

Direzione Progettazione e Realizzazione Lavori

CORRIDOIO PLURIMODALE ADRIATICO

ITINERARIO MAGLIE - SANTA MARIA DI LEUCA

S.S. N° 275 "DI S. MARIA DI LEUCA"

LAVORI DI AMMODERNAMENTO E ADEGUAMENTO ALLA SEZ. B DEL D.M. 5.11.2001

S.S. 16 dal km 981+700 al km 985+386 - S.S. 275 dal Km 0+000 al km 37+000

1° Lotto: Dal Km 0+000 di prog. al Km 23+300 di prog.

PROGETTO DEFINITIVO

COD. **BA283**

PROGETTAZIONE: ANAS - STRUTTURA TERRITORIALE PUGLIA

ATTIVITA' DI SUPPORTO	
RTP:	
Lombardi Ingegneria S.r.L strutture	
TechProject S.r.L.	
	RTP: Lombardi Ingegneria S.r.L Strutture

09 - OPERE D'ARTE MINORI - SOTTOPASSI

Sottopasso SV1 - OM01 Sottopasso su rampa 1 tra sezz. R1S136 e R1S137 Relazione di calcolo geotecnica:Archi

CODICE PR	OGETTO	NOME FILE	REVISIONE	SCALA:		
PROGETTO	LIV. PROG. N. PROG.	T00_OM01_GET_RE01	_C.pdf		11211310112	JCALA.
L050	3A D 1701	CODICE TOO OMO 1 GET REO 1			С	_
С	REVISIONE DEL PROGE	TTO DEFINITIVO	Marzo 2022			
В	REVISIONE DEL PROGE	TTO DEFINITIVO	Gennaio 2019	lng. C. Beltrami		
А	REVISIONE DEL PROGE	TTO DEFINITIVO	Giugno 2018	Ing. C. Beltrami		
REV.	DESCRIZIONE		DATA	REDATTO	VERIFICATO	APPROVATO

1.	PRI	EMESSA	2
2.	STE	RATIGRAFIA DI RIFERIMENTO	3
	2.1	RILEVATO STRADALE	3
	2.2	TERRENO DI FONDAZIONE	3
3.	. FOI	NDAZIONI	4
4.	VEF	RIFICHE DI CAPACITÀ PORTANTE	5
	41	COLLASSO PER CARICO LIMITE DELL'INSIEME FONDAZIONE TERRENO	5

ALLEGATI: TABELLE DEI RISULTATI

- > Calcolo delle fondazioni
- > Portanza delle fondazioni

1. PREMESSA

La presente relazione di calcolo ha per oggetto il dimensionamento dei cordoli di fondazione degli archi prefabbricati che compongono il sottopasso scatolare sullo svincolo SV1 della rampa 1 nel comune di Maglie (LE).

Lo scatolare è composto da 13 archi prefabbricati aventi dimensioni $H \times L = 5.50 \times 5.90 m$ che verranno competati dal getto dei giunti tra due elementi adiacenti e da una soletta integrativa in C.A. sul tetto.

Il passo teorico degli archi prefabbricati, comprensivo del giunto tra un elemento e l'altro, è pari a l=1.25m.

Lo scatolare è fondato su fondazioni superficiali. I cordoli di fondazione hanno, ciascuno, un'impronta in pianta di 16.85m x 3.20m.

I cordoli in C.A. si appoggiano su un magrone di sottofondazione di spessore minimo 20cm. Lo spessore del magrone andrà stabilito in sede di cantiere in modo che, con esso, si raggiunga l'unità geotecnica R1 [MA] a cui si è fatto riferimento per il dimensionamento dei cordoli di fondazione.

2. STRATIGRAFIA DI RIFERIMENTO

2.1 RILEVATO STRADALE

Il terreno che costituirà il rilevato stradale ha le seguenti caratteristiche geotecniche:

RILEVATO STRADALE

- Peso di Volume: $\gamma = 20 \text{ kN/m}^3$;

- Coesione: c' = 1.00 kPa;

- Angolo d'attrito: $f = 36^{\circ}$

2.2 TERRENO DI FONDAZIONE

Per il dimensionamento dei cordoli di fondazione degli archi si è fatto riferimento al profilo geotecnico della Rampa 1.

La quota altimetrica dell'intradosso del magrone di sottofondazione è 83.00m.

A quella profondità si intercetta l'unità geotecnica appartenente al gruppo delle Calcareniti (unità geotecnica R1).

Nei calcoli geotecnici si è pertanto fatto riferimento all'unità geotecnica **R1** e al grado di alterazione **MA** ossia mediamente alterato/cementazione discontinua.

Si elencano nel seguito le caratteristiche del terreno ricavate dal profilo geotecnico e quelle assunte nel calcolo:

UNITA' GEOTECNICA R1 [MA]

CARATTERISTICHE STRATO R1 [MA] TRATTE DA PROFILO GEOTECNICO

- Peso di Volume: $\gamma = 20 \text{ kN/m}^3$;

- Resistenza a compressione: qc = 3.5 - 9.5 MPa;

PARAMETRI DI RESISTENZA

- Coesione: c' = 160- 475 kPa;

- Angolo d'attrito: $f = 29^{\circ} - 31^{\circ}$

PARAMETRI DI DEFORMABILITA'

- Modulo di deformabilità: E = 150 – 600 MPa

CARATTERISTICHE STRATO R1 [MA] IMPIEGATE NEL CALCOLO

- Peso di Volume: $\gamma = 20 \text{ kN/m}^3$;

- Coesione: c' = 80 kPa;

- Angolo d'attrito: $f = 29^{\circ}$

T00_OM01_GET_RE01_B

3. FONDAZIONI

Le due componenti (R_{Vert} e R_{Orizz}) della risultante ricavate dalla relazione di calcolo strutturale dell'opera e trasmessa dalla struttura alla fondazione sono indicate nella tabella "Calcolo delle fondazioni", che riporta anche la distanza dalla facciata del punto d'applicazione della risultante.

La risultante verticale sul terreno di fondazione è calcolata tenendo conto della risultante trasmessa dalla struttura, del peso proprio della fondazione e del peso del volume di terra direttamente gravante sulla fondazione all'esterno dei ritti del ponte.

Nella tabella "Calcolo della pressione sul terreno" sono esposti i valori della pressione sul terreno calcolati con coefficienti di combinazione delle azioni pari a 1. Il calcolo è svolto sia con diagramma di pressione plastico parzializzato, sia con diagramma di pressione elastico.

La tabella espone inoltre le verifiche a S.L.U. e S.L.E. dei cordoli di fondazione.

Nella parte "Verifica a s.l.u. della sezione più sollecitata" i valori delle caratteristiche di sollecitazione (Md, Vd) agenti nelle fondazioni a stato limite ultimo.

Tali valori risultano inferiori alle sollecitazioni resistenti della sezione, esposte nella tabella denominata "Calcolo della sollecitazione resistente a s.l.u." nella parte alta del foglio.

4. VERIFICHE DI CAPACITÀ PORTANTE

La verifica al collasso per carico limite dell'insieme fondazione/terreno è svolto in una scheda, nella quale è effettuato il confronto tra l'insieme dei carichi agenti sulla fondazione e la sua resistenza. La capacità portante è calcolata con la formula di Brinch-Hansen del 1970.

4.1 COLLASSO PER CARICO LIMITE DELL'INSIEME FONDAZIONE TERRENO

Il collasso per carico limite dell'insieme fondazione terreno risulta dalla verifica che la capacità portante del terreno di fondazione sia maggiore della risultante calcolata in base alla somma di tutte le azioni e alla sua posizione, dalla quale dipende l'ampiezza del nastro di appoggio sul terreno, Questo confronto è svolto nelle schede allegate. Nel primo modulo la verifica è svolta secondo l'Approccio 2 (A1+M1+R3), tenendo conto dei coefficienti parziali riportati nelle Tabelle 6.2.I, 6.2.II e 6.4.I. Nel secondo modulo è svolta la verifica nel caso sismico, assumendo pari a uno tutti i coefficienti moltiplicativi delle azioni e delle resistenze. Per il coefficiente γ_R si è fatto riferimento alla tabella 7.11.II e alla riduzione citata nel paragrafo 7.11.5.3.1 motivata dall'aver preso in conto le azioni inerziali. Il calcolo della capacità portante tiene conto della riduzione per il coefficiente di Paolucci e Pecker 1997.

Il calcolo della capacità portante limite di fondazioni superficiali in sabbia e ghiaia, o altri terreni lievemente coesivi, è stata effettuata con il metodo di Brinch Hansen (formula del 1970). I tre termini classici della portanza N_c, N_q, N_q sono calcolati tenendo conto:

- delle caratteristiche geotecniche del terreno (Coesione, Angolo d'attrito, Peso specifico, Inclinazione del terreno a valle);
- dei dati geometrici della fondazione (Dimensioni, Profondità di posa, Inclinazione del piano di posa);
- dell'inclinazione dei carichi agenti sulla fondazione (Componente verticale e orizzontale, Larghezza dell'impronta nastriforme).

Esso è sviluppato nelle schede denominate "Calcolo della capacità portante delle fondazioni", nella quale sono riportate tutte le formule impiegate. I valori numerici sono calcolati con identica procedura per la combinazione (A1+M1+R3) e per il calcolo sismico.

La verifica della struttura al collasso per superamento del carico limite dell'insieme fondazione-terreno risulta dal confronto tra le azioni sulla fondazione e la sua capacità portante.

Si allegano al presente documento le schede di verifica.

Struttura: O12049-1102a - H x L = 5.50×5.90

CALCOLO DELLE FONDAZIONI

Dati della struttura

Luce netta della struttura	L = m	5.90
Altezza nominale interna della struttura	H = m	5.50
Interasse tra gli archi prefabbricati	I = m	1.25
Numero di archi prefabbricati	n°	13
Spessore del ritto	$\mathbf{W} = \mathbf{m}$	0.55
Cerniera Facc: distanza dalla facciata interna	m	0.06
Cerniera Terra: distanza dalla facciata interna	m	0.49

Dimensioni della fondazione in m.

С	Q	M	N	Hvasca	Peso
m. 3.20	m. 0.80	m. 0.90	m. 2.30	cm 12.0	t. 8.00

Calcolo della sollecitazione resistente (s.l.u.)

Posizione	Armati	ure/m	Sezione sul ritto				
r osizione	n°/m.Φ	Area/m	Area dei ferri per	arco			
51	4.16	8.04	inferiori A1 = cm2	15.07			
52	4.12	4.52	superiori A2 = cm2	4.24			
53	2.16	4.02	a 45° A3 = cm2	0.00			
54	3.12	3.39	staffe A4 = cm2	13.08			
Altezza tot	ale della se	zione	H1 = cm	68.0			
Altezza uti	le della sezi	one c.a.	d = cm	63.5			
Asse neut	ro		x1 = cm	6.6			
Momento i	resistente a	d arco	Mrd = kN.m	360			
Taglio resi	stente ad a	rco	Vr = kN	439			

CALCOLO DELLA PRESSIONE SUL TERRENO

Le forze si riferiscono ad una striscia larga I = m. 1.25. Sono già moltiplicate per i coefficienti gamma delle azioni previsti dal caso GEO. (Sono posti per i carichi permanenti g1=g2=g3=g4=1, per i carichi verticali variabili q1=1.15 e per la frenata q3=1.3)

Condiz		Sollecitazioni alla base del ritto			Peso	Totale	Eccentricità dalla	Calcolo (Meye	•	Cal	lcolo elast	ico
carico	Rorizz=V		Dictorzo do	- contro ritto	striscia terreno	forze verticali	mezzeria della fond.	Pressione media	parte senza	Bordo esterno	valore medio	Bordo interno
!	kN (1)	kN	m	m	kN	kN	m (2)	kN/m2	m	kN/m2	kN/m2	kN/m2
Ritto sini:	stro		1				'					
10	-139	189	0.060	7.40	324	592	0.004	148	0.008	149	148	147
20	-139	189	0.060	7.40	324	592	0.004	148	0.008	149	148	147
21	-138	323	0.060	7.40	324	726	-0.114	169	-0.227	143	181	220
22	-139	357	0.060	7.40	324	759	-0.138	175	-0.276	141	190	239
23	-129	380	0.060	7.40	324	782	-0.143	180	-0.285	143	196	248
91	-160	190	0.060	7.40	324	593	-0.026	146	-0.052	141	148	155
92	-161	172	0.060	7.40	324	575	-0.007	143	-0.015	142	144	146
93	-205	167	0.060	7.40	324	570	-0.064	137	-0.128	125	142	159
94	-205	162	0.060	7.40	324	564	-0.059	136	-0.117	125	141	157
Ritto desi	tro				'		'					
10	-139	189	0.060	7.40	324	592	0.004	148	0.008	149	148	147
20	-139	189	0.060	7.40	324	592	0.004	148	0.008	149	148	147
21	-131	355	0.091	7.40	324	757	-0.114	177	-0.228	149	189	230
22	-135	307	0.060	7.40	324	709	-0.099	167	-0.197	144	177	210
23	-134	309	0.060	7.40	324	711	-0.099	167	-0.198	145	178	211
91	-142	206	0.060	7.40	324	608	-0.018	150	-0.035	147	152	157
92	-142	188	0.060	7.40	324	591	0.001	148	0.001	148	148	147
93	-144	217	0.129	7.40	324	619	-0.006	154	-0.013	153	155	157
94	-144	211	0.124	7.40	324	614	-0.004	153	-0.008	152	153	155

VERIFICA A S.L.U DELLA SEZIONE VERTICALE PIÙ SOLLECITATA

Forze e momenti si riferiscono ad una striscia larga I = m. 1.25. Sono già moltiplicati per i coefficienti gamma delle azioni del caso STR

Condiz	Sollecitazioni alla base del ritto			h terra Peso contro striscia		cia forze dalla	Carico distribuito	Ampiezza senza	Distanza sezione +		tazioni erne	
carico	Rorizz=V	Rvert=N	Distanza da facciata	ritto	terreno	verticali	mezzeria della fond.	plastico (Meyerhof)	carico a	sollecitata dal bordo	Md	Vd
	kN (1)	kN	m	m	kN	kN	m (2)	kN/m2	m	m	kN.m	kN
Ritto sini:	stro											
10	-188	256	0.060	7.40	437	771	0.004	193	0.008	0.666	52	-9
20	-188	256	0.060	7.40	437	771	0.004	193	0.008	0.666	52	-9
21	-186	415	0.060	7.40	437	931	-0.105	218	-0.210	0.781	83	18
22	-188	455	0.060	7.40	437	970	-0.128	225	-0.256	0.795	89	23
23	-176	482	0.060	7.40	437	997	-0.133	230	-0.265	0.814	95	28
91	-160	190	0.060	7.40	324	593	-0.026	146	-0.052	0.624	35	-24
92	-161	172	0.060	7.40	324	575	-0.007	143	-0.015	0.587	31	-28
93	-205	167	0.060	7.40	324	570	-0.064	137	-0.128	0.470	19	-38
94	-205	162	0.060	7.40	324	564	-0.059	136	-0.117	0.453	17	-40
Ritto des	tro											
10	-188	256	0.060	7.40	437	771	0.004	193	0.008	0.666	52	-9
20	-188	256	0.060	7.40	437	771	0.004	193	0.008	0.666	52	-9
21	-181	448	0.060	7.40	437	964	-0.119	224	-0.239	0.798	89	23
22	-183	391	0.060	7.40	437	907	-0.088	215	-0.177	0.773	80	15
23	-182	394	0.060	7.40	437	909	-0.089	215	-0.177	0.775	81	16
91	-142	206	0.060	7.40	324	608	-0.018	150	-0.035	0.685	44	-16
92	-142	188	0.060	7.40	324	591	0.001	148	0.001	0.658	40	-20
93	-144	217	0.129	7.40	324	619	-0.006	154	-0.013	0.764	56	-4
94	-144	211	0.124	7.40	324	614	-0.004	153	-0.008	0.751	54	-6

⁽¹⁾ positiva se diretta verso il terrapieno

massimi 95

28

⁽²⁾ positiva se verso il terrapieno

VERIFICA A S.L.E DELLA SEZIONE VERTICALE PIÙ SOLLECITATA

Forze e momenti si riferiscono ad una striscia larga I = m. 1.25. Sono già moltiplicati per i coefficienti gamma delle azioni per SLE

Condiz	Sollecitazioni alla base del ritto			h terra		Totale	Eccentricità dalla	Carico distribuito	Ampiezza senza	Distanza Sollecita sezione +		
carico				contro	striscia	forze mezzeria		plastico carico	sollecitata	este		
Carico	Rorizz=V	Rvert=N	Distanza da facciata	ritto	terreno	verticali	della fond.	(Meyerhof)	а	dal bordo	Md	Vd
	kN (1)	kN	m	m	kN	kN	m (2)	kN/m2	m	m	kN.m	kN
Ritto sini	stro											
41	-139	189	0.060	7.40	324	592	0.004	148	0.008	0.666	40	-20
51	-140	286	0.060	7.40	324	689	-0.088	163	-0.175	0.765	60	-3
52	-140	308	0.060	7.40	324	710	-0.105	167	-0.211	0.778	63	0
53	-134	323	0.060	7.40	324	725	-0.109	170	-0.219	0.794	67	4
61	-140	319	0.060	7.40	324	721	-0.113	168	-0.225	0.784	65	2
62	-141	348	0.060	7.40	324	750	-0.134	173	-0.268	0.798	69	5
63	-132	368	0.060	7.40	324	770	-0.138	177	-0.277	0.816	74	10
Ritto des	tro											
41	-139	189	0.060	7.40	324	592	0.004	148	0.008	0.666	40	-20
51	-134	288	0.060	7.40	324	690	-0.082	164	-0.165	0.774	61	-1
52	-135	257	0.060	7.40	324	659	-0.057	159	-0.114	0.750	56	-6
53	-134	258	0.060	7.40	324	660	-0.057	159	-0.114	0.752	56	-6
61	-132	321	0.060	7.40	324	723	-0.106	170	-0.212	0.795	67	4
62	-134	279	0.060	7.40	324	681	-0.074	163	-0.149	0.768	60	-2
63	-133	281	0.060	7.40	324	683	-0.075	163	-0.149	0.771	61	-2

⁽¹⁾ positiva se diretta verso il terrapieno

massimi 73.7436 9.58159

Per il momento flettente Md massimo :

Asse neutro	x1 = cm	8.8
Apertura fessure	Wk = mm	0.00
Tensione masssima acciaio	$\sigma acc = MPa$	80.8
Tensione masssima cls	σ cls = MPa	2.2

⁽²⁾ positiva se verso il terrapieno

PORTANZA DELLE FONDAZIONI

Е

17

Spessore della terra sulla fondazione

Inclinazione del letto di posa del cordolo

Lunghezza minima cordolo di fondazione

Numero di elementi che compongono il ponte:

Calcolo con la formula di Brinch-Hansen 1970 (valida per terreno omogeneo e condizioni drenate)

Striscia	considerata:	m	1.25				
Dati geo	otecnici del terreno di riempimento:					sinistra	dest
Angolo a	attrito terreno riempimento:	gradi	35		coeff. spinta:	0.430	0.43
Peso spe	ecifico terreno riempimento:	kN/m3	20				
Dati geo	otecnici del terreno di fondazione:		UNITA' R1	[MA]			
φ	Angolo d'attrito nominale	gradi	29°		Φ = rad	0.5061	
ϕ_{M2}	Angolo d'attrito ridotto con coeff. M2	gradi	24°		Φ = rad	0.4174	
c	Coesione drenata	kN/m ²	80.00				
c_{M2}	Coesione drenata ridotta con coeff. M2	kN/m ²	64.00				
γ	Peso specifico	kN/m ³	20.00				
lv	Inclinazione del terreno tra i cordoli	%	0.0%		ϵ = rad	0.0000	
Dati sisr	mici:						
a _g /g	accelerazione orizzontale al suolo		0.079	S	$= S_S \times S_T =$	1.20	
a _{max} /g	accelerazione orizzontale massima attesa		0.095		β =	1	
			Cond.Car.91	Cond.Car.92	Cond.Car.93	Cond.Car.94	
\mathbf{k}_{h}	coefficiente sismico orizzontale	-	0.029	0.029	0.095	0.095	
ΔEd	Incremento dinamico della spinta	kN/m2	4.893	4.893	16.310	16.310	
	Risultante orizzontale sul plinto SX	kN	-4.89	-4.89	-16.31	-16.31	
	Momento rispetto intrad (Ritto SX)	kNm	-1.96	-1.96	-6.52	-6.52	
Dati geo	ometrici della fondazione:						
С	Larghezza della fondazione			m	3.20		
Q	Spessore della fondazione			m	0.80		
					0.00		
M	Sporgenza da filo facciata			m	0.90		

m

n°

m

0.80

0.0%

13

16.85

 $\alpha = \text{rad}$ 0.0000

AZIONE ORIZZONTALE DELLA TERRA SUL PLINTO SINISTRO (per una striscia di m. 1.25)

ato	2	ntr.	∩t∩	rra:

Profondità estradosso fond.:	m	7.40
Pressione terra a estradosso fond:	kPa	-63.64
Pressione terra a intradosso fond:	kPa	-70.52
Spinta su fondazione:	kN	-67.08
P.to applic. spinta da intrad. fond:	m	0.39

Lato interno luce:

Profondità estradosso fond.:	m	0.80
Pressione terra a estradosso fond:	kPa	6.88
Pressione terra a intradosso fond:	kPa	13.76
Spinta su fondazione:	kN	10.32
Punto di applicazione spinta da intradosso fond:	m	0.36

COEFF. A1

- Risultante spinta terra su fond:	kN	-76.63
- Momento spinta terra fond. rispetto intrad:	kNm	-40.56
COEFF A2		

Risultante spinta terra su fond: kN -56.76
 Momento spinta terra fond. rispetto intrad: kNm -30.04

AZIONE ORIZZONTALE DELLA TERRA SUL PLINTO DESTRO (per una striscia di m. 1.25)

Lato controterra:

Profondità estradosso fond.:	m	7.40
Pressione terra a estradosso fond:	kPa	-63.64
Pressione terra a intradosso fond:	kPa	-70.52
Spinta su fondazione:	kN	-67.08
P.to applic. spinta da intrad. fond:	m	0.39

Lato interno luce:

Profondità estradosso fond.:	m	0.80
Pressione terra a estradosso fond:	kPa	6.88
Pressione terra a intradosso fond:	kPa	13.76
Spinta su fondazione:	kN	10.32
Punto di applicazione spinta da intradosso fond:	m	0.36

COEFF. A1

- Risultante spinta terra su fondazione:	kN	-76.63
- Momento spinta terra fond. rispetto intradosso:	kNm	-40.56
COEFF A2		
- Risultante spinta terra su fondazione:	kN	-56.76
- Momento spinta terra fond. rispetto intradosso:	kNm	-30.04

Struttura: O12049-1102a - H x L = 5.50 x 5.90 ANAS-Scat. su SV01-Maglie-Leuca (LE)

Verifiche allo stato lim	ite ultimo	Approcci	o 2 combir	nazione 1	(A1+M1+R	3)					
		RITTO SI					RITTO DE	STRO			
			ni di carico):			_	ni di carico	 :		
		10	20	21	22	23	10	20	21	22	23
Carichi agenti sulla fondazione:											
N Componente verticale (G0)	kN/1.25m	771.1	771.1	930.8	970.2	997.2	771.1	771.1	963.5	906.9	909.4
eta Obliquità del carico rispetto alla verticale	gradi	19.65°	19.65°	16.18°	15.60°	14.51°	19.65°	19.65°	15.35°	16.41°	16.28°
H Componente orizzontale	kN/1.25m	264.4	264.4	262.8	264.2	252.6	264.4	264.4	258.1	259.7	258.4
e eccentricità dalla mezzeria della fond.	m (1)	-0.049	-0.049	-0.149	-0.170	-0.173	-0.049	-0.049	-0.161	-0.133	-0.133
B Larghezza del nastro di appoggio	m	3.10	3.10	2.90	2.86	2.85	3.10	3.10	2.88	2.93	2.93
Dati influenzati dal tipo di verifica:											
Φ Angolo d'attrito assunto nel calcolo	rad	0.5061	0.5061	0.5061	0.5061	0.5061	0.5061	0.5061	0.5061	0.5061	0.5061
D = E + Q	m	1.60	1.60	1.60	1.60	1.60	1.60	1.60	1.60	1.60	1.60
Termini della formula di Brinck-Hansen											
Profondità $ = [\gamma D N_q] s_q d_q i_q b_q g_q z_q $	kN/m ²	290.97	290.97	319.34	324.52	341.79	290.97	290.97	328.79	318.28	319.88
Coefficiente base $N_q = tan^2(45^\circ + \Phi/2) e^{\pi tan \Phi}$		16.44	16.44	16.44	16.44	16.44	16.44	16.44	16.44	16.44	16.44
Inclinaz. terreno a valle $g_{\alpha} = (1 - \tan \epsilon)^2$		1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Lunghezza del ponte $S_{q} = 1$ (fondazione nastriforme)		1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Larghezza fondazione $d_q = 1 + 2 \tan \Phi (1 - \sin \Phi)^2 \times \text{selD} < B:D/B$	R:atn(D/R)1	1.15	1.15	1.16	1.16	1.16	1.15	1.15	1.16	1.16	1.16
Inclinazione letto di posa $b_q = (1 - \alpha \tan \Phi)^2$	5,att 1(5/5/ ₁)	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Inclinaz. della risultante $i_q = [1 - H / (N + B c ctg F)]^{(m+1)}$		0.48	0.48	0.52	0.53	0.56	0.48	0.48	0.54	0.52	0.52
Paolucci e Pecker 1997 $Z_q = (1 - K_h / tan\phi)^{0.35}$		-	-	-	-	-	-	-	-	-	-
Coesione = $\begin{bmatrix} c & N_c \end{bmatrix} s_c & d_c & i_c & b_c & g_c & z_c \end{bmatrix}$	kN/m ²	1155.87	1155.87	1284.02	1307.40	1385.96	1155.87	1155.87	1326.91	1279.33	1286.61
Coefficiente base $N_c = (N_q - 1) \cot \Phi$		27.86	27.86	27.86	27.86	27.86	27.86	27.86	27.86	27.86	27.86
Inclinaz. terreno a valle $g_c = g_q - (1 - g_q) / (N_c \tan \Phi)$		1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Lunghezza del ponte $S_c = 1$ (fondazione nastriforme)		1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Larghezza fondazione $d_c = d_q - (1 - d_q) / (N_c \tan \Phi)$		1.16	1.16	1.17	1.18	1.18	1.16	1.16	1.17	1.17	1.17
Inclinazione letto di posa $b_c = b_q - (1 - b_q) / (N_c \tan \Phi)$		1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Inclinaz. della risultante $i_c = i_q - (1 - i_q) / (N_c \tan \Phi)$		0.45	0.45	0.49	0.50	0.53	0.45	0.45	0.51	0.49	0.49
Paolucci e Pecker 1997 Z _c = 1 - 0,34 K _h		-	-	-	-	-	-	-	-	-	-
Superficie = $[\frac{1}{2} \gamma B N_{\gamma}] s_{\gamma} i_{\gamma} b_{\gamma} g_{\gamma} z_{\gamma}$	kN/m ²	288.08	288.08	293.11	292.89	305.09	288.08	288.08	298.76	295.73	297.17
Coefficiente base $N_y = 2 (N_q + 1) \tan \Phi$		19.34	19.34	19.34	19.34	19.34	19.34	19.34	19.34	19.34	19.34
Inclinaz. terreno a valle $g_y = (1 - \tan \varepsilon)^2$		1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Lunghezza del ponte $S_{\gamma} = 1$ (fondazione nastriforme)		1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Larghezza fondazione $b_y = (1 - \alpha \tan \Phi)^2$		1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Inclinazione letto di posa $i_{\gamma} = [1 - H / (N + B c ctg F)]^{(m+1)}$		0.48	0.48	0.52	0.53	0.55	0.48	0.48	0.54	0.52	0.52
m = 2		2.00	2.00	2.00	2.00	2.00	2.00	2.00	2.00	2.00	2.00
Paolucci e Pecker 1997 $Z_y = (1 - K_h / \tan\phi)^{0.35}$		-	-	-	-	-	-	-	-	-	-
Verifica della capacità portante											
q _{LIM} Carico unitario limite (Meyerhof)	Мра	1.735	1.735	1.896	1.925	2.033	1.735	1.735	1.954	1.893	1.904
Coefficienti R3 γ_R Coeff. per le verifiche SLU di fondazioni superficiali		2.3	2.3	2.3	2.3	2.3	2.3	2.3	2.3	2.3	2.3
$ extsf{C}_{ extsf{p}}$ Capacità portante, tenuto conto di $\gamma_{ extsf{R}}$	kN	2340.4	2340.4	2393.3	2393.9	2522.2	2340.4	2340.4	2444.8	2415.2	2428.0
G_0 Carico effettivo, dovuto alle forze esterne	kN	616.9	616.9	744.7	776.1	797.7	616.9	616.9	770.8	725.6	727.5
				azione 1 (A1			1				

			Verifiche allo stato	limite ultimo	Sisma							
					RITTO SIN	NISTRO ni di carico	<u>.</u>		RITTO DESTRO Condizioni di carico:			
					91	92	93	94	91	92	93	94
Carichi agenti sulla f	onda	zione:										
ū	N		ente verticale (G0)	kN/1.25m	592.6	574.5	569.5	564.1	608.4	590.6	619.0	613.6
	β	Obliquità	a del carico rispetto alla verticale	gradi	21.44°	22.18°	27.99°	28.28°	18.71°	19.32°	18.55°	18.76°
	H	Compon	ente orizzontale	kN/1.25m	221.8	222.5	278.2	278.4	198.7	199.1	200.4	200.9
	e	eccentric	cità dalla mezzeria della fond.	m (1)	-0.080	-0.063	-0.128	-0.124	-0.067	-0.050	-0.055	-0.053
	В		za del nastro di appoggio	m	3.04	3.07	2.94	2.95	3.07	3.10	3.09	3.09
Dati influenzati dal ti												
		-	d'attrito assunto nel calcolo	rad	0.4174	0.4174	0.4174	0.4174	0.4174	0.4174	0.4174	0.4174
	D	= E + Q		m	1.60	1.60	1.60	1.60	1.60	1.60	1.60	1.60
Termini della forr	nula	di Brine	ck-Hansen									
Profondità			$= [\gamma D N_q] s_q d_q i_q b_q g_q z_q$	kN/m ²	171.63	169.13	133.21	132.38	189.02	186.80	189.46	188.50
Coefficiente base		N_q	$= \tan^2(45^\circ + \Phi/2) e^{\pi \tan \Phi}$		9.52	9.52	9.52	9.52	9.52	9.52	9.52	9.52
Inclinaz. terreno a valle		g_{q}	$= (1 - \tan \varepsilon)^2$		1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Lunghezza del ponte		Sq	= 1 (fondazione nastriforme)		1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Larghezza fondazione		d_q	= 1 + 2 $\tan \Phi (1 - \sin \Phi)^2 x \sec D < B$:D/B;atn(D/B)]	1.17	1.16	1.17	1.17	1.16	1.16	1.16	1.16
Inclinazione letto di posa		b _q	$= (1 - \alpha \tan \Phi)^2$		1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Inclinaz. della risultante		iq	$= [1 - H / (N + B c ctg F)]^{(m+1)}$		0.48	0.48	0.37	0.37	0.53	0.53	0.54	0.53
Paolucci e Pecker 1997		Zq	$= (1 - K_h / tan\phi)^{0.35}$		1.00	1.00	1.00	1.000	1.000	1.000	1.000	1.000
Coesione			$= [c \ N_c] \ s_c \ d_c \ i_c \ b_c \ g_c \ z_c$	kN/m ²	616.03	604.71	439.24	435.50	695.86	685.86	697.98	693.61
Coefficiente base		N_c	$= (N_q - 1) \cot \Phi$		19.21	19.21	19.21	19.21	19.21	19.21	19.21	19.21
Inclinaz. terreno a valle		g_c	$= g_q - (1 - g_q) / (N_c \tan \Phi)$		1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Lunghezza del ponte		s_c	= 1 (fondazione nastriforme)		1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Larghezza fondazione		d _c	$= d_q - (1 - d_q) / (N_c \tan \Phi)$		1.18	1.18	1.19	1.19	1.18	1.18	1.18	1.18
Inclinazione letto di posa		b _c	= $b_q - (1 - b_q) / (N_c \tan \Phi)$		1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Inclinaz. della risultante		i _c	$= i_q - (1 - i_q) / (N_c \tan \Phi)$		0.42	0.42	0.30	0.30	0.48	0.47	0.48	0.48
Paolucci e Pecker 1997		Z _c	= 1 - 0,34 K _h		1.00	1.00	1.00	1.000	1.000	1.000	1.000	1.000
Superficie			= [$\frac{1}{2}$ γ B N _y] s _y i _y b _y g _y z _y	kN/m ²	137.19	136.89	102.61	102.33	152.52	152.62	154.26	153.72
Coefficiente base		N_{γ}	= 2 (N_q + 1) tan Φ		9.33	9.33	9.33	9.33	9.33	9.33	9.33	9.33
Inclinaz. terreno a valle		g_y	= $(1 - \tan \varepsilon)^2$		1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Lunghezza del ponte		Sγ	= 1 (fondazione nastriforme)		1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Larghezza fondazione		b _y	$= (1 - \alpha \tan \Phi)^2$		1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Inclinazione letto di posa		i _y	= $[1 - H / (N + B c ctg F)]^{(m+1)}$ = 2		0.48	0.48	0.37	0.37	0.53	0.53	0.54	0.53
Paolucci e Pecker 1997		\mathbf{m} \mathbf{z}_{γ}	= \angle = $(1 - K_h / tan\phi)^{0.35}$		2.00 1.00	2.00 1.00	2.00 1.00	2.00 1.000	2.00 1.000	2.00 1.000	2.00 1.000	2.00 1.000
Verifica della cap	acit	à portai										
	q_{LIM}	Carico u	nitario limite (Meyerhof)	Мра	0.925	0.911	0.675	0.670	1.037	1.025	1.042	1.036
Coefficienti R2	γ_{R}	Coeff. pe	er le verifiche SLU di fondazioni superfic	iali	2.3	2.3	2.3	2.3	2.3	2.3	2.3	2.3
	C_p	Capacit	à portante, tenuto conto di γ_R	kN	1222.6	1217.2	864.0	860.5	1382.8	1381.6	1399.5	1393.6
	G_0	Carico et	ffettivo, dovuto alle forze esterne	kN	474.1	459.6	455.6	451.3	486.7	472.4	495.2	490.9
La struttura è verifica	ata al	collasso	per carico limite dell'insieme fonda	zione terreno p	er la condizi	one di caric	o sismica					
			•						<u>:</u>			