COMUNE DI PALMANOVA, PRADAMANO E TRIVIGNANO UDINESE

PROVINCIA DI UDINE

IMPIANTO SOLARE AGRIVOLTAICO DA 33,67+14,18+34,68 MWp TRIVIGNANO SOLAR 1

Istanza di valutazione di impatto ambientale per la costruzione e l'esercizio di impianti di produzione di energia elettrica alimentati da fonti rinnovabili ai sensi dell'art. 23 D.lgs. n.152/2006

elettrica alime	entati da fonti rinnovabili ai sensi dell'art. 23 D.lgs. r	n.152/2006
	Comune di Foglio 05 Mappali 58 - 404 – 409 Foglio 06 Mappali 20 - 22 - 48 - 239 - 257 - 259 - 265 - 268 - 391 - 3 Foglio 16 Mappali 18 - 19 - 55	49 - 60 - 226 - 227 - 234 - 236 - 237 - 394 - 440 - 445
IMMOBILE	Comune di Foglio 07 Mappale 12 Palmanova	
	Comune di Foglio 03 Mappale 303 Pradamano Foglio 05 Mappale 564	
PROGETTO:	OGGETTO TOGIC GS Wiappare 304	SCALA
VALUTAZIONE DI IMPATTO	DOC07 - Relazione invarianza	
AMBIENTALE	idraulica	
REVISIONE - DATA	VERIFICATO	APPROVATO
REV.00 - 29/11/2021		
	ELLOMAY SOLAR ITALY EIGHT S.R.L.	
	39100 Bolzano - Via Sebastian Altmann 9	11
IL RICHIEDENTE		ellomay
	FIRMA	CAPITAL LIMITED
IL PROGETTISTA	Ing. Riccardo Valz Gris GEORGE	
	Arch. Rosalba Teodoro - Ing. Francesca Imbrogno	
	Studio Ing. Valz Gris 20124 Milano - Citycenter Regus - Via Lepetit 8/10 Tel. +39 02 0069 6321	0000008
TEAM DI PROGETTO	13900 Biella - Via Repubblica 41 Tel. +39 015 32838 - Fax +39 015 30878	valzgris
	Dott. Agr. Giovanni Cattaruzzi Dott. Agr. Luigi dott. Pravisani	
	Studio Cattaruzzi 33100 UDINE – Via Gemona	

Comuni di Palmanova, Pradamano e Trivignano Udinese RELAZIONE INVARIANZA IDRAULICA

INDICE

I N	DICE	1
1.	PREMESSA	2
2.	STIMA DELLE SUPERFICI TRASFORMATE NON PERMEABILI	3
Prac	damano	3
Trivi	rignano Sudrignano Nord	3
3.	ESTRATTO RELAZIONE URBANISTICA	5
	Piano di gestione del rischio alluvioni	5
	Piani stralcio per l'assetto idrogeologico (PAI)	
3.1	Il Piano Stralcio per l'assetto idrogeologico dei bacini regionali (PAIR)	8
4.	INTERVENTI DI MITIGAZIONE E METODI DI CALCOLO IDROLOGICO IDRAULIO	011
5.	CALCOLO DEI POZZETTI DRENANTI OCCORRENTI ALL'INVARIANZA IDRAUL	ICA13
6.	FABBRICATI EDILIZI ACCESSORI	17
7.	ASSEVERAZIONE DI NON SIGNIFICATIVITA'	19

Comuni di Palmanova, Pradamano e Trivignano Udinese RELAZIONE INVARIANZA IDRAULICA

1. PREMESSA

Scopo del presente documento è verificare il rispetto del regolamento recante disposizioni per l'applicazione del principio dell'invarianza idraulica di cui all'articolo 14, comma 1, lettera k) della legge regionale 29 aprile 2015, n. 11 (Disciplina organica in materia di difesa del suolo e di utilizzazione delle acque).

Ai sensi dell'articolo 14, comma 1 lettera k) della legge regionale 29 aprile 2015 n. 11 (*Disciplina organica in materia di difesa del suolo e di utilizzazione delle acque*), il citato Regolamento disciplina, sotto gli aspetti idrologici e idraulici, le conseguenze delle nuove trasformazioni del territorio regionale a seguito delle previsioni della pianificazione comunale ed infraregionale, degli interventi di trasformazione fondiaria nonché degli interventi di tipo edilizio e mira a contenere il potenziale incremento dei deflussi nella rete idrografica e/o nella rete di drenaggio a seguito di precipitazioni meteoriche.

I tre campi fotovoltaici facenti parte del progetto sono attualmente aree permeabili coltivate. Dal punto di vista idraulico il progetto può essere classificato come attività edilizia accessoria alla necessaria sistemazione fondiaria necessaria allo scopo. Infatti, la viabilità interna sarà totalmente permeabile, essendo prevista con finitura inghiaiata, e i basamenti delle cabine elettriche risultano essere i soli manufatti edilizi veri e propri. Nel successivo calcolo delle aree coinvolte viene considerata anche l'impronta di ogni tracker infisso nel terreno e comunque privo di basamento in cemento armato.

Dal rilievo effettuato, relativamente alle aree coinvolte, non risulta evidente una rete di canali di scolo esistente e pertanto lo scolo ed il deflusso superficiale, al netto di quanto filtra nel terreno, segue le naturali e modeste pendenze.

La sintesi dei calcoli delle superfici è la seguente:

	Pradamano	Trivignano Sud	Trivignano Nord
TOTALE AREE RESE IMPERMEABILI (m2)	471,10	253,55	471,10
Superfici permeabili (m2)	369 061,45	177 203,32	439 458,59
Incidenza intervento (%)	0,13%	0,14%	0,11%

La variazione del coefficiente di deflusso appare dunque estremamente modesta. Tuttavia, si prevede di realizzare in corso di esecuzione una serie di trincee drenanti utili a pareggiare la seppur modesta variazione indotta.

Comuni di Palmanova, Pradamano e Trivignano Udinese **RELAZIONE INVARIANZA IDRAULICA**

2. STIMA DELLE SUPERFICI TRASFORMATE NON PERMEABILI

Di seguitano si riportano le tabelle con l'indicazione dell'uso del suolo dei tre siti.

PRADAMANO

	Calcolo Superfici	coperte dai moduli e cabine	
	Quantità	Superficie Singolo elemento [m2]	Superficie coperta [m2]
Cabine Smistamento	2	22,0	44
Cabine di trasformazione	12	32,6	391
Container	2	18,0	36
		Superficie totale [m2]	471

TRIVIGNANO SUD

	Calcolo Superfic	i coperte dai moduli e cabine	
	Quantità	Superficie Singolo elemento [m2]	Superficie coperta [m2]
Cabine Smistamento	1	22,0	22
Cabine di trasformazione	6	32,6	196
Container	2	18,0	36
		Superficie totale [m2]	254

TRIVIGNANO NORD

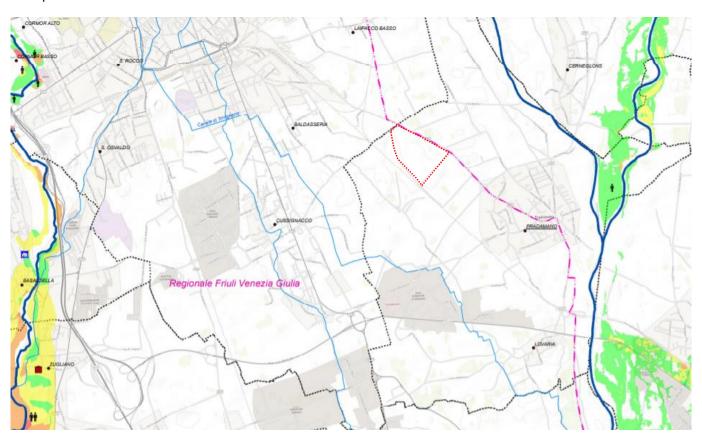
	Calcolo Superfici	coperte dai moduli e cabine	
	Quantità	Superficie Singolo elemento [m2]	Superficie coperta [m2]
Cabine Smistamento	2	22,0	44
Cabine di trasformazione	12	32,6	391
Container	2	18,0	36
		Superficie totale [m2]	471

Pur essendo interventi sostanzialmente ininfluenti sulla variazione del regime idrico, considerazione derivata anche dal confronto con la Tabella dei livelli di significatività delle trasformazioni di cui all'Allegato 1, nel seguito verranno indicati alcuni interventi tipologici per <u>il mantenimento dell'attuale regime idraulico</u>.

Comuni di Palmanova, Pradamano e Trivignano Udinese **RELAZIONE INVARIANZA IDRAULICA**

Livello di	Trasfo	rmazioni urbanistico-teri	ritoriali	Trasformazioni
significatività della trasformazione art. s	Strumenti urbanistici comunali generali e loro varianti art.2, c.1 lettera a)	Piani territoriali infraregionali, piani regolatori portuali, piani regolatori particolareggiati comunali art.2, c.1 lettera b)	Interventi edilizi art.2, c.1, lettere c), d)	fondiarie art.2, c.1 lettera e)
NON SIGNIFICATIVO oppure TRASCURABILE art. s, c. 3	S ≤ 500 mq oppure S >500 mq e Ψ _{medio} rimane costante o diminuisce oppure scarico diretto a mare, laguna,	S ≤ 500 mq oppure S >500 mq e Ψ _{medio} rimane costante o diminuisce oppure scarico diretto a mare, laguna,	S ≤ 500 mq oppure S>500 mq e Ψ _{medio} rimane costante o diminuisce oppure scarico diretto a mare, laguna,	S ≤ 1.0 ha oppure S >1.0 ha e Ψ _{medio} rimane costante o diminuisce oppure scarico diretto a mare, laguna,

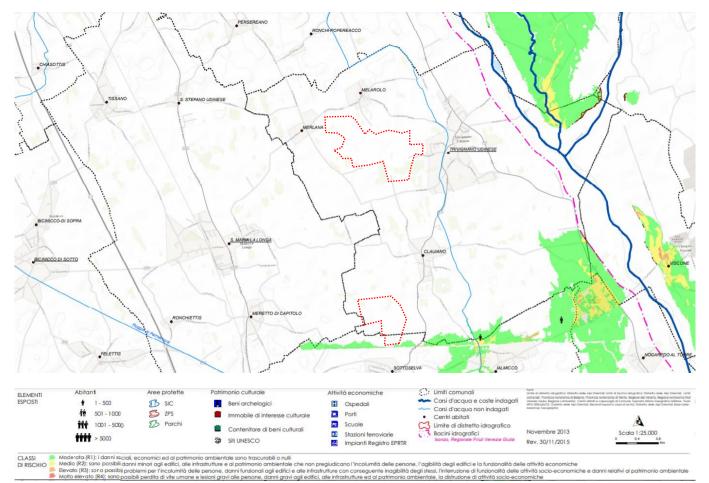
Dove il coefficiente di afflusso medio ponderale Ψ_{medio} è il coefficiente di afflusso complessivo per un dato lotto di trasformazione all'interno di un determinato bacino drenato. Ψ_{medio} è uno dei parametri di riferimento per la determinazione del livello di significatività della trasformazione.


Comuni di Palmanova, Pradamano e Trivignano Udinese **RELAZIONE INVARIANZA IDRAULICA**

3. ESTRATTO RELAZIONE URBANISTICA

Viene inoltre ripresa l'analisi vincolistica riportata sulla relazione urbanistica.

Piano di gestione del rischio alluvioni


La Direttiva Europea 2007/60/CE, recepita nel diritto italiano con D.Lgs. 49/2010, ha dato avvio ad una nuova fase della politica nazionale per la gestione del rischio di alluvioni, che il Piano di Gestione del Rischio di Alluvioni (PGRA) deve attuare, nel modo più efficace. Il PGRA, introdotto dalla Direttiva per ogni distretto idrografico, dirige l'azione sulle aree a rischio più significativo, organizzate e gerarchizzate rispetto all'insieme di tutte le aree a rischio e definisce gli obiettivi di sicurezza e le priorità di intervento a scala distrettuale, in modo concertato fra tutte le Amministrazioni e gli Enti gestori, con la partecipazione dei portatori di interesse e il coinvolgimento del pubblico in generale. Il PGRA 2015-2021 si compone di diversi elaborati, in questa relazione saranno riportate le mappe della pericolosità e del rischio:

Comuni di Palmanova, Pradamano e Trivignano Udinese RELAZIONE INVARIANZA IDRAULICA

La tavola che individua le classi di rischio, mostra che i tre siti **non** sono compresi all'interno delle aree di rischio alluvioni.

Piani stralcio per l'assetto idrogeologico (PAI)

Il Piano stralcio per l'Assetto Idrogeologico (PAI), originariamente previsto dalla L. 183/89 e successivamente dal DLgs 152/2006, rappresenta uno stralcio di settore funzionale del Piano di Bacino relativo alla pericolosità ed al rischio da frana, da valanga ed idraulico, contenente, in particolare, l'individuazione e la perimetrazione delle aree a pericolosità idrogeologica, nonché le relative misure di salvaguardia. Il PAI, che è organizzato per bacini idrografici, è un documento programmatico che individua scenari di pericolosità collegati ai fenomeni franosi, valanghivi ed alluvionali presenti e/o previsti nel territorio ed associa ad essi normative, limitazioni nell'uso del suolo e tipologie di interventi, strutturali e non, che sono finalizzati alla mitigazione dei danni attesi. Il PAI costituisce pertanto il quadro di riferimento al quale devono adeguarsi e riferirsi tutti i provvedimenti autorizzativi e concessori. La valenza di Piano sovraordinato, rispetto a tutti i piani di settore, compresi i piani urbanistici, comporta nella gestione dello stesso un'attenta attività di coordinamento e coinvolgimento degli enti operanti sul territorio. I PAI racchiudono anche al loro interno i contenuti e le previsioni dei Piani stralcio per la Sicurezza Idraulica precedentemente approvati e relativi ad alcuni sottobacini (Medio-Basso Tagliamento, Corno, Cormor e Cellina-Meduna). I vigenti PAI, sono relativi ai seguenti bacini: Livenza, Piave, Tagliamento, Fella, Isonzo, Slizza, Levante, bacino scolante sulla laguna di Marano Grado (per il Lemene non vige alcun PAI), e si compongono di:

- RELAZIONE DI PIANO
- MAPPE DELLA PERICOLOSITA' E DEL RISCHIO
- NORME DI ATTUAZIONE

Le opere sono individuate all'interno del PAI relativo al piano di Bacino del fiume Isonzo:

Comuni di Palmanova, Pradamano e Trivignano Udinese RELAZIONE INVARIANZA IDRAULICA

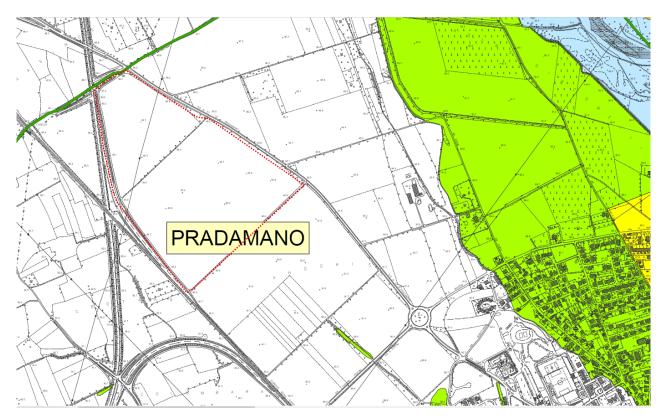


Figura 1 Tav 12 - Carta della pericolosità idraulica

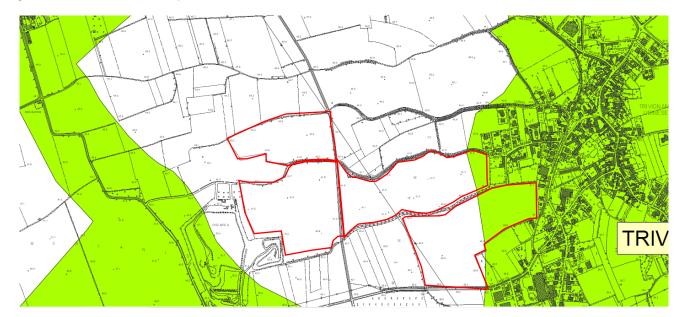


Figura 2 Tav 14 Carta della pericolosità idraulica

Comuni di Palmanova, Pradamano e Trivignano Udinese RELAZIONE INVARIANZA IDRAULICA Pag 8 di 20

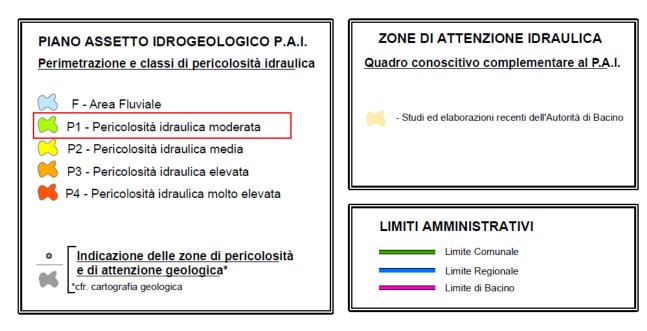


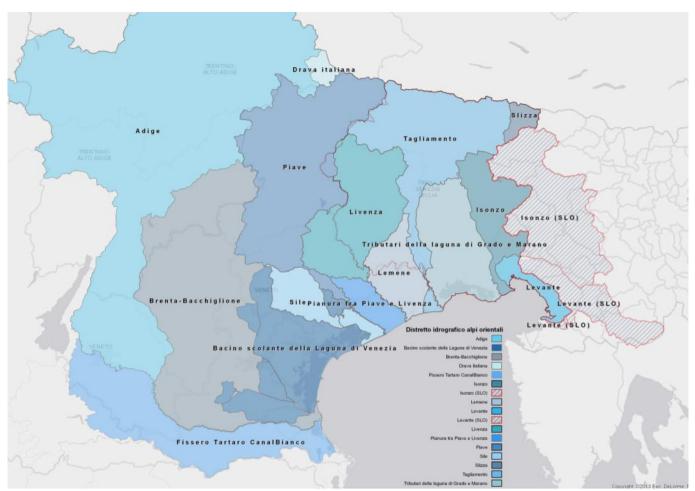
Figura 3 legenda Carta della pericolosità idraulica

Dalle tavole della pericolosità idraulica si evince che il sito di Trivignano Nord è compresa parzialmente nella parte più vicina all'abitato, in area P1 area a moderata pericolosità. Le opere che possono essere eseguite nell'ambito di tale area sono definite all'art. 12 delle Norme di Piano:

ART. 12 – Disciplina degli Interventi nelle aree classificate a pericolosità moderata P1 La pianificazione urbanistica e territoriale disciplina l'uso del territorio, le nuove costruzioni, i mutamenti di destinazione d'uso, la realizzazione di nuove infrastrutture e gli interventi sul patrimonio edilizio esistente nel rispetto dei criteri e delle indicazioni generali del presente Piano conformandosi allo stesso.

3.1 IL PIANO STRALCIO PER L'ASSETTO IDROGEOLOGICO DEI BACINI REGIONALI (PAIR)

In data 29 gennaio 2017, la Giunta regionale con deliberazione n. 129 ha adottato, ai sensi dell'articolo 14 della L.R. 16/2002, il Piano stralcio per l'Assetto Idrogeologico (PAIR) dei bacini idrografici dei tributari della laguna di Marano - Grado, ivi compresa la laguna medesima, del bacino idrografico del torrente Slizza e del bacino idrografico di Levante nonché le corrispondenti misure di salvaguardia.


In data 1 febbraio 2017 il Piano è stato approvato con DPReg. N. 28 ed è stato pubblicato sul supplemento ordinario n.7 allegato al BUR n. 6 del 08/02/2017

Le norme di attuazione del Piano stralcio, con le relative cartografie, hanno carattere immediatamente vincolante per le Amministrazioni ed enti pubblici, nonché per i soggetti privati.

In applicazione del D.M. 25 ottobre 2016, n. 294, a far data dal 17 febbraio 2017, ha preso avvio la fase di subentro dell'Autorità di bacino Distrettuale in tutti i rapporti attivi e passivi delle Autorità di bacino nazionali, interregionali e nazionali di cui alla Legge 18 maggio 1989, n. 183, ricadenti nel distretto delle Alpi Orientali.

Comuni di Palmanova, Pradamano e Trivignano Udinese **RELAZIONE INVARIANZA IDRAULICA**

Mentre per i comuni di Pradamano e Trivignano sono ricompresi nelle tavole del PAI del bacino del fiume Isonzo, analizzati nel paragrafo precedente, il comune di Palmanova è analizzato nella tavola 31 (zona idrografica dei

Tributari della lagna di Grado e Marano) di seguito stralciata:

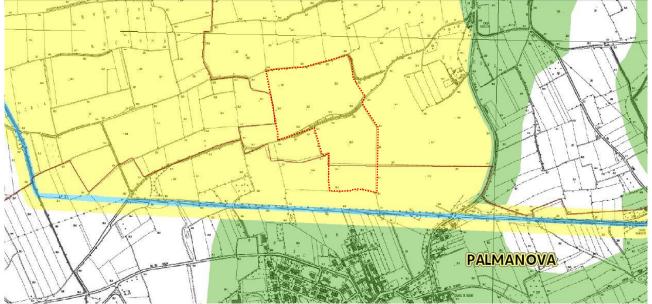


Figura 4 Tav 31 Piano dell'assetto idrogeologico dei bacini di interesse Regionale

Comuni di Palmanova, Pradamano e Trivignano Udinese RELAZIONE INVARIANZA IDRAULICA Pag 10 di 20

LEGENDA F (area fluviale) P1 (pericolosità idraulica bassa) P2 (pericolosità idraulica media) P3 (pericolosità idraulica elevata) Limiti bacini idrografici nazionali Limite comunale Interventi PSSI t. Corno e t. Cormor

Zone di attenzione PAI bacini nazionali

Dalla tavola si evince che il lotto di progetto definito Trivignano SUD e ricompreso tra i comuni di Trivignano e Palmanova, ricade in zona P2 di pericolosità idraulica media.

Gli interventi consentiti dalla norma sono individuai nell'art. 11: delle norme di Piano:

ART. 11 - Disciplina degli interventi nelle aree classificate a pericolosità media P2

- 1. Nelle aree classificate a pericolosità idraulica e geologica media P2, possono essere consentiti tutti gli interventi di cui alle aree P4 e P3.
- 2. L'attuazione delle previsioni e degli interventi degli strumenti urbanistici vigenti alla data di approvazione del Piano (8/02/2017) è subordinata alla verifica da parte delle amministrazioni comunali della compatibilità con le situazioni di pericolosità evidenziate dal Piano e deve essere conforme alle disposizioni indicate dall'art. 8. Gli interventi dovranno essere realizzati secondo Piano stralcio per l'assetto idrogeologico dei bacini idrografici di interesse regionale soluzioni costruttive funzionali a rendere compatibili i nuovi edifici con la specifica natura o tipologia di pericolo individuata.
- 3. Nelle aree classificate a pericolosità media P2 la pianificazione urbanistica e territoriale può prevedere:
- a. nuove zone di espansione per infrastrutture stradali, ferroviarie e servizi che non prevedano la realizzazione di volumetrie edilizie, purché ne sia segnalata la condizione di pericolosità e tengano conto dei possibili livelli idrometrici conseguenti alla piena di riferimento;
- b. nuove zone da destinare a parcheggi, solo se imposti dagli standard urbanistici, purché compatibili con le condizioni di pericolosità che devono essere segnalate;
- c. piani di recupero e valorizzazione di complessi malghivi, stavoli e casere senza aumento di volumetria diversa dall'adeguamento igienicosanitario e/o adeguamenti tecnico-costruttivi e di incremento dell'efficienza energetica, purché compatibili con la specifica natura o tipologia di pericolo individuata. Tali interventi sono ammessi esclusivamente per le aree a pericolosità geologica;
- d. nuove zone su cui localizzare impianti per la produzione di energia da fonti rinnovabili, non diversamente localizzabili ovvero mancanti di alternative progettuali tecnicamente ed economicamente sostenibili, purché compatibili con le condizioni di pericolo riscontrate e che non provochino un peggioramento delle stesse.

Comuni di Palmanova, Pradamano e Trivignano Udinese **RELAZIONE INVARIANZA IDRAULICA**

Pag 11 di 20

4. INTERVENTI DI MITIGAZIONE E METODI DI CALCOLO IDROLOGICO IDRAULICO

Il regolamento regionale prevede le seguenti attività:

Trasformazioni urbanistic	o-territoriali	
Livello di significatività della trasformazione	Estensione della superficie di riferimento S e valore del coefficiente Ψ_{medio}	Interventi di mitigazione e tipo di analisi per la determinazione del volume minimo di invaso
NON SIGNIFICATIVO oppure TRASCURABILE art. s, c. 3	$S \le 500 \text{ mq}$ oppure $S > 500 \text{ mq}$ e Ψ_{medio} rimane costanteo diminuisce oppure scarico diretto a mare, laguna,	 E' raccomandato l'utilizzo delle buone pratiche costruttive Lo studio di compatibilità idraulica è sostituito da asseverazione
CONTENUTO	500 < S ≤ 1000 mq	 E' obbligatorio l'utilizzo delle buone pratiche costruttive E' obbligatorio lo studio di compatibilità idraulica in forma semplificata non sono obbligatori i volumi di invaso per soddisfare l'invarianza idraulica e vanno descritti gli interventi mitigatori introdotti (ad es. buone pratiche costruttive)
MODERATO	1000 < S ≤ 5000 mq	E' obbligatorio l'utilizzo delle buone pratiche costruttive E' obbligatorio lo studio di compatibilità idraulica con la determinazione dei volumi di invaso utilizzando la soluzione più conservativa tra due dei proposti metodi di calcolo idrologico-idraulico scelti a piacere Metodo dell'invaso italiano diretto Metodo del serbatoio lineare (Paoletti-Rege Gianas, 1979) Modello delle sole piogge

L'assunzione del livello di significatività della trasformazione "non significativo" è ritenuta tale in quanto la presenza dell'impianto di progetto incide solo nelle aree dove sono presenti i cabinati.

La superficie di terreno utilizzata per i moduli, che non poggiano sul terreno, bensì sono innalzati sugli inseguitori (trackers), ha un comportamento analogo alla superficie di terreno ricoperta dalle superfici fogliate di un campo di mais. Per fare un confronto tra superfici ricoperte si riporta come esempio l'ipotesi di coltivazione del mais: in questo caso si può stimare che ogni pianta di mais ricopre 0,5 - 1 m2 di superficie

Comuni di Palmanova, Pradamano e Trivignano Udinese **RELAZIONE INVARIANZA IDRAULICA**

Pag 12 di 20

fogliata e all'interno di un m2 mediamente si hanno 7,1 piante. Si prende in considerazione la superficie interna all'area recintata pari ai circa 85,88 ha, si ottiene che la superficie ricoperta dalle foglie di mais è un valore che varia dai 304,9 ha ai 609,7 ha. La superficie ricoperta dai pannelli fotovoltaici, invece, risulta essere molto inferiore, circa pari a 39,4 ha.

Il coefficiente di deflusso dunque per l'area occupata dai pannelli risulta essere pari a 0 in quanto non avviene nessuna modifica sulla copertura diretta del terreno. Mentre le aree che incidono sono quelle dei cabinati che occupano complessivamente una superficie di 1 196 m2, qui il coefficiente di deflusso che è stato considerato è pari a 1. Per queste aree sono previsti dei pozzetti

Il comportamento del suolo rispetto alla pioggia non varia assolutamente rispetto alla situazione attuale.

Comuni di Palmanova, Pradamano e Trivignano Udinese **RELAZIONE INVARIANZA IDRAULICA**

Il simbolo a torta (per es: a, €,h,o,u) indica la frazione di dati mancanti in ventesimi

Pag 13 di 20

5. CALCOLO DEI POZZETTI DRENANTI OCCORRENTI ALL'INVARIANZA IDRAULICA

Il calcolo viene effettuato sulle superfici impermeabilizzate nei tre siti, a partire dai dati pluviometrici forniti da ARPA Friuli Venezia Giulia.

Pioggia massima oraria 1990-2021 Stazione di UDINE SANT'OSVALDO (UD) NOTE Elaborazioni di piogge orarie (ore GMT). Vengono riportati il giomo e l'ora di inizio e di fine in cui si è registrato il dato. Latitudine (N) 46.0400 Il dato mensile non viene utilizzato nelle elaborazioni se mancano più di 240 misure orarie(*). Longitudine (E) 13.2300 Valore massimo e minino del mese - Valore massimo(*) e minimo (*) dell'anno.

Dati

gg hh(inizo) mm gg hh (fine)	g	jen	f	eb	mar		apr	m	nag		giu			lug		ago		set		tt	4	nov		dic	aı	nno
1990	U		U		U	U		U			U		U			U	U		U		U	0	С	12 09 22 09 23	s	12
1991	o	0	м	5 10 15 10 16	10 27 21		4 17 12 17 13		12 11	112	E 18	27 16 27 17	А	22 1	4 12 4 13	24 18 19		56 22 20 22 21	А	8 12 11	А	12 04 13	А	2 20 11 20 12	с	56
1992		3 10 15	В	4 10 12	9 24 06 24 07		7 15 17 15 18			921	A 32	18 14 18 15		47 0	5 10 5 11	17 10 11		10 14 19		14 05 12 05 13		9 16 03	Г	8 03 21	А	32
1993		0		3 28 06 28 07	5 24 07 24 08	А	5 13 18 13 19	А	5 2	3 12 3 13	12	20 19	А		106	7 09 14		23 10 07		32 08 15		11 06 16 17	А	4 14 19 14 20	А	32
1994		9 01 08	А		В 3 01 22 01 23	_	20 02 01		40 19	02	19			. 2	0 06	23 25 15		40 08 19	А	25 (222)	А	11 10 11	А	5 20 07 20 08	А	40
1995	А	6 21 13		6 23 10	7 09 04	Δ.	7 25 04 25 05	А	44 1	-	A 14	11.00		45 1	5 03	22 08 02	E	23 19 22 19 23		7 29 23 30 00	А	9 16 15	А	9 26 16	А	23
1996	В	8 12 18	А		A 6 27 16 27 17		7 02 06		42 1	_	в 45		А	440	2 18	23 28 14		13 11 23		19 (2 14	Т	29 16 12	П	6 13 20	А	45
1997		5 03 01		1 13 19 13 20	6 ^{19 14} _{19 15}	_	6 29 07		17 2	20	40			28 0		G 28 27 15		13 13 23		8 07 04 07 05	Т	23 07 05	П	12 20 09	В	40
1998		4 19 19		0	4 05 15		15 06 14 06 15		0 2	14	14	11 09 11 10	А			18 27 19		18 05 10		62 06 19	Т	6 03 17	П	3 04 10	А	62
1999		4 02 20	А	2 09 22 09 23	7 27 00 27 01		9 12 22	В		113	31	10 16		o 2	2 19	23 20 18		39 2021		10 25 21	Г	6 06 22		10 10 14 10 15	А	39
2000		0		1 1616 1617	15 01 15 01 16		b 1820 1821		12 2		2.	15 13 15 14		20 :			2	33 1617 1618		18 01 14 01 15	Т	29 03 20 03 21	П	b 25 05 25 10		33
2001		9 08 14		2 08 11 08 12	14 17 11	А	9 07 11			114	10	03 17		20 1	7 12 7 13	32 21 15		12 04 09	А	14 21 03	Т	6 12 01	А	1 29 20 29 21	А	32
2002		3 24 10 24 11		6 07 01	7 03 16		10 27 07		9 1	18	16			40 1	4 17 4 18	57 01 21	А	19 20 21		28 22 03	А	10 21 21	Т	5 03 02 03 03	А	57
2003	А	5 22 00		3 04 11 04 12	0		6 02 21			16	32	25 17 25 18			B 17 B 18	29 28 22		37 23 23 24 00		13 04 20	Т	15 26 17	П	11 30 00	А	37
2004		5 1711		/ 23 20 23 21	3 22 23 23 00		/ 24 14 24 15		13 0			19 20 19 21		9 :		62 12 2 12 2	2	13 15 20 15 21		31 31 12	Т	9 10 07	П	13 2612		62
2005		3 19 01		2 21 22 21 23	4 25 07 25 08		19 25 10		-, 17	22	17	04.70		20 2	2 22	23 21 14		23 29 02 29 03	А	8 (3 19		6 29 16		8 03 08	А	29
2006		2 29 00 29 01	А	5 20 03 20 04	8 05 13		7 06 09 06 10		0.00	9 10	5			20 2	4 17	25 24 23		11 15 13		4 20 07	Т	11 18 22	А	25 08 14	А	39
2007		8 23 07 23 08		9 13 00	12 07 17		2 30 00		32 1		28	15 18 15 19		23 0		15 201	2	14 1803		15 0608	Т	/ 24 19 24 20	П	3 0306		32
2008		1U 12 03 12 04		3 05 01 05 02	4 04 12 04 13		16 25 13 25 14		21 1		1.	11 15 11 16		32 :		20 16 0	2	19 03 23		15 28 14 28 15		11 30 03 30 04		Z1 1023		32
2009	А	5 20 14		8 03 04 03 05	9 29 10 29 11		11 29 07		2 30	122	12	20 05		21 0	7 12 7 13	A 14 03 08		12 16 16 17		21 01 23 02 00		25 30 18	А	11 23 01 23 02	А	25
2010		4 02 07		11 26 11 26 12	6 30 19		9 01 17		26 3	20	11	20.00		22 0	6 12	13 18 19		23 07 22 07 23		17 25 08	Т	9 18 13	А	10 24 02	А	26
2011		14 10 18		3 16 16 16 17	9 1401		4 25 17 25 18		47 2		в 28	22.17		20 2	2 21	5 07 18	,	12 19 19		19 26 08	Т	5 08 20		3 12 20	А	30
2012		1Z 03 02 03 03		4 20 02 20 03	3 1915 1916		10 05 08 05 09		b 1		15	12 10		15 :		Z 3 26 1 26 1	5	41 2417 2418		Z5 1517 1518	Н	1U 05 02 05 03		5 15 11 15 12		41
2013		5 22 03		8 02 12 02 13	12 18 13 18 14		6 13 00			01	A 15	08 15			9 19	12 19 22		47 29 05 29 06		10 29 21	Т	9 09 05	П	7 29 07 29 08	А	47
2014		14 31 05 31 06		12 19 18 19 19	5 23 09 23 10		8 30 12 30 13		1/ 1		38	24 21 24 22		51 :		Zb 131	5	7 22 18 22 19		11 22 01 22 02	Т	15 15 23 16 00	П	8 0100		51
2015	А	4 30 11		1 22 08 22 09	5 27 07		7 24 06 24 07			-	16	15 17 15 18				25 19 12		17 14 07 14 08		16 13 22	Т	3 21 13		1 24 07 24 08	А	25
2016		8 11 15 11 16		8 08 06 08 07	13 06 20 06 21		b 2714 2715		ZZ 3			11 12 11 13		23 :		1Z 21 1 21 2	9	ZU 1613 1614		8 1920 1921	П	Z4 1908 1909		0		24
2017		5 13 16 13 17			A 9 04 16 04 17	T	15 27 02	F	10 1	-	A 27			21 2	4 05	21 19 21	-	25 01 16		24 10 01	А	9 25 19 25 20	м	7 27 05 27 06	С	27
2018	Е	6 01 14			A 10 31 06 31 07	T	7 04 22 04 23			3 23	24	OF 13	А			C 7 24 15	_	9 22 10		18 30 10	F	30 01 20	D	1 20 04	В	30
2019		2 27 20		9 01 10	5 18 08 18 09		8 26 15 26 16	С	22 2	20	12		В	0 1	4 14 4 15	c 19 02 02		42 08 12		4 15 11	А	17 19 19		8 21 10	А	42
2020	А	2 28 13 28 14		10 26 13	12 01 13 01 14		11 28 19	В	17 1		A 32			13 1	7 11	28 29 19		14 02 00		13 27 02		6 16 19	А	26 06 05	А	32
2021		6 23 07			A 6 05 20			U			U	w to	U	- 1		U	U	0201	U	27 03	U	10.10	U	00 00	N	12

Statistiche

•													
mm	gen	feb	mar	apr	mag	giu	lug	ago	set	ott	nov	dic	anno
Media	6	5	7	9	15	22	21	22	23	17	13	8	36
Min	0	0	0	2	3	5	4	5	7	4	3	0	12
Max	14	12	15	20	32	45	51	62	56	62	30	26	62
Varianza	13	11	13	20	46	98	93	147	168	128	61	43	156
Dev.st	4	3	4	4	7	10	10	12	13	11	8	7	13
Numero	30	30	31	31	30	30	30	30	30	30	30	30	32

Percentili

mr	n gen	feb	mar	apr	mag	giu	lug	ago	set	ott	nov	dic	anno
5 %	1	1	3	4	5	10	9	7	9	5	5	1	18
10 %	2	1	3	5	7	12	9	12	11	8	6	1	24
25 %	3	3	5	6	9	14	15	16	13	10	8	3	29
50 %	5	5	7	7	14	19	21	23	19	15	10	8	32
75 %	8	8	10	11	18	28	25	25	31	21	15	11	41
90 %	10	9	12	16	23	33	32	29	41	28	25	14	56
95 %	13	11	14	18	26	39	36	46	45	32	29	23	59

Comuni di Palmanova, Pradamano e Trivignano Udinese RELAZIONE INVARIANZA IDRAULICA

Pag 14 di 20

Valori massimi per tempo di ritorno (Gumbel)

mm	gen	feb	mar	apr	mag	giu	lug	ago	set	ott	nov	dic	anno
2 anni	5	5	6	8	14	20	19	20	21	15	12	7	34
3 anni	7	6	8	10	17	25	24	25	26	20	15	10	39
4 anni	8	7	9	11	19	27	26	28	30	23	17	12	43
5 anni	9	7	10	12	20	29	28	31	32	25	19	13	45
10 anni	11	9	12	14	24	35	34	38	40	31	23	17	53
20 anni	13	11	14	16	28	41	40	44	47	38	28	21	60
30 anni	15	12	16	18	30	44	43	48	51	41	30	23	64
50 anni	16	13	17	19	33	48	47	53	E 7	45	34	26	70
									5/				

Dai dati di ARPA si evince che i valori massimi orari di pioggia, con tempo di ritorno 50 anni, registra un valore di 57 mm_{H2O}. Tale valore è posto alla base per il calcolo del fabbisogno volumetrico di trincee drenanti.

Il presente progetto prevede pertanto di realizzare dei volumi di accumulo drenanti della capacità pari al volume di pioggia massima oraria con tempo di ritorno di 50 anni per la durata di un'ora. La criticità idraulica presa in all'interno dei calcoli è pari a 630 m3/ha.

Questi volumi verranno realizzati a margine di ogni basamento ed uno per ogni tracker, in considerazione dei 57 mmH₂O di competenza, con un'approssimazione in eccesso.

Pradamano

	Area [m2]	Volume pioggia 1h [m3] cad	Elemento	Quantità pozzetti per manufatto	Totale pozzetti	
n. 12 Cabine di trasformazione	32,6	1,86	Pozzetto 1 x 1 x 1	2	24	
n. 2 Basamento cabina smistamento	22,0	1,25	Pozzetto 1 x 1 x 1	2	4	
Container Magazzino	18,0	1,03	Pozzetto 1 x 1 x 1	2	2	
Container Control Room	18,0	1,03	Pozzetto 1 x 1 x 1	2	2	

Trivignano Sud

	Area [m2]	Volume pioggia 1h [m3] cad	Elemento	Quantità pozzetti per manufatto	Totale pozzetti
n. 12 Cabine di trasformazione	32,6	1,86	Pozzetto 1 x 1 x 1	2	12
n. 2 Basamento cabina smistamento	22,0	1,25	Pozzetto 1 x 1 x 1	2	2
Container Magazzino	18,0	1,03	Pozzetto 1 x 1 x 1	2	2
Container Control Room	18,0	1,03	Pozzetto 1 x 1 x 1	2	2

Trivignano Nord

	Area [m2]	Volume pioggia 1h [m3] cad	Elemento	Quantità pozzetti per manufatto	Totale pozzetti
n. 12 Cabine di trasformazione	32,6	1,86	Pozzetto 1 x 1 x 1	2	24
n. 2 Basamento cabina smistamento	22,0	1,25	Pozzetto 1 x 1 x 1	2	4
Container Magazzino	18,0	1,03	Pozzetto 1 x 1 x 1	2	2
Container Control Room	18,0	1,03	Pozzetto 1 x 1 x 1	2	2

Comuni di Palmanova, Pradamano e Trivignano Udinese **RELAZIONE INVARIANZA IDRAULICA**

Pag 15 di 20

Alla luce della modularità delle situazioni, i volumi di accumulo drenato saranno i seguenti:

Il fondo perdente sarà appoggiato su uno strato di ghiaia e massicciata.

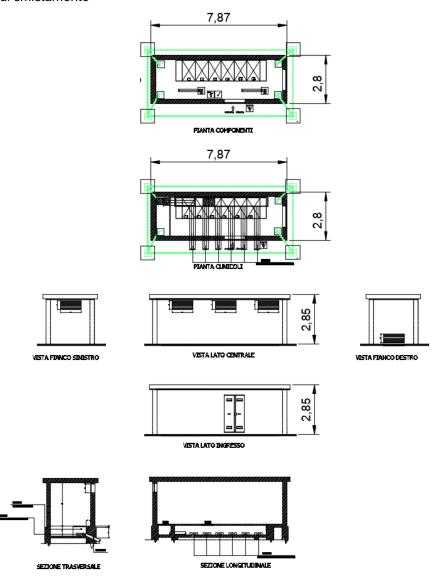
	Area [m2]	Volume pioggia 1h [m3] cad	Elemento	Quantità
Cabina Inverter bt/mt	32,6	1,86	Pozzetto 1 x 1 x 1	60
Basamento cabina smistamento	22,0	1,25	Pozzetto 1 x 1 x 1	10
Container Magazzino	18,0	1,03	Pozzetto 1 x 1 x 1	6
Container Control Room	18,0	1,03	Pozzetto 1 x 1 x 1	6


Inoltre, un approfondimento porta all'individuazione dei seguenti manufatti idraulici in prossimità dell'impianto, che tuttavia, mediante l'analisi comparativa tra stato di fatto e stato di progetto, non subiranno alcuna modificazione del regime idraulico.

Comuni di Palmanova, Pradamano e Trivignano Udinese RELAZIONE INVARIANZA IDRAULICA

Pag 16 di 20

<u>Il progetto prevede dunque una portata idraulica di scarico nella rete idrica superficiale o fognaria pari a zero m³/h relativamente agli interventi edilizi previsti.</u>

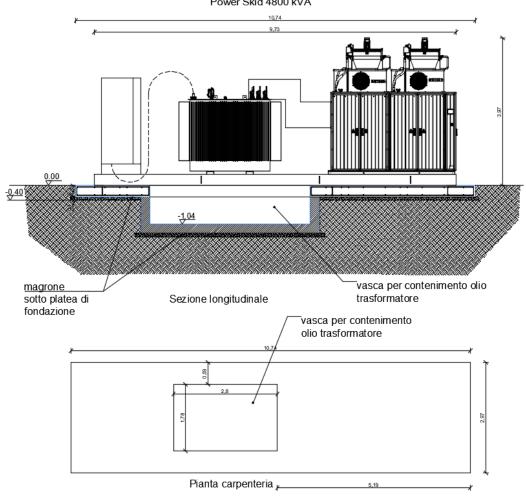

Comuni di Palmanova, Pradamano e Trivignano Udinese RELAZIONE INVARIANZA IDRAULICA

Pag 17 di 20

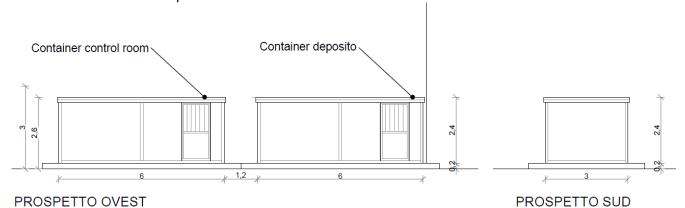
6. FABBRICATI EDILIZI ACCESSORI

In questo paragrafo sono riportati i cabinati citati in relazione.

Cabina di smistamento



Comuni di Palmanova, Pradamano e Trivignano Udinese RELAZIONE INVARIANZA IDRAULICA


Pag 18 di 20

Cabina di trasformazione

CONTAINER TRASFORMAZIONE+INVERTER Power Skid 4800 kVA

Container control room e deposito

Comuni di Palmanova, Pradamano e Trivignano Udinese RELAZIONE INVARIANZA IDRAULICA Pag 19 di 20

7. ASSEVERAZIONE DI NON SIGNIFICATIVITA'

Nel presente documento si è dimostrato che i campi fotovoltaici progettati hanno una minima incidenza sul deflusso delle acque di pioggia e che comunque questa minima variazione può essere gestita inserendo piccoli volumi di accumulo nei pressi dei manufatti progettati. Tali accumuli avranno il fondo perdente su un letto di ghiaia.

Inoltre, in considerazione dei rischi di esondazione classificati come rischio moderato per una parte dell'impianto di Trivignano Nord e medio per l'impianto Trivignano Sud, si evidenzia come il rischio danni conseguente ad eventuale allagamento sia modesto, osservando come i sistemi siano dotati di idonee protezioni elettriche e come comunque non siano presenti quadri elettrici e locali al di sotto del livello di campagna.

Infine, si osserva come la relazione generale ambientale evidenzi in forma estesa come non sussistano altri posizionamenti possibili sostenibili per l'impianto di Trivignano Sud/Palmanova.

Pertanto, il sottoscritto Ing. Riccardo Valz Gris, ingegnere civile idraulico, iscritto all'Ordine degli Ingegneri di Biella al n.159°, attesta la non significatività idraulica degli interventi progettati.

