

Direzione Progettazione e Realizzazione Lavor i

ITINERARIO RAGUSA-CATANIA

Collegamento viario compreso tra lo Svincolo della S.S. 514 "di Chiaramonte" con la S.S. 115 e lo Svincolo della S.S. 194 "Ragusana"

LOTTO 4 - Dallo svincolo n. 8 "Francofonte" (compreso) allo svincolo della "Ragusana" (escluso)

PROGETTO ESECUTIVO

COD. PA898

PROGETTAZIONE: ATI SINTAGMA - GP INGEGNERIA - COOPROGETTI -GDG - ICARIA - OMNISERVICE

OPERE DI SOSTEGNO MURO IN CA SX DAL KM 9+890 AL KM 10+145 Relazione di calcolo

CODICE PROGET	TTO LIV. PROG. N. PROG.	NOME FILE	S07STRRE01B			REVISIONE	SCALA:
L 0 4 0		CODICE ELAB.	T040S07S	040S07STRRE01			-
В	Revisione a seguito istruttoria A	anas		Set 2021	E. Sellari	F. Durastanti	N. Granieri
Α	Emissione			Giu 2021	E.Sellari	F. Durastanti	N.Granieri
REV.	DESCRIZIONE			DATA	REDATTO	VERIFICATO	APPROVATO

Collegamento viario compreso tra lo Svincolo della S.S. 514 di "Chiaramonte" con la S.S. 115 e lo Svincolo della "Ragusana"

PROGETTO ESECUTIVO

RELAZIONE DI CALCOLO

INDICE

1	P	PREMESSA
2	N	NORMATIVA DI RIFERIMENTO5
3	C	CARATTERISTICHE DEI MATERIALI
4	C	CARATTERIZZAZIONE GEOTECNICA
5	١	/ITA NOMINALE, CLASSE D'USO E PERIODO DI RIFERIMENTO11
6	P	AZIONE SISMICA DI RIFERIMENTO12
7	N	METODO DI CALCOLO
7	7.1	COMBINAZIONI DI CARICO
7	7.2	SOFTWARE DI CALCOLO
8	P	ANALISI DEI CARICHI
8	3.1	AZIONI DI CALCOLO
		PESO PROPRIO DELLA STRUTTURA
8	3.3	SPINTA DEL CARICO VARIABILE STRADALE
8	3.4	SPINTA STATICA DEL TERRENO A MONTE DEL MURO
8	3.5	INCREMENTO DI SPINTA SUL MURO DOVUTO AL SISMA
8		AZIONE DEI VEICOLI IN SVIO
9	١	/ERIFICHE GEOTECNICHE E STRUTTURALI18
9	9.1	METODO DI CULMANN
		VERIFICA AL RIBALTAMENTO
		VERIFICA ALLO SCORRIMENTO
		CAPACITÀ PORTANTE DEL TERRENO DI FONDAZIONE
		VERIFICA DI STABILITÀ GLOBALE
		VERIFICA STABILITÀ DELLO SCAVO
9	9.7	VERIFICHE STRUTTURALI DEL MURO

Collegamento viario compreso tra lo Svincolo della S.S. 514 di "Chiaramonte" con la S.S. 115 e lo Svincolo della "Ragusana"

PROGETTO ESECUTIVO

RELAZIONE DI CALCOLO

10	MURO D	I SOSTEGNO OS07 DA PK 9+890.95 A 10+145.45	25
10	0.1 SEZION	E 1: PARAMENTO H=3.5 M	25
	10.1.1	Dati	26
	10.1.2	Dati sismici	32
	10.1.3	Opzioni di calcolo	32
	10.1.4	Risultati per inviluppo	34
	10.1.5	Dettagli calcolo portanza	36
	10.1.6	Dettagli strisce verifiche stabilità	37
	10.1.7	Elenco ferri	51
11	STABILIT	À DELLO SCAVO PROVVISORIO	52

PROGETTO ESECUTIVO

RELAZIONE DI CALCOLO

1 PREMESSA

La presente relazione ha per oggetto il calcolo ed il dimensionamento del muro OS07 previsto relativo alla progettazione del Lotto 4 del "Collegamento autostradale Ragusa-Catania: ammodernamento a n° 4 corsie della s.s. 514 di Chiaramonte" e della "s.s. 194 ragusana dallo svincolo con la s.s. 115 allo svincolo con la s.s. 114"

Il muro si sviluppa dalla progressiva pk 9+890.95 a pk 10+145.45.

Le azioni considerate nel calcolo sono quelle tipiche di una struttura interrata determinate dall'interazione terreno – struttura con l'aggiunta delle azioni sismiche derivanti dall'applicazione della Normativa D.M. del 14 gennaio 2008 – Norme tecniche per le costruzioni. Le verifiche eseguite nel presente elaborato fanno riferimento allo stesso D.M. del 2008.

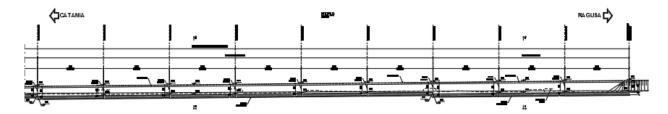


Figura 1. Profilo longitudinale



Figura 2. Profilo longitudinale

MANDATARIA:

RELAZIONE DI CALCOLO

MURO TIPO 2 - SEZIONE TIPO

Scala 1:100

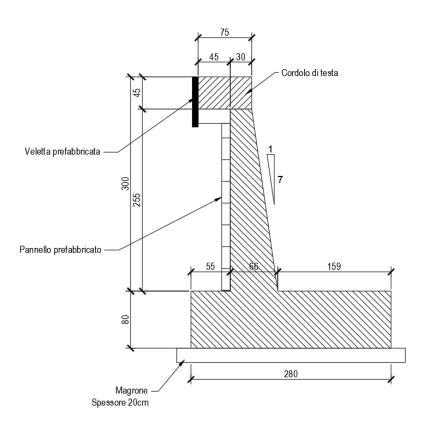


Figura 3: sezione trasversale dell'opera

RELAZIONE DI CALCOLO

2 NORMATIVA DI RIFERIMENTO

Il progetto è stato redatto sulla base delle seguenti normative e standard progettuali:

- D.M. 14 gennaio 2008 pubblicato su S.O. n. 30 alla G.U. 4 febbraio 2008, n. 29 "Approvazione delle nuove norme tecniche per le costruzioni";
- Circolare n.ro 617 del 2 febbraio 2009 "Istruzioni per l'applicazione delle Nuove Norme tecniche per le costruzioni di cui al decreto ministeriale 14 gennaio 2008";
- UNI EN 1992-1-1:2005: "Eurocodice 2 Progettazione delle strutture di calcestruzzo parte 1 –
 Regole generali e regole per edifici";
- UNI EN 206-1 ottobre 2006 "Calcestruzzo: specificazione, prestazione, produzione e conformità";
- UNI EN 11104 marzo 2004 "Calcestruzzo: specificazione, prestazione, produzione e conformità",
 Istruzioni complementari per l'applicazione delle EN 206-1;

PROGETTO ESECUTIVO

RELAZIONE DI CALCOLO

3 **CARATTERISTICHE DEI MATERIALI**

Calcestruzzo per magrone

Classe di resistenza minima:	C _{min}	C12/15
------------------------------	------------------	--------

Elevazione muri

Conforme alla norma UNI EN 206-1/UNI 11104 cemento resistente ai solfati secondo UNI 9156	Classe di esposizione XA2	
Classe di resistenza minima:	C _{min}	C32/40
Classe di consistenza	S	S4
Dimensione max aggregati	D _{max}	25 mm
Classe di contenuto in cloruri	Cl	0.20
Copriferro	С	40

Fondazioni

Conforme alla norma UNI EN 206-1/UNI 11104	Classe di esposizione		
cemento resistente ai solfati secondo UNI 9156		XA2	
Classe di resistenza minima:	C _{min}	C32/40	
Classe di consistenza	S	S4	
Dimensione max aggregati	D _{max}	30 mm	
Classe di contenuto in cloruri	Cl	0.20	
Copriferro	С	40	

PROGETTO ESECUTIVO

RELAZIONE DI CALCOLO

<u>Pali</u>

Conforme alla norma UNI EN 206-1/UNI 11104 cemento resistente ai solfati secondo UNI 9156	Classe di esposizione XA2	
Classe di resistenza minima:	C _{min}	C32/40
Classe di consistenza	S	\$4
Dimensione max aggregati	D _{max}	25 mm
Classe di contenuto in cloruri	Cl	0.20
Copriferro	С	60

Armatura ordinaria

Acciaio per armatura ordinaria:						
Acciaio in barre ad aderenza miglioara tipo B450C controllato in stabilimento:						
Tensione caratteristica di snervamento	f_{yk}	≥ 450 N/mm²				
Tensione caratteristica di rottura:	f _{tk}	≥ 540 N/mm²				

MANDATARIA:

7 di 52

PROGETTO ESECUTIVO

RELAZIONE DI CALCOLO

Berlinesi di micropali per opere provvisionali

Calcestruzzo: (Conforme alla norma UNI EN 206-1/UNI 11104)						
Classe di resistenza minima:	C _{min}	C25/30				
Classe di consistenza	S	\$5				
Acciaio per carpenteria metallica: (Secondo norma UNI EN 10025)						
Acciaio per micropali - S355J0:						
Tensione caratteristica di snervamento	f _{yk}	≥ 355 N/mm ²				
Tensione caratteristica di rottura:	f _{tk}	≥ 510 N/mm ²				
Profili commerciali ed elementi non saldati - S275:						
Tensione caratteristica di snervamento	f _{yk}	≥ 275 N/mm²				
Tensione caratteristica di rottura:	f _{tk}	≥ 430 N/mm ²				
Calcestruzzo spruzzato (spritz-beton): (Conforme alla norma UNI EN 206-1/UNI 11104)						
Classe di resistenza minima:	C _{min}	C25/30				
Classe di consistenza	S	S 5				
Acciaio per rete elettrosaldata:						
Acciaio in barre ad aderenza miglioara tipo B450A controllato in stabilimento:						
Tensione caratteristica di snervamento $f_{yk} \ge 450 \text{ N/mm}^2$						
Tensione caratteristica di rottura: f _{tk} ≥ 540 N/mm²						

PROGETTO ESECUTIVO

RELAZIONE DI CALCOLO

Tiranti di ancoraggio provvisionali

Boiacca di cemento: (Conforme alla norma UNI EN 206-1/UNI 11104)						
Classe di resistenza minima: C _{min} C25/30						
Cemento tipo CEM II / A - L 42.5 R						
Acciaio armonico stabilizzato per trefoli:						
Tensione caratteristica di rottura	f_{ptk}	≥ 1860 N/mm ²				
Tensione caratteristica all'1% di deformazione tot	f _{p(1)k}	≥ 1670 N/mm²				

PROGETTO ESECUTIVO

RELAZIONE DI CALCOLO

CARATTERIZZAZIONE GEOTECNICA

Si riportano i parametri di resistenza e deformabilità assunti nel calcolo in accordo con i risultati dei sondaggi riportati nella relazione geotecnica.

Unità geologiche	descrizione	Unità geotecniche	litotipo γ	γ	c'	φ'
Unità geologiche	descrizione Onita geotecniche	псопро	[kN/m ³]	[kPa]	[°]	
а	Alluvioni fluviali	a_fine	Alluvioni (grana fine)	18	10	26.5

Tabella 1: Caratterizzazione geotecnica

Di seguito le sezioni geotecniche di riferimento per l'opera in oggetto.

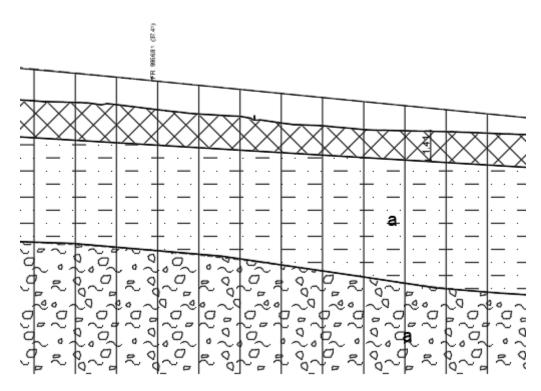


Figura 4: Sezioni geotecniche per l'opera in esame

L'opera non è interessata dalla falda.

PROGETTO ESECUTIVO

RELAZIONE DI CALCOLO

5 VITA NOMINALE, CLASSE D'USO E PERIODO DI RIFERIMENTO

La vita nominale di un'opera strutturale V_N è intesa come il numero di anni nel quale la struttura, purché soggetta alla manutenzione ordinaria, deve potere essere usata per lo scopo al quale è destinata.

La costruzione in oggetto è classificabile, secondo il DM 2008, come "Opera ordinaria, ponti, opere infrastrutturali e dighe di dimensioni contenute o di importanza normale", per la quale viene prevista una vita nominale ≥ 50 anni.

In presenza di azioni sismiche, con riferimento alle conseguenze di una interruzione di operatività o di un eventuale collasso, la costruzione è definita di Classe IV, ossia afferente a " Costruzioni con funzioni pubbliche o strategiche importanti, anche con riferimento alla gestione della protezione civile in caso di calamità. Industrie con attività particolarmente pericolose per l'ambiente. Reti viarie di tipo A o B, di cui al D.M. 5 novembre 2001, n.6792, "Norme funzionali e geometriche per la costruzione delle strade", e di tipo C quando appartenenti ad itinerari di collegamento tra capoluoghi di provincia non altresì serviti da strade di tipo A o B. Ponti e reti ferroviarie di importanza critica per il mantenimento delle vie di comunicazione, particolarmente dopo un evento sismico. Dighe connesse al funzionamento di acquedotti e a impianti di produzione di energia elettrica."

In virtù di quanto affermato, il periodo di riferimento per la valutazione delle azioni sismiche risulta dal prodotto della vita nominale per la classe d'uso:

$$V_R = V_N \cdot C_U = 50 \cdot 2.0 = 100$$
 anni,

cui compete un valore del tempo di ritorno pari a:

$$T_R = -\frac{V_R}{\ln(1 - P_{V_-})} = -\frac{100}{\ln(1 - 0.10)} = 949$$
 anni.

MANDATARIA:

Collegamento viario compreso tra lo Svincolo della S.S. 514 di "Chiaramonte" con la S.S. 115 e lo Svincolo della "Ragusana"

PROGETTO ESECUTIVO

RELAZIONE DI CALCOLO

6 AZIONE SISMICA DI RIFERIMENTO

Per la caratterizzazione dell'azione sismica sull' opera si è fatto riferimento alle seguenti coordinate geografiche:

Longitudine 15°0'48"24 E
Latitudine 37°16'14"16 N
Comune: Carlentini (SI)

Si riporta di seguito il riepilogo della caratterizzazione sismica del territorio, i valori delle accelerazioni di picco e gli altri parametri necessari alla definizione degli spettri di progetto, per i diversi stati limiti da analizzare:

- vita nominale V_N = 50 anni
- classe d'uso IV
- coefficiente d'uso $C_U = 2.0$
- periodo di riferimento per l'azione sismica $V_R = V_N \times C_U = 100$ anni

Tabella 6.1: Parametri sismici per la definizione dello spettro di progetto.

Per le analisi in condizioni sismiche si riferisce ai seguenti parametri:

PROGETTO ESECUTIVO

RELAZIONE DI CALCOLO

7 **METODO DI CALCOLO**

L'analisi strutturale del muro di sostegno a fondazione diretta è stata condotta attraverso modelli di calcolo a mensola con incastro nella platea di fondazione (analisi del paramento) e con incastro nel paramento (analisi della fondazione lato valle e lato monte). Vista la geometria dell'opera a prevalente sviluppo longitudinale e le condizioni al contorno, le analisi e verifiche sono state effettuate prendendo in considerazione una porzione di muro corrispondente ad una larghezza unitaria.

Si riporta inoltre di seguito una breve sintesi della procedura proposta per il calcolo delle spinte orizzontali agenti sulla parete dell'opera di sostegno e delle azioni verticali agenti sulla zattera di fondazione.

7.1 **COMBINAZIONI DI CARICO**

Per le verifiche dei muri sono state considerate le sollecitazioni risultanti dalle azioni applicate direttamente sull'opera proveniente dalla spinta delle terre e gli eventuali carichi dovuti al traffico.

Le combinazioni di calcolo sono state effettuata secondo quanto disposto dal D. M. 14.01. 2008; in particolare sono state considerate:

combinazione fondamentale (SLU):

$$\gamma_{G1} \cdot G_1 + \gamma_{G2} \cdot G_2 + \gamma_p \cdot P + \gamma_{O1} \cdot Q_{k1} + \gamma_{O2} \cdot \psi_{O2} \cdot Q_{k2} + \gamma_{O3} \cdot \psi_{O3} \cdot Q_{k3} + \dots$$

combinazione sismica:

$$E + G_1 + G_2 + P + \psi_{21} \cdot Q_{k1} + \psi_{22} \cdot Q_{k2} + \dots$$

combinazione Frequente (SLE reversibile):

$$G_1 + G_2 + P + \psi_{11} \cdot Q_{k1} + \psi_{22} \cdot Q_{k2} + \psi_{23} \cdot Q_{k3} + \dots$$

combinazione quasi permanente (SLE per gli effetti a lungo termine):

$$G_1 + G_2 + P + \psi_{21} \cdot Q_{k1} + \psi_{22} \cdot Q_{k2} + \psi_{23} \cdot Q_{k3} + ...$$

La normativa prevede che i diversi set di coefficienti di sicurezza parziali siano scelti nell'ambito di due approcci progettuali distinti ed alternativi definiti, rispettivamente, dalla normativa: "Approccio 1" ed "Approccio 2".

Nella presente progettazione si è adottato l'Approccio 1 che prevede due diverse combinazioni di set di coefficienti: la prima combinazione risulta più severa nei confronti del dimensionamento strutturale delle opere a contatto con il terreno; la seconda combinazione risulta più gravosa nei riguardi del dimensionamento geotecnico. Le combinazioni sono le seguenti:

Combinazione 1: A1+M1+R1 (STR) Combinazione 2: A2+M2+R2 (GEO).

Le verifiche geotecniche nei confronti delle azioni sismiche sono effettuate impiegando i parametri geotecnici e le resistenze di progetto con i valori dei coefficienti parziali dell'Approccio 1, Combinazione 2 e ponendo pari all'unità i coefficienti parziali sulle azioni.

PROGETTO ESECUTIVO

RELAZIONE DI CALCOLO

I coefficienti parziali di sicurezza delle azioni, adottati nelle combinazioni, sono differenti a seconda che le azioni si debbano combinare per verifiche strutturali o geotecniche (rispettivamente A1, A2 e

		Coefficiente parziale γ _F	EQU ¹	A1 (STR)	A2 (GEO)
carichi permanenti	favorevoli		0.90	1.00	1.00
canoni permanenti	sfavorevoli	γ _{G1}	1.10	1.35	1.00
carichi perm. non	favorevoli		0.00	0.00	0.00
strutturali 2	sfavorevoli	γ _{G2}	1.50	1.50	1.30
carichi da traffico	favorevoli		0.00	0.00	0.00
cancili da traffico	sfavorevoli	γα	1.35	1.35	1.15
carichi variabili	favorevoli		0.00	0.00	0.00
Caricili valiabili	sfavorevoli	γQi	1.50	1.50	1.30
distorsioni e	favorevoli		0.90	1.00	1.00
presollecitazioni di progetto	sfavorevoli	γε1	1.00 ³	1.00 ⁴	1.00
ritiro, viscosità, ∆T,	favorevoli		0.00	0.00	0.00
cedimenti vincolari	sfavorevoli	γ _{ε2} , γ _{ε3} , γ _{ε4} ,	1.20	1.20	1.00

¹ se l'equilibrio non coinvolge il terreno, altrimenti si applica GEO

EQU).

Tabella 2. Coefficienti parziali di sicurezza per le azioni

Ai fini delle verifiche delle fondazioni, sono definiti dei coefficienti parziali per i parametri geotecnici (M1 ed M2) riassunte di seguito:

		Coefficiente parziale γ _M	M1	M2
Tangente dell'angolo di resistenza al taglio	$\underset{\phi'_k}{\text{tang}}$	γ_{ϕ} .	1.0	1.25
Coesione efficace	C' _k	γ _{c'}	1.0	1.25
Resistenza non drenata	Cuk	γου	1.0	1.4
Peso dell'unità di volume	γ	γγ	1.0	1.0

Tabella 3. Coefficienti parziali di sicurezza per i parametri geotecnici

Le opere in oggetto presentano una fondazione diretta, per cui deve essere effettuata la verifica di equilibrio di corpo rigido (EQU).

SOFTWARE DI CALCOLO 7.2

Le verifiche geotecniche e strutturali dell'opera di sostegno sono state eseguite mediante il software MAX 15 sviluppato da Aztec.

² se risultano compiutamente definiti si possono considerare permanenti

³ 1.30 per instabilità delle strutture precompresse

⁴ 1.20 per effetti locali

PROGETTO ESECUTIVO

RELAZIONE DI CALCOLO

8 ANALISI DEI CARICHI

8.1 AZIONI DI CALCOLO

Il calcolo è stato condotto tenendo conto delle seguenti azioni agenti sull'opera:

- peso proprio della struttura;
- peso del terreno a monte dell'opera;
- spinta del carico variabile stradale;
- spinte del terreno a monte dell'opera;
- incremento di spinta sismica del terreno a tergo del muro;
- forze di inerzia della struttura e del terreno solidale con l'opera.

Le azioni suddette vengono di seguito esplicitate.

8.2 **PESO PROPRIO DELLA STRUTTURA**

Il peso dei vari elementi strutturali sono stati calcolato considerando:

Peso specifico calcestruzzo $\gamma_{cls} = 25 \text{ kN/m}^3$

Il terreno preso in considerazione è il terreno gravante sulla platea di fondazione a monte, costituito dal materiale di riempimento il cui peso per unità di volume è pari a γ_t = 19 kN/m³.

8.3 SPINTA DEL CARICO VARIABILE STRADALE

Intendendo per q il carico variabile per metro lineare di proiezione orizzontale, si determina la spinta orizzontale sulla parete come risultante delle pressioni orizzontali in ogni concio, calcolate come:

$$\sigma_h = q \cdot K$$

Nella progettazione in oggetto, si considera un sovraccarico stradale pari a 20 kN/m².

8.4 SPINTA STATICA DEL TERRENO A MONTE DEL MURO

La teoria di Coulomb considera l'ipotesi di un cuneo di spinta a monte dell'opera che si muove rigidamente lungo una superficie di rottura rettilinea. Dall'equilibrio del cuneo si ricava la spinta che il terreno esercita sull'opera di sostegno. In particolare Coulomb ammette l'esistenza di attrito fra il terreno e la parete, e quindi la retta di spinta risulta inclinata rispetto alla normale alla parete stesso di un angolo di attrito terra-parete.

L'espressione della spinta esercitata da un terrapieno, di peso di volume γ , su una parete di altezza H, risulta espressa secondo la teoria di Coulomb dalla seguente relazione (per terreno incoerente).

PROGETTO ESECUTIVO RELAZIONE DI CALCOLO

$$S = \frac{1}{2} \cdot \gamma \cdot H^2 \cdot K_a$$

Ka rappresenta il coefficiente di spinta attiva di Coulomb nella versione riveduta da Muller-Breslau, espresso come

$$Ka = \frac{\sin^{2}(\beta + \varphi)}{\sin^{2}\beta \cdot \sin(\beta - \delta) \cdot \left[1 + \left(\frac{\sin(\varphi + \delta) \cdot \sin(\varphi - \varepsilon)}{\sin(\beta - \delta) \cdot \sin(\beta + \varepsilon)}\right)^{0.5}\right]^{2}}$$

dove ϕ è l'angolo d'attrito del terreno, β rappresenta l'angolo che la parete forma con l'orizzontale (β = 90° per parete verticale), δ è l'angolo d'attrito terreno-muro, ϵ è l'inclinazione del terrapieno rispetto all'orizzontale.

La spinta risulta inclinata dell'angolo d'attrito terreno-muro δ rispetto alla normale al muro.

Il diagramma delle pressioni del terreno sulla parete risulta triangolare con il vertice in alto. Il punto di applicazione della spinta si trova in corrispondenza del baricentro del diagramma delle pressioni (1/3 H rispetto alla base della parete).

INCREMENTO DI SPINTA SUL MURO DOVUTO AL SISMA 8.5

In condizioni sismiche l'entità e la distribuzione delle spinte del terreno sul muro dipendono dall'intensità del sisma, dalla risposta locale del terreno di fondazione e dalla deformabilità dell'opera.

Per tener conto dell'incremento di spinta dovuta al sisma si fa riferimento al metodo di Mononobe-Okabe (cui fa riferimento la Normativa Italiana).

La Normativa Italiana suggerisce di tener conto di un incremento di spinta dovuto al sisma nel modo seguente.

Detta ε l'inclinazione del terrapieno rispetto all'orizzontale e β l'inclinazione della parete rispetto alla verticale, si calcola la spinta S' considerando un'inclinazione del terrapieno e della parte pari a

$$\epsilon^{'} = \epsilon + \theta \qquad \beta^{'} = \beta + \theta$$

dove $\theta = \operatorname{arctg}(k_h/(1\pm k_v))$ essendo k_h il coefficiente sismico orizzontale e k_v il coefficiente sismico verticale, definito in funzione di kh.

In presenza di falda a monte, θ assume le seguenti espressioni:

Terreno a bassa permeabilità

$$\theta = \arctan\left(\frac{\gamma_{sat}}{\gamma_{sat} - \gamma_{w}} \frac{k_{h}}{1 + k_{v}}\right)$$

Terreno a permeabilità elevata

$$\theta = \arctan\left(\frac{\gamma}{\gamma_{sat} - \gamma_w} \frac{k_h}{1 \pm k_v}\right)$$

MANDATARIA:

Collegamento viario compreso tra lo Svincolo della S.S. 514 di "Chiaramonte" con la S.S. 115 e lo Svincolo della "Ragusana"

PROGETTO ESECUTIVO

RELAZIONE DI CALCOLO

Detta S la spinta calcolata in condizioni statiche l'incremento di spinta da applicare è espresso da

$$\Delta S = AS' - S$$

dove il coefficiente A vale

$$A = \frac{\cos^2(\beta + \theta)}{\cos^2\beta\cos\theta}$$

In presenza di falda a monte, nel coefficiente A si tiene conto dell'influenza dei pesi di volume nel calcolo di θ .

Adottando il metodo di Mononobe-Okabe per il calcolo della spinta, il coefficiente A viene posto pari a 1.

Tale incremento di spinta è applicato a metà altezza della parete di spinta nel caso di forma rettangolare del diagramma di incremento sismico, allo stesso punto di applicazione della spinta statica nel caso in cui la forma del diagramma di incremento sismico è uguale a quella del diagramma statico.

Oltre a questo incremento bisogna tener conto delle forze d'inerzia orizzontali e verticali che si destano per effetto del sisma. Tali forze vengono valutate come

$$F_{iH} = k_h W$$
 $F_{iV} = \pm k_v W$

dove W è il peso del muro, del terreno soprastante la mensola di monte ed i relativi sovraccarichi e va applicata nel baricentro dei pesi.

Il metodo di Culmann tiene conto automaticamente dell'incremento di spinta. Basta inserire nell'equazione risolutiva la forza d'inerzia del cuneo di spinta. La superficie di rottura nel caso di sisma risulta meno inclinata della corrispondente superficie in assenza di sisma.

8.6 AZIONE DEI VEICOLI IN SVIO

L'azione di svio dei veicoli è stata considerata secondo le indicazioni fornite al punto 3.6.3.3.2 del DM 14/01/2008, nel quale si dichiara che in assenza di dati specifici "si può tener conto delle forze causate da collisioni accidentali sugli elementi di sicurezza attraverso una forza orizzontale equivalente di collisione di 100 kN". La forza, agente nel piano orizzontale in direzione trasversale a quella di sviluppo del muro, è stata considerata applicata alla quota di 1.0 m dal piano di marcia, equivalenti a 0.90 m da estradosso cordolo.

Considerando che per determinare la sezione resistente di paramento è lecito diffondere tale forza in direzione verticale con inclinazione di 45° , e che il muro di sostegno più basso ha paramento alto circa $2.0\,$ m, risulta che la larghezza collaborante per la forza di normativa sia pari a $4\,$ m. L'azione da considerare nelle verifiche risulta pertanto pari a $100/4 = 25\,$ kN.

A favore di sicurezza, l'entità di tale azione è stata mantenuta invariata anche nel calcolo dei muri di sostegno di maggiore altezza.

MANDATARIA:

Collegamento viario compreso tra lo Svincolo della S.S. 514 di "Chiaramonte" con la S.S. 115 e lo Svincolo della "Ragusana"

PROGETTO ESECUTIVO

RELAZIONE DI CALCOLO

9 VERIFICHE GEOTECNICHE E STRUTTURALI

Il presente paragrafo illustra i criteri generali di verifica adottati per le verifiche geotecniche e strutturali condotte nel progetto. Ulteriori dettagli di carattere specifico, laddove impiegati, sono dichiarati e motivati nelle relative risultanze delle verifiche. Tutte le tipologie di muro sono state verificate: i singoli calcoli hanno riguardato quelle sezioni trasversali che in generale appaiono più onerose nei confronti delle singole verifiche (altezze massime) e quelle più rappresentative.

9.1 METODO DI CULMANN

Il metodo di Culmann adotta le stesse ipotesi di base del metodo di Coulomb. La differenza sostanziale è che mentre Coulomb considera un terrapieno con superficie a pendenza costante e carico uniformemente distribuito (il che permette di ottenere una espressione in forma chiusa per il coefficiente di spinta) il metodo di Culmann consente di analizzare situazioni con profilo di forma generica e carichi sia concentrati che distribuiti comunque disposti. Inoltre, rispetto al metodo di Coulomb, risulta più immediato e lineare tener conto della coesione del masso spingente. Il metodo di Culmann, nato come metodo essenzialmente grafico, si è evoluto per essere trattato mediante analisi numerica (noto in questa forma come metodo del cuneo di tentativo). Come il metodo di Coulomb anche questo metodo considera una superficie di rottura rettilinea.

I passi del procedimento risolutivo sono i seguenti:

- si impone una superficie di rottura (angolo di inclinazione 🛽 rispetto all'orizzontale) e si considera il cuneo di spinta delimitato dalla superficie di rottura stessa, dalla parete su cui si calcola la spinta e dal profilo del terreno;
- si valutano tutte le forze agenti sul cuneo di spinta e cioè peso proprio (W), carichi sul terrapieno, resistenza per attrito e per coesione lungo la superficie di rottura (R e C) e resistenza per coesione lungo la parete (A);
 - dalle equazioni di equilibrio si ricava il valore della spinta S sulla parete.

Questo processo viene iterato fino a trovare l'angolo di rottura per cui la spinta risulta massima.

La convergenza non si raggiunge se il terrapieno risulta inclinato di un angolo maggiore dell'angolo d'attrito del terreno.

Nei casi in cui è applicabile il metodo di Coulomb (profilo a monte rettilineo e carico uniformemente distribuito) i risultati ottenuti col metodo di Culmann coincidono con quelli del metodo di Coulomb.

Le pressioni sulla parete di spinta si ricavano derivando l'espressione della spinta S rispetto all'ordinata z. Noto il diagramma delle pressioni è possibile ricavare il punto di applicazione della spinta.

9.2 VERIFICA AL RIBALTAMENTO

La verifica al ribaltamento si effettua in sostanza come equilibrio alla rotazione di un corpo rigido sollecitato da un sistema di forze, ciascuna delle quali definita da un'intensità, una direzione e un punto di applicazione.

Le forze che vengono prese in conto sono le seguenti:

Spinta attiva complessiva del terrapieno a monte.

Collegamento viario compreso tra lo Svincolo della S.S. 514 di "Chiaramonte" con la S.S. 115 e lo Svincolo della "Ragusana"

PROGETTO ESECUTIVO

RELAZIONE DI CALCOLO

- Spinta passiva complessiva del terrapieno a valle.
- Spinta idrostatica dell'acqua della falda a monte, a valle e sul fondo.
- Forze esplicite applicate sul muro in testa, sulla mensola area a valle e sulla mensola di fondazione a valle.
- Peso proprio del muro composto con l'eventuale componente sismica.
- Peso proprio della parte di terrapieno solidale con il muro composto con l'eventuale componente sismica.

Di ciascuna di queste forze verrà calcolato il momento, ribaltante o stabilizzante, rispetto ad un punto che è quello più in basso dell'estremità esterna della fondazione a valle.

Ai fini del calcolo del momento stabilizzante o ribaltante, esso per ciascuna forza è ottenuto dal prodotto dell'intensità della forza per la distanza minima tra la linea d'azione della forza e il punto di rotazione.

Il coefficiente di sicurezza al ribaltamento è dato dal rapporto tra il momento stabilizzante complessivo e quello ribaltante.

Deve quindi essere verificata la seguente diseguaglianza:

$$\frac{M_s}{M_r} \ge \eta_r$$

Il momento ribaltante M_r è dato dalla componente orizzontale della spinta S, dalle forze di inerzia del muro e del terreno gravante sulla fondazione di monte (caso di presenza di sisma) per i rispettivi bracci. Nel momento stabilizzante interviene il peso del muro (applicato nel baricentro) ed il peso del terreno gravante sulla fondazione di monte. Per quanto riguarda invece la componente verticale della spinta essa sarà stabilizzante se l'angolo d'attrito terra-muro δ è positivo, ribaltante se δ è negativo. δ è positivo quando è il terrapieno che scorre rispetto al muro, negativo quando è il muro che tende a scorrere rispetto al terrapieno (questo può essere il caso di una spalla da ponte gravata da carichi notevoli). Se sono presenti dei tiranti essi contribuiscono al momento stabilizzante.

Questa verifica ha significato solo per fondazione superficiale e non per fondazione su pali.

9.3 VERIFICA ALLO SCORRIMENTO

Per la verifica a scorrimento del muro lungo il piano di fondazione deve risultare che la somma di tutte le forze parallele al piano di posa che tendono a fare scorrere il muro deve essere minore di tutte le forze, parallele al piano di scorrimento, che si oppongono allo scivolamento, secondo un certo coefficiente di sicurezza. La verifica a scorrimento sisulta soddisfatta se il rapporto fra la risultante delle forze resistenti allo scivolamento F_r e la risultante delle forze che tendono a fare scorrere il muro F_s risulta maggiore di un determinato coefficiente di sicurezza η_s

MANDATARIA:

PROGETTO ESECUTIVO

RELAZIONE DI CALCOLO

$$\frac{F_r}{F_s} \ge \eta_s$$

Le forze che intervengono nella Fs sono: la componente della spinta parallela al piano di fondazione e la componente delle forze d'inerzia parallela al piano di fondazione.

La forza resistente è data dalla resistenza d'attrito e dalla resistenza per adesione lungo la base della fondazione. Detta N la componente normale al piano di fondazione del carico totale gravante in fondazione e indicando con df l'angolo d'attrito terreno-fondazione, con ca l'adesione terrenofondazione e con Br la larghezza della fondazione reagente, la forza resistente può esprimersi come

$$F_r = N \tan \delta_f + c_a B_r$$

Nel caso di fondazione con dente, viene calcolata la resistenza passiva sviluppatasi lungo il cuneo passante per lo spigolo inferiore del dente, inclinato dell'angolo ρ (rispetto all'orizzontale). Tale cuneo viene individuato attraverso un procedimento iterativo. In dipendenza della geometria della fondazione e del dente, dei parametri geotecnici del terreno e del carico risultante in fondazione, tale cuneo può avere forma triangolare o trapezoidale. Detta N la componente normale del carico agente sul piano di posa della fondazione, Q l'aliquota di carico gravante sul cuneo passivo, Sp la resistenza passiva, Lc l'ampiezza del cuneo e indicando con δ_f l'angolo d'attrito terreno-fondazione, con c_a l'adesione terrenofondazione e con B_r la larghezza della fondazione reagente, la forza resistente può esprimersi come

$$F_r = (N - Q) \tan \delta_f S_p + c_a L_r$$

con

$$L_r = B_r - L_c$$

La Normativa consente di computare, nelle forze resistenti, una aliquota dell'eventuale spinta dovuta al terreno posto a valle del muro. In tal caso, però, il coefficiente di sicurezza deve essere aumentato opportunamente. L'aliquota di spinta passiva che si può considerare ai fini della verifica a scorrimento non può comunque superare il 50 percento.

Per quanto riguarda l'angolo d'attrito terra-fondazione, δ_f , diversi autori suggeriscono di assumere un valore di δ_f pari all'angolo d'attrito del terreno di fondazione.

9.4 CAPACITÀ PORTANTE DEL TERRENO DI FONDAZIONE

Il rapporto fra il carico limite in fondazione e la componente normale della risultante dei carichi trasmessi dal muro sul terreno di fondazione deve essere superiore a η_q. Cioè, detto Q_u, il carico limite ed R la risultante verticale dei carichi in fondazione, deve essere:

$$\frac{Q_u}{R} \geq \eta_q$$

Si adotta per il calcolo del carico limite in fondazione il metodo di MEYERHOF.

MANDATARIA:

PROGETTO ESECUTIVO

RELAZIONE DI CALCOLO

L'espressione del carico ultimo è data dalla relazione:

$$q_{ij} = cN_c s_c d_c i_c + qN_q s_q d_q i_q + 0.5B\gamma N_\gamma s_\gamma d_\gamma i_\gamma$$

In questa espressione:

- coesione del terreno in fondazione
- angolo di attrito del terreno in fondazione
- peso di volume del terreno in fondazione γ
- В larghezza della fondazione
- D profondità del piano di posa
- pressione geostatica alla quota del piano di posa q
- Ν fattori di capacità portante
- d fattori di profondità del piano di posa
- fattori di inclinazione del carico

Fattori di capacità portante		$N_c = \left(N_q - 1\right)\cot\phi$	$N_q = e^{\pi \tan \phi} K_p$	$N_{\gamma} = (N_{q} - 1) \tan(1.4\phi)$
Fattori di forma	$\varphi = 0$	$s_c = 1 + 0.2K_p \frac{B'}{I'}$	$s_{ m q}=1$	$s_{\gamma} = 1$
	φ > 0	$s_c = 1 + 0.2K_p \frac{B'}{L'}$	$s_q = 1 + 0.1 K_p \frac{B'}{L'}$	$s_{\gamma}=1+0.1K_{p}\frac{B'}{L'}$
Fattori di profondità	$\varphi = 0$	$d_c = 1 + 0.2 \frac{D}{B} \sqrt{K_p}$	$d_q = 1$	$d_{\gamma} = 1$
	φ > 0	$d_c = 1 + 0.2 \frac{D}{B} \sqrt{K_p}$	$d_{\rm q}=1+0.1\frac{D}{B}\sqrt{K_p}$	$d_{\gamma} = 1 + 0.1 \frac{D}{B} \sqrt{K_p}$
Fattori di inclinazione del carico	$\varphi = 0$	$i_c = \left(1 - \frac{\theta^{\circ}}{90^{\circ}}\right)^2$	$i_q = \left(1 - \frac{\theta^o}{90^o}\right)^2$	$i_{\gamma} = 0$
	φ > 0	$i_c = \left(1 - \frac{\theta^\circ}{90^\circ}\right)^2$	$i_q = \left(1 - \frac{\theta^o}{90^o}\right)^2$	$i_g = \left(1 - \frac{\theta^o}{\phi^o}\right)^2$

Indichiamo con K_P il coefficiente di spinta passiva espresso da:

$$K_p = \tan^2\left(45^\circ + \frac{\varphi}{2}\right)$$

Riduzione per eccentricità del carico

Nel caso in cui il carico al piano di posa della fondazione risulta eccentrico, Meyerhof propone di moltiplicare la capacità portante ultima per un fattore correttivo Re

$R_e = 1.0 - 2.0 \frac{e}{B}$	per terreni coesivi
$R_e = 1.0 - \sqrt{\frac{e}{R}}$	per terreni incoerenti

Collegamento viario compreso tra lo Svincolo della S.S. 514 di "Chiaramonte" con la S.S. 115 e lo Svincolo della "Ragusana" **PROGETTO ESECUTIVO**

RELAZIONE DI CALCOLO

con e eccentricità del carico e B la dimensione minore della fondazione.

Riduzione per effetto piastra

Per valori elevati di B (dimensione minore della fondazione), Bowles propone di utilizzare un fattore correttivo r_{γ} del solo termine sul peso di volume (0.5 B γ N $_{\gamma}$) quando B supera i 2 m.

$$r_{\gamma} = 1.0 + 0.25 \log \frac{B}{2.0}$$

Il termine sul peso di volume diventa:

$$0.5B\gamma N_{\gamma}r_{\gamma}$$

VERIFICA DI STABILITÀ GLOBALE

La verifica alla stabilità globale del complesso muro+terreno deve fornire un coefficiente di sicurezza non inferiore a η_g .

Viene usata la tecnica della suddivisione a strisce della superficie di scorrimento da analizzare. La superficie di scorrimento viene supposta circolare e determinata in modo tale da non avere intersezione con il profilo del muro. Si determina il minimo coefficiente di sicurezza su una maglia di centri di dimensioni 10x10 posta in prossimità della sommità del muro. Il numero di strisce è pari a 25.

Si adotta per la verifica di stabilità globale il metodo di Bishop.

Il coefficiente di sicurezza nel metodo di Bishop si esprime secondo la seguente formula:

$$\eta = \frac{\sum_{i=0}^{n} \left[\frac{c_i b_i + (W_i - u_i b_i) \tan \phi_i}{m} \right]}{\sum_{i=0}^{n} W_i \sin \alpha_i}$$

dove il termine m è espresso da

$$m = \left(1 + \frac{\tan \varphi_i \tan \alpha_i}{\eta}\right) \cos \alpha_i$$

In questa espressione n è il numero delle strisce considerate, b_i e α_i sono la larghezza e l'inclinazione della base della striscia i $_{esima}$ rispetto all'orizzontale, W_i è il peso della striscia i $_{esima}$, c_i e ϕ_i sono le caratteristiche del terreno (coesione ed angolo di attrito) lungo la base della striscia ed u_i è la pressione neutra lungo la base della striscia.

MANDATARIA:

RELAZIONE DI CALCOLO

L'espressione del coefficiente di sicurezza di Bishop contiene al secondo membro il termine m che è funzione di η . Quindi essa viene risolta per successive approssimazioni assumendo un valore iniziale per η da inserire nell'espressione di m ed iterare fin quando il valore calcolato coincide con il valore assunto.

9.6 VERIFICA STABILITÀ DELLO SCAVO

Per le verifiche di stabilità globale è stato utilizzato il modulo VSP di PARATIE PLUS 21.0.

Questo tipo di verifica prende in esame la configurazione di scavo nella fase generica, prescindendo dalla sequenza costruttiva precedente. Questa tecnica, infatti, appartiene all'ambito dei metodi dell'equilibrio limite che operano indipendentemente dal comportamento deformativo dell'opera, o meglio, che prescindono dalla successione temporale delle deformazioni reversibili e irreversibili sviluppatesi prima della configurazione esaminata.

Per la verifica è stato adottato il metodo rigoroso di **Morgenstern & Price**, appartenete alla famiglia dei metodi dell'equilibrio limite (LEM), basati sull'individuare una regione di terreno potenzialmente instabile, suddivisa in tanti conci verticali (*slices*) e mobilitata lungo una superficie di scorrimento. Questo metodo considera superfici di scorrimento di forma generica e ricerca il coefficiente di sicurezza associato ad una superficie imponendo le condizioni di equilibrio globale a traslazione e a rotazione. Queste ultime includono tutte le forze di interstriscia.

Al fine di rendere il problema staticamente determinato, si aggiungono (n-1) equazioni, ipotizzando che l'inclinazione delle forze tra i conci vari con la posizione x del concio, secondo una legge f(x) nota a meno di un moltiplicatore λ , introdotto come incognita aggiuntiva:

$$\frac{Xi}{Ei} = \lambda f(x)$$

Dove:

Xi: forza tangenziale agente sulla faccia i- esima del concio.

Ei: forza ortogonale alla faccia i-esima del concio.

λ: incognita.

f(x): funzione di forma che nel caso di M&P è sinusoidale.

La soluzione del problema è determinata mediante un processo iterativo.

Mediante la griglia quadrangolare dei centri definita nel programma, vengono considerate diverse superfici di scorrimento.

Infine, viene individuata la superficie di scorrimento più gravosa (superficie critica), ovvero quella tale per cui il coefficiente di sicurezza è minimo.

La stabilità è stata studiata nelle sole condizioni statiche, essendo lo scavo provvisorio, e sotto la combinazione dei coefficienti parziali A2+M2+R2.

La verifica risulterà soddisfatta se il coefficiente di sicurezza FS MIN≥ R2=1.1

MANDATARIA:

RELAZIONE DI CALCOLO

9.7 VERIFICHE STRUTTURALI DEL MURO

Le verifiche strutturali sono state eseguite allo SLU e allo SLE con riferimento alle azioni normali (sforzo N e momento flettente M) e alle azioni taglianti della combinazione di calcolo più gravosa ricavata dall'analisi geotecnica condotta sul muro.

Le verifiche sono state condotte sui seguenti elementi strutturali costituenti il muro:

Paramento verticale;

Zattera di fondazione.

PROGETTO ESECUTIVO

RELAZIONE DI CALCOLO

10 MURO DI SOSTEGNO OS07 DA PK 9+890.95 A 10+145.45

10.1 SEZIONE 1: PARAMENTO H=3.5 M

Si riportano i dati di input per la sezione in oggetto riferita al muro tipo 2.

MURO TIPO 2 - SEZIONE TIPO

Scala 1:100

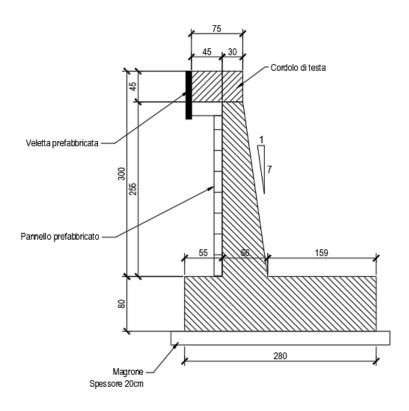


Fig. 1 - Sezione quotata del muro

Collegamento viario compreso tra lo Svincolo della S.S. 514 di "Chiaramonte" con la S.S. 115 e lo Svincolo della "Ragusana"

PROGETTO ESECUTIVO

RELAZIONE DI CALCOLO

10.1.1 Dati

<u>Materiali</u>

Simbologia adottata

Indice materiale Descrizione del materiale

<u>Calcestruzzo armato</u> C Classe di resistenza del cls Classe di resistenza dell'acciaio Peso specifico, espresso in [kN/mc]

Resistenza caratteristica a compressione, espressa in [kPa]

Modulo elastico, espresso in [kPa] Coeff. di Poisson F

Coeff. di omogenizzazione acciaio/cls Coeff. di omogenizzazione cls teso/compresso ntc

Calcestruzzo armato

n°	Descr	С	Α	γ	Rck	E	ν	n	ntc
				[kN/mc]	[kPa]	[kPa]			
1	C32/40	C32/40	B450C	24.5170	40000	33642648	0.30	15.00	0.50
2	Materiale tiranti	Rck 250	Precomp	24.5170	24517	30073438	0.30	15.00	0.50

Acciai

Descr	fyk	fuk
	[kPa]	[kPa]
B450C	450000	540000

Geometria profilo terreno a monte del muro

Simbologia adottata

(Sistema di riferimento con origine in testa al muro, ascissa X positiva verso monte, ordinata Y positiva verso l'alto)

numero ordine del punto

ascissa del punto espressa in [m]

ordinata del punto espressa in [m] inclinazione del tratto espressa in [°]

n°	X	Y	Α
	[m]	[m]	[°]
1	0.00	0.00	0.000
2	10.00	0.00	0.000

[°] Inclinazione terreno a valle del muro rispetto all'orizzontale 0.000

Geometria muro

Geometria paramento e fondazione

12.10	[m]
C32/40	
3.00	[m]
3.00	[m]
0.30	[m]
0.66	[m]
0.00	[°]
6.90	[°]
	C32/40 3.00 3.00 0.30 0.66 0.00

MANDANTI: MANDATARIA: 26 di 52

Realizzazione Lavori

Collegamento viario compreso tra lo Svincolo della S.S. 514 di "Chiaramonte" con la S.S. 115 e lo Svincolo della "Ragusana"

PROGETTO ESECUTIVO

RELAZIONE DI CALCOLO

<u>Fondazione</u>		
Materiale	C32/40	
Lunghezza mensola di valle	0.55	[m]
Lunghezza mensola di monte	1.59	[m]
Lunghezza totale	2.80	[m]
Inclinazione piano di posa	0.00	[°]
Spessore	0.80	[m]
Spessore magrone	0.00	[m]

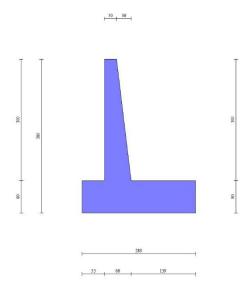


Fig. 1 - Sezione quotata del muro

PROGETTO ESECUTIVO

RELAZIONE DI CALCOLO

Descrizione terreni

Parametri di resistenza

Simbologia adottata

Indice del terreno Descrizione terreno

Peso di volume del terreno espresso in [kN/mc]
Peso di volume saturo del terreno espresso in [kN/mc]

Angolo d'attrito interno espresso in [°]

Angolo d'attrito terra-muro espresso in [°] Coesione espressa in [kPa]

ca Adesione terra-muro espressa in [kPa]

Per calcolo portanza con il metodo di Bustamante-Doix

Cesp Coeff. di espansione laterale (solo per il metodo di Bustamante-Doix)

Tensione tangenziale limite, espressa in [kPa]

n°	Descr	γ	γsat	•	δ	С	ca	Cesp	τΙ	
		[kN/mc]	[kN/mc]	[°]	[°]	[kPa]	[kPa]		[kPa]	
1	RILEVATO	19.0000	19.0000	35.000	23.330	0	0			
2	a fine	18.0000	18,0000	26,500	17.670	10	5			

Stratigrafia

Simbologia adottata

Indice dello strato n° H

Spessore dello strato espresso in [m] Inclinazione espressa in [°] Terreno Terreno dello strato

Per calcolo pali (solo se presenti)
Kw Costante di Winkler orizzontale espressa in Kg/cm²/cm
Ks Coefficiente di spinta
Cesp Coefficiente di espansione laterale (per tutti i metodi tranne il metodo di Bustamante-Doix)

Per calcolo della spinta con coeff. di spinta definiti (usati solo se attiva l'opzione 'Usa coeff. di spinta da strato') Kststa, Kstsis Coeff. di spinta statico e sismico

n°	Н	α	Terreno	Kw	Ks	Cesp	Kststa	Kstsis
	[m]	[°]		[Kg/cm³]				
1	3.80	0.000	RILEVATO				0.000	0.000
2	10.00	0.000	a_fine				0.000	0.000

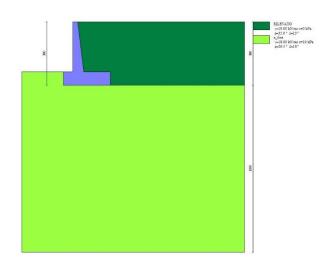


Fig. 2 - Stratigrafia

Collegamento viario compreso tra lo Svincolo della S.S. 514 di "Chiaramonte" con la S.S. 115 e lo Svincolo della "Ragusana"

PROGETTO ESECUTIVO

RELAZIONE DI CALCOLO

Condizioni di carico

Simbologia adottata

Carichi verticali positivi verso il basso. Carichi orizzontali positivi verso sinistra. Momento positivo senso antiorario.

- Ascissa del punto di applicazione del carico concentrato espressa in [m]
- Componente orizzontale del carico concentrato espressa in [kN] Componente verticale del carico concentrato espressa in [kN]
- Fy M
- Momento espresso in [kNm] Ascissa del punto iniziale del carico ripartito espressa in [m]
- Ascissa del punto finale del carico ripartito espressa in [m] Intensità del carico per x=Xi espressa in [kN]
- Xi Xf Qi Qf Intensità del carico per x=X_f espressa in [kN]

Condizione nº 1 (Condizione 1) - ECCEZIONALE

Carichi sul muro

n°	Tipo	Dest	X; Y	Fx	Fy	М	Χi	Χf	Qi	Qf
			[m]	[kN]	[kN]	[kNm]	[m]	[m]	[kN]	[kN]
1	Concentrato	Paramento	0.00; 0.00	25.0000	-2.0000	0.0000				

Carichi sul terreno

n°	Tipo	Х	Fx	Fy	М	Xi	Xf	Qi	Qf
		[m]	[kN]	[kN]	[kNm]	[m]	[m]	[kN]	[kN]
1	Distribuito					0.00	10.00	20.0000	20.0000

Normativa

Normativa usata: Norme Tecniche sulle Costruzioni 2008 (D.M. 14.01.2008) - Approccio 2 + Circolare C.S.LL.PP. 02/02/2009 n.617

Coeff. parziali per le azioni o per l'effetto delle azioni

Carichi	Effetto		Combinazioni statiche				Combii	nazioni sisn	niche	
			HYD	UPL	EQU	A1	A2	EQU	A1	A2
Permanenti strutturali	Favorevoli	γG1,fav	0.90	0.90	0.90	1.00	1.00	1.00	1.00	1.00
Permanenti strutturali	Sfavorevoli	γG1,sfav	1.30	1.10	1.10	1.30	1.00	1.00	1.00	1.00
Permanenti non strutturali	Favorevoli	γG2,fav	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Permanenti non strutturali	Sfavorevoli	γG2,sfav	1.50	1.50	1.50	1.50	1.30	1.00	1.00	1.00
Variabili	Favorevoli	γQ,fav	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Variabili	Sfavorevoli	γQ,sfav	1.50	1.50	1.50	1.50	1.30	1.00	1.00	1.00
Variabili da traffico	Favorevoli	γQT,fav	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Variabili da traffico	Sfavorevoli	VOT.sfav	1.50	1.50	1.35	1.35	1.15	1.00	1.00	1.00

Coeff. parziali per i parametri geotecnici del terreno

Parametro		Combinazio	ni statiche	Combinazioni sismiche		
		M1	M1 M2		M2	
Tangente dell'angolo di attrito	γtan(_φ ')	1.00	1.25	1.00	1.25	
Coesione efficace	γc'	1.00	1.25	1.00	1.25	
Resistenza non drenata	γcu	1.00	1.40	1.00	1.40	
Peso nell'unita di volume	γγ	1.00	1.00	1.00	1.00	

Coeff. parziali γ_R per le verifiche agli stati limite ultimi STR e GEO

Verifica	Com	Combinazioni statiche			binazioni sism	iche
	R1	R2	R3	R1	R2	R3
Capacità portante			1.40			1.20
Scorrimento			1.10			1.00
Resistenza terreno a valle			1.40			1.20
Ribaltameno			1.00			1.00
Stabilità fronte di scavo		1.10			1.20	

Descrizione combinazioni di carico

Con riferimento alle azioni elementari prima determinate, si sono considerate le seguenti combinazioni di carico:

- Combinazione fondamentale, impiegata per gli stati limite ultimi (SLU):

Collegamento viario compreso tra lo Svincolo della S.S. 514 di "Chiaramonte" con la S.S. 115 e lo Svincolo della "Ragusana"

PROGETTO ESECUTIVO

RELAZIONE DI CALCOLO

$$\gamma_{G1} G_1 + \gamma_{G2} G_2 + \gamma_{Q1} Q_{k1} + \gamma_{Q2} Q_{k2} + \gamma_{Q3} Q_{k3} + ...$$

- Combinazione caratteristica, cosiddetta rara, impiegata per gli stati limite di esercizio (SLE) irreversibili:

$$G_1\,+\,G_2\,+\,Q_{k1}\,+\,\Psi_{0,2}\;Q_{k2}\,+\,\Psi_{0,3}\;Q_{k3}\,+\,...$$

- Combinazione frequente, impiegata per gli stati limite di esercizio (SLE) reversibili:

$$G_1 \, + \, G_2 \, + \, \Psi_{1,1} \, \, Q_{k1} \, + \, \Psi_{2,2} \, \, Q_{k2} \, + \, \Psi_{2,3} \, \, Q_{k3} \, + \, \dots$$

- Combinazione quasi permanente, impiegata per gli effetti di lungo periodo:

$$G_1 \, + \, G_2 \, + \, \Psi_{2,1} \, \, Q_{k1} \, + \, \Psi_{2,2} \, \, Q_{k2} \, + \, \Psi_{2,3} \, \, Q_{k3} \, + \, ...$$

- Combinazione sismica, impiegata per gli stati limite ultimi connessi all'azione sismica E:

$$E + G_1 + G_2 + \Psi_{2,1} Q_{k1} + \Psi_{2,2} Q_{k2} + \Psi_{2,3} Q_{k3} + ...$$

- Combinazione eccezzionale, impiegata per gli stati limite ultimi connessi alle azioni eccezionali Ad:

$$G_1 + G_2 + A_d + \Psi_{2,1} \ Q_{k1} + \Psi_{2,2} \ Q_{k2} + \Psi_{2,3} \ Q_{k3} + \dots$$

I valori dei coeff. Ψ_{0,j}, Ψ_{1,j}, Ψ_{2,j} sono definiti nelle singole condizioni variabili.par I valori dei coeff. γ_G e γ_Q, sono definiti nella tabella normativa.

In particolare si sono considerate le seguenti combinazioni:

Simbologia adottata

Coefficiente di partecipazione della condizione Coefficiente di combinazione della condizione

Combinazione nº 1 - STR (A1-M1-R3)

Condizione	γ	Ψ	Effetto
Peso muro	1.00		Favorevole
Peso terrapieno	1.00		Favorevole
Spinta terreno	1.30		Sfavorevole

Combinazione nº 2 - STR (A1-M1-R3) H + V

Condizione	γ	Ψ	Effetto
Peso muro	1.00		Favorevole
Peso terrapieno	1.00		Favorevole
Spinta terreno	1.00		Sfavorevole

Combinazione nº 3 - STR (A1-M1-R3) H - V

Condizione	γ	Ψ	Effetto
Peso muro	1.00		Sfavorevole
Peso terrapieno	1.00		Sfavorevole
Spinta terreno	1.00		Sfavorevole

Combinazione nº 4 - STR (A1-M1-R3)

Condizione	γ	Ψ	Effetto
Peso muro	1.30		Sfavorevole
Peso terrapieno	1.30		Sfavorevole
Spinta terreno	1.30		Sfavorevole

Combinazione nº 5 - STR (A1-M1-R3)

Condizione	γ	Ψ	Effetto
Peso muro	1.00		Favorevole
Peso terrapieno	1.30		Sfavorevole
Spinta terreno	1 30		Sfavorevole

Combinazione nº 6 - STR (A1-M1-R3)

MANDATARIA:

30 di 52

Collegamento viario compreso tra lo Svincolo della S.S. 514 di "Chiaramonte" con la S.S. 115 e lo

Svincolo della "Ragusana" PROGETTO ESECUTIVO

RELAZIONE DI CALCOLO

Condizione	γ	Ψ	Effetto
Peso muro	1.30		Sfavorevole
Peso terrapieno	1.00		Favorevole
Spinta terreno	1.30		Sfavorevole

Combinazione nº 7 - GEO (A2-M2-R2)

Condizione	γ	Ψ	Effetto
Peso muro	1.00		Sfavorevole
Peso terrapieno	1.00		Sfavorevole
Spinta terreno	1.00		Sfavorevole

Combinazione nº 8 - GEO (A2-M2-R2) H + V

Condizione	γ	Ψ	Effetto
Peso muro	1.00		Sfavorevole
Peso terrapieno	1.00		Sfavorevole
Spinta terreno	1.00		Sfavorevole

Combinazione nº 9 - GEO (A2-M2-R2) H - V

Condizione	γ	Ψ	Effetto
Peso muro	1.00		Sfavorevole
Peso terrapieno	1.00		Sfavorevole
Spinta terreno	1.00		Sfavorevole

Combinazione nº 10 - EQU

Condizione	γ	Ψ	Effetto
Peso muro	0.90		Favorevole
Peso terrapieno	0.90		Favorevole
Spinta terreno	1.10		Sfavorevole

Combinazione nº 11 - EQU H + V

Condizione	γ	Ψ	Effetto
Peso muro	1.00		Favorevole
Peso terrapieno	1.00		Favorevole
Spinta terreno	1.00		Sfavorevole

Combinazione nº 12 - EQU H - V

Condizione	γ	Ψ	Effetto
Peso muro	1.00		Favorevole
Peso terrapieno	1.00		Favorevole
Spinta terreno	1.00		Sfavorevole

Combinazione nº 13 - ECC

Condizione	γ	Ψ	Effetto
Peso muro	1.00		Sfavorevole
Peso terrapieno	1.00		Sfavorevole
Spinta terreno	1.00		Sfavorevole
Condizione 1	1.00	1.00	Sfavorevole

Combinazione nº 14 - SLER

Condizione	γ	Ψ	Effetto
Peso muro	1.00		Sfavorevole
Peso terrapieno	1.00		Sfavorevole
Spinta terreno	1.00		Sfavorevole

Combinazione nº 15 - SLEF

Condizione	γ	Ψ	Effetto
Peso muro	1.00		Sfavorevole
Peso terrapieno	1.00		Sfavorevole
Spinta terreno	1.00		Sfavorevole

Combinazione nº 16 - SLEQ

Collegamento viario compreso tra lo Svincolo della S.S. 514 di "Chiaramonte" con la S.S. 115 e lo

Svincolo della "Ragusana"

PROGETTO ESECUTIVO

RELAZIONE DI CALCOLO

Condizione	γ	Ψ	Effetto
Peso muro	1.00		Sfavorevole
Peso terrapieno	1.00		Sfavorevole
Spinta terreno	1.00		Sfavorevole

Combinazione nº 17 - SLEQ H + V

Condizione	γ	Ψ	Effetto
Peso muro	1.00		Sfavorevole
Peso terrapieno	1.00		Sfavorevole
Spinta terreno	1.00		Sfavorevole

Combinazione nº 18 - SLEQ H - V

Condizione	γ	Ψ	Effetto
Peso muro	1.00		Sfavorevole
Peso terrapieno	1.00		Sfavorevole
Spinta terreno	1.00		Sfavorevole

10.1.2 Dati sismici

Comune Carlentini Provincia Siracusa Regione Sicilia Latitudine 37.273681 Longitudine 15.016039

Indice punti di interpolazione 48975 - 49197 - 49198 - 48976

Vita nominale 50 anni Classe d'uso

Tipo costruzione Normali affollamenti

Vita di riferimento 100 anni

	Simbolo	U.M.		SLU	SLE
Accelerazione al suolo	aq	[m/s ²]		3,610	0.628
Accelerazione al suolo	ag/g	[%]		0.368	0.064
Massimo fattore amplificazione spettro orizzontale	F0			2.266	2.512
Periodo inizio tratto spettro a velocità costante	Tc*			0.419	0.268
Tipo di sottosuolo - Coefficiente stratigrafico	Ss		В	1.066	1.200
Categoria topografica - Coefficiente amplificazione topografica	St		T1	1.000	

Stato limite	Coeff. di riduzione βm	kh	kv
Ultimo	0.310	12.161	6.080
Esercizio	0.180	1.383	0.692

Forma diagramma incremento sismico Rettangolare

10.1.3 Opzioni di calcolo

Spinta

Metodo di calcolo della spinta Coeff. di spinta definiti da strato

Tipo di spinta Spinta attiva

Terreno a bassa permeabilità ςi Superficie di spinta limitata NO

Capacità portante

Metodo di calcolo della portanza Hansen

Criterio di media calcolo del terreno equivalente (terreni stratificati) Ponderata

Criterio di riduzione per eccentricità della portanza Meyerhof Criterio di riduzione per rottura locale (punzonamento) Nessuna

Larghezza fondazione nel terzo termine della formula del carico limite (0.5BγN_γ) Larghezza ridotta (B')

Fattori di forma e inclinazione del carico Solo i fattori di inclinazione

Se la fondazione ha larghezza superiore a 2.0 m viene applicato il fattore di riduzione per comportamento a piastra

Stabilità globale

Metodo di calcolo della stabilità globale **Bishop**

Collegamento viario compreso tra lo Svincolo della S.S. 514 di "Chiaramonte" con la S.S. 115 e lo

Svincolo della "Ragusana"

PROGETTO ESECUTIVO

RELAZIONE DI CALCOLO

<u>Altro</u>

Partecipazione spinta passiva terreno antistante 0.00 Partecipazione resistenza passiva dente di fondazione 50.00 Componente verticale della spinta nel calcolo delle sollecitazioni Considera terreno sulla fondazione di valle SI Considera spinta e peso acqua fondazione di valle NO

Spostamenti

Non è stato richiesto il calcolo degli spostamenti

Cedimenti

Non è stato richiesto il calcolo dei cedimenti

Specifiche per le verifiche nelle combinazioni allo Stato Limite Ultimo (SLU)

	SLU	Eccezionale
Coefficiente di sicurezza calcestruzzo a compressione	1.50	1.00
Coefficiente di sicurezza acciaio	1.15	1.00
Fattore di riduzione da resistenza cubica a cilindrica	0.83	0.83
Fattore di riduzione per carichi di lungo periodo	0.85	0.85
Coefficiente di sicurezza per la sezione	1.00	1.00

Specifiche per le verifiche nelle combinazioni allo Stato Limite di Esercizio (SLE)

Paramento e fondazione muro

Verifiche strutturali nelle combinazioni SLD eseguite. Struttura in classe d'uso III o IV

Aggressive Condizioni ambientali Armatura ad aderenza migliorata SI

Verifica a fessurazione

Sensibilità armatura Poco sensibile

Metodo di calcolo aperture delle fessure Circ. Min. 252 (15/10/96) - NTC 2008 I Formulazione

Valori limite aperture delle fessure:

 $w_1 = 0.20$ $w_2 = 0.30$

 $w_3 = 0.40$

Verifica delle tensioni

Valori limite delle tensioni nei materiali:

Combinazione	Calcestruzzo	Acciaio
Rara	0.60 fck	0.80 fyk
Frequente	1.00 fck	1.00 fyk
Quasi permanente	0.45 fck	1.00 fvk

MANDATARIA:

33 di 52

PROGETTO ESECUTIVO

RELAZIONE DI CALCOLO

10.1.4 Risultati per inviluppo

Spinta e forze

Simbologia adottata

Indice della combinazione

Tipo azione

IIpo azione
Inclinazione della spinta, espressa in [°]
Valore dell'azione, espressa in [kN]
Componente in direzione X ed Y dell'azione, espressa in [kN]
Coordinata X ed Y del punto di applicazione dell'azione, espressa in [m]

Cx, Cy Px, Py

Ic	A	V	I	Cx	CY	Px	Py
		[kN]	[°]	[kN]	[kN]	[m]	[m]
13	Spinta statica	52.11	23.33	47.85	20.64	1.95	-2.31
	Peso/Inerzia muro			0.00	90.39/0.00	0.32	-2.73
	Peso/Inerzia terrapieno			0.00	140.04/0.00	1.04	-1.44
	Risultante forze sul muro			25.00	-2.00		

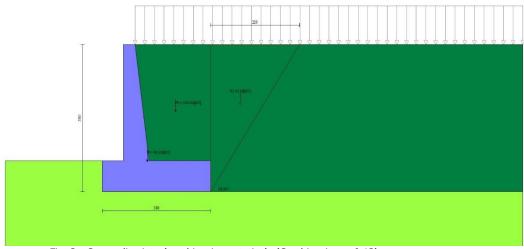


Fig. 3 - Cuneo di spinta (combinazione statica) (Combinazione nº 13)

PROGETTO ESECUTIVO

RELAZIONE DI CALCOLO

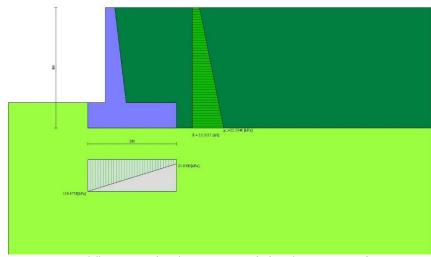


Fig. 4 - Diagramma delle pressioni (combinazione statica) (Combinazione nº 13)

Risultanti globali

Simbologia adottata

Cmb N

Indice/Tipo combinazione Componente normale al piano di posa, espressa in [kN]

Componente parallela al piano di posa, espressa in [kN] Momento ribaltante, espresso in [kNm] Momento stabilizzante, espresso in [kNm] T Mr Eccentricità risultante, espressa in [m]

Ic	N	Т	Mr	Ms	ecc
	[kN]	[kN]	[kNm]	[kNm]	[m]
1 - STR (A1-M1-R3)	208.63	40.03	50.71	347.14	-0.019
2 - STR (A1-M1-R3)	221.24	65.55	101.48	368.03	0.197
3 - STR (A1-M1-R3)	196.43	61.98	112.86	345.55	0.217
4 - STR (A1-M1-R3)	266.04	40.03	50.71	436.76	-0.050
5 - STR (A1-M1-R3)	238.93	40.03	50.71	405.12	-0.082
6 - STR (A1-M1-R3)	235.75	40.03	50.71	378.78	0.010
7 - GEO (A2-M2-R2)	205.08	39.73	50.33	337.17	0.003
8 - GEO (A2-M2-R2)	221.40	76.58	116.77	368.47	0.265
9 - GEO (A2-M2-R2)	196.53	71.96	126.17	345.84	0.284
10 - EQU	187.31	43.70	55.36	311.14	0.036
11 - EQU	221.40	76.58	116.77	368.47	0.265
12 - EQU	196.53	71.96	126.17	345.84	0.284
13 - ECC	249.07	72.85	168.11	428.38	0.357
14 - SLER	204.65	30.79	39.00	335.97	-0.050
15 - SLEF	204.65	30.79	39.00	335.97	-0.050
16 - SLEQ	204.65	30.79	39.00	335.97	-0.050
17 - SLEQ	206.49	34.62	45.88	339.47	-0.020
18 - SLEQ	203.65	34.20	47.14	336.89	-0.021

Verifiche geotecniche

Quadro riassuntivo coeff. di sicurezza calcolati

Simbologia adottata

Cmb Indice/Tipo combinazione

Sisma (H: componente orizzontale, V: componente verticale)

FSsco Coeff. di sicurezza allo scorrimento Coeff. di sicurezza al ribaltamento Coeff. di sicurezza a carico limite **FS**_{RIB} FSQLIM Coeff. di sicurezza a stabilità globale Coeff. di sicurezza a sifonamento FSSTAB **FS**HYD

Itinerario Ragusa - Catania

Realizzazione Lavori

Collegamento viario compreso tra lo Svincolo della S.S. 514 di "Chiaramonte" con la S.S. 115 e lo Svincolo della "Ragusana"

PROGETTO ESECUTIVO

RELAZIONE DI CALCOLO

Direzione Progettazione e

Coeff. di sicurezza a sollevamento

Cmb	Sismica	FSsco	FS RIB	FSQLIM	FS STAB	FS HYD	FSUPL
1 - STR (A1-M1-R3)		2.011		6.570			
2 - STR (A1-M1-R3)	H + V	1.289		4.340			
3 - STR (A1-M1-R3)	H - V	1.236		4.819			
4 - STR (A1-M1-R3)		2.468		4.974			
5 - STR (A1-M1-R3)		2.252		5.248			
6 - STR (A1-M1-R3)		2.227		6.026			
7 - GEO (A2-M2-R2)					2.091		
8 - GEO (A2-M2-R2)	H + V				1.639		
9 - GEO (A2-M2-R2)	H - V				1.638		
10 - EQU			5.620				
11 - EQU	H + V		3.155				
12 - EQU	H - V		2.741				

Verifica a scorrimento fondazione

Simbologia adottata

Indice combinazione

Rsa Rpt Resistenza allo scorrimento per attrito, espresso in [kN] Resistenza passiva terreno antistante, espresso in [kN]

Resistenza passiva sperone, espresso in [kN]

Resistenza a carichi orizzontali pali (solo per fondazione mista), espresso in [kN] Resistenza a carichi orizzontali tiranti (solo se presenti), espresso in [kN] Resistenza allo scorrimento (somma di Rsa+Rpt+Rps+Rp), espresso in [kN] Carico parallelo al piano di posa, espresso in [kN]

Rp Rt

R

T FS Fattore di sicurezza (rapporto R/T)

n°	Rsa	Rpt	Rps	Rp	Rt	R	Т	FS
	[kN]	[kN]	[kN]	[kN]	[kN]	[kN]	[kN]	
3 - STR (A1-M1-R3) H - V	76.59	0.00	0.00			76.59	61.98	1.236

Verifica a carico limite

Simbologia adottata

Indice combinazione

Carico normale totale al piano di posa, espresso in [kN]

Qu carico limite del terreno, espresso in [kN] Portanza di progetto, espresso in [kN]

Qd FS Fattore di sicurezza (rapporto tra il carico limie e carico agente al piano di posa)

n°	N	Qu	Qd	FS
	[kN]	[kN]	[kN]	
2 - STR (A1-M1-R3) H + V	221.24	960.18	685.84	4.340

10.1.5 Dettagli calcolo portanza

Simbologia adottata

Indice combinazione Nc, Nq, N_Y Fattori di capacità portante ic, iq, i_Y Fattori di inclinazione del carico ic, iq, i γ Fattori di inclinazione del carico dc, dq, d γ Fattori di profondità del piano di posa gc, gq, g $_{\gamma}$ Fattori di inclinazione del profilo topografico bc, bq, b $_{\gamma}$ Fattori di inclinazione del piano di posa sc, sq, sγ Fattori di forma della fondazione

pc, pq, pγ Fattori di riduzione per punzonamento secondo Vesic Re Fattore di riduzione capacità portante per eccentricità secondo Meyerhof

Ir, Irc

Indici di rigidezza per punzonamento secondo Vesic Fattori per tener conto dell'effetto piastra. Per fondazioni che hanno larghezza maggiore di 2 m, il terzo termine della formula trinomia $0.5B_{\gamma}N_{\gamma}$ viene moltiplicato per questo fattore

. Affondamento del piano di posa, espresso in [m] Larghezza fondazione ridotta, espresso in [m] Altezza del cuneo di rottura, espresso in [m]
Peso di volume del terreno medio, espresso in [kN/mc] Н Angolo di attrito del terreno medio, espresso in [°]

c Coesione del terreno medio, espresso in [kPa]
Per i coeff. che in tabella sono indicati con il simbolo '--' sono coeff. non presenti nel metodo scelto (Hansen).

n°	Nc Nq Nγ	ic iq iγ	dc dq dγ	gc gq g _Y	bc bq bγ	sc sq sγ	pc pq py	Ir	Irc	Re	гу
2	23.078	0.718	1.114	1.000	1.000					0.735	0.963

Itinerario Ragusa - Catania

Collegamento viario compreso tra lo Svincolo della S.S. 514 di "Chiaramonte" con la S.S. 115 e lo Svincolo della "Ragusana"

PROGETTO ESECUTIVO

Direzione Progettazione e Realizzazione Lavori

RELAZIONE DI CALCOLO

n°	Nc Nq Nγ	ic iq iγ	dc dq dγ	gc gq gy	bc bq bγ	sc sq sy	pc pq pγ	Ir	Irc	Re	Γγ
	12.506	0.740	1.087	1.000	1.000						
	8.605	0.653	1.000	1.000	1.000						

n°	D	B'	Н	γ	ф	С
	[m]	[m]	[m]	[°]	[kN/mc]	[kPa]
2	0.80	2.80	2.26	18.00	26.50	10

Verifica a ribaltamento

Simbologia adottata

Indice combinazione n° Ms

Momento stabilizzante, espresso in [kNm]

Mr

Momento ribaltante, espresso in [klm]
Fattore di sicurezza (rapporto tra momento stabilizzante e momento ribaltante)

La verifica viene eseguita rispetto allo spigolo inferiore esterno della fondazione

n°	Ms	Mr	FS
	[kNm]	[kNm]	
12 - EOU H - V	345.84	126.17	2,741

Verifica stabilità globale muro + terreno

Simbologia adottata

Indice/Tipo combinazione Ic C R

Centro superficie di scorrimento, espresso in [m]

Raggio, espresso in [m] FS Fattore di sicurezza

Ic	С	R	FS
	[m]	[m]	
9 - GEO (A2-M2-R2) H - V	-0.50: 2.50	6.77	1.638

10.1.6 Dettagli strisce verifiche stabilità

Simbologia adottata

Le ascisse X sono considerate positive verso monte Le ordinate Y sono considerate positive verso l'alto Origine in testa al muro (spigolo contro terra) W peso della striscia espresso in [kN]

Qy Qf carico sulla striscia espresso in [kN]
carico acqua sulla striscia espresso in [kN]

angolo fra la base della striscia e l'orizzontale espresso in [°] (positivo antiorario)

angolo d'attrito del terreno lungo la base della striscia coesione del terreno lungo la base della striscia espressa in [kPa]

c b

larghezza della striscia espressa in [m] pressione neutra lungo la base della striscia espressa in [kPa]

Resistenza al taglio fornita dai tiranti in direzione X ed Y espressa in [kPa]

n°	W	Qy	Qf	b	α	ф	С	u	Tx; Ty
	[kN]	[kN]	[kN]	[m]	[°]	[°]	[kPa]	[kPa]	[kN]
1	3.26	0.00	0.00	5.80 - 0.41	63.813	29.256	0	0.0	
2	9.01	0.00	0.00	0.41	57.272	29.256	0	0.0	
3	13.51	0.00	0.00	0.41	51.277	29.256	0	0.0	
4	17.16	0.00	0.00	0.41	45.995	29.256	0	0.0	
5	20.23	0.00	0.00	0.41	41.183	29.256	0	0.0	
6	22.82	0.00	0.00	0.41	36.705	29.256	0	0.0	
7	25.04	0.00	0.00	0.41	32.476	29.256	0	0.0	
8	26.93	0.00	0.00	0.41	28.439	29.256	0	0.0	
9	28.53	0.00	0.00	0.41	24.551	29.256	0	0.0	
10	29.64	0.00	0.00	0.41	20.780	21.745	8	0.0	
11	32.71	0.00	0.00	0.41	17.103	21.745	8	0.0	
12	33.54	0.00	0.00	0.41	13.496	21.745	8	0.0	
13	34.17	0.00	0.00	0.41	9.944	21.745	8	0.0	
14	36.81	0.00	0.00	0.41	6.430	21.745	8	0.0	
15	37.31	0.00	0.00	0.41	2.940	21.745	8	0.0	
16	11.51	0.00	0.00	0.41	-0.538	21.745	8	0.0	
17	9.94	0.00	0.00	0.41	-4.019	21.745	8	0.0	
18	9.27	0.00	0.00	0.41	-7.515	21.745	8	0.0	
19	8.77	0.00	0.00	0.41	-11.039	21.745	8	0.0	

PROGETTO ESECUTIVO

Direzione Progettazione e Realizzazione Lavori

RELAZIONE DI CALCOLO

n°	W	Qy	Qf	b	α	ф	С	u	Tx; Ty
	[kN]	[kN]	[kN]	[m]	[°]	[°]	[kPa]	[kPa]	[kN]
20	8.08	0.00	0.00	0.41	-14.607	21.745	8	0.0	
21	7.19	0.00	0.00	0.41	-18.233	21.745	8	0.0	
22	6.06	0.00	0.00	0.41	-21.937	21.745	8	0.0	
23	4.65	0.00	0.00	0.41	-25.741	21.745	8	0.0	
24	2.96	0.00	0.00	0.41	-29.671	21.745	8	0.0	
25	0.98	0.00	0.00	-4.47 - 0.41	-32.568	21.745	8	0.0	

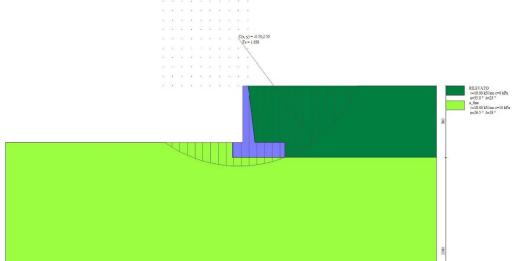


Fig. 5 - Stabilità fronte di scavo - Cerchio critico (Combinazione nº 9)

<u>Sollecitazioni</u>

Elementi calcolati a trave

Simbologia adottata

- Sforzo normale, espresso in [kN]. Positivo se di compressione.
 Taglio, espresso in [kN]. Positivo se diretto da monte verso valle
 Momento, espresso in [kNm]. Positivo se tende le fibre contro terra (a monte)

Paramento

n°	X	Nmin	Nmax	Tmin	Tmax	M _{min}	M _{max}
	[m]	[kN]	[kN]	[kN]	[kN]	[kNm]	[kNm]
1	0.00	-2.00	0.00	0.00	25.00	0.00	0.30
2	-0.10	-0.94	0.99	0.02	25.53	0.00	2.77
3	-0.20	0.18	2.06	0.10	26.12	0.01	5.29
4	-0.30	1.36	3.21	0.22	26.75	0.02	7.86
5	-0.40	2.59	4.43	0.39	27.43	0.05	10.50
6	-0.50	3.89	5.72	0.61	28.15	0.10	13.21
7	-0.60	5.24	7.09	0.87	28.93	0.17	15.98
8	-0.70	6.57	8.54	1.19	29.75	0.26	18.83
9	-0.80	7.74	10.06	1.55	30.63	0.39	21.75
10	-0.90	8.96	11.65	1.96	31.55	0.56	24.77
11	-1.00	10.25	13.32	2.42	32.51	0.76	27.86
12	-1.10	11.59	15.07	2.93	33.53	1.01	31.06
13	-1.20	12.99	16.89	3.49	34.60	1.32	34.34
14	-1.30	14.45	18.79	4.09	35.71	1.67	37.74
15	-1.40	15.97	20.76	4.74	36.87	2.09	41.23
16	-1.50	17.54	22.81	5.45	38.09	2.56	44.84
17	-1.60	19.18	24.93	6.20	39.34	3.11	48.56
18	-1.70	20.87	27.13	6.99	40.65	3.73	52.40
19	-1.80	22.61	29.40	7.84	42.01	4.42	56.37
20	-1.90	24.42	31.75	8.74	43.41	5.20	60.46
21	-2.00	26.28	34.17	9.68	44.87	6.06	64.69
22	-2.10	28.21	36.67	10.67	46.37	7.01	69.06

MANDANTI:

PROGETTO ESECUTIVO

RELAZIONE DI CALCOLO

n°	X	Nmin	Nmax	Tmin	Tmax	M _{min}	M _{max}
	[m]	[kN]	[kN]	[kN]	[kN]	[kNm]	[kNm]
23	-2.20	30.19	39.24	11.71	47.92	8.06	73.57
24	-2.30	32.22	41.89	12.80	49.51	9.20	78.22
25	-2.40	34.32	44.61	13.94	51.16	10.45	83.03
26	-2.50	36.47	47.41	15.12	52.86	11.81	87.99
27	-2.60	38.68	50.29	16.36	54.60	13.28	93.11
28	-2.70	40.95	53.24	17.64	56.39	14.87	98.40
29	-2.80	43.28	56.26	18.97	58.23	16.58	103.85
30	-2.90	45.66	59.36	20.35	60.12	18.42	109.48
31	-3.00	48.11	62.54	21.78	62.06	20.38	115.29

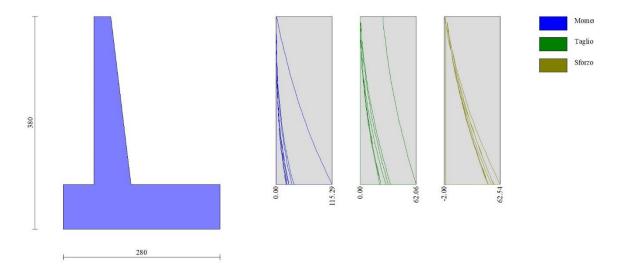


Fig. 6 - Paramento

Fondazione

n°	Х	Nmin	Nmax	Tmin	Tmax	Mmin	Mmax
	[m]	[kN]	[kN]	[kN]	[kN]	[kNm]	[kNm]
1	-0.85	0.00	0.00	0.00	0.00	0.00	0.00
2	-0.76	0.00	0.00	4.21	12.36	0.19	0.57
3	-0.67	0.00	0.00	8.46	24.31	0.77	2.25
4	-0.58	0.00	0.00	12.76	35.86	1.75	5.01
5	-0.48	0.00	0.00	17.11	47.00	3.11	8.82
6	-0.39	0.00	0.00	21.50	57.74	4.88	13.62
7	-0.30	0.00	0.00	25.94	68.06	7.06	19.39
8	0.36	0.00	0.00	-59.00	-0.40	-63.11	2.00
9	0.46	0.00	0.00	-58.90	0.05	-57.25	2.02
10	0.56	0.00	0.00	-58.31	0.54	-51.42	1.99
11	0.66	0.00	0.00	-57.26	0.96	-45.68	1.91
12	0.76	0.00	0.00	-55.72	1.31	-40.06	1.80
13	0.86	0.00	0.00	-53.70	1.60	-34.62	1.65
14	0.96	0.00	0.00	-51.21	1.81	-29.40	1.48
15	1.06	0.00	0.00	-48.24	1.94	-24.46	1.31
16	1.16	0.00	0.00	-44.79	2.01	-19.83	1.15
17	1.26	0.00	0.00	-40.86	2.01	-15.57	0.97
18	1.36	0.00	0.00	-36.46	1.96	-11.72	0.77
19	1.46	0.00	0.00	-31.58	1.89	-8.34	0.58
20	1.56	0.00	0.00	-26.22	1.73	-5.46	0.40
21	1.65	0.00	0.00	-20.38	1.45	-3.14	0.24
22	1.75	0.00	0.00	-14.06	1.07	-1.43	0.11
23	1.85	0.00	0.00	-7.27	0.59	-0.37	0.03
24	1.95	0.00	0.00	0.00	0.00	0.00	0.00

MANDATARIA:

PROGETTO ESECUTIVO

RELAZIONE DI CALCOLO

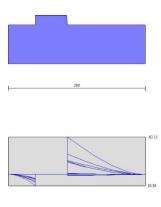


Fig. 7 - Fondazione

Verifiche strutturali

Verifiche a flessione

Elementi calcolati a trave

Simbologia adottata

indice sezione

indice sezione
ordinata sezione espressa in [m]
larghezza sezione espresso in [cm]
altezza sezione espressa in [cm]
area ferri inferiori espresso in [cmq]
area ferri superiori espressa in [cmq] Afi Afs momento agente espressa in [kNm] sforzo normale agente espressa in [kN] momento ultimi espresso in [kNm]

forzo normale ultimo espressa in [kN] fattore di sicurezza (rapporto tra sollecitazione ultima e sollecitazione agente) Nu FS

Paramento

n°	В	Н	Afi	Afs	М	N	Mu	Nu	FS
	[cm]	[cm]	[cmq]	[cmq]	[kNm]	[kN]	[kNm]	[kN]	
1	100	30	10.05	10.05	0.30	-2.00	63.32	-422.15	211.073
2	100	31	10.05	10.05	2.77	-0.94	114.02	-38.67	41.194
3	100	32	10.05	10.05	5.29	0.18	124.03	4.25	23.455
4	100	34	10.05	10.05	7.86	1.36	131.13	22.65	16.674
5	100	35	10.05	10.05	10.50	2.59	137.53	33.96	13.096
6	100	36	10.05	10.05	13.21	3.89	143.69	42.28	10.881
7	100	37	10.05	10.05	15.98	5.24	149.76	49.08	9.372
8	100	38	10.05	10.05	18.83	6.65	155.81	54.99	8.276
9	100	40	10.05	10.05	21.75	8.11	161.89	60.36	7.442
10	100	41	10.05	10.05	24.77	9.64	168.00	65.37	6.784
11	100	42	10.05	10.05	27.86	11.22	174.16	70.11	6.250
12	100	43	10.05	10.05	31.06	12.86	180.37	74.68	5.808
13	100	45	10.05	10.05	34.34	14.56	186.64	79.10	5.434
14	100	46	10.05	10.05	37.74	16.31	192.95	83.40	5.113
15	100	47	10.05	10.05	41.23	18.12	199.33	87.62	4.834
16	100	48	10.05	10.05	44.84	20.00	205.75	91.75	4.589
17	100	49	10.05	10.05	48.56	21.92	212.23	95.82	4.370
18	100	51	10.05	10.05	52.40	23.91	218.75	99.82	4.174
19	100	52	10.05	10.05	56.37	25.96	225.33	103.76	3.997
20	100	53	10.05	10.05	60.46	28.06	231.95	107.64	3.836
21	100	54	10.05	10.05	64.69	30.22	238.62	111.47	3.688

PROGETTO ESECUTIVO

Direzione Progettazione e **RELAZIONE DI CALCOLO** Realizzazione Lavori

n°	В	н	Afi	Afs	М	N	Mu	Nu	FS
	[cm]	[cm]	[cmq]	[cmq]	[kNm]	[kN]	[kNm]	[kN]	
22	100	55	10.05	10.05	69.06	32.44	245.33	115.24	3.552
23	100	57	10.05	10.05	73.57	34.72	252.08	118.95	3.427
24	100	58	10.05	10.05	78.22	37.05	258.87	122.61	3.309
25	100	59	10.05	10.05	83.03	39.44	265.69	126.22	3.200
26	100	60	10.05	10.05	87.99	41.89	272.56	129.77	3.098
27	100	61	10.05	10.05	93.11	44.40	279.45	133.26	3.001
28	100	63	10.05	10.05	98.40	46.96	286.38	136.69	2.910
29	100	64	10.05	10.05	103.85	49.59	293.34	140.07	2.825
30	100	65	10.05	10.05	109.48	52.27	300.33	143.39	2.743
31	100	66	10.05	10.05	115.29	55.01	306.64	146.31	2.660

Fondazione

n°	В	Н	Afi	Afs	М	N	Mu	Nu	FS
	[cm]	[cm]	[cmq]	[cmq]	[kNm]	[kN]	[kNm]	[kN]	
1	100	80	18.10	18.10	0.00	0.00	0.00	0.00	100000.000
2	100	80	18.10	18.10	0.57	0.00	574.11	0.00	1007.867
3	100	80	18.10	18.10	2.25	0.00	574.11	0.00	254.745
4	100	80	18.10	18.10	5.01	0.00	574.11	0.00	114.482
5	100	80	18.10	18.10	8.82	0.00	574.11	0.00	65.122
6	100	80	18.10	18.10	13.62	0.00	574.11	0.00	42.153
7	100	80	18.10	18.10	19.39	0.00	574.11	0.00	29.611
8	100	80	18.10	18.10	-63.11	0.00	-574.11	0.00	9.097
9	100	80	18.10	18.10	-57.25	0.00	-574.11	0.00	10.028
10	100	80	18.10	18.10	-51.42	0.00	-574.11	0.00	11.164
11	100	80	18.10	18.10	-45.68	0.00	-574.11	0.00	12.569
12	100	80	18.10	18.10	-40.06	0.00	-574.11	0.00	14.331
13	100	80	18.10	18.10	-34.62	0.00	-574.11	0.00	16.584
14	100	80	18.10	18.10	-29.40	0.00	-574.11	0.00	19.526
15	100	80	18.10	18.10	-24.46	0.00	-574.11	0.00	23.474
16	100	80	18.10	18.10	-19.83	0.00	-574.11	0.00	28.951
17	100	80	18.10	18.10	-15.57	0.00	-574.11	0.00	36.872
18	100	80	18.10	18.10	-11.72	0.00	-574.11	0.00	48.967
19	100	80	18.10	18.10	-8.34	0.00	-574.11	0.00	68.839
20	100	80	18.10	18.10	-5.46	0.00	-574.11	0.00	105.068
21	100	80	18.10	18.10	-3.14	0.00	-574.11	0.00	182.557
22	100	80	18.10	18.10	-1.43	0.00	-574.11	0.00	401.657
23	100	80	18.10	18.10	-0.37	0.00	-574.11	0.00	1571.814
24	100	80	18.10	18.10	0.00	0.00	0.00	0.00	100000.000

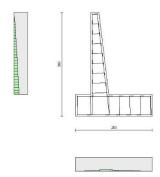


Fig. 8 - Paramento (Inviluppo)

Verifiche a taglio

PROGETTO ESECUTIVO

Direzione Progettazione e Realizzazione Lavori

RELAZIONE DI CALCOLO

Simbologia adottata

indice sezione

ordinata sezione espressa in [m] larghezza sezione espresso in [cm] H Asw cotgθ

 V_{Rcd}

larghezza sezione espresso in [cm] altezza sezione espresso in [cm] area ferri a taglio espresso in [cmq] inclinazione delle bielle compresse, θ inclinazione dei puntoni di calcestruzzo resistenza di progetto a 'taglio compressoine' espressa in [kN] resistenza di progetto a 'taglio trazione' espressa in [kN] resistenza di progetto a taglio espresso in [kN]. Per elementi con armature trasversali resistenti al taglio (Asw>0.0) V_{Rd} =min(V_{Rcd} , V_{Rsd}). taglio agente espressa in [kN] fattore di sicurezza (rapporto tra sollecitazione resistente e sollecitazione agente) V_{Rd}

T FS

Paramento

n°	В	Н	Asw	cotθ	VRcd	V _{Rsd}	V Rd	Т	FS
	[cm]	[cm]	[cmq]		[kN]	[kN]	[kN]	[kN]	
1	100	30	0.00		0.00	0.00	167.88	25.00	6.715
2	100	31	0.00		0.00	0.00	171.60	25.53	6.720
3	100	32	0.00		0.00	0.00	175.25	26.12	6.710
4	100	34	0.00		0.00	0.00	178.85	26.75	6.686
5	100	35	0.00		0.00	0.00	182.39	27.43	6.650
6	100	36	0.00		0.00	0.00	185.88	28.15	6.602
7	100	37	0.00		0.00	0.00	189.33	28.93	6.545
8	100	38	0.00		0.00	0.00	192.73	29.75	6.478
9	100	40	0.00		0.00	0.00	196.09	30.63	6.403
10	100	41	0.00		0.00	0.00	199.42	31.55	6.322
11	100	42	0.00		0.00	0.00	202.71	32.51	6.234
12	100	43	0.00		0.00	0.00	205.96	33.53	6.142
13	100	45	0.00		0.00	0.00	209.19	34.60	6.046
14	100	46	0.00		0.00	0.00	212.38	35.71	5.947
15	100	47	0.00		0.00	0.00	215.55	36.87	5.846
16	100	48	0.00		0.00	0.00	218.69	38.09	5.742
17	100	49	0.00		0.00	0.00	221.81	39.34	5.638
18	100	51	0.00		0.00	0.00	224.91	40.65	5.532
19	100	52	0.00		0.00	0.00	227.98	42.01	5.427
20	100	53	0.00		0.00	0.00	231.03	43.41	5.322
21	100	54	0.00		0.00	0.00	234.06	44.87	5.217
22	100	55	0.00		0.00	0.00	237.07	46.37	5.113
23	100	57	0.00		0.00	0.00	240.07	47.92	5.010
24	100	58	0.00		0.00	0.00	243.05	49.51	4.909
25	100	59	0.00		0.00	0.00	246.01	51.16	4.809
26	100	60	0.00		0.00	0.00	248.96	52.86	4.710
27	100	61	0.00		0.00	0.00	251.89	54.60	4.613
28	100	63	0.00		0.00	0.00	254.81	56.39	4.519
29	100	64	0.00		0.00	0.00	257.72	58.23	4.426
30	100	65	0.00		0.00	0.00	260.61	60.12	4.335
31	100	66	0.00		0.00	0.00	263.24	62.06	4.242

Fondazione

n°	В	Н	Asw	cotθ	VRcd	V _{Rsd}	V Rd	Т	FS
	[cm]	[cm]	[cmq]		[kN]	[kN]	[kN]	[kN]	
1	100	80	0.00		0.00	0.00	344.23	0.00	100.000
2	100	80	0.00		0.00	0.00	344.23	-12.36	27.849
3	100	80	0.00		0.00	0.00	344.23	-24.31	14.157
4	100	80	0.00		0.00	0.00	344.23	-35.86	9.599
5	100	80	0.00		0.00	0.00	344.23	-47.00	7.324
6	100	80	0.00		0.00	0.00	344.23	-57.74	5.962
7	100	80	0.00		0.00	0.00	344.23	-68.06	5.057
8	100	80	0.00		0.00	0.00	344.23	-59.00	5.834
9	100	80	0.00		0.00	0.00	344.23	-58.90	5.845
10	100	80	0.00		0.00	0.00	344.23	-58.31	5.903
11	100	80	0.00		0.00	0.00	344.23	-57.26	6.012
12	100	80	0.00		0.00	0.00	344.23	-55.72	6.178
13	100	80	0.00		0.00	0.00	344.23	-53.70	6.410
14	100	80	0.00		0.00	0.00	344.23	-51.21	6.722
15	100	80	0.00		0.00	0.00	344.23	-48.24	7.136
16	100	80	0.00		0.00	0.00	344.23	-44.79	7.685
17	100	80	0.00		0.00	0.00	344.23	-40.86	8.424
18	100	80	0.00		0.00	0.00	344.23	-36.46	9.441
19	100	80	0.00		0.00	0.00	344.23	-31.58	10.901
20	100	80	0.00		0.00	0.00	344.23	-26.22	13.129
21	100	80	0.00		0.00	0.00	344.23	-20.38	16.890
22	100	80	0.00		0.00	0.00	344.23	-14.06	24.474

PROGETTO ESECUTIVO

Direzione Progettazione e Realizzazione Lavori

RELAZIONE DI CALCOLO

n°	В	Н	Asw	cotθ	VRcd	V _{Rsd}	V Rd	T	FS	
	[cm]	[cm]	[cmq]		[kN]	[kN]	[kN]	[kN]		
23	100	80	0.00		0.00	0.00	344.23	-7.27	47.340	
24	100	80	0.00		0.00	0.00	344.23	0.00	100.000	

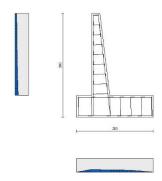


Fig. 9 - Paramento (Inviluppo)

Verifica delle tensioni

Simbologia adottata

indice sezione

ordinata sezione, espressa in [m] larghezza sezione, espresso in [cm] H Afi Afs M N altezza sezione, espressa in [cm] altezza sezione, espressa in [cm]
area ferri inferiori, espressa in [cmq]
area ferri superiori, espressa in [cmq]
momento agente, espressa in [kNm]
sforzo normale agente, espressa in [kN]
tensione di compressione nel cls, espressa in [kPa]
tensione nei ferri inferiori, espressa in [kPa]
tensione nei ferri superiori, espressa in [kPa] σc σfi

Combinazioni SLER

Paramento

Tensione massima di compressione nel calcestruzzo 19920 [kPa] [kPa] Tensione massima di trazione dell'acciaio 360000

n°	В	Н	Afi	Afs	М	N	σC	σfi	σfs
	[cm]	[cm]	[cmq]	[cmq]	[kNm]	[kN]	[kPa]	[kPa]	[kPa]
1	100	30	10.05	10.05	0.00	0.00	0 (14)	0 (14)	0 (14)
2	100	31	10.05	10.05	0.00	0.76	2 (14)	33 (14)	34 (14)
3	100	32	10.05	10.05	0.01	1.59	5 (14)	64 (14)	70 (14)
4	100	34	10.05	10.05	0.02	2.47	8 (14)	92 (14)	110 (14)
5	100	35	10.05	10.05	0.05	3.41	11 (14)	114 (14)	156 (14)
6	100	36	10.05	10.05	0.10	4.40	15 (14)	131 (14)	207 (14)
7	100	37	10.05	10.05	0.17	5.46	20 (14)	141 (14)	266 (14)
8	100	38	10.05	10.05	0.26	6.57	26 (14)	143 (14)	332 (14)
9	100	40	10.05	10.05	0.39	7.74	32 (14)	137 (14)	406 (14)
10	100	41	10.05	10.05	0.56	8.96	39 (14)	124 (14)	489 (14)
11	100	42	10.05	10.05	0.76	10.25	46 (14)	101 (14)	580 (14)

PROGETTO ESECUTIVO

Direzione Progettazione e Realizzazione Lavori

RELAZIONE DI CALCOLO

n°	В	Н	Afi	Afs	М	N	σс	σfi	σfs
	[cm]	[cm]	[cmq]	[cmq]	[kNm]	[kN]	[kPa]	[kPa]	[kPa]
12	100	43	10.05	10.05	1.01	11.59	55 (14)	62 (14)	682 (14)
13	100	45	10.05	10.05	1.32	12.99	65 (14)	6 (14)	799 (14)
14	100	46	10.05	10.05	1.67	14.45	77 (14)	111 (14)	931 (14)
15	100	47	10.05	10.05	2.09	15.97	90 (14)	264 (14)	1079 (14)
16	100	48	10.05	10.05	2.56	17.54	106 (14)	479 (14)	1245 (14)
17	100	49	10.05	10.05	3.11	19.18	123 (14)	767 (14)	1429 (14)
18	100	51	10.05	10.05	3.73	20.87	143 (14)	1137 (14)	1630 (14)
19	100	52	10.05	10.05	4.42	22.61	164 (14)	1599 (14)	1847 (14)
20	100	53	10.05	10.05	5.20	24.42	187 (14)	2156 (14)	2080 (14)
21	100	54	10.05	10.05	6.06	26.28	213 (14)	2812 (14)	2328 (14)
22	100	55	10.05	10.05	7.01	28.21	239 (14)	3567 (14)	2589 (14)
23	100	57	10.05	10.05	8.06	30.19	268 (14)	4422 (14)	2865 (14)
24	100	58	10.05	10.05	9.20	32.22	298 (14)	5376 (14)	3153 (14)
25	100	59	10.05	10.05	10.45	34.32	329 (14)	6430 (14)	3455 (14)
26	100	60	10.05	10.05	11.81	36.47	362 (14)	7582 (14)	3769 (14)
27	100	61	10.05	10.05	13.28	38.68	396 (14)	8832 (14)	4097 (14)
28	100	63	10.05	10.05	14.87	40.95	431 (14)	10180 (14)	4436 (14)
29	100	64	10.05	10.05	16.58	43.28	467 (14)	11626 (14)	4788 (14)
30	100	65	10.05	10.05	18.42	45.66	505 (14)	13169 (14)	5153 (14)
31	100	66	10.05	10.05	20.38	48.11	546 (14)	14879 (14)	5543 (14)

Fondazione

Tensione massima di compressione nel calcestruzzo Tensione massima di trazione dell'acciaio

19920 360000 [kPa] [kPa]

n°	В	н	Afi	Afs	М	N	σc	σfi	σfs
	[cm]	[cm]	[cmq]	[cmq]	[kNm]	[kN]	[kPa]	[kPa]	[kPa]
1	100	80	18.10	18.10	0.00	0.00	0 (14)	0 (14)	0 (14)
2	100	80	18.10	18.10	0.19	0.00	3 (14)	158 (14)	25 (14)
3	100	80	18.10	18.10	0.77	0.00	12 (14)	636 (14)	100 (14)
4	100	80	18.10	18.10	1.75	0.00	27 (14)	1436 (14)	226 (14)
5	100	80	18.10	18.10	3.11	0.00	49 (14)	2563 (14)	403 (14)
6	100	80	18.10	18.10	4.88	0.00	76 (14)	4019 (14)	631 (14)
7	100	80	18.10	18.10	7.06	0.00	110 (14)	5809 (14)	913 (14)
8	100	80	18.10	18.10	1.53	0.00	24 (14)	1263 (14)	198 (14)
9	100	80	18.10	18.10	1.55	0.00	24 (14)	1278 (14)	201 (14)
10	100	80	18.10	18.10	1.53	0.00	24 (14)	1259 (14)	198 (14)
11	100	80	18.10	18.10	1.47	0.00	23 (14)	1211 (14)	190 (14)
12	100	80	18.10	18.10	1.38	0.00	22 (14)	1139 (14)	179 (14)
13	100	80	18.10	18.10	1.27	0.00	20 (14)	1047 (14)	165 (14)
14	100	80	18.10	18.10	1.14	0.00	18 (14)	940 (14)	148 (14)
15	100	80	18.10	18.10	1.00	0.00	16 (14)	822 (14)	129 (14)
16	100	80	18.10	18.10	0.85	0.00	13 (14)	697 (14)	109 (14)
17	100	80	18.10	18.10	0.69	0.00	11 (14)	570 (14)	90 (14)
18	100	80	18.10	18.10	0.54	0.00	8 (14)	446 (14)	70 (14)
19	100	80	18.10	18.10	0.40	0.00	6 (14)	328 (14)	52 (14)
20	100	80	18.10	18.10	0.27	0.00	4 (14)	222 (14)	35 (14)
21	100	80	18.10	18.10	0.16	0.00	2 (14)	131 (14)	21 (14)
22	100	80	18.10	18.10	0.07	0.00	1 (14)	61 (14)	10 (14)
23	100	80	18.10	18.10	0.02	0.00	0 (14)	16 (14)	0 (1)
24	100	80	18.10	18.10	0.00	0.00	0 (14)	0 (14)	0 (14)

Combinazioni SLEF

Paramento

Tensione massima di compressione nel calcestruzzo Tensione massima di trazione dell'acciaio

33200 450000 [kPa] [kPa]

n°	В	Н	Afi	Afs	М	N	σC	σfi	σfs
	[cm]	[cm]	[cmq]	[cmq]	[kNm]	[kN]	[kPa]	[kPa]	[kPa]
1	100	30	10.05	10.05	0.00	0.00	0 (15)	0 (15)	0 (15)
2	100	31	10.05	10.05	0.00	0.76	2 (15)	33 (15)	34 (15)
3	100	32	10.05	10.05	0.01	1.59	5 (15)	64 (15)	70 (15)
4	100	34	10.05	10.05	0.02	2.47	8 (15)	92 (15)	110 (15)
5	100	35	10.05	10.05	0.05	3.41	11 (15)	114 (15)	156 (15)
6	100	36	10.05	10.05	0.10	4.40	15 (15)	131 (15)	207 (15)

MANDATARIA:

MANDANTI:

PROGETTO ESECUTIVO

Direzione Progettazione e Realizzazione Lavori

RELAZIONE DI CALCOLO

n°	В	Н	Afi	Afs	М	N	σε	σfi	σfs
	[cm]	[cm]	[cmq]	[cmq]	[kNm]	[kN]	[kPa]	[kPa]	[kPa]
7	100	37	10.05	10.05	0.17	5.46	20 (15)	141 (15)	266 (15)
8	100	38	10.05	10.05	0.26	6.57	26 (15)	143 (15)	332 (15)
9	100	40	10.05	10.05	0.39	7.74	32 (15)	137 (15)	406 (15)
10	100	41	10.05	10.05	0.56	8.96	39 (15)	124 (15)	489 (15)
11	100	42	10.05	10.05	0.76	10.25	46 (15)	101 (15)	580 (15)
12	100	43	10.05	10.05	1.01	11.59	55 (15)	62 (15)	682 (15)
13	100	45	10.05	10.05	1.32	12.99	65 (15)	6 (15)	799 (15)
14	100	46	10.05	10.05	1.67	14.45	77 (15)	111 (15)	931 (15)
15	100	47	10.05	10.05	2.09	15.97	90 (15)	264 (15)	1079 (15)
16	100	48	10.05	10.05	2.56	17.54	106 (15)	479 (15)	1245 (15)
17	100	49	10.05	10.05	3.11	19.18	123 (15)	767 (15)	1429 (15)
18	100	51	10.05	10.05	3.73	20.87	143 (15)	1137 (15)	1630 (15)
19	100	52	10.05	10.05	4.42	22.61	164 (15)	1599 (15)	1847 (15)
20	100	53	10.05	10.05	5.20	24.42	187 (15)	2156 (15)	2080 (15)
21	100	54	10.05	10.05	6.06	26.28	213 (15)	2812 (15)	2328 (15)
22	100	55	10.05	10.05	7.01	28.21	239 (15)	3567 (15)	2589 (15)
23	100	57	10.05	10.05	8.06	30.19	268 (15)	4422 (15)	2865 (15)
24	100	58	10.05	10.05	9.20	32.22	298 (15)	5376 (15)	3153 (15)
25	100	59	10.05	10.05	10.45	34.32	329 (15)	6430 (15)	3455 (15)
26	100	60	10.05	10.05	11.81	36.47	362 (15)	7582 (15)	3769 (15)
27	100	61	10.05	10.05	13.28	38.68	396 (15)	8832 (15)	4097 (15)
28	100	63	10.05	10.05	14.87	40.95	431 (15)	10180 (15)	4436 (15)
29	100	64	10.05	10.05	16.58	43.28	467 (15)	11626 (15)	4788 (15)
30	100	65	10.05	10.05	18.42	45.66	505 (15)	13169 (15)	5153 (15)
31	100	66	10.05	10.05	20.38	48.11	546 (15)	14879 (15)	5543 (15)

Fondazione

Tensione massima di compressione nel calcestruzzo Tensione massima di trazione dell'acciaio

33200 450000 [kPa] [kPa]

n°	В	Н	Afi	Afs	М	N	σc	σfi	σfs
	[cm]	[cm]	[cmq]	[cmq]	[kNm]	[kN]	[kPa]	[kPa]	[kPa]
1	100	80	18.10	18.10	0.00	0.00	0 (15)	0 (15)	0 (15)
2	100	80	18.10	18.10	0.19	0.00	3 (15)	158 (15)	25 (15)
3	100	80	18.10	18.10	0.77	0.00	12 (15)	636 (15)	100 (15)
4	100	80	18.10	18.10	1.75	0.00	27 (15)	1436 (15)	226 (15)
5	100	80	18.10	18.10	3.11	0.00	49 (15)	2563 (15)	403 (15)
6	100	80	18.10	18.10	4.88	0.00	76 (15)	4019 (15)	631 (15)
7	100	80	18.10	18.10	7.06	0.00	110 (15)	5809 (15)	913 (15)
8	100	80	18.10	18.10	1.53	0.00	24 (15)	1263 (15)	198 (15)
9	100	80	18.10	18.10	1.55	0.00	24 (15)	1278 (15)	201 (15)
10	100	80	18.10	18.10	1.53	0.00	24 (15)	1259 (15)	198 (15)
11	100	80	18.10	18.10	1.47	0.00	23 (15)	1211 (15)	190 (15)
12	100	80	18.10	18.10	1.38	0.00	22 (15)	1139 (15)	179 (15)
13	100	80	18.10	18.10	1.27	0.00	20 (15)	1047 (15)	165 (15)
14	100	80	18.10	18.10	1.14	0.00	18 (15)	940 (15)	148 (15)
15	100	80	18.10	18.10	1.00	0.00	16 (15)	822 (15)	129 (15)
16	100	80	18.10	18.10	0.85	0.00	13 (15)	697 (15)	109 (15)
17	100	80	18.10	18.10	0.69	0.00	11 (15)	570 (15)	90 (15)
18	100	80	18.10	18.10	0.54	0.00	8 (15)	446 (15)	70 (15)
19	100	80	18.10	18.10	0.40	0.00	6 (15)	328 (15)	52 (15)
20	100	80	18.10	18.10	0.27	0.00	4 (15)	222 (15)	35 (15)
21	100	80	18.10	18.10	0.16	0.00	2 (15)	131 (15)	21 (15)
22	100	80	18.10	18.10	0.07	0.00	1 (15)	61 (15)	10 (15)
23	100	80	18.10	18.10	0.02	0.00	0 (1)	16 (15)	0 (1)
24	100	80	18.10	18.10	0.00	0.00	0 (15)	0 (15)	0 (15)

Combinazioni SLEQ

<u>Paramento</u>

Tensione massima di compressione nel calcestruzzo Tensione massima di trazione dell'acciaio

14940 450000 [kPa] [kPa]

n°	В	Н	Afi	Afs	М	N	σC	σfi	σfs
	[cm]	[cm]	[cmq]	[cmq]	[kNm]	[kN]	[kPa]	[kPa]	[kPa]
1	100	30	10.05	10.05	0.00	0.00	0 (16)	0 (16)	0 (16)

MANDATARIA:

MANDANTI:

PROGETTO ESECUTIVO

Direzione Progettazione e Realizzazione Lavori

RELAZIONE DI CALCOLO

n°	В	Н	Afi	Afs	М	N	σC	σfi	σfs
	[cm]	[cm]	[cmq]	[cmq]	[kNm]	[kN]	[kPa]	[kPa]	[kPa]
2	100	31	10.05	10.05	0.00	0.78	2 (17)	34 (17)	35 (17)
3	100	32	10.05	10.05	0.01	1.63	5 (17)	65 (17)	73 (17)
4	100	34	10.05	10.05	0.03	2.53	8 (17)	92 (16)	117 (17)
5	100	35	10.05	10.05	0.07	3.49	12 (17)	114 (16)	167 (17)
6	100	36	10.05	10.05	0.13	4.51	17 (17)	131 (16)	224 (17)
7	100	37	10.05	10.05	0.22	5.58	22 (17)	141 (16)	289 (17)
8	100	38	10.05	10.05	0.33	6.71	29 (17)	143 (16)	363 (17)
9	100	40	10.05	10.05	0.49	7.90	35 (17)	137 (16)	445 (17)
10	100	41	10.05	10.05	0.68	9.15	43 (17)	124 (16)	536 (17)
11	100	42	10.05	10.05	0.92	10.46	52 (17)	101 (16)	640 (17)
12	100	43	10.05	10.05	1.21	11.83	63 (17)	62 (16)	758 (17)
13	100	45	10.05	10.05	1.55	13.25	75 (17)	143 (17)	893 (17)
14	100	46	10.05	10.05	1.95	14.73	89 (17)	312 (17)	1044 (17)
15	100	47	10.05	10.05	2.41	16.27	105 (17)	549 (17)	1214 (17)
16	100	48	10.05	10.05	2.94	17.87	123 (17)	865 (17)	1401 (17)
17	100	49	10.05	10.05	3.54	19.52	143 (17)	1270 (17)	1604 (17)
18	100	51	10.05	10.05	4.22	21.24	166 (17)	1769 (17)	1824 (17)
19	100	52	10.05	10.05	4.98	23.01	190 (17)	2367 (17)	2059 (17)
20	100	53	10.05	10.05	5.82	24.84	216 (17)	3064 (17)	2309 (17)
21	100	54	10.05	10.05	6.76	26.73	243 (17)	3861 (17)	2572 (17)
22	100	55	10.05	10.05	7.79	28.67	272 (17)	4759 (17)	2849 (17)
23	100	57	10.05	10.05	8.91	30.68	303 (17)	5757 (17)	3140 (17)
24	100	58	10.05	10.05	10.15	32.74	335 (17)	6854 (17)	3443 (17)
25	100	59	10.05	10.05	11.49	34.86	368 (17)	8050 (17)	3759 (17)
26	100	60	10.05	10.05	12.94	37.04	403 (17)	9346 (17)	4088 (17)
27	100	61	10.05	10.05	14.51	39.27	439 (17)	10739 (17)	4431 (17)
28	100	63	10.05	10.05	16.20	41.57	476 (17)	12232 (17)	4786 (17)
29	100	64	10.05	10.05	18.02	43.92	515 (17)	13822 (17)	5153 (17)
30	100	65	10.05	10.05	19.97	46.33	554 (17)	15511 (17)	5534 (17)
31	100	66	10.05	10.05	22.06	48.80	597 (17)	17374 (17)	5940 (17)

Fondazione

Tensione massima di compressione nel calcestruzzo Tensione massima di trazione dell'acciaio

14940 450000 [kPa] [kPa]

n°	В	Н	Afi	Afs	М	N	σε	σfi	σfs
	[cm]	[cm]	[cmq]	[cmq]	[kNm]	[kN]	[kPa]	[kPa]	[kPa]
1	100	80	18.10	18.10	0.00	0.00	0 (16)	0 (16)	0 (16)
2	100	80	18.10	18.10	0.21	0.00	3 (17)	176 (17)	28 (17)
3	100	80	18.10	18.10	0.86	0.00	13 (17)	705 (17)	111 (17)
4	100	80	18.10	18.10	1.93	0.00	30 (17)	1589 (17)	250 (17)
5	100	80	18.10	18.10	3.44	0.00	54 (17)	2829 (17)	444 (17)
6	100	80	18.10	18.10	5.38	0.00	84 (17)	4426 (17)	695 (17)
7	100	80	18.10	18.10	7.75	0.00	121 (17)	6382 (17)	1003 (17)
8	100	80	18.10	18.10	-2.41	0.00	38 (18)	1263 (16)	1981 (18)
9	100	80	18.10	18.10	-2.03	0.00	32 (18)	1278 (16)	1670 (18)
10	100	80	18.10	18.10	-1.69	0.00	26 (18)	1259 (16)	1393 (18)
11	100	80	18.10	18.10	-1.39	0.00	23 (16)	1211 (16)	1147 (18)
12	100	80	18.10	18.10	-1.13	0.00	22 (16)	1139 (16)	932 (18)
13	100	80	18.10	18.10	-0.90	0.00	20 (16)	1047 (16)	745 (18)
14	100	80	18.10	18.10	-0.71	0.00	18 (16)	940 (16)	584 (18)
15	100	80	18.10	18.10	-0.54	0.00	16 (16)	822 (16)	447 (18)
16	100	80	18.10	18.10	-0.40	0.00	13 (16)	697 (16)	333 (18)
17	100	80	18.10	18.10	-0.29	0.00	11 (16)	570 (16)	239 (18)
18	100	80	18.10	18.10	-0.20	0.00	8 (16)	446 (16)	164 (18)
19	100	80	18.10	18.10	-0.13	0.00	6 (16)	328 (16)	106 (18)
20	100	80	18.10	18.10	-0.08	0.00	4 (16)	222 (16)	63 (18)
21	100	80	18.10	18.10	-0.04	0.00	2 (16)	131 (16)	33 (18)
22	100	80	18.10	18.10	-0.02	0.00	1 (16)	61 (16)	13 (18)
23	100	80	18.10	18.10	0.02	0.00	0 (16)	16 (16)	0 (1)
24	100	80	18.10	18.10	0.00	0.00	0 (16)	0 (16)	0 (16)

Verifica a fessurazione

Simbologia adottata

indice sezione

Sintagma GPINGEGNERIA SI

ordinata sezione espressa in [m] larghezza sezione espresso in [cm] altezza sezione espresso in [cm] area ferri zona tesa espresso in [cmq] area efficace espressa in [cmq] Af

MANDANTI:

PROGETTO ESECUTIVO

RELAZIONE DI CALCOLO

Direzione Progettazione e Realizzazione Lavori

M Mpf

momento agente espressa in [kNm] momento di prima fessurazione espressa in [kNm] deformazione espresso in % spaziatura tra le fessure espressa in [mm] apertura delle fessure espressa in [mm] Sm

Combinazioni SLER

<u>Paramento</u>

Apertura limite fessure w_{lim}=0.30

n°	В	Н	Af	Aeff	М	Mpf	8	Sm	w
	[cm]	[cm]	[cmq]	[cmq]	[kNm]	[kNm]	[%]	[mm]	[mm]
1	100	30	0.00	0.00	0.00	0.00			0.000 (14)
2	100	31	10.05	1202.98	0.00	65.98	0.000000	0.00	0.000 (14)
3	100	32	10.05	1254.23	0.01	71.35	0.000000	0.00	0.000 (14)
4	100	34	10.05	1305.59	0.02	76.93	0.000000	0.00	0.000 (14)
5	100	35	10.05	1357.06	0.05	82.69	0.000000	0.00	0.000 (14)
6	100	36	10.05	1408.64	0.10	88.66	0.000000	0.00	0.000 (14)
7	100	37	10.05	1460.32	0.17	94.82	0.000000	0.00	0.000 (14)
8	100	38	10.05	1512.09	0.26	101.18	0.000000	0.00	0.000 (14)
9	100	40	10.05	1563.95	0.39	107.73	0.000000	0.00	0.000 (14)
10	100	41	10.05	1615.89	0.56	114.47	0.000000	0.00	0.000 (14)
11	100	42	10.05	1667.91	0.76	121.41	0.000000	0.00	0.000 (14)
12	100	43	10.05	1720.01	1.01	128.55	0.000000	0.00	0.000 (14)
13	100	45	10.05	1772.18	1.32	135.89	0.000000	0.00	0.000 (14)
14	100	46	10.05	1824.41	1.67	143.41	0.000000	0.00	0.000 (14)
15	100	47	10.05	1876.72	2.09	151.14	0.000000	0.00	0.000 (14)
16	100	48	10.05	1880.00	2.56	159.06	0.000000	0.00	0.000 (14)
17	100	49	10.05	1880.00	3.11	167.18	0.000000	0.00	0.000 (14)
18	100	51	10.05	1880.00	3.73	175.49	0.000000	0.00	0.000 (14)
19	100	52	10.05	1880.00	4.42	184.00	0.000000	0.00	0.000 (14)
20	100	53	10.05	1880.00	5.20	192.70	0.000000	0.00	0.000 (14)
21	100	54	10.05	1880.00	6.06	201.60	0.000000	0.00	0.000 (14)
22	100	55	10.05	1880.00	7.01	210.70	0.000000	0.00	0.000 (14)
23	100	57	10.05	1880.00	8.06	219.99	0.000000	0.00	0.000 (14)
24	100	58	10.05	1880.00	9.20	229.49	0.000000	0.00	0.000 (14)
25	100	59	10.05	1880.00	10.45	239.18	0.000000	0.00	0.000 (14)
26	100	60	10.05	1880.00	11.81	249.07	0.000000	0.00	0.000 (14)
27	100	61	10.05	1880.00	13.28	259.16	0.000000	0.00	0.000 (14)
28	100	63	10.05	1880.00	14.87	269.44	0.000000	0.00	0.000 (14)
29	100	64	10.05	1880.00	16.58	279.93	0.000000	0.00	0.000 (14)
30	100	65	10.05	1880.00	18.42	290.60	0.000000	0.00	0.000 (14)
31	100	66	10.05	1880.00	20.38	300.41	0.000000	0.00	0.000 (14)

Fondazione

Apertura limite fessure w_{lim} =0.30

n°	В	Н	Af	Aeff	М	Mpf	8	Sm	w
	[cm]	[cm]	[cmq]	[cmq]	[kNm]	[kNm]	[%]	[mm]	[mm]
1	100	80	0.00	0.00	0.00	0.00			0.000 (14)
2	100	80	18.10	2520.00	0.19	450.96	0.000000	0.00	0.000 (14)
3	100	80	18.10	2520.00	0.77	450.96	0.000000	0.00	0.000 (14)
4	100	80	18.10	2520.00	1.75	450.96	0.000000	0.00	0.000 (14)
5	100	80	18.10	2520.00	3.11	450.96	0.000000	0.00	0.000 (14)
6	100	80	18.10	2520.00	4.88	450.96	0.000000	0.00	0.000 (14)
7	100	80	18.10	2520.00	7.06	450.96	0.000000	0.00	0.000 (14)
8	100	80	18.10	2520.00	1.53	450.96	0.000000	0.00	0.000 (14)
9	100	80	18.10	2520.00	1.55	450.96	0.000000	0.00	0.000 (14)
10	100	80	18.10	2520.00	1.53	450.96	0.000000	0.00	0.000 (14)
11	100	80	18.10	2520.00	1.47	450.96	0.000000	0.00	0.000 (14)
12	100	80	18.10	2520.00	1.38	450.96	0.000000	0.00	0.000 (14)
13	100	80	18.10	2520.00	1.27	450.96	0.000000	0.00	0.000 (14)
14	100	80	18.10	2520.00	1.14	450.96	0.000000	0.00	0.000 (14)
15	100	80	18.10	2520.00	1.00	450.96	0.000000	0.00	0.000 (14)
16	100	80	18.10	2520.00	0.85	450.96	0.000000	0.00	0.000 (14)
17	100	80	18.10	2520.00	0.69	450.96	0.000000	0.00	0.000 (14)
18	100	80	18.10	2520.00	0.54	450.96	0.000000	0.00	0.000 (14)
19	100	80	18.10	2520.00	0.40	450.96	0.000000	0.00	0.000 (14)
20	100	80	18.10	2520.00	0.27	450.96	0.000000	0.00	0.000 (14)
21	100	80	18.10	2520.00	0.16	450.96	0.000000	0.00	0.000 (14)

PROGETTO ESECUTIVO

Direzione Progettazione e **RELAZIONE DI CALCOLO** Realizzazione Lavori

n°	В	Н	Af	Aeff	М	Mpf	8	Sm	w
	[cm]	[cm]	[cmq]	[cmq]	[kNm]	[kNm]	[%]	[mm]	[mm]
22	100	80	18.10	2520.00	0.07	450.96	0.000000	0.00	0.000 (14)
23	100	80	18.10	2520.00	0.02	450.96	0.000000	0.00	0.000 (14)
24	100	80	0.00	0.00	0.00	0.00			0.000 (14)

Combinazioni SLEF

<u>Paramento</u>

Apertura limite fessure w_{lim}=0.30

n°	В	Н	Af	Aeff	М	Mpf	8	Sm	w
	[cm]	[cm]	[cmq]	[cmq]	[kNm]	[kNm]	[%]	[mm]	[mm]
1	100	30	0.00	0.00	0.00	0.00			0.000 (15)
2	100	31	10.05	1202.98	0.00	65.98	0.000000	0.00	0.000 (15)
3	100	32	10.05	1254.23	0.01	71.35	0.000000	0.00	0.000 (15)
4	100	34	10.05	1305.59	0.02	76.93	0.000000	0.00	0.000 (15)
5	100	35	10.05	1357.06	0.05	82.69	0.000000	0.00	0.000 (15)
6	100	36	10.05	1408.64	0.10	88.66	0.000000	0.00	0.000 (15)
7	100	37	10.05	1460.32	0.17	94.82	0.000000	0.00	0.000 (15)
8	100	38	10.05	1512.09	0.26	101.18	0.000000	0.00	0.000 (15)
9	100	40	10.05	1563.95	0.39	107.73	0.000000	0.00	0.000 (15)
10	100	41	10.05	1615.89	0.56	114.47	0.000000	0.00	0.000 (15)
11	100	42	10.05	1667.91	0.76	121.41	0.000000	0.00	0.000 (15)
12	100	43	10.05	1720.01	1.01	128.55	0.000000	0.00	0.000 (15)
13	100	45	10.05	1772.18	1.32	135.89	0.000000	0.00	0.000 (15)
14	100	46	10.05	1824.41	1.67	143.41	0.000000	0.00	0.000 (15)
15	100	47	10.05	1876.72	2.09	151.14	0.000000	0.00	0.000 (15)
16	100	48	10.05	1880.00	2.56	159.06	0.000000	0.00	0.000 (15)
17	100	49	10.05	1880.00	3.11	167.18	0.000000	0.00	0.000 (15)
18	100	51	10.05	1880.00	3.73	175.49	0.000000	0.00	0.000 (15)
19	100	52	10.05	1880.00	4.42	184.00	0.000000	0.00	0.000 (15)
20	100	53	10.05	1880.00	5.20	192.70	0.000000	0.00	0.000 (15)
21	100	54	10.05	1880.00	6.06	201.60	0.000000	0.00	0.000 (15)
22	100	55	10.05	1880.00	7.01	210.70	0.000000	0.00	0.000 (15)
23	100	57	10.05	1880.00	8.06	219.99	0.000000	0.00	0.000 (15)
24	100	58	10.05	1880.00	9.20	229.49	0.000000	0.00	0.000 (15)
25	100	59	10.05	1880.00	10.45	239.18	0.000000	0.00	0.000 (15)
26	100	60	10.05	1880.00	11.81	249.07	0.000000	0.00	0.000 (15)
27	100	61	10.05	1880.00	13.28	259.16	0.000000	0.00	0.000 (15)
28	100	63	10.05	1880.00	14.87	269.44	0.000000	0.00	0.000 (15)
29	100	64	10.05	1880.00	16.58	279.93	0.000000	0.00	0.000 (15)
30	100	65	10.05	1880.00	18.42	290.60	0.000000	0.00	0.000 (15)
31	100	66	10.05	1880.00	20.38	300.41	0.000000	0.00	0.000 (15)

Fondazione

Apertura limite fessure w_{lim} =0.30

n°	В	Н	Af	Aeff	М	Mpf	8	Sm	w
	[cm]	[cm]	[cmq]	[cmq]	[kNm]	[kNm]	[%]	[mm]	[mm]
1	100	80	0.00	0.00	0.00	0.00			0.000 (15)
2	100	80	18.10	2520.00	0.19	450.96	0.000000	0.00	0.000 (15)
3	100	80	18.10	2520.00	0.77	450.96	0.000000	0.00	0.000 (15)
4	100	80	18.10	2520.00	1.75	450.96	0.000000	0.00	0.000 (15)
5	100	80	18.10	2520.00	3.11	450.96	0.000000	0.00	0.000 (15)
6	100	80	18.10	2520.00	4.88	450.96	0.000000	0.00	0.000 (15)
7	100	80	18.10	2520.00	7.06	450.96	0.000000	0.00	0.000 (15)
8	100	80	18.10	2520.00	1.53	450.96	0.000000	0.00	0.000 (15)
9	100	80	18.10	2520.00	1.55	450.96	0.000000	0.00	0.000 (15)
10	100	80	18.10	2520.00	1.53	450.96	0.000000	0.00	0.000 (15)
11	100	80	18.10	2520.00	1.47	450.96	0.000000	0.00	0.000 (15)
12	100	80	18.10	2520.00	1.38	450.96	0.000000	0.00	0.000 (15)
13	100	80	18.10	2520.00	1.27	450.96	0.000000	0.00	0.000 (15)
14	100	80	18.10	2520.00	1.14	450.96	0.000000	0.00	0.000 (15)
15	100	80	18.10	2520.00	1.00	450.96	0.000000	0.00	0.000 (15)
16	100	80	18.10	2520.00	0.85	450.96	0.000000	0.00	0.000 (15)
17	100	80	18.10	2520.00	0.69	450.96	0.000000	0.00	0.000 (15)
18	100	80	18.10	2520.00	0.54	450.96	0.000000	0.00	0.000 (15)
19	100	80	18.10	2520.00	0.40	450.96	0.000000	0.00	0.000 (15)
20	100	80	18.10	2520.00	0.27	450.96	0.000000	0.00	0.000 (15)
21	100	80	18.10	2520.00	0.16	450.96	0.000000	0.00	0.000 (15)

PROGETTO ESECUTIVO

Direzione Progettazione e Realizzazione Lavori

RELAZIONE DI CALCOLO

n°	В	Н	Af	Aeff	М	Mpf	8	Sm	w
	[cm]	[cm]	[cmq]	[cmq]	[kNm]	[kNm]	[%]	[mm]	[mm]
22	100	80	18.10	2520.00	0.07	450.96	0.000000	0.00	0.000 (15)
23	100	80	18.10	2520.00	0.02	450.96	0.000000	0.00	0.000 (15)
24	100	80	0.00	0.00	0.00	0.00			0.000 (15)

Combinazioni SLEQ

<u>Paramento</u>

Apertura limite fessure w_{lim} =0.20

n°	В	Н	Af	Aeff	М	Mpf	8	Sm	w
	[cm]	[cm]	[cmq]	[cmq]	[kNm]	[kNm]	[%]	[mm]	[mm]
1	100	30	0.00	0.00	0.00	0.00			0.000 (16)
2	100	31	10.05	1202.98	0.00	65.98	0.000000	0.00	0.000 (16)
3	100	32	10.05	1254.23	0.01	71.35	0.000000	0.00	0.000 (16)
4	100	34	10.05	1305.59	0.02	76.93	0.000000	0.00	0.000 (16)
5	100	35	10.05	1357.06	0.05	82.69	0.000000	0.00	0.000 (16)
6	100	36	10.05	1408.64	0.10	88.66	0.000000	0.00	0.000 (16)
7	100	37	10.05	1460.32	0.17	94.82	0.000000	0.00	0.000 (16)
8	100	38	10.05	1512.09	0.26	101.18	0.000000	0.00	0.000 (16)
9	100	40	10.05	1563.95	0.39	107.73	0.000000	0.00	0.000 (16)
10	100	41	10.05	1615.89	0.56	114.47	0.000000	0.00	0.000 (16)
11	100	42	10.05	1667.91	0.76	121.41	0.000000	0.00	0.000 (16)
12	100	43	10.05	1720.01	1.01	128.55	0.000000	0.00	0.000 (16)
13	100	45	10.05	1772.18	1.32	135.89	0.000000	0.00	0.000 (16)
14	100	46	10.05	1824.41	1.67	143.41	0.000000	0.00	0.000 (16)
15	100	47	10.05	1876.72	2.09	151.14	0.000000	0.00	0.000 (16)
16	100	48	10.05	1880.00	2.56	159.06	0.000000	0.00	0.000 (16)
17	100	49	10.05	1880.00	3.11	167.18	0.000000	0.00	0.000 (16)
18	100	51	10.05	1880.00	3.73	175.49	0.000000	0.00	0.000 (16)
19	100	52	10.05	1880.00	4.42	184.00	0.000000	0.00	0.000 (16)
20	100	53	10.05	1880.00	5.20	192.70	0.000000	0.00	0.000 (16)
21	100	54	10.05	1880.00	6.06	201.60	0.000000	0.00	0.000 (16)
22	100	55	10.05	1880.00	7.01	210.70	0.000000	0.00	0.000 (16)
23	100	57	10.05	1880.00	8.06	219.99	0.000000	0.00	0.000 (16)
24	100	58	10.05	1880.00	9.20	229.49	0.000000	0.00	0.000 (16)
25	100	59	10.05	1880.00	10.45	239.18	0.000000	0.00	0.000 (16)
26	100	60	10.05	1880.00	11.81	249.07	0.000000	0.00	0.000 (16)
27	100	61	10.05	1880.00	13.28	259.16	0.000000	0.00	0.000 (16)
28	100	63	10.05	1880.00	14.87	269.44	0.000000	0.00	0.000 (16)
29	100	64	10.05	1880.00	16.58	279.93	0.000000	0.00	0.000 (16)
30	100	65	10.05	1880.00	18.42	290.60	0.000000	0.00	0.000 (16)
31	100	66	10.05	1880.00	20.38	300.41	0.000000	0.00	0.000 (16)

Fondazione

Apertura limite fessure w_{lim} =0.20

n°	В	н	Af	Aeff	М	Mpf	8	Sm	w
	[cm]	[cm]	[cmq]	[cmq]	[kNm]	[kNm]	[%]	[mm]	[mm]
1	100	80	0.00	0.00	0.00	0.00			0.000 (16)
2	100	80	18.10	2520.00	0.19	450.96	0.000000	0.00	0.000 (16)
3	100	80	18.10	2520.00	0.77	450.96	0.000000	0.00	0.000 (16)
4	100	80	18.10	2520.00	1.75	450.96	0.000000	0.00	0.000 (16)
5	100	80	18.10	2520.00	3.11	450.96	0.000000	0.00	0.000 (16)
6	100	80	18.10	2520.00	4.88	450.96	0.000000	0.00	0.000 (16)
7	100	80	18.10	2520.00	7.06	450.96	0.000000	0.00	0.000 (16)
8	100	80	18.10	2520.00	1.53	450.96	0.000000	0.00	0.000 (16)
9	100	80	18.10	2520.00	1.55	450.96	0.000000	0.00	0.000 (16)
10	100	80	18.10	2520.00	1.53	450.96	0.000000	0.00	0.000 (16)
11	100	80	18.10	2520.00	1.47	450.96	0.000000	0.00	0.000 (16)
12	100	80	18.10	2520.00	1.38	450.96	0.000000	0.00	0.000 (16)
13	100	80	18.10	2520.00	1.27	450.96	0.000000	0.00	0.000 (16)
14	100	80	18.10	2520.00	1.14	450.96	0.000000	0.00	0.000 (16)
15	100	80	18.10	2520.00	1.00	450.96	0.000000	0.00	0.000 (16)
16	100	80	18.10	2520.00	0.85	450.96	0.000000	0.00	0.000 (16)
17	100	80	18.10	2520.00	0.69	450.96	0.000000	0.00	0.000 (16)
18	100	80	18.10	2520.00	0.54	450.96	0.000000	0.00	0.000 (16)
19	100	80	18.10	2520.00	0.40	450.96	0.000000	0.00	0.000 (16)
20	100	80	18.10	2520.00	0.27	450.96	0.000000	0.00	0.000 (16)
21	100	80	18.10	2520.00	0.16	450.96	0.000000	0.00	0.000 (16)

PROGETTO ESECUTIVO

RELAZIONE DI CALCOLO

Direzione Progettazione e Realizzazione Lavori

n°	В	Н	Af	Aeff	М	Mpf	8	Sm	w
	[cm]	[cm]	[cmq]	[cmq]	[kNm]	[kNm]	[%]	[mm]	[mm]
22	100	80	18.10	2520.00	0.07	450.96	0.000000	0.00	0.000 (16)
23	100	80	18.10	2520.00	0.02	450.96	0.000000	0.00	0.000 (16)
24	100	80	0.00	0.00	0.00	0.00			0.000 (16)

PROGETTO ESECUTIVO

RELAZIONE DI CALCOLO

10.1.7 Elenco ferri

Simbologia adottata n° Indice del ferro nf numero ferri D diametro ferro e

diametro ferro espresso in [mm] Lunghezza ferro espresso in [m] Peso ferro espresso in [kN] L Pferro

Paramento

n°	Tipo	nf	D	L	Pf	P_{gf}	Vcls
			[mm]	[m]	[kN]	[kN]	[mc]
1	Diritto superiore	5	16.00	4.94	0.0765	0.3825	
2	Diritto inferiore	5	16.00	4.92	0.0762	0.3808	
3	Ripartitore	9	12.00	1.00	0.0087	0.0784	
4	Gancio	12	10.00	0.42	0.0025	0.0305	
	Totale al metro					0.9250	1.44
	Totale					10.6319	17.48

Fondazione

n°	Tipo	nf	D	L	Pf	P_{gf}	Vcls
			[mm]	[m]	[kN]	[kN]	[mc]
1	Diritto superiore	4	24.00	4.58	0.1595	0.6379	
2	Diritto inferiore	4	24.00	4.58	0.1595	0.6379	
3	Ripartitore	7	12.00	1.00	0.0087	0.0609	
4	Gancio	9	14.00	0.75	0.0088	0.0796	
	Totale al metro					1.4154	2.24
	Totale					17.3328	27.13

RELAZIONE DI CALCOLO

11 STABILITÀ DELLO SCAVO PROVVISORIO

L'analisi di stabilità globale è stata finalizzata all'individuazione delle potenziali superfici di rottura. Tra esse, è definita critica quella a cui corrisponde il fattore di sicurezza FS minimo.

Si sottolinea che, a favore di sicurezza, nella ricerca delle superfici di rottura critiche non sono stati considerati eventuali carichi a valle della regione di terreno potenzialmente instabile, essendo questi ultimi stabilizzanti. Il traffico sulla strada a monte dello scavo è stato tenuto in considerazione applicando un carico distribuito pari a 20 kPa.

Nella figura sottostante è riportata la superficie di rottura critica per la combinazione DA1C2; il fattore di sicurezza FS relativo a tali meccanismi, e quindi il minore tra tutti i fattori di sicurezza FS calcolati, è pari

FS^{MIN} (DA1C2) = 2.468

Essendo soddisfatta la relazione:

 $FS^{MIN} \ge R2 = 1.1.$

la verifica di stabilità globale in campo statico risulta soddisfatta.

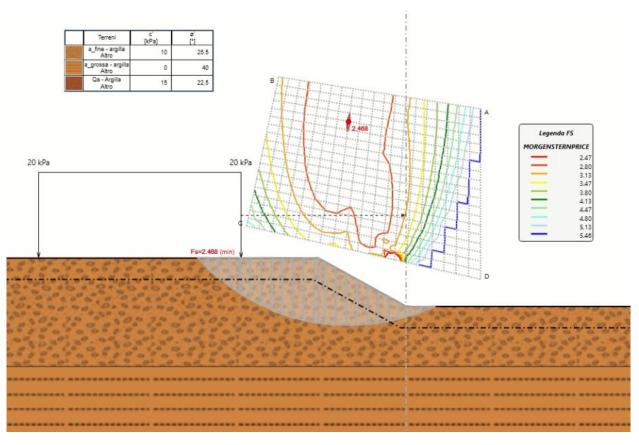


Figura 5: Verifica di stabilità globale in condizioni statiche.

