.86	23.33	9.04	20.95	-25.31
Impronta su paraghiaia	Fr ₁	125.00 kN/m	4.30	9.20	90.00	125.00	0.00	-18.75
Inerzia impronta orizzontale	Fr _{1ih}	55.75 kN/m	4.30	9.20	0.00	0.00	55.75	-149.13
Inerzia impronta verticale	Fr _{1iv}	-27.88 kN/m	4.30	9.20	90.00	-27.88	0.00	4.18
Frenamento Orizzontale	Fr ₂	75.00 kN/m	4.30	9.20	0.00	0.00	75.00	-200.63
CARICHI SISMICI k _v positivo			x [m]	y [m]	angolo [°]	N [kN/m]	T [kN/m]	M [kNm/m]
Peso proprio paraghiaia	G1a	42.75 kN/m	4.42	7.93	90.00	42.75	0.00	-1.18
Peso proprio muro	G1b	0.00 kN/m	3.38	4.36	90.00	0.00	0.00	0.00
Peso proprio platea	G1c	0.00 111/			T			
	O1C	0.00 kN/m	4.70	1.10	90.00	0.00	0.00	0.00
Peso terreno piede muro	G1t	0.00 kN/m 0.00 kN/m	4.70 7.08	1.10 5.70	90.00	0.00	0.00	0.00
Peso terreno piede muro Inerzia paraghiaia orizzontale								
	G1t	0.00 kN/m	7.08	5.70	90.00	0.00	0.00	0.00
Inerzia paraghiaia orizzontale	G1t G1a _{ih}	0.00 kN/m 19.07 kN/m	7.08 4.42	5.70 7.93	90.00 0.00	0.00	0.00 19.07	0.00 -26.86
Inerzia paraghiaia orizzontale Inerzia paraghiaia verticale	G1t G1a _{ih} G1a _{iv}	0.00 kN/m 19.07 kN/m 9.53 kN/m	7.08 4.42 4.42	5.70 7.93 7.93	90.00 0.00 90.00	0.00 0.00 9.53	0.00 19.07 0.00	0.00 -26.86 -0.26
Inerzia paraghiaia orizzontale Inerzia paraghiaia verticale Inerzia muro orizzontale	G1t G1a _{ih} G1a _{iv} G1b _{ih}	0.00 kN/m 19.07 kN/m 9.53 kN/m 0.00 kN/m	7.08 4.42 4.42 3.38	5.70 7.93 7.93 4.36	90.00 0.00 90.00 0.00	0.00 0.00 9.53 0.00	0.00 19.07 0.00 0.00	0.00 -26.86 -0.26 0.00
Inerzia paraghiaia orizzontale Inerzia paraghiaia verticale Inerzia muro orizzontale Inerzia muro verticale	G1t G1a _{ih} G1a _{iv} G1b _{ih} G1b _{iv}	0.00 kN/m 19.07 kN/m 9.53 kN/m 0.00 kN/m 0.00 kN/m	7.08 4.42 4.42 3.38 3.38	5.70 7.93 7.93 4.36 4.36	90.00 0.00 90.00 0.00 90.00	0.00 0.00 9.53 0.00 0.00	0.00 19.07 0.00 0.00 0.00	0.00 -26.86 -0.26 0.00 0.00
Inerzia paragniaia orizzontale Inerzia paraghiaia verticale Inerzia muro orizzontale Inerzia muro verticale Inerzia platea orizzontale	G1t G1a _{ih} G1a _{iv} G1b _{ih} G1b _{iv} G1b _{iv} G1b _{iv}	0.00 kN/m 19.07 kN/m 9.53 kN/m 0.00 kN/m 0.00 kN/m 0.00 kN/m	7.08 4.42 4.42 3.38 3.38 4.70	5.70 7.93 7.93 4.36 4.36 1.10	90.00 0.00 90.00 0.00 90.00 0.00	0.00 0.00 9.53 0.00 0.00	0.00 19.07 0.00 0.00 0.00 0.00	0.00 -26.86 -0.26 0.00 0.00
Inerzia paragniaia orizzontale Inerzia paragniaia verticale Inerzia muro orizzontale Inerzia muro verticale Inerzia platea orizzontale Inerzia platea verticale	G1t G1a _{ih} G1a _{iv} G1a _{iv} G1b _{ih} G1b _{iv} G1b _{iv} G1c _{ih} G1c _{iv}	0.00 kN/m 19.07 kN/m 9.53 kN/m 0.00 kN/m 0.00 kN/m 0.00 kN/m 0.00 kN/m	7.08 4.42 4.42 3.38 3.38 4.70 4.70	5.70 7.93 7.93 4.36 4.36 1.10 1.10	90.00 0.00 90.00 0.00 90.00 0.00 90.00	0.00 0.00 9.53 0.00 0.00 0.00	0.00 19.07 0.00 0.00 0.00 0.00 0.00	0.00 -26.86 -0.26 0.00 0.00 0.00
Inerzia paragniaia orizzontale Inerzia paragniaia verticale Inerzia muro orizzontale Inerzia muro verticale Inerzia platea orizzontale Inerzia platea verticale Inerzia terreno piede muro orizzontale	G1t G1a _{ih} G1a _{iv} G1b _{ih} G1b _{iv} G1b _{iv} G1c _{ih} G1c _{iv} G1c _{ih} G1c _{iv}	0.00 kN/m 19.07 kN/m 9.53 kN/m 0.00 kN/m 0.00 kN/m 0.00 kN/m 0.00 kN/m 0.00 kN/m	7.08 4.42 4.42 3.38 3.38 4.70 4.70 7.08	5.70 7.93 7.93 4.36 4.36 1.10 1.10 5.70	90.00 0.00 90.00 0.00 90.00 0.00 90.00 0.00	0.00 0.00 9.53 0.00 0.00 0.00 0.00 0.00	0.00 19.07 0.00 0.00 0.00 0.00 0.00 0.00	0.00 -26.86 -0.26 0.00 0.00 0.00 0.00 0.00
Inerzia paragniaia orizzontale Inerzia paragniaia verticale Inerzia muro orizzontale Inerzia muro verticale Inerzia platea orizzontale Inerzia platea verticale Inerzia platea verticale Inerzia terreno piede muro orizzontale Inerzia terreno piede muro verticale	G1t G1a _{ih} G1a _{iv} G1b _{ih} G1b _{iv} G1b _{iv} G1c _{ih} G1c _{iv} G1c _{ih} G1c _{iv} G1c _{iv} G1c _{iv} G1c _{iv}	0.00 kN/m 19.07 kN/m 9.53 kN/m 0.00 kN/m 0.00 kN/m 0.00 kN/m 0.00 kN/m 0.00 kN/m	7.08 4.42 4.42 3.38 3.38 4.70 4.70 7.08 7.08	5.70 7.93 7.93 4.36 4.36 1.10 1.10 5.70	90.00 0.00 90.00 0.00 90.00 0.00 90.00 0.00 90.00	0.00 0.00 9.53 0.00 0.00 0.00 0.00 0.00 0.00	0.00 19.07 0.00 0.00 0.00 0.00 0.00 0.00 0.00	0.00 -26.86 -0.26 0.00 0.00 0.00 0.00 0.00 0.00
Inerzia paraghiaia orizzontale Inerzia paraghiaia verticale Inerzia muro orizzontale Inerzia muro verticale Inerzia platea orizzontale Inerzia platea verticale Inerzia terreno piede muro orizzontale Inerzia terreno piede muro verticale Spinta attiva	G1t G1a _{ih} G1a _{iv} G1b _{ih} G1b _{iv} G1b _{iv} G1c _{ih} G1c _{iv} G1c _{ih} G1c _{iv} G1c _{iv} G1c _h G3c _{iv} G3c _h G3c _h G3c _h G3c _h	0.00 kN/m 19.07 kN/m 9.53 kN/m 0.00 kN/m 0.00 kN/m 0.00 kN/m 0.00 kN/m 0.00 kN/m 0.00 kN/m 10.00 kN/m	7.08 4.42 4.42 3.38 3.38 4.70 4.70 7.08 7.08 4.75	5.70 7.93 7.93 4.36 4.36 1.10 1.10 5.70 5.70	90.00 0.00 90.00 0.00 90.00 0.00 90.00 0.00 90.00 23.33	0.00 0.00 9.53 0.00 0.00 0.00 0.00 0.00 0.00 0.00 6.58	0.00 19.07 0.00 0.00 0.00 0.00 0.00 0.00 0.00	0.00 -26.86 -0.26 0.00 0.00 0.00 0.00 0.00 0.00 -11.63
Inerzia paragniaia orizzontale Inerzia paragniaia verticale Inerzia muro orizzontale Inerzia muro verticale Inerzia platea orizzontale Inerzia platea orizzontale Inerzia platea verticale Inerzia terreno piede muro orizzontale Inerzia terreno piede muro verticale Spinta attiva Delta Spinta sismica (Mononobe-Okabe)	G1t G1a _{ih} G1a _{iv} G1b _{ih} G1b _{iv} G1b _{iv} G1c _{ih} G1c _{iv} G1c _{iv} G1t _{ih} G3c _{iv} G1c _{iv} G1c _{iv} G3c _{iv} G3c _{iv} G3c _{iv}	0.00 kN/m 19.07 kN/m 9.53 kN/m 0.00 kN/m 0.00 kN/m 0.00 kN/m 0.00 kN/m 0.00 kN/m 0.00 kN/m 16.61 kN/m 30.69 kN/m	7.08 4.42 4.42 3.38 3.38 4.70 4.70 7.08 7.08 4.75 4.75	5.70 7.93 7.93 4.36 4.36 1.10 1.10 5.70 5.70 7.41 7.86	90.00 0.00 90.00 0.00 90.00 0.00 90.00 0.00 90.00 23.33 23.33	0.00 0.00 9.53 0.00 0.00 0.00 0.00 0.00 0.00 0.00 6.58 12.15	0.00 19.07 0.00 0.00 0.00 0.00 0.00 0.00 0.00	0.00 -26.86 -0.26 0.00 0.00 0.00 0.00 0.00 0.00 -11.63 -34.04
Inerzia paragniaia orizzontale Inerzia paragniaia verticale Inerzia muro orizzontale Inerzia muro verticale Inerzia platea orizzontale Inerzia platea orizzontale Inerzia platea verticale Inerzia terreno piede muro orizzontale Inerzia terreno piede muro verticale Spinta attiva Delta Spinta sismica (Mononobe-Okabe) Sovraspinta pavimentazione	G1t G1a _{ih} G1a _{iv} G1b _{ih} G1b _{iv} G1b _{iv} G1c _{ih} G1c _{iv} G1t _{iv} G1t _{iv} G1t _{iv} G3t _{iv} SA AS S _{G2}	0.00 kN/m 19.07 kN/m 9.53 kN/m 0.00 kN/m	7.08 4.42 4.42 3.38 3.38 4.70 4.70 7.08 7.08 4.75 4.75	5.70 7.93 7.93 4.36 4.36 1.10 1.10 5.70 5.70 7.41 7.86 7.86	90.00 0.00 90.00 0.00 90.00 0.00 90.00 0.00 90.00 23.33 23.33 23.33	0.00 0.00 9.53 0.00 0.00 0.00 0.00 0.00 0.00 0.00 6.58 12.15 0.00	0.00 19.07 0.00 0.00 0.00 0.00 0.00 0.00 0.00	0.00 -26.86 -0.26 0.00 0.00 0.00 0.00 0.00 0.00 11.63 -34.04
Inerzia paragniaia orizzontale Inerzia paragniaia verticale Inerzia muro orizzontale Inerzia muro verticale Inerzia platea orizzontale Inerzia platea orizzontale Inerzia platea verticale Inerzia terreno piede muro orizzontale Inerzia terreno piede muro verticale Spinta attiiva Delta Spinta sismica (Mononobe-Okabe) Sovraspinta pavimentazione	G1t G1a _{ih} G1a _{iv} G1b _{ih} G1b _{iv} G1b _{iv} G1b _{iv} G1c _{iv} G1c _{iv} G1t _{ih} G1t _{iv} SA AS S _{G2} S _{q1}	0.00 kN/m 19.07 kN/m 9.53 kN/m 0.00 kN/m 2.00 kN/m 30.69 kN/m 0.00 kN/m 22.81 kN/m	7.08 4.42 4.42 3.38 3.38 4.70 4.70 7.08 7.08 4.75 4.75 4.75	5.70 7.93 7.93 4.36 4.36 1.10 1.10 5.70 5.70 7.41 7.86 7.86	90.00 0.00 90.00 0.00 90.00 0.00 90.00 90.00 90.00 23.33 23.33 23.33	0.00 0.00 9.53 0.00 0.00 0.00 0.00 0.00 0.00 6.58 12.15 0.00 9.04	0.00 19.07 0.00 0.00 0.00 0.00 0.00 0.00 0.00	0.00 -26.86 -0.26 0.00 0.00 0.00 0.00 0.00 0.00 -11.63 -34.04 0.00 -25.31
Inerzia paragniaia orizzontale Inerzia paragniaia verticale Inerzia muro orizzontale Inerzia muro verticale Inerzia platea orizzontale Inerzia platea verticale Inerzia platea verticale Inerzia terreno piede muro orizzontale Inerzia terreno piede muro verticale Spinta attiva Delta Spinta sismica (Mononobe-Okabe) Sovraspinta pavimentazione Sovraspinta traffico Impronta su paragniaia	G1t G1a _{ih} G1a _{ih} G1a _{iv} G1b _{ih} G1b _{iv} G1b _{iv} G1c _{iv} G1c _{iv} G1t _{ih} G1t _{iv} SA ΔS S _{G2} S _{q1} Fr ₁	0.00 kN/m 19.07 kN/m 9.53 kN/m 0.00 kN/m 2.81 kN/m 125.00 kN/m	7.08 4.42 4.42 3.38 3.38 4.70 4.70 7.08 4.75 4.75 4.75 4.30	5.70 7.93 7.93 4.36 4.36 1.10 1.10 5.70 5.70 7.41 7.86 7.86 9.20	90.00 0.00 90.00 0.00 90.00 0.00 90.00 0.00 90.00 23.33 23.33 23.33 90.00	0.00 0.00 9.53 0.00 0.00 0.00 0.00 0.00 0.00 6.58 12.15 0.00 9.04	0.00 19.07 0.00 0.00 0.00 0.00 0.00 0.00 0.00	0.00 -26.86 -0.26 0.00 0.00 0.00 0.00 0.00 0.00 -11.63 -34.04 0.00 -25.31 -18.75

Le seguenti tabelle mostrano gli inviluppi delle reazioni alla base del paraghiaia e il fattore di sicurezza (FS) riferito al momento flettente e associato alla sezione di progetto.

In particolare, si ipotizzano $5\phi24$ al metro su entrambi i lembi del paraghiaia che, come mostrato nella figura riportata di seguito, restituiscono un momento resistente di $M_{Rd}=450.9kNm/m$. Si nota come nella verifica si trascura, a favore di sicurezza, il contributo dovuto all'azione assiale N.

PROGETTO ESECUTIVO

RELAZIONE DI CALCOLO SPALLE

Figura 13.8: Verifica agli SLU paraghiaia

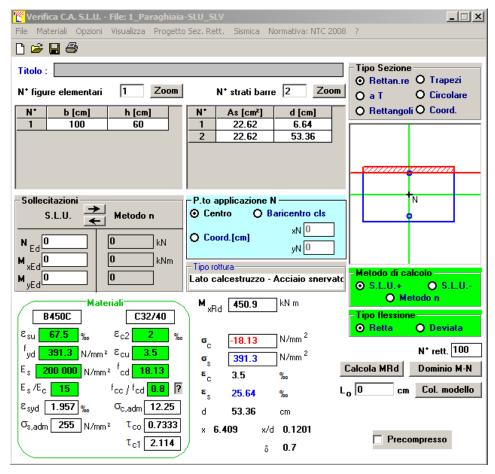


Tabella 13.9: Inviluppo reazioni SLU/SLV e Fattore di Sicurezza (FS) momento flettente (Paraghiaia)

INVILUPPO REAZIONI ALLA BASE SLU-SLV		valore	x [m]	y [m]	verso	
Azione verticale	N [kN/m]	264.78 kN/m			+y	
Azione orizzontale	T [kN/m]	162.81 kN/m	4.45	6.52	+χ	MAX
Momento	M [kNm/m]	282.17 kNm/m			antiorario	
Azione verticale	N [kN/m]	-110.22 kN/m			-y	
Azione orizzontale	T [kN/m]	-62.19 kN/m	4.45	6.52	-x	MIN
Momento	M [kNm/m]	-375.95 kNm/m			orario	

VERIFICA MOMENTO FLETTENTE SEZIONE SIMMETRICA (GELFI)							
Altezza sezione	h	100	cm]			
Base sezione	b	60	cm				_
Copriferro	С	4	cm	numero	dian	netro	
Acciaio superiore	A _{sup}	22.62	cmq	5	ф	24	(armatura compressa)
Acciaio Inferiore	A _{inf}	22.62	cmq	5	ф	24	(armatura tesa)
Azione di compressione	N _{Ed}	0	kN				-
Momento flettente	M _{Rd}	450.9	kNm/m				
Fattore di sicurezza	FS	1.20		VERIFICA SODDISFATTA			

Per quanto riguarda la verifica a taglio, le tabelle seguenti mostrano come la sezione sia verificata a taglio senza l'utilizzo di armatura specifica.

PROGETTO ESECUTIVO

RELAZIONE DI CALCOLO SPALLE

Tabella 13.10: Verifica a taglio (Paraghiaia)

VERIFICA A TAGLIO SECONDO NTC 2018 ED EUROCODICE 2 (UNI EN 1992 1-1) Note e convenzioni $N>0 \rightarrow trazione$

INPUT			
Fattore di confidenza	FC	1	
	R _{ck}	40 N/mm ²	
	f _{ck}	31 N/mm ²	
Valore medio della resistenza a trazione	f _{ctm}	3.0 N/mm ²	= 0.3 * f _{ck} ^(2/3)
Coefficiente sicurezza cls	γo	1.5	
Coefficiente carichi lunga durata	αοο	0.85	
Resistenza di calcolo del cls	f _{cd}	17.68 N/mm ²	= $\alpha_{cc} * f_{ck} / \gamma_{c}$
Resitenza caratteristica di snervamento acciaio	f _{yk}	450 N/mm ²	
Coefficiente sicurezza acciaio	gs	1.15	
Snervamento di calcolo acciaio	f _{yd}	391 N/mm ²	= f_{yd} / γ_s
Forza di taglio di calcolo	$V_{\sf sd}$	162.8 kN	
Forza assiale di calcolo	N _{sd}	-264.78 kN	
Larghezza sezione	b _w	100 cm	1000 mm
altezza della sezione	Н	60 cm	600 mm
Copriferro	С	4 cm	
Diametro barre superiori	\$ 2	24 mm	
Diametro barre inferiori	ф1	24 mm	
Diametro staffe	фst	12 mm	
Numero di barre superiori	N ₂	5	
Numero di barre inferiori	N ₁	5	
altezza utile della sezione	d	53.6 cm	536 mm

RESISTENZA DI CALCOLO DELL'ELEMENTO SEN	IZA ARMATURA A TAGLIO	D: V _{Rd}	(rif. cap. 4.1.2.	3.5.1 NTC 2018)
$V_{Rd} = max\{[0.18 * k * (100 * \rho_1 * f_{ck})^{1/3} / \gamma_c + 0.15 * c$	σ _{cp}] * b _w * d; [V _{min} + 0.15 * c	o _{cp}] * b _w * d}		
$K = 1 + (200 / d)^{0.5} \le 2.00$	K	1.61		
V _{min} = 0.035 * K ^{1.5} * fck ^{0.5}	V _{min}	0.40 N/mm^2		
A _{s1} =area delle armature di trazione che si estendono non meno di d+l _{b.net} oltre la sezione considerata	A _{s1}	22.62 cm^2	2261.947 mm^2	
$\rho_1 = A_{s1}/(b_w d) \le 0.02$	ρ ₁	0.0042		
$\sigma_{cp} = -N_{sd}/A_c \le 0.2f_{cd}$	σ _{ср}	0.44 N/mm^2		
	V _{Rd1}	280 kN		
	V _{Rd2}	250 kN		
	V _{Rd}	280.14 kN	OV VEDIEICA	SODDISFATTA
Fattore di sicurezza	FS	1.72	OK - VERIFICA	SUDDISTALIA

PROGETTO ESECUTIVO

RELAZIONE DI CALCOLO SPALLE

13.3 VERIFICA DEL MURO FRONTALE

Il muro frontale viene calcolato per unità di lunghezza, considerando agenti i pesi propri, il sovraccarico stradale a monte della parete, la spinta del terreno, le spinte sismiche, le forze di inerzia e le azioni trasmesse dall'impalcato al piano appoggi. Queste ultime vengono ottenute mediante le combinazioni descritte in precedenza, riconducendo le azioni elementari a metro lineare di opera e considerando unicamente le azioni provenienti dall'impalcato più sollecitante.

Vista la geometria a mensola della struttura e la natura dei carichi, le verifiche sono condotte alla sezione di incastro tra l'elemento verticale e la platea di fondazione.

13.3.1 Verifiche agli Stati Limite Ultimi (SLU/SLV)

Nelle tabelle seguenti sono riportate le azioni agenti sul muro frontale e le reazioni da esse causate alla base dell'elemento. Queste reazioni sono mostrate in forma caratteristica, prima di essere combinate secondo i coefficienti parziali.

Tabella 13.11: Coefficienti di spinta terreno

Stato limite sismico	SLV
Tipologia di verifica	Resistenza strutturale
Elemento	muro
Combinazione	A1+M1+R3
verifica	prevista

CALCOLO SPINTE TERRENO			
Angolo attrito interno di progetto	Ψd	35.00 °	0.61 rad
Inclinazione muro a monte	β	0.00 °	0.00 rad
Angolo attrito terreno-muro	δ	23.33 °	0.41 rad
Inclinazione terreno a monte	i _m	0.00 °	0.00 rad
Coefficiente di spinta a riposo	K ₀	0.43	
Coefficiente di spinta attiva	KΔ	0.24	
k _h + k _v negativo (spinta	sismica verso l'alto)		
Inclinazione della risultante della forza peso e delle forze di inerzia agenti sul cuneo	θ	29.86 °	0.52 rad
Coefficiente di spinta attiva sismica	K _{AE}	1.04	Mononobe-Okabe
Delta spinta sismica	ΔK _{AE}	0.561	
Angolo del cuneo sismico	α_{AE}	19.50 °	0.34 rad
	C _{1E}	4.00	
	C _{2E}	15.96	
k _h + k _v positivo (spinta s	sismica verso il basso)		
Inclinazione della risultante della forza peso e delle forze di inerzia agenti sul cuneo	θ	20.04 °	0.35 rad
Coefficiente di spinta attiva sismica	K _{AE}	0.57	Mononobe-Okabe
Delta spinta sismica	ΔK _{AE}	0.451	
Angolo del cuneo sismico	α_{AE}	42.27 °	0.74 rad
	C _{1E}	2.20	
	C _{2E}	4.79	

Coefficienti parziali azioni					
		Favorevoli	Sfavorevoli		
	G1	1	1.3		
A1	G2	0.8	1.5		
	Q	0	1.5		
Coe	efficienti para	ziali geotecr	nici		
	Υφ	1			
M1	Υo	1			
IVII	You	1			
	Yy	1			
Coefficienti parziali di resistenza					
R3	ΥR	1			

Tabella 13.12: Dati geometrici e carichi statici Muro (SLU)

PARAMETRI GEOMETRICI								
Altezza paraghiaia	h1+h7	2.68 m						
Altezza muro	h2	4.32 m						
Altezza platea fondazione	h3	2.20 m	1					
Altezza complessiva	h	7.00 m						
Posizione incastro	x _i	3.375 m	1					
Posizione incastro	Y _I	2.20 m						
Posizione annoggio	Xa	2.70 m						
Posizione appoggio	y _a	6.52 m	1			Contribu	ıti al piede	e del muro
CARICHI STATICI			x [m]	y [m]	angolo [°]	N [kN/m]	T [kN/m]	M [kNm/m]
Peso proprio paraghiaia	G1a	42.75 kN/m	4.42	7.93	90.00	42.75	0.00	44.78
Peso proprio muro	G1b	297.00 kN/m	3.38	4.36	90.00	297.00	0.00	0.00
Peso proprio platea	G1c	0.00 kN/m	4.70	1.10	90.00	0.00	0.00	0.00
Peso terreno piede muro	G1t	0.00 kN/m	7.08	2.20	90.00	0.00	0.00	0.00
Spinta a riposo	SO SO	198.22 kN/m	4.75	4.53	23.33	78.51	182.01	-316.43
Sovraspinta pavimentazione	S _{G2}	0.00 kN/m	4.75	5.70	23.33	0.00	0.00	0.00
Sovraspinta traffico	S _{q1}	59.66 kN/m	4.75	5.70	23.33	23.63	54.78	-159.10
Impronta su paraghiaia	Fr ₁	0.00 kN/m	4.30	9.20	90.00	0.00	0.00	0.00
Frenamento Orizzontale	Fr ₂	0.00 kN/m	4.30	9.20	0.00	0.00	0.00	0.00

Collegamento viario compreso tra lo Svincolo della S.S. 514 di "Chiaromonte" con la S.S. 115 e lo Svincolo della "Ragusana"

PROGETTO ESECUTIVO

RELAZIONE DI CALCOLO SPALLE

Tabella 13.13: Carichi sismici Muro (SLV)

CARICHI SISMICI k _v negativo	1	•	x [m]	y [m]	angolo [°]	N [kN/m]	T [kN/m]	M [kNm/m]
Peso proprio paraghiaia	G1a	42.75 kN/m	4.42	7.93	90.00	42.75	0.00	44.78
Peso proprio muro	G1b	297.00 kN/m	3.38	4.36	90.00	297.00	0.00	0.00
Peso proprio platea	G1c	0.00 kN/m	4.70	1.10	90.00	0.00	0.00	0.00
Peso terreno piede muro	G1t	0.00 kN/m	7.08	2.20	90.00	0.00	0.00	0.00
Inerzia paraghiaia orizzontale	G1a _{ih}	19.07 kN/m	4.42	7.93	0.00	0.00	19.07	-109.23
Inerzia paraghiaia verticale	G1a _{iv}	-9.53 kN/m	4.42	7.93	90.00	-9.53	0.00	-9.98
Inerzia muro orizzontale	G1b _{ih}	132.46 kN/m	3.38	4.36	0.00	0.00	132.46	-286.12
Inerzia muro verticale	G1b _{iv}	-66.23 kN/m	3.38	4.36	90.00	-66.23	0.00	0.00
Inerzia platea orizzontale	G1c _{ih}	0.00 kN/m	4.70	1.10	0.00	0.00	0.00	0.00
Inerzia platea verticale	G1c _{iv}	0.00 kN/m	4.70	1.10	90.00	0.00	0.00	0.00
Inerzia terreno piede muro orizzontale	G1t _{ih}	0.00 kN/m	7.08	2.20	0.00	0.00	0.00	0.00
Inerzia terreno piede muro verticale	G1t _{iv}	0.00 kN/m	7.08	2.20	90.00	0.00	0.00	0.00
Spinta attiva	SA	113.61 kN/m	4.75	4.53	23.33	45.00	104.32	-181.36
Delta Spinta sismica (Mononobe-Okabe)	ΔS	260.86 kN/m	4.75	5.70	23.33	103.32	239.53	-695.69
Sovraspinta pavimentazione	S _{G2}	0.00 kN/m	4.75	5.70	23.33	0.00	0.00	0.00
Sovraspinta traffico	S _{q1}	59.66 kN/m	4.75	5.70	23.33	23.63	54.78	-159.10
Impronta su paraghiaia	Fr ₁	0.00 kN/m	4.30	9.20	90.00	0.00	0.00	0.00
Inerzia impronta orizzontale	Fr _{1ih}	0.00 kN/m	4.30	9.20	0.00	0.00	0.00	0.00
Inerzia impronta verticale	Fr _{1iv}	0.00 kN/m	4.30	9.20	90.00	0.00	0.00	0.00
Frenamento Orizzontale	Fr ₂	0.00 kN/m	4.30	9.20	0.00	0.00	0.00	0.00
CARICHI SISMICI k _v positivo			x [m]	y [m]	angolo [°]	N [kN/m]	T [kN/m]	M [kNm/m]
Peso proprio paraghiaia	G1a	42.75 kN/m	4.42	7.93	90.00	42.75	0.00	44.78
_								
Peso proprio muro	G1b	297.00 kN/m	3.38	4.36	90.00	297.00	0.00	0.00
Peso proprio muro Peso proprio platea	G1b G1c	297.00 kN/m 0.00 kN/m	3.38 4.70	4.36 1.10	90.00	297.00 0.00	0.00	0.00
			1					
Peso proprio platea	G1c	0.00 kN/m	4.70	1.10	90.00	0.00	0.00	0.00
Peso proprio platea Peso terreno piede muro	G1c G1t	0.00 kN/m 0.00 kN/m	4.70 7.08	1.10 5.70	90.00 90.00	0.00	0.00	0.00 0.00
Peso proprio platea Peso terreno piede muro Inerzia paraghiaia orizzontale	G1c G1t G1a _{ih}	0.00 kN/m 0.00 kN/m 19.07 kN/m	4.70 7.08 4.42	1.10 5.70 7.93	90.00 90.00 0.00	0.00 0.00 0.00	0.00 0.00 19.07	0.00 0.00 -109.23
Peso proprio platea Peso terreno piede muro Inerzia paraghiaia orizzontale Inerzia paraghiaia verticale	G1c G1t G1a _{ih} G1a _{iv}	0.00 kN/m 0.00 kN/m 19.07 kN/m 9.53 kN/m	4.70 7.08 4.42 4.42	1.10 5.70 7.93 7.93	90.00 90.00 0.00 90.00	0.00 0.00 0.00 9.53	0.00 0.00 19.07 0.00	0.00 0.00 -109.23 9.98
Peso proprio platea Peso terreno piede muro Inerzia paraghiaia orizzontale Inerzia paraghiaia verticale Inerzia muro orizzontale	G1c G1t G1a _{ih} G1a _{iv} G1b _{ih}	0.00 kN/m 0.00 kN/m 19.07 kN/m 9.53 kN/m 132.46 kN/m	4.70 7.08 4.42 4.42 3.38	1.10 5.70 7.93 7.93 4.36	90.00 90.00 0.00 90.00 0.00	0.00 0.00 0.00 9.53 0.00	0.00 0.00 19.07 0.00 132.46	0.00 0.00 -109.23 9.98 -286.12
Peso proprio platea Peso terreno piede muro Inerzia paraghiaia orizzontale Inerzia paraghiaia verticale Inerzia muro orizzontale Inerzia muro verticale	G1c G1t G1a _{ih} G1a _{iv} G1b _{ih} G1b _{iv}	0.00 kN/m 0.00 kN/m 19.07 kN/m 9.53 kN/m 132.46 kN/m 66.23 kN/m	4.70 7.08 4.42 4.42 3.38 3.38	1.10 5.70 7.93 7.93 4.36 4.36	90.00 90.00 0.00 90.00 0.00 90.00	0.00 0.00 0.00 9.53 0.00 66.23	0.00 0.00 19.07 0.00 132.46 0.00	0.00 0.00 -109.23 9.98 -286.12 0.00
Peso proprio platea Peso terreno piede muro Inerzia paraghiaia orizzontale Inerzia paraghiaia verticale Inerzia muro orizzontale Inerzia muro verticale Inerzia platea orizzontale	G1c G1t G1a _{ih} G1a _{iv} G1b _{iv} G1b _{iv} G1b _{iv} G1c _{ih}	0.00 kN/m 0.00 kN/m 19.07 kN/m 9.53 kN/m 132.46 kN/m 66.23 kN/m 0.00 kN/m	4.70 7.08 4.42 4.42 3.38 3.38 4.70	1.10 5.70 7.93 7.93 4.36 4.36 1.10	90.00 90.00 0.00 90.00 0.00 90.00	0.00 0.00 0.00 9.53 0.00 66.23	0.00 0.00 19.07 0.00 132.46 0.00 0.00	0.00 0.00 -109.23 9.98 -286.12 0.00
Peso proprio platea Peso terreno piede muro Inerzia paraghiaia orizzontale Inerzia paraghiaia verticale Inerzia muro orizzontale Inerzia muro verticale Inerzia platea orizzontale Inerzia platea orizzontale	G1c G1t G1a _{ih} G1a _{iv} G1b _{ih} G1b _{iv} G1b _{iv} G1c _{ih} G1c _{iv}	0.00 kN/m 0.00 kN/m 19.07 kN/m 9.53 kN/m 132.46 kN/m 66.23 kN/m 0.00 kN/m	4.70 7.08 4.42 4.42 3.38 3.38 4.70 4.70	1.10 5.70 7.93 7.93 4.36 4.36 1.10 1.10	90.00 90.00 0.00 90.00 0.00 90.00 0.00	0.00 0.00 0.00 9.53 0.00 66.23 0.00	0.00 0.00 19.07 0.00 132.46 0.00 0.00	0.00 0.00 -109.23 9.98 -286.12 0.00 0.00 0.00
Peso proprio platea Peso terreno piede muro Inerzia paraghiaia orizzontale Inerzia paraghiaia verticale Inerzia muro orizzontale Inerzia muro verticale Inerzia platea orizzontale Inerzia platea orizzontale Inerzia platea verticale Inerzia platea verticale	G1c G1t G1a _{ih} G1a _{iv} G1b _{ih} G1b _{iv} G1b _{iv} G1c _{ih} G1c _{iv} G1c _{iv} G1c _{iv}	0.00 kN/m 0.00 kN/m 19.07 kN/m 9.53 kN/m 132.46 kN/m 66.23 kN/m 0.00 kN/m 0.00 kN/m	4.70 7.08 4.42 4.42 3.38 3.38 4.70 4.70 7.08	1.10 5.70 7.93 7.93 4.36 4.36 1.10 1.10 5.70	90.00 90.00 0.00 90.00 0.00 90.00 90.00 90.00 90.00	0.00 0.00 0.00 9.53 0.00 66.23 0.00 0.00 0.00	0.00 0.00 19.07 0.00 132.46 0.00 0.00 0.00	0.00 0.00 -109.23 9.98 -286.12 0.00 0.00 0.00
Peso proprio platea Peso terreno piede muro Inerzia paraghiaia orizzontale Inerzia paraghiaia verticale Inerzia muro orizzontale Inerzia muro verticale Inerzia platea orizzontale Inerzia platea orizzontale Inerzia platea verticale Inerzia terreno piede muro orizzontale Inerzia terreno piede muro verticale	G1c G1t G1a _{ih} G1a _{iv} G1b _{ih} G1b _{iv} G1b _{iv} G1c _{ih} G1c _{iv} G1c _{iv} G1c _{iv} G1c _{iv} G1c _{iv}	0.00 kN/m 0.00 kN/m 19.07 kN/m 9.53 kN/m 132.46 kN/m 66.23 kN/m 0.00 kN/m 0.00 kN/m 0.00 kN/m	4.70 7.08 4.42 4.42 3.38 3.38 4.70 4.70 7.08 7.08	1.10 5.70 7.93 7.93 4.36 4.36 1.10 1.10 5.70	90.00 90.00 0.00 90.00 0.00 90.00 0.00 90.00 0.00 90.00	0.00 0.00 0.00 9.53 0.00 66.23 0.00 0.00 0.00	0.00 0.00 19.07 0.00 132.46 0.00 0.00 0.00 0.00 0.00	0.00 0.00 -109.23 9.98 -286.12 0.00 0.00 0.00 0.00
Peso proprio platea Peso terreno piede muro Inerzia paraghiaia orizzontale Inerzia paraghiaia verticale Inerzia muro orizzontale Inerzia muro verticale Inerzia platea orizzontale Inerzia platea verticale Inerzia terreno piede muro orizzontale Inerzia terreno piede muro verticale Spinta attiva	G1c G1t G1a _{ih} G1a _{iv} G1b _{ih} G1b _{iv} G1b _{iv} G1c _{ih} G1t _{cv} G1t _h G1t _{cv} G1t _h GS1t _{cv} GS1t _h	0.00 kN/m 0.00 kN/m 19.07 kN/m 9.53 kN/m 132.46 kN/m 66.23 kN/m 0.00 kN/m 0.00 kN/m 0.00 kN/m 13.61 kN/m	4.70 7.08 4.42 4.42 3.38 3.38 4.70 4.70 7.08 7.08 4.75	1.10 5.70 7.93 7.93 4.36 4.36 1.10 1.10 5.70 5.70 4.53	90.00 90.00 0.00 90.00 0.00 90.00 0.00 90.00 0.00 90.00 23.33	0.00 0.00 0.00 9.53 0.00 66.23 0.00 0.00 0.00 0.00 45.00	0.00 0.00 19.07 0.00 132.46 0.00 0.00 0.00 0.00 0.00 104.32	0.00 0.00 -109.23 9.98 -286.12 0.00 0.00 0.00 0.00 0.00 -181.36
Peso proprio platea Peso terreno piede muro Inerzia paraghiaia orizzontale Inerzia paraghiaia verticale Inerzia muro orizzontale Inerzia muro verticale Inerzia platea orizzontale Inerzia platea verticale Inerzia platea verticale Inerzia terreno piede muro orizzontale Inerzia terreno piede muro verticale Spinta attiva Delta Spinta sismica (Mononobe-Okabe)	G1c G1t G1a _{ih} G1a _{iv} G1b _{iv} G1b _{iv} G1c _{ih} G1c _{iv} G1c _{iv} G1c _{iv} G1c _{iv} G3c	0.00 kN/m 0.00 kN/m 19.07 kN/m 9.53 kN/m 132.46 kN/m 66.23 kN/m 0.00 kN/m 0.00 kN/m 0.00 kN/m 10.00 kN/m 0.00 kN/m	4.70 7.08 4.42 4.42 3.38 3.38 4.70 4.70 7.08 7.08 4.75 4.75	1.10 5.70 7.93 7.93 4.36 4.36 1.10 1.10 5.70 5.70 4.53 5.70	90.00 90.00 0.00 90.00 0.00 90.00 0.00 90.00 0.00 90.00 23.33 23.33	0.00 0.00 0.00 9.53 0.00 66.23 0.00 0.00 0.00 0.00 45.00 83.11	0.00 0.00 19.07 0.00 132.46 0.00 0.00 0.00 0.00 0.00 104.32 192.67	0.00 0.00 -109.23 9.98 -286.12 0.00 0.00 0.00 0.00 0.00 -181.36 -559.59
Peso proprio platea Peso terreno piede muro Inerzia paraghiaia orizzontale Inerzia muro orizzontale Inerzia muro orizzontale Inerzia muro verticale Inerzia platea orizzontale Inerzia platea orizzontale Inerzia platea verticale Inerzia terreno piede muro orizzontale Inerzia terreno piede muro verticale Spinta attiva Delta Spinta sismica (Mononobe-Okabe) Sovraspinta pavimentazione	G1c G1t G1a _{ih} G1a _{iv} G1b _{ih} G1b _{iv} G1b _{iv} G1t _{cih} G1c _{iv} G1t _h G1c _{iv} G1t _h G5c _{iv} G1t _h G5c _{iv} G1t _o G5c _{iv} G1t _o G5c _{iv} G5c _{iv} G5c _{iv}	0.00 kN/m 0.00 kN/m 19.07 kN/m 9.53 kN/m 132.46 kN/m 66.23 kN/m 0.00 kN/m 0.00 kN/m 0.00 kN/m 10.00 kN/m 0.00 kN/m 0.00 kN/m 0.00 kN/m	4.70 7.08 4.42 4.42 3.38 3.38 4.70 4.70 7.08 7.08 4.75 4.75	1.10 5.70 7.93 7.93 4.36 4.36 1.10 1.10 5.70 5.70 4.53 5.70	90.00 90.00 0.00 90.00 0.00 90.00 0.00 90.00 90.00 90.00 23.33 23.33	0.00 0.00 0.00 9.53 0.00 66.23 0.00 0.00 0.00 45.00 83.11 0.00	0.00 0.00 19.07 0.00 132.46 0.00 0.00 0.00 0.00 0.00 104.32 192.67 0.00	0.00 0.00 -109.23 9.98 -286.12 0.00 0.00 0.00 0.00 0.00 -181.36 -559.59 0.00
Peso proprio platea Peso terreno piede muro Inerzia paraghiaia orizzontale Inerzia muro orizzontale Inerzia muro orizzontale Inerzia muro verticale Inerzia platea orizzontale Inerzia platea orizzontale Inerzia platea verticale Inerzia terreno piede muro orizzontale Inerzia terreno piede muro verticale Spinta attiva Delta Spinta sismica (Mononobe-Okabe) Sovraspinta pavimentazione Sovraspinta traffico	G1c G1t G1a _{ih} G1a _{iv} G1b _{ih} G1b _{iv} G1c _{iv} G1t _h G1t _v G1t _h G5t _v G1c _{iv} G5t _h G5t _v G5t _h G5t _v G5t _h G5t _v SA ΔS S _{G2} S _{q1}	0.00 kN/m 0.00 kN/m 19.07 kN/m 9.53 kN/m 132.46 kN/m 66.23 kN/m 0.00 kN/m 0.00 kN/m 0.00 kN/m 0.00 kN/m 0.00 kN/m 0.00 kN/m 113.61 kN/m 209.83 kN/m 0.00 kN/m 59.66 kN/m	4.70 7.08 4.42 4.42 3.38 3.38 4.70 4.70 7.08 4.75 4.75 4.75	1.10 5.70 7.93 7.93 4.36 4.36 1.10 1.10 5.70 4.53 5.70 5.70 5.70	90.00 90.00 0.00 90.00 0.00 90.00 0.00 90.00 90.00 90.00 23.33 23.33 23.33	0.00 0.00 0.00 9.53 0.00 66.23 0.00 0.00 0.00 45.00 83.11 0.00 23.63	0.00 0.00 19.07 0.00 132.45 0.00 0.00 0.00 0.00 104.32 192.67 0.00 54.78	0.00 0.00 -109.23 9.98 -286.12 0.00 0.00 0.00 0.00 0.00 -181.36 -559.59 0.00 -159.10
Peso proprio platea Peso terreno piede muro Inerzia paraghiaia orizzontale Inerzia muro orizzontale Inerzia muro orizzontale Inerzia muro verticale Inerzia platea orizzontale Inerzia platea orizzontale Inerzia platea verticale Inerzia platea verticale Inerzia terreno piede muro orizzontale Inerzia terreno piede muro verticale Spinta attiva Delta Spinta sismica (Mononobe-Okabe) Sovraspinta pavimentazione Sovraspinta traffico Impronta su paraghiaia	G1c G1t G1a _{ih} G1a _{iv} G1b _{ih} G1b _{iv} G1b _{iv} G1c _{iv} G1t _h G1t _v G1t _h G1t _v SA AS SG2 Sq1 Fr1	0.00 kN/m 0.00 kN/m 19.07 kN/m 9.53 kN/m 132.46 kN/m 66.23 kN/m 0.00 kN/m 0.00 kN/m 0.00 kN/m 0.00 kN/m 0.00 kN/m 113.61 kN/m 209.83 kN/m 0.00 kN/m 59.66 kN/m	4.70 7.08 4.42 4.42 3.38 3.38 4.70 4.70 7.08 4.75 4.75 4.75 4.30	1.10 5.70 7.93 7.93 4.36 4.36 1.10 1.10 5.70 5.70 4.53 5.70 5.70 9.20	90.00 90.00 0.00 90.00 0.00 90.00 0.00 90.00 0.00 90.00 23.33 23.33 23.33 90.00	0.00 0.00 0.00 9.53 0.00 66.23 0.00 0.00 0.00 45.00 83.11 0.00 23.63 0.00	0.00 0.00 19.07 0.00 132.46 0.00 0.00 0.00 0.00 104.32 192.67 0.00 54.78 0.00	0.00 0.00 -109.23 9.98 -286.12 0.00 0.00 0.00 0.00 -181.36 -559.59 0.00 -159.10 0.00

Le seguenti tabelle mostrano gli inviluppi delle reazioni alla base del muro frontale e il fattore di sicurezza (FS) riferito al momento flettente e associato alla sezione di progetto.

In particolare, si ipotizzano $5\phi24$ al metro su entrambi i lembi del muro frontale che, come mostrato nella figura riportata di seguito, restituiscono un momento resistente di $M_{Rd}=2349kNm/m$. Si nota come nella verifica si trascura, a favore di sicurezza, il contributo dovuto all'azione assiale N.

PROGETTO ESECUTIVO

RELAZIONE DI CALCOLO SPALLE

Figura 13.14: Verifica agli SLU muro

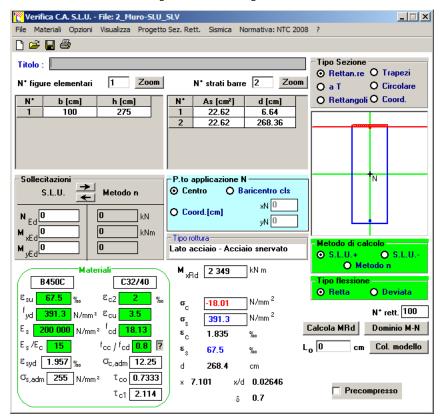


Tabella 13.15: Inviluppo reazioni SLU/SLV e Fattore di Sicurezza (FS) momento flettente (Muro)

INVILUPPO REAZIONI ALLA BASE SLU-SLV		valore	x [m]	y [m]	verso	
Azione verticale	N [kN/m]	995.54 kN/m			+y	
Azione orizzontale	T [kN/m]	718.50 kN/m	3.375	2.20	+x	MAX
Momento	M [kNm/m]	-379.59 kNm/m			orario	
Azione verticale	N [kN/m]	378.54 kN/m			+y	
Azione orizzontale	T [kN/m]	182.01 kN/m	3.375	2.20	+x	MIN
Momento	M [kNm/m]	-2277.90 kNm/m			orario	

VERIFICA MOMENTO FLETTENTE SEZIONE SIMMETRICA (GELFI)							
Altezza sezione	h	100	cm				
Base sezione	b	275	cm				_
Copriferro	С	4	cm	numero	dian	netro	
Acciaio superiore	A _{sup}	22.62	cmq	5	ф	24	(armatura compressa)
Acciaio Inferiore	A _{inf}	22.62	cmq	5	ф	24	(armatura tesa)
Azione di compressione	N _{Ed}	0	kN				-
Momento flettente	M _{Rd}	2349.00	kNm/m				
Fattore di sicurezza	FS	1.03		VERIFICA SODDISFATTA			

Per quanto riguarda la verifica a taglio, le tabelle seguenti mostrano come la sezione sia verificata a taglio senza l'utilizzo di armatura specifica.

PROGETTO ESECUTIVO

RELAZIONE DI CALCOLO SPALLE

Tabella 13.16: Verifica a taglio pt1 (Muro)

VERIFICA A TAGLIO SECONDO NTC 2018 ED EUROCODICE 2 (UNI EN 1992 1-1) Note e convenzioni $N>0 \rightarrow trazione$

INPUT			
Fattore di confidenza	FC	1	
	R _{ck}	40 N/mm ²	
	f _{ck}	31 N/mm ²	
Valore medio della resistenza a trazione	f _{ctm}	3.0 N/mm ²	= 0.3 * f _{ck} ^(2/3)
Coefficiente sicurezza cls	γc	1.5	
Coefficiente carichi lunga durata	α _{cc}	0.85	
Resistenza di calcolo del cls	f _{cd}	17.68 N/mm ²	= α _{cc} * f _{ck} / γ _c
Resitenza caratteristica di snervamento acciaio	f _{yk}	450 N/mm ²	
Coefficiente sicurezza acciaio	gs	1.15	
Snervamento di calcolo acciaio	f _{yd}	391 N/mm ²	= f_{yd} / γ_s
Forza di taglio di calcolo	V_{sd}	718.5 kN	
Forza assiale di calcolo	N _{sd}	-995.54 kN	
Larghezza sezione	b _w	100 cm	1000 mm
altezza della sezione	Н	275 cm	2750 mm
Copriferro	С	4 cm	
Diametro barre superiori	\$ 2	24 mm	
Diametro barre inferiori	ф1	24 mm	
Diametro staffe	¢ st	12 mm	
Numero di barre superiori	N ₂	5	
Numero di barre inferiori	N ₁	5	
altezza utile della sezione	d	268.6 cm	2686 mm

RESISTENZA DI CALCOLO DELL'ELEMENTO SEN	RESISTENZA DI CALCOLO DELL'ELEMENTO SENZA ARMATURA A TAGLIO: V _{Rd}						
$V_{Rd} = \max\{[0.18 * k * (100 * \rho_1 * f_{ck})^{1/3} / \gamma_c + 0.15 * \sigma_{cp}] * b_w * d; [V_{min} + 0.15 * \sigma_{cp}] * b_w * d\}$							
$K = 1 + (200 / d)^{0.5} \le 2.00$	K	1.27					
V _{min} = 0.035 * K ^{1.5} * fck ^{0.5}	V _{min}	0.28 N/mm^2					
A _{s1} =area delle armature di trazione che si estendono non meno di d+l _{b,net} oltre la sezione considerata	A _{s1}	22.62 cm^2	2261.947 mm^2				
$\rho_1 = A_{s1}/(b_w d) \le 0.02$	ρ ₁	8000.0					
$\sigma_{cp} = -N_{sd}/A_c \le 0.2f_{cd}$	σ _{ср}	0.36 N/mm^2					
	V _{Rd1}	712 kN					
	V _{Rd2}	900 kN					
	V _{Rd}	899.96 kN	OV VEDIEICA	CODDICEATTA			
Fattore di sicurezza	FS	1.25	OK - VERIFICA SODDISFATTA				

PROGETTO ESECUTIVO

RELAZIONE DI CALCOLO SPALLE

13.4 VERIFICA PALI DI FONDAZIONE

Le verifiche strutturali dei pali di fondazione sono eseguite agli Stati Limite Ultimi con riferimento ai momenti e al taglio agente e agli Stati Limiti d'Esercizio con riferimento alla fessurazione.

La verifica a flessione e a taglio viene eseguita sul palo più sollecitato per la combinazione di calcolo più sollecitante (SLV1).

13.4.1 Caratteristiche geometriche e meccaniche

Le caratteristiche geometriche e meccaniche dei pali sono riportate di seguito:

Tabella 13.17: Caratteristiche pali

Diametro	D	1.2	m
Area	A	1.13	m^2
Lunghezza	L	38	m
Spaziatura in direzione parallela all'asse stradale	s_y	3.6	m
Spaziatura in direzione ortogonale all'asse stradale	S_Z	3.6	m
Momento d'inerzia	Ι	0.10179	m^4
Momento polare	J	0.20358	m^4
Modulo elastico	Е	33643	МРа
Modulo di taglio	G	18000	МРа

13.4.2 Azioni di progetto

Le azioni di progetto della fondazione coincidono con le reazioni vincolari che si otterrebbero vincolando la platea nel baricentro della palificata. Le seguenti tabelle mostrano i valori caratteristici delle azioni agenti direttamente sulla spalla, ai quali vanno sommate le azioni provenienti dall'impalcato.

Tabella 13.18: Dati geometrici e carichi statici Spalla completa (SLU)

PARAMETRI GEOMETRICI								
Altezza paraghiaia	h1+h7	2.68 m	1					
Altezza muro	h2	4.32 m						
Altezza platea fondazione	h3	2.20 m						
Altezza complessiva	h	9.20 m						
Posizione incastro	X _I	4.7 m						
Posizione incastro	Zį	0.00 m						
Danieliana annoncia	X _a	2.70 m						
Posizione appoggio	Za	6.52 m				Contribu	ti al piede (della platea
CARICHI STATICI			x [m]	z [m]	angolo [°]	N [kN/m]	T [kN/m]	M [kNm/m]
Peso proprio paraghiaia	G1a	42.75 kN/m	4.42	7.93	90.00	42.75	0.00	-11.87
Peso proprio muro	G1b	297.00 kN/m	3.38	4.36	90.00	297.00	0.00	-393.53
Peso proprio platea	G1c	517.00 kN/m	4.70	1.10	90.00	517.00	0.00	0.00
Peso terreno piede muro	G1t	618.01 kN/m	7.08	2.20	90.00	618.01	0.00	1467.77
Spinta a riposo	S0	342.51 kN/m	4.75	3.07	23.33	135.66	314.49	-957.14
Sovraspinta pavimentazione	S _{G2}	0.00 kN/m	4.75	4.60	23.33	0.00	0.00	0.00
Sovraspinta traffico	S _{q1}	78.42 kN/m	4.75	4.60	23.33	31.06	72.01	-329.49
Impronta su paraghiaia	Fr ₁	0.00 kN/m	4.30	9.20	90.00	0.00	0.00	0.00
Frenamento Orizzontale	Fr ₂	0.00 kN/m	4.30	9.20	0.00	0.00	0.00	0.00

PROGETTO ESECUTIVO

RELAZIONE DI CALCOLO SPALLE

Tabella 13.19: Carichi sismici Spalla completa (SLV)

CARICHI SISMICI k _v negativo				z [m]	angolo [°]	N [kN/m]	T [kN/m]	M [kNm/m]
Peso proprio paraghiaia	G1a	42.75 kN/m	4.42	7.93	90.00	42.75	0.00	-11.87
Peso proprio muro	G1b	297.00 kN/m	3.38	4.36	90.00	297.00	0.00	-393.53
Peso proprio platea	G1c	517.00 kN/m	4.70	1.10	90.00	517.00	0.00	0.00
Peso terreno piede muro	G1t	618.01 kN/m	7.08	2.20	90.00	618.01	0.00	1467.77
Inerzia paraghiaia orizzontale	G1a _{ih}	19.07 kN/m	4.42	7.93	0.00	0.00	19.07	-151.18
Inerzia paraghiaia verticale	G1a _{iv}	-9.53 kN/m	4.42	7.93	90.00	-9.53	0.00	2.65
Inerzia muro orizzontale	G1b _{ih}	132.46 kN/m	3.38	4.36	0.00	0.00	132.46	-577.53
Inerzia muro verticale	G1b _{iv}	-66.23 kN/m	3.38	4.36	90.00	-66.23	0.00	87.76
Inerzia platea orizzontale	G1c _{ih}	230.58 kN/m	4.70	1.10	0.00	0.00	230.58	-253.64
Inerzia platea verticale	G1c _{iv}	-115.29 kN/m	4.70	1.10	90.00	-115.29	0.00	0.00
Inerzia terreno piede muro orizzontale	G1t _{ih}	275.63 kN/m	7.08	2.20	0.00	0.00	275.63	-606.39
Inerzia terreno piede muro verticale	G1t _{iv}	-137.82 kN/m	7.08	2.20	90.00	-137.82	0.00	-327.31
Spinta attiva	SA	196.31 kN/m	4.75	3.07	23.33	77.75	180.26	-548.60
Delta Spinta sismica (Mononobe-Okabe)	ΔS	450.76 kN/m	4.75	4.60	23.33	178.54	413.89	-1893.94
Sovraspinta pavimentazione	S _{G2}	0.00 kN/m	4.75	4.60	23.33	0.00	0.00	0.00
Sovraspinta traffico	Sqi	78.42 kN/m	4.75	4.60	23.33	31.06	72.01	-329.49
Impronta su paraghiaia	Fr ₁	0.00 kN/m	4.30	9.20	90.00	0.00	0.00	0.00
Inerzia impronta orizzontale	Fr _{sih}	0.00 kN/m	4.30	9.20	0.00	0.00	0.00	0.00
Inerzia impronta verticale	Fr _{1iv}	0.00 kN/m	4.30	9.20	90.00	0.00	0.00	0.00
Frenamento Orizzontale	Fr ₂	0.00 kN/m	4.30	9.20	0.00	0.00	0.00	0.00
CARICHI SISMICI k _v positivo					angolo [°]	N [kN/m]	T [kN/m]	M [kNm/m]
							. [/]	[
Peso proprio paraghiaia	G1a	42.75 kN/m	4.42	7.93	90.00	42.75	0.00	-11.87
Peso proprio paraghiaia Peso proprio muro	G1a G1b	42.75 kN/m 297.00 kN/m	4.42 3.38	7.93 4.36	90.00			
<u> </u>		•				42.75	0.00	-11.87
Peso proprio muro	G1b	297.00 kN/m	3.38	4.36	90.00	42.75 297.00	0.00	-11.87 -393.53
Peso proprio muro Peso proprio platea	G1b G1c	297.00 kN/m 517.00 kN/m	3.38 4.70	4.36 1.10	90.00 90.00	42.75 297.00 517.00	0.00 0.00 0.00	-11.87 -393.53 0.00
Peso proprio muro Peso proprio platea Peso terreno piede muro	G1b G1c G1t	297.00 kN/m 517.00 kN/m 618.01 kN/m	3.38 4.70 7.08	4.36 1.10 5.70	90.00 90.00 90.00	42.75 297.00 517.00 618.01	0.00 0.00 0.00 0.00	-11.87 -393.53 0.00 1467.77
Peso proprio muro Peso proprio platea Peso terreno piede muro Inerzia paraghiaia orizzontale	G1b G1c G1t G1a _{lb}	297.00 kN/m 517.00 kN/m 618.01 kN/m 19.07 kN/m	3.38 4.70 7.08 4.42	4.36 1.10 5.70 7.93	90.00 90.00 90.00 0.00	42.75 297.00 517.00 618.01 0.00	0.00 0.00 0.00 0.00 19.07	-11.87 -393.53 0.00 1467.77 -151.18
Peso proprio muro Peso proprio platea Peso terreno piede muro Inerzia paraghiaia orizzontale Inerzia paraghiaia verticale	G1b G1c G1t G1a _{lb} G1a _{ly}	297.00 kN/m 517.00 kN/m 618.01 kN/m 19.07 kN/m 9.53 kN/m	3.38 4.70 7.08 4.42 4.42	4.36 1.10 5.70 7.93 7.93	90.00 90.00 90.00 0.00 90.00	42.75 297.00 517.00 618.01 0.00 9.53	0.00 0.00 0.00 0.00 19.07 0.00	-11.87 -393.53 0.00 1467.77 -151.18 -2.65
Peso proprio muro Peso proprio platea Peso terreno piede muro Inerzia paraghiaia orizzontale Inerzia paraghiaia verticale Inerzia muro orizzontale	G1b G1c G1t G1a _{ln} G1a _{lv} G1b _{ln}	297.00 kN/m 517.00 kN/m 618.01 kN/m 19.07 kN/m 9.53 kN/m 132.46 kN/m	3.38 4.70 7.08 4.42 4.42 3.38	4.36 1.10 5.70 7.93 7.93 4.36	90.00 90.00 90.00 0.00 90.00 0.00	42.75 297.00 517.00 618.01 0.00 9.53 0.00	0.00 0.00 0.00 0.00 19.07 0.00 132.46	-11.87 -393.53 0.00 1467.77 -151.18 -2.65 -577.53
Peso proprio muro Peso proprio platea Peso terreno piede muro Inerzia paraghiaia orizzontale Inerzia paraghiaia verticale Inerzia muro orizzontale Inerzia muro verticale	G1b G1c G1t G1a _{ln} G1a _{ly} G1b _{ln} G1b _{ln}	297.00 kN/m 517.00 kN/m 618.01 kN/m 19.07 kN/m 9.53 kN/m 132.46 kN/m 66.23 kN/m	3.38 4.70 7.08 4.42 4.42 3.38 3.38	4.36 1.10 5.70 7.93 7.93 4.36 4.36	90.00 90.00 90.00 0.00 90.00 0.00 90.00	42.75 297.00 517.00 618.01 0.00 9.53 0.00 66.23	0.00 0.00 0.00 0.00 19.07 0.00 132.46 0.00	-11.87 -393.53 0.00 1467.77 -151.18 -2.65 -577.53 -87.76
Peso proprio muro Peso proprio platea Peso terreno piede muro Inerzia paraghiaia orizzontale Inerzia paraghiaia verticale Inerzia muro orizzontale Inerzia muro verticale Inerzia platea orizzontale	G1b G1c G1t G1a _{in} G1a _{iv} G1b _{in} G1b _{iv} G1b _{iv} G1c _{in}	297.00 kN/m 517.00 kN/m 618.01 kN/m 19.07 kN/m 9.53 kN/m 132.46 kN/m 66.23 kN/m 230.58 kN/m	3.38 4.70 7.08 4.42 4.42 3.38 3.38 4.70	4.36 1.10 5.70 7.93 7.93 4.36 4.36 1.10	90.00 90.00 90.00 0.00 90.00 0.00 90.00	42.75 297.00 517.00 618.01 0.00 9.53 0.00 66.23 0.00	0.00 0.00 0.00 0.00 19.07 0.00 132.46 0.00 230.58	-11.87 -393.53 0.00 1467.77 -151.18 -2.65 -577.53 -87.76 -253.64
Peso proprio muro Peso proprio platea Peso terreno piede muro Inerzia paraghiaia orizzontale Inerzia paraghiaia verticale Inerzia muro orizzontale Inerzia muro verticale Inerzia platea orizzontale Inerzia platea orizzontale	G1b G1c G1t G1a _{in} G1a _{iv} G1b _{in} G1b _{iv} G1b _{iv} G1c _{in} G1c _{iv}	297.00 kN/m 517.00 kN/m 618.01 kN/m 19.07 kN/m 9.53 kN/m 132.46 kN/m 66.23 kN/m 230.58 kN/m 115.29 kN/m	3.38 4.70 7.08 4.42 4.42 3.38 3.38 4.70 4.70	4.36 1.10 5.70 7.93 7.93 4.36 4.36 1.10	90.00 90.00 90.00 0.00 90.00 0.00 90.00 0.00	42.75 297.00 517.00 618.01 0.00 9.53 0.00 66.23 0.00 115.29	0.00 0.00 0.00 0.00 19.07 0.00 132.46 0.00 230.58 0.00	-11.87 -393.53 0.00 1467.77 -151.18 -2.65 -577.53 -87.76 -253.64 0.00
Peso proprio muro Peso proprio platea Peso terreno piede muro Inerzia paraghiaia orizzontale Inerzia paraghiaia verticale Inerzia muro orizzontale Inerzia muro verticale Inerzia platea orizzontale Inerzia platea orizzontale Inerzia platea verticale Inerzia platea verticale	G1b G1c G1t G1a _{in} G1a _{iv} G1b _{in} G1b _{iv} G1b _{iv} G1c _{in} G1c _{iv} G1c _{iv} G1c _{iv} G1c _{iv}	297.00 kN/m 517.00 kN/m 618.01 kN/m 19.07 kN/m 9.53 kN/m 132.46 kN/m 66.23 kN/m 230.58 kN/m 115.29 kN/m 275.63 kN/m	3.38 4.70 7.08 4.42 4.42 3.38 3.38 4.70 4.70 7.08	4.36 1.10 5.70 7.93 7.93 4.36 4.36 1.10 1.10 5.70	90.00 90.00 90.00 0.00 90.00 0.00 90.00 0.00 90.00	42.75 297.00 517.00 618.01 0.00 9.53 0.00 66.23 0.00 115.29	0.00 0.00 0.00 0.00 19.07 0.00 132.46 0.00 230.58 0.00 275.63	-11.87 -393.53 0.00 1467.77 -151.18 -2.65 -577.53 -87.76 -253.64 0.00 -1570.41
Peso proprio muro Peso proprio platea Peso terreno piede muro Inerzia paraghiaia orizzontale Inerzia paraghiaia verticale Inerzia muro orizzontale Inerzia muro verticale Inerzia platea orizzontale Inerzia platea orizzontale Inerzia platea orizzontale Inerzia platea verticale Inerzia terreno piede muro orizzontale Inerzia terreno piede muro verticale	G1b G1c G1t G1a _{in} G1a _{iv} G1b _{in} G1b _{in} G1b _{in} G1t _{cin} G1t _{cin} G1t _{cin} G1t _{cin} G1t _{cin} G1t _{cin}	297.00 kN/m 517.00 kN/m 618.01 kN/m 19.07 kN/m 9.53 kN/m 132.46 kN/m 66.23 kN/m 230.58 kN/m 115.29 kN/m 275.63 kN/m 137.82 kN/m	3.38 4.70 7.08 4.42 4.42 3.38 3.38 4.70 4.70 7.08 7.08	4.36 1.10 5.70 7.93 7.93 4.36 4.36 1.10 1.10 5.70	90.00 90.00 90.00 0.00 90.00 0.00 90.00 0.00 90.00 0.00 90.00	42.75 297.00 517.00 618.01 0.00 9.53 0.00 66.23 0.00 115.29 0.00	0.00 0.00 0.00 0.00 19.07 0.00 132.46 0.00 230.58 0.00 275.63 0.00	-11.87 -393.53 0.00 1467.77 -151.18 -2.65 -577.53 -87.76 -253.64 0.00 -1570.41 327.31
Peso proprio muro Peso proprio platea Peso terreno piede muro Inerzia paraghiaia orizzontale Inerzia paraghiaia verticale Inerzia muro orizzontale Inerzia muro verticale Inerzia platea orizzontale Inerzia platea verticale Inerzia platea verticale Inerzia terreno piede muro orizzontale Inerzia terreno piede muro verticale Spinta attiva	G1b G1c G1t G1a _{jh} G1a _{jy} G1b _{jh} G1b _{jh} G1c _h G1c _h G1c _{ty} G1c _h G1c _{ty} G1c _h G1c _h	297.00 kN/m 517.00 kN/m 618.01 kN/m 19.07 kN/m 9.53 kN/m 132.46 kN/m 66.23 kN/m 230.58 kN/m 115.29 kN/m 275.63 kN/m 137.82 kN/m	3.38 4.70 7.08 4.42 4.42 3.38 3.38 4.70 4.70 7.08 7.08 4.75	4.36 1.10 5.70 7.93 7.93 4.36 4.36 1.10 5.70 5.70 3.07	90.00 90.00 90.00 0.00 90.00 0.00 90.00 0.00 90.00 0.00 90.00 23.33	42.75 297.00 517.00 618.01 0.00 9.53 0.00 66.23 0.00 115.29 0.00 137.82 77.75	0.00 0.00 0.00 19.07 0.00 132.46 0.00 230.58 0.00 275.63 0.00	-11.87 -393.53 0.00 1467.77 -151.18 -2.65 -577.53 -87.76 -253.64 0.00 -1570.41 327.31 -548.60
Peso proprio muro Peso proprio platea Peso terreno piede muro Inerzia paraghiaia orizzontale Inerzia paraghiaia verticale Inerzia muro orizzontale Inerzia muro verticale Inerzia platea orizzontale Inerzia platea orizzontale Inerzia platea verticale Inerzia terreno piede muro orizzontale Inerzia terreno piede muro verticale Spinta attiva Delta Spinta sismica (Mononobe-Okabe)	G1b G1c G1t G1a _{in} G1a _{in} G1a _{in} G1b _{in} G1b _{in} G1b _{in} G1b _{in} G1t _{cin} G1c _{in} G1c _{in} G1c _{in} G3c _{in} G3c _{in} G3c _{in}	297.00 kN/m 517.00 kN/m 618.01 kN/m 19.07 kN/m 9.53 kN/m 132.46 kN/m 66.23 kN/m 230.58 kN/m 115.29 kN/m 275.63 kN/m 137.82 kN/m 196.31 kN/m 362.58 kN/m	3.38 4.70 7.08 4.42 4.42 3.38 3.38 3.38 4.70 4.70 7.08 7.08 4.75 4.75	4.36 1.10 5.70 7.93 7.93 4.36 4.36 1.10 1.10 5.70 5.70 3.07 4.60	90.00 90.00 90.00 0.00 90.00 0.00 90.00 0.00 90.00 0.00 90.00 23.33 23.33	42.75 297.00 517.00 618.01 0.00 9.53 0.00 66.23 0.00 115.29 0.00 137.82 77.75 143.61	0.00 0.00 0.00 0.00 19.07 0.00 132.46 0.00 230.58 0.00 275.63 0.00 180.26 332.92	-11.87 -393.53 0.00 1467.77 -151.18 -2.65 -577.53 -87.76 -253.64 0.00 -1570.41 327.31 -548.60 -1523.43
Peso proprio muro Peso proprio platea Peso terreno piede muro Inerzia paraghiaia orizzontale Inerzia muro orizzontale Inerzia muro orizzontale Inerzia muro verticale Inerzia platea orizzontale Inerzia platea orizzontale Inerzia platea verticale Inerzia platea verticale Inerzia terreno piede muro orizzontale Inerzia terreno piede muro verticale Spinta attiva Delta Spinta sismica (Mononobe-Okabe) Sovraspinta pavimentazione	G1b G1c G1t G1a _{ln} G1a _{ln} G1a _{ln} G1b _{ln} G1b _{ln} G1b _{ln} G1b _{ln} G1t _{civ} G1t _{civ} G1t _{ln} G1t _{civ} G3t _{civ}	297.00 kN/m 517.00 kN/m 618.01 kN/m 19.07 kN/m 9.53 kN/m 132.46 kN/m 66.23 kN/m 230.58 kN/m 275.63 kN/m 137.82 kN/m 196.31 kN/m 362.58 kN/m	3.38 4.70 7.08 4.42 4.42 3.38 3.38 4.70 7.08 7.08 4.75 4.75	4.36 1.10 5.70 7.93 7.93 4.36 4.36 1.10 5.70 5.70 5.70 4.60 4.60	90.00 90.00 90.00 0.00 90.00 0.00 90.00 0.00 90.00 90.00 23.33 23.33 23.33	42.75 297.00 517.00 618.01 0.00 9.53 0.00 66.23 0.00 115.29 0.00 137.82 77.75 143.61	0.00 0.00 0.00 0.00 19.07 0.00 132.46 0.00 230.58 0.00 275.63 0.00 180.26 332.92	-11.87 -393.53 0.00 1467.77 -151.18 -2.65 -577.53 -87.76 -253.64 0.00 -1570.41 327.31 -548.60 -1523.43 0.00
Peso proprio muro Peso proprio platea Peso terreno piede muro Inerzia paraghiaia orizzontale Inerzia muro orizzontale Inerzia muro orizzontale Inerzia platea verticale Inerzia terreno piede muro orizzontale Inerzia terreno piede muro verticale Spinta attiva Delta Spinta sismica (Mononobe-Okabe) Sovraspinta pavimentazione	G1b G1c G1t G1a _{in} G1a _{in} G1a _{in} G1b _{in} G1b _{in} G1b _{in} G1c _{iv} G1c _{iv} G1c _{iv} G1c _{iv} G3c G1c G1c G1c G1c G1c G1c G1c G1c G1c G1	297.00 kN/m 517.00 kN/m 618.01 kN/m 19.07 kN/m 9.53 kN/m 132.46 kN/m 66.23 kN/m 230.58 kN/m 115.29 kN/m 137.82 kN/m 137.82 kN/m 196.31 kN/m 362.58 kN/m	3.38 4.70 7.08 4.42 4.42 3.38 3.38 4.70 4.70 7.08 7.08 4.75 4.75	4.36 1.10 5.70 7.93 7.93 4.36 4.36 1.10 5.70 5.70 4.60 4.60	90.00 90.00 90.00 0.00 90.00 0.00 90.00 0.00 90.00 90.00 23.33 23.33 23.33	42.75 297.00 517.00 618.01 0.00 9.53 0.00 66.23 0.00 115.29 0.00 137.82 77.75 143.61 0.00 31.06	0.00 0.00 0.00 19.07 0.00 132.46 0.00 230.58 0.00 275.63 0.00 180.26 332.92 0.00 72.01	-11.87 -393.53 0.00 1467.77 -151.18 -2.65 -577.53 -87.76 -253.64 0.00 -1570.41 327.31 -548.60 -1523.43 0.00 -329.49
Peso proprio muro Peso proprio platea Peso terreno piede muro Inerzia paraghiaia orizzontale Inerzia muro orizzontale Inerzia muro orizzontale Inerzia platea orizzontale Inerzia platea orizzontale Inerzia platea verticale Inerzia platea verticale Inerzia platea verticale Inerzia terreno piede muro orizzontale Inerzia terreno piede muro verticale Spinta attiva Delta Spinta sismica (Mononobe-Okabe) Sovraspinta pavimentazione Sovraspinta traffico Impronta su paraghiaia	G1b G1c G1t G1a _{ln} G1a _{ln} G1a _{ln} G1b _{ln} G1b _{ln} G1b _{ln} G1b _{ln} G1t _{ln} G1t _{ln} G1t _{ln} G1t _{ln} G1t _{ln} F1	297.00 kN/m 517.00 kN/m 618.01 kN/m 19.07 kN/m 9.53 kN/m 132.46 kN/m 66.23 kN/m 230.58 kN/m 115.29 kN/m 275.63 kN/m 137.82 kN/m 196.31 kN/m 362.58 kN/m 0.00 kN/m 78.42 kN/m	3.38 4.70 7.08 4.42 4.42 3.38 3.38 4.70 4.70 7.08 4.75 4.75 4.75 4.75	4.36 1.10 5.70 7.93 7.93 4.36 4.36 1.10 5.70 5.70 4.60 4.60 4.60 9.20	90.00 90.00 90.00 0.00 90.00 0.00 90.00 0.00 90.00 90.00 23.33 23.33 23.33 90.00	42.75 297.00 517.00 618.01 0.00 9.53 0.00 66.23 0.00 115.29 0.00 137.82 77.75 143.61 0.00 31.06	0.00 0.00 0.00 19.07 0.00 132.46 0.00 230.58 0.00 275.63 0.00 180.26 332.92 0.00 72.01	-11.87 -393.53 0.00 1467.77 -151.18 -2.65 -577.53 -87.76 -253.64 0.00 -1570.41 327.31 -548.60 -1523.43 0.00 -329.49 0.00

Le azioni ottenute dal modello bidimensionale sono combinate con le azioni dell'impalcato, considerate nello spazio tridimensionale, in modo da ottenere le 6 forze necessarie al calcolo della fondazione. La verifica dei pali di fondazione è effettuata tramite lo studio delle combinazioni di carico valutate più significative, a seconda dell'azione massimizzata, come mostrato nella seguente tabella.

Tabella 13.20: Azioni di calcolo pali (SLU/SLV)

AZIONI SUI PALI DIMENSIONANTI								
Fy [kN] Fz [kN] Fx [kN] My [kNm] Mz [kNm] Mx [kN								
SLV1	10899.05	-376.53	7839.24	-2831.51	-59077.54	-753.06		
SLV9	4689.23	-1255.10	6433.27	-9438.35	-26967.64	-2510.20		
SLU3	5814.58	-46.73	12161.06	-351.39	-34855.41	-93.46		

PROGETTO ESECUTIVO

RELAZIONE DI CALCOLO SPALLE

13.4.3 Risultati dell'analisi

Si riportano di seguto i grafici delle combinazioni che danno il maggior valore di taglio e di momento flettente per entrambe le spaLle.

Figura 13.21: Massima azione di taglio (combinazione SLV1)

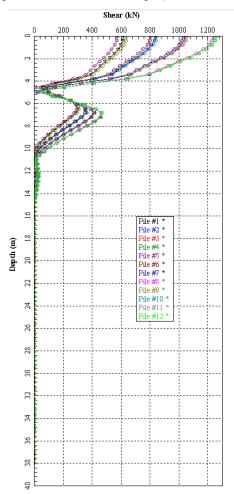
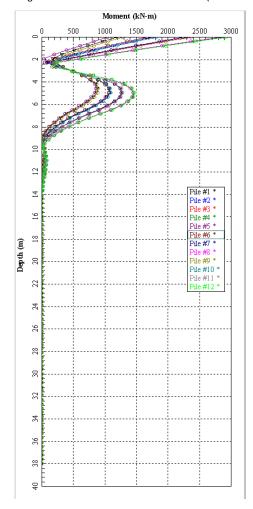



Figura 13.22: Massimo momento flettente (combinazione SLV1)

La seguente tabella mostrai valori massimi delle azioni in cima ai pali

Tabella 13.23: Inviluppi massimi e minimi delle azioni Spalla (SLV)

		INVILUPPO VALORI - SLV							
		δ _x [m]	δ _{lat,TOT} [m]	N [kN]	V _{TOT} [kN]	M _x [kN]	M _{flet,TOT} [kN]		
	N		0.0079	3560	1260	-81	2924		
MAX	V _{tot}	0.0029		3560	1260	-81	2924		
WAX	M _x	0.0025		0.0075	0.0073	-	-	0	-
	M _{flet,TOT}			3560	1260	-81	2924		
	N			-2340	617	-81	1185		
MIN	V _{TOT}	-0.0019	0.0000	_	0	-	-		
IVIIIN	M _x	-0.0019	0.0000	3560	1260	-81	2924		
	M _{flet,TOT}			_	-	-	0		

PROGETTO ESECUTIVO

RELAZIONE DI CALCOLO SPALLE

Tabella 13.24: Inviluppi massimi e minimi delle azioni Spalla (SLU)

			INVILUPPO VALORI - SLU							
		δ _x [m]	δ _{lat,TOT} [m]	N [kN]	V _{TOT} [kN]	M _x [kN]	M _{flet,TOT}			
	N		0.0038	3080	668	-34	1449			
MAX	V _{TOT}	0.0029		7	669	-34	1412			
IVIAA	M _x	0.0029	0.0056	-	-	0	_			
	M _{flet,TOT}			3080	668	-34	1449			
	N			-1210	337	-34	549			
MIN	V _{TOT}	0.0011	0.0000	-	0	-	-			
IVIIN	M _x	-0.0011	0.0000	3080	668	-34	1449			
	M _{flet,TOT}			-	-	-	0			

Si riportano inoltre le combinazioni che danno i valori massimi di azioni assiali agli SLU e agli SLV, per la verifica della capacità portante e il dimensionamento della platea di fondazione.

Figura 13.25: Azione assiale (combinazione SLV1)

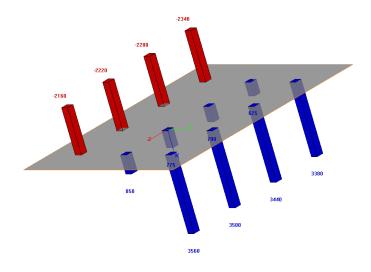
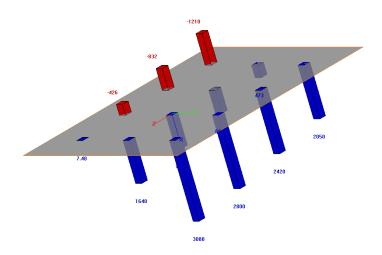



Figura 13.26: Azione assiale (combinazione SLU3)

RELAZIONE DI CALCOLO SPALLE

13.4.4 Verifica di capacità portante dei pali

La capacità portante verticale dei pali è calcolata secondo quanto espresso al paragrafo 11.1.2 e il cui valore di calcolo è pari a :

$$Q_{amm,cal} = Q_{B,cal} + Q_{L,cal} = q_{lim}A_b + \sum_{i=1}^{n} (\pi \cdot D \cdot \Delta H_i \cdot \tau_{lim,i})$$

Trattandosi di terreno coesivo in condizioni non drenate si ha:

$$q_{lim} = \sigma_v + 9 C_u$$
$$\tau_{lim} = \alpha \cdot C_u$$

Il valore caratteristico è dato da:

$$Q_{amm,k} = Q_{B,k} + Q_{L,k} = \frac{Q_{B,cal}}{\xi_A} + \frac{Q_{L,cal}}{\xi_A}$$

Mentre il valore di calcolo assume la forma:

$$Q_{amm,d} = Q_{B,d} + Q_{L,d} = \frac{Q_{B,cal}}{\gamma_b} + \frac{Q_{L,cal}}{\gamma_s}$$

Nell'ultima termine della formula di cui sopra, il valore di γ_s è sostituito con $\gamma_{s,t}$ se si è in condizioni di palo in trazione.

I valori di ξ_3 , γ_b , γ_s e $\gamma_{s,t}$ sono definiti dalla normativa al paragrafo 6.4.3.1.1 nelle tabelle 6.4.IV e 6.4.II sotto riportate.

Tab. 6.4.IV - Fattori di correlazione ξ per la determinazione della resistenza caratteristica in funzione del numero di verticali indagate

Numero di verticali indagate	1	2	3	4	5	7	≥ 10
ξ_3	1,70	1,65	1,60	1,55	1,50	1,45	1,40
ξ_4	1,70	1,55	1,48	1,42	1,34	1,28	1,21

Tab. 6.4.II – Coefficienti parziali γ_R da applicare alle resistenze caratteristiche a carico verticale dei pali

Resistenza	Simbolo	Pali	Pali	Pali ad elica
		infissi	trivellati	continua
	γ_{R}	(R3)	(R3)	(R3)
Base	γь	1,15	1,35	1,3
Laterale in compressione	γ_{s}	1,15	1,15	1,15
Totale (*)	γ	1,15	1,30	1,25
Laterale in trazione	$\gamma_{\rm st}$	1,25	1,25	1,25

[🖰] da applicare alle resistenze caratteristiche dedotte dai risultati di prove di carico di progetto.

Il valore di α sono ottenuti dalla seguente tabella:

Tabella 13.27: Valori del coefficiente α in relazione al valore di C_{ν}

Tipo di palo	Valori di c _u (kPa)	Valori di α
Battuto	$c_{u} \le 25$ $25 < c_{u} < 70$ $c_{u} \ge 70$	1,0 1 - 0,011(c _u - 25) 0,5
Trivellato	$c_{\mathbf{u}} \le 25$ $25 < c_{\mathbf{u}} < 70$ $c_{\mathbf{u}} \ge 70$	0,7 0,7 - 0,008(c _u - 25) 0,35

Tab. 13.3. Valori di α (eq. 13.9)

In particolare, utilizzando pali trivellati ed essendo $c_u=150>70$ risulta $\alpha=0.35$.

PROGETTO ESECUTIVO

RELAZIONE DI CALCOLO SPALLE

La scelta dei parametri di resistenza è stata effettuata considerando le proprietà geotecniche dei terreni presenti in sito e delle tecniche utilizzate in fase di costruzione (pali trivellati). Si considera un numero di indagini indagate pari a 2 con conseguente valore di $\xi_3 = 1,65$.

Nelle tabelle seguenti, l'azione dovuta al palo è pari al peso dello stesso, contributo non valutato dal programma di calcolo.

VERIFICA A COMPRESSIONE

Tabella 13.28: Verifica capacità portante a compressione (SLV)

CALCOLO AZIONI				RESIS	Esito		
STRUTTURA (SLV)	PALO (carat)	Ned	Qb,d Qs,d Qd		Fs		
kN	kN	kN	kN	kN	kN		SODDISFATTA
3560	1188	5104	1733	4498	6232	1.22	

$$N_{Ed} = 5403kN < 5685kN = Q_d$$

Il fattore di sicurezza relativo alla capacità portante a compressione è pari a:

$$FS = 1.22$$

Tabella 13.29: Verifica capacità portante a compressione (SLU)

CALCOLO AZIONI				RESIS		Esito	
STRUTTURA (SLV)	PALO (carat)	Ned	Qb,d Qs,d Qd		Fs		
kN	kN	kN	kN	kN	kN		SODDISFATTA
3080	1188	4624	1284	3911	5196	1.12	

$$N_{Ed} = 4624kN < 5196kN = Q_d$$

Il fattore di sicurezza relativo alla capacità portante a compressione è pari a:

$$FS = 1.12$$

Il minimimo dei fattori di sicurezza sopra riportati è pari a:

$$FS = 1.12$$

- VERIFICA A TRAZIONE

La verifica a trazione agli SLV viene condotta sugli inviluppi della spalla destra.

Tabella 13.30: Verifica capacità portante a trazione (SLV)

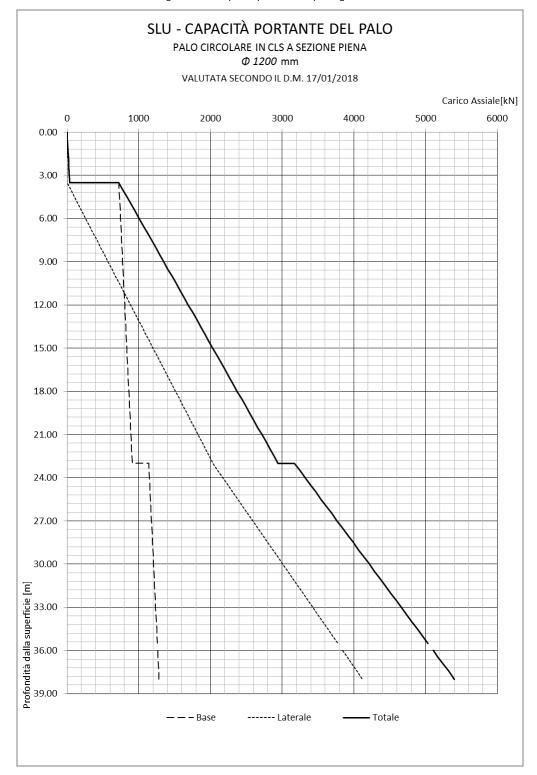
CALCOLO AZIONI				RESIS		Esito	
STRUTTURA (SLV)	PALO (carat)	Ned	Qb,d Qs,d Qd Fs		Fs		
kN	kN	kN	kN	kN	kN		SODDISFATTA
-2340	1188	-796	0	4498	4498	5.65	

$$|N_{Ed}| = 796kN < 4498kN = Q_d$$

Il fattore di sicurezza relativo alla capacità portante a compressione è pari a:

$$FS = 5.65$$

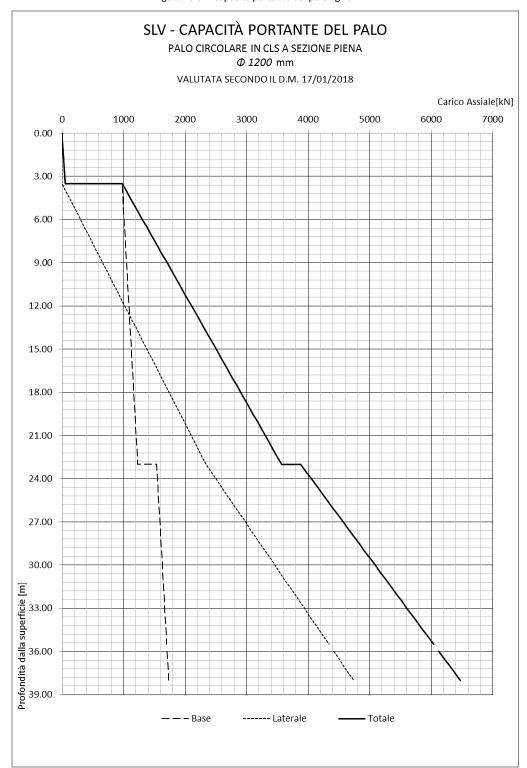
Agli SLU la trazione dei pali è considerata ininfluente, visto che il valore minimo è pari a $|-1210kN|\approx 1188kN$ (=peso proprio palo)



RELAZIONE DI CALCOLO SPALLE

Si riporta di seguito il grafico della capacità portante agli SLU e agli SLV con l'aumentare della profondità:

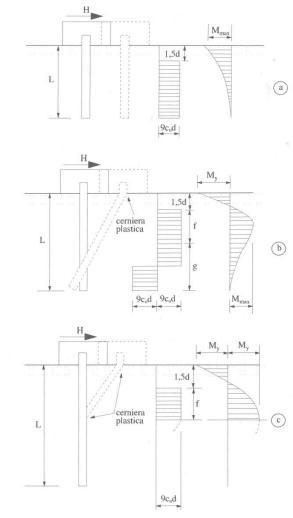
Figura 13.31: Capacità portante del palo agli SLU



PROGETTO ESECUTIVO

RELAZIONE DI CALCOLO SPALLE

Figura 13.32: Capacità portante del palo agli SLV


PROGETTO ESECUTIVO

RELAZIONE DI CALCOLO SPALLE

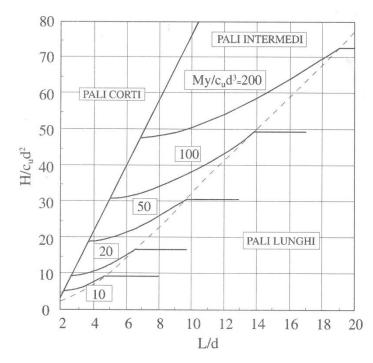
13.4.5 Verifica a carico limite orizzontale

I possibili meccanismi di rottura per carico limite orizzontale sono mostrati in Figura 13.33 e possono essere indicati come rottura a palo "corto", "intermedio" e "lungo".

Figura 13.33: Comportamento a palo "corto" (a), "intermendio" (b) e "lungo" (c)

Per i terreni coesivi, la definizione della categoria di appertenza di un palo è definita in relazione della sua geometria (lunghezza L e diametro d), della sua resistenza (Momento di plasticizzazione M_y) e delle caratteristiche del terreno (coesione non drenata c_u) come mostrato dalla Figura 13.34.

MANDATARIA:



PROGETTO ESECUTIVO

RELAZIONE DI CALCOLO SPALLE

Figura 13.34: Criterio di classificazione dei pali

Visto l'elevato rapporto tra lunghezza e diametro L/D=26.67 si ipotizza in prima approssimazione di trovarsi in condizione di pali lunghi.

Il valore di forza orizzontale massima H è quindi dato da:

$$H = c_u d^2 \cdot \left(-13.5 + \sqrt{182.25 + 36 \cdot \frac{M_y}{c_u d^3}} \right)$$

Per trovare la resistenza di progetto minima $V_{Rd,min}$ si impone, analogamente a quanto fatto per il caso della capacità portante verticale $V_{Rd,min} = \frac{H}{\xi_4 \cdot \gamma_T}$.

Inoltre, imponendo $V_{Rd,min} = V_{Ed} = 1260kN$ si trova:

$$M_{v,min} = 3212.17kNm$$

Si ipotizzano quindi come ferri longitudinali $32\phi30$ che restituiscono un momento di plasticizzazione di $M_y=3421kNm$ come mostrato dalla Figura 13.35. Il momento così trovato comporta un rapporto di $M_y/c_ud^3=13.2$ che conferma l'ipotesi di comportamento a palo "lungo" fatta in precedenza.

Si riportano di seguito le verifiche agli SLV e agli SLU

Figura 13.35: calcolo momento massimo

MANDATARIA:

PROGETTO ESECUTIVO

RELAZIONE DI CALCOLO SPALLE

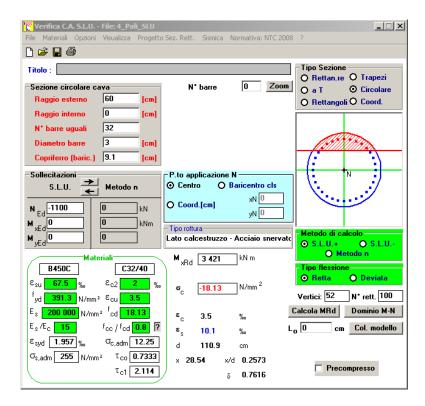


Tabella 13.36: Verifica capacità portante laterale (SLV)

CALCOLO AZIONI	CALCOLO	RESIST	ENZE	Esito	
V_{Ed}	H_{cal}	H_k	Hd	Fs	
kN	kN	kN	kN		SODDISFATTA
1260	2622	1589	1589	1.26	

Tabella 13.37: Verifica capacità portante laterale (SLU)

CALCOLO AZIONI	CALCOLO	RESIST	ENZE	Esito	
V_{Ed}	H_{cal}	H_k	Hd	Fs	
kN	kN	kN	kN		SODDISFATTA
669	2622	1589	1589	1.83	

13.4.6 Riassunto verifiche geotecniche

Si riporta di seguito una tabella che riassume i fattori di sicurezza delle verifiche geotecniche. Essendo i valori maggiori dell'unità tutte le verifiche risultano soddisfatte.

Tabella 13.38: Fattori di sicurezza verifiche geotecniche

VERIFICA	FS
Compressione SLV	1.22
Compressione SLU	1.12
Trazione SLV	5.65
Trazione SLU	non presente
Laterale SLV	1.26
Laterale SLU	1.83

Itinerario Ragusa - Catania

Collegamento viario compreso tra lo Svincolo della S.S. 514 di "Chiaromonte" con la S.S. 115 e lo Svincolo della "Ragusana"

PROGETTO ESECUTIVO

PROGETTO ESECUTIVO

RELAZIONE DI CALCOLO SPALLE

13.4.7 Verifica dei cedimenti massimi

Al fine di verificare che gli spostamenti della spalla allo SLV non inducano l'impalcato a rottura, si è calcolata la risposta della fondazione in tale condizione.

I cedimenti massimi dei pali sono riportati nella Tabella 13.23 e nella Tabella 13.24. In particolare, il massimo spostamento orizzontale in testa ai pali è di circa 8 mm, mentre quello verticale è meno di 3 mm, pertanto si ritengono sufficientemente piccoli da non indurre l'impalcato sovrastante a rottura.

13.4.8 Verifica a flessione, testa palo

Visto che si è in presenza di azioni di trazione, si considera il contributo dell'azione assiale nel calcolo della resistenza dei pali. In particolare, il valore utilizzato è pari a $N_{Ed} = -1100 \ kN$.

$$M_{Ed} = 2240kNm$$

$$A_S = 25\phi28$$

$$M_{Rd} = 3421kNm > M_{Ed}$$

La sezione risulta verificata con $32\phi 30$.

MANDATARIA:

PROGETTO ESECUTIVO

RELAZIONE DI CALCOLO SPALLE

13.4.9 Verifica a taglio, testa palo

La verifica viene condotta secondo quanto prescritto al Par. 4.1.2.1.3 del D.M. 17/01/2018

 $V_{Ed} = 1260kN$

Per la valutazione del taglio resistente, la sezione viene assimilata ad una sezione rettangolare equivalente, tramite la formula di Clarke e Birjandi.

Figura 13.39: calcolo della sezione equivalente rettangolare

Sezione d	ircolare (C	larke & Bi	irjandi)
D	120	cm	diametro sezione
d'	8.2	cm	copriferro meccanico - rispetto al centro delle barre longitudinali
r	60	cm	raggio sezione
rs	51.8	cm	raggio del cerchio passante per i centri delle armature longitudinali
senα	0.55		
α	0.58	RAD	
d	93.0	cm	altezza utile effettiva
Α	9402.7	cm ²	area effettiva
b	101.1	cm	base effettiva

Figura 13.40 Verifica a taglio

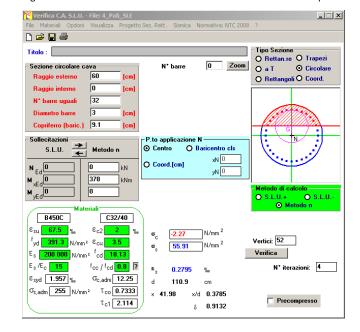
Dati di input										
Rok		99	N/mm^2							-
нок fok			N/mm²2							
rok Valore medio della resistenza a trazione			N/mm ²	= 0.3 x fc	Lecolor					
	f _{ctm} =			= 0.3 x to	K (273)					
Coefficiente sicurezza cls	γ.=	1.5								
Coefficiente carichi lunga durata	α. _{ee} =	0.85								
fod=resistenza di calcolo del cls	fed =		N/mm ²	= αcc x f	ok <i>ly</i> a					
Resitenza caratteristica di snervamento acciaio	fyk =	450	N/mm^2							
Coefficiente sicurezza acciaio	γ,=	1.15								
Snervamento di calcolo acciaio	fyd =	391	N/mm ²	= fyd / y,						
Forza di taglio di calcolo	Vsd=	1260	kN			121.2				
Forza assiale di calcolo	Nsd =	0	kN							
Larghezza sezione	b.,=	101.1	om =	1011	mm					
altezza della sezione	H=	93	cm =	930	mm					
Copriferro	c=	6	cm							
Diametro barre superiori	φ2=	26	mm	(armatu	ra compi	essa)				
Diametro barre inferiori	φ ₁ =	26	mm	(armatu	ra tesa)					
Diametro staffe	øst =		mm							
Numero di barre superiori	N ₂ =	16								
Numero di barre inferiori	N ₄ =	16								
altezza utile della sezione	d=		em =	930						
altezza utile della sezione	a=	33	cm =	330	mm					
Verifica delle bielle compresse: Vrcd										+
Vrcd = [0.9 x d x bw x ac x f'cd x (cotga + cotg8)]	/[1+(cotg8)^2]								
Definizione del coefficiente maggiorativo ac		σ _{ep} <			ac=		membrat	ure non co	mpresse	
	0.00	=< σ _{αp} <	3.76	=>	αc=	1.00				
	3.76	=< _{0 cp} <=	7.53	=>	αc=	1.25		+		
	7.53	< σ _{αρ} <	15.05	=>	ac=	2.50	membrat	ure fortem	ente comp	ress
Essendo	σ _{cp} =	0.00	N/mm^2	si assu	me quindi	ac=	1			
Resistenza a compressione ridotta	f'ed=		N/mm ²	= 0.5 x fc						
Angolo di inclinazione dell'armatura a taglio	α =	90		(45° per	ferri pie	gati e 90	per sta	ffe)		
	α =	1.57	rad							
Angolo di inclinazione dei puntoni compressi	θ=	45		(nom=-	oco tra 2	1.8° e 45	1			+
urigoio di iricilnazione dei puntoni compressi	0=	45 0.79		(compr	eso tra Z	1.0 e 45	,			+
		0.10	lad							
	Vrcd =	3183.99	kN	OK - V	/ERIFICA	SODDIS	FATTA			
Verifica dell'armatura a taglio: Vrsd										
Vrsd = 0.9 x d x (Asw /s) x fyd x (cotgα + cotgθ) x	sino									+
Passo delle staffe	g =	10	cm	100	mm					
Diametro staffe	φst =		mm							
Braccia resistenti	n-	2								
Area armatura a taglio	Asw =		cm ²		mm^2					
Percentuale minima di armatura	pw,min =	0.0009			Fck*0.5)/					
Area minima di armatura a taglio	Aw,min =	92.63	mm^2	= pw,min	xsxBwx	sena (EC2	-Par. 9. 2. 2	2)		
	Wred -	1317 04	LNI	OK - Y	/EDIFICA	SODDIS	FATTA	1		
	Vrsd =	1317.04	kN	OK - V	/ERIFICA	SODDIS	FATTA			

PROGETTO ESECUTIVO

RELAZIONE DI CALCOLO SPALLE

Si predispone una spirale $\phi 16$ passo 10, garantendo un taglio resistente di $V_{Rd}=1317kN$.

Dai grafici al paragrafo 13.4.3 emerge come dopo circa 4m dalla testa dei pali, il valore del taglio sia ridotto di circa la metà rispetto al valore massimo. Per questo motivo si modifica l'armatura a taglio nel modo seguente:


- Spirale $\phi 16/10$ fino a 4m dalla testa del palo;
- Spirale $\phi 16/20$ dopo 4m dalla testa del palo.

13.4.10 Verifica a fessurazione – Combinazione SLE frequente

Tabella 13.41: Valori massimi delle azioni combinazione SLE frequente

MASSIMI VALORI SLEF										
$\delta_{_{X}}$ $\delta_{_{lat,TOT}}$ N $V_{_{TOT}}$ $M_{_{X}}$ $M_{_{flet,TOT}}$										
[m]	[m]	[kN]	[kN]	[kN]	[kN]					
0.002	0.001	2040	408	0	378					

Figura 13.42 Calcolo tensioni massime acciaio combinazione SLE frequente

PROGETTO ESECUTIVO

RELAZIONE DI CALCOLO SPALLE

Figura 13.43 Verifica fessurazione combinazione SLE frequente

	V	erica fessurazione sezione circolare
Dati	CIRCO	DLARE 2/02/2009 N°617 Par.C.4.1.2.2.4.6
ϑ_{s}	56 N/mm²	Tensione massima armatura tesa sezione fessurata
Rck	32.0 N/mm²	Resistenza caratteristica cubica cls
Фі	30 mm	Diametro barre longitudinali
фѕ	16 mm	Diametro staffe o spirale
n	32	Numero ferri longitudinali
С	60 mm	Ricoprimento del calcestruzzo
D	1200 mm	Diametro
k _t	0.4	kt=0,6 ;0,4 carichi breve durata/lunga durata
k ₂	0.5	k2=0,5 ;1,0 caso flessione/trazione semplice
k ₁	0.8	k1=0,8 ;1,6 barre aderenza migliorata/lisce
W	0.3 mm	Valore limite apertura fessure
Dati		
fck	26.6 N/mm²	Resistenza caratteristica cilindrica cls
i	100 mm	Interasse ferri longitudinali
Α _φ	707 mm²	Area barra longitudinale
E _s	210000.0 N/mm²	Modulo elastico acciaio da c.a
f _{ctm}	2.7 N/mm²	Resistenza a trazione media cls
E _{cm}	31915.0 N/mm²	Modulo elastico medio cls
$\alpha_{\rm e}$	6.58	Rapporto Es/Ecm
f _{cm}	34.6 N/mm²	Resistenza media cls
ρ _{eff}	0.0472	Rapporto area acciaio/area efficace
E _{sm1}	0.000125	Deformazione unitaria media barre di calcolo
E _{sm2}	0.000160	Deformazione unitaria media barre valore minimo
E _{sm}	0.000160	Deformazione unitaria media
k ₃	3.4	Coefficiente
k4	0.4	Coefficiente
Δsmax	312.2 mm	Distanza massima tra le fessure
W _d	✓ 0.050 mm	Valore di calcolo apertura fessure

13.4.11 Verifica a fessurazione – Combinazione SLE quasi permanente

Tabella 13.44: Valori massimi delle azioni combinazione SLE quasi permanente

MASSIMI VALORI SLEQ										
$\delta_{_{X}}$ $\delta_{_{lat,TOT}}$ N $V_{_{TOT}}$ $M_{_{X}}$ $M_{_{flet,TOT}}$										
[m]	[m]	[kN]	[kN]	[kN]	[kN]					
0.0016	0.001	1760	371	0	330					

PROGETTO ESECUTIVO

RELAZIONE DI CALCOLO SPALLE

Figura 13.45 Verifica fessurazione combinazione SLE quasi permamente

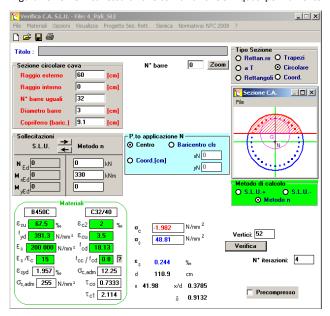


Figura 13.46 Verifica fessurazione combinazione SLE quasi permamente

		erica fessurazione sezione circolare
Dati	_	DLARE 2/02/2009 N°617 Par.C.4.1.2.2.4.6
	49 N/mm²	Tensione massima armatura tesa sezione fessurata
Rck	32.0 N/mm²	Resistenza caratteristica cubica cls
ф	30 mm	Diametro barre longitudinali
Φ _s	16 mm	Diametro staffe o spirale
rs n	32	Numero ferri longitudinali
	60 mm	Ricoprimento del calcestruzzo
D	1200 mm	Diametro
	0.4	kt=0,6;0,4 carichi breve durata/lunga durata
k _t	0.5	k2=0,5;1,0 caso flessione/trazione semplice
K ₂	0.8	k1=0,8 ;1,6 barre aderenza migliorata/lisce
k ₁	0.2 mm	Valore limite apertura fessure
W Dati	0.2 mm	Valore limite apertura Jessure
	26 6 N/m m²	Desistance assettantities elimetries als
fck	26.6 N/mm²	Resistenza caratteristica cilindrica cls
i	100 mm	Interasse ferri longitudinali
Α _φ	707 mm²	Area barra longitudinale
Es	210000.0 N/mm²	Modulo elastico acciaio da c.a
f _{ctm}	2.7 N/mm²	Resistenza a trazione media cls
E _{cm}	31915.0 N/mm²	Modulo elastico medio cls
α _e	6.58	Rapporto Es/Ecm
f _{cm}	34.6 N/mm²	Resistenza media cls
$ ho_{ ext{eff}}$	0.0472	Rapporto area acciaio/area efficace
E _{sm1}	0.000091	Deformazione unitaria media barre di calcolo
ε _{sm2}	0.000139	Deformazione unitaria media barre valore minimo
ε _{sm}	0.000139	Deformazione unitaria media
k ₃	3.4	Coefficiente
k4	0.4	Coefficiente
Δsmax	312.2 mm	Distanza massima tra le fessure
W _d	√ 0.044 mm	Valore di calcolo apertura fessure

PROGETTO ESECUTIVO

RELAZIONE DI CALCOLO SPALLE

13.5 PLATEA DI FONDAZIONE

Il calcolo della platea di fondazione della spalla viene effettuata facendo riferimento alle azioni trasmesse dai pali di fondazione considerando l'inviluppo delle combinazioni più sollecitanti.

13.5.1 Platea a monte

La platea a monte viene modellata longitudinalmente (lungo x) come una mensola incastrata al muro frontale e soggetta ad un carico uniformemente distribuito dovuto al peso del terreno, della platea e all'eventuale sovraccarico stradale e con le forze verticali concentrate dovute alle reazioni dei singoli pali, come riportato nello schema seguente.

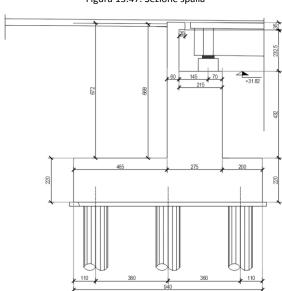
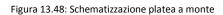
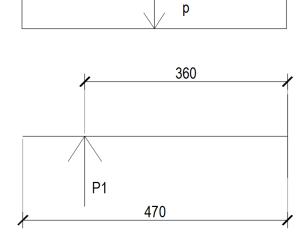
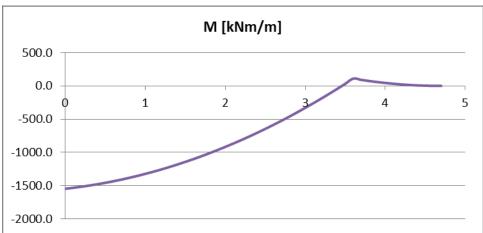




Figura 13.47: Sezione spalla

I carichi agenti sono legati unicamente al palo più distante dalla spalla $P_1=3560kN$ poiché la fila di pali centrale è posizionata al di sotto della spalla e non contribuisce al calcolo del momento flettente sulla platea di fondazione. Il carico proveniente dai paliè diviso per il suo interasse (3.6m)per definire il


PROGETTO ESECUTIVO

RELAZIONE DI CALCOLO SPALLE

carico a metro lineare: $P_1=988.89kN/m$. I pesi propri del terreno al di sopra della platea di fondazione p_t e della platea stessa p_p sono sommati per ottenere il carico distribuito p=182.3kN/m/m. La mensola ha una lunghezza di L=4.7m e il caricoè applicato alla distanza $x_1=3.6m$.

Il momento massimo agente in valore assoluto è pari a $M_{Ed}=1546.3kNm/m$.

La sezione risulta verificata con armatura $\phi 16/10$ al lembo superiore e al lembo inferiore.

Verifica C.A. S.L.U. - File: 5_Platea-SLU_SLV Visualizza Progetto Sez, Rett. Sismica Normativa: NTC 2008 ? 🗋 📂 🖫 🚭 Tipo Sezione Titolo: Rettan.re O Trapezi 1 Zoom N* strati barre 2 Zoom N* figure elementari O Circolare OaIO Rettangoli O Coord. b [cm] h [cm] As [cm²] d [cm] 20.11 20.11 213.36 P.to applicazione N Sollecitazioni Centro O Baricentro cls Metodo n xN 0 O Coord.[cm] lkN. yN 0 kNm - Tipo rottura-0 Lato acciaio - Acciaio snervato S.L.U.+ O S.L.U. O Metodo n kN m M_{xRd} 1 660 B450C C32/40 O Deviata N/mm² -18.13 N* rett. 100 ^fyd **391.3** Ν/mm² ε_{cu} N/mm² 391.3 Calcola MRd Dominio M-N E_s 200 000 N/mm² f_{cd} 18.13 2.105 E_s/E_c 15 f_{cc} / f_{cd} 0.8 ? Col. modello 67.5 ε_{syd} 1.957 ‰ σ_{c,adm} 12.25 213.4 cm σ_{s,adm} 255 N/mm² τ_{co} 0.7333 x 6.453 x/d 0.03024 Precompresso τ_{c1} 2.114 0.7

Figura 13.50: Verifica a flessione, platea di fondazione

Il taglio massimo in valore assoluto è pari a $V_{Ed} = 770kN/m$.

PROGETTO ESECUTIVO

RELAZIONE DI CALCOLO SPALLE

Figura 13.51: Taglio platea di fondazione

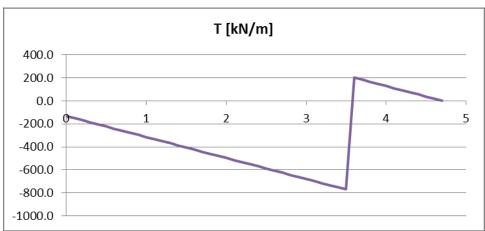
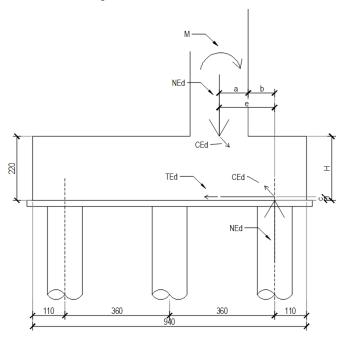


Figura 13.52: Verifica a taglio, platea di fondazione

Dati di input									
Rck		22	N/mm^2						
rck fck			N/mm^2						
Valore medio della resistenza a trazione	f _{ctm} =		N/mm^2	= 0.3 x fc	I-^(2/3)				
Coefficiente sicurezza els		1.5	14/11111 2	- 0.5 X 10	K (275)				
	γ _c =								
Coefficiente carichi lunga durata	α _{cc} =	0.85							
cd=resistenza di calcolo del cls	fcd =		N/mm^2	= acc x f	ck/γ _c				
Resitenza caratteristica di snervamento acciaio	fyk =		N/mm^2						
Coefficiente sicurezza acciaio	γ _s =	1.15							
Snervamento di calcolo acciaio	fyd =		N/mm^2	= fyd / γ _s					
Forza di taglio di calcolo	Vsd =	770				121.2			
Forza assiale di calcolo	Nsd =		kN						
arghezza sezione	b _w =	100		1000					
altezza della sezione	H =	220		2200	mm				
Copriferro	C =		cm						
Diametro barre superiori	φ ₂ =	20	mm	(armatur	a compres	ssa)			
Diametro barre inferiori	φ1 =	20	mm	(armatur	a tesa)				
Diametro staffe	φst =	16	mm						
Numero di barre superiori	N ₂ =	12							
Numero di barre inferiori	N ₁ =	12							
	d =	220	cm =	2200	mm				
Verifica delle bielle compresse: Vrcd Vrcd = [0.9 x d x bw x αc x fcd x (cotgα + cotgθ)	0.00 3.76	σ _{cp} < =< σ _{cp} < =< σ _{cp} <=	0.00 3.76 7.53	=>	0.C =	1.00 1.25	membratu	ļ	
Verifica delle bielle compresse: Vrcd Vrcd = [0.9 x d x bw x αc x fcd x (cotgα + cotgθ) Definizione del coefficiente maggiorativo αc Essendo Resistenza a compressione ridotta Angolo di inclinazione dell'armatura a taglio	0.00 3.76 7.53 σ _{cp} = fcd = α = α =	$\sigma_{cp} < \sigma_{cp} < = < \sigma_{cp} < = < \sigma_{cp} < = < \sigma_{cp} < = < \sigma_{cp} < < 0 < < < < < < < < < < < < < < < < $	3.76 7.53 15.05 N/mm^2 N/mm^2 rad	=> => => si ass = 0.5 x fc (45° per f	αc = αc = αc = ume quindi	1.00 1.25 2.50 αc =	membratu	▼ ire forteme	mpresse ente compres
Verifica delle bielle compresse: Vrcd Vrcd = [0.9 x d x bw x αc x fcd x (cotgα + cotgθ) Definizione del coefficiente maggiorativo αc Essendo Resistenza a compressione ridotta Angolo di inclinazione dell'armatura a taglio	0.00 3.76 7.53 σ _{cp} = fcd = α =	$\sigma_{cp} < 0.00$ $\sigma_{cp} < 0.00$ $\sigma_{cp} < 0.00$ $\sigma_{cp} < 0.00$	3.76 7.53 15.05 N/mm^2 N/mm^2 °	=> => => si ass = 0.5 x fc (45° per f	αc = αc = αc = ume quindi	1.00 1.25 2.50 αc =	membratu	▼ ire forteme	
altezza utile della sezione Verifica delle bielle compresse: Vrcd Vrcd = [0.9 x d x bw x αc x fcd x (cotgα + cotgθ) Definizione del coefficiente maggiorativo αc Essendo Resistenza a compressione ridotta Angolo di inclinazione dell'armatura a taglio	0.00 3.76 7.53 σ _{cp} = fcd = α = α = θ =	σ _{co} < =< σ _{co} < =< σ _{co} <= < σ _{co} <= < σ _{co} <= 0.00 7.53 90 1.57	3.76 7.53 15.05 N/mm^2 N/mm^2 rad rad	=> => si ass = 0.5 x fc (45° per f	αc = αc = αc = ume quindi	1.00 1.25 2.50 αc = ti e 90° pe	membratu 1 r staffe)	▼ ire forteme	
Verifica delle bielle compresse: Vrcd Vrcd = [0.9 x d x bw x αc x fcd x (cotgα + cotgθ) Definizione del coefficiente maggiorativo αc Essendo Resistenza a compressione ridotta Angolo di inclinazione dell'armatura a taglio	0.00 3.76 7.53 $\sigma_{cp} = $ fcd = $\sigma_{cp} = $ $\sigma_{cp} $	$\sigma_{co} < = \sigma_{co} < = 0.00$ 7.53 90 1.57	3.76 7.53 15.05 N/mm^2 N/mm^2 rad rad	=> => si ass = 0.5 x fc (45° per f	αc = αc = αc = ume quindi derri piega	1.00 1.25 2.50 αc = ti e 90° pe	membratu 1 r staffe)	▼ ire forteme	
Verifica delle bielle compresse: Vrcd Vrcd = [0.9 x d x bw x αc x fcd x (cotgα + cotgθ) Definizione del coefficiente maggiorativo αc Essendo Resistenza a compressione ridotta Angolo di inclinazione dell'armatura a taglio	0.00 3.76 7.53 σ _{cp} = fcd = α = α = θ = θ =	$\sigma_{co} < = \sigma_{co} < = 0.00$ 7.53 90 1.57	3.76 7.53 15.05 N/mm^2 N/mm^2 rad rad	=> => si ass = 0.5 x fc (45° per f	αc = αc = αc = ume quindi derri piega	1.00 1.25 2.50 αc = ti e 90° pe	membratu 1 r staffe)	▼ ire forteme	
Verifica delle bielle compresse: Vrcd Vrcd = [0.9 x d x bw x αc x fcd x (cotgα + cotgθ) Definizione del coefficiente maggiorativo αc Essendo Resistenza a compressione ridotta Angolo di inclinazione dell'armatura a taglio Angolo di inclinazione dei puntoni compressi Verifica dell'armatura a taglio: Vrsd Vrsd = 0.9 x d x (Asw / s) x fyd x (cotgα + cotgθ) Passo delle staffe	0.00 3.76 7.53 σ _{cp} = fcd = α = α = θ = Vrcd = x sinα.	G _{cp} < =< G _{cp} < =< G _{cp} < =< G _{cp} < 0.00 7.53 90 1.57 45 0.79	3.76 7.53 15.05 N/mm^2 N/mm^2 rad kN	=> => si ass = 0.5 x fc (45° per f	αc = αc = αc = ume quindi derri piega	1.00 1.25 2.50 αc = ti e 90° pe	membratu 1 r staffe)	▼ ire forteme	
Verifica delle bielle compresse: Vrcd Vrcd = [0.9 x d x bw x αc x fcd x (cotgα + cotgθ) Definizione del coefficiente maggiorativo αc Essendo Resistenza a compressione ridotta Angolo di inclinazione dell'armatura a taglio Angolo di inclinazione dei puntoni compressi Verifica dell'armatura a taglio: Vrsd Vrsd = 0.9 x d x (Asw / s) x fyd x (cotgα + cotgθ) Passo delle staffe Diametro staffe	0.00 3.76 7.53 σ _{cp} = fcd = α = α = θ = θ = Vrcd =	σ _{cp} < σ _{cp} < =< σ _{cp} < =< σ _{cp} <= < σ _{cp} <= < σ _{cp} <= < σ _{cp} <= < σ _{cp} <= 0.00	3.76 7.53 15.05 N/mm^2 N/mm^2 rad rad kN	=> => si ass = 0.5 x fc (45° per f	αc = αc = αc = ume quindi vd erri piega eso tra 21.8	1.00 1.25 2.50 αc = ti e 90° pe	membratu 1 r staffe)	▼ ire forteme	
Verifica delle bielle compresse: Vrcd Vrcd = [0.9 x d x bw x αc x fcd x (cotgα + cotgθ) Definizione del coefficiente maggiorativo αc Essendo Resistenza a compressione ridotta Angolo di inclinazione dell'armatura a taglio Angolo di inclinazione del puntoni compressi Verifica dell'armatura a taglio: Vrsd Vrsd = 0.9 x d x (Asw / s) x fyd x (cotgα + cotgθ) Passo delle staffe Diametro staffe Diametro staffe Diametro staffe	0.00 3.76 7.53 σ _{cp} = fcd = α = α = θ = Vrcd = x sinα s = φst = n =	σ _{co} < =< σ _{co} <= < σ _{co} <= σ _{co}	3.76 7.53 15.05 N/mm^2 N/mm^2 rad rad kN cm mm	=> => => si ass = 0.5 x fc (45° per f (compre	αc = αc = αc = ume quindi vd erri piega so tra 21.8	1.00 1.25 2.50 αc = ti e 90° pe	membratu 1 r staffe)	▼ ire forteme	
Verifica delle bielle compresse: Vrcd Vrcd = [0.9 x d x bw x αc x fcd x (cotgα + cotgθ) Definizione del coefficiente maggiorativo αc Essendo Resistenza a compressione ridotta Angolo di inclinazione dell'armatura a taglio Angolo di inclinazione dei puntoni compressi Verifica dell'armatura a taglio: Vrsd Vrsd = 0.9 x d x (Asw / s) x fyd x (cotgα + cotgθ) Passo delle staffe Braccia resistenti Area armatura a taglio	0.00 3.76 7.53 σ _{cp} = fcd = α = α = θ = Vrcd = Vrcd = x sinα. s = φst = n = Asw =	σ _{cp} < =< σ _{cp} <= σ _{cp} <= < σ _{cp} <= < σ _{cp} <= < σ _{cp} <= < σ _{cp} <= 0.00 7.53 90 1.57 45 0.79 7450.08	3.76 7.53 15.05 N/mm^2 N/mm^2 rad rad kN cm mm	=> => => si ass = 0.5 x fc (45° per f (compre	αc = αc = αc = ume quindi derri piega so tra 21.8 VERIFICA	1.00 1.25 2.50 αc = ti e 90° pe 3° e 45°) SODDISFA	membratu 1 r staffe)	▼ ire forteme	
Verifica delle bielle compresse: Vrcd Vrcd = [0.9 x d x bw x αc x fcd x (cotgα + cotgθ) Definizione del coefficiente maggiorativo αc Sesendo Resistenza a compressione ridotta Angolo di inclinazione dell'armatura a taglio Angolo di inclinazione dei puntoni compressi Verifica dell'armatura a taglio: Vrsd Vrsd = 0.9 x d x (Asw / s) x fyd x (cotgα + cotgθ) Passo delle staffe Diametro staffe Diametro staffe Paraccia resistenti Area armatura a taglio Percentuale minima di armatura	0.00 3.76 7.53 σ _{cp} = fcd = α = θ = θ = Vrcd = × sinα s = φst = n = Asw = ρw,min =	σ _{co} < co <	3.76 7.53 15.05 N/mm^2 N/mm^2 rad rad kN cm mm cm ^2	=> => => si ass = 0.5 x fc (45° per f (compre OK -	αc = αc = αc = ume quindi dierri piega eso tra 21.4 - VERIFICA mm mm²2 Fck²0.5) / F	1.00 1.25 2.50 αc = ti e 90° pe 3° e 45°) SODDISFA	membratu	re fortema	
Verifica delle bielle compresse: Vrcd Vrcd = [0.9 x d x bw x αc x fcd x (cotgα + cotgθ) Definizione del coefficiente maggiorativo αc Sesendo Resistenza a compressione ridotta Angolo di inclinazione dell'armatura a taglio Angolo di inclinazione dei puntoni compressi Verifica dell'armatura a taglio: Vrsd Vrsd = 0.9 x d x (Asw / s) x fyd x (cotgα + cotgθ) Passo delle staffe Passo delle staffe Paraccia resistenti Para armatura a taglio	0.00 3.76 7.53 σ _{cp} = fcd = α = α = θ = Vrcd = Vrcd = x sinα. s = φst = n = Asw =	σ _{cp} < =< σ _{cp} <= σ _{cp} <= < σ _{cp} <= < σ _{cp} <= < σ _{cp} <= < σ _{cp} <= 0.00 7.53 90 1.57 45 0.79 7450.08	3.76 7.53 15.05 N/mm^2 N/mm^2 rad rad kN cm mm cm ^2	=> => => si ass = 0.5 x fc (45° per f (compre OK -	αc = αc = αc = ume quindi derri piega so tra 21.8 VERIFICA	1.00 1.25 2.50 αc = ti e 90° pe 3° e 45°) SODDISFA	membratu	re fortema	

La platea a valle è verificata con cavallotti $\phi 16$ con 3 bracci ogni 1.2m.

PROGETTO ESECUTIVO


RELAZIONE DI CALCOLO SPALLE

13.5.2 Platea a valle

Per quanto riguarda la mensola a valle, se la distanza tra l'asse del primo palo e l'estradosso del muro frontale è confrontabile con lo spessore della platea è possibile considerare la mensola tozza e quindi adoperare un modello Biella-Tirante (Struct and Ties) al fine di calcolare l'armatura da disporre in corrispondenza dei pali.

Il modello Struct and Ties si traduce nella verifica di resistenza della biella di calcestruzzo compresso e nel calcolo del tiro che deve essere assorbito dall'armatura disposta nell'intradosso inferiore della zattera. La determinazione dello sforzo di compressione sulla biella e di trazione sul tirante avviene esclusivamente mediante un'equazione di equilibrio.

Figura 13.53: Modello Biella-Tirante

Gli elementi geometrici sono: a è il punto di applicazione della forza di compressione, corrispondente con la mezzeria della sezione compressa (definita dall'asse neutro x); b è la distanza dell'asse del palo dall'estradosso del muro; c è il copriferro dell'armatura tesa all'intradosso della platea; e = a + b; H è l'altezza della platea.

Definita la geometria delle bielle e dei tiranti, si calcola la compressione C_{Ed} sulla biella di calcestruzzo e la trazione T_{Ed} del tirante come segue:

$$T_{Ed} = N_{Ed} \cdot \frac{e}{H-c}$$
 $C_{Ed} = \sqrt{N_{Ed}^2 + T_{Ed}^2}$

Le azioni di calcolo sono quelle relative all'inviluppo agli stati limite ultimi delle azioni del muro e sono pari a:

$$N_{Ed} = 995.54kN/m$$

 $M = 2277.90kNm/m$

Le caratteristiche geometriche del sistema biella-tirante sono: a = 0.26m; b = 0.9c; e = 1.16m; H = 2.2m; c = 0.07m.

Le azioni di tiro e di compressione sono: $T_{Ed} = 119.58kN/m$ e $C_{Ed} = 1002.70kN/m$.

Con il tiro T si dimensiona l'armatura da disporre in corrispondenza dei pali come segue:

MANDATARIA:

RELAZIONE DI CALCOLO SPALLE

$$A_s = \frac{T_{Ed}}{f_{vd}} = 305.59mm^2/m$$

Tale armatura risulta inferiore rispetto a quella valutata per la zattera di monte $A_s = 2010mm^2/m$, che verrà quindi utilizzata per tutta la platea di fondazione.

Con lo sforzo di compressione si verifica la biella di calcestruzzo la cui area resistente si determina come proiezione sull'ortogonale all'asse di compressione, una volta che sia valutata l'area resistente della biella come:

$$A_{Cd} = \pi \cdot \frac{\left(\phi_{palo}^2 \cdot \sin\left(\arctan\frac{H_p - c}{a}\right)\right)}{4} = 0.99m^2$$

La forza massima assorbibile dalla biella è:

$$C_{Rd} = A_{Rd} \cdot f_{cd} = 18025kN$$

Questo valore è riferito alla biella dei singoli pali, posti ad interasse 3.6m l'uno dall'altro. Per questo motivo, le azioni di sollecitazione devono essere moltiplicate per l'interasse in modo da considerare l'area di influenza dei singoli pali.

La sezione in calcestruzzo risulta verificata, $C_{Rd} \geq 3.6 \cdot C_{Ed}$.

PROGETTO ESECUTIVO

RELAZIONE DI CALCOLO SPALLE

13.6 GEOMETRIA DEL MURO DI RISVOLTO

La geometria di verifica generica del muro di risvolto è la stessa presentata per il muro frontale.

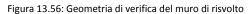
Nelle tabelle successive sono mostrati i dati geometrici utilizzati per la verifica del muro di risvolto maggiore (equivalente ad una maggiore spinta del terreno), la cui geometria è graficamente riportata nell'immagine che segue.

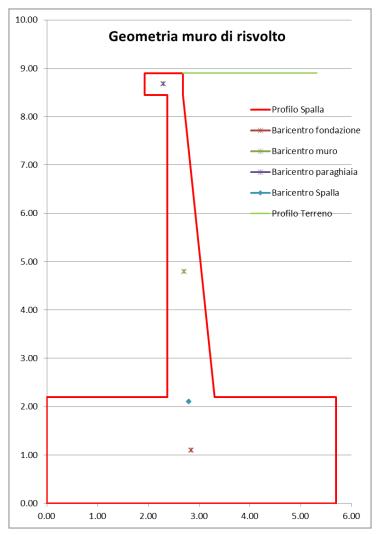
Tabella 13.54: Parametri geometrici muro di risvolto (dati di input)

PARAMETRI GEOMETRICI SPALLA		
Altezza paraghiaia (lato valle)	h1	0.00 m
Altezza paraghiaia (lato monte)	h4	0.45 m
Spessore paraghiaia	s1	0.30 m
Altezza testa paraghiaia	h7	0.45 m
Spessore testa paraghiaia	s5	0.75 m
Spessore transizione	s6	0.00 m
Inclinazione muro monte	i	10.00%
Inclinazione terreno a monte	i _m	0.00%
Altezza muro (lato valle)	h2	6.25 m
Altezza muro (lato monte)	h6	6.25 m
Spessore piano appoggio	s2	0.00 m
Spessore muro alla base	s3	0.93 m
Altezza fondazione	h3	2.20 m
Sbalzo fondazione contro terra	L1	2.40 m
Larghezza totale fondazione	L2	5.70 m

Tabella 13.55: Parametri geometrici muro di risvolto (dati calcolati)

PARAMETRI GEOMETRICI CALCOLATI		
Sbalzo fondazione valle	L3	2.38 m
Altezza transizione	h5	0.00 m
Lunghezza quantità da disegno	s7	0.30 m
Inclinazione muro valle	i ₂	0.00%
Area platea fondazione	A _f	12.54 mq
Area muro (fino ad h2)	A _m	3.83 mq
Area paraghiaia (fino ad h2)	Ap	0.34 mq
Area totale	A	16.71 mq
BARICENTRO (rispetto ad assi mostrati	in figura)	
Davissantus ulatas faudasiaus	X _G	2.850 m
Baricentro platea fondazione	Уg	1.100 m
Parisantra mura (fina ad h2)	X _G	2.708 m
Baricentro muro (fino ad h2)	Уg	4.794 m
Paricontro paraghiaia (fine ad h2)	X _G	2.300 m
Baricentro paraghiaia (fino ad h2)	Уg	8.675 m
Baricentro totale spalla	X _G	2.806 m
baricenti o totale spalia	Уg	2.099 m
CALCOLO PESI (al metro lineare di spalla	a)	
Peso fondazione	P _f	313.50 kN/m
Peso muro (fino ad h2)	P _m	95.70 kN/m
Peso paraghiaia (fino ad h2)	Pp	8.44 kN/m
Peso totale spalla	Р	417.64 kN/m





PROGETTO ESECUTIVO

RELAZIONE DI CALCOLO SPALLE

13.7 VERIFICHEMURO DI RISVOLTO

Il muro di risvolto viene calcolato per unità di lunghezza, considerando agenti i pesi propri, il sovraccarico stradale a monte della parete, la spinta del terreno, le spinte sismiche, le forze di inerzia e l'azione di svio.

Vista la geometria a mensola della struttura e la natura dei carichi, le verifiche sono condotte alla sezione di incastro tra l'elemento verticale e la platea di fondazione.

13.7.1 Verifiche agli Stati Limite Ultimi (SLU/SLV) - Sezione 1

Nelle tabelle seguenti sono riportate le azioni agenti sul muro di risvolto e le reazioni da esse causate alla base dell'elemento. Queste reazioni sono mostrate in forma caratteristica, prima di essere combinate secondo i coefficienti parziali.

PROGETTO ESECUTIVO

RELAZIONE DI CALCOLO SPALLE

Tabella 13.57: Coefficienti di spinta terreno

Stato limite sismico Tipologia di verifica Resistenza strutturale muro A1+M1+R3 Elemento Combinazione

CALCOLO SPINTE TERRENO			
Angolo attrito interno di progetto	Ψd	35.00 °	0.61 rad
Inclinazione muro a monte	β	5.71 °	0.10 rad
Angolo attrito terreno-muro	δ	23.33 °	0.41 rad
Inclinazione terreno a monte	im	0.00 °	0.00 rad
Coefficiente di spinta a riposo	Ko	0.43	
Coefficiente di spinta attiva	K _A	0.29	
k _h + k _v negativo (spinta si	smica verso l'alto)		
Inclinazione della risultante della forza peso e delle forze di inerzia agenti sul cuneo	θ	30.07 °	0.52 rad
Coefficiente di spinta attiva sismica	K _{AE}	2.27	Mononobe-Okabe
Delta spinta sismica	ΔK_{AE}	1.476	
Angolo del cuneo sismico	α_{AE}	-7.96 °	-0.14 rad
	C _{1E}	27.74	
	CZE	-121.55	
k _h + k _ν positivo (spinta sisı	nica verso il basso)		
Inclinazione della risultante della forza peso e delle forze di inerzia agenti sul cuneo	θ	20.14 °	0.35 rad
Coefficiente di spinta attiva sismica	K _{AE}	0.64	Mononobe-Okabe
Delta spinta sismica	ΔK_{AE}	0.500	
Angolo del cuneo sismico	α_{AE}	40.17 °	0.70 rad
	C _{1E}	3.75	
	CZE	8.49	

Coefficienti parziali azioni								
Favorevoli Sfavorevoli								
	G1	1	1.3					
A1	G2	0.8	1.5					
	ď	0	1.5					
Coe	Coefficienti parziali geotecnici							
	Υφ	1						
M1	Yo	1						
IVII	You	1						
	Yy	1						
Coefficienti parziali di resistenza								
R3	ΥR	1						

Tabella 13.58: Dati geometrici e carichi statici Muro di risvolto (SLU) – $h_c=0m$

PARAMETRI GEOMETRICI			1					
Altezza paraghiaia	h1+h7	0.45 m						
Altezza muro	h2	6.25 m						
Altezza platea fondazione	h3	2.20 m						
Altezza complessiva	h	6.70 m						
Posizione incastro	XI	2.8375 m						
Posizione incastro	Υı	2.20 m						
Altezza calcolo (rispetto all'incastro)	h _c	0.00 m						
Desirione annogaio	X _a	2.33 m	1					
Posizione appoggio	y _a	8.45 m	1			Contrib	uti al piede	e del muro
CARICHI STATICI			x [m]	y [m]	angolo [°]	N [kN/m]	T [kN/m]	M [kNm/m]
Peso proprio paraghiaia	G1a	8.44 kN/m	2.30	8.68	90.00	8.44	0.00	-4.54
Peso proprio muro	G1b	95.70 kN/m	2.71	4.79	90.00	95.70	0.00	-12.41
Peso proprio platea	G1c	0.00 kN/m	2.85	1.10	90.00	0.00	0.00	0.00
Peso terreno piede muro	G1t	0.00 kN/m	4.50	2.20	90.00	0.00	0.00	0.00
Spinta a riposo	SO	181.85 kN/m	3.08	4.43	23.33	72.03	166.98	-355.69
Sovraspinta pavimentazione	S _{G2}	0.00 kN/m	2.97	5.55	23.33	0.00	0.00	0.00
Sovraspinta traffico	S _{q1}	57.14 kN/m	2.97	5.55	23.33	22.63	52.47	-172.88
Azione di svio	Fr ₁	46.64 kN/m	2.30	9.68	0.00	0.00	46.64	-348.97

Itinerario Ragusa - Catania

Collegamento viario compreso tra lo Svincolo della S.S. 514 di "Chiaromonte" con la S.S. 115 e lo Svincolo della "Ragusana"

PROGETTO ESECUTIVO

RELAZIONE DI CALCOLO SPALLE

Tabella 13.59: Carichi sismici Muro di risvolto (SLV) - $h_c=0m$

CARICIN SISPAICI Is reporting		1	x [m]	y [m]	angolo [°]	N [kN/m]	T [lebt/m]	M [kNm/m]
CARICHI SISMICI k _v negativo				,				
Peso proprio paraghiaia	G1a	8.44 kN/m	2.30	8.68	90.00	8.44	0.00	-4.54
Peso proprio muro	G1b	95.70 kN/m	2.71	4.79	90.00	95.70	0.00	-12.41
Peso proprio platea	G1c	0.00 kN/m	2.85	1.10	90.00	0.00	0.00	0.00
Peso terreno piede muro	G1t	0.00 kN/m	4.50	2.20	90.00	0.00	0.00	0.00
Inerzia paraghiaia orizzontale	G1a _{ih}	3.79 kN/m	2.30	8.68	0.00	0.00	3.79	-24.53
Inerzia paraghiaia verticale	G1a _{iv}	-1.89 kN/m	2.30	8.68	90.00	-1.89	0.00	1.02
Inerzia muro orizzontale	G1b _{ih}	42.97 kN/m	2.71	4.79	0.00	0.00	42.97	-111.45
Inerzia muro verticale	G1b _{iv}	-21.49 kN/m	2.71	4.79	90.00	-21.49	0.00	2.79
Inerzia platea orizzontale	G1c _{ih}	0.00 kN/m	2.85	1.10	0.00	0.00	0.00	0.00
Inerzia platea verticale	G1c _{iv}	0.00 kN/m	2.85	1.10	90.00	0.00	0.00	0.00
Inerzia terreno piede muro orizzontale	G1t _{ih}	0.00 kN/m	4.50	2.20	0.00	0.00	0.00	0.00
Inerzia terreno piede muro verticale	G1t _{iv}	0.00 kN/m	4.50	2.20	90.00	0.00	0.00	0.00
Spinta attiva	SA	122.49 kN/m	3.08	4.43	23.33	48.52	112.48	-239.59
Delta Spinta sismica (Mononobe-Okabe)	ΔS	629.26 kN/m	2.97	5.55	23.33	249.24	577.79	-1903.83
Sovraspinta pavimentazione	S _{G2}	0.00 kN/m	2.97	5.55	23.33	0.00	0.00	0.00
Sovraspinta traffico	Sqi	57.14 kN/m	2.97	5.55	23.33	22.63	52.47	-172.88
CARICHI SISMICI k _v positivo			x [m]	y [m]	angolo [°]	N [kN/m]	T [kN/m]	M [kNm/m]
Peso proprio paraghiaia	G1a	8.44 kN/m	2.30	8.68	90.00	8.44	0.00	-4.54
Peso proprio muro	G1b	95.70 kN/m	2.71	4.79	90.00	95.70	0.00	-12.41
Peso proprio platea	G1c	0.00 kN/m	2.85	1.10	90.00	0.00	0.00	0.00
Peso terreno piede muro	G1t	0.00 kN/m	4.50	5.55	90.00	0.00	0.00	0.00
Inerzia paraghiaia orizzontale	G1a _{ih}	3.79 kN/m	2.30	8.68	0.00	0.00	3.79	-24.53
Inerzia paraghiaia verticale	G1a _{iv}	1.00 -11/	0.00	8.68	90.00	1.89	0.00	-1.02
	GIGIN	1.89 kN/m	2.30	0.00	30.00	1.03	0.00	
Inerzia muro orizzontale	G1b _{ih}	1.89 kN/m 42.97 kN/m	2.71	4.79	0.00	0.00	42.97	-111.45
		 						-111.45 -2.79
Inerzia muro orizzontale	G1b _{ih}	42.97 kN/m	2.71	4.79	0.00	0.00	42.97	
Inerzia muro orizzontale Inerzia muro verticale	G1b _{ih} G1b _{iv}	42.97 kN/m 21.49 kN/m	2.71 2.71	4.79 4.79	0.00 90.00	0.00 21.49	42.97 0.00	-2.79
Inerzia muro orizzontale Inerzia muro verticale Inerzia platea orizzontale	G1b _{ih} G1b _{iv} G1c _{ih}	42.97 kN/m 21.49 kN/m 0.00 kN/m	2.71 2.71 2.85	4.79 4.79 1.10	0.00 90.00 0.00	0.00 21.49 0.00	42.97 0.00 0.00	-2.79 0.00
Inerzia muro orizzontale Inerzia muro verticale Inerzia platea orizzontale Inerzia platea verticale	G1b _{ih} G1b _{iv} G1c _{ih} G1c _{iv}	42.97 kN/m 21.49 kN/m 0.00 kN/m 0.00 kN/m	2.71 2.71 2.85 2.85	4.79 4.79 1.10 1.10	0.00 90.00 0.00 90.00	0.00 21.49 0.00 0.00	42.97 0.00 0.00 0.00	-2.79 0.00 0.00
Inerzia muro orizzontale Inerzia muro verticale Inerzia platea orizzontale Inerzia platea verticale Inerzia terreno piede muro orizzontale	G1b _{ih} G1b _{iv} G1c _{ih} G1c _{iv} G1c _{iv}	42.97 kN/m 21.49 kN/m 0.00 kN/m 0.00 kN/m 0.00 kN/m	2.71 2.71 2.85 2.85 4.50	4.79 4.79 1.10 1.10 5.55	0.00 90.00 0.00 90.00 0.00	0.00 21.49 0.00 0.00 0.00	42.97 0.00 0.00 0.00 0.00	-2.79 0.00 0.00 0.00
Inerzia muro orizzontale Inerzia muro verticale Inerzia platea orizzontale Inerzia platea verticale Inerzia platea verticale Inerzia terreno piede muro orizzontale Inerzia terreno piede muro verticale	G1bih G1biv G1cih G1civ G1tih G1tiv	42.97 kN/m 21.49 kN/m 0.00 kN/m 0.00 kN/m 0.00 kN/m 0.00 kN/m	2.71 2.71 2.85 2.85 4.50 4.50	4.79 4.79 1.10 1.10 5.55 5.55	0.00 90.00 0.00 90.00 0.00 90.00	0.00 21.49 0.00 0.00 0.00 0.00	42.97 0.00 0.00 0.00 0.00 0.00	-2.79 0.00 0.00 0.00 0.00
Inerzia muro orizzontale Inerzia muro verticale Inerzia platea orizzontale Inerzia platea verticale Inerzia terreno piede muro orizzontale Inerzia terreno piede muro verticale Spinta attiva	G1bih G1biv G1cih G1civ G1civ G1th G1ts	42.97 kN/m 21.49 kN/m 0.00 kN/m 0.00 kN/m 0.00 kN/m 0.00 kN/m 122.49 kN/m	2.71 2.71 2.85 2.85 4.50 4.50 3.08	4.79 4.79 1.10 1.10 5.55 5.55 4.43	0.00 90.00 0.00 90.00 0.00 90.00 23.33	0.00 21.49 0.00 0.00 0.00 0.00 48.52	42.97 0.00 0.00 0.00 0.00 0.00 112.48	-2.79 0.00 0.00 0.00 0.00 -239.59

Le seguenti tabelle mostrano gli inviluppi delle reazioni alla base del muro di risvolto e il fattore di sicurezza (FS) riferito al momento flettente e associato alla sezione di progetto.

In particolare, si ipotizzano $10\phi26$ al metro su entrambi i lembi del muro di risvolto con una seconda fila di $5\phi26$ al metro sul lato contro terra, ovvero quello soggetto alla trazione maggiore. La figura riportata di seguito mostra che la configurazione sopra descritta restituisce un momento resistente di $M_{Rd}=2337kNm/m$. Si trascura, a favore di sicurezza, il contributo dovuto all'azione assiale N.

PROGETTO ESECUTIVO

RELAZIONE DI CALCOLO SPALLE

Figura 13.60: Verifica agli SLU muro di risvolto $-h_c = 0m$

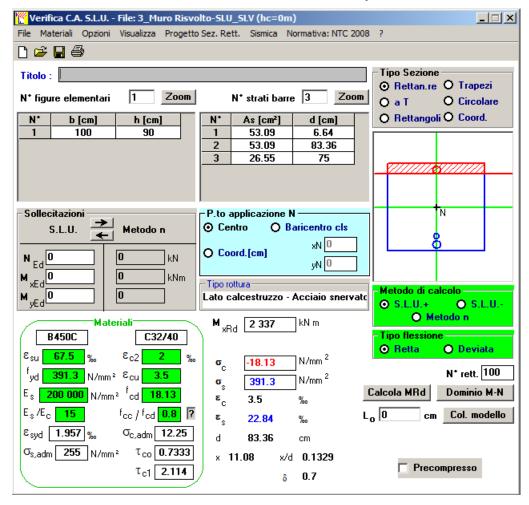


Tabella 13.61: Inviluppo reazioni SLU/SLV e Fattore di Sicurezza (FS) momento flettente (Muro di risvolto) – $h_c=0m$

INVILUPPO REAZIONI ALLA BASE SLU-SLV		valore	x [m]	y [m]	verso	
Azione verticale	N [kN/m]	394.88 kN/m			+y	
Azione orizzontale	T [kN/m]	737.03 kN/m	2.84	2.20	+χ	MAX
Momento	M [kNm/m]	-372.64 kNm/m			orario	
Azione verticale	N [kN/m]	176.17 kN/m			+y	
Azione orizzontale	T [kN/m]	166.98 kN/m	2.84	2.20	+x	MIN
Momento	M [kNm/m]	-2295.20 kNm/m]		orario	

VERIFICA MOMENTO FLETTENTE SEZIONE SIMMETRICA (GELFI)							
Altezza sezione	h	100	cm				
Base sezione	b	90	cm				_
Copriferro	С	4	cm	numero	dian	netro	
Acciaio superiore	A _{sup}	53.09	cmq	10	ф	26	(armatura compressa)
Acciaio Inferiore	A _{inf}	79.64	cmq	15	ф	26	(armatura tesa)
Azione di compressione	N _{Ed}	0	kN				-
Momento flettente	M _{Rd}	2337.00	kNm/m				
Fattore di sicurezza	FS	1.02		VERIFICA SODDISFATTA			

Per quanto riguarda la verifica a taglio, le tabelle seguenti mostrano come la sezione non sia verificata a taglio senza l'utilizzo di staffe.

PROGETTO ESECUTIVO

RELAZIONE DI CALCOLO SPALLE

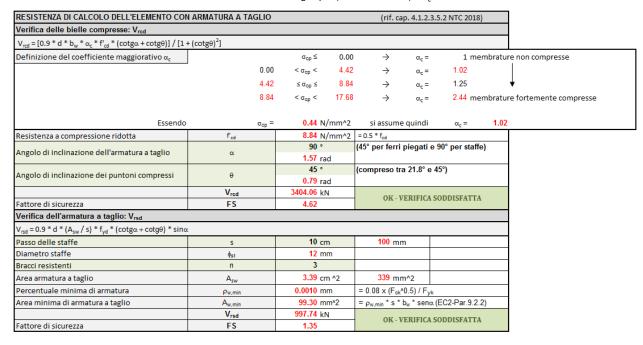
Tabella 13.62: Verifica a taglio pt1 (Muro di risvolto) – $h_c=0m$

VERIFICA A TAGLIO SECONDO NTC 2018 ED EUROCODICE 2 (UNI EN 1992 1-1) Note e convenzioni N > 0 → trazione

INPUT			
Fattore di confidenza	FC	1	
	R _{ck}	40 N/mm ²	
	f_{ck}	31 N/mm ²	
Valore medio della resistenza a trazione	f _{ctm}	3.0 N/mm ²	= 0.3 * f _{ck} ^(2/3)
Coefficiente sicurezza cls	7c	1.5	
Coefficiente carichi lunga durata	α _{cc}	0.85	
Resistenza di calcolo del cls	f _{cd}	17.68 N/mm ²	= α_{oc} * f_{ck} / γ_{c}
Resitenza caratteristica di snervamento acciaio	f _{yk}	450 N/mm ²	
Coefficiente sicurezza acciaio	gs	1.15	
Snervamento di calcolo acciaio	f _{yd}	391 N/mm ²	= f_{yd} / γ_s
Forza di taglio di calcolo	V_{sd}	737.0 kN	
Forza assiale di calcolo	N _{sd}	-394.88 kN	
Larghezza sezione	b_{w}	100 cm	1000 mm
altezza della sezione	Н	90 cm	900 mm
Copriferro	С	4 cm	
Diametro barre superiori	ф2	26 mm	
Diametro barre inferiori	ф1	26 mm	
Diametro staffe	\$\psi\$st	12 mm	
Numero di barre superiori	N ₂	10	
Numero di barre inferiori	N ₁	15	
altezza utile della sezione	d	83.5 cm	835 mm

RESISTENZA DI CALCOLO DELL'ELEMENTO SEN	(rif. cap. 4.1.2.	3.5.1 NTC 2018)				
$V_{Rd} = max\{[0.18 * k * (100 * \rho_1 * f_{ck})^{1/3} / \gamma_c + 0.15 * \sigma_{cp}] * b_w * d; [V_{min} + 0.15 * \sigma_{cp}] * b_w * d\}$						
$K = 1 + (200 / d)^{0.5} \le 2.00$	K	1.49				
V _{min} = 0.035 * K ^{1.5} * fck ^{0.5}	V _{min}	0.36 N/mm^2				
A _{s1} =area delle armature di trazione che si estendono non meno di d+l _{b,net} oltre la sezione considerata	A _{s1}	79.64 cm^2	7963.937 mm^2			
$\rho_1 = A_{s1}/(b_w d) \le 0.02$	ρ ₁	0.0095				
$\sigma_{cp} = -N_{sd}/A_c \le 0.2f_{cd}$	σ _{cp}	0.44 N/mm^2				
	V _{Rd1}	517 kN				
	V _{Rd2}	352 kN				
	V_{Rd}	517.42 kN	OCCOPPE API	MARE A TAGLIO		
Fattore di sicurezza	FS	0.70	OCCORNE ARI	HAREA HAGEIO		

Vista la verifica non soddisfatta, occorre predisporre delle armature a taglio. In particolare, si predispongono ferri $\phi 12/10$ con 3 bracci al metro, garantendo un taglio resistente di $V_{Rd} =$ 997.74kN/m.



PROGETTO ESECUTIVO

RELAZIONE DI CALCOLO SPALLE

Tabella 13.63: Verifica a taglio pt2 (Muro di risvolto) – $h_c = 0m$

13.7.2 Verifiche agli Stati Limite Ultimi (SLU/SLV) – Sezione 2

Vista la presenza di una seconda fila di armatura sul lato teso, si procede alla verifica della sezione in cui risulta sufficiente l'utilizzo di una sola fila di armatura resistente. In particolare, si verifica la sezione posta a $h_c=1.5m$ di altezza dall'incastro.

Nelle tabelle seguenti sono riportate le azioni agenti sul muro di risvolto e le reazioni da esse causateall'altezza sopra definita. Queste reazioni sono mostrate in forma caratteristica, prima di essere combinate secondo i coefficienti parziali.

Tabella 13.64: Dati geometrici e carichi statici Muro di risvolto (SLU) – $h_c=1.5m$

PARAMETRI GEOMETRICI								
Altezza paraghiaia	h1+h7	0.45 m						
Altezza muro	h2	6.25 m						
Altezza platea fondazione	h3	2.20 m						
Altezza complessiva	h	6.70 m						
Posizione incastro	X _I	2.8375 m						
Posizione incastro	Y _I	2.20 m						
Altezza calcolo (rispetto all'incastro)	h _c	1.50 m						
Desizione appossio	X _a	2.33 m						
Posizione appoggio	y _a	8.45 m	1			Contribu	ıti al piede	del muro
CARICHI STATICI			x [m]	y [m]	angolo [°]	N [kN/m]	T [kN/m]	M [kNm/m]
Peso proprio paraghiaia	G1a	8.44 kN/m	2.30	8.68	90.00	8.44	0.00	-4.54
Peso proprio muro	G1b	95.70 kN/m	2.71	4.79	90.00	95.70	0.00	-12.41
Peso proprio platea	G1c	0.00 kN/m	2.85	1.10	90.00	0.00	0.00	0.00
Peso terreno piede muro	G1t	0.00 kN/m	4.50	2.20	90.00	0.00	0.00	0.00
Spinta a riposo	SO SO	181.85 kN/m	3.08	4.43	23.33	72.03	166.98	-105.22
Sovraspinta pavimentazione	S _{G2}	0.00 kN/m	2.97	5.55	23.33	0.00	0.00	0.00
Sovraspinta traffico	S _{q1}	57.14 kN/m	2.97	5.55	23.33	22.63	52.47	-94.18
Azione di svio	Fr ₁	46.64 kN/m	2.30	9.68	0.00	0.00	46.64	-279.02

Itinerario Ragusa - Catania

Collegamento viario compreso tra lo Svincolo della S.S. 514 di "Chiaromonte" con la S.S. 115 e lo Svincolo della "Ragusana"

PROGETTO ESECUTIVO

RELAZIONE DI CALCOLO SPALLE

Tabella 13.65: Carichi sismici Muro di risvolto (SLV) - $h_c=1.5m$

CARICHI SISMICI k _v negativo		•	x [m]	y [m]	angolo [°]	N [kN/m]	T [kN/m]	M [kNm/m]
Peso proprio paraghiaia	G1a	8.44 kN/m	2.30	8.68	90.00	8.44	0.00	-4.54
Peso proprio muro	G1b	95.70 kN/m	2.71	4.79	90.00	95.70	0.00	-12.41
Peso proprio platea	G1c	0.00 kN/m	2.85	1.10	90.00	0.00	0.00	0.00
Peso terreno piede muro	G1t	0.00 kN/m	4.50	2.20	90.00	0.00	0.00	0.00
Inerzia paraghiaia orizzontale	G1a _{ih}	3.79 kN/m	2.30	8.68	0.00	0.00	3.79	-18.85
Inerzia paraghiaia verticale	G1a _{iv}	-1.89 kN/m	2.30	8.68	90.00	-1.89	0.00	1.02
Inerzia muro orizzontale	G1b _{ih}	42.97 kN/m	2.71	4.79	0.00	0.00	42.97	-46.99
Inerzia muro verticale	G1b _{iv}	-21.49 kN/m	2.71	4.79	90.00	-21.49	0.00	2.79
Inerzia platea orizzontale	G1c _{ih}	0.00 kN/m	2.85	1.10	0.00	0.00	0.00	0.00
Inerzia platea verticale	G1c _{iv}	0.00 kN/m	2.85	1.10	90.00	0.00	0.00	0.00
Inerzia terreno piede muro orizzontale	G1t _{ih}	0.00 kN/m	4.50	2.20	0.00	0.00	0.00	0.00
Inerzia terreno piede muro verticale	G1t _{iv}	0.00 kN/m	4.50	2.20	90.00	0.00	0.00	0.00
Spinta attiva	SA	122.49 kN/m	3.08	4.43	23.33	48.52	112.48	-70.88
Delta Spinta sismica (Mononobe-Okabe)	ΔS	629.26 kN/m	2.97	5.55	23.33	249.24	577.79	-1037.14
Sovraspinta pavimentazione	S _{G2}	0.00 kN/m	2.97	5.55	23.33	0.00	0.00	0.00
Sovraspinta traffico	Sqi	57.14 kN/m	2.97	5.55	23.33	22.63	52.47	-94.18
	-41	57121 Kit/III	2137				02.117	31110
CARICHI SISMICI k _v positivo	-4±	37127 (47)	x [m]	y [m]	angolo [°]	N [kN/m]		M [kNm/m]
'	G1a	8.44 kN/m						
CARICHI SISMICI k _v positivo			x [m]	y [m]	angolo [°]	N [kN/m]	T [kN/m]	M [kNm/m]
CARICHI SISMICI k _v positivo Peso proprio paraghiaia	G1a	8.44 kN/m	x [m] 2.30	y [m] 8.68	angolo [°] 90.00	N [kN/m] 8.44	T [kN/m] 0.00	M [kNm/m] -4.54
CARICHI SISMICI k _v positivo Peso proprio paraghiaia Peso proprio muro	G1a G1b	8.44 kN/m 95.70 kN/m	x [m] 2.30 2.71	y [m] 8.68 4.79	angolo [°] 90.00 90.00	N [kN/m] 8.44 95.70	T [kN/m] 0.00 0.00	M [kNm/m] -4.54 -12.41
Peso proprio muro Peso proprio paraghiaia Peso proprio muro Peso proprio platea	G1a G1b G1c	8.44 kN/m 95.70 kN/m 0.00 kN/m	x [m] 2.30 2.71 2.85	y [m] 8.68 4.79 1.10	90.00 90.00 90.00	N [kN/m] 8.44 95.70 0.00	T [kN/m] 0.00 0.00 0.00	M [kNm/m] -4.54 -12.41 0.00
CARICHI SISMICI k _v positivo Peso proprio paraghiaia Peso proprio muro Peso proprio platea Peso terreno piede muro	G1a G1b G1c G1t	8.44 kN/m 95.70 kN/m 0.00 kN/m 0.00 kN/m	x [m] 2.30 2.71 2.85 4.50	y [m] 8.68 4.79 1.10 5.55	90.00 90.00 90.00 90.00 90.00	N [kN/m] 8.44 95.70 0.00 0.00	T [kN/m] 0.00 0.00 0.00 0.00	M [kNm/m] -4.54 -12.41 0.00 0.00
CARICHI SISMICI k _v positivo Peso proprio paraghiaia Peso proprio muro Peso proprio platea Peso terreno piede muro Inerzia paraghiaia orizzontale	G1a G1b G1c G1t G1a _{lh}	8.44 kN/m 95.70 kN/m 0.00 kN/m 0.00 kN/m 3.79 kN/m	x [m] 2.30 2.71 2.85 4.50 2.30	y [m] 8.68 4.79 1.10 5.55 8.68	90.00 90.00 90.00 90.00 90.00 0.00	N [kN/m] 8.44 95.70 0.00 0.00 0.00	T [kN/m] 0.00 0.00 0.00 0.00 3.79	M [kNm/m] -4.54 -12.41 0.00 0.00 -18.85
CARICHI SISMICI k, positivo Peso proprio paraghiaia Peso proprio muro Peso proprio platea Peso terreno piede muro Inerzia paraghiaia orizzontale Inerzia paraghiaia verticale	G1a G1b G1c G1t G1a _{th} G1a _{ty}	8.44 kN/m 95.70 kN/m 0.00 kN/m 0.00 kN/m 3.79 kN/m 1.89 kN/m	x [m] 2.30 2.71 2.85 4.50 2.30 2.30	y [m] 8.68 4.79 1.10 5.55 8.68 8.68	90.00 90.00 90.00 90.00 90.00 0.00 90.00	N [kN/m] 8.44 95.70 0.00 0.00 0.00 1.89	T [kN/m] 0.00 0.00 0.00 0.00 3.79 0.00	M [kNm/m] -4.54 -12.41 0.00 0.00 -18.85 -1.02
CARICHI SISMICI k, positivo Peso proprio paraghiaia Peso proprio muro Peso proprio platea Peso terreno piede muro Inerzia paraghiaia orizzontale Inerzia paraghiaia verticale Inerzia muro orizzontale	G1a G1b G1c G1t G1a _{lh} G1a _{lv} G1b _{lh}	8.44 kN/m 95.70 kN/m 0.00 kN/m 0.00 kN/m 3.79 kN/m 1.89 kN/m 42.97 kN/m	x [m] 2.30 2.71 2.85 4.50 2.30 2.30 2.71	y [m] 8.68 4.79 1.10 5.55 8.68 8.68 4.79	90.00 90.00 90.00 90.00 90.00 0.00 90.00	N [kN/m] 8.44 95.70 0.00 0.00 0.00 1.89 0.00	T [kN/m] 0.00 0.00 0.00 0.00 3.79 0.00 42.97	M [kNm/m] -4.54 -12.41 0.00 0.00 -18.85 -1.02 -46.99
CARICHI SISMICI k, positivo Peso proprio paraghiaia Peso proprio muro Peso proprio platea Peso terreno piede muro Inerzia paraghiaia orizzontale Inerzia puraghiaia verticale Inerzia muro orizzontale Inerzia muro verticale	G1a G1b G1c G1t G1a _{th} G1a _{ty} G1b _{th} G1b _{ty}	8.44 kN/m 95.70 kN/m 0.00 kN/m 0.00 kN/m 3.79 kN/m 1.89 kN/m 42.97 kN/m 21.49 kN/m	x [m] 2.30 2.71 2.85 4.50 2.30 2.71 2.71	y [m] 8.68 4.79 1.10 5.55 8.68 8.68 4.79 4.79	angolo [°] 90.00 90.00 90.00 90.00 0.00 90.00 0.00 90.00	N [kN/m] 8.44 95.70 0.00 0.00 0.00 1.89 0.00 21.49	T [kN/m] 0.00 0.00 0.00 0.00 3.79 0.00 42.97 0.00	M [kNm/m] -4.54 -12.41 0.00 0.00 -18.85 -1.02 -46.99 -2.79
CARICHI SISMICI k, positivo Peso proprio paraghiaia Peso proprio muro Peso proprio platea Peso terreno piede muro Inerzia paraghiaia orizzontale Inerzia paraghiaia verticale Inerzia muro orizzontale Inerzia muro verticale Inerzia platea orizzontale	G1a G1b G1c G1t G1a _{lh} G1a _{ly} G1b _{lh} G1b _{ly} G1b _{ly} G1c _{lh}	8.44 kN/m 95.70 kN/m 0.00 kN/m 0.00 kN/m 3.79 kN/m 1.89 kN/m 42.97 kN/m 21.49 kN/m 0.00 kN/m	x [m] 2.30 2.71 2.85 4.50 2.30 2.30 2.71 2.71 2.85	y [m] 8.68 4.79 1.10 5.55 8.68 8.68 4.79 4.79 1.10	angolo [°] 90.00 90.00 90.00 90.00 0.00 90.00 0.00 90.00	N [kN/m] 8.44 95.70 0.00 0.00 1.89 0.00 21.49 0.00	T [kN/m] 0.00 0.00 0.00 0.00 3.79 0.00 42.97 0.00 0.00	M [kNm/m] -4.54 -12.41 0.00 0.00 -18.85 -1.02 -46.99 -2.79 0.00
CARICHI SISMICI k, positivo Peso proprio paraghiaia Peso proprio muro Peso proprio platea Peso terreno piede muro Inerzia paraghiaia orizzontale Inerzia paraghiaia verticale Inerzia muro orizzontale Inerzia muro verticale Inerzia platea orizzontale Inerzia platea orizzontale	G1a G1b G1c G1t G1a _{lh} G1a _{ly} G1b _{lh} G1b _{ly} G1b _{ly} G1c _{lh}	8.44 kN/m 95.70 kN/m 0.00 kN/m 0.00 kN/m 3.79 kN/m 1.89 kN/m 42.97 kN/m 21.49 kN/m 0.00 kN/m	x [m] 2.30 2.71 2.85 4.50 2.30 2.30 2.71 2.71 2.85 2.85	y [m] 8.68 4.79 1.10 5.55 8.68 8.68 4.79 4.79 1.10 1.10	angolo [°] 90.00 90.00 90.00 90.00 0.00 90.00 0.00 90.00 90.00	N [kN/m] 8.44 95.70 0.00 0.00 1.89 0.00 21.49 0.00 0.00	T [kN/m] 0.00 0.00 0.00 0.00 3.79 0.00 42.97 0.00 0.00 0.00	M [kNm/m] -4.54 -12.41 0.00 0.00 -18.85 -1.02 -46.99 -2.79 0.00 0.00
CARICHI SISMICI k, positivo Peso proprio paraghiaia Peso proprio muro Peso proprio platea Peso terreno piede muro Inerzia paraghiaia orizzontale Inerzia paraghiaia verticale Inerzia muro orizzontale Inerzia muro verticale Inerzia platea orizzontale Inerzia platea orizzontale Inerzia platea orizzontale	G1a G1b G1c G1t G1a _{ln} G1a _{ln} G1b _{ln} G1b _{ln} G1b _{ln} G1b _{ln} G1b _{ln} G1c _{ln} G1c _{ln}	8.44 kN/m 95.70 kN/m 0.00 kN/m 0.00 kN/m 3.79 kN/m 1.89 kN/m 42.97 kN/m 21.49 kN/m 0.00 kN/m 0.00 kN/m	x [m] 2.30 2.71 2.85 4.50 2.30 2.30 2.71 2.71 2.71 2.85 2.85 4.50	y [m] 8.68 4.79 1.10 5.55 8.68 8.68 4.79 4.79 1.10 1.10 5.55	angolo [°] 90.00 90.00 90.00 90.00 0.00 90.00 0.00 90.00 90.00 0.00	N [kN/m] 8.44 95.70 0.00 0.00 1.89 0.00 21.49 0.00 0.00 0.00	T [kN/m] 0.00 0.00 0.00 0.00 3.79 0.00 42.97 0.00 0.00 0.00 0.00	M [kNm/m] -4.54 -12.41 0.00 0.00 -18.85 -1.02 -46.99 -2.79 0.00 0.00 0.00
CARICHI SISMICI k, positivo Peso proprio paraghiaia Peso proprio muro Peso proprio platea Peso terreno piede muro Inerzia paraghiaia orizzontale Inerzia paraghiaia verticale Inerzia muro orizzontale Inerzia muro verticale Inerzia platea orizzontale Inerzia platea orizzontale Inerzia platereno piede muro orizzontale Inerzia terreno piede muro orizzontale Inerzia terreno piede muro verticale	G1a G1b G1c G1t G1a _{lv} G1a _{lv} G1b _{lv} G1b _{lv} G1b _{lv} G1t _{lv} G1c _{lv} G1c _{lv} G1c _{lv} G1c _{lv}	8.44 kN/m 95.70 kN/m 0.00 kN/m 0.00 kN/m 3.79 kN/m 1.89 kN/m 42.97 kN/m 21.49 kN/m 0.00 kN/m 0.00 kN/m 0.00 kN/m	x [m] 2.30 2.71 2.85 4.50 2.30 2.71 2.71 2.71 2.85 2.85 4.50 4.50	y [m] 8.68 4.79 1.10 5.55 8.68 8.68 4.79 4.79 1.10 1.10 5.55 5.55	angolo [*] 90.00 90.00 90.00 90.00 0.00 90.00 0.00 90.00 90.00 90.00 90.00 90.00	N [kN/m] 8.44 95.70 0.00 0.00 1.89 0.00 21.49 0.00 0.00 0.00 0.00	T [kN/m] 0.00 0.00 0.00 0.00 3.79 0.00 42.97 0.00 0.00 0.00 0.00 0.00	M [kNm/m] -4.54 -12.41 0.00 0.00 -18.85 -1.02 -46.99 -2.79 0.00 0.00 0.00
CARICHI SISMICI k, positivo Peso proprio paraghiaia Peso proprio muro Peso proprio platea Peso terreno piede muro Inerzia paraghiaia orizzontale Inerzia paraghiaia verticale Inerzia muro orizzontale Inerzia platea orizzontale Inerzia platea orizzontale Inerzia platea orizzontale Inerzia platea verticale Inerzia terreno piede muro orizzontale Inerzia terreno piede muro verticale Spinta attiva	G1a G1b G1c G1t G1a _{ih} G1a _{iy} G1b _{ih} G1b _{iy} G1b _{iy} G1c G1t _{iy} G1t _{ih} G1t _{iy} G1t _{ih} G1t _{iy} G1t _{iy} G1t _{iy}	8.44 kN/m 95.70 kN/m 0.00 kN/m 0.00 kN/m 3.79 kN/m 1.89 kN/m 42.97 kN/m 21.49 kN/m 0.00 kN/m 0.00 kN/m 0.00 kN/m 122.49 kN/m	x [m] 2.30 2.71 2.85 4.50 2.30 2.30 2.71 2.71 2.71 2.71 2.85 4.50 3.08	y[m] 8.68 4.79 1.10 5.55 8.68 8.68 4.79 4.79 1.10 1.10 5.55 5.55	angolo [*] 90.00 90.00 90.00 90.00 0.00 90.00 0.00 90.00 90.00 90.00 90.00 23.33	N [kN/m] 8.44 95.70 0.00 0.00 1.89 0.00 21.49 0.00 0.00 0.00 0.00 48.52	T [kN/m] 0.00 0.00 0.00 0.00 3.79 0.00 42.97 0.00 0.00 0.00 0.00 112.48	M [kNm/m] -4.54 -12.41 0.00 0.00 -18.85 -1.02 -46.99 -2.79 0.00 0.00 0.00 -70.88

Le seguenti tabelle mostrano gli inviluppi delle reazioni alla base del muro di risvolto e il fattore di sicurezza (FS) riferito al momento flettente e associato alla sezione di progetto.

In particolare, si ipotizzano $10\phi26$ al metro su entrambi i lembi del muro di risvolto, in continuità con i ferri provenienti dalla prima sezione del muro. La figura riportata di seguito mostra che la configurazione sopra descritta restituisce un momento resistente di $M_{Rd}=1321kNm/m$. Si trascura, a favore di sicurezza, il contributo dovuto all'azione assiale N.

PROGETTO ESECUTIVO

RELAZIONE DI CALCOLO SPALLE

Figura 13.66: Verifica agli SLU muro di risvolto – $h_c=1.5m$

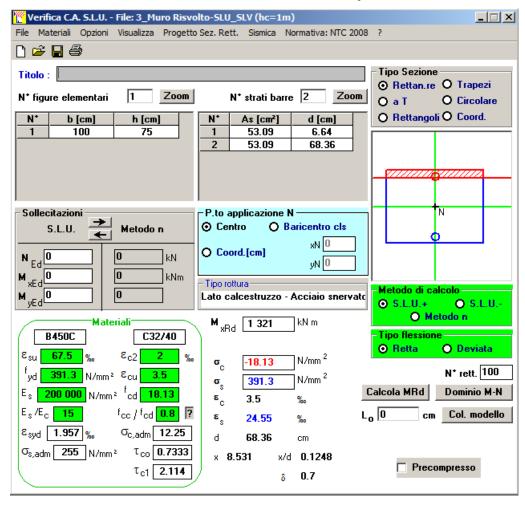


Tabella 13.67: Inviluppo reazioni SLU/SLV e Fattore di Sicurezza (FS) momento flettente (Muro di risvolto) – $h_c=1.5m$

INVILUPPO REAZIONI ALLA BASE SLU-SLV		valore	x [m]	y [m]	verso	
Azione verticale	N [kN/m]	394.88 kN/m			+y	
Azione orizzontale	T [kN/m]	737.03 kN/m	2.84	3.70	+x	MAX
Momento	M [kNm/m]	-122.17 kNm/m			orario	
Azione verticale	N [kN/m]	176.17 kN/m			+y	
Azione orizzontale	T [kN/m]	166.98 kN/m	2.84	3.70	+χ	MIN
Momento	M [kNm/m]	-1189.66 kNm/m			orario	

VERIFICA MOMENTO FLETTENTE SEZIONE SIMME	TRICA (GELFI)						
Altezza sezione	h	100	cm				
Base sezione	b	75	cm				_
Copriferro	С	4	cm	numero	diar	netro	
Acciaio superiore	A _{sup}	53.09	cmq	10	¢	26	(armatura compressa)
Acciaio Inferiore	A _{inf}	53.09	cmq	10	¢	26	(armatura tesa)
Azione di compressione	N _{Ed}	0	kN				-
Momento flettente	M _{Rd}	1321.00	kNm/m				
Fattore di sicurezza	FS	1.11		V	ERIFICA S	ODDISFAT	TA

Itinerario Ragusa - Catania

Collegamento viario compreso tra lo Svincolo della S.S. 514 di "Chiaromonte" con la S.S. 115 e lo Svincolo della "Ragusana"

PROGETTO ESECUTIVO

RELAZIONE DI CALCOLO SPALLE

Per quanto riguarda la verifica a taglio, le tabelle seguenti mostrano come la sezione non sia verificata a taglio senza l'utilizzo di staffe.

Tabella 13.68: Verifica a taglio pt1 (Muro di risvolto) – $h_c = 1.5m$

VERIFICA A TAGLIO SECONDO NTC 2018 ED EUROCODICE 2 (UNI EN 1992 1-1) Note e convenzioni N > 0 → trazione

INPUT			
Fattore di confidenza	FC	1	
	R _{ck}	40 N/mm ²	
	f _{ck}	31 N/mm ²	
Valore medio della resistenza a trazione	f _{ctm}	3.0 N/mm ²	= 0.3 * f _{ck} ^(2/3)
Coefficiente sicurezza cls	γo	1.5	
Coefficiente carichi lunga durata	αοο	0.85	
Resistenza di calcolo del cls	f _{cd}	17.68 N/mm ²	= α_{cc} * f_{ck} / γ_{c}
Resitenza caratteristica di snervamento acciaio	f _{yk}	450 N/mm ²	
Coefficiente sicurezza acciaio	gs	1.15	
Snervamento di calcolo acciaio	f _{yd}	391 N/mm ²	= f_{yd} / γ_s
Forza di taglio di calcolo	V_{sd}	737.0 kN	
Forza assiale di calcolo	N _{sd}	-394.88 kN	
Larghezza sezione	b_w	100 cm	1000 mm
altezza della sezione	Н	75 cm	750 mm
Copriferro	С	4 cm	
Diametro barre superiori	\$ 2	26 mm	
Diametro barre inferiori	ф1	26 mm	
Diametro staffe	φst	12 mm	
Numero di barre superiori	N ₂	10	
Numero di barre inferiori	N ₁	10	
altezza utile della sezione	d	68.5 cm	685 mm

RESISTENZA DI CALCOLO DELL'ELEMENTO SEN	ISTENZA DI CALCOLO DELL'ELEMENTO SENZA ARMATURA A TAGLIO: V _{Rd}						
$V_{Rd} = max\{[0.18 * k * (100 * \rho_1 * f_{ck})^{1/3} / \gamma_c + 0.15 * c$	_{fcp}] * b _w * d; [V _{min} + 0.15 * c	σ _{cp}] * b _w * d}					
$K = 1 + (200 / d)^{0.5} \le 2.00$	K	1.54					
V _{min} = 0.035 * K ^{1.5} * fck ^{0.5}	V_{min}	0.37 N/mm^2					
A _{s1} =area delle armature di trazione che si estendono non meno di d+l _{b,net} oltre la sezione considerata	A _{s1}	53.09 cm^2	5309.292 mm^2				
$\rho_1 = A_{s1}/(b_w d) \le 0.02$	ρ ₁	0.0078					
$\sigma_{cp} = -N_{sd}/A_c \le 0.2f_{cd}$	σ _{ср}	0.53 N/mm^2					
	V _{Rd1}	420 kN					
	V_{Rd2}	310 kN					
	V_{Rd}	420.25 kN	OCCORRE ARN	MARE A TAGLIO			
Fattore di sicurezza	FS	0.57	OCCORNE ARI	TARE A TAGLIO			

Vista la verifica non soddisfatta, occorre predisporre delle armature a taglio. In particolare, si predispongono ferri $\phi 12/10$ con 3 bracci al metro, garantendo un taglio resistente di $V_{Rd}=818.51kN/m$.

Itinerario Ragusa - Catania

Collegamento viario compreso tra lo Svincolo della S.S. 514 di "Chiaromonte" con la S.S. 115 e lo Svincolo della "Ragusana"

PROGETTO ESECUTIVO

RELAZIONE DI CALCOLO SPALLE

Tabella 13.69: Verifica a taglio pt2 (Muro di risvolto) – $h_c = 1.5 m$

RESISTENZA DI CALCOLO DELL'ELEMENTO CON	I ARMATURA A TAGL	.10			(rif. ca	р. 4.1.2.	.3.5.2 NTC 2018)		
Verifica delle bielle compresse: V _{rcd}									
$V_{rcd} = [0.9 * d * b_w * \alpha_c * f'_{cd} * (cotg\alpha + cotg\theta)] / [1 - cotga + cotg\theta]$	+(cotgθ) ²]								
Definizione del coefficiente maggiorativo α _c			σ _{cp} ≤	0.00	\rightarrow	ο. _c =	1 men	mbrature	non compresse
	(0.00	< σ _{cp} <	4.42	\rightarrow	ο _c =	1.03		
	4	4.42	≤ σ _{cp} ≤	8.84	\rightarrow	o., =	1.25	. ↓	
	8	3.84	< σ _{cp} <	17.68	\rightarrow	ο _{'c} =	2.43 men	mbrature	fortemente compresse
Essendo	σ	_{op} =	0.53 N	/mm^2	si assume	e quindi	ο _{ις} =	1.03	
Resistenza a compressione ridotta	f'cd		8.84 N	/mm^2	= 0.5 * f _{cd}				
Angolo di inclinazione dell'armatura a taglio			90 °		(45° per ferri	piegati	e 90° per staffe)	
Angolo di Inclinazione dell'armatura a taglio	α		1.57 ra	d					
Angolo di inclinazione dei puntoni compressi	θ		45 °		(compreso tr	a 21.8° e	e 45°)		
Angolo di mamazione dei pantoni compressi			0.79 ra	-					
	V _{rcd}		2806.08 kM	I	OK - V	/ERIFICA	A SODDISFATTA		
Fattore di sicurezza	FS		3.81			210110			
Verifica dell'armatura a taglio: V _{rsd}									
$V_{rsd} = 0.9 * d * (A_{sw} / s) * f_{yd} * (cotg\alpha + cotg\theta) * sino$									
Passo delle staffe	S		10 cn	ı	100 mr	m			
Diametro staffe	∳st		12 m	m					
Bracci resistenti	n		3						
Area armatura a taglio	A_{sw}		3.39 cn	ո ^2	339 mr	m^2			
Percentuale minima di armatura	ρw,min		0.0010 m	m	= 0.08 x (F _{ck}	^0.5) / F ₃	yk		
Area minima di armatura a taglio	$A_{w,min}$		99.30 m	m^2	= ρ _{w,min} * s *	b _w * sen	α (EC2-Par.9.2.2	2)	
	V_{rsd}		818.51 kM	l	OV V	EDIEIC	A SODDISFATTA		
Fattore di sicurezza	FS		1.11		UK - V	ENIFICA	1 SUDDISPATTA		

PROGETTO ESECUTIVO

RELAZIONE DI CALCOLO SPALLE

13.7.3 Verifiche agli Stati Limite di Esercizio (SLE) – Sezione 1

Nelle tabelle seguenti sono riportate le azioni agenti sul muro di risvolto e le reazioni da esse causate alla base dell'elemento. Queste reazioni sono mostrate in forma caratteristica, prima di essere combinate secondo i coefficienti parziali.

Tabella 13.70: Dati geometrici e carichi statici Muro di risvolto (SLE) – $h_c=0m$

PARAMETRI GEOMETRICI								
Altezza paraghiaia	h1+h7	0.45 m	1					
Altezza muro	h2	6.25 m	1					
Altezza platea fondazione	h3	2.20 m						
Altezza complessiva	h	6.70 m						
Posizione incastro	XI	2.8375 m						
Posizione incastro	Υı	2.20 m						
Altezza calcolo (rispetto all'incastro)	h _c	0.00 m						
Desirione enneggia	Xa	2.33 m	1					
Posizione appoggio	y _a	8.45 m	1			Contrib	uti al piede	del muro
CARICHI STATICI			x [m]	y [m]	angolo [°]	N [kN/m]	T [kN/m]	M [kNm/m]
Peso proprio paraghiaia	G1a	8.44 kN/m	2.30	8.68	90.00	8.44	0.00	-4.54
Peso proprio muro	G1b	95.70 kN/m	2.71	4.79	90.00	95.70	0.00	-12.41
Peso proprio platea	G1c	0.00 kN/m	2.85	1.10	90.00	0.00	0.00	0.00
Peso terreno piede muro	G1t	0.00 kN/m	4.50	2.20	90.00	0.00	0.00	0.00
Spinta a riposo	SO SO	181.85 kN/m	3.08	4.43	23.33	72.03	166.98	-355.69
Sovraspinta pavimentazione	S _{G2}	0.00 kN/m	2.97	5.55	23.33	0.00	0.00	0.00
Sovraspinta traffico	S _{q1}	57.14 kN/m	2.97	5.55	23.33	22.63	52.47	-172.88
Azione di svio	Fr ₁	46.64 kN/m	2.30	9.68	0.00	0.00	46.64	-348.97

La verifica agli Stati Limite di Esercizio è associata all'apertura delle fessure, per la quale si prendono in esame le combinazioni SLE frequente e quasi permanente (SLEf e SLEq). Si riportano di seguito gli inviluppi delle azioni interne relative alle combinazioni sopra citate e le verifiche a fessurazione.

Tabella 13.71: Inviluppi alle combinazioni SLEf e SLEg (muro di risvolto) – $h_c=0m$

INVILUPPO REAZIONI ALLA BASE SLEF		valore	x [m]	y [m]	verso	
Azione verticale	N [kN/m]	187.48 kN/m			+y	
Azione orizzontale	T [kN/m]	193.21 kN/m	2.8375	2.2	+x	MAX
Momento	M [kNm/m]	-372.64 kNm/m			orario	
Azione verticale	N [kN/m]	176.17 kN/m			+y	
Azione orizzontale	T [kN/m]	166.98 kN/m	2.8375	2.2	+x	MIN
Momento	M [kNm/m]	-459.08 kNm/m			orario	

INVILUPPO REAZIONI ALLA BASE SLEq		valore	x [m]	y [m]	verso	
Azione verticale	N [kN/m]	176.17 kN/m			+y	
Azione orizzontale	T [kN/m]	166.98 kN/m	2.8375	2.2	+χ	MAX
Momento	M [kNm/m]	-372.64 kNm/m			orario	
Azione verticale	N [kN/m]	176.17 kN/m			+y	
Azione orizzontale	T [kN/m]	166.98 kN/m	2.8375	2.2	+χ	MIN
Momento	M [kNm/m]	-372.64 kNm/m			orario	

Itinerario Ragusa - Catania

Collegamento viario compreso tra lo Svincolo della S.S. 514 di "Chiaromonte" con la S.S. 115 e lo Svincolo della "Ragusana"

PROGETTO ESECUTIVO

RELAZIONE DI CALCOLO SPALLE

Tabella 13.72: Verifica a fessurazione muro di risvolto, dati geometrici – $h_c=0m$

Geometria della sezione		
Altezza della sezione	h	900 [mm]
Larghezza della sezione	b	1000 [mm]
Altezza utile della sezione	d	833.6 [mm]
Distanza tra asse armatura e lembo compresso	d'	66.4 [mm]
Ricoprimento dell'armatura	С	40 [mm]
Armatura tesa ordinaria		
Numero di ferri tesi presenti nella sezione	n _{f.1}	15 [- <u>]</u>
Diametro dei ferri tesi presenti nella sezione	φf.1	26 [mm]
Area dei ferri tesi presenti nella sezione	A _{sf.1}	7964 [mm²]
Armatura tesa di infittimento		
Numero di ferri tesi presenti nella sezione	n _{f.2}	0 [-]
Diametro dei ferri tesi presenti nella sezione	φ _{f.2}	0 [mm]
Area dei ferri tesi presenti nella sezione	A _{sf.2}	0 [mm²]
Caratteristiche dei materiali		
Resistenza caratteristica cilindrica dal calcestruzzo	f _{ck}	32 [MPa]
Resistenza a trazione media del calcestruzzo	f _{ctm}	3.0 [MPa]
Modulo di elasticità del calcestruzzo	E _{cm}	33346 [MPa]

Dalle immagini seguenti si nota come la verifica a fessurazione risulti soddisfatta.

MANDATARIA:

450 [MPa]

Resistenza a snervamento dell'acciaio

Modulo di elasticità dell'acciaio

PROGETTO ESECUTIVO

RELAZIONE DI CALCOLO SPALLE

Tabella 13.73: Verifica a fessurazione muro di risvolto, combinazione SLEf – $h_c=0m$

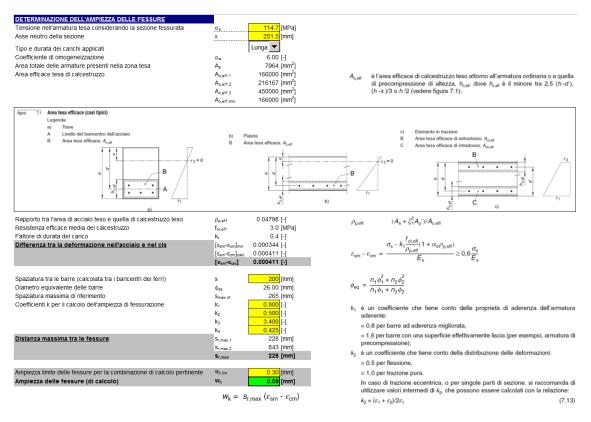
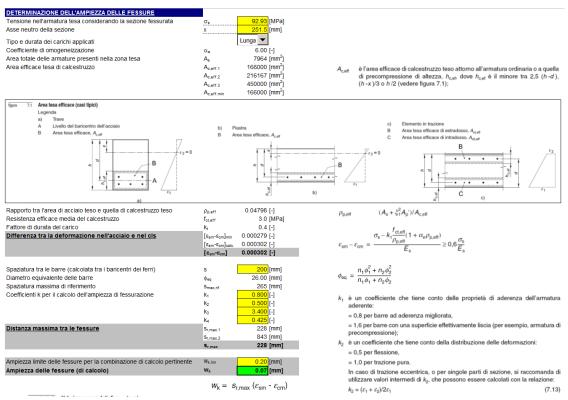



Tabella 13.74: Verifica a fessurazione muro frontale, combinazione ${\sf SLEq}-h_c=0m$

PROGETTO ESECUTIVO

RELAZIONE DI CALCOLO SPALLE

13.7.4 Verifiche agli Stati Limite di Esercizio (SLE) – Sezione 2

Nelle tabelle seguenti sono riportate le azioni agenti sul muro di risvolto e le reazioni da esse causate all'altezza della sezione 2 ($h_c=1.5m$). Queste reazioni sono mostrate in forma caratteristica, prima di essere combinate secondo i coefficienti parziali.

Tabella 13.75: Dati geometrici e carichi statici Muro di risvolto (SLE) – $h_c=1.5m$

PARAMETRI GEOMETRICI			1					
Altezza paraghiaia	h1+h7	0.45 m						
Altezza muro	h2	6.25 m						
Altezza platea fondazione	h3	2.20 m						
Altezza complessiva	h	6.70 m]					
Posizione incastro	x _l	2.8375 m						
Posizione incastro	y _I	2.20 m]					
Altezza calcolo (rispetto all'incastro)	h _c	1.50 m						
Desiriene annessie	X _a	2.33 m						
Posizione appoggio	y _a	8.45 m	1			Contribu	uti al piede	del muro
CARICHI STATICI			x [m]	y [m]	angolo [°]	N [kN/m]	T [kN/m]	M [kNm/m]
Peso proprio paraghiaia	G1a	8.44 kN/m	2.30	8.68	90.00	8.44	0.00	-4.54
Peso proprio muro	G1b	95.70 kN/m	2.71	4.79	90.00	95.70	0.00	-12.41
Peso proprio platea	G1c	0.00 kN/m	2.85	1.10	90.00	0.00	0.00	0.00
Peso terreno piede muro	G1t	0.00 kN/m	4.50	2.20	90.00	0.00	0.00	0.00
Spinta a riposo	SO SO	181.85 kN/m	3.08	4.43	23.33	72.03	166.98	-105.22
Sovraspinta pavimentazione	S _{G2}	0.00 kN/m	2.97	5.55	23.33	0.00	0.00	0.00
Sovraspinta traffico	S _{q1}	57.14 kN/m	2.97	5.55	23.33	22.63	52.47	-94.18
Azione di svio	Fr ₁	46.64 kN/m	2.30	9.68	0.00	0.00	46.64	-279.02

La verifica agli Stati Limite di Esercizio è associata all'apertura delle fessure, per la quale si prendono in esame le combinazioni SLE frequente e quasi permanente (SLEf e SLEq). Si riportano di seguito gli inviluppi delle azioni interne relative alle combinazioni sopra citate e le verifiche a fessurazione.

Tabella 13.76: Inviluppi alle combinazioni SLEf e SLEq (muro di risvolto) – $h_c=1.5m$

INVILUPPO REAZIONI ALLA BASE SLEF	valore	x [m]	y [m]	verso		
Azione verticale	N [kN/m]	187.48 kN/m			+y	
Azione orizzontale	T [kN/m]	193.21 kN/m	2.8375	3.70	+χ	MAX
Momento	M [kNm/m]	-122.17 kNm/m			orario	
Azione verticale	N [kN/m]	176.17 kN/m			+y	
Azione orizzontale	T [kN/m]	166.98 kN/m	2.8375	3.70	+χ	MIN
Momento	M [kNm/m]	-169.26 kNm/m			orario	

INVILUPPO REAZIONI ALLA BASE SLEq	valore	x [m]	y [m]	verso		
Azione verticale	N [kN/m]	176.17 kN/m			+y	
Azione orizzontale	T [kN/m]	166.98 kN/m	2.8375	3.70	+χ	MAX
Momento	M [kNm/m]	-122.17 kNm/m			orario	
Azione verticale	N [kN/m]	176.17 kN/m			+y	
Azione orizzontale	T [kN/m]	166.98 kN/m	2.8375	3.70	+x	MIN
Momento	M [kNm/m]	-122.17 kNm/m			orario	

Itinerario Ragusa - Catania

Collegamento viario compreso tra lo Svincolo della S.S. 514 di "Chiaromonte" con la S.S. 115 e lo Svincolo della "Ragusana"

PROGETTO ESECUTIVO

RELAZIONE DI CALCOLO SPALLE

Tabella 13.77: Verifica a fessurazione muro di risvolto, dati geometrici – $h_c=0m$

Geometria della sezione		
Altezza della sezione	h	750 [mm]
Larghezza della sezione	b	1000 [mm]
Altezza utile della sezione	d	683.6 [mm]
Distanza tra asse armatura e lembo compresso	d'	66.4 [mm]
Ricoprimento dell'armatura	С	40 [mm]
Armatura tesa ordinaria		
Numero di ferri tesi presenti nella sezione	n _{f.1}	10 [-]
Diametro dei ferri tesi presenti nella sezione	φ _{f.1}	26 [mm]
Area dei ferri tesi presenti nella sezione	A _{sf.1}	5309 [mm ²]
Armatura tesa di infittimento		
Numero di ferri tesi presenti nella sezione	n _{f.2}	0 [-]
Diametro dei ferri tesi presenti nella sezione	φ _{f.2}	0 [mm]
Area dei ferri tesi presenti nella sezione	A _{sf.2}	0 [mm²]
Caratteristiche dei materiali		
Resistenza caratteristica cilindrica dal calcestruzzo	f _{ck}	32 [MPa]
Resistenza a trazione media del calcestruzzo	f _{ctm}	3.0 [MPa]
Modulo di elasticità del calcestruzzo	E _{cm}	33346 [MPa]
Resistenza a snervamento dell'acciaio	f _{vk}	450 [MPa]

Dalle immagini seguenti si nota come la verifica a fessurazione risulti soddisfatta.

MANDATARIA:

200000 [MPa]

Es

Modulo di elasticità dell'acciaio

PROGETTO ESECUTIVO

RELAZIONE DI CALCOLO SPALLE

Tabella 13.78: Verifica a fessurazione muro di risvolto, combinazione SLEf – $h_c=1.5m$

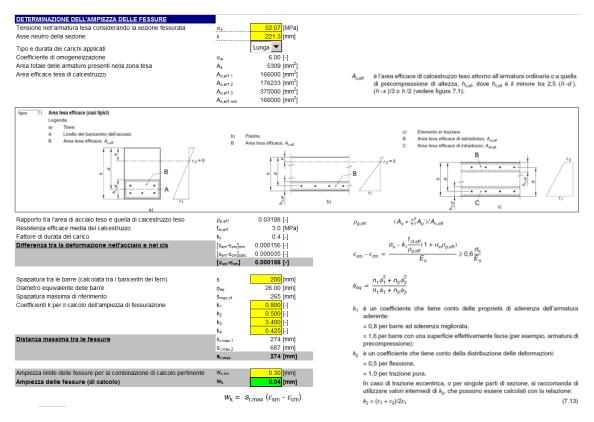
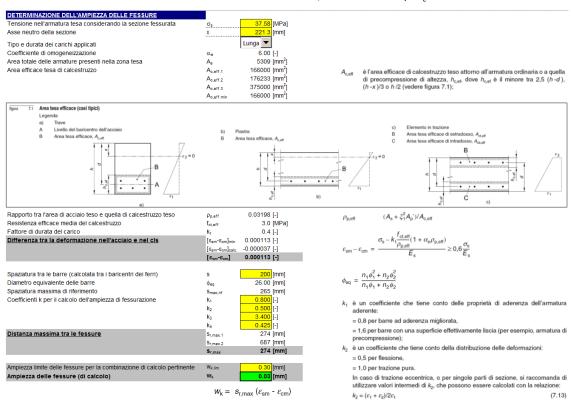
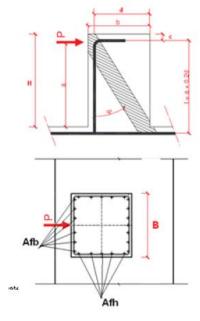



Tabella 13.79: Verifica a fessurazione muro frontale, combinazione SLEg – $h_c=1.5m$


14 VERIFICA DEI BAGGIOLI

Questo capitolo presenta le verifiche strutturali dei baggioli.

Siano dati le seguenti caratteristiche geometriche per il baggiolo:

Figura 14-1: Schematizzazione del baggiolo di appoggio

Tabella 14.2: Geometria del baggiolo

DATI INPUT						
N =	1568.00	kN				
P =	836.70	kN				
H =	0.50	m	altezza baggiolo			
b =	1.00	m	lun base 1			
B =	1.00	m	lun base 2			
c =	0.04	m	copriferro			
d=	0.94	m	base utile			
a =	0.50	m	altezza applicaz. P			
=	0.69	m	altezza utile tot			
ψ =	63.43	°>	1.11 rad			
PP =	12.50	kN	peso baggiolo			
Nc =	935.46	kN	Azione nella biella			
Nt =	418.35	kN	Azione nel tirante			

Si vanno a descrivere le seguenti formulazioni:

Equilibrio verticale:

$$N_c \cdot \sin \psi + P = 0$$
 \rightarrow $N_c = -\frac{P}{\sin \psi}$

Equilibrio orizzontale:

$$N_t + N_c \cdot \cos \psi = 0 \rightarrow N_t = P \cdot \cot \psi$$

Resistenza della biella compressa:

$$P_{c,Rd} = N_c \cdot \sin \psi = 0.2 \cdot d \cdot b \cdot f_{cd} \cdot \sin \psi \ge P$$

Resistenza dell'armatura tesa:

$$P_{t,Rd} = \frac{N_t}{\cot \psi} = A_s \cdot f_{yd} \cdot \frac{1}{\cot \psi} \ge P$$

Definendo
$$\lambda = \cot \psi = \frac{1}{z} = \frac{1}{0.9 \cdot d}$$

e ricordandosi che

$$sin\psi = \frac{1}{\sqrt{1 + \cot^2 \psi}}$$

Resistenza della biella compressa:

$$P_{c,Rd} = 0.2 \cdot d \cdot b \cdot f_{cd} \cdot \frac{1}{\sqrt{1 + \lambda^2}} \ge P$$

Resistenza dell'armatura tesa:

$$P_{t,Rd} = A_s \cdot f_{yd} \cdot \frac{1}{\lambda} \ge P$$

PROGETTO ESECUTIVO

RELAZIONE DI CALCOLO SPALLE

Il baggiolo, di dimensioni in pianta 1.00x1.00m, risulta verificato per la seguente armatura:

- Barre verticali: $9\phi 10$ su tutti i lati

- Staffe: ϕ 14/10 (2 *bracci*)

Tabella 14.3: Verifica di resistenza tirante-puntone

Metodo Tirante-Puntone:					
λ =	0.81				
Nc =	935.46	kN			
Nt =	418.35	kN			
Pc,Rd =	2648.50	kN	ok		
Pt,Rd =	680.76	kN	ok		

Verrà definita secondo l'EC2 – 6.7, la resistenza allo schiacciamento del calcestruzzo:

Tabella 14.4: Verifica di resistenza del calcestruzzo allo schiacciamento

EC2 - 6.7: Resistenza CLS							
Ac0 =	0.32	m2					
Ac1 =	1.07	m2					
Frdu' =	10711.28	kN					
Frdu =	5355.64	kN					
Verifica	ok						

Come ultima verifica, viene studiato il comportamento a taglio, data la presenza di uno sforzo tagliante P elevato.

PROGETTO ESECUTIVO

RELAZIONE DI CALCOLO SPALLE

Tabella 14.5: Verifica a taglio del baggiolo

,	VERIFIC	A A TAGI	LIO SEC	ONDO D	D.M. 201	B ED EUF	ROCODIO	E 2 (UNI EN	1992 1-1)
Res	sistenza di	calcolo d	ell'eleme	nto senza	armatura	a taglio: V	rd1	(rif. cap. 4.1.2.3.	5.1 del D.N	1. 2018)
Vrd1= {[0.	18 x k x (10	00 x ρ1 x fc	:k)^(1/3) / γ	c] + 0.15 x	σcp} x (b)	w x d)				
con Vrd1>:	= Vrd1min	= {Vmin + (0.15 х оср)	x (bw x d)						
K = 1 + (20)	0 / d)^0.5 <	2.00	K =	1.46						
Vmin = 0.0	35 x K^1.5	x fck^0.5	Vmin =	0.35	N/mm ²					
$\rho_1 = A_{s1}/(b_v)$	_v d)≤0.02	As1= area	delle arma	ture di traz	ione che s	i estendono	non meno	di d+lbnet oltre la	a sezione c	onsiderata
			As1=	7.07	cm^2 =	706.86	mm^2			
			ρ1=	0.0008						
σ _{cp} = -Nsd//	Ac≤0.2fcd		σ _{cp} =	-1.57	N/mm^2					
	Vrd1=	-0	kN							
	Vrdmin =	108	kN							
	Vrd1 =	107.69	kN	OCC	ORRE ARI	MARE A TA	GLIO			
	Resistenz	a di calco	lo dell'ele	emento co	n armatur	a a taglio		(rif. cap. 4.1.2.3.	5.2 del D.N	1. 2018)
				e compre						
Vrcd = [0.	9 x d x bw	x αc x fcd	x (cotgα +	cotgθ)] / [1 + (cotgθ)	^2]				
Definizi	one del		σ _{cp} <	0.00	=>	o.c =	1	membrature non	compress	9
coeffic		0.00	=< σ _{cp} <	4.53	=>	o.c =	0.91			
maggior	ativo αc	4.53	=< σ _{cp} <=	9.07	=>	o.c =	1.25			
		9.07	< σ _{cp} <	19.83	=>	o.c =	2.50	membrature forte	emente con	npresse
		Essendo	σ _{cp} =	-1.57	N/mm^2	si ass	ume quindi	ac =	1	
Resistenza	a a compr.	ridotta	fcd =	9.07	N/mm^2	= 0.5 x fc	d			
Angolo inc	linazione A	s a taglio	ο. =	90	0	(45° per fe	erri piegati	e 90° per staffe	!)	
			α =	1.57	rad					
Angolo inc	linazione po	untoni com	θ =	45	0	(compres	so tra 21.8°	e 45°)		
			θ =	0.79	rad					
	Vrcd =	3839.28	kN	OK -	VERIFICA	SODDISF	ATTA			
				tura a tag				(rif. cap. EC2-Pa	ar.9.2.2)	
Vrsd = 0.9	x d x (Asw	/ s) x fyd x	c (cotgα+	cotg⊕) x sir	100.					
Area armat	tura a taglio)	Asw =	3.08	cm ^2	308	mm^2			
Percentual	e minima d	i armatura	ρw,min =	0.0010	mm	$= 0.08 \times ($	Fck^0.5) / F	yk		
Area minin	na di armat	ura a taglio	Aw,min =	100.57	mm^2	= ρw,min	x s x Bw x	senα		
	Vrsd =	1020.29	kN	OK -	VERIFICA	SODDISF	ATTA			

Itinerario Ragusa - Catania

Collegamento viario compreso tra lo Svincolo della S.S. 514 di "Chiaromonte" con la S.S. 115 e lo Svincolo della "Ragusana"

PROGETTO ESECUTIVO

RELAZIONE DI CALCOLO SPALLE

15 CONCLUSIONI

La struttura in esame risulta verifica, si riporta di seguito una tabella riassuntiva delle armature di progetto:

Tabella 15.1: Armature di progetto

Elemento	Ferri longitudinali	Ferri trasversali
Paraghiaia	φ24/20	Non necessari
Muro frontale	φ24/20	Non necessari
Muro di risvolto	$\phi 26/10 + \phi 26/20 \ (primo \ 1.5m)$ $\phi 26/10 \ (altrove)$	φ12/10 (3 bracci)
Platea fondazione	φ16/10	ϕ 16 (cavallotti, 3 bracci/1.2m)
Pali di fondazione	32φ30	spirale φ16/20 (primi 4 m) spirale φ16/10 (altrove)
Baggioli	9φ10	φ14/10

Si rimanda alle tavole di progetto per la disposizione delle armature.

MANDATARIA:

