

Direzione Progettazione e Realizzazione Lavori

CORRIDOIO PLURIMODALE ADRIATICO

ITINERARIO MAGLIE - SANTA MARIA DI LEUCA

S.S. N° 275 "DI S. MARIA DI LEUCA"

LAVORI DI AMMODERNAMENTO E ADEGUAMENTO ALLA SEZ. B DEL D.M. 5.11.2001

S.S. 16 dal km 981+700 al km 985+386 - S.S. 275 dal Km 0+000 al km 37+000

1° Lotto: Dal Km 0+000 di prog. al Km 23+300 di prog.

PROGETTO DEFINITIVO

COD. **BA283**

PROGETTAZIONE:	ANAS -	STRUTTURA	TERRITORIALE PUGLIA
----------------	--------	-----------	---------------------

I PROGETTISTI Ing. Alberto SANCHIRICO — Progettista e Coordinatore	ATTIVITA' DI SUPPORTO
Ing. Simona MASCIULLO — Progettista	RTP:
COLLABORATORI Geom. Andrea DELL'ANNA	Lombardi Ingegneria S.r.L. – Strutture
Geom. Massimo MARTANO	TechProject S.r.L.
Geom. Giuseppe CALO'	
IL COORDINATORE IN FASE DI PROGETTAZIONE Ing. Alberto SANCHIRICO	
IL RESPONSABILE DEL PROCEDIMENTO Ing. Gianfranco PAGLIALUNGA	
RESPONSABILE PROJECT MANAGEMENT PUGLIA	
Ing. Nicola MARZI	
IL COMMISSARIO STRAORDINARIO Ing. Vincenzo MARZI	

08 - OPERE D'ARTE MAGGIORI - VIADOTTI E PONTI

Sottopasso (Comune di Maglie) ST1 - al km 3+528.22 Relazione di calcolo geotecnica

CODICE PROGETTO PROGETTO LIV. PROG. N. PROG.		NOME FILE T00_ST01_GET_RE02_D.pdf		REVISIONE	SCALA:	
L050		CODICE TOOSTO1	BETRE	02	D	Varie
D	REVISIONE DEL PROGE	TTO DEFINITIVO	Marzo 2022			
С	REVISIONE DEL PROGE	TTO DEFINITIVO	Gennaio 2019			
В	REVISIONE DEL PROGE	TTO DEFINITIVO	Ottobre 2018			
А	REVISIONE DEL PROGE	TTO DEFINITIVO	Giugno 2018			
REV.	DESCRIZIONE		DATA	REDATTO	VERIFICATO	APPROVATO

INDICE

1.	PREMESSA	2
2.	NORMATIVE E RIFERIMENTI	3
	2.1 Normative e standard	3
	2.2 Riferimenti bibliografici	4
3.	CARATTERIZZAZIONE GEOTECNICA	5
4.	COMBINAZIONI DI CARICO	6
5.	METODOLOGIA DI CALCOLO	8
6.	RISULTATI E VERIFICHE	11
	6.1 Reazioni di base Spalla A sx	11
	6.2 Verifica Spalla	12
	6.3 Reazioni di base Spalla A-cntr	16
	6.4 Verifica Spalla	17
	6.5 Calcolo dei cedimenti della spalla SpA-sx	21
	6.6 Calcolo dei cedimenti della spalla SpA-centrale	28

1. PREMESSA

Nel presente elaborato sono riportati i criteri progettuali seguiti per il dimensionamento delle strutture del sottopasso ST01 (Comune di Maglie) sulla SS 275 Maglie – Santa Maria di Leuca. In particolare si riportano le verifiche geotecniche per le fondazioni superficiali delle sottostrutture dell'opera in oggetto.

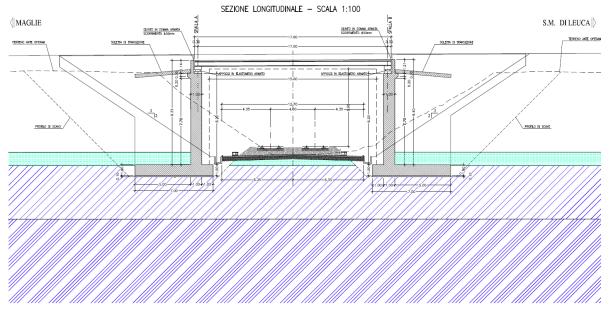


Figura 1-1: Prospetto longitudinale ST01

2. NORMATIVE E RIFERIMENTI

2.1 Normative e standard

Il dimensionamento delle opere in progetto è condotto in riferimento alle attuali normative e di seguito elencate.

[1]	D.M. 17/01/2018, n.8	Norme Tecniche per le costruzioni		
[2]	Circ. Min. 2 febbraio 2009, n.617	Istruzioni per l'applicazione delle "Nuove norme tecniche per la costruzioni" di cui al D.M. 14 gennaio 2008		
[3]	Legge 05/11/1971, n.1086	Norma per la disciplina delle opere in conglomerato cementizio, normale e precompresso ed a struttura metallica" e relative istruzioni (Circ. LL.PP. 14/02/1974, n. 11951)		
[4]	Legge 02/02/1974, n.64	Provvedimenti per le costruzioni con particolari prescrizioni per le zone sismiche		
[5]	UNI EN 1990	Basis of structural design		
[6]	UNI EN 1991-1-1	Actions on structures - General actions - Densities, self-weight and imposed loads		
[7]	UNI EN 1991-1-4	Actions on structures - General actions - Wind actions		
[8]	UNI EN 1991-1-5	Actions on structures - General actions - Thermal actions		
[9]	UNI EN 1992-1-1	Design of concrete structures - General - Common rules for building and civil engineering structures		
[10]	UNI EN 1992-1-2	Design of concrete structures - Part 1-2: General rules - Structural fire design		
[11]	UNI EN 1992-2	Design of concrete structures - Bridges		
[12]	UNI EN 1993-1-1	Design of steel structures - General rules and rules for buildings		
[13]	UNI EN 1993-1-8	Design of steel structures - Design of Joints		
[14]	UNI EN 1994-1-1	Design of composite steel and concrete structures - General rules and rules for buildings		
[15]	UNI EN 1994-2	Design of composite steel and concrete structures - General rules and rules for bridges		
[16]	UNI EN 1997-1	Geotechnical design - General rules		
[17]	UNI EN 1998-1	Design provisions for earthquake resistance of structures - General rules, seismic actions and rules for buildings		
[18]	UNI EN 1998-2	Design of structures for earthquake resistance - Bridges		
[19]	UNI EN 1998-5	Design of structures for earthquake resistance - Foundations, retaining structures and geotechnical aspects		
[20]	Presidenza del Consiglio Superiore dei Lavori Pubblici	Linee guida sul calcestruzzo strutturale		

- Servizio Tecnico Centrale

[21] UNI-EN 206-1 Calcestruzzo: specificazione, prestazione, produzione e

conformità

[22] UNI-EN 11104 Calcestruzzo: specificazione, prestazione, produzione e

conformità - Istruzioni complementari per l'applicazione

delle EN 206-1

2.2 Riferimenti bibliografici

- [23] "Fondazioni" Carlo Viggiani
- [24] "Fondazioni" Joseph E. Bowles;
- [25] "Principles of Foundation Engineering" Braja M. Das;
- [26] "Progetti e calcoli di Geotecnica con Excel, vol1 e 2" Marco Mancina, Roberto Nori, Pia lasello.

3. CARATTERIZZAZIONE GEOTECNICA

Per l'opera in esame si considerano le seguenti caratteristiche geotecniche:

opera:	ST1
pk:	3+528,22
tipo di fondazione:	superficiale
quota imposta fondazioni [m]:	83,9
rif. sondaggio:	SML05

STRATIGRAFIA DI RIFERIMENTO					
Unità	Quota iniziale	Quota finale	ΔΗ		
Geotecnica	[m]	[m]	[m]		
T1a - Terreno di riporto	89,50	89,20	0,30		
T2b - Limi argillosi sabbiosi	89,20	88,90	0,30		
R1 (MA) - Calcareniti mediamente alterate	88,90	79,50	9,40		

RIEPILOGO PARAMETRI GEOTECNICI					
Unità	peso volume	res. compr.	coesione	angolo att.	mod. def.
Geotecnica	γ [kN/m³]	q _c [MPa]	c' [kPa]	φ' [°]	E [MPa]
T1a - Terreno di riporto	19÷20	-	10	20	10÷20
T1b - Coperture eluviali e colluviali	19	-	1÷10	28÷32	10÷20
T2a - Sabbie e sabbie limose	19÷20	-	1÷10	28÷32	10÷20
T2b - Limi argillosi sabbiosi	19	-	5÷15	25÷28	10
R1 (A) - Calcareniti molto alterate	20	-	1÷10	29÷33	10÷20
R1 (MA) - Calcareniti mediamente alterate	20	3,5÷9,5	160÷475	29÷31	150÷600
R1 (NA) - Calcareniti non alterate	22	23	1350	34	2500

Dal riesame della stratigrafia, per l'opera ST01 si considera cautelativamente un terreno di fondazione costituito dall'unità geotecnica R1 (MA), calcareniti mediamente alterate.

Operativamente nei calcoli si assumono i seguenti parametri caratteristici:

peso di volume: γ = 20.0 kN/m³

coesione: c' = 317.5 kPa

angolo di resistenza a taglio: φ' = 30.0°

Circa il modulo elastico, dal riesame della geotecnica generale, risulta lecito assumere come modulo E il valore di 600MPa tuttavia cautelativamente i calcoli dei cedimenti sono stati eseguiti assumendo il valore medio di 375 MPa.

La falda, inoltre, non è presente nell'ambito delle profondità di interesse progettuale.

4. COMBINAZIONI DI CARICO

Nelle verifiche di sicurezza agli stati limite ultimi (SLU) sono stati presi in considerazione i seguenti meccanismi:

- collasso per carico limite dell'insieme fondazione-terreno (SLU GEO);
- collasso per scorrimento sul piano di posa (SLU GEO);

Le verifiche sono state effettuate applicando la combinazione (A1+M1+R3) di coefficienti parziali prevista dall'Approccio 2, tenendo conto dei valori dei coefficienti parziali riportati nelle Tabelle 1, 2 e 3 di seguito riportate.

Verifica	Coefficiente parziale
	(R3)
Carico limite	$\gamma_R = 2.3$
Scorrimento	$\gamma_R = 1.1$

Tab. 1 - Coefficienti parziali γ_R per le verifiche agli stati limite ultimi di fondazioni superficiali (rif. Tab. 6.4.I NTC18 [1])

Parametro	Grandezza alla quale applicare il coefficiente parziale	Coefficiente parziale γ_{M}	(M1)	(M2)
Tangente dell'angolo di resi- stenza al taglio	$ an {\phi'}_k$	$\gamma_{\phi'}$	1,0	1,25
Coesione efficace	c′ _k	$\gamma_{c'}$	1,0	1,25
Resistenza non drenata	c_{uk}	$\gamma_{\rm cu}$	1,0	1,4
Peso dell'unità di volume	γγ	γ_{γ}	1,0	1,0

Tab. 2 - Coefficienti parziali per i parametri geotecnici del terreno (rif. Tab. 6.2.II NTC18 [1])

	Effetto	Coefficiente Parziale γ_{F} (o γ_{E})	EQU	(A1)	(A2)
Carichi permanenti G1	Favorevole	γ_{G1}	0,9	1,0	1,0
	Sfavorevole		1,1	1,3	1,0
Carichi permanenti G2(1)	Favorevole	γ_{G2}	0,8	0,8	0,8
	Sfavorevole		1,5	1,5	1,3
Azioni variabili Q	Favorevole	γ_{Qi}	0,0	0,0	0,0
	Sfavorevole		1,5	1,5	1,3

Tab. 3 - Coefficienti parziali per le azioni o per l'effetto delle azioni (rif. Tab. 6.2.I NTC18 [1])

La capacità del complesso fondazione-terreno è stata verificata, con riferimento alle condizioni sismiche, anche allo stato limite ultimo (SLV), adottando i coefficienti parziali della Tabella 4.

Verifica	Coefficiente parziale γ_R
Carico limite	2.3
Scorrimento	1.1
Resistenza sulle superfici laterali	1.3

Tab. 4 - Coefficienti parziali γR per le verifiche degli stati limite (SLV) delle fondazioni superficiali con azioni sismiche (rif. Tab. 7.11.II NTC18 [1])

Nello stato limite ultimo per scorrimento sul piano di posa, per resistenza si intende la risultante delle tensioni tangenziali limite sullo stesso piano, sommata, in casi particolari, alla risultante delle tensioni limite agenti sulle superfici laterali della fondazione.

Specificamente, si può tener conto della resistenza lungo le superfici laterali nel caso di contatto diretto fondazione-terreno in scavi a sezione obbligata o di contatto diretto fondazione-calcestruzzo o fondazione-acciaio in scavi sostenuti da paratie o palancole. Ai fini della verifica allo scorrimento, si può considerare la resistenza passiva solo nel caso di effettiva permanenza di tale contributo, portando in conto un'aliquota non superiore al 50%.

5. METODOLOGIA DI CALCOLO

Operativamente, per il <u>calcolo del carico limite</u> è stata impiegata l'espressione generale di Brinch-Hansen (1970):

$$q_{\lim} = \frac{1}{2} \gamma' \cdot B \cdot N_{\gamma} \cdot s_{\gamma} \cdot i_{\gamma} \cdot b_{\gamma} \cdot g_{\gamma} + c' \cdot N_{c} \cdot s_{c} \cdot i_{c} \cdot b_{c} \cdot g_{c} + q \cdot N_{q} \cdot s_{q} \cdot i_{q} \cdot b_{q} \cdot g_{q}$$

nella quale:

- N_c , N_q , N_γ fattori di capacità portante, dipendenti dall'angolo di resistenza al taglio;
- s_c , s_q , s_γ fattori di forma della fondazione;
- i_c, i_q, i_γ fattori correttivi che tengono conto dell'inclinazione del carico;
- b_c, b_q, b_γ fattori correttivi che tengono conto dell'inclinazione della base;
- g_c, g_q g_y fattori correttivi che tengono conto dell'inclinazione del piano campagna;
- d_c, d_q, d_y fattori dipendenti dalla profondità del piano di posa.

Per la determinazione dei fattori di capacità portante N_q e N_c si fa riferimento alle espressioni ricavate analiticamente da Prandtl (1921) e Reissner (1924). Per il fattore N_{γ} si fa riferimento all'espressione proposta da Caquot e Kérisel (1953).

$$N_q = \tan^2\left(45 + \frac{\phi}{2}\right) \cdot e^{\pi \tan \phi} \qquad N_c = \left(N_q - 1\right) \cot \phi \qquad N_{\gamma} = 2 \cdot \left(N_q + 1\right) \tan \phi$$

Per tener conto dell'eccentricità e della risultante dei carichi, il valore della larghezza B da introdurre nell'equazione del carico limite è quello corrispondente all'area effettiva equivalente (Meyerhof, 1953), ossia alla minima superficie rispetto alla quale la risultante risulta centrata.

Nel caso di fondazioni quadrate o rettangolari tale larghezza è data da:

$$B = B_R - 2 \cdot e$$

dove B_R è la larghezza della fondazione reale.

Fattori di forma

$$s_{\gamma} = s_{q} = 1 + 0.1 \cdot K_{P} \frac{B}{L}$$
 $s_{c} = 1 + 0.2 \cdot K_{P} \frac{B}{L}$

Fattori di profondità

Per profondità relative D/B
$$\leq$$
 1 $d_q = 1 + 2\frac{D}{B}\tan\phi(1-\sin\phi)^2$

Per profondità relative D/B > 1 $d_q = 1 + 2 \tan \phi (1 - \sin \phi)^2 \tan^{-1} (D/B)$

$$d_c = d_q - \frac{1 - d_q}{N_c \tan \phi}$$

$$d_{\nu} = 1$$

Fattori di inclinazione del carico

Definito il parametro

$$m = \frac{2 + \frac{B}{L}}{1 + \frac{B}{L}}$$

$$i_{\gamma} = \left(1 - \frac{H}{N + A_f c' \cot \phi}\right)^{m+1} \qquad i_q = \left(1 - \frac{H}{N + A_f c' \cot \phi}\right)^{m} \qquad i_c = i_q - \frac{1 - i_q}{N_c \tan \phi}$$

Fattori di inclinazione del piano di posa della fondazione

$$b_{q} = (1 - \alpha \tan \phi)^{2}$$

$$b_{c} = b_{q} - \frac{1 - b_{q}}{N_{c} \tan \phi}$$

$$b_{\gamma} = b_{q}$$

dove α è l'inclinazione del piano di posa sul piano orizzontale.

Fattori di inclinazione del pendio

$$g_q = (1 - \tan \omega)^2$$
 $g_c = g_q - \frac{1 - g_q}{N \cdot \tan \phi}$ $g_{\gamma} = g_q$

dove ω è l'inclinazione del piano campagna.

La resistenza allo **scorrimento** è stata valutata ammettendo un comportamento del sistema terrenofondazione di tipo attritivo:

$$S_d = N \cdot tan(\phi') + c' \cdot B \cdot L$$

Nei calcoli è stato trascurato il contributo di spinta del terreno posto ai lati del plinto che si oppone allo scorrimento della fondazione.

Ai fini del <u>calcolo dei cedimenti</u> risulta essenziale conoscere lo stato tensionale indotto nel terreno a varie profondità da un carico applicato in superficie. Tale valutazione è stata eseguita ipotizzando per il terreno un comportamento di mezzo continuo, elastico lineare, omogeneo ed isotropo.

Sotto queste ipotesi le tensioni nel terreno in accordo con la teoria di Boussinesq valgono:

$$\Delta \sigma_v = 3Qz^3/(2\pi(r^2+z^2)^{5/2})$$

con:

- Q, carico puntiforme applicato alla frontiera del mezzo;
- r, proiezione orizzontale della distanza del punto di applicazione del carico dal punto in esame;
- z, proiezione verticale della distanza del punto di applicazione del carico dal punto in esame.

Operativamente il calcolo è stato eseguito con il metodo dell'elasticità secondo le seguenti relazioni:

$$W_{lib} = \sum \Delta \sigma_{v} \cdot \Delta z / E$$

$$W_{imp} = \sum \Delta \sigma_{v} \cdot \Delta z \cdot (1-2v)^{2} / (E \cdot (1-v))$$

dove:

- w_{lib} è il cedimento in condizioni di deformazioni laterali libere;
- w_{imp} è il cedimento in condizioni di deformazioni laterali impedite;
- Δσ_V è l'incremento di tensione verticale alla profondità z calcolato secondo la formulazione di Boussinesq;
- E è il modulo elastico del terreno alla profondità z;
- Δz è lo spessore dello strato i-esimo.

6. RISULTATI E VERIFICHE

Si riportano di seguito i risultati ottenuti con i modelli descritti negli elaborati T00_ST01_STR_RE01_A.

6.1 Reazioni di base Spalla A sx

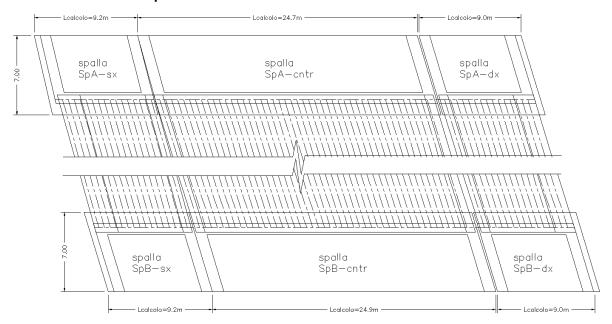


Figura 2 - Planimetria spalle

<u>Spalla SpA-sx</u> - <u>CARICHI AD INTRADOSSO E BARICENTRO PLINTO DI FONDAZIONE - COMBINAZIONI SLU</u>

SPESSORE PLINTO 1.0m		H_L	Η _T	N	M ₇ (G)	Μ _ι (G)
	Combinazione	[kN]	[kN]	[kN]	[kNxm]	[kNxm]
vert(-N)	STA SLU 1	3195	0	15584	5165	848
∮ trasv(H₁)	STA SLU 2	3195	0	18283	10967	2872
Mt. ML	STA SLU 3	4563	81	21243	23321	5081
	STA SLU 4	4353	81	20812	21131	4758
	STA SLU 5	4257	135	20812	20253	5360
ノ Tong(Hı)	STA SLU 6	4659	135	21243	24199	5683
	SIS SLU 7	5775	481	13706	29698	5565
	SIS SLU 8	3389	1603	13706	14596	13567
	SIS SLU 9	3389	481	14085	14593	5582
	SIS SLU 10	5775	481	13429	29804	5550
	SIS SLU 11	3389	1603	13429	14701	13552
	SIS SLU 12	3389	481	13161	14944	5532

Tab. 5 - Carichi all'intradosso della fondazione - COMBINAZIONI SLU

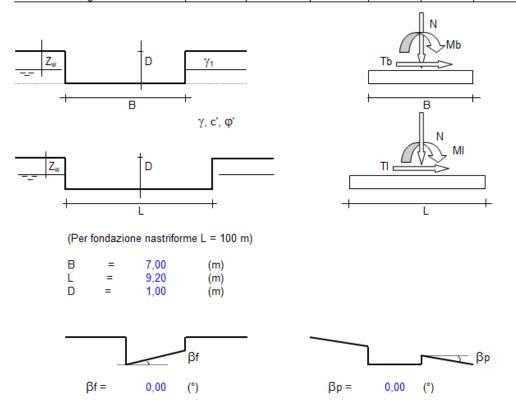
6.2 Verifica Spalla

Si riporta di seguito la verifica della fondazione della spalla nella combinazione peggiore sia a carico limite sia a scorrimento (SIS SLU 7): <u>tutte le verifiche risultano soddisfatte</u>.

qlim = c'·Nc·sc·dc·ic·bc·gc + q·Nq·sq·dq·iq·bq·gq + 0,5·γ·Β·Nγ·sγ·dγ·iγ·bγ·gγ

D = Profondità del piano di appoggio

e_B = Eccentricità in direzione B (e_B = Mb/N)


e_L = Eccentricità in direzione L (e_L = MI/N) (per fondazione nastriforme e_L = 0; L* = L)

B* = Larghezza fittizia della fondazione (B* = B - 2*e_B)

L* = Lunghezza fittizia della fondazione (L* = L - 2*e_L)

(per fondazione nastriforme le sollecitazioni agenti sono riferite all'unità di lunghezza)

				coefficienti parziali							
			az	ioni	proprietà d	el terreno	resistenze				
Metodo di calcolo		permanenti	temporanee variabili	tan φ'	c'	qlim	scorr				
Stato Limite Ultimo	A1+M1+R1	0	1,30	1,50	1,00	1,00	1,00	1,00			
	A2+M2+R2	0	1,00	1,30	1,25	1,25	1,80	1,00			
i E	SISMA	0	1,00	1,00	1,25	1,25	1,80	1,00			
Stat U	A1+M1+R3	0	1,30	1,50	1,00	1,00	2,30	1,10			
0,	SISMA	0	1,00	1,00	1,00	1,00	2,30	1,10			
Tensioni Ammissibili		1,00	1,00	1,00	1,00	3,00	3,00				
Definiti dal Progettista		1,00	1,00	1,00	1,00	2,30	1,10				

AZIONI

	valori (di input	Valori di
	permanenti	temporanee	calcolo
N [kN]	13706	0,00	13706,00
Mb [kNm]	29698	0,00	29698,00
MI [kNm]	5565	0,00	5565,00
Tb [kN]	5775	0,00	5775,00
TI [kN]	481	0,00	481,00
H [kN]	5795,00	0,00	5795,00

Peso unità di volume del terreno

 $\gamma_1 = 20,00 \text{ (kN/mc)}$ $\gamma = 20,00 \text{ (kN/mc)}$

Valori caratteristici di resistenza del terreno

raion darationotion an robiotoniza doi tomono		, , ,	raion ai progette				
c'	=	317,50	(kN/mq)	c'	=	317,50	(kN/mq)
φ'	=	30,00	(°)	φ'	=	30,00	(°)

Valori di progetto

Profondità della falda

Protot	iuita (uella falua				
Zw	=	100,00	(m)			
e _B	=	2,17	(m)	B* =	2,67	(m)
e _L :	=	0,41	(m)	L* =	8,39	(m)

q : sovraccarico alla profondità D

$$q = 20,00$$
 (kN/mq)

γ: peso di volume del terreno di fondazione

$$\gamma = 20,00 \text{ (kN/mc)}$$

Nc, Nq, Nγ: coefficienti di capacità portante

Nq =
$$tan^2(45 + \phi'/2)^*e^{(\pi^*tg\phi')}$$

Nq = 18,40

30,14

Nc =

$$N\gamma = 2*(Nq + 1)*tan\phi'$$

$$N\gamma = 22,40$$

sc, sq, sy: fattori di forma

$$s_c = 1 + B*Nq / (L*Nc)$$

$$s_q = 1 + B*tan\phi' / L*$$

$$s_v = 1 - 0.4*B* / L*$$

$$s_v = 0.87$$

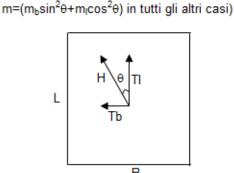
ic, iq, iy: fattori di inclinazione del carico

$$m_b = (2 + B^* / L^*) / (1 + B^* / L^*) =$$

(°)

$$m_1 = (2 + L^* / B^*) / (1 + L^* / B^*)$$

$$i_q = (1 - H/(N + B*L* c' \cot g\phi'))^m$$


$$i_a = 0.64$$

$$i_c = i_q - (1 - i_q)/(Nq - 1)$$

$$i_c = 0.62$$

$$i_{\gamma} = (1 - H/(N + B*L*c' \cot g\phi'))^{(m+1)}$$

$$i_{v} = 0,50$$

(m=2 nel caso di fondazione nastriforme e

θ = arctg(Tb/Tl) =

d_c, d_q, d_y : <u>fattori di profondità del piano di appoggio</u>

per D/B*
$$\leq$$
 1; d_q = 1 +2 D tan φ ' (1 - sen φ ')² / B*
per D/B*> 1; d_q = 1 +(2 tan φ ' (1 - sen φ ')²) * arctan (D / B*)

$$d_q = 1,11$$

$$d_c = d_q - (1 - d_q) / (N_c tan\phi')$$

$$d_{v} = 1$$

$$d_y = 1,00$$

$b_c,\,b_q,\,b_\gamma$: fattori di inclinazione base della fondazione

$$b_q = (1 - \beta_f \tan \phi')^2$$

$$\beta_f + \beta_p = 0,00$$

$$\beta_f + \beta_p < 45^\circ$$

$$b_q = 1,00$$

$$b_c = b_q - (1 - b_q) / (N_c \tan \varphi)$$

$$b_y = b_q$$

$$b_y = 1,00$$

g_c , g_q , g_γ : fattori di inclinazione piano di campagna

$$g_q = (1 - tan \beta_p)^2$$

$$\beta_f + \beta_p = 0,00$$

$$\beta_f + \beta_p < 45^\circ$$

$$g_c = g_q - (1 - g_q) / (N_c \tan \varphi)$$

$$g_y = g_q$$

$$g_y = 1,00$$

Carico limite unitario

$$q_{lim} = 8489,88 \text{ (kN/m}^2\text{)}$$

Pressione massima agente

$$q = N / B^* L^*$$

$$q = 612,81 \text{ (kN/m}^2\text{)}$$

Verifica di sicurezza capacità portante

$$q_{lim} / \gamma_R = 3691,25 \ge q = 612,81 (kN/m^2)$$

VERIFICA A SCORRIMENTO

Carico agente

$$Hd = 5795,00$$
 (kN)

Azione Resistente

$$Sd = N tan(\varphi') + c' B* L*$$

Verifica di sicurezza allo scorrimento

Sd /
$$\gamma_R$$
 = 13649,37 \geq Hd = 5795,00 (kN)

6.3 Reazioni di base Spalla A-cntr

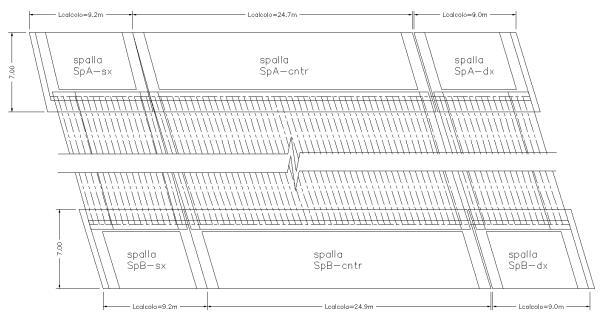


Figura 3 - Planimetria spalle

<u>Spalla SpA-centrale - CARICHI AD INTRADOSSO E BARICENTRO PLINTO DI FONDAZIONE - COMBINAZIONI SLU</u>

SPESSORE PLINTO 1.0m		Η _L	Η _T	N	M _τ (G)	M _L (G)
	Combinazione	[kN]	[kN]	[kN]	[kNxm]	[kNxm]
	STA SLU 1	8974	0	42462	16032	-4418
vert(-N)	STA SLU 2	8974	0	49958	32149	-70
, ·	STA SLU 3	11825	81	55813	<i>52375</i>	1179
trasv(H₁)	STA SLU 4	11479	81	55226	49795	839
\ \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	STA SLU 5	11213	135	55226	47356	1441
ML_	STA SLU 6	12092	135	55813	54813	1782
Jong(Hi)	SIS SLU 7	16094	1318	37450	83636	9341
	SIS SLU 8	9482	4392	37450	41765	31348
	SIS SLU 9	9482	1318	38486	41780	9249
	SIS SLU 10	16094	1318	36695	83910	9419
	SIS SLU 11	9482	4392	36695	42039	31427
	SIS SLU 12	9482	1318	35970	42692	9511

Tab. 6 - Carichi all'intradosso della fondazione - COMBINAZIONI SLU

6.4 Verifica Spalla

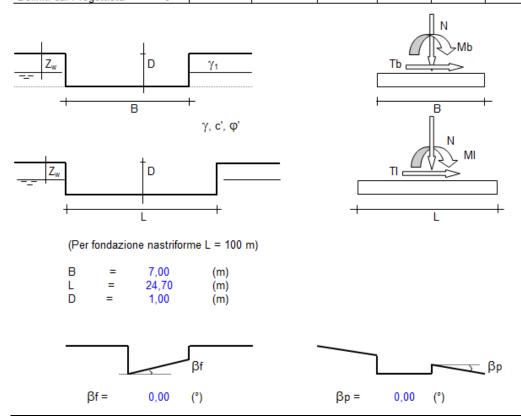
Si riporta di seguito la verifica della fondazione della spalla nella combinazione peggiore sia a carico limite sia a scorrimento (SIS SLU 7): <u>tutte le verifiche risultano soddisfatte</u>

 $qlim = c' \cdot Nc \cdot sc \cdot dc \cdot ic \cdot bc \cdot gc + q \cdot Nq \cdot sq \cdot dq \cdot iq \cdot bq \cdot gq + 0, 5 \cdot \gamma \cdot B \cdot N\gamma \cdot s\gamma \cdot d\gamma \cdot i\gamma \cdot b\gamma \cdot g\gamma$

D = Profondità del piano di appoggio

e_B = Eccentricità in direzione B (e_B = Mb/N)

e_L = Eccentricità in direzione L (e_L = MI/N) (per fondazione nastriforme e_L = 0; L* = L)


B* = Larghezza fittizia della fondazione (B* = B - 2*e_B)

L* = Lunghezza fittizia della fondazione (L* = L - 2*e_L)

(per fondazione nastriforme le sollecitazioni agenti sono riferite all'unità di lunghezza)

coefficienti	narzial	h

			azioni		proprietà del terreno		resistenze	
Metodo di calcolo		permanenti	temporanee variabili	tan φ'	c'	qlim	scorr	
Stato Limite Ultimo	A1+M1+R1	0	1,30	1,50	1,00	1,00	1,00	1,00
	A2+M2+R2	0	1,00	1,30	1,25	1,25	1,80	1,00
	SISMA	0	1,00	1,00	1,25	1,25	1,80	1,00
Stat U	A1+M1+R3	0	1,30	1,50	1,00	1,00	2,30	1,10
0)	SISMA	0	1,00	1,00	1,00	1,00	2,30	1,10
Tensioni Ammissibili		1,00	1,00	1,00	1,00	3,00	3,00	
Definiti dal Progettista		1,00	1,00	1,00	1,00	2,30	1,10	

AZIONI

	valori (di input	Valori di
	permanenti	temporanee	calcolo
N [kN]	36695	0,00	36695,00
Mb [kNm]	83910	0,00	83910,00
MI [kNm]	9419	0,00	9419,00
Tb [kN]	16094	0,00	16094,00
TI [kN]	1318	0,00	1318,00
H [kN]	16147,88	0,00	16147,88

Peso unità di volume del terreno

20,00 (kN/mc) 20,00 (kN/mc)

Valori caratteristici di resistenza del terreno

Valori di progetto 317,50 317,50 (kN/mq) (kN/mq) 30,00 30,00 (°) (°)

Profondità della falda

100,00 (m) 2,29 2,43 B* = e_B = (m) (m) 0,26 (m) L* = 24,19 (m) $e_L =$

q : sovraccarico alla profondità D

20,00 (kN/mq) q =

γ: peso di volume del terreno di fondazione

γ = 20,00 (kN/mc)

Nc, Nq, Nγ: coefficienti di capacità portante

 $Nq = tan^{2}(45 + \phi'/2)^{*}e^{(\pi^{*}tg\phi')}$

Nq = 18,40

 $Nc = (Nq - 1)/tan\phi'$

Nc = 30,14

 $N\gamma = 2*(Nq + 1)*tan\phi'$

Nγ = 22,40

sc, sq, sy: fattori di forma

$$s_c = 1 + B*Nq / (L*Nc)$$

$$s_0 = 1 + B*tan\phi' / L*$$

$$s_v = 1 - 0.4*B* / L*$$

$$s_v = 0.96$$

ic, iq, iy: fattori di inclinazione del carico

$$m_b = (2 + B^* / L^*) / (1 + B^* / L^*) =$$

1,09

$$\theta = arctg(Tb/TI) = 85,32$$
 (°)

1.90

$$m_1 = (2 + L^* / B^*) / (1 + L^* / B^*) =$$

$$i_c = i_q - (1 - i_q)/(Nq - 1)$$

$$i_{\gamma} = (1 - H/(N + B*L*c' \cot g\phi'))^{(m+1)}$$

$$i_{\gamma} = 0,46$$

m=(m_bsin²θ+m_icos²θ) in tutti gli altri casi)

(m=2 nel caso di fondazione nastriforme e

d_c, d_q, d_y : <u>fattori di profondità del piano di appoggio</u>

per D/B*
$$\leq$$
 1; d_q = 1 +2 D tan φ ' (1 - sen φ ')² / B*
per D/B*> 1; d_q = 1 +(2 tan φ ' (1 - sen φ ')²) * arctan (D / B*)

$$d_q = 1,12$$

$$d_c = d_q - (1 - d_q) / (N_c \tan \varphi)$$

$$d_{v} = 1$$

$$d_y = 1,00$$

bc, bq, by: fattori di inclinazione base della fondazione

$$b_q = (1 - \beta_f \tan \phi')^2$$

$$\beta_f + \beta_p = 0,00$$

$$\beta_f + \beta_p < 45^\circ$$

$$b_c = b_q - (1 - b_q) / (N_c \tan \varphi)$$

$$b_c = 1,00$$

$$b_y = b_q$$

$$b_y = 1,00$$

gc, gq, gy: fattori di inclinazione piano di campagna

$$g_q = (1 - tan\beta_p)^2$$

$$\beta_f + \beta_p = 0,00$$

$$\beta_f + \beta_p < 45^\circ$$

$$g_c = g_q - (1 - g_q) / (N_c \tan \varphi')$$

$$g_y = g_q$$

$$g_y = 1,00$$

Carico limite unitario

$$q_{lim} = 7122,48 \text{ (kN/m}^2)$$

Pressione massima agente

$$q = N / B^* L^*$$

$$q = 625,21$$
 (kN/m²)

Verifica di sicurezza capacità portante

$$q_{lim} / \gamma_R = 3096,73 \ge q = 625,21 (kN/m^2)$$

VERIFICA A SCORRIMENTO

Carico agente

Azione Resistente

$$Sd = N tan(\varphi') + c' B* L*$$

Verifica di sicurezza allo scorrimento

Sd /
$$\gamma_R$$
 = 36200,49 \geq Hd = 16147,88 (kN)

6.5 Calcolo dei cedimenti della spalla SpA-sx

SI riportano di seguito le sollecitazioni agli SLE alla base della spalla dedicata più sollecitata.

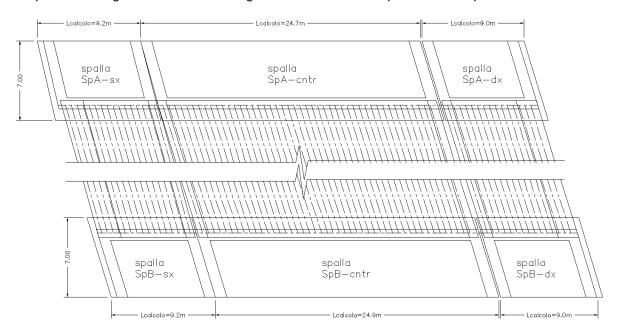


Figura 4 - Planimetria spalle

Spalla SpA-sx - CARICHI AD INTRADOSSO E BARICENTRO PLINTO DI FONDAZIONE - COMBINAZIONI SLE

SPESSORE PLINTO 1.0m		H_L	Η _T	N	$M_{\tau}(G)$	M _L (G)
	Combinazione	[kN]	[kN]	[kN]	[kNxm]	[kNxm]
vert(-N)	STA SLE 1	2366	0	11544	3826	628
trasv(H ₁)	STA SLE 2	2366	0	13543	8124	2128
Μτ _λ #	STA SLE 3	3370	54	15736	17177	3697
<i>O</i> /	STA SLE 4	3207	54	15417	15490	3457
ML _	STA SLE 5	3143	90	15417	14905	3859
ノ Īong(Hī)	STA SLE 6	3434	90	15736	17763	4098

A seguire si riportano i risultati in termini di cedimento calcolati con l'ausilio del software CARL12 di "AZTEC INFORMATICA".

Il cedimento massimo della Spalla SpA-sx è pari a 0.3 cm, la cui aliquota maggiore è dovuta ai carichi permanenti (peso proprio della spalla e dell'impalcato) tale cedimento può essere recuperato in fase di costruzione.

Geometria della fondazione

Simbologia adottata

Descrizione Descrizione della fondazione

Forma della fondazione (N=Nastriforme, R=Rettangolare, C=Circolare)

X Ascissa del baricentro della fondazione espressa in [m]

Y Ordinata del baricentro della fondazione espressa in [m]

Base/Diametro della fondazione espressa in [m]

Lunghezza della fondazione espressa in [m]

D Profondità del piano di posa in [m]

 α Inclinazione del piano di posa espressa in [°]

 ω Inclinazione del piano campagna espressa in [°]

Descrizione	Forma	Х	Υ	В	L	D	α	ω
		[m]	[m]	[m]	[m]	[m]	[°]	[°]
Fondazione	(R)	0,00	0,00	7,00	9,20	0,00	0,00	0,00

Descrizione terreni e falda

Caratteristiche fisico-meccaniche

Simbologia adottata

Descrizione Descrizione terreno

 γ Peso di volume del terreno espresso in [kN/mc]

 $\gamma_{\it Sat}$ Peso di volume saturo del terreno espresso in [kN/mc]

 ϕ Angolo di attrito interno del terreno espresso in gradi

 δ Angolo di attrito palo-terreno espresso in gradi

c Coesione del terreno espressa in [kPa]

ca Adesione del terreno espressa in [kPa]

Descr	γ	γsat	ф	δ	С	ca
	[kN/mc]	[kN/mc]	[°]	[°]	[kPa]	[kPa]
T1a	19,000	19,000	20.00	0.00	10,0	0,0
T1b	19,000	19,000	30.00	0.00	6,0	0,0
T2a	19,500	19,500	30.00	0.00	5,0	0,0
T2b	19,000	19,000	26.00	0.00	10,0	0,0
R1 [MA]	20,000	20,000	30.00	0.00	317,5	0,0
R1 [A]	20,000	20,000	31.00	0.00	6,0	0,0
R1 [NA]	22,000	22,000	34.00	0.00	1350,0	0,0

Caratteristiche di deformabilità

Simbologia adottata

Descrizione terreno

E Modulo di Young espresso in [kPa]

Descriz	ione E	ν
	[kPa]	
T1a	20	000 0.330
T1b	20	000 0.330
T2a	20	000 0.330
T2b	10	000 0.330
R1 [MA]	600	000 0.330
R1 [A]	20	000 0.330
R1 [NA]	2500	000 0.330

Descrizione stratigrafia

Simbologia adottata

n° Identificativo strato

Z1 Quota dello strato in corrispondenza del punto di sondaggio nº1 espressa in [m]

Z2 Quota dello strato in corrispondenza del punto di sondaggio nº2 espressa in [m]

23 Quota dello strato in corrispondenza del punto di sondaggio nº3 espressa in [m]

Terreno dello strato

Punto di sondaggio n° 1: X = 0.0 [m] Y = 0.0 [m]Punto di sondaggio n° 2: X = 3.0 [m] Y = 0.0 [m]Punto di sondaggio n° 3: X = 0.0 [m] Y = 3.0 [m]

n°	Z1	Z2	Z3	Terreno
	[m]	[m]	[m]	
1	-4,4	-4,4	-4,4	R1 [MA]

Normativa

N.T.C. 2008 - Approccio 2

Simbologia adottata

γοσίαν Coefficiente parziale sfavorevole sulle azioni permanenti
γοσίαν Coefficiente parziale favorevole sulle azioni permanenti
γοσίαν Coefficiente parziale sfavorevole sulle azioni variabili
γοσίαν Coefficiente parziale favorevole sulle azioni variabili
γταπος Coefficiente parziale di riduzione dell'angolo di attrito drenato
γου Coefficiente parziale di riduzione della coesione drenata
γου Coefficiente parziale di riduzione della coesione non drenata
γου Coefficiente parziale di riduzione del carico ultimo

 γ_{γ} Coefficiente parziale di riduzione della resistenza a compressione uniassiale delle rocce

Coefficienti parziali per le azioni o per l'effetto delle azioni:

			Statici		Sismici	
Carichi	Effetto		A1	A2	A1	A2
Permanenti	Favorevole	γGfav	1.00	1.00	1.00	1.00
Permanenti	Sfavorevole	γGsfav	1.30	1.00	1.00	1.00
Variabili	Favorevole	γQfav	0.00	0.00	0.00	0.00
Variabili	Sfavorevole	γQsfav	1.50	1.30	1.00	1.00

Coefficienti parziali per i parametri geotecnici del terreno:

		Statici		Sismici	
Parametri		M1	M2	M1	M2
Tangente dell'angolo di attrito	γtan _θ '	1.00	1.25	1.00	1.25
Coesione efficace	γε'	1.00	1.25	1.00	1.25
Resistenza non drenata	γси	1.00	1.40	1.00	1.40
Resistenza a compressione uniassiale	γqu	1.00	1.60	1.00	1.60
Peso dell'unità di volume	γγ	1.00	1.00	1.00	1.00

Coefficienti parziali γ_R per le verifiche geotecniche:

		R1	R2	R3
Capacità portante	γr	1.00	1.80	2.30
Scorrimento	γr	1.00	1.10	1.10

Condizioni di carico

Simbologia e convenzioni di segno adottate

Carichi verticali positivi verso il basso.

Carichi orizzontali positivi verso sinistra.

Momento positivo senso antiorario.

Fondazione	Nome identificativo della fondazione
N	Sforzo normale totale espressa in [kN]
Mx	Momento in direzione X espressa in [kNm]
My	Momento in direzione Y espresso in [kNm]
ex	Eccentricità del carico lungo X espressa in [m]
ey	Eccentricità del carico lungo Y espressa in [m]
β	Inclinazione del taglio nel piano espressa in [°]
Τ	Forza di taglio espressa in [kN]

Cond	Condizione n° 1 - Condizione n° 1 - PERMANENTE								
	Fondazione	N	Mx	My	ex	ey	β	Т	
		[kN]	[kNm]	[kNm]	[m]	[m]		[kN]	
	Fondazione	15736,000	3697,000	17177,000	1,1	-0,2	90,0	0,000	

Condizione nº 2 - Condizione nº 2 - PERMANENTE

Fondazione	N	Mx	My	ex	ey	β	T
	[kN]	[kNm]	[kNm]	[m]	[m]		[kN]
Fondazione	15736,000	4098,000	17763,000	1,1	-0,3	90,0	0,000

Descrizione combinazioni di carico

Simbologia adottata

- Ψ Coefficiente di combinazione della condizione

Combinazione nº 1 SLER

Nome	γ	Ψ
Condizione nº 2	1.00	1.00

Opzioni di calcolo

Analisi in condizioni drenate

Cedimenti

Il calcolo dei cedimenti è stato eseguito con il **metodo Elastico**.

Per il calcolo dei cedimenti, è stata impostata un'altezza dello strato compressibile legato alla percentuale tensionale. In particolare la percentuale impostata è:

0,05 (%)

Risultati

Cedimenti

Cedimento complessivo

Simbologia adottata

 cmb
 Identificativo della combinazione

 wi
 Cedimento elastico espresso in [cm]

Wimp Cedimento elastico ad espansione laterale impedita espresso in [cm]

H Spessore strato compressibile espresso in [m]

X coordinata X punto di calcolo cedimento espressa in [m]
Y coordinata Y punto di calcolo cedimento espressa in [m]

Fondazione

cmb	Wi	Wimp	Н	X	Y
	[cm]	[cm]	[m]	[m]	[m]
1	0,30	0,23	19,20	1,13	0,26

Cedimento dei singoli strati

Simbologia adottata

Strato Identificativo dello strato

Terreno Terreno dello strato

ΔH Spessore dello strato espresso in [m]
Δw Cedimento elastico espresso in [cm]

ΔWimp Cedimento elastico ad espansione laterale impedita espresso in [cm]

Combinazione nº 1 (Fondazione nº 1)

Strato	Terreno	ΔН	∆wi	∆Wimp
		[m]	[cm]	[cm]
1	R1 [MA]	19,20	0,3009	0,2331
		19,20	0,3009	0,2331

Dettagli sui cedimenti dei singoli strati

Simbologia adottata

no numero d'ordine dell'i-esimo strato

z quota media dell'i-esimo strato espresso in [m] ΔH spessore dello strato i-esimo espresso in [cm]

 $\Delta\sigma v$ incremento di tensione verticale dell'i-esimo strato espresso in [kPa]

E modulo elastico dell'i-esimo strato espresso in [kPa] Δw cedimento dell'i-esimo strato espresso in [cm]

Combinazione nº 1 (Fondazione nº 1)

n°	Z	ΔН	Δσν	E	Δw
	[m]	[cm]	[kPa]	[kPa]	[cm]
1	-0,96	1,92	316	600000	0,0675
2	-2,88	1,92	241	600000	0,0676
3	-4,80	1,92	161	600000	0,0493
4	-6,72	1,92	109	600000	0,0344
5	-8,64	1,92	76	600000	0,0245
6	-10,56	1,92	55	600000	0,0180
7	-12,48	1,92	42	600000	0,0136
8	-14,40	1,92	32	600000	0,0106
9	-16,32	1,92	26	600000	0,0085
10	-18,24	1,92	21	600000	0,0069
		19,20			0,3009 - 0,2331

6.6 Calcolo dei cedimenti della spalla SpA-centrale

Si riportano di seguito le sollecitazioni agli SLE alla base della spalla sentrale più sollecitata.

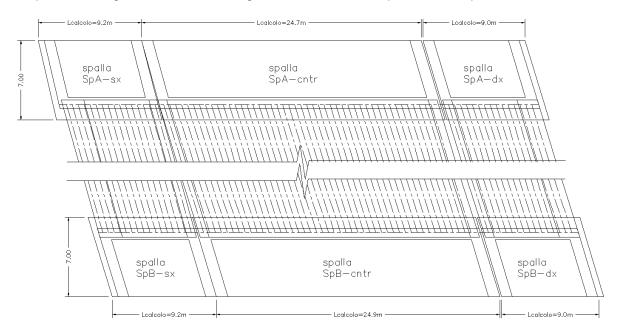


Figura 5 - Planimetria spalle

Spalla SpA-centrale - CARICHI AD INTRADOSSO E BARICENTRO PLINTO DI FONDAZIONE - COMBINAZIONI SLE

SPESSORE PLINTO 1.0m		H_L	Η _T	N	M _⊤ (G)	$M_L(G)$
	Combinazione	[kN]	[kN]	[kN]	[kNxm]	[kNxm]
vert(-N)	STA SLE 1	6648	0	31453	11875	-3272
∯ trasv(H₁)	STA SLE 2	6648	0	37006	23814	-52
M _{T_m}	STA SLE 3	8730	54	41343	38525	807
0/	STA SLE 4	8454	54	40908	36434	554
ML _	STA SLE 5	8276	90	40908	34808	<i>956</i>
ノ Īong(Hı)	STA SLE 6	8908	90	41343	40151	1208

A seguire si riportano i risultati in termini di cedimento calcolati con l'ausilio del software CARL12 di "AZTEC INFORMATICA".

Il cedimento massimo della Spalla SpA-centrale è pari a 0.41 cm, la cui aliquota maggiore è dovuta ai carichi permanenti (peso proprio della spalla e dell'impalcato) tale cedimento può essere recuperato in fase di costruzione.

Geometria della fondazione

Simbologia adottata

 Descrizione
 Descrizione della fondazione

 Forma
 Forma della fondazione (N=Nastriforme, R=Rettangolare, C=Circolare)

 X
 Ascissa del baricentro della fondazione espressa in [m]

 Y
 Ordinata del baricentro della fondazione espressa in [m]

 B
 Base/Diametro della fondazione espressa in [m]

 L
 Lunghezza della fondazione espressa in [m]

 D
 Profondità del piano di posa in [m]

 α Inclinazione del piano di posa espressa in [°]

 ω Inclinazione del piano campagna espressa in [°]

Descrizione	Forma	Х	Y	В	L	D	α	ω
		[m]	[m]	[m]	[m]	[m]	[°]	[°]
Fondazione	(R)	0,00	0,00	7,00	24,70	0,00	0,00	0,00

Descrizione terreni e falda

Caratteristiche fisico-meccaniche

Simbologia adottata

Descrizione	Descrizione terreno
γ	Peso di volume del terreno espresso in [kN/mc]
γsat	Peso di volume saturo del terreno espresso in [kN/mc]
ϕ	Angolo di attrito interno del terreno espresso in gradi
δ	Angolo di attrito palo-terreno espresso in gradi
С	Coesione del terreno espressa in [kPa]
са	Adesione del terreno espressa in [kPa]

Descr	γ	γsat	ф	δ	С	ca
	[kN/mc]	[kN/mc]	[°]	[°]	[kPa]	[kPa]
T1a	19,000	19,000	20.00	0.00	10,0	0,0
T1b	19,000	19,000	30.00	0.00	6,0	0,0
T2a	19,500	19,500	30.00	0.00	5,0	0,0
T2b	19,000	19,000	26.00	0.00	10,0	0,0
R1 [MA]	20,000	20,000	30.00	0.00	317,5	0,0
R1 [A]	20,000	20,000	31.00	0.00	6,0	0,0
R1 [NA]	22,000	22,000	34.00	0.00	1350,0	0,0

Caratteristiche di deformabilità

Simbologia adottata

Descrizione terreno

E Modulo di Young espresso in [kPa]

Descrizione	E	ν
	[kPa]	
T1a	15000	0.330
T1b	15000	0.330
T2a	15000	0.330
T2b	10000	0.330
R1 [MA]	375000	0.330
R1 [A]	15000	0.330
R1 [NA]	2500000	0.330

Descrizione stratigrafia

Simbologia adottata

nº Identificativo strato

Z1 Quota dello strato in corrispondenza del punto di sondaggio nº1 espressa in [m]

Z2 Quota dello strato in corrispondenza del punto di sondaggio nº2 espressa in [m]

23 Quota dello strato in corrispondenza del punto di sondaggio n°3 espressa in [m]

Terreno dello strato

Punto di sondaggio n° 1: X = 0.0 [m] Y = 0.0 [m]Punto di sondaggio n° 2: X = 3.0 [m] Y = 0.0 [m]Punto di sondaggio n° 3: X = 0.0 [m] Y = 3.0 [m]

n°	Z1	Z 2	Z 3	Terreno
	[m]	[m]	[m]	
1	-4,4	-4,4	-4,4	R1 [MA]

Normativa

N.T.C. 2008 - Approccio 2

Simbologia adottata

 γεσίαν
 Coefficiente parziale sfavorevole sulle azioni permanenti

 γεσίαν
 Coefficiente parziale favorevole sulle azioni permanenti

 γεσίαν
 Coefficiente parziale sfavorevole sulle azioni variabili

 γεσίαν
 Coefficiente parziale favorevole sulle azioni variabili

 γεαν
 Coefficiente parziale di riduzione dell'angolo di attrito drenato

 γε
 Coefficiente parziale di riduzione della coesione drenata

 γεαν
 Coefficiente parziale di riduzione della coesione non drenata

 γqu
 Coefficiente parziale di riduzione del carico ultimo

 γγ
 Coefficiente parziale di riduzione della resistenza a compressione uniassiale delle rocce

Coefficienti parziali per le azioni o per l'effetto delle azioni:

			Statici		Sismici	
Carichi	Effetto		A1	A2	A1	A2
Permanenti	Favorevole	γGfav	1.00	1.00	1.00	1.00
Permanenti	Sfavorevole	γGsfav	1.30	1.00	1.00	1.00
Variabili	Favorevole	γQfav	0.00	0.00	0.00	0.00
Variabili	Sfavorevole	γQsfav	1.50	1.30	1.00	1.00

Coefficienti parziali per i parametri geotecnici del terreno:

		Statici		Sismici	
Parametri		M1	M2	M1	M2
Tangente dell'angolo di attrito	γtan _φ '	1.00	1.25	1.00	1.25
Coesione efficace	үс'	1.00	1.25	1.00	1.25
Resistenza non drenata	γси	1.00	1.40	1.00	1.40
Resistenza a compressione uniassiale	γqu	1.00	1.60	1.00	1.60
Peso dell'unità di volume	γγ	1.00	1.00	1.00	1.00

Coefficienti parziali γ_R per le verifiche geotecniche:

		R1	R2	R3
Capacità portante	γr	1.00	1.80	2.30
Scorrimento	γr	1.00	1.10	1.10

Condizioni di carico

Simbologia e convenzioni di segno adottate

Carichi verticali positivi verso il basso.

Carichi orizzontali positivi verso sinistra.

Momento positivo senso antiorario.

 Fondazione
 Nome identificativo della fondazione

 N
 Sforzo normale totale espressa in [kN]

 Mx
 Momento in direzione X espressa in [kNm]

 My
 Momento in direzione Y espresso in [kNm]

 ex
 Eccentricità del carico lungo X espressa in [m]

 ey
 Eccentricità del carico lungo Y espressa in [m]

 β
 Inclinazione del taglio nel piano espressa in [°]

T Forza di taglio espressa in [kN]

Condizione nº 1 - Condizione nº 1 - PERMANENTE

Fondazione	N	Mx	My	ex	ey	β	T
	[kN]	[kNm]	[kNm]	[m]	[m]		[kN]
Fondazione	41343,000	40151,000	1208,000	0,0	-1,0	90,0	0,000

Condizione nº 2 - Condizione nº 2 - PERMANENTE

Fondazione	N	Mx	Му	ex	ey	β	Т
	[kN]	[kNm]	[kNm]	[m]	[m]		[kN]
Fondazione	31453,000	11875,000	-3272,000	-0,1	-0,4	90,0	0,000

Descrizione combinazioni di carico

Simbologia adottata

γ Coefficiente di partecipazione della condizione

arPsi Coefficiente di combinazione della condizione

Combinazione nº 1 SLER

Nome	γ	Ψ
Condizione nº 2	1.00	1.00

Opzioni di calcolo

Analisi in condizioni drenate

Cedimenti

Il calcolo dei cedimenti è stato eseguito con il **metodo Elastico**.

Per il calcolo dei cedimenti, è stata impostata un'altezza dello strato compressibile legato alla percentuale tensionale.

In particolare la percentuale impostata è:

0,05 (%)

Risultati

Cedimenti

Cedimento complessivo

Simbologia adottata

cmb Identificativo della combinazione

Cedimento elastico espresso in [cm]

Wimp Cedimento elastico ad espansione laterale impedita espresso in [cm]

H Spessore strato compressibile espresso in [m]

X coordinata X punto di calcolo cedimento espressa in [m]
 Y coordinata Y punto di calcolo cedimento espressa in [m]

Fondazione

Wi

cmb	Wi	Wimp	Н	X	Y
	[cm]	[cm]	[m]	[m]	[m]
1	0,41	0,32	23,00	-0,10	0,38

Cedimento dei singoli strati

Simbologia adottata

Strato Identificativo dello strato

Terreno Terreno dello strato

 ΔH Spessore dello strato espresso in [m] ΔW Cedimento elastico espresso in [cm]

ΔWimp Cedimento elastico ad espansione laterale impedita espresso in [cm]

Combinazione nº 1 (Fondazione nº 1)

Strato	Terreno	ΔН	Δwi	ΔWimp
		[m]	[cm]	[cm]
1	R1 [MA]	23,00	0,4062	0,3241
		23.00	0,4062	0.3241

Dettagli sui cedimenti dei singoli strati

Simbologia adottata

 n^o numero d'ordine dell'i-esimo strato

z quota media dell'i-esimo strato espresso in [m]

ΔH spessore dello strato i-esimo espresso in [cm]

 $\Delta\sigma v$ incremento di tensione verticale dell'i-esimo strato espresso in [kPa]

 ${\it E}$ modulo elastico dell'i-esimo strato espresso in [kPa]

Δw cedimento dell'i-esimo strato espresso in [cm]

Combinazione nº 1 (Fondazione nº 1)

n°	z	ΔН	Δσν	E	Δw
	[m]	[cm]	[kPa]	[kPa]	[cm]
1	-0,58	1,15	183	375000	0,0305
2	-1,73	1,15	176	375000	0,0374
3	-2,88	1,15	159	375000	0,0384
4	-4,03	1,15	140	375000	0,0361
5	-5,18	1,15	122	375000	0,0327
6	-6,33	1,15	106	375000	0,0292
7	-7,48	1,15	92	375000	0,0261
8	-8,63	1,15	81	375000	0,0233
9	-9,78	1,15	71	375000	0,0208
10	-10,93	1,15	63	375000	0,0187
11	-12,08	1,15	57	375000	0,0168
12	-13,23	1,15	51	375000	0,0152
13	-14,38	1,15	45	375000	0,0137
14	-15,53	1,15	41	375000	0,0124
15	-16,68	1,15	37	375000	0,0113
16	-17,83	1,15	34	375000	0,0103
17	-18,98	1,15	31	375000	0,0094
18	-20,13	1,15	28	375000	0,0087
19	-21,28	1,15	26	375000	0,0080
20	-22,43	1,15	24	375000	0,0073
		23,00			0,4062 - 0,3241