

Nuovo impianto per la produzione di energia da fonte solare fotovoltaica "La Teana" nei Comuni di Latiano e San Vito dei Normanni (BR)

Committente:

Trina Solar Loto S.r.l.
P.zza Borromeo 14,
20123 Milano (MI)
C.F. e P.IVA: 11480580965
PEC: trinasolarloto@unapec.it

PIANO PRELIMINARE

TERRE E ROCCE DA SCAVO

Rev. 0.0

Data: Maggio 2021

IB3N7K6_DocumentazioneSpecialistica_05

Incaricato:

Queequeg Renewables, Itd Unit 3.03, 1110 Great West Road TW80GP London (UK) Company number: 111780524 email: mail@quenter.co.uk

Sommario

1.	DATI GENERALI E ANAGRAFICA	2
2.	PREMESSA	4
2.1.	PRESENTAZIONE DEL PROPONENTE DEL PROGETTO	4
2.2.	SCENARIO E NORMATIVA DI RIFERIMENTO	5
3.	STATO DI FATTO	9
3.1.	LOCALIZZAZIONE CARATTERISTICHE DEL SITO E INQUADRAMENTO URBANISTICO	9
3.2.	INQUADRAMENTO GEOLOGICO E LINEAMENTI TETTONICI	13
3.3.	LINEAMENTI DI GEOMORFOLOGIA E IDROGEOLOGIA	14
3.4.	GEOLOGIA	16
3.5.	CARATTERISTICHE TERRITORIALI E AGRONOMICO-COLTURALI DELL'AREA DI PROGETTO	18
3.6.	DESCRIZIONE SINTETICA DEL PROGETTO DI IMPIANTO	19
4.	LA REALIZZAZIONE DELL'OPERA	21
4.1.	FASI DI LAVORO PER LA REALIZZAZIONE DELL'OPERA	21
4.2.	ESECUZIONE DEI LAVORI EDILI	22
4.2.1	VIABILITÀ ESISTENTE E REALIZZAZIONE DI NUOVA VIABILITÀ	22
4.2.2	2. SCAVI E RINTERRI	22
4.2.3	3. MODALITÀ DI ESECUZIONE DEI MOVIMENTI TERRA	23
5.	PROPOSTA DI PIANO PRELIMINARE DI UTILIZZO IN SITO DELLE TERRE E ROCCE DA SCAVO ESCLUSE DALLA	
DISC	IPLINA DEI RIFIUTI	26
5.1.	RIFERIMENTI LEGISLATIVI	26
5.2.	NUMERO E CARATTERISTICHE DEI PUNTI DI INDAGINE	27
5.3.	NUMERO E MODALITÀ DEI CAMPIONAMENTI DA EFFETTUARE	27
5.4.	PARAMETRI DA DETERMINARE	28
6.	PIANO DI RIUTILIZZO DELLE TERRE E ROCCE DA SCAVO DA ESEGUIRE IN FASE DI PROGETTAZIONE ESECUTIV	/A E
CON	IUNQUE PRIMA DELL'INIZIO DEI LAVORI	30
7.	VOLUMETRIE PREVISTE TERRE E ROCCE DA SCAVO	32
8.	CONCLUSIONI	33

1. Dati generali e anagrafica

Ubicazione impianto

·				
Nome Impianto	"La Teana"			
Comune	Latiano e San Vito dei Normanni (BR)			
Località	Contrada Marangiosa/Grattile			
CAP	72022 (Latiano) – 72019 (San Vito dei Normanni)			
Coordinate Geografiche (gradi decimali)	Lat. 40.596877° - Long. 17.673799°			
Catasto dei terreni				
Latiano:				
Foglio	7			
Particelle	24-81			
San Vito dei Normanni:				
Foglio	83			
Particelle	263-265-262-264			
CTR	Regione Puglia			
Proponente				
Ragione Sociale	Trina Solar Loto S.r.l.			
Indirizzo	Piazza Borromeo n.14, 20123 Milano (MI)			
P.IVA	11480580965			
Terreni				
Destinazione	Agricola (E1)			
Estensione	Circa 40.61 ha			
Caratteristiche dell'impianto				
Potenza di picco complessiva DC	26,030 MWp			
Potenza AC complessiva richiesta in immissione	19,072 MW			
Potenza unitaria singolo modulo fotovoltaico	540 Wp			
Numero di moduli fotovoltaici (tot)	48204			
Numero di moduli per stringa	39			
Numero di stringhe (tot)	1236			
Numero di inverter	16			
Numero di sottocampi	16			
Numero di cabine di trasformazione	16			
Potenza trasformatori BT/MT in resina	1600 kVA			
Tipologia di strutture di sostegno	Ad inseguimento monoassiale			
Posa delle strutture di sostegno	Direttamente infisse nel terreno			
Layout impianto				
Interasse tra le strutture	9 m			
Distanza di rispetto da confine	5 m			

Distanza di rispetto da limite SIC/ZPS >10 km

Staff e professionisti coinvolti			
Progetto a cura di	Queequeg Renewables, Itd		
Project Manager	Ing. Roberto Montemurro		
Responsabile elaborato	Ing. Roberto Montemurro		

2. Premessa

La presente relazione è parte integrante del procedimento di Valutazione d'Impatto Ambientale ai sensi del Decreto Legislativo numero 152 del 2006, e agli artt. 20 e successivi del D.L. 31 maggio 2021, n. 77 e Autorizzazione Unica ai sensi dell'art.12 del D.Lgs. 387/2003.

Il progetto prevede la realizzazione di un lotto di impianti fotovoltaici, e relative opere di connessione in media tensione, per la produzione di energia elettrica da fonte solare, con potenza di picco nominale pari a 26,030 MWp da localizzarsi su terreni Agricolo (E1), nei Comune di Latiano e San Vito dei Normanni (BR). Gli impianti immetteranno energia nella Rete Elettrica Nazionale attraverso una connessione interrata da cabina primaria AT/MT "San Vito Sud" di futura costruzione e di proprietà di E-Distribuzione. Quest'ultima sarà invece connessa mediante linea AT a 150 kV alla Futura Stazione Elettrica di Terna S.p.A. che si collocherà in entraesci sulla linea a 380 kV Brindisi-Taranto.

La connessione del lotto di impianti avverrà tramite n.4 elettrodotti interrati in media tensione a 20 kV che collegheranno le n.4 cabine di consegna alla cabina primaria, come sopra riportato. Queste ultime, omologate secondo le prescrizioni del gestore di rete, saranno allestite con quadri di protezione e sezionamento in media tensione.

I moduli fotovoltaici, di tipo bifacciale, che costituiscono l'impianto di generazione, saranno montati su inseguitori (o *trackers*) monoassiali da 78 e 117 moduli cadauno, che ottimizzeranno l'esposizione dei generatori solari permettendo di sfruttare al meglio la radiazione solare.

Si stima che l'impianto produrrà 45,56 GWh all'anno di elettricità, equivalenti al fabbisogno medio annuo di circa 15.190 famiglie di 4 persone, permettendo un risparmio di CO2 equivalente immessa in atmosfera pari a circa 24.192 tonnellate all'anno (fattore di emissione: 531 gCO2/kWh, fonte dati: Ministero dell'Ambiente).

2.1. Presentazione del proponente del progetto

Il proponente del progetto è la società **Trina Solar Loto S.r.l.**, una società del gruppo **Trina Solar**. Fondato in Cina nel 1997, il Gruppo Trina Solar si è rapidamente sviluppato fino a divenire uno dei principali attori mondiali nel settore della tecnologia solare fotovoltaica: oggi Trina Solar è infatti tra i primi tre produttori di moduli fotovoltaici al mondo, nonché uno dei maggiori operatori mondiali impegnati nella costruzione e nell'esercizio di centrali fotovoltaiche su scala internazionale.

In particolare, da oltre dieci anni Trina Solar ha costituito una divisione di business (la ISBU – International System Business Unit), dedicata principalmente allo sviluppo, alla progettazione, realizzazione e messa in esercizio di grandi centrali elettriche fotovoltaiche, che ha connesso in rete elettrica per un totale di oltre 2.000 MW in tutto il mondo.

La divisione ISBU – che impiega circa 150 professionisti internazionali - ha il proprio quartier generale a Shanghai ed uffici regionali negli Stati Uniti, India, Giappone, Svizzera, Spagna, Italia, Francia, Messico, Brasile, Cile e Colombia.

Nello specifico, il team europeo di ISBU, con quartier generale a Madrid, si compone di circa 60 professionisti multi-disciplinari, di comprovata e decennale esperienza internazionale nello sviluppo, nella progettazione, nella costruzione e nella gestione di impianti fotovoltaici in Italia, Regno Unito, Spagna, Portogallo, Francia, Giordania, Giappone, Grecia, India, Medio Oriente, Africa, Australia, USA, Messico e Cile.

Trina Solar vanta inoltre il titolo di essere il solo produttore di moduli su scala mondiale ad essere certificato per il quarto anno consecutivo come pienamente "bancabile" dal 100% degli esperti indipendenti di settore interpellati da Bloomberg New Energy Finance (BNEF) – la principale fonte di "business intelligence" utilizzato come riferimento per le istituzioni finanziarie nella valutazione dei progetti e relative componentistiche di settore.

La Mission di Trina Solar è rendere l'energia solare sempre più affidabile ed accessibile, impegnandosi a proteggere l'ambiente ed a favorire i cambiamenti del settore con ricerca e sviluppo innovativi e all'avanguardia.

Fin dal 2014, Trina Solar ha raggiunto un traguardo di produzione trimestrale di moduli fotovoltaici superiore ad 1 GW ed ha battuto il record mondiale di efficienza delle celle solari per ben 7 volte consecutive. L'elettricità complessiva generata da tutti i moduli prodotti e venduti da Trina Solar in tutto il mondo ad oggi è equivalente alla riduzione di 27 milioni di tonnellate di CO2 equivalenti generate da fonti di energia convenzionali oppure alla riforestazione di 18.000 km2 di terreno.

Il Gruppo Trina Solar è stato quotato alla Borsa di New York dal 2006 fino al 2017. A seguito del "delisting" volontario dal New York Stock Exchange (NYSE).

Dal 10 giugno 2020, Trina Solar è diventata la prima società cinese, tra quelle attive nel campo della produzione di moduli fotovoltaici, sistemi fotovoltaici e smart energy ad essere scambiata alla Borsa di Shangai, allo Stock Exchange Science and Technology Innovation Board, noto anche come STAR Market. Il Gruppo Trina Solar, pertanto, vanta tutte le capacità tecniche e finanziarie necessarie allo sviluppo, alla costruzione ed all'esercizio dell'impianto fotovoltaico proposto nella presente relazione.

2.2. Scenario e normativa di riferimento

Le necessità sempre più pressanti legate a fabbisogni energetici in continuo aumento spingono il progresso quotidiano verso l'applicazione di tecnologie innovative, atte a sopperire alla domanda energetica in modo sostenibile, limitando l'impatto che deriva da queste ultime e richiedendo un uso consapevole del territorio.

In quest'ottica, con il Decreto Legislativo 29 dicembre 2003, n. 387, il Parlamento Italiano ha proceduto all'attuazione della direttiva 2001/77/CE relativa alla promozione dell'energia elettrica prodotta da fonti energetiche rinnovabili nel mercato interno dell'elettricità.

Il presente impianto in progetto, per il DECRETO-LEGGE 31 maggio 2021, n.77 (definito Decreto Semplificazioni) e successive integrazioni, è stato annesso alla procedura di VIA ministeriale, nella tipologia elencata nell'Allegato II allaParte Seconda del D.Lgs. 152/2006 alla lettera paragrafo 2), denominata "impianti fotovoltaici per laproduzione di energia elettrica con potenza complessiva superiore a 10 MW" come aggiunta dall'art. 31,comma 6, del decreto-legge n. 77 del 2021.

Premesso che la Valutazione di Impatto Ambientale, ai sensi del Dlgs. 152/2006, è *il procedimento mediante il*

quale vengono preventivamente individuati gli effetti sull'ambiente di un progetto, il presente Studio, redatto

ai sensi dell'art. 22 del Dlgs. 152 e s.m.i., e dell'Allegato VII del suddetto decreto, è volto ad analizzare l'impatto, ossia *l'alterazione qualitativa e/o quantitativa, diretta e indiretta, a breve e a lungo termine, permanente e*

temporanea, singola e cumulativa, positiva e negativa dell'ambiente, che le opere, di cui alla procedura

autorizzativa, potrebbero avere sulle diverse componenti ambientali.

L'ambiente, ai sensi del Dlgs 152, è inteso come sistema di relazioni fra i fattori antropici, naturalistici,

chimico-fisici, climatici, paesaggistici, architettonici, culturali, agricoli ed economici.

Il presente studio, dunque, basato su una verifica oggettiva della compatibilità degli interventi a realizzarsi con le predette componenti, intende verificare e studiare i prevedibili effetti che l'intervento potrà avere sull'ambiente e il suo habitat naturale.

Con la nuova normativa introdotta dal d.lgs. 30 giugno 2016, n. 127 (legge Madia), la conferenza dei servizi si potrà svolgere in modalità "Sincrona" o "Asincrona", nei casi previsti dalla legge.

Nel 2008 inoltre l'Unione Europea ha varato il "Pacchetto Clima-Energia" (meglio conosciuto anche come "Pacchetto 20/20/20") che prevede obbiettivi climatici sostanziali per tutti i Paesi membri dell'Unione, tra cui l'Italia, a) di ridurre del 20% le emissioni di gas serra rispetto ai livelli registrati nel 1990, b) di ottenere almeno il 20% dell'energia consumata da fonti rinnovabili, e c) ridurre del 20% i consumi previsti. Questo obbiettivo è stato successivamente rimodulato e rafforzato per l'anno 2030, portando per quella data al 40% la percentuale di abbattimento delle emissioni di gas serra, al 27% la quota di consumi generati da rinnovabili e al 27% il taglio dei consumi elettrici.

L'Italia ha fatto propri questi impegni redigendo un "Piano Nazionale Integrato per l'Energia e per il Clima".

Riguardo alle energie rinnovabili in particolare, l'Italia prevede arrivare al 2030 con un minimo di 55,4% di energia prodotta da fonti rinnovabili, promuovendo la realizzazione di nuovi impianti di produzione e il revamping o repowering di quelli esistenti per tenere il passo con la evoluzioni tecnologiche.

Con la realizzazione dell'impianto, si intende conseguire gli obbiettivi sopra esposti, aumentando la quota di energia prodotta da fonte rinnovabile senza emettere gas serra in atmosfera, con un significativo risparmio energetico mediante il ricorso alla fonte energetica rinnovabile rappresentata dal Sole.

Il ricorso a tale tecnologia nasce dall'esigenza di coniugare:

- la compatibilità con esigenze paesaggistiche e di tutela ambientale;
- nessun inquinamento acustico;
- il risparmio di combustibile fossile;
- la produzione di energia elettrica senza emissioni di sostanze inquinanti.

Il progetto mira pertanto a contribuire al soddisfacimento delle esigenze di "Energia Verde" e allo "Sviluppo Sostenibile" invocate dal Protocollo di Kyoto, dalla Conferenza sul clima e l'ambiente di Copenaghen 2009 e dalla Conferenza sul clima di Parigi del 2015.

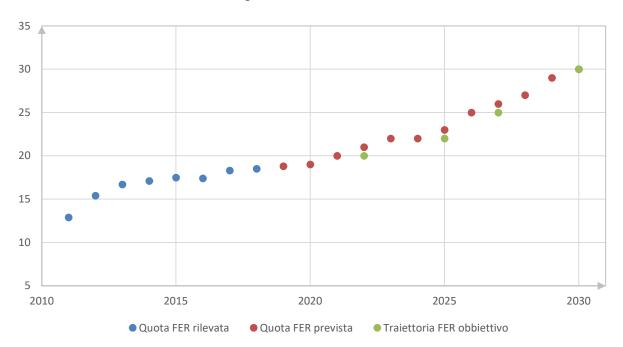


Grafico 1 - Traiettoria della quota FER complessiva¹

Tra le politiche introdotte e necessarie per il raggiungimento degli obbiettivi prefissati, è stato dato incarico alle Regioni di individuare le aree idonee per la realizzazione di questi impianti, stabilendo criteri di priorità e di tutela del paesaggio e dell'ambiente.

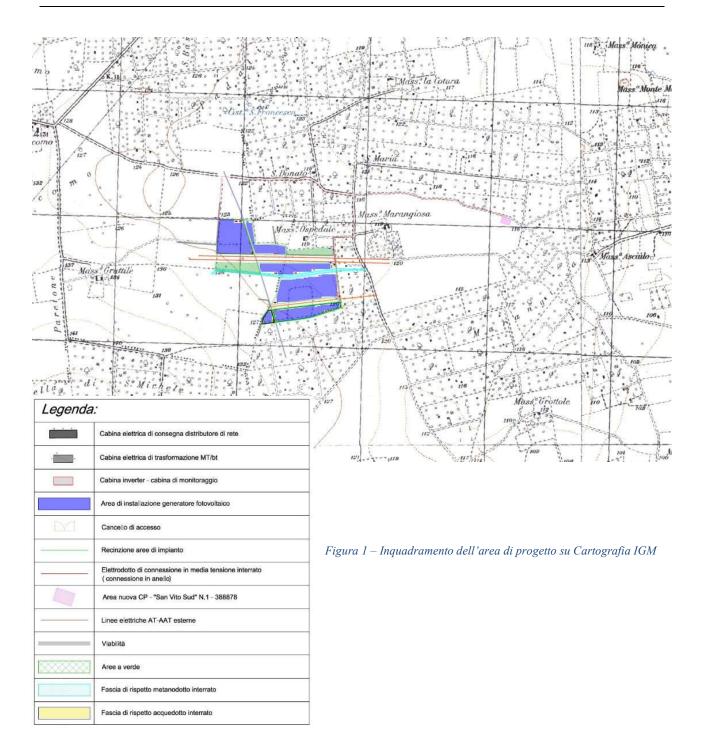
In conclusione, si evidenzia che in base all'art. 1 della legge 9 gennaio 1991 n. 10, l'intervento in progetto è opera di pubblico interesse e pubblica utilità "ex lege" ad ogni effetto e per ogni conseguenza, giuridica,

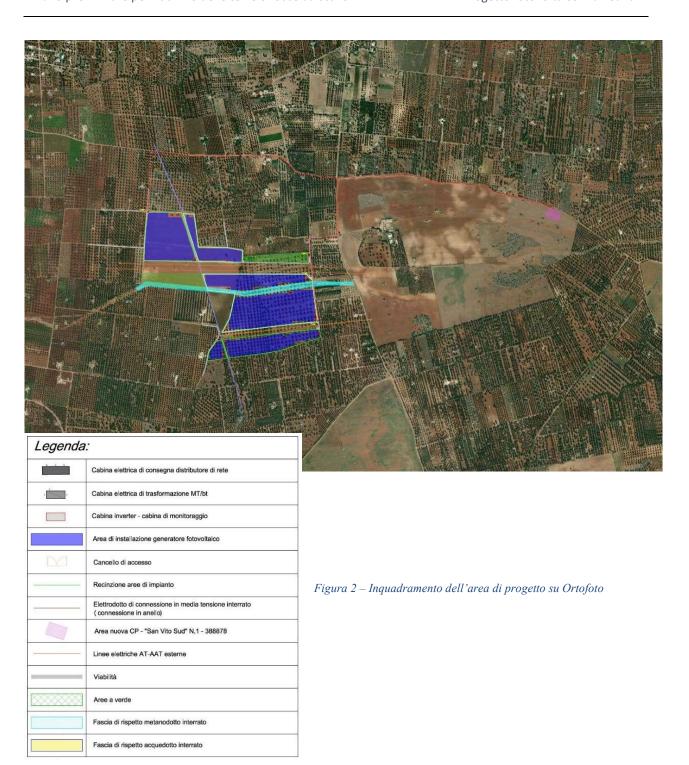
¹ Fonte: GSE, "Sviluppo e diffusione delle fonti rinnovabili di energia in Italia", Febbraio 2020

economica, procedimentale, espropriativa, come anche definito dall'art. 12 del D.LGS. N. 387 del 29 dicembre 2003.

3. Stato di fatto

3.1. Localizzazione caratteristiche del sito e inquadramento urbanistico


L'area di intervento ricade nell'agro a confine tra i Comuni di Latiano e San Vito dei Normanni in Provincia di Brindisi, identificata catastalmente al Foglio 83, Particelle 263-265-262-264 del catasto terreni del Comune di San Vito dei Normanni, e al Foglio 7, Particelle 24-81 del catasto terreni del Comune di Latiano.


Le aree sono classificate come "Zona E" e quindi aree di tipo agricolo.

Geograficamente l'area è individuata alla Latitudine 40.597053° e Longitudine 17.673647°, a 120 metri sul livello del mare; ha un'estensione di circa 40,61 ettari di cui solamente 32,00 ettari circa saranno interessati dall'installazione dell'impianto fotovoltaico, mentre le restanti aree saranno interessate dalla piantumazione di nuove colture, quali alberi di olivi ed altre piantumazioni a basso e medio fusto. Tali nuove piantumazioni andranno anche in sostituzione di n. 620 olivi presenti al FG.7 Part. 24-81 del Comune di Latiano, per i quali, con decreto n. 0063617 del 20.11.2020, la Regione Puglia, Dipartimento Agricoltura, Sviluppo Rurale e Ambientale – Sezione Coordinamento dei Servizi Territoriali – Servizio Territoriale Taranto e Brindisi, ha ordinato l'abbattimento per opere di miglioramento fondiario.

Il lotto di impianti sarà connesso mediante elettrodotto interrato in media tensione a 20 kV su futura Cabina Primaria AT/MT 150/20 kV denominata "San Vito Sud" che sorgerà sulle aree identificate catastalmente al Foglio 8, Particella 54 del Comune di Latiano.

Le aree sono raggiungibili percorrendo al SP.47 che collega Latiano al centro abitato di San Michele Salentino, imboccando, prima dell'incrocio con la SP.48, la Contrada Grattile.

11

Figura 3 – Vista delle aree di progetto nel Comune di Latiano

Figura 4 – Vista delle aree di progetto nel Comune di San Vito dei Normanni

Figura 5 – Vista delle aree di progetto della Futura CP "San Vito Sud" nel Comune di Latiano

3.2. Inquadramento geologico e lineamenti tettonici

L'impalcatura geologica dell'area è esclusivamente costituita dal Cretacico, rappresentato dalle Dolomie di Galatina, del Cenomaniano e, forse del Turomaniano inferiore, e dai calcari di Melissano, del Cenomaniano-Senoniano.

Al Cretacico si addossano lungo scarpate, o si sovrappongono, in trasgressione, sedimenti miocenici, costituiti dalla tipica "pietra leccese", prevalentemente dell'Elveziano, e dalle calcareniti di Andrano, in prevalenza del Miocene medio-superiore.

Notevole diffusione hanno pure i sedimenti marini Pliocenici e quaternari, spesso rappresentati dai ben noti "tufi" (calcareniti del Salento). Anche questi sedimenti sono trasgressivi, appoggiati lateralmente o sovrapposti ai sedimenti più antichi, del Cretacico e del Miocene.

I depositi continentali sono esclusivamente Olocenici e sono rappresentati dai depositi sabbioso-argillosi, spesso lagunari, e dalle dune sabbiose, della fascia costiera, e dalla copertura eluviale e di "terra rossa" dell'interno.

La morfologia è piuttosto dolce e ciò trova corrispondenza nel fatto che i piegamenti che hanno colpito le formazioni affioranti sono piuttosto blandi.

In superficie non sono state rilevate faglie, a parte una faglia presunta al margine occidentale del foglio Brindisi, quindi le dislocazioni per faglia o sono quasi del tutto assenti, oppure sono anteriori ai terreni pliocenici e pleistocenici che occupano le zone strutturalmente depresse, ed in tal caso risultano sepolte dagli stessi.ll Cretacico è ben rappresentato nella parte nordoccidentale del foglio Brindisi, con un esteso affioramento che costituisce la terminazione meridionale delle Murge baresi.

Affiora inoltre con lembi allungati secondo Nordovest-Sudest anche nella parte meridionale del foglio Brindisi. Tutti gli affioramenti cretacici rappresentano degli "alti" strutturali. Infatti gli strati che li costituiscono si immergono sempre verso l'esterno, dando luogo ad anticlinali più o meno ampie, di solito piuttosto dolci, ad asse diretto secondo Nordovest-Sudest, ondulato; in tal modo in superficie i limiti dei terreni cretacici tendono ad assumere un andamento elittico, con asse maggiore secondo Nordovest-Sudest.

Sulla base degli affioramenti cretacici e tenendo conto dei casi in cui la discontinuità degli affioramenti è dovuta a fatti erosivi posteriori, si possono distinguere da Nordest a Sudovest le seguenti anticlinali: Campi Salentina, Carmiano, Manduria e Torricella.

3.3. Lineamenti di geomorfologia e idrogeologia

Le aree che si intendono studiare, <u>campo fotovoltaico – cabine di elevazione e smistamento - cavidotto</u>, occupano la parte centrale di un ampio pianoro morfologico di natura calcareo-calcarenitica, subpianeggiante nelle zone di intervento, sul quale sorgono, a nord e a nordest gli abitati dei Comuni di San Vito dei Normanni e San Michele Salentino (BR).

L'analisi geomorfologica evidenzia l'esistenza di forme erosive superficiali, di tipo lineare ed areale, dovute alle precipitazioni meteoriche, che si dirigono generalmente verso est e sudest. E' da escludersi comunque allo stato attuale qualsiasi tipo di attività franose, dissesti in atto o potenziali che possono interessare l'equilibrio geostatico generale.

L'idrografia superficiale è caratterizzata dalla presenza di corsi d'acqua episodici disposti verso est e sudest che recapitano le acque degli interi bacini idrografici nel vicino canale Reale, a sud dell'area di intervento, e nel vicino mare adriatico, ad est dell'area oggetto del presente studio.

L'idrografia sotterranea è invece tipica di rocce permeabili per porosità e per fessurazione e fratturazione. Nei depositi calcarei e calcarenitici, infatti, le acque di provenienza meteorica si muovono all'interno della roccia attraverso fratture sub-verticali e sub-orizzontali, originando così degli acquiferi profondi.

I depositi arenacei e sabbiosi presentano una permeabilità per porosità, le acque meteoriche filtrano nel sottosuolo attraverso i pori della roccia dando luogo ad acquiferi molto variabili sia arealmente che nelle portate. Nell'area di intervento non è segnalata la presenza di falde freatiche superficiali, la falda profonda o di base si attesta alla profondità di circa 110.0 m. dal p.c. all'interno dei calcari mesozoici, così come riportato dall'allegata Carta della distribuzione dei carichi piezometrici degli acquiferi carsici.

Le opere da realizzare saranno collocate al di fuori degli areali di pericolosità cartografati negli elaborati del PAI (*Piano Stralcio per l'Assetto Idrogeologico*) dell'*AdB* di Bacino della Puglia, l'area in oggetto è infatti esclusa

sia da quelle a Pericolosità Geomorfologica e sia da quelle a Pericolosità Idraulica, secondo la cartografia del PAI vigente, AdB Puglia.

Per quanto riguarda il progetto in oggetto, l'area adibita a ospitare i manufatti previsti in progetto non si sovrappone ad aree a pericolosità idraulica. La stessa, inoltre, non invade il buffer di pertinenza fluviale dei corsi d'acqua più prossimi.

Dallo stralcio della Carta idrogeomorfologica dell'AdB della Puglia, si nota che le opere in progetto non interessano alcuna componente idro-geomorfologica.

Gli interventi da realizzarsi non interferiranno con la falda presente nel sottosuolo poiché il piano di posa delle opere fondali, di tipo superficiale, si attesterà ben al di sopra del livello di massima escursione della falda stessa. Si provvederà alla regolamentazione delle acque superficiali, attraverso una sistemazione idraulica delle aree di intervento, allo scopo di evitare eventuali accumuli o ristagni di acque, oltre che alla tutela ed alla salvaguardia dei corpi idrici sotterranei consentendo la loro naturale ricarica.

Le opere da realizzare, quindi, non producono alcuna interferenza sia con il reticolo primario e sia con quello secondario.

Le rocce affioranti nell'area oggetto di studio sono in prevalenza permeabili per porosità, fessurazione o per entrambe, con grado di permeabilità variabile in relazione a diversi fattori quali: *Incisività di fenomeni paracarsici; Assortimento granulometrico; Struttura e diagenesi del deposito*.

In particolare possiamo dire che mentre i depositi sabbiosi sono dotati di permeabilità primaria, le calcareniti presentano invece una permeabilità variabile di tipo secondaria per fatturazione e fessurazione. In base alle litologie affioranti è possibile classificare i terreni rinvenibili nella zona di studio in relazione alla loro permeabilità:

Terreni permeabili per porosità

Appartengono a questa categoria i depositi sabbiosi e calcarenitici, queste ultime presentano una permeabilità variabile per la presenza di macrofossili e fratture che aumentano sensibilmente le vie preferenziali del flusso idrico.

Terreni permeabili per fessurazione

Questi tipi di terreni sono rappresentati dai calcari e dalle argille che grazie ad una fitta rete di fessure e fratture, presentano una permeabilità variabile sia lateralmente che verticalmente.

Terreni permeabili per porosità e per fessurazione

Appartengono a questa categoria le sole calcareniti che presentano sia una porosità primaria, dovuta alla presenza di vuoti interstiziali, e sia una porosità secondaria dovuta alla presenza di fratture e fessure.

3.4. Geologia

Al fine di avere informazioni geologiche sufficienti l'area in oggetto è stata sottoposta ad un rilevamento geologico alla scala 1:100.000 che ha evidenziato, in un'area ritenuta significativa, la presenza di vari tipi di sedimenti appartenenti alle seguenti formazioni geologiche e descritte dalla più recente alla più antica:

de <u>- Depositi eluviali (Olocene)</u>

Questi depositi, generalmente costituiti da terre rosse, occupano le zone depresse scavate all'interno dei depositi sabbioso-calcarenitici dai corsi d'acqua temporanei. Nel foglio geologico sono riportati solo quei depositi relativamente più estesi e più potenti (oltre i 2-3 m. di spessore), che occupano depressioni in prossimità della costa, i fondi di alcune lame oppure plaghe interne dove non è possibile stabilire il tipo di roccia sottostante.

Assai diffusa sopra i rilievi cretacici è pure la "terra rossa", raccolta generalmente in sacche di origine carsica, poco profonde e poco estese. Spesso la "terra rossa" è associata a noduli e pisoliti di bauxsite.

s - Depositi lagunari-palustri recenti (Olocene)

Sono presenti in lembi più o meno estesi ma sempre poco potenti lungo la costa adriatica e ionica. Occupano depressioni in prossimità della costa, talora completamente separate dal mare, talaltra in comunicazione periodica. Sono costituite da ripetute intercalazioni di sabbie prevalentemente calcaree, sabbie argillose, argille sabbiose e limi, con tinta variabile attorno ai toni grigi. Rappresentano il riempimento, generalmente parziale, di depressioni costiere. La potenza non è rilevabile direttamente, causa l'assenza di sezioni adatte allo scopo, non dovrebbe tuttavia superare i pochi metri.

Q¹s, Q¹c – Formazione di Gallipoli (Calabriano)

Questa formazione è costituita da sabbie argillose giallastre, talora debolmente cementate in strati di spessore centimetrico che passano inferiormente a marne argilloso-sabbiose e marne argillose grigio-azzurrastre (Q^1s Calabriano);

In questa unità si intercalano spesso banchi arenacei e calcarenitici, ben cementati (**Q**¹**c** Calabriano). La Formazione di Gallipoli è costituita da due litotipi fondamentali, che sono: le marne argillose e, più raramente, le marne, alla base,; le sabbie, più o meno argillose, alla sommità.

La parte superiore della formazione di Gallipoli è quasi totalmente priva di macrofossili; i microfossili invece sono anche qui relativamente abbondanti; le forme più significative sono: *Cassidulina laevigata* D'ORB. *Carinata* SILV., *Bulimina marginata* D'ORB., *Ammonia beccarii* (LIN.), *Ammonia perlucida* (HER. ALL. EARL.); *Hyalinea balthica* sembra essere completamente assente.

Q³, Q², Q¹-P³, P³ - Calcareniti del Salento (Pliocene sup.med.-Pleistocene)

Con tale termine formazionale si intendono tutti quei sedimenti calcarenitici plio-pleistocenici noti in bibliografia con la denominazione generica ed impropria di "tufi", che localmente assumono nomi diversi, come càrparo, gentile, màzzaro, cozzoso, rognoso, scorzo, verdadiero, zuppigno, mollica ecc. Si tratta in genere di calcareniti e di calcari bioclastici, a grana da finissima a media, di colore dal grigio-chiaro al rossastro, il più delle volte porosi.

In base ai rapporti stratigrafici e alle caratteristiche paleontologiche, in seno all'unità è stato possibile fare delle suddivisioni, che molte volte corrispondono a variazioni litologiche piuttosto sensibili e che sempre trovano giustificazione nelle nostre conoscenze sull'evoluzione paleogeografica della Penisola Salentina durante il Plio-Pleistocene.

Con tali criteri le Calcareniti del Salento sono state suddivise in vari orizzonti. L'orizzonte più antico, di età prevalentemente del Pliocene inferiore, non affiora nell'area in oggetto ma è rappresentato più a sudovest, nell'ambito dei fogli Otranto e Gallipoli.

C⁸⁻⁶ - Dolomie di Galatina (Cenomaniano sup.-Turoniano)

Questa formazione è costituita da calcari dolomitici e dolomie di colore grigio-nocciola, a frattura irregolare, calcari grigio-chiari contenenti microfossili non molto frequenti. Queste dolomie passano gradualmente al calcare di Altamura.

Le Dolomie di Galatina rappresentano la formazione più antica affiorante nell'area, dove costituiscono la totalità del cretacico affiorante.

La formazione è rappresentata dai seguenti tipi litologici: 1)dolomie e calcari dolomitici, grigi, talora bituminosi; in alcuni livelli la dolomitizzazione si è compiuta durante la prima diagenesi (dolomitizzazione pene contemporanea, dimostrata dalla grana assai minuta, dalla porosità scarsa, dalle strutture originarie ben conservate), mentre in altri livelli, più frequenti, la dolomitizzazione è di diagenesi tardiva (grana più grossa, porosità notevole, strutture originarie praticamente

scomparse); 2) calcari micritici, chiari, spesso laminari; 3) calcari ad intraclasti; 4) calcari a pellets; 5) calcari a bioclasti; 6) brecce calcaree.

3.5. Caratteristiche territoriali e agronomico-colturali dell'area di progetto

L'areale di interesse per il progetto dell'impianto fotovoltaico e opere di connessione risulta essere abbastanza omogeno da un punto di vista agrario, infatti la vocazione delle zone verte principalmente sull'olivicoltura. I terreni non sono irrigui, tranne alcuni casi in cui vi è la presenza di pozzi aziendali. La pianura pedologica risulta omogenea per l'intero comprensorio.

La giacitura del sito dell'impianto fotovoltaico e l'area di interesse delle opere di connessione sono decisamente piatte. La quota altimetrica del sito dell'impianto fotovoltaico è pari ad una altimetria di 122 m s.l.m., e degrada lungo l'elettrodotto di collegamento fino a giungere il sito in cu verrà realizzata la cabina posta ad una quota 119 m.s.l.m. Nell'area in esame affiorano i Calcari di Altamura riferibili al Cenomaniano-Turoniano. Questa formazione costituisce il basamento dell'intera Penisola Salentina, si presenta con stratificazione variabile, ad andamento ondulato, con strati di circa 20-30 cm di spessore che, a luoghi diminuisce ed assume la caratteristica struttura a "tavolette", con laminazioni ritmiche. Presenti, inoltre, strutture fisico-meccaniche secondarie dovute all'azione del carsismo, con fratture e saccazioni riempite di materiale residuale. Litologicamente si tratta di calcari e calcari dolomitici di colore avana o nocciola, compatti e tenaci, in strati e banchi, talora riccamente fossiliferi, cui si alternano livelli dolomitici di colore grigio o nocciola.

I terreni in cui ricade il progetto fotovoltaico sono attualmente coltivati in parte ad olivo con la presenza di n°620 piante di circa 70/80 anni non monumentali di cultivar Cellina di Nardò e Ogliarola site sulle p.lle 24-81 del fg. 7 di Latiano, mentre le contigue p.lle 263, 265, 262, 264 del fg. 83 appartenenti al comune di San Vito Dei Normanni sono attualmente coltivati a seminativi asciutti (cereali, foraggi misti, e/o leguminose in rotazione). Tutta la zona è caratterizzata dalla presenza quasi esclusiva delle coltivazioni arboree olivicole. Da una verifica sul sito della Regione Puglia dove sono censiti gli Ulivi Monumentali si è rilevato che nell'area oggetto di impianto e sia nel suo circondario non ci sono ulivi Monumentali.

Gli olivi si presentano con sesti di impianto tradizionali (molto larghi) sia in forma specializzata e sia in forma consociata. Gli oliveti consociati sono associati prevalentemente a Mandorlo ed in minoranza ad altri fruttiferi come Prugne, Fichi D'India, Fichi, Melograno, Pere. Nell'area oggetto di studio sono stati rilevati anche rarissimi vigneti da vino (allevati a tendone, alberello e spalliera) e

frutteti (impianto di fichi, e drupacee). In conclusione, la valenza colturale dell'area è principalmente testimoniata dalla presenza di colture Olivicole da olio e da produzioni cerealicole / foraggere.

3.6. Descrizione sintetica del progetto di impianto

La realizzazione dell'impianto avrà come obbiettivo il minimo impatto sul territorio, sia dal punto di vista visivo che ambientale e pertanto si ricorrerà alle migliori tecnologie disponibili (BAT, "Best Available Technologies") e alle opportune opere di mitigazione di tipo naturalistico valutate in relazione all'ambiente circostante.

In primo luogo, essendo gli impianti fotovoltaici realizzati su terreno vegetale, il progetto dovrà garantire il mantenimento della permeabilità dell'area limitando la realizzazione di nuove superfici pavimentate impermeabili. La viabilità di accesso e interna prevista, rispetterà per tipologia e materiali il reticolo delle strade rurali esistenti, in particolare sarà realizzata esclusivamente con materiali drenanti naturali. Con gli stessi materiali saranno realizzati gli eventuali spazi di manovra e circolazione interna strettamente necessaria ai mezzi funzionali all'esercizio dell'impianto medesimo.

Al fine di non modificare la naturale conformazione del terreno né il normale deflusso delle acque piovane, i moduli fotovoltaici, incluse le strutture di supporto e gli impianti collegati, saranno posizionati a terra naturalmente, seguendo per quanto più possibile l'andamento del terreno.

Il lotto di impianti fotovoltaici in progetto si estende su un'area di circa 40,61 ettari, con perimetro della zona di installazione coincidente con la recinzione di delimitazione, e distante mediamente 5 metri dal confine catastale.

L'intero generatore fotovoltaico si compone di 48.204 moduli fotovoltaici "bifacciali" in silicio monocristallino da 540 W di picco, connessi tra di loro in stringhe da 39 moduli per un totale di 1.236 stringhe e una potenza di picco installata pari a 26.030,16 kWp.

I moduli fotovoltaici sono posizionati su strutture ad inseguimento solare (trackers) di tipo "monoassiale", a doppia fila di moduli, infisse direttamente nel terreno, con angolo di inclinazione pari a 0° e angolo di orientamento est-ovest variabile tra +50° e -50°. I trackers saranno multistringa, da 2 stringhe (78 moduli fotovoltaici) e da 3 stringhe (117 moduli fotovoltaici).

La conversione dell'energia da componente continua DC (generatore fotovoltaico) in componente alternata AC (tipicamente utilizzata dalle utenze e distribuita sulla rete elettrica nazionale) avviene per mezzo di convertitori AC/DC, comunemente chiamati "inverter": in impianto saranno posizionati n°16 inverter centralizzati con potenza nominale in AC pari a 1.192,00 kW e potenza massima 1.240,00 kW. Su ogni inverter saranno connesse 77 o 78 stringhe.

Ogni inverter sarà connesso sul rispettivo quadro di protezione in bassa tensione (570 V) in cabine di trasformazione MT/bt - 20/0,57 kV.

Nell'area di impianto saranno disposte n.16 cabine di trasformazione MT/bt, con trasformatore di potenza nominale 1600 kVA. Le stesse saranno connesse in "entra-esci" sul lato in media tensione a 20 kV a formare n.4 linee di connessione distinte, ognuna delle quali collegherà a sua volta n.4 cabine di trasformazione. Ogni impianto del lotto, dunque, si comporrà di n.4 sottocampi inverter di potenza massima in immissione pari a 1.240 kW.

Le n.4 linee in media tensione confluiranno nelle rispettive Cabine di Parallelo in MT; queste ultime saranno invece allacciate alle rispettive Cabine di Consegna del distributore.

Le n.4 cabine di consegna, mediante elettrodotti interrati in media tensione a 20 kV, saranno connesse alla futura Cabina Primaria (CP) AT/MT 150/20 kV "San Vito Sud". Quest'ultima, a sua volta, si allaccerà mediante un elettrodotto in AT a 150 kV, ad una futura Stazione Elettrica AAT/AT 380/150 kV di Terna S.p.A., connessa in entra-esci sulla linea AAT 380 kV Brindisi-Taranto.

In ogni impianto del lotto sarà prevista anche l'installazione di un trasformatore per l'alimentazione dei servizi ausiliari del tipo MT/bt 20/0.4 kV da 125 kVA.

Il generatore fotovoltaico sarà dotato anche di sistemi ausiliari di controllo e di sicurezza:

- Lungo il perimetro di impianto saranno posizionati, a distanza di 50 metri circa, pali di sostegno su cui verranno installate le cam di videosorveglianza e i fari per l'illuminazione di sicurezza.

I fari si accenderanno nelle ore notturne solamente in caso di allarme di antintrusione, o per motivi di sicurezza, e quindi azionati in modo automatico o anche da remoto dai responsabili del servizio vigilanza. Le cam saranno del tipo fisso, con illuminatore infrarosso integrato. Nei cambi di direzione del perimetro verranno anche installate delle "speed dome", che permetteranno una visualizzazione variabile delle zone di impianto in modo automatico, ma che potranno essere gestite anche in manuale a seconda delle necessità. Tutte le cam, a gruppi di 5 o 6 unità, saranno connesse su quadri di parallelo video, dove, date le considerevoli distanze delle connessioni, il segnale sarà convertito e trasmesso alla cabina di monitoraggio tramite dorsali in fibra ottica.

Le aree di impianto saranno delimitate da recinzione metallica con rivestimento plastico, posata ad altezza di 20 cm dal suolo, e fissata su appositi paletti infissi nel terreno.

Sulle fasce perimetrali saranno piantumati arbusti e siepi autoctone, tali da permettere una mitigazione ambientale delle opere riducendone l'impatto visivo. La zona a nord-est rispetto all'area di installazione dell'impianto sarà interessata dalla piantumazione di nuovi ulivi della famiglia Leccina e/o Favolosa.

4. La realizzazione dell'opera

4.1. Fasi di lavoro per la realizzazione dell'opera

Le attività di costruzione dell'impianto fotovoltaico riguarderanno essenzialmente le aree di progetto, le aree interessate dalle opere di connessione ed elettrodotto interrato a 20 kV, cavidotti in media e bassa tensione, viabilità di accesso alle su dette aree ove mancante o non idonea.

In linea di massima le attività sono:

- apertura cantiere, esecuzione dei rilievi e picchettamento delle aree di intervento;
- interventi sulla viabilità esistente, ove necessario, e realizzazione di nuova viabilità, dove assente, al fine di rendere possibile il transito dei mezzi speciali per il trasporto dei componenti e apparati di impianto;
- realizzazione della viabilità interna utile per il transito dei mezzi e livellamento delle aree di installazione;
- installazione della recinzione perimetrale;
- realizzazione scavi a sezione larga per la realizzazione delle platee di supporto delle cabine di trasformazione e cabine elettriche prefabbricate, e scavi a sezione ristretta per la messa in opera dei cavidotti;
- realizzazione delle platee di supporto cabine elettriche;
- installazione degli inseguitori monoassiali;
- installazione dei moduli fotovoltaici;
- installazione delle cabine di trasformazione e cabine elettriche;
- messa in opera degli elettrodotti interrati;
- messa in opera degli elettrodotti interrati e servizi ausiliari di impianto (illuminazione, antintrusione, videosorveglianza);
- esecuzione delle connessioni elettriche in media e bassa tensione;
- realizzazione delle opere di connessione alla rete del distributore;
- collaudo degli impianti elettrici in bassa e media tensione;
- realizzazione delle opere a verde e di mitigazione;
- posa del terreno vegetale per favorire il recupero della situazione preesistente;
- conferimento in discarica degli inerti provenienti dagli scavi e dai movimenti terra;
- conferimento in discarica dei rifiuti prodotti durante le attività di costruzione.

4.2. Esecuzione dei lavori edili

4.2.1. Viabilità esistente e realizzazione di nuova viabilità

La verifica di idonea viabilità esistente, o adeguamento, a addirittura la realizzazione di nuova viabilità è indispensabile per consentire a mezzi di trasporto, di lavoro e similari, di accedere alle aree di impianto per lo scarico di materiali, per eseguire attività di lavorazione, per trasportare attrezzi, macchine e ogni tipo di componente.

L'area di progetto risulta essere ben servita da strade pubbliche e interpoderali idonee al transito di mezzi di trasporto stradale di qualsiasi dimensione. Per rendere più agevole l'accesso alle aree di progetto si procederà con la sistemazione dei tratti di strada interpoderale, e quindi si procederà con la stabilizzazione della viabilità esistente mediante l'utilizzo di un sistema di pavimentazione stradale costituito da pietrisco materiale legante misto di cava, previo scavo o scarifica, e sovrapponendo uno strato di materiale misto stabilizzato e successivo compattamento con rullo compressore, lasciando una pendenza sui margini di circa il 2%.

Tale viabilità sarà realizzata anche all'interno dell'impianto, lungo il perimetro delle aree recintate e in corrispondenza della viabilità per il raggiungimento delle cabine elettriche.

4.2.2. Scavi e rinterri

È prevista l'esecuzione di diverse tipologie di scavo per quanto riguarda le platee di fondazione delle cabine elettriche e per la posa dei cavi elettrici in bassa, media e alta tensione e per i cavi di segnale.

Gli scavi previsti per le fondazioni saranno a sezione ampia e avranno una profondità variabile tra i 60 cm e 1 metro.

Gli scavi necessari per la posa dei cavi elettrici avranno saranno invece a sezione ristretta, ampiezza massima di 1 metro e profondità fino a 1,6 metri. La larghezza dello scavo potrà variare in relazione al numero di linee elettriche (terne di cavi) che dovranno essere posati.

Gli scavi saranno effettuati con mezzi meccanici, evitando scoscendimenti, franamenti, ed in modo tale che le acque scorrenti alla superficie del terreno non possano riversarsi nella zona cavi.

Trattandosi di scavi poco profondi, sarà quasi certamente possibile evitare la realizzazione delle armature, dal momento che la natura del terreno dovrebbe essere sufficientemente compatta.

Se necessaria, l'eventuale armatura sarà realizzata con tavole orizzontali aventi lunghezza minima di 4 m e spessore minimo di 5 cm, fissate in gruppi di 3-4 con traverse verticali e compresse mediante sbatacchi trasversali contro le pareti dello scavo.

Per migliori dettagli si rimanda alla lettura delle apposite Tavole di Progetto.

4.2.3. Modalità di esecuzione dei movimenti terra

Scavi a sezione ampia per la realizzazione delle fondazioni:

Questi scavi saranno effettuati con mezzi meccanici, evitando scoscendimenti e franamenti, per le seguenti opere previste a progetto:

- Fondazioni per le cabine di trasformazione MT/bt;
- Fondazioni per le cabine elettriche di impianto;
- Fondazioni per la cabina elettrica di monitoraggio;
- Fondazione sostegni elettrodotto aereo di connessione.

I materiali rinvenenti dagli scavi realizzati per l'esecuzione delle fondazioni, nell'ordine:

- saranno utilizzati per il rinterro di ciascuna fondazione;
- potranno essere impiegati per il ripristino dello stato dei luoghi, relativamente alle opere temporanee
 di cantiere;
- potranno essere impiegati per la realizzazione/adeguamento delle strade e/o piste nell'ambito del cantiere;
- se in eccesso rispetto alla possibilità di reimpiego nell'ambito del cantiere, saranno gestiti quale rifiuti ai sensi della parte IV del D.Lgs. 152/2006 e trasportati presso un centro di recupero autorizzato o in discarica.

Di seguito si riporta la codifica CER per i rifiuti da Terre e Rocce da Scavo:

17 05	Terra (compreso il terreno proveniente da siti contaminate), rocce e fanghi di dragaggio		
17 05 03*	Terra e rocce, contenenti sostanze pericolose		
17 05 04	Terra e rocce, diverse da quelle di cui alla voce 17 05 03		

Scavi a sezione ristretta per la posa in opera dei cavidotti e dei cavi elettrici e di segnale:

Gli scavi a sezione ristretta, necessari per la posa dei cavidotti e dei cavi elettrici e di segnale, avranno ampiezza minima e profondità conformi alle disposizioni di cui alla Norme CEI 11-17 - art. 2.3.11.

I materiali rinvenenti dagli scavi a sezione ristretta saranno momentaneamente depositati in prossimità degli scavi stessi o in altri siti individuati nel cantiere. Successivamente lo stesso materiale sarà riutilizzato per il rinterro.

Gli scavi saranno effettuati con mezzi meccanici, evitando scoscendimenti, franamenti, ed in modo tale che le acque scorrenti alla superficie del terreno non si riversino nell'area cavi.

Per la realizzazione dell'infrastruttura di canalizzazione, dovranno essere osservate le seguenti prescrizioni di carattere generale:

- attenersi alle norme, ai regolamenti ed alle disposizioni nazionali e locali vigenti in materia di tutela ambientale, paesaggistica, ecologica, architettonico-monumentale e di vincolo idrogeologico;
- rispettare, nelle interferenze con altri servizi le prescrizioni stabilite; collocare in posizioni ben visibili gli sbarramenti protettivi e le segnalazioni stradali necessarie;
- assicurare la continuità della circolazione stradale e mantenere la disponibilità dei transiti e degli accessi carrai e pedonali; organizzare il lavoro in modo da occupare la sede stradale e le sue pertinenze il minor tempo possibile.

<u>Disfacimento delle pavimentazioni:</u>

I disfacimenti dovranno essere limitati alla superficie strettamente indispensabile per l'esecuzione degli scavi, in modo da ridurre al minimo il quantitativo di materiale di risulta, gli oneri di ripristino, e assicurando il reimpiego degli elementi della pavimentazione rimossa.

In particolare, tutti i materiali riutilizzabili dovranno essere accatastati separati per specie e in ordine ai bordi dello scavo, in modo da essere immediatamente riconoscibili e da non ostacolare la circolazione dei mezzi.

Nei casi in cui ciò non sia fattibile o in presenza di diverse disposizioni dell'Ente preposto, detti materiali dovranno essere trasportati in opportuni depositi e riportati in sito al momento del reimpiego.

In presenza di pavimentazioni in manto bituminoso, calcestruzzo o simili, prima di procedere al disfacimento sarà necessario delimitare la superficie mediante tagli netti della pavimentazione stessa eseguiti con appropriate macchine a dischi rotanti.

Scavo in terreno naturale:

Gli scavi da realizzarsi in corrispondenza di terreno non pavimentato dovranno essere eseguiti con adeguati mezzi meccanici od a mano quando situazioni particolari lo richiedano.

La canalizzazione dovrà essere messa in opera sul fondo dello scavo perfettamente spianato e privato di sassi o spuntoni di roccia e posata in un letto di sabbia o pozzolana. Il residuo volume di scavo dovrà essere riempito con terreno di risulta vagliato e privato di sassi, opportunamente rullato e compattato.

Rinterri e ripristini:

Per operazioni di rinterro si intende il riempimento degli scavi effettuati, in tutto od in parte, con materiale di risulta, sabbia, materiale inerte o stabilizzato.

Il materiale di rinterro, sia esso terra proveniente dallo scavo sia materiale inerte, dovrà essere accuratamente costipato in strati successivi da circa 40-50 cm con mezzi idonei.

I riempimenti degli scavi, il rifacimento delle pavimentazioni stradali, dovranno essere eseguiti con le caratteristiche tecniche e nelle quantità stabilite e concordate preventivamente con i proprietari delle strade (Amministrazioni, Enti, Privati, ecc.).

5. Proposta di Piano Preliminare di utilizzo in sito delle terre e rocce da scavo escluse dalla disciplina dei rifiuti

5.1. Riferimenti legislativi

Nel segno di una sempre maggiore sensibilità ambientalista ed ecologista e nel rispetto del concetto di sviluppo sostenibile, il Riutilizzo dei "materiali da scavo" ha costituito un obiettivo primario nella gestione dei cantieri e nel buon governo dei movimenti terra in genere. Con l'emanazione del DM 161/2012 "Regolamento recante la disciplina dell'utilizzo delle terre e rocce da scavo" il Ministero dell'Ambiente e della Tutela del Territorio e del Mare ha fatto un passo avanti molto significativo in questa direzione.

Il citato DM è stato recentemente sostituito dal DPR n° 120 del 13.06.2017 - "Regolamento recante la disciplina semplificata della gestione delle terre e rocce da scavo, ai sensi dell'articolo 8 del decreto-legge 12 settembre 2014, n. 133, convertito, con modificazioni, dalla legge 11 novembre 2014, n. 164", che ha migliorato le indicazioni contenute nel precedente DM.

Il DPR 120.2017 al Titolo IV, art. 24, comma 3 consente:

nel caso in cui la produzione di terre e rocce da scavo avvenga nell'ambito della realizzazione di opere o attività sottoposte a valutazione di impatto ambientale, la sussistenza delle condizioni e dei requisiti di cui all'articolo 185, comma 1, lettera c), del decreto legislativo 3 aprile 2006, n. 152, è effettuata in via preliminare, in funzione del livello di progettazione e in fase di stesura dello studio di impatto ambientale (SIA), attraverso la presentazione di un «PIANO PRELIMINARE DI UTILIZZO IN SITO DELLE TERRE E ROCCE DA SCAVO ESCLUSE DALLA DISCIPLINA DEI RIFIUTI».

Detto Piano Preliminare dovrà contenere almeno i seguenti argomenti:

- a) descrizione dettagliata delle opere da realizzare, comprese le modalità di scavo (per questo si faccia riferimento ai contenuti dei capitoli 3. e 4. della presente relazione, nonché a tutti gli elaborati grafici e relazioni del Provvedimento Autorizzativo Unico di cui questa relazione è parte integrante);
- b) inquadramento ambientale del sito (geografico, geomorfologico, geologico, idrogeologico, destinazione d'uso delle aree attraversate, ricognizione dei siti a rischio potenziale di inquinamento) (si faccia riferimento a 1. Relazione Geologica del Progetto Definitivo; 2. Relazione Geotecnica del Progetto Definitivo; 3. Relazione Idrologica del Progetto Definitivo; 4. Relazione Idraulica del Progetto Definitivo; 5. Relazione Tecnica del Progetto Definitivo);
- c) proposta del piano di caratterizzazione delle terre e rocce da scavo (Capitolo 5 della presente relazione) da eseguire nella fase di progettazione esecutiva o comunque prima dell'inizio dei lavori, che contenga almeno:
 - 1. numero e caratteristiche dei punti di indagine (paragrafo 5.2);
 - 2. numero e modalità dei campionamenti da effettuare (paragrafo 5.3);

- 3. parametri da determinare (paragrafo 5.4);
- d) volumetrie previste delle terre e rocce da scavo (Capitolo 6 e relativa tabella);
- e) modalità e volumetrie previste delle terre e rocce da scavo da riutilizzare in sito (Capitolo 6).

5.2. Numero e caratteristiche dei punti di indagine

Stando quanto indicato nello ALLEGATO 2 al DM 120.2017, viste le estensioni delle aree interessate da scavi nell'area di progetto dell'impianto (circa 240.000 m²) e vista la lunghezza delle trincee di scavo per la posa degli elettrodotti interni e del cavidotto di connessione dall'impianto alla Sotto Stazione Utente saranno realizzati:

- N.80 sondaggi ambientali a carotaggio nell'area di impianto, di cui N.20 in corrispondenza delle cabine elettriche di impianto e N.60 in corrispondenza dei lati di impianto in cui sono previsti gli scavi perimetrali.
- pozzetti esplorativi ambientali ubicati ogni 500 m lungo il tracciato che sarà interessato dalla posa dell'elettrodotto interrato di connessione.

5.3. Numero e modalità dei campionamenti da effettuare

Le procedure di caratterizzazione ambientale delle terre e rocce da scavo seguiranno le indicazioni contenute nello ALLEGATO 4 al DM 120.2017.

I campionamenti saranno realizzati tramite escavatore lungo il cavidotto o tramite la tecnica del carotaggio verticale in corrispondenza degli inseguitori con la sonda di perforazione attrezzata con testa a rotazione e roto-percussione, utilizzando un carotiere di diametro opportuno. La velocità di rotazione sarà portata al minimo in modo da ridurre l'attrito tra sedimento e campionatore.

Nel tempo intercorso tra un campionamento ed il successivo il carotiere sarà pulito con l'ausilio di una idropulitrice a pressione utilizzando acqua potabile.

Non saranno assolutamente utilizzati fluidi o fanghi di circolazione per non contaminare le carote estratte e sarà utilizzato grasso vegetale per lubrificare la filettatura delle aste e del carotiere.

I terreni saranno recuperati per l'intera lunghezza prevista, in un'unica operazione, senza soluzione di continuità, utilizzando aste di altezza pari a 1 m con un recupero pari al 100% dello spessore da caratterizzare, quindi, saranno per tutta la sua lunghezza di prelievo, fotografati con una targa identificativa in cui sarà indicata la denominazione del punto di campionamento.

Data la ridotta profondità di scavo per le fondazioni e per gli scavi dei cavidotti in DC e BT (profondità ≤ 1 m), si preleverà un solo campione in corrispondenza di questi scavi. Per gli scavi relativi ai cavidotti in media tensione e per le fondazioni dei sostegni di linea aerea ($\leq 1,5$ m), verranno prelevati doppi campioni, uno per una profondità fino ad 1 metro, e 1 nella zona di fondo scavo.

In definitiva il numero di campioni sarà così distinto:

Campione secondo DPR	Opera di progetto	Numero
Campione 1 (0-1 metro) Viabilità perimetrale e cavidotti		44
	Cabine elettriche e cavidotti	20
	Cavidotto in media tensione	16
Campione 2 (1,5 metri)	Cavidotto in media tensione	16

Il diametro della strumentazione consentirà il recupero di una quantità di materiale sufficiente per l'esecuzione di tutte le determinazioni analitiche previste, tenendo conto della modalità di preparazione dei campioni e scartando in campo la frazione granulometrica maggiore di 2cm.

Tutti i campioni saranno prelevati in numero adeguato per poter effettuare tutte le analisi per la ricerca degli analiti obiettivo.

Saranno identificati attraverso etichette con indicata la sigla identificativa del punto di campionamento, del campione e la profondità di campionamento.

I campioni, contenuti in appositi contenitori sterili, saranno mantenuti al riparo dalla luce ed alle temperature previste dalla normativa mediante l'uso di un contenitore frigo portatile.

Successivamente saranno consegnati al laboratorio d'analisi certificato prescelto dopo essere stati trattati secondo quanto descritto dalla normativa vigente.

Le analisi granulometriche saranno eseguite dal Laboratorio Autorizzato Ufficiale.

5.4. Parametri da determinare

Contemporaneamente all'esecuzione dei sondaggi e dei pozzetti sopra descritti si procederà al campionamento in relazione alle profondità di scavo ed alla determinazione delle analisi chimiche tenendo conto delle indicazioni contenute nel citato ALLEGATO 4 al DM 120.2017.

Prevedendo l'assenza di fonti di inquinamento nell'area vasta, saranno effettuate le analisi per la ricerca degli analiti di seguito indicati (Tab. 4.1 DM 120.2017):

Arsenico, Cadmio, Cobalto, Nichel, Piombo, Rame, Zinco, Mercurio, Idrocarburi C>12, Cromo, Cromo
 VI, Amianto.

I risultati delle analisi sui campioni saranno confrontati con i valori delle Tabelle 1 (Colonne A e B in funzione della destinazione d'uso) dell'Allegato 5 alla Parte Quarta -Titolo V del D. Lgs 152/2006 e s.m.i..

I campioni predisposti per le analisi di laboratorio dovranno essere privi della frazione maggiore di 2 cm (frazioni di materiali superiori ai 2 cm devono essere scartate in campo) e le caratterizzazioni analitiche di laboratorio saranno condotte sull'aliquota di granulometria inferiore ai 2 mm. Quindi la concentrazione del campione dovrà essere determinata alla totalità dei materiali secchi con una frazione compresa tra 2 cm e 2 mm.

Nel caso in cui si debba dare evidenza di una contaminazione antropica, le determinazioni analitiche saranno condotte sull'intero campione, compresa la frazione granulometrica superiore ai 2 cm.

Le analisi chimico-fisiche saranno condotte adottando metodologie ufficialmente riconosciute per tutto il territorio nazionale, tali da garantire l'ottenimento di valori 10 volte inferiori rispetto ai valori di concentrazione limite. Nell'impossibilità di raggiungere tali limiti di quantificazione sono utilizzate le migliori metodologie analitiche ufficialmente riconosciute per tutto il territorio nazionale che presentino un limite di quantificazione il più prossimo ai valori di cui sopra.

Le analisi saranno effettuate nella fase di caratterizzazione preliminare dell'area di progetto ed i relativi risultati saranno comunicati e discussi con ARPA prima dell'inizio delle attività di realizzazione delle opere.

6. Piano di riutilizzo delle terre e rocce da scavo da eseguire in fase di progettazione esecutiva e comunque prima dell'inizio dei lavori

Il PIANO DI RIUTILIZZO, da eseguire in fase di progettazione esecutiva e comunque prima dell'inizio dei lavori, conterrà (come indicato nello ALLEGATO 5 del DM 120.2017) almeno le seguenti informazioni:

- 1. l'ubicazione dei siti di produzione delle terre e rocce da scavo con l'indicazione dei relativi volumi in banco suddivisi nelle diverse litologie;
- 2. l'ubicazione dei siti di destinazione e l'individuazione dei cicli produttivi di destinazione delle terre e rocce da scavo qualificate sottoprodotti, con l'indicazione dei relativi volumi di utilizzo suddivisi nelle diverse tipologie e sulla base della provenienza dai vari siti di produzione. I siti e i cicli produttivi di destinazione possono essere alternativi tra loro;
- 3. le operazioni di normale pratica industriale finalizzate a migliorare le caratteristiche merceologiche, tecniche e prestazionali delle terre e rocce da scavo per il loro utilizzo, con riferimento a quanto indicato all'allegato 3;
- 4. le modalità di esecuzione e le risultanze della caratterizzazione ambientale delle terre e rocce da scavo eseguita in fase progettuale in conformità alle previsioni degli allegati 1, 2 e 4, precisando in particolare:
 - i risultati dell'indagine conoscitiva dell'area di intervento (ad esempio, fonti bibliografiche, studi pregressi, fonti cartografiche) con particolare attenzione alle attività antropiche svolte nel sito o di caratteristiche geologiche-idrogeologiche naturali dei siti che possono comportare la presenza di materiali con sostanze specifiche;
 - le modalità di campionamento, preparazione dei campioni e analisi con indicazione del set dei parametri analitici considerati che tenga conto della composizione naturale delle terre e rocce da scavo, delle attività antropiche pregresse svolte nel sito di produzione e delle tecniche di scavo che si prevede di adottare, esplicitando quanto indicato agli allegati 2 e 4;
 - la necessità o meno di ulteriori approfondimenti in corso d'opera e i relativi criteri generali da seguire, secondo quanto indicato nell'allegato 9, parte A;
- 5. l'ubicazione degli eventuali siti di deposito intermedio in attesa di utilizzo, anche alternativi tra loro, con l'indicazione della classe di destinazione d'uso urbanistica e i tempi del deposito per ciascun sito;
- 6. i percorsi previsti per il trasporto delle terre e rocce da scavo tra le diverse aree impiegate nel processo di gestione (siti di produzione, aree di caratterizzazione, siti di deposito intermedio, siti di destinazione e processi industriali di impiego), nonché delle modalità di trasporto previste (ad esempio, a mezzo strada, ferrovia, slurrydotto, nastro trasportatore).

Il Piano in questione sarà corredato dalle seguenti Tavole:

- 1. Corografia in scala 1/10.000;
- 2. Carta geomorfologica in scala 1/10.000 con l'ubicazione degli interventi in progetto;
- 3. Stralci delle carte del P.A.I. con l'ubicazione degli interventi in progetto;
- 4. Carta delle aree protette con l'ubicazione degli interventi in progetto;
- 5. Carta dei vincoli paesaggistici (PPTR) in scala 1/10.000;
- 6. Stralcio degli strumenti urbanistici vigenti delle aree interessate dagli interventi;
- 7. Planimetria in scala 1/10.000 con l'ubicazione dei pozzetti esplorativi ambientali e dei punti di campionamento ambientale;
- 8. Planimetria catastale schematica con le opere in progetto;
- 9. Carta geologica in scala 1/10.000 con l'ubicazione degli interventi in progetto;
- 10. Carta idrogeologica in scala 1/10.000 con l'ubicazione di eventuali pozzi/piezometri, l'indicazione dei livelli piezometrici e la probabile direzione del flusso idrico sotterraneo;
- 11. Carta schematica con l'ubicazione delle aree di DEPOSITO TEMPORANEO;
- 12. Colonne stratigrafiche dei sondaggi a carotaggio;
- 13. Elaborati delle prove eseguite da Laboratorio Ufficiale qualificato relative alle analisi granulometriche;
- 14. Documentazione fotografica acquisita durante l'esecuzione dei pozzetti ambientali e dei campionamenti;
- 15. Certificati relativi alle analisi eseguite sui campioni di terre dai Laboratori Ufficiali qualificati.

Parte degli elaborati sono allegati al Progetto Definitivo di impianto di cui la presente relazione è documento integrante. Relativamente alle informazioni che conterrà la tavola di cui al p.to 11 si fa presente che le aree di DEPOSITO TEMPORANEO sono previste a bordo di ogni scavo; per quanto riguarda gli scavi esterni alle aree di impianto, nella fattispecie per quanto riguarda l'elettrodotto di connessione interrato, le aree di deposito temporaneo sono riportate sull'elaborato IB3N7K6_PianoEsproprio_03 — Planimetria Piano particellare di esproprio grafico.

La restante documentazione sarà resa disponibile allegata al Progetto Esecutivo e comunque prima dell'inizio dei lavori.

Il Piano conterrà anche la parte riguardante la caratterizzazione delle terre e rocce da scavo descritta nel paragrafo seguente.

7. Volumetrie previste terre e rocce da scavo

Si riporta di seguito una tabella riepilogativa relativa alla gestione del riutilizzo delle terre e rocce da scavo.

Rispetto ai volumi di scavo complessivi, da cui si sottraggono i volumi relativi ai rispettivi materiali di riempimento per tipologia di opera (letto di sabbia, volume cavidotti, fondazioni stradali, fondazioni in calcestruzzo, ecc...), si riporta il volume delle terre riutilizzate per il rinterro degli scavi.

La quota rimanente è destinata al trasporto e smaltimento in discarica secondo la classificazione stessa del materiale di risulta.

Sezione dei lavori	Tipologia lavoro	Volume scavi [mc]	Volume reinterri [mc]	Volume smaltimento [mc]
Opere civili impianto	Viabilità interna	8.400	2.106	6.294
	Viabilità esterna	8.300	2.080	6.220
	Scavi cabine elettriche	550	125	425
	Scavi connessioni elettriche	5.430	3.780	1.650
	Scavi impianti perimetrali	780	470	388
Opere civili connessione	Cabine elettriche di consegna	86	19	67
	Elettrodotto di connessione	3450	2.587	863
	Totale	26.996	11.167	15.829

Tabella 1 – Prospetto riutilizzo terre e rocce da scavo

Rispetto ai volumi complessivi da scavo, circa il 41,4 % sarà riutilizzato come reinterro nell'esecuzione complessiva dell'opera.

Tale procedimento permette di ridurre i costi complessivi di realizzazione, riduzione della produzione di materiale da smaltire e riduzione delle emissioni relative ai trasporti in discarica.

8. Conclusioni

In sintesi, relativamente a quanto riportato nella presente relazione, per quanto riguarda il piano preliminare di riutilizzo in sito delle terre e rocce da scavo escluse dalla disciplina dei rifiuti, si evince che:

- 1) i siti interessati dal progetto sono inseriti nella zona urbanistica "E" e, quindi, i terreni da riutilizzare debbono essere conformi alla colonna A della Tab. 1 All.5 Parte IV D.Lgs 152/06;
- 2) i siti interessati dalle opere di connessione del progetto sono inseriti nella zona urbanistica "E" e, quindi, i terreni da riutilizzare debbono essere conformi alla colonna A della Tab. 1 All.5 Parte IV D.Lgs 152/06;
- 3) non vi sono nelle vicinanze attività antropiche inquinanti ed i terreni e la falda non sono potenzialmente a rischio per la totale assenza di fonti di probabili fenomeni di inquinamento;
- 4) sono disponibili idonee aree per lo stoccaggio dei materiali scavati, limitrofe ai siti di produzione e le piazzole saranno realizzate conformemente alla normativa vigente in modo da evitare fenomeni franosi sia dei cumuli che del versante, il dilavamento dei materiali scavati, l'infiltrazione delle acque meteoriche nel sottosuolo e la produzione eccessiva di polveri;
- 5) gli scavi di sbancamento non intercetteranno falde freatiche;
- 6) non sono presenti limitazioni di alcun tipo alla tipologia di attività;
- 7) preventivamente l'inizio delle attività di cantiere si effettueranno prelievi e campionamenti dei terreni nel numero precedentemente indicato e si verificherà se, per tutti i campioni analizzati, i parametri saranno risultati conformi all'All. 5 Parte IV tab. 1 colonna A e B del D.Lgs.152/06 e s.m.i.;
- 8) in tal caso conseguirà il nulla osta al riutilizzo nello stesso sito del materiale scavato, ai sensi dell'art. 185 del D. Lgs. 152/06 e s.m.i.;
- 9) i materiali scavati in esubero non riutilizzati in cantiere saranno gestiti come rifiuti ai sensi del D. Lgs. 152/06 e s.m.i.;
- 10) le litologie interessate dagli scavi sono sostanzialmente omogenee essendo afferenti alla stessa formazione geologica;
- 11) si avrà cura solo di separare il terreno vegetale che sarà ricollocato in situ alla fine dei lavori per costituire lo strato fertile e favorire l'attecchimento della vegetazione autoctona spontanea;
- 12) non sarà effettuata alcuna operazione rientrante tra le normali pratiche industriali in quanto il terreno sarà riutilizzato tal quale;
- 13) vista la natura delle lavorazioni previste, in caso di risultato positivo degli esami di laboratorio sui campioni prelevati, non è previsto, al momento, l'esecuzione di ulteriore caratterizzazione in corso d'opera.

Allo stato attuale di sviluppo del progetto si prevede di re-impiegare, in buona parte, il terreno e le rocce provenienti dagli scavi.

Come detto, nel caso il materiale da scavo risultasse apparentemente dubbio, saranno effettuate le opportune analisi prevista dalla norma prima del reimpiego in sito.

Nel caso fosse non idoneo, si invierà a discarica autorizzata con la opportuna documentazione di corredo e secondo le modalità previste dalla normativa vigente.

Prima dell'inizio del cantiere, con il Progetto Esecutivo disponibile:

- verrà eseguita una più puntuale stima sulle quantità di Terreno e di Rocce da scavo da movimentare e da reimpiegare;
- saranno assolte le prescrizioni della normativa sul Terreno e le Rocce da Scavo, così come previsto dal D.M. 161.2012.

Massafra, Giugno 2021

Il Tecnico

Ing. Roberto Montemurro