

COMMITTENTE:

Sede legale: via Mercato 3, 20121, Milano (MI) Iscritta presso il Registro delle Imprese di Milano Codice fiscale e P.IVA: 11850910966 Soggetta alla Direzione e Coordinamento di Canadian Solar Inc. PEC: deltaarietesrl@lamiapec.it Tel: +39 02 39190730

PROGETTAZIONE:

CanadianSolar

TÈKNE srl

Via Vincenzo Gioberti, 11 - 76123 ANDRIA Tel +39 0883 553714 - 552841 - Fax +39 0883 552915 www.gruppotekne.it e-mail: contatti@gruppotekne.it

PROGETTISTA:

Dott. Ing. Renato Pertuso (Direttore Tecnical DEGL LEGALE RAPPRESENTANTE:

CONSULENTE:

RELAZIONE PRELIMINARE DEI CALCOLI **STRUTTURALI**

Filename:

Tavola:

RE04.2

TKA691-PD-RE04.2-R0.docx

	PROGETTO DEFINITI\	VO				TKA691-PD-RE04.2-R0.docx
	Data 1°emissione:	Redatto:	Verificato:	Approvato:	Scala:	Protocollo Tekne:
- 1	DICEMBRE 2021	E. PASTORE	G.PERTOSO	R.PERTUSO	/	
Ī	1 0ue]	
	1 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3				-	TKA691
	2 4 4					1104051

COMUNE DI MONTEMILONE IMPIANTO AGROVOLTAICO "SOPRANA"

RELAZIONE DESCRITTIVA DELLE FONDAZIONI

INDICE

<u>1.</u>	INTRODUZIONE	1
1.1	NORMATIVA DI RIFERIMENTO	3
	NORMATIVA DI RII ERMIERTO	
•		
<u>2.</u>	OPERE EDILI	4
	RECINZIONE	4
	STRINGHE FOTOVOLTAICHE SISTEMA TRACKER	5
	CABINE ELETTRICHE	6
	SCAVI E RINTERRI	9
2.5.	VIABILITA' INTERNA	9
<u>3.</u>	CARATTERIZZAZIONE DELL'AREA D'INTERVENTO	11
3.1.	CARATTERIZZAZIONE GEOTECNICA DELL'AREA	11
3.2.	CARATTERIZZAZIONE EOLICA DELL'AREA	14
3.3.	CARATTERIZZAZIONE SISMICA DELL'AREA	15
4	CARICHI AGENTI	19
<u></u>	OARIGITI AGENTI	
4.4	PESO PROPRIO DELLA STRUTTURA	19
	AZIONE DEL VENTO	20
	CARICO NEVE	21
_	COMBINAZIONI DI CARICO	22
J .	COMBINAZIONI DI CARICO	
^		.
<u>6.</u>	<u>PREDIMENSIONAMENTO E CALCOLO PORTANZA LATERALE DEI PALI DI FONDAZIO</u>	NI 23
-	RISULTATI ANALISI	23
6.2.		25
-	VERIFICA AL RIBALTAMENTO DELLE STRUTTURE FOTOVOLTAICO	27
	STRUTTURE PREFABBRICATE DI SUPPORTO PER CANCELLI DI INGRESSO	28
	STRUTTURE PREFABBRICATE DI SUPPORTO PER LE RECINZIONI PERIMETRALI	30
	STRUTTURE PREFABBRICATE PER CABINE ELETTRICHE E SERVIZI AUSILIARI	31
-	CONSIDERAZIONI SULLA DISMISSIONE	31
9.	CONCLUSIONI	31

PD DATA R0 Dicembre 2021		REDATTO	VERIFICATO	APPROVATO	Protocollo TEKNE	
	R0	Dicembre 2021	E. PASTORE	G. PERTOSO	R. PERTUSO	TKA691
PROGETTO						Filename:
DEFINITIVO						TKA691-PD-re04.2-R0.doc

1. INTRODUZIONE

Oggetto della presente relazione sono le principali opere edili che dovranno realizzarsi nell'ambito della costruzione dell'impianto agrovoltaico (agricoltura+fotovoltaico) "SOPRANA" presso il Comune di Montemilone (PZ), proposto dalla società DELTA ARIETE S.R.L., con sede legale in Via Mercato, 3 – 20121 Milano (MI) Indirizzo PEC: deltaarietesrl@lamiapec.it; P.I.: 11850910966

In particolare, nel presente documento si farà riferimento ai pali di fondazione per le strutture di sostegno dei pannelli fotovoltaici, delle recinzioni e delle fondazioni prefabbricate delle cabine elettriche.

Il sito interessato alla realizzazione dell'impianto agrovoltaico si sviluppa nel territorio del Comune di Montemilone (PZ), in località "Contrada Valle Castagna" e ricade nel Catasto Terreni al Foglio 3 p.lle 22, 65, 68, 83, 84, 85, 86, 89, 92, 105, 109 e 142, in un'area a nord-ovest rispetto al centro abitato del comune di Montemilone.

L'area in oggetto si trova ad un'altitudine media di m 330 s.l.m. e si suddivide in 4 lotti adiacenti tra loro, aventi le seguenti coordinate geografiche:

• LOTTO A: 41,05388889 Nord; 15,91111111 Est (41° 03' 14" N; 15° 54' 40" E)

• LOTTO B: 41,05111111 Nord; 15,91333333 Est (41° 03' 04" N; 15° 54' 48" E)

• LOTTO C: 41,0525 Nord; 15,91722222 Est (41° 03' 09" N; 15° 55' 02" E)

• LOTTO d: 41,05 Nord; 15,92 Est (41° 03' 00" N; 15° 55' 12" E)

L'area di intervento è raggiungibile attraverso una strada interpoderale privata che si dirama dal km 0+600 della SP114 "Valle Catagna", che a sua volta è accessibile sia dal km 13+400 della SP18 "Ofantina", sia dal km 2+950 della SP127 "di Ariaccia". La superficie dell'area di intervento sarà pari a 35.46.60 ettari.

Tale progetto prevede l'installazione di **29.354** moduli fotovoltaici da 655 Wp che produrranno complessivamente una potenza pari a **19226,87** kW.

La località in cui saranno ubicati i generatori fotovoltaici è stata individuata in base ad un'indagine preliminare che ha tenuto conto di:

- caratteristiche di irraggiamento;
- vincoli paesaggistici, architettonici, archeologici, storici, naturalistici, ecc.

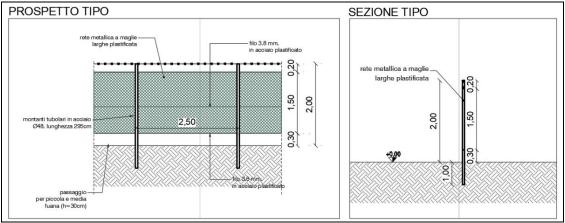
L'area in cui verrà ubicato l'impianto risulta essere di tipo agricolo con colture a bassa redditività ed esente da vincoli sia di natura amministrativa, sia paesaggistici. Rispetto al centro abitato di Montemilone il suddetto impianto dista circa 5,0 Km. I terreni interessati dall'intervento sono privi di alberature e ricadono nella zona denominata "Contrada Valle Castagna".

Il territorio interessato alla realizzazione dell'impianto è classificato come "Zona di attività primarie di tipo E", ovvero zone destinate prevalentemente all'agricoltura, secondo il vigente Piano Regolatore del Comune. Dall'esame della normativa di settore si evince la piena coerenza e compatibilità, sotto l'aspetto urbanistico, del futuro impianto fotovoltaico. Infatti, il comma 7 dell'art. 12 del D.Lgs 387/2003 prevede che "gli impianti alimentati da fonti rinnovabili possono essere ubicati anche in zone classificate agricole dai piani urbanistici". Le opere civili da realizzare risultano essere compatibili con l'inquadramento urbanistico del territorio; esse, infatti, non comportano una variazione della "destinazione d'uso del territorio" e non necessitano di alcuna "variante allo strumento urbanistico", come da giurisprudenza consolidata. Come è desumibile dagli elaborati del progetto le aree interessate dalla realizzazione del parco fotovoltaico risultano di proprietà privata.

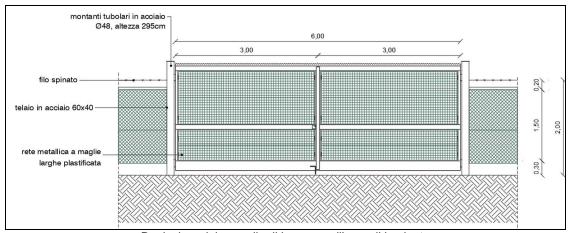
L'ubicazione del parco fotovoltaico e delle infrastrutture necessarie è stata evidenziata sugli stralci planimetrici degli elaborati progettuali.

1.1 Normativa di riferimento

- ✓ D.lgs., n. 387/2003, art.12, attuativo della direttiva 2001/77/CE relativa alla promozione dell'energia elettrica prodotta da fonti energetiche rinnovabili nel mercato interno dell'elettricità. Questa normativa prevede che l'autorizzazione di impianti di produzione di energia da fonti rinnovabili è soggetta a una procedura semplificata e unica, di competenza regionale (o di un ente delegato), introdotta al fine di agevolare lo sviluppo di nuovi impianti di tal genere sul territorio nazionale. L'art. 12 attribuisce il carattere di pubblica utilità alle opere per la realizzazione degli impianti alimentati da fonti rinnovabili. "L'autorizzazione unica" si caratterizza per un procedimento al quale partecipano tutte le amministrazioni interessate e costituisce titolo a costruire ed esercire l'impianto in conformità al progetto approvato;
- ✓ D. Lgs. n. 152/2006, recante norme in materia ambientale (c.d. Codice dell'ambiente);
- ✓ Decreto legislativo 6 luglio 2017, n. 104, "Attuazione della direttiva 2014/52/UE del Parlamento europeo e del Consiglio, del 16 aprile 2014, che modifica la direttiva 2011/92/UE, concernente la valutazione dell'impatto ambientale di determinati progetti pubblici e privati";
- ✓ D.M. Infrastrutture 17/1/2018 "Norme Tecniche per le costruzioni" pubblicato su S.O. n°8 alla G.U. 20/2/2018, n°42,
- ✓ Circolare 21/1/2019 n°7 C.S.LL.PP. Istruzioni per l'applicazione dell'"Aggiornamento delle Norme tecniche per le costruzioni" di cui al decreto ministeriale 17 gennaio 2018 pubblicato su S.O. n°5 della G.U. 11/2/2019 n°35.



2. OPERE EDILI

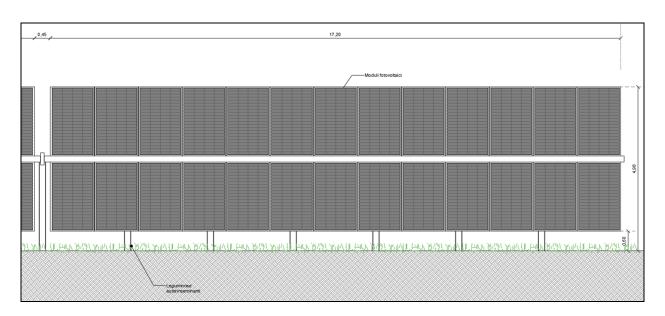

2.1. RECINZIONE

La recinzione sarà costituita da una rete metallica a maglia sciolta con montanti in acciaio zincato a caldo, posizionati perfettamente in linea tra loro secondo le prescrizioni del produttore e ancorati nel terreno attraverso l'infissione degli stessi ad una profondità di 100 cm.

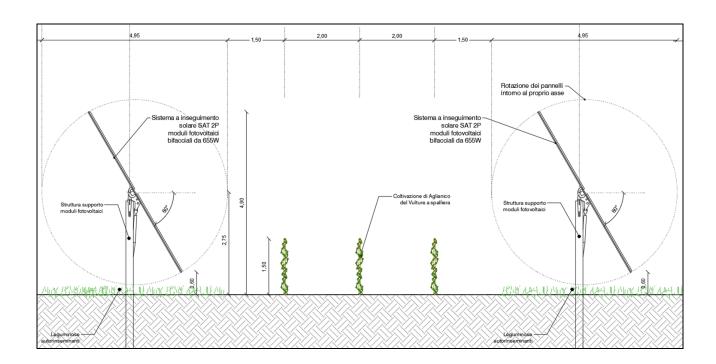
Tale soluzione tecnica adottata per l'ancoraggio al terreno ha il vantaggio di essere rapida, semplice e reversibile, riducendo al minimo l'impatto ambientale e preservando la condizione naturale del terreno. A completamento della recinzione sarà installato un cancello d'ingresso avente le stesse caratteristiche di quest'ultima e pali laterali realizzati con profili in acciaio zincato a caldo ancorate con appositi tirafondi al plinto prefabbricato di fondazione.

Particolare delle recinzioni

Particolare del cancello di ingresso all'area di impianto



2.2. STRINGHE FOTOVOLTAICHE SISTEMA TRACKER


Per quanto riguarda le strutture fotovoltaiche basate su sistema "tracker", l'ancoraggio della struttura di supporto dei pannelli fotovoltaici al terreno sarà affidato ad un sistema di fondazione costituito da pali in acciaio zincato infissi nel terreno tramite battitura, mentre laddove le condizioni del terreno non lo permettano si procederà tramite trivellazione. I vantaggi di tale tipologia di fondazione sono molteplici, ovvero:

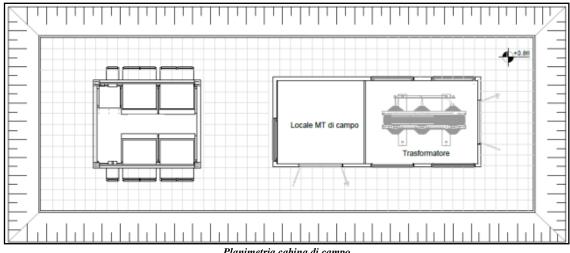
- √ tempi di realizzazione delle fondazioni particolarmente ridotti;
- √ non necessità della realizzazione di scavi e getto di calcestruzzo;
- ✓ ridotto impiego di personale per la posa;
- ✓ reversibilità dell'intervento per la facile rimozione dei pali;
- ✓ possibile riutilizzo e riciclaggio dei pali;
- ✓ minimo impatto ambientale in riferimento all'armonia del paesaggio e alla contaminazione dell'acqua del sottosuolo.

Al fine di ottimizzare la produzione annuale, compatibilmente con le aree a disposizione si è scelto di utilizzare il sistema a impianto tracker, il quale prevede una struttura intelaiata in acciaio zincato basculante in direzione EST-OVEST, opportunamente dimensionata per ospitare 26 moduli fotovoltaici disposti su n.2 file di 13 moduli. Tale struttura oscillerà di +-60° rispetto al piano orizzontale e poggerà su pali in acciaio zincato infissi nel terreno ed un orientamento pari a 180° N (direzione Sud).

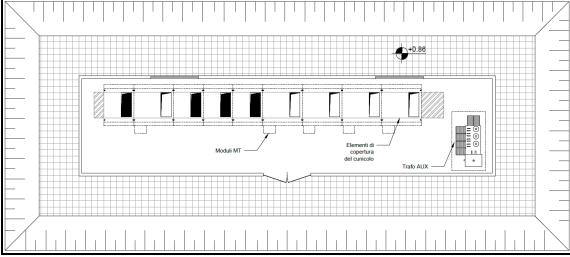
2.3. CABINE ELETTRICHE

All'interno della recinzione dell'impianto fotovoltaico troveranno ubicazione le seguenti cabine elettriche: 1 Cabina di Raccolta MT, 1 Cabine dei Servizi Ausiliari e 8 Cabine di campo.

Queste ultime saranno costituite da due box prefabbricati affiancati ospitanti rispettivamente gli i trasformatori e i locali tecnici.

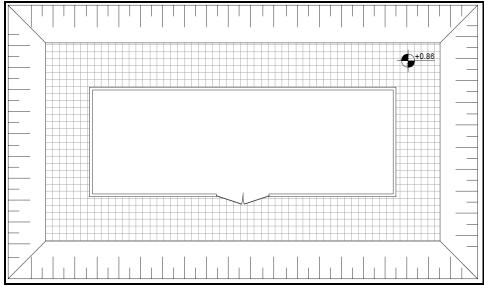

Le cabine, dedicate all'alloggiamento delle apparecchiature elettriche, saranno costituite da *monoblocchi prefabbricati* con struttura monolitica autoportante senza giunti di unione tra le pareti e tra queste ed il fondo realizzato in calcestruzzo alleggerito con argilla espansa. Le pareti del monoblocco avranno uno spessore di 8 cm. Il tetto del monoblocco sarà realizzato a parte, sempre con cls armato alleggerito. Dopo essere stato impermeabilizzato con uno strato di guaina bituminosa ardesiata dello spessore di 4 mm, verrà appoggiato sulle pareti verticali consentendo pertanto lo scorrimento dello stesso per effetto delle escursioni termiche. La conformazione del tetto sarà tale da assicurare un normale deflusso delle acque meteoriche, per tale motivo non sono previsti tubi di gronda all'esterno e/o all'interno del monoblocco.

Le cabine elettriche saranno portate in loco e saranno posizionate su una vasca di fondazione prefabbricata della tipologia illustrata nella figura sottostante. Le dimensioni specifiche delle

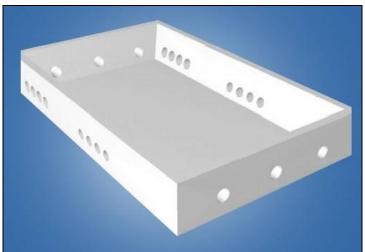


fondazioni di ciascuna fondazione sono riportate all'interno della tavola IE04 - Cabine di campo e raccolta.

Si precisa che per il posizionamento delle cabine non sarà necessaria la realizzazione di fondazioni in c.a., in quanto le stesse saranno composte da prefabbricati alloggiati nel terreno, previo scavo di fondazione di circa 1 metro sul quale verrà steso uno strato di geo tessuto e un letto di misto granulare stabilizzato per uno spessore di circa cm 10 che assolverà ad una funzione livellante.



Planimetria cabina di campo



Planimetria cabina di raccolta

Planimetria cabina per servizi ausiliari

Vasca di fondazione

Tutte le dimensioni delle cabine sono state progettate in funzione agli ingombri delle apparecchiature previste e dei necessari spazi di manovra e di sicurezza.

2.4. SCAVI E RINTERRI

L'impianto non prevede scavi di sbancamento e risezionamento del terreno in quanto le strutture da posizionare seguiranno l'andamento morfologico dello stesso.

Gli scavi previsti saranno:

- ✓ Scavi per la posa delle vasche prefabbricate di fondazione delle cabine;
- ✓ Scavi per la posa di condutture di ogni tipo.

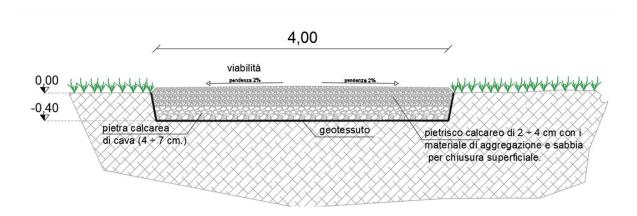
Entrambe le tipologie di scavo saranno realizzate a sezione con l'ausilio di mezzi meccanici e raggiungeranno il piano di posa dei manufatti/cavidotti, superandoli di circa 10 cm. Lungo il percorso dei cavidotti saranno posizionati pozzetti prefabbricati rompitratta in cls.

Per i rinterri si utilizzerà una piccola quantità di sabbia (letto di posa per i cavidotti e le cabine prefabbricate); la restante parte dei rinterri sarà realizzata con il materiale di risulta dello scavo.

Le tubazioni di scolo e i fossi scoperti pubblici o privati che fossero eventualmente incontrati negli scavi saranno conservati all'uso previ accordi con i singoli enti o proprietari.

Saranno adottate tutte le precauzioni necessarie per ottemperare alle normative vigenti sulla sicurezza delle cose e delle persone. Inoltre, saranno presi tutti gli accorgimenti per evitare di intralciare il traffico veicolare, sia con il cantiere in sé che con i materiali di risulta.

2.5. VIABILITA' INTERNA


All'interno dell'area interessata dall'impianto fotovoltaico verranno realizzati dei percorsi carrabili per consentire una viabilità agevole per gli spostamenti all'interno dell'impianto, per l'accesso ai pannelli fotovoltaici nonché per l'accesso alle cabine e vani tecnici. Le infrastrutture viarie saranno realizzate, ai fini di un corretto inserimento ambientale, in massicciata tipo "MacAdam".

Tale rete viaria sarà realizzata previo scortico del terreno vegetale con la posa di materiale arido di riempimento ed uno strato di misto granulare stabilizzato di cava.

Di fondamentale importanza è la creazione dello strato di base che è la parte della sovrastruttura stradale con prevalente resistenza alle azioni flessionali. La sezione stradale della nuova viabilità sarà realizzata prevedendo una larghezza minima di circa 4 m. Le sezioni tipo, in genere di riporto, di sterro e mista, verranno utilizzate a seconda delle sezioni stradali seguendo come criterio progettuale quello di limitare il più possibile le movimentazioni di terra nel rispetto dell'ambiente circostante.

Per quanto concerne le acque meteoriche è prevista una pendenza trasversale della sede stradale del 2% per tutte le tipologie di sezioni tipo definite: questa è rivolta verso i lembi esterni della medesima sede per allontanare le acque meteoriche e farle confluire nel terreno sottostante in cui verranno realizzate cunette per lo scorrimento delle acque meteoriche.

3. CARATTERIZZAZIONE DELL'AREA D'INTERVENTO

3.1. CARATTERIZZAZIONE GEOTECNICA DELL'AREA

Dall'analisi della relazione geologica, tutta l'area oggetto di studio ricade nel Foglio 175 "Cerignola" della Carta Geologica d'Italia in scala 1: 100.000 del Servizio Geologico e si sviluppa ad una quota sul livello del mare che si attesta dai 200 ai 245 metri circa.

Dal punto di vista geologico, tale territorio è caratterizzato dai sedimenti plio-pleistocenici della "Fossa Subappenninica Foggiana", sui quali poggiano i depositi regressivi alluvionali recenti e terrazzati. Il ciclo trasgressivo-regressivo della serie plio-pleistocenica è costituito da conglomerati e sabbie in basso (serie trasgressiva) che passano, verso l'alto, ai depositi regressivi della Fossa (Argille grigioazzurre, Argille subappennine, argille limose e marne grigio-azzurre, terreni sabbioso-conglomeratici). I depositi terrazzati ed alluvionali recenti sono legati ad una lenta regressione del mare pleistocenico medio-superiore fino all'attuale linea di costa; si tratta di depositi conglomeratico-sabbiosi su superfici di abrasione marina. La successione litostratigrafica generale dell'area investigata, dal basso verso l'alto, è la seguente:

- formazione delle argille grigio-azzurrognole (PQa): si tratta di argille, argille sabbiososiltoso che, per il contenuto in carbonati, si pongono nel campo ora delle argille marnose ora delle marne argillose; le sabbie in essa contenute, specie nella parte più alta della formazione, sono generalmente a grana fine e ben classate. La formazione costituisce la parte bassa della serie pleistocenica ed affiora solo laddove l'erosione superficiale ha asportato i terreni di copertura;
- formazione delle sabbie argillose giallastre (PQs): si tratta di sabbie più o meno argillose di colore giallastro; la componente argillosa diminuisce progressivamente dal basso verso l'alto formazionale dove, invece, prevalgono sedimenti sabbiosi, a tratti fittamente stratificati, con intercalazioni e lenti ciottolose;
- formazione delle sabbie straterellate giallastre (Qm2 Qc2): si tratta di livelli sabbiosi e sabbioso-argillosi di colore giallo con livelli argillosi, ciottolosi e concrezioni calcaree, del Pleistocene, in cui sono presenti fossili di molluschi litorali (Qm2) La serie continua con ciottolame incoerente, localmente cementato da matrice sabbiosa e ghiaiosa; nella stessa si evidenziano a vari livelli, intercalazioni sabbiose poco addensate di colore giallastro (Qc2);
- alluvioni terrazzate (Qt3): trattasi in prevalenza da sedimenti sabbioso-argillosi, subordinatamente ciottolosi e presentano frequentemente terre nere e incrostazioni calcaree.

- alluvioni recenti ed attuali (Q): si tratta di ciottolame arrotondato, con elementi eterometrici ed eterogenei provenienti dal flysch (brecce, calcari, marne, arenarie, ecc..).

In particolare, l'area interessata dal progetto in esame ricade sui depositi argillosi ed argilloso-sabbiosi grigio-azzurri. Dal punto di vista morfologico, l'area di interesse è ubicata in una zona dotata di bassa acclività per cui, data la suborizzontalità del piano campagna, si possono escludere fenomeni erosivi degni di rilievo e tanto più problemi di instabilità quali frane e smottamenti. La morfologia subpianeggiante di tale zona dipende essenzialmente dalla giacitura orizzontale o appena inclinata delle formazioni plio-pleistoceniche. Per la presenza nella parte alta di livelli conglomeratici e di crostoni calcarei, che proteggono in parte dal dilavamento le sottostanti formazioni sabbiose, si determinano laddove l'incisione è più attiva fianchi più scoscesi o a gradinata. Per quanto riguarda l'aspetto sismo-tettonico, l'area non è direttamente interessata da lineamenti strutturali superficiali. Secondo il D.M. del 17 gennaio 2018, per la definizione delle azioni sismiche di progetto secondo l'approccio semplificato riconducibile alle cinque categorie di sottosuolo, si fa riferimento alla cosiddetta Vs,eq valutato dalla seguente espressione:

$$VS,eq = H/(\Sigma i...N (hi/VS,i))$$

dove:

- hi = spessore dell'i-esimo strato
- VS,i = velocità delle onde di taglio nell'i-esimo strato
- N = numero di strati
- H = profondità del substrato, definito come quella formazione costituita da roccia e terreno molto rigido, caratterizzato da VS non inferiore a 800 m/s.

Il valore della Vs,eq è stato determinato in base a delle indagini indirette succitate prese in riferimento. Tali indagini hanno fornito un valore sperimentale tale da poter attribuire il suolo su cui ricadrà l'opera in progetto alla CATEGORIA "B", che, in base alla nuova definizione fornita dal D.M. del 17 gennaio 2018, rientra nella classificazione di "Rocce tenere e depositi di terreni a grana grossa molto addensati o terreni a grana fina molto consistenti, caratterizzati da un miglioramento delle proprietà meccaniche con la profondità e da valori di velocità equivalente compresi tra 360 m/s e 800 m/s".

Di seguito (Tabella 1) sono riportate le caratteristiche geotecniche del materiale del substrato.

Litologia dei terreni di copertura

Strato		Dr (%)	(°)	Ed (Kg/cm²)	(g/cm ³)	Yset (g/cm³)	G (Kg/cm²)	Litologia
	1	26	29	38	1.42	1.88	322	Terreno vegetale (sattie limose)
	2	58	37	430	1.76	2.09	1941	sapple amosp ghiaross
The second secon	3	50	36	169	1.67	2.04	1501	Sabhia limosa

Dr densità relativa; φ*;angolo di attrito; Ed:moculo edometrico; γ:peso di volume naturale; γ₂₀ε:peso di volume saturo; G:modulo di deformazione a teglio dinemico

Tabella 1: parametri geotecnici dell'area in esame.

I parametri geotecnici riportati in precedenza rappresentano un'assunzione fatta a favore di sicurezza, dal momento che tali parametri sono destinati a crescere con la profondità.

3.2. CARATTERIZZAZIONE EOLICA DELL'AREA

Dall'analisi del posizionamento geografico e sulla base della Normativa Tecnica a disposizione (NTC 2018) è stato possibile stabilire che:

- *Macrozonazione eolica*: il sito è posizionato in zona 3, a cui corrispondono i parametri di velocità ed altezza di riferimento riportati di seguito (*Tabella 2*).

Zona	[/]	3
V b,0	[m/s]	27,00
ao	[m]	500
ks	[1/s]	0,37

Tabella 2: parametri di macrozonazione eolica.

- *Microzonazione*: è stato possibile determinare il collocamento dell'area d'interesse in classe di rugosità "D" con categoria di esposizione "II". Da ciò scaturiscono i parametri (*Tabella 3*) utili al calcolo della pressione cinetica e dell'azione statica equivalente.

altezza s.l.m.	[m]	330
Classe di rugosità	[/]	D
Categoria di esposizione	[/]	II
k _r	[/]	0,19
Zo	[m]	0,05
Zmin	[m]	4
Ct	[/]	1
Ce	[/]	1,8
c _p (α)	[/]	1
Cd	[/]	1

Tabella 3: parametri di microzonazione eolica.

3.3. CARATTERIZZAZIONE SISMICA DELL'AREA

La classificazione sismica della zona di intervento ricade in zona sismica 1.

La pericolosità sismica è stata definita in termini di ordinate dello spettro di risposta elastico in accelerazione ad essa corrispondente Se(T), con riferimento alla probabilità di eccedenza PvR dello Stato Limite di prevenzione del Collasso (SLC) pari al 5%, e considerando un periodo di riferimento VR pari a 35 anni. Si riportano di seguito i valori ottenuti nelle relazioni specialistiche geologiche e geotecniche allegate al progetto.

PERICOLOSITÀ SISMICA DI SITO

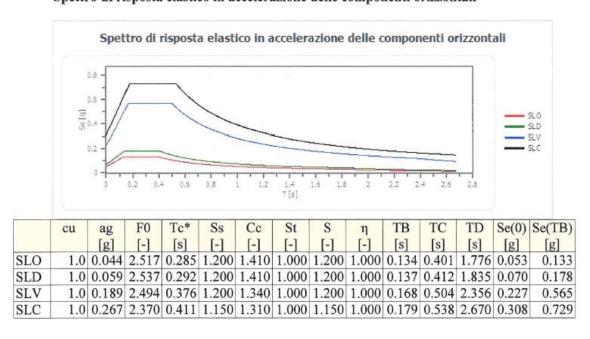
Coefficiente di smorzamento viscoso ξ:

5 %

Fattore di alterazione dello spettro elastico $\eta = [10/(5+)\xi]^{(1/2)}$:

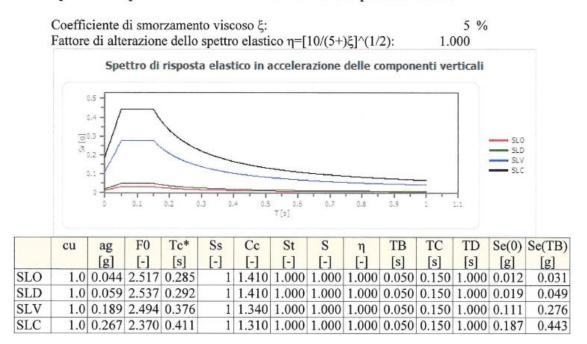
1.000

Categoria sottosuolo: B


Categoria topografica:

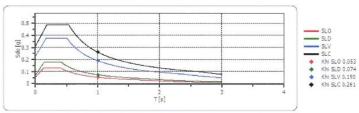
T1: Superficie pianeggiante, pendii e rilievi isolati con inclinazione media minore o uguale a 15°

Stabilità di pendii e fondazioni

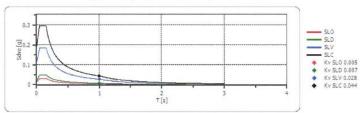

Demonited on pe	Stabilita di penda e fondazioni					
Coefficienti	SLO	SLD	SLV	SLC		
kh	0.011	0.014	0.054	0.086		
kv	0.005	0.007	0.027	0.043		
amax [m/s ²]	0.518	0.690	2.223	3.017		
Beta	0.200	0.200	0.240	0.280		

Spettro di risposta elastico in accelerazione delle componenti orizzontali

Spettro di risposta elastico in accelerazione delle componenti verticali



Spettro di progetto


Fattore di struttura spettro orizzontale q: 1.50
Fattore di struttura spettro verticale q: 1.50
Periodo fondamentale T: 1.00 [s]

	SLO	SLD	SLV	SLC
khi = Sde(T) Orizzontale [g]	0.053	0.074	0.190	0.261
kv = Sdve(T) Verticale [g]	0.005	0.007	0.028	0.044

Spettro di progetto delle componenti orizzontali

Spettro di progetto delle componenti verticali

Il comportamento della struttura è stato ipotizzato non dissipativo, pertanto è stato assunto un fattore di comportamento q=1. Mentre per quanto riguarda la componente verticale del moto, visti i carichi in gioco trascurabili e la leggerezza della struttura, essa è stata trascurata.

Di seguito *(Tabella 4)* sono riportati i parametri per la determinazione dello spettro di risposta elastico in accelerazione S_e(T) per lo Stato Limite di Collasso.

Pv _R	[%]	5
$\mathbf{V_{N}}$	[anni]	50
Cu	[/]	0,7
$\mathbf{V}_{\mathbf{R}}$	[anni]	35
${f A_g/g}$	$[m/s^2]$	0,231
$\mathbf{F_0}$	[/]	2,429
T*c	[/]	0,412
Cat. Sottosuolo	[/]	В
$\mathbf{S}_{\mathbf{s}}$	[/]	1,17
S _T	[/]	1
Cc	[/]	1,314
η	[/]	1
q	[/]	1

Tabella 4: parametri sismici per lo Stato Limite di Collasso.

I periodi di riferimento utili per il tracciamento degli spettri di accelerazione in componente orizzontale sono riportati di seguito *(Tabella 5)*. Noti i parametri sismici e conoscendo il periodo proprio della struttura in esame, è possibile calcolare la sollecitazione sismica.

		T(s)	Se(g)
Tb	[s]	0,181	0,659
Tc	[s]	0,541	0,659
Td	[s]	2,523	0,141

Tabella 5: periodi di riferimento per il tracciamento dello spettro di risposta in termini di accelerazione espresso per la componente orizzontale allo Stato Limite di Collasso (SLC).

4. CARICHI AGENTI

Sulla base della caratterizzazione dell'area di interesse è possibile procede all'individuazione dei carichi agenti sulla struttura e delle relative combinazioni utili per l'analisi strutturale. In particolare:

4.1. PESO PROPRIO DELLA STRUTTURA

La struttura considerata ai fini della generazione del modello strutturale è costituita da un sistema TRACKER di dimensioni in pianta pari a 4,48 x 17,05 metri, composto da 26 moduli fotovoltaici ancorati ad un unico telaio in acciaio a sezione scatolare 50x70mm mediante staffaggi in alluminio. Il telaio, a sviluppo rettangolare di sezione 110x110mm, sarà a sua volta collegato al sistema basculante I pali di fondazione battuti, in acciaio, costituiranno l'ancoraggio e la fondazione al suolo delle vele. La superficie occupata dalla singola struttura è pari a 81,57 mg.

Il peso proprio del modello, espresso in termini di incidenza a metro quadro, risulta essere pari a **34,24 Kg/mq (0,336 KN/mq),** e si articola nel seguente modo:

- ✓ 26 moduli fotovoltaici da 655W, dimensioni 2440x1140x40 mm, peso singolo modulo 30,90 Kg. *Incidenza a metro guadro pari a 12,56 Kg/mg*;
- ✓ Accessori vari di montaggio, incidenza a metro quadro pari a 0,30 Kg/mg
- ✓ Traversi in alluminio sezione 40x40x2mm con funzione di supporto per ancoraggio moduli fotovoltaici alla sottostruttura. *Incidenza a metro quadro pari a 0,33 Kg/mq*;
- ✓ 1 telaio piano realizzato con profili scatolari in acciaio 50x50 mm, peso specifico 7,00 kg/m. Incidenza a metro quadro pari a 6,26 Kg/mq;
- ✓ 1 trave basculante realizzata con profili scatolari in acciaio 100x100 mm, peso specifico 9,00 kg/m. *Incidenza a metro quadro pari a 1,99 Kg/mq*;
- ✓ 6 pali di fondazione predimensionati nelle dimensioni di 3000x200x200mm, spessore 4,00 mm. Peso singolo palo 90 kg.

4.2. AZIONE DEL VENTO

In ossequio alla Normativa vigente, per il calcolo del carico impresso dal vento si è proceduto alla determinazione della pressione del vento in relazione ai parametri derivanti dalla zonazione eolica precedentemente riportati.

La pressione del vento p è determinata come segue:

$$p = q_r * c_e * c_p * c_d$$
. [N/m²]

Nella formula precedente con q_r si indica la pressione cinetica di riferimento del vento determinata come:

$$q(z) = \frac{1}{2} * 1.25 * v_r^2 [N/m^2]$$

Per un tempo di ritorno pari a T_R = 50 anni e per un'altitudine sul livello del mare del sito $a_s \le a_0$ (50 \le 500), la velocità di riferimento del vento v_r è pari a $v_{b,0}$, ovvero pari a 27 m/s; pertanto, la pressione cinetica di riferimento è pari a q_r = 455,62 N/ m^2 .

Il coefficiente di esposizione c_e dipende dall'altezza z sul suolo del punto considerato, dalla topografia del terreno e dalla categoria di esposizione del sito ove sorge la struttura.

Nello specifico, ad altezza z pari a 2,36 m ($z < z_{min}$) e classe di esposizione del sito pari a II, il coefficiente di esposizione è pari a $c_e = 1,8$.

Il coefficiente di forma c_p dipende dalla tipologia e dalla geometria della struttura e dal suo orientamento rispetto alla direzione del vento. Nello specifico, considerando l'inclinazione del pannello oscillante tra α = +/- 55°, è stato assunto c_p = ± 1,6.

Infine, il coefficiente dinamico c_d è stato assunto cautelativamente, secondo la norma, pari a 1.

Pertanto, la pressione del vento risulta pari a $p = 1,312 \text{ KN/m}^2$.

Di seguito si riporta il calcolo in maniera tabellare (Tabella 6).

qr	$[N/m^2]$	455,63
Ce	[/]	1,8
Сp	[/]	± 1,6
$\mathbf{c_d}$	[/]	1
p	$[kN/m^2]$	1,312

Tabella 6: pressione del vento

4.3. CARICO NEVE

Il carico provocato dalla neve sarà valutato mediante la seguente espressione:

$$q_s = q_{sk} * \mu_i * C_E * C_T$$

Il valore di riferimento del carico neve al suolo q_{sk} è calcolato in riferimento alla zonazione imposta dalla normativa vigente (NTC 2018); a tal proposito il sito ricade nella Zona III con $a_s = 380$ m, pertanto il valore di riferimento del carico neve al suolo è pari a:

$$q_{sk} = 0,659 \text{ KN/m}^2$$
 se $a_s > 200 \text{ m}$

Il coefficiente di esposizione C_E e il coefficiente termico C_T sono stati assunti pari a 1, mentre, per α = 0°, il coefficiente di forma μ_i è pari a 0,8.

Pertanto, il carico neve risulta pari a $q_s = 1,05 \text{ KN/m}^2$.

Di seguito si riporta il calcolo in maniera tabellare (Tabella 8).

q _{sk}	$[kN/m^2]$	0,659
μ	[/]	1,6
CE	[kN]	1
Ст	[/]	1
$\mathbf{q}_{\mathbf{s}}$	$[kN/m^2]$	1,05

Tabella 8: carico neve

5. COMBINAZIONI DI CARICO

In ossequio alla Normativa Vigente, l'analisi strutturale dell'opera è stata eseguita in riferimento al metodo degli Stati Limite. Pertanto, noti i singoli carichi di progetto nel loro valore "caratteristico", si è proceduto alla determinazione di opportune combinazioni.

La combinazione fondamentale generalmente impiegata per gli stati limite ultimi (SLU) è la seguente:

$$\gamma_{G1} G_1 + \gamma_{Q1} Q_{k1} + \gamma_{Q2} \Psi_{02} Q_{k2}$$

La combinazione sismica, invece, valida sia per gli Stati Limite Ultimi che per gli Stati Limite di Esercizio, è la seguente:

$$E + G_1 + \Psi_{21} Q_{k1} + \Psi_{22} Q_{k2}$$

Dove gli effetti dell'azione sismica *E* sono valutati tenendo conto delle masse associate ai seguenti carichi gravitazionali:

$$G_1 + \Psi_{21} Q_{k1}$$

Dove per G_1 e Q_k si intendono rispettivamente i carichi permanenti e i carichi variabili, mentre i coefficienti parziali per le azioni γ_F , in riferimento all'approccio 2 della norma, sono quelli riportati nella colonna A1 della Tab. 2.6.I delle NTC 2018, mentre i coefficienti di combinazione Ψ_{0j} e Ψ_{2j} sono riportati nella Tab. 2.5.I delle stesse norme.

Si considerano le seguenti combinazioni di carico per gli Stati Limite Ultimi:

- 1. $1,3G_P + 1,5Q_N + 0,9Q_V$
- 2. $1,3G_P + 1,5Q_V + 0,75Q_N$
- 3. $1 G_P + 1.5 Q_V$
- 4. $1.3 G_P + 1.5 Q_N$
- 5. $E + G_P$

6. PREDIMENSIONAMENTO E CALCOLO PORTANZA LATERALE DEI PALI DI FONDAZIONI

6.1. RISULTATI ANALISI

La verifica geotecnica più gravosa per questa tipologia di fondazione è quella relativa al **collasso per** carico limite di sfilamento nei riguardi dei carichi assiali di trazione. Pertanto, si è proceduto al calcolo delle massime sollecitazioni di sfilamento, le quali sono state confrontate con la portanza limite laterale del palo, trascurando il peso proprio dello stesso.

Alla luce di tale considerazione, la combinazione di carico critica risulta essere la n. 3, ovvero quella in cui si considerano:

- vento sfavorevole in direzione ortogonale ai pannelli fotovoltaici ($\gamma_Q = 1,5$);
- carico neve favorevole e quindi nullo (γ_Q = 0);
- peso proprio della struttura favorevole ($\gamma_G = 1$);

Per il calcolo delle massime sollecitazioni di trazione agenti alla base della struttura, quest'ultima è stata ipotizzata essere costituita da profili in acciaio con sezione HEB di dimensioni 200 mm con spessore pari a t = 4 mm.

Considerando la superficie dei moduli che compete ad un singolo telaio (13,48 m2) e l'inclinazione dello stesso variabile tra ± 55°, la massima sollecitazione di sfilamento calcolata è pari a circa

$$Tsd = 3,63 kN.$$

Di seguito si riporta lo schema di calcolo adottato per il calcolo delle sollecitazioni.

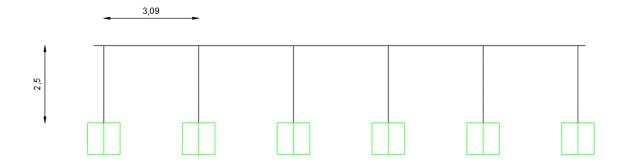
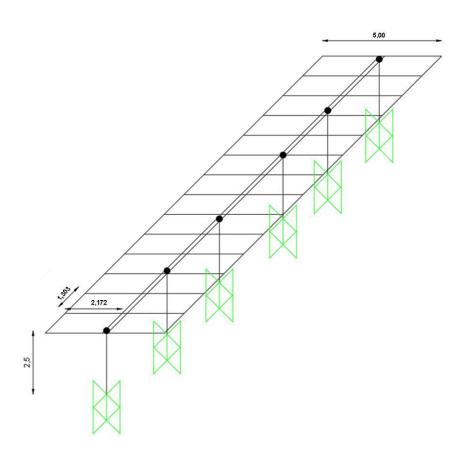



Figura 1: schema di calcolo per l'interazione pali telaio.

 $Figura\ 2:\ schema\ di\ calcolo\ per\ l'interazione\ pali\ telaio.$

6.2. CALCOLO PORTANZA LATERALE DEL PALO

Per il calcolo della portanza limite laterale del palo si procede attraverso *l'approccio 2 delle NTC 2018* con la combinazione A1+M1+R3, tenendo conto dei valori dei coefficienti parziali (γ_M e γ_R) e dei fattori di correlazione (ξ) riportati nelle tabelle 6.2.II, 6.4.II e 6.4.IV delle stesse norme.

La portanza limite laterale di progetto del palo R_{sd} è ottenuta applicando il coefficiente parziale γ_{st} al valore caratteristico R_{sk} , quest'ultimo determinato attraverso la seguente espressione:

$$R_{s,k} = min \{ (R_{s,cal})_{media} / \xi_3; (R_{s,cal})_{minima} / \xi_4 \}$$

La resistenza di calcolo $R_{s,cal}$ è stata calcolata attraverso metodi analitici, dove ogni valore caratteristico dei parametri geotecnici del terreno è stato diviso per il coefficiente parziale γ_M riportato nella colonna M1 della tabella 6.2.II delle norme tecniche vigenti.

Il fattore di correlazione ξ , invece, dipende dal numero di verticali indagate; nel caso specifico è stata effettuata una sola indagine, pertanto secondo la tabella 6.4.IV della normativa vigente, il valore di ξ_4 sarà pari a 1,70. Di seguito si riportano i valori dei coefficienti parziali utilizzati nel calcolo in riferimento all'approccio 2 della normativa tecnica (Tabella 9).

Grandezza alla quale applicare il coefficiente parziale	Coefficiente parziale γ_M/γ_R	
tano' _k	γ_{arphi} ,	1
c' _k	γ_c ,	1
c' _{uk}	Уси	1
γ_{γ}	γ_{γ}	1
\mathbf{R}_{sd}	γ_{st}	1,25

Tabella 9: coefficienti parziali adottati

La resistenza laterale a trazione R_{s,cal} sarà pari alla seguente espressione:

$$R_{s,cal} = A_L * s$$

Con s, sforzi di taglio che si generano in corrispondenza dell'interfaccia palo-terreno in condizioni di lungo termine, pari a:

$$s = K_0 * \sigma'_{v0} * \mu$$

Con K coefficiente di spinta, assunto per pali battuti pari al coefficiente di spinta passiva Kp = 2,28.

Il coefficiente d'attrito palo-terreno μ è stato assunto pari a $tan \delta$, mentre $\sigma'_{\nu 0}$ è la tensione verticale efficace nella mezzeria.

Le verifiche agli Stati Limite risultano soddisfatte se:

$$R_{sd} > T_{sd}$$

Pertanto, la lunghezza minima di inserimento del palo è la seguente:

$$h_{min} = (2 * T_{sd} * \xi_4 * \gamma_{st}/\pi * d * \gamma * K_p * \mu)^{1/2} = 2,31 m$$

Di seguito si riporta il calcolo in maniera tabellare (Tabella 8).

T_{sd}	[kN]	3,63
ξ4	[/]	1,7
$\gamma_{\rm st}$	[/]	1,25
d	[m]	0,1
γ	$[kN/m^3]$	15,00
Kp	[/]	2,28
μ	[/]	tanδ
h _{min}	[m]	2,314

Tabella 11: altezza palo

Cautelativamente si è moltiplicata la lunghezza minima di inserimento h_{min} per un coefficiente pari a 1,30 e pertanto la lunghezza di infissione del palo sarà assunta pari a h_p = 3,00 m

6.1. VERIFICA AL RIBALTAMENTO DELLE STRUTTURE FOTOVOLTAICO

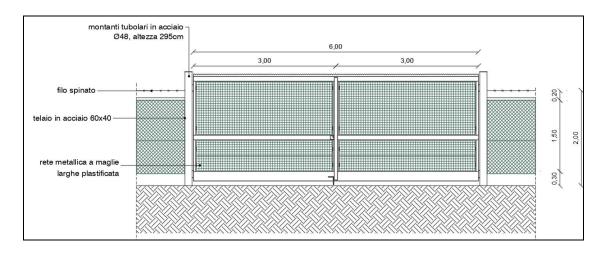
La verifica al ribaltamento dovuta all'azione del vento è stata condotta secondo le prescrizioni dettate dalle NTC2018, impiegando i coefficienti relativi allo stato limite di corpo rigido (EQU). Sono stati considerati come carichi stabilizzanti, generatori di altrettanti momenti stabilizzanti:

- il peso proprio delle strutture fotovoltaiche omnicomprensive di moduli, elementi strutturali e pali di fondazione;
- l'azione del terreno sui pali di fondazione, nelle sue componenti tangenziali e orizzontali in opposizione al movimento rotazionale della struttura

È stato invece considerato come carico sfavorevole l'azione del vento, calcolato secondo le prescrizioni NTC2018 e s.m.i. Sono inoltre stati applicati i coefficienti di riduzione e di amplificazione dei carichi così come riportati nelle tabelle:

Carichi favorevoli				
Peso complessivo struttura				
Descrizione	u.m.	q.tà	Peso unitario (Kg)	Peso complessivo (Kg)
Moduli FTV 655W	cad.	26,00	39,40	1024,40
Accessori vari	mq	81,57	0,30	24,47
Correntini	m	36,00	0,75	27,00
Telaio di supporto	m	73,00	7,00	511,00
Trave basculante di supporto	m	18,00	9,00	162,00
Pilastrini	m	16,80	30,00	504,00
Pali di fondazione	m	18,00	30,00	540,00
			2792,87	
			27,39	
	Superficie complessiva della struttura (mg)			
	Superficie di competenza singolo telaio (mg)			15,00
		Incide	enza a mq peso struttura (KN/mq)	0,336
		Incidenza peso su singo	5,037	
	braccio della forza (m)			
			momento favorevole (KNm)	12,59
			coefficiente di riduzione	0,9
			Momento Ptot*a/2	11,33
Azione terreno su palo			•	·
Altezza palo	Larghezza palo	Sup. Palo	Y terreno	Forza Risultante
	3 0,20	1		81,00
	1	5,51	Braccio forza favorevole	0,90
			Momento	72,90
			Momento yah3	65,61
	1	<u> </u>	,	

Momento Favorevole


Azione del vento

Pressione a mq (KN/mq)	Superficie (mq	Pressione complessiva (KN)	Superf. Competenza telaio (mq)	Pressione competenza telaio (KN/mq)
1,3	81,5	107,92	14,00	18,52
			braccio della forza sfavorevole	2,50
			momento sfavorevole (KNm)	46,31
			coefficiente	1,50
			Momento Ribalt. (KNm)	69,46

Come si evince dalle tabelle di sintesi dei calcoli effettuati, la struttura risulta verificata al ribaltamento grazie alla relazione "Mstab(Tot)> Mrib(Tot)", in particolare Mstab(76,94 KNm)> MRib(69,46 KNm)

6.2. STRUTTURE PREFABBRICATE DI SUPPORTO PER CANCELLI DI INGRESSO

A differenza delle recinzioni perimetrali, i cui pali saranno infissi a regola d'arte nel terreno ad una profondità di 100 cm circa, i cancelli di ingresso all'impianto fotovoltaico saranno invece posati mediante tirafondi imbullonati ad appositi plinti di fondazione in calcestruzzo armato prefabbricato in ottemperanza alle prescrizioni in materia di salvaguardia dell'ambiente.

Al fine di garantire la massima sicurezza e staticità della realizzazione, è stata approntata una apposita verifica al ribaltamento, in modo da pre-dimensionare il plinto di fondazione per i cancelli di ingresso al parco fotovoltaico.

È evidente che l'azione dominante che porterebbe al collasso per ribaltamento del sistema recinzione-cancello è legata all'azione del vento, per cui sono stati considerati favorevoli i pesi dei componenti della struttura metallica ivi compreso il pilastro di fondazione, mentre è stata considerata sfavorevole l'azione del vento applicata alla superficie di competenza del pilastro in acciaio

Come si evince dalle tabelle di sintesi dei calcoli effettuati, la struttura risulta verificata al ribaltamento grazie alla relazione "Mstab(Tot)> Mrib(Tot)" già comprensiva dei coefficienti previsti dalla normativa, in particolare Mstab(10,06 KNm)> MRib(6,64 KNm)

VERIFICA AL RIBALTAMENTO CANCELLI DI INGRESSO						
Carichi favorevoli						
Peso complessivo struttura						
Descrizione	u.m.	q.tà	Peso unitario (Kg)	Peso complessivo (Kg)		
Cancello	m	8,00	60,00	480,00		
Accessori vari	mq	8,00	0,20	1,60		
Pilastro in acciaio	cad.	1,00	47,50	47,50		
Fondazione	cad.	1,00	1750,00	1750,00		
			PESO TOTALE STRUTTURA (Kg)	2279,10		
			PESO TOTALE STRUTTURA (KN)	22,35		
	•		braccio della forza (m)	0,500		
			momento favorevole (KNm)	11,18		
			coefficiente di riduzione	0,9		
			Momento Ptot*a/2	10,06		
			Momento favorevole (KNm)	10,06		
Carico sfavorevole	ı					
qr	ce	ср	cd	Pv in N		
			cd			
qr			cd 1	Pv in N		
gr 455,625	1,8	1,5	cd 1	Pv in N 1230,1875		
qr 455,625 qr 455,625 Azione del vento	0,5	r 1,25	cd 1	Pv in N 1230,1875 vr 27		
qr 455,625 qr 455,625 Azione del vento Pressione a mq (KN/mq)	1,8 0,5 Superficie (mq)	r 1,25 Pressione complessiva (KN)	cd 1	Pv in N 1230,1875		
qr 455,625 qr 455,625 Azione del vento	1,8 0,5 Superficie (mq)	r 1,25 Pressione complessiva (KN)	cd 1 vr 27 Superf. Competenza telaio (mq) 2,00	Pv in N 1230,1875 vr 27 Pressione competenza telaio (KN/mq)		
qr 455,625 qr 455,625 Azione del vento Pressione a mq (KN/mq)	1,8 0,5 Superficie (mq)	r 1,25 Pressione complessiva (KN)	cd 1 vr 27 Superf. Competenza telaio (mq)	Pv in N 1230,1875 vr 27 Pressione competenza telaio (KN/mq)		
qr 455,625 qr 455,625 Azione del vento Pressione a mq (KN/mq)	1,8 0,5 Superficie (mq)	r 1,25 Pressione complessiva (KN)	cd 1 vr 27 Superf. Competenza telaio (mq) 2,00	Pv in N 1230,1875 vr 27 Pressione competenza telaio (KN/mq) 2,46		
qr 455,625 qr 455,625 Azione del vento Pressione a mq (KN/mq)	1,8 0,5 Superficie (mq)	r 1,25 Pressione complessiva (KN)	cd 1 vr 27 Superf. Competenza telaio (mq) 2,00 braccio della forza sfavorevole	Pv in N 1230,1875 vr 27 Pressione competenza telaio (KN/mq) 2,46 1,80		

6.3. STRUTTURE PREFABBRICATE DI SUPPORTO PER LE RECINZIONI PERIMETRALI

Le recinzioni perimetrali saranno realizzate in rete metallica plastificata a maglia regolare 5x5cm, i cui pali saranno infissi a regola d'arte nel terreno ad una profondità di 100 cm circa, ammorsata con trefoli in acciaio alla palificata perimetrale costituita da tubolari in acciaio zincato del diametro di 8,00 cm, il tutto senza alcun getto di calcestruzzo, in piena ottemperanza alle prescrizioni in materia di salvaguardia dell'ambiente.

			VERIFICA AL RIBALTAN	IENTO RECINZIONI	
Carichi favorevoli					
Carterii Tavore voii					
Peso complessivo struttui	ra				
Descrizione		u.m.	q.tà	Peso unitario (Kg)	Peso complessivo (Kg)
Recinzioni		m	2,00	8,00	16,00
Accessori vari		mq	2,00	0,20	0,40
Pilastro in acciaio infisso		cad.	2,00	5,00	10,00
				PESO TOTALE STRUTTURA (Kg)	26,40
				PESO TOTALE STRUTTURA (KN)	0,26
	•			braccio della forza (m)	0,050
				momento favorevole (KNm)	0,01
				coefficiente di riduzione	0,9
				Momento Ptot*a/2	0,01
				Momento favorevole (KNm)	0,01
Azione terreno su palo					
Altezza palo		Larghezza palo	Sup. Palo	Y terreno	Forza risultante (KN/mq)
	1	0,08	0,08	16,00	1,28
				coefficiente di riduzione	0,9
				Momento Y*a*h3	1,15
				Momento favorevole (KNm)	1,16
Azione del vento					
Pressione a mq (KN/mq)			Pressione complessiva (KN)		Pressione competenza telaio (KN/mq)
	1,230	0,32	0,39	0,32	0,39
				braccio della forza sfavorevole	1,80
				momento sfavorevole (KNm)	0,71
				coefficiente	1,50

7. STRUTTURE PREFABBRICATE PER CABINE ELETTRICHE E SERVIZI AUSILIARI

Le cabine elettriche che saranno fornite e posate all'interno dell'area di impianto saranno composte esclusivamente da strutture prefabbricate, trasportate e appoggiate su terreno, previa battitura e preparazione dello stesso. In particolare, le cabine saranno composte da una vasca di fondazione e dalla cabina vera e propria che ospiterà la quadristica e le connessioni elettriche. Tutti i prefabbricati introdotti in sito risponderanno a tutti i criteri e requisiti Normativi, sia urbanistici che elettrici.

8. CONSIDERAZIONI SULLA DISMISSIONE

È doveroso precisare che al termine della vita di servizio dell'impianto tutte le strutture verranno completamente smontate ed i pali infissi saranno semplicemente sfilati dal terreno sottostante, grazie all'ausilio di automezzo munito di braccio gru. Inoltre, al termine della vita utile dell'impianto i pali di fondazione saranno estratti dal terreno e potranno essere facilmente riutilizzati oppure riciclati quali materiali metallici nelle apposite discariche autorizzate.

Anche la vasca di fondazione delle cabine elettriche sarà estratta dal terreno tramite l'utilizzo di un piccolo escavatore e trasportata in un sito idoneo allo smaltimento. Il terreno sarà ripristinato e costipato, rendendolo disponibile sin da subito alle nuove destinazioni d'uso.

9. CONCLUSIONI

Nella presente relazione di calcolo sono state riportati gli studi di predimensionamento delle opere di ancoraggio al suolo per pannelli fotovoltaici. Lo studio è stato condotto in ossequio alla vigente Normativa Tecnica (NTC 2018 e s.m.i.) tenendo in conto dei parametri geotecnici, di zonazione eolica e sismici derivanti da dette Norme.

Sulla base di quanto detto i risultati ottenuti sono tali da assicurare la capacità delle fondazioni di sopportare le sollecitazioni derivanti dalle azioni statiche e dinamiche agenti sulla struttura.

Il tecnico

g. Renato Pertuso