COMMITTENTE:

DIREZIONE LAVORI:

APPALTATORE:

Consorzio Telese Società Consortile a Responsabilità Limitata

SYSTIA

PROGETTAZIONE:

MANDATARIA:

MANDANTI:

IL DIRETTORE DELLA PROGETTIAZIONE:

Responsabile integrazione fra le varie prestazioni specialistiche

PROGETTO ESECUTIVO

ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA CANCELLO - BENEVENTO II LOTTO FUNZIONALE FRASSO TELESINO – VITULANO 2° SUBLOTTO TELESE – SAN LORENZO

RELAZIONE

IN10 - Tombino Rio Cocuzza 1 4.00 x 2.00 al km 31+322,35 Relazione di calcolo

APPALTATORE	SCALA:
IL DIRETTORE TECNICO	-

COMMESSA LOTTO FASE ENTE TIPO DOC. OPERA/DISCIPLINA PROGR. REV.

 I F 2 R
 2 2
 E
 Z Z
 C L
 I N 1 0 0 0
 0 0 1
 C

Rev.	Descrizione	Redatto	Data	Verificato	Data	Approvato	Data	Autorizzato Data
Α	EMISSIONE	M. Marras			30/06/21	M. Nuti	30/06/21	IL PROGETTISTA
_ ^	EIVIIOOINE		29/06/21		30/06/21		30/06/21	P. Cucino
В	REVISIONE A SEGUITO	M. Marras	29/10/21	D. Maturi	30/10/21	M. Nuti	ഹവളപ്പ <u>െ</u>	NE DEGLI INGEGNER
В	RDV		29/10/21		30/10/21		DELL	PROV. OT TRENT
(REVISIONE A SEGUITO	M. Marras	22/11/21	D. Maturi	23/11/21	M. Nuti	22714/24	and appliance in the
	RDV		22/11/21		23/11/21			MGZOPA OLOCOUGINO SCRIZIONE ALBO N° 2216
								John Living Manager
								24/11/21

File: IF2R.2.2.E.ZZ.CL.IN.10.0.0.001.C.doc n. Elab.:

TELESE S.c.a r.l.

Consorzio Telese Società Consortile a Responsabilità Limitata

PROGETTAZIONE:

Mandataria:

Mandante:

SYSTRA S.A. SWS Engineering S.p.A. SYSTRA-SOTECNI S.p.A.

IN10 - Tombino Rio Cocuzza 1 4.00 x 2.00 al km 31+322,35 Relazione di calcolo

ITINERARIO NAPOLI – BARI

RADDOPPIO TRATTA CANCELLO-BENEVENTO

II LOTTO FUNZIONALE FRASSO TELESINO – VITULANO

2° SUBLOTTO TELESE – SAN LORENZO

PROGETTO ESECUTIVO

REV. COMMESSA LOTTO CODIFICA DOCUMENTO FOGLIO IF2R 2.2.E.ZZ CL IN.10.0.0.001 С 2 di 69

1	PR	EMESSA5
2	e NC	PRMATIVA DI RIFERIMENTO7
	2.1	ELABORATI DI RIFERIMENTO7
3	B MA	ATERIALI8
	3.1	CLASSI DI ESPOSIZIONE E COPRIFERRI8
	3.2	CALCESTRUZZO PER ELEVAZIONI (C 32/40)10
	3.3	CALCESTRUZZO PER FONDAZIONE (C 28/35)11
	3.4	CALCESTRUZZO MAGRO PER GETTI DI LIVELLAMENTO/SOTTOFONDAZIONI (C12/15)12
	3.5	ACCIAIO IN BARRE D'ARMATURA PER C.A. (B450C)12
	3.6	VERIFICHE ALLE TENSIONI
	3.7	VERIFICHE A FESSURAZIONE14
4	CA	RATTERIZZAZIONE GEOTECNICA16
	4.1	ITERAZIONE TERRENO-FONDAZIONE
5	CA	RATTERIZZAZIONE SISMICA18
	5.1	VITA NOMINALE E CLASSE D'USO18
	5.2	PARAMETRI DI PERICOLOSITÀ SISMICA
6	s so	PFTWARE DI CALCOLO21
	6.1	ORIGINE E CARATTERISTICHE DEI CODICI DI CALCOLO ADOTTATI21
	6.2	UNITÀ DI MISURA21
	6.3	GRADO DI AFFIDABILITÀ DEL CODICE
	6.4	VALUTAZIONE DELLA CORRETTEZZA DEL MODELLO21
	6.5	CARATTERISTICHE DELL'ELABORAZIONE22

TELESE S.c.a r.l.

Consorzio Telese Società Consortile a Responsabilità Limitata

PROGETTAZIONE:

Mandataria:

Mandante:

SYSTRA S.A. SWS Engineering S.p.A. SYSTRA-SOTECNI S.p.A.

IN10 - Tombino Rio Cocuzza 1 4.00 x 2.00 al km 31+322,35 Relazione di calcolo

ITINERARIO NAPOLI – BARI

RADDOPPIO TRATTA CANCELLO-BENEVENTO II LOTTO FUNZIONALE FRASSO TELESINO – VITULANO

2° SUBLOTTO TELESE – SAN LORENZO

PROGETTO ESECUTIVO

COMMESSA LOTTO CODIFICA DOCUMENTO REV. IF2R 2.2.E.ZZ CL IN.10.0.0.001 С

FOGLIO

3 di 69

	0.0	GIU	IDIZIO FINALE SULLA ACCETTABILITA DEI CALCOLI	2
	6.7	PR	OGRAMMI DI SERVIZIO22	2
7	CC	МВ	INAZIONI DI CARICO2	3
8	SC	ATC	DLARE 5.00 X 3.00 M2	7
	8.1	GE	OMETRIA2	7
	8.2	Мо	DELLO DI CALCOLO	В
	8.2.	.1	Valutazione della rigidezza delle molle2	8
	8.3	ΑN	ALISI DEI CARICHI30	0
	8.3.	.1	Peso proprio della struttura e carichi permanenti portati3	0
	8.3.	2	Spinta in presenza di falda3	1
	8.3.	3	Spinta del terreno sulle pareti3	1
	8.3.	4	Treni di carico3	2
	8.3.	.5	Spinta del terreno indotta dai treni di carico3	4
	8.3.	6	Avviamento e frenatura3	5
	8.3.	7	Serpeggio e centrifuga3	6
	8.3.	8	Ritiro differenziale della soletta di copertura3	6
	8.3.	9	Azione Termica3	9
	8.3.	10	Azione sismica inerziale3	9
	8.4	DIA	AGRAMMI DELLE SOLLECITAZIONI42	2
	8.5	VE	RIFICA DELLE SEZIONI IN C.A4	6
	8.5.	.1	Verifica soletta inferiore4	8
	8.5.	2	Verifica soletta superiore4	9
	8.5.	.3	Verifica piedritti5	0

TELESE S.c.a r.l.

Consorzio Telese Società Consortile a Responsabilità Limitata

PROGETTAZIONE:

Mandataria:

Mandante:

SYSTRA S.A. SWS Engineering S.p.A. SYSTRA-SOTECNI S.p.A.

IN10 - Tombino Rio Cocuzza 1 4.00 x 2.00 al km 31+322,35 Relazione di calcolo

ITINERARIO NAPOLI – BARI

RADDOPPIO TRATTA CANCELLO-BENEVENTO

II LOTTO FUNZIONALE FRASSO TELESINO – VITULANO

2° SUBLOTTO TELESE – SAN LORENZO

PROGETTO ESECUTIVO

COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO IF2R 2.2.E.ZZ CL IN.10.0.0.001 С 4 di 69

8.6	I ABELLA RIEPILOGATIVA INCIDENZA FERRI	51
8.7	VERIFICA FONDAZIONE	51
8.7	.1 Verifica portanza	51
9 SE	ZIONE AD U DI IMBOCCO	56
9.1	GEOMETRIA	56
9.2	MODELLO DI CALCOLO	56
9.3	ANALISI DEI CARICHI	58
9.4	DIAGRAMMI DELLE SOLLECITAZIONI	63
9.5	VERIFICA DELLE SEZIONI IN C.A	66
9.6	TABELLA RIEPILOGATIVA DELLE INCIDENZE FERRI	69

APPALTATORE: TELESE S.c.a r.l. ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA CANCELLO-BENEVENTO Consorzio Telese Società Consortile a Responsabilità Limitata II LOTTO FUNZIONALE FRASSO TELESINO – VITULANO 2° SUBLOTTO TELESE – SAN LORENZO PROGETTAZIONE: Mandataria: Mandante: PROGETTO ESECUTIVO SWS Engineering S.p.A. SYSTRA S.A. SYSTRA-SOTECNI S.p.A. COMMESSA LOTTO IN10 - Tombino Rio Cocuzza 1 4.00 x 2.00 al km 31+322,35 CODIFICA **DOCUMENTO** RFV **FOGLIO** Relazione di calcolo 2.2.E.ZZ IN.10.0.0.001 5 di 69 IF2R CL С

1 PREMESSA

Il presente documento si inserisce nell'ambito della redazione degli elaborati tecnici di progetto esecutivo del Raddoppio dell'Itinerario Ferroviario Napoli-Bari nella Tratta Cancello-Benevento/ 2° Lotto Funzionale Frasso Telesino – Vitulano.

L'opera consiste in uno scatolare in c.a. gettato in opera e vasche di imbocco.

La sezione trasversale retta ha una larghezza interna di L_{int} = 5.00 m ed un'altezza netta di H_{int} = 3.00 m; lo spessore della platea di fondazione è di S_f = 0.70 m, lo spessore dei piedritti è di S_p = 0.60 m e lo spessore della soletta di copertura è di S_s = 0.60 m.

Nell'immagine seguente si riportano una sezione trasversale e longitudinale dell'opera.

Quanto riportato di seguito consentirà di verificare che il dimensionamento della struttura è stato effettuato nel rispetto dei requisiti di resistenza richiesti all'opera.

La verifica strutturale è eseguita, a favore di sicurezza, sul tratto sottostante la ferrovia ed i risultati estesi al tratto sotto la viabilità che ha carichi mobili di entità inferiore.

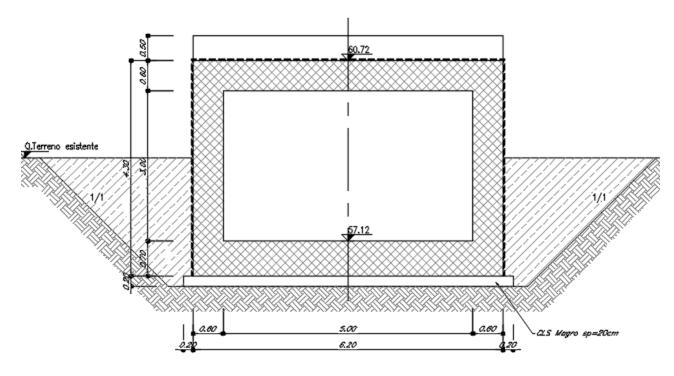


Figure 1 – Sezione trasversale dell'opera scatolare

APPALTATORE: TELESE S.c.a r.l.

Consorzio Telese Società Consortile a Responsabilità Limitata

PROGETTAZIONE:

Mandataria: Mandante:

SYSTRA S.A. SWS Engineering S.p.A. SYSTRA-SOTECNI S.p.A.

IN10 - Tombino Rio Cocuzza 1 4.00 x 2.00 al km 31+322,35 Relazione di calcolo

ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA CANCELLO-BENEVENTO II LOTTO FUNZIONALE FRASSO TELESINO – VITULANO 2° SUBLOTTO TELESE – SAN LORENZO

PROGETTO ESECUTIVO

COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO IF2R 2.2.E.ZZ CL IN.10.0.0.001 С 6 di 69

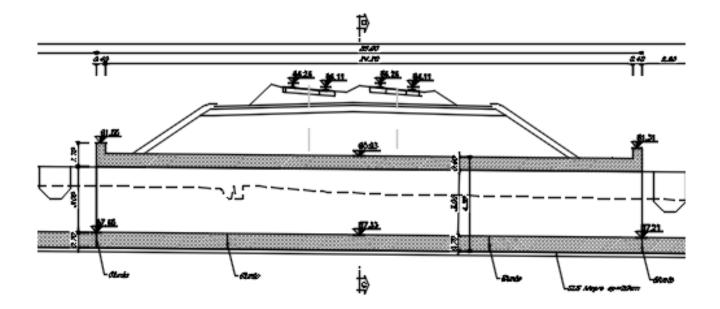


Figure 2 – Sezione longitudinale dell'opera

TELESE S.c.a r.l.

Consorzio Telese Società Consortile a Responsabilità Limitata

PROGETTAZIONE:

Mandataria: Mandante:

SYSTRA S.A. SWS Engineering S.p.A. SYSTRA-SOTECNI S.p.A.

IN10 - Tombino Rio Cocuzza 1 4.00 x 2.00 al km 31+322,35

Relazione di calcolo

ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA CANCELLO-BENEVENTO II LOTTO FUNZIONALE FRASSO TELESINO – VITULANO 2° SUBLOTTO TELESE – SAN LORENZO

PROGETTO ESECUTIVO

COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO

IF2R 2.2.E.ZZ CL IN.10.0.0.001 C 7 di 69

2 NORMATIVA DI RIFERIMENTO

Di seguito si riporta l'elenco generale delle Normative Nazionali ed internazionali vigenti alla data di redazione del presente documento, quale riferimento per la redazione degli elaborati tecnici e/o di calcolo dell'intero progetto nell'ambito della quale si inserisce l'opera oggetto della presente relazione:

- Rif. [1] Ministero delle Infrastrutture, DM 14 gennaio 2008, «Nuove Norme Tecniche per le Costruzioni»
- Rif. [2] Ministero delle Infrastrutture e Trasporti, circolare 2 febbraio 2009, n. 617 C.S.LL.PP., «Istruzioni per l'applicazione delle Nuove norme tecniche per le costruzioni di cui al decreto ministeriale 14 gennaio 2008»
- Rif. [3] Manuale di Progettazione delle Opere Civili: PARTE I / Aspetti Generali (RFI DTC SI MA IFS 001 A)
- Rif. [4] Manuale di Progettazione delle Opere Civili: PARTE II Sezione 1 / Ambiente e Geologia (RFI DTC SI AG MA IFS 001 A rev 30/12/2016)
- Rif. [5] Manuale di Progettazione delle Opere Civili: PARTE II Sezione 2 / Ponti e Strutture (RFI DTC SI PS MA IFS 001 A– rev 30/12/2016)
- Rif. [6] Manuale di Progettazione delle Opere Civili: PARTE II Sezione 3 / Corpo Stradale (RFI DTC SI CS MA IFS 001 A– rev 30/12/2016)
- Rif. [7] Manuale di Progettazione delle Opere Civili: PARTE II Sezione 4 / Gallerie (RFI DTC SI GA MA IFS 001 A– rev 30/12/2016)
- Rif. [8] Manuale di Progettazione delle Opere Civili: PARTE II Sezione 5 / Prescrizioni per i Marciapiedi e le Pensiline delle Stazioni Ferroviarie a servizio dei Viaggiatori (RFI DTC SI CS MA IFS 002 A– rev 30/12/2016)
- Rif. [9] Manuale di Progettazione delle Opere Civili: PARTE II Sezione 6 / Sagome e Profilo minimo degli ostacoli (RFI DTC SI CS MA IFS 003 A– rev 30/12/2016)
- Rif. [10] Regolamento (UE) N.1299/2014 della Commissione del 18 Novembre 2014 relativo alle specifiche tecniche di interoperabilità per il sottosistema "infrastruttura" del sistema ferroviario dell'Unione europea
- Rif. [11] Eurocodice 1 Azioni sulle strutture, Parte 1-4: Azioni in generale Azioni del vento (UNI EN 1991-1-4)
- Rif. [12] UNI 11104: Calcestruzzo : Specificazione, prestazione, produzione e conformità Istruzioni complementari per l'applicazione della EN 206-1

2.1 ELABORATI DI RIFERIMENTO

Costituiscono parte integrante di quanto esposto nel presente documento, l'insieme degli elaborati di progetto specifici relativi all'opera in esame e riportati in elenco elaborati.

APPALTATORE:

TELESE S.c.a r.l.

Consorzio Telese Società Consortile a Responsabilità Limitata

PROGETTAZIONE:

Mandataria:

SYSTRA S.A.

SWS Engineering S.p.A.

SYSTRA-SOTECNI S.p.A.

ITINERARIO NAPOLI – BARI
RADDOPPIO TRATTA CANCELLO-BENEVENTO
II LOTTO FUNZIONALE FRASSO TELESINO – VITULANO
2° SUBLOTTO TELESE – SAN LORENZO

PROGETTO ESECUTIVO

PROGETTO ESECUTIVO

COMMESSA

IF2R

LOTTO

2.<u>2.E.ZZ</u>

CODIFICA

CL

DOCUMENTO

IN.10.0.0.001

RFV

С

FOGLIO

8 di 69

3 MATERIALI

Relazione di calcolo

IN10 - Tombino Rio Cocuzza 1 4.00 x 2.00 al km 31+322,35

Di seguito si riportano le caratteristiche dei materiali previsti per la realizzazione delle strutture oggetto di calcolo nell'ambito del presente documento:

3.1 CLASSI DI ESPOSIZIONE E COPRIFERRI

Con riferimento alle specifiche di cui alla norma UNI EN 206-1-2006, si definiscono di seguito le classi di esposizione del calcestruzzo delle diverse parti della struttura oggetto dei dimensionamenti di cui al presente documento:

Soletta di Fondazione: XA1:

Elevazioni: XC4;

Classe esposizione norma UNI 9858	Classe esposizione norma UNI 11104 UNI EN 206 -1	Descrizione dell'ambiente	Esemplo	Massimo rapporto a/c	Minima Classe di resistenza	Contenuto minimo in aria (%)
1 Assenza	a di rischio di	corrosione o attacco				
1	XO	Per calcestruzzo privo di armatura o inserti metallici: tutte le esposizioni eccetto dove c'è gelo'disgelo, o attacco chimico. Calcestruzzi con armatura o inserti metallici:in ambiente molto asciutto.	Interno di edifici con umidità relativa monito bassa. Calcestruzzo non armato all'interno di edifici. Calcestruzzo non armato immerso in suolo non aggressiva o in acqua non aggressiva. Calcestruzzo non armato soggetto a cidi di bagnato asciutto ma non soggetto di atrassione, pelo o attasco chrimoto.	-	C 12/15	
		a carbonatazione				
condizioni rifle	ttano quelle dell'amb		riferro o nel ricoprimento di inserti metallici, ma in classificazione dell'ambiente circostante può esser			
2 a	XC1	Asciutto o permanentemente bagnato.	Interni di edifici con umidità relativa bassa. Calcestruzzo armato ordinario o precompresso con le superfici all'interno di strutture con eccezione delle parti esposte a condensa, o immerse i acqua.	0,60	C 25/30	
2 a	XC2	Bagnato, raramente asciutto.	Parti di strutture di contenimento liquidi, fondazioni. Calcestruzzo armato ordinario o precompresso prevalentemente immerso in acqua o terreno non aggressivo.	0,60	C 25/30	
5 a	XC3	Umidità moderata.	Calcestruzzo armato ordinario o precompresso in esterni con superfici esterne riparate dalla pioggia, o in interni con unidità da moderata ad alta.	0,55	C 28/35	
4 a 5 b	XC4	Ciclicamente asciutto e bagnato.	Calcestruzzo armato ordinario o precompresso in estemi con superfici soggette a alternanze di asciutto ed umido. Calcestruzzi a vista in ambienti urbani. Superfici a contatto con l'acqua non comprese nella classe XC2.	0,50	C 32/40	
3 Corrosi	one indotta d	a cloruri esclusi quelli	provenenti dall'acqua di mare			
5 a	XD1	Umidità moderata.	Calcestruzzo armato ordinario o precompresso in superfici o parti di ponti e viadotti esposti a spruzzi d'acqua contenenti cloruri.	0,55	C 28/35	
4 a 5 b	XD2	Bagnato, raramente asciutto.	Calcestruzzo armato ordinario o precompresso in elementi strutturali totalmente immersi in acqua anche industriale contenete cloruri (Piscine).	0,50	C 32/40	
5 c	XD3	Ciclicamente bagnato e asciutto.	Calcestruzzo armato ordinario o precompresso, di elementi strutturali direttamente soggetti agli agenti disgelanti o agli spruzzi contenenti agenti disgelanti. Calcestruzo armato ordinario o precompresso, elementi con una superficie immersa in acqua contenente cloruri e i altra esposta al afra. Parti di ponti, pavimentazioni e parcheggi per auto.	0,45	C 35/45	

tita da cloruri presenti nelli Esposta alla salsedine I Permanentemente I Some esposta agli spruzzi o alle marea I di gelo/disgelo con o senz Moderata saturazione d'acqua, in assenza di agente disgelante. I Moderata saturazione d'acqua, in presenza di agente disgelante I Elevata saturazione d'acqua, in assenza di agente disgelante.	Calcestruzzo armato vordinario o precompresso con elementi struturali sulle coste o riprossimità. Calcestruzzo armato ordinario o precompresso di strutture marine completamente immensi in acqua. precompresso con elementi si nuturali esposti alla battigia o alle zone soggette agli soruzia del onde del mare.	0,50 0,45 0,45 0,50	C 32/40 C 35/45 C 35/45 C 35/45 C 32/40	3,0
marina ma non diretamente in contatto on l'acqua di mare. Permanentemente sommerso. Il permanentemente sommerso di geloridisgelo con o senza di agente diagelante. Moderata saturazione di agente diagelante. Elevata saturazione di agente diagelante.	precompresso con elementa strutturali sulle costo o in prossimità. Calcestruzzo armato ordinario o precompresso di strutture marine completamente immersi in acqua. Calcestruzzo amabo ordinario o precompresso di strutture marine completamente immersi in acqua. Calcestruzzo amabo ordinario o precompresso con elementa strutturali esposti alla bartigio a sile zone soggette aggli spruzzi ed ordo del mare. Superfici verticali di cabestruzzo comercia di propositi del propositi	0,45 0,45 0,50	C 35/45 C 35/45 C 32/40	3,0
Sommerso. Zone esposte agli spruzzi o alle marea. di gelo/disgelo con o senz Moderata saturazione d'acquai, n'asseruza di agente diagelante. d'acquai, n' preseruza di agente diagelante. Elevata saturazione d'acquai, n' preseruza di agente diagelante.	precompresso di strutture marine completamente immersi in acqua. Calcestruzzo armato ordinario o precompresso con elementi strutturali esposti alla battigia o alla zone soggette agli spruzzi ed nodo deli mare. 2a dis go Jamili ** Superfici verticali di calcestruzzo come facoiate e colonne esposte alla pioggia del apelo. Bia bioggia o all' acqua. Della completa saturazione ma esposte alla piogo, alla bioggia o all'acqua. Della completa saturazione ma esposte alla piogo, alla bioggia o all'acqua. Per della completa saturazione ma esposte alla configuratione della configuratione della completa saturazione ma esposti alla configuratione della configuratione della configuratione della giagneti disglegiami. Superfici orizzontali in editici dive facqua può accumularsi e che possono	0,45	C 35/45	3,0
alle marea. di gelo/disgelo con o senz Moderata saturazione di acqua. In assenza di agente disgelarite. Moderata saturazione di acqua, in presenza di agente disgelarite. Belevata saturazione di acqua, in presenza di agente disgelarite.	precompresso con element strutural seposta alla battija o alle zone soggette agli spruzzi ed onde del mare. La dissigalari I. Superfici verticali di calestruzzo come tasciale e colonne esposta alla pioggia ad al piog. Superfici non verticale e non soggette alla completa saturazione me esposte alla completa saturazione me esposte alla completa saturazione me esposte al ejec, alla pioggia o all'accus. Elementi come parti di porti che in altro modo sarebbero classificatio come. Prima che sono esposti direttamente o indirettamente pai agenti di spela indirettamente pai agenti dispelariti.	0,50	C 32/40	3,0
Moderata saturazione d'acqua, in assenza di agente disgelante. Moderata saturazione d'acqua, in presenza di agente disgelante. Elevata saturazione d'acqua, in assenza di	a dispo janti * Superfici vericali di calcestruzzo come facciate e colonne esposte alla pioggia ed al pelo. Superfici non verticali e non soggette alla pioggia completa saturazione ma esposte al pelo, alla pioggia o all'aucou. Elementi come parti di porti che in altro modo sarebbero classificati come XF1 individuale di perio di periodi perio di peri	-,		3,0
d'acqua, in assenza di agente disgelante. Moderata saturazione di acqua, in presenza di agente disgelante. Elevata saturazione di acqua, in assenza di	facciate e colonne esposte alla pioggia ed al gelo. Superici non verticali e non soggette alla completa saturazione ma esposte al gelo, alla pioggia o all'acqua. Elementi come part di porti che in altro modo sarebbero classificati come XF indirettamente ggii agenti dispelanti. Superici orizzontali in edifici dove l'acqua può accumularsi e che possono	-,		3,0
d'acqua, in presenza di agente disgelante. Elevata saturazione d'acqua, in assenza di	modo sarebbero classificati come XF1 ma che sono esposti direttamente o indirettamente agli agenti disgelanti. Superfici orizzontali in edifici dove l'acqua può accumularsi e che possono	0,50	C 25/30	3,0
d'acqua, in assenza di	l'acqua può accumularsi e che possono			
	elementi soggetti a frequenti bagnature ed esposti al gelo.	0,50	C 25/30	3,0
Elevata saturazione d'acqua, con presenza di agente antigelo oppure acqua di mare.	Superfici orizzontali quali strade o pavimentazioni esposte al gelo ed ai sali dispelanti in modo diretto o indiretto, elementi esposti al gelo e soggetti a frequenti bagnature in presenza di agenti dispelanti o di acqua di mare.	0,45	C 28/35	3,0
debolmente aggressivo secondo il prospetto 2 della UNI EN 206-1	Contenitori di fanghi e vasche di decantazione. Contenitori e vasche per acque reflue.	0,55	C 28/35	
		0,50	C 32/40	
Ambiente chimicamente fortemente aggressivo secondo il prospetto 2 della UNI EN 206-1	Elementi strutturali o pareti a contatto di acque industriali fortemente aggressive. Contentiori di foraggi, mangimi e liguame provenienti dall'allevamento animale. Tori di raffreddamento di fumi di gas di soarico industriali.	0,45	C 35/45	
	acqua di mare. Ambiente chimicamente debolmente aggressivo secondo il prospetto 2 dela UNI EN 206-1 Ambiente chimicamente aggressivo secondo il prospetto 2 dela UNI EN 206-1 Ambiente chimicamente prospetto 2 dela UNI EN 206-1 Ambiente chimicamente footemente aggressivo secondo il prospetto 2 dela UNI EN 206-1 ambiente chimicamente footemente aggressivo secondo il prospetto 2 della UNI EN 206-1 zione della seconda colonna riflette	acqua di mare. Ifrequenti bagnature în presenza di agenti disgelanti o di acqua di mare. Ambierte chimicamente di declaritazione. I Ambierte chimicamente de declaritazione. Ambierte chimicamente aggressivo secondo il prospetto 2 dela UNI EN 206-1 Ambierte chimicamente aggressivo secondo il prospetto 2 dela UNI EN 206-1 Ambierte chimicamente controli di terreni aggressivo. Elementi strutturali o pareti a contatto di acque industriali britemente aggressivo. Contenitori di rongo, margimi e lorgo, margimi e lorgo di gratico di lumi di gas di scanco industriali.	acqua di mare. direcuenti bagnature in presenza di agenti di glegelarti o di acqua di mare. Ambiente chimicamente debolmente aggressive accordo il prospetto 2 della UNI EN 206-1. Ambiente chimicamente decanazione. Contentiori of tanghi e vasche di decantazione. Contentiori e vasche per acque reflue. Contentiori e vasche per acque reflue. Lin EN 206-1 Elementi sinturuati o pareti a contatto di tenneri aggressive. Contentiori di foraggi, mangini e liquame soccordo il prospetto 2 della UNI EN 206-1. Contentiori di foraggi, mangini e liquame provenieri dall'allevamento di fumi di gas di sostito industria. Ondi millevamento di fumi di gas di sostito industria.	acqua di mare. frequenti bagnature în presenza di agenti disgleanti o di acqua di mare. Ambiente chimicamente debolmente aggressivo secondo il prospetto 2 della UNI EN 200-1 Ambiente chimicamente aggressivo secondo il prospetto 2 della UNI EN 200-1 Ambiente chimicamente aggressivo secondo il prospetto 2 della contentina di contentina

Classi di esposizione secondo norma UNI - EN 206-2006

La determinazione delle classi di resistenza dei conglomerati dei conglomerati, di cui ai successivi paragrafi, sono state inoltre determinate tenendo conto delle classi minime stabilite dalla stessa norma UNI-EN 11104, di cui alla successiva tabella:

TELESE S.c.a r.l.

Consorzio Telese Società Consortile a Responsabilità Limitata

PROGETTAZIONE:

Mandataria:

Mandante:

SYSTRA S.A. SWS Engineering S.p.A. SYSTRA-SOTECNI S.p.A.

IN10 - Tombino Rio Cocuzza 1 4.00 x 2.00 al km 31+322,35

Relazione di calcolo

ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA CANCELLO-BENEVENTO II LOTTO FUNZIONALE FRASSO TELESINO – VITULANO 2° SUBLOTTO TELESE – SAN LORENZO

PROGETTO ESECUTIVO

COMMESSA IF2R

LOTTO 2.2.E.ZZ

CODIFICA

CL

DOCUMENTO IN.10.0.0.001

REV.

С

FOGLIO 9 di 69

UNI 11104:2004

4 Valori limiti per la composizione e le proprietà del calcestruzzo

		Classi di esposizione															
	Nessun rischio di corrosione dell'armatura		Corrosione delle armature indotta dalla carbonatazione			Corrosione delle armature indotta da cloruri			Attacco da cicli di gelo/disgelo				Ambiente aggressivo pe attacco chimico				
					Acqui	Acqua di mare			uri prover a altre for								
	X0	XC1 XC2	XC3	XC4	XS1	XS2	XS3	XD1	XD2	XD3	XF1	XF2	XF3	XF4	XA1	XA2	XA3
Massimo rapporto a/c	-	0,60	0,55	0,50	0,50	0,	45	0,55	0,50	0,45	0,50	0,	50	0,45	0,55	0,50	0,45
Minima classe di resistenza*)	C12/15	C25/30	C28/35	C32/40	C32/40	C35	5/45	C28/35	C32/40	C35/45	32/40	25/	30	28/35	28,35	32/40	35/45
Minimo contenuto in cemento (kg/m³)	-	300	320	340	340	36	60	320	340	360	320	34	10	360	320	340	360
Contenuto minimo in aria (%)											3,0 ^{a)}						
Altri requisiti												egati conformi alla UNI EN 12620 È richiesto l'impiego di eguata resistenza al gelo/disgelo cementi resistenti ai solfati ^{b)}					

Nel prospetto 7 della UNI EN 206-1 viene riportata la classe C8/10 che corrisponde a specifici calcestruzzi destinati a sottofondazioni e ricoprimenti. Per tale classe dovrebbero essere definite le prescrizioni di durabilità nei riguardi di acque o terreni aggressivi.

Quando il calcestruzzo non contiene aria aggiunta, le sue prestazioni devono essere verificate rispetto ad un calcestruzzo aerato per il quale è provata la resistenza al gelo/disgelo, da determinarsi secondo

Qualora la presenza di solfati comporti le classi di esposizione XA2 e XA3 è essenziale utilizzare un cemento resistente ai solfati secondo UNI 9156.

Classi di resistenza minima del calcestruzzo secondo UNI - 11104

In accordo al MdP p.to 2.5.2.2.3.2 per la porzione d'opera sotto binario, essendo la struttura in condizioni ambientali aggerssive, il copriferro minimo sarà pari a 50mm. Per le zone esterne il copriferro minimo sarà pari a 40mm

UNI 7087, per la relativa classe di esposizione.

APPALTATORE: TELESE S.c.a r.l. Consorzio Telese Società Consortile a Responsabilità Limitata PROGETTAZIONE:			c.a r.l. Isabilità Limitata	ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA CANCELLO-BENEVENTO II LOTTO FUNZIONALE FRASSO TELESINO – VITULANO 2° SUBLOTTO TELESE – SAN LORENZO							
PROGETTAZIONI Mandataria:	E: <u>Manda</u>	ote:			2° SUBLOT	IO IELE	SE – SAN I	LORENZO			
SYSTRA S.A.		Engineering S.p.A.	SYSTR	A-SOTECNI S.p.A.	PROGETTO	ESECUT	IVO				
IN10 - Tombino R Relazione di calc		uzza 1 4.00 x 2.00 a	l km 31+32	2,35	COMMESSA IF2R	LOTTO 2.2.E.ZZ	CODIFICA CL	DOCUMENTO IN.10.0.0.001	REV.	FO0	
		CESTRUZZO eristico della l				ca a 28 (aa:				
	c _k =	40	MPa				99-	-	-		
		eristico della		ıza a compres	ssione ciline	drica a 2	28 gg:				
	f _{ck} =	33.2	MPa	(0,83*R _{ck})							
		compression		,							
f	cm=	41.2	MPa	(fck+8)							
Resister	ıza a	trazione assi	ale:								
fo	:tm=	3.10	MPa	Valore medi	0						
f _{ctk,0}	.05=	2.17	MPa	Valore carat	teristico frati	tile 5%					
	ıza a	trazione per									
f	:fm=	3.7	MPa	Valore medi	0						
f _{cfk,0}	,05=	2.6	MPa	Valore carat	teristico frati	tile 5%					
Coefficie	ente	parziale per le	verific	he agli SLU:							
	γ _c =	1.5									
<u>Per situazio</u>	oni di d	carico eccezionali,	tale valore	e va considerato p	<u>ari ad 1,0</u>						
Posistor	172 d	i calcolo a col	mnrass	ione allo SI II							
	f _{cd} =	18.8	MPa	(0,85*fck/γs)							
	-		_	,							
		i calcolo a tra	-		J:						
f,	ctd=	1.45	MPa	$(f_{ctk\ 0,05}/\gamma s)$							
Resister	nza d	i calcolo a tra	- ·	er flessione S	LU:						
f _{ct}	td f=	1.74	MPa	1,2*fctd							
Dor 00000	vi min	ori di EOmm o colo	004m 1==: 01	rdinari tala valara	vo ridotto dal O	00%					
		ori di 50mm e calco Asticità norma		Modulo di e		<u></u>	9 <i>:</i>				
E	cm=	33643	MPa	G	i _{cm} = 140	18 M	Pa				
Modulo	di Po		٦								
	ν= [0.2	J								
Coefficia	⊔ anto	di dilatazione	lineare								
Coemick	α= [0.00001	°C-1								
Tension	e di a	aderenza di ca	ilcolo ad	cciaio-calcest	truzzo						
	η=	1.00									

FOGLIO 10 di 69

APPALTATORE: TELESE S.c.a r.l. ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA CANCELLO-BENEVENTO Consorzio Telese Società Consortile a Responsabilità Limitata II LOTTO FUNZIONALE FRASSO TELESINO – VITULANO PROGETTAZIONE: 2° SUBLOTTO TELESE – SAN LORENZO Mandataria: Mandante: PROGETTO ESECUTIVO SYSTRA S.A. SWS Engineering S.p.A. SYSTRA-SOTECNI S.p.A. IN10 - Tombino Rio Cocuzza 1 4.00 x 2.00 al km 31+322,35 COMMESSA LOTTO CODIFICA DOCUMENTO RFV Relazione di calcolo 2.2.E.ZZ IN.10.0.0.001 IF2R CL С $(2,25*f_{ctk*}\eta/\gamma_{S})$ MPa 3.25 $f_{bd} =$ Nel caso di armature molto addensate, o ancoraggi in zona tesa tale valore va diviso per 1,5 Tensioni massime per la verifica agli SLE (Prescrizioni Manuale RFI Parte 2-Sezione 2) $(0,40 \text{ f}_{cK}) =$ **13.28** MPa (Combinazione di Carico Quasi Permanente) $\sigma_{cmax QP} =$ $(0.55 f_{cK}) =$ 18.26 MPa (Combinazione di Carico Caratteristica - Rara) σ_{cmax R} = Per spessori minori di 50mm e calcestruzzi ordinari, tale valori vanno ridotti del 20% 3.3 **CALCESTRUZZO PER FONDAZIONE (C 28/35)** Valore caratteristico della resistenza a compressione cubica a 28 gg: MPa $R_{ck}=$ 35 Valore caratteristico della resistenza a compressione cilindrica a 28 gg: MPa $f_{ck} =$ 29.1 $(0.83*R_{ck})$ Resistenza a compressione cilindrica media: f_{cm}= 37.1 MPa (fck+8) Resistenza a trazione assiale: 2.83 MPa Valore medio f_{ctm}= f_{ctk,0,05}= 1.98 MPa Valore caratteristico frattile 5% Resistenza a trazione per flessione: MPa Valore medio 3.4 $f_{cfm} =$ 2.4 MPa f_{cfk,0,05}= Valore caratteristico frattile 5% Coefficiente parziale per le verifiche agli SLU: $\gamma_c =$ Per situazioni di carico eccezionali, tale valore va considerato pari ad 1,0 Resistenza di calcolo a compressione allo SLU: MPa 16.5 $(0.85 \text{fck/}\gamma\text{s})$ $f_{cd} =$ Resistenza di calcolo a trazione diretta allo SLU: MPa 1.32 $(f_{ctk \ 0,05}/\gamma s)$ $f_{ctd} =$ Resistenza di calcolo a trazione per flessione SLU: MPa 1.59 1,2*fctd $f_{ctd f} =$

FOGLIO

11 di 69

Per spessori minori di 50mm e calcestruzzi ordinari, tale valore va ridotto del 20%

APPALTATORE: TELESE S.c.a r.l. Consorzio Telese Società Consortile a Responsabilità Limitata	ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA CANCELLO-BENEVENTO II LOTTO FUNZIONALE FRASSO TELESINO – VITULANO
PROGETTAZIONE:	2° SUBLOTTO TELESE – SAN LORENZO
Mandataria: Mandante: SYSTRA S.A. SWS Engineering S.p.A. SYSTRA-SOTECNI S.p.A.	PROGETTO ESECUTIVO
IN10 - Tombino Rio Cocuzza 1 4.00 x 2.00 al km 31+322,35 Relazione di calcolo	COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO IF2R 2.2.E.ZZ CL IN.10.0.0.001 C 12 di 69

Modulo di el	Modulo di elasticità normale : Modulo di elasticità tangenziale:										
E _{cm} =	32588	MPa	G _{cm} =	13578	MPa						
		-"	_		 "						
Modulo di Poisson:											
ν=	0.2										
Coefficiente	Coefficiente di dilatazione lineare										
α= [0.00001	°C-1									
Tensione di aderenza di calcolo acciaio-calcestruzzo											
η=	1.00										
r		,									
f _{bd} =	2.98	MPa	$(2,25*f_{ctk*}\eta/\gamma_S)$								
Nel caso di arma	ature molto addensa	ate, o ancoi	raggi in zona tesa tale	valore va divisc	per 1,5						

Tensioni massime per la verifica agli SLE (Prescrizioni Manuale RFI Parte 2-Sezione 2)

$$\sigma_{cmax\ QP}$$
 = (0,40 f_{cK}) = 11.62 MPa (Combinazione di Carico Quasi Permanente)
$$\sigma_{cmax\ R}$$
 = (0,55 f_{cK}) = 15.98 MPa (Combinazione di Carico Caratteristica - Rara)

Per spessori minori di 50mm e calcestruzzi ordinari, tale valori vanno ridotti del 20%

3.4 CALCESTRUZZO MAGRO PER GETTI DI LIVELLAMENTO/SOTTOFONDAZIONI (C12/15)

(C12/15)

Valore caratteristico della resistenza a compressione cubica a 28 gg:

 $(0.83*R_{ck})$

R_{ck}= 15 MPa

Valore caratteristico della resistenza a compressione cilindrica a 28 gg:

Resistenza a compressione cilindrica media:

12.5

 f_{cm} = 20.5 MPa (fck+8)

MPa

Si omettono resistenze e/o tensioni di calcolo, essendo tale conglomerato previsto per parti d'opera senza funzioni strutturali.

3.5 ACCIAIO IN BARRE D'ARMATURA PER C.A. (B450C)

Tensione caratteristica di rottura:

f_{tk}= 540 MPa (frattile al 5%)

TELESE S.c.a r.l.

Consorzio Telese Società Consortile a Responsabilità Limitata

PROGETTAZIONE:

Mandataria:

Mandante:

SYSTRA S.A. SWS Engineering S.p.A. SYSTRA-SOTECNI S.p.A.

IN10 - Tombino Rio Cocuzza 1 4.00 x 2.00 al km 31+322,35

Relazione di calcolo

ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA CANCELLO-BENEVENTO II LOTTO FUNZIONALE FRASSO TELESINO – VITULANO 2° SUBLOTTO TELESE – SAN LORENZO

PROGETTO ESECUTIVO

COMMESSA IF2R

LOTTO 2.2.E.ZZ CODIFICA CL

DOCUMENTO REV. IN.10.0.0.001

С

FOGLIO 13 di 69

Tensione caratteristica allo snervamento:

Fattore di sovraresistenza (nel caso di impiego di legame costitutivo tipo bilineare con incrudimento)

$$k=f_{tk}/f_{vk}=$$
 1.20 MPa

Allungamento a rottura (nel caso di impiego di legame costitutivo tipo bilineare con incrudimento)

$$(A_{gt})_{k} = \varepsilon_{uk} = 7.5$$

$$\varepsilon_{\rm ud} = 0.9 \ \varepsilon_{\rm uk} = 6.75 \ \%$$

Coefficiente parziale per le verifiche agli SLU:

$$\gamma c = 1.15$$

Per situazioni di carico eccezionali, tale valore va considerato pari ad 1,0

Resistenza di calcolo allo SLU:

$$f_{yd}$$
= 391.3 MPa (f_{yk}/γ_s)

Modulo di elasticità :

Tensione massima per la verifica agli SLE (Prescrizioni Manuale RFI Parte 2-Sezione 2)

$$\sigma_{s max}$$
 = (0,75 fyk) = 360 MPa Combinazione di Carico Caratteristica(Rara)

TELESE s.c.a r.l.

Consorzio Telese Società Consortile a Responsabilità Limitata

PROGETTAZIONE:

Mandataria:

Mandante:

SYSTRA S.A. SWS Engineering S.p.A. SYSTRA-SOTECNI S.p.A.

IN10 - Tombino Rio Cocuzza 1 4.00 x 2.00 al km 31+322,35

Relazione di calcolo

ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA CANCELLO-BENEVENTO II LOTTO FUNZIONALE FRASSO TELESINO – VITULANO 2° SUBLOTTO TELESE – SAN LORENZO

PROGETTO ESECUTIVO

COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO

IF2R 2.2.E.ZZ CL IN.10.0.0.001 C 14 di 69

La verifica nei confronti degli Stati limite di esercizio, consiste nel controllare, con riferimento alle sollecitazioni di calcolo corrispondenti alle Combinazioni di Esercizio il tasso di Lavoro nei Materiali e l'ampiezza delle fessure attesa, secondo quanto di seguito specificato

3.6 VERIFICHE ALLE TENSIONI

La verifica delle tensioni in esercizio consiste nel controllare il rispetto dei limiti tensionali previsti per il calcestruzzo e per l'acciaio per ciascuna delle combinazioni di carico caratteristiche "Rara" e "Quasi Permanente"; i valori tensionali nei materiali sono valutati secondo le note teorie di analisi delle sezioni in c.a. in campo elastico e con calcestruzzo "non reagente a trazione" adottando come limiti di riferimento, trattandosi nel caso in specie di opere Ferroviarie, quelli indicati nel documento "RFI DTC SI PS MA IFS 001 D Manuale di Progettazione Delle Opere Civili Parte II - Sezione 2 - Ponti e Strutture" che ne risulta l'aggiornamento (Vedi cap. 2.5 manuale), ovvero:

Strutture in c.a.

Tensioni di compressione del calcestruzzo

Devono essere rispettati i seguenti limiti per le tensioni di compressione nel calcestruzzo:

- per combinazione di carico caratteristica (rara): 0,55 fes;
- per combinazioni di carico quasi permanente: 0,40 f_{ck};
- per spessori minori di 5 cm, le tensioni normali limite di esercizio sono ridotte del 30%.

Tensioni di trazione nell'acciaio

Per le armature ordinarie, la massima tensione di trazione sotto la combinazione di carico caratteristica (rara) non deve superare $0.75~f_{vk}$.

3.7 VERIFICHE A FESSURAZIONE

La verifica di fessurazione consiste nel controllare l'ampiezza dell'apertura delle fessure sotto combinazione di carico frequente e combinazione quasi permanente. Essendo la struttura a contatto col terreno si considerano condizioni ambientali aggressive; le armature di acciaio ordinario sono ritenute poco sensibili [NTC – Tabella 4.1.IV]

In relazione all'aggressività ambientale e alla sensibilità dell'acciaio, l'apertura limite delle fessure è riportato nel prospetto seguente:

Tabella 1 - Criteri di scelta dello stato limite di fessurazione e Condizioni Ambientali

. abona .	Orniori ai ocoma acmo c	rate illinio al recourazion	o o oonaleioni / milo	0				
Gruppi di esigenza			Armatura					
	Condizioni ambientali	Combinazione di azione	Sensibile		Poco sensibile			
			Stato limite	wd	Stato limite	wd		
а	Ordinarie	frequente	ap. fessure	≤w ₂	ap. fessure	≤ W 3		
		quasi permanente	ap. fessure	≤w ₁	ap. fessure	≤w ₂		
b	Aggressive	frequente	ap. fessure	≤w ₁	ap. fessure	≤ w 2		

TELESE S.c.a r.l.

Consorzio Telese Società Consortile a Responsabilità Limitata

PROGETTAZIONE:

Mandataria:

Mandante:

SYSTRA S.A. SWS Engineering S.p.A. SYSTRA-SOTECNI S.p.A.

IN10 - Tombino Rio Cocuzza 1 4.00 x 2.00 al km 31+322,35

Relazione di calcolo

ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA CANCELLO-BENEVENTO II LOTTO FUNZIONALE FRASSO TELESINO – VITULANO 2° SUBLOTTO TELESE – SAN LORENZO

PROGETTO ESECUTIVO

COMMESSA LOTTO CODIFICA **DOCUMENTO** RFV **FOGLIO** 2.<u>2.E.ZZ</u> IF2R CL IN.10.0.0.001 С 15 di 69

	quasi permanente	decompressione	-	ap. fessure	≤w ₁
Molto Aggressive	frequente	formazione fessure	-	ap. fessure	≤w ₁
Wollo Agglessive	quasi permanente	decompressione	-	ap. fessure	≤w ₁

Tabella 4.1.III – Descrizione delle condizioni ambientali

CONDIZIONI AMBIENTALI	CLASSE DI ESPOSIZIONE
Ordinarie	X0, XC1, XC2, XC3, XF1
Aggressive	XC4, XD1, XS1, XA1, XA2, XF2, XF3
Molto aggressive	XD2, XD3, XS2, XS3, XA3, XF4

Risultando:

 $w_1 = 0.2 \text{ mm}$

 $w_2 = 0.3 \text{ mm}$

 $w_3 = 0.4 \text{ mm}$

Alle prescrizioni normative presenti in NTC si sostituiscono in tal caso quelle fornite dal "Manuale di Progettazione delle Opere Civili" secondo cui la verifica nei confronti dello stato limite di apertura delle fessure va effettuata utilizzando le sollecitazioni derivanti dalla combinazione caratteristica (rara).

Per strutture in condizioni ambientali aggressive o molto aggressive, qual è il caso delle strutture in esame così come identificate nel par. 4.1.2.2.4.3 del DM 2008, per tutte le strutture a permanente contatto con il terreno e per le zone non ispezionabili di tutte le strutture, l'apertura convenzionale delle fessure dovrà risultare:

Combinazione Caratteristica (Rara) $\delta_f \leq w_1 = 0.2 \ mm$

TELESE S.c.a r.l.

Consorzio Telese Società Consortile a Responsabilità Limitata

PROGETTAZIONE:

Mandataria: Mandante:

SYSTRA S.A. SWS Engineering S.p.A. SYSTRA-SOTECNI S.p.A.

IN10 - Tombino Rio Cocuzza 1 4.00 x 2.00 al km 31+322,35

Relazione di calcolo

ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA CANCELLO-BENEVENTO II LOTTO FUNZIONALE FRASSO TELESINO – VITULANO 2° SUBLOTTO TELESE – SAN LORENZO

PROGETTO ESECUTIVO

COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO

IF2R 2.2.E.ZZ CL IN.10.0.0.001 C 16 di 69

4 CARATTERIZZAZIONE GEOTECNICA

La definizione del modello geotecnico di sottosuolo per il dimensionamento delle strutture di fondazione dell'opera, è trattato diffusamente nelle relazioni generali delle opere all'aperto dei sub-lotti 1, 2 e 3.

Dall'esame di quanto riportato nella relazione geotecnica di riferimento e in relazione alle progressive in esame, emerge che il volume di terreno direttamente interagente con l'opera ha le seguenti proprietà:

U	nità	z	γ	c'	φ	Cu	Vs	G ₀	ν	$E_{ope} = E_0/5$
	(-)	(m)	(kN/m³)	(kPa)	(°)	(kPa)	(m/s)	(Mpa)	(-)	(Mpa)
	Ril.	-	20	0	38	0	250	130	0.2	70
	ba2	0.0-2.2	19	0	33	0	150	45	0.3	22
	ba3	2.2-4.0	19	0	24	75	200	75	0.2	40
	ba2	4.0-4.4	19	0	33	0	200	75	0.3	40
	ba3	4.4-5.1	19	0	24	75	200	75	0.2	40
	ba2	5.1-6.1	19	0	33	0	240	100	0.3	55
	on1	6.1-25.0	20	0	39	0	700	930	0.3	500

Si considera la fondazione all'interno dello strato "ba3".

Il terreno di ricoprimento è invece costituito dal riporto stradale avente le sequenti proprietà:

Terreno di Rinfianco e di Ricoprimento: Terreno da rilevato

 $\gamma_{\text{nat}} = 20 \text{ kN/m}^3$ peso di volume naturale

c' = 0 kPa coesione drenata

φ' = 38 ° angolo di resistenza al taglio

Infine, il livello di falda, dal profilo geotecnico locale si evince che la superficie piezometrica non influenza il regime di spinta sull'opera (-6.0m dal p.c.).

4.1 ITERAZIONE TERRENO-FONDAZIONE

Di seguito sono trattati gli aspetti di natura geotecnica riguardanti l'interazione terreno-struttura relativamente all'opera in esame.

Per la determinazione della costante di sottofondo si può fare riferimento alle seguenti formulazioni assimilando il comportamento del terreno a quello di un mezzo elastico omogeneo:

• $s = B \cdot C_{t} \cdot (q - \sigma_{v0}) \cdot (1 - v^2) / E$

dove:

s = cedimento elastico totale;

APPALTATORE: TELESE S.c.a r.l. ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA CANCELLO-BENEVENTO Consorzio Telese Società Consortile a Responsabilità Limitata II LOTTO FUNZIONALE FRASSO TELESINO – VITULANO 2° SUBLOTTO TELESE – SAN LORENZO PROGETTAZIONE: Mandataria: Mandante: PROGETTO ESECUTIVO SYSTRA S.A. SWS Engineering S.p.A. SYSTRA-SOTECNI S.p.A. COMMESSA LOTTO CODIFICA IN10 - Tombino Rio Cocuzza 1 4.00 x 2.00 al km 31+322.35 **DOCUMENTO** RFV **FOGLIO** Relazione di calcolo 2.2.E.ZZ IN.10.0.0.001 17 di 69 IF2R CL С

- B = lato minore della fondazione;
- c_t = coefficiente adimensionale di forma ottenuto dalla interpolazione dei valori dei coefficienti proposti dal Bowles, 1960 (L = lato maggiore della fondazione):

$$c_t = 0.853 + 0.534 \ln(L/B)$$
 rettangolare con L/B \leq 10

$$c_t = 2 + 0.0089 (L/B)$$
 rettangolare con L/B>10

- q = pressione media agente sul terreno;
- $-\sigma_{v0}$ = tensione litostatica verticale alla quota di posa della fondazione;
- v = coefficiente di Poisson del terreno;
- E = modulo elastico medio del terreno sottostante.

Il valore della costante di sottofondo k_w è valutato attraverso il rapporto tra il carico applicato ed il corrispondente cedimento, pertanto si ottiene:

•
$$k_w = E / [(1-v^2) \cdot B \cdot ct]$$

Di seguito si riportano, in forma tabellare, i risultati delle valutazioni effettuate per il caso in esame, sulla scorta del valore di progetto di **E** attribuito allo strato di Fondazione, avendo considerato una dimensione longitudinale della fondazione ritenuta potenzialmente collaboranti:

$$E = \begin{array}{c|c} 200000 & kN/m^2 \\ n = & 0.3 \\ \\ B = & 6.2 & m \\ L = & 40.0 & m \\ \\ L/B = & 6.45 \\ c_t = & 1.85 \\ \\ K_w = & 19176 & kN/m^3 \\ \end{array}$$

Cautelativamente si limita, ai fini del calcolo, il valore della costante di sottofondo a circa 19000 kN/m³.

APPALTATORE: TELESE S.c.a r.l.

Consorzio Telese Società Consortile a Responsabilità Limitata

PROGETTAZIONE:

Mandataria:

Mandante:

SYSTRA S.A. SWS Engineering S.p.A. SYSTRA-SOTECNI S.p.A.

IN10 - Tombino Rio Cocuzza 1 4.00 x 2.00 al km 31+322,35

Relazione di calcolo

ITINERARIO NAPOLI – BARI

RADDOPPIO TRATTA CANCELLO-BENEVENTO II LOTTO FUNZIONALE FRASSO TELESINO – VITULANO

2° SUBLOTTO TELESE – SAN LORENZO

PROGETTO ESECUTIVO

COMMESSA LOTTO CODIFICA **DOCUMENTO** RFV **FOGLIO**

2.2.E.ZZ IF2R CL IN.10.0.0.001 С 18 di 69

5 CARATTERIZZAZIONE SISMICA

Nel seguente paragrafo è riportata la valutazione dei parametri di pericolosità sismica utili alla determinazione delle azioni sismiche di progetto dell'opera cui si riferisce il presente documento, in accordo a quanto specificato a riguardo dal D.M. 2008.

5.1 **VITA NOMINALE E CLASSE D'USO**

Per la valutazione dei parametri di pericolosità sismica è necessario definire, oltre alla localizzazione geografica del sito, la Vita nominale dell'opera strutturale (V_N), intesa come il numero di anni nel quale la struttura, purché soggetta alla manutenzione ordinaria, deve potere essere usata per lo scopo al quale è destinata, e la Classe d'Uso a cui è associato un coefficiente d'uso (C_∪)

Per l'opera in oggetto si considera una vita nominale: V_N = 75 anni. Riguardo invece la Classe d'Uso, all'opera in oggetto corrisponde una Classe III a cui è associato un coefficiente d'uso pari a (NTC – Tabella 2.4.II): $C_U = 1.5$.

I parametri di pericolosità sismica vengono quindi valutate in relazione ad un periodo di riferimento V_R che si ricava per ciascun tipo di costruzione, moltiplicando la vita nominale V_N per il coefficiente d'uso C_U, ovvero:

$$V_R = V_N \cdot C_U$$

Pertanto, per l'opera in oggetto, il periodo di riferimento è pari a V_R =75x1.5 = 112.5 anni

5.2 PARAMETRI DI PERICOLOSITÀ SISMICA

La valutazione dei parametri di pericolosità sismica dipendono, come già in parte anticipato in precedenza, dalla localizzazione geografica del sito, dalle caratteristiche della costruzione (Periodo di riferimento per valutazione azione sismica / V_R) oltre che dallo Stato Limite di riferimento/Periodo di ritorno dell'azione sismica.

APPALTATORE: TELESE S.c.a r.l.

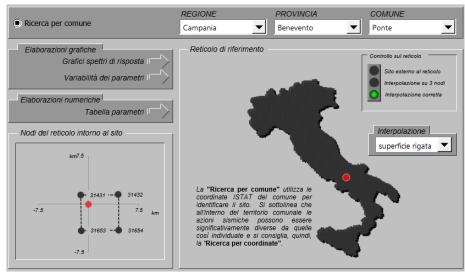
Consorzio Telese Società Consortile a Responsabilità Limitata

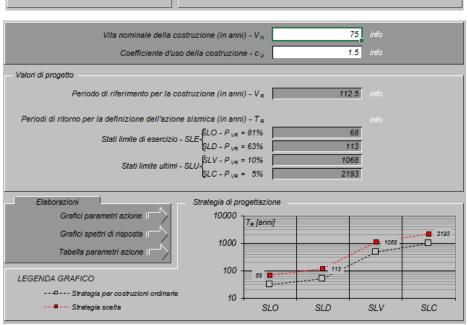
PROGETTAZIONE:

Mandataria: Mandante:

SYSTRA S.A. SWS Engineering S.p.A. SYSTRA-SOTECNI S.p.A.

IN10 - Tombino Rio Cocuzza 1 4.00 x 2.00 al km 31+322,35


Relazione di calcolo


ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA CANCELLO-BENEVENTO II LOTTO FUNZIONALE FRASSO TELESINO – VITULANO 2° SUBLOTTO TELESE – SAN LORENZO

PROGETTO ESECUTIVO

COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO

IF2R 2.2.E.ZZ CL IN.10.0.0.001 C 19 di 69

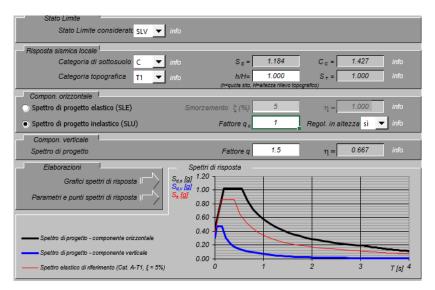
APPALTATORE: TELESE S.c.a r.l.

Consorzio Telese Società Consortile a Responsabilità Limitata

PROGETTAZIONE:

Mandataria: Mandante:

SYSTRA S.A. SWS Engineering S.p.A. SYSTRA-SOTECNI S.p.A.


IN10 - Tombino Rio Cocuzza 1 4.00 x 2.00 al km 31+322,35

Relazione di calcolo

ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA CANCELLO-BENEVENTO II LOTTO FUNZIONALE FRASSO TELESINO – VITULANO 2° SUBLOTTO TELESE – SAN LORENZO

PROGETTO ESECUTIVO

COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO IF2R 2.2.E.ZZ CL IN.10.0.0001 C 20 di 69

Parametri indipendenti

STATO LIMITE	SLV
\boldsymbol{a}_{g}	0.367 g
Fo	2.347
T_C^*	0.395 s
Ss	1.184
Cc	1.427
ST	1.000
q	1.000

Parametri dipendenti

S	1.184
η	1.000
T_B	0.188 s
T _C	0.563 s
T _D	3.067 s

Il calcolo viene eseguito con il metodo pseudo statico, si eseguirà un calcolo elastico assumendo un fattore di struttura unitario. In queste condizioni l'azione sismica è rappresentata da una forza statica equivalente pari al prodotto delle forze di gravità per un opportuno coefficiente sismico.

TELESE s.c.a r.l.

Consorzio Telese Società Consortile a Responsabilità Limitata

PROGETTAZIONE:

Mandataria: Mandante:

SYSTRA S.A. SWS Engineering S.p.A. SYSTRA-SOTECNI S.p.A.

IN10 - Tombino Rio Cocuzza 1 4.00 x 2.00 al km 31+322,35

Relazione di calcolo

ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA CANCELLO-BENEVENTO II LOTTO FUNZIONALE FRASSO TELESINO – VITULANO 2° SUBLOTTO TELESE – SAN LORENZO

PROGETTO ESECUTIVO

COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO

IF2R 2.2.E.ZZ CL IN.10.0.0.001 C 21 di 69

6 SOFTWARE DI CALCOLO

6.1 ORIGINE E CARATTERISTICHE DEI CODICI DI CALCOLO ADOTTATI

Per le analisi delle strutture è stato utilizzato il Sap 2000 v.22 prodotto, distribuito ed assistito da Computers and Structures, Inc.1995 University Ave. Berkeley. Questa procedura è sviluppata in ambiente Windows, permette l'analisi elastica lineare e non di strutture tridimensionali con nodi a sei gradi di libertà utilizzando un solutore ad elementi finiti. Gli elementi considerati sono frame (trave), con eventuali svincoli interni o rotazione attorno al proprio asse. I carichi sono applicati sia ai nodi, come forze o coppie concentrate, sia sulle travi, come forze distribuite, trapezie, concentrate, come coppie e come distorsioni termiche. A supporto del programma è fornito un ampio manuale d'uso contenente fra l'altro una vasta serie di test di validazione sia su esempi classici di Scienza delle Costruzioni, sia su strutture particolarmente impegnative e reperibili nella bibliografia specializzata.

Tale programma fornisce in output, oltre a tutte le caratteristiche geometriche e di carico delle strutture, i risultati relativi alle sollecitazioni indotte nelle sezioni degli elementi presenti.

6.2 UNITÀ DI MISURA

Le unità di misura adottate sono le seguenti:

- lunghezze: m

- forze: kN

- masse: kN massa

- temperature: gradi centigradi

- angoli: gradi sessadecimali o radianti

- si assume l'uguaglianza 1 kN = 100 kg

6.3 GRADO DI AFFIDABILITÀ DEL CODICE

L'affidabilità del codice di calcolo e' garantita dall'esistenza di un ampia documentazione di supporto. E' possibile inoltre ottenere rappresentazioni grafiche di deformate e sollecitazioni della struttura.

6.4 VALUTAZIONE DELLA CORRETTEZZA DEL MODELLO

Il modello di calcolo adottato e' da ritenersi appropriato in quanto non sono state riscontrate labilità, le reazioni vincolari equilibrano i carichi applicati, la simmetria di carichi e struttura dà origine a sollecitazioni simmetriche.

TELESE S.c.a r.l.

Consorzio Telese Società Consortile a Responsabilità Limitata

PROGETTAZIONE:

Mandataria:

Mandante:

SYSTRA S.A. SWS Engineering S.p.A.

SYSTRA-SOTECNI S.p.A.

IN10 - Tombino Rio Cocuzza 1 4.00 x 2.00 al km 31+322,35

Relazione di calcolo

ITINERARIO NAPOLI – BARI

RADDOPPIO TRATTA CANCELLO-BENEVENTO II LOTTO FUNZIONALE FRASSO TELESINO – VITULANO

2° SUBLOTTO TELESE – SAN LORENZO

PROGETTO ESECUTIVO

COMMESSA LOTTO CODIFICA **DOCUMENTO** RFV **FOGLIO**

2.2.E.ZZ IN.10.0.0.001 22 di 69 IF2R CL С

CARATTERISTICHE DELL'ELABORAZIONE 6.5

Tutte le analisi strutturali sono state eseguite su di una workstation dedicata avente le seguenti caratteristiche tecniche:

- Tipo Intel i5
- Memoria centrale 16 Gb;
- Lunghezza in bit della parola 64 bit;
- · Memoria di massa 1 Hard disk da 500 Gb.

6.6 GIUDIZIO FINALE SULLA ACCETTABILITÀ DEI CALCOLI

Si ritiene che i risultati ottenuti dalla elaborazione siano accettabili e che le ipotesi poste alla base della formulazione del modello matematico siano valide come dimostrato dal comportamento dei materiali.

All'interno del pacchetto Sap 2000 sono inoltre presente una serie di test per il benchmark del solutore, che consentono di comprovare l'affidabilita' del codice di calcolo e paragonare risultati ottenuti con le soluzioni esatte.

PROGRAMMI DI SERVIZIO 6.7

Per le verifiche delle sezioni si adotta il programma: "RC-SEC" - Autore GEOSTRU Software.ANALISI DEI CARICHI E FASI

TELESE S.c.a r.l.

Consorzio Telese Società Consortile a Responsabilità Limitata

PROGETTAZIONE:

Mandataria:

Mandante:

SYSTRA S.A. SWS Engineering S.p.A.

SYSTRA-SOTECNI S.p.A.

IN10 - Tombino Rio Cocuzza 1 4.00 x 2.00 al km 31+322,35

Relazione di calcolo

ITINERARIO NAPOLI - BARI RADDOPPIO TRATTA CANCELLO-BENEVENTO II LOTTO FUNZIONALE FRASSO TELESINO – VITULANO 2° SUBLOTTO TELESE – SAN LORENZO

PROGETTO ESECUTIVO

COMMESSA LOTTO CODIFICA DOCUMENTO RFV **FOGLIO** 2.2.E.ZZ IN.10.0.0.001 23 di 69 IF2R CL С

7 COMBINAZIONI DI CARICO

Ai fini delle verifiche degli stati limite si è fatto riferimento alle seguenti combinazioni delle azioni.

Combinazione fondamentale, generalmente impiegata per gli stati limite ultimi (SLU):

$$\gamma_{G1} \cdot G_1 + \gamma_{G2} \cdot G_2 + \gamma_P \cdot P + \gamma_{Q1} \cdot Q_{k1} + \gamma_{Q2} \cdot \psi_{02} \cdot Q_{k2} + \gamma_{Q3} \cdot \psi_{03} \cdot Q_{k3} + \dots$$

Combinazione caratteristica (rara), generalmente impiegata per gli stati limite di esercizio (SLE) irreversibili:

$$G_1 + G_2 + P + Q_{k1} + \psi_{02} \cdot Q_{k2} + \psi_{03} \cdot Q_{k3} + \dots$$

Combinazione frequente, generalmente impiegata per gli stati limite di esercizio (SLE) reversibili, utilizzata nella verifica a Fessurazione:

$$G_1 + G_2 + P + \psi_{11} \cdot Q_{k1} + \psi_{22} \cdot Q_{k2} + \psi_{23} \cdot Q_{k3} + \dots$$

Combinazione quasi permanente, generalmente impiegata per gli stati limite di esercizio (SLE) a lungo termine;

$$G_1 + G_2 + P + \psi_{21} \cdot Q_{k1} + \psi_{22} \cdot Q_{k2} + \psi_{23} \cdot Q_{k3} + \dots$$

Combinazione sismica, impiegata per gli stati limite ultimi e di esercizio connessi all'azione sismica E:

$$E + G_1 + G_2 + P + \psi_{21} \cdot Q_{k1} + \psi_{22} \cdot Q_{k2} + \dots$$

dove:

$$E = \pm 1.00 \times E_{Y} \pm 0.3 \times E_{Z}$$

avendo indicato con EY e Ez rispettivamente le componenti orizzontale e verticale dell'azione sismica.

I coefficienti di amplificazione dei carichi γ e i coefficienti di combinazione ψ sono riportati nelle tabelle seguenti.

In particolare, nel calcolo della struttura scatolare, si è fatto riferimento alla combinazione A1+M1+R3 (Approccio 2) per le verifiche strutturali e geotecniche.

Tabella 5.2.V - Coefficienti parziali di sicurezza per le combinazioni di carico agli SLU, eccezionali e sismica

TELESE S.c.a r.l.

Consorzio Telese Società Consortile a Responsabilità Limitata

PROGETTAZIONE:

Mandataria:

Mandante:

SYSTRA S.A. SWS Engineering S.p.A. SYSTRA-SOTECNI S.p.A.

IN10 - Tombino Rio Cocuzza 1 4.00 x 2.00 al km 31+322,35

Relazione di calcolo

ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA CANCELLO-BENEVENTO II LOTTO FUNZIONALE FRASSO TELESINO – VITULANO 2° SUBLOTTO TELESE – SAN LORENZO

PROGETTO ESECUTIVO

COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO IF2R 2.2.E.ZZ CL IN.10.0.0.001 C 24 di 69

		Coefficiente	EQU ⁽¹⁾	A1 STR	A2 GEO	Combinazione eccezionale	Combinazione Sismica
Carichi permanenti	favorevoli sfavorevoli	γ _{G1}	0,90 1,10	1,00 1,35	1,00 1,00	1,00 1,00	1,00 1,00
Carichi permanenti non strutturali ⁽²⁾	favorevoli sfavorevoli	γ _{G2}	0,00 1,50	0,00 1,50	0,00 1,30	1,00 1,00	1,00 1,00
Ballast ⁽³⁾	favorevoli sfavorevoli	γв	0,90 1,50	1,00 1,50	1,00 1,30	1,00 1,00	1,00 1,00
Carichi variabili da traffico ⁽⁴⁾	favorevoli sfavorevoli	γQ	0,00 1,45	0,00 1,45	0,00 1,25	0,00 0,20 ⁽⁵⁾	0,00 0,20 ⁽⁵⁾
Carichi variabili	favorevoli sfavorevoli	γQi	0,00 1,50	0,00 1,50	0,00 1,30	0,00 1,00	0,00 0,00
Precompressione favorevole sfavorevole		γP	0,90 1,00 ⁽⁶⁾	1,00 1,00 ⁽⁷⁾	1,00 1,00	1,00 1,00	1,00 1,00

- (1) Equilibrio che non coinvolga i parametri di deformabilità e resistenza del terreno; altrimenti si applicano i valori di GEO.
- (2) Nel caso in cui i carichi permanenti non strutturali (ad es. carichi permanenti portati) siano compiutamente definiti si potranno adottare gli stessi coefficienti validi per le azioni permanenti.
- (3) Quando si prevedano variazioni significative del carico dovuto al ballast, se ne dovrà tener conto esplicitamente nelle verifiche.
- (4) Le componenti delle azioni da traffico sono introdotte in combinazione considerando uno dei gruppi di carico gr della Tab. 5.2.IV.
- (5) Aliquota di carico da traffico da considerare.
- (6) 1,30 per instabilità in strutture con precompressione esterna
- (7) 1,20 per effetti locali

TELESE S.c.a r.l.

Consorzio Telese Società Consortile a Responsabilità Limitata

PROGETTAZIONE:

Mandataria:

Mandante:

SYSTRA S.A. SWS Engineering S.p.A. SYSTRA-SOTECNI S.p.A.

IN10 - Tombino Rio Cocuzza 1 4.00 x 2.00 al km 31+322,35

Relazione di calcolo

ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA CANCELLO-BENEVENTO II LOTTO FUNZIONALE FRASSO TELESINO – VITULANO 2° SUBLOTTO TELESE – SAN LORENZO

PROGETTO ESECUTIVO

COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO IF2R 2.2.E.ZZ CL IN.10.0.0.001 C 25 di 69

Tabella 5.2.VI - Coefficienti di combinazione y delle azioni

Azioni		Ψο	Ψ1	Ψ2
Azioni singole	Carico sul rilevato a tergo delle spalle	0,80	0,50	0,0
da traffico	Azioni aerodinamiche generate dal transito dei convogli	0,80	0,50	0,0
	gr ₁	0,80 ⁽²⁾	0,80(1)	0,0
Gruppi di	gr ₂	0,80 ⁽²⁾	0,80	-
carico	gr ₃	0,80 ⁽²⁾	0,80(1)	0,0
	gr4	1,00	1,00(1)	0,0
Azioni del vento	F _{Wk}	0,60	0,50	0,0
Azioni da	in fase di esecuzione	0,80	0,0	0,0
neve	SLU e SLE	0,0	0,0	0,0
Azioni termiche	T_k	0,60	0,60	0,50

Nella combinazione sismica le azioni indotte dal traffico ferroviario sono combinate con un coefficiente $\psi_2 = 0.2$ coerentemente con l'aliquota di massa afferente ai carichi da traffico.

Le azioni descritte nel paragrafo precedente ed utilizzate nelle combinazioni di carico vengono di seguito riassunte:

Tabella 2 – Riepilogo condizioni di carico

Tipo Carico	Abbreviazione
Peso proprio	DEAD
Carichi permanenti	PERM
Falda	FALDA
Spinta terreno sinistra	STS
Spinta terrenno destra	STD
Carico Ferroviario Centrato	TRM
Carico Ferroviario Laterale	TRV
Sovraccarico accidentale sinistra	SAS
Sovraccarico accidentale destra	SAD
Traffico Stradale	TRAF
Ritiro	RIT
Variazione termica	ΔΤ
Avviamento e frenatura	AVV
Azione sismica orizzontale	E _H
Azione sismica verticale	Ev

Si riportano di seguito le combinazioni di carico ritenute più significative con i coefficienti di combinazione γ·ψ. Essendo la struttura simmetrica, si adottano tipologie di combinazione asimmetriche in modo da massimizzare le sollecitazioni. Il dimensionamento delle armature e le

TELESE S.c.a r.l.

Consorzio Telese Società Consortile a Responsabilità Limitata

PROGETTAZIONE:

Mandataria:

Mandante:

SYSTRA S.A. SWS Engineering S.p.A. SYSTRA-SOTECNI S.p.A.

IN10 - Tombino Rio Cocuzza 1 4.00 x 2.00 al km 31+322,35

Relazione di calcolo

ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA CANCELLO-BENEVENTO II LOTTO FUNZIONALE FRASSO TELESINO – VITULANO 2° SUBLOTTO TELESE – SAN LORENZO

PROGETTO ESECUTIVO

COMMESSA

LOTTO CODIFICA

DOCUMENTO

REV. FOGLIO

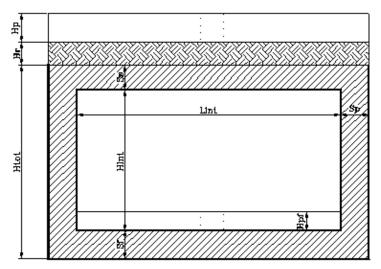
26 di 69

IF2R 2.2.E.ZZ CL IN.10.0.0.001 C

verifiche strutturali verrano poi eseguite tenendo conto della simmetria e verificando le condizioni peggiori per ogni lato della struttura.

Tabella 3 - Combinazioni di carico

				l			lazioni								
COMB	DEAD	STS	STD	RIT	ΔΤ	PERM	FALDA	TRM	TRV	SAS	SAD	TRAF	AVV	Ен	Ev
n° 1 SLU-STR	1.35	1.35	1.35	1.20	1.50	1.50	-	-	-	-	-	-		-	-
n° 2 SLU-STR	1.35	1.35	1.00	1.20	1.50	1.50	-								
n° 3 SLU-STR	1.35	1.00	1.35	1.20	1.50	1.50									
n° 04 SLU-STR	1.35	1.35	1.35	1.20	1.50	1.50	1.35	-	-	-	-	-		-	ı
n° 05 SLU-STR	1.35	1.35	1.00	1.20	1.50	1.50	1.35								
n° 06 SLU-STR	1.35	1.00	1.35	1.20	1.50	1.50	1.35								
n° 07 SLU-STR	1.35	1.35	1.35	1.20	0.90	1.50	1.35	1.45	-	1.45	1.45	-	1.45	-	ı
n° 08 SLU-STR	1.35	1.35	1.00	1.20	0.90	1.50	1.35	1.45	-	1.45	1.45		1.45		
n° 09 SLU-STR	1.35	1.00	1.35	1.20	0.90	1.50	1.35	1.45	-	1.45	1.45		1.45		
n° 10 SLU-STR	1.35	1.35	1.35	1.20	0.90	1.50	1.35	-	1.45	1.45	1.45	1.01	1.45	-	ı
n° 11 SLU-STR	1.35	1.35	1.00	1.20	0.90	1.50	1.35	-	1.45	1.45	1.45	1.01	1.45		
n° 12 SLU-STR	1.35	1.00	1.35	1.20	0.90	1.50	1.35	-	1.45	1.45	1.45	1.01	1.45		
n° 13 SLU-STR	1.35	1.35	1.35	1.20	0.90	1.50	1.35	1.45	-	1.45	-	1.01	1.45	-	ı
n° 14 SLU-STR	1.35	1.35	1.00	1.20	0.90	1.50	1.35	1.45	-	1.45	-	1.01	1.45	-	-
n° 15 SLU-STR	1.35	1.00	1.35	1.20	0.90	1.50	1.35	1.45	-	1.45	-	1.01	1.45	-	-
n° 16 SLU - SISMICA	1.00	1.00	1.00	1.00	0.50	1.00	1.00	0.20	-	0.20	-	-	0.20	1.00	0.30
n° 17 SLU - SISMICA	1.00	1.00	1.00	1.00	0.50	1.00	1.00	0.20	-	0.20	-	-	0.20	1.00	-0.30
n° 18 SLU - SISMICA	1.00	1.00	1.00	1.00	0.50	1.00	-	0.20	-	0.20	-	-	0.20	1.00	0.30
n° 19 SLU - SISMICA	1.00	1.00	1.00	1.00	0.50	1.00	-	0.20	-	0.20	-	-	0.20	1.00	-0.30
GEO	1.00	1.30	1.00	1.00	0.60	1.30	1.00	1.25	-	1.25	-	-	1.25	-	-
GEO - SISMICA	1.00	1.00	1.00	1.00	0.50	1.00	1.00	0.20		0.20			0.20	1.00	0.30
SLE - Q.P.	1.00	1.00	1.00	1.00	0.50	1.00	1.00	0.00	-	0.00	-	-	0.00	-	-
SLE - Frequente	1.00	1.00	1.00	1.00	0.50	1.00	1.00	0.80	-	0.80	-	-	0.80	-	-
SLE - Rara	1.00	1.00	1.00	1.00	0.60	1.00	1.00	1.00	-	1.00	-	-	1.00	-	-


APPALTATORE	TELES Consorzio Telese Società Consor		ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA CANCELLO-BENEVENTO II LOTTO FUNZIONALE FRASSO TELESINO – VITULANO 2° SUBLOTTO TELESE – SAN LORENZO			ANO		
PROGETTAZIO	NE:							
Mandataria: SYSTRA S.A.	Mandante: SWS Engineering S.p.A.	SYSTRA-SOTECNI S.p.A.	PROGETTO ESECUTIVO					
IN10 - Tombino Relazione di ca	Rio Cocuzza 1 4.00 x 2.00 al alcolo	km 31+322,35	COMMESSA IF2R	LOTTO 2.2.E.ZZ	CODIFICA CL	DOCUMENTO	REV.	FOGLIO 27 di 69

8 SCATOLARE 5.00 X 3.00 M

La sezione trasversale retta ha una larghezza interna di $L_{int} = 5.00$ m ed un'altezza netta di $H_{int} = 3.00$ m; lo spessore della platea di fondazione è di $S_f = 0.70$ m, lo spessore dei piedritti è di $S_p = 0.60$ m e lo spessore della soletta di copertura è di $S_s = 0.60$ m.

Nel seguito verrà esaminata una striscia di scatolare avente lunghezza di 1.00 m.

8.1 GEOMETRIA

DATI GEOMETRICI									
Grandezza	Simbolo	Valore	U.M.						
larghezza totale scatolare	L_{tot}	6.20	m						
larghezza utile scatolare	Lint	5.00	m						
larghezza interasse	La	5.60	m						
spessore soletta superiore	Ss	0.60	m						
spessore piedritti	Sp	0.60	m						
spessore fondazione	$S_{\mathbf{f}}$	0.70	m						
altezza totale scatolare	\mathbf{H}_{tot}	4.30	m						
altezza libera scatolare	\mathbf{H}_{int}	3.00	m						
			m						
spessore ballast	H_{Psup}	0.80	m						
ricoprimento	H_{Rsup}	2.65	m						
spessore pacchetto interno	H_{Pinf}		m						
spessore ricoprimento interno	H_{Rinf}		m						

APPALTATORE: TELESE S.c.a r.l.

Consorzio Telese Società Consortile a Responsabilità Limitata

PROGETTAZIONE:

Mandataria: Mandante:

SWS Engineering S.p.A. SYSTRA S.A. SYSTRA-SOTECNI S.p.A.

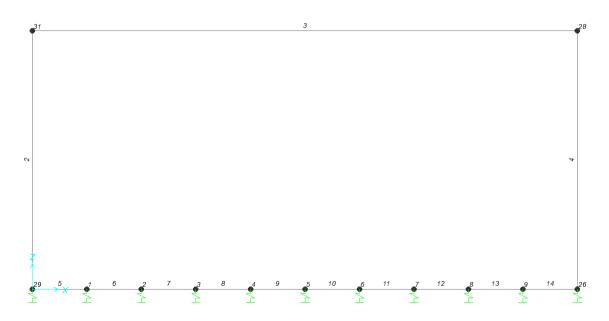
IN10 - Tombino Rio Cocuzza 1 4.00 x 2.00 al km 31+322,35

Relazione di calcolo

ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA CANCELLO-BENEVENTO II LOTTO FUNZIONALE FRASSO TELESINO – VITULANO 2° SUBLOTTO TELESE – SAN LORENZO

PROGETTO ESECUTIVO

COMMESSA LOTTO CODIFICA **DOCUMENTO** RFV **FOGLIO** 2.2.E.ZZ 28 di 69 IF2R CL IN.10.0.0.001 С


8.2 **MODELLO DI CALCOLO**

Il modello di calcolo attraverso il quale è schematizzata la struttura è quello del telaio chiuso su letto di molle alla Winkler.

Il modello considerato per l'analisi è quello di uno scatolare di profondità unitaria (1.00m) soggetto alle azioni da traffico di norma e quelle permanenti. In corrispondenza dei vertici dello scatolare sono state inserite delle zone rigide pari a metà spessore degli elementi.

Il terreno di fondazione è stato modellato utilizzando la schematizzazione alla Winkler con un opportuno coefficiente di sottofondo.

Di seguito si riporta lo schema di calcolo.

Numerazioni aste e nodi

8.2.1 Valutazione della rigidezza delle molle

Si considera lo scatolare appoggiato su di un letto di molle (schematizzazione alla Winkler) assegnando alle aste di fondazione del modello un valore di "linear spring" pari a K= 19000 kN/mc in funzione dell'interasse delle molle secondo la seguente formulazione:

 $i = (S_p/2 + L_{int} + S_p/2)/10$ Interasse molle [m]

Molle centrali $k_1 = k * i$ [kN/m]

 $k_2 = 1.5 * k * i$ Molle intermedie [kN/m]

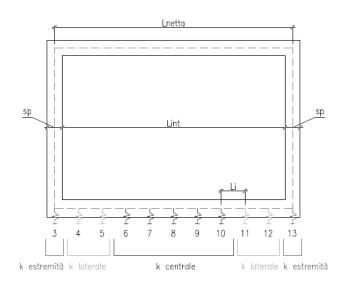
TELESE S.c.a r.l.

Consorzio Telese Società Consortile a Responsabilità Limitata

PROGETTAZIONE:

Mandataria: Mandante:

SYSTRA S.A. SWS Engineering S.p.A. SYSTRA-SOTECNI S.p.A.


lN10 - Tombino Rio Cocuzza 1 4.00 x 2.00 al km 31+322,35 Relazione di calcolo

ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA CANCELLO-BENEVENTO II LOTTO FUNZIONALE FRASSO TELESINO – VITULANO 2° SUBLOTTO TELESE – SAN LORENZO

PROGETTO ESECUTIVO

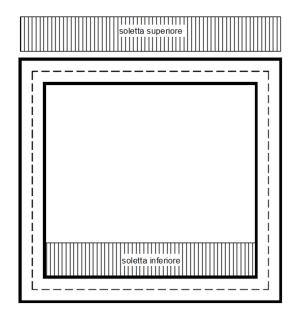
COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO IF2R 2.2.E.ZZ CL IN.10.0.0.001 С 29 di 69

 $k_3 = 2 * k * (i/2 + S_p/2)$ Molle laterali [kN/m]

0.56

Molle centrali 10640

kN/m³ Molle laterali 15960


Molle estremità 22040 kN/m^3

APPALTATORE: TELESE S.c.a r.l. ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA CANCELLO-BENEVENTO Consorzio Telese Società Consortile a Responsabilità Limitata II LOTTO FUNZIONALE FRASSO TELESINO – VITULANO 2° SUBLOTTO TELESE – SAN LORENZO PROGETTAZIONE: Mandataria: Mandante: **PROGETTO ESECUTIVO** SYSTRA S.A. SWS Engineering S.p.A. SYSTRA-SOTECNI S.p.A. IN10 - Tombino Rio Cocuzza 1 4.00 x 2.00 al km 31+322,35 COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO Relazione di calcolo IF2R 2.2.E.ZZ CL IN.10.0.0.001 30 di 69 С

8.3 ANALISI DEI CARICHI

8.3.1 Peso proprio della struttura e carichi permanenti portati

Soletta superiore	- Peso proprio		15.00 kN/m
		- Totale	15.00 kN/m
	- Peso Ballast		14.40 kN/m
	- Peso ricoprimento 265 cm	_	53.00 kN/m
		- Totale	67.40 kN/m
Soletta inferiore	- Peso proprio	_	17.50 kN/m
		- Totale	17.50 kN/m
	- Peso pacchetto interno 0 cm		$0.00 \ kN/m$
	- Peso terreno ricoprimento interno	_	0.00 kN/m
		- Totale	0.00 kN/m
<u>Piedritti</u>	- Peso proprio	_	15.00 kN/m
		- Totale	15.00 kN/m

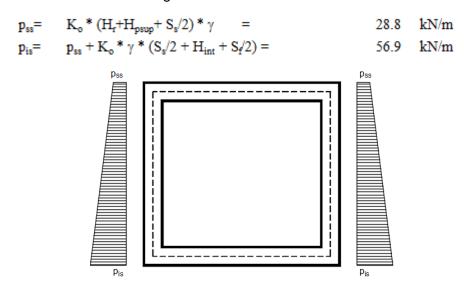
APPALTATORE: TELESE s.c.a r.l. Consorzio Telese Società Consortile a Responsabilità Limitata			ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA CANCELLO-BENEVENTO II LOTTO FUNZIONALE FRASSO TELESINO – VITULANO 2° SUBLOTTO TELESE – SAN LORENZO						
PROGETTAZIONE:									
Mandataria: SYSTRA S.A.	Mandante: SWS Engineering S.p.A.	SYSTRA-SOTECNI S.p.A.	PROGETTO ESECUTIVO						
IN10 - Tombino Rio Cocuzza 1 4.00 x 2.00 al km 31+322,35 Relazione di calcolo		COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO		

Per tenere in conto dei carichi agenti sul semispessore degli elementi considerati nel modello di calcolo, si applicano delle forze concentrate nei nodi tra soletta superiore e piedritti con valore pari a 20.22 kN.

8.3.2 Spinta in presenza di falda

Nel caso in cui a monte della parete sia presente la falda il diagramma delle pressioni sulla parete risulta modificato a causa della sottospinta che l'acqua esercita sul terreno. Il peso di volume del terreno al di sopra della linea di falda non subisce variazioni. Viceversa al di sotto del livello di falda va considerato il peso di volume di galleggiamento

$$\gamma_a = \gamma_{sat} - \gamma_w$$


dove γ_{sat} è il peso di volume saturo del terreno (dipendente dall'indice dei pori) e γ_{w} è il peso di volume dell'acqua. Quindi il diagramma delle pressioni al di sotto della linea di falda ha una pendenza minore. Al diagramma così ottenuto va sommato il diagramma triangolare legato alla pressione idrostatica esercitata dall'acqua.

$$u = \gamma_w \cdot z$$

L'opera non è interessata dalla falda.

8.3.3 Spinta del terreno sulle pareti

Per il rinterro si prevede un terreno avente angolo di attrito ϕ = 38° ed un peso di volume γ = 20 kN/m³, il coefficiente di spinta viene calcolato, considerando l'elevata rigidezza dello scatolare, utilizzando la formula Ko=1-sin ϕ ', per cui si ottiene un valore di Ko=0.38. Le spinte in asse soletta superiore ed asse soletta inferiore valgono:

Per tenere in conto dei carichi agenti sul semispessore degli elementi considerati nel modello di calcolo, si applicano delle forze concentrate nei nodi tra piedritto e soletta superiore con valore pari a 8.30 kN ed inferiore con valore pari a 20.38 kN.

APPALTATORE: TELESE S.c.a r.l. ITINERARIO NAPOLI - BARI RADDOPPIO TRATTA CANCELLO-BENEVENTO Consorzio Telese Società Consortile a Responsabilità Limitata II LOTTO FUNZIONALE FRASSO TELESINO – VITULANO 2° SUBLOTTO TELESE – SAN LORENZO PROGETTAZIONE: Mandataria: Mandante: PROGETTO ESECUTIVO SYSTRA S.A. SWS Engineering S.p.A. SYSTRA-SOTECNI S.p.A. IN10 - Tombino Rio Cocuzza 1 4.00 x 2.00 al km 31+322,35 COMMESSA LOTTO CODIFICA DOCUMENTO RFV **FOGLIO** Relazione di calcolo 2.2.E.ZZ IN.10.0.0.001 32 di 69 IF2R CL С

8.3.4 Treni di carico

8.3.4.1 Treno di carico LM71

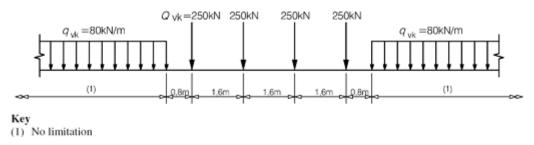
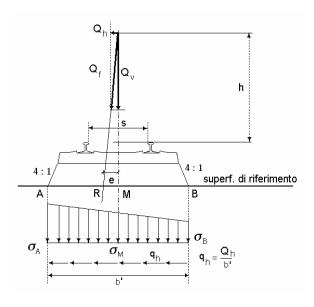


Fig. 1 -Load model 71 (al punto 6.3.2. della norma EN 1991-2:2003)


 α = coefficiente di adattamento = 1.10

Per il calcolo del coefficiente dinamico, si fa riferimento invece alle indicazioni di cui al par. 1.4.2.5, considerando il caso di Linee con "Normale Standard Manutentivo" ovvero al coefficiente ϕ_3 .

Per il caso delle solette di scatolare, dal p.TO 2.5.2.2.3.2, per ricoprimento maggiore di 2.50m ϕ_3 = 1.00.

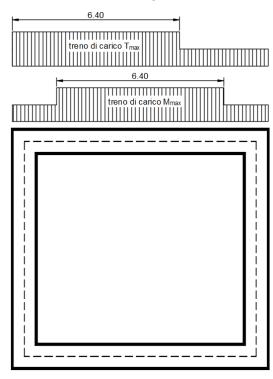
Il sovraccarico ferroviario si diffonde attraverso il ballast con pendenza 4:1, poi nel ricoprimento con pendenza a 38° (pari all'angolo di attrito del ricoprimento) e con la pendenza a 45° all'interno del cls per cui la lunghezza di diffusione del carico in senso trasversale all'asse binario risulta pari a:

$$L_{trasv} = 2.4 + [0.35/4 + H_{rsup} + tan(38^{\circ}) + S_{s}/2] *2 = 7.32 \text{ m}$$

APPALTATORE: TELESE s.c.a r.l. Consorzio Telese Società Consortile a Responsabilità Limitata			ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA CANCELLO-BENEVENTO II LOTTO FUNZIONALE FRASSO TELESINO – VITULANO						
PROGETTAZIONE:			2° SUBLOTTO TELESE – SAN LORENZO						
Mandataria: SYSTRA S.A.	Mandante: SWS Engineering S.p.A.	SYSTRA-SOTECNI S.p.A.	PROGETTO ESECUTIVO						
IN10 - Tombino Rio Cocuzza 1 4.00 x 2.00 al km 31+322,35 Relazione di calcolo		COMMESSA IF2R	LOTTO 22 F 77	CODIFICA	DOCUMENTO	REV.	FOGLIO		

In senso longitudinale si è assunto che il carico si distribuisce su una lunghezza pari a $L_{long} = 6.40$ m.

Pertanto il carico ripartito dovuto ai treni LM 71 risulta:


- Carico ripartito prodotto dalle forze concentrate

=
$$4*250*1.1*\Phi_3/(L_{trasv}*L_{long})$$
 = 23.49 kN/m^2

- Carico ripartito prodotto dal carico distribuito (80 kN/m*2)

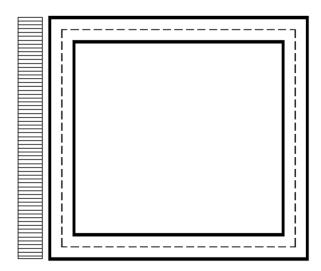
=
$$80 * 1.1 * \Phi 3 / L_{trasv} =$$
 12.03 kN/m^2

Le distribuzioni del sovraccarico ferroviario considerate al di sopra della copertura, sono quelle in grado di massimizzare le sollecitazioni flettenti e taglianti.

Per tenere in conto i carichi agenti sul semispessore degli elementi considerati nel modello di calcolo, si applicano delle forze concentrate nei nodi tra soletta superiore e piedritti con valore pari a 7.05 kN.

APPALTATORE: TELESE s.c.a r.l. Consorzio Telese Società Consortile a Responsabilità Limitata			ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA CANCELLO-BENEVENTO II LOTTO FUNZIONALE FRASSO TELESINO – VITULANO						
PROGETTAZIONE:			2° SUBLOTTO TELESE – SAN LORENZO						
Mandataria: SYSTRA S.A.	Mandante: SWS Engineering S.p.A.	SYSTRA-SOTECNI S.p.A.	PROGETTO ESECUTIVO						
IN10 - Tombino Rio Cocuzza 1 4.00 x 2.00 al km 31+322,35 Relazione di calcolo		COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO		

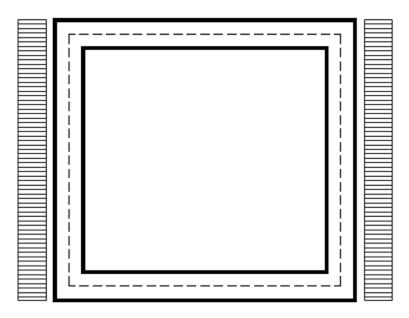
8.3.5 Spinta del terreno indotta dai treni di carico


Per il rinterro si prevede un terreno avente angolo di attrito $\phi=38^\circ$ ed un peso di volume $\gamma=20$ kN/m³, il coefficiente di spinta viene calcolato, considerando l'elevata rigidezza dello scatolare, utilizzando la formula Ko=1-sin ϕ ', per cui si ottiene un valore di K $_0=0.38$. La pressione del terreno sui piedritti ed indotta dai treni di carico viaggianti su due linee adiacenti verrà calcolata secondo la formula $P=q*K_0$

Si è considerata la sola spinta prodotta dal carico ripartito equivalente alle forze concentrate (vedi considerazioni di cui al paragrafo precedente)

$$q * K_0 = 9.03 \text{ kN/m}^2$$

La spinta del terreno viene analizzata in due diverse condizioni


a) Spinta sul piedritto sinistro

Per tenere in conto dei carichi agenti sul semispessore degli elementi considerati nel modello di calcolo, si applicano delle forze concentrate nei nodi tra piedritto sinistro e soletta superiore con valore pari a 2.71 kN ed inferiore con valore pari a 3.16 kN.

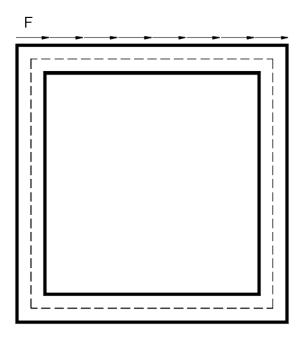
APPALTATORE: TELESE S.c.a r.l. ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA CANCELLO-BENEVENTO Consorzio Telese Società Consortile a Responsabilità Limitata II LOTTO FUNZIONALE FRASSO TELESINO – VITULANO 2° SUBLOTTO TELESE – SAN LORENZO PROGETTAZIONE: Mandataria: Mandante: PROGETTO ESECUTIVO SYSTRA S.A. SWS Engineering S.p.A. SYSTRA-SOTECNI S.p.A. COMMESSA LOTTO IN10 - Tombino Rio Cocuzza 1 4.00 x 2.00 al km 31+322,35 **CODIFICA DOCUMENTO** REV. **FOGLIO** Relazione di calcolo 2.2.E.ZZ 35 di 69 IF2R CL IN.10.0.0.001 С

b) Spinta su entrambi i piedritti

Per tenere in conto dei carichi agenti sul semispessore degli elementi considerati nel modello di calcolo, si applicano delle forze concentrate nei nodi tra piedritti e soletta superiore con valore pari a 2.71 kN ed inferiore con valore pari a 3.16 kN.

8.3.6 Avviamento e frenatura

avviamento: Q_{lak} = 33 [kN/m] * L[m] < 1000 kN per modelli di carico LM 71 e SW/0 e SW/2


frenatura: $Q_{lbk} = 20 [kN/m] * L[m] < 6000 kN$ per modelli di carico LM 71 e SW/0

 $Q_{lbk} = 35 [kN/m] * L[m]$ per modelli di carico SW/2

La forza di frenatura, per metro lineare, applicata alla soletta di copertura si ritiene uniformemente agente sulla larghezza ottenuta per diffusione dei carichi verticali sino al baricentro della soletta e vale:

 $F = \alpha \cdot Q_{lak} / L_{trasv} = 5.0 \text{ kN/m}$

APPALTATORE: TELESE S.c.a r.l. ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA CANCELLO-BENEVENTO Consorzio Telese Società Consortile a Responsabilità Limitata II LOTTO FUNZIONALE FRASSO TELESINO – VITULANO PROGETTAZIONE: 2° SUBLOTTO TELESE – SAN LORENZO Mandataria: Mandante: PROGETTO ESECUTIVO SYSTRA S.A. SWS Engineering S.p.A. SYSTRA-SOTECNI S.p.A. IN10 - Tombino Rio Cocuzza 1 4.00 x 2.00 al km 31+322,35 COMMESSA LOTTO CODIFICA **DOCUMENTO** REV. **FOGLIO** Relazione di calcolo IF2R 2.2.E.ZZ IN.10.0.0.001 36 di 69 CL С

Per tenere in conto dei carichi agenti sul semispessore degli elementi considerati nel modello di calcolo, si applicano delle forze concentrate nei nodi tra piedritti e soletta superiore con valore pari a 1.49 kN.

8.3.7 Serpeggio e centrifuga

Tali carichi vengono trascurati perché non determinanti per il dimensionamento trasversale dell'opera.

8.3.8 Ritiro differenziale della soletta di copertura

Si considera una variazione termica uniforme equivalente sulla soletta superiore come da calcolo seguente. Il calcolo viene condotto secondo le indicazioni dell'EUROCODICE 2-UNI EN1992-1-1 Novembre 2005.

TELESE S.c.a r.l.

Consorzio Telese Società Consortile a Responsabilità Limitata

PROGETTAZIONE:

Mandataria:

Mandante:

SYSTRA S.A. SWS Engineering S.p.A. SYSTRA-SOTECNI S.p.A.

IN10 - Tombino Rio Cocuzza 1 4.00 x 2.00 al km 31+322,35

Relazione di calcolo

ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA CANCELLO-BENEVENTO II LOTTO FUNZIONALE FRASSO TELESINO – VITULANO 2° SUBLOTTO TELESE – SAN LORENZO

PROGETTO ESECUTIVO

COMMESSA LOTTO CODIFICA DOCUMENTO IF2R

2.2.E.ZZ CL

IN.10.0.0.001

RFV **FOGLIO** 37 di 69 С

Cls a t=0

CIS a t-0				
R_{ck}	=	40	N/mm ²	Resistenza a compressione cubica caratteristica
\mathbf{f}_{ck}	=	33.2	N/mm^2	Resistenza a compressione cilindrica caratteristica
\mathbf{f}_{cm}	=	41.2	N/mm^2	Resistenza a compressione cilindrica media
OΥ	=	1.0E-05		
E_{cm}	=	33643	N/mm^2	Modulo elastico secante medio

Tempo e ambiente

1 cmh	o e amoi	ente		
ts	=	2	gg	età del calcestruzzo in giorni, all'inizi del ritiro per essiccamento
t ₀	=	2	gg	età del calcestruzzo in giorni a momento del carico
t	=	25550	gg	stà del calcestruzzo in giorni
h ₀ =2.	$A_c/u =$	1200	mm	dimensione fittizia dell'elemento di cla
Ac	=	600000	mm ²	sezione dell'elemento
u	=	1000	mm	perimetro a contatto con l'atmosfera
RH	=	75	%	umidità relativa percentuale

Coefficiente di viscosità ϕ (t,t0) e modulo elastico EC $_t$ a tempo "t"

$$\phi(t,t_0) = \varphi_0 \beta_c(t,t_0) =$$

$$\iota_0) = \varphi_0 \, \rho_c(\iota, \iota_0) =$$

$$\begin{split} \phi_0 &= \phi \, RH \, \beta_c(f_{cm}) \, \beta_c(t_0) = \\ \varphi_{RH} &= 1 + \left\lfloor \frac{1 - RH/100}{0.1 \sqrt[3]{h_0}} \, \alpha_1 \right\rfloor \, \alpha_2 = \end{split}$$

$$\alpha_1 = \begin{cases} (35/f_{cm})^{0.7} & per\,f_{cm} > 35MPa \\ 1 & per\,f_{cm} \leq 35MPa \end{cases} =$$

$$\alpha_2 = \begin{cases} (35/f_{cm})^{0.2} & per \ f_{cm} > 35MPa \\ 1 & per \ f_{cm} \leq 35MPa \end{cases} =$$

$$\beta_C(f_{cm}) = \frac{16.8}{\sqrt{f_{cm}}} =$$

$$\beta_c(t_0) = \frac{1}{(0.1 + t_0^{0.20})} =$$

$$t_o = t_0 \left(\frac{9}{2 + t_0^{1.2}} + 1 \right)^\alpha \ge 0.5 =$$

coeff per il tipo di cemento (-l per classe S, 0 per classe N, 1 per classe

TELESE S.c.a r.l.

Consorzio Telese Società Consortile a Responsabilità Limitata

PROGETTAZIONE:

Mandataria:

Mandante:

SYSTRA S.A. SWS Engineering S.p.A. SYSTRA-SOTECNI S.p.A.

IN10 - Tombino Rio Cocuzza 1 4.00 x 2.00 al km 31+322,35

Relazione di calcolo

ITINERARIO NAPOLI - BARI RADDOPPIO TRATTA CANCELLO-BENEVENTO II LOTTO FUNZIONALE FRASSO TELESINO – VITULANO 2° SUBLOTTO TELESE – SAN LORENZO

PROGETTO ESECUTIVO

COMMESSA LOTTO 2.2.E.ZZ IF2R

CODIFICA CL

DOCUMENTO IN.10.0.0.001

RFV

С

FOGLIO 38 di 69

$$\beta_c(t,t_0) = \left[\frac{(t-t_0)}{(\beta_H+t-t_0)}\right]^{0.3} =$$

0.984 coeff per la variabilità della viscosità nel tempo

$$\beta_H = 1.5[1 + (0.012 \ RH)^{18}] \ h_0 + 250 \alpha_3 \le 1500 \alpha_3 =$$

 $\beta_H = 1.5[1 + (0.012 \ RH)^{18}] \ h_0 + 250 \alpha_3 \le 1500 \alpha_3 = 1382.5 \ {coeff}$ che tiene conto dell'umidità relativa

$$\alpha_3 = \begin{cases} (35/f_{cm})^{0.5} & per \, f_{cm} > 35MPa \\ 1 & per \, f_{cm} \leq 35MPa \end{cases} =$$

0.922 coeff per la resistenza del calcestruzzo

Il modulo elastico a tempo "t" è pari a:

$$E_{cm}(t,t_0) = \frac{E_{cm}}{1 + \varphi(t,t_0)} =$$

11281951 kN/m²

Deformazioni di ritiro

$$\varepsilon_s(t,t_0) = \varepsilon_{cd}(t) + \varepsilon_{ca}(t) =$$

0.000332 deformazione di ritiro ε (t,t $_{o}$)

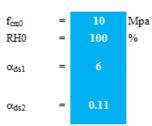
$$\varepsilon_{cd}(t) = \beta_{ds}(t, t_s) K_b \varepsilon_{cd,0} =$$

0.000274 deformazione al ritiro per essiccamento

$$\beta_{ds}(t,t_s) = \left[\frac{(t-t_s)}{(t-t_s) + 0.04 \sqrt{h_0^3}} \right] =$$

0.938893

parametro che dipende da h_o secondo il prospetto seguente


Valori di k h

h _o	4
100	1,0
200	0,85
300	0,75
≥500	0,70

Valori di Kh intermedi a quelli del prospetto vengono calcolati tramite interpolazione lineare

$$\varepsilon_{cd,0} = 0.85 \left[(200 + 100 \ \alpha_{ds1}) \exp\left(-\alpha_{ds2} \frac{f_{cm}}{f_{cm0}}\right) \right] 10^{-6} \beta_{RH} = 0.000416$$

$$\beta_{RH} = 1.55 \left[1 - \left(\frac{RH}{RH0} \right)^3 \right] = 0.896094$$

coeff per il tipo di cemento (3 per classe S, 4 per classe N, 6 per classe

coeff per il tipo di cemento (0.13 per classe S, 0.12 per classe N, 0.11 per classe R)

$$\varepsilon_{ca}(t) = \beta_{as}(t)\varepsilon_{ca,00} =$$

0.000058 deformazione dovuta al ritiro autogeno

$$\beta_{as}(t) = 1 - \exp(-0.2t^{0.5}) =$$

$$\varepsilon_{ca00} = 2.5(f_{ck} - 10)10^{-6}$$

$$\begin{split} & \text{Variazione termica uniforme equivalente agli effetti del ritiro:} \\ & \Delta T_{\text{ritiro}} = -\frac{\epsilon_{\text{g}}(t,t_0)E_{\text{cm}}}{\left(1+\phi(t,t_0)\right)E_{\text{cm}}\alpha} = & \text{-11.12 °C} \end{split}$$

TELESE s.c.a r.l.

Consorzio Telese Società Consortile a Responsabilità Limitata

PROGETTAZIONE:

Mandataria: Mandante:

SYSTRA S.A. SWS Engineering S.p.A. SYSTRA-SOTECNI S.p.A.

IN10 - Tombino Rio Cocuzza 1 4.00 x 2.00 al km 31+322,35

Relazione di calcolo

ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA CANCELLO-BENEVENTO II LOTTO FUNZIONALE FRASSO TELESINO – VITULANO 2° SUBLOTTO TELESE – SAN LORENZO

PROGETTO ESECUTIVO

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 IF2R
 2.2.E.ZZ
 CL
 IN.10.0.0.001
 C
 39 di 69

8.3.9 Azione Termica

Si applica ai piedritti ed alla soletta superiore una variazione termica di +/-15°C.

8.3.10 Azione sismica inerziale

Per il calcolo dell'azione sismica si utilizza il metodo dell'analisi pseudostatica in cui l'azione sismica è rappresentata da una forza statica equivalente pari al prodotto delle forze di gravità per un opportuno coefficiente sismico *k*. Le forze sismiche sono pertanto le seguenti:

Forza sismica orizzontale $F_h = k_h^* W$

Forza sismica verticale $F_v = k_v^* W$

I valori dei coefficienti sismici orizzontale k_h e verticale k_v possono essere valutati mediante le espressioni: $k_h = a_{max}/g$

 $k_v = \pm 0.5 k_h$

A seguito di tale assunzione si ottiene allo stato limite ultimo SLV in funzione della Latitudine e Longitudine del sito in esame un valore dell'accelerazione pari a a_q = 0.367 g.

In assenza di analisi specifiche della risposta sismica locale l'accelerazione massima può essere valutata con la relazione:

$$a_{max} = S * a = S_s * S_t * a_g$$

dove assumendo un terreno di tipo B ed in base al fattore di amplificazione del sito si ottiene:

S_s= 1.184 Coefficiente di amplificazione stratigrafica

S_T= 1 Coefficiente di amplificazione topografica

ne deriva che:

$$a_{max}$$
= 1.184 * 1 * 0.367 g = 0.435 g

$$k_h = a_{max}/g = 0.435$$

$$k_v = \pm 0.5 * k_h = 0.217$$

TELESE S.c.a r.l.

Consorzio Telese Società Consortile a Responsabilità Limitata

PROGETTAZIONE:

Mandataria:

Mandante:

SYSTRA S.A. SWS Engineering S.p.A.

SYSTRA-SOTECNI S.p.A.

IN10 - Tombino Rio Cocuzza 1 4.00 x 2.00 al km 31+322,35

Relazione di calcolo

ITINERARIO NAPOLI – BARI

RADDOPPIO TRATTA CANCELLO-BENEVENTO
II LOTTO FUNZIONALE FRASSO TELESINO – VITULANO

2° SUBLOTTO TELESE – SAN LORENZO

PROGETTO ESECUTIVO

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 IF2R
 2.2.E.ZZ
 CL
 IN.10.0.0.001
 C
 40 di 69

Sisma orizzontale

$$F_{sis} = a_{max} * \gamma * (H_{tot}) = 37.37 \text{ kN/m} \quad \text{(carico applicato sulla parete)}$$

$$F_{inp} = \alpha * S_p * \gamma * 1m = \underline{6.52 \text{ kN/m}} \quad \text{(inerzia piedritti)}$$

$$Totale = \underline{43.89 \text{ kN/m}} \quad \text{(piedritto sx)}$$

$$Totale = \underline{6.52 \text{ kN/m}} \quad \text{(piedritto dx)}$$

$$F_Q = \alpha * Qv * 0.2 * 1m = 2.04 \text{ kN/m} \quad \text{(inerzia treno)}$$

$$F_{inr} = \alpha * (H_p + H_r) * \gamma_r * 1m = 29.29 \text{ kN/m} \quad \text{(inerzia ballast + ricoprimento)}$$

$$F_{ins} = \alpha * S_s * \gamma_{cls} * 1m = \underline{6.52 \text{ kN/m}} \quad \text{(inerzia soletta superiore)}$$

$$Totale = \underline{37.85 \text{ kN/m}} \quad \text{(soletta superiore)}$$

Per tenere in conto dei carichi agenti sul semispessore degli elementi considerati nel modello di calcolo, si applicano delle forze concentrate nei nodi tra piedritto sinistro e soletta superiore con valore pari a 13.17 kN ed inferiore con valore pari a 15.36 kN. Si applicano delle forze concentrate nei nodi tra piedritto destro e soletta superiore con valore pari a 1.96 kN ed inferiore con valore pari a 2.28 kN.

Sisma verticale

Per tenere in conto le carichi agenti sul semispessore degli elementi considerati nel modello di calcolo, si applicano delle forze concentrate nei nodi tra soletta superiore e piedritti con valore pari a 5.68 kN.

Gli effetti dell'azione sismica saranno valutati tenendo conto delle masse associate ai seguenti carichi gravitazionali: $G_1 + G_2 + \psi_{2j} Q_{kj}$

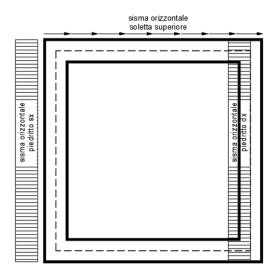
TELESE S.c.a r.l.

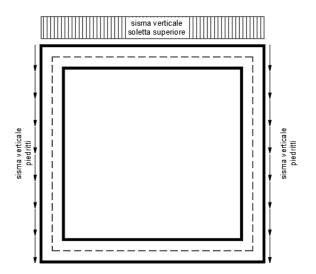
Consorzio Telese Società Consortile a Responsabilità Limitata

PROGETTAZIONE:

Mandataria:

Mandante: SYSTRA S.A. SWS Engineering S.p.A.


SYSTRA-SOTECNI S.p.A.


IN10 - Tombino Rio Cocuzza 1 4.00 x 2.00 al km 31+322,35 Relazione di calcolo

ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA CANCELLO-BENEVENTO II LOTTO FUNZIONALE FRASSO TELESINO – VITULANO 2° SUBLOTTO TELESE – SAN LORENZO

PROGETTO ESECUTIVO

COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO IN.10.0.0.001 IF2R 2.2.E.ZZ CL С 41 di 69

APPALTATORE: TELESE S.c.a r.l. ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA CANCELLO-BENEVENTO Consorzio Telese Società Consortile a Responsabilità Limitata II LOTTO FUNZIONALE FRASSO TELESINO – VITULANO 2° SUBLOTTO TELESE – SAN LORENZO PROGETTAZIONE: Mandataria: Mandante: **PROGETTO ESECUTIVO** SYSTRA S.A. SWS Engineering S.p.A. SYSTRA-SOTECNI S.p.A. lN10 - Tombino Rio Cocuzza 1 4.00 x 2.00 al km 31+322,35 Relazione di calcolo COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO IF2R 2.2.E.ZZ CL IN.10.0.0.001 42 di 69 С

8.4 DIAGRAMMI DELLE SOLLECITAZIONI

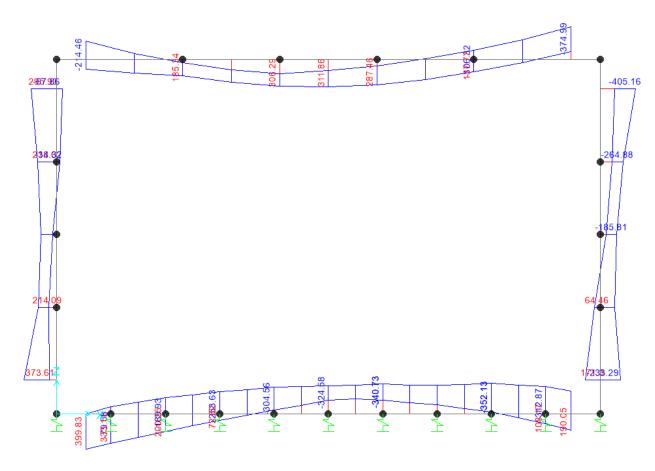


Figure 3 – Inviluppo momenti flettenti SLU-SLV

APPALTATORE: TELESE S.c.a r.l. ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA CANCELLO-BENEVENTO Consorzio Telese Società Consortile a Responsabilità Limitata II LOTTO FUNZIONALE FRASSO TELESINO – VITULANO 2° SUBLOTTO TELESE – SAN LORENZO PROGETTAZIONE: Mandataria: Mandante: **PROGETTO ESECUTIVO** SYSTRA S.A. SWS Engineering S.p.A. SYSTRA-SOTECNI S.p.A. lN10 - Tombino Rio Cocuzza 1 4.00 x 2.00 al km 31+322,35 Relazione di calcolo COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO IF2R 2.2.E.ZZ IN.10.0.0.001 43 di 69 CL С

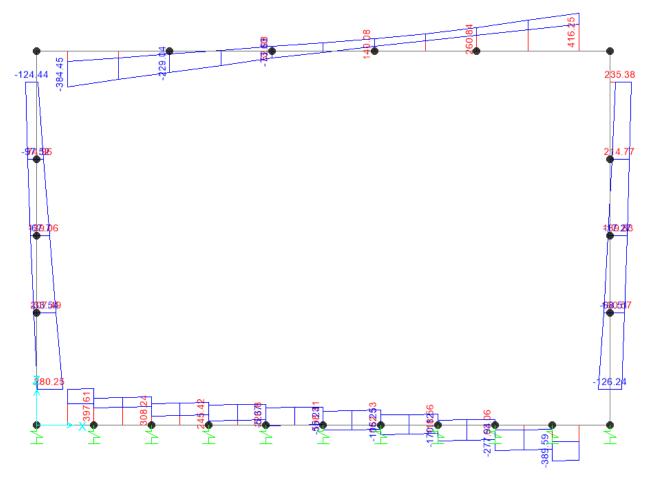


Figure 4 – Inviluppo sforzi taglianti SLU-SLV

APPALTATORE: TELESE S.c.a r.l. ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA CANCELLO-BENEVENTO Consorzio Telese Società Consortile a Responsabilità Limitata II LOTTO FUNZIONALE FRASSO TELESINO – VITULANO 2° SUBLOTTO TELESE – SAN LORENZO PROGETTAZIONE: Mandataria: Mandante: **PROGETTO ESECUTIVO** SYSTRA S.A. SWS Engineering S.p.A. SYSTRA-SOTECNI S.p.A. IN10 - Tombino Rio Cocuzza 1 4.00 x 2.00 al km 31+322,35 Relazione di calcolo COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO IF2R 2.2.E.ZZ IN.10.0.0.001 44 di 69 CL С

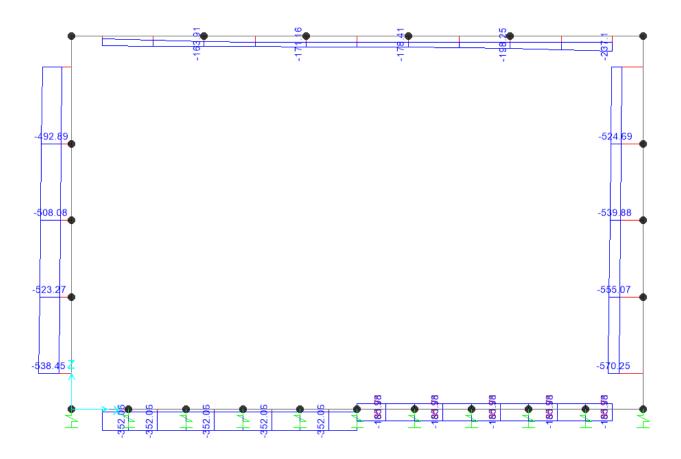


Figure 5 – Inviluppo azioni assiali SLU-SLV

APPALTATORE: TELESE S.c.a r.l. ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA CANCELLO-BENEVENTO Consorzio Telese Società Consortile a Responsabilità Limitata II LOTTO FUNZIONALE FRASSO TELESINO – VITULANO 2° SUBLOTTO TELESE – SAN LORENZO PROGETTAZIONE: Mandataria: Mandante: **PROGETTO ESECUTIVO** SYSTRA S.A. SWS Engineering S.p.A. SYSTRA-SOTECNI S.p.A. lN10 - Tombino Rio Cocuzza 1 4.00 x 2.00 al km 31+322,35 Relazione di calcolo COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO IN.10.0.0.001 IF2R 2.2.E.ZZ CL 45 di 69 С

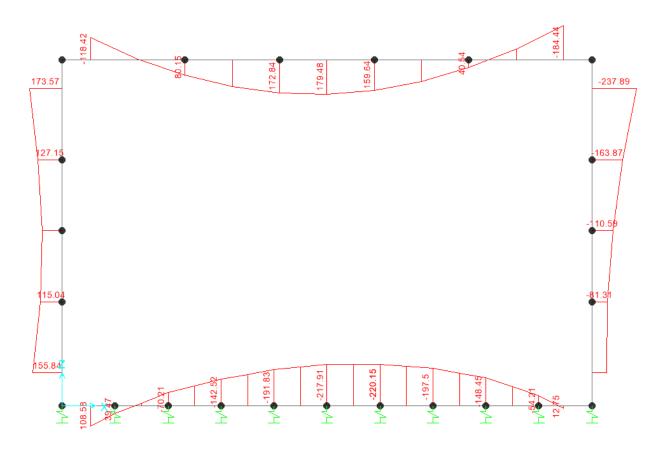


Figure 6 - Inviluppo momenti flettenti SLE rara

APPALTATORE	TELES Consorzio Telese Società Consor			O TRATT	A CANCEL	LO-BENEVEN D TELESINO -		ANO
PROGETTAZIO	NE:		2° SUBLOT	TO TELE	SE – SAN L	ORENZO		
Mandataria:	Mandante:							
SYSTRA S.A.	SWS Engineering S.p.A.	SYSTRA-SOTECNI S.p.A.	PROGETTO	ESECUT	ΓΙνο			
IN10 - Tombino Relazione di ca	Rio Cocuzza 1 4.00 x 2.00 al Ilcolo	km 31+322,35	COMMESSA IF2R	LOTTO 2.2.E.ZZ	CODIFICA CL	DOCUMENTO	REV.	FOGLIO 46 di 69

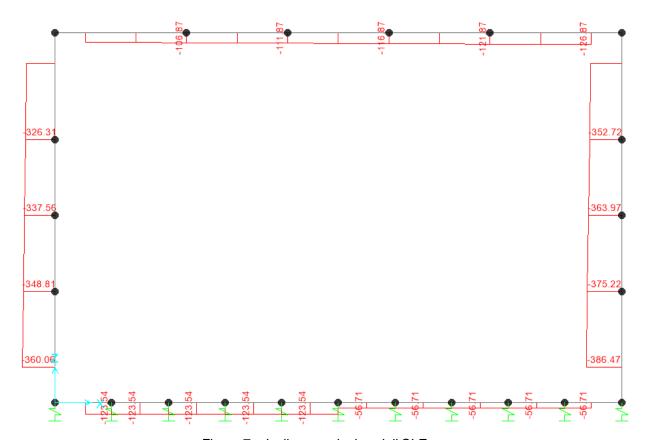


Figure 7 – Inviluppo azioni assiali SLE rara

8.5 VERIFICA DELLE SEZIONI IN C.A.

Nelle tabelle seguenti sono indicati i valori delle sollecitazioni massime e i valori delle sollecitazioni per la verifica a fessurazione risultanti dalle combinazioni di cui al capitolo precedente.

Per le verifiche in corrispondenza dei nodi si considerano le sollecitazioni a filo elemento rigido. Per ogni elemento si ricerca la sezione di Momento e Taglio massimo; la verifica sarà eseguita con la sollecitazione, in modulo, maggiore:

TELESE S.c.a r.l.

Consorzio Telese Società Consortile a Responsabilità Limitata

PROGETTAZIONE:

Mandataria:

Mandante:

SYSTRA S.A. SWS Engineering S.p.A. SYSTRA-SOTECNI S.p.A.

IN10 - Tombino Rio Cocuzza 1 4.00 x 2.00 al km 31+322,35 Relazione di calcolo

ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA CANCELLO-BENEVENTO II LOTTO FUNZIONALE FRASSO TELESINO – VITULANO 2° SUBLOTTO TELESE – SAN LORENZO

PROGETTO ESECUTIVO

CODIFICA COMMESSA LOTTO DOCUMENTO REV. FOGLIO IF2R 2.2.E.ZZ CL IN.10.0.0.001 С 47 di 69

			SLU STI	R-SLV	
Elemento strutturale	Sezione	C.C. M _{max}	N (kN)	M _{max} (kNm)	T _{max} (kN)
soletta	nodo piedritto	SLU16-SIS2	366.61	433.54	397.61
inferiore	campata	SLU16-SIS	-91.71	-352.13	-
soletta	nodo piedritto	SLU16-SIS	237.10	-374.99	416.25
superiore	campata	SLU14-STR2	123.18	311.86	-
	nodo soletta inf	SLU17-SIS2	158.42	-88.06	296.48
piedritti	nodo soletta inf	SLU16-SIS2	242.13	402.07	296.48
	nodo soletta sup	SLU16-SIS	381.59	405.16	235.38
	nodo soletta sup	SLU17-SIS	387.88	-171.30	235.38

		SLE	RARA	SLE FREQUENTE			SLE QUASI PERMANENTE		
Elemento strutturale	Sezione	N (kN)	M _{max} (kNm)	ID Asta	N (kN)	M _{max} (kNm)	ID Asta	N (kN)	M _{max} (kNm)
soletta	nodo piedritto	143.00	149.03	soletta	133.82	133.74	soletta	111.14	98.00
inferiore	campata	56.71	-220.15	inferiore	117.60	-205.92	inferiore	94.92	-179.19
soletta	nodo piedritto	126.87	-184.44	soletta	119.75	-169.68	soletta superiore	103.23	-132.93
superiore	campata	94.91	209.56	superiore	93.53	198.02		84.51	170.93
	nodo soletta inf	337.56	106.56		325.64	101.45		301.11	81.79
ni n Anissi	nodo soletta inf	360.06	189.99	ni a duissi	348.14	174.21	i.a.duissi	267.36	162.86
piedritti	nodo soletta sup	341.47	237.89	piedritti	324.26	220.83	piedritti	272.65	175.72
	nodo soletta sup	386.47	79.27		358.01	80.96		306.40	75.04

APPALTATORE: TELESE S.c.a r.l.

Consorzio Telese Società Consortile a Responsabilità Limitata

PROGETTAZIONE:

Mandataria: Mandante:

SYSTRA S.A. SWS Engineering S.p.A. SYSTRA-SOTECNI S.p.A.

lN10 - Tombino Rio Cocuzza 1 4.00 x 2.00 al km 31+322,35 Relazione di calcolo

ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA CANCELLO-BENEVENTO II LOTTO FUNZIONALE FRASSO TELESINO – VITULANO 2° SUBLOTTO TELESE – SAN LORENZO

PROGETTO ESECUTIVO

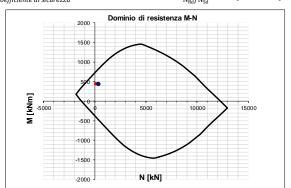
COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO

IF2R 2.2.E.ZZ CL IN.10.0.0.001 С 48 di 69

8.5.1 Verifica soletta inferiore

Soletta inferiore

SOLLECITAZIONI DI VERIFICA							
Combinazione		N _{Sd} [kN]	M _{Sd} [kNm]	V _{Sd} [kN]			
	SLE Quasi Permanente	-95.0	180.0	-			
	SLE Frequente	-118.0	206.0	-			
	SLE Rara	-57.0	220.0	-			
	SLU	-91.0	434.0	398.0			
	SLV	-366.0	434.0	398.0			


CARATTERISTICHE GE	OMETRICHE D	ELLA SEZI	ONE IN C.A	
Geometria della sezione				
Base (ortogonale al Taglio)			B [cm]	100
Altezza (parallela al Taglio)			H [cm]	70
Altezza utile della sezione			d [cm]	63
Area di calcestruzzo			A _c [cm ²]	7000
Armatura longitudinale tesa		1° STRATO	2° STRATO	3° STRATO
Numero Barre	n	10.00	0.00	0
Diametro	φ [mm	20	0	0
Posizione dal lembo esterno	c [cm]	7.2	0.0	0.0
Area strato	As [cm ²	31.42	0.00	0.00
Rapporto di armatura	ρ[%]		0.500%	
Armatura longitudinale compressa		1° STRATO	2° STRATO	3° STRATO
Numero Barre	n	5.0	0	0
Diametro	φ [mm	20	0	0
Posizione dal lembo esterno	c' [cm	7.2	0.0	0.0
Area strato	As' [cm'	15.71	0.00	0.00
Rapporto di armatura	ρ' [%]		0.250%	
Armatura trasversale		1° TIPO	2° TIPO	3° TIPO
Diametro	φ[mn	12	0	0
Numero bracci	n_{bi}	2.5	0	0
Passo	s _w [cm	20	0	0
Inclinazione	α [deg	90	90	90
Area armatura a metro	A_{sw}/s_w [cm ² /n	14.14	0.00	0.00

Resistenza cubica a compressione	RCK	35
Resistenza cilindrica caratteristica a compressione	f _{ck} [Mpa]	28.00
Resistenza cilindrica media a compressione	f _{cm} [Mpa]	36.00
Resistenza media a trazione per flessione	f _{ctm} [Mpa]	2.77
Resistenza caratteristica a trazione per flessione	f _{ctk} [Mpa]	1.94
Resistenza di progetto a compressione	f _{cd} [Mpa]	15.87
Resistenza di progetto delle bielle compresse	f _{cd'} [Mpa]	8.45
Acciaio		
Resistenza di progetto a snervamento	f _{vd} [Mpa]	391.3

OUTPUT VERIFICHE IN ESERCIZIO					
,	Edulidadio				
Verifica Tensionale			σ limit		
Calcestruzzo SLE Quasi Permanente	$\sigma_c[Mpa] =$	3.02	11.200		
Calcestruzzo SLE Rara	$\sigma_c[Mpa] =$	3.64	15.400		
Acciaio SLE Rara	σ_s [Mpa] =	115.84	337.500		
Verifica di fessurazione			w limit		
Combinazione SLE Quasi permanente	w _d [mm] =	0.000	0.200		
Combinazione SLE Frequente	w_d [mm] =	0.000	0.300		

Sollecitazioni di progetto		
Taglio sollecitante = max Taglio(SLU,SLV)	V _{Sd} [kN]	398.0
Sforzo Normale concomitante al massimo taglio	N _{Sd} [kN]	-366.0
Verifica di resistenza in assenza di armatura specifica		
Resistenza di progetto senza armatura specifica	V _{Rd1} [KN]	333.43
Coefficiente di sicurezza	V_{Rd1}/V_{Sd}	0.84
Verifica di resistenza dell'armatura specifica		
CoTan(θ) di progetto	$cotan(\theta)$	2.5
Resistenza a taglio delle bielle compresse in cls	$V_{Rd2}(\theta)$ [KN]	1702
Resistenza a taglio dell'armatura	$V_{Rd3}(\theta)$ [KN]	782
Resistenza a taglio di progetto	V _{Rd} [KN]	782
Coefficiente di sicurezza	V_{Rd}/V_{Sd}	1.96

VERIFICA DI RESISTENZA A PRESSO-FLESSIONE					
Sollecitazioni di progetto		SLU	SLV		
Momento sollecitante	M _{Sd} [kNm]	434.0	434.0		
Sforzo Normale concomitante	N _{Sd} [kN]	-91.0	-366.0		
Verifica di resistenza in termini di momento		SLU	SLV		
Momento resistente	M _{Rd} [kNm]	748.8	824.3		
Coefficiente di sicurezza	M_{Rd}/M_{Sd}	1.73	1.90		
Verifica di resistenza in termini di sforzo normale		SLU	SLV		
Sforzo normale resistente	N _{Rd} [kN]	-	-		
Coefficiente di sicurezza	N_{Rd}/N_{Sd}	-	-		

APPALTATORE: TELESE S.c.a r.l.

Consorzio Telese Società Consortile a Responsabilità Limitata

PROGETTAZIONE:

Mandataria: Mandante:

SYSTRA S.A. SWS Engineering S.p.A. SYSTRA-SOTECNI S.p.A.

lN10 - Tombino Rio Cocuzza 1 4.00 x 2.00 al km 31+322,35 Relazione di calcolo

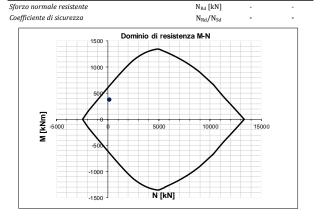
ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA CANCELLO-BENEVENTO II LOTTO FUNZIONALE FRASSO TELESINO – VITULANO 2° SUBLOTTO TELESE – SAN LORENZO

PROGETTO ESECUTIVO

COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO

IF2R 2.2.E.ZZ CL IN.10.0.0.001 49 di 69 С

8.5.2 Verifica soletta superiore


Soletta superiore

INPUT							
	SOLLECITAZIONI DI VE	RIFICA					
Combinazione		N _{Sd} [kN]	M _{Sd} [kNm]	V _{Sd} [kN]			
	SLE Quasi Permanente	-85.0	171.0	-			
	SLE Frequente	-94.0	198.0	-			
	SLE Rara	-95.0	210.0	-			
	SLU	-124.0	375.0	417.0			
	SLV	-124.0	375.0	417.0			

	SLV	-124.0	375.0	417.0
CARATTERISTICHE GE	OMETRICHE D	ELLA SEZI	ONE IN C.A	
Geometria della sezione				
Base (ortogonale al Taglio)			B [cm]	100
Altezza (parallela al Taglio)			H [cm]	60
Altezza utile della sezione			d [cm]	53
Area di calcestruzzo			A _c [cm ²]	6000
Armatura longitudinale tesa		1° STRATO	2° STRATO	3° STRATO
Numero Barre	n	10.00	0.00	0
Diametro	φ [mm	20	0	0
Posizione dal lembo esterno	c [cm]	7.2	0.0	0.0
Area strato	As [cm ²	31.42	0.00	0.00
Rapporto di armatura	ρ[%]		0.595%	
Armatura longitudinale compressa		1° STRATO	2° STRATO	3° STRATO
Numero Barre	n	10.0	0	0
Diametro	φ [mm	20	0	0
Posizione dal lembo esterno	c' [cm	7.2	0.0	0.0
Area strato	As' [cm'	31.42	0.00	0.00
Rapporto di armatura	ρ' [%]		0.595%	
Armatura trasversale		1° TIPO	2° TIPO	3° TIPO
Diametro	φ[mn	12	0	0
Numero bracci	n_{bi}	2.5	0	0
Passo	s _w [cm	20	0	0
Inclinazione	α [deg	90	90	90
Area armatura a metro	A_{sw}/s_w [cm ² /n	14.14	0.00	0.00

Resistenza cubica a compressione	RCK	40
Resistenza cilindrica caratteristica a compressione	f _{ck} [Mpa]	32.00
Resistenza cilindrica media a compressione	f _{cm} [Mpa]	40.00
Resistenza media a trazione per flessione	f _{ctm} [Mpa]	3.02
Resistenza caratteristica a trazione per flessione	f _{ctk} [Mpa]	2.12
Resistenza di progetto a compressione	f _{cd} [Mpa]	18.13
Resistenza di progetto delle bielle compresse	f _{cd'} [Mpa]	9.49
Acciaio		
Resistenza di progetto a snervamento	f _{vd} [Mpa]	391.30

	OUTPUT							
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$								
	VERIFICHE IN ES	ERCIZIO						
Calcestruzzo SLE Rara Calcestruzzo SLE Rara Calcestruzzo SLE Rara Calcestruzzo SLE Rara Calciaio SLE Rara Combinazione SLE Quasi permanente Wa [mm] = 0.000 0.200 VERIFICA DI RESISTENZA A TAGLIO VERIFICA DI RESISTENZA A TAGLIO Sollecitazioni di progetto Taglio sollecitante = max Taglio(SLUSLV) Vasi [kN] 417.0 Sforzo Normale concomitante al massimo taglio Verifica di resistenza in assenza di armatura specifica Resistenza di progetto senza armatura specifica Coefficiente di sicurezza Verifica di resistenza dell'armatura specifica Coefficiente di sicurezza Verifica di resistenza dell'armatura specifica Cocofficiente di sicurezza Verifica di resistenza dell'armatura specifica Cocofficiente di sicurezza Verifica di resistenza dell'armatura verifica Cocofficiente di sicurezza Verifica di resistenza dell'armatura Verifica di resistenza a taglio delle bielle compresse in cls Resistenza a taglio dell'armatura Verifica di resistenza in termini di momento SLU SLV Momento resistente Momento resistente	Verifica Tensionale			σlimit				
	Calcestruzzo SLE Quasi Permanente	σ _c [Mpa] =	3.49	12.800				
Verifica di fessurazione w limit Combinazione SLE Quasi permanente w_d [mm] = 0.000 0.200 Combinazione SLE Frequente w_d [mm] = 0.000 0.300 VERIFICA DI RESISTENZA A TAGLIO Sollecitazioni di progetto Taglio (SLU,SLV) V_{Sd} [kN] 417.0 Sforzo Normale concomitante al massimo taglio N_{Sd} [kN] -124.0 Verifica di resistenza in assenza di armatura specifica Resistenza di progetto senza armatura specifica Coefficiente di sicurezza V_{Rd1}/V_{Sd} 0.69 Verifica di resistenza dell'armatura specifica Coranno (θ) di progetto cotan(θ) 2.5 Resistenza a taglio delle bielle compresse in cls $V_{Rd2}(\theta)$ [kN] 1572 Resistenza a taglio dell'armatura $V_{Rd3}(\theta)$ [kN] 657 Coefficiente di sicurezza V_{Rd} [N] 657 VERIFICA DI RESISTENZA A PRESSO-FLESSIONE VERIFICA DI RESISTENZA A PRESSO-FLESSIONE Sollecitazioni di progetto SLU SLV Momento sollecitante N_{Sd} [kN]	Calcestruzzo SLE Rara		4.28	17.600				
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Acciaio SLE Rara	σ_s [Mpa] =	127.99	337.500				
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Verifica di fessurazione			w limit				
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Combinazione SLE Quasi permanente	w _d [mm] =	0.000	0.200				
Sollecitazioni di progetto V _{Sd} [kN] 417.0 Sforzo Normale concomitante al massimo taglio N _{Sd} [kN] -124.0 Verifica di resistenza in assenza di armatura specifica V _{Rd1} [KN] 289.68 Coefficiente di sicurezza V _{Rd1} [V _{Sd} 0.69 Verifica di resistenza dell'armatura specifica V _{Rd1} [V _{Sd} 0.69 Verifica di resistenza dell'armatura specifica V _{Rd2} (θ) [KN] 1572 Coefficiente di sicurezza V _{Rd3} (θ) [KN] 657 Resistenza a taglio delle bielle compresse in cls V _{Rd3} (θ) [KN] 657 Coefficiente di sicurezza V _{Rd3} (θ) [KN] 657 Coefficiente di sicurezza V _{Rd3} (V _{Rd3} 1.58 VERIFICA DI RESISTENZA A PRESSO-FLESSIONE VERIFICA DI RESISTENZA A PRESSO-FLESSIONE SLU SLV Momento sollecitante M _{Sd} [kNm] 375.0 375.0 Sforzo Normale concomitante N _{Sd} [kN] -124.0 -124.0 Verifica di resistenza in termini di momento SLU SLV Momento resistente M _{Rd} [kNm] 634.1 634.1 634.1 Massimum supportation SLU SLV Momento resistente M _{Rd} [kNm] 634.1 634.1 634.1 Massimum supportation SLU SLV Momento resistente M _{Rd} [kNm] 634.1 634.1 634.1 Massimum supportation SLU SLV Momento resistente M _{Rd} [kNm] 634.1 634.1 634.1 Massimum supportation SLU SLV Momento resistente M _{Rd} [kNm] 634.1 634.1 Coefficiente M _{Rd} [kNm] Coefficiente Coefficiente M _{Rd} [kNm] Coefficiente Coefficiente	Combinazione SLE Frequente		0.000	0.300				
Taglio sollecitante = $\max Taglio(SLU,SLV)$ V_{Sd} [kN] 417.0 V_{Sd} [kN] -124.0 V_{Sf} [kN] -124.0 V_{Sd}	VERIFICA DI RESISTE	NZA A TAGLIC)					
Taglio sollecitante = $\max Taglio(SLU,SLV)$ V_{Sd} [kN] 417.0 V_{Sd} [kN] -124.0 V_{Sf} [kN] -124.0 V_{Sd}								
$Sforzo Normale concomitante al massimo taglio & N_{sd} [kN] & -124.0 \\ \textbf{Verifica di resistenza in assenza di armatura specifica} \\ \textbf{Resistenza di progetto senza armatura specifica} & V_{Rd1} [KN] & 289.68 \\ \textbf{Coefficiente di sicurezza} & V_{Rd1}/V_{sd} & \textbf{0.69} \\ \textbf{Verifica di resistenza dell'armatura specifica} \\ \textbf{CoTan}(\theta) di progetto & \cotn(\theta) & 2.5 \\ \textbf{Resistenza a taglio delle bielle compresse in cls} & V_{Rd2}(\theta) [KN] & 1572 \\ \textbf{Resistenza a taglio dell'armatura} & V_{Rd2}(\theta) [KN] & 657 \\ \textbf{Resistenza a taglio di progetto} & V_{Rd} [KN] & 657 \\ \textbf{Coefficiente di sicurezza} & V_{Rd}/V_{Sd} & \textbf{1.58} \\ \hline & \textbf{VERIFICA DI RESISTENZA A PRESSO-FLESSIONE} \\ \hline & \textbf{SUU} & \textbf{SLV} \\ \textbf{Momento sollecitante} & M_{Sd} [kNm] & 375.0 & 375.0 \\ \textbf{Sforzo Normale concomitante} & N_{Sd} [kN] & -124.0 & -124.0 \\ \hline \textbf{Verifica di resistenza in termini di momento} & \textbf{SLU} & \textbf{SLV} \\ \textbf{Momento resistente} & M_{Rd} [kNm] & 634.1 & 634.1 \\ \hline \end{cases}$	Sollecitazioni di progetto							
	0 ()		V _{Sd} [kN]					
Resistenza di progetto senza armatura specifica Coefficiente di sicurezza Verifica di resistenza dell'armatura specifica Coran(θ) di progetto Cotan(θ) di progetto Cotan(θ) di progetto Resistenza a taglio delle bielle compresse in cls Verifica di resistenza dell'armatura Verifica di resistenza a taglio dell'armatura Verifica di progetto Verifica di progetto Verifica di resistenza a taglio dell'armatura Verifica di progetto Verifica DI RESISTENZA A PRESSO-FLESSIONE VERIFICA DI RESISTENZA A PRESSO-FLESSIONE Sollecitazioni di progetto Sollecitazioni di progetto Nemento sollecitante Nesi [kNm] 375.0 375.0 Seforzo Normale concomitante Nesi [kNm] 375.0 375.0 Signozo Normale concomitante	Sforzo Normale concomitante al massimo taglio		N _{Sd} [kN]	-124.0				
Coefficiente di sicurezza V_{Rd1}/V_{Sd} 0.69 Verifica di resistenza dell'armatura specifica CocTan (θ) di progetto $V_{Rd2}(\theta)$ [KN] 1572 Resistenza a taglio delle bielle compresse in cls $V_{Rd2}(\theta)$ [KN] 657 Resistenza a taglio di progetto V_{Rd} [KN] 657 Coefficiente di sicurezza V_{Rd}/V_{Sd} 1.58 VERIFICA DI RESISTENZA A PRESSO-FLESSIONE VERIFICA DI RESISTENZA A PRESSO-FLESSIONE Sollecitazioni di progetto V_{Rd} [KNm] 375.0 375.0 Sollecitazioni di progetto V_{Sd} [KN] -124.0 -124.0 Verifica di resistenza in termini di momento V_{Rd} [KNm] 634.1 634.1	Verifica di resistenza in assenza di armatura speci	fica						
Verifica di resistenza dell'armatura specifica CoTan(θ) di progetto cotan(θ) 2.5 Resistenza a taglio delle bielle compresse in cls V _{Rad} (θ) [KN] 1572 Resistenza a taglio dell'armatura V _{Rad} (θ) [KN] 657 Coefficiente di sicurezza V _{Rad} /V _{Sd} 1.58 VERIFICA DI RESISTENZA A PRESSO-FLESSIONE Sollecitazioni di progetto SLU SLV Momento sollecitante M _{Sd} [kNm] 375.0 375.0 Sforzo Normale concomitante N _{Sd} [kN] -124.0 -124.0 Verifica di resistenza in termini di momento SLU SLV Momento resistente M _{Rd} [kNm] 634.1 634.1	Resistenza di progetto senza armatura specifica		V _{Rd1} [KN]	289.68				
$ \begin{array}{c cccc} CoTan(\theta) \ di \ progetto & cotan(\theta) & 2.5 \\ Resistenza \ a \ taglio \ delle \ bielle \ compresse \ in \ cls & V_{Rd2}(\theta) \ [KN] & 1572 \\ Resistenza \ a \ taglio \ dell' armatura & V_{Rd3}(\theta) \ [KN] & 657 \\ Resistenza \ a \ taglio \ di \ progetto & V_{Rd} \ [KN] & 657 \\ Coefficiente \ di \ sicurezza & V_{Rd}/V_{Sd} & \textbf{1.58} \\ \hline \hline & VERIFICA \ DI \ RESISTENZA \ A \ PRESSO-FLESSIONE \\ \hline & VERIFICA \ DI \ RES$	Coefficiente di sicurezza		$V_{Rd1}/V_{Sd} \\$	0.69				
Resistenza a taglio delle bielle compresse in cls $V_{Rd2}(\theta)$ [KN] 1572 Resistenza a taglio dell'armatura $V_{Rd3}(\theta)$ [KN] 657 Resistenza a taglio dell'armatura $V_{Rd3}(\theta)$ [KN] 657 Coefficiente di sicurezza $V_{Rd3}(\theta)$ [KN] 657 $V_{Rd3}(\theta)$ [KN] 657 $V_{Rd3}(\theta)$ [KN] 1.58	Verifica di resistenza dell'armatura specifica							
Resistenza a taglio dell'armatura $V_{Ra3}(\theta)$ [kN] 657 Resistenza a taglio di progetto V_{Rd} [kN] 657 Coefficiente di sicurezza V_{Rd}/V_{Sd} 1.58 **VERIFICA DI RESISTENZA A PRESSO-FLESSIONE** **Sollecitazioni di progetto SLU SLV Momento sollecitante M_{Sd} [kNm] 375.0 375.0 Sforzo Normale concomitante N_{Sd} [kN] -124.0 -124.0 **Verifica di resistenza in termini di momento N_{Rd} [kNm] 634.1 634.1	CoTan(θ) di progetto		cotan(θ)	2.5				
Resistenza a taglio di progetto V_{Rd} [KN] 657 Coefficiente di sicurezza V_{Rd}/V_{Sd} 1.58 **VERIFICA DI RESISTENZA A PRESSO-FLESSIONE** **VERIFICA DI RESISTENZA A PRESSO-FLESSIONE** **Sollecitazioni di progetto SLU SLV Momento sollecitante M_{Sd} [kNm] 375.0 375.0 375.0 570 1.24.0 1	Resistenza a taglio delle bielle compresse in cls		$V_{Rd2}(\theta)$ [KN]	1572				
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Resistenza a taglio dell'armatura		$V_{Rd3}(\theta)$ [KN]	657				
VERIFICA DI RESISTENZA A PRESSO-FLESSIONE Sollecitazioni di progetto SLU SLV Momento sollecitante M_{Sd} [kNm] 375.0 375.0 Sforzo Normale concomitante N_{Sd} [kN] -124.0 -124.0 Verifica di resistenza in termini di momento SLU SLV Momento resistente M_{Rd} [kNm] 634.1 634.1	Resistenza a taglio di progetto		V _{Rd} [KN]	657				
Sollecitazioni di progetto SLU SLV Momento sollecitante M_{Sd} [kNm] 375.0 375.0 Sforzo Normale concomitante N_{Sd} [kN] -124.0 -124.0 Verifica di resistenza in termini di momento SLU SLV Momento resistente M_{Rd} [kNm] 634.1 634.1	Coefficiente di sicurezza		V_{Rd}/V_{Sd}	1.58				
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	VERIFICA DI RESISTENZA A PRESSO-FLESSIONE							
$ \begin{array}{llllllllllllllllllllllllllllllllllll$								
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Sollecitazioni di progetto							
Verifica di resistenza in termini di momento SLU SLV Momento resistente M _{Rd} [kNm] 634.1 634.1	Momento sollecitante	M _{Sd} [kNm]						
Momento resistente M_{Rd} [kNm] 634.1 634.1	Sforzo Normale concomitante	N _{Sd} [kN]	-124.0	-124.0				
	Verifica di resistenza in termini di momento		SLU	SLV				
Coefficiente di sicurezza M_{Rd}/M_{Sd} 1.69 1.69	Momento resistente	M _{Rd} [kNm]	634.1	634.1				
	Coefficiente di sicurezza	M_{Rd}/M_{Sd}	1.69	1.69				

SLU

SLV

Verifica di resistenza in termini di sforzo normale

TELESE S.c.a r.l. Consorzio Telese Società Consortile a Responsabilità Limitata

PROGETTAZIONE:

Mandataria:

Mandante:

SYSTRA S.A. SWS Engineering S.p.A. SYSTRA-SOTECNI S.p.A.

IN10 - Tombino Rio Cocuzza 1 4.00 x 2.00 al km 31+322,35

Relazione di calcolo

Armatura trasversale

Area armatura a metro

Diametro

Passo

Numero bracci

Inclinazione

ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA CANCELLO-BENEVENTO II LOTTO FUNZIONALE FRASSO TELESINO – VITULANO 2° SUBLOTTO TELESE – SAN LORENZO

PROGETTO ESECUTIVO

COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO

<u>50 di 69</u> IF2R 2.2.E.ZZ CL IN.10.0.0.001 С

8.5.3 Verifica piedritti

Piedritti

INPUT	[
SOLLECITAZIONI DI	VE	RIFICA		
SOLLECTIAZIONI DI	VE	KIFICA		
Combinazione		N _{Sd} [kN]	M _{Sd} [kNm]	V _{Sd} [kN]
SLE Quasi Permanen	te	-273.0	176.0	-
SLE Frequen	te	-234.0	221.0	-
SLE Ra	ra	-341.0	238.0	-
SI	U	-242.0	406.0	297.0
SI	LV	-242.0	406.0	297.0
CARATTERISTICHE GEOMETRICHI	E D	ELLA SEZI	ONE IN C.A	
Geometria della sezione				
Base (ortogonale al Taglio)			B [cm]	100
Altezza (parallela al Taglio)			H [cm]	60
Altezza utile della sezione			d [cm]	53
Area di calcestruzzo			$A_c [cm^2]$	6000
Armatura longitudinale tesa		1° STRATO	2° STRATO	3° STRATO
Numero Barre	1	10.00	0.00	0
	nm		0.00	0
	m		0.0	0.0
Area strato As [c	-	31.42	0.00	0.00
Rapporto di armatura ρ [-		0.595%	2.00
Armatura longitudinale compressa		1° STRATO	2° STRATO	3° STRATO
Numero Barre 1	1	5.0	0	0
Diametro φ [r	nm	20	0	0
Posizione dal lembo esterno c' [cm	7.2	0.0	0.0
	- 1	15.71	0.00	0.00
Area strato As' [6	cm.	15./1	0.00	0.00

CARATTERISTICHE REOLOGICHE DEI MATERIALI							
Calcestruzzo							
Resistenza cubica a compressione	RCK	40					
Resistenza cilindrica caratteristica a compressione	f _{ck} [Mpa]	32.00					
Resistenza cilindrica media a compressione	f _{cm} [Mpa]	40.00					
Resistenza media a trazione per flessione	f _{ctm} [Mpa]	3.02					
Resistenza caratteristica a trazione per flessione	f _{ctk} [Mpa]	2.12					
Resistenza di progetto a compressione	f _{cd} [Mpa]	18.13					
Resistenza di progetto delle bielle compresse	f _{cd'} [Mpa]	9.49					
Acciaio							
Resistenza di progetto a snervamento	f _{yd} [Mpa]	391.30					

1° TIPO

12

2.5

20

90

φ[mn

 $s_w \, [cm \,$

 α [deg

 A_{sw}/s_w [cm²/n 14.14

 n_{bi}

2° TIPO

0

0

0

90

0.00

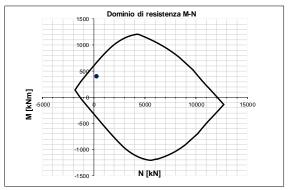
3° TIPO

0

0

0

90


0.00

OUTPUT

VERIFICHE IN ESERCIZIO						
Verifica Tensionale			σlimit			
Calcestruzzo SLE Quasi Permanente	$\sigma_c[Mpa] =$	4.06	12.800			
Calcestruzzo SLE Rara	$\sigma_c[Mpa] =$	5.47	17.600			
Acciaio SLE Rara	σ_s [Mpa] =	112.76	337.500			
Verifica di fessurazione			w limit			
Combinazione SLE Quasi permanente	$w_d [mm] =$	0.000	0.200			
Combinazione SLE Frequente	w_d [mm] =	0.000	0.300			

VERIFICA DI RESISTENZA A TA	AGLIO	
Sollecitazioni di progetto		
Taglio sollecitante = max Taglio(SLU,SLV)	V _{Sd} [kN]	297.0
Sforzo Normale concomitante al massimo taglio	N _{Sd} [kN]	-242.0
Verifica di resistenza in assenza di armatura specifica		
Resistenza di progetto senza armatura specifica	V _{Rd1} [KN]	305.26
Coefficiente di sicurezza	V_{Rd1}/V_{Sd}	1.03
Verifica di resistenza dell'armatura specifica		
CoTan(θ) di progetto	$cotan(\theta)$	2.5
Resistenza a taglio delle bielle compresse in cls	$V_{Rd2}(\theta)$ [KN]	1589
Resistenza a taglio dell'armatura	$V_{Rd3}(\theta)$ [KN]	657
Resistenza a taglio di progetto	V _{Rd} [KN]	657
Coefficiente di sicurezza	V_{Rd}/V_{Sd}	2.21

VERIFICA DI RESISTENZA A PRESSO-FLESSIONE							
Sollecitazioni di progetto		SLU	SLV				
Momento sollecitante	M _{Sd} [kNm]	406.0	406.0				
Sforzo Normale concomitante	N _{Sd} [kN]	-242.0	-242.0				
Verifica di resistenza in termini di momento		SLU	SLV				
Momento resistente	M _{Rd} [kNm]	661.3	661.3				
Coefficiente di sicurezza	M_{Rd}/M_{Sd}	1.63	1.63				
Verifica di resistenza in termini di sforzo normale SLU SLV							
Sforzo normale resistente	N _{Rd} [kN]	-	-				
Coefficiente di sicurezza	N_{Rd}/N_{Sd}	-	-				

APPALTATORE: TELESE S.c.a r.l. ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA CANCELLO-BENEVENTO Consorzio Telese Società Consortile a Responsabilità Limitata II LOTTO FUNZIONALE FRASSO TELESINO – VITULANO 2° SUBLOTTO TELESE – SAN LORENZO PROGETTAZIONE: Mandataria: Mandante: **PROGETTO ESECUTIVO** SYSTRA S.A. SWS Engineering S.p.A. SYSTRA-SOTECNI S.p.A. IN10 - Tombino Rio Cocuzza 1 4.00 x 2.00 al km 31+322,35 COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO Relazione di calcolo IF2R 2.2.E.ZZ CL IN.10.0.0.001 51 di 69 С

8.6 TABELLA RIEPILOGATIVA INCIDENZA FERRI

	INCIDENZA (kg/mc)
Fondazione	110
Piedritti	110
Soletta copertura	130

8.7 VERIFICA FONDAZIONE

8.7.1 Verifica portanza

Si riporta di seguito la verifica di portanza per la combinazione più sfavorevole:

TELESE S.c.a r.l.

Consorzio Telese Società Consortile a Responsabilità Limitata

PROGETTAZIONE:

Mandataria:

Mandante:

SYSTRA S.A. SWS Engineering S.p.A. SYSTRA-SOTECNI S.p.A.

IN10 - Tombino Rio Cocuzza 1 4.00 x 2.00 al km 31+322,35

Relazione di calcolo

ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA CANCELLO-BENEVENTO II LOTTO FUNZIONALE FRASSO TELESINO – VITULANO 2° SUBLOTTO TELESE – SAN LORENZO

PROGETTO ESECUTIVO

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 IF2R
 2.2.E.ZZ
 CL
 IN.10.0.0.001
 C
 52 di 69

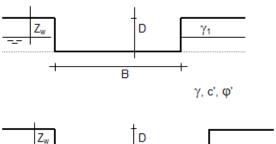
<u>Fondazioni Dirette</u> <u>Verifica in tensioni efficaci</u>

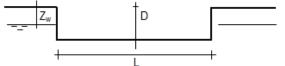
 $qlim = c' \cdot Nc \cdot sc \cdot dc \cdot ic \cdot bc \cdot gc + q \cdot Nq \cdot sq \cdot dq \cdot iq \cdot bq \cdot gq + 0, 5 \cdot \gamma \cdot B \cdot N\gamma \cdot s\gamma \cdot d\gamma \cdot i\gamma \cdot b\gamma \cdot g\gamma$

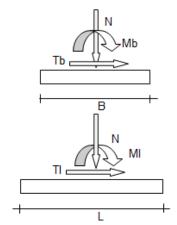
D = Profondità del piano di appoggio

e_B = Eccentricità in direzione B (e_B = Mb/N)

e_L = Eccentricità in direzione L (e_L = MI/N) (per fondazione nastriforme e_L = 0; L* = L)


B* = Larghezza fittizia della fondazione (B* = B - 2*e_B)


L* = Lunghezza fittizia della fondazione (L* = L - 2*eL)


(per fondazione nastriforme le sollecitazioni agenti sono riferite all'unità di lunghezza)

coefficienti parziali

			azioni		proprietà d	el terreno	resist	enze
Metodo di calcolo		permanenti	temporanee variabili	tan φ'	c'	qlim	scorr	
	A1+M1+R1	0	1.30	1.50	1.00	1.00	1.00	1.00
mite o	A2+M2+R2	0	1.00	1.30	1.25	1.25	1.80	1.00
Stato Limite Ultimo	SISMA	0	1.00	1.00	1.25	1.25	1.80	1.00
Stat	A1+M1+R3	0	1.30	1.50	1.00	1.00	2.30	1.10
	SISMA	0	1.00	1.00	1.00	1.00	2.30	1.10
Tensioni Ammissibili		1.00	1.00	1.00	1.00	3.00	3.00	
Definiti d	al Progettista	•	1.00	1.00	1.00	1.00	2.30	1.10

(Per fondazione nastriforme L = 100 m)

B = 6.20 (m)

L = 1.00 (m)

D = 2.00 (m)

TELESE S.c.a r.l.

Consorzio Telese Società Consortile a Responsabilità Limitata

PROGETTAZIONE:

Mandataria: Mandante:

SYSTRA S.A. SYSTRA-SOTECNI S.p.A. SWS Engineering S.p.A.

IN10 - Tombino Rio Cocuzza 1 4.00 x 2.00 al km 31+322,35

Relazione di calcolo

ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA CANCELLO-BENEVENTO II LOTTO FUNZIONALE FRASSO TELESINO – VITULANO 2° SUBLOTTO TELESE - SAN LORENZO

PROGETTO ESECUTIVO

COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO IF2R 2.2.E.ZZ CL IN.10.0.0.001 53 di 69 С

AZIONI

	valori (valori di input		
	permanenti	temporanee	calcolo	
N [kN]	1232.00		1232.00	
Mb [kNm]	0.00		0.00	
MI [kNm]	0.00		0.00	
Tb [kN]	0.00		0.00	
TI [kN]	0.00		0.00	
H [kN]	0.00	0.00	0.00	

Peso unità di volume del terreno

$$\gamma_1 = 19.00 \text{ (kN/mc)}$$

 $\gamma = 19.00 \text{ (kN/mc)}$

Valori caratteristici di resistenza del terreno

Valo	ri carati	teristici di r	resistenza del terreno	Valor	i di pro	getto	
c'	=	0.00	(kN/mq)	c'	=	0.00	(kN/mq)
φ'	=	24.00	(°)	φ'	=	24.00	(°)

Profondità della falda

q : sovraccarico alla profondità D

$$q = 38.00 (kN/mq)$$

γ: peso di volume del terreno di fondazione

$$\gamma = 15.45$$
 (kN/mc)

Nc, Nq, Nγ: coefficienti di capacità portante

Nq =
$$tan^2(45 + \phi'/2)^*e^{(\pi^*tg\phi')}$$

$$Nc = (Nq - 1)/tan\phi'$$

$$N\gamma = 2*(Nq + 1)*tan\phi'$$

$$N\gamma = 9.44$$

TELESE S.c.a r.l.

Consorzio Telese Società Consortile a Responsabilità Limitata

PROGETTAZIONE:

Mandataria:

Mandante:

SYSTRA S.A. SYSTRA-SOTECNI S.p.A. SWS Engineering S.p.A.

IN10 - Tombino Rio Cocuzza 1 4.00 x 2.00 al km 31+322,35

Relazione di calcolo

ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA CANCELLO-BENEVENTO II LOTTO FUNZIONALE FRASSO TELESINO – VITULANO 2° SUBLOTTO TELESE – SAN LORENZO

PROGETTO ESECUTIVO

COMMESSA LOTTO CODIFICA DOCUMENTO REV.

2.2.E.ZZ CL IN.10.0.0.001 54 di 69 IF2R С

FOGLIO

s_c, s_q, s_γ: fattori di forma

$$s_c = 1 + B*Nq / (L*Nc)$$

$$s_{\alpha} = 1 + B*tan\phi' / L*$$

$$s_a = 1.07$$

$$s_v = 0.94$$

ic, iq, iy: fattori di inclinazione del carico

$$m_b = (2 + B^* / L^*) / (1 + B^* / L^*) =$$

1.14

$$\theta = arctg(Tb/TI) = 9$$

1.86

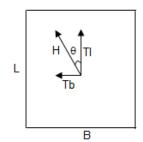
$$i_a = (1 - H/(N + B*L* c' \cot g\phi'))^m$$

 $m_1 = (2 + L^* / B^*) / (1 + L^* / B^*)$

$$i_c = i_q - (1 - i_q)/(Nq - 1)$$

$$i_{\gamma} = (1 - H/(N + B*L*c' \cot g\phi'))^{(m+1)}$$

dc, dq, dy: fattori di profondità del piano di appoggio


per D/B*
$$\leq$$
 1; $d_q = 1 + 2 D \tan \varphi' (1 - \sin \varphi')^2 / B*$
per D/B*> 1; $d_q = 1 + (2 \tan \varphi' (1 - \sin \varphi')^2) * \arctan (D / B*)$

$$d_0 = 1.35$$

$$d_c = d_q - (1 - d_q) / (N_c \tan \varphi')$$

$$d_v = 1$$

$$d_v = 1.00$$

(m=2 nel caso di fondazione nastriforme e

m=(m_bsin²θ+m_lcos²θ) in tutti gli altri casi)

TELESE S.c.a r.l.

Consorzio Telese Società Consortile a Responsabilità Limitata

PROGETTAZIONE:

Mandataria:

Mandante:

SYSTRA S.A. SWS Engineering S.p.A. SYSTRA-SOTECNI S.p.A.

IN10 - Tombino Rio Cocuzza 1 4.00 x 2.00 al km 31+322,35

Relazione di calcolo

ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA CANCELLO-BENEVENTO II LOTTO FUNZIONALE FRASSO TELESINO – VITULANO 2° SUBLOTTO TELESE – SAN LORENZO

PROGETTO ESECUTIVO

COMMESSA LOTTO IF2R

CODIFICA 2.2.E.ZZ CL

DOCUMENTO IN.10.0.0.001

REV. С

FOGLIO 55 di 69

bc, bq, by: fattori di inclinazione base della fondazione

$$b_q = (1 - \beta_f \tan \varphi')^2$$

$$\beta_f + \beta_p = 0.00$$

$$\beta_f + \beta_D < 45^\circ$$

$$b_0 = 1.00$$

$$b_c = b_q - (1 - b_q) / (N_c \tan \varphi)$$

$$b_c = 1.00$$

$$b_v = b_q$$

$$b_v = 1.00$$

gc, gq, gy: fattori di inclinazione piano di campagna

$$g_q = (1 - tan \beta_p)^2$$

$$\beta_f + \beta_n =$$

$$\beta_f + \beta_o = 0.00$$
 $\beta_f + \beta_o < 45^\circ$

$$g_c = g_q - (1 - g_q) / (N_c \tan \varphi')$$

$$g_y = g_q$$

$$g_y = 1.00$$

Carico limite unitario

$$q_{lim} = 595.09$$

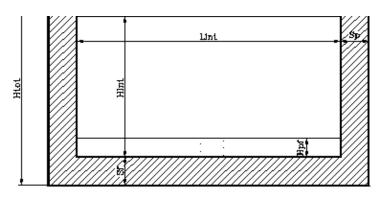
(kN/m²)

(kN/m²)

Verifica di sicurezza capacità portante

$$q_{lim}/\gamma_R =$$

$$258.74 \ge q = 198.71 (kN/m^2)$$


APPALTATORE: TELESE S.c.a r.l. ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA CANCELLO-BENEVENTO Consorzio Telese Società Consortile a Responsabilità Limitata II LOTTO FUNZIONALE FRASSO TELESINO – VITULANO 2° SUBLOTTO TELESE – SAN LORENZO PROGETTAZIONE: Mandataria: Mandante: PROGETTO ESECUTIVO SYSTRA S.A. SWS Engineering S.p.A. SYSTRA-SOTECNI S.p.A. COMMESSA LOTTO IN10 - Tombino Rio Cocuzza 1 4.00 x 2.00 al km 31+322,35 CODIFICA **DOCUMENTO** RFV **FOGLIO** Relazione di calcolo 2.<u>2.E.ZZ</u> 56 di 69 IF2R CL IN.10.0.0.001 С

9 SEZIONE AD U DI IMBOCCO

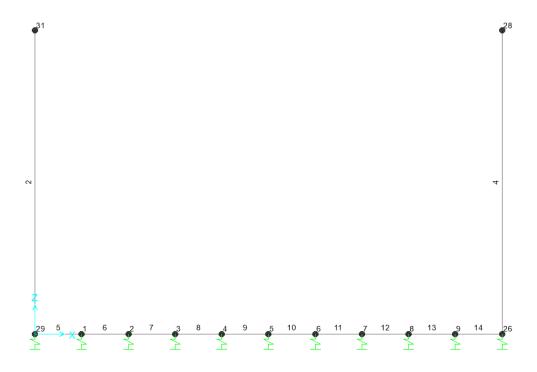
La dimensione interna è di 5.00m e l'altezza interna pari a 3.00m, piedritti di spessore 0.50m e soletta inferiore di spessore 0.50m.

Nel seguito verrà esaminata una striscia avente lunghezza di 1.00 m. In figura si riporta schematicamente la geometria dell'opera.

9.1 GEOMETRIA

DATI GEOMET	RICI		
Grandezza	Simbolo	Valore	U.M.
larghezza totale scatolare	L_{tot}	6.20	m
larghezza utile scatolare	L_{int}	5.00	m
larghezza interasse	L_{a}	5.60	m
spessore soletta superiore	Ss	0.00	m
spessore piedritti	S_p	0.50	m
spessore fondazione	S_{f}	0.50	m
altezza totale scatolare	\mathbf{H}_{tot}	3.50	m
altezza libera scatolare	H_{int}	3.00	m

9.2 MODELLO DI CALCOLO


Il modello di calcolo attraverso il quale è schematizzata la struttura è quello del telaio chiuso su letto di molle alla Winkler.

Il modello considerato per l'analisi è quello di un telaio di profondità unitaria (1.00m) soggetto alle azioni da traffico di norma e quelle permanenti. In corrispondenza dei vertici sono state inserite delle zone rigide pari a metà spessore degli elementi.

APPALTATORE	TELES Consorzio Telese Società Consorti			O TRATT	A CANCEL	LO-BENEVEN O TELESINO -		ANO
PROGETTAZIO	NE:		2° SUBLOTTO TELESE – SAN LORENZO					
Mandataria: SYSTRA S.A.	Mandante: SWS Engineering S.p.A.	SYSTRA-SOTECNI S.p.A.	PROGETTO	ESECUT	ΓΙνο			
IN10 - Tombino Relazione di ca	Rio Cocuzza 1 4.00 x 2.00 al	km 31+322,35	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO

Il terreno di fondazione è stato modellato utilizzando la schematizzazione alla Winkler con un opportuno coefficiente di sottofondo.

Di seguito si riporta lo schema di calcolo.

Numerazione aste e nodi

Per le molle orizzontali si è utilizzato un valore pari ad un terzo del valore verticale

9.2.1 Valutazione della rigidezza delle molle

Si considera appoggiato su di un letto di molle (schematizzazione alla Winkler) assegnando alle aste di fondazione del modello un valore di "linear spring" pari a K= 19000 kN/mc in funzione dell'interasse delle molle secondo la seguente formulazione:

Interasse molle	$i = (S_p/2 + L_{int} + S_p/2)/10$	[m]
Molle centrali	$k_1 = k * i$	[kN/m]
Molle intermedie	$k_2 = 1.5 * k * i$	[kN/m]
Molle laterali	$k_3 = 2 * k * (i/2 + S_p/2)$	[kN/m]

TELESE s.c.a r.l.

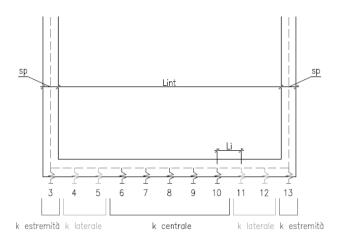
Consorzio Telese Società Consortile a Responsabilità Limitata

PROGETTAZIONE:

Mandataria: Mandante:

SYSTRA S.A. SWS Engineering S.p.A. SYSTRA-SOTECNI S.p.A.

IN10 - Tombino Rio Cocuzza 1 4.00 x 2.00 al km 31+322,35


Relazione di calcolo

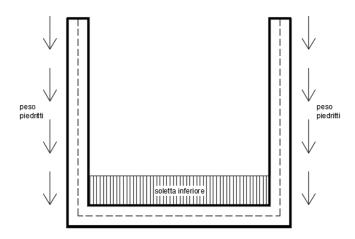
ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA CANCELLO-BENEVENTO II LOTTO FUNZIONALE FRASSO TELESINO – VITULANO 2° SUBLOTTO TELESE – SAN LORENZO

PROGETTO ESECUTIVO

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

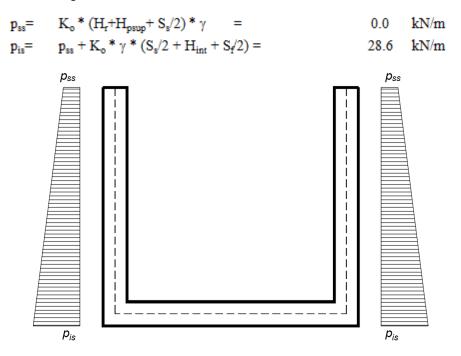
 IF2R
 2.2.E.ZZ
 CL
 IN.10.0.0.001
 C
 58 di 69

Molle centrali 10640 kN/m³ Molle laterali 15960 kN/m³


Molle estremità 22040 kN/m³

9.3 ANALISI DEI CARICHI

9.3.1 Peso proprio della struttura e carichi permanenti portati


<u>Soletta inferiore</u>	- Peso proprio	_	17.50 kN/m
		- Totale	17.50 kN/m
	- Peso pacchetto interno 0 cm		0.00 kN/m
	- Peso terreno ricoprimento interno		0.00 kN/m
		- Totale	0.00 kN/m
<u>Piedritti</u>	- Peso proprio	_	15.00 kN/m
		- Totale	15.00 kN/m

APPALTATORE	TELES Consorzio Telese Società Consort		_	O TRATT	A CANCEL	LO-BENEVEN O TELESINO -	-	ANO
PROGETTAZIO	NE:		2° SUBLOTTO TELESE – SAN LORENZO					
Mandataria:	Mandante:							
SYSTRA S.A.	SWS Engineering S.p.A.	SYSTRA-SOTECNI S.p.A.	PROGETTO) ESECUT	ΓΙVO			
IN10 - Tombino Rio Cocuzza 1 4.00 x 2.00 al km 31+322,35		COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO	
Relazione di ca	Icolo		IF2R	2.2.E.ZZ	CL	IN.10.0.0.001	С	59 di 69

9.3.2 Spinta sulle pareti dovuta al terreno ed al sovraccarico permanente

Per il rinterro si prevede un terreno avente angolo di attrito ϕ = 35° ed un peso di volume γ = 20 kN/m³, il coefficiente di spinta viene calcolato, considerando l'elevata rigidezza, utilizzando la formula Ko=1-sin ϕ ', per cui si ottiene un valore di Ko=0.43. Le spinte in asse soletta superiore ed asse soletta inferiore valgono:

Spinta su parete sinistra e spinta su parete destra

APPALTATORE	TELES Consorzio Telese Società Consorti			O TRATT	A CANCEL	LO-BENEVEN O TELESINO -		ANO
PROGETTAZIO	NE:		2° SUBLOTTO TELESE – SAN LORENZO					
Mandataria: SYSTRA S.A.	Mandante: SWS Engineering S.p.A.	SYSTRA-SOTECNI S.p.A.	PROGETTO	ESECUT	ΓΙVΟ			
IN10 - Tombino Relazione di ca	Rio Cocuzza 1 4.00 x 2.00 al Icolo	km 31+322,35	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO

Poiché nel modello di calcolo si considera, nella geometria, l'asse degli elementi, per tenere in conto i carichi agenti sul semispessore esterno degli elementi stessi, si applicano delle forze concentrate nei nodi tra piedritto e soletta inferiore con valore pari a 10.52 kN.

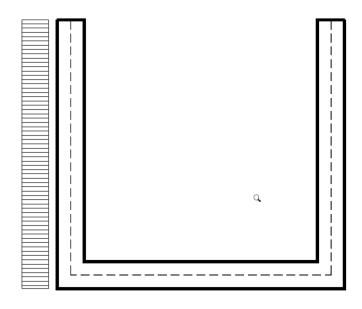
9.3.3 Spinta in presenza di falda

Nel caso in cui a monte della parete sia presente la falda il diagramma delle pressioni sulla parete risulta modificato a causa della sottospinta che l'acqua esercita sul terreno. Il peso di volume del terreno al di sopra della linea di falda non subisce variazioni. Viceversa al di sotto del livello di falda va considerato il peso di volume di galleggiamento

$$\gamma_a = \gamma_{sat} - \gamma_w$$

dove γ_{sat} è il peso di volume saturo del terreno (dipendente dall'indice dei pori) e γ_{w} è il peso di volume dell'acqua. Quindi il diagramma delle pressioni al di sotto della linea di falda ha una pendenza minore. Al diagramma così ottenuto va sommato il diagramma triangolare legato alla pressione idrostatica esercitata dall'acqua.

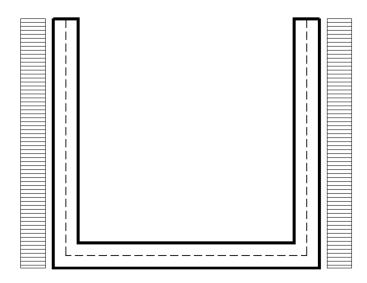
$$u = \gamma_w \cdot z$$


9.3.4 Spinta del sovraccarico sul rilevato q1=20 kN/m2

Per il calcolo della spinta dovuta al traffico stradale sul rilevato, si considera un carico tandem distibuito sull'intera lunghezza del mezzo autoarticolato (18.0m) e sui 3.0m di corsia.

$$q1=150 \text{ kN}^{*} 4/(18^{*}3) \text{ m2+9 kN/m2} = 20 \text{ kN/mq}$$

$$p_1(str) = q_1 * K_0 = 8.53 kN/m^2$$


c) Spinta sul piedritto sinistro

APPALTATORE	TELES Consorzio Telese Società Consorti		_	O TRATT	A CANCEL	LO-BENEVEN O TELESINO -	_	ANO
PROGETTAZIO	NE:		2° SUBLOTTO TELESE – SAN LORENZO					
Mandataria: SYSTRA S.A.	Mandante: SWS Engineering S.p.A.	SYSTRA-SOTECNI S.p.A.	PROGETTO	ESECUT	ΓΙVΟ			
IN10 - Tombino Relazione di ca	Rio Cocuzza 1 4.00 x 2.00 al	km 31+322,35	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO

Poiché nel modello di calcolo si considera, nella geometria, l'asse degli elementi, per tenere in conto i carichi agenti sul semispessore esterno degli elementi stessi, si applicano delle forze concentrate nei nodi tra piedritto sinistro e soletta inferiore con valore pari a 1.71 kN.

d) Spinta su entrambi i piedritti

Spinta su parete sinistra e spinta su parete destra

Poiché nel modello di calcolo si considera, nella geometria, l'asse degli elementi, per tenere in conto i carichi agenti sul semispessore esterno degli elementi stessi, si applicano delle forze concentrate nei nodi tra piedritto sinistro e soletta inferiore con valore pari a 1.71 kN.

9.3.5 Variazione termica

Si applica una variazione termica pari a +/- 15°C.

9.3.6 Azione sismica inerziale

Per il calcolo dell'azione sismica si utilizza il metodo dell'analisi pseudostatica in cui l'azione sismica è rappresentata da una forza statica equivalente pari al prodotto delle forze di gravità per un opportuno coefficiente sismico *k*. Le forze sismiche sono pertanto le seguenti:

Forza sismica orizzontale $F_h = k_h^* W$

Forza sismica verticale $F_v = k_v^* W$

I valori dei coefficienti sismici orizzontale k_h e verticale k_v possono essere valutati mediante le espressioni: $k_h = a_{max}/g$

 $k_v = \pm 0.5 k_h$

TELESE S.c.a r.l.

Consorzio Telese Società Consortile a Responsabilità Limitata

PROGETTAZIONE:

Mandataria:

Mandante:

SYSTRA S.A. SWS Engineering S.p.A.

SYSTRA-SOTECNI S.p.A.

IN10 - Tombino Rio Cocuzza 1 4.00 x 2.00 al km 31+322,35

Relazione di calcolo

ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA CANCELLO-BENEVENTO II LOTTO FUNZIONALE FRASSO TELESINO – VITULANO 2° SUBLOTTO TELESE – SAN LORENZO

PROGETTO ESECUTIVO

COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO

IF2R 2.2.E.ZZ CL IN.10.0.0.001 C 62 di 69

A seguito di tale assunzione si ottiene allo stato limite ultimo SLV in funzione della Latitudine e Longitudine del sito in esame un valore dell'accelerazione pari a a_0 = 0.367 g.

In assenza di analisi specifiche della risposta sismica locale l'accelerazione massima può essere valutata con la relazione:

$$a_{max} = S * a = S_s * S_t * a_g$$

 $S_s = 1.184$

Coefficiente di amplificazione stratigrafica

S_T= 1

Coefficiente di amplificazione topografica

ne deriva che:

$$a_{max}$$
= 1.184 * 1 * 0.367 g = 0.435 g

$$k_h = a_{max}/g = 0.435$$

$$k_v = \pm 0.5 * k_h = 0.217$$

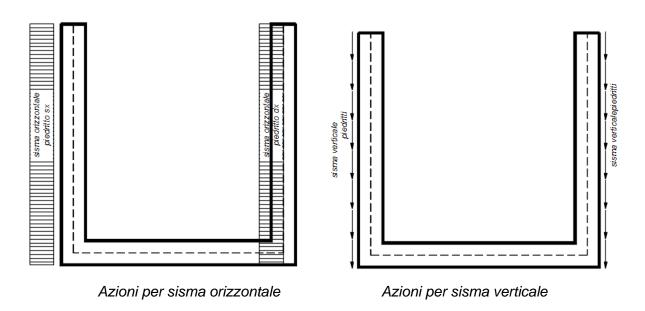
Sisma orizzontale

$$F_{sis} = a_{max} * \gamma * (H_{tot}) = 32.16 \text{ kN/m} \quad \text{(carico applicato sulla parete)}$$

$$F_{inp} = \alpha * S_p * \gamma * 1m = \underline{6.52 \text{ kN/m}} \quad \text{(inerzia piedritti)}$$

$$Totale = 38.67 \text{ kN/m} \quad \text{(piedritto sx)}$$

$$Totale = 6.52 \text{ kN/m} \quad \text{(piedritto dx)}$$


Poiché nel modello di calcolo si considera, nella geometria, l'asse dei piedritti, per tenere in conto i carichi agenti sul semispessore esterno dei piedritti stessi, si applicano delle forze concentrate nei nodi tra piedritto sinistro e soletta inferiore con valore pari a 13.54 kN. Si applicano delle forze concentrate nei nodi tra piedritto destro e soletta inferiore con valore pari a 2.28 kN.

Sisma verticale

$$F_{inp} = 0.5 * \alpha * S_p * \gamma * 1m = 3.26 \text{ kN/m}$$
 (inerzia piedritti)

Gli effetti dell'azione sismica saranno valutati tenendo conto delle masse associate ai seguenti carichi gravitazionali: $G_1 + G_2 + \psi_{2j} Q_{kj}$

APPALTATORE: TELESE s.c.a r.l. ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA CANCELLO-BENEVENTO Consorzio Telese Società Consortile a Responsabilità Limitata II LOTTO FUNZIONALE FRASSO TELESINO – VITULANO 2° SUBLOTTO TELESE – SAN LORENZO PROGETTAZIONE: Mandataria: Mandante: **PROGETTO ESECUTIVO** SYSTRA S.A. SWS Engineering S.p.A. SYSTRA-SOTECNI S.p.A. lN10 - Tombino Rio Cocuzza 1 4.00 x 2.00 al km 31+322,35 Relazione di calcolo COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO IF2R 2.2.E.ZZ CL IN.10.0.0.001 63 di 69 С

9.4 DIAGRAMMI DELLE SOLLECITAZIONI

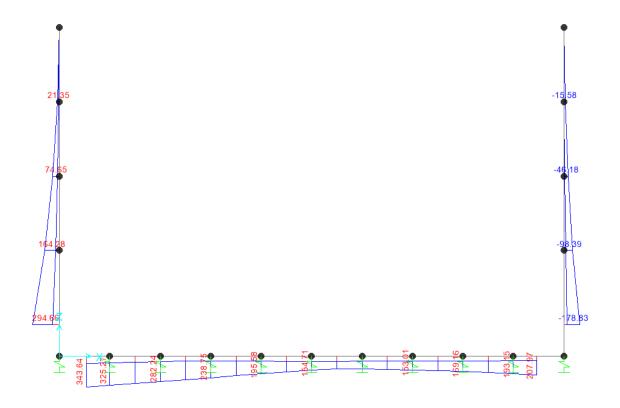


Fig. 2 – Inviluppo momenti flettenti SLU-SLV

APPALTATORE: TELESE S.c.a r.l. ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA CANCELLO-BENEVENTO II LOTTO FUNZIONALE FRASSO TELESINO – VITULANO Consorzio Telese Società Consortile a Responsabilità Limitata 2° SUBLOTTO TELESE – SAN LORENZO PROGETTAZIONE: Mandataria: Mandante: **PROGETTO ESECUTIVO** SYSTRA S.A. SWS Engineering S.p.A. SYSTRA-SOTECNI S.p.A. lN10 - Tombino Rio Cocuzza 1 4.00 x 2.00 al km 31+322,35 Relazione di calcolo COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO IF2R 2.2.E.ZZ CL IN.10.0.0.001 64 di 69 С

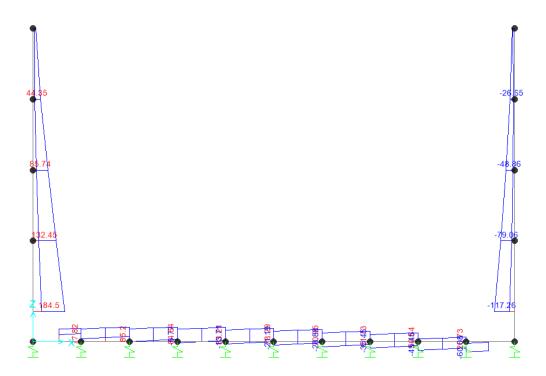


Fig. 3 – Inviluppo sforzi taglianti SLU-SLV

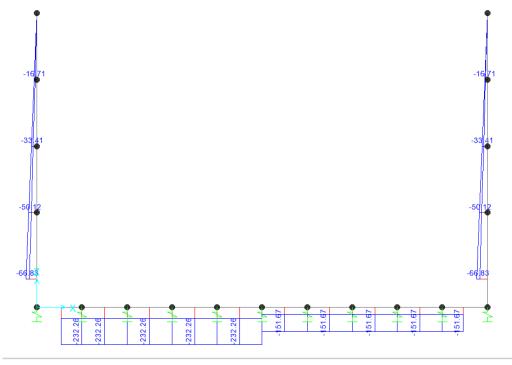


Fig. 4 – Inviluppo azioni assiali SLU-SLV

APPALTATORE: TELESE S.c.a r.l. ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA CANCELLO-BENEVENTO Consorzio Telese Società Consortile a Responsabilità Limitata II LOTTO FUNZIONALE FRASSO TELESINO – VITULANO 2° SUBLOTTO TELESE – SAN LORENZO PROGETTAZIONE: Mandataria: Mandante: **PROGETTO ESECUTIVO** SYSTRA S.A. SWS Engineering S.p.A. SYSTRA-SOTECNI S.p.A. lN10 - Tombino Rio Cocuzza 1 4.00 x 2.00 al km 31+322,35 Relazione di calcolo COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO IF2R 2.2.E.ZZ CL IN.10.0.0.001 65 di 69 С

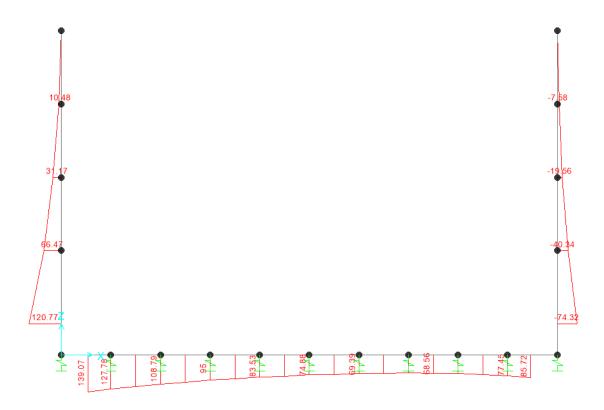


Fig. 5 – Inviluppo momenti flettenti SLE rara

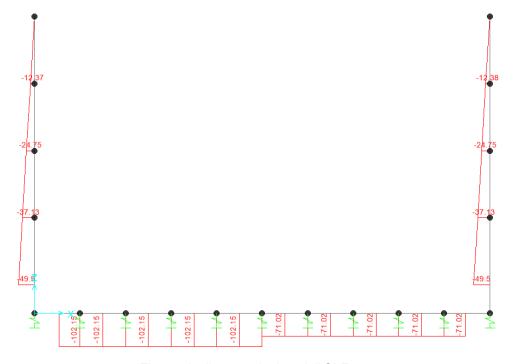


Fig. 6 – Inviluppo azioni assiali SLE rara

TELESE S.c.a r.l.

Consorzio Telese Società Consortile a Responsabilità Limitata

PROGETTAZIONE:

Mandataria:

Mandante:

SYSTRA S.A. SWS Engineering S.p.A.

SYSTRA-SOTECNI S.p.A.

IN10 - Tombino Rio Cocuzza 1 4.00 x 2.00 al km 31+322,35

Relazione di calcolo

ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA CANCELLO-BENEVENTO II LOTTO FUNZIONALE FRASSO TELESINO – VITULANO 2° SUBLOTTO TELESE – SAN LORENZO

PROGETTO ESECUTIVO

COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO IF2R 2.2.E.ZZ CL IN.10.0.0.001 C 66 di 69

9.5 VERIFICA DELLE SEZIONI IN C.A.

Nelle tabelle seguenti sono indicati i valori delle sollecitazioni massime e i valori delle sollecitazioni per la verifica a fessurazione risultanti dalle combinazioni di cui al capitolo precedente.

Per le verifiche in corrispondenza dei nodi si considerano le sollecitazioni a filo elemento rigido. Per ogni elemento si ricerca la sezione di Momento e Taglio massimo; la verifica sarà eseguita con la sollecitazione, in modulo, maggiore:

		SLU STR-SLV				
Elemento strutturale	Sezione	C.C. M _{max}	N (kN)	M _{max} (kNm)	T _{max} (kN)	
soletta	nodo piedritto	SLU17-SIS	232.26	343.64	85.20	
inferiore	campata	SLU16-SIS	44.94	45.29	-	
piedritti	nodo soletta inf	SLU16-SIS	52.73	294.66	184.50	

		SLE	RARA	\$	SLE FREQUE	NTE	SLE QUASI PERMANENTE		
Elemento strutturale	Sezione	N (kN)	M _{max} (kNm)	ID Asta	N (kN)	M _{max} (kNm)	ID Asta	N (kN)	M _{max} (kNm)
soletta	nodo piedritto	102.15	139.07	soletta	95.92	128.12	soletta	77.24	95.29
inferiore	campata	71.02	67.25	inferiore	71.02	64.77	inferiore	77.24	54.35
piedritti	nodo soletta inf	49.50	120.77	piedritti	49.50	111.48	piedritti	49.50	83.61

TELESE S.c.a r.l.

Consorzio Telese Società Consortile a Responsabilità Limitata

PROGETTAZIONE:

Mandataria:

Mandante:

SYSTRA S.A. SWS Engineering S.p.A. SYSTRA-SOTECNI S.p.A.

lN10 - Tombino Rio Cocuzza 1 4.00 x 2.00 al km 31+322,35 Relazione di calcolo

ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA CANCELLO-BENEVENTO II LOTTO FUNZIONALE FRASSO TELESINO – VITULANO 2° SUBLOTTO TELESE – SAN LORENZO

PROGETTO ESECUTIVO

COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO IF2R 2.2.E.ZZ CL IN.10.0.0.001 67 di 69 С

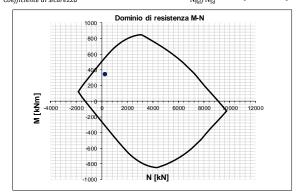
9.5.1 Verifica soletta inferiore

Fondazione

INPUT									
SOLLECITAZIONI DI VERIFICA									
	N _{Sd} [kN]	M _{Sd} [kNm]	V _{Sd} [kN]						
SLE Quasi Permanente	-77.0	96.0	-						
SLE Frequente	-96.0	128.0	-						
SLE Rara	-102.0	139.0	-						
SLU	-232.0	344.0	86.0						
SLV	-232.0	344.0	86.0						
	SLE Quasi Permanente SLE Frequente SLE Rara SLU	SOLLECITAZIONI DI VERIFICA N _{Sd} [kN] SLE Quasi Permanente -77.0 SLE Frequente -96.0 SLE Rara -102.0 SLU -232.0	SOLLECITAZIONI DI VERIFICA N _{Sd} [kN] M _{Sd} [kNm]						

CARATTERISTICHE GI	EOMETRICHE D	ELLA SEZI	ONE IN C.A	
Geometria della sezione				
Base (ortogonale al Taglio)			B [cm]	100
Altezza (parallela al Taglio)			H [cm]	50
Altezza utile della sezione			d [cm]	45
Area di calcestruzzo			A _c [cm ²]	5000
Armatura longitudinale tesa		1° STRATO	2° STRATO	3° STRATO
Numero Barre	n	10.00	0.00	0
Diametro	φ [mm	20	0	0
Posizione dal lembo esterno	c [cm]	5.0	0.0	0.0
Area strato	As [cm ²	31.42	0.00	0.00
Rapporto di armatura	ρ[%]		0.698%	
Armatura longitudinale compressa		1° STRATO	2° STRATO	3° STRATO
Numero Barre	n	5.0	0	0
Diametro	φ [mm	20	0	0
Posizione dal lembo esterno	c' [cm	5.0	0.0	0.0
Area strato	As' [cm	15.71	0.00	0.00
Rapporto di armatura	ρ' [%]		0.349%	
Armatura trasversale		1° TIPO	2° TIPO	3° TIPO
Diametro	φ [mn	0	0	0
Numero bracci	n_{bi}	2.5	0	0
Passo	s _w [cm	20	0	0
Inclinazione	α [deg	90	90	90
Inclinazione	a lace	,,		

		35
Resistenza cilindrica caratteristica a compressione	f _{ck} [Mpa]	28.00
Resistenza cilindrica media a compressione	f _{cm} [Mpa]	36.00
Resistenza media a trazione per flessione	f _{ctm} [Mpa]	2.77
Resistenza caratteristica a trazione per flessione	f _{ctk} [Mpa]	1.94
Resistenza di progetto a compressione	f _{cd} [Mpa]	15.87
Resistenza di progetto delle bielle compresse	f _{cd'} [Mpa]	8.45


OUTPUT

VERIFICHE IN ESERCIZIO			
Verifica Tensionale			σlimit
Calcestruzzo SLE Quasi Permanente	$\sigma_c[Mpa] =$	2.74	11.200
Calcestruzzo SLE Rara	$\sigma_c[Mpa] =$	3.95	15.400
Acciaio SLE Rara	σ_s [Mpa] =	96.30	337.500
Verifica di fessurazione			w limit
Combinazione SLE Quasi permanente	w _d [mm] =	0.000	0.200
Combinazione SLE Frequente	$w_d [mm] =$	0.000	0.300

VERIFICA DI RESISTENZA A TAGLIO

Taglio sollecitante = max Taglio(SLU,SLV)	V _{Sd} [kN]	86.0
Sforzo Normale concomitante al massimo taglio	N _{Sd} [kN]	-232.0
Verifica di resistenza in assenza di armatura specifica		
Resistenza di progetto senza armatura specifica	V _{Rd1} [KN]	273.76
Coefficiente di sicurezza	V_{Rd1}/V_{Sd}	3.18
Verifica di resistenza dell'armatura specifica		
CoTan(θ) di progetto	$cotan(\theta)$	2.5
Resistenza a taglio delle bielle compresse in cls	$V_{Rd2}(\theta)$ [KN]	-
Resistenza a taglio dell'armatura	$V_{Rd3}(\theta)$ [KN]	-
Resistenza a taglio di progetto	V _{Rd} [KN]	-
Coefficiente di sicurezza	V_{Rd}/V_{Sd}	-

VERIFICA DI RESISTENZA A PRESSO-FLESSIONE			
Sollecitazioni di progetto		SLU	SLV
Momento sollecitante	M _{Sd} [kNm]	344.0	344.0
Sforzo Normale concomitante	N _{Sd} [kN]	-232.0	-232.0
Verifica di resistenza in termini di momento		SLU	SLV
Momento resistente	M _{Rd} [kNm]	555.1	555.1
Coefficiente di sicurezza	$\rm M_{Rd}/M_{Sd}$	1.61	1.61
Verifica di resistenza in termini di sforzo normale		SLU	SLV
Sforzo normale resistente	N _{Rd} [kN]	-	-
Coefficiente di sicurezza	N _n ,/N _c ,	-	

TELESE S.c.a r.l.

Consorzio Telese Società Consortile a Responsabilità Limitata

PROGETTAZIONE:

Mandataria: Mandante:

SYSTRA S.A. SWS Engineering S.p.A. SYSTRA-SOTECNI S.p.A.

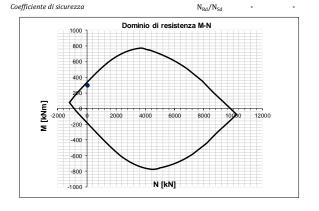
lN10 - Tombino Rio Cocuzza 1 4.00 x 2.00 al km 31+322,35 Relazione di calcolo

ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA CANCELLO-BENEVENTO II LOTTO FUNZIONALE FRASSO TELESINO – VITULANO 2° SUBLOTTO TELESE – SAN LORENZO

PROGETTO ESECUTIVO

COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO IF2R 2.2.E.ZZ CL IN.10.0.0.001 С 68 di 69

9.5.2 Verifica piedritti


Piedritto

INPUT				
	SOLLECITAZIONI DI VE	RIFICA		
Combinazione		N _{Sd} [kN]	M _{Sd} [kNm]	V _{Sd} [kN]
	SLE Quasi Permanente	-50.0	84.0	-
	SLE Frequente	-50.0	112.0	-
	SLE Rara	-50.0	121.0	-
	SLU	-53.0	295.0	185.0
	SLV	-53.0	295.0	185.0

CARATTERISTICHE GE	OMETRICHE D	ELLA SEZI	ONE IN C.A	
Geometria della sezione				
Base (ortogonale al Taglio)			B [cm]	100
Altezza (parallela al Taglio)			H [cm]	50
Altezza utile della sezione			d [cm]	44
Area di calcestruzzo			A _c [cm ²]	5000
Armatura longitudinale tesa		1° STRATO	2° STRATO	3° STRATO
Numero Barre	n	10.00	0.00	0
Diametro	φ [mm	16	0	0
Posizione dal lembo esterno	c [cm]	5.8	0.0	0.0
Area strato	As [cm ²	20.11	0.00	0.00
Rapporto di armatura	ρ[%]		0.455%	
Armatura longitudinale compressa		1° STRATO	2° STRATO	3° STRAT
Numero Barre	n	5.0	0	0
Diametro	φ [mm	16	0	0
Posizione dal lembo esterno	c' [cm	5.8	0.0	0.0
Area strato	As' [cm'	10.05	0.00	0.00
Rapporto di armatura	ρ' [%]		0.227%	
Armatura trasversale		1° TIPO	2° TIPO	3° TIPO
Diametro	φ [mn	10	0	0
Numero bracci	n_{bi}	2.5	0	0
Passo	s _w [cm	20	0	0
Inclinazione	α [deg	90	90	90
	A_{sw}/s_w [cm ² /n			

f _{ck} [Mpa] f _{cm} [Mpa]	32.00
f _{cm} [Mpa]	
	40.00
f _{ctm} [Mpa]	3.02
f _{ctk} [Mpa]	2.12
f _{cd} [Mpa]	18.13
f _{cd'} [Mpa]	9.49
	f _{ctk} [Mpa] f _{cd} [Mpa]

Oumpu	Т			
OUTPU'	ľ			
VERIFICHE IN ESERCIZIO				
Calcestruzzo SLE Quasi Permanente	σ_c [Mpa] =	2.97	12.800	
Calcestruzzo SLE Rara	σ_c [Mpa] =	4.25	17.600	
Acciaio SLE Rara	σ_s [Mpa] =	139.77	337.500	
Verifica di fessurazione			w limit	
Combinazione SLE Quasi permanente	w _d [mm] =	0.000	0.200	
Combinazione SLE Frequente	w _d [mm] =	0.000	0.300	
·				
VERIFICA DI RESISTENZ	A A TAGLIC)		
Sollecitazioni di progetto				
Taglio sollecitante = max Taglio(SLU,SLV)		V _{Sd} [kN]	185.0	
Sforzo Normale concomitante al massimo taglio		N _{Sd} [kN]	-53.0	
Verifica di resistenza in assenza di armatura specific	a			
Resistenza di progetto senza armatura specifica		V _{Rd1} [KN]	223.65	
Coefficiente di sicurezza		V_{Rd1}/V_{Sd}	1.21	
Verifica di resistenza dell'armatura specifica				
CoTan(θ) di progetto		cotan(θ)	2.5	
Resistenza a taglio delle bielle compresse in cls		$V_{Rd2}(\theta)$ [KN]	1309	
Resistenza a taglio dell'armatura		$V_{Rd3}(\theta)$ [KN]	382	
Resistenza a taglio di progetto		V _{Rd} [KN]	382	
Coefficiente di sicurezza		V_{Rd}/V_{Sd}	2.07	
VERIFICA DI RESISTENZA A PI	RESSO-FLES	SIONE		
Sollecitazioni di progetto		SLU	SLV	
Momento sollecitante	M _{Sd} [kNm]	295.0	295.0	
Sforzo Normale concomitante	N _{Sd} [kN]	-53.0	-53.0	
Verifica di resistenza in termini di momento		SLU	SLV	
Momento resistente	M _{Rd} [kNm]	341.0	341.0	
Coefficiente di sicurezza	M_{Rd}/M_{Sd}	1.16	1.16	
Verifica di resistenza in termini di sforzo normale		SLU	SLV	
Sforzo normale resistente	N _{Rd} [kN]	-	-	
0.001 . 11.1	ка []			

APPALTATORE: TELESE S.c.a r.l. ITINERARIO NAPOLI – BARI RADDOPPIO TRATTA CANCELLO-BENEVENTO Consorzio Telese Società Consortile a Responsabilità Limitata II LOTTO FUNZIONALE FRASSO TELESINO – VITULANO 2° SUBLOTTO TELESE – SAN LORENZO PROGETTAZIONE: Mandataria: Mandante: **PROGETTO ESECUTIVO** SYSTRA S.A. SWS Engineering S.p.A. SYSTRA-SOTECNI S.p.A. IN10 - Tombino Rio Cocuzza 1 4.00 x 2.00 al km 31+322,35 Relazione di calcolo COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO IF2R 2.2.E.ZZ IN.10.0.0.001 С 69 di 69 CL

9.6 TABELLA RIEPILOGATIVA DELLE INCIDENZE FERRI

	INCIDENZA (kg/mc)
Fondazione	110
Piedritti	110