

Direzione Progettazione e Realizzazione Lavori

ITINERARIO TRAPANI - MAZARA DEL VALLO

VARIANTE ALLA S.S.115 "SUD OCCIDENTALE SICULA"
DALLO SVINCOLO "BIRGI" SULLA A29/DIR AL COLLEGAMENTO ALLA S.S. 115 AL KM 48+000

1° STRALCIO FUNZIONALE MARSALA SUD - MAZARA DEL VALLO

PROGETTAZIONE: AMAS - DIREZZIONE PROGETTAZZIONE E REALIZZAZZIONE LAWORI

PROGETTO DEFINITIVO

COD. PA757

PROGETTO STRADALE RELAZIONE DI CALCOLO PAVIMENTAZIONI STRADALI

CODICE PRO	DGETTO LIV. PROG. ANNO	NOME FII	LE T00PS00TRARE02A.c	doc		REVISIONE	SCALA:
DPPA		CODICE ELAB.	TOOPSOOT	RARE	0 2	A	-
D							
С							
В							
Α	EMISSIONE			Gennaio 2022			Scalamandrè
REV.	DESCRIZIONE			DATA	REDATTO	VERIFICATO	APPROVATO

RELAZIONE DI CALCOLO DELLE PAVIMENTAZIONI STRADALI

INDICE

1. P	PREMESSA	2
2. R	RIFERIMENTI TECNICI	3
3. D	PATI DI PROGETTO DELLE PAVIMENTAZIONI STRADALI	4
3.1	PACCHETTO DEL PROGETTO PRELIMINARE	4
3.2	PERIODO DI ANALISI	5
3.3	TRAFFICO	5
3.4	SOTTOFONDO	8
3.5	DESCRIZIONE DEI PACCHETTI DI PAVIMENTAZIONE	8
3.6	CONDIZIONI CLIMATICHE	. 10
3.7	INDICATORI PRESTAZIONALI DELLE PAVIMENTAZIONI	.11
3.8	CARATTERIZZAZIONE DEI MATERIALI	. 12
	3.8.1 Conglomerati bituminosi	
	3.8.2 Strato di fondazione	.13
3.9	PREDIMENSIONAMENTO CON METODO AASHTO 1993	. 14
4. N	METODOLOGIA DI ANALISI	18
5. R	RISULTATI DELL'ANALISI	22
5.1	DANNO CUMULATO PER FESSURAZIONE "BOTTOM UP"	. 22
5.2	ESTENSIONE DELLA FESSURAZIONE "BOTTOM UP"	. 23
5.3	ESTENSIONE DELLA FESSURAZIONE "TOP-DOWN"	. 23
5.4	DEFORMAZIONI PERMANENTI	. 25
	5.4.1 Deformazioni dei conglomerati bituminosi	. 25
	5.4.2 Deformazioni dei materiali granulari (fondazione e sottofondo)	. 25
	5.4.3 Combinazioni delle deformazioni permanenti e calcolo degli abbassament (ormaiamento)	
6. C	CONCLUSIONI	28
7. A	ALLEGATO: TABELLE DELLE DEFORMAZIONI PERMANENTI	29

RELAZIONE DI CALCOLO DELLE PAVIMENTAZIONI STRADALI

1. PREMESSA

La presente relazione costituisce la relazione di calcolo delle sovrastrutture di pavimentazione stradale previste in fase di Progetto Definitivo (PD) riguardante la S.S. 115 "Sud Occidentale Sicula" - Variante alla S.S.115 da Trapani a Mazara del Vallo - Primo stralcio funzionale da Marsala Sud a Mazara Del Vallo.

Vengono in particolare analizzate le pavimentazioni dell'asse principale in sede naturale adottate anche per le rampe delle intersezioni a livelli sfalsati e per le rotatorie afferenti agli svincoli.

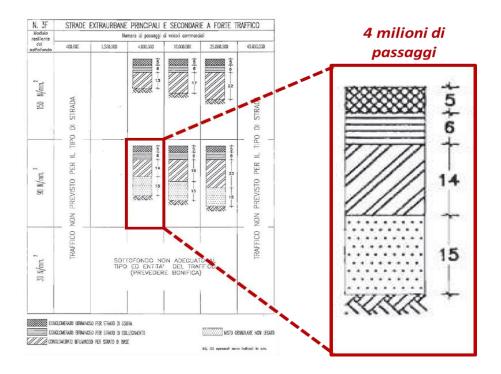
Partendo dalle ipotesi di dimensionamento del pacchetto della pavimentazione dell'asse principale indicato nel Progetto Preliminare (PP), in questa relazione del PD sono riportate le analisi e le verifiche con l'impiego di metodi razionali ed i risultati ottenuti.

RELAZIONE DI CALCOLO DELLE PAVIMENTAZIONI STRADALI

2. RIFERIMENTI TECNICI

Ai fini delle analisi e delle valutazioni sviluppate nella presente relazione si è fatto riferimento ai seguenti documenti:

- CNR B.U. 178/95 "Catalogo delle pavimentazioni stradali";
- AASTHO Guide for Design of Pavement Structures 1993;
- NCHRP Project 1-37A "Guide for Mechanistic-Empirical Design of New and Rehabilitated Pavement Structures", Ed. 2004 (Metodo M-E PDG);
- ANAS CAPITOLATO SPECIALE DI APPALTO Norme Tecniche per l'esecuzione del contratto Parte 2 IT.PRL.05.21 - Rev.3.0 - Pavimentazioni stradali.



RELAZIONE DI CALCOLO DELLE PAVIMENTAZIONI STRADALI

3. DATI DI PROGETTO DELLE PAVIMENTAZIONI STRADALI

3.1 PACCHETTO DEL PROGETTO PRELIMINARE

Da quanto riportato nella relazione del PP (T00PS00TRARE01B) il dimensionamento delle pavimentazioni stradali in sede è stato fatto riferimento al Catalogo delle Pavimentazioni (CNR BU 178/95) considerando il pacchetto relativo ad una strada extraurbana secondaria a forte traffico, un modulo resiliente del sottofondo di 90 MPa e un passaggio totale di veicoli commerciali totale sulla corsia più caricata di 4 milioni di veicoli.

Il pacchetto di pavimentazione nel PP era composto da:

- 5 cm di strato usura in conglomerato bituminoso (CB) chiuso con bitume modificato "soft":
- 6 cm di strato di collegamento (binder) in CB chiuso con bitume modificato "soft";
- 14 cm di strato di base CB chiuso con bitume modificato "soft"¹;
- 15 cm di misto granulare non legato².

Alla luce dei contenuti del nuovo aggiornamento del Capitolato Speciale di Appalto – Norme Tecniche per l'esecuzione del contratto Parte 2 IT.PRL.05.21 - Rev.3.0, parte relativa alla pavimentazioni stradali, in cui si prevede l'impiego dei soli bitumi modificati di tipo

RELAZIONE TECNICA STRADALE

¹ È interessante notare sul Catalogo che la funzione strutturale è assegnata al solo strato di base che varia di spessore con il traffico mentre lo spessore del misto granulare è funzione della sola portanza del sottofondo.

² La definizione di "misto granulare non legato" è preferibile a quella di "misto stabilizzato", nonostante che a livello tecnico si intenda lo stesso materiale, in quanto non vi è presenza di leganti e l'attributo "stabilizzato" potrebbe generare equivoci.

RELAZIONE DI CALCOLO DELLE PAVIMENTAZIONI STRADALI

"Hard", il pacchetto di pavimentazione in questa fase di PD sarà modificato nella seguente stratigrafia:

- 5 cm di strato usura in conglomerato bituminoso (CB) chiuso con bitume modificato "hard":
- 6 cm di strato di collegamento (binder) in CB chiuso con bitume modificato "hard";
- 14 cm di strato di base CB chiuso con bitume modificato "hard";
- 15 cm di misto granulare non legato³.

3.2 PERIODO DI ANALISI

Le pavimentazioni sono state verificate con riferimento ad un periodo di analisi di 20 anni.

3.3 TRAFFICO

La tratta stradale in progetto è caratterizzata da uno sviluppo complessivo di circa 17 km che prevedono, una variante all'attuale S.S.115 con caratteristiche di strada extraurbana secondaria di sezione C1 secondo le "Norme funzionali e geometriche per la costruzione delle strade" (D.M. n°6792 del 5/11/2001).

Si riportano in questo paragrafo le stime del traffico riportate nel documento "Studio di Traffico" nel quale sono stati considerati come orizzonti temporali futuri l'anno 2028, in cui si prevede l'entrata in esercizio dell'infrastruttura di progetto, e come scenari di medio e lungo termine gli anni 2038 e 2048.

Per gli scenari di previsione della domanda di trasporto futura, come indicato nello Studio di Traffico, si è fatto riferimento a documenti approvati dagli enti estensori degli studi su progetti relativi ad infrastrutture nell'area di studio e basandosi sull'attuale congiuntura economica che nell'ultimo biennio ha determinato una contrazione dei traffici su scala nazionale. Utilizzando i dati di partenza di questi studi e considerando il valore medio si è deciso di adottare i tassi annui riportati nella Tabella 1.

Tabella 1: Tassi annui di crescita della domanda negli scenari futuri di previsione

TASSI ANNUI	2021	2019	2020	2021	2022	2023	2024	2025	2026	2027	2028	2029
Leggeri	0,0%*	0,8%	0,8%	1,0%	1,2%	1,3%	1,5%	1,5%	1,8%	1,8%	1,8%	1,8%
Pesanti	0,0%*	1,0%	1,0%	1,2%	1,4%	1,5%	1,7%	1,7%	2,0%	2,0%	2,0%	2,0%

TASSI ANNUI	2030	2031	2032	2033	2034	2035	2036	2037	2038	2039	2040 - 2041	2042 - 2048
Leggeri	2,0%	2,0%	2,2%	1,8%	1,5%	1,3%	1,2%	1,0%	0,8%	0,5%	0,3%	0,1%
Pesanti	2,2%	2,2%	2,4%	2,0%	1,7%	1,5%	1,4%	1,2%	1,0%	0,7%	0,5%	0,3%

^{*} anno iniziale del periodo di riferimento per il quale valgono i valori iniziali del traffico senza tassi di crescita

RELAZIONE TECNICA STRADALE

³ La definizione di "misto granulare non legato" è preferibile a quella di "misto stabilizzato", nonostante che a livello tecnico si intenda lo stesso materiale, in quanto non vi è presenza di leganti e l'attributo "stabilizzato" potrebbe generare equivoci.

RELAZIONE DI CALCOLO DELLE PAVIMENTAZIONI STRADALI

La Figura 1 mostra l'andamento della curva di crescita della domanda passeggeri e merci adottata.

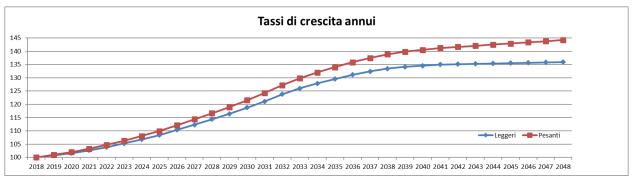


Figura 1: Curva di crescita della domanda passeggeri e merci

I coefficienti relativi all'anno 2028, 2038 e 2048 sono stati applicati alle matrici origine/destinazione degli spostamenti (leggeri e pesanti) dell'anno 2018, anno di riferimento dello stato attuale con dati di traffico consolidati determinando la domanda di mobilità su strada per gli scenari di progetto.

Ipotizzando l'entrata in esercizio dell'infrastruttura al 2028, e componendo i tassi di crescita considerati della domanda ai vari anni, complessivamente dal 2028 al 2048 la domanda passeggeri cresce del 21.6%. La crescita della domanda merci è del 27.6%. La Tabella 2 evidenzia l'andamento in percentuale negli anni della crescita della domanda a partire dal 2018 (2018 = 100).

Domanda	Volumi complessivi di crescita della domanda (2021=100%)									
	2018	2028	2038	2048						
Passeggeri	100	114,3	133,5	135,9						
Merci	100	116,6	138,8	144,2						

Tabella 2: Volumi di crescita della domanda negli scenari futuri di previsione

Lo Scenario di Progetto dello Studio di Traffico è stato messo a punto a partire dal traffico attuale al 2018 inserendo il progetto in variante alla S.S.115 "Sud-Occidentale Sicula" nel tratto Trapani – Mazara del Vallo, compreso tra lo svincolo "Birgi" e il collegamento alla S.S.115 in corrispondenza di Mazara del Vallo.

L'analisi dello Studio di Traffico è stata eseguita a livello di rete di trasporto complessiva dell'area ma, visto il livello progettuale preliminare, è stata focalizzata l'attenzione solo sull'asse principale di progetto per consentire le verifiche di funzionalità.

In Tabella 3 sono riassunti i valori della domanda di traffico sulla direttrice di progetto espressi in termini di Traffico Giornaliero Medio annuo (TGM) e distinti per categoria veicolare (leggeri, pesanti, totali ed equivalenti) agli orizzonti temporali 2028 e 2038.

RELAZIONE DI CALCOLO DELLE PAVIMENTAZIONI STRADALI

Tabella 3: Traffico Giornaliero Medio lungo la direttrice di progetto per categoria veicolare

			Tra	iffico Giorr	naliero Me	dio annuo (TG	M)
Anno	Tratta	Direzione			%VP		
			Leggeri	Pesanti	Totali	Equivalenti	70 V P
	Marsala-Petrosino	SUD (Mazara d.Vallo)	6'625	210	6'835	7'150	3.1%
		NORD (Marsala)	6'920	267	7'187	7'588	3.7%
2028		Bidirezionale	13'545	477	14'022	14'738	3.4%
2028		SUD (Mazara d.Vallo)	6'081	130	6'211	6'407	2.1%
	Petrosino-Mazara d.V.	NORD (Marsala)	6'174	169	6'343	6'597	2.7%
		Bidirezionale	12'255	299	12'554	13'004	2.4%
		SUD (Mazara d.Vallo)	7'917	256	8'173	8'557	3.1%
	Marsala-Petrosino	NORD (Marsala)	8'269	326	8'595	9'083	3.8%
2038		Bidirezionale	16'186	582	16'768	17'641	3.5%
2038		SUD (Mazara d.Vallo)	7'267	159	7'426	7'664	2.1%
	Petrosino-Mazara d.V.	NORD (Marsala)	7'378	206	7'584	7'894	2.7%
		Bidirezionale	14'645	365	15'010	15'558	2.4%

Ai fini del calcolo delle pavimentazioni stradali si considerano i soli veicoli commerciali. Il tratto e il senso di marcia più caricato sono quello di Marsala-Petrosino in direzione NORD con 267 veicoli/giorno al 2028 e 326 veicoli/giorno al 2038.

Tenendo conto dei tassi di crescita esplicitati in Tabella 1, nel periodo di 20 anni compreso tra il 2028 e il 2047 (anno iniziale e finale compresi) si ottiene un numero totale di passaggi sulla corsia più caricata di <u>2.31 milioni di veicoli circa</u>.

Lo spettro di traffico considerato per la strada di categoria C è quello corrispondente alle strade "extraurbane secondarie a forte traffico" del Catalogo Pavimentazioni del CNR (Tabella 4):

Tabella 4: percentuali dei tipi di veicoli per categoria di strada (da Catalogo Pavimentazioni CNR)

					Ti	0 0	di	v	e i c	0 1	0					
Tipo di strada	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
1) autostrade extraurbane	12.2		24.4	14.6	2.4	12.2	2.4	4.9	2.4	4.9	2.4	4.9	0.10			12.2
2) " urbane	18.2	18.2	16.5										1.6	18.2	27.3	
 strade extr. principali e secondarie a forte traffico 		13.1	39.5	10.5	7.9	2.6	2.6	2.5	2.6	2.5	2.6	2.6	0.5			10.5
 strade extraurb. second. ordin. 			58.8	29.4		5.9		2.8			10.4110		0.2	-		2.9
5) " extr. secondturistiche	24.5		40.8	16.3		4.15		2					0.05			12.2
6) " urbane di scorrimento	18.2	18.2	16.5	-									1.6	18.2	27.3	
7) " di quartiere e locali	80													20		
8) corsie preferenziali														47	53	

RELAZIONE DI CALCOLO DELLE PAVIMENTAZIONI STRADALI

A ciascun tipo di veicolo, sempre prendendo come riferimento il Catalogo pavimentazioni, corrispondono i seguenti valori di carico assiale espressi in kN (Tabella 5):

Tabella 5: carichi in kN e numero di assi dei tipi di veicoli (da Catalogo Pavimentazioni CNR)

Tipo di veicolo	Nº Assi	Distribuzione dei carichi per asse in KN
1) autocarri leggeri	2	↓10 ↓20
2) " "	*	↓15 ↓30
3) autocarri medi e pesanti	н	↓40 ↓80
4) " " "	"	↓50 ↓110
5) autocarri pesanti	3	↓40 ↓80 ↓80
6) " "	п	↓60 ↓100↓100
7) autotreni e autoarticolati	4	↓40 ↓90 ↓80 ↓80
8) " "	ti ti	↓60 ↓100 ↓100 ↓100
9) " "	5	↓40 ↓80↓80 ↓80 ↓80
10) " "		↓60 ↓90↓90 ↓100↓100
11) " "		↓40 ↓100 ↓80 ↓80 ↓80
12) " "		\$60 \$110 \$90 \$90 \$90
13) mezzi d'opera	"	↓50 ↓120 ↓130↓130↓130
14) autobus	2	↓40 ↓80
15) "	2	↓60 ↓100
16) "	2	↓50 ↓80

3.4 SOTTOFONDO

Il valore di portanza del sottofondo è caratterizzato mediante un modulo resiliente Mr = 90 MPa, corrispondente al valore di portanza media considerata dal Catalogo delle Pavimentazioni. Tale valore è compatibile e cautelativo rispetto al valore di Capitolato Anas (IT.PRL.05.13 Rev 1, §2.5.2) per il quale il rilevato stradale deve esser realizzato in modo tale che si riscontri, per gli ultimi 30 cm del rilevato che costituiscono il piano di posa della fondazione della pavimentazione stradale, un Md al primo ciclo di carico su piastra (diametro 30 cm) non inferiore a 50 MPa, nell'intervallo compreso tra 50÷150 kPa (0,15 - 0.25 N/mm²) sul in rilevato, equivalente ad un Mr di 100 MPa essendo nota la relazione Mr = 2 x Md.

3.5 DESCRIZIONE DEI PACCHETTI DI PAVIMENTAZIONE

Con i dati di traffico e di sottofondo richiamati nei paragrafi precedenti, in sede di è previsto il seguente pacchetto di pavimentazione per l'asse principale e rampe delle intersezioni a livelli sfalsati nei tratti in rilevato e trincea:

- Tipo: flessibile;
- Usura: conglomerato bituminoso (CB) con bitume modificato "soft", spessore 5 cm;
- Collegamento (o binder): CB con bitume modificato "soft", spessore 6 cm;
- Base: conglomerato bituminoso con bitume modificato "soft", spessore 14 cm;

RELAZIONE DI CALCOLO DELLE PAVIMENTAZIONI STRADALI

 Fondazione: Misto granulare non legato (misto stabilizzato granulometricamente), spessore 15 cm.

Per Viadotto Sossio e gli altri viadotti presenti lungo l'asse principale verranno mantenuti i due strati di usura e collegamento poggianti sulla soletta in calcestruzzo armato rivestito di uno strato di impermeabilizzazione.

Per la pavimentazione della Galleria artificiale Ospedale il pacchetto di pavimentazione è lo stesso con la sola differenza che la fondazione in misto granulare è estesa fino all'estradosso della soletta di base in calcestruzzo armato.

Per le viabilità interferite con sezione tipo C2 ed F2 la pavimentazione di progetto è la seguente:

- Tipo: flessibile;
- Usura: conglomerato bituminoso (CB) con bitume modificato "hard", spessore 4 cm:
- Collegamento (o binder): CB con bitume modificato "hard", spessore 6 cm;
- Base: conglomerato bituminoso con bitume modificato "hard", spessore 10 cm;
- Fondazione: misto granulare non legato (misto stabilizzato granulometricamente), spessore 15 cm.

La pavimentazione è assimilabile a quella da Catalogo Pavimentazioni scheda 5F per "strade extraurbane turistiche", sottofondo di portanza media (90 MPa) e numero di passaggi totali di veicoli pesanti pari a 1.5 milioni.

Per le strade a destinazione particolare di larghezza 4 m (strade vicinali) sono previsti due pacchetti, uno pavimentato e l'altro non pavimentato. Il pavimentato è composto da:

- Usura: conglomerato bituminoso (CB) con bitume tal quale, spessore 7 cm;
- Base/Binder: conglomerato bituminoso con bitume tal quale, spessore 10 cm;
- Fondazione: misto granulare non legato (misto stabilizzato granulometricamente), spessore 20 cm.

Il pacchetto pavimentato è assimilabile a quello previsto dal Catalogo Pavimentazioni scheda 7F per "strade locali", sottofondo di portanza media (90 MPa) e numero di passaggi totali di veicoli pesanti compreso tra 0.4 e 1.5 milioni.

Il pacchetto non pavimentato è invece composto da un solo strato di misto granulare non legato (misto stabilizzato granulometricamente), spessore 25 cm.

In questa fase progettuale verrà analizzato solo il pacchetto dell'asse principale, in quanto per i tratti in viadotto e in galleria le caratteristiche strutturali dei materiali che costituiscono la pase per la pavimentazione stradale sono migliori rispetto a quelle dei tratti in rilevato ed in trincea. L'analisi della pavimentazione delle viabilità interferite verrà approfondita in fase di progettazione esecutiva.

RELAZIONE DI CALCOLO DELLE PAVIMENTAZIONI STRADALI

3.6 CONDIZIONI CLIMATICHE

Le condizioni climatiche utilizzate per le verifiche sono riferite ai dati registrati dalla stazione meteorologica dell'Aeroporto di Trapani Birgi nell'intervallo temporale di due anni (2019-2020) pubblicati sul sito internet https://www.wunderground.com/. I dati sono stati elaborati in modo da ottenere i valori di riferimento stagionali come riportati sul Catalogo delle Pavimentazioni.

CTA CLONE	Temp. Media (Tag)	Escursione (Aag)	Irraggiamento (kCal/m2)	Vel. Vento (V)
STAGIONE	°C	°C	kCal/m₂	km/h
Inverno	11.87	7.50	2175.4	25.34
Primavera	15.57	8.00	5127.6	22.59
Estate	25.72	8.83	6681.0	20.92
Autunno	20.28	8.08	3574.1	22.46

Ai precedenti dati corrispondono i seguenti valori delle temperature medie nella pavimentazione valutati mediante la formula di Barber:

$$T_{pav}(z,t) = T_{ag} + R + (\frac{A_g}{2} + 3R) \cdot F \cdot e^{-Cx} \cdot \sin(0.262t - Cx - arctg(\frac{C}{H+C}))$$

Dove:

- T_{pav} (z,t) è la temperatura della pavimentazione alla profondità z ed al tempo t [°C];
- T_{ag} è la temperatura media giornaliera dell'aria [°C];
- A_{ag} è l'escursione media giornaliera della temperatura dell'aria [°C];
- $\bullet \quad R = \frac{2}{3} \times \frac{b \times I}{24 \times h_c}$
- $H = \frac{h_c}{K}$ è il contributo della radiazione solare alla temperatura effettiva dell'aria [°C];
- $h_c = 4.882 \times (1.3 + 0.4332 \times V^{\frac{3}{4}})$
- $\bullet \quad C = \sqrt{\frac{0.131 \times s \times w}{k}}$
- $\bullet \quad F = \frac{H}{\sqrt{(H+C)^2+C^2}}$
- I è la radiazione media giornaliera [kCal/m² gg];
- V è la velocità del vento [km/h];
- b è il grado di assorbimento della superficie (pari a 0.6 0.95);
- K è la conduttività termica (per le miscele legate con bitume 1.04 1.96) [kCal/m ora °C];
- s è il calore specifico (per le miscele legate con bitume 0.193 0.22) [Kcal/Kg °C];
- w è la massa volumica apparente (2400-2500) [kg/m³].

RELAZIONE DI CALCOLO DELLE PAVIMENTAZIONI STRADALI

Per le grandezze in cui è presente un campo di variazione si sceglie il valore medio, quindi K=1.5, b=0.75 e s=0.2.

Le temperature medie stagionali degli strati sono quelle della tabella seguente:

STRATO	T _{inv}	T_{pri}	T _{est}	T _{aut}
	°C	°C	°C	°C
Superficie	13.36	19.34	30.86	22.92
Usura	13.36	19.34	30.86	22.92
Collegamento	13.36	19.34	30.86	22.92
Base	13.36	19.34	30.86	22.92

3.7 INDICATORI PRESTAZIONALI DELLE PAVIMENTAZIONI

Le caratteristiche prestazionali delle pavimentazioni sono state analizzate per mezzo dei seguenti indicatori valutati fino al termine del periodo di analisi di 30 anni:

- Danno cumulato a fatica di tipo "bottom-up";
- Estensione della fessurazione in superficie dovuta a lesioni che si propagano dal basso verso l'alto (fessure da fatica di tipo "bottom-up");
- Estensione della fessurazione superficiale dovuta a lesioni che si propagano dall'alto verso il basso (fessure longitudinali di tipo "top-down");
- Profondità delle ormaie (deformazioni permanenti);

In Tabella 6 sono riportati i valori dei limiti di ammissibilità assunti per ciascun indicatore prestazionale considerato nelle verifiche delle pavimentazioni del PD, superati i quali è necessario un intervento di riqualifica delle pavimentazioni stesse.

Tabella 6: Valori dei limiti di ammissibilità degli indicatori prestazionali delle pavimentazioni del PD

INDICATORE PRESTAZIONALE	UNITÀ DI MISURA	VALORE DEL LIMITE DI AMMISSIBILITA'	NOTE
Danno a fatica "bottom-up"	-	0.5	А
Fessurazione da fatica "bottom-up"	%	20	В
Fessurazione longitudinale "top-down"	m/km	189	С
Profondità delle ormaie	mm	12.0	D

NOTE

A) Il valore rappresenta il danno cumulato per fenomeni di fessurazione di tipo "bottom-up" calcolato secondo la legge di Miner. Il limite di Miner teorico di rottura per fatica di tipo "bottom-up" è rappresentato dal valore 1.0. Nell'applicazione del criterio al dimensionamento delle pavimentazioni stradali l'esperienza evidenzia che al di sopra di valori del rapporto di Miner di $0.1 \div 0.5$ la progressione nel tempo delle rotture per fatica della pavimentazione aumenta in modo esponenziale.

B) Il valore è riferito alla percentuale di superficie di pavimentazione interessata da fessurazione da fatica. Il limite del 20% rappresenta il raggiungimento di un ammaloramento tale da provocare, in

RELAZIONE DI CALCOLO DELLE PAVIMENTAZIONI STRADALI

relazione al livello di affidabilità assunto nel progetto (90%), la perdita di funzionalità per la pavimentazione, rilevata in base al comfort di marcia.

C) Il valore rappresenta lo sviluppo complessivo di fessure longitudinali presenti in 1 km di strada. Il valore limite di 189 m/km rappresenta il raggiungimento del livello di fessurazione superficiale che provoca, in relazione al livello di affidabilità considerato (90%), un grave decadimento delle caratteristiche di portanza della pavimentazione nel suo complesso a causa di eccessive infiltrazioni di acqua all'interno della struttura e ad una maggiore frequenza di condizioni di carico al bordo. 189 m/km sono la conversione nelle unità del Sistema Internazionale del valore di 1000 ft/mi riportato in NCHRP Project 1-37°.

D) Il valore rappresenta la massima profondità delle ormaie accettabile per cui, con riferimento ad una pendenza trasversale del 2.5%, è possibile evitare ristagni di acqua in carreggiata.

Gli indicatori che regolano il comportamento a fatica delle pavimentazioni sono la fessurazione da fatica "bottom-up", la fessurazione longitudinale "top-down" ed il danno a fatica di tipo "bottom-up", mentre gli indicatori relativi alla formazione delle ormaie caratterizzano il comportamento delle pavimentazioni in termini deformativi.

3.8 CARATTERIZZAZIONE DEI MATERIALI

Le caratteristiche dei materiali degli strati della pavimentazione corrispondono alle prescrizioni di composizione richieste nel Capitolato Speciale di Appalto - Norme Tecniche per l'esecuzione del contratto Parte 2 - IT.PRL.05.21 - Rev.3.0 (anno 2021).

3.8.1 Conglomerati bituminosi

Le caratteristiche granulometriche derivanti dalle prescrizioni di Capitolato dei conglomerati bituminosi sono le seguenti (Tabella 7):

	Granulometria (passanti e trattenuto #200)					
Strato	P. 3/4 in.	P 3/8 in.	P. #4	T #200		
	[%]	[%]	[%]	[%]		
Usura	99	85	57	8		
Collegamento	95	68	49	6		
Base	76	53	40	6		

Tabella 7: caratteristiche granulometriche dei conglomerati bituminosi

I setacci 3/4 e 3/8 di pollice corrispondono rispettivamente ad aperture di maglia di 20 e 10 mm. I setacci #4 e #200 corrispondono ad aperture di maglia di 5 e 0.063 mm.

Le grandezze che invece influenzano i parametri del comportamento reologico, secondo i modelli sviluppati dall'AASHTO⁴, sono i seguenti (Tabella 8):

RELAZIONE TECNICA STRADALE

⁴ Andrei, D., Witczak, M. W., and Mirza, M. W. *Development of Revised Predictive Model for the Dynamic (Complex) Modulus of Asphalt Mixtures*. Development of the 2002 Guide for the Design of New and Rehabilitated Pavement Structures, NCHRP 1-37A. Interim Team Technical Report. Department of Civil Engineering, University of Maryland of College Park, MD, 1999

RELAZIONE DI CALCOLO DELLE PAVIMENTAZIONI STRADALI

Tabella 8: grandezze di caratterizzazione reologica

		Grandezze d	i caratterizzazio	ne reologica	
Strato	Vv	Vb	Α	VTS	γ
	[%]	[%]			kg/m³
Usura	4.5	12.6	10.6508	-3.5537	2425
Collegamento	4.5	11.5	10.6508	-3.5537	2444
Base	4.5	10.8	10.6508	-3.5537	2456

La pavimentazione sottoposta a verifica e le caratteristiche dei materiali che compongono i diversi strati sono riportate in Tabella 9 e Tabella 10.

Tabella 9: Caratteristiche generali degli strati della pavimentazione

Strato	Materiale	Spessore (cm)	Coefficiente di Poisson (v) a 20°C	Modulo elastico (E) a 20°C (MPa)	Note
Usura	Congl. bituminoso	5	0.230	6390	1
Binder	Congl. bituminoso	6	0.225	6875	1
Base	Congl. bituminoso	14	0.215	8260	1

Note

- 1) Il modulo E a T = 20°C deriva dalle formule di Witzack (NCHRP 1-37A), in funzione delle caratteristiche compositive del materiale.
- 2) Valore E calcolato con la relazione di Shell Oil Company tenendo conto del reale confinamento dovuto al sottofondo con Mr pari a 90 MPa. Il modulo di Poisson è dedotto dalla stratigrafia del §17.5 delle Norme Tecniche per l'esecuzione del contratto Parte 2 IT.PRL.05.21 Rev.3.0.

Tabella 10: Moduli elastici e di Poisson al variare della stagione

Modulo complesso (Mpa)				Modulo di Poisson				
Strato	Stagione			Stagione				
	INV	PRI	EST	AUT	INV	PRI	EST	AUT
Usura	9630	6670	3076	5279	0.208	0.227	0.283	0.242
Collegamento	10424	7177	3269	5659	0.204	0.223	0.278	0.238
Base	12685	8634	3837	6757	0.196	0.213	0.265	0.227

Nella caratterizzazione dei conglomerati bituminosi si è ritenuto cautelativo non considerare i benefici dell'impiego dei bitumi modificati. Eventuali approfondimenti potranno esser svolti in fase di Progetto Esecutivo.

3.8.2 Strato di fondazione

Lo strato di fondazione è costituito da una miscela di aggregati stabilizzati granulometricamente (i.e. granulometria controllata), priva di leganti aggiunti, impiegata per la costruzione di strati di fondazione e/o sottofondazione; gli aggregati possono essere costituiti da ghiaie, frantumati, detriti di cava, scorie o anche altro materiale, coerentemente con la voce di capitolato D.01.001.

RELAZIONE DI CALCOLO DELLE PAVIMENTAZIONI STRADALI

Per la caratterizzazione meccanica dello strato di fondazione ai fini del calcolo è stata ipotizzata considerando la formula della Shell-Oil⁵, che considera come variabili lo spessore della fondazione e il modulo resiliente del sottofondo:

$$E_{R,MGNL} = 0.2 \times E_{R,SUB} \times (H_{MGNL})^{0.45}$$

dove:

- E_{R,MGNL} è il modulo elastico del misto granulare non legato (MPa);
- E_{R,SUB} è il modulo elastico del sottofondo (MPa);
- H_{MGNL} è lo spessore del misto granulare non legato (mm).

3.9 PREDIMENSIONAMENTO CON METODO AASHTO 1993

Il metodo empirico-statistico dell'AASHTO (1993) consiste nel determinare il numero di assi standard (ESALs da 18 kips, pari a 8,2 ton) che la pavimentazione può sopportare, raggiungendo un fissato grado di ammaloramento finale (Present Serviceability Index finale - PSI_{fin}).

Tale valore è funzione di vari parametri, come le caratteristiche meccaniche dei materiali, gli spessori dei vari strati della pavimentazione, portanza del sottofondo e così via.

Questi assi devono essere confrontati con il traffico commerciale convertito in assi ESAL che si stima passerà durante la vita utile della pavimentazione sulla corsia più carica.

Il primo passaggio comune sia al calcolo del numero massimo di passaggi del carico equivalente sia al numero di passaggi di carichi equivalenti di progetto è la determinazione dello "Structural Number" (SN).

Il valore di SN è un parametro che tiene conto della "resistenza strutturale" della pavimentazione ed è funzione:

- degli spessori degli strati (s_i)
- della "resistenza" dei materiali impiegati rappresentata, attraverso i "coefficienti strutturali di strato" (a_i);
- della loro sensibilità all'acqua rappresentata attraverso i "coefficienti di drenaggio" (m_i).

L'espressione analitica dell'SN è:

$$SN = \sum_{i=1}^{m} (s_i \times a_i \times m_i)$$

I termini a_i e m_i sono adimensionali per cui lo SN assume come unità di misura il valore in centimetri o in pollici a seconda dell'unità di misura considerata per s_i .

Nel caso in esame, in base alla struttura della pavimentazione riportata al §0, il valore di SN risulta essere:

⁵ Granular Materials Shell Method [Chou et al., 1989; Smith and Witczak, 1981]

RELAZIONE DI CALCOLO DELLE PAVIMENTAZIONI STRADALI

Strato	s _i (cm)	a _i	m _i	s _i x a _i x m _i (cm)
Usura	5	0.45 (*)	1	2.25
Collegamento	6	0.45 (*)	1	2.70
Base	14	0.27 (#)	0.95 (+)	3.59
Fondazione	15	0.11 (§)	0.95 (+)	1.57
Totale				10.11

- (*) Il valore massimo del modulo elastico dei conglomerati bituminosi di usura e collegamento a 20°C (68°F) previsto nel grafico di fig. 2.5 dell'AASHTO '93 è sempre inferiore ai valori di progetto. Si è scelto quindi il valore massimo del grafico.
- (#) Il valore stimato corrisponde a quello di un materiale con stabilità marshall minima di 700 kg pari a 1400 lb ca, come da Catalogo Pavimentazioni per strato di base (Tab.8). Con quel valore si entra nel grafico di figura 2.9 dell'AASHTO per la determinazione del valore di a₂.
- (§) Valore corrispondente a CBR 30 come previsto dal Catalogo Pavimentazioni, Tab. 8 per il Misto Granulare non Legato.
- (+) Per il calcolo del coefficiente di drenaggio è stato ipotizzato che il clima della Sicilia corrisponda a quello della Florida (I) per l'AASHTO '93. Non si hanno fenomeni di gelo in inverno. Secco in estate. Corrisponde all'intervallo del 5-25% per le condizioni prossime alla saturazione. Con questi dati è stato scelto il valore medio da tabella 2.4 del §2.4.1 dell'AASHTO '93.

La conversione dei carichi dello spettro di traffico in ESAL viene effettuata per singolo carico in funzione della seguente formula di conversione:

$$\frac{\mathbf{W}_{x}}{\mathbf{W}_{18}} = \left[\frac{\mathbf{L}_{18} + \mathbf{L}_{2s}}{\mathbf{L}_{x} + \mathbf{L}_{2x}}\right]^{4.79} \left[\frac{10^{\frac{G}{\beta_{8}}}}{10^{\frac{G}{\beta_{18}}}}\right] \left[\mathbf{L}_{2x}\right]^{4.33}$$

Dove:

- W_x / W_{18} è il fattore di conversione del carico "x" rispetto al carico standard da 18.000 lb (8.2 t);
- L_x è uguale al carico sull'asse valutato (kips);
- L₁₈ è uguale a 18 kips (asse standard);
- L₂ corrisponde al codice per la configurazione dell'asse:
 - 1 = asse singolo;
 - \circ 2 = asse tandem;
 - o 3 = triplo asse;
- x = fattore di equivalenza del carico sull'asse in corso di valutazione.
- s = codice per asse standard = 1 (asse singolo)
- G è una funzione del valore di PSI (Present Serviceability Index) al tempo t (pt) e massima (4.2 – 1.5):

$$\log\left(\frac{4.2 - p_t}{4.2 - 1.5}\right)$$

RELAZIONE DI CALCOLO DELLE PAVIMENTAZIONI STRADALI

dove p_t è pari a 2,5 per la categoria di strada oggetto di intervento come da Catalogo Pavimentazioni del CNR;

• β_x segue la seguente espressione e viene calcolato per il carico "x" e per quello da 18 kips:

$$0.4 + \left(\frac{0.081(L_x + L_{2x})^{3.23}}{(SN+1)^{5.19}L_{2x}^{3.23}}\right)$$

• SN è lo "Structural Number" già definito.

I risultati dell'applicazione sono riassunti in Tabella 11. Nelle colonne relative a "ESAL per carico" si intende il calore nominale, ovvero il rapporto W_X/W_{18} . Nelle colonne "ESAL x % Catalogo" le precedenti colonne sono moltiplicate per la percentuale del tipo di veicolo previsto dallo spettro. Il risultato finale della conversione, ossia il coefficiente di equivalenza (Ceq) è dato dalla somma delle colonne "ESAL x % Catalogo".

Tabella 11: Risultati di conversione in ESAL dello spettro di traffico di progetto

tipo		ESAL pe	er carico ESAL x % Catalogo					
veicolo	1	2	3	4	1	2	3	4
1	0.0003	0.0041			0.0000	0.0000		
2	0.0014	0.0206			0.0002	0.0027		
3	0.0667	0.9969			0.0264	0.3938		
4	0.1643	3.2380			0.0173	0.3400		
5	0.0667	1.3713			0.0053	0.1083		
6	0.3368	3.1192			0.0088	0.0811		
7	0.0667	1.5375	0.9969	0.9969	0.0017	0.0400	0.0259	0.0259
8	0.3368	2.2676	2.2676	2.2676	0.0084	0.0567	0.0567	0.0567
9	0.0667	1.3713		1.3713	0.0017	0.0357		0.0357
10	0.3368	2.1150		3.1192	0.0084	0.0529		0.0780
11	0.0667	2.2676		1.6524	0.0017	0.0590		0.0430
12	0.3368	3.2380		2.5486	0.0088	0.0842		0.0663
13	0.1643	4.5123		10.2217	0.0008	0.0226		0.0511
14	0.0667	0.9969						
15	0.3368	2.2676						
16	0.1643	0.9969			0.0173	0.1047		
Σ	2.5790	30.3207	3.2645	22.1776	0.1067	1.3815	0.0826	0.3566
Σ	58.3418				Ceq =	1.9273		

RELAZIONE DI CALCOLO DELLE PAVIMENTAZIONI STRADALI

Moltiplicando il valore di Ceq per il numero di passaggi totali sulla corsia più caricata si ottiene il valore N18 pari al numero di ESAL di progetto nei 20 anni del periodo di riferimento:

Per la determinazione del numero complessivo di passaggi sostenibili dalla pavimentazione (W18) si utilizza la formula dell'AASHTO '93 al §1.2:

$$\log_{10}(W_{18}) = Z_R \times S_o + 9.36 \times \log_{10}(SN + 1) - 0.20 + \frac{\log_{10}\left(\frac{\Delta PSI}{4.2 - 1.5}\right)}{0.40 + \frac{1094}{(SN + 1)^{5.19}}} + 2.32 \times \log_{10}(M_R) - 8.07$$

Dove:

- Zr è il valore della variabile standardizzata legata all'affidabilità e corrisponde a un valore pari a –1,282 per l'affidabilità al 90%;
- So è la deviazione standard che tiene conto dell'errore che si commette nelle previsioni dei volumi di traffico e delle prestazioni della pavimentazione. Per le pavimentazioni flessibili è compreso tra 0,40 e 0,50. In genere si usa 0.45;
- PSIfin e PSIiniz sono i valori di PSI, che esprimono la misura della idoneità di questa ad assicurare la sicurezza della circolazione e le condizioni di confort per gli utenti. Sono compresi tra 0 (pessimo) e 5 (ottimo). Si assume PSIiniz= 4.2 (e non 5) poiché si tiene conto delle inevitabili imperfezioni costruttive mentre PSIfin= 2.5 come da Catalogo Pavimentazioni del CNR;
- Mr è il modulo resiliente del sottofondo in psi. Nel nostro caso si assume Mr = 90
 MPa = 13050 psi;
- SN è lo structural number in pollici.

Applicando la formula con i dati di progetto ed usando il risultato come esponente in base 10, si ottiene:

$$Log(W18) = 6.924$$
 > W18 = $10^{(6.924)} = 8.40$ milioni di ESALs

La verifica di predimensionamento risulta pertanto verificata dato che:

N18 = 4.45 milioni di ESALs < W18 = 8.40 milioni di ESALs

RELAZIONE DI CALCOLO DELLE PAVIMENTAZIONI STRADALI

4. METODOLOGIA DI ANALISI

La metodologia di analisi prevede la determinazione dello stato tensionale e deformativo della pavimentazione stradale dell'asse principale mediante l'impiego di un software di analisi per multistrato elastico. Il software di analisi utilizzato per la verifica è il BISAR.

L'analisi è stata svolta tenendo conto di un pacchetto costituito da 3 strati (usura e binder raggruppati, base e fondazione) più il sottofondo. Per questo motivo le caratteristiche meccaniche degli strati di usura e binder sono state mediate tenendo conto del loro spessore.

Il carico di riferimento per l'analisi è quello corrispondente all'asse standard di riferimento (8.2 t) diviso per due: su ogni lato dell'asse gravano 4.1 t. Considerando una pressione di gonfiaggio di 7 bar si determina il raggio di impronta del carico (13.66 cm). L'area è stata considerata unica sebbene l'asse standard equivalente preveda le ruote gemellate. Ciò si ritiene esser un'impostazione cautelativa dato che si massimizza l'effetto di punzonamento del carico rispetto alla pavimentazione stradale.

Le analisi sono state svolte caratterizzando i materiali in base alle temperature medie registrate nelle 4 diverse stagioni (inverno, primavera, estate ed autunno) indicate al §3.6.

Dai risultati dell'analisi tensio-deformativa mediante lo schema a multistrato elastico sono state utilizzate formule di letteratura dell'AASHTO NCHRP Project 1-37 per la determinazione degli indicatori di prestazione definiti al §3.7, in particolare:

 Fessurazione del tipo "Bottom Up", danno cumulato per fessurazione dal basso in funzione del numero massimo di passaggi N^{FT} e percentuale di risalita in superficie FC(DC):

$$N^{FT} = C \cdot 0.00432 \cdot k_1' \left(\frac{1}{\varepsilon_t}\right)^{3.9492} \cdot \left(\frac{0.069}{E}\right)^{1.281}$$
$$k_1' = \frac{1}{0.000398 + \frac{0.003602}{1 + e^{(11.02 - 0.1374 \cdot h_{AC})}}}$$

$$FC(DC) = \left(\frac{6000}{1 + e^{C_1' + C_2' \cdot \log(DC \cdot 100)}}\right) \cdot \left(\frac{1}{60}\right)$$

• Fessurazione del tipo "Top-Down" N^{FT} e sviluppo della fessurazione longitudinale (F.C.):

$$N^{FT} = C \cdot 0.00432 \cdot k_1 \left(\frac{1}{\varepsilon_t}\right)^{3.9492} \cdot \left(\frac{0.069}{E}\right)^{1.281}$$

$$k'_{1} = \frac{1}{0.0001 + \frac{29.844}{1 + e^{(30.544 - 5.7357*\text{hac})}}}$$

RELAZIONE DI CALCOLO DELLE PAVIMENTAZIONI STRADALI

$$F.C. = \left(\frac{1000}{1 + e^{(7-3.5*\log 10(D*100))}}\right) * 10.56$$

Per il valore di N^{FT} della fessurazione "Top-Down" la differenza rispetto alla formula "Bottom-Up" sta nel valore del coefficiente k'₁.

 Deformazione permanente degli strati in conglomerato bituminoso secondo la formula:

$$\frac{\varepsilon_p}{\varepsilon_r} = k_1 * 10^{-3.4488} T^{1.5606} N^{0.479244}$$

Dove:

- \circ ϵ_p è la deformazione permanente
- \circ ϵ_r è la deformazione elastica derivante dall'analisi del multistrato elastico
- o Tè la temperatura dello strato, variabile quindi con la stagione, in °F;
- ο N è il numero di passaggi cumulato al tempo di valutazione del rapporto $ε_p/ε_r$;
- o k₁ è un coefficiente che deriva dalle seguenti espressioni:

$$\begin{aligned} k_1 &= (C_1 + C_2 * depth) * 0.328196^{depth} \\ C_1 &= -0.1039 * H_{ac}^2 + 2.4868 * H_{ac} - 17.342 \\ C_2 &= 0.0172 * H_{ac}^2 - 1.7331 * H_{ac} + 27.428 \end{aligned}$$

- o depth è la profondità del piano medio dello strato considerato, in pollici;
- H_{ac} è lo spessore complessivo degli strati in conglomerato bituminoso, in pollici.
- Deformazione permanente degli strati in materiale granulare (fondazione e sottofondo) mediante la formula:

$$\delta_a(N) = \beta_1 \left(\frac{\varepsilon_0}{\varepsilon_r}\right) e^{-\left(\frac{\rho}{N}\right)^{\beta}} \varepsilon_v h$$

- Dove:
 - \circ δ_a (N) è l'abbassamento dello strato dopo N passaggi del carico di riferimento, in pollici;
 - \circ ε_{v} è la deformazione resiliente (elastica) media relativa allo strato di riferimento (fondazione o sottofondo) deducibile dall'analisi del multistrato elastico;
 - h è lo spessore dello strato, in pollici. Per il sottofondo è stato considerato uno spessore virtuale di due piedi (60 cm);

RELAZIONE DI CALCOLO DELLE PAVIMENTAZIONI STRADALI

- \circ β_1 è un coefficiente di calibrazione pari a 2.03 per la fondazione e 1.35 per il sottofondo;
- ο β, ρ e ($\varepsilon_0/\varepsilon_r$) sono caratteristiche dei materiali che si valutano mediante le seguenti espressioni:

$$\begin{split} \log \beta &= -0.61119 - 0.017638 W_c \\ \log \rho &= 0.622685 + 0.541524 W_c \\ W_c &= 51.712 * CBR^{-0.3586*GWT^{0.1192}} \\ CBR &= (\frac{M_r}{2555})^{(1/0.64)} \\ \log \left(\frac{\varepsilon_0}{\varepsilon_r}\right) &= 0.74168 + 0.08109 \ W_c - 0.000012157 \ M_r \end{split}$$

(Nota: β va poi moltiplicato per un fattore 0.7 mentre (ϵ_0/ϵ_r) va moltiplicato per un fattore di correzione pari a 1.2–1.39*exp[-0.058*(Mr /1000)];

 Wc dipende da GWT (Ground Water Table), ossia la profondità della falda che dagli elaborati di geologia e idrologia si deduce che nel punto di minore distanza dal piano viabile non risulta mai inferiore a 6 m, pari a circa 20 piedi.

I valori degli indicatori di prestazione ottenuti mediante i modelli sopra indicati sono stati poi rivalutati tenendo conto dell'affidabilità al 90% prevista per la categoria di strada oggetto di intervento (Tabella 12).

Tabella 12: conversione degli indicatori di prestazione tenendo conto dell'affidabilità di progetto

Indicatore di Prestazione	Valutazione rispetto all'affidabilità di progetto
Fessurazione "Bottom-Up"	$FC_P = \overline{FC} + S_{eFCi} * Z_P$
	 FC_P è la fessurazione "Bottom-Up" al valore di affidabilità; FC è il valore della fessurazione "Bottom-Up" media (ossia con affidabilità al 50%) derivante dal calcolo; Z_p è il valore della variabile standardizzata legata all'affidabilità e corrisponde a un valore pari a -1.282 per l'affidabilità al 90%; Se_{FG} è la deviazione standard che per la fessurazione "Bottom-Up" viene valutata come segue:
	$Se_{FCBottom} = 0.5 + 12/(1 + e^{1.308 - 2.949 * logD})$
	 D è il valore del danno cumulato rispetto alla fessurazione "Bottom-Up".
Fessurazione "Top-Down"	$FC_P = \overline{FC} + S_{eFC_i} * Z_P$
	 FC_P è la fessurazione "Top-Down" al valore di affidabilità; FC è il valore della fessurazione "Top-Down" media (ossia con affidabilità al 50%) derivante dal calcolo; Z_p è il valore della variabile standardizzata legata all'affidabilità e corrisponde a un valore pari a -1.282 per l'affidabilità al 90%; Se_{FCi} è la deviazione standard che per la fessurazione "Top-Down" viene valutata come segue:
	$STD_{FCTop} = 200 + 2300/(1 + e^{1.072 - 2.1654 * \log D})$

Indicatore di Prestazione	Valutazione rispetto all'affidabilità di progetto
	 D è il valore del danno cumulato rispetto alla fessurazione "Top- Down".
Deformazione permanente	 RUT_P = ∑_i(RUT_i)+(√Se_{AC}² + Se_{GB}² + Se_{SG}²)*Z_p RUT_P è la deformazione permanente totale al valore di affidabilità; ∑_i RUT_i è il valore deformazione permanente totale media (ossia con affidabilità al 50%) derivante dal calcolo; Zp è il valore della variabile standardizzata legata all'affidabilità e corrisponde a un valore pari a -1.282 per l'affidabilità al 90%; SeAC, SeGB, SeSG sono rispettivamente le deviazioni standard rispettivamente per le deformazioni degli strati in conglomerato bituminoso (AC), della fondazione (GB) e del sottofondo (SG) e vengono valutate come segue: Se_{RDAC} =0 .1587 PD_{ac} 0.4579 Se_{RDGB} = 0.1169 PD_{GB} 0.5303 Se_{RDSG} = 0.1724 PD_{SG} 0.5516 PD è il valore della corrispondente deformazione permanente (AC,GB e SG)

RELAZIONE DI CALCOLO DELLE PAVIMENTAZIONI STRADALI

5. RISULTATI DELL'ANALISI

5.1 DANNO CUMULATO PER FESSURAZIONE "BOTTOM UP"

Applicando le formule del §4 al caso in esame si ottiene quanto segue:

Formula

$$N^{FT} = C \cdot 0.00432 \cdot k_1' \left(\frac{1}{\varepsilon_t}\right)^{3.9492} \cdot \left(\frac{0.069}{E}\right)^{1.281}$$

Coefficienti

Grandezza	Descrizione	Valore
Vb	Volume di bitume del conglomerato (strato di base)	10.83
Vv	Volume di vuoti del conglomerato (strato di base)	4.5
М	Coefficiente funzione di Vb e Vv per il calcolo di C	0.08005
H _{AC}	Spessore totale degli strati in conglomerato bituminoso (cm)	25
k ₁ '	Coefficiente funzione di H _{AC}	250.0
С	10 ^M	1.20239

Moduli elastici

E (MDa)	INV	PRI	EST	AUT
E (MPa)	11′531	7'891	3′549	6′198

Deformazioni

	INV	PRI	EST	AUT
ε _t	5.52E-05	7.53E-05	1.42E-04	9.12E-05

Numero massimo di passaggi di ESALs

N ^{FT}	INV	PRI	EST	AUT
IN.	9.07E+08	4.33E+08	9.84E+07	2.77E+08

Numero di passaggi stagionali⁶:

NI	INV	PRI	EST	AUT
IN	1.11E+06	1.11E+06	1.11E+06	1.11E+06

Totale danno cumulato

Danna	INV	PRI	EST	AUT	
Danno (N/N ^{FT})	0.0012	0.0026	0.0113	0.0040	
(IN/IN)	Totale danno cumulato = 0.01917 < 0.5 verificato				

⁶ si ipotizza una distribuzione uniforme nelle quattro stagioni (4.45 milioni / 4 = 1.11 milioni)

RELAZIONE DI CALCOLO DELLE PAVIMENTAZIONI STRADALI

5.2 ESTENSIONE DELLA FESSURAZIONE "BOTTOM UP"

Applicando le formule del §4 al caso in esame si ottiene quanto segue:

Formula

$$FC(DC) = \left(\frac{6000}{1 + e^{C_1' + C_2' \cdot \log(DC \cdot 100)}}\right) \cdot \left(\frac{1}{60}\right)$$

Coefficienti

Coefficiente	Descrizione	Valore
C ₁	Equivalente a -2C ₂	4.905
C ₂	=-2.40874-39.748*((1+(H _{AC})) ^(-2.856)) con H _{AC} in pollici	-2.453

Danno cumulato

Danno	INV	PRI	EST	AUT
(N/N ^{FT})	0.0012	0.0026	0.0113	0.0040

Risalita superficiale fessurazione "Bottom-Up"

FC(DC)	INV	PRI	EST	AUT	
%	0.08	0.17	0.84	0.28	
90	Totale risalita superficiale = 1.37% < 20% verificato				

Risalita superficiale fessurazione "Bottom-Up" al 90% di affidabilità

Grandezze	Descrizione	Valore
Se FC bottom	Deviazione Standard affidabilità al 90%	0.520
Z AL 90%	Variabile standardizzata legata all'affidabilità 90%	-1.282
FC(DC) "Bottom-Up" al 90%	Fessurazione "Bottom-Up" con affidabilità 90%	2.04 %
Totale	risalita superficiale = 2.04% < 20% verificato	

5.3 ESTENSIONE DELLA FESSURAZIONE "TOP-DOWN"

Applicando le formule del §4 al caso in esame si ottiene quanto segue:

Formula

$$F.C. = \left(\frac{1000}{1 + e^{(7-3.5*\log_{10}(D*100))}}\right) * 10.56$$

Coefficienti

Grandezza	Descrizione	Valore
VB	Volume di bitume del conglomerato (strato di usura)	12.60

RELAZIONE DI CALCOLO DELLE PAVIMENTAZIONI STRADALI

Grandezza	Descrizione	Valore
VV	Volume di vuoti del conglomerato (strato di usura)	4.5
M-base	Coefficiente funzione di Vb e Vv per il calcolo di C	0.22672
h-AC	Spessore totale degli strati in conglomerato bituminoso (cm)	25
k1'	Coefficiente funzione di H _{AC}	0.03351
С	10 ^M	1.6854

Moduli elastici

E (MDa)	INV	PRI	EST	AUT
E (MPa)	9'630	6'670	3'076	5'279

Deformazioni

	INV	PRI	EST	AUT
εt	5.55E-06	8.24E-06	1.55E-05	1.03E-05

Numero massimo di passaggi di ESALs

NET	INV	PRI	EST	AUT
IN.	1.10E+12	3.69E+11	8.22E+10	2.10E+11

Numero di passaggi stagionali⁷:

N	INV	PRI	EST	AUT
IN IN	1.11E+06	1.11E+06	1.11E+06	1.11E+06

Totale danno cumulato "Top-Down"

Danno	INV	PRI	EST	AUT
(N/N ^{FT})	1.01E-06	3.02E-06	1.36E-05	5.31E-06

Estensione superficiale fessurazione "Top-Down" (m/km)

m/km -	Totale risalita superficiale = 1.09E-04 m/km < 189 m/km verificato				
FC(DC)	8.18E-06	4.30E-05	4.22E-04	1.01E-04	
FC(DC)	INV	PRI	EST	AUT	

Estensione superficiale fessurazione "Top-Down" al 90% di affidabilità (m/km)

Grandezze	Descrizione	Valore		
Se FC bottom	Deviazione Standard affidabilità al 90%	37.89		
Z AL 90%	Variabile standardizzata legata all'affidabilità 90%	-1.282		
FC(DC) "Bottom-Up" al 90%	Fessurazione "Bottom-Up" con affidabilità 90%	48.55		
Totale risalita superficiale = 48.55 m/km < 189 m/km verificato				

⁷ si ipotizza una distribuzione uniforme nelle quattro stagioni (4.45 milioni / 4 = 1.11 milioni)

RELAZIONE TECNICA STRADALE

RELAZIONE DI CALCOLO DELLE PAVIMENTAZIONI STRADALI

5.4 DEFORMAZIONI PERMANENTI

Applicando le formule del §4 al caso in esame si ottengono i risultati seguenti distinti in sotto paragrafi relativi alle deformazioni dei conglomerati bituminosi e a quelle dei materiali granulari (fondazione e sottofondo).

5.4.1 Deformazioni dei conglomerati bituminosi

Formula

$$\frac{\mathcal{E}_p}{\mathcal{E}_r} = k_1 * 10^{-3.4488} T^{1.5606} N^{0.479244}$$

$$= k_1 * 10^{-3.4488} T^{1.5606} N^{0.479244}$$

$$= 0.479244 = 0.479$$

Deformazioni elastiche da programma di calcolo

£r	INV	PRI	EST	AUT
Usura e Binder	-3.80E-05	-5.47E-05	-1.15E-04	-6.86E-05
Base	-2.84E-05	-4.32E-05	-1.10E-04	-5.73E-05

Coefficienti

Coefficiente	Descrizione	Valore
H _{AC}	Spessore totale conglomerati bituminosi (cm)	25
C ₁	Coefficiente in funzione di H _{AC}	-2.9
C ₂	Coefficiente in funzione di H _{AC}	12.0
d	Profondità di riferimento (metà strato) – (cm)	
Media U+Bin	Riferimento per usura e binder	5.5
Base	Riferimento per la Base	18
K ₁	Coefficiente in funzione della profondità d	
Media U+Bin	K₁ calcolato per lo strato di usura e binder	2.0723
Base	K₁ calcolato per lo strato di usura e binder	0.0306
В	Valore di riferimento standard	0.479244
K ₂	Valore di riferimento standard	-3.4488
K ₃	Valore di riferimento standard	1.5606

5.4.2 Deformazioni dei materiali granulari (fondazione e sottofondo)

Formula

$$\delta_a(N) = \beta_1 \left(\frac{\varepsilon_0}{\varepsilon_r}\right) e^{-\left(\frac{\rho}{N}\right)^{\beta}} \varepsilon_v h$$

Nota: le deformazioni degli strati granulari sono moltiplicate per lo spessore h e pertanto restituiscono direttamente l'abbassamento senza il passaggio dalle deformazioni plastiche ϵ_P (adimensionali) come avviene invece per i conglomerati bituminosi.

Deformazione media verticale con riferimento alla fondazione

01/	INV	PRI	EST	AUT
V3	-7.01E-05	-9.36E-05	-1.73E-04	-1.13E-04

RELAZIONE DI CALCOLO DELLE PAVIMENTAZIONI STRADALI

Coefficienti della fondazione

Coefficiente	Descrizione	Valore (1)
βs ₁	Valore di riferimento standard	1
k ₁	Valore di riferimento standard	2.03
h	Altezza dello strato di fondazione (cm)	15
GWT	Profondità della falda (m)	6
Mr _{GB}	Modulo resiliente della fondazione (MPa)	172
Wc	Contenuto d'acqua (%)	8.37
β	Funzione di W _c	0.126
ρ	Funzione di W _c	48794
$\varepsilon_0/\varepsilon_r$	Funzione di W_c e di M_r	10

Nota (1): essendo formule che prevedono l'impiego del sistema di unità di misura americano le lunghezze vanno convertite in pollici o piedi e i moduli elastici in psi.

Deformazione media verticale con riferimento al sottofondo

011	INV	PRI	EST	AUT
v3	-7.51E-05	-9.62E-05	-1.61E-04	-1.12E-04

Coefficienti del sottofondo

Coefficiente	Descrizione	Valore (1)
βS_1	Valore di riferimento standard	1
k_1	Valore di riferimento standard	2.03 (2)
h	Altezza dello strato di sottofondo (cm)	60 (3)
GWT	Profondità della falda (m)	6
Mr _{SG}	Modulo resiliente del sottofondo (MPa)	90
Wc	Contenuto d'acqua (%)	14.04
β	Funzione di W₅	0.10
ρ	Funzione di W _c	1.69E+08
$\varepsilon_0/\varepsilon_r$	Funzione di W_c e di M_r	52.69

Nota (1): essendo formule che prevedono l'impiego del sistema di unità di misura americano le lunghezze vanno convertite in pollici o piedi e i moduli elastici in psi.

Nota (2): in generale i coefficienti di riferimento k1 sono 2.03 per le fondazioni in misto granulare e 1.35 per i sottofondi. Dato che le caratteristiche del piano di posa della pavimentazione somigliano a quelle di un misto granulare si è ritenuto opportuno considerare lo stesso coefficiente della fondazione.

Nota (3): il sottofondo è uno strato indefinito ai fini del calcolo. Si considerato uno spessore di influenza di 2 piedi (60 cm), corrispondente ad una profondità del piano viabile fino ad 1 m.

RELAZIONE DI CALCOLO DELLE PAVIMENTAZIONI STRADALI

5.4.3 Combinazioni delle deformazioni permanenti e calcolo degli abbassamenti (ormaiamento)

Gli effetti delle deformazioni permanenti dei vari strati sono stati combinati stagione per stagione fino al raggiungimento dei 20 anni di periodo di riferimento delle analisi. Nel calcolo degli abbassamenti è necessario considerare che, al variare delle condizioni di carico e di quelle climatiche, l'abbassamento non inizia sempre daccapo, ma ogni volta ripartire dalle condizioni di deformazione irreversibile raggiunte.

Nel grafico seguente (Figura 2) si riporta l'andamento delle deformazioni permanenti nel tempo divise per i vari strati: usura e binder (U+BIN), Base, Fondazione (FOND) e sottofondo (SUB).

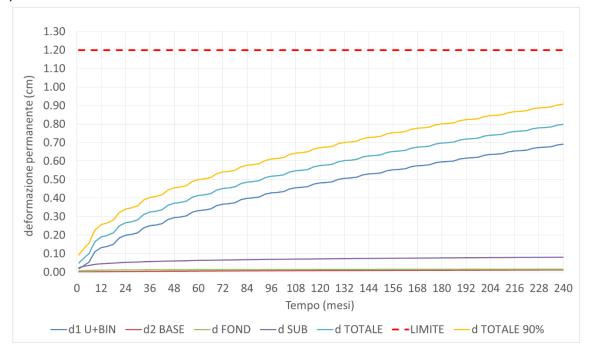


Figura 2: Andamento delle deformazioni permanenti nel tempo

Nel grafico è stata tracciata sia la linea delle deformazioni totali (d TOTALE) sia quella delle deformazioni considerando l'affidabilità di progetto (d TOTALE 90%). In entrambi i casi tali deformazioni rimangono al di sotto del valore limite considerato di 12 mm e pertanto anche la verifica rispetto alle deformazioni permanenti può considerarsi soddisfatta.

Si ricorda che comunque le pavimentazioni dovranno periodicamente prevedere interventi di manutenzione che comprendono anche il ripristino dello strato di usura e collegamento in relazione alla possibile perdita di aderenza nel tempo. Le tabelle dei valori assunti dalle deformazioni permanenti dei vari strati sono riportate in "Allegato: tabelle delle deformazioni permanenti".

RELAZIONE DI CALCOLO DELLE PAVIMENTAZIONI STRADALI

6. CONCLUSIONI

Le pavimentazioni dell'asse principale e degli svincoli del presente PD sono state analizzate considerando le condizioni climatiche della zona, il traffico di progetto come previsto dallo studio trasportistico ed i seguenti indicatori di prestazione:

- Danno cumulato a fatica di tipo "bottom-up";
- Estensione della fessurazione in superficie dovuta a lesioni che si propagano dal basso verso l'alto (fessure da fatica di tipo "bottom-up");
- Estensione della fessurazione superficiale dovuta a lesioni che si propagano dall'alto verso il basso (fessure longitudinali di tipo "top-down");
- Profondità delle ormaie (deformazioni permanenti).

Per l'analisi è stato considerato un periodo di riferimento di 20 anni durante il quale passano sulla corsia più caricata, ovvero Marsala-Petrosino in direzione NORD, circa 2.31 milioni di veicoli pesanti, corrispondenti a circa 4.45 milioni di ESALs considerando lo spettro di progetto.

Il predimensionamento con metodo AASHTO 1993, equivalente ad una verifica a fatica approssimata, ha dato esito positivo evidenziando che la pavimentazione può sopportare fino a quasi il doppio degli ESALs di progetto (8.40 milioni di ESALs).

Le verifiche rispetto agli indicatori di prestazione sono state tutte soddisfatte sia rispetto a valori di calcolo corrispondenti ad una affidabilità al 50%, sia con i valori adeguati ad un'affidabilità al 90%, coerente con quella della tipologia di strada "extraurbana secondaria a forte traffico" indicata nel Catalogo pavimentazioni.

RELAZIONE DI CALCOLO DELLE PAVIMENTAZIONI STRADALI

7. ALLEGATO: TABELLE DELLE DEFORMAZIONI PERMANENTI

Deformazioni plastiche ε_P di calcolo degli strati in conglomerato bituminoso (usura+binder e base) in funzione della stagione e del numero di passaggi di mezzi pesanti cumulato (N).

MESI	STAG	N	€p U+bin	€p Base
1	INV	18561	1.67E-03	1.24E-03
2	INV	37123	2.32E-03	2.57E-05
3	INV	55684	2.82E-03	3.12E-05
4	PRI	74246	6.14E-03	7.16E-05
5	PRI	92807	6.83E-03	7.97E-05
6	PRI	111369	7.45E-03	8.70E-05
7	EST	129930	2.58E-02	3.65E-04
8	EST	148492	2.75E-02	3.89E-04
9	EST	167053	2.91E-02	4.11E-04
10	AUT	185615	1.38E-02	1.70E-04
11	AUT	204176	1.44E-02	1.78E-04
12	AUT	222738	1.50E-02	1.86E-04
13	INV	241299	5.70E-03	6.30E-05
14	INV	259861	5.90E-03	6.53E-05
15	INV	278422	6.10E-03	6.75E-05
16	PRI	296984	1.19E-02	1.39E-04
17	PRI	315545	1.23E-02	1.43E-04
18	PRI	334107	1.26E-02	1.47E-04
19	EST	352668	4.16E-02	5.89E-04
20	EST	371230	4.26E-02	6.03E-04
21	EST	389791	4.36E-02	6.17E-04
22	AUT	408353	2.01E-02	2.49E-04
23	AUT	426914	2.06E-02	2.54E-04
24	AUT	445476	2.10E-02	2.59E-04
25	INV	464037	7.79E-03	8.62E-05
26	INV	482599	7.94E-03	8.78E-05
27	INV	501160	8.09E-03	8.94E-05
28	PRI	519722	1.56E-02	1.82E-04
29	PRI	538283	1.59E-02	1.85E-04
30	PRI	556845	1.61E-02	1.88E-04
31	EST	575406	5.26E-02	7.44E-04
32	EST	593968	5.34E-02	7.56E-04
33	EST	612529	5.42E-02	7.67E-04
34	AUT	631091	2.48E-02	3.06E-04
35	AUT	649652	2.51E-02	3.11E-04

MESI	STAG	N	€p U+bin	ε _p Base
36	AUT	668214	2.55E-02	3.15E-04
37	INV	686775	9.40E-03	1.04E-04
38	INV	705337	9.53E-03	1.05E-04
39	INV	723898	9.65E-03	1.07E-04
40	PRI	742460	1.85E-02	2.16E-04
41	PRI	761021	1.87E-02	2.19E-04
42	PRI	779583	1.89E-02	2.21E-04
43	EST	798144	6.15E-02	8.71E-04
44	EST	816706	6.22E-02	8.80E-04
45	EST	835267	6.29E-02	8.90E-04
46	AUT	853829	2.87E-02	3.54E-04
47	AUT	872390	2.90E-02	3.58E-04
48	AUT	890952	2.92E-02	3.62E-04
49	INV	909513	1.08E-02	1.19E-04
50	INV	928075	1.09E-02	1.20E-04
51	INV	946636	1.10E-02	1.21E-04
52	PRI	965198	2.10E-02	2.45E-04
53	PRI	983759	2.12E-02	2.47E-04
54	PRI	1002321	2.14E-02	2.49E-04
55	EST	1020882	6.92E-02	9.80E-04
56	EST	1039444	6.98E-02	9.88E-04
57	EST	1058005	7.04E-02	9.96E-04
58	AUT	1076567	3.20E-02	3.96E-04
59	AUT	1095128	3.23E-02	3.99E-04
60	AUT	1113690	3.25E-02	4.02E-04
61	INV	1132251	1.20E-02	1.32E-04
62	INV	1150813	1.20E-02	1.33E-04
63	INV	1169374	1.21E-02	1.34E-04
64	PRI	1187936	2.32E-02	2.71E-04
65	PRI	1206497	2.33E-02	2.73E-04
66	PRI	1225059	2.35E-02	2.75E-04
67	EST	1243620	7.61E-02	1.08E-03
68	EST	1262182	7.66E-02	1.08E-03
69	EST	1280743	7.72E-02	1.09E-03
70	AUT	1299305	3.50E-02	4.33E-04
71	AUT	1317866	3.53E-02	4.36E-04
72	AUT	1336428	3.55E-02	4.39E-04
73	INV	1354989	1.30E-02	1.44E-04
74	INV	1373550	1.31E-02	1.45E-04

MESI	STAG	N	€p U+bin	€p Base
75	INV	1392112	1.32E-02	1.46E-04
76	PRI	1410673	2.52E-02	2.94E-04
77	PRI	1429235	2.53E-02	2.96E-04
78	PRI	1447796	2.55E-02	2.97E-04
79	EST	1466358	8.23E-02	1.17E-03
80	EST	1484919	8.28E-02	1.17E-03
81	EST	1503481	8.33E-02	1.18E-03
82	AUT	1522042	3.78E-02	4.67E-04
83	AUT	1540604	3.80E-02	4.70E-04
84	AUT	1559165	3.82E-02	4.73E-04
85	INV	1577727	1.40E-02	1.55E-04
86	INV	1596288	1.41E-02	1.56E-04
87	INV	1614850	1.42E-02	1.57E-04
88	PRI	1633411	2.70E-02	3.15E-04
89	PRI	1651973	2.71E-02	3.17E-04
90	PRI	1670534	2.73E-02	3.19E-04
91	EST	1689096	8.81E-02	1.25E-03
92	EST	1707657	8.86E-02	1.25E-03
93	EST	1726219	8.90E-02	1.26E-03
94	AUT	1744780	4.04E-02	4.99E-04
95	AUT	1763342	4.06E-02	5.01E-04
96	AUT	1781903	4.08E-02	5.04E-04
97	INV	1800465	1.49E-02	1.65E-04
98	INV	1819026	1.50E-02	1.66E-04
99	INV	1837588	1.51E-02	1.67E-04
100	PRI	1856149	2.87E-02	3.35E-04
101	PRI	1874711	2.88E-02	3.37E-04
102	PRI	1893272	2.90E-02	3.38E-04
103	EST	1911834	9.35E-02	1.32E-03
104	EST	1930395	9.39E-02	1.33E-03
105	EST	1948957	9.43E-02	1.34E-03
106	AUT	1967518	4.28E-02	5.29E-04
107	AUT	1986080	4.29E-02	5.31E-04
108	AUT	2004641	4.31E-02	5.33E-04
109	INV	2023203	1.58E-02	1.75E-04
110	INV	2041764	1.59E-02	1.75E-04
111	INV	2060326	1.59E-02	1.76E-04
112	PRI	2078887	3.03E-02	3.54E-04
113	PRI	2097449	3.04E-02	3.55E-04

MESI	STAG	N	€p U+bin	ε _p Base
114	PRI	2116010	3.06E-02	3.57E-04
115	EST	2134572	9.86E-02	1.39E-03
116	EST	2153133	9.90E-02	1.40E-03
117	EST	2171695	9.94E-02	1.41E-03
118	AUT	2190256	4.50E-02	5.56E-04
119	AUT	2208818	4.52E-02	5.59E-04
120	AUT	2227379	4.54E-02	5.61E-04
121	INV	2245941	1.66E-02	1.83E-04
122	INV	2264502	1.67E-02	1.84E-04
123	INV	2283064	1.67E-02	1.85E-04
124	PRI	2301625	3.18E-02	3.71E-04
125	PRI	2320187	3.19E-02	3.73E-04
126	PRI	2338748	3.21E-02	3.74E-04
127	EST	2357310	1.03E-01	1.46E-03
128	EST	2375871	1.04E-01	1.47E-03
129	EST	2394433	1.04E-01	1.47E-03
130	AUT	2412994	4.71E-02	5.83E-04
131	AUT	2431556	4.73E-02	5.85E-04
132	AUT	2450117	4.75E-02	5.87E-04
133	INV	2468679	1.74E-02	1.92E-04
134	INV	2487240	1.74E-02	1.93E-04
135	INV	2505802	1.75E-02	1.93E-04
136	PRI	2524363	3.33E-02	3.88E-04
137	PRI	2542925	3.34E-02	3.90E-04
138	PRI	2561486	3.35E-02	3.91E-04
139	EST	2580048	1.08E-01	1.53E-03
140	EST	2598609	1.08E-01	1.53E-03
141	EST	2617171	1.09E-01	1.54E-03
142	AUT	2635732	4.92E-02	6.08E-04
143	AUT	2654294	4.93E-02	6.10E-04
144	AUT	2672855	4.95E-02	6.12E-04
145	INV	2691417	1.81E-02	2.00E-04
146	INV	2709978	1.82E-02	2.01E-04
147	INV	2728539	1.82E-02	2.01E-04
148	PRI	2747101	3.46E-02	4.04E-04
149	PRI	2765662	3.47E-02	4.06E-04
150	PRI	2784224	3.49E-02	4.07E-04
151	EST	2802785	1.12E-01	1.59E-03
152	EST	2821347	1.13E-01	1.59E-03

MESI	STAG	N	ε _{p U+bin}	ε _{p Base}
153	EST	2839908	1.13E-01	1.60E-03
154	AUT	2858470	5.11E-02	6.32E-04
155	AUT	2877031	5.13E-02	6.34E-04
156	AUT	2895593	5.14E-02	6.36E-04
157	INV	2914154	1.88E-02	2.08E-04
158	INV	2932716	1.89E-02	2.09E-04
159	INV	2951277	1.89E-02	2.09E-04
160	PRI	2969839	3.60E-02	4.20E-04
161	PRI	2988400	3.61E-02	4.21E-04
162	PRI	3006962	3.62E-02	4.22E-04
163	EST	3025523	1.16E-01	1.65E-03
164	EST	3044085	1.17E-01	1.65E-03
165	EST	3062646	1.17E-01	1.66E-03
166	AUT	3081208	5.30E-02	6.55E-04
167	AUT	3099769	5.32E-02	6.57E-04
168	AUT	3118331	5.33E-02	6.59E-04
169	INV	3136892	1.95E-02	2.15E-04
170	INV	3155454	1.95E-02	2.16E-04
171	INV	3174015	1.96E-02	2.17E-04
172	PRI	3192577	3.72E-02	4.35E-04
173	PRI	3211138	3.73E-02	4.36E-04
174	PRI	3229700	3.74E-02	4.37E-04
175	EST	3248261	1.21E-01	1.71E-03
176	EST	3266823	1.21E-01	1.71E-03
177	EST	3285384	1.21E-01	1.72E-03
178	AUT	3303946	5.48E-02	6.78E-04
179	AUT	3322507	5.50E-02	6.79E-04
180	AUT	3341069	5.51E-02	6.81E-04
181	INV	3359630	2.01E-02	2.23E-04
182	INV	3378192	2.02E-02	2.23E-04
183	INV	3396753	2.02E-02	2.24E-04
184	PRI	3415315	3.84E-02	4.49E-04
185	PRI	3433876	3.85E-02	4.50E-04
186	PRI	3452438	3.86E-02	4.51E-04
187	EST	3470999	1.24E-01	1.76E-03
188	EST	3489561	1.25E-01	1.77E-03
189	EST	3508122	1.25E-01	1.77E-03
190	AUT	3526684	5.65E-02	6.99E-04
191	AUT	3545245	5.67E-02	7.01E-04

MESI	STAG	N	€p U+bin	€p Base
192	AUT	3563807	5.68E-02	7.03E-04
193	INV	3582368	2.08E-02	2.29E-04
194	INV	3600930	2.08E-02	2.30E-04
195	INV	3619491	2.09E-02	2.31E-04
196	PRI	3638053	3.96E-02	4.63E-04
197	PRI	3656614	3.97E-02	4.64E-04
198	PRI	3675176	3.98E-02	4.65E-04
199	EST	3693737	1.28E-01	1.81E-03
200	EST	3712299	1.28E-01	1.82E-03
201	EST	3730860	1.29E-01	1.82E-03
202	AUT	3749422	5.82E-02	7.20E-04
203	AUT	3767983	5.84E-02	7.22E-04
204	AUT	3786545	5.85E-02	7.23E-04
205	INV	3805106	2.14E-02	2.36E-04
206	INV	3823668	2.14E-02	2.37E-04
207	INV	3842229	2.15E-02	2.37E-04
208	PRI	3860791	4.08E-02	4.76E-04
209	PRI	3879352	4.09E-02	4.77E-04
210	PRI	3897914	4.10E-02	4.78E-04
211	EST	3916475	1.32E-01	1.87E-03
212	EST	3935037	1.32E-01	1.87E-03
213	EST	3953598	1.32E-01	1.87E-03
214	AUT	3972160	5.99E-02	7.40E-04
215	AUT	3990721	6.00E-02	7.42E-04
216	AUT	4009283	6.01E-02	7.43E-04
217	INV	4027844	2.20E-02	2.43E-04
218	INV	4046406	2.20E-02	2.43E-04
219	INV	4064967	2.21E-02	2.44E-04
220	PRI	4083528	4.19E-02	4.89E-04
221	PRI	4102090	4.20E-02	4.90E-04
222	PRI	4120651	4.21E-02	4.91E-04
223	EST	4139213	1.35E-01	1.92E-03
224	EST	4157774	1.36E-01	1.92E-03
225	EST	4176336	1.36E-01	1.92E-03
226	AUT	4194897	6.15E-02	7.60E-04
227	AUT	4213459	6.16E-02	7.61E-04
228	AUT	4232020	6.17E-02	7.63E-04
229	INV	4250582	2.25E-02	2.49E-04
230	INV	4269143	2.26E-02	2.50E-04

RELAZIONE DI CALCOLO DELLE PAVIMENTAZIONI STRADALI

MESI	STAG	N	€p U+bin	έp Base
231	INV	4287705	2.26E-02	2.50E-04
232	PRI	4306266	4.30E-02	5.02E-04
233	PRI	4324828	4.30E-02	5.03E-04
234	PRI	4343389	4.31E-02	5.04E-04
235	EST	4361951	1.39E-01	1.96E-03
236	EST	4380512	1.39E-01	1.97E-03
237	EST	4399074	1.39E-01	1.97E-03
238	AUT	4417635	6.30E-02	7.79E-04
239	AUT	4436197	6.31E-02	7.80E-04
240	AUT	4454758	6.32E-02	7.82E-04

Andamento delle deformazioni permanenti (ormaie) per stagione, per traffico cumulato e per strato (in cm).

MESI	STAG	N	δ _{1 U+BIN}	δ _{2 BASE}	δ fond	δ sub	δ _{τοτ} (cm)	δ _{TOT 90%} (cm)
1	INV	18561	0.018	0.000	0.007	0.024	0.019	0.092
2	INV	37123	0.026	0.000	0.008	0.028	0.026	0.109
3	INV	55684	0.031	0.000	0.008	0.030	0.031	0.120
4	PRI	74246	0.040	0.001	0.008	0.032	0.040	0.134
5	PRI	92807	0.047	0.001	0.009	0.034	0.048	0.145
6	PRI	111369	0.054	0.001	0.009	0.036	0.055	0.156
7	EST	129930	0.074	0.001	0.009	0.038	0.076	0.182
8	EST	148492	0.093	0.001	0.010	0.040	0.095	0.206
9	EST	167053	0.111	0.002	0.010	0.042	0.112	0.228
10	AUT	185615	0.118	0.002	0.010	0.043	0.120	0.238
11	AUT	204176	0.125	0.002	0.010	0.044	0.127	0.247
12	AUT	222738	0.132	0.002	0.011	0.045	0.134	0.256
13	INV	241299	0.134	0.002	0.011	0.046	0.137	0.260
14	INV	259861	0.137	0.002	0.011	0.046	0.139	0.263
15	INV	278422	0.139	0.002	0.011	0.047	0.141	0.266
16	PRI	296984	0.143	0.002	0.011	0.047	0.145	0.272
17	PRI	315545	0.147	0.002	0.011	0.048	0.149	0.277
18	PRI	334107	0.150	0.002	0.011	0.048	0.153	0.282
19	EST	352668	0.162	0.003	0.011	0.049	0.165	0.296
20	EST	371230	0.174	0.003	0.011	0.050	0.176	0.309
21	EST	389791	0.185	0.003	0.011	0.051	0.188	0.323
22	AUT	408353	0.189	0.003	0.012	0.051	0.193	0.329
23	AUT	426914	0.194	0.003	0.012	0.052	0.197	0.335

MESI	STAG	N	δ _{1 U+BIN}	δ ₂ base	δ fond	δ ѕив	δ _{τοτ} (cm)	δ тот 90% (ст)
24	AUT	445476	0.199	0.003	0.012	0.052	0.202	0.340
25	INV	464037	0.201	0.003	0.012	0.053	0.204	0.343
26	INV	482599	0.202	0.003	0.012	0.053	0.205	0.345
27	INV	501160	0.204	0.003	0.012	0.053	0.207	0.347
28	PRI	519722	0.207	0.003	0.012	0.054	0.210	0.351
29	PRI	538283	0.210	0.003	0.012	0.054	0.213	0.355
30	PRI	556845	0.213	0.003	0.012	0.054	0.216	0.358
31	EST	575406	0.222	0.004	0.012	0.055	0.225	0.369
32	EST	593968	0.230	0.004	0.012	0.055	0.234	0.379
33	EST	612529	0.239	0.004	0.012	0.056	0.243	0.389
34	AUT	631091	0.243	0.004	0.012	0.056	0.247	0.394
35	AUT	649652	0.247	0.004	0.012	0.057	0.251	0.399
36	AUT	668214	0.251	0.004	0.012	0.057	0.255	0.403
37	INV	686775	0.252	0.004	0.012	0.057	0.256	0.405
38	INV	705337	0.253	0.004	0.012	0.057	0.257	0.407
39	INV	723898	0.255	0.004	0.012	0.058	0.259	0.409
40	PRI	742460	0.257	0.004	0.013	0.058	0.261	0.412
41	PRI	761021	0.259	0.004	0.013	0.058	0.264	0.415
42	PRI	779583	0.262	0.004	0.013	0.058	0.266	0.418
43	EST	798144	0.269	0.004	0.013	0.059	0.274	0.426
44	EST	816706	0.277	0.005	0.013	0.059	0.281	0.435
45	EST	835267	0.284	0.005	0.013	0.060	0.289	0.444
46	AUT	853829	0.288	0.005	0.013	0.060	0.292	0.448
47	AUT	872390	0.291	0.005	0.013	0.060	0.296	0.451
48	AUT	890952	0.294	0.005	0.013	0.060	0.299	0.455
49	INV	909513	0.295	0.005	0.013	0.061	0.300	0.457
50	INV	928075	0.296	0.005	0.013	0.061	0.301	0.458
51	INV	946636	0.298	0.005	0.013	0.061	0.302	0.460
52	PRI	965198	0.300	0.005	0.013	0.061	0.305	0.462
53	PRI	983759	0.302	0.005	0.013	0.061	0.307	0.465
54	PRI	1002321	0.304	0.005	0.013	0.061	0.309	0.467
55	EST	1020882	0.311	0.005	0.013	0.062	0.316	0.475
56	EST	1039444	0.317	0.005	0.013	0.062	0.322	0.483
57	EST	1058005	0.324	0.005	0.013	0.062	0.329	0.490
58	AUT	1076567	0.327	0.005	0.013	0.063	0.332	0.494
59	AUT	1095128	0.330	0.005	0.013	0.063	0.335	0.497
60	AUT	1113690	0.332	0.005	0.013	0.063	0.338	0.500
61	INV	1132251	0.333	0.005	0.013	0.063	0.339	0.502
62	INV	1150813	0.334	0.005	0.013	0.063	0.340	0.503

MESI	STAG	N	δ _{1 U+BIN}	δ _{2 BASE}	δ fond	δ ѕив	δ _{τοτ} (cm)	δ _{TOT 90%} (cm)
63	INV	1169374	0.336	0.006	0.013	0.063	0.341	0.504
64	PRI	1187936	0.337	0.006	0.013	0.064	0.343	0.507
65	PRI	1206497	0.339	0.006	0.013	0.064	0.345	0.509
66	PRI	1225059	0.341	0.006	0.013	0.064	0.347	0.511
67	EST	1243620	0.347	0.006	0.013	0.064	0.353	0.518
68	EST	1262182	0.353	0.006	0.013	0.064	0.359	0.525
69	EST	1280743	0.359	0.006	0.013	0.065	0.365	0.531
70	AUT	1299305	0.362	0.006	0.014	0.065	0.368	0.534
71	AUT	1317866	0.364	0.006	0.014	0.065	0.370	0.538
72	AUT	1336428	0.367	0.006	0.014	0.065	0.373	0.541
73	INV	1354989	0.368	0.006	0.014	0.065	0.374	0.542
74	INV	1373550	0.369	0.006	0.014	0.065	0.375	0.543
75	INV	1392112	0.370	0.006	0.014	0.066	0.376	0.544
76	PRI	1410673	0.372	0.006	0.014	0.066	0.378	0.546
77	PRI	1429235	0.373	0.006	0.014	0.066	0.379	0.548
78	PRI	1447796	0.375	0.006	0.014	0.066	0.381	0.550
79	EST	1466358	0.381	0.006	0.014	0.066	0.387	0.557
80	EST	1484919	0.386	0.006	0.014	0.066	0.392	0.563
81	EST	1503481	0.391	0.006	0.014	0.067	0.398	0.569
82	AUT	1522042	0.394	0.006	0.014	0.067	0.400	0.572
83	AUT	1540604	0.396	0.007	0.014	0.067	0.403	0.575
84	AUT	1559165	0.399	0.007	0.014	0.067	0.405	0.577
85	INV	1577727	0.400	0.007	0.014	0.067	0.406	0.578
86	INV	1596288	0.400	0.007	0.014	0.067	0.407	0.579
87	INV	1614850	0.401	0.007	0.014	0.067	0.408	0.581
88	PRI	1633411	0.403	0.007	0.014	0.068	0.410	0.582
89	PRI	1651973	0.405	0.007	0.014	0.068	0.411	0.584
90	PRI	1670534	0.406	0.007	0.014	0.068	0.413	0.586
91	EST	1689096	0.411	0.007	0.014	0.068	0.418	0.592
92	EST	1707657	0.416	0.007	0.014	0.068	0.423	0.598
93	EST	1726219	0.421	0.007	0.014	0.068	0.428	0.603
94	AUT	1744780	0.424	0.007	0.014	0.069	0.431	0.606
95	AUT	1763342	0.426	0.007	0.014	0.069	0.433	0.609
96	AUT	1781903	0.428	0.007	0.014	0.069	0.435	0.611
97	INV	1800465	0.429	0.007	0.014	0.069	0.436	0.612
98	INV	1819026	0.430	0.007	0.014	0.069	0.437	0.613
99	INV	1837588	0.431	0.007	0.014	0.069	0.438	0.614
100	PRI	1856149	0.432	0.007	0.014	0.069	0.439	0.616
101	PRI	1874711	0.434	0.007	0.014	0.069	0.441	0.618

MESI	STAG	N	δ _{1 U+BIN}	δ _{2 BASE}	δ fond	δ ѕив	δ _{τοτ} (cm)	δ _{ТОТ 90%} (cm)
102	PRI	1893272	0.435	0.007	0.014	0.069	0.442	0.619
103	EST	1911834	0.440	0.007	0.014	0.070	0.447	0.625
104	EST	1930395	0.445	0.007	0.014	0.070	0.452	0.630
105	EST	1948957	0.449	0.007	0.014	0.070	0.457	0.635
106	AUT	1967518	0.452	0.007	0.014	0.070	0.459	0.638
107	AUT	1986080	0.454	0.007	0.014	0.070	0.461	0.640
108	AUT	2004641	0.456	0.008	0.014	0.070	0.463	0.643
109	INV	2023203	0.457	0.008	0.014	0.070	0.464	0.644
110	INV	2041764	0.457	0.008	0.014	0.070	0.465	0.645
111	INV	2060326	0.458	0.008	0.014	0.070	0.466	0.646
112	PRI	2078887	0.460	0.008	0.014	0.071	0.467	0.647
113	PRI	2097449	0.461	0.008	0.014	0.071	0.469	0.649
114	PRI	2116010	0.462	0.008	0.014	0.071	0.470	0.651
115	EST	2134572	0.467	0.008	0.014	0.071	0.475	0.656
116	EST	2153133	0.471	0.008	0.014	0.071	0.479	0.661
117	EST	2171695	0.476	0.008	0.014	0.071	0.484	0.666
118	AUT	2190256	0.478	0.008	0.014	0.071	0.486	0.668
119	AUT	2208818	0.480	0.008	0.014	0.071	0.488	0.670
120	AUT	2227379	0.482	0.008	0.014	0.072	0.490	0.673
121	INV	2245941	0.483	0.008	0.014	0.072	0.491	0.673
122	INV	2264502	0.483	0.008	0.014	0.072	0.491	0.674
123	INV	2283064	0.484	0.008	0.014	0.072	0.492	0.675
124	PRI	2301625	0.485	0.008	0.014	0.072	0.493	0.677
125	PRI	2320187	0.487	0.008	0.014	0.072	0.495	0.678
126	PRI	2338748	0.488	0.008	0.014	0.072	0.496	0.680
127	EST	2357310	0.492	0.008	0.014	0.072	0.501	0.685
128	EST	2375871	0.497	0.008	0.015	0.072	0.505	0.689
129	EST	2394433	0.501	0.008	0.015	0.072	0.509	0.694
130	AUT	2412994	0.503	0.008	0.015	0.073	0.511	0.696
131	AUT	2431556	0.505	0.008	0.015	0.073	0.513	0.698
132	AUT	2450117	0.507	0.008	0.015	0.073	0.515	0.701
133	INV	2468679	0.507	0.008	0.015	0.073	0.516	0.701
134	INV	2487240	0.508	0.008	0.015	0.073	0.516	0.702
135	INV	2505802	0.509	0.008	0.015	0.073	0.517	0.703
136	PRI	2524363	0.510	0.008	0.015	0.073	0.518	0.705
137	PRI	2542925	0.511	0.008	0.015	0.073	0.520	0.706
138	PRI	2561486	0.513	0.008	0.015	0.073	0.521	0.708
139	EST	2580048	0.517	0.009	0.015	0.073	0.525	0.712
140	EST	2598609	0.521	0.009	0.015	0.073	0.529	0.717

MESI	STAG	N	δ _{1 U+BIN}	δ ₂ base	δ fond	δ ѕив	δ _{τοτ} (cm)	δ тот 90% (ст)
141	EST	2617171	0.525	0.009	0.015	0.074	0.534	0.721
142	AUT	2635732	0.527	0.009	0.015	0.074	0.535	0.723
143	AUT	2654294	0.529	0.009	0.015	0.074	0.537	0.725
144	AUT	2672855	0.530	0.009	0.015	0.074	0.539	0.727
145	INV	2691417	0.531	0.009	0.015	0.074	0.540	0.728
146	INV	2709978	0.532	0.009	0.015	0.074	0.540	0.729
147	INV	2728539	0.532	0.009	0.015	0.074	0.541	0.730
148	PRI	2747101	0.534	0.009	0.015	0.074	0.542	0.731
149	PRI	2765662	0.535	0.009	0.015	0.074	0.544	0.733
150	PRI	2784224	0.536	0.009	0.015	0.074	0.545	0.734
151	EST	2802785	0.540	0.009	0.015	0.074	0.549	0.738
152	EST	2821347	0.544	0.009	0.015	0.074	0.553	0.743
153	EST	2839908	0.548	0.009	0.015	0.075	0.557	0.747
154	AUT	2858470	0.550	0.009	0.015	0.075	0.559	0.749
155	AUT	2877031	0.551	0.009	0.015	0.075	0.560	0.751
156	AUT	2895593	0.553	0.009	0.015	0.075	0.562	0.753
157	INV	2914154	0.554	0.009	0.015	0.075	0.563	0.754
158	INV	2932716	0.554	0.009	0.015	0.075	0.563	0.754
159	INV	2951277	0.555	0.009	0.015	0.075	0.564	0.755
160	PRI	2969839	0.556	0.009	0.015	0.075	0.565	0.757
161	PRI	2988400	0.557	0.009	0.015	0.075	0.566	0.758
162	PRI	3006962	0.558	0.009	0.015	0.075	0.568	0.759
163	EST	3025523	0.562	0.009	0.015	0.075	0.571	0.763
164	EST	3044085	0.566	0.009	0.015	0.075	0.575	0.768
165	EST	3062646	0.570	0.009	0.015	0.076	0.579	0.772
166	AUT	3081208	0.571	0.009	0.015	0.076	0.581	0.774
167	AUT	3099769	0.573	0.009	0.015	0.076	0.583	0.776
168	AUT	3118331	0.575	0.009	0.015	0.076	0.584	0.777
169	INV	3136892	0.575	0.009	0.015	0.076	0.585	0.778
170	INV	3155454	0.576	0.010	0.015	0.076	0.585	0.779
171	INV	3174015	0.577	0.010	0.015	0.076	0.586	0.780
172	PRI	3192577	0.578	0.010	0.015	0.076	0.587	0.781
173	PRI	3211138	0.579	0.010	0.015	0.076	0.588	0.782
174	PRI	3229700	0.580	0.010	0.015	0.076	0.590	0.784
175	EST	3248261	0.584	0.010	0.015	0.076	0.593	0.788
176	EST	3266823	0.587	0.010	0.015	0.076	0.597	0.792
177	EST	3285384	0.591	0.010	0.015	0.076	0.601	0.796
178	AUT	3303946	0.593	0.010	0.015	0.077	0.602	0.797
179	AUT	3322507	0.594	0.010	0.015	0.077	0.604	0.799

MESI	STAG	N	δ _{1 U+BIN}	δ ₂ base	δ fond	δ ѕив	δ _{тот} (cm)	δ тот 90% (ст)
180	AUT	3341069	0.596	0.010	0.015	0.077	0.606	0.801
181	INV	3359630	0.596	0.010	0.015	0.077	0.606	0.802
182	INV	3378192	0.597	0.010	0.015	0.077	0.607	0.802
183	INV	3396753	0.597	0.010	0.015	0.077	0.607	0.803
184	PRI	3415315	0.599	0.010	0.015	0.077	0.608	0.804
185	PRI	3433876	0.600	0.010	0.015	0.077	0.610	0.806
186	PRI	3452438	0.601	0.010	0.015	0.077	0.611	0.807
187	EST	3470999	0.604	0.010	0.015	0.077	0.614	0.811
188	EST	3489561	0.608	0.010	0.015	0.077	0.618	0.815
189	EST	3508122	0.611	0.010	0.015	0.077	0.621	0.818
190	AUT	3526684	0.613	0.010	0.015	0.077	0.623	0.820
191	AUT	3545245	0.614	0.010	0.015	0.077	0.625	0.822
192	AUT	3563807	0.616	0.010	0.015	0.078	0.626	0.824
193	INV	3582368	0.617	0.010	0.015	0.078	0.627	0.824
194	INV	3600930	0.617	0.010	0.015	0.078	0.627	0.825
195	INV	3619491	0.618	0.010	0.015	0.078	0.628	0.826
196	PRI	3638053	0.619	0.010	0.015	0.078	0.629	0.827
197	PRI	3656614	0.620	0.010	0.015	0.078	0.630	0.828
198	PRI	3675176	0.621	0.010	0.015	0.078	0.631	0.829
199	EST	3693737	0.624	0.010	0.015	0.078	0.635	0.833
200	EST	3712299	0.628	0.010	0.015	0.078	0.638	0.837
201	EST	3730860	0.631	0.010	0.015	0.078	0.641	0.841
202	AUT	3749422	0.633	0.010	0.015	0.078	0.643	0.842
203	AUT	3767983	0.634	0.010	0.015	0.078	0.645	0.844
204	AUT	3786545	0.636	0.011	0.015	0.078	0.646	0.846
205	INV	3805106	0.636	0.011	0.015	0.078	0.647	0.846
206	INV	3823668	0.637	0.011	0.015	0.078	0.647	0.847
207	INV	3842229	0.637	0.011	0.015	0.078	0.648	0.848
208	PRI	3860791	0.638	0.011	0.015	0.078	0.649	0.849
209	PRI	3879352	0.639	0.011	0.015	0.079	0.650	0.850
210	PRI	3897914	0.640	0.011	0.015	0.079	0.651	0.851
211	EST	3916475	0.644	0.011	0.015	0.079	0.654	0.855
212	EST	3935037	0.647	0.011	0.015	0.079	0.658	0.858
213	EST	3953598	0.650	0.011	0.015	0.079	0.661	0.862
214	AUT	3972160	0.652	0.011	0.015	0.079	0.662	0.864
215	AUT	3990721	0.653	0.011	0.015	0.079	0.664	0.865
216	AUT	4009283	0.655	0.011	0.015	0.079	0.665	0.867
217	INV	4027844	0.655	0.011	0.015	0.079	0.666	0.868
218	INV	4046406	0.656	0.011	0.015	0.079	0.667	0.868

MESI	STAG	N	δ1 u+BIN	δ ₂ base	δ fond	δ sub	δ _{τοτ} (cm)	δ тот 90% (ст)
219	INV	4064967	0.656	0.011	0.015	0.079	0.667	0.869
220	PRI	4083528	0.657	0.011	0.015	0.079	0.668	0.870
221	PRI	4102090	0.658	0.011	0.015	0.079	0.669	0.871
222	PRI	4120651	0.659	0.011	0.015	0.079	0.670	0.872
223	EST	4139213	0.662	0.011	0.015	0.079	0.673	0.876
224	EST	4157774	0.666	0.011	0.015	0.079	0.677	0.879
225	EST	4176336	0.669	0.011	0.015	0.080	0.680	0.883
226	AUT	4194897	0.670	0.011	0.015	0.080	0.681	0.884
227	AUT	4213459	0.672	0.011	0.015	0.080	0.683	0.886
228	AUT	4232020	0.673	0.011	0.015	0.080	0.684	0.887
229	INV	4250582	0.674	0.011	0.015	0.080	0.685	0.888
230	INV	4269143	0.674	0.011	0.015	0.080	0.685	0.889
231	INV	4287705	0.675	0.011	0.015	0.080	0.686	0.889
232	PRI	4306266	0.676	0.011	0.015	0.080	0.687	0.890
233	PRI	4324828	0.677	0.011	0.015	0.080	0.688	0.892
234	PRI	4343389	0.678	0.011	0.015	0.080	0.689	0.893
235	EST	4361951	0.681	0.011	0.016	0.080	0.692	0.896
236	EST	4380512	0.684	0.011	0.016	0.080	0.695	0.899
237	EST	4399074	0.687	0.011	0.016	0.080	0.698	0.903
238	AUT	4417635	0.688	0.011	0.016	0.080	0.700	0.904
239	AUT	4436197	0.690	0.011	0.016	0.080	0.701	0.906
240	AUT	4454758	0.691	0.011	0.016	0.080	0.703	0.908