

Ministero delle Infrastrutture e della Mobilità sostenibili

Domanda di Autorizzazione Unica ex art. 12 D.lgs. 387/2003

Ministero della Transizione Ecologica

Procedura di Valutazione di Impatto Ambientale ex D.lgs.152/2006

PROGETTO PER LA REALIZZAZIONE DI UN PARCO EOLICO OFFSHORE DI TIPO FLOATING NEL CANALE DI SICILIA

Engineering & Consulting Studio

Concept & Innovations: NiceTechnology®

PROGETTO HANNIBAL Monitoraggio Ambientale

REPORT FINALE

30 OTTOBRE 2021

Conisma

Contratto Prot. n. 155-2021

1. INTRODUZIONE

In data 6.5.2021, il CoNISMa ha stipulato con la ditta iLStudio di Taranto (Cliente) un contratto per la "Caratterizzazione Ambientale" di un'area marina costiera, sita a Marsala (TP), interessata dalla posa di un cavo elettrico marino necessario all'installazione di un parco eolico off-shore nel Canale di Sicilia.

Le attività di servizio richieste dal Cliente sono così sintetizzate:

- > RICERCA BIBLIOGRAFICA BIOCENOSI CANALE DI SICILIA
- > CAMPIONAMENTO SEDIMENTO AREA NEAR-SHORE E PRATERIA DI POSIDONIA OCEANICA
- CARATTERIZZAZIONE CHIMICA, FISICA, MICROBIOLOGICA E ECOTOSSICOLOGICA DEL SEDIMENTO
- > ANALISI DI POSIDONIA OCEANICA
- > POPOLAMENTI BENTONICI DI FONDO DURO
- > MACROZOOBENTHOS DI FONDO MOBILE

A questa relazione si allega la documentazione fotografica relativa alle attività svolte:

- Allegato I = campionamento sedimento e macrozoobenthos area *near-shore*
- Allegato II = campionamento prateria *P. oceanica*
- Allegato III = coralligeno

1.1 Quadro di riferimento metodologico e normativo seguito

Nel rispetto della normativa nazionale (DM 24/01/96), il piano di campionamento del sedimento e del macrozoobenthos ha previsto il prelievo dei campioni lungo la direttrice del tracciato del cavo con una frequenza di prelievo di una stazione ogni 200 metri sino a 1000 metri di distanza dalla costa (Area *near-shore*) e per il tratto successivo sino a tre miglia dalla costa una stazione ogni 500 m (Area *off-shore*). Il numero totale delle stazioni è stato di n. 10, n. 5 nell'area *near-shore* e n. 5 nell'area *off-shore*.

Per la caratterizzazione chimica, fisica e microbiologica sono state svolte le seguenti determinazioni:

- pH, Eh
- Granulometria
- Descrizione macroscopica del campione (colore, odore, possibile presenza di concrezioni o altro materiale)
- Umidità

- Peso specifico
- TOC
- Azoto totale
- Fosforo totale
- Metalli (Hg, Cd, Pb, As, total Cr, Cu, Ni, Zn, Al)

• IPA (Naphthalene, Acenaphthene, Acenaphthylene, Fluorene, Phenanthrene, Anthracene, Fluoranthene, Pyrene, Benzo[a]anthracene, Chrysene, Benzo[b]fluoranthene, Benzo[j]fluoranthene, Benzo[k]fluoranthene, Benzo[a]pyrene, Dibenzo[a,h]anthracene, Benzo[ghi]perylene, Indeno[1,2,3-cd]pyrene) e la loro somma

• Pesticidi (Aldrin, Dieldrin, Endrin, Alpha-hexachlorocyclohexane, Beta-hexachlorocyclohexane, Gammahexachlorocyclohexane, DDT, DDD, DDE, Hexachlorobenzene, Hexachlorobutadiene, Alachlor, Chlorfenvinphos, Chlorpyrifos, Endosulfan)

• Idrocarburi C>12 e C <12

• PCB (PCB 28, PCB 52, PCB 77, PCB 81, PCB 101, PCB 118, PCB 126, PCB 128, PCB 138, PCB 153, PCB 156, PCB 169, PCB 180, 105,114,123,157,167,170,189 e la loro somma)

- Composti organostannici
- Coliformi fecali,
- Coliformi totali
- Streptococchi fecali
- Batteri solfo-riduttori

La caratterizzazione ecotossicologica è stata effettuata mediante una batteria di saggi biologici composta da 3 specie-test appartenenti a classi sistematiche e filogenetiche differenti (il batterio *Vibrio fischeri*, l'alga *Pheodactylum tricornutum* e il crostaceo copepode *Acartia tonsa*).

Lo studio del macrozoobenthos di fondo molle, in accordo a quanto previsto dal DM 24/01/1996, è stato effettuato sui campioni prelevati nelle stazioni delle aree *near-shore* (n. 6) e *off-shore* (n. 4) in doppia replica, per un totale di n. 20 campioni.

La valutazione dello stato ecologico della prateria di *Posidonia oceanica* è stata condotta in base a quanto proposto da ISPRA nel 2012, aggiornato nel 2020, con la "Scheda metodologica ISPRA per il calcolo dello stato ecologico secondo la metodologia PREI - Procedure di campionamento per la raccolta dati", che prevede, oltre alle attività *in situ*, specifiche analisi in laboratorio di variabili morfometriche e di biomassa.

La valutazione dei popolamenti bentonici di fondo duro è stata fatta mediante censimento visivo da riprese videofotografiche ad alta definizione e georeferenziate, fornite dal Cliente, con particolare riferimento alle comunità macroalgali nelle aree costiere e al coralligeno.

2. RELAZIONE DI INQUADRAMENTO GENERALE SULLE BIOCENOSI PRESENTI NEL CANALE DI SICILIA

2.1 Il Canale di Sicilia

Il Canale di Sicilia è costituito dal tratto di mare compreso fra le coste sud-occidentali della Sicilia, le coste tunisine, libiche e l'isola di Malta (Figura 2-1) e divide il Mar Mediterraneo in due sottobacini, il sottobacino orientale e quello occidentale. La distanza minima tra le coste siciliane e africane è pari a circa 120 km, tra Mazara del Vallo in Sicilia e Capo Bon in Tunisia e raggiunge circa 500 km più ad est, in prossimità del Mar Ionio.

Figura 2-1 Mappa batimetrica del Canale di Sicilia (da Kelly et al., 2014)

La fascia costiera che delinea il Canale di Sicilia, sia sul versante europeo che su quello africano, è caratterizzata dalla presenza di una ricca varietà di habitat marino-costieri. Sono numerosi, infatti, i siti di elevato pregio naturalistico che sono stati designati da particolari livelli di protezione al fine di conservarne la biodiversità, tra cui: aree marine protette, parchi nazionali e, a livello europeo, la rete di siti Natura 2000 (SIC: Sito di Interesse Comunitario, ZPS: Zona di Protezione Speciale e ZSC: Zona Speciale di Conservazione), istituita ai sensi della Direttiva 92/43/CEE "Habitat" (Tabella 2-1).

Ad esclusione delle aree urbane fortemente antropizzate, le coste della Sicilia meridionale presentano un alternarsi di spiagge e scogliere, lungo le quali emergono siti di notevole interesse storico-naturalistico. Procedendo dalla costa ovest verso est risultano particolarmente degni di menzione lo Stagnone di Marsala e le sue isole, la zona umida di Capo Feto e la zona dunale compresa fra Capo Granitola, Porto Palo e la foce del fiume Belice (Pernice et al, 2005). Inoltre, vaste praterie di *Posidonia oceanica*, fanerogama marina di estrema importanza ecologica ed endemica del Mar Mediterraneo, sono presenti lungo il tratto di costa compreso fra Marsala e Capo Granitola, Sciacca e Agrigento, oltre che intorno alle aree marine protette delle Isole Egadi e delle Isole Pelagie, e delle Isole di Pantelleria (Calvo et al., 2010) e Malta. Lungo le coste africane, numerose sono le zone umide protette presenti nel tratto tunisino (Tabella 1), in cui insistono anche le isole di Zambra, Zembretta, Kerkenna e le Isole Kneiss nel Golfo di Gabes, mentre del tratto libico va annoverata la riserva marina di El Nagaza (Tabella 2-1).

Tabella 2-1. Elenco dei siti Natura 2000 e delle aree protette presenti lungo la costa siciliana, maltese, tunisina e libica che rientrano nell'area del Canale di Sicilia, ordinati procedendo dalla costa ovest verso est. I siti Natura 2000 menzionati sono ZPS: Zona di Protezione Speciale, ZSC: Zona Speciale di Conservazione, SIC: Sito di Interesse Comunitario

Area	Tipologia sito	Livello di protezione	Denominazione	
Sicilia meridionale	Isola	ZPS	Isola di Pantelleria e area marina circostante	
Sicilia meridionale	Isola	ZSC	Isola di Pantelleria – Area Costiera, Falesie e Bagno dell'Acqua	
Sicilia meridionale	Isola	ZPS	Arcipelago delle Egadi – area marina e terrestre	
Sicilia meridionale	Isola	ZSC	Fondali dell'Arcipelago delle Isole Egadi	
Sicilia meridionale	Isola	ZSC	Isola di Marettimo	
Sicilia meridionale	Isola	SIC	Banchi di Marettimo	
Sicilia meridionale	Isola	ZSC	Isola di Levanzo	
Sicilia meridionale	Isola	ZSC	Isola di Favignana	
Sicilia meridionale	Isola	ZPS	Arcipelago delle Pelagie – area marina e terrestre	
Sicilia meridionale	Isola	ZSC	Isola di Linosa	
Sicilia meridionale	Isola	ZSC	Isola di Lampedusa e Lampione	
Sicilia meridionale	Isola	ZSC	Fondali delle Isole Pelagie	
Sicilia meridionale	Costiero	ZSC	Saline di Trapani	
Sicilia meridionale	Isola	ZSC	Isole dello Stagnone di Marsala	
Sicilia meridionale	Isola	ZSC	Fondali dell'isola dello Stagnone di Marsala	
Sicilia meridionale	Costiero	ZPS	Stagnone di Marsala e Saline di Trapani – area marina e terrestre	
Sicilia meridionale	Costiero	ZSC	Saline di Marsala	
Sicilia meridionale	Costiero	ZPS	Paludi di Capo Feto e Margi Spanò	
Sicilia meridionale	Costiero	ZSC	Laghetti di Preola e Gorghi Tondi e Sciare di Mazara	
Sicilia meridionale	Costiero	ZPS	Laghetti di Preola e Gorghi Tondi, Sciare di Mazara e Pantano Leone	
Sicilia meridionale	Costiero	ZSC	Sistema dunale Capo Granitola, Porto Palo e Foce del Belice	

Sicilia meridionale	Costiero	ZSC	Fondali di Capo San Marco – Sciacca
Sicilia meridionale	Costiero	ZSC	Foce del Fiume Verdura
Sicilia meridionale	Costiero	ZSC	Foce del Magazzolo, Foce del Platani, Capo Bianco, Torre Salsa
Sicilia meridionale	Costiero	SIC	Scala dei Turchi
Sicilia meridionale	Costiero	SIC	Fondali di Torre Salsa
Sicilia meridionale	Costiero	ZSC	Litorale di Palma di Montechiaro
Sicilia meridionale	Costiero	ZSC	Torre Manfria
Sicilia meridionale	Costiero	ZSC	Biviere e Macconi di Gela
Sicilia meridionale	Costiero	ZSC	Punta Braccetto, Contrada Cammarana
Sicilia meridionale	Costiero	ZSC	Cava Randello, Passo Marinaro
Sicilia meridionale	Costiero	ZSC	Foce del Fiume Irminio
Sicilia meridionale	Costiero	SIC	Fondali Foce del Fiume Irminio
Sicilia meridionale	Costiero	ZSC	Contrada Religione
Sicilia meridionale	Costiero	ZSC	Spiaggia Maganuco
Sicilia meridionale	Costiero	ZSC	Isola dei Porri
Sicilia meridionale	Costiero	ZSC	Pantani della Sicilia sudorientale
Sicilia meridionale	Costiero	ZSC	Isola Correnti, Pantani di Punta Pilieri, chiusa dell'Alga e Parrino
Sicilia meridionale	Costiero	ZSC	Isola di Capo Passero
Sicilia meridionale	Costiero	SIC	Fondali dell'isola di Capo Passero
Malta	Costiero	ZSC	L-Inħawi ta' Pembroke
Malta	Costiero	ZSC, ZPS	Is-Simar (Limiti ta' San Pawl Il-Baħar)
Malta	Costiero	ZSC	Is-Salini
Malta	Costiero	ZSC	L-Għadira s-Safra u l-Iskoll tal-Għallis
Malta	Costiero	ZSC, ZPS	L-Inħawi tar-Ramla tat-Torri u l-Irdum tal-Madonna
Malta	Costiero	ZSC	Ix-Xagħra tal-Kortin
Malta	Costiero	ZSC	Il-Ballut ta' Marsaxlokk
Malta	Costiero	ZSC, ZPS	L-Inħawi tal-Għadira
Malta	Costiero	ZSC, ZPS	Filfla u l-Gżejjer ta' Madwarha
Malta	Costiero	ZSC, ZPS	L-Inħawi tal-Buskett u l-Girgenti
Malta	Costiero	ZSC	L-Inħawi tal-Imġiebaħ u tal-Miġnuna
Malta	Costiero	ZSC	Il-Gżejjer ta' San Pawl (Selmunett)
Malta	Costiero	ZSC	Rdumijiet ta' Malta: Ir-Ramla taċ-Ċirkewwa sal-Ponta ta' Benghisa
Malta	Costiero	ZPS	Rdumijiet ta' Malta: Ix-Xaqqa sa Wied Moqbol
Malta	Costiero	ZPS	Rdumijiet ta' Malta: Ras il-Pellegrin sax-Xaqqa
Malta	Costiero	ZPS	Rdumijiet ta' Malta: Wied Moqbol sal-Ponta ta' Benghisa
Tunisia	Isola	Parco nazionale	Isole Zembra e Zembretta
Tunisia	Costiero	Riserva naturale	Cap Bon peninsula
Tunisia	Costiero	Zona umida	Lagune di Capo Bon orientale
Tunisia	Costiero	Zona umida	Sebkhet Halk Elmanzel e Oued Essed
Tunisia	Costiero	Riserva marina	Golfe de Gabes
Tunisia	Isola	Zona umida	Isole Kerkennah

Tunisia	Costiero	Zona umida	Saline di Thyna
Tunisia	Isola	Zona umida	Isole Kneiss
Tunisia	Costiero	Zona umida	Complesso delle zone umide di Chott el Guetayate e Sebkhet Dhreia e Oueds Akarit, Rekhama e Meleh
Tunisia	Costiero	Zona umida	Complesso delle zone umide di Sebkhet Oum Ez-Zessar e Sebkhet El Grine
Tunisia	Costiero	Zona umida	Djerba Guellala
Tunisia	Costiero	Zona umida	Djerba Ras Rmel
Tunisia	Costiero	Zona umida	Djerba Bin El Ouedian
Tunisia	Costiero	Zona umida	Bahiret el Bibane
Libia	Costiero	Riserva marina	El Nagaza

La complessa morfobatimetria dei fondali e le conseguenti correnti di scambio delle masse d'acqua tra i due sottobacini fanno sì che il Canale di Sicilia sia caratterizzato da una elevata produttività e da una peculiare variabilità biocenotica, tali da rendere l'intera area un importante *hotspot* di biodiversità del Mar Mediterraneo, che rientra anche tra le aree marine di importanza ecologica e biologica (EBSA, *Ecologically or Biologically Significant Marine Area*) riconosciute dalla Convenzione internazionale sulla Diversità Biologica (CBD) (Altobelli et al., 2017; COP 12 Decisions, 2014). Negli ultimi anni, la comunità scientifica ha posto, inoltre, l'attenzione sulla necessità di istituire una riserva che tuteli la biodiversità del Canale di Sicilia ed in particolare dei banchi che vi sono presenti, mediante l'implementazione di una Area Specialmente Protetta di Interesse Mediterraneo (*Specially Protected Areas of Mediterranean Importance*, SPAMI) (Consoli et al., 2016, 2021).

2.2 Accenni sull'inquadramento geomorfologico e circolazione delle correnti

La morfologia di fondo del Canale di Sicilia comprende due piattaforme continentali, una europea a nord-est e una africana a sud-ovest, separate da una più profonda scarpata continentale (Figura 2-1). La piattaforma continentale siciliana si estende ad ovest fin verso l'Isola di Pantelleria, si restringe nella parte centrale a sud della Sicilia, per poi estendersi nuovamente fin verso l'Isola di Malta. La piattaforma continentale tunisina, più ampia, si estende da Capo Bon fin verso l'Isola di Lampedusa ad est. La profondità delle due piattaforme è inferiore ai 400 m, mentre nella zona della scarpata può raggiungere 1300-1700 m, in particolare in tre fosse situate in prossimità delle isole di Pantelleria, Malta e Linosa (Consoli et al., 2016; Gasparini et al., 2005).

La circolazione delle acque attraverso il Canale di Sicilia segue un modello a due strati, in cui l'acqua atlantica modificata (AW, *Modified Atlantic Water*) fluisce nel fresco strato superficiale (fino a circa 200 m) in direzione est e l'acqua intermedia levantina (LIW, *Levantine Intermediate Water*) fluisce in direzione opposta, lungo la scarpata siciliana, nello strato più caldo e salato posto immediatamente sotto la AW, tra i 200 e i 500 m di profondità

(Cataudella & Spagnolo, 2011; Iudicone et al., 2003) (Figura 2-2). Le AW in ingresso nel Mediterraneo si dividono, lungo il Canale di Sicilia, in due vene principali che sono date dalla corrente ionica (AIS, *Atlantic Ionian Stream*) e dalla corrente tunisina (ATC, *Atlantic Tunisian Current*) (Béranger et al., 2004).

L'AIS fluisce a margine del Banco Avventura, si avvicina lungo la costa siciliana nella zona centrale, per poi allontanarsi quando incontra il Banco di Malta e risalire verso nord, lungo la scarpata continentale dello Ionio. Lungo il suo percorso, inoltre, l'AIS produce due principali vortici semi-permanenti, in corrispondenza del Banco Avventura (ABV, *Adventure Bank Vortex*) e ad est di Malta, dove si ha la rottura di pendio della piattaforma continentale (ISV, *Ionian Shelfbreak Vortex*) (Figura 2). Importanti fenomeni di *upwelling* sono associati alla corrente AIS, favoriti anche dal soffiare dei venti di sud-est. La risalita di acque profonde ricche di nutrienti induce una elevata produzione di fitoplancton di cui molti organismi si nutrono e che è alla base della biodiversità che è possibile riscontrare in quest'area (Cataudella & Spagnolo, 2011; Consoli et al., 2016).

L'ATC scorre verso est, lungo il margine della piattaforma continentale della Tunisia e prosegue come corrente costiera lungo il margine della piattaforma libica (Millot & Taupier-Letage, 2005) (Figura 2-2).

Figure 2-2. Circolazione delle correnti nel Canale di Sicilia. AW: *Modified Atlantic Water*; AIS: *Atlantic Ionian Stream;* ATC: *Atlantic Tunisian Current*; ABV: vortice del Banco Avventura; ISV: vortice ionico; LIW: *Levantine Intermediate Water* (da Cataudella and Spagnolo, 2011)

2.3 I banchi del Canale di Sicilia

Dalle piattaforme continentali del Canale di Sicilia, sia quella europea che quella africana, si ergono numerosi bassifondi chiamati banchi o secche (Figura 2-3). I banchi sono rilievi sottomarini che possono avere origine sedimentaria o vulcanica (Civile et al., 2016) e possono elevarsi anche fino a pochi metri sotto la superficie del mare. Essi costituiscono ambienti di straordinaria importanza ecologica, legata alla elevata diversità degli habitat che ospitano, alla elevata produttività e biodiversità che li contraddistingue e agli importanti ruoli ecosistemici che svolgono (ISPRA, 2015). Creando discontinuità di substrato sulle vaste aree di fondali mobili del mare aperto, i banchi fungono da aree di elevata concentrazione della vita marina, permettendo l'insediamento da parte di numerose specie animali e vegetali, che spesso costituiscono peculiari biocenosi, come ad esempio il coralligeno del largo ed il Maerl (alghe coralline) altamente compromessi in ambiente costiero (Ballesteros, 2006). I banchi forniscono supporto alimentare a piccoli e grandi pelagici, fungono da area riproduttiva, da rifugio e da area di *nursery* di numerose specie, molte delle quali di interesse alieutico (Béranger et al., 2004; Consoli et al., 2015; Deidun et al., 2015; Garofalo et al., 2007; Lermusiaux & Robinson, 2001). Tra i banchi principali e più studiati del Canale di Sicilia descriviamo di seguito il Banco Avventura, il Banco Graham, il Banco Pantelleria e il Banco Terribile (Fig. 2-3).

Figura 2-3. Mappa del Canale di Sicilia, con indicazione dei banchi principali (punti rossi) e minori (punti neri). Fonte: ISPRA (ISPRA, 2015)

Banco Avventura

Il Banco Avventura, di origine carbonatica, si estende dal versante sud-occidentale della costa siciliana, fino a circa 200 metri di profondità. Da questo si ergono diverse secche carbonatiche e coni vulcanici tra gli 80 e i 90 metri di profondità. Le correnti che si generano tra il banco e le fosse tettoniche adiacenti svolgono una sorta di effetto "isolante", sia dalle coste siciliane, che dalla piattaforma continentale tunisina, per cui, il rilievo, risente meno degli impatti antropici (come l'inquinamento e la pesca) e naturali (come la sedimentazione costiera, gli apporti terrigeni e di nutrienti derivanti dai fiumi) rispetto alla zona costiera (Di Lorenzo et al., 2018; ISPRA, 2015). Le correnti di *upwelling* permanenti, inoltre, aumentano la produttività e la diversità vegetale e animale dell'area.

Le indagini esplorative condotte negli ultimi decenni (Greenpeace, 2012; ISPRA, 2015) hanno permesso di evidenziare la particolare eterogeneità dei fondali di questo banco, in cui zone pianeggianti si alternano a declivi rocciosi, risultando funzionali per una grande ricchezza di popolamenti. Di particolare interesse sono soprattutto quelle specie, che nei corrispondenti popolamenti costieri risultano essere minacciate da impatto antropico dovuto ad esempio alla pesca a strascico (Ballesteros, 2006). Va anche ricordata la fitta copertura di laminarie presenti nella zona superficiale del banco, costituita in particolare dalla specie Laminaria rodriguezii, la cui presenza in Mediterraneo è nota soltanto in alcuni siti mesofotici italiani e spagnoli (Bo et al., 2011; Massuti & Reñones, 2005). Oppure ancora la presenza di spugne massive come Axinella polypoides, Raspailia viminalis, Spongia lamella, Calyx nicaensis e Cliona viridis, tutte specie che risultano in declino lungo le coste italiane. Nella zona del banco a minor corrente si ritrovano alcune specie di coralli molli come Veretillum cynamorium, che raggiunge ragguardevoli dimensioni, ma anche Alcyonium acaule ed A. spinulosum, mentre nelle zone di maggiore corrente sono presenti vaste praterie della gorgonia bianca a candelabro Eunicella singularis e anche della gorgonia bianca Paramuricea clavata, che insistono rispettivamente nella zona più fotofila la prima e in quella più sciafila la seconda. Tra le specie ittiche sono da segnalare gli abbondanti banchi di castagnole rosse Anthias anthias oltre a varie specie delle famiglie dei Labridi, Serranidi, Scorpenidi e Sparidi. Le profondità superiori ai 200 m nel Banco dell'Avventura, inoltre, sono dominate da biocenosi a fondo molle caratterizzate da comunità di decapodi (Ragonese et al., 2009), tra cui specie di origine tropicale o subtropicale come ad esempio il gambero rosso gigante Aristaeomorpha foliacea e il gambero rosa d'acqua profonda Parapenaeus longirostris di cui il Canale di Sicilia sembra essere l'area di maggiore produzione di tutto il Mediterraneo (IREPA, 2011).

Banco Graham

Il Banco Graham è costituito da un complesso sistema di edifici vulcanici conici (oltre 10 in un raggio di circa 5 km) le cui dimensioni sono molto variabili sia in diametro che in altezza. I coni vulcanici, infatti, possono variare da 50 metri a 1,5 km di diametro, e raggiungere dagli 80-100 m fino a 9 m sotto la superficie del mare, come nel

caso dell'isola Ferdinandea. Il Banco Graham è noto per la presenza di comunità di coralli caratterizzati da una elevata diversità specifica. Vi si ritrovano infatti dalle gorgonie rosse (*Paramuricea clavata*) e gialle (*Eunicella cavolinii*) ai coralli neri (*Antipathella subpinnata*, *Antipathes dichotoma*, *Leiopathes glaberrima*, *Parantipathes larix*) e rossi (*Corallium rubrum*) (Lodolo et al., 2017), così come le gorgonie a frusta (*Viminella flagellum*).

<u>Banco Pantelleria</u>

Situato a circa 18 miglia dall'isola di Pantelleria, il Banco Pantelleria ha forma circolare con diametro di circa 3 km ed è di origine sedimentaria (ISPRA, 2015). La profondità di questo banco varia da circa 15 a 50 metri e possiede, nella parte centrale, numerose fessure e depressioni rocciose. Mentre il margine settentrionale scende bruscamente verso i 40-50 m di profondità, il margine meridionale scende più gradualmente, raggiungendo le stesse profondità. Tra le specie ittiche non è raro ritrovare grosse tanute (*Spondyliosoma cantharus*), cernie e dotti (*Epinephelus sp., E. costae*), mostelle (*Phycis phycis*) e tonni (*Thunnus thynnus*).

<u>Banco Terribile</u>

Il Banco Terribile si trova tra Sciacca e Pantelleria ed è costituito da vari edifici vulcanici, di dimensioni inferiori rispetto a quelli che costituiscono il Banco Graham. Di recente sono stati scoperti sei edifici a poche miglia nautiche dalla costa siciliana prospiciente Sciacca, che mostrano morfologie variabili, da tronchi di cono a bassissimi rilievi con strutture a ferro di cavallo (Lodolo et al., 2021). La sommità più alta si trova a circa 20 metri di profondità, mentre la profondità massima varia da 250 a 500 metri circa.

Banchi minori

Tra i banchi minori e meno noti del Canale di Sicilia annoveriamo i banchi Tetide, Anfitrite, Galatea, Cimotoe, Nerita, Pinne Marine, Patella, Alga, Nameless e Madrepore che sono presenti sulla piattaforma continentale siciliana, mentre i banchi Birsa, Halk El Menzel, El Baobuch e Alcil sono presenti sulla piattaforma continentale tunisina (Figura 2-3).

2.4 Caratterizzazione biocenotica del Canale di Sicilia

Le indagini esplorative condotte negli ultimi decenni, attraverso tecniche di campionamento sempre più sofisticate, quali l'utilizzo di ROV (*Remotely Operated Vehicle*) e la raccolta di dati effettuata spesso su lunghi periodi, hanno consentito di identificare le tipologie di biocenosi presenti nel Canale di Sicilia (Consoli et al., 2021; Garofalo et al., 2002; Gristina & Interbartolo, 2013). Gristina e Interbartolo (2013) hanno proposto una mappatura a larga scala dell'area, individuando dieci diverse biocenosi sulla base della classificazione di Pérès e Picard (Pérès & Picard,

1964) (Figura 2-4):

- ➢ Coralligeno;
- Fondi detritici costieri;
- Fondi detritici del largo;
- Rocce sul bordo della scarpata;
- ➤ Fanghi;
- Fanghi compatti;
- > Fanghi molli con pellicola fluida superficiale;
- Fanghi terrigeni costieri;
- ➤ Sabbie fini ben classate;
- Praterie di Posidonia oceanica.

Figura 2-4. Carta della biocenosi del Canale di Sicilia (da Gristina & Interbartolo, 2013). C: coralligeno; DC: fondi detritici costieri; DL: fondi detritici del largo; RL: rocce sul bordo della scarpata; VB: fanghi; VB-VC: fanghi compatti; VB- VMPSF: fanghi molli con pellicola fluida superficiale; VTC: fanghi terrigeni costieri; SFBC: sabbie fini ben classate; HP: praterie di *Posidonia oceanica*

<u>Coralligeno</u>

La biocenosi del coralligeno è dominata da complesse comunità di biocostruttori animali e algali e che contribuiscono a strutturare l'habitat dei fondi rocciosi del piano circalitorale profondo e batiale del Canale di Sicilia, incrementandone la biodiversità (Di Lorenzo et al., 2018). In particolare, il coralligeno è distribuito negli habitat circalitorali presenti lungo le coste siciliane, l'arcipelago maltese e le Isole Pelagie (Martin et al., 2014). Tra

i 300 e i 450 m di profondità sono stati ritrovati enormi costruzioni di madrepore che formano raggruppamenti sparsi da cui originano comunità di coralli bianchi come *Lophelia pertusa* (Zibrowius & Taviani, 2005). Tra le altre numerose specie di coralli profondi (90-800 m) vi è il corallo rosso *Corallium rubrum*, il corallo giallo *Dendrophyllia cornigera*, il corallo nero *Leiopathes glaberrima* e altre specie come *Desmophyllum cristagalli* e *Madrepora oculata* (Schembri et al, 2007; Freiwald et al., 2009; Deidun et al., 2010). Di particolare interesse è il ritrovamento di colonie vive del corallo rosso *C. rubrum*, rinvenuto a più di 800 m di profondità al largo di Malta (Taviani et al., 2010). Tra le alghe calcaree costituenti il coralligeno vanno annoverate le alghe rosse coralline appartenenti ai generi *Lithophyllum, Neogoniolithon, Mesophyllum e Peissonneliacee*.

<u>Fondi detritici costieri</u>

I fondi detritici costieri si sviluppano su substrato a fondo molle, la cui natura può variare a seconda delle formazioni infralitorali adiacenti, ed essere costituito da sabbia, frammenti di conchiglie, briozoi, cnidari, echinodermi e resti di alghe calcaree. La profondità alla quale è possibile ritrovare questa biocenosi varia tra 25 e 130 m (Pérès, 1985, Giaccone et al., 1994). L'idrodinamismo è consistente e le correnti consentono la deposizione del materiale in sospensione. Nelle comunità dei fondi detritici costieri si possono spesso individuare diverse facies (animali) o associazioni (vegetali), ciascuna caratterizzata da una o da un numero molto piccolo di specie più o meno esclusive (Pérès & Picard, 1964, Giaccone et al., 1994). Nel Canale di Sicilia è stata riscontrata la presenza, tra le altre, delle associazioni a Peyssonnelia rosa-marina e P. magna (Relini & Giaccone, 2009), a cui può essere associata varia fauna vagile del sedimento, popolamenti sessili o sedentari localizzati sulla parte vivente dei talli con forme epifitiche di Rodoficee calcaree e briozoi, oppure ancora popolamenti sessili che evitano la luce e vivono sotto gli anfratti dei talli, come idroidi, briozoi e poriferi. Fra altre alghe caratteristiche di questa biocenosi sono state rinvenute anche l'alga bruna Laminaria rodriguezii, l'alga rossa Osmundaria volubilis e le alghe rosse calcaree Lithophyllum racemus e Spongites fruticulosum (Massi & Titione, 2017). La comunità di invertebrati è rappresentata, per citarne alcuni, da varie specie di poriferi (Suberites domuncula), crostacei decapodi (Paguristes eremita), policheti, echinodermi (Spatangus purpureus che è tipico nel bacino Mediterraneo occidentale e Stylocidaris affinis, tipico nel bacino Mediterraneo orientale) (Massi & Titione, 2017).

Fondi detritici del largo

I fondi detritici del largo sono generalmente costituiti da piccoli ciottoli derivati da apporti fluviali e da numerosi frammenti di conchiglie, anche di origine fossile o subfossile. Sono situati nella zona più profonda del piano circalitorale, tra 120 e 150 m di profondità, dove si rinvengono le ultime rodoficee più sciafile. Nel Canale di Sicilia, Massi e Titione (2017) hanno osservato la presenza delle *facies* del crinoide *Leptometra phalangium* a grandi idroidi come *Lytocarpia myriophyllum* e *Nemertesia antennina* (cnidari), a cui sono generalmente associati

organismi epifiti come il cirripede Scalpellum scalpellum e il gasteropode Capulus hungaricus.

Rocce sul bordo della scarpata

Tra gli organismi animali caratteristici di questa biocenosi si rinvengono anellidi (*Serpula vermiculari*), crostacei decapodi (*Munida* spp., *Palinurus elephas* e *Paromola cuvieri*), echinodermi (*Antedon mediterranea*, *Cidaris cidaris*, *Echinaster sepositus* e *Peltaster placenta*), cnidari (*Madrepora oculata*), poriferi (*Axinella polypoides* e *Rhizaxinella pyrifera*) e brachiopodi (*Gryphus vitreus*) (Massi & Titione, 2017).

<u>Biocenosi dei fanghi</u>

Tra le biocenosi dei fanghi presenti nel Canale di Sicilia (fanghi, fanghi compatti, fanghi molli con pellicola fluida superficiale e fanghi terrigeni costieri), quella dei fanghi compatti è la più rappresentata per estensione (Figura 2-4), estendendosi fra 300 e 1000 m. Caratteristica della biocenosi a fanghi compatti è la *facies* a *Isidella elongata*. Si tratta di una gorgonia di colore bianco che può raggiungere il metro di altezza e forma colonie di elevate densità, preferibilmente su tratti di fondale a ridotta pendenza. Tra le altre specie più significative di questa biocenosi vi sono *Aphorrais serresianus, Aristaeus antennatus, Aristaemorpha foliacea, Nephrops norvegicus* (Ardizzone, 2011).

Sabbie fini ben classate

La biocenosi delle sabbie fini ben classate è costituita da sabbia fine molto omogenea e raggiunge la batimetria di circa -20 m. La caratteristica principale di questa biocenosi è data dalla dominanza di organismi filtratori come i bivalvi e da una completa assenza di alghe e fanerogame marine.

Praterie di Posidonia oceanica

La biocenosi delle praterie di *Posidonia oceanica* è distribuita lungo la costa siciliana sud-ovest, dove le praterie raggiungono tra le dimensioni più ampie del Mediterraneo (Badalamenti et al., 2011), ma si rinviene anche nelle acque più superficiali e ben illuminate dei banchi, sia su roccia che su fondo mobile (ISPRA, 2015) e raggiunge la sua massima distribuzione geografica nel Golfo di Gabès, e in numerose aree del Golfo di Hammamet in Tunisia (Ben Mustapha et al., 1999).

2.5 Il necton del Canale di Sicilia

<u>Ittiofauna</u>

Il Canale di Sicilia rappresenta un'importante area di riproduzione e di *nursery* di svariate specie ittiche del Mediterraneo (Fanelli et al., 2018; Fiorentino et al., 2003; Rumolo et al., 2017), contribuendo ad incrementarne la biodiversità. Ciò dipende da diversi fattori, quale l'estensione della piattaforma continentale su entrambi i versanti del canale, la presenza di numerosi banchi, la trasparenza delle acque che consente attività fotosintetica, anche nel comparto bentonico fino a discrete profondità, la presenza stabile di processi di arricchimento di nutrienti (vortici e *upwelling*). Specie demersali, piccoli e grandi pelagici, elasmobranchi costituiscono alcuni gruppi della comunità ittica che caratterizza quest'area.

La maggiore diversità ittica è stata registrata sul banco che si trova nella parte occidentale della piattaforma siciliana meridionale, il Banco Avventura (Garofalo et al., 2007). In quest'area, la diversità ittica aumenta parallelamente alla complessità dell'habitat. Proprio l'eterogeneità dell'habitat sembra essere un fattore chiave che controlla anche l'abbondanza e la diversità di elasmobranchi demersali nell'area (Lauria et al., 2015), nonché l'aggregazione di elasmobranchi vulnerabili come *Myliobatis aquila* (Consoli et al., 2016). La ricca comunità di elasmobranchi ospita il maggior numero di specie nel nord del Mediterraneo (37 specie registrate) (Relini et al., 2000), alcune delle quali come *Mustelus mustelus* e *Raja clavata* sono anche importanti per la pesca demersale (Garofalo et al., 2003; Ragonese et al., 2013). La presenza di un gran numero di specie di squali e razze, rende il Canale di Sicilia un *hotspot* di biodiversità per questo gruppo di animali, anche in virtù del fatto che alcune specie diventano sempre più rare o non sono più presenti in altri settori del Mediterraneo (Bradai, 2012). Ne è esempio la razza maltese (*Leucoraja melitensis*), specie endemica del Mediterraneo il cui areale principale sembra ormai essere limitato al Canale di Sicilia, dove si trova a profondità soggette a pesanti attività di pesca a strascico (Cavanagh & Gibson, 2007). È una specie estremamente rara, il cui ritrovamento è sempre meno comune anche al largo della costa di Malta e raro o assente al largo della costa della Tunisia, dove in precedenza era considerato moderatamente comune.

Il Mediterraneo ospita una popolazione residente e geneticamente distinta di squalo bianco (*Carcharodon carcharias*) e il Canale di Sicilia costituisce una delle più importanti aree di riproduzione per questa specie (Saidi et al., 2005; De Maddalena & Heim, 2012). Altre specie come lo squalo sandalo (*Carcharhinus plumbeus*) si concentrano stagionalmente intorno alle Isole Pelagie.

Il Canale di Sicilia è quindi ritenuta una delle aree con la maggiore ricchezza di specie demersali nel bacino del Mediterraneo (Gaertner et al., 2007; Coll et al., 2010). In uno studio condotto da Consoli et al. (2016) tra 35 a 240 m di profondità nei banchi Nereo, Pantelleria Vecchia, Graham e Terribile, le famiglie di specie demersali più

abbondanti sono risultate essere quelle dei Labridae, Serranidae, Scorpaenidae e Sparidae. In altri studi, condotti nelle acque maltesi, sono state evidenziate differenze significative in termini di diversità e abbondanza di specie tra aree protette e non protette, dimostrando che per alcune specie (ad esempio di elasmobranchi) le prime ospitano il doppio della biomassa e degli individui più grandi rispetto alle seconde (Dimech et al., 2008).

Numerosi studi, inoltre, hanno esaminato distribuzione spazio-temporale del novellame di pesci e molluschi commerciali nell'area del Canale di Sicilia, con lo scopo principale di identificare le aree di *nursery* (Fiorentino et al., 2003; Fortibuoni et al., 2010; Garofalo et al., 2010; 2011; Colloca et al., 2015). Tutti questi Autori concordano nel riportare che i bordi esterni dei banchi Avventura e Malta svolgono un ruolo chiave di reclutamento di importanti specie commerciali come il nasello (*Merluccius merluccius*).

Tra i piccoli pelagici, l'acciuga (*Engraulis encrasicolus*) e la sardina (*Sardina pilchardus*) sono le due specie più importanti per la pesca locale. La loro biomassa e distribuzione è stimata annualmente attraverso indagini acustiche (programma MEDIAS). Nel settore nord del Canale di Sicilia, sia la sardina che l'acciuga subiscono grandi fluttuazioni interannuali con stime di biomassa che vanno rispettivamente da 6.000 a oltre 36.000 tonnellate e da 7.000 a 23.000 tonnellate (Patti et al., 2004; Fiorentino et al., 2013). La distribuzione spaziale delle aree di deposizione delle uova di acciuga nel settore nord del Canale di Sicilia è determinata da diversi fattori tra cui la temperatura dell'acqua, la stabilità della colonna d'acqua e la fluorescenza (Basilone et al., 2013). Le acque poco profonde con *upwelling* e moderate velocità di corrente forniscono aree ideali per la deposizione delle uova (Basilone et al., 2006).

Tra i grandi pelagici di interesse alieutico, il tonno rosso (*Thunnus thynnus*) e il pesce spada (*Xiphias gladius*) sono certamente le specie più importanti del Mediterraneo. Secondo i risultati delle campagne larvali, la deposizione delle uova di tonno avviene in diverse regioni del Mediterraneo (Piccinetti et al., 1997), con notevoli concentrazioni di uova e larve al largo della costa orientale della Sicilia. Per il pesce spada, l'area del Canale di Sicilia è risultata essere la più importante zona di riproduzione (Wurtz, 2010; Di Natale, 2006).

<u>Cetacei</u>

Il Canale di Sicilia è un'importante area di passaggio per i grossi cetacei migratori. Le zone di *upwelling*, con alte concentrazioni di zooplancton favoriscono la presenza di diverse specie (Canese et al, 2006; Hoyt, 2005). Le balenottere comuni (*Balaenoptera physalus*) sono note per riunirsi, tra la fine di febbraio e l'inizio di marzo, nelle acque costiere dell'Isola di Lampedusa per nutrirsi dell'euphausiide *Nyctiphanes couchii* (Canese et al., 2006; Aissi et al., 2008). Il capodoglio (*Physeter macrocephalus*) sembra essere presente tutto l'anno e diversi studi hanno documentato la presenza e l'abbondanza di diversi cetacei, come il tursiope (*Tursiops truncatus*), il delfino comune (*Delphinus delphis*) e la stenella striata (*Stenella coeruleoalba*) nel mare delle Pelagie (UNEP-MAP-RAC/SPA,

2014; Papale et al., 2012; Vella & Vella, 2012). Popolazioni residenti di tursiope sono presenti anche lungo le coste occidentali della Sicilia (Papale et al., 2017). Tuttavia, le informazioni sulla presenza e sull'uso degli habitat di questa specie nell'area sono limitate (Reeves & Notarbartolo di Sciara, 2006; Natoli et al., 2005; Hoyt, 2005).

<u>Rettili</u>

Tra i rettili presenti nel Canale di Sicilia, la tartaruga marina comune (*Caretta caretta*) risulta essere la più diffusa, mentre poche informazioni si hanno a disposizione per altre due specie del Mediterraneo, la tartaruga verde (*Chelonia mydas*) e la tartaruga liuto (*Dermochelys coriacea*), di cui si annoverano soltanto rari avvistamenti.

C. caretta transita attraverso il Canale di Sicilia per spostarsi dal bacino orientale a quello occidentale del Mediterraneo e viceversa e per deporre le uova negli importanti siti di nidificazione presenti a Lampedusa e Linosa (Mingozzi et al., 2007; Casale et al., 2014). Lungo la costa siciliana avvistamenti sono registrati anche nell'area di Scoglitti e in misura minore a Gela, S. Leone e Castelvetrano (Centro Studi Cetacei, 2002). Generalmente, circa il 25% degli avvistamenti è riconducibile al periodo invernale, mentre la rimanente percentuale è riportata nel periodo tardo primaverile e autunnale. Alcuni studi di *tagging* satellitare a lungo termine della specie hanno dimostrato che la dispersione dei giovani individui nella fase post-natale avviene su aree molto vaste e preferibilmente nelle aree del Golfo di Gabes e anche nel Mar Adriatico (Lazar et al., 2004). La pesca risulta essere la principale fonte di mortalità per le tartarughe comuni, soprattutto dovuta all'utilizzo dei palangari (Casale et al., 2007; Casale et al., 2010).

2.6 Avifauna

L'avifauna rappresenta una componente importante della biodiversità del Canale di Sicilia in quanto costituisce una classe ampiamente diffusa e differenziata in un'area che rappresenta il corridoio naturale di "passo" da e verso le rotte migratorie africane. Le coste siciliane, maltesi e delle piccole isole del Canale costituiscono una base di partenza e di arrivo per le specie migratorie.

Per migrazione degli uccelli s'intende il movimento pendolare stagionale, tra un luogo di riproduzione e un luogo di soggiorno, perlopiù un quartiere di svernamento (Schüz et al., 1971). L'esistenza di questo fenomeno appare legato al verificarsi, in molti ambienti, di un'elevata "stagionalità delle risorse" sia negli ambienti di nidificazione che di svernamento (Perrins & Birkhead, 1983; Baker, 1978; Lack, 1968). Le cause che determinano i movimenti migratori degli uccelli sono il fotoperiodo che influenza il sistema endocrino, la stagionalità e la ricerca dei climi più adatti. Inoltre, il susseguirsi delle stagioni rende disponibili delle risorse di cibo in alcune zone della terra ed in alcune stagioni, per cui gli uccelli sono costretti a muoversi per la ricerca delle risorse alimentari.

La migrazione è un fenomeno legato anche ad un fattore genetico e le piccole isole del Mediterraneo sono da

sempre state utilizzate dagli ornitologi per osservare il flusso di migliaia di uccelli che sorvolano queste isole, per due volte nel corso dell'anno, e molto spesso vi sostano per riposare o per trovare cibo, prima di continuare il lungo tragitto.

La berta minore mediterranea (*Puffinus yelkouan*) è un procellariiforme strettamente endemico del Mediterraneo, presente su alcune isole del Canale di Sicilia. È elencata tra le specie Vulnerabili nelle liste della IUCN ed è inclusa negli allegati della Direttiva Uccelli dell'UE e della Convenzione di Barcellona. L'Isola di Malta ospita circa il 10% della popolazione di berta minore mediterrranea, contando circa 1500 coppie in riproduzione (Borg & Sultana, 2011), in nove delle undici aree maltesi importanti per gli uccelli (IBA, *Important Bird Area*) che sono state designate per questa specie. Questi uccelli marini arrivano nelle isole maltesi a partire da ottobre per occupare i siti di nidificazione. Studi di tracciamento di questi uccelli mediante GPS hanno dimostrato che essi percorrono lunghe distanze per raggiungere le aree di alimentazione, viaggiando per oltre 280 km da Malta. La maggior parte degli uccelli si dirigono a sud-est di Malta, con particolari concentrazioni di attività lungo la piattaforma continentale, a circa 200 km di distanza (Raine et al., 2012).

Una elevata percentuale della popolazione globale di berta maggiore (*Calonectris diomedea*) si riproduce sulle isole del Canale di Sicilia, tra Italia, Malta e Tunisia. In particolare, la specie è presente in colonie di circa 10.000 coppie (21% della popolazione globale) nelle Isole di Pantelleria e nelle Isole Pelagie, soprattutto a Linosa, che ospita una delle colonie più grandi del Mediterraneo (Brichetti & Fracasso, 2003), studiate attraverso diversi piani di monitoraggio nelle fasi di incubazione delle uova e durante l'allevamento dei pulcini (Cecere et al., 2012). A Malta sono state registrate circa 4.000 coppie in riproduzione (8% della popolazione globale), seppure le colonie siano diminuite del 5-10% negli ultimi decenni (Derhe 2012). La popolazione più grande si riproduce sull'Isola di Zembra, con circa 15.000-25.000 coppie registrate, anche se stime recenti suggeriscono che potrebbero arrivare a 150.000 (Defos du Rau et al, 2012). Questa specie ha dimostrato di foraggiare più vicino alla colonia durante l'allevamento dei pulcini, e di allontanarsi durante l'incubazione, verso gli *hotspot* di alimentazione che si trovano lungo le coste tunisine e libiche.

2.7 Bibliografia

- Aissi, M., Celona, A., Comparetto, G., Mangano, R., Wurtz, M., Moulin, A., 2008. Large-scale seasonal distribution of fin whales (*Balaenoptera physalus*) in the central Mediterranean Sea. Journal of the Marine Biological Association UK, 88(6):1253–1261.
- Altobelli, C., Perzia, P., Falautano, M., Consoli, P., Canese, S., Romeo, T., Andaloro, F., 2017. Mediterranean banks in EBSA area: Hotspots of biodiversity under threat. Marine Environmental Research, 131, 57–68.
- Ardizzone, G.D., 2011. Introduzione alle biocenosi bentoniche.
- Badalamenti, F., Alagna, A., D'Anna, G., Terlizzi, A., Di Carlo, G., 2011. The impact of dredge-fill on *Posidonia oceanica* seagrass meadows: regression and patterns of recovery. Marine Pollution Bulletin, 62: 483–489.
- Ballesteros E., 2006. Mediterranean coralligenous assemblages: a synthesis of present knowledge. Oceanography and Marine Biology: an Annual Review, 44, 123–195.
- Basilone, G., Bonanno, A., Patti, B., Mazzola, S., Barra, M., Cuttitta A., Mcbride, R., 2013. Spawning site selection by European anchovy (*Engraulis encrasicolus*) in relation to oceanographic conditions in the Strait of Sicily. Fisheries Oceanography, 22: 309–323.
- Basilone, G., Guisande, B. Patti, S. Mazzola, A. Cuttitta, A. Bonanno, A. R. Vergara, Maneiro I., 2006. Effect of habitat conditions on reproduction of the European anchovy (*Engraulis encrasicolus*) in the Strait of Sicily. Fishery Oceanography, 15: 271–280.
- Ben Mustapha, K., Hattour, A., Mhetli, M., El Abed, A. Tritar. B., 1999. Bionomie des étages infra et circalittoral du golfe de Gabès. Bulletin De L'Institut National des Sciences et Technologies de la Mer (Tunisie), 26: 5-48.
- Béranger, K., Mortier, L., Gasparini, G.P., Gervasio, L., Astraldi, M., Crépon, M., 2004. The dynamics of the Sicily Strait: A comprehensive study from observations and models. Deep Sea Research Part II: Topical Studies in Oceanography, 51, 411–440. https://doi.org/10.1016/j.dsr2.2003.08.004
- Bo M., Bavestrello G., Canese S., Giusti M., Salvati E., Angiolillo M., Greco S., 2009. Characteristics of a black coral meadow in the twilight zone of the central Mediterranean Sea. Marine Ecology Progress Series, 397, 53–61.
- Borg J. J., Sultana J. 2011. The Yelkouan Shearwater *Puffinus yelkouan* at 1-Irdum tal-Madonna, Malta. In: Yesou, P., Baccetti, N., Sultana, J. (Eds.), Ecology and Conservation of Mediterranean Seabirds and other bird species under the Barcelona Convention Proceedings of the 13th Medmaravis Pan-Mediterranean Symposium. Alghero (Sardinia) 14-17 Oct. 2011. Medmaravis, Alghero.
- Bradai, M. N., Saidi, B., Enajjar, S., 2012. Elasmobranchs of the Mediterranean and Black Sea: status, ecology and biology bibliographic analysis. Studies and Reviews-General Fisheries Commission for the Mediterranean (91).
- Brichetti, P., G. Fracasso, 2003. Ornitologia Italiana, Vol. 1. Gavidae-Falconidae. Bologna, Alberto Perdisa Editore.
- Calvo, S., Tomasello, A., Di Maida, G., Pirrotta, M., Cristina Buia, M., Cinelli, F. et al., 2010. Seagrasses along the Sicilian coasts. Chemistry and Ecology, 26(S1), 249-266.
- Canese, S., Cardinali, A., Fortuna, C.M, Giusti, M., Lauriano, G., Salvati, E., Greco, S., 2006. The First known winter feeding ground of fin whales (*Balaenoptera physalus*) in the Mediterranean Sea. Journal of the Marine Biological Association of the United Kingdom, 86/4, pp. 903 – 907.
- Casale, P., Freggi, D., Basso, R., Vallini C., Argano, R., 2007. A model of area fidelity, nomadism, and distribution patterns of loggerhead sea turtles (*Caretta caretta*) in the Mediterranean Sea. Marine Biology, 152: 1039–1049.
- Casale, P., Affronte, M., Insacco, G., Freggi, D., Vallini, C., Pino d'Astore, P., Basso, R., Abbate G., Argano, R., 2010. Sea turtle strandings reveal high anthropogenic mortality in Italian waters. Aquatic Conservation: Marine and Freshwater Ecosystems, 20: 611–620.
- Cataudella, S., Spagnolo, M., 2011. Lo stato della pesca e dell'acquacoltura nei mari italiani. Capitolo 2, Ministero delle politiche agricole alimentari e Forestali.

- Cavanagh, R. D., Gibson, C., 2007. Overview of the Conservation Status of Cartilaginous Fishes (Chondrichthyans) in the Mediterranean Sea. IUCN, Gland, Switzerland and Malaga, Spain.
- Cecere J.G., Gaibani G., Catoni C., Maggini I., Celada, C., 2012. Assessing key conservation areas for Italian Scopoli's Shearwaters *Calonectris diomedea* to identify marine IBAs. (Pp.9-15). In Yésou, P., Baccetti, N., Sultana, J. (Eds.), Ecology and Conservation of Mediterranean Seabirds and other bird species under the Barcelona Convention Proceedings of the 13th Medmaravis Pan-Mediterranean Symposium. Alghero (Sardinia) 14-17 Oct. 2011. Medmaravis, Alghero.
- Civile, D., Lodolo, E., Caffau, M., Baradello, L., Ben-Avraham, Z., 2016. Anatomy of a submerged archipelago in the Sicilian Channel (central Mediterranean Sea). Geological Magazine, 153, 160–178.
- Coll, M., Piroddi, C., Steenbeek, J., Kaschner, K., Ben Rais Lasram, F., Aguzzi, J., Ballesteros, E., Bianchi, C. N., Corbera, C., Dailianis, T., Danovaro, R., 2010. The biodiversity of the Mediterranean Sea: estimates, patterns, and threats. PloS ONE, 5:e11842.
- Colloca, F., Garofalo, G., Bitetto, I., Facchini, M. T., Grati, F., Martiradonna, A., Mastrantonio, G., Nikolioudakis, N., Ordinas, F., Scarcella, G., Tserpes, G., Tugores, M. P., Valavanis, V., Carlucci, R., Fiorentino, F., Follesa, M.C., Iglesias, M., Knittweis, L., Lefkaditou, E., Lembo, G., Manfredi, C., Massutì, E., Pace, M. L., Papadopoulou, N., Sartor, P., Smith, C. J., Spedicato, M.T., 2015. The seascape of demersal fish nursery areas in the North Mediterranean Sea, a first step towards the implementation of spatial planning for trawl fisheries. PLoS ONE 10(3): e0119590.
- Consoli, P., Altobelli, C., Perzia, P., BO, M., Rosso, A., Alongi, G., Serio, D., Canese, S., Romeo, T., Andaloro, F., 2021. Species and habitats of conservation interest in the Ecologically and Biologically Significant Area of the Strait of Sicily: a contribution towards the creation of a Specially Protected Area of Mediterranean Importance. Mediterranean Marine Science, 22.
- Consoli, P., Esposito, V., Battaglia, P., Altobelli, C., Perzia, P., Romeo, T., Canese, S., Andaloro, F., 2016. Fish distribution and habitat complexity on banks of the strait of sicily (central mediterranean sea) from Remotely-Operated Vehicle (ROV) explorations. PLoS One 11, 1–21.
- COP 12 Decisions, October 2014. Twelfth Meeting of the Conference of the Parties to the Convention on Biological Diversity (CBD), 6e17. Pyeongchang, Republic of Korea. https://www.cbd.int/decisions/cop/?m¹/4cop-12.
- De Maddalena, A., Heim, W., 2012. Mediterranean Great White Sharks. A Comprehensive Study Including All Recorded Sightings. McFarland, Jefferson, 254 pp. Softcover (7 x 10). 87 black and white photographs and drawings. ISBN: 978-0-7864-5889-9.
- Defos du Rau, P., Bourgeois, K., Ruffino, L., Dromzée, S., Ouni,R., Abiadh, A., Estève, R., Durand, J-P., Anselme, L., Faggio, G., Yahya, J.M., Peters, P., Rguibi, H., Renda, M., Miladi, B., Hamrouni, H., Alilech, S., Ben Dhafer, A., Nefla,A., Jaouadi, W., Agrebi, S., Renou, S. 2012. New assessment of the world largest colony of Scopoli's Shearwater Calonectris diomedea. (Pp. 26-28). In Yésou, P., Baccetti, N. & Sultana, J. (Eds.), Ecology and Conservation of Mediterranean Seabirds and other bird species under the Barcelona Convention Proceedings of the 13th Medmaravis Pan-Mediterranean Symposium. Alghero (Sardinia) 14-17 Oct. 2011. Medmaravis, Alghero.
- Deidun, A., Andaloro, F., Bavestrello, G., Canese, S., Consoli, P., Micallef, A., Romeo, T., Bo, M., 2015. First characterisation of a *Leiopathes glaberrima* (Cnidaria: Anthozoa: Antipatharia) forest in Maltese exploited fishing grounds. Italian Journal of Zoology, 82, 271–280.
- Deidun, A., Tsounis, G., Balzan F. & Micallef, A., 2010. Records of black coral (Antipatharia) and red coral (*Corallium rubrum*) fishing activities in the Maltese Islands. Marine Biodiversity Records, 3: e90.
- Derhé, M. 2012. Developing a Population Assessment for Scopoli's and Cory's Shearwaters Calonectris diomedea/Calonectris borealis. (Pp.29-38). In Yésou, P., Baccetti, N. & Sultana, J. (Eds.), Ecology and Conservation of Mediterranean Seabirds and other bird species under the Barcelona Convention - Proceedings of the 13th Medmaravis Pan-Mediterranean Symposium. Alghero (Sardinia) 14-17 Oct. 2011. Medmaravis, Alghero.
- Di Lorenzo, M., Sinerchia, M., Colloca, F., 2018. The North sector of the Strait of Sicily: a priority area for conservation in the Mediterranean Sea. Hydrobiologia, 821, 235–253.
- Di Natale, A., Mangano, A., Asaro, A., Bascone, M., Celona, A., Valastro, M., 2006. Swordfish (*Xiphias gladius*) catch composition in the Tyrrhenian Sea and in the Strait of Sicily in 2004. Collect. Vol. Sci. Pap. ICCAT, 59(3), 960-972.

- Dimech, M., M. Camilleri, J. G. Hiddink, M. J. Kaiser, S. Ragonese, P. J. Schembri, 2008. Differences in demersal community structure and biomass size spectra within and outside the Maltese Fishery Management Zone (FMZ). Scientia Marina, 72(4): 669–682.
- Fanelli, E., Rumolo, P., Barra, M., Basilone, G., Genovese, S., Bonanno, A., 2018. Mesoscale variability in the trophic ecology of the European hake *Merluccius merluccius* in the Strait of Sicily. Hydrobiologia 821, 57–72.
- Fiorentino, F., Patti, B., Colloca, F., Bonanno, A., Basilone, G., Garofalo, G., Goncharov, S., Gristina, M., Sinacori, G., Mazzola, S., 2013. A comparison between acoustic and bottom trawl estimates to reconstruct the biomass trends of sardine and anchovy in the Strait of Sicily (Central Mediterranean). Fisheries Research, 147: 290–295.
- Fiorentino, F., Garofalo, G., De Santi, A., Bono, G., Giusto, G.B., Norrito, G., 2003. Spatio-temporal distribution of recruits (0 group) of *Merluccius merluccius* and *Phycis blennoides* (Pisces, Gadiformes) in the Strait of Sicily (Central Mediterranean). Hydrobiologia, 503, 223–236.
- Fortibuoni, T., Bahri, T., Camilleri, M., Garofalo, G., Gristina, M., Fiorentino, F., 2010. Nursery and spawning areas of deepwater rose shrimp, *Parapenaeus longirostris* (decapoda: penaeidae), in the Strait of Sicily. Journal of Crustacean Biology, 30: 167–174.
- Freiwald, A., Beuck, L., Ruggeberg, A. S., 2009. The white coral community in the Central Mediterranean Sea revealed by ROV surveys. Oceanography, 22: 58–741.
- Gaertner, J. C., Bertrand, J. A., Relini, G., Papaconstantinou, C., Mazouni, N., De Sola, L. G., Durbec, J. P., Jukic-Peladic, S., Souplet, A., 2007. Spatial pattern in species richness of demersal fish assemblages on the continental shelf of the northern Mediterranean Sea: a multiscale analysis. Marine Ecology Progress Series, 341: 191–203.
- Garofalo, G., Fiorentino, F., Gristina, M., Cusumano, S., Sinacori, G., 2007. Stability of spatial pattern of fish species diversity in the Strait of Sicily (central Mediterranean). In Biodiversity in Enclosed Seas and Artificial Marine Habitats (pp. 117-124). Springer, Dordrecht.
- Garofalo, G., Gristina, M., Toccaceli, M., Giusto, G.B., Rizzo, P., Sinacori, G., 2002. Geostatistical modelling of biocenosis distribution in the Strait of Sicily. Presented at the 2nd International Symposium on GIS/Spatial Analyses in Fishery and Aquatic Sciences (University of Sussex, Brighton, UK, 3–6 September 2002).
- Garofalo, G., Ceriola, L., Gristina, M., Fiorentino, F., Pace, R., 2010. Nurseries, spawning grounds and recruitment of *Octopus vulgaris* in the Strait of Sicily, central Mediterranean Sea. ICES Journal of Marine Science 67(7): 1363–1371.
- Garofalo, G., Gristina, M., Fiorentino, F., Cigala Fulgosi, F., Norrito, G., Sinacori, G., 2003. Distributional pattern of rays (Pisces, Rajidae) in the Strait of Sicily in relation to fishing pressure. Hydrobiologia, 503: 245–250.
- Garofalo, G., Fortibuoni, T., Gristina, M., Sinopoli, M., Fiorentino, F., 2011. Persistence and co-occurrence of demersal nurseries in the Strait of Sicily (central Mediterranean): implications for fishery management. Journal of Sea Research, 66: 29–38.
- Gasparini, G.P., Ortona, A., Budillon, G., Astraldi, M., Sansone, E., 2005. The effect of the Eastern Mediterranean Transient on the hydrographic characteristics in the Strait of Sicily and in the Tyrrhenian Sea. Deep-Sea Research Part I: Oceanographic Research Papers, 52, 915–935.
- Giaccone, G., Alongi, G., Pizzuto, F., Cossu, A., 1994. La vegetazione marina bentonica sciafila del Mediterraneo: III. Infralitorale e Circalitorale. Proposte di aggiornamento. Bollettino dell'Accademia Gioenia di Scienze Naturali Catania 27, 201–227.
- Greenpeace, 2012. I tesori sommersi del canale di Sicilia No Trivelle Tour 2012 27.
- Gristina, M., Interbartolo, F., 2013. Ritmare La Ricerca ITaliana per il MARE Sviluppo di metodologie integrate di mappatura dell'habitat per una valutazione delle risorse biotiche ed abiotiche—Carta comunità bentoniche dello Stretto di Sicilia.
- Hoyt, E., 2005. Marine Protected Area for whales, dolphins and porpoises: a world handbook for Cetacean habitat conservation. Earthscan, London, VA.
- IREPA, 2011. Osservatorio Economico Sulle Strutture Produttive Della Pesca Marittima In Italia 2011.

- ISPRA, 2015. La biodiversità dei banchi dello Stretto di Sicilia [WWW Document]. URL https://www.isprambiente.gov.it/it/progetti/cartella-progetti-in-corso/biodiversita-1/osservatorio-regionale-della-biodiversita-dellambiente-marino-e-terrestre-1/la-biodiversita-del-banchi-dello-stretto-di-sicilia
- Iudicone, D., Nardelli, B.B., Santoleri, R., Marullo, S., 2003. Distribution and mixing of intermediate water masses in the Channel of Sicily (Mediterranean Sea). Journal of Geophysical Research: Oceans, 108.
- Kelly, J.T., Carey, S., Pistolesi, M., Rosi, M., Croff-Bell, K.L., Roman, C., Marani, M., 2014. Exploration of the 1891 Foerstner submarine vent site (Pantelleria, Italy): Insights into the formation of basaltic balloons. Bulletin of Volcanology, 76, 1–18.
- Lack, J., 1968. Ecological adaptations for breeding in birds. Methuen, London.
- Lauria, V., Gristina, M., Attrill, M. J., Fiorentino, F., Garofalo, G., 2015. Predictive habitat suitability models to aid conservation of elasmobranch diversity in the central Mediterranean Sea. Scientific Reports 5: 13245.
- Lazar, B., Margaritoulis, D., Tvrtković, N., 2004. Tag recoveries of the loggerhead sea turtle Caretta caretta in the eastern Adriatic Sea: implications for conservation. Journal of the Marine Biological Association of the United Kingdom, 84(2), 475-480.
- Lermusiaux, P.F.J., Robinson, A.R., 2001. Features of dominant mesoscale variability, circulation patterns and dynamics in the strait of sicily. Deep-Sea Research Part I: Oceanographic Research Papers, 48, 1953–1997.
- Lodolo, E., Renzulli, A., Cerrano, C., Calcinai, B., Civile, D., Quarta, G., Calcagnile, L., 2021. Unraveling Past Submarine Eruptions by Dating Lapilli Tuff-Encrusting Coralligenous (Actea Volcano, NW Sicilian Channel). Frontiers in Earth Science, 9, 1–8.
- Lodolo, E., Sanfilippo, R., Rajola, G., Canese, S., Andaloro, F., Montagna, P., Rosso, A., Macaluso, D., Geronimo, I. Di, Caffau, M., 2017. The red coral deposits of the Graham Bank area: Constraints on the Holocene volcanic activity of the Sicilian Channel. GeoResJ, 13, 126–133.
- Martin, C. S., Giannoulaki, M., De Leo, F., Scardi, M., Salo- midi, M., Knittweis, L., Pace, M. L., Garofalo, G., Gristina, M., Ballesteros, E., Bavestrello, G., Belluscio, A., Cebrian, E., Gerakaris, V., Pergent, G., Pergent-Martini, C., Schembri, P. J., Terribile, K., Rizzo, L., Ben Souissi, J., Bonacorsi, M., Guarnieri, G., Krzelj, M., Macic, V., Punzo, E., Valavanis, V., Fraschetti, S., 2014. Coralligenous and maerl habitats: predictive modelling to identify their spatial distributions across the Mediterranean Sea. Scientific Reports 4: 5073.
- Massi, D., Titone, A., 2017. Composizione dello "sporco" (macrobenthos non commerciale) della pesca a strascico Campagna MEDITS 2016-Stretto di Sicilia.
- Massuti, E., Reñones, O., 2005. Demersal resource assemblages in the trawl fishing grounds off the Balearic Islands (western Mediterranean). Scientia Marina, 69: 167–181.
- Millot, C., Taupier-Letage, I., 2005. Circulation in the Mediterranean Sea: Updated description and schemas of the circulation of the water masses in the whole Mediterranean Sea, in: Handbook of Environ- Mental Chemistry. Springer, pp. 29–66.
- Natoli A., Birkun A., Aguilar A., Lopez A., A.R.Hoelzel. 2005. Habitat structure and the dispersal of male and female bottlenose dolphins (*Tursiops truncatus*). Proceedings of the Royal Society B: Biological Sciences (published online, doi:10.1098/rspb.2005.3076).
- Papale, E., Azzolin, M., Giacoma, C., 2012. Vessel traffic affects bottlenose dolphin (*Tursiops truncatus*) behaviour in waters surrounding Lampedusa Island, south Italy. Journal of the Marine Biological Association UK, 92, 1877–1885.
- Papale, E., Ceraulo, M., Giardino, G. Buffa, G., Filiciotto, F., Grammauta, R., Maccarrone, V., Mazzola, S., Buscaino, G., 2017. Association patterns and population dynamics of bottlenose dolphins in the Strait of Sicily (Central Mediterranean Sea): implication for management. Population Ecology, 59: 55–64.
- Patti, B., Bonanno, A., Basilone, G., Goncharov, S., Mazzola, S., Buscaino, G., Cuttitta, A., Garcia Lafuente, L., Garcia, A., Palumbo, V., Cosimi, G., 2004. Interannual fluctuations in acoustic biomass estimates and in landings of small pelagic fish populations in relation to hydrology in the Strait of Sicily. Chemistry and Ecology 20(5): 365–375.
- Pérès, J.M, Picard, J., 1964. Nouveau manuel de bionomie benthique de la Méditerranée. Recueil des travaux de la Station Marine d'Éndoume, 31 (47), 1-137.

- Pérès, J.M., 1985. History of the Mediterranean biota and the colonization of the depths. In: Margalef, R. (Ed.), Key Environments: Western Mediterranean. Pergamon Press, Oxford, UK, pp. 198–232.
- Pernice, G., Patti, I., Vitabile, S., Maccarrone, V., Ialuna, R., La Bella, G., Titione, A., Pernice, V., Gancitano, P., Micalizzi, R., 2005. Mogeifaco: un modello "esperto" per la gestione integrata della fascia costiera. Atti della 9 Conferenza Nazionale ASITA, 1633-1638.
- Perrins C.M., Birkhead T.R., 1983. Avian Ecology. Blackie, Glasgow and London, pp.221.
- Piccinetti, G., Piccinetti-Manfrin, G., Soro, S., 1997: Resultats d'une campagne de recherche sur les larves de thonides en Mediterranee. ICCAT Coll. Vol. Sci. Pap. 46, 207–214.
- Ragonese, S., Nardone, G., Ottonello, D., Gancitano, S., Giusto, G. B., Sinacori, G., 2009. Distribution and biology of the blackmouth catshark *galeus melastomus* in the strait of sicily (Central Mediterranean Sea). Mediterranean Marine Science, 10: 55–72.
- Ragonese, S., Vitale, S., Dimech, M., Mazzola, S., 2013. Abundances of demersal sharks and chimaera from 1994-2009 scientific surveys in the central Mediterranean Sea. PloS ONE, 8: e74865, http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3781099&tool=pmcentrez&rendertype=abstract.
- Raine, A.F., Borg, J.B., Raine, H., Phillips, R.A., 2012. Migration strategies of the Yelkouan Shearwater *Puffinus yelkouan*. Journal of Ornithology. DOI 10.1007/s10336-012-0905-4.
- Reeves R., Notarbartolo di Sciara, G., 2006. The status and distribution of cetaceans in the Black Sea and Mediterranean Sea. IUCN Centre for Mediterranean Cooperation, Malaga, Spain. 137 pp.
- Relini G., Giaccone, G., 2009. Association with rhodoliths; facies with: 1) *Peyssonnelia rosa-marina*; 2) *Lithophyllum racemus*. In: Priority habitats according to the SPA/BIO protocol (Barcelona Convention) present in Italy. Identification sheets.
- Relini, M., Orsi, L., Puccio, V., Azzurro, E., 2000. The exotic crab *Percnon gibbesi* (H. Milne Edwards, 1853) (Decapoda, Grapsidae) in the Central Mediterranean. Scientia Marina 64: 337–340,.
- Rumolo, P., Basilone, G., Fanelli, E., Barra, M., Calabrò, M., Genovese, S., Gherardi, S., Ferreri, R., Mazzola, S., Bonanno, A., 2017. Linking spatial distribution and feeding behavior of Atlantic horse mackerel (*Trachurus trachurus*) in the Strait of Sicily (Central Mediterranean Sea). Journal of Sea Research, 121, 47–58.
- Saidi, B., Bradai, M. N., Bouain, A., Guelorget, O., Capape, C., 2005. Capture of a pregnant female white shark, *Carcharodon carcharias* (Lamnidae) in the Gulf of Gabes (southern Tunisia, Central Mediterranean) with comments on oophagy in sharks. Cybium, 29: 303–307.
- Schembri, P., Dimech, M., Camilleri, M., Page, R., 2007. Living deep-water Lophelia and Madrepora corals in Maltese waters (Strait of Sicily, Mediterranean Sea). Cahiers de Biologie Marine 48(1): 77.
- Schüz, E., Berthold, P., Gwinner, E., Oelke, H., 1971. Grundriß der Vogelzugskunde, Berlin Hamburg.
- Taviani, M., Friewald, A., Beuck, L., Angeletti, L., Remia, A., Vertino, A., Schembri, P. J., 2010. The deepest known occurrence of the precious red coral *Corallium rubrum* (L. 1758) in the Mediterranean Sea.
- UNEP-MAP-RAC/SPA, 2014. Status and conservation of cetaceans in the Sicily Channel/Tunisian Plateau. By M. Aissi. Draft internal report for the purposes of the Mediterranean Regional workshop to Facilitate the Description of Ecologically or Biologically Significant Marine Areas, Malaga, Spain, 7–11 April 2014.
- Vella, A., Vella, J., 2012. Central-southern Mediterranean submarine canyons and steep slopes: Role played in the distribution of cetaceans, bluefin tunas, and elasmobranchs. Mediterranean Submarine Canyons: Ecology and Governance. Gland, Switzerland and Malaga, Spain: IUCN, 73-88.
- Würtz, M. (2010). Mediterranean pelagic habitat: oceanographic and biological processes, an overview.
- Zibrowius, H., Taviani, M., 2005. Remarkable sessile fauna associated with deep coral and other calcareous substrates in the Strait of Sicily, Mediterranean Sea. In Freiwald, A., & J. M. Roberts (eds), Cold Water Corals and Ecosystems. Springer, Heildelberg.

3. CAMPIONAMENTO SEDIMENTO AREA *NEAR-SHORE* **E PRATERIA DI** *POSIDONIA OCEANICA*

Le attività di campionamento del sedimento, del macrozoobenthos e di *Posidonia oceanica* si sono basate sulle informazioni ricevute dal Cliente (riprese con drone, *Multi Beam Echo Sounder*, ROV) dell'area marino-costiera di Marsala (TP).

Il sedimento per la caratterizzazione chimica, fisica, microbiologica ed ecotossicologica (n. 1 replica per stazione) e per lo studio del macrozoobenthos (n. 2 repliche per stazione) è stato campionato in n. 6 stazioni ad una distanza crescente dalla costa (da 200 m a 1500 m), in prossimità del tratto di posizionamento del cavo elettrico, nel rispetto delle normative nazionali (DM 24/01/96 e più recente D.lgs 173/2016), le quali prevedono che i campioni siano prelevati con una sequenzialità di prelievo di una stazione ogni 200 m sino a 1000 m di distanza dalla costa e, per il tratto successivo sino a tre miglia dalla costa, con un distanziamento di circa 500 m tra una stazione e l'altra.

Il prelievo di *P. oceanica* è stato svolto, ai fini dell'utilizzo dell'indice PREI (*Posidonia Rapid Easy Index*) per la valutazione dello stato ecologico della prateria, in due stazioni: una posta alla profondità del limite inferiore ed una posta alla profondità di -15 m, per un numero totale di 6 stazioni su n. 3 transetti (2 stazioni in ogni).

Il campionamento è stato effettuato da OTS e biologi marini esperti subacquei, per un totale di n. 3 giorni di attività. Il mezzo nautico è stato messo a disposizione dal Cliente. I prelievi sono stati finalizzati al campionamento e all'analisi dello strato superficiale di sedimento; le operazioni di prelievo tramite operatore subacqueo hanno garantito il minimo rimaneggiamento della compagine stratigrafica per consentire la caratterizzazione del velo superficiale e, quindi, la valutazione dello stato dei luoghi nel contesto attuale.

Le Figure 3-1 e 3-2 mostrano le stazioni di campionamento, rispettivamente, dei sedimenti e del macrozoobenthos e di *P. oceanica*, mentre la Tabella 3-1 riporta le informazioni specifiche, quali le sigle e le coordinate geografiche delle stazioni, oltre alla data e alla profondità di prelievo. Nella stazione HNS_3 non è stato possibile effettuare il prelievo del campione utile all'analisi del macrozoobenthos, per la mancanza di substrato con sedimento libero da vegetazione (densa prateria di *Posidonia oceanica* su roccia).

Una volta recuperato a bordo, il sedimento per la caratterizzazione chimica, fisica, microbiologica ed ecotossicologica è stato sottoposto alla misurazione del pH e dell'ORP tramite sonda HI98191 (Hanna Instruments), per poi essere aliquotato negli opportuni contenitori e mantenuto ad una temperatura compresa tra 4 e 6 °C (vedi Tabella 3-2). Al termine di ogni giornata lavorativa, i campioni sono stati trasportati in condizioni refrigerate presso il laboratorio di analisi dell'ULR CoNISMa di Palermo.

Figura 3-1. Stazioni di campionamento del sedimento e del macrozoobenthos dell'area near-shore

Figura 3-2. Stazioni di campionamento della prateria di P. oceanica

SIGLA STAZIONE	TIPOLOGIA	DATA	PROF. (m)	LAT.	LONG.
P1-15	Posidonia oceanica	17/06/2021	-14,2	37°45.895	12°25.918
P1-LI	Posidonia oceanica	17/06/2021	-30,0	37°45.645	12°24.830
P2-15	Posidonia oceanica	18/06/2021	-14,7	37°45.943	12°25.881
P2-LI	Posidonia oceanica	18/06/2021	-29,5	37°45.651	12°24.752
P3-15	Posidonia oceanica	19/06/2021	-14,5	37°46.017	12°25.883
P3-LI	Posidonia oceanica	19/06/2021	-29,1	37°45.697	12°24.706
HNS_1	Sedimenti x chimica e macrozoobenthos	17/06/2021	-3,5	37°46.722	12°26.885
HNS_2	Sedimenti x chimica e macrozoobenthos	17/06/2021	-4,5	37°46.710	12°26.792
HNS_3	Sedimenti x chimica	18/06/2021	-6,2	37°46.706	12°26.677
HNS_4	Sedimenti x chimica e macrozoobenthos	19/06/2021	-6,9	37°46.573	12°26.625
HNS_5	Sedimenti x chimica e macrozoobenthos	19/06/2021	-8,0	37°46.517	12°26.477
HNS_6	Sedimenti x chimica e macrozoobenthos	19/06/2021	-10,1	37°46.277	12°26.269

Tabella 3-1. Stazioni di campionamento dell'area near-shore

Tabella 3-2. Contenitori e condizioni di temperatura

Analysis	Container	Sample amount	Storage on board and shipping
Granulometry	PE	500 g	4-6 °C
Inorganic variables	PE	500 g	4-6° C
Organic variables	Glass or HDPE	1000 g	4-6 °C
Microbiological variables	Sterilized PE	500 g	4-6 °C
Ecotossicological tests	PE	2000 g	4-6 °C
Macrozoobenthos	PE or HDPE	-	room temperature away from sources of heat
			and direct light

Per quanto riguarda il campionamento di *P. oceanica*, è stata rilevata la profondità e la tipologia del limite inferiore, definito secondo Meinesz & Laurent (1978) e aggiornato da Pergent-Martini et al. (2005). Infine, sono stati prelevati fascicoli fogliari (6 repliche x 3 aree a -15 m e 6 repliche al limite inferiore, come da protocollo ISPRA), per poi essere analizzati in laboratorio.

Durante le procedure di prelievo, conservazione e trasporto dei campioni sono state assicurate le seguenti condizioni:

- assenza di contaminazione derivante dall'ambiente circostante o dagli strumenti impiegati per il campionamento ed il prelievo;
- assenza di perdite di sostanze inquinanti dalle pareti dei campionatori o dei contenitori;
- protezione del campione da contaminazione derivante da cessione dei contenitori;
- adeguata temperatura di prelievo per evitare la dispersione delle sostanze volatili;
- adeguata temperatura di conservazione dei campioni;
- assenza di alterazioni biologiche nel corso dell'immagazzinamento e conservazione;
- assenza, in qualunque fase, di modificazioni chimico-fisiche delle sostanze;
- pulizia degli strumenti ed attrezzi usati per il campionamento, il prelievo, il trasporto e la conservazione, dopo ogni campionamento.

4. CARATTERIZZAZIONE CHIMICA, FISICA, MICROBIOLOGICA ED ECOTOSSICOLOGICA DEI SEDIMENTI

4.1 Materiali e Metodi di analisi

In Tabella 4-1 è riportato un prospetto riepilogativo delle metodologie di analisi per ogni variabile chimica, fisica e microbiologica analizzata nella matrice sedimento, l'unità di misura con la quale sono espressi i risultati e i limiti di quantificazione (LOQ). La Tabella 4-2 riporta i metodi utilizzati per i test ecotossicologici.

In campo, per ogni stazione, è stata effettuata una descrizione macroscopica (colore, odore, possibile presenza di concrezioni o altro materiale) e sono stati registrati i valori di pH e ORP del sedimento appena campionato.

		0	
Variabile	Metodologia di analisi	udm	LOQ
Granulometria	ICRAM 2001-2003	%	
Umidità	DM 13/09/1999 Met. II.2	%	
Peso specifico	ASTM D854	N/m ³	
TOC	DM 13/09/1999 Met. VII.1	%	0.01
TN	DM 13/09/1999 Met. VII.1	%	0.005
TP	EPA 3051/2007 + EPA6010C/2007	%	0.005
Metalli: As, Cd, Cr-tot, Hg, Ni, Pb, Cu, Zn	EPA 3051/2007 + EPA6010C/2007	mg/kg p.s	0.003
Al	EPA 3051/2007 + EPA6010C/2007	%	0.01
Idrocarburi Policiclici Aromatici (IPA)	EPA3541/1994+EPA3630C/1996 + EPA8270E/2018	mg/kg p.s	0.001
Pesticidi organo-clorurati	EPA3541/1994+EPA3630C/1996 + EPA8081B/2007	µg/kg p.s.	0.1 - 0.01
Policlorobifenili (PCB)	EPA 1668C/2010	µg/kg p.s.	0.01
Idrocarburi leggeri C<12	EPA 5021A/2014 + EPA 8015C/2007	mg/kg p.s	0.1
Idrocarburi pesanti C>12	EPA 3541/1994 + EPA 3620C/2014 + EPA 8015C/2007	mg/kg p.s	5
Composti organo-stannici	UNI EN ISO 23161/2019	μg/kg ps.s.	1
Coliformi fecali	CNR IRSA 3.2 Q 64 Vol 1 1983	MPN/g	1
Coliformi totali	CNR IRSA 3.1 Q 64 Vol 1 1983	MPN/g	1
Streptococchi fecali	CNR IRSA 3.3 Q 64 Vol 1 1983	MPN/g	1
Batteri solfo-riduttori	CNR IRSA 3.4 Q 64 Vol 1 1973	UFC/g	1

Tabella 4-1. Riepilogo metodi per le analisi chimiche, fisiche e microbiologiche

 Tabella 4-2. Riepilogo metodi per le analisi ecotossicologiche

Specie	Vibrio fischeri (Saggio Acuto)	Phaeodactylum tricornutum (Saggio Cronico)	Acartia tonsa (Saggio Acuto)
Metodo	ISO 21338:2010	UNI EN ISO 10253:2017	ISO 14669:1999
Unità di misura	%	%	%

4.2 Risultati

Il paragrafo riporta i risultati ottenuti per ogni variabile analizzata nei sedimenti di tutte le stazioni dell'area marino-costiera di Marsala, *near-shore* e *off-shore*. In Tabella 4-3 sono indicate le stazioni campionate da CoNISMa e quelle campionate da RINA. Il nome dei campioni corrisponde a quello delle stazioni.

Stazione	Area	Campionamento a cura di
HNS_1	near-shore	CoNISMa
HNS_2	near-shore	CoNISMa
HNS_3	near-shore	CoNISMa
HNS_4	near-shore	CoNISMa
HNS_5	near-shore	CoNISMa
HNS-6	near-shore	CoNISMa
HAN21EC_01_GS	off-shore	RINA
HAN21EC_02_GS	off-shore	RINA
HAN21EC_03_GS	off-shore	RINA
HAN21EC_04_GS	off-shore	RINA

Tabella 4-3 Elenco stazioni di campionamento sedimento e macrozoobenthos

Variabili fisiche

In Tabella 4-4 sono riportati i valori di pH, ORP e colore dei sedimenti delle 10 stazioni, oltre al tipo di odore e una breve descrizione macroscopica.

La determinazione granulometrica (Tabella 4-5) ha evidenziato una predominanza di sabbia in tutte le stazioni *off shore* e nelle stazioni HNS_1 e HNS_2 dell'area *near-shore*. Per i campioni HNS_4, HNS_5 e HNS_6 è stato riscontrato un valore di ghiaia (classe granulometrica > 2 mm) maggiore dell'80% e per HNS_4 del 90%. Il DM 24.01.1996 indica che la caratterizzazione chimica dei materiali deve essere omessa qualora il contenuto in componenti di granulometria superiore a 2 mm superi il 90%, mentre il più recente D. Lgs 173/2016 porta tale valore all'80%. Pertanto, i tre campioni HNS_4, HNS_5 e HNS_6 non sono stati sottoposti ad alcuna analisi chimica. Il sedimento è stato, inoltre, classificato secondo la scala Wentworth.

Stazione	рН	ORP	Colore (Munsell soil colour chart)	Odore	Descrizione
HNS_1	7.98	-45.60	2.5Y 7/2	no	Sedimento sabbioso senza alcun frammento di conchiglie, né di alghe o fanerogame
HNS_2	8.12	-54.90	2.5Y 7/1	no	Sedimento sabbioso senza alcun frammento di conchiglie, né di alghe o fanerogame
HNS_3	7.65	-110.90	5Y 4/2	no	Sedimento misto ghiaia e sabbia, con frammenti di conchiglie e di fibre di fanerogame
HNS_4	8.08	82.40	2.5Y 6/3	no	Sedimento ghiaioso con frammenti di conchiglie. Nessuna traccia di alghe o fanerogame
HNS_5	8.15	152.60	2.5Y 5/3	no	Sedimento ghiaioso con frammenti di conchiglie. Nessuna traccia di alghe o fanerogame
HNS-6	8.23	126.50	2.5Y 5/3	no	Sedimento ghiaioso con frammenti di conchiglie Nessuna traccia di alghe o fanerogame.
HAN21EC_01_GS	8.14	37.10	2.5Y 4/4	no	Sedimento biogenico ghiaioso, con frammenti di conchiglie visibili. Nessuna traccia di alghe o fanerogame
HAN21EC_02_GS	8.03	31.10	2.5Y 4/4	no	Sedimento biogenico ghiaioso, con frammenti di conchiglie visibili. Presenza di <i>Acetabularia</i> <i>acetabulum</i> . Nessuna traccia di altre alghe o fanerogame marine
HAN21EC_03_GS	8.31	23.80	2.5Y 4/4	no	Sedimento biogenico ghiaioso, con frammenti di conchiglie visibili. Presenza di <i>Acetabularia acetabulum</i> e frammenti di altre alghe. Nessuna traccia di fanerogame
HAN21EC_04_GS	8.15	23.70	2.5Y 4/4	no	Sedimento biogenico ghiaioso, con frammenti di conchiglie visibili. Nessuna traccia di alghe o fanerogame

Tabella 4-4. Descrizione fisica dei campioni di sedimento

 Tabella 4-5 Composizione granulometrica (%)

Stazione	Ghiaia	Sabbia	Silt	Argilla	Scala Wentworth
HNS_1	/	99.24	0.26	0.50	sabbia molto fine
HNS_2	/	99.18	0.41	0.41	sabbia molto fine
HNS_3	41.80	53.15	3.96	1.09	ghiaia
HNS_4	97.84	1.95	0.14	0.07	ghiaia
HNS_5	86.16	13.55	0.23	0.06	ghiaia
HNS-6	83.06	16.78	0.12	0.04	ghiaia
HAN21EC_01_GS	23.43	76.51	0.06	/	sabbia molto grossa
HAN21EC_02_GS	38.05	61.93	0.02	/	granuli
HAN21EC_03_GS	20.66	79.30	0.04	/	sabbia molto grossa
HAN21EC_04_GS	6.85	93.10	0.05	/	sabbia grossa

I valori di umidità sono stati simili tra i campioni, ad eccezione delle stazioni HAN21EC_01_GS e HAN21EC_02_GS, le quali hanno mostrato i livelli più bassi per questa variabile (rispettivamente, 6.00% e 13.70%). I valori di peso specifico sono risultati molto omogenei fra le stazioni, con una media paria a 2.47 ± 0.21 N/m³ (Tabella 4-6).

Stazione	Umidità (%)	Peso specifico (N/m ³)
HNS_1	22.85	2.66
HNS_2	21.75	2.59
HNS_3	33.61	2.29
HNS_4	25.15	2.11
HNS_5	23.89	2.50
HNS-6	25.79	2.14
HAN21EC_01_GS	6.00	2.59
HAN21EC_02_GS	13.70	2.58
HAN21EC_03_GS	26.29	2.58
HAN21EC_04_GS	28.13	2.66

Tabella 4-6.	Valori	di Umidità	e Peso	specifico
		ar emana	• • • • • •	opeenieo

Variabili chimiche

Come riportato precedentemente, l'analisi granulometrica ha evidenziato per i campioni HNS_4, HNS_5 e HNS_6 un valore di ghiaia (classe granulometrica > 2 mm) maggiore dell'80% e per HNS_4 del 90%. Pertanto, i tre campioni HNS_4, HNS_5 e HNS_6 non sono stati sottoposti ad alcuna analisi chimica.

Carbonio organico totale (TOC), Azoto totale (TN) e Fosforo totale (TP)

La Tabella 4-7 riporta i valori percentuali di Carbonio organico totale (TOC), Azoto totale (TN) e Fosforo totale (TP) del sedimento. Il contenuto in TOC è compreso fra 0.05% e 0.16%, con un valore medio pari a 0.90±0.04%, mentre quello in TN e TP è compreso rispettivamente tra 0.02 e 0.06% e tra 0.01% e 0.05%.

Stazione	TOC (%)	TN (%)	TP (%)
HNS_1	0.05	0.02	0.01
HNS_2	0.06	0.02	0.01
HNS_3	0.16	0.05	0.02
HNS_4	NC	NC	NC
HNS_5	NC	NC	NC
HNS-6	NC	NC	NC
HAN21EC_01_GS	0.14	0.04	0.02
HAN21EC_02_GS	0.06	0.05	0.05
HAN21EC_03_GS	0.09	0.05	0.04
HAN21EC_04_GS	0.09	0.06	0.05

Tabella 4-7. Livelli di TOC, TN e TP (NC= no chimica)

Metalli

I risultati dell'analisi dei metalli nel sedimento sono riportati nella Tabella 4-8 e nella Tabella 4-9.

Tabella 4-8. Livelli di As, Cd, Cr totale, Hg e Ni (mg kg⁻¹ p.s.) (NC= no chimica)

Stazione	As	Cd	Cr-tot	Hg	Ni
HNS_1	2.492	< 0.003	2.209	0.006	13.174
HNS_2	2.294	< 0.003	6.310	0.006	14.255
HNS_3	11.820	0.022	5.526	0.138	2.403
HNS_4	NC	NC	NC	NC	NC
HNS_5	NC	NC	NC	NC	NC
HNS-6	NC	NC	NC	NC	NC
HAN21EC_01_GS	11.668	0.030	1.795	0.057	1.945
HAN21EC_02_GS	10.274	0.019	2.127	< 0.003	4.976
HAN21EC_03_GS	11.162	0.014	1.490	< 0.003	3.039
HAN21EC_04_GS	11.739	0.003	2.344	0.003	4.064

Tabella 4-9. Livelli di Pb, Cu, Zn (mg kg⁻¹ p.s.) e Al (%) (NC= no chimica)

Stazione	Pb	Cu	Zn	Al
HNS_1	< 0.003	0.787	0.118	0.85
HNS_2	< 0.003	0.913	2.515	0.92
HNS_3	2.023	1.839	13.008	0.36
HNS_4	NC	NC	NC	NC
HNS_5	NC	NC	NC	NC
HNS-6	NC	NC	NC	NC
HAN21EC_01_GS	3.103	0.820	12.960	0.28
HAN21EC_02_GS	4.018	1.263	11.095	0.76
HAN21EC_03_GS	2.860	0.844	10.549	0.29
HAN21EC_04_GS	4.141	0.892	10.952	0.56

La valutazione qualitativa dei sedimenti è stata ottenuta tramite il confronto dei risultati analitici con i limiti prescritti dalla normativa vigente e con standard di qualità internazionali. Tra i metalli analizzati, per l'Al non sono riportati limiti standard.

In particolare, i sedimenti delle stazioni near-shore e off-shore di Marsala hanno mostrato:

- livelli di Cd, Hg e Pb inferiori agli standard di qualità ambientale dei sedimenti marino-costieri inclusi nelle Tab. 2/A e 3/A del DM 172/2015 "Attuazione della Direttiva 2013/39 UE, che modifica le direttive 2000/60C per quanto riguarda le sostanze prioritarie nel settore della politica delle acque";
- livelli di tutti i metalli inferiori ai livelli chimici di riferimento nazionali L1 e L2, previsti dal DM Ambiente 15 luglio 2016, n. 173 "Autorizzazione all'immersione in mare dei materiali di escavo di fondali marini – Attuativo dell'art. 109, D.Lgs 152/2006 (Tabella 2.5 dell'Allegato Tecnico al DM);
- livelli di tutti i metalli, ad eccezione dell'As, al di sotto dei limiti soglia di concentrazione determinati da Long et al. (1995) e da MacDonald et al. (1996) (Tab. 4-10): l'*Effect-Range-Low* (ERL) e l'*Effect-Range-Medium* (ERM) e similarmente il *Threshold Effects Level* (TEL) ed il *Probable Effects Level* (PEL). In Tabella 4-10 sono riportati i valori soglia indicati dagli autori. L'As supera in tutte le stazioni off-shore e in HNS_3 dell'area *near-shore* i valori ERL e TEL, indicando per questo elemento un probabile effetto negativo sugli organismi viventi.

	Cd	Cr	Cu	Pb	Hg	As	Zn	Ni	Autori	
ERL	1.2	81	34	46.7	0.15	8.2	150	20.9	Long et al. 1005	
ERM	9.6	370	270	218	0.71	70	410	51.6	Long et al., 1995	
TEL	0.68	52.3	18.7	30.2	0.13	7.24	124	15.9	MaaDanald at al. 1006	
PEL	4.21	160	108	112	0.70	41.6	271	42.8	MacDonalu et al., 1990	

Tabella 4-10. Limiti soglia di concentrazione dei metalli (mg kg⁻¹ p.s.)

IPA (Idrocarburi Policiclici Aromatici)

La totalità dei campioni di sedimento analizzati, provenienti dalle stazioni *near-shore* e *off-shore*, hanno mostrato l'assenza di IPA (Tabella 4-11 A e B), con una concentrazione dei singoli analiti indagati al di sotto del limite di quantificazione-LOQ (0.001 mg kg⁻¹ p.s.).

A)

Tabella 4-11. Livelli degli IPA-Idrocarburi Policiclici Aromatici	(mg	kg ⁻¹	p.s.)
---	-----	------------------	-------

IPA	HNS_1	HNS_2	HNS_3	HNS_4	HNS_5	HNS_6
Acenaftene	< 0.001	< 0.001	< 0.001	NC	NC	NC
Acenaftilene	< 0.001	< 0.001	< 0.001	NC	NC	NC
Antracene	< 0.001	< 0.001	< 0.001	NC	NC	NC
Benz[a]antracene	< 0.001	< 0.001	< 0.001	NC	NC	NC
Benzo[a]pirene	< 0.001	< 0.001	< 0.001	NC	NC	NC
Benzo[b]fluorantene	< 0.001	< 0.001	< 0.001	NC	NC	NC
Benzo[ghi]perilene	< 0.001	< 0.001	< 0.001	NC	NC	NC
Benzo[j]fluorantene	< 0.001	< 0.001	< 0.001	NC	NC	NC
Benzo[k]fluorantene	< 0.001	< 0.001	< 0.001	NC	NC	NC
Crisene	< 0.001	< 0.001	< 0.001	NC	NC	NC
Dibenzo[a,h]antracene	< 0.001	< 0.001	< 0.001	NC	NC	NC
Fluorantene	< 0.001	< 0.001	< 0.001	NC	NC	NC
Fluorene	< 0.001	< 0.001	< 0.001	NC	NC	NC
Indeno[1,2,3-cd]pirene	< 0.001	< 0.001	< 0.001	NC	NC	NC
Naftalene	< 0.001	< 0.001	< 0.001	NC	NC	NC
Fenantrene	< 0.001	< 0.001	< 0.001	NC	NC	NC
Pirene	< 0.001	< 0.001	< 0.001	NC	NC	NC
ΣΙΡΑ	< 0.001	< 0.001	< 0.001	NC	NC	NC

B)

IPA	HAN21EC_01_GS	HAN21EC_02_GS	HAN21EC_03_GS	HAN21EC_04_GS
Acenaftene	< 0.001	< 0.001	< 0.001	< 0.001
Acenaftilene	< 0.001	< 0.001	< 0.001	< 0.001
Antracene	< 0.001	< 0.001	< 0.001	< 0.001
Benz[a]antracene	< 0.001	< 0.001	< 0.001	< 0.001
Benzo[a]pirene	< 0.001	< 0.001	< 0.001	< 0.001
Benzo[b]fluorantene	< 0.001	< 0.001	< 0.001	< 0.001
Benzo[ghi]perilene	< 0.001	< 0.001	< 0.001	< 0.001
Benzo[j]fluorantene	< 0.001	< 0.001	< 0.001	< 0.001
Benzo[k]fluorantene	< 0.001	< 0.001	< 0.001	< 0.001
Crisene	< 0.001	< 0.001	< 0.001	< 0.001
Dibenzo[a,h]antracene	< 0.001	< 0.001	< 0.001	< 0.001
Fluorantene	< 0.001	< 0.001	< 0.001	< 0.001
Fluorene	< 0.001	< 0.001	< 0.001	< 0.001
Indeno[1,2,3-cd]pirene	< 0.001	< 0.001	< 0.001	< 0.001
Naftalene	< 0.001	< 0.001	< 0.001	< 0.001
Fenantrene	< 0.001	< 0.001	< 0.001	< 0.001
Pirene	< 0.001	< 0.001	< 0.001	< 0.001
∑IPA	< 0.001	< 0.001	< 0.001	< 0.001

Pesticidi organo-clorurati

Le analisi dei pesticidi organo-clorurati hanno evidenziato per tutte le stazioni *near-shore* e *off-shore* concentrazioni inferiori al limite di quantificazione-LOQ ($0.1 \ \mu g \ kg^{-1} \ p.s.$) (vedi Tabella 4-12).

Pesticidi organo-clorurati	Tutti i campioni (µg kg ⁻¹ p.s.)
Aldrin	<0.1
Dieldrin	<0.1
Endrin	<0.1
α-hexachlorocyclohexane	<0.1
β-hexachlorocyclohexane	<0.1
γ-hexachlorocyclohexane	<0.1
o,p'-DDD	<0.1
p,p'-DDD	<0.1
o,p'-DDE	<0.1
p,p'-DDE	<0.1
o,p'-DDT	<0.1
p,p'-DDT	<0.1
ΣDDD, DDT, DDE	<0.1
Hexachlorobenzene	<0.1
Hexachlorobutadiene	<0.01
Alachlor	<0.1
Chlorfenvinphos	<0.1
Chlorpyrifos	<0.01
α-Endosulfan	<0.1
β-Endosulfan	<0.1

Tabella 4-12. Livelli di Pesticidi organo-clorurati (µg kg⁻¹ p.s.)

Idrocarburi pesanti (C≥12) e leggeri (C<12)

La totalità delle stazioni campionate ha evidenziato un livello di concentrazione di idrocarburi pesanti (C \geq 12) e leggeri (C<12) al di sotto dei rispettivi limiti di quantificazione-LOQ (5 e 0.1 mg kg⁻¹ p.s.)

A)

PCB (Pliclorobifenili)

In Tabella 4-13 A e B vengono riportati i valori dei singoli congeneri dei PCB e la loro sommatoria nel sedimento delle stazioni delle aree *near-shore* e *off-shore*. Molti congeneri hanno mostrato livelli inferiori al limite di quantificazione-LOQ (0,1 μ g kg⁻¹ p.s.), ad eccezione dei congeneri PCB25, PCB52, PCB101, PCB138 e PCB153, che comunque hanno mostrato livelli molto bassi. La \sum PCB è stata calcolata con il metodo *lower bound* e, come indicato dal DM 173/2016, si riferisce alla sommatoria dei seguenti congeneri: 28, 52, 77, 81, 101, 118, 126, 128, 138, 153, 156, 169, 180. I livelli di tale sommatoria sono, inoltre al di sotto del limite di qualità ambientale L1 riportato dal DM 173/2016 (8 μ g kg⁻¹ p.s.).

РСВ	HNS_1	HNS_2	HNS_3	HNS_4	HNS_5	HNS_6
PCB28	0.05	0.05	0.04	NC	NC	NC
PCB52	0.02	0.02	0.02	NC	NC	NC
PCB77	< 0.01	< 0.01	< 0.01	NC	NC	NC
PCB81	< 0.01	< 0.01	< 0.01	NC	NC	NC
PCB101	0.02	0.01	0.02	NC	NC	NC
PCB118	< 0.01	< 0.01	< 0.01	NC	NC	NC
PCB126	< 0.01	< 0.01	< 0.01	NC	NC	NC
PCB128	< 0.01	< 0.01	< 0.01	NC	NC	NC
PCB138	0.02	0.02	0.02	NC	NC	NC
PCB153	0.04	0.05	0.03	NC	NC	NC
PCB156	< 0.01	< 0.01	< 0.01	NC	NC	NC
PCB169	< 0.01	< 0.01	< 0.01	NC	NC	NC
PCB180	0.02	0.02	0.02	NC	NC	NC
PCB105	< 0.01	< 0.01	< 0.01	NC	NC	NC
PCB114	< 0.01	< 0.01	< 0.01	NC	NC	NC
PCB123	< 0.01	< 0.01	< 0.01	NC	NC	NC
PCB157	< 0.01	< 0.01	< 0.01	NC	NC	NC
PCB167	< 0.01	< 0.01	< 0.01	NC	NC	NC
PCB170	< 0.01	< 0.01	< 0.01	NC	NC	NC
PCB189	< 0.01	< 0.01	< 0.01	NC	NC	NC
∑PCB	0.17	0.17	0.15	NC	NC	NC

Fabella 4-13. Livelli di PC	CB (µg kg ⁻¹	¹ p.s.) (NC= no	chimica)
-----------------------------	-------------------------	----------------------------	----------

3)				
РСВ	HAN21EC_01_GS	HAN21EC_02_GS	HAN21EC_03_GS	HAN21EC_04_GS
PCB28	0.04	0.04	0.05	0.05
PCB52	0.02	0.02	0.01	0.02
PCB77	< 0.01	<0.01	< 0.01	< 0.01
PCB81	< 0.01	< 0.01	< 0.01	< 0.01
PCB101	0.01	0.01	0.02	0.01
PCB118	< 0.01	<0.01	< 0.01	< 0.01
PCB126	< 0.01	<0.01	< 0.01	< 0.01
PCB128	< 0.01	< 0.01	< 0.01	< 0.01
PCB138	< 0.01	< 0.01	< 0.01	< 0.01
PCB153	0.02	0.02	0.01	0.02
PCB156	< 0.01	< 0.01	< 0.01	< 0.01
PCB169	< 0.01	<0.01	< 0.01	< 0.01
PCB180	< 0.01	< 0.01	< 0.01	< 0.01
PCB105	< 0.01	<0.01	< 0.01	< 0.01
PCB114	< 0.01	<0.01	< 0.01	< 0.01
PCB123	< 0.01	<0.01	< 0.01	< 0.01
PCB157	< 0.01	< 0.01	< 0.01	< 0.01
PCB167	< 0.01	<0.01	<0.01	< 0.01
PCB170	< 0.01	<0.01	<0.01	< 0.01
PCB189	< 0.01	<0.01	<0.01	< 0.01
∑PCB	0.09	0.09	0.09	0.10

Composti organostannici

I composti organostannici analizzati sono stati il monobutilstagno (MBT), il dibutilstagno (DBT) e il tributilstagno (TBT). Inoltre, è stata calcolata la loro sommatoria tramite il metodo *lower bound*. In tutte le stazioni oggetto di questo studio i livelli di questi composti sono stati al di sotto del limite di quantificazione LOQ ($1 \mu g k g^{-1} p.s.$).

Variabili microbiologiche

Tutti i campioni prelevati nell'area *near-shore* e *off-shore* hanno mostrato densità di Coliformi fecali, Coliformi totali, Streptococchi fecali e Batteri solfo-riduttori minori del rispettivo limite di quantificazione (Tabella 4-14), ad eccezione della stazione HNS_1 in cui si è evidenziato un valore di 13 UFC/g di Batteri solfo-riduttori.

Stazione	Coliformi fecali	Coliformi totali	Streptococchi fecali	Batteri solfo-riduttori
		MPN/g		UFC/g
HNS_1	<1	<1	<1	13
HNS_2	<1	<1	<1	<1
HNS_3	<1	<1	<1	<1
HNS_4	<1	<1	<1	<1
HNS_5	<1	<1	<1	<1
HNS-6	<1	<1	<1	<1
HAN21EC_01_GS	<1	<1	<1	<1
HAN21EC_02_GS	<1	<1	<1	<1
HAN21EC_03_GS	<1	<1	<1	<1
HAN21EC_04_GS	<1	<1	<1	<1

Tabella 4-14. Livelli di Coliformi fecali, Coliformi totali, Streptococchi fecali e Batteri solfo-riduttori

Test ecotossicologici

Le specie selezionate per i saggi ecotossicologici sono state: il batterio *Vibrio fischeri*, l'alga *Pheodactylum tricornutum* e il crostaceo copepode *Acartia tonsa*. I test sono stati condotti valutando la percentuale di inibizione della bioluminescenza a 30 minuti di *V. fischeri*, la % di inibizione della crescita di *P. tricornutum* a 72 h e, infine, la mortalità di *A. tonsa* dopo 7 gg di esposizione al campione. I risultati sono riportati nella Tabella 4-15, in cui si evidenzia come i campioni di sedimento non inducono nessun effetto né di inibizione della bioluminescenza del batterio. Pertanto, è possibile individuare per i sedimenti di questo studio, secondo quanto riportato dalle linee guida APAT-ICRAM "Manuale per la movimentazione dei sedimenti marini" (2007), una classe di qualità elevata, escludendo la presenza di tossicità.

Tabella 4-2	Risultati	test ecotos	sicologici
-------------	-----------------------------	-------------	------------

Stazione	<i>Vibrio fischeri</i> % inib/30 min	Phaeodactylum tricornutum % inib/72 h	Acartia tonsa % mortal./7gg
HNS_1	7.19	0	0
HNS_2	4.38	0	0
HNS_3	5.12	0	0
HNS_4	3.12	0	0
HNS_5	2.98	0	0
HNS-6	2.22	0	0
HAN21EC_01_GS	4.42	0	0
HAN21EC_02_GS	4.38	0	0
HAN21EC_03_GS	5.47	0	0
HAN21EC_04_GS	6.12	0	0

4.3 Conclusioni

In generale, i sedimenti delle stazioni *near-shore* e *off-shore* dell'area di Marsala (TP) interessata dalla posa di un cavo elettrico marino necessario all'installazione di un parco eolico *off-shore* nel Canale di Sicilia, hanno mostrato una natura ghiaiosa o sabbiosa, senza la presenza di odori particolari.

Per quanto riguarda i livelli dei contaminanti inorganici ed organici analizzati, la valutazione qualitativa del sedimento è stata ottenuta tramite il confronto dei risultati analitici con i limiti prescritti dalla normativa vigente e con standard di qualità internazionali. Tra i metalli analizzati, solamente l'As supera in tutte le stazioni *off-shore* e nella stazione HNS_3 dell'area *near-shore* i valori ERL e TEL (Long et al., 1995; MacDonald et al., 1996), indicando in questo elemento un probabile fattore di rischio per gli organismi. I composti organici sono in tutti i casi o al di sotto del rispettivo LOQ (*Limit of Quantification*) o in concentrazione inferiore al limite di qualità ambientale L1 riportato dal DM 173/2016, evidenziando una totale assenza di contaminazione dei sedimenti da parte di questa classe di composti. I risultati delle variabili microbiologiche indicano l'assenza di contaminazione batterica. Infine, i saggi ecotossicologici condotti sulla totalità dei sedimenti non hanno mostrano effetti ecotossici sulle tre specie appartenenti a diversi livelli trofici.

4.4 Bibliografia

APAT, 2007. Manuale per la movimentazione dei sedimenti marini. APAT, ICRAM.

Decreto Legislativo 3 aprile 2006, nº 152. "Norme in materia ambientale" Serie Generale nº 88 Roma, 14 aprile 2006.

- Decreto Legislativo 13 ottobre 2015, n. 172 Attuazione della direttiva 2013/39/UE, che modifica le direttive 2000/60/CE per quanto riguarda le sostanze prioritarie nel settore della politica delle acque. (15G00186), 27 ottobre 2015
- Decreto Ministero dell'Ambiente e della Tutela del Territorio e del Mare 15 luglio 2016, n. 173 "Autorizzazione all'immersione in mare dei materiali di escavo di fondali marini. 06 settembre 2016.
- Long E.R., MacDonald D.D., Smith S.L., Calder F.D., 1995. Incidence of adverse biological effects within ranges of chemical concentrations in marine and estuarine sediments. Environmental Management, 19: 81–97.
- MacDonald D.D., Carr S., Clader F.D., Long E.D., Ingersoll C.G., 1996. Development and evaluation of sediment quality guidelines for Florida coastal waters. Ecotoxicology, 5: 253–278.

5. PRATERIA DI POSIDONIA OCEANICA

L'attività su *Posidonia oceanica* ha riguardato la valutazione dello stato di salute della prateria, mediante l'indice PREI (ISPRA, 2012). Un totale di 18 fascicoli fogliari di *P. oceanica* sono stati raccolti da 3 stazioni poste ad una profondità di 15 m, mentre altri 6 fascicoli fogliari sono stati raccolti da 3 stazioni poste sul limite inferiore della prateria. In laboratorio sono stati isolati i fascicoli fogliari destinati all'analisi fenologica, della biomassa fogliare e degli epifiti (Figura 5-1) ed è stato ricavato il numero di foglie, sia totale che per classe, suddivise in adulte (A), intermedie (I) e giovanili (J).

Figura 5-1. Campione di Posidonia oceanica per le analisi di laboratorio

Sono state raccolte le informazioni biometriche delle foglie, quali lunghezza totale, larghezza, lunghezza della base o ligula (per le foglie adulte) e lunghezza della parte bruna (ove presente). È stata, inoltre, annotata l'eventuale rottura dell'apice, la presenza di morsi di animali erbivori sulle lamine fogliari, nonché la presenza di eventuali steli fiorali. Successivamente, sono stati raccolti gli epifiti e calcolata la biomassa fogliare e degli epifiti stessi.

Per comprendere lo stato di salute e il livello di qualità della prateria di *P. oceanica*, oltre ai parametri fenologici, sono stati considerati parametri di macroripartizione, come la densità, la copertura % della prateria alla profondità di -15 m, e la profondità del limite inferiore, unitamente alle osservazioni sulla tipologia di quest'ultimo.

Tutti questi parametri entrano nel calcolo dell'indice PREI, che è uno degli strumenti previsti e utilizzati dalla direttiva UE e dal DM 260/10 per valutare l'Indice di Stato Ecologico per quanto riguarda la qualità dei corpi idrici

marini. Per quanto riguarda la densità fascicolare, è stata dapprima calcolata la media dei conteggi effettuati *in situ*, quindi la densità è stata espressa in N° di fasci/m².

La prateria è stata quindi classificata in classi di densità, secondo un'apposita graduatoria introdotta da Giraud (1977):

- Classe I oltre 700 fasci/m² Prateria molto densa.
- **Classe II** da 400 a 700 fasci/m² Prateria densa.
- Classe III da 300 a 400 fasci /m² Prateria rada.
- **Classe IV** da 150 a 300 fasci/m² Prateria molto rada.
- Classe V da 50 a 150 fasci/m² Semiprateria.

Inoltre, la prateria è stata classificata secondo il metodo introdotto da Pergent et al. (1995) che tiene conto oltre della densità, anche della profondità (Tabella 5-1). Al termine delle operazioni di laboratorio, sono state raccolte tutte le informazioni necessarie al calcolo dell'indice PREI, che si basa sui descrittori sottoriportati:

- Densità ella prateria (espressa come fasci/m²);
- Superficie fogliare del fascio (espressa come cm²/fascio);
- Rapporto tra la biomassa degli epifiti e la biomassa fogliare del fascio (espresso come mg/fascio);
- Profondità del limite inferiore;
- Tipologia del limite inferiore.

L'indice PREI varia tra 0 e 1 e corrisponde al valore del Rapporto di Qualità Ecologica (RQE) tra le condizioni misurate e quelle di riferimento.

Il calcolo dell'EQR (Ecological Quality Ratio) dell'indice PREI è il seguente:

EQR = (EQR'+0,11) / (1+0,1)

dove

 $EQR' = (N_{densit\`a} + N_{superficie\ fogliare\ fascio} + N_{biomassa\ epifiti/biomassa\ fogliare\ } + N_{limite\ inferiore}) \ / \ 3,5$

Il calcolo dell'EQR PREI porta alla attribuzione di uno specifico stato ecologico della prateria di *P. oceanica* (Tabella 5-2):

Tabella 5-1. Classificazione della densità delle praterie in funzione della profondità (da Pergent et al., 1995). DA = densità anormale; DSI = densità subnormale inferiore; DN = densità normale; DSS = densità subnormale superiore

Prof.	DA		DSI		DN		DSS
1	<	822	\diamond	934	<>	1158	>
2	<	646	\diamond	758	<>	982	>
3	<	543	\diamond	655	<>	879	>
4	<	470	\diamond	582	<>	806	^
5	<	413	Ŷ	525	<>	749	٨
6	<	367	\$	479	<>	703	^
7	<	327	Ŷ	439	<>	663	>
8	<	294	<>	406	<>	630	>
9	<	264	<>	376	<>	600	>
10	<	237	Ŷ	349	<>	573	>
11	۷	213	\$	325	<>	549	>
12	<	191	<>	303	<>	527	>
13	<	170	\diamond	282	<>	506	>
14	<	151	<>	263	<>	487	>
15	<	134	<>	246	<>	470	>
16	<	117	\diamond	229	<>	453	>
17	<	102	¢	214	<>	438	>
18	<	88	<>	200	<>	424	>
19	<	74	<>	186	<>	410	>
20	<	61	<>	173	<>	397	>
21	<	48	<>	160	<>	384	>
22	<	37	\diamond	149	<>	373	>
23	<	25	\diamond	137	<>	361	>
24	<	14	<>	126	<>	350	>
25	<	4	<>	116	<>	340	>
26				106	<>	330	>
27				96	<>	320	>
28				87	<>	311	>
29				78	<>	302	>
30				70	<>	294	>
31				61	<>	285	>
32				53	<>	277	>
33				46	<>	270	>
34				38	<>	262	>
35				31	<>	255	>
36				23	<>	247	>
37				16	<>	240	>
38				10	<>	234	>
39				3	<>	227	>
40					<>	221	>

Tabella 5-2	Intervalli d	lei valori i	per la	classificazione	dello stato	ecologico	attraverso	l'indice PR	ΕI
1 abcina 5-2.	intervani e	ici valoni	per la	ciassificazione	ucito stato	ceologico	anaverso	I mulee I K	

Stato di qualità	EQR PREI	Valori
Elevato		1 - 0,775
Buono		0,774 - 0,550
Sufficiente		0,549 - 0,325
Scarso		0,324 - 0,100
Cattivo		99 – 0

I dati della % di copertura e della densità fascicolare (n. fasci/ $m^2\pm d.s.$) della prateria di *P. oceanica* di Marsala sono riportati nella Tabella 5-3. Le stazioni a -15 m rientrano tutte nella classe II (Prateria densa), tranne la Stazione P3-15 (Prateria rada), mentre le stazioni al limite inferiore rientrano tutte nelle classi V (Semi-prateria) della classificazione di Giraud (1977), e nella categoria DN (Densità normale) della classificazione di Pergent et al. (1995).

Stazione	Prof. m	Copertura %	Densità n.f./m²±s.d.	Giraud class.	Pergent class.		
P1-15	-14.2	96.67	427.78±32.30	II	DN		
P1-LI	-30.0	15.83	105.21±29.19	V	DN		
P2-15	-14.7	90.00	407.64±46.48	II	DN		
P2-LI	-29.5	21.67	136.46±82.00	V	DN		
P3-15	-14.5	90.00	390.97±123.64	III	DN		
P3-LI	-29.1	21.67	133.33±39.80	V	DN		
	(Classe I – oltre 700 n.	.f./m ² – Prateria molto	densa			
Classe IV-150-300 n.f./m ² - Prateria molto rada							
	Classe V $-$ 50-150 n.f./m ² $-$ Semiprateria						

Tabella 5-3. Valori di densità fascicolare e copertura %, con classificazione di Giraud (1977) e Pergent et al. (1995)

I risultati delle analisi di micro-ripartizione e fenologica sono riportati in Tabella 5-4.

Variabile	P1-15	P1-LI	P2-15	P2-LI	P3-15	P3-LI
Profondità m	-14.2	-30.0	-14.7	-29.5	-14.5	-29.1
Copertura %	97	16	90	22	90	22
Densità n.f./m ² ±d.s.	427.78±32.30	105.21±29.19	407.64±46.48	136.46±82.00	390.97±123.64	133.33±39.80
Densità corretta con % copertura n.f./m ²	414	17	367	30	352	29
Foglie totali n.	119	36	123	33	117	36
Foglie giovanili n. (J)	19	3	17	5	16	1
Foglie intermedie n. (I)	35	14	41	11	33	14
Foglie adulte n. (A)	65	19	65	17	68	21
Lunghezza media della base foglie adulte cm±s.d.	5.04±0.47	3.51±0.59	5.04±0.92	3.92±0.48	4.64±0.49	4.13±0.83
Media foglie per fascio (A, I) n.±s.d.	5.56±0.54	5.50±0.68	5.89 ± 0.55	4.67±0.41	5.61±0.54	5.83±0.59
Superficie totale media foglie per ciuffo $cm^2 \pm d.s.$	398.26±58.48	192.48±38.73	449.68±61.81	233.90±45.51	349.27±66.25	218.76±58.69
Indice L.A.I. totale m ² /m ² ±d.s.	17.04±2.50	2.03±0.41	18.33±2.52	3.19±0.62	13.66±2.59	2.92±0.78
Coefficiente A %±d.s.	19.21±26.79	34.72±29.02	20.14±17.87	8.33±9.13	16.30±23.78	23.61±23.03

Tabella 5-4. Risultati delle analisi di micro-ripartizione su Posidonia oceanica. d.s.: deviazione standard

In Tabella 5-5 sono riportati i dati di biomassa, secondo la metodologia prescritta da ISPRA (2012 e 2020).

Tabella 5-5. Risultati dell'analisi sulla biomassa delle foglie e degli epifiti (mg p.s./fascio)

Variable	P1-15	P1-LI	P2-15	P2-LI	P3-15	P3-LI
Biomassa fogliare	2495.53±444.32	1350.68±233.21	2629.09±414.62	1446.72±296.43	2208.30±502.94	1635.07±378.07
Biomassa epifiti	412.54±128.40	399.62±132.18	401.68±61.02	378.92±55.04	308.81±104.35	413.80±78.26

Al termine delle elaborazioni sui dati provenienti dalle diverse attività condotte in campo e in laboratorio sulla prateria di *P. oceanica* dell'area oggetto di questo studio, è stato possibile calcolare l'indice PREI.

I risultati delle metriche per il calcolo dell'indice PREI, relativamente alle 3 repliche spaziali (P1, P2 e P3) sono riportati nelle Tabelle 5-6 e 5-7.

Il valore dell'indice PREI inquadra la prateria esaminata in uno stato di qualità Elevato.

METRICHE PER IL CALCOLO DELL'INDICE PREI	Prateria	P1	P2	Ed	Unità di misura
Densità assoluta dei fasci fogliari	-15	427,78	407,64	390,97	fasci/m²
RIF densità good	-15	599,00	599,00	599,00	fasci/m²
Superficie fogliare fascio (ad+interm)	-15	398,26	449,68	349,27	cm²/fascio
RIF superficie fogliare good	-15	310,00	310,00	310,00	cm²/fascio
Biomassa fogliare fascio (ad + interm)	-15	2495,53	2629,09	2208,30	mg (p.s)/fascio
Biomassa epifiti	-15	412,54	401,68	308,81	mg (p.s)/fascio
Profondità limite inferiore	LI	30,00	29,50	29,10	metri
RIF Limite inferiore poor	LI	-12,00	-12,00	-12,00	metri
RIF Limite inferiore good	LI	-38,00	-38,00	-38,00	metri
Coeff. Limite inferiore	LI	+3	+3	+3	0 = stabile, +3 = progressivo, -3 = regressivo

Tabella 5-6. Metriche utilizzate per il calcolo dell'indice PREI

Tabella 5-7. Risultati del calcolo dell'indice PREI. sff = superficie fogliare fascio; be-bf = biomassa epifiti/biomassa fogliare; li = limite inferiore

INDICE PREI	Prateria	τd	2d	٤d
N densità	-15	0,71	0,68	0,65
N sff	-15	1,28	1,45	1,13
N be-bf	-15	0,42	0,42	0,43
N li	LI	0,81	0,79	0,77
RQE'		0,92	0,96	0,85
RQE PREI		0,94	0,97	0,87

5.1 Bibliografia

- Gig, 2013. JRC scientific and technical reports. Water Framework Directive intercalibration technical report, second phase (2008-2011) in draft. JRC European Commission, IES Institute for Environmental and Sustainability.
- Giraud G., 1977. Essai de classement des herbiers de *Posidonia oceanica* (Linné) Delile. Botanica Marina, West Germ., 20 (8): 487-491.
- ISPRA, 2012 e 2020 Scheda metodologica ISPRA per il calcolo dello stato ecologico secondo la metodologia PREI.
- Pergent G., Pergent-Martini C., Bouderesque C.F., 1995. Utilisation de l'herbier a *Posidonia oceanica* comme indicateur biologique de la qualité du milieu littoral en Mediterranee: etat des connaissances. Mesogee, Vol. 54: 3-27.
- Decreto Ministero dell'Ambiente e della Tutela del Territorio e del Mare 8 novembre 2010, n. 260 Regolamento recante i criteri tecnici per la classificazione dello stato dei corpi idrici superficiali, per la modifica delle norme tecniche del decreto legislativo 3 aprile 2006, n. 152, recante norme in materia ambientale, predisposto ai sensi dell'articolo 75, comma 3, del medesimo decreto legislativo. 07 febbraio 2011.

6. POPOLAMENTI BENTONICI DI FONDO DURO - CARLIT

Le comunità macroalgali di fondo duro sono state analizzate secondo il metodo CARLIT (Cartografia Litorale, Quaderno metodologico ISPRA, 2008; 2012), basato sul campionamento visuale. Il supporto cartografico, fornito dal iLStudio, Engineering & Consulting Studio, è stato composto da un'unica fotografia aerea, georeferenziata, ad una scala tale che l'unità minima di campionamento (50 m di linea di costa) è stata identificata sulla carta. La foto aerea ha permesso di individuare i punti di riferimento utili al corretto posizionamento sulla carta. La sola foto aerea non ha permesso di individuare le comunità macroalgali presenti nel sito oggetto di studio, pertanto, CoNISMa ha integrato quanto richiesto dal Cliente con una osservazione in campo da parte del suo personale tecnico e con la raccolta di campioni puntuali di macroalghe.

Sebbene il metodo CARLIT sia stato ideato per un'applicazione lungo coste prevalentemente rocciose, costituite principalmente da scogliere, non necessariamente continue, esso verrà applicato alla costa sud di Marsala, interessata dal posizionamento del cavo elettrico del progetto (Figura 6-1 e 6-2), che invece è costituita da depositi fogliari e detrito di *Posidonia oceanica* alternati a tratti di costa sabbiosa retrostanti alcune barriere frangiflutto. L'area sottoposta ad indagine ha un'estensione in lunghezza di linea di costa di circa 950 m. L'unità di campionamento, secondo la procedura ISPRA, è stata di 50 m e sono stati individuati n. 19 siti di indagine, secondo il metodo "cartografia in continuo".

La finestra temporale considerata favorevole per effettuare la fotografia aerea e i rilievi è, in generale, quella compresa tra i mesi di aprile e giugno, periodo di massimo sviluppo delle specie cospicue. Le osservazioni in campo sono state effettuate in data 04.06.2021.

Figura 6-1. Area di indagine - Metodo CARLIT

Figura 6-2. Dettaglio area interessata metodo CARLIT

Poiché nel sito si è evidenziata l'assenza di concrezioni o *trottoir* di *Lithophyllum byssoides, Titanoderma trochanter* e/o *Dendropoma*, il campionamento è stato rivolto esclusivamente alla **frangia infralitorale**, ovvero ai popolamenti/cinture immediatamente al di sotto del "pelo dell'acqua" (entro i 50 cm). Sono state annotate le comunità presenti e le situazioni geomorfologiche rilevanti (SGR; Tabella 6-1). I tratti con strutture artificiali (barriere, moli, porti) e le spiagge non sono stati considerati fra le SGR.

Tabella 6-1. SGR, metodo ISPRA, 2008; 2012

Situazione geomorfologica rilevante SGR	EQV _{rif}
BM - Blocchi metrici naturali	12.2
FB - Falesia bassa naturale	16.6
FA - Falesia alta naturale	15.3

La Tabella 6-2 riporta i popolamenti macroalgali oggetto dell'analisi CARLIT con i relativi valori di sensibilità (SL).

	Categoria	Descrizione	Valore di sensibilità
	Trottoir	Concrezioni a marciapiede ("trottoir") di Lithophyllum byssoides (L. trochanter e Dendropoma")	20
	Cystoseira brachycarpa/crinita/elegans	Popolamenti a C. brachycarpa/crinita/elegans	20
	Cystoseira in zone riparate	Popolamenti a Cystoseira barbata/foeniculacea/humilis/spinosa	20
B	Cystoseira amentacea/mediterranea 5	Cinture continue a C. amentacea/mediterranea	20
tenti	Cystoseira amentacea/mediterranea 4	Cinture quasi continue a C. amentacea/mediterranea	19
olan ira	Cystoseira amentacea/mediterranea 3	Popolamenti abbondanti a C. amentacea/mediterranea	15
toset	Cystoseira amentacea/mediterranea 2	Popolamenti scarsi a of C. amentacea/mediterranea	12
Cor	Cystoseira compressa	Popolamenti a C. compressa	12
	Cystoseira amentacea/mediterranea 1	Rare piante isolate di C. amentacea/mediterranea**	10
	Dictyotales/Stypocaulaceae	Popolamenti a Padina/Dictyota/Dictyopteris/Taonia/Stypocaulon	10
	Corallina	Popolamenti a Corallina elongata	8
ti a	Corallinales incrostanti	Popolamenti a Lithophyllum incrustans, Neogoniolithon brassica-florida e altre Corallinales incrostanti	6
men	Mitili	Popolamenti a Mytilus galloprovincialis (Mitilaie)	6
pole	Pterocladiella/Ulva/Schizymenia	Popolamenti misti a Pterocladiella/Ulva/Schizymenia	6
za pi	Ulva/Cladophora	Popolamenti a Ulva e/o Cladophora	3
Sen Cys	Cianobatteri/Derbesia	Popolamenti dominate da Cyanobacteria e/o Derbesia tenuissima	1
m	Posidonia - récif	Formazioni affioranti di Posidonia oceanica ("récif")	20
eroge	Cymodocea nodosa	Praterie superficiali di Cymodocea nodosa	20
Fan	Nanozostera noltii	Praterie superficiali di Nanozostera noltii	20

Tabella 6-2. Valori di sensibilità associati alle comunità macroalgali (ISPRA, 2008; 2012)

Formazioni organogene tipiche della Sicilia e di altre regioni del Sud Italia. **In caso di presenza di rare piante isolate di C. amentacea/mediterranea, si annota anche la comunità dominante (valore di sensibilità risultante: valore medio).

Il valore di qualità ecologica dell'SGR e il valore di sensibilità delle comunità macroalgali hanno permesso di calcolare il Rapporto di Qualità Ecologica (*Ecological Quality Ratio*, EQR) attraverso la seguente formula:

$$EQR = \frac{\sum \frac{EQV_{calc} * l_i}{EQV_{raf}}}{\sum l_i} ,$$

e di poter indicare la qualità della linea di costa oggetto di questo studio, secondo la classificazione proposta da Ballesteros et al. (2007) (Tabella 6-3).

EQR	SE
> 0,75-1	Elevato
> 0,60-0,74	Buono
> 0,40-0,59	Sufficiente
> 0,25-0,39	Scarso
0-0,24	Cattivo

Tabella 6-3. Classificazione EQR e giudizio di qualità ecologica (Ballesteros et al., 2007)

Il primo tratto di area indagata (0-250 m circa) non ha permesso un'analisi tramite il metodo descritto, per la presenza di sabbia e di detrito di *P. oceanica*. A seguire è stato individuato, per un'estensione pari a circa 250 m, un popolamento non continuo di *Cystoseira compressa* e successivamente per altri 150 m una predominanza di *Padina pavonica*. Infine, nel successivo tratto costiero, vi è la presenza di barriere artificiali che non hanno permesso di effettuare l'indagine CARLIT. L'EQV di riferimento considerato, seppur non prettamente specifico, è stato il BM (vedi Tabella 6-1), con un valore pari a 12.2.

Il valore medio dell'EQR è risultato pari a 0.92 (EQR>0.75-1), permettendo di classificare l'area indagata, con esclusione dei tratti antropizzati e delle spiagge, come un'area ad elevata qualità ecologica. In Figura 6-3 è riportato, infine, il risultato del metodo CARLIT sulla linea di costa oggetto dell'indagine.

Figura 6-3. Risultato CARLIT sulla linea di costa oggetto dell'indagine

6.1 Bibliografia

- Ballesteros E., Torras X., Pinedo S., Garcìa M., Mangialajo L., De Torres M., 2007. A new methodology based on littoral community cartography dominated by macroalgae for the implementation of the European Water Framework Directive. Marine Pollution Bulletin 55 172–180
- Gennaro P. & Rende S.F., 2012. Integrazione al Quaderno metodologico ISPRA per il calcolo dello stato ecologico secondo la metodologia CARLIT.
- Mangialajo L., Sartoni G., & Giovanardi F., 2008. Quaderno Metodologico sull'elemento biologico MACROALGHE e sul calcolo dello stato ecologico secondo la metodologia CARLIT.

7. POPOLAMENTI BENTONICI DI FONDO DURO – IL CORALLIGENO

Lo studio dell'habitat a coralligeno dell'area marina situata a Marsala (TP), interessata dalla posa di un cavo elettrico marino necessario all'installazione di un parco eolico *off-shore* nel Canale di Sicilia, si è basato sull'analisi di video georeferenziati, effettuati tramite ROV e forniti dal Cliente. Il protocollo (Scheda metodologica per le attività di monitoraggio di specie ed habitat marini delle Direttive 92/43/CE "Habitat" e 2009/147/CE "Uccelli" previste dal DM 11/2/2015 di attuazione dell'art.11 del D. Lgs 190/2010, Modulo 7, MATTM, 2019) ha previsto di analizzare transetti di 200 m di lunghezza e con ampiezza del campo visivo pari a circa 50 cm, recuperando, per ogni transetto, almeno n. 20 immagini (*frame*). Inoltre, per calcolare la dimensione dell'area coperta, il ROV è stato munito di puntatori led di posizionamento posti sulla videocamera e distanziati tra loro 10 cm.

Il Cliente ha fornito n. 8 filmati riguardanti la parte *near-shore* dell'area indagata (codici in Tabella 7-1) e n. 52 filmati di quella *off-shore* (codici in Tabella 7-2). Le coordinate GPS, la lunghezza del transetto e la profondità media dei transetti *near-shore* sono riportate in Tabella 7-3, mentre quelle dei transetti *off-shore* in Tabella 7-4.

Filmati ROV area near-shore			
Cod. CoNISMa	Cod. Cliente		
NS_01	20210414_183059 - HAN21N-R001_A		
NS_02	20210415_084704 - HAN21N-R002		
NS_03	20210415_092156 - HAN21N-R003		
NS_04	20210415_103924 - HAN21N-R004_A		
NS_05	20210415_111440 - HAN21N-R005		
NS_06	20210415_115742 - HAN21N-R006		
NS_07	20210415_134656 - HAN21N-R008		
NS_08	20210415_142137 - HAN21N-R010		

Tabella 7-1. Codici filmati ROV forniti dal Cliente

	Filmati ROV area off-shore
Cod. CoNISMa	Cod. Cliente
OS_01	Dive 01 21-06-25 21.33.06_C1
OS_02	Dive 01 21-06-27 10.12.00_C1
OS_03	Dive 02 21-06-27 14.23.10_C1
OS_04	Dive 02 21-06-27 14.34.35_C1
OS_05	Dive 02 21-06-27 12.50.47_C1
OS_06	Dive 02 21-06-27 11.06.22_C1
OS_07	Dive 03 21-06-27 15.15.00_C1
OS_08	Dive 04 21-06-27 22.43.44_C1
OS_09	Dive 04 21-06-27 22.57.26_C1
OS_10	Dive 05 21-06-28 01.15.09_C1
OS_11	Dive 05 21-06-28 01.45.11_C1
OS_12	Dive 06 21-06-28 03.27.46_C1
OS_13	Dive 06 21-06-28 03.57.53_C1
OS_14	Dive 06 21-06-28 04.27.53_C1
OS_15	Dive 07 21-06-28 15.09.12_C1
OS_16	Dive 08 21-06-28 18.25.24_C1
OS_17	Dive 08 21-06-28 18.55.27_C1
OS_18	2021-06-28 20.20.31_Project HANNIBAL OFFSHORE WIND FARM_Dive 09_C1
OS_19	2021-06-28 20.40.31_Project HANNIBAL OFFSHORE WIND FARM_Dive 09_C1
OS_20	2021-06-28 21.00.31_Project HANNIBAL OFFSHORE WIND FARM_Dive 09_C1
OS_21	Dive 10 21-06-29 00.42.04_C1
OS_22	Dive 10 21-06-29 01.12.19_C1
OS_23	Dive 11 21-06-29 03.32.25_C1
OS_24	Dive 11 21-06-29 04.02.28_C1
OS_25	Dive 12 21-06-29 06.06.30_C1
OS_26	Dive 12 21-06-29 06.36.33_C1
OS_27	Dive 12 21-06-29 07.06.33_C1
OS_28	Dive 13 21-06-29 08.57.35_C1
OS_29	Dive 13 21-06-29 09.27.37_C1
OS_30	Dive 14 21-06-29 11.54.17_C1
OS_31	Dive 14 21-06-29 12.24.25_C1
OS_32	Dive 15 21-06-29 18.31.08_C1
OS_33	Dive 15 21-06-29 19.01.11_C1
OS_34	Dive 15 21-06-29 19.31.11_C1
OS_35	Dive 15 21-06-29 20.47.31_C1
OS_36	Dive 15 21-06-29 21.17.34_C1
OS_37	Dive 15 21-06-29 15.20.06_C1

Tabella 7-2. Codici filmati ROV forniti dal Cliente

OS_38	Dive 15 21-06-29 15.50.08_C1
OS_39	Dive 15 21-06-29 16.20.08_C1
OS_40	Dive 15 21-06-29 16.50.08_C1
OS_41	Dive 15 21-06-29 17.20.08_C1
OS_42	Dive 15 21-06-29 17.50.08_C1
OS_43	Dive 16 21-06-29 23.41.20_C1
OS_44	Dive 17 21-06-30 02.19.35_C1
OS_45	Dive 17 21-06-30 02.49.39_C1
OS_46	Dive 17 21-06-30 03.39.01_C1
OS_47	Dive 17 21-06-30 04.09.08_C1
OS_48	Dive 18 21-06-30 06.06.25_C1
OS_49	Dive 18 21-06-30 06.36.27_C1
OS_50	Dive 18 21-06-30 07.06.27_C1
OS_51	Dive 19 21-06-30 09.01.42_C1
OS_52	Dive 19 21-06-30 09.31.46_C1

Tabella 7-3. Informazioni sui transetti ROV area near-shore

Codice near-shore	Coordinate GPS Inizio Filmato (WGS84)	Coordinate GPS Fine Filmato (WGS84)	Lunghezza transetto m	Profondità media m
NS_01	37° 46.654'N - 12° 26.460'E	37° 46.638'N - 12° 26.486'E	48	5
NS_02	37° 46.557'N - 12° 26.302'E	37° 46.507'N - 12° 26.388'E	156	8
NS_03	37° 46.429'N - 12° 26.267'E	37° 46.416'N - 12° 26.293'E	46	8
NS_04	37° 46.321'N - 12° 26.099'E	37° 46.282'N - 12° 26.182'E	142	8
NS_05	37° 46.550'N - 12° 26.105'E	37° 46.614'N - 12° 26.253'E	247	8
NS_06	37° 46.232'N - 12° 26.307'E	37° 46.158'N - 12° 26.424'E	219	7
NS_07	37° 46.511'N - 12° 26.539'E	37° 46.580'N - 12° 26.576'E	139	6
NS_08	37° 45.352'N - 12° 25.465'E	37° 45.638'N - 12° 24.747'E	1189	26

Tabella 7-4. Informazioni sui transetti ROV area *off-shore* (/ = non rilevata)

Codice off-shore	GPS Inizio Filmato (WGS84)	GPS Fine Filmato (WGS84)	Lunghezza transetto m	Profondità media m
OS_01	38° 00.714'N - 12° 31.092'E	38°0 0.714'N - 12° 31.092'E	/	/
OS_02	37° 45.600'N - 12° 24.144'E	37° 45.601'N - 12° 24.145'E	3	32
OS_03	37° 45.842'N - 12° 25.204'E	37° 45.819'N - 12° 25.223'E	51	22
OS_04	37° 45.819'N - 12° 25.223'E	37° 45.819'N - 12° 25.223'E	/	21
OS_05	37° 45.681'N - 12° 24.720'E	37° 45.641'N - 12° 24.741'E	80	26
OS_06	37° 45.599'N - 12° 24.143'E	37° 45.572'N - 12° 24.149'E	48	29

OS_07	37° 45.944'N - 12° 25.830'E	37° 45.928'N - 12° 25.867'E	62	12
OS_08	37° 45.364'N - 12° 23.678'E	37° 45.351'N - 12° 23.686'E	29	53
OS_09	37° 45.348'N - 12° 23.688'E	37° 45.324'N - 12° 23.702'E	48	54
OS_10	37° 44.036'N - 12° 21.420'E	37° 44.072'N - 12° 21.513'E	151	131
OS_11	37° 44.074'N - 12° 21.517'E	37° 44.089'N - 12° 21.556'E	63	126
OS_12	37° 44.052'N - 12° 20.645'E	37° 44.073'N - 12° 20.735'E	138	150
OS_13	37° 44.080'N - 12° 20.760'E	37° 44.110'N - 12° 20.882'E	186	140
OS_14	37° 44.110'N - 12° 20.882'E	37° 44.110'N - 12° 20.882'E	/	/
OS_15	37° 41.908'N - 12° 15.454'E	37° 41.870'N - 12° 15.438'E	85	200
OS_16	37° 41.906'N - 12° 11.374'E	37° 41.908'N - 12° 11.488'E	200	192
OS_17	37° 41.908'N - 12° 11.490'E	37° 41.907'N - 12° 11.494'E	15	192
OS_18	37° 41.909'N - 12° 11.496'E	37° 40.557'N - 12° 6.444'E	7900	/
OS_19	37° 40.559'N - 12° 6.442'E	37° 40.561'N - 12° 6.428'E	35	120
OS_20	37° 40.561'N - 12° 6.428'E	37° 40.561'N - 12° 6.427'E	10	/
OS_21	37° 34.777'N - 12° 2.293'E	37° 34.727'N - 12° 2.322'E	113	113
OS_22	37° 34.727'N - 12° 2.322'E	37° 34.673'N - 12° 2.356'E	137	111
OS_23	37° 35.740'N - 12° 0.326'E	37° 35.740'N - 12° 0.437'E	210	187
OS_24	37° 35.740'N - 12° 0.439'E	37° 35.742'N - 12° 0.475'E	87	188
OS_25	37° 36.083'N - 12° 2.350'E	37° 36.087'N - 12° 2.306'E	120	172
OS_26	37° 36.087'N - 12° 2.305'E	37° 36.090'N - 12° 2.254'E	140	170
OS_27	37° 36.090'N - 12° 2.254'E	37° 36.087'N - 12° 2.244'E	37	/
OS_28	37° 36.845'N - 12° 2.506'E	37° 36.904'N - 12° 2.463'E	168	212
OS_29	37° 36.904'N - 12° 2.463'E	37° 36.967'N - 12° 2.418'E	183	215
OS_30	37° 37.290'N - 12° 2.371'E	37° 37.319'N - 12° 2.407'E	152	233
OS_31	37° 37.321'N - 12° 2.408'E	37° 37.357'N - 12° 2.448'E	178	233
OS_32	37° 39.686'N - 12° 5.338'E	37° 39.724'N - 12° 5.413'E	190	206
OS_33	37° 39.724'N - 12° 5.413'E	37° 39.758'N - 12° 5.472'E	157	208
OS_34	37° 39.758'N - 12° 5.472'E	37° 39.761'N - 12° 5.485'E	48	210
OS_35	37° 39.767'N - 12° 5.078'E	37° 39.791'N - 12° 5.134'E	245	205
OS_36	37° 39.791'N - 12° 5.134'E	37° 39.800'N - 12° 5.157'E	165	206
OS_37	37° 39.794'N - 12° 5.378'E	37° 39.798'N - 12° 5.358'E	40	198
OS_38	37° 39.798'N - 12° 5.358'E	37° 39.791'N - 12° 5.353'E	26	198
OS_39	37° 39.792'N - 12° 5.353'E	37° 39.778'N - 12° 5.346'E	71	196
OS_40	37° 39.776'N - 12° 5.344'E	37° 39.781'N - 12° 5.334'E	70	200
OS_41	37° 39.781'N - 12° 5.334'E	37° 39.779'N - 12° 5.328'E	38	199
OS_42	37° 39.779'N - 12° 5.328'E	37° 39.779'N - 12° 5.327'E	3	182
OS_43	37° 40.552'N - 12° 6.451'E	37° 40.579'N - 12° 6.492'E	148	242
OS_44	37° 39.275'N - 12° 6.020'E	37° 39.217'N - 12° 5.986'E	169	203
OS_45	37° 39.217'N - 12° 5.986'E	37° 39.178'N - 12° 5.964'E	112	202
OS_46	37° 39.056'N - 12° 5.998'E	37° 39.009'N - 12° 6.060'E	216	196
OS_47	37° 39.009'N - 12° 6.060'E	37° 39.005'N - 12° 6.064'E	40	194
OS_48	37° 37.640'N - 12° 5.345'E	37° 37.565'N - 12° 5.260'E	222	117
OS_49	37° 37.565'N - 12° 5.260'E	37° 37.489'N - 12° 5.168'E	242	115
OS_50	37° 37.488'N - 12° 5.168'E	37° 37.488'N - 12° 5.167'E	6	118
h	•		•	

OS_51	37° 36.912'N - 12° 13.742'E	37° 37.003'N - 12° 13.743'E	175	73
OS_52	37° 37.005'N - 12° 13.743'E	37° 37.053'N - 12° 13.728'E	98	73

Per ogni filmato visionato, viene fornita una breve descrizione del fondale, come riportato in Tabella 7-5 per l'area *near-shore* e in Tabella 7-6 per l'area *off-shore*.

Filmato near-shore	Descrizione fondale			
NS_01	P. oceanica su substrato duro			
NS_02	P. oceanica su substrato duro/detrito P. oceanica			
NS_03	P. oceanica su substrato duro			
NS_04	P. oceanica su substrato duro			
NS_05	P. oceanica su substrato duro/intermatte sedimento			
NS_06	P. oceanica su substrato duro			
NS_07	P. oceanica su substrato duro/detrito P. oceanica/intermatte sedimento			
NS_08	P. oceanica su substrato duro/su substrato mobile/sedimento nudo			

Tabella 7-5. Descrizione fondale transetti ROV area near-shore

Tabella 7-6. Descrizione transetti fi	ilmati ROV area o	off-shore
---------------------------------------	-------------------	-----------

Filmato off-shore	Descrizione fondale				
OS_01	prove tecniche del ROV				
OS_02	sedimento				
OS_03	P. oceanica su substrato duro/sedimento nudo				
OS_04	P. oceanica su substrato duro/sedimento nudo				
OS_05	P. oceanica su substrato mobile/sedimento nudo				
OS_06	macroalghe su substrato duro/sedimento nudo				
OS_07	P. oceanica su substrato duro/su substrato mobile/sedimento nudo				
OS_08	sedimento				
OS_09	sedimento				
OS_10	sedimento				
OS_11	sedimento				
OS_12	sedimento				
OS_13	sedimento				
OS_14	risalita dal fondale del ROV				
OS_15	sedimento				
OS_16	sedimento				
OS_17	sedimento				
OS_18	prove tecniche del ROV				

OS_19	prove tecniche del ROV			
OS_20	prove tecniche del ROV			
OS_21	sedimento			
OS_22	sedimento			
OS_23	sedimento			
OS_24	sedimento			
OS_25	sedimento/rifiuti antropici			
OS_26	sedimento/rifiuti antropici			
OS_27	risalita dal fondale del ROV			
OS_28	sedimento			
OS_29	sedimento			
OS_30	sedimento			
OS_31	sedimento			
OS_32	sedimento			
OS_33	sedimento/cavo sul fondale			
OS_34	sedimento			
OS_35	sedimento/coralligeno/rifiuti antropici			
OS_36	sedimento/rifiuti antropici			
OS_37	relitto			
OS_38	relitto			
OS_39	relitto			
OS_40	relitto			
OS_41	relitto			
OS_42	relitto			
OS_43	sedimento			
OS_44	sedimento			
OS_45	sedimento			
OS_46	sedimento			
OS_47	sedimento			
OS_48	sedimento/coralligeno			
OS_49	sedimento/coralligeno			
OS_50	sedimento			
OS_51	sedimento/fondale a -maerl-rodoliti			
OS_52	sedimento/fondale a -maerl-rodoliti			

L'habitat a coralligeno è stato identificato nei filmati OS_35, OS_48 e OS_49; pertanto i risultati si riferiscono esclusivamente a questi n. 3 filmati, i quali hanno soddisfano i requisiti indicati dal protocollo MATTM del 2019. Per ognuno di questi video sono stati recuperati n. 20 *frame* fotografici georeferenziati ogni 10 secondi. Le Tabelle

7-7, 7-8 e 7-9 riportano, per ogni *frame*, le coordinate GPS e la profondità; in tutti i casi l'inclinazione del substrato è stata <30°.

<i>Frame</i> fotografico Filmato ROV OS_35	GPS WGS84	Profondità m
OS_35_01	37° 39.767'N - 12° 5.078'E	205
OS_35_02	37° 39.767'N - 12° 5.078'E	205
OS_35_03	37° 39.767'N - 12° 5.079'E	205
OS_35_04	37° 39.768'N - 12° 5.083'E	205
OS_35_05	37° 39.769'N - 12° 5.086'E	205
OS_35_06	37° 39.772'N - 12° 5.092'E	205
OS_35_07	37° 39.775'N - 12° 5.099'E	205
OS_35_08	37° 39.778'N - 12° 5.106'E	205
OS_35_09	37° 39.785'N - 12° 5.118'E	206
OS_35_10	37° 39.786'N - 12° 5.120'E	206
OS_35_11	37° 39.787'N - 12° 5.122'E	206
OS_35_12	37° 39.787'N - 12° 5.124'E	206
OS_35_13	37° 39.788'N - 12° 5.125'E	206
OS_35_14	37° 39.788'N - 12° 5.125'E	206
OS_35_15	37° 39.788'N - 12° 5.126'E	206
OS_35_16	37° 39.788'N - 12° 5.127'E	206
OS_35_17	37° 39.789'N - 12° 5.127'E	206
OS_35_18	37° 39.789'N - 12° 5.128'E	205
OS_35_19	37° 39.790'N - 12° 5.129'E	205
OS_35_20	37° 39.790'N - 12° 5.129'E	205

Tabella 7-7. Coordinate GPS dei frame fotografici del filmato relativo al transetto OS_35

Tabella	7-8.	Coordinate	GPS	dei <i>frame</i>	fotografici	del filmat	o relativo a	al transetto	OS_	_48

<i>Frame</i> fotografico Filmato ROV OS_48	GPS WGS84	Profondità m
OS_48_01	37° 37.640'N - 12° 5.345'E	117
OS_48_02	37° 37.640'N - 12° 5.345'E	117
OS_48_03	37° 37.639'N - 12° 5.345'E	117
OS_48_04	37° 37.639'N - 12° 5.345'E	117
OS_48_05	37° 37.639'N - 12° 5.344'E	117
OS_48_06	37° 37.639'N - 12° 5.344'E	117
OS_48_07	37° 37.637'N - 12° 5.344'E	117
OS_48_08	37° 37.636'N - 12° 5.343'E	117
OS_48_09	37° 37.635'N - 12° 5.342'E	117
OS 48 10	37° 37.635'N - 12° 5.342'E	117

OS_48_11	37° 37.630'N - 12° 5.336'E	118
OS_48_12	37° 37.628'N - 12° 5.332'E	118
OS_48_13	37° 37.624'N - 12° 5.328'E	119
OS_48_14	37° 37.620'N - 12° 5.323'E	119
OS_48_15	37° 37.618'N - 12° 5.321'E	119
OS_48_16	37° 37.612'N - 12° 5.315'E	119
OS_48_17	37° 37.599'N - 12° 5.300'E	118
OS_48_18	37° 37.597'N - 12° 5.297'E	118
OS_48_19	37° 37.578'N - 12° 5.276'E	116
OS_48_20	37° 37.576'N - 12° 5.274'E	116

Tabella 7-9. Coordinate GPS dei frame fotografici del filmato relativo al transetto OS_49

<i>Frame</i> fotografico Filmato ROV OS_49	GPS WGS84	Profondità m
OS_49_01	37° 37.565'N - 12° 5.260'E	114
OS_49_02	37° 37.563'N - 12° 5.259'E	114
OS_49_03	37° 37.560'N - 12° 5.253'E	113
OS_49_04	37° 37.556'N - 12° 5.250'E	113
OS_49_05	37° 37.554'N - 12° 5.247'E	112
OS_49_06	37° 37.549'N - 12° 5.243'E	111
OS_49_07	37° 37.545'N - 12° 5.238'E	110
OS_49_08	37° 37.542'N - 12° 5.234'E	110
OS_49_09	37° 37.537'N - 12° 5.228'E	110
OS_49_10	37° 37.533'N - 12° 5.224'E	109
OS_49_11	37° 37.528'N - 12° 5.218'E	109
OS_49_12	37° 37.520'N - 12° 5.208'E	108
OS_49_13	37° 37.520'N - 12° 5.207'E	108
OS_49_14	37° 37.519'N - 12° 5.206'E	108
OS_49_15	37° 37.518'N - 12° 5.205'E	108
OS_49_16	37° 37.518'N - 12° 5.204'E	107
OS_49_17	37° 37.515'N - 12° 5.201'E	107
OS_49_18	37° 37.514'N - 12° 5.199'E	107
OS_49_19	37° 37.501'N - 12° 5.185'E	114
OS_49_20	37° 37.491'N - 12° 5.172'E	118

Da ogni fotogramma estratto sono state acquisite le seguenti informazioni (Tabella 7-10):

- tipologia del substrato (mobile, duro);
- presenza/assenza (1/0) di specie strutturanti facendo riferimento alla lista delle specie in Tabella 7-11;
- *biocoverage*, intesa come la presenza di organismi incrostanti o a modesto sviluppo sul fondo, rispetto al substrato nudo o sedimentato. Si distinguono 4 categorie (0, +, ++, +++), dalla più bassa (0) che indica la

quasi totale dominanza di substrato nudo o sedimentato rispetto alla presenza di organismi incrostanti o a modesto sviluppo sul fondo, alla più alta (+++) che indica la dominanza di organismi incrostanti o a modesto sviluppo sul fondo, rispetto al substrato nudo o sedimentato.

Secondo le indicazioni metodologiche, per ogni transetto è stato effettuato il calcolo dei seguenti parametri:

- Ricchezza specifica e/o tassonomica, ovvero numero totale di tutti i taxa megabentonici sessili e sedentari di fondo duro identificati al maggior dettaglio tassonomico possibile, rinvenuti lungo il transetto e loro lista (Tabella 7-12). In nessun caso si sono evidenziate specie che con la loro presenza/abbondanza siano arrivate a strutturare un habitat.
- ¬ Presenza di rifiuti antropici lungo i 200 m di transetto, identificati in alcuni *frame* fotografici dei tre transetti (Tabella 7-13). Per l'identificazione dei rifiuti ci si è riferiti alla *Joint List Marine Litter*. Per ciascun rifiuto contato e identificato è stato indicato se questo impiglia/ricopre (*entanglement*) o meno organismi bentonici.

Per le specie strutturanti epi-megazoobentoniche non è stato possibile calcolare alcuni parametri, come per es. l'abbondanza specifica o lo stato di salute, a causa della bassa qualità delle immagini dei video ROV.

<i>Frame</i> fotografico Filmato ROV OS_35	Tipologia di substrato	Presenza (1)/assenza (0) specie strutturanti	n taxa megabentonici sessili e sedentari	Biocoverage
OS_35_01	Mobile	0	0	0
OS_35_02	Mobile	0	0	0
OS_35_03	Mobile	0	0	0
OS_35_04	Mobile	0	1	0
OS_35_05	Mobile	0	0	0
OS_35_06	Mobile	0	0	0
OS_35_07	Mobile	0	0	0
OS_35_08	Mobile	0	0	0
OS_35_09	Mobile	1	1	0
OS_35_10	Mobile/duro	1	1	0
OS_35_11	Mobile/duro	1	1	+
OS_35_12	Mobile/duro	1	1	++
OS_35_13	Mobile	1	2	++
OS_35_14	Mobile/duro	1	1	+
OS_35_15	Mobile	1	1	0
OS_35_16	Mobile	0	0	0

Tabella	7-10.	Informaz	zioni s	ui <i>frame</i>	fotogra	fici dei	i filmati	relativi a	i transetti	OS 35	. OS	48 e OS	49
											, ~~		

OS_35_17	Mobile	0	0	0
OS_35_18	Mobile	0	0	0
OS_35_19	Mobile	0	0	0
OS_35_20	Mobile	0	0	0
Frame fotografico	Tipologia di	Presenza	n taxa	D'
Filmato ROV OS_48	substrato	(1)/assenza (0) specie strutturanti	sessili e sedentari	Biocoverage
OS_48_01	Mobile	0	0	0
OS_48_02	Mobile	1	1	0
OS_48_03	Mobile	1	1	0
OS_48_04	Mobile	1	1	0
OS_48_05	Mobile	1	4	+
OS_48_06	Mobile	0	1	0
OS_48_07	Mobile	0	0	0
OS_48_08	Mobile	0	0	0
OS_48_09	Mobile	1	1	0
OS_48_10	Mobile	1	1	0
OS_48_11	Mobile	0	0	0
OS_48_12	Mobile	0	0	0
OS_48_13	Mobile	0	1	0
OS_48_14	Mobile	0	0	0
OS_48_15	Mobile	0	0	0
OS_48_16	Mobile	0	1	0
OS_48_17	Mobile	0	1	0
OS_48_18	Mobile/duro	0	1	0
OS_48_19	Mobile	0	1	0
OS_48_20	Mobile	0	1	0
<i>Frame</i> fotografico Filmato ROV OS_49	Tipologia di substrato	Presenza (1)/assenza (0) specie strutturanti	n taxa megabentonici sessili e sedentari	Biocoverage
OS_49_01	Mobile	0	1	0
OS_49_02	Mobile	0	1	0
OS_49_03	Mobile	0	1	0
OS_49_04	Mobile	0	1	0
OS_49_05	Mobile	0	1	0
OS_49_06	Mobile	0	1	0
OS_49_07	Mobile	0	0	0
OS_49_08	Mobile	0	0	0
OS_49_09	Mobile	0	0	0
OS_49_10	Mobile	0	0	0
OS_49_11	Mobile/duro	0	1	0
OS_49_12	Mobile	1	2	0

OS_49_13	Mobile	1	2	0
OS_49_14	Mobile	1	3	+
OS_49_15	Mobile	1	3	+
OS_49_16	Mobile	1	5	+
OS_49_17	duro	1	5	++
OS_49_18	duro	1	2	++
OS_49_19	duro	1	2	+
OS_49_20	Mobile	0	0	0

Tabella 7-11. Lista di specie strutturanti epi-megazoobentoniche

Phylum	Classe	Taxon		
Porifera	Demospongiae	Axinella cannabina		
Porifera	Demospongiae	Axinella polypoides		
Porifera	Demospongiae	Calyx nicaeensis		
Porifera	Demospongiae	Spongia lamella		
Porifera	Demospongiae	Sarcotragus foetidus		
Cnidaria	Hydrozoa	Errina aspera		
Cnidaria	Anthozoa	Acanthogorgia hirsuta		
Cnidaria	Anthozoa	Antipathella subpinnata		
Cnidaria	Anthozoa	Antipathes dichotoma		
Cnidaria	Anthozoa	Callogorgia verticillata		
Cnidaria	Anthozoa	Cladocora caespitosa		
Cnidaria	Anthozoa	Corallium rubrum		
Cnidaria	Anthozoa	Dendrophyllia cornigera		
Cnidaria	Anthozoa	Dendrophyllia ramea		
Cnidaria	Anthozoa	Ellisella		
Cnidaria	Anthozoa	Eunicella cavolinii		
Cnidaria	Anthozoa	Eunicella singularis		
Cnidaria	Anthozoa	Eunicella verrucosa		
Cnidaria	Anthozoa	Leptogorgia sarmentosa		
Cnidaria	Anthozoa	Paramuricea clavata		
Cnidaria	Anthozoa	Paramuricea macrospina		
Cnidaria	Anthozoa	Savalia savaglia		
Cnidaria	Anthozoa	Viminella flagellum		
Cnidaria	Anthozoa	Parantipathes larix		
Cnidaria	Anthozoa	Leiopathes glaberrima		
Bryozoa	Gymnolaemata	Myriapora truncata		
Bryozoa	Gymnolaemata	Pentapora fascialis		

 Tabella 7-12. Taxa megabentonici identificati nei *frame* fotografici dei filmati relativi ai transetti OS_35, OS_48 e OS_49

 *=Valutazione presenza difficoltosa a causa della bassa qualità delle immagini

 **= Maggior dettaglio tassonomico non possibile a causa della bassa qualità delle immagini

<i>Frame</i> fotografico Filmato ROV OS_35	Таха		
OS_35_01	none		
OS_35_02	none		
OS_35_03	none		
OS_35_04	presenza di Stylocidaris affinis		
OS_35_05	none		
OS_35_06	none		
OS_35_07	none		
OS_35_08	presenza di Stylocidaris affinis		
OS_35_09	Acanthogorgia hirsuta		
OS_35_10	Acanthogorgia hirsuta		
OS_35_11	Acanthogorgia hirsuta		
OS_35_12	Acanthogorgia hirsuta		
OS_35_13	Acanthogorgia hirsuta + Sarcotragus foetidus*		
OS_35_14	Acanthogorgia hirsuta		
OS_35_15	Acanthogorgia hirsuta		
OS_35_16	none		
OS_35_17	none		
OS_35_18	none		
OS_35_19	none		
OS_35_20	none		
<i>Frame</i> fotografico Filmato ROV OS_48	Таха		
OS_48_01	none		
OS_48_02	Acanthogorgia hirsuta		
OS_48_03	Acanthogorgia hirsuta		
OS_48_04	Acanthogorgia hirsuta		
OS_48_05	Acanthogorgia hirsuta + Spongia lamella + Astrospartus mediterraneus + Pennatula sp		
OS_48_06	Acanthogorgia hirsuta		
OS_48_07	none		
OS_48_08	none		
OS_48_09	Acanthogorgia hirsuta		
OS_48_10	Acanthogorgia hirsuta		
OS_48_11	none		

OS_48_12	none		
OS_48_13	Pennatula spp		
OS_48_14	none		
OS_48_15	none		
OS_48_16	presenza di Stylocidaris affinis		
OS_48_17	presenza di Stylocidaris affinis		
OS_48_18	presenza di Stylocidaris affinis		
OS_48_19	presenza di Stylocidaris affinis		
OS_48_20	presenza di Stylocidaris affinis		
<i>Frame</i> fotografico Filmato ROV OS_49	Таха		
OS_49_01	presenza di Stylocidaris affinis		
OS_49_02	presenza di Stylocidaris affinis		
OS_49_03	presenza di Stylocidaris affinis		
OS_49_04	presenza di Stylocidaris affinis		
OS_49_05	presenza di Stylocidaris affinis		
OS_49_06	presenza di Stylocidaris affinis		
OS_49_07	none		
OS_49_08	none		
OS_49_09	none		
OS_49_10	none		
OS_49_11	Acanthogorgia hirsuta		
OS_49_12	Acanthogorgia hirsuta + Pennatula sp*		
OS_49_13	Acanthogorgia hirsuta + Pennatula sp*		
OS_49_14	Acanthogorgia hirsuta + Astrospartus mediterraneus* + Pennatula sp*		
OS_49_15	Acanthogorgia hirsuta + Astrospartus mediterraneus + Pennatula sp*		
OS_49_16	Acanthogorgia hirsuta + Astrospartus mediterraneus* + Spongia sp + Echinus melo + Alcionacei**		
OS_49_17	Acanthogorgia hirsuta + Astrospartus mediterraneus + Swiftia dubia* + Echinus melo + Alcionacei**		
OS_49_18	Eunicella cavolinii + Astrospartus mediterraneus		
OS_49_19	Acanthogorgia hirsuta + Swiftia dubia*		
OS_49_20	none		

<i>Frame</i> fotografico	Rifiuto	Type-Code	J-Code	G-Code	Quantità	Entanglement
OS_35_11	plastica	pl_fc_b&c_dbot_lage_	J8	G8	3	no
	cima	pl_nn_rps_strg_nodr_	J242		2	no
OS_35_14 -	metallo	me_vk_prt_	J193	G193	molte	no
	metallo	me_vk_prt_	J193	G193	molte	no
OS_35_15	metallo	me_vk_prt_	J193	G193	molte	no
	metallo	me_vk_prt_	J193	G193	molte	no
OS_35_16	metallo	me_vk_prt_	J193	G193	molte	no
OS_48_13	filo nylon	pl_fi_lin_	J59	G59	3	no
OS_49_17	cima	pl_nn_rps_rope_	J49	G49	1	no
OS_49_18	cima	pl_nn_rps_rope_	J49	G49	1	no

Tabella 7-13. List Marine Litter relativa ai transetti OS_35, OS_48 e OS_49

Il coralligeno può essere definito come "un complesso di biocenosi ricche in biodiversità che formano un paesaggio di organismi animali e vegetali sciafili e perennanti con un concrezionamento più o meno importante fatto di alghe calcaree" (UNEP/MAP-RAC/SPA, 2008). Secondo Ballesteros (2006) il coralligeno è un substrato duro, secondario, formato dal concrezionamento prodotto da organismi (sia animali sia vegetali). In nessuno dei transetti analizzati attraverso le immagini nell'area marina oggetto di questo studio è stato possibile identificare la presenza di coralligeno *sensu strictu*. Nella maggior parte dei fotogrammi l'habitat a coralligeno è risultato assente e in alcuni casi vi erano delle coralline sparse. La specie epi-megazoobentonica maggiormente presente è risultata essere *Acanthogorgia hirsuta*. Si segnala, inoltre, lungo i transetti *off-shore* OS_51 e OS_52 la presenza di fondi a maerl/rodoliti.

Nella Figura 7-1 si riporta la tipologia del fondale marino per i tre transetti analizzati per il coralligeno (OS_35, OS_48 e OS_49), così come indicato dal protocollo MATTM 2019.

Figura7-1. Carta tipologia fondale per ogni transetto

7.1 Bibliografia

- Ballesteros E., 2006. Mediterranean coralligenous assemblages: a synthesis of present knowledge. Oceanography and Marine Biology: an Annual Review 44, 123-195.
- MATTM, 201. Scheda metodologica per le attività di monitoraggio di specie ed habitat marini delle Direttive92/43/CE "Habitat" e 2009/147/CE "Uccelli" previste dal DM 11/2/2015 di attuazione dell'art.11 del D. Lgs 190/2010, Modulo 7.
- UNEP/MAP-RAC/SPA, 2008. Action Plan for the Conservation of the Coralligenous and Other Calcareous Bio-concretions in the Mediterranean Sea. RAC/SPA publ., Tunis, 21 p.

8. MACROZOOBENTHOS DI FONDO MOBILE

Lo studio del macrozoobenthos di fondo mobile, in accordo a quanto previsto dal DM 24/01/1996, è stato effettuato sui campioni prelevati nelle stazioni *near-shore* e *off-shore* (in doppia replica) dell'area marino-costiera di Marsala. La stazione a 600 m dalla costa non è stata campionata per il macrozoobenthos, così come descritto nel cap. 3; pertanto i campioni *near-shore* sono risultati n. 10 e quelli dell'*off-shore* n. 8, per un totale di 18 campioni.

In Tabella 4-38-1 sono indicate le stazioni campionate da CoNISMa e quelle campionate da RINA e le sigle dei campioni utilizzate per le analisi del macrozoobenthos.

STAZIONE	SIGLA CAMPIONE	AREA	CAMPIONAMENTO A CURA DI
HNS_1	HNS_1-R1 e HNS_1-R2	near-shore	CoNISMa
HNS_2	HNS_2-R1 e HNS_2-R2	near-shore	CoNISMa
HNS_3	NO MACROZOOBENTHOS	near-shore	CoNISMa
HNS_4	HNS_4-R1 e HNS_4-R2	near-shore	CoNISMa
HNS_5	HNS_5-R1 e HNS_5-R2	near-shore	CoNISMa
HNS_6	HNS-6-R1 e HNS-6-R2	near-shore	CoNISMa
HAN21EC_01_GS	01_GS-R1 e 01_GS-R2	off-shore	RINA
HAN21EC_02_GS	02_GS-R1 e 02_GS-R2	off-shore	RINA
HAN21EC_04_GS	04_GS-R1 e 04_GS-R2	off-shore	RINA
HAN21EC_05_GS	05_GS-R1 e 05_GS-R2	off-shore	RINA

Tabella 8-1. Elenco stazioni e sigla dei campioni del macrozoobenthos

I campioni di macrozoobenthos sono stati trattati in laboratorio seguendo la seguente procedura:

- *sorting* e suddivisione degli organismi per grandi taxa;
- determinazione sistematica fino al livello di specie ove possibile;
- annotazione dei conteggi di abbondanza relativa per ciascun taxon.

Il *sorting* è stato effettuato tramite stereo-microscopio (Wild M3, Leica) al fine di suddividere i vari taxa presenti, che sono stati recuperati e conservati in una soluzione di etanolo/acqua di mare al 70% per la successiva fase di determinazione tassonomica. I taxa selezionati sono stati i Molluschi, gli Anellidi Policheti, i Crostacei e gli Echinodermi; gli altri gruppi presenti sono stati comunque identificati e conservati.

La determinazione sistematica fino al livello di genere o di specie, ove possibile, è stata effettuata tramite stereomicroscopio (Wild M3, Leica) e microscopio ottico (Konus).

Per la determinazione dei Molluschi sono stati utilizzati i testi di Aartsen (1982), Bedulli et al. (1995a; b), Bodon et al. (1995a; b), Giannuzzi-Savelli et al. (1997), Nordsieck (1968; 1972; 1982), Piani (1980), Poppe & Goto (1991; 1993), Sabelli et al. (1990-92; 1994) e Schiaparelli (1994). Per la determinazione degli Anellidi Policheti sono stati utilizzati i testi di Beesley et al. (2000), Campoy (1982), Castelli et al. (1995; 2005-06), Fauchald (1977), Fauvel (1923), Pettibone (1982) e San Martin (1984). Per la determinazione dei Crostacei Decapodi sono stati utilizzati i testi di D'Udekem d'Acoz (2007), Falciai & Minervini (1992), ForestT & Zariquiey Alvarez (1964), García-Gómez (1994), Ingle (1993), Ngoc-Ho (2003), Noel (1992) e Zariquiey Alvarez (1968). Infine, per gli Echinodermi sono stati utilizzati i testi di Tortonese (1965; 1979).

Per la nomenclatura aggiornata dei Taxa riscontrati si è utilizzato il sito WORMS (*World Register of Marine Species* – http://www.marinespecies.org/).

Nei campioni oggetto di questo studio sono stati riscontrati complessivamente n° 102 taxa animali e 402 individui, come indicato in Tabella 8-2. Le % di ripartizione sono mostrate nelle Figure 8-1 e 8-2.

	N. TAXA	N. INDIVIDUI
CRUSTACEA	39	110
ANELLIDA POLYCHAETA	33	97
MOLLUSCA	23	172
ECHINODERMATA	5	16
SIPUNCULA	1	5
CHORDATA	1	2
TOTALE	102	402

Tabella 2. Ripartizione del macrozoobenthos

Figura 8-1. Ripartizione del macrozoobenthos: n. taxa.

Figura 8-2. Ripartizione del macrozoobenthos: n. individui.

I dati relativi all'analisi quali-quantitativa delle specie di macroinvertebrati bentonici ritrovate nei campioni di Marsala sono riportati in Tabella 8-3. In Tabella 8-4 è, invece, riportata la matrice specie/stazione, con gli indici di frequenza di Dajoz (1971) e di Glemarec (1969). In Tabella 8-5 è riportato l'elenco faunistico.

Tabella 8-3	Matrice s	necie	macrozoo	benthos	ner cam	nione
Tabena 0-5.	Maniec 5	peere	macrozoo	ocintinos	per cam	pione

Campione	HNS_1-R1	HNS_1-R2	HNS_2-R1	HNS_2-R2	HNS_4-R1	HNS_4-R2	HNS_5-R1	HNS_5-R2	HNS_6-R1	HNS_6-R2	01_GS-R1	01_GS-R2	02_GS-R1	02_GS-R2	04_GS-R1	04_GS-R2	05_GS-R1	05_GS-R2
Crustacea																		
Apseudopsis latreillii	5	1	3	8		1			1						2			
Apseudes talpa					3					1								
Tuberapseudes echinatus					2													
Leptochelia sp.					1	1		2					1			1	1	
Anthuridae ind.						1							1				1	
Gnathia vorax														1				
Gnathiidae ind.															1			
Sphaeroma serratum									1		1							
Sphaeromatidae ind.					1			2		1								
Eurydice truncata																		1
Asellota ind.												1						
Ampelisca brevicornis	5	-	1	3														
Apherusa bispinosa														2				
Gammarella fucicola								1			1		1		1			
Hyale sp.						2												
Hippomedon massiliensis	1			1														
Lepidepecreum longicorne		-															1	
Lysianassidae ind.							1											
Leucothoe sp.					1													
Leptocheirus sp.														2				
Microdeutopus sp.												1					1	
Elasmopus sp.							1					1	1					
Maera grossimana														7				
Maeridae ind.																	1	
Stenothoe sp.											1							
Gammaropsis sp.												1						
Caprella sp.																		
Phtisica marina														1				
Bodotriidae ind.	2	2																
Processa sp.																	1	
Galathea intermedia														4				
Liocarcinus marmoreus		1																
Carcinus sp.							1											
Brachyura ind.						1												
Diogenes pugilator		1	2															

	C	oNI	SM	a														
	Cons Inter per l	orzio Na runiversi e Scienz	zionale tario e del Ma	ire														
Anapagurus sp.					3													
Pagurina sp.						2												
Cypridina mediterrianea																		1
Harpacticoida ind.											1		1					
Anellida Polychaeta																		
Abyssoninoe sp.			2									1		1				
Aonides paucibranchiata					4		1	4					3				1	
Aponuphis sp.									1									
Capitella capitata			1	2														
Chaetozone sp.									1									
Eunice pennata								1										
Eunice sp.			1															
Eunice collaris					1			1										
Platynereis sp.						2												
Glycera alba											1			1				
Goniada sp.																		3
Hesione sp.												1		1				
Hydroides sp.											1							
Lumbrineris latreilli				5									1	4				
Laonice sp.														1				
Lumbrineridae ind.																1		
Magelona rosea				2														
Maldanidae ind.								1										
Paucibranchia bellii							4	6										
Lysidice unicornis	1							1										
Nephtyidae ind.		1	1															
Nereididae ind.											1	4					1	3
Owenia fusiformis	2																	
Paradoneis lyra														1	1			
Phyllodoce sp.													1				1	
Pseudopolydora paucibranchiata													1					
Polyophthalmus pictus																		
Protodorvillea kefersteini													1	1		1		
Eulalia sp.														1				
Sigalion mathildae	1														2			
Syllis hyalina											1	1						
Syllis sp.							1	1	1	1								
Terebellidae ind.		1	1					1										
Mollusca																		

×	C	oNI	SM	a												
	Cons Inter per l	orzio Na runiversi e Scienz	zionale tario e del Ma	ire												
Lucinella divaricata	36	15	14	7												
Fabulina fabula			2	2												
Solemya togata		1	1													
Peronidia albicans	2															
Glans trapezia								1								
Myrtea spinifera					1											
Nucula sulcata					1									4		
Lentidium mediterraneum									1	1						
Smaragdia viridis										1		1				
Laevicardium crassum											1					
Rissoa violacea											1	1				
Timoclea ovata											1	10	4	9	7	4
Gouldia minima												1				
Dosinia exoleta												1				
Parvicardium exiguum												1	3			1
Varicorbula gibba													2	1	1	4
Clausinella fasciata													1		1	
Coripia corbis															4	2
Digitaria digitaria													3		2	1
Calyptraea chinensis															1	
Acanthocardia tuberculata																1
Goodallia triangularis													7	1		3
Gonilia calliglypta													1			
Echinodermata																
Centrostephanus longispinus iuv.											1	1			1	
Echinocyamus pusillus					1							1	1		1	
Amphipolis squamata												1			1	
Holothuroidea ind. sp. 1											3	1			1	1
Holothuroidea ind. sp. 2											1					
Sipuncula																
Sipunculidae ind.					1		1		1				1			1
Chordata						 		 								
Branchiostoma lanceolatum												2				

Tabella 8-4. Matrice specie macrozoobenthos per stazione dei campioni sottoposti a determinazione, con dati di frequenza e indici di Glemarec e Dajoz.

Stazione	HNS_1	HNS_2	HNS_4	HNS_5	HNS_6	01_GS	02_GS	04_GS	05_GS	N. individui	Frequenza %	Ind. Glemarec	Ind. Dajoz
Crustacea										•			
Apseudopsis latreillii	6	11	1		1			2		21	5	5,22	55,6
Apseudes talpa			3		1					4	2	1,00	22,2
Tuberapseudes echinatus			2							2	1	0,50	11,1
Leptochelia sp.			2	2			1	1	1	7	5	1,74	55,6
Anthuridae ind.			1				1		1	3	3	0,75	33,3
Gnathia vorax							1			1	1	0,25	11,1
Gnathiidae ind.								1		1	1	0,25	11,1
Sphaeroma serratum					1	1				2	2	0,50	22,2
Sphaeromatidae ind.			1	2	1					4	3	1,00	33,3
Eurydice truncata									1	1	1	0,25	11,1
Asellota ind.						1				1	1	0,25	11,1
Ampelisca brevicornis	5	4								9	2	2,24	22,2
Apherusa bispinosa							2			2	1	0,50	11,1
Gammarella fucicola				1		1	1	1		4	4	1,00	44,4
Hvale sp.			2							2	1	0,50	11.1
Hippomedon massiliensis	1	1	_							2	2	0.50	22.2
Lepidepecreum longicorne									1	1	-	0.25	11.1
Lysianassidae ind				1					-	1	1	0.25	11,1
Leucothoe sp			1							1	1	0,25	11.1
Lentocheirus sp			1				2			2	1	0,25	11,1
Microdeutopus sp.						1			1	2	2	0,50	22.2
Flasmonus en				1		1	1		1	2	2	0,55	22,2
Etusmopus sp.				1		1	7			7	1	1.74	11.1
Maeridaa ind							/		1	1	1	0.25	11,1
Stanathan on						1			1	1	1	0,25	11,1
Stenotnoe sp.						1				1	1	0,25	11,1
Gammaropsis sp.						1				1	1	0,25	11,1
Caprella sp.										0	0	0,00	0,0
Phtisica marina							1			1	1	0,25	11,1
Bodotriidae ind.	4									4	1	1,00	11,1
Processa sp.									1	1	1	0,25	11,1
Galathea intermedia							4			4	1	1,00	11,1
Liocarcinus marmoreus	I									1	1	0,25	11,1
Carcinus sp.				1						1	1	0,25	11,1
Brachyura ind.			1							1	1	0,25	11,1
Diogenes pugilator	1	2								3	2	0,75	22,2
Anapagurus sp.			3							3	1	0,75	11,1
Pagurina sp.			2							2	1	0,50	11,1
Cypridina mediterrianea									1	1	1	0,25	11,1
Harpacticoida ind.						1	1			2	2	0,50	22,2
Polychaeta													
Abyssoninoe sp.		2				1	1			4	3	1,00	33,3
Aonides paucibranchiata			4	5			3		1	13	4	3,23	44,4
Aponuphis sp.					1					1	1	0,25	11,1
Capitella capitata		3								3	1	0,75	11,1
Chaetozone sp.					1					1	1	0,25	11,1
Eunice pennata				1						1	1	0,25	11,1
Eunice sp.		1								1	1	0,25	11,1
Eunice collaris			1	1						2	2	0,50	22,2
Platynereis sp.			2							2	1	0,50	11,1
Glycera alba						1	1			2	2	0,50	22,2

Goniada sp.									3	3	1	0,75	11,1
Hesione sp.						1	1			2	2	0,50	22,2
Hydroides sp.						1				1	1	0,25	11,1
Lumbrineris latreilli		5					5			10	2	2,49	22,2
Laonice sp.							1			1	1	0,25	11,1
Lumbrineridae ind.								1		1	1	0,25	11,1
Magelona rosea		2								2	1	0,50	11,1
Maldanidae ind.				1						1	1	0,25	11,1
Paucibranchia bellii				10						10	1	2,49	11,1
Lysidice unicornis	1			1						2	2	0,50	22,2
Nephtyidae ind.	1	1								2	2	0,50	22,2
Nereididae ind.						5			4	9	2	2,24	22,2
Owenia fusiformis	2									2	1	0,50	11,1
Paradoneis lyra							1	1		2	2	0,50	22,2
Phyllodoce sp.							1		1	2	2	0,50	22,2
Pseudopolydora							1			1	1	0.25	11.1
paucibranchiata										1	-	0,25	
Polyophthalmus pictus										0	0	0,00	0,0
Protodorvillea kefersteini							2	I		3	2	0,75	22,2
Eulalia sp.				<u> </u>			1	-		1	1	0,25	11,1
Sigalion mathildae	1							2		3	2	0,75	22,2
Syllis hyalina						2				2	1	0,50	11,1
Syllis sp.				2	2					4	2	1,00	22,2
Terebellidae ind.	1	1		1						3	3	0,75	33,3
Mollusca		1	1	r	1	1	r			r	r		
Lucinella divaricata	51	21								72	2	17,91	22,2
Fabulina fabula		4								4	1	1,00	11,1
Solemya togata	1	1								2	2	0,50	22,2
Peronidia albicans	2									2	1	0,50	11,1
Glans trapezia					1					1	1	0,25	11,1
Myrtea spinifera			1							1	1	0,25	11,1
Nucula sulcata			1					4		5	2	1,24	22,2
Lentidium mediterraneum						2				2	1	0,50	11,1
Smaragdia viridis						1	1			2	2	0,50	22,2
Laevicardium crassum							1			1	1	0,25	11,1
Rissoa violacea							2			2	1	0,50	11,1
Timoclea ovata							11	13	11	35	3	8,71	33,3
Gouldia minima							1			1	1	0,25	11,1
Dosinia exoleta							1			1	1	0,25	11,1
Parvicardium exiguum							1	3	1	5	3	1,24	33,3
Varicorbula gibba								3	5	8	2	1,99	22,2
Clausinella fasciata								1	1	2	2	0,50	22,2
Coripia corbis									6	6	1	1,49	11,1
Digitaria digitaria								3	3	6	2	1,49	22,2
Calyptraea chinensis									1	1	1	0,25	11,1
Acanthocardia tuberculata									1	1	1	0,25	11,1
Goodallia triangularis								8	3	11	2	2,74	22,2
Gonilia calliglypta								1		1	1	0,25	11,1
Echinodermata													
Echinocyamus pusillus			1				1	1	1	4	4	1,00	44,4
Centrostephanus longispinus iuv.							2		1	3	2	0,75	22,2
Amphipolis squamata							1		1	2	2	0,50	22,2
Holothuroidea ind. sp. 1							4		2	6	2	1,49	22,2
Holothuroidea ind. sp. 2	1		1	1	1	1	1	-	-	1	1	0,25	11,1
Sipuncula		•	•										•
Sipunculidae ind.			1	1		1		1	1	5	5	1,24	55,6
	•			•	•		•						

Chordata									
Branchiostoma lanceolatum				2		2	1	0,50	11,1

Tabella	8-5.	Elenco	faunistico.
---------	------	--------	-------------

Phylum/Subphylum	Ordine/Classe	Sottoclasse/Ordine	Sottordine/Famiglia	Taxon	Autore
1 ilyiuii/Subpilyiuii	orume/classe	Sottoenasse/or unit	Ampeliscidae	Ampelisca hrevicornis	Costa 1853
			Aoridae	Microdeutopus sp	Costa 1853
			Callioniidae	Anherusa hisninosa	Spence Bate 1857
				Canrella sp	Lamarck 1801
			Caprellidae	Phtisica marina	Slabber 1769
			Corophiidae	Lentocheirus sp	Zaddach 1844
			Hvalidae	Hvale sp	Rathke 1836
			Leucothoidae	Leucothoe sp	Leach 1814
		Amphipoda	Lysianassidae	Lysianassidae ind	Dana, 1849
			2.55	Elasmonus sp	Costa 1853
			Maeridae	Maera grossimana	Montagu, 1808
				Maeridae ind.	Krapp-Schickel, 2008
			Nuuanuidae	Gammarella fucicola	Leach, 1814
			Photidae	Gammaropsis sp.	Lillieborg, 1855
			Stenothoidae	Stenothoe sp.	Dana, 1852
			T 1 1	Hippomedon massiliensis	Bellan-Santini, 1965
			Tryphosidae	Lepidepecreum longicorne	Spence Bate & Westwood, 1861
	Malagastraga	Cumacea	Bodotriidae	Bodotriidae ind.	Scott, 1901
Arthropodo	Malacostraca		Carcinidae	Carcinus sp.	Leach, 1814 [in Leach, 1813-1815]
Artinopoua			Diogenidae	Diogenes pugilator	Roux, 1829
			Galatheidae	Galathea intermedia	Lilljeborg, 1851
		Deserveda	De anadide e	Anapagurus sp.	Henderson, 1886
		Decapoda	raguridae	Pagurina sp.	Lemaitre, Felder & Poupin, 2017
			Polybiidae	Liocarcinus marmoreus	Leach, 1814 [in Leach, 1813-1815]
			Processidae	Processa sp.	Leach, 1815 [in Leach, 1815-1875]
			-	Brachyura ind.	Latreille, 1802
			Anthuridae	Anthuridae ind.	Leach, 1814
			Cirolanidae	Eurydice truncata	Norman, 1868
			Cnathiidae	Gnathia vorax	Lucas, 1849
		Isopoda	Ghatimuae	Gnathiidae ind.	Leach, 1814
			Sphaeromatidae	Sphaeroma serratum	Fabricius, 1787
			Sphueromundue	Sphaeromatidae ind.	Latreille, 1825
				Asellota ind.	Latreille, 1802
				Apseudes talpa	Montagu, 1808
		Tanaidacea	Apseudidae	Apseudopsis latreillii	Milne Edwards, 1828
		- unit unit unit unit unit unit unit unit		Tuberapseudes echinatus	Sars, 1882
			Leptocheliidae	Leptochelia sp.	Dana, 1849
	Ostracoda	L Myodocopida C Harpacticoida	Cypridinidae	Cypridina mediterranea	Claus, 1873
	Hexanauplia			Harpacticoida ind.	Sars, 1903
			Dorvilleidae	Protodorvillea kefersteini	McIntosh, 1869
				Eunice collaris	Grube, 1870
			Eunice pennata	Müller, 1776	
Annelida	Annelida Polychaeta Eun	Eunicida	Eunicidae	Eunice sp.	Cuvier, 1817
	-			Lysidice unicornis	Grube, 1840
		Paucibranchia bellii	Audouin & Milne Edwards, 1833		
		Lumbrineridae	Abyssoninoe sp.	Orensanz, 1990	
				Lumbrineridae ind.	Schmarda, 1861

				Lumbrineris latreilli	Audouin & Milne Edwards, 1833
			Onuphidae	Aponuphis sp.	Kucheruk, 1978
			Glyceridae	Glycera alba	Müller, 1776
			Goniadidae	Goniada sp.	Audouin & Milne Edwards, 1833
			Hesionidae	Hesione sp.	Lamarck, 1818
			Nephtyidae	Nephtyidae ind.	Grube, 1850
			Noroididao	Nereididae ind.	Blainville, 1818
		Phyllodocida	iver cluluae	Platynereis sp.	Kinberg, 1865
			Phyllodocidae	Eulalia sp.	Savigny, 1822
			Thynouocluae	Phyllodoce sp.	Lamarck, 1818
			Sigalionidae	Sigalion mathildae	Audouin & Milne Edwards, 1832
			Syllidae	Syllis hyalina	Grube, 1863
			Symuae	Syllis sp.	Lamarck, 1818
		Polychaota inc. sodis	Magelonidae	Magelona rosea	Moore, 1907
		i orychaeta me. seuis	Oweniidae	Owenia fusiformis	Delle Chiaje, 1844
		Sabellida	Serpulidae	Hydroides sp.	Gunnerus, 1768
			Capitellidae	Capitella capitata	Fabricius, 1780
		Scolecida	Maldanidae	Maldanidae ind.	Malmgren, 1867
			Opheliidae	Polyophthalmus pictus	Dujardin, 1839
		Sedentaria	Paraonidae	Paradoneis lyra	Southern, 1914
		-		Aonides paucibranchiata	Southern, 1914
		a	a	Laonice sp.	Malmgren, 1867
		Spionida	Spionidae	Pseudopolydora	Okuda, 1937
				paucibranchiala	
		Terebellida	Cirratulidae	Chaetozone sp.	Malmgren, 1867
			Terebellidae	Terebellidae ind.	Johnston, 1846
		[1		1750
			Cardiidaa	Acanthocardia tuberculata	Linnaeus, 1758
		Cardiida	Carunuae	Laevicardium crassum	Gmelin, 1791
		Carunua		Parvicardium exiguum	Gmelin, 1791
			Tellinidae	Fabulina fabula	Gmelin, 1791
				Peronidia albicans	Gmelin, 1791
			Astartidae	Digitaria digitaria	Linnaeus, 1758
		Carditida	Astartuac	Gonilia calligiypta	Dall, 1905
		Carultua		Goodalita triangularis	Dhiliani 1926
	Bivalvia		Carditidae	Cortpla corbis	
				Gians trapezia	Linnaeus, 1767
Mollusca		Lucinida	Lucinidae	Lucinetta atvaricata	Montony 1902
				Myried spinijera	Molitagu, 1805
		Myida	Corbulidae	Varioorbula gibba	
		Nuculida	Nuculidae	Nucula sulcata	Bronn 1831
		Solomvida	Solomvidao	Solamya togata	Poli 1701
		Solemylua	Solemyldae	Clausipalla fasciata	da Costa 1778
				Dosinia evoleta	Linnaeus 1758
		Venerida	Veneridae	Gouldia minima	Montagu 1803
				Timoclea ovata	Pennant 1777
		Cycloneritida	Neritidae	Smaraodia viridis	Linnaeus 1758
	Gastropoda		Calvotraeidae	Calvotraea chinensis	Linnaeus, 1758
		Littorinimorpha	Rissoidae	Rissoa violacea	Desmarest 1814
	1		Laboutute	and the second s	2 comment, 1017
		Clypeasteroida	Fibulariidae	Echinocyamus pusillus	Müller, 1776
	Echinoidea	Diadematoida	Diadematidae	Centrostephanus Ionaisninus	Philippi 1845
Echinodermata	Holothuroidea	Diadematolua	Zinacinanan	Holothuroidea ind	
	Ophiuroidea	Amnhilenidida	Amphiuridae	Amphinolis sauamata	Delle Chiaie, 1828
	opiniu oluca	ampinicpiulua	pinui luac	impropons squantutu	Dene Chiaje, 1020

Sipuncula	Sipunculidea	Golfingiida	Sipunculidae	Sipunculidae ind.	Rafinesque, 1814
Chordata	Leptocardii		Branchiostomatidae	Branchiostoma lanceolatum	Pallas, 1774

Per ogni stazione sono stati calcolati i seguenti indici: l'Indice di diversità di Shannon-Wiener (1948-1949), l'Indice di Ricchezza specifica di Margalef (1958), l'Indice di Equitabilità o Evenness (Pielou, 1966) e l'Indice di Dominanza (Simpson, 1949).

L'indice di Diversità di Shannon-Wiener è stato calcolato sulla base dei dati di abbondanza, tramite la seguente formula:

$$H = -\sum_{i=1}^{S} \frac{ni}{N} \times \ln \frac{ni}{N}$$

dove N = numero di individui totale del campione e ni = numero di individui della specie i.

L'indice di Ricchezza specifica di Margalef prende in considerazione il rapporto tra il numero di specie totali e il numero totale di individui in una comunità. Quante più specie sono presenti nel campione, tanto più alto sarà tale indice. La formula utilizzata è stata la seguente:

$$D = (S-1)/\ln^* N$$

Dove S = numero totale di specie della comunità e N = numero totale di individui.

<u>L'indice di Equitabilità o Evenness</u> stima la distribuzione degli individui nell'ambito delle varie specie che compongono una comunità. Tale indice presenta il valore massimo (1) nel caso teorico in cui tutte le specie siano presenti con la stessa abbondanza, mentre presenta un valore basso nel caso in cui ci sia una sola specie abbondante e numerose specie con pochi individui. La formula applicata è stata.

$$J = H'/\log_2 * S$$

Dove H' = valore dell'indice di Shannon-Wiener per quella comunità e S = il numero delle specie.

L'indice di Dominanza di Simpson esprime la concentrazione delle specie o taxon all'interno della comunità, e si calcola con la seguente formula:

$1 - \lambda = 1 - \sum (n_i/N)^2$

Dove N = numero di individui totale del campione e ni = numero di individui della specie i.

I risultati degli indici appena descritti sono riportati in Tabella 8-6. Mediamente si nota una maggiore ricchezza di taxa nelle stazioni *off-shore* rispetto a quelle *near-shore*. Il maggior numero di taxa è stato riscontrato nella stazione

02-GS, con n. 35 taxa, mentre il minore nella stazione HNS_6, con n. 8 taxa. Il valore massimo di Abbondanza, espressa in n° di individui, è risultato nella stazione HNS_1, con 78 individui, e il minimo nella stazione HNS_6, con 9 individui.

La Diversità, calcolata tramite l'indice di Shannon-Wiener, ha mostrato il valore maggiore nella stazione 02-GS con H'=4,58, e quello minore nella stazione HNS_1, con H' = 2,08.

La Ricchezza specifica, calcolata con l'indice di Margalef, è risultata maggiore nella stazione 02-GS, con d = 7,79, è minore nella stazione HNS_1, con D = 2,98.

L'Evenness, calcolata con l'indice di Pielou, ha presentato il valore maggiore nella stazione HNS_6, con J = 0,98, mentre il valore minore è stato riscontrato nella stazione HNS_1, con J = 0,55.

Infine, la Dominanza, calcolata con l'indice di Simpson, ha raggiunto il livello più alto nella stazione HNS_6, con $1-\lambda = 0.97$, e quello più basso nella stazione HNS_1, con $1-\lambda = 0.56$.

		MARSALA NEAR-SHORE MARSALA OFF-SHORE							
	HNS_1	HNS_2	HNS_4	HNS_5	HNS_6	01-GS	02-GS	04-GS	05-GS
CRUSTACEA									
N. individui	18	18	19	8	4	8	22	5	8
N. taxa	6	4	11	6	4	8	11	4	8
ANELLIDA POLYCHAETA									
N. individui	6	15	7	22	4	11	18	5	9
N. taxa	5	7	3	8	3	6	11	4	4
MOLLUSCA									
N. individui	54	26	2	0	1	3	18	36	32
N. taxa	3	3	2	0	1	2	7	8	9
ECHINODERMATA									
N. individui	0	0	1	0	0	0	4	1	3
N. taxa	0	0	1	0	0	0	3	1	3
SIPUNCULA									
N. individui	0	0	1	1	0	1	0	1	1
N. taxa	0	0	1	1	0	1	0	1	1
CHORDATA									
N. individui	0	0	0	0	0	0	2	0	0
N. taxa	0	0	0	0	0	0	1	0	0
Totale N. di individui	78	59	30	31	9	23	69	48	55
Totale N. di taxa	14	14	18	15	8	17	35	18	26
Indice di Diversità di Shannon	2.08	3.02	3.99	3.32	2.95	3.85	4.58	3.54	4.16
Indice di Ricchezza specifica di Margalef	2.98	3.19	5.00	4.08	3.19	5.10	7.79	4.39	6.24
Indice di Evenness di Pielou	0.55	0.79	0.96	0.85	0.98	0.94	0.90	0.85	0.88
Indice di Dominanza di Simpson	0.56	0.83	0.96	0.88	0.97	0.95	0.95	0.89	0.94

Tabella 8-6. Risultati degli Indici ecologici per il macrozoobenthos

Sulla matrice di abbondanza è stata condotta, inoltre, un'analisi multivariata, dopo trasformazione dei dati secondo la radice quadrata, utilizzando l'analisi dei cluster (*Cluster Analysis*) ed il piano di ordinamento ottenuto tramite il *non-metric MultiDimensional Scaling* (nMDS). La matrice di similarità è stata ottenuta attraverso l'indice di Bray-Curtis (Clarke & Warwick, 1994). Gli indici ecologici, la matrice di similarità, l'analisi dei *cluster* e l'nMDS sono stati elaborati tramite l'impiego del software PRIMER (*Plymouth Marine Laboratory*). I risultati della *Cluster analysis* e del n-MDS sono riportati nelle Figure 8-3 e 8-4, in cui si evidenzia una chiara separazione delle stazioni *near-shore* da quelle *off-shore*, sottolineando come la distanza dalla costa sia un elemento determinante nel differenziare le comunità macrozoobentoniche.

Figura 8-3. Risultati della Cluster analysis

Figura 8-4. n-MDS sulla matrice di abbondanza

La valutazione dello stato ecologico tramite lo studio della comunità macrozoobentonica di fondo mobile è stata effettuata applicando l'Indice M-AMBI (*Multivariate-Azti Marine Biotic Index*) (Muxika et al., 2007). Tale indice viene utilizzato per fornire una classificazione ecologica sintetica dell'ecosistema attraverso l'utilizzo dei parametri strutturali (diversità, ricchezza specifica e rapporto tra specie tolleranti/sensibili) della comunità macrozoobentonica di fondo mobile. La modalità di calcolo dell'M-AMBI prevede l'elaborazione delle suddette metriche con tecniche di analisi statistica multivariata.

L'indice AMBI, sotteso al M-AMBI, si calcola nel modo seguente:

 $AMBI = [(0 \ x \ \%GI) + (1,5 \ x \ \%GII) + (3 \ x \ \%GIII) + (4,5 \ x \ \%GIV) + (6 \ x \ \%GV)]/100$

dove GI, GII, ecc. sono i gruppi ecologici distinti in relazione alla sensibilità ai gradienti di stress ambientale:

- GI: specie sensibili
- GII: specie sensibili/tolleranti
- GIII: specie tolleranti

- GIV: specie opportuniste (secondo ordine)
- GV: specie opportuniste (primo ordine)

L'indice AMBI si basa, quindi, sulla classificazione delle specie di macroinvertebrati bentonici in 5 gruppi ecologici (EG) (Borja et al., 2000) e sulla successiva classificazione dello stato ecologico (Tabella 8-7).

Ecological status	AMBI
High	0.0 < AMBI ≤ 1.2
Good	1:2 < AMBI ≤ 3.3
Moderate	3.3 < AMBI ≤ 4.3
Poor	4.3 < AMBI ≤ 5.5
Bad	5.5 < AMBI ≤ 6.0 Azoic sediment (7.0)

Tabella 8-7. Classificazione AMBI

Il valore di M-AMBI viene calcolato mediante l'utilizzo di un apposito software, disponibile sul sito http://ambi.azti.es/, che tiene conto della lista delle specie e del relativo gruppo ecologico di appartenenza. Ai fini della classificazione della comunità di macroinvertebrati bentonici, i valori di qualità dello stato ecologico sono quelli indicati nella Tabella 8-8. I risultati degli indici AMBI e M-AMBI delle stazioni di Marsala sono riportati nelle Tabelle 8-9 e 8-10 e nelle Figure 8-5 e 8-6.

Tabella 8-8. Classificazione M-AMBI

Ecological status	M - AMBI
High	M-AMBI ≥ 0.85
Good	0.85 > M-AMBI ≥ 0.55
Moderate	0.55 > M-AMBI ≥ 0.39
Poor	0.39 > M-AMBI ≥ 0.20
Bad	0.20 > M-AMBI

Stazione	GI(%)	GII(%)	GIII(%)	GIV(%)	GV(%)	Mean AMBI	BI from Mean AMBI	Disturbance Classification	Richness	Diversity	Not assigned (%)
HNS_1	80.8	11	8.2	0	0	0.376	1	Undisturbed	14	2.07	6.4
HNS_2	60.3	15.5	19	0	5.2	1.1	1	Undisturbed	14	3.02	1.7
HNS_4	38.5	19.2	42.3	0	0	1.607	2	Slightly disturbed	18	3.99	13.3
HNS_5	10.7	53.6	35.7	0	0	1.864	2	Slightly disturbed	15	3.31	9.7
HNS_6	12.5	50	25	12.5	0	1.85	2	Slightly disturbed	8	2.95	11.1
01-GS	31.3	37.5	25	6.3	0	1.594	2	Slightly disturbed	17	3.84	30.4
02-GS	67.6	14.7	14.7	2.9	0	0.986	1	Undisturbed	34	4.58	1.4
04-GS	58.7	23.9	10.9	6.5	0	0.904	1	Undisturbed	18	3.54	4.2
05-GS	58	16	16	10	0	1.194	1	Undisturbed	26	4.16	9.1

Tabella 8-9. Risultati dell'analisi AMBI. BI=Biotic index

Tabella 8-10. Risultati dell'analisi AMBI e M-AMBI.

Stazione	AMBI	Diversity	Richness	X	Y	Z	M-AMBI	Status
<mark>Bad</mark>	6	0	0	3.25	-4.09	3.26	0	Bad
<mark>High</mark>	0.5	4.8	50	-2.79	1.81	-1.85	1	High
HNS_1	0.376	2.070	14	0.57	0.23	0.57	0.57	Moderate
HNS_2	1.100	3.020	14	0.37	0.11	0.18	0.59	Moderate
HNS_4	1.607	3.990	18	-0.15	0.22	-0.36	0.66	Good
HNS_5	1.864	3.310	15	0.34	-0.22	0.15	0.58	Moderate
HNS_6	1.850	2.950	8	0.93	-0.48	0.53	0.51	Moderate
01-GS	1.594	3.840	17	-0.03	0.15	-0.26	0.65	Good
02-GS	0.986	4.580	34	-1.54	1.11	-1.22	0.85	High
04-GS	0.904	3.540	18	-0.12	0.48	-0.25	0.67	Good
05-GS	1.194	4.160	26	-0.82	0.68	-0.74	0.75	Good

Figura 8-5. Risultati dell'analisi AMBI

Figura 8-6. Risultati dell'analisi M-AMBI

In conclusione, l'analisi delle comunità di macroinvertebrati bentonici provenienti dall'area marina di Marsala ha messo in evidenza tre raggruppamenti di biocenosi:

- le stazioni HNS_1 e HNS_2 dell'area *near-shore* appartengono alla SFBC Biocenosi delle Sabbie Fini ben Classate,
- le stazioni HNS_4, HNS_5 e HNS_6 hanno mostrato un popolamento eterogeneo estremamente diradato, vivente negli interstizi del materiale di disgregazione della calcarenite su cui si impianta la prateria di *Posidonia* e dal detrito organico grossolano, composto per lo più dalla fauna proveniente dalla circostante prateria,
- nell'area *off-shore*, tutti i campioni hanno mostrato una composizione bionomica ascrivibile al DC -Biocenosi del Detritico Costiero, più o meno infangato. Nella stazione 02-GS sono state, anche rinvenuti un paio di esemplari del Cefalocordato, *Branchiostoma lanceolatum* (Anfiosso), specie abbastanza rara ed indicatrice di fondali circalitorali e detritici sottoposti a forti correnti.

In generale, l'applicazione dell'indice M-AMBI ha permesso di classificare le stazioni di Marsala in uno Stato Ecologico che va da **Moderate** a **High**. La totalità delle stazioni *near-shore* possono essere classificate **Moderate**, tranne la stazione HNS_4, che ricade nella classe **Good**, mentre tutte le stazioni *off-shore* appartengono alla classe **Good**, tranne la Stazione 02-GS che ricade nella classe **High**. Nessuna Stazione è stata classificata **Bad**.

8.1 Bibliografia

- Bedulli D., Cattaneo-Vietti R., Chemello R., Ghisotti F. & Giovine F., 1995a. Gastropoda Opistobranchia, Divasibranchia, Gymnomorpha. In: Minelli A., Ruffo S. & La Posta S. (eds.), Checklist delle specie della fauna italiana, 15, Calderini, Bologna.
- Bedulli D., Castagnolo L., Ghisotti F. & Spada G., 1995b. Bivalvia, Scaphopoda. In: Minelli A., Ruffo S. & La Posta S. (eds.), Checklist delle specie della fauna italiana, 17, Calderini, Bologna.
- Beesley P.L., Ross G.J.B. & Glasby C.J. (eds). 2000. Polychaetes & Allies: the Southern Syntesis. Fauna of Australia. Vol. 4: Polychaeta, Myzostomida, Pogonophora, Echiura, Sipuncula. CSIRO Publishing, Melbourne: 465 pp.
- Bodon M., Favilli L., Giannuzzi Savelli R., Giovine F., Giusti F., Manganelli G., Melone G., Oliverio M., Sabelli B. & Spada G., 1995a. Gastropoda Prosobranchia, *Heterobranchia Heterostropha*. In: Minelli A., Ruffo S. & La Posta S. (eds.), Checklist delle specie della fauna italiana, 14, Calderini, Bologna.
- Bodon M., Favilli L., Giusti F. & Manganelli G.,1995b. Gastropoda Pulmonata. In: Minelli A., Ruffo S. & La Posta S. (eds.), Checklist delle specie della fauna italiana, 16, Calderini, Bologna.
- Borja A. & Muxika I., 2005. Guidelines for the use of AMBI (AZTI's Marine Biotic Index) in the assessment of the benthic ecological quality. Marine Pollution Bulletin, 50: 787-789.
- Borja A., Franco J. & Perez V., 2000. A marine biotic index to establish the ecological quality of soft bottom benthos within European estuarine and coastal environments. Marine Pollution Bulletin, 40(12): 1100-1114.
- Borja A., Mader J. & Muxika I. 2012. Instructions for the use of the AMBI index software (Version 5.0). Revista de Investigación Marina, AZTI-Tecnalia, 19(3): 71-82.
- Campoy A., 1982. Fauna de Anellidos Poliquetos de la Peninsula Iberica. Fauna de Espana, 7 (1, 2): 782 pp.
- Castelli A., Nike Bianchi C., Cantone G., Ertan Çinar M., Gambi M.C., Giangrande A., Iraci Sareri D., Lanera P., Licciano M., Musco L., Sanfilippo R., 2005-2006. Annelida Polychaeta. Checklist delle specie della fauna italiana. www.sibm.it.
- Castelli A., Abbiati M., Badalamenti F., Bianchi C.N., Cantone G., Gambi M.C., Giangrande A., Gravina M.F., Lanera P., Lardicci C., Somaschini A. & Sordino P., 1995. Annelida Polychaeta, Pogonophora, Echiura, Sipuncula. In: Minelli A., Ruffo A., La Posta S. (eds) Checklist delle specie della fauna italiana, Calderini, Bologna, 19: 1-45.
- Clarke K.R. & Warwick R.M., 1994 Changes in Marine Communities: An Approach to Statistical Analyses and Interpretation. Natural Environment Research Council, Plymouth.
- Dajoz R., 1971. Précis d'Écologie. Dunod, Paris. 273 p.
- d'Udekem d'Acoz C., 2007. New records of Atlantic Hippolyte, with the description of two new species, and a key to all Atlantic and Mediterranean species (Crustacea, Decapoda, Caridea). Zoosystema, 29(1): 183-207.
- Falciai L. & Minervini R., 1992. Guida dei Crostacei Decapodi d' Europa. F. Muzzio, Padova: pp. 282.
- Fauchald K., 1977. The Polychaete worms: definition and keys to the orders, families and genera. Nat. Hist. Mus. Los Angeles County (Sci. Ser.), 28: 1-188.
- Fauvel P., 1923. Polichètes errantes (Faune de France, 5). Lechevelier, Paris.
- Forest J. & Zariquiey Alvarez R., 1964. Le genre Macropodia Leach en Méditerranée. I. Description et étude comparative des espèces (Crustacea Brachyura Majidae). Bull. Mus. natn. Hist. nat. Paris, 36: 222-244.
- García-Gómez J., 1994. The systematics of the genus *Anapagurus Henderson*, 1886, and a new genus for Anapagurus drachi Forest, 1966 (Crustacea: Decapoda: Paguridae). Zoologische Verhandelingen, 295(1): 131 pp.
- Giannuzzi-Savelli R., Pusateri F., Palmeri A. & Ebreo C., 1997. Atlante delle conchiglie marine del Mediterraneo. Edizioni de "La Conchiglia", Voll. I, II, III, IV.
- Glemarec M., 1969. Les peuplements benthiques du plateau continental Nord-Gascoigne. These doctorat D'Etat, Paris: 167 pp.
- Ingle R.W., 1993. Hermit crabs of the Northeastern Atlantic Ocean and the Mediterranean Sea (An illustrated key). Chapman & Hall, London: 495 pp.

- ISPRA, 2012-2020. Implementazione della direttiva 2000/60/CE: classificazione dello stato ecologico dei corpi idrici delle acque marino costiere e di transizione.
- ISPRA Scheda metodologica per il campionamento e l'analisi del macrozoobenthos di fondi mobili.

Margalef R., 1958. Information theory in ecology. Gen. Syst., 3: 36-71.

- Muxika I, Borja A. & Bald J., 2007. Using historical data, expert judgement and multivariate analysis in assessing reference conditions and benthic ecological status, according to the European Water Framework Directive. Mar. Pollut. Bull., 55(1-6): 16-29.
- Ngoc-Ho N., 2003. European and Mediterranean Thalassinidea (Crustacea, Decapoda). Zoosystema 25 (3): 439-555.
- Noel P.Y., 1992. Clé preliminaire d'identification des Crustacea Decapoda de France et des principales autres espèces d'Europe (Collection Patrimoines Naturelles, 9). Museum national d'Histoire Naturelle, Paris, 146 pp.
- Nordsieck F., 1968. Die europaischen Meeres-Gehauseschnecken (Prosobranchia}. Vom Eismer bis Kapverden und Mittelmeer. Fischer, Stuttgart.
- Nordsieck F., 1972. Die europaischen Meeresschnecken (Opisthobranchia mit Pyramidellidae; Rissoacea) vom Eismer bis Kapverden, Mittelmeer und Schwarzes Meer. Fischer, Stuttgart.
- Nordsieck F., 1982. Die europaischen Meeres-Gehauseschnecken (Prosobranchia}. Vom Eismer bis Kapverden, Mittelmeer und Schwarzes Meer. *Fischer, Stuttgart*.
- Pettibone M.H., 1982. Polychaeta. In: Parker S.P. (ed.), Synopsis and Classification of Living Organisms, 2. McGraw-Hill, New York: 3-43.
- Piani P., 1980. Catalogo dei Molluschi conchiferi viventi nel Mediterraneo. Boll. Malacologico, 16: 113-124.
- Pielou E.C., 1966. The measurement of diversity in different types of biological collections. J. Theor. Biol., 13, 131-144.
- Poppe G.T. & Goto Y., 1991. European Seashells. Vol. 1 (Polyplacophora, Caudofoveata, Solenogastra, Gastropoda). Christa Hemmen, Wiesbaden.
- Poppe G.T. & Goto Y., 1993. European Seashells. Vol. 2 (Scaphopoda, Bivalvia, Cephalopoda). Christa Hemmen, Wiesbaden.
- Sabelli B., Giannuzzi Savelli R. & Bedulli D., 1990-92. Catalogo annotato dei Molluschi marini del Mediterraneo. Libreria Naturalistica bolognese, Bologna.
- Sabelli B., Oliverio M., Spada G., Manganelli G., Giovine F., Giannuzzi-Savelli R., Pusateri F., 1994. Gastropoda Prosobranchia. In: Minelli A., Ruffo A., La Posta S. (eds) Checklist delle specie della fauna italiana, Calderini, Bologna, 14.
- San Martin G., 1984. Estudio biogeografico, faunistico y sistematico de los poliquetos de la famiglia Sillidos (Syllidae: Polychaeta) en Baleares. Tesis Doctoral 187/84 Edit. Univ. Complutense de Madrid: 1-529.
- Schiaparelli S., 1994. Bivalvia. In: Minelli A., Ruffo A., La Posta S. (eds) Checklist delle specie della fauna italiana, Calderini, Bologna, 14.
- Shannon C.E. & Wiener N., 1948-1949. The Mathematical Theory of Communication. Urbana, University of Illinois Press: 117 pp..

Tortonese E., 1965. Fauna d'Italia. Echinodermata. Ed. Calderini Bologna: 1-422.

Tortonese E., 1979. Review of the present status of knowledge of the Mediterranean echinoderms. In Proceedings of the European colloquium on Echinoderms, Brussels, 3⁸ September, 1979, 149, pp.141.

Zariquiey Alvarez R., 1968 - Crustaceos Decapodos Ibericos. Inv. Pesq., 32: pp. 510.

http://ambi.azti.es/

http://www.marinespecies.org/

http://www.marinespecies.org/ WORMS - World Register of Marine Species.

INDICE

1.	INTRODUZIONE	1
1	.1 Quadro di riferimento metodologico e normativo seguito	1
2.	Relazione di inquadramento generale sulle biocenosi presenti nel Canale di Sicilia	3
2	.1 Il Canale di Sicilia	3
2	.2 Accenni sull'inquadramento geomorfologico e circolazione delle correnti	6
2	.3 I banchi del Canale di Sicilia	8
	Banco Avventura	9
	Banco Graham	9
	Banco Pantelleria	10
	Banco Terribile	10
	Banchi minori	10
2	.4 Caratterizzazione biocenotica del Canale di Sicilia	10
	Coralligeno	11
	Fondi detritici costieri	12
	Fondi detritici del largo	12
	Rocce sul bordo della scarpata	13
	Biocenosi dei fanghi	13
	Sabbie fini ben classate	13
	Praterie di Posidonia oceanica	13
2	.5 Il necton del Canale di Sicilia	14
	Ittiofauna	14
	Cetacei	15
	Rettili	16
2	.6 Avifauna	16
2	.7 Bibliografia	18
3.	CAMPIONAMENTO SEDIMENTO AREA NEAR-SHORE E PRATERIA DI POSIDONIA OCEANICA	23
4.	CARATTERIZZAZIONE CHIMICA, FISICA, MICROBIOLOGICA ED ECOTOSSICOLOGICA DEI	27
SEI 4	1 Meteriali a Matadi di analizi	27
4	2 Displace	21 20
4	.2 Kisultau	20 28
	Variabili jisiche	20 20
	Carbonic organize totale (TOC) Azoto totale (TN) a Eosfore totale (TP)	
	Carbonio organico iotale (TOC), Azolo iotale (TN) e Fosjoro iotale (TF)	
	IPA (Idrogarburi Poligialigi Aromatigi)	
	IFA (Infocurburi Foncicuci Afomanci)	
	Festicial Organio-ciorurali	
	PCR (Pliclorobifanili)	
	T CD (1 uctorootyenut)	
	Variabili microbiologiche	
	Test acotossicologici	50
	1631 60103310105111	

4.3	Conclusioni	
4.4	Bibliografia	
5. PR	ATERIA DI POSIDONIA OCEANICA	40
5.1	Bibliografia	46
6. PO	POLAMENTI BENTONICI DI FONDO DURO - CARLIT	47
6.1	Bibliografia	53
7. PO	POLAMENTI BENTONICI DI FONDO DURO – IL CORALLIGENO	54
7.1	Bibliografia	69
8. MA	ACROZOOBENTHOS DI FONDO MOBILE	70
.8-1 B	Bibliografia	

PROGETTO HANNIBAL Monitoraggio Ambientale

ALLEGATI

Contratto Prot. n. 155-2021

ELENCO ALLEGATI

ALLEGATO I - REPORT FOTOGRAFICO - CAMPIONAMENTO SEDIMENTO AREA NEAR-SHORE

ALLEGATO II - REPORT FOTOGRAFICO - CAMPIONAMENTO PRATERIA DI POSIDONIA OCEANICA

ALLEGATO I

REPORT FOTOGRAFICO - CAMPIONAMENTO SEDIMENTO AREA NEAR-SHORE

Figura 1-1. Stazione HNS_1

Figura 1-2. Stazione HNS_2

Figura 1-3. Stazione HNS_3

Figura 1-4. Stazione HNS_4

Figura 1-5. Stazione HNS_5

Figura 1-6. Stazione HNS_6

Figura 1-7. Setacciamento dei sedimenti per il macrozoobenthos.

ALLEGATO II

REPORT FOTOGRAFICO - CAMPIONAMENTO PRATERIA DI POSIDONIA OCEANICA

Figura 2-1. Operatore subacqueo durante le osservazioni e le misure della prateria di P. oceanica

Figura 2-2. Operatore subacqueo durante le osservazioni e le misure della prateria di P. oceanica

Figura 2-3. Operatore subacqueo durante il prelievo di fascicoli fogliari

Figura 2-4. Operatore subacqueo durante il prelievo di fascicoli fogliari

Figura 2-5. Aspetto della prateria nella stazione P1-15

Figura 2-6. Aspetto della prateria nella stazione P1-LI.

Figura 2-7. Aspetto della prateria nella stazione P2-15.

Figura 2-8. Aspetto della prateria nella stazione P2-LI.

Figura 2-9. Aspetto della prateria nella stazione P3-15.

Figura 2-10. Aspetto della prateria nella stazione P3-LI.

ALLEGATO III

REPORT FOTOGRAFICO - IL CORALLIGENO – FRAME FOTOGRAFICI DA VIDEO ROV

• Frame fotografici filmato/transetto OS_35

• Frame fotografici filmato/transetto OS_48

• Frame fotografici filmato/transetto OS_48

