

Direzione Progettazione e Realizzazione Lavor i

ITINERARIO RAGUSA-CATANIA

Collegamento viario compreso tra lo Svincolo della S.S. 514 "di Chiaramonte" con la S.S. 115 e lo Svincolo della S.S. 194 "Ragusana"

LOTTO 4 - Dallo svincolo n. 8 "Francofonte" (compreso) allo svincolo della "Ragusana" (escluso)

PROGETTO ESECUTIVO

COD. PA898

PROGETTAZIONE: ATI SINTAGMA - GP INGEGNERIA - COOPROGETTI -GDG - ICARIA - OMNISERVICE

OPERE DI SOSTEGNO MURO IN CA SX DAL KM 12+817 AL KM 12+879 Relazione di calcolo - Opere provvisionali

CODICE PROGET	TO LIV. PROG. N. PROG.	NOME FILE	S10STRRE02A	REVISIONE	SCALA:		
L O 4 0		CODICE ELAB.	T040S10S	Α	-		
Α	Emissione			Set 2021	E.Sellari	F. Durastanti	N.Granieri
REV.	DESCRIZIONE			DATA	REDATTO	VERIFICATO	APPROVATO

Itinerario Ragusa - Catania

Collegamento viario compreso tra lo Svincolo della S.S. 514 di "Chiaramonte" con la S.S. 115 e lo Svincolo della "Ragusana"

PROGETTO ESECUTIVO RELAZIONE DI CALCOLO

INDICE

1.	PREMESSA	3
2.	DESCRIZIONE DELL'OPERA	3
3.	NORMATIVA DI RIFERIMENTO	4
4.	CARATTERISTICHE DEI MATERIALI	5
5.	CARATTERIZZAZIONE GEOTECNICA	7
6.	CARATTERIZZAZIONE SISMICA	8
7.	MODELLAZIONE NUMERICA	8
7.	1 PROGRAMMI PER L'ANALISI AUTOMATICA	8
7.	2 MODELLI DI CALCOLO	8
7.	3 PARATIA LIBERA	8
7	ANALISI DEI CARICHI	10
7.	5 CONDIZIONI DI CARICO ELEMENTARI	10
	7.3.1 Peso Proprio	10
	7.3.2 Spinta statica delle terre	10
	7.3.3 Spinta statica dell'acqua	11
7.	6 CARICHI PERMANENTI	12
8	RISULTATI	12
8.	5 PARATIA LIBERA	12
	8.5.1 Verifiche SLU pareti	12
	8.5.2 Verifiche SLU geo	17
	8.5.3 Verifiche SLE	18
	8.5.4 Armatura	22
ΔΙΙ	EGATO 1. RISHITATI PARATIA LIBERA	22

Itinerario Ragusa - Catania

Collegamento viario compreso tra lo Svincolo della S.S. 514 di "Chiaramonte" con la S.S. 115 e lo Svincolo della "Ragusana"

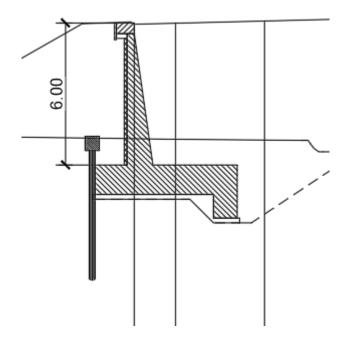
PROGETTO ESECUTIVO

RELAZIONE DI CALCOLO

PROGETTO ESECUTIVO

RELAZIONE DI CALCOLO

1. **PREMESSA**


La presente relazione ha per oggetto il calcolo ed il dimensionamento della paratia provvisionale OS10 relativa alla progettazione del Lotto 4 del "Collegamento autostradale Ragusa-Catania: ammodernamento a n° 4 corsie della s.s. 514 "di Chiaramonte" e della s.s. 194 ragusana dallo svincolo con la s.s. 115 allo svincolo con la s.s. 114".

La paratia in oggetto si sviluppa tra la pk. 12+851.81e la pk. 12+896.41; l'opera di sostegno consta in paratie libere realizzate mediante pali aventi diametro \emptyset pari a 600 mm disposti ad interasse di 0.7m;

Le azioni considerate nel calcolo sono quelle tipiche di una struttura interrata determinate dall'interazione terreno – struttura con l'aggiunta delle azioni sismiche derivanti dall'applicazione della Normativa D.M. del 14 gennaio 2008 - Norme tecniche per le costruzioni. Le verifiche eseguite nel presente elaborato fanno riferimento allo stesso D.M. del 2008.

2. **DESCRIZIONE DELL'OPERA**

In funzione della profondità di scavo sono stati previsti pali di diametro Φ 600 mm ed interasse 0.7 m.

Itinerario Ragusa - Catania

Collegamento viario compreso tra lo Svincolo della S.S. 514 di "Chiaramonte" con la S.S. 115 e lo Svincolo della "Ragusana"

PROGETTO ESECUTIVO

RELAZIONE DI CALCOLO

3. **NORMATIVA DI RIFERIMENTO**

Il progetto è stato redatto sulla base delle seguenti normative e standard progettuali:

- D.M. 14 gennaio 2008 pubblicato su S.O. n. 30 alla G.U. 4 febbraio 2008, n. 29 "Approvazione delle nuove norme tecniche per le costruzioni";
- Circolare n.ro 617 del 2 febbraio 2009 "Istruzioni per l'applicazione delle Nuove Norme tecniche per le costruzioni di cui al decreto ministeriale 14 gennaio 2008";
- **UNI EN 1992**-1-1:2005: "Eurocodice 2 Progettazione delle strutture di calcestruzzo parte 1 Regole generali e regole per edifici";
- UNI EN 206-1 ottobre 2006 "Calcestruzzo: specificazione, prestazione, produzione e conformità";
- UNI EN 11104 marzo 2004 "Calcestruzzo: specificazione, prestazione, produzione e conformità", Istruzioni complementari per l'applicazione delle EN 206-1;

PROGETTO ESECUTIVO

RELAZIONE DI CALCOLO

4. CARATTERISTICHE DEI MATERIALI

Resistenza cubica caratteristica	R_{ck}	=	40.0	N/mm ²
Modulo elastico	Ec	=	33345	N/mm ²
Classe di esposizione	XC2			
Copriferro			60	mm

Calcestruzzo per fondazione dei muri C32/40

Resistenza cubica caratteristica	R_{ck}	=	40.0	N/mm ²
Modulo elastico	E_c	=	33345	N/mm ²
Classe di esposizione	XA2			
Copriferro			40	mm

Acciaio per armatura B450C

Tensione caratteristica di snervamento	f_{yk}	\geq	450	N/mm ²
Tensione caratteristica di calcolo	f_{yd}	\geq	391.3	N/ mm ²
Modulo di elasticità	Es	=	210000	N/mm ²

Acciaio per trefoli dei tiranti attivi definitivi

Trefoli	0.6	"	
Boiacca di cemento (conforme alla norma	Classe	di	XA2
UNI EN 206-1/UNI 11104)	esposizione		
Resistenza caratteristica a trazione f _{ptk}	1860		MPa
Resistenza a trazione allo 0.1% f _{p(1)k}	1670		MPa

PROGETTO ESECUTIVO

RELAZIONE DI CALCOLO

Miscela cementizia di iniezione per tiranti C32/40 N/mm²

Acciaio per carpenteria metallica

Travi di ripartizione tiranti

Acciaio S275

PROGETTO ESECUTIVO

RELAZIONE DI CALCOLO

5. **CARATTERIZZAZIONE GEOTECNICA**

Si riportano di seguito i parametri di resistenza e deformabilità dei terreni usati nel modello in accordo la caratterizzazione geotecnica.

Unità geologiche	descrizione	z strato	litotipo	γ	c'	φ'	z	C _u	E'	OCR	k ₀ (*)	
Offica geologiche	descrizione	2 Strato	псопро	[kN/m ³]	[kPa]	[°]	[m da p.c.]	[kPa]	[MPa]	[-]	[-]	
Rilevato	-	0 a 5		19	-	35			-		-	
a	a fine	5a 11	Alluvioni (grana fine)	18	10	25.5	2.5	100	10	≥10	1.81	
	a_iiiie	30 11	Alluvioni (grana inie)			23.3	>5	100	20	≥5	1.28	
а	a_gross	11 a 16		20	0	40	-	-	40	-	0.36	
	Argille siltoso		Argille				2.5		15	15	1.96	
							2.5			17	2.76	
								7.5		13	6	0.88
						22.5	12.5		ь	1.96		
Qa	marnose	>16		18	15				25	3.5	0.88	
	mamosc									3.3	1.38	
									40			
										2	0.88	
							>30	200	70			

Tabella 1: Caratterizzazione geotecnica

Di seguito si riportano le sezioni geotecniche di riferimento per l'opera in oggetto:.

Figura 1: Sezioni geotecniche per l'opera in esame

L'opera non è interessata dalla falda.

PROGETTO ESECUTIVO

RELAZIONE DI CALCOLO

6. CARATTERIZZAZIONE SISMICA

La paratia è provvisionale e quindi non interessata dall'azione sismica.

7. **MODELLAZIONE NUMERICA**

7.1 Programmi per l'analisi automatica

Lo stato tenso-deformativo della paratia e le verifiche strutturali sono state svolte con il codice di calcolo PARATIEPLUS.

7.2 Modelli di calcolo

Lo stato tenso-deformativo dei pali è stato investigato mediante il software di calcolo PARATIE PLUS, programma non lineare agli elementi finiti per l'analisi di strutture di sostegno flessibili.

Si è considerato un comportamento piano nelle deformazioni, analizzando una striscia di parete di larghezza unitaria. La realizzazione dello scavo sostenuto da paratie è seguita in tutte le varie fasi attraverso un'analisi statica incrementale: ogni passo di carico coincide con una ben precisa configurazione caratterizzata da una quota di scavo, da un insieme di puntoni e tiranti applicati e da una ben precisa disposizione di carichi applicati.

7.3 Paratia libera

La paratia è costituita pali D600 interasse 0.7m, L=10m.

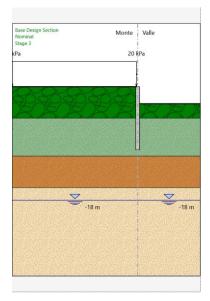
L'altezza di scavo è 2.7 m.

Nella modellazione è implementata la seguente successione di step:

- Step 1: Condizione Geostatica
- Step 2: Realizzazione dei pali, del cordolo e del muro. Attivazione carichi.
- Step 3: scavo

Per maggiori dettagli si rimanda agli allegati di calcolo.

Direzione Progettazione e


Realizzazione Lavori

Collegamento viario compreso tra lo Svincolo della S.S. 514 di "Chiaramonte" con la S.S. 115 e lo Svincolo della "Ragusana"

PROGETTO ESECUTIVO

RELAZIONE DI CALCOLO

PROGETTO ESECUTIVO RELAZIONE DI CALCOLO

7 **ANALISI DEI CARICHI**

7.5 Condizioni di carico elementari

Peso Proprio

Il peso proprio della struttura è calcolato in base alla geometria degli elementi strutturali e al peso specifico assunto per i materiali:

$$\gamma_{cls}$$
=25.0 kN/m³

7.3.2 Spinta statica delle terre

Nel modello di calcolo impiegato dal software di calcolo PARATIE, la spinta del terreno viene determinata investigando l'interazione statica tra terreno e la struttura deformabile a partire da uno stato di spinta a riposo del terreno sulla paratia.

I parametri che identificano il tipo di legge costitutiva possono essere distinti in due sottoclassi: parametri di spinta e parametri di deformabilità del terreno.

I parametri di spinta sono il coefficiente di spinta a riposo Ko, il coefficiente di spinta attiva Ka e il coefficiente di spinta passiva K_p.

Il coefficiente di spinta a riposo fornisce lo stato tensionale presente in sito prima delle operazioni di scavo. Esso lega la tensione orizzontale efficace σ'_h a quella verticale σ'_v attraverso la relazione:

$$\sigma'_h = K_0 \cdot \sigma'_v$$

 K_0 dipende dalla resistenza del terreno, attraverso il suo angolo di attrito efficace ϕ' e dalla sua storia geologica. Si può assumere che:

$$K_0 = K_0^{NC} \cdot (OCR)^m$$

dove
 $K_0^{NC} = 1 - \operatorname{sen} \phi'$

è il coefficiente di spinta a riposo per un terreno normalconsolidato (OCR=1). OCR è il grado di sovraconsolidazione e m è un parametro empirico, di solito compreso tra 0.4 e 0.7.

I coefficienti di spinta attiva e passiva sono forniti dalla teoria di Rankine per una parete liscia dalle seguenti espressioni:

$$K_a = tan^2(45 - \phi'/2)$$

 $K_p = tan^2(45 + \phi'/2)$

Per tener conto dell'angolo di attrito δ tra paratia e terreno il software PARATIE impiega per Ka e Kp la formulazione rispettivamente di Coulomb e Lancellotta.

Formulazione di Coulomb per ka

MANDATARIA:

PROGETTO ESECUTIVO

RELAZIONE DI CALCOLO

$$k_{a} = \frac{cos^{2}(\phi' - \beta)}{cos^{2}\beta \cdot cos(\beta + \delta) \cdot \left[1 + \sqrt{\frac{sen(\delta + \phi') \cdot sen(\phi' - i)}{cos(\beta + \delta) \cdot cos(\beta - i)}}\right]^{2}}$$

dove:

φ' è l'angolo di attrito del terreno

β è l'angolo d'inclinazione del diaframma rispetto alla verticale

δ è l'angolo di attrito paratia-terreno

i è l'angolo d'inclinazione del terreno a monte della paratia rispetto all'orizzontale

Il valore limite della tensione orizzontale sarà pari a

$$\sigma'_{h} = K_{a} \cdot \sigma'_{v} - 2 \cdot c' \cdot V K_{a}$$

$$\sigma'_{h} = K_{n} \cdot \sigma'_{v} + 2 \cdot c' \cdot V K_{n}$$

a seconda che il collasso avvenga in spinta attiva o passiva rispettivamente. c' è la coesione drenata del terreno.

Formulazione di Lancellotta per k_p

$$K_{P} = \left[\frac{\cos \delta}{1 - \sin \Phi'} (\cos \delta + \sqrt{\sin^{2} \Phi' - \sin^{2} \delta})\right] e^{2\theta \tan \Phi'}$$

dove:

$$2\theta = \sin^{-1}\left(\frac{\sin\delta}{\sin\Phi'}\right) + \delta$$

Spinta statica dell'acqua

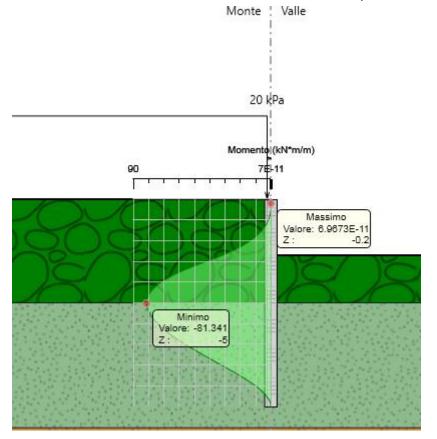
L'opera non è interessata dalla presenza della falda.

PROGETTO ESECUTIVO

RELAZIONE DI CALCOLO

7.6 carichi permanenti

Data la presenza di un' abitazione a monte della paratia, si è inserito un carico di 20 kPa.


8 Risultati

Nei paragrafi seguenti si riportano i risultati delle analisi condotte per i diversi modelli implementati, con le indicazioni dei valori massimi delle sollecitazioni flettenti e taglianti e delle rispettive profondità. I valori riportati sono relativi all'analisi al metro lineare.

8.5 Paratia libera

8.5.1 Verifiche SLU pareti

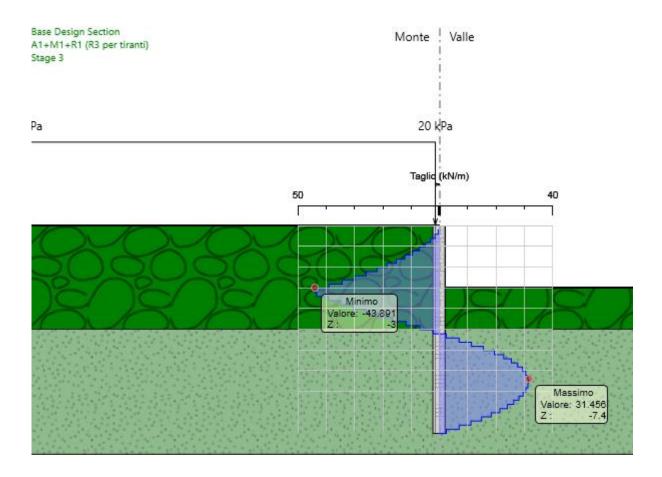
Dall'inviluppo del momento flettente si osserva che il massimo valore risulta pari a 82 kNm/m.

Itinerario Ragusa - Catania

Collegamento viario compreso tra lo Svincolo della S.S. 514 di "Chiaramonte" con la S.S. 115 e lo Svincolo della "Ragusana"

PROGETTO ESECUTIVO

RELAZIONE DI CALCOLO

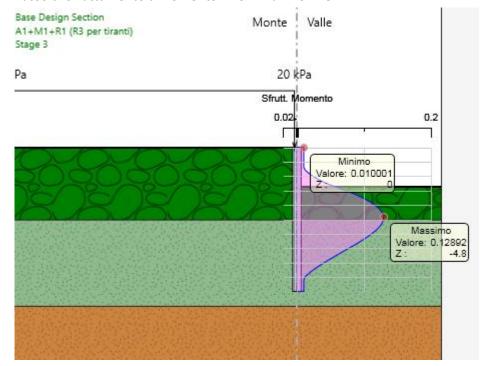


PROGETTO ESECUTIVO

RELAZIONE DI CALCOLO

Dall'inviluppo del taglio si osserva che il massimo valore risulta pari a 44 kN/m.

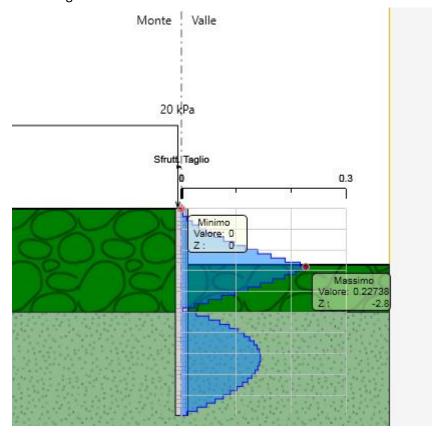
Nel seguito si riportano i risultati delle verifiche strutturali dei pali a flessione e a taglio condotte mediante l'ausilio di Paratie plus. In particolare si riportano i diagrammi dei tassi di sfruttamento, ottenuti come rapporto tra sollecitazione presente e resistenza disponibile in ogni sezione.



PROGETTO ESECUTIVO

RELAZIONE DI CALCOLO

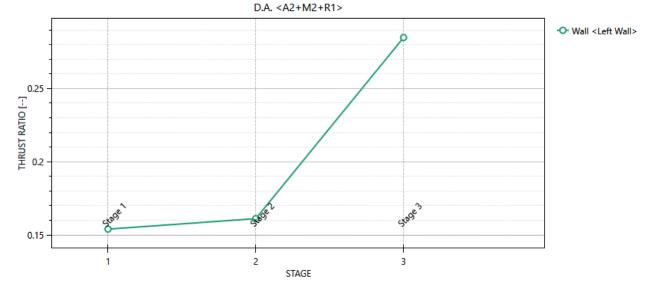
Tasso di sfruttamento a momento T.S.F.max = 0.128<1



PROGETTO ESECUTIVO

RELAZIONE DI CALCOLO

Tasso di sfruttamento a taglio T.S.F.max = 0.22<1

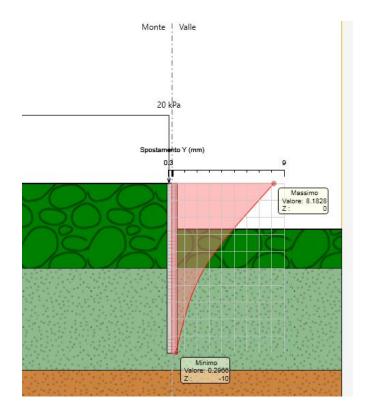

PROGETTO ESECUTIVO **RELAZIONE DI CALCOLO**

8.5.2 Verifiche SLU geo

Le verifiche geotecniche sono svolte valutando il coefficiente di sicurezza in termini di rapporto di mobilitazione della spinta passiva, cioè come rapporto tra spinta passiva mobilitata al piede della paratia e la spinta passiva mobilitabile. La verifica è soddisfatta se tale rapporto è inferiore all'unità.

Il massimo rapporto di mobilitazione della spinta passiva è circa il 28%.

Massimi rapporti di mobilizzazione spinta passiva



PROGETTO ESECUTIVO

RELAZIONE DI CALCOLO

8.5.3 **Verifiche SLE**

Dall'inviluppo degli spostamenti in combinazione SLE si osserva che lo spostamento massimo orizzontale della paratia vale 8.1mm:

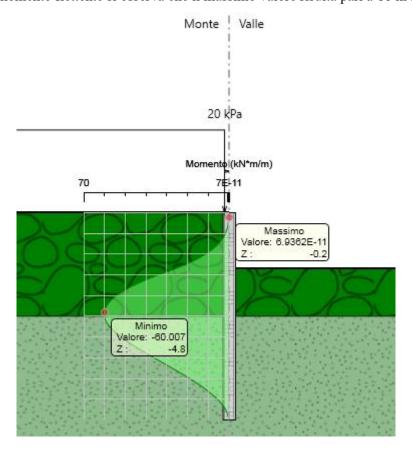
		m	mm
check 1	0.005H	0.05	50
check 2	1/100H _{scavo}	0.03	30

	limite					
spostament						
	paratia a SLE					
m	mm					
0.03	30					

risultato sle mm 8.1

ok

MANDATARIA:

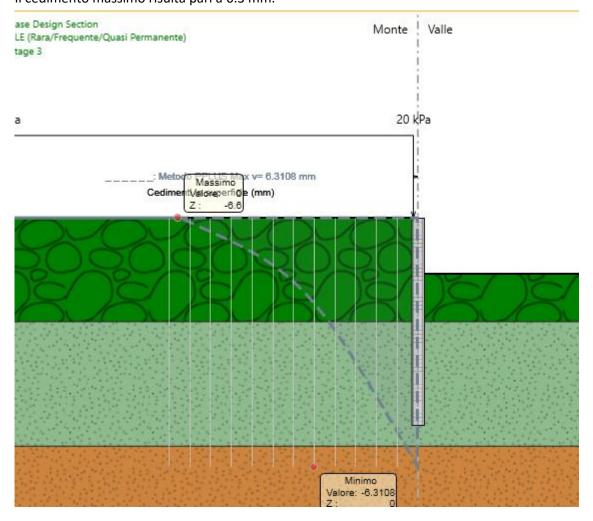


PROGETTO ESECUTIVO RELAZIONE DI CALCOLO

Dall'inviluppo del momento flettente si osserva che il massimo valore risulta pari a 60 kNm/m.

RELAZIONE DI CALCOLO

L'ampiezza massima di apertura delle fessure è pari a 0.06mm:



PROGETTO ESECUTIVO RELAZIONE DI CALCOLO

Il cedimento massimo risulta pari a 6.3 mm.

PROGETTO ESECUTIVO

RELAZIONE DI CALCOLO

8.5.4 **Armatura**

Nome tratto	da [m]	a [m]	diametro palo [mm]	Armatı	ıra long		Staffe
				n°	Ø	Ø	passo [cm]
Tratto 1	0.00	10.00	600	18	20	10	20

PROGETTO ESECUTIVO

RELAZIONE DI CALCOLO

ALLEGATO 1: Risultati paratia libera

Descrizione della Stratigrafia e degli Strati di Terreno

Tipo: HORIZONTAL

Quota:0 m OCR:1

Tipo: HORIZONTAL

Quota:-5 m OCR:1

Tipo: HORIZONTAL Quota:-11 m

OCR:1

Tipo: HORIZONTAL Quota:-16 m

OCR:1

Strato di Terreno	o Terreno	γ dry	γ sat	ø'	øcvøp c' Su	Modulo Elastico Eu	ı Evc	Eur	Ah Av exp Pa Rur/Rv	/cRvc K	u Kvc	Kur
		kN/m	kN/m	3 •	° ° kPa kPa	1	kPa	kPa	kPa	kPa kN	/m³ kN/m³	kN/m³
1	rilevato	19	19	35	0	Constant	10000	16000				
2	a -argilla_fine	18	18	25.5	10	Constant	10000	16000				
3	a -argilla_gross	20	20	40	0	Constant	40000	64000				
4	Qa	18	18	22.5	15	Constant	15000	24000				

PROGETTO ESECUTIVO

RELAZIONE DI CALCOLO

Descrizione Pareti

X:5 m

Quota in alto: 0 m Quota di fondo: -10 m Muro di sinistra

Armatura Lunghezza segmenti: 1 m

Rinforzo longitudinale 1

Lunghezza: 10 m Materiale: B450C Quota iniziale: 0 m

Barre 1

Numero di barre: 18 Diametro: 0.02 m

Distanza dal bordo: 0.085 m

Staffe 1

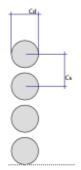
Numero di staffe: 2 Copertura: 0.06 m Diametro: 0.01 m Lunghezza: 10 m Quota iniziale: 0 m Passo: 0.2 m

Sezione: PALO 600

Area equivalente: 0.403919055461545 m

Inerzia equivalente: 0.0091 m⁴/m Materiale calcestruzzo: C32/40 Tipo sezione: Tangent

> Spaziatura: 0.7 m Diametro: 0.6 m Efficacia: 1

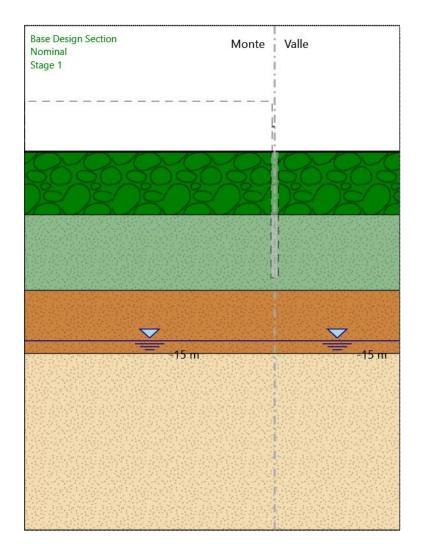


Itinerario Ragusa - Catania

Collegamento viario compreso tra lo Svincolo della S.S. 514 di "Chiaramonte" con la S.S. 115 e lo Svincolo della "Ragusana"

PROGETTO ESECUTIVO

RELAZIONE DI CALCOLO

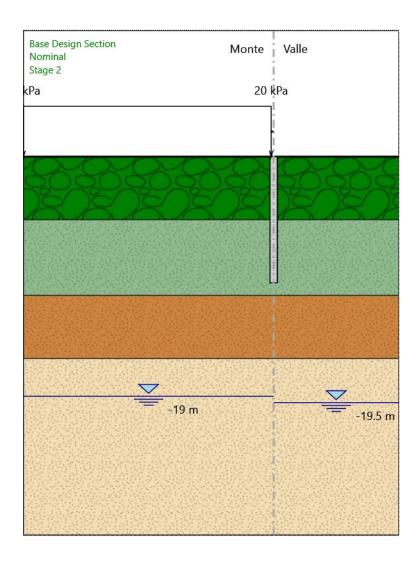


PROGETTO ESECUTIVO

RELAZIONE DI CALCOLO

Fasi di Calcolo

Stage 1



PROGETTO ESECUTIVO

RELAZIONE DI CALCOLO

Stage 2

Stage 2

Elementi strutturali

Paratia: WallElement

MANDATARIA:

PROGETTO ESECUTIVO

RELAZIONE DI CALCOLO

X:5 m

Quota in alto: 0 m Quota di fondo : -10 m Sezione: PALO 600

PROGETTO ESECUTIVO

RELAZIONE DI CALCOLO

Stage 3

Stage 3

Elementi strutturali

Paratia: WallElement

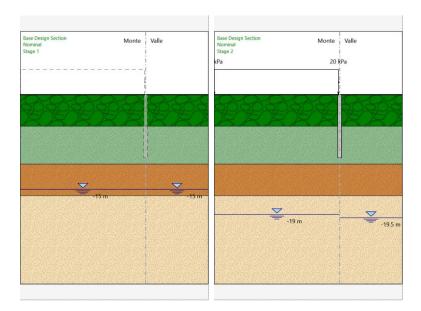
MANDATARIA:

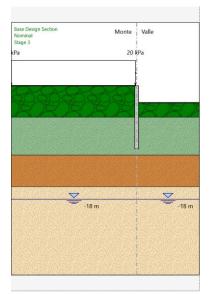
PROGETTO ESECUTIVO

RELAZIONE DI CALCOLO

X:5 m

Quota in alto: 0 m Quota di fondo : -10 m Sezione: PALO 600





PROGETTO ESECUTIVO

RELAZIONE DI CALCOLO

Tabella Configurazione Stage (Nominal)

PROGETTO ESECUTIVO

RELAZIONE DI CALCOLO

Grafici dei Risultati

Design Assumption: Nominal

Tabella Spostamento Nominal - LEFT Stage: Stage 1

Design Assumption May 1	Fine Disultate Country	
Design Assumption: Nominal 1	•	
Stage	Z (m)	Spostamento orizzontale (mm)
Stage 1	0	0
Stage 1	-0.2	0
Stage 1	-0.4	0
Stage 1	-0.6	0
Stage 1	-0.8	0
Stage 1	-1	0
Stage 1	-1.2	0
Stage 1	-1.4	0
Stage 1	-1.6	0
Stage 1	-1.8	0
Stage 1	-2	0
Stage 1	-2.2	0
Stage 1	-2.4	0
Stage 1	-2.6	0
Stage 1	-2.8	0
Stage 1	-3	0
Stage 1	-3.2	0
Stage 1	-3.4	0
Stage 1	-3.6	0
Stage 1	-3.8	0
Stage 1	-4	0
Stage 1	-4.2	0
Stage 1	-4.4	0
Stage 1	-4.6	0
Stage 1	-4.8	0
Stage 1	-5	0
Stage 1	-5.2	0
Stage 1	-5.4	0
Stage 1	-5.6	0
Stage 1	-5.8	0
Stage 1	-6	0
Stage 1	-6.2	0
Stage 1	-6.4	0
Stage 1	-6.6	0
Stage 1	-6.8	0
Stage 1	-7	0
Stage 1	-7.2	0
Stage 1	-7.4	0
Stage 1	-7.6	0
Stage 1	-7.8	0
Stage 1	-8	0
Stage 1	-8.2	0
Stage 1	-8.4	0
Stage 1	-8.6	0
Stage 1	-8.8	0
Stage 1	-9	0
Stage 1	-9.2	0
Stage 1	-9.4	0

MANDATARIA:

Realizzazione Lavori

Collegamento viario compreso tra lo Svincolo della S.S. 514 di "Chiaramonte" con la S.S. 115 e lo Svincolo della "Ragusana"

PROGETTO ESECUTIVO

RELAZIONE DI CALCOLO

Design Assumption: Nominal Tipo Risultato: Spostamento			Muro: LEFT	
	Stage	Z (m)	Spostamento orizzontale (mm)	
	Stage 1	-9.6	0	
	Stage 1	-9.8	0	
	Stage 1	-10	0	

PROGETTO ESECUTIVO

RELAZIONE DI CALCOLO

Tabella Spostamento Nominal - LEFT Stage: Stage 2

Design Assumption: Nominal T	ino Risultato: Snostame	nto Muro: LEFT
Stage	Z (m)	Spostamento orizzontale (mm)
Stage 2	0	0.16
Stage 2	-0.2	0.10
Stage 2	-0.4	0.17
Stage 2	-0.4	0.17
Stage 2	-0.8	0.17
Stage 2	-0.8 -1	0.18
Stage 2	-1.2	0.18
Stage 2	-1.4	0.18
Stage 2	-1.6	0.19
Stage 2	-1.8	0.19
Stage 2	-2	0.19
Stage 2	-2.2	0.19
Stage 2	-2.4	0.2
Stage 2	-2.6	0.2
Stage 2	-2.8	0.2
Stage 2	-3	0.2
Stage 2	-3.2	0.2
Stage 2	-3.4	0.21
Stage 2	-3.6	0.21
Stage 2	-3.8	0.21
Stage 2	-4	0.21
Stage 2	-4.2	0.21
Stage 2	-4.4	0.21
Stage 2	-4.6	0.21
Stage 2	-4.8	0.21
Stage 2	-5	0.22
Stage 2	-5.2	0.22
Stage 2	-5.4	0.22
Stage 2	-5.6	0.22
Stage 2	-5.8	0.22
Stage 2	-6	0.22
Stage 2	-6.2	0.22
Stage 2	-6.4	0.22
Stage 2	-6.6	0.22
Stage 2	-6.8	0.22
Stage 2	-7	0.22
Stage 2	-7.2	0.22
Stage 2	-7.4	0.22
Stage 2	-7.6	0.22
Stage 2	-7.8	0.22
Stage 2	-8	0.22
Stage 2	-8.2	0.22
Stage 2	-8.4	0.22
Stage 2	-8.6	0.22
Stage 2	-8.8	0.22
Stage 2	-9	0.22
Stage 2	-9.2	0.22
Stage 2	-9.4	0.22
Stage 2	-9.6	0.22
Stage 2	-9.8	0.22
Stage 2	-10	0.22

MANDATARIA:

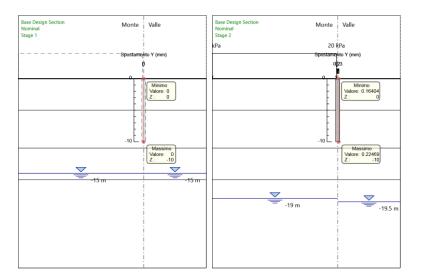
PROGETTO ESECUTIVO

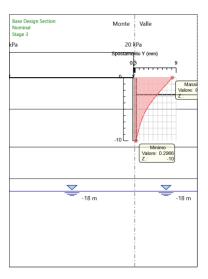
RELAZIONE DI CALCOLO

Tabella Spostamento Nominal - LEFT Stage: Stage 3

Design Assumption: Nominal 7	Γipo Risultato: Spostame	ento Muro: LEFT
Stage	Z (m)	Spostamento orizzontale (mm)
Stage 3	0	8.18
Stage 3	-0.2	7.94
Stage 3	-0.4	7.69
Stage 3	-0.6	7.45
Stage 3	-0.8	7.2
Stage 3	-1	6.96
Stage 3	-1.2	6.71
Stage 3	-1.4	6.47
Stage 3	-1.6	6.23
Stage 3	-1.8	5.98
Stage 3	-2	5.74
Stage 3	-2.2	5.5
Stage 3	-2.4	5.26
Stage 3	-2.6	5.03
Stage 3	-2.8	4.79
Stage 3	-3	4.57
Stage 3	-3.2	4.34
Stage 3	-3.4	4.12
Stage 3	-3.6	3.91
Stage 3	-3.8	3.7
Stage 3	-4	3.5
Stage 3	-4.2	3.31
Stage 3	-4.4	3.12
Stage 3	-4.6	2.94
Stage 3	-4.8	2.77
Stage 3	-5	2.61
Stage 3	-5.2	2.45
Stage 3	-5.4	2.31
Stage 3	-5.6	2.17
Stage 3	-5.8	2.04
Stage 3	-6	1.91
Stage 3	-6.2	1.79
Stage 3	-6.4	1.68
Stage 3	-6.6	1.58
Stage 3	-6.8	1.48
Stage 3	-7	1.38
Stage 3	-7.2	1.29
Stage 3	-7.4	1.21
Stage 3	-7.6	1.13
Stage 3	-7.8	1.05
Stage 3	-8	0.97
Stage 3	-8.2	0.9
Stage 3	-8.4	0.83
Stage 3	-8.6	0.76
Stage 3	-8.8	0.69
Stage 3	-9	0.62
Stage 3	-9.2	0.56
Stage 3	-9.4	0.49
Stage 3	-9.6	0.43
Stage 3	-9.8	0.36
Stage 3	-10	0.3

MANDATARIA:





PROGETTO ESECUTIVO

RELAZIONE DI CALCOLO

Grafici Spostamento in tabella

PROGETTO ESECUTIVO

RELAZIONE DI CALCOLO

Inviluppi Spostamento Nominal

PROGETTO ESECUTIVO

RELAZIONE DI CALCOLO

Risultati Paratia

Tabella Risultati Paratia Nominal - Stage: Stage 1

Design Assumption: Nominal			
Stage	Z (m)	Momento (kN*m/m)	Taglio (kN/m)
Stage 1	0	0	0
Stage 1	-0.2	0	0
Stage 1	-0.4	0	0
Stage 1	-0.6	0	0
Stage 1	-0.8	0	0
Stage 1	-1	0	0
Stage 1	-1.2	0	0
Stage 1	-1.4	0	0
Stage 1	-1.6	0	0
Stage 1	-1.8	0	0
Stage 1	-2	0	0
Stage 1	-2.2	0	0
Stage 1	-2.4	0	0
Stage 1	-2.6	0	0
Stage 1	-2.8	0	0
Stage 1	-3	0	0
Stage 1	-3.2	0	0
Stage 1	-3.4	0	0
Stage 1	-3.6	0	0
Stage 1	-3.8	0	0
Stage 1	-4	0	0
Stage 1	-4.2	0	0
Stage 1	-4.4	0	0
Stage 1	-4.6	0	0
Stage 1	-4.8	0	0
Stage 1	-5	0	0
Stage 1	-5.2	0	0
Stage 1	-5.4	0	0
Stage 1	-5.6	0	0
Stage 1	-5.8	0	0
Stage 1	-6	0	0
Stage 1	-6.2	0	0
Stage 1	-6.4	0	0
Stage 1	-6.6	0	0
Stage 1	-6.8	0	0
Stage 1	-7	0	0
Stage 1	-7.2	0	0
Stage 1	-7.4	0	0
Stage 1	-7.6	0	0
Stage 1	-7.8	0	0
Stage 1	-8	0	0
Stage 1	-8.2	0	0
Stage 1	-8.4	0	0
Stage 1	-8.6	0	0
Stage 1	-8.8	0	0
Stage 1	-9	0	0
Stage 1	-9.2	0	0
Stage 1	-9.4	0	0
Stage 1	-9.6	0	0
Stage 1	-9.8	0	0
0		=	-

MANDATARIA:

Realizzazione Lavori

Collegamento viario compreso tra lo Svincolo della S.S. 514 di "Chiaramonte" con la S.S. 115 e lo Svincolo della "Ragusana"

PROGETTO ESECUTIVO

RELAZIONE DI CALCOLO

Design Assumption: Nominal	Risultati Paratia	Muro: LEFT	
Stage	Z (m)	Momento (kN*m/m	n) Taglio (kN/m)
Stage 1	-10	0	0

PROGETTO ESECUTIVO

RELAZIONE DI CALCOLO

Tabella Risultati Paratia Nominal - Stage: Stage 2

Design Assumption: Nomina	l Risultati Paratia	Muro: LEFT	
Stage	Z (m)	Momento (kN*m/m)Taglio (kN/m)
Stage 2	0	0	0
Stage 2	-0.2	0	0
Stage 2	-0.2	0	0
Stage 2	-0.4	0.07	0.34
Stage 2	-0.6	0.16	0.47
Stage 2	-0.8	0.26	0.52
Stage 2	-1	0.37	0.52
Stage 2	-1.2	0.46	0.49
Stage 2	-1.4	0.55	0.44
Stage 2	-1.6	0.63	0.38
Stage 2	-1.8	0.69	0.32
Stage 2	-2	0.74	0.25
Stage 2	-2.2	0.78	0.19
Stage 2	-2.4	0.81	0.14
Stage 2	-2.6	0.83	0.08
Stage 2	-2.8	0.83	0.03
Stage 2	-3	0.83	-0.01
Stage 2	-3.2	0.82	-0.04
Stage 2	-3.4	0.81	-0.08
Stage 2	-3.6	0.79	-0.1
Stage 2	-3.8	0.76	-0.12
Stage 2	-4	0.74	-0.13
Stage 2	-4.2	0.71	-0.14
Stage 2	-4.4	0.68	-0.15
Stage 2	-4.6	0.65	-0.15
Stage 2	-4.8	0.62	-0.14
Stage 2	-5	0.59	-0.14
Stage 2	-5.2	0.56	-0.15
Stage 2	-5.4	0.53	-0.16
Stage 2	-5.6	0.5	-0.17
Stage 2	-5.8	0.46	-0.17
Stage 2	-6	0.43	-0.17
Stage 2	-6.2	0.39	-0.17
Stage 2	-6.4	0.36	-0.17
Stage 2	-6.6	0.33	-0.17
Stage 2	-6.8	0.29	-0.16
Stage 2	-7	0.26	-0.16
Stage 2	-7.2	0.23	-0.15
Stage 2	-7.4	0.2	-0.15
Stage 2	-7.6	0.17	-0.14
Stage 2	-7.8	0.15	-0.13
Stage 2	-8	0.12	-0.12
Stage 2	-8.2	0.1	-0.11
Stage 2	-8.4	0.08	-0.1
Stage 2	-8.6	0.06	-0.09
Stage 2	-8.8	0.05	-0.08
Stage 2	-9	0.03	-0.07
Stage 2	-9.2	0.02	-0.06
Stage 2	-9.4	0.01	-0.05
Stage 2	-9.6	0.01	-0.03
Stage 2	-9.8	0.01	-0.02
Stage 2	-10	0	-0.01
Juge 2	10	U	0.01

MANDATARIA:

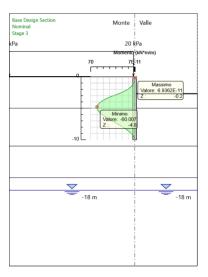
PROGETTO ESECUTIVO

RELAZIONE DI CALCOLO

Tabella Risultati Paratia Nominal - Stage: Stage 3

Design Assumption: Nomin	al Risultati Paratia	Muro: LEFT	
Stage	Z (m)	Momento (kN*m/m	n)Taglio (kN/m)
Stage 3	0	0	0
Stage 3	-0.2	0	0
Stage 3	-0.2	0	0
Stage 3	-0.4	-0.06	-0.3
Stage 3	-0.6	-0.3	-1.2
Stage 3	-0.8	-0.77	-2.37
Stage 3	-1	-1.53	-3.78
Stage 3	-1.2	-2.61	-5.42
Stage 3	-1.4	-4.07	-7.29
Stage 3	-1.6	-5.95	-9.38
Stage 3	-1.8	-8.28	-11.68
Stage 3	-2	-11.12	-14.2
Stage 3	-2.2	-14.51	-16.93
Stage 3	-2.4	-18.49	-19.88
Stage 3	-2.6	-23.09	-23.04
Stage 3	-2.8	-28.37	-26.4
Stage 3	-3	-33.92	-27.74
Stage 3	-3.2	-39.01	-25.42
Stage 3	-3.4	-43.59	-22.93
Stage 3	-3.6	-47.65	-20.29
Stage 3	-3.8	-51.16	-17.53
Stage 3	-4	-54.1	-14.71
Stage 3	-4.2	-56.46	-11.83
Stage 3	-4.4	-58.24	-8.9
Stage 3	-4.6	-59.43	-5.92
Stage 3	-4.8	-60.01	-2.9
Stage 3	-5	-59.97	0.18
Stage 3	-5.2	-59.32	3.24
Stage 3	-5.4	-58.11	6.04
Stage 3	-5.6	-56.41	8.5
Stage 3	-5.8	-54.29	10.62
Stage 3	-6	-51.8	12.43
Stage 3	-6.2	-49.02	13.94
Stage 3	-6.4	-45.98	15.16
Stage 3	-6.6	-42.76	16.12
Stage 3	-6.8	-39.4	16.82
Stage 3	-7	-35.94	17.28
Stage 3	-7.2	-32.44	17.52
Stage 3	-7.4	-28.93	17.54
Stage 3	-7.6	-25.46	17.35
Stage 3	-7.8	-22.07	16.96
Stage 3	-8	-18.79	16.38
Stage 3	-8.2	-15.67	15.62
Stage 3	-8.4	-12.73	14.68
Stage 3	-8.6	-10.02	13.57
Stage 3	-8.8	-7.56	12.3
Stage 3	-9	-5.39	10.85
Stage 3	-9.2	-3.54	9.24
Stage 3	-9.4	-2.04	7.48
Stage 3	-9.6	-0.93	5.55
Stage 3	-9.8	-0.24	3.46
Stage 3	-10	0	1.21

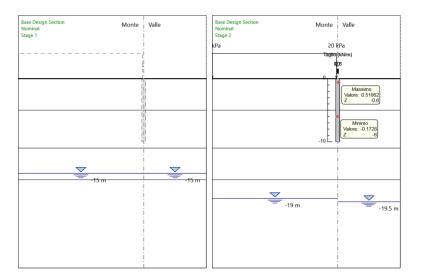
MANDATARIA:

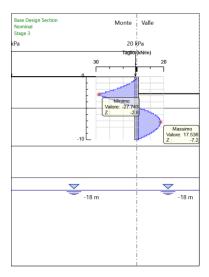


PROGETTO ESECUTIVO

RELAZIONE DI CALCOLO

Grafico Momento Nominal





PROGETTO ESECUTIVO

RELAZIONE DI CALCOLO

Grafico Taglio Nominal

PROGETTO ESECUTIVO

RELAZIONE DI CALCOLO

Inviluppi Risultati Paratia Nominal

MANDATARIA:

PROGETTO ESECUTIVO

RELAZIONE DI CALCOLO

Riepilogo spinte

Design	Tipo Risultato:	Muro:	LEFT	Lato	LEFT		
Assumption:	Riepilogo spinte						
Nominal							
Stage	Vera effettiva (kN/m)	Pressione neutra	Vera Totale	Min ammissibile	Max ammissibile	Percentuale di	Vera /
		(kN/m)	(kN/m)	(kN/m)	(kN/m)	resistenza massima	Attiva
Stage 1	447.5	(kN/m) 0	(kN/m) 447.5	(kN/m) 279.8	(kN/m) 3875.2	resistenza massima 11.55%	Attiva 1.6
Stage 1 Stage 2	447.5 465.4				· · ·		

Design	Tipo Risultato:	Muro:	LEFT	Lato	RIGHT		
Assumption:	Riepilogo spinte						
Nominal							
Stage	Vera effettiva (kN/m)	Pressione neutra	Vera Totale	Min ammissibile	Max ammissibile	Percentuale di	Vera /
		(kN/m)	(kN/m)	(kN/m)	(kN/m)	resistenza massima	Attiva
Stage 1	447.5	(kN/m) 0	(kN/m) 447.5	(kN/m) 279.8	(kN/m) 3875.2	resistenza massima 11.55%	Attiva 1.6
Stage 1 Stage 2	447.5 465.4				, , ,		

PROGETTO ESECUTIVO

RELAZIONE DI CALCOLO

Normative adottate per le verifiche degli Elementi Strutturali

Normative Verifiche

Calcestruzzo NTC
Acciaio NTC
Tirante NTC

Coefficienti per Verifica Tiranti

GEO FS	1
ξa3	1.8
VS	1 15

PROGETTO ESECUTIVO

RELAZIONE DI CALCOLO

Riepilogo Stage / Design Assumption per Inviluppo

Design Assumption	Stage 1	Stage 2	Stage 3
SLE (Rara/Frequente/Quasi Permanente)	V	V	V
A1+M1+R1 (R3 per tiranti)	V	V	V
A2+M2+R1	V	V	V
SISMICA STR			
SISMICA GEO			

PROGETTO ESECUTIVO RELAZIONE DI CALCOLO

Risultati Caver

Tabella Inviluppi Tasso di Sfruttamento Calcestruzzo - Caver : LEFT

Inviluppi Tasso di Sfruttamento Calcestruzzo - Cave	r LEFT
Z (m)	Tasso di Sfruttamento Calcestruzzo - Caver
0	
-0.2	0 0
-0.2 -0.4	0
-0.6	0.001
-0.8 -1	0.003
-1.2	0.005
	0.009
-1.4	0.014
-1.6	0.02
-1.8	0.028
-2	0.038
-2.2	0.049
-2.4	0.063
-2.6	0.078
-2.8	0.096
-3	0.115
-3.2	0.132
-3.4	0.148
-3.6	0.161
-3.8	0.173
-4	0.183
-4.2	0.191
-4.4	0.197
-4.6	0.201
-4.8	0.203
-5	0.203
-5.2	0.201
-5.4	0.197
-5.6	0.191
-5.8	0.184
-6	0.175
-6.2	0.166
-6.4	0.156
-6.6	0.145
-6.8	0.133
-7	0.122
-7.2	0.11
-7.4	0.098
-7.6	0.086
-7.8	0.075
-8	0.064
-8.2	0.053
-8.4	0.043
-8.6	0.034
-8.8	0.026
-9	0.018
-9.2	0.012
-9.4	0.007
-9.6	0.003
-9.8	0.001
5.0	0.001

MANDATARIA:

Realizzazione Lavori

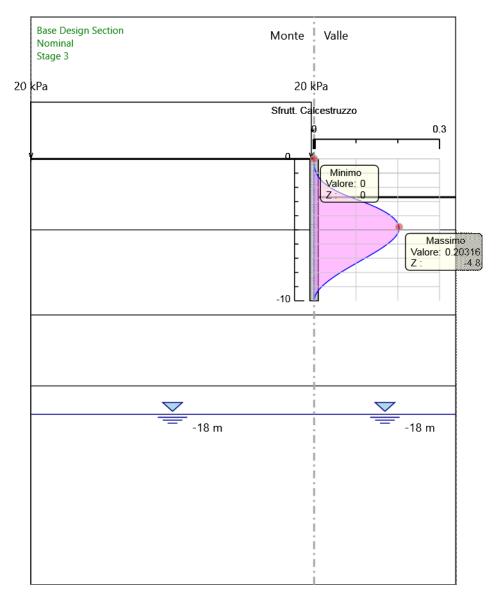
Itinerario Ragusa - Catania

Collegamento viario compreso tra lo Svincolo della S.S. 514 di "Chiaramonte" con la S.S. 115 e lo Svincolo della "Ragusana"

PROGETTO ESECUTIVO

RELAZIONE DI CALCOLO

Inviluppi Tasso di Sfruttamento Calcestruzzo - Cave	LEFT
Z (m)	Tasso di Sfruttamento Calcestruzzo - Caver
-10	Λ



PROGETTO ESECUTIVO

RELAZIONE DI CALCOLO

Grafico Inviluppi Tasso di Sfruttamento Calcestruzzo - Caver

Inviluppi

Tasso di Sfruttamento Calcestruzzo - Caver

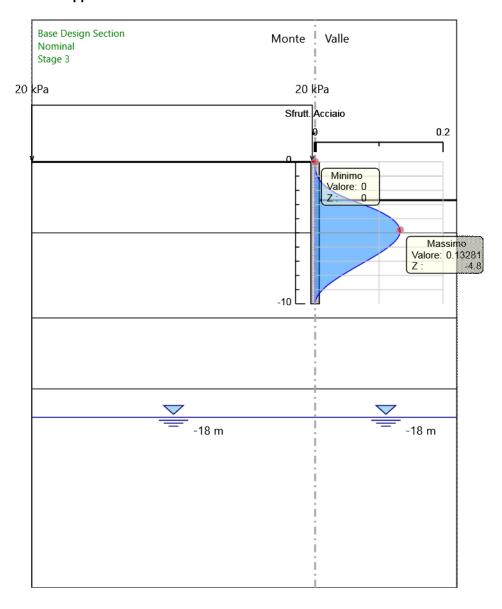
PROGETTO ESECUTIVO

RELAZIONE DI CALCOLO

Tabella Inviluppi Tasso di Sfruttamento Armature - Caver : LEFT

Inviluppi Tasso di Sfruttamento Armature - Cave	er LEFT
Z (m)	Tasso di Sfruttamento Armature - Caver
0	0
-0.2	0
-0.4	0
-0.6	0.001
-0.8	0.002
-1	0.003
-1.2	0.006
-1.4	0.009
-1.6	0.013
-1.8	0.018
-2	0.025
-2.2	0.032
-2.4	0.041
-2.6	0.051
-2.8	0.063
-3	0.075
-3.2	0.086
-3.4	0.096
-3.6	0.105
-3.8	0.113
-4	0.12
-4.2	0.12
-4.2 -4.4	0.129
-4.4 -4.6	0.129
-4.8	0.132
-4.o -5	0.133
-5 -5.2	0.133
-5.2 -5.4	0.131
-5.4 -5.6	0.125
-5.8	0.12
-5.8 -6	0.12
-6.2	0.108
-6.2 -6.4	0.108
-6.6	0.102
-6.8	0.093
-0.8 -7	0.08
-7 -7.2	0.08
-7.2 -7.4	0.064
-7.6	0.056
-7.8 -8	0.049
-8.2	0.042
	0.035
-8.4	0.028
-8.6	0.022
-8.8	0.017
-9 0.2	0.012
-9.2	0.008
-9.4	0.005
-9.6	0.002
-9.8 10	0.001
-10	0

MANDATARIA:



PROGETTO ESECUTIVO

RELAZIONE DI CALCOLO

Grafico Inviluppi Tasso di Sfruttamento Armature - Caver

Inviluppi

Tasso di Sfruttamento Armature - Caver

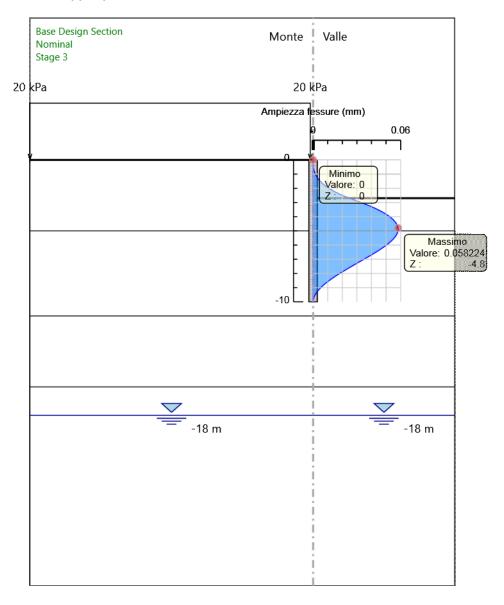
PROGETTO ESECUTIVO

RELAZIONE DI CALCOLO

Tabella Inviluppi Apertura Fessure - Caver : LEFT

Inviluppi Apertura Fessure -	Caver LEFT
Z (m)	Apertura Fessure - Caver (mm)
0	0
-0.2	0
-0.4	0
-0.6	0
-0.8	0.001
-1	0.001
-1.2	0.003
-1.4	0.004
-1.6	0.006
-1.8	0.008
-2	0.011
-2.2	0.014
-2.4	0.018
-2.6	0.022
-2.8	0.028
-3	0.033
-3.2	0.038
-3.4	0.042
-3.6	0.046
-3.8	0.05
-4	0.052
-4.2	0.055
-4.4	0.057
-4.6	0.058
-4.8	0.058
-5	0.058
-5.2	0.058
-5.4	0.056
-5.6	0.055
-5.8	0.053
-6	0.05
-6.2	0.048
-6.4	0.045
-6.6	0.041
-6.8	0.038
-7	0.035
-7.2	0.031
-7.4	0.028
-7.6	0.025
-7.8	0.021
-8	0.018
-8.2	0.015
-8.4	0.012
-8.6	0.01 0.007
-8.8 -9	0.007
-9 -9.2	0.003
-9.2 -9.4	0.003
-9.4 -9.6	0.002
-9.8	0.001
-10	0
-10	U

MANDATARIA:



PROGETTO ESECUTIVO

RELAZIONE DI CALCOLO

Grafico Inviluppi Apertura Fessure - Caver

Inviluppi

Apertura Fessure - Caver

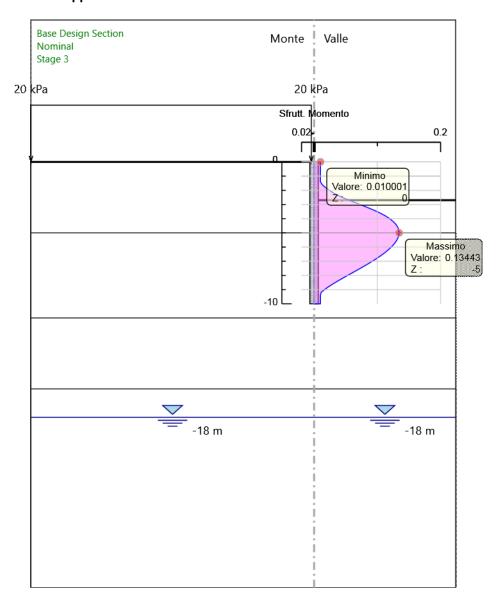
PROGETTO ESECUTIVO

RELAZIONE DI CALCOLO

Tabella Inviluppi Tasso di Sfruttamento a Momento - Caver : LEFT

Inviluppi Tasso di Sfruttamento a Momento - Ca	ver LEFT
Z (m)	Tasso di Sfruttamento a Momento - Caver
0	0.01
-0.2	0.01
-0.4	0.01
-0.6	0.01
-0.8	0.01
-1	0.01
-1.2	0.01
-1.4	0.01
-1.6	0.013
-1.8	0.018
-2	0.024
-2.2	0.031
-2.4	0.04
-2.6	0.05
-2.8	0.061
-3	0.073
-3.2	0.084
-3.4	0.095
-3.6	0.104
-3.8	0.113
-4	0.12
-4.2	0.125
-4.4	0.129
-4.6	0.132
-4.8	0.134
-5	0.134
-5.2	0.134
-5.4	0.132
-5.6	0.13
-5.8	0.126
-6	0.122
-6.2	0.117
-6.4	0.112
-6.6	0.106
-6.8	0.099
-7	0.092
-7.2	0.085
-7.4	0.077
-7.6	0.069
-7.8	0.061
-8	0.053
-8.2	0.045
-8.4	0.037
-8.6	0.03
-8.8	0.023
-9	0.016
-9.2	0.011
-9.4	0.01
-9.6	0.01
-9.8	0.01
-10	0.01

MANDATARIA:



PROGETTO ESECUTIVO

RELAZIONE DI CALCOLO

Grafico Inviluppi Tasso di Sfruttamento a Momento - Caver

Inviluppi

Tasso di Sfruttamento a Momento - Caver

PROGETTO ESECUTIVO

RELAZIONE DI CALCOLO

Tabella Inviluppi Tasso di Sfruttamento a Taglio - Caver : LEFT

Inviluppi Tasso di Sfruttamento a Taglio - Cave	r LEFT
Z (m)	Tasso di Sfruttamento a Taglio - Caver
0	0
-0.2	0.003
-0.4	0.01
-0.6	0.019
-0.8	0.031
-1	0.044
-1.2	0.06
-1.4	0.077
-1.6	0.096
-1.8	0.116
-2	0.139
-2.2	0.163
-2.4	0.189
-2.6	0.216
-2.8	0.229
-3	0.23
-3.2	0.23
-3.4	0.213
-3.6	0.185
-3.8	0.159
-4	0.132
-4.2	0.106
-4.4	0.081
-4.6	0.056
-4.8	0.032
-5	0.027
-5.2	0.05
-5.4	0.07
-5.6	0.087
-5.8	0.102
-6	0.114
-6.2	0.124
-6.4	0.132
-6.6	0.138
-6.8 -7	0.142 0.144
-7 -7.2	0.144
-7.2 -7.4	0.151
-7. 4 -7.6	0.151
-7.8	0.154
-7.8 -8	0.154
-8.2	0.153
-8.4	0.149
-8.6	0.143
-8.8	0.133
-9	0.12
-9.2	0.105
-9.4	0.087
-9.6	0.065
-9.8	0.041
-10	0.015
	5.546

MANDATARIA:



PROGETTO ESECUTIVO

RELAZIONE DI CALCOLO

Grafico Inviluppi Tasso di Sfruttamento a Taglio - Caver

Inviluppi

Tasso di Sfruttamento a Taglio - Caver

Itinerario Ragusa - Catania

Collegamento viario compreso tra lo Svincolo della S.S. 514 di "Chiaramonte" con la S.S. 115 e lo Svincolo della "Ragusana"

PROGETTO ESECUTIVO

RELAZIONE DI CALCOLO

