(CO₂)² - PROGETTO AGRI-VOLTAICO NOCCIOLETO CONDOTTO CON LE TECNICHE DELL'AGRICOLTURA DI PRECISIONE, CONSOCIATO CON IMPIANTO FOTOVOLTAICO

Comune di Matera Provincia di Matera AGRI New Tech Italia s.r.l.

VALUTAZIONE PREVISIONALE DI IMPATTO ACUSTICO

Relazione tecnica

DPCM 1 Marzo 1991 L.26 Ottobre 1995, n.447 DPCM 14 Novembre 1997 L.R. 03/2002

OTTOBRE 2021

INDICE GENERALE

PREMESSA	5
NORMATIVE DI RIFERIMENTO	6
DEFINIZIONI	7
STRUMENTAZIONE UTILIZZATA	11
DESCRIZIONE DEL SITO PRODUTTIVO	13
ANALISI DEL TERRITORIO ED INQUADRAMENTO ACUSTICO DELLA ZONA	14
CAMPAGNA D'INDAGINE	16
DETERMINAZIONE DEGLI IMPATTI ACUSTICI E VERIFICA DEI LIMITI ASSOLUTI E DIFFERENZIALE DI IMMISSIONE	
CONCLUSIONI	29

PREMESSA

La presente relazione tecnica è stata redatta allo scopo di valutare, ante-operam, l'impatto acustico indotto, sia in fase di cantierizzazione che a regime, del progetto "(Co₂)² Progetto Agri-Voltaico - Noccioleto condotto con le tecniche dell'agricoltura di precisione consociato con impianto fotovoltaico, da realizzare presso la località "Contrada Cipolla", nel comune di Matera (MT), da parte della società AGRI New Tech Italia s.r.l., avente sede legale in Cassano delle Murge, alla via Padre Pio n. 8.

Tale documento fornisce gli elementi per valutare, nel modo più accurato possibile, gli effetti acustici derivanti dalla realizzazione e l'esercizio di tale impianto, nonché permettere l'individuazione e l'apprezzamento delle modifiche acustiche introdotte nei luoghi di intervento e negli ambienti limitrofi, e verificare la compatibilità con gli standard e le prescrizioni esistenti, con gli equilibri naturali, con la popolazione residente e con lo svolgimento delle altre attività presenti nelle aree interessate.

A tal fine è stata effettuata un indagine tecnica basata, sia su dati forniti dal titolare dell'attività, che rilevati da banche dati nazionali di accertata validità (I.N.A.I.L., A.S.L. Toscana, C.P.T. Torino), supportata da una serie di rilievi strumentali eseguiti in loco, atta a quantificare l'immissione sonora che tale istallazione provocherà durante tutto il proprio ciclo vitale, e se questa possa, in qualche modo, recare disturbo all'ambiente esterno.

Preso atto delle sorgenti di rumore che saranno presenti all'interno del sito produttivo, ai fini del loro potenziale disturbo, si e' verificato il loro limite assoluto di immissione all'esterno, al limite dei confini di proprietà, ed il limite differenziale, in corrispondenza degli ambienti abitativi più prossimi alle sorgenti disturbanti.

Le misurazioni sono state effettuate secondo le prescrizioni del D.M. del 16/03/98 (Tecniche di rilevamento e di misurazione dell'inquinamento acustico).

Le misurazioni e le analisi acustiche contenute nella presente relazione sono state effettuate dall'Ing. SMALDINO Michele Vito Massimo, iscritto all'elenco dei Tecnici Competenti in Acustica Ambientale della Provincia di Bari, ai sensi della L. 447/95, con Determinazione n. 559 del 19/06/2012 del Dirigente del Servizio "Polizia Provinciale, Protezione Civile e Ambiente" della Provincia di Bari (vedi copia allegata).

NORMATIVE DI RIFERIMENTO

I principali riferimenti normativi, a livello internazionale, nazionale e regionale, riguardanti la valutazione previsionale del clima acustico sono i seguenti:

- D.P.C.M. 1 marzo 1991 "Limiti massimi di esposizione al rumore negli ambienti abitativi e nell'ambiente esterno";
- Legge n. 447 del 26 ottobre 1995 "Legge Quadro sull'inquinamento acustico";
- D.P.C.M. 14 novembre 1997 "Determinazione dei valori limite delle sorgenti sonore";
- D.M. dell'Ambiente 16 marzo 1998 "Tecniche di rilevamento e di misurazione dell'inquinamento acustico";
- Legge Regione Puglia n.3 del 12 febbraio 2002 "Norme di indirizzo per il contenimento e la riduzione dell'inquinamento acustico":
- Norma ISO 9613:2006 parti 1 e 2 "Acustica Attenuazione sonora nella propagazione all'aperto"

DEFINIZIONI

Sorgenti sonore fisse

Gli impianti tecnici degli edifici e le altre installazioni unite agli immobili anche in via transitoria il cui uso produca emissioni sonore; le infrastrutture stradali, ferroviarie, aeroportuali, marittime, industriali, artigianali, commerciali ed agricole, i parcheggi, le aree adibite a stabilimenti di movimentazione merci, i depositi dei mezzi di trasporto di persone e merci, le aree adibite ad attività sportive e ricreative

Sorgenti sonore mobili

Tutte le sorgenti sonore non comprese nella voce precedente.

Sorgente specifica

Sorgente sonora selettivamente identificabile che costituisce la causa del potenziale inquinamento acustico .

Ricettore

Qualsiasi edificio adibito ad ambiente abitativo comprese le relative aree esterne di pertinenza, o ad attività lavorativa o ricreativa; aree naturalistiche vincolate, parchi pubblici ed aree esterne destinate ad attività ricreative ed allo svolgimento della vita sociale della collettività; aree territoriali edificabili già individuate dai vigenti piani regolatori generali e loro varianti generali, vigenti al momento della presentazione dei progetti di massima relativi alla costruzione delle infrastrutture.

Ambiente abitativo

Ogni ambiente interno ad un edificio destinato alla permanenza di persone o di comunita' ed utilizzato per le diverse attivita' umane, fatta eccezione per gli ambienti destinati ad attivita' produttive per i quali resta ferma la disciplina di cui al decreto legislativo 15 agosto 1991, n. 277, salvo per quanto concerne l'immissione di rumore da sorgenti sonore esterne ai locali in cui si svolgono le attivita' produttive;

Tempo a lungo termine (TL)

Rappresenta un insieme sufficientemente ampio di TR all'interno del quale si valutano i valori di attenzione. La durata di TL è correlata alle variazioni dei fattori che influenzano la rumorosità a lungo periodo.

Tempo di riferimento (TR)

Rappresenta il periodo della giornata all'interno del quale si eseguono le misure. La durata della giornata è articolata in due tempi di riferimento: quello diurno compreso tra le h 6,00 e le h 22,00 e quell notturno compreso tra le h 22,00 e le h 6,00.

Tempo di osservazione (TO)

E' un periodo di tempo compreso in TR nel quale si verificano le condizioni di rumorosità che si intendono valutare.

Tempo di misura (TM)

All'interno di ciascun tempo di osservazione, si individuano uno o più tempi di misura (TM) di durata pari o minore del tempo di osservazione, in funzione delle caratteristiche di variabilità del rumore ed in modo tale che la misura sia rappresentativa del fenomeno.

Livello di potenza sonora

Si definisce come livello di potenza sonora, la potenza trasmessa sotto forma di suono, misurata in decibel anziché in watt, in rapporto a una potenza di riferimento $W_0 = 10^{-12}$ watt.

$$L_W = 10 \cdot \log\left(\frac{W}{W_0}\right)$$

In genere va specificata la banda di frequenza a cui si fa riferimento, o la curva di ponderazione. Se il livello si misura ad esempio in dB(A), il simbolo diventa L_{WA} .

Livello di pressione sonora

Si definisce pressione sonora istantanea p(t), la differenza indotta dalla perturbazione sonora tra la pressione totale istantanea e il valore della pressione statica all'equilibrio.

La determinazione del contenuto in frequenza di un certo suono è chiamata analisi in frequenza o analisi di spettro. Per un aspetto di praticità, ed in considerazione della risposta di tipo logaritmico dell'orecchio, la pressione sonora non viene misurata in N/m² (Pascal), ma in dB.

Quindi si ha che il livello di pressione sonora è pari a

$$Lp = 10 \cdot \log(\frac{p(t)^{2}}{p_{0}^{2}}) = 20 \cdot \log(\frac{p(t)}{p_{0}})$$

Dove:

p = valore r.m.s. (medio) della pressione sonora in esame; p_0 = pressione sonora di riferimento (20 10^{-6} Pa = 20μ Pa).

Livello sonoro continuo equivalente

Nella maggior parte dei casi il rumore presente in un ambiente industriale o in un cantiere edile, è di tipo non stazionario, cioè variabile nel tempo.

È necessaria, pertanto, l'estrapolazione di un "valore medio" definito come Livello sonoro equivalente (Leq), che è quel livello costante di pressione sonora che contiene la stessa quantità di energia di quello variabile considerato, nello stesso intervallo di tempo.

Tale valore è, inoltre, indice dell'effetto sull'apparato uditivo del rumore variabile al quale è soggetto l'operatore.

Il Livello sonoro continuo equivalente è dato dalla seguente equazione:

Leq,
$$T = 10 \cdot \log \left(\frac{1}{T} \cdot \int \left(\frac{p(t)}{p_0}\right)^2 \cdot dt\right)$$

Livello continuo equivalente di pressione sonora ponderata "A" relativo al tempo a lungo termine (LAeq,TL)

Il livello continuo equivalente di pressione sonora ponderata "A", relativo al tempo a lungo termine (Laeq,TL), può essere riferito:

- a) al valore medio su tutto il periodo, con riferimento al livello continuo equivalente di pressione sonora ponderata "A", relativo a tutto il tempo TL,;
- b) al singolo intervallo orario nei TR. In questo caso si individua un TM di 1 ora all'interno del TO, nel quale si svolge il fenomeno in esame. LAeq,TL rappresenta il livello continuo equivalente di pressione sonora ponderata "A" risultante dalla somma degli n tempi di misura TM.

Livello di rumore ambientale (LA)

E' il livello continuo equivalente di pressione sonora ponderato "A", prodotto da tutte le sorgenti di rumore esistenti in un dato luogo e durante un determinato tempo. Il rumore ambientale è costituito dall'insieme del rumore residuo e da quello prodotto dalle specifiche sorgenti disturbanti, con l'esclusione degli eventi sonori singolarmente identificabili di natura eccezionale rispetto al valore ambientale della zona. E' il livello che si confronta con i limiti massimi di esposizione:

- nel caso dei limiti differenziali, è riferito a TM;
- nel caso di limiti assoluti è riferito a TR.

Livello di rumore residuo (LR)

E' il livello continuo equivalente di pressione sonora ponderato "A", che si rileva quando si esclude la specifica sorgente disturbante. Deve essere misurato con le identiche modalità impiegate per la misura del rumore ambientale e non deve contenere eventi sonori atipici.

Livello differenziale di rumore (LD)

Per le zone diverse da quelle esclusivamente industriali, è fatto obbligo di rispettare il limite differenziale di immissione in ambiente abitativo definito all'art. 2, comma 3, lettera b), della legge 26 ottobre 1995, n. 447. Tale verifica stabilisce come differenza da non superare negli <u>ambienti abitativi</u> a finestre aperte, tra valore del rumore ambientale (LA) e valore di rumore residuo (LR), un valore pari a 5 dB(A) durante il periodo diurno e di 3 dB(A) nel periodo notturno.

Il limite differenziale in ambiente abitativo non risulta applicabile se il rumore ambientale misurato a finestre aperte risulta inferiore a 50 dBA durante il periodo diurno e a 40 dBA durante il periodo notturno e se il rumore ambientale misurato a finestre chiuse risulta inferiore a 35 dBA durante il periodo diurno e a 25 dBA durante il periodo notturno.

Livello di emissione

E' il livello continuo equivalente di pressione sonora ponderato "A", dovuto alla sorgente specifica. E' il livello che si confronta con i limiti di emissione.

Valori limite di emissione

Il valore massimo di rumore che può essere emesso da una sorgente sonora, misurato in prossimità della sorgente stessa.

Valori limite di immissione

Il valore massimo di rumore che può essere immesso da una o più sorgenti sonore nell'ambiente abitativo o nell'ambiente esterno, misurato in prossimità dei ricettori.

Valori di attenzione

Il valore di rumore che segnala la presenza di un potenziale rischio per la salute umana o per l'ambiente.

Valori di qualità

I valori di rumore da conseguire nel breve, nel medio e nel lungo periodo con le tecnologie e le metodiche di risanamento disponibili, per realizzare gli obiettivi di tutela previsti dalla presente legge.

Tecnico competente

Figura professionale idonea ad effettuare le misurazioni, verificare l'ottemperanza ai valori definiti dalle vigenti norme, redigere i piani di risanamento acustico, svolgere le relative attività di controllo.

STRUMENTAZIONE UTILIZZATA

Fonometro

I rilievi e le misurazioni per la determinazione dell'inquinamento acustico nell'area di interesse, sono state effettuate con un fonometro integratore, dotato di analizzatore in terzi di ottava, prodotto dalla "DELTA OHM" modello HD2010 matr. 11033042469, conforme alla classe 1 IEC61672-1. Tale apparecchiatura risulta dotata di preamplificatore della marca "DELTA OHM" mod. HD2010PN matr. 09027828, e microfono marca "MG" mod. MK221 matr. 33685.

Calibratore acustico

Lo strumento di rilievo è dotato di calibratore acustico prodotto della "DELTA OHM" modello HD9101 matr. 10038470, adatto alla calibrazione di microfoni da 1/2", conformemente alla norma IEC942.

Calibrazione e taratura dell'analizzatore e del calibratore

La calibrazione è stata eseguita prima e dopo il ciclo di misura senza riscontrare significative differenze di livello.

La taratura dell'analizzatore e del calibratore sono state eseguite presso il Centro LAT n. 124 "DELTA OHM s.r.l." di Caselle di Salvezzano (PD) con rilascio dei certificati n. LAT 124 20001405 e LAT 124 20001406, relativamente al fonometro, e n. 124 20001407, per il calibratore (vedi certificati allegati).

Supporti tecnici-informatici

Il software applicativo utilizzato per l'analisi sonora e le successive elaborazioni è stato il programma NOISE STUDIO rev. 9.33 della DELTA OHM.

Tale applicativo è in grado, mediante moduli aggiuntivi da attivare separatamente, di eseguire analisi fono-metriche in conformità alle vigenti normative italiana e comunitaria. L'ambiente di analisi fornisce funzioni di visualizzazione, in forma grafica e tabellare, dei dati fonometrici e delle diverse elaborazioni.

Tecniche di misurazione

Prima dell'inizio delle misure sono state acquisite tutte le informazioni che possono condizionare la scelta del metodo, dei tempi, delle posizioni di misura, della taratura degli strumenti.

I rilievi di rumorosità hanno tenuto conto delle variazioni dell'emissione sonora delle sorgenti e della loro propagazione. Sono stati, inoltre, rilevati tutti i dati che conducono ad una descrizione delle sorgenti che influiscono sul rumore ambientale nelle zone interessate dall'indagine.

Durante i rilievi fonometrici si sono misurati i livelli continui equivalenti di pressione sonora ponderata "A" nel periodo di riferimento (LAeq,TR), dei livelli istantanei ponderati "A" con costante di tempo FAST (Lfp).

I tempi di misura adottati risulta compresi nel tempo di osservazione.

Le modalità di misura sono quelle indicate negli allegati A, B e C del D.M. del 16 marzo 1998.

Durante il corso delle misure, effettuate tutte in ambiente esterno, il microfono è stato posizionato ad un minimo di ml 3,00 da eventuali superfici riflettenti, e ad un'altezza di circa ml 1,60 dal piano di calpestio.

Le misurazioni sono state effettuate, come richiesto dal decreto, in assenza di precipitazioni atmosferiche, di nebbia e/o neve; la velocità del vento non è risultata superiore ai 5 m/s; il microfono è stato munito di cuffia antivento.

Le calibrazioni sono state effettuate all'inizio ed al termine del ciclo di misura, con il calibratore di precisione acustica succitato, registrando uno scarto inferiore ai 0,5 dB.

La catena di misura è compatibile con le condizioni meteorologiche del periodo in cui si effettuano le misurazioni e comunque in accordo con le norme CEI 29-10 ed EN 60804/1994.

Il microfono utilizzato nel corso delle misurazioni, è stato posto in configurazione di "campo libero".

DESCRIZIONE DEL SITO PRODUTTIVO

La zona interessata dall'impianto di noccioleto consociato con impianto fotovoltaico, ricade all'interno della località "Contrada Cipolla" del comune di Matera, sulle particelle contraddistinte con i numeri 395, 396 e 397, del fg. 20, del Catasto Terreni di tale cittadina. Come visibile dal lay-out generale, allegato alla presente relazione, l'impianto si sviluppa all'interno di un appezzamento di forma trapezoidale, confinante a nord-est con S.P. n. 176, e delimitato a nord-ovest e sud-est da viabilità interpoderali, entrambe caratterizzate da carreggiate in misto di cava stabilizzato.

Come si evince da tali grafici, l'area di intervento, a regime, risulterà suddivisa in due zone distinte di cui la prima, quella più a nord, verrà adibita esclusivamente alla coltivazione del nocciolo, con alberature disposte lungo filari equidistanti ml 4,00, e la rimanente, ospiterà l'impianto fotovoltaico vero e proprio.

L'intera estensione risulterà, a fine lavori, totalmente delimitata da una recinzione metallica a giorno, succeduta da una successiva piantumazione, a singolo filare, di "Lentisco". Lungo tale perimetro, nella parte interna dello stesso, sarà anche presente una viabilità avente larghezza media di 3,00 ml, con superficie carrabile realizzata in misto di cava stabilizzato.

All'interno dell'area di pertinenza dell'impianto fotovoltaico, saranno posizionati, ad interasse di 9,90 ml, i filari di nocciolo ad alberello, orientati lungo la direttrice nord-sud, con equidistanza fra le piante compresa fra i 2,50 ed i 3,50 ml, per un totale di circa 4.500 esemplari circa.

Negli spazi compresi fra le successioni arboree della porzione adibita ad impianto fotovoltaico, saranno installati, al disopra di telai a basculamento zenitale azionati da piccoli motori elettrici, i 22.113 moduli dell'impianto fotovoltaico, che genereranno una potenza di picco pari a 12.162 kWp.

Come evidenziato nel lay-out dell'impianto allegato alla presente relazione, all'interno dell'area oggetto di intervento, verranno anche poste in opera 5 gruppi di container prefabbricati, di tipo metallico. Tali strutture saranno destinate sia ad ospitare le apparecchiature elettriche proprie degli impianti agricolo e fotovoltaico (il controllo dei tracker, il controllo irrigazione ed i tre inverter-trasformatori BT-MT lato utente), che la cabina di distribuzione MT, necessaria all'immissione dell'energia prodotta in loco, nella rete elettrica nazionale.

L'impianto fotovoltaico di cui innanzi sarà infine collegato, a mezzo di cavidotto interrato avente sviluppo lineare di circa 2,85 km, situato al disotto della sede stradale della provinciale n. 140, con sotto-stazione utente di trasformazione MT-AT (SSE), localizzata all'interno delle particelle n. 473, 544, 545, 546 e 547 del fg. 103 del comune di Santeramo in Colle, poste nelle immediate vicinanze della centrale elettrica TERNA di Matera-Jesce (vedi stralci planimetrici allegati).

L'impianto innanzi descritto, per sua stessa natura, prevede, sia per l'attività agricola che quella legata alla produzione fotovoltaica, cicli lavorativi e di funzionamento, concentrati unicamente nel periodo diurno della giornata. In virtù di tale condizione si evidenzia che essa risulta soggetta unicamente alla verifica dei limiti assoluti e differenziali di immissione nel tempo di riferimento diurno, secondo previsto dal D.P.C.M. 14 novembre 1997.

ANALISI DEL TERRITORIO ED INQUADRAMENTO ACUSTICO DELLA ZONA

L'area ove sorgerà l'impianto di noccioleto specializzato, consociato con un impianto fotovoltaico, risulta localizzata nella parte NORD-EST del territorio comunale di Matera, in "Area agricola extraurbana", secondo il vigente P.R.G..

Tale zona di intervento risulta caratterizzata da un andamento planimetrico pressoché pianeggiante, e dalla presenza di proprietà rurali più o meno parcellizzate, coltivate principalmente a seminativo, con sporadiche presenze di piccoli uliveti e vigneti a spalliera.

Come visibile dallo stralcio aereo-fotogrammetrici allegato, l'area in questione si presenta a ridosso di una viabilità di tipo inter-comunale (S.P. n. 140), caratterizzata da volumi di traffico dell'ordine di 30-40 passaggi orari.

Nei pressi dell'aria di sedime dell'impianto fotovoltaico sono state individuate, a mezzo di consultazione degli archivi catastali, alcune unità immobiliari a destinazione abitativa, poste comunque a non meno di 100 ml dai confini del sito produttivo.

Dal punto di vista dell'inquadramento acustico di tale ambito, si evidenzia che il comune di Matera, a seguito di Delibera di C. C. del 23/05/1996, ha approvato il Piano Comunale di Classificazione Acustica del proprio territorio, ai sensi dell'art. 6 della L. 447/95 e del D.P.C.M. 01/03/91, secondo i parametri contenuti nella tabella 2 di tale decreto, riportante i valori dei limiti massimi del livello sonoro equivalente (Leq A), relativi alle classi di destinazione d'uso del territorio di riferimento, nel seguito riportata.

Classe	Descrizione	Limite diurno Leq(A)	Limite Notturno Leq(A)
I	Aree particolarmente protette	50	40
II	Aree prevalentemente residenziali	55	45
III	Aree di tipo misto	60	50
IV	Aree di intensa attività umana	65	55
V	Aree prevalentemente industriali	70	00
VI	Aree esclusivamente industriali	70	70

Come visibile dallo stralcio aereo-fotogrammetrico allegato, la porzione di territorio del comune di Matera interessata dalle emissione acustiche dell'impianto fotovoltaico, risulta ricadere interamente nella "zona III – Aree di tipo misto", caratterizzata da limiti di immissione diurni e notturni, rispettivamente di 60 e 50 dB(A)

La zona occupata dalla sotto-stazione utente di trasformazione MT-AT, risulta invece posizionata, secondo il vigente P.R.G., all'interno della "zona agricola E" del comune di Santeramo in Colle, la quale presenta caratteristiche orografiche ed agronomiche quasi identiche a quelle dell'area di pertinenza dell'impianto fotovoltaico.

Ai fini dell'inquadramento acustico di tale porzione di territorio, sulla base delle ricerche svolte presso i competenti uffici comunali, si è rilevato la totale mancanza di un qualsiasi

strumento di pianificazione relativo alle emissione sonore. In virtù di tale circostanza, ai sensi dell'art. 8 comma 1 del D.P.C.M. 14/11/1997 "Determinazione dei valori limite delle sorgenti sonore", i livelli di rumore immessi nell'ambiente circostante, dalla sotto-stazione MT-AT, dovranno essere confrontati con i limiti di accettabilità contenuti nella tabella di cui all'art. 6 del D.P.C.M. 01/03/1991 - "Limiti massimi di esposizione al rumore negli ambienti abitativi e nell'ambiente esterno", di seguito riportata.

Zonizzazione	Limite diurno Leq(A)	Limite Notturno Leq(A)
Tutto il territorio nazionale	70	60
Zona A (D.M. n. 1444)	65	55
Zona B (D.M. n. 1444)	60	50
Zona esclusivamente industriale	70	70

La zona che ospiterà la sotto-stazione MT-AT ricade, secondo la classificazione del D.P.C.M. 01/03/1991, nella casistica di <u>"Tutto il territorio nazionale"</u> ed i sui limiti assoluti di immissione risultano, di conseguenza, 70 dB(A) nel periodo diurno (06,00-22,00) e 60 dB(A) nel periodo notturno (22,00-06,00).

Vista la relativa vicinanza di tale centrale elettrica al territorio comunale di Matera, nel seguito della relazione, si è proceduto anche a verificare il rispetto dei relativi livelli di immissione, anche nei confronti dei valori limiti imposti dal P.C.C.A. di quest'ultimo comune.

Come visibile dallo stralcio aereo-fotogrammetrico allegato, la porzione di territorio materano potenzialmente interessata dalle emissione acustiche della SSE, risulta costituita da una prima zona avente larghezza di ml 30.00, costituente fascia di rispetto stradale della S.P. n. 140, classificata come "Zona IV - Aree di intensa attività umana", e da una successiva estensione di terreni agricoli, classificati come "Zona III - Aree di tipo misto", il tutto ai sensi della delibera di C.C. in precedenza citata.

Anche relativamente a quest'ultimo impianto è stata individuata, a mezzo di consultazione degli archivi catastali, la presenza di alcune unità immobiliari a destinazione abitativa, poste comunque a non meno di 720 ml dai confini del sito produttivo, tutte situate all'interno dei limiti amministrativi del comune di Santeramo in Colle.

CAMPAGNA D'INDAGINE

Sorgenti sonore presenti nelle fasi di cantierizzazione

Le sorgenti sonore presenti in fase di cantierizzazione sono costituite, per loro natura, dalle attrezzature e dalle lavorazioni da queste effettuate. Poiché l'effetto di tali sorgenti presenta caratteristiche altamente variabili, sia nel tempo che nello spazio, la valutazione previsionale del loro impatto acustico parte innanzi tutto dall'individuazione, fra le varie fasi costruttive dell'impianto, di quelle che utilizzeranno, singolarmente o in gruppo, macchinari a maggior emissione sonora.

Secondo quanto indicato dal committente, sono state innanzitutto individuate le attrezzature utilizzate, riportate nella successiva tabella e, per ognuna, grazie alle ricerche svolte presso diverse banche dati nazionali, è stato possibile quantificare, in maniera diretta od indiretta, il valore della relativa potenza sonora, ponderata, nei casi specifici, in funzione dei regimi di effettivo funzionamento giornaliero (emissioni a tempo parziale).

Macchinario	Pot. sonora a regime Lw [dB(A)]	Regime di funzionamento	Fattore di utilizzo giornaliero	Fattore di attenuazione [dB(A)]	Pot. sonora ponderata L'w [dB(A)]
Furgone cassonato	106,8	discontinuo	0,3	5,2	101,6
Escavatore	108,0	continuo	1,0	0,0	108,0
Pala gommata	104,0	continuo	1,0	0,0	104,0
Camion con cassone rib.	102,8	continuo	1,0	0,0	102,8
Autogrù	121,8	discontinuo	0,3	5,2	116,6
Trivella per terreni	103,0	discontinuo	0,5	3,0	100,0
Macchina battipalo	122,2	discontinuo	0,5	3,0	119,2
Autobetoniera	106,9	discontinuo	0,3	5,2	101,7
Autopompa	109,5	discontinuo	0.3	5.2	104.3
Rullo compressore	105,7	continuo	1,0	0,0	105,7
Trattore agricolo	103,0	continuo	1,0	0,0	103,0
Trencher	103,0	continuo	1,0	0,0	103,0
Piastra battente	100,2	discontinuo	0,5	3	97,2
Attrezzi manuali	115,9	discontinuo	0,2	7,0	108,9
Sonda T.O.C.	104.0	continuo	1,0	0,0	104.0
Lisciatrice per pavimenti in cls	107.0	continuo	1,0	0,0	107.0

Per alcune delle attrezzature o dei macchinari sopra elencati, come visibile dalle schede tecniche allegate alla presente relazione, il dato della potenza acustica è stato estrapolato da quello della loro emissione, ipotizzando che le stesse siano equiparabili a sorgenti di tipo puntiforme, posizionate su piano riflettente (campo emisferico). Tali ipotesi risultano matematicamente esplicitate dalla seguente formula:

$$L_W = L_p + 20\log(r) + 8$$

Si riporta nel seguito l'elenco delle fasi lavorative relative alla realizzazione dell'impianto noccioleto-fotovoltaico, indicate nel crono-programma fornito dal committente, con l'indicazione delle attrezzature utilizzate nell'esecuzione delle stesse..

	99)	Tipo di attrezzatura utilizzata													
Fasi lavorative fotovoltaico	Durata della fase (gg)	Furgone cassonato	Escavatore	Pala gommata	Camion con ribalt.	Autogrù	Trivella per terreni	Macchina battipalo	Autobetoniera	Autopompa	Rullo compressore	Trattore agricolo	Attrezzi manuali	Trencher	Piastra battente
Recinzione provv. cantiere	20	✓											✓		
Sistemazione terreno	40		✓	✓	✓										
Posa recinz. definitiva	45					✓	✓								
Realizz. cavidotti perimetrali	45	✓	✓	✓											
Posa pali per pannelli	60	✓						✓							
Realizzazione cavidotti interni	40	✓	✓	✓											
Realizzazione strade interne	40			✓	✓						✓				
Montaggio struttura pannelli	60					✓							✓		
Realizzazione platee in c.a.	20								✓	✓			✓		
Posa in opera di locali e cabine	20					✓									
Montaggio pannelli FTV	70	✓											✓		
Realizzazione colleg. elettrici	100	✓											✓		
Messa a dimora noccioleto	60											✓			
Realizzazione imp. irrigazione	40	✓						✓							
Finiture e sistemazioni	70			✓							✓				
Realizzazione cavidotti su strada	35			✓					✓					✓	✓

Identica tipologia di tabella, viene nel seguito riportata, relativamente alla fasi lavorative necessarie alla realizzazione della sotto-stazione utente MT-AT,

	(66)					Tipo di	attrezz	atura u	tilizzata	a			
Fase lavorativa sotto-stazione utente	Durata della fase (gg)	Furgone cassonato	Escavatore	Pala gommata	Camion con ribalt.	Autogrù	Sonda T.O.C.	Lisciatrice per pav.	Autobetoniera	Autopompa	Trivella per terreni	Rullo compressore	Attrezzi manuali
Picchettamento e recinz. provv. cantiere	10	✓											✓
Sistemazione aree e viabilità	10		✓		✓							✓	
Posa imp. acque meteoriche	10		✓		✓	✓							
Realizzazione edifici	120				✓	✓			✓	✓			✓
Realizz. fondazioni trafo MT-AT	55				✓				✓	✓			✓
Realizz. fondazioni apparati MT-AT	50				✓				✓	✓			✓
Pora rete di terra prim.	10			✓	✓	✓							
Realizzazione cavidotti e cunicoli	70		✓		✓				✓	✓			✓
Realizz. recinzioni definitive	20				✓	✓					✓		✓
Realizz. piazzali e finiture interne	35			✓				✓	✓	✓		✓	
Montaggi elettromeccanici	70					✓							✓
Scavo e posa cavidotto AT	25		✓		✓		✓						
Montaggi apparati BT	20					✓							✓

Sulla base dei dati riportati nei prospetti precedenti, è stato possibile estrapolare le successive tabelle, relative rispettivamente alla realizzazione dell'impianto noccioleto-fotovoltaico ed alla sotto-stazione utente, dalle quali si è potuto determinare, fra le fasi lavorative previste, quelle a maggior emissione sonora.

Fasi lavorativa imp. fotovoltaico	Macchinari utilizzati	Pot. sonora ponderata L' _w [dB(A)]	Uso contem.	Potenza sonora finale L' _w [dB(A)]
--------------------------------------	-----------------------	---	-------------	---

Recinzione provvisoria	Furgone cassonato	101,6		108,9
cantiere	Attrezzi manuali	108,9		100,9
	Escavatore	108,0	x	
Sistemazione terreno	Pala gommata 104,0		х	110,3
	Camion con cassone rib.	102,8	х	
	Autogrù	116,6		116.6
Posa recinz. definitiva	Trivella per terreni	100.0		116,6
	Furgone cassonato	101,6	х	
Realizz. cavidotti perimetrali	Escavatore	108,0		108,0
pormioudii	Pala gommata	104,0	х	
D	Furgone cassonato	101,6		440.0
Posa pali per pannelli	Macchina battipalo	119,2		119,2
	Furgone cassonato	101,6	Х	
Realizzazione cavidotti interni	Escavatore	108,0		108,0
IIICIIII	Pala gommata	104,0	Х	
	Pala gommata	104,0	Х	
Realizzazione strade	Camion con cassone rib.	102,8	х	106,5
	Rullo compressore	105,7		
N.A. 1 2 1 11 112	Autogrù	116,6		0.0
Montaggio strutt. pannelli	Attrezzi manuali	108,9		0,0
	Autobetoniera	101,7	х	
Realizzazione platee in c.a.	Autopompa	104.3	х	108,9
c.a.	Attrezzi manuali	108,9		
Posa in opera di locali e cabine	Autogrù	116,6		116,6
NA 4	Furgone cassonato	101,6		400.0
Montaggio pannelli FTV	Attrezzi manuali	108,9		108,9
Realizzazione colleg.	Furgone cassonato	101,6		400.0
elettrici	Attrezzi manuali	108,9		108,9
Messa a dimora noccioleto	Trattore agricolo	103,0		103,0
Realizzazione imp.	Furgone cassonato	101,6		404.0
irrigazione .	Trivella per terreni	100.0		101,6
Finite	Pala gommata	104,0	Х	407.0
Finiture e sistemazioni	Rullo compressore	105,7	Х	107,9
	Pala gommata	104,0		
Realizzazione cavidotti su	Autobetoniera	101,7		
strada	Trencher	103,0		104,0
		97,2		-

Picchettamento e recinz.	Furgone cassonato	101,6		108,9	
provv. cantiere	Attrezzi manuali	108,9			
Sistemazione aree e	Escavatore	108,0	Х		
viabilità	Camion con cassone rib.				
viabilita	Rullo compressore	105.7	X		
Dana iman armur	Escavatore	108.0			
Posa imp. acque meteoriche	Camion con cass. rib.	102.8		116,6	
	Autogrù	116.6			
	Camion con cass. rib.	102.8			
	Autogrù	116.6			
Realizzazione edifici	Autobetoniera	101,7	х	116,6	
	Autopompa	104.3	х		
	Attrezzi manuali	108.9			
	Camion con cass. rib.	102.8			
Realizz. fondazioni trafo	Autobetoniera	101,7	х	108,9	
Realizz. Iondazioni traio	Autopompa	104.3	х	100,9	
	Attrezzi manuali	108.9			
	Camion con cass. rib.	102.8			
Realizz. fondazioni	Autobetoniera	101,7	Х		
apparati MT-AT	Autopompa	104.3	х	108.9	
	Attrezzi manuali	108.9			
	Pala gommata	104,0	Х		
Posa rete di terra prim.	Camion con cassone rib.	116,6			
	Autogrù	116.6		_	
	Escavatore	108.0			
	Camion con cassone rib.	102,8			
Realizzazione cavidotti e cunicoli	Autobetoniera	101,7	х	108,9	
Curlicoli	Autopompa	104.3	х		
	Attrezzi manuali	108,9			
	Camion con cassone rib.	102,8	Х		
Realizzazione recinzioni	Trivella per terreni	100.0			
definitive	Autogrù	116.6	х	116,6	
	Attrezzi manuali	108,9			
	Pala gommata	104.0			
	Lisciatrice per pavimenti	107.0			
Realizz. piazzali e finiture	Autobetoniera	101.7	Х	107,0	
interne	Autopompa	104.3	Х	1	
	Rullo compressore	105.7		1	
	Attrezzi manuali	108.9			
Montaggi elettromeccanici	Autogrù	116,6		116,6	
	Escavatore	108.0			
Scavo e posa cavidotto AT	Camion con cass. rib.	102.8		108,0	
ocavo e posa cavidollo Al		ı		.00,0	

Montaggi apparati BT	Autogrù	116,6	116,6
	Attrezzi manuali	108.9	110,0

Da quanto sopra esposto si evince che le fasi relative alla realizzazione dell'impianto di noccioleto, consociato con impianto fotovoltaico, caratterizzate dal maggior impatto acustico, risultano quelle in cui è previsto l'utilizzo della macchina battipalo, la quale presenta una potenza acustica L'w pari a 119,2 [dB(A)]. Sempre dallo stesso elenco si rileva che le lavorazione relative alla realizzazione del cavidotto su sede stradale, presentano una potenza acustica massima Lw di 104,0 [dB(A)], dovuto all'utilizzo della pala gommata. Per il caso relativo alla realizzazione della sotto-stazione utente di trasformazione MT-AT, si è rilevata la maggiore potenza acustica, nelle fasi in cui è prevista l'uso dell'autogrù, caratterizzata, quest'ultima, da un livello L'w pari a 116,6 [dB(A)]. Per valutare la variabilità spaziale di tali sorgenti all'interno dell'area di pertinenza dell'impianto noccioleto-fotovoltaico e della SSE, nelle calcolazioni successive, si ipotizzerà che le stesse siano concentrate nei baricentri delle superfici oggetto di lavorazioni, contrassegnati con la lettera "G" negli stralci aereo-fotogrammetrici allegati alla presente relazione.

Nel caso delle emissioni generate durante la realizzazione del cavidotto su strada pubblica, si proceduto invece a valutare il relativo impatto, unicamente in corrispondenza del fabbricato più prossimo alle aree di lavorazione, che risulta costituito dall'unità immobiliare censita al fg. 20 p.lla 414 del comune di Matera, localizzata nelle vicinanze della S.P. 140, ad una distanza minima di circa 220 ml dalle aree di posa del cavidotto su strada.

Sorgenti sonore presenti a regime

Come già accennato nel paragrafo relativo alla descrizione del sito produttivo, le sorgenti sonore fisse presenti a regime, saranno costituite esclusivamente dalla apparecchiature elettriche installate all'interno dei cabinati metallici posizionati presso il noccioleto, e dai 3 trasformatori MT-AT localizzati all'interno della sotto-stazione utente innanzi descritta.

Fra tutti quelli presenti, gli apparati degni di nota ai fini acustici, risultano i 3 inverter aventi ciascuno potenza di 4200 kVA (Sunny Central 4200 UP - vedi scheda tecnica allegata), i trasformatori BT-MT installati in adiacenza agli stessi inverter, ed i 3 trasformatori MT-AT posizionati presso la SSE.

Tali apparecchiature, secondo i dati riportati nelle scheda tecniche allegate, relativamente all'inverter ed al trafo BT-MT, o desunti dalle specifiche tecniche del gestore della Rete Elettrica Nazionale, risultano caratterizzati dai successivi valori di emissione o potenza acustica.

Apparecchiatura	Posizione	Livello di potenza acust. L _w [dB(A)]	Livello di emissione Lp [dB(A)]	Distanza di misurazione (ml)
Inverter	Impianto	95,0*	67.0	10.00

Trafo BT-MT	Impianto	80,0	
Trafo MT-AT	Sotto-stazione	95,0	

(*) Valore ricavato dal livello di emissione

In merito ai dati sopra riportati, risulta d'obbligo evidenziare che tali apparecchiature, poiché legate alla produzione di energia di origine fotovoltaica, risultano funzionare unicamente in presenza di sole, e quindi esclusivamente nel periodo diurno (6.00 – 22.00);

Rilevazioni fonometriche

La fase della rilevazione fonometrica è stata preceduta da un sopralluogo avente lo scopo di acquisire tutte quelle informazioni che avrebbero potuto condizionare la scelta delle tecniche e dei punti di misura.

L'indicatore acustico prescelto ai fini della valutazione di impatto acustico è stato il livello sonoro equivalente ponderato "A", Leq(A), in virtù della sua ormai consolidata utilizzazione nel nostro paese, peraltro confermata dal D.M. del Ministero dell'Ambiente del 16/03/1998: "Tecniche di rilevamento e misurazione dell'inquinamento acustico".

Le misurazioni sono state eseguite nella giornata 17/12/2020, fra le ore 8,30 e le 11,30, in assenza di precipitazioni, e con velocità del vento inferiore al 5 m/sec.

I punti di misurazione, 8 in totale, risultano così localizzati:

- 1 nei pressi del futuro ingresso dell'impianto moccioleto-fotovoltaico (punto F1 rif. stralcio planimetrico area impianto);
- 3 nei pressi dei recettori più prossimi all'impianto (punti da R1 ad R3 rif. stralcio planimetrico area impianto);
- 1 nei pressi della sotto-stazione utente (punto F2 rif. stralcio planimetrico area sotto-stazione);
- 2 nei pressi dei recettori più prossimi alla sotto-stazione (punti da R4 ad R5 rif. stralcio planimetrico area sotto-stazione);
- 1 nei pressi del recettore più prossimo alle zone di posa del cavidotto di connessione (punto RC rif. stralcio planimetrico area opere a farsi).

Tale gruppo di misurazione è riportato nella tabella successiva.

Punto di misura	Tempo di rif.	Tempo di misura (min)	Leq (A)	Leq(A) corretto
F1	diurno	15	48,0	48,0
R1	diurno	15	47,0	47,0
R2	diurno	15	44,7	44,5
R3	diurno	15	34,0	34,0
F2	diurno	15	50,3	50,5
R4	diurno	15	36,1	36,0
R5	diurno	15	55,6	55,5
RC	diurno	15	45,1	45,0

⁻ Il tempo di misura è stato scelto in quanto rappresentativo del fenomeno in esame;

In questa fase strumentale, non è stato possibile procedere al rilievo del clima acustico all'interno degli ambienti abitativi innanzi evidenziati, necessari per la successiva verifica del limite differenziale. Ai fini espressamente valutativi del presente studio si ipotizza comunque, viste le condizioni al contorno, che i valori medi di rumorosità ante-operam,

⁻ I valori rilevati sono stati arrotondati a 0,5 dB;

misurabili all'interno degli ambienti, a finestre aperte, siano, a favore di sicurezza, paragonabili a quelli rilevati nei punti di misurazione.

Tale ipotesi semplificativa ci consente di poter stimare, nelle fasi successive del presente studio, il livello differenziale di rumore, in corrispondenza delle abitazione individuate, e confrontarlo con il relativo limite.

DETERMINAZIONE DEGLI IMPATTI ACUSTICI E VERIFICA DEI LIMITI ASSOLUTI E DIFFERENZIALE DI IMMISSIONE

Premessa

Sulla base di quanto riportato nella descrizione delle sorgenti sonore che saranno presenti sia nelle fasi realizzative, che nella condizione a regine del sito produttivo oggetto del presente studio, in sede di valutazione previsionale risulta pratica comune procedere alla quantificazione del relativo impatto acustico, discretizzando le stesse alle classiche configurazioni geometriche comunemente utilizzate nello studio della propagazione dei fenomeni acustici (sorgenti puntiformi, lineari ed areali).

Come precedentemente evidenziato, nel caso delle varie sorgenti sonore considerate (macchine, attrezzature ed apparati), risulta comoda, la loro assimilazione alla casistica delle sorgenti puntiformi con propagazione semisferica, e determinare il relativo effetto sonoro con l'utilizzo delle successive formule:

$$\int L_p = L_W - 20 \log(r) - 8$$

$$L_{p_2} = L_{p_1} + 20 \log \left(\frac{r_1}{r_2} \right)$$

Nello specifico, la prima ci permette di determinare il livello di pressione sonora generato da una sorgente, in corrispondenza del recettore, conoscendo la sua potenza acustica e la distanza dallo stesso, mentre, la seconda, consente di determinare la variazione dello stesso livello, al variare della distanza.

Previsione e verifica dell'impatto acustico nelle fasi di cantierizzazione.

Sulla base delle premesse innanzi evidenziate, e grazie all'utilizzo delle formule esposte al paragrafo precedente, è possibile determinare, in corrispondenza di ogni recettore, il livello di immissione sonora derivante dall'esecuzione delle fasi maggiormente impattanti. Si rammenta che le stesse risultano:

- relativamente alla realizzazione dell'impianto noccioleto-fotovoltaico, quelle ove è
 previsto l'utilizzo la macchina battipalo, caratterizzata da una potenza acustica L'w
 di 119.2 [dB(A)];
- in relazione alla realizzazione della sottostazione utente, le fasi a maggior impatto coincidono con quelle ove viene utilizzata l'autogrù, caratterizzata da una potenza sonora ponderata L'_w di 116.6 [dB(A)];
- relativamente alla posa del cavidotto, le maggiori emissioni derivano dall'utilizzo della pala gommata, che presenta una potenza L_w di 104.2 [dB(A)].

Si riportano nella tabella successiva, i livelli di immissione sonora, determinati in corrispondenza dei vari ricettori descritti al capitolo precedente, dalle sorgenti sopra evidenziate. Si evidenzia che le distanze sotto riportate indicano, nei casi relativi all'impianto ed alla sottostazione, la misura intercorrente fra il recettore considerato ed il baricentro dell'area di pertinenza considerata. Nel caso della posa del cavidotto, la stessa grandezza indica, invece, la distanza minima intercorrente fra la sorgente di rumore (area di posa del cavidotto) e l'unità a destinazione abitativa.

Recettore	Tempo di rif.	Fondo Leq [dB(A)]	Pot. Acust. sorgente L _w [dB(A)]	Distanza dal recettore [ml]	Livello di emissione L _p [dB(A)]	Livello di immission e L _p [dB(A)]	Liv. di imm. Corretto L _p [dB(A)]	Valore limite [dB(A)]
R1	Diurno	47,0	119,2	610,00	55,5	56,1	56,0	60,0 ⁽¹⁾
R2	Diurno	44,7	119,2	550,00	56,4	56,7	56,5	60,0(1)
R3	Diurno	34,0	119,2	510,00	57,0	57,1	57,0	70,0(2)
R4	Diurno	36,1	116.6	1.070,00	48,0	48,3	48.5	70,0(2)
R5	Diurno	55,6	116.6	780,00	50.8	56,8	57,0	70,0(2)
RC	Diurno	45,1	104,2	220,00	49,4	50,7	51,0	60,0 ⁽¹⁾

- (1) Valore limite derivante dal P.C.C.A. del comune di Matera;
- (2) Valore limite derivante da tabella art. 6 D.P.C.M. 01/03/1991;
- I valori rilevati sono stati arrotondati a 0,5 dB;

Come facilmente rilevabile dall'analisi dei dati sopra riportati, siamo in presenza di un livello massimo di immissione pari al 57.0 dB(A), calcolato sia in corrispondenza del recettore R3, dovuto al funzionamento della macchina batti-palo durante la relativa fase di realizzazione dell'impianto fotovoltaico, che nei pressi del recettore R5, a seguito dell'autigrà durante le varie fasi di realizzazione della sotto-stazione di trasformazione utente MT-AT.

Ai fini dell'accettabilità dei livelli di immissione sopra calcolati, possiamo affermare la condizione di verifica positiva, in quanto i livelli di immissione stimati, risultano inferiori ai valori limite previsti dalla vigente normativa nazionale, relativamente ai recettori ricadenti nel territorio del comune di Santeramo in Colle, o dal Piano Comunale di Classificazione Acustica del comune di Matera, relativamente a quelli contenuti in quest'ultimo territorio comunale.

Previsione e verifica dell'impatto acustico nella condizione a regime

Come riportato nel precedente capitolo, nella sezione relativa alla descrizione delle sorgenti sonore presenti in condizione a regime, presso l'area del noccioleto-impianto fotovoltaico, le stesse sono rappresentate dai tre container metallici, contenenti ognuno un inverter ed un trasformatore BT-MT.

Facendo riferimento ai relativi livelli di potenza sonora, ed adottando l'ipotesi semplificativa di concentrare le varie coppie inverter-trafo nei baricentri del container in cui questi sono posizionati, con l'utilizzo delle formule di propagazione indicate al paragrafo iniziale del presente capitolo, è possibile determinare un livello di emissione Lp, relativo al funzionamento contemporaneo delle tre coppie di sorgenti presenti in loco.

In virtù di tale condizione, alla luce della posizione delle sorgenti sonore all'interno del lotto di intervento e delle distanze intercorrenti fra queste ultime ed i ricettori precedentemente individuati, è possibile determinare i livelli di immissione, sia in corrispondenza dei confini di proprietà, nei punti più prossimi alle varie sorgenti (RS1 RS2 ed RS3), che in corrispondenza degli ambienti abitativi più vicini alle sorgenti considerate (R1, R2 ed R3). Tali risultati sono riportati nella successiva tabella

Punto o recettore	Fondo Leq [dB(A)]	Dist. sorg. 1 (m)	Contributo sorgente1 [dB(A)]	Dist. sorg. 2 (m)	Contributo sorgente2 [dB(A)]	Dist. sorg. 3 (m)	Contributo sorgente3 [dB(A)]	Livello di immissione [dB(A)]	Valore limite [dB(A)]
RS1	48,0	74,2	49,7	260,5	38,8	442,0	34,2	52,0	60,0(1)
RS2	48,0	268,8	38,0	247,6	39,3	332,4	36,7	49,0	60,0 ⁽¹⁾
RS3	48,0	537,4	32,5	353,0	36,2	181,0	42,0	49,5	60,0(1)
R1	47,0	406,0	35,0	346,5	36,3	373,8	35,7	48,0	70,0(2)
R2	44,7	635,1	31,1	456,0	34,0	294,3	37,8	46,0	60,0 ⁽¹⁾
R3	34,0	617,9	31,3	458,0	33,9	335,2	36,6	40,5	60,0(1)

- (1) Valore limite derivante dal P.C.C.A. del comune di Matera;
- (2) Valore limite derivante da tabella art. 6 D.P.C.M. 01/03/1991;
- I valori calcolati del livello di immissione, sono stati arrotondati a 0,5 dB;
- I valore contenuti nella tabella, sono relativi al Tempo di riferimento diurno.

Come visibile dai dati contenuti nell'ultima colonna, tutti i valori risultano inferiori a 60 dB(A), che rappresenta il valore limite di immissione, relativo al Tempo di Riferimento Diurno, previsto dal P.C.C.A. del comune di Matera, per la casistica di <u>"Zona III - Aree di</u> tipo misto", cui l'area di intervento appartiene.

Il confronto dei livelli di immissione sopra riportati, con i livelli di rumore residuo, determinati per mezzo delle rilevazioni fonometriche effettuate in loco, ci permettere di determinare, presso i ricettori individuati, i livelli differenziali, da confrontare con il relativo limite.

Recettore	Tempo di riferimento	LA corrretto [dB(A)]	LR corrretto [dB(A)]	LD = LA - LR	Valore limite [dB(A)]
R1	diurno	48,0	47,0	NON APPLIC.	5.0
R2	diurno	46,0	44,5	NON APPLIC.	5,0
R4	diurno	40,5	34,0	NON APPLIC.	5,0

⁻ I valori calcolati sono stati arrotondati a 0,5 dB;

Per tale frangente, in corrispondenza di tutti e tre i recettori analizzati, si evidenzia la non applicabilità del criterio differenziale, in quanto i livelli di immissione calcolati risultano, nel periodo di riferimento diurno, inferiori a 50 dB(A), e quindi trascurabili, secondo quanto previsto dall'art. 4 del D.P.C.M. 14/11/1997 "Determinazione dei valori limite delle sorgenti sonore".

Con le stesse ipotesi innanzi adottate, prendendo però in considerazione le potenze acustiche dei tre trafo MT-AT posti all'interno della sottostazione utente, è possibile procedere alla determinazione dei livelli di immissione di tali sorgenti, in corrispondenza del confine di proprietà, nei punti a queste più prossimi (P1, P2, P3 e P4), in corrispondenza dei recettori individuati (R4 ed R5), ed in corrispondenza dei punti Z1 e Z2 (vedi stralcio planimetrico area sottostazione), che risultano, in linea d'aria, le porzioni più vicine del territorio del comune di Matera, contraddistinte rispettivamente come "Classe IV" e "Classe III", dal vigente piano di Zonizzazione Acustica.

Punto o recettore	Recettore	Dist. sorg. 1	Contribut o sorg. 1	Dist. sorg. 2	Contribut o sorg. 2	Dist. sorg. 3	Contribut o sorg. 3	Livello di imm. [dB(A)]	Valore limite [dB(A)]
P1	50,3	22,1	60,1	54,1	52,3	142,7	43,9	61,2	70,0(2)
P2	50,3	31,4	57,1	31,6	57,0	156,4	43,1	60,6	70,0(2)
P3	50,3	56,5	52,0	24,6	59,2	127,6	44,9	60,5	70,0(2)
P4	50,3	139,0	44,1	129,2	44,8	8,5	68,4	68,5	70,0(2)
R4	36,1	1040,0	26,7	1040,0	26,7	1040,0	26,7	37,4	70,0(2)
R5	55,6	780,0	29,2	780,0	29,2	780,0	29,2	55,6	70,0(2)
Z1	55,6	237,0	39,5	237,0	39,5	237,0	39,5	55,9	65,0(1)
Z2	55,6	267,0	38,5	267,0	38,5	267,0	38,5	55,8	60,0 ⁽¹⁾

- (1) Valore limite derivante dal P.C.C.A. del comune di Matera;
- (2) Valore limite derivante da tabella art. 6 D.P.C.M. 01/03/1991;
- I valori calcolati del livello di immissione, sono stati arrotondati a 0,5 dB;
- I valori contenuti nella tabella, sono relativi al Tempo di riferimento diurno.

L'esame dell'ultima colonna della precedente tabella conferma l'accettabilità delle emissioni, sia al D.P.C.M. 01/03/1991, che, limitatamente ai punti Z1 e Z2, ai limiti imposti dal Piano di Zonizzazione Acustica del comune di Matera.

Con la stessa metodologia utilizzata nel caso del noccioleto consociato con impianto fotovoltaico, è possibile determinare, presso i ricettori individuati, i livelli differenziali, da confrontare con il relativo limite.

Punto o recettore	Tempo di riferimento	LA corrretto [dB(A)]	LR corrretto [dB(A)]	LD = LA - LR	Valore limite [dB(A)]
R4	diurno	37,4	36,1	NON APPLIC.	5
R5	diurno	55,6	55,6	0,0	5

⁻ I valori calcolati del livello di immissione, sono stati arrotondati a 0,5 dB;

Sulla base dei risultati ottenuti dalle precedenti calcolazioni, alla luce di quanto previsto dall'art. 6 del D.P.C.M. 01/03/1991 relativamente al limite assoluto di immissione, e dall'art. 4 del D.P.C.M. 14/11/1997 relativamente al valore limite differenziale di immissione, si può confermare, nelle condizione a regime, sia l'accettabilità delle emissioni sonore generate dal noccioleto consociato con l'impianto fotovoltaico, che quelle dalle sottostazione utente di trasformazione MT-AT, in quanto le stesse risultano conformi alle vigenti prescrizioni normative nazionali in materia di inquinamento acustico, ed ai limiti imposti dal Piano di Zonizzazione Acustica del comune di Matera.

Valutazione dell'impatto acustico dei tracker

Come già indicato nel capitolo relativo alla descrizione del sito produttivo, i pannelli dell'impianto fotovoltaico, risultano installati al disopra di telai a basculamento zenitale

(tracker). Tali apparati risultano movimentati tramite un unico albero di trasmissione collegato ad un piccolo motore elettrico, a mezzo di apposito motoriduttore.

Secondo i dati forniti dal costruttore di tale apparecchiatura, il telaio su cui sono installati i moduli fotovoltaici, compie, durante l'intero ciclo di funzionamento giornaliero, una rotazione complessiva di 110°, a step di 5°, aventi ognuno una durata di 2.5 secondi. Calcolando oltre ai 22 step giornalieri, le 2 fasi di partenza e ritorno alla posizione orizzontale, che avvengono rispettivamente al mattino ed alla sera, risulta, approssimando per eccesso, un periodi totale di funzionamento, di ogni tracker, pari a 2 minuti, nelle 12 ore medie giornaliere di durata dell'irraggiamento solare.

Sulla base di tale regime di funzionamento a tempo parziale, del valore di emissione sonora del gruppo motore elettrico-riduttore, fornito dal produttore (vedi scheda tecnica allegata), che risulta pari a 65 dB(A), misurato ad 1 ml dal motore, considerando il funzionamento contemporaneo dei 96 tracker presenti all'interno dell'impianto (vedi planimetria allegata), e concentrando il loro effetto in corrispondenza del baricentro del sito produttivo, è possibile discretizzare la totalità degli inseguitori presenti, dal punto di vista acustico, ad un'unica sorgente avente un livello sonoro medio equivalente di emissione pari a 59,3 dB(A).

Integrando tale valore nella prima tabella di pag. 26 della relazione previsionale di impatto acustico, otteniamo i successivo prospetto:

Punto	Livello senza tracker [dB(A)]	Leq tracker [dB(A)]	Distanza sorg, tracker [m]	Contributo tracker [dB(A)]	Livello totale [dB(A)]	Valore limite [dB(A)]
RS1	52,0	59,3	322,0	11,3	52,0	60,0 ⁽¹⁾
RS2	49,0	59,3	143,9	18,3	49,0	60,0 ⁽¹⁾
RS3	49,5	59,3	314,7	11,5	49,5	60,0 ⁽¹⁾
R1	48,0	59,3	466,0	8,1	48,0	70,0(2)
R2	46,0	59,3	395,8	9,6	46,0	60,0 ⁽¹⁾
R3	40,5	59,3	36507	10,2	40,5	60,0(1)

- (1) Valore limite derivante dal P.C.C.A. del comune di Matera;
- (2) Valore limite derivante da tabella art. 6 D.P.C.M. 01/03/1991;
- I valori calcolati del livello di immissione, sono stati arrotondati a 0,5 dB;

Come visibile dal prospetto sopra riportato, confrontando i valori della seconda e della penultima colonna, si evince che l'impatto acustico dei tracker, risulta irrilevante ai fini della rumorosità, nella fase di funzionamento dell'impianto fotovoltaico.

CONCLUSIONI

Delle verifiche esposte nel capitolo precedente, effettuate sia nei confronti dei limite assoluto di immissione che del limite differenziale di immissione, derivanti dall'applicazione dalle norme nazionali e regionali, si evince che l'attività di noccioleto consociato con impianto fotovoltaico, che sarà realizzata dalla società AGRI New Tech s.r.l., presso la località "Contrada Cipolla" del comune di Matera (MT), comprensivo della relativa sottostazione utente MT-AT situata nel comune di Santeramo n Colle, e delle opere di connessione elettrica (cavidotto), risulta conforme, in virtù delle ipotesi e dei dati adottati, alle prescrizione della L. 447 del 26/10/1995, del D.P.C.M. 14/11/97, del D.P.C.M. 01/03/1991 e del Piano di Zonizzazione Acustica del comune di Matera, e le sue emissioni acustiche risultano compatibili con l'ambiente in cui lo stabilimento produttivo, nella sua interezza, è localizzato.

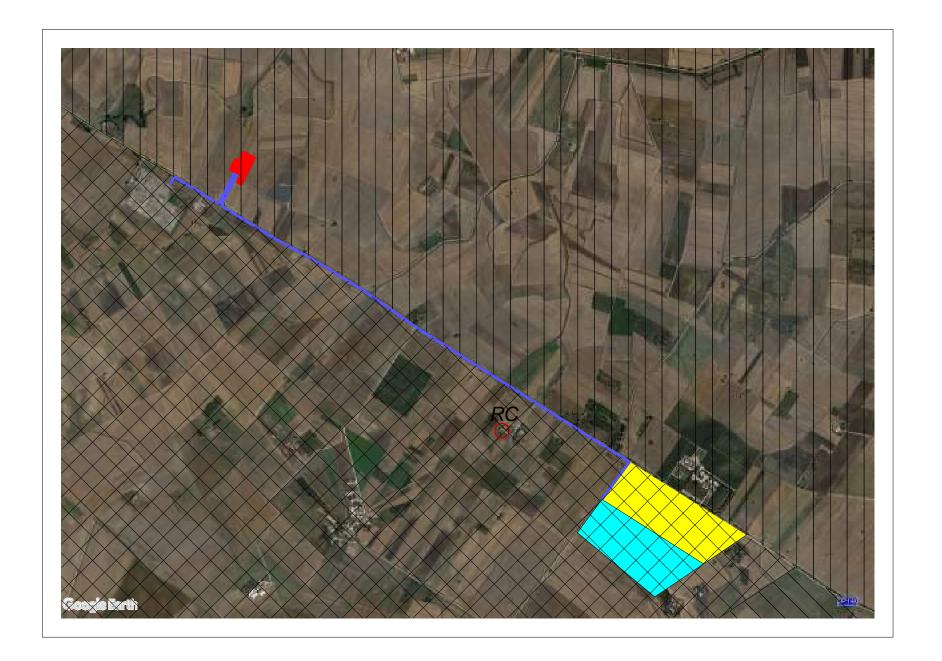
E' bene evidenziare che le valutazioni innanzi espresse rappresentano una previsione che dovrà essere verificata anche attraverso ulteriori campagne di misurazioni, da effettuarsi quando l'insediamento in oggetto entrerà in pieno esercizio, al fine di convalidare le stime dei livelli assoluti e dei livelli differenziali. Tali rilievi dovranno accertare l'effettivo rispetto dei limiti di legge e, se necessario, programmarne eventuali bonifiche acustiche.

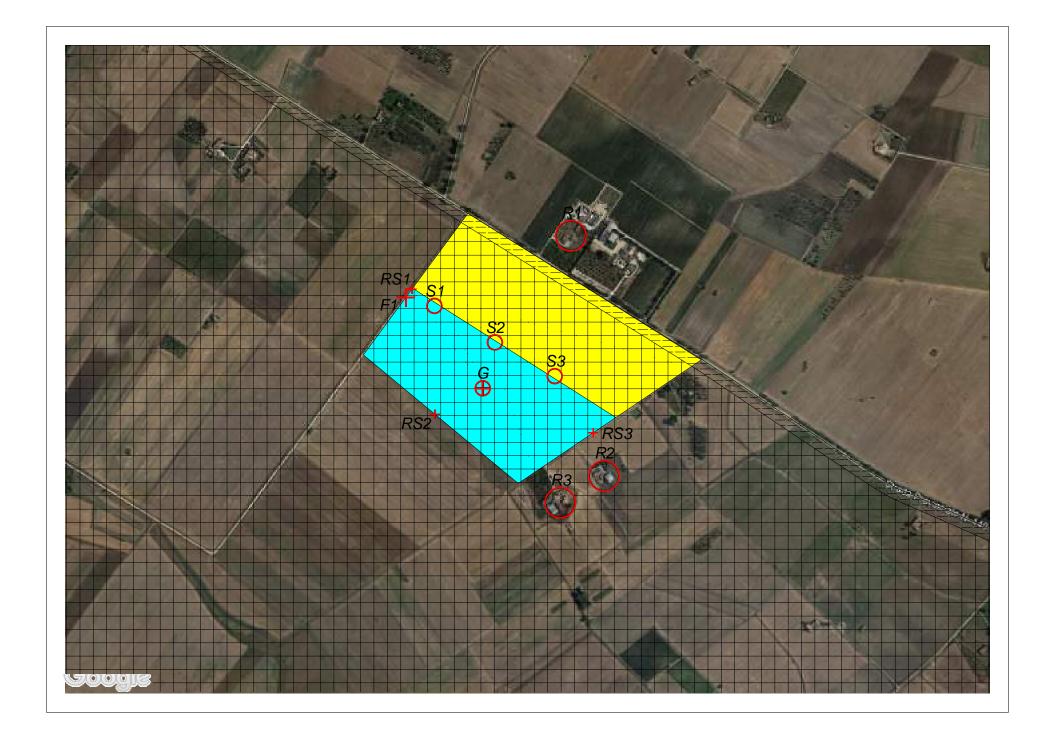
Si fa inoltre rilevare l'obbligo, che dovrà assumere il committente dell'opera, durante la realizzazione della stessa, di eseguire le relative lavorazioni, unicamente negli intervalli orari 7.00-12.00 e 15.00-19.00, previsti dal comma 4, art. 17, della L.R. Puglia n. 3 del 12/02/2002.

Tanto si doveva in ossequio all'incarico conferitomi.

Cassano delle Murge, 25/10/2021

Il Committente (Legale Rappresentante) per presa visione e accettazione


Il Tecnico Competente in Acustica Ambientale Ing. SMALDINO Michele Vito Massimo


Allegati:

- 1. Stralci planimetrici;
- 2. Planimetrie generali impianto e S.S.T.
- 3. Schede tecniche attrezzature fase esecutiva;
- 4. Schede tecniche sorgenti fisse:
- 5. Registrazioni fonometriche:
- 6. Certificati di taratura del fonometro e del calibratore;
- 7. Det. Dirigenziale di iscrizione all'elenco del T.C.A.A. della Provincia di Bari.

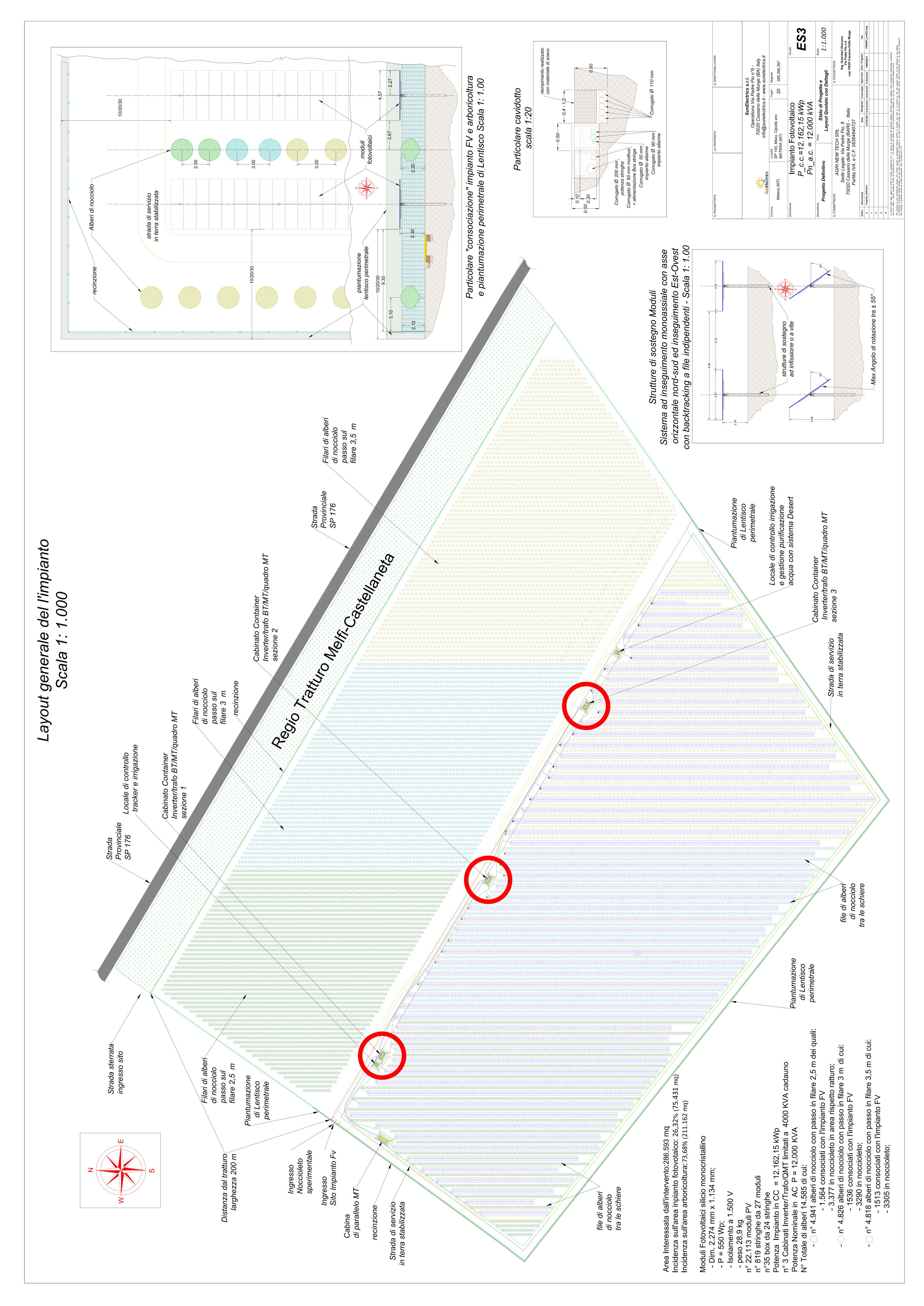
Stralcio planimetrico dell'area interessata dalle opere a farsi Scala:20.000

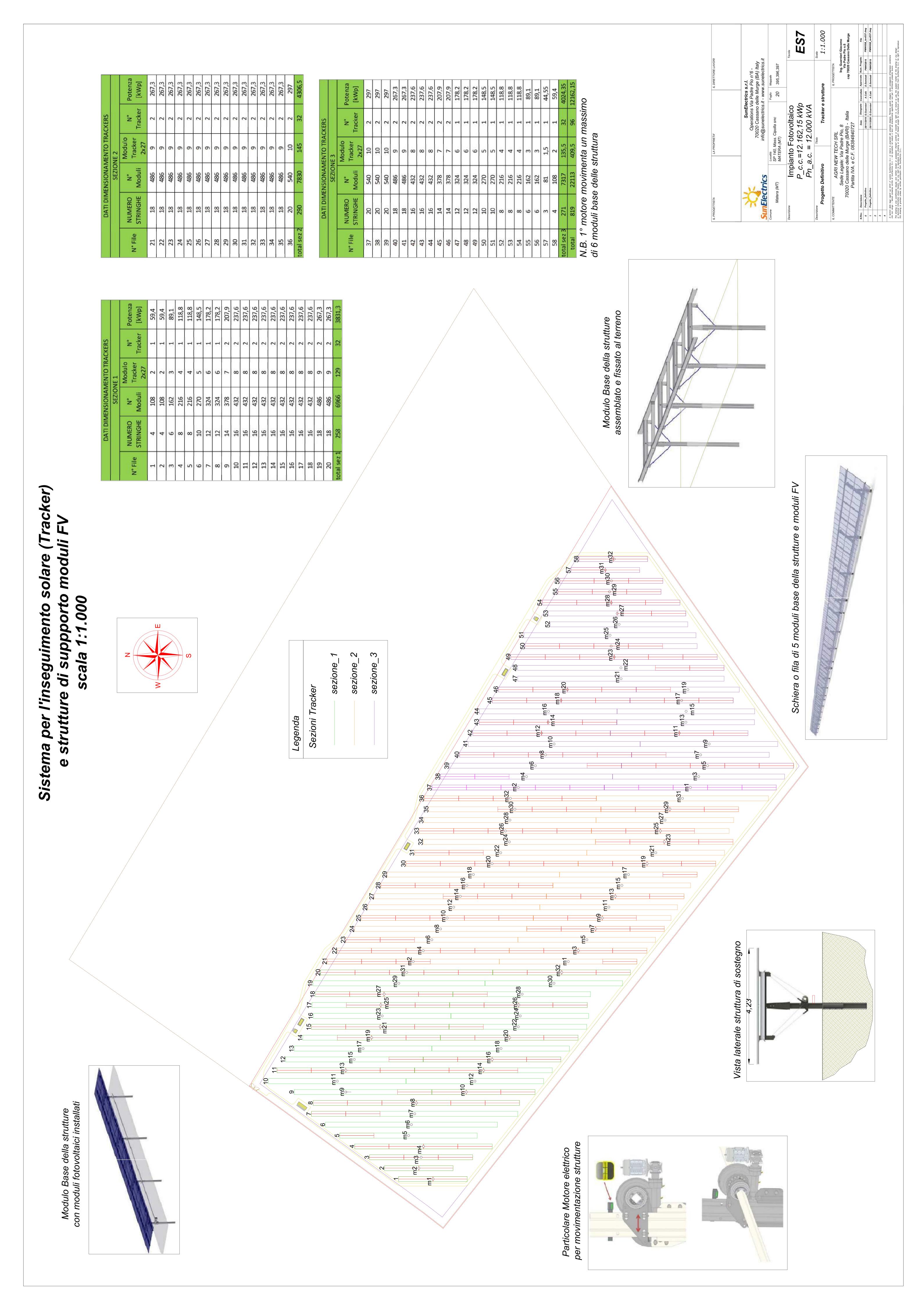
	LEGENDA
	Area di pertinenza dell'impianto fotovoltaico
	Area di pertinenza della sottostazione MT-AT
	Area di pertinenza noccioleto
	Cavidotto di connessione
RC	Recettore - Matera fg. 20 p.lla 414
	Territorio del comune di Santeramo in Colle
	Territorio del comune di Laterza
	Territorio del comune di Matera

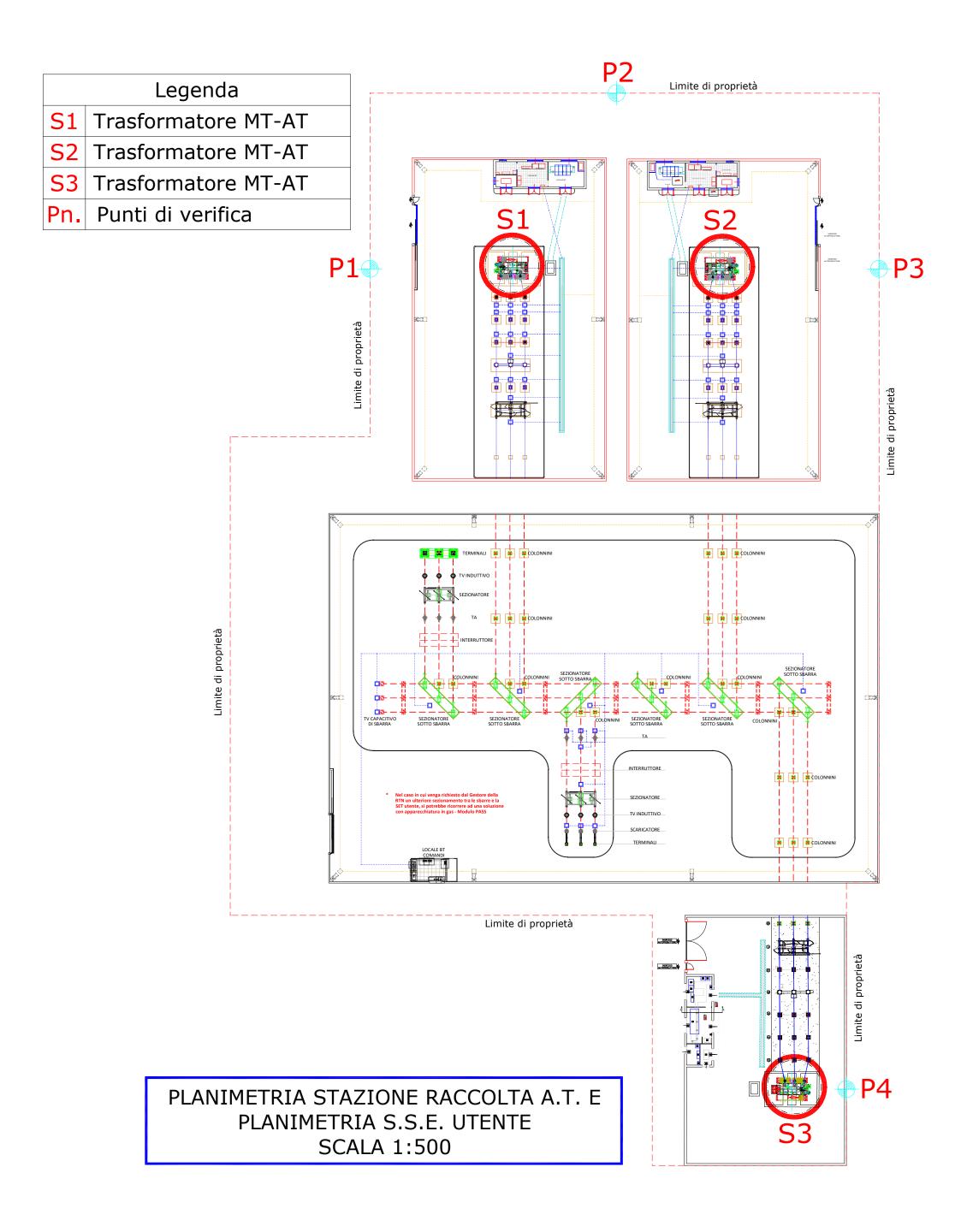
Stralcio planimetrico dell'area interessata dal'impianto Scala:10.000

	LEGENDA
	Area di pertinenza dell'impianto fotovoltaico
S1	Cabinato inverter trafo sez. 1
S2	Cabinato inverter trafo sez. 2
S3	Cabinato inverter trafo sez. 3
G	Baricentro dell'impianto
F1	Postazione rilievo fonometrico
R1	Recettore - Santeramo in C. fg. 107 p.lla 389
R2	Recettore - Matera fg. 20 p.lla 429
R3	Recettore - Matera fg. 20 p.lla 353
RSn.	Punto di verifica al limite dell'impianto
Zon	izzazione acustica del comune di Matera
	Classe III (60 dB(A) diurno - 50 dB(A) nott.)
	Classe IV (65 dB(A) diurno - 55 dB(A) nott.)

DATI GEOMETRICI		
Distanze minime dei recettori dall'impianto		
R1	341.90 ml	
R2	110.60 ml	
R3	104.70 ml	
Distanze minime dei cabinati dai confini		
S1	74.10 ml	
S2	247,60 ml	
S3	181.00 ml	




LEGENDA		
	Area di pertinenza della sotto-stazione	
F2	Postazione rilievo fonometrico	
R4	Recettore - Santeramo in C. fg. 103 p.lla 470	
R5	Recettore - Santeramo in C. fg. 103 p.lla 248	
G	Baricentro impianto SST	
Zonizzazione acustica del comune di Matera		
	Classe III (60 dB(A) diurno - 50 dB(A) nott.)	
	Classe IV (65 dB(A) diurno - 55 dB(A) nott.)	
	Classe VI (70 dB(A) diurno - 70 dB(A) nott.)	
Pn.	Punto di verifica	
Zn.	Punto di verifica	


DATI GEOMETRICI		
Distanze minime dei recettori dall'impianto		
R4	1.000 ml	
R5	720 ml	
Z1	170 ml	
Z2	200 ml	
Distanze minime dei trafo dai confini		
S1	22,00 ml	
S2	24,60 ml	
S3	13,50	

Stralcio planimetrico dell'area interessata dalla sotto-stazione Scala:10.000

ALLEGATO 2 Planimetria generali impianto e S.S.T.

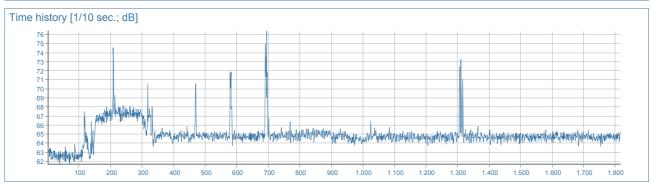
Ing. SMALDINO Michele Vito Massimo – Tecnico Competente in Acustica Ambientale
ALLEGATO 3
Schede tecniche attrezzature fase esecutiva.
Concae teornone attrezzatare rase escoativa.
AGRI New Tech Italia s.r.l.

SCHEDA: 03.003

AUTOCARRO

marca	FIAT IVEC)	
modello	150E24		
matricola	CC5880		
anno	2008		
data misura	04/12/2013		
comune	Avellino		
temperatura	13°C	umidità	7300%

RUMORE


Livello sonoro equivalente	L _{Aeq}	72,5 dB (A)
Livello sonoro di picco	L _{Cpicco}	123,6 dB (C)
Livello sonoro equivalente	L _{Ceq}	96,9 dB (C)

L _{Ceq} - L _{Aeq}	24,4 dB
L _{Aleq} - L _{Aeq}	7 ,6 dB
L _{ASmax} - L _{ASmin}	18,0 dB

Livello di potenza sonora L_W 106,8 dB

DPI - udito

		MIN/MAX
Cuffie [β=0,75]	SNR	
Inserti espandibili [β=0,50]	SNR	
Inserti preformati [β=0,30]	SNR	

PROTEZIONE UNI EN 458:2005

NON CALCOLATA*

(*) Stima della "protezione" calcolata solo per valori LA_{eq} maggiori di 80 dB(A)

SCHEDA: 15.002



ESCAVATORE

marca	CATERPILLAR	
modello	315MH	
matricola	32M00396	
anno	1997	
dota migura	21/05/2014	
data misura	21/05/2014	
	21/05/2014 GROTTAMINARDA	
	00 0	
	GROTTAMINARDA	48%

RUMORE					
Livello sonoro equivalente	L _{Aeq}	79,2 dB (A)	L _{Ceq} - L _{Aeq}	15,0 dB	
Livello sonoro di picco	L _{Cpicco}	119,1 dB (C)	L _{Aleq} - L _{Aeq}	7,2 dB	
Livello sonoro equivalente	L _{Ceq}	94,2 dB (C)	L _{ASmax} - L _{ASmin}	23,9 dB	
Livello di potenza sonora	Lw	108,0 dB			

DPI - udito

		MIN/MAX
Cuffie [β=0,75]	SNR	
Inserti espandibili [β=0,50]	SNR	
Inserti preformati [β=0,30]	SNR	

PROTEZIONE UNI EN 458:2005

NON CALCOLATA*

(*) Stima della "protezione" calcolata solo per valori LA_{eq} maggiori di 80 dB(A)

COMITATO PARITETICO TERRITORIALE PER LA PREVENZIONE INFORTUNI L'IGIENE E L'AMBIENTE DI LAVORO DI TORINO E PROVINCIA

PALA MECCANICA GOMMATA

Rif.: 936-(IEC-53)-RPO-01

Marca:	CATERPILLAR
Modello:	950H
Potenza:	146,00 KW
Dati fabbricante:	Lw(A): 106 dB
Accessorio:	benna da 3 mc

Attività: movimentazione

Materiale: terra

Appotazioni:

Annotazioni:

Data rilievo: 20.10.2009

POTENZA SONORA

L_W dB(A) 104

					ANALI	ISI SPET	TRALE					
					Hz						TC	TALE
31,5	63	125	250	500			2K	4K	8K	16K	dB(A)	
100,0	115,0	108,1	105,1	99,5	97,4	4 95	5,7	91,9	87,8	84,1	103,6	115,9
14 12 10 10 10 10 10 10 10 10 10 10 10 10 10	0 -											
	31,5 Hz	63 Hz	125 Hz	250 Hz	500 Hz	1 KHz	2 KHz	4 KHz	8 KHz	16 KHz	dB(A)	dB(C)
						Frequen	ze (Hz)					

STRUMENTAZIONE					
Strumento / Marca	Modello	Matricola	Data Taratura		
Fonometro Bruel & Kjaer	2250		22/03/2009		
Microfono Bruel & Kjaer	4189		22/03/2009		

COMITATO PARITETICO TERRITORIALE PER LA PREVENZIONE INFORTUNI L'IGIENE E L'AMBIENTE DI LAVORO DI TORINO E PROVINCIA

PALA MECCANICA GOMMATA

Rif.: 936-TO-1580-1-RPR-11

Marca:	CATERPILLAR
Modello:	950H
Potenza:	146,00 KW
Anno produzione:	2006
Dati fabbricante:	LpA: 69,0 dB(A)
Accessorio:	benna da 3 mc
Attività:	movimentazione
Materiale:	misto ghiaia / sabbia
Annotazioni:	in stabilimento

Data rilievo: 06.11.2007

LIVELLI DI PRESSIONE ACUSTICA

 L_{Aeq} dB(A)
 68,2

 L_{Ceq} dB(C)
 92,1

 LIVELLO DI PICCO

L_{peak} dB(C) 119,9

	ANALISI SPETTRALE												
	Hz							T	OTALE				
31,5	63	125	250	500		K	2K	4K	8K	16K	dB(A		3(C)
92,4	85,1	75,6	70,9	63,1	59,	5 53	3,2	53,2	50,1	46,9	67,0	90,	1
Livelli di pressione (dB)	31,5 Hz	63 Hz	125 Hz	250 Hz	500 Hz	1 KHz Frequen	2 KHz	4 KHz	8 KHz	16 KHz	dB(A)	dB(C)	

STRUMENTAZIONE					
Strumento / Marca	Modello	Matricola	Data Taratura		
Fonometro Svantek	SVAN-948	9825	25/06/2007		
Microfono Svantek	SV 22	4011859	25/06/2007		
Calibratore (RUM) Bruel & Kjaer	4230	1670857	05/12/2006		

SCHEDA: 03.005

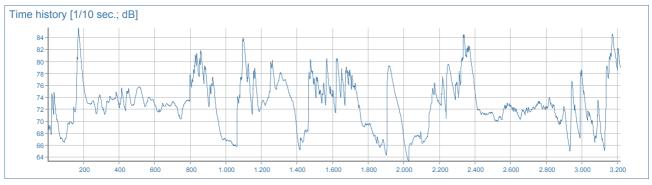
18,5 dB

5,5 dB

22,3 dB

AUTOCARRO

marca	FIAT IVECO
modello	330-35
matricola	
anno	1998
data misura	08/10/2013
comune	PRATA P.U.
temperatura	17°C umidità 70%



RUMORE Livello sonoro equivalente L_{Aeq} 75,0 dB (A) L_{Ceq} - L_{Aeq} Livello sonoro di picco L_{Cpicco} 121,2 dB (C) L_{Aleq} - L_{Aeq} Livello sonoro equivalente L_{Ceq} 93,5 dB (C) L_{ASmax} - L_{ASmin}

Livello di potenza sonora Lw 102,8 dB

DPI - udito

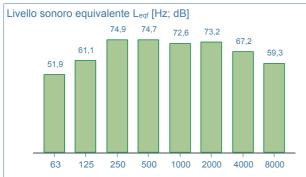
		MIN/MAX
Cuffie [β=0,75]	SNR	
Inserti espandibili [β=0,50]	SNR	
Inserti preformati [β=0,30]	SNR	

PROTEZIONE UNI EN 458:2005

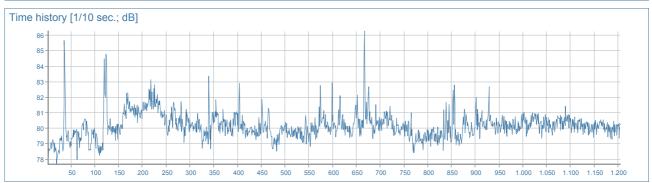
NON CALCOLATA*

(*) Stima della "protezione" calcolata solo per valori LA_{eq} maggiori di 80 dB(A)

SCHEDA: 04.004



AUTOCARRO CON GRU


marca	FIAT IVEC)				
modello	EUROCARGO TECTOR					
matricola						
anno	2002					
data misura	06/12/2012					
uata misura	06/12/2013					
comune	CHIUSANO DI	SAN DOMENICO)			
temperatura	6°C	umidità	85%			

RUMORE					
Livello sonoro equivalente	L _{Aeq}	80,3 dB (A)	L _{Ceq} - L _{Aeq}	6,6 dB	
Livello sonoro di picco	L _{Cpicco}	100,3 dB (C)	L _{Aleq} - L _{Aeq}	0,9 dB	
Livello sonoro equivalente	L _{Ceq}	86,9 dB (C)	L _{ASmax} - L _{ASmin}	3,6 dB	
Livello di potenza sonora	Lw	121,8 dB			

DPI - udito

PROT	MIN/MAX		
	20/29 dB	SNR	Cuffie [β=0,75]
AC	20/40 dB	SNR	Inserti espandibili [β=0,50]
	23/40 dB	SNR	Inserti preformati [β=0,30]

PROTEZIONE UNI EN 458:2005

ACCETTABILE/BUONA

Scheda Macchinario

Marca: STIHL

Modello: BT 45

Tipologia: Trivella per terreni

Peso: 4.8 kg Potenza: 0.8 kW

Alimentazione: Motore a scoppio benzina

Cilindrata: 27.2 cc

Norma di riferimento: NON IDENTIFICATA

Questo macchinario potrebbe avere anche dei rischi derivanti da: Vibrazioni Mano-Braccio

CHI SIAMO TERMINI DI UTILIZZO CONTATTI

BACKOFFICE LOADING TIME: 0.009 S. MD

INFO@PORTALEAGENTIFISICI.IT

LIVELLO DI PICCO

L_{peak} dB(C)

COMITATO PARITETICO TERRITORIALE PER LA PREVENZIONE INFORTUNI L'IGIENE E L'AMBIENTE DI LAVORO DI TORINO E PROVINCIA

MACCHINA BATTIPALO

Rif.: 449-TO-876-1-RPR-11

Marca:	ORTECO				
Modello:	BTP 800 HD				
Potenza:					
Anno produzione:	2004				
Dati fabbricante:					
Accessorio:	martello battipalo				
Attività:	inserimento pali per guard-rail				
Materiale:					
Annotazioni:					
Data rilievo:	14.04.2008				
LIVELLI DI PRESSI	ONE ACUSTICA				
L _{Aeq} dB(A)	113,2				
L _{Aeq} dB(C)	113,2				

140,5

					ANALIS	I SPET	TRALE					
	Hz								TO	TALE		
31,5	63	125	250	500	1K		2K	4K	8K	16K	dB(A)	dB(C
35,7	94,7	92,9	97,0	106,6	105,2	10	6,7	102,9	102,4	99,3	111,9	111,9
12	0											
				_				_		ı		
10	0											
<u>@</u>												
, e	o -											
ione												
Se 6	0 -											
Livelli di pressione (dB)												
₩ 4	0 -											
Ė												
2	0 -											
	o ——											
	31,5 Hz	63 Hz	125 Hz	250 Hz	500 Hz	1 KHz	2 KHz	4 KHz	8 KHz	16 KHz	dB(A)	IB(C)
					1	Frequenz	ze (Hz)					

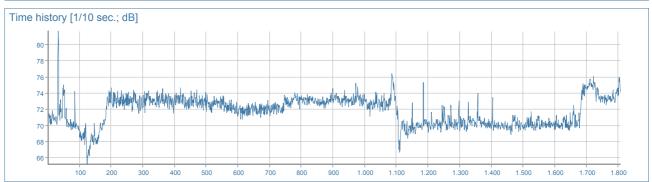
STRUMENTAZIONE					
Strumento / Marca	Modello	Matricola	Data Taratura		
Fonometro Svantek	SVAN-948	9825	25/06/2007		
Microfono Svantek	SV 22	4011859	25/06/2007		
Calibratore (RUM) Bruel & Kjaer	4230	1670857	05/12/2006		

SCHEDA: 02.003

AUTOBETONIERA

marca	MERCEDES	3	
modello	TMP20898		
matricola	230500089		
anno	2005		
	T		
data misura	04/12/2013		
comune	Avellino		
temperatura	13°C	umidità	60%

RUMORE


Livello sonoro equivalente	L_{Aeq}	72,5 dB (A)
Livello sonoro di picco	L _{Cpicco}	123,6 dB (C)
Livello sonoro equivalente	L _{Ceq}	96,9 dB (C)

L _{Ceq} - L _{Aeq}	24,4 dB
L _{Aleq} - L _{Aeq}	6,1 dB
L _{ASmax} - L _{ASmin}	16,0 dB

Livello di potenza sonora L_W 106,9 dB

DPI - udito

		MIN/MAX
Cuffie [β=0,75]	SNR	
Inserti espandibili [β=0,50]	SNR	
Inserti preformati [β=0,30]	SNR	

PROTEZIONE UNI EN 458:2005

NON CALCOLATA*

(*) Stima della "protezione" calcolata solo per valori LA_{eq} maggiori di 80 dB(A)

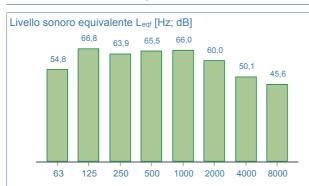
SCHEDA: 05.001

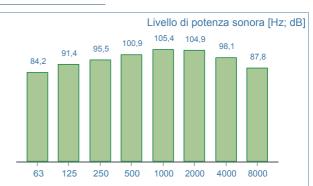
10,4 dB

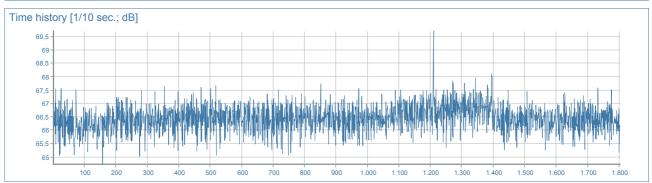
12,1 dB

9,9 dB

AUTOPOMPA PER CALCESTRUZZO


marca	PUTZMEIST	ER	
modello	BSF2016		
matricola	4657125		
anno	2005		
data misura	04/12/2013		
comune	Avellino		
temperatura	13°C	umidità	60%
		umidità	60%


	RUMORE				
Livello sonoro equivalente	L _{Aeq}	66,5 dB (A)	L _{Ceq} - L _{Aeq}		
Livello sonoro di picco	L _{Cpicco}	103,0 dB (C)	L _{Aleq} - L _{Aeq}		
Livello sonoro equivalente	L _{Ceq}	76,9 dB (C)	L _{ASmax} - L _{ASmin}		


 L_{W}

109,5 dB

Livello di potenza sonora

DPI - udito

		MIN/MAX
Cuffie [β=0,75]	SNR	
Inserti espandibili [β=0,50]	SNR	
Inserti preformati [β=0,30]	SNR	

PROTEZIONE UNI EN 458:2005

NON CALCOLATA*

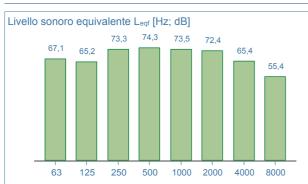
(*) Stima della "protezione" calcolata solo per valori LA_{eq} maggiori di 80 dB(A)

SCHEDA: 47.003

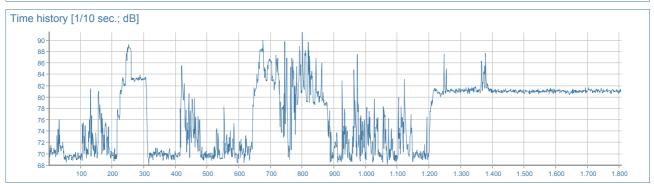
12,2 dB

2,2 dB

18,3 dB


RULLO COMPRESSORE

marca	DYNAPAC
modello	
matricola	CC1300
anno	2006
data misura	04/12/2013
comune	Avellino
temperatura	13°C umidità 60%



Livello sonoro equivalente	L _{Aeq}	80,0 dB (A)	L _{Ceq} - L _{Aeq}
Livello sonoro di picco	L _{Cpicco}	106,8 dB (C)	L _{Aleq} - L _{Aeq}
Livello sonoro equivalente	L _{Ceq}	92,2 dB (C)	L _{ASmax} - L _{ASmin}

Livello di potenza sonora L_W 105,7 dB

DPI - udito

		IVIIIN/IVIAX
Cuffie [β=0,75]	SNR	20/36 dB
Inserti espandibili [β=0,50]	SNR	24/40 dB
Inserti preformati [β=0,30]	SNR	

PROTEZIONE UNI EN 458:2005

ACCETTABILE/BUONA

Scheda Macchinario

Marca: CARRARO Modello: Supertigre 5000 **Tipologia: Trattore gommato**

Peso: 1900 kg Potenza: 31 kW

Alimentazione: Motore a scoppio diesel Norma di riferimento: NON IDENTIFICATA

Valori dichiarati ai sensi della norma NON IDENTIFICATA

Livello pressione acustica $L_{Aeq}(dBA) \pm K dB$

Potenza acustica $L_{WA}(dB) \pm K dB$

Nessun dato dichiarato

Questo macchinario potrebbe avere anche dei rischi derivanti da: Vibrazioni Corpo Intero

COMPARTO: Macchine operatrici n.c.a. ACCESSORIO: NON INDICATO LAVORO EFFETTUATO: Spostamenti

Referente: AUSL 7 -Siena Laboratorio Agenti Fisici

Stato di manutenzione: buono Lavoro effettuato: Spostamenti

Condizioni

Tipo terreno/strada: asfalto terra battuta

Condizioni terreno / strada: Strada: buone condizioni

Velocita di avanzamento: moderata Materiale lavorato: NON APPLICABILE

Lavoro effettuato (es. perforazione roccia, levigatura legno etc): Spostamenti

Condizioni misura: esterno Presenza superfici riflettenti: si

LIVELLO DI POTENZA ACUSTICA MISURATA

Norma di riferimento: UNI EN ISO 3746 dBA

MISURA 10cm DALL'ORECCHIO DELL'OPERATORE

Note condizione di misura:

DATI MISURATI A 10 cm DALL'ORECCHIO DELL'OPERATORE

L _{Aeq} (Media aritmetica) 88.9 dBA	L _{Ceq} (Media aritmetica) 93.7 dBC	P peak (Media aritmetica) 107.7 dBC
Deviazione standard 0.61 dBA	Deviazione standard 0.61 dBC	Deviazione standard 0.6 dBC
L Aeq Media aritmetica + (Dev. std. x 1.645); 89.9 dBA	L _{Ceq} Media aritmetica + (Dev. std. x 1.645): 94.7 dBC	P peak Media aritmetica + (Dev. std. x 1.645): 108.7 dBC

SPETTRI IN OTTAVE PER CALCOLO OBM - DI UNA DELLE MISURE (a 10 cm dall'orecchio)

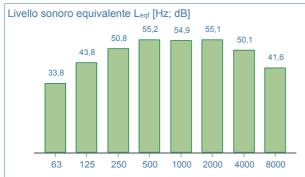
63 HZ	125 HZ	250 HZ	500 Hz	1000 Hz	2000 Hz	4000 Hz	8000 Hz	NOTE	
86.4	87.9	85.9	84.9	83.2	82.4	78.0	69.3		

CHI SIAMO TERMINI DI UTILIZZO CONTATTI

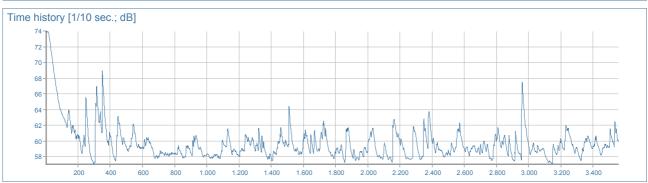
SCHEDA: 19.008

GRUPPO ELETTROGENO

marca	RAMAC
modello	ES800
matricola	
anno	2007
data misura	08/11/2013
comune	AVELLINO
temperatura	22°C umidità 60%


RUMORE

Livello sonoro equivalente	L_{Aeq}	60,9 dB (A)
Livello sonoro di picco	L _{Cpicco}	93,1 dB (C)
Livello sonoro equivalente	L _{Ceq}	67,1 dB (C)
		<u> </u>


L _{Ceq} - L _{Aeq}	6,2 dB
L _{Aleq} - L _{Aeq}	3,7 dB
L _{ASmax} - L _{ASmin}	18,7 dB

Livello di potenza sonora

DPI - udito

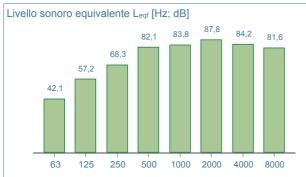
		MIN/MAX
Cuffie [β=0,75]	SNR	
Inserti espandibili [β=0,50]	SNR	
Inserti preformati [β=0,30]	SNR	

PROTEZIONE UNI EN 458:2005

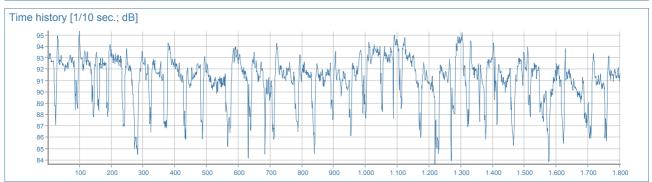
NON CALCOLATA*

(*) Stima della "protezione" calcolata solo per valori LA_{eq} maggiori di 80 dB(A)

SCHEDA: 72.001



TRAPANO TASSELLATORE A BATTERIA


marca	BOSCH
modello	GBH 36 VF-LI
matricola	
anno	0
data misura	10/04/2014
comune	MONTEMILETTO
temperatura	14°C umidità 54%

RUMORE				
Livello sonoro equivalente	L _{Aeq}	91,5 dB (A)	L _{Ceq} - L _{Aeq}	-0,3 dB
Livello sonoro di picco	L _{Cpicco}	109,4 dB (C)	L _{Aleq} - L _{Aeq}	0,7 dB
Livello sonoro equivalente	L _{Ceq}	91,2 dB (C)	L _{ASmax} - L _{ASmin}	7 , 4 dB
Livello di potenza sonora	Lw	106,3 dB		

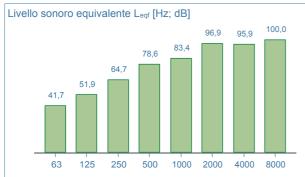
DPI - udito

		IVIIN/IVIAX
Cuffie [β=0,75]	SNR	20/35 dB
Inserti espandibili [β=0,50]	SNR	22/40 dB
Inserti preformati [β=0,30]	SNR	37/40 dB

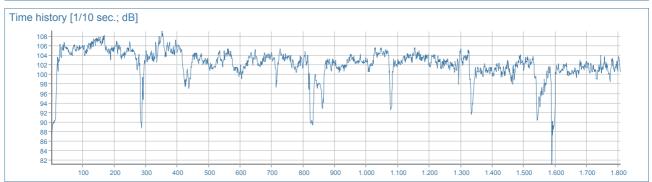
PROTEZIONE UNI EN 458:2005

ACCETTABILE/BUONA

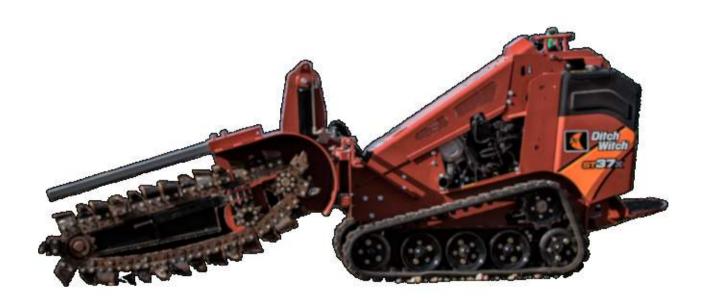
SCHEDA: 55.018



SMERIGLIATRICE


marca	HITACHI KOK	(1	
modello	G 23 SW		
matricola			
anno	2005		
data misura	24/04/2014		
comune	LAPIO		
temperatura	12°C	umidità	80%

RUMORE				
Livello sonoro equivalente	L _{Aeq}	103,1 dB (A)	L _{Ceq} - L _{Aeq}	-1,7 dB
Livello sonoro di picco	L _{Cpicco}	122,6 dB (C)	L _{Aleq} - L _{Aeq}	0,7 dB
Livello sonoro equivalente	L _{Ceq}	101,4 dB (C)	L _{ASmax} - L _{ASmin}	20,8 dB
Livello di potenza sonora	Lw	115,8 dB		


DPI - udito

PROTEZION	MIN/MAX		
	29/40 dB	SNR	Cuffie [β=0,75]
ACCETT		SNR	Inserti espandibili [β=0,50]
		SNR	Inserti preformati [β=0,30]

PROTEZIONE UNI EN 458:2005

ST37X STAND-ON TRENCHER

DIMENSIONS	U.S.	METRIC
Height	57 in	1450 mm
Length, w/out chain	104.5 in	2654 mm
Length, w/36-in chain	130 in	3302 mm
Width	42 in	1065 mm
Width, excluding tracks	35 in	890 mm
Wheelbase	43 in	1092 mm
Ground clearance, min		
Center	7.4 in	188 mm
Side	3.7 in	94 mm
Angle of departure	27°	
Angle of approach	30°	
Trench depth, max	36 in	914 mm
Trench width, max	16 in	406 mm
Digging chain	50K	
Swing radius, front, 36-in chain	81 in	2057 mm
Swing radius, rear	44 in	1120 mm
Boom travel, up/down	60°	
Headshaft height	23 in	584 mm
Centerline trench to outside edge of unit, right	^e 4-20 in	102-508 mm
Centerline trench to outside edg of unit, right	^e 21-37 in	533-940 mm
Headshaft overhang	18 in	457 mm

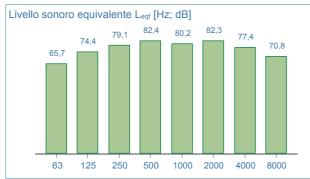
POWER	U.S.	METRIC
Engine	Yanmar 3TNV88C	
Fuel	Diesel	
Number of cylinders	3	
Displacement	100.1 in ³	1.64 L
Bore	3.46 in	88 mm
Stroke	3.54 in	90 mm
Manufacturer's gross power rating	36.9 hp	27.5 kW
Estimated net power rating	35.1 hp	26.2 kW
Rated engine speed	3,000 rpm	
Tilt angle, fore and aft, max*	30°	
Tilt angle, side to side, max*	30°	
Emissions compliance	EPA Tier 4 Final, EU Stage IIIA	
*Exceeding these operating angles will cause engine damage. This DOES NOT imply that the machine is stable to maximum angle of safe engine operation.		
OPERATION	U.S.	METRIC
Ground drive speed, max		
Forward/reverse	4.7 mph	7.6 km/h
Ground pressure w/ 9-in (230-mm) tracks*	5.5 psi	0.38 bar
Machine weight w/30-in boom, 12-in combo chain	4,110 lb	1864 kg
* Includes machine weight, and 165-lb (75-kg) operator.		
Digging chain speed	402 fpm	7.6 km/h
LIVERALILIO EVETEM	HE	METRIC
HYDRAULIC SYSTEM Auxiliary circuit	U.S.	METRIC
Double gear pump	12.0 gpm	50.71 nm
Combined flow rate	13.9 gpm	52.7 Lpm 250 bar
Pressure	3,625 psi	200 Dal
Ground drive		
Dual hydrostatic	0.005	050 hav
Pressure	3,625 psi	250 bar
Flow rate	15 gpm	56.8 Lpm

FLUID CAPACITIES	U.S.	METRIC
Fuel tank	10.5 gal	40 L
Hydraulic reservoir	9.2 gal	35 L
Engine oil, w/filter	5 qt	4.7 L

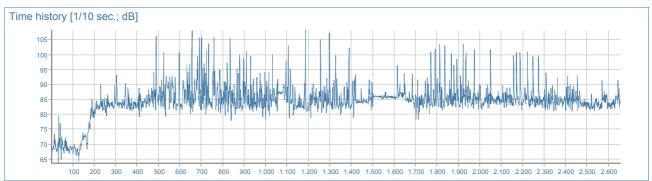
NOISE LEVEL	
Operator ear sound pressure	89 dBA
Exterior sound power	103 dBA

BATTERY	
SAE reserve capacity rating	110 min
SAE cold crank @ 0°F (-18°C)	800 amps
Electrical system	12V

SCHEDA: 07.005



BOBCAT


marca	KOMATSU		
modello	SK-714		
matricola	815-1020		
anno	2011		
data misura	-		
data misura	-		
data misura	17/04/2014	<u> </u>	

RUMORE 7,3 dB 88,8 dB (A) L_{Ceq} - L_{Aeq} Livello sonoro equivalente L_{Aeq} Livello sonoro di picco L_{Cpicco} 128,1 dB (C) LAleq - LAeq 9,3 dB Livello sonoro equivalente Lceq 96,2 dB (C) 29,1 dB L_{ASmax} - L_{ASmin} Livello di potenza sonora L_{W} 104,2 dB

DPI - udito

		MIN/MAX	
Cuffie [β=0,75]	SNR	22/40 dB	
Inserti espandibili [β=0,50]	SNR	32/40 dB	
Inserti preformati [β=0,30]	SNR		

PROTEZIONE UNI EN 458:2005

ACCETTABILE/BUONA

COMITATO PARITETICO TERRITORIALE PER LA PREVENZIONE INFORTUNI L'IGIENE E L'AMBIENTE DI LAVORO DI TORINO E PROVINCIA

PIASTRA BATTENTE

Rif.: 661-TO-1549-1-RPR-11

Marca:	AMMANN
Modello:	AVP 1240
Potenza:	2,60 KW
Anno produzione:	2005
Dati fabbricante:	

Accessorio:

Attività: compattatura

Materiale: terra

Annotazioni:

Data rilievo: 08.03.2011

LIVELLI DI PRESSIONE ACUSTICA

 L_{Aeq} dB(A)
 86,2

 L_{Aeq} dB(C)
 89,0

 LIVELLO DI PICCO

L_{peak} dB(C) 112,8

	ANALISI SPETTRALE											
	Hz								ТО	TOTALE		
31,5	63	125	250	500			2K	4K	8K	16K	dB(A)	dB(C)
74,8	83,2	79,8	76,9	79,4	77,	1 76	6,6	80,7	68,9	65,0	85,0	87,7
Livelli di pressione (dB)	100 90 80 70 60 50 40 30 10 31,5 Hz	63 Hz	125 Hz	250 Hz	500 Hz	1 KHz Frequen	2 KHz	4 KHz	8 KHz	16 KHz	dB(A)	dB(C)
							(/					

STRUMENTAZIONE						
Strumento / Marca Modello Matricola Data Taratura						
Fonometro Svantek	SVAN-948	9825	05/07/2010			
Microfono Svantek	SV 22	4011859	05/07/2010			
Calibratore (RUM) Bruel & Kjaer	4230	1670857	05/07/2010			

PRESTAZIONI OTTIMALI. Con 177,9 kN di spinta/ tiro-posa e 7.457 Nm di coppia di rotazione, il D40x55 S3 presenta un aumento del 10% in termini di spinta e rotazione rispetto al suo predecessore, il D36x50 Serie II, contribuendo a massimizzare la produttività.

VARIETÀ DI OPZIONI RELATIVE ALLE ASTE. Il D40x55 S3 è disponibile con un'ampia gamma di opzioni relative alle aste di perforazione, che comprende aste lunghe 3 m con diametro di 6 cm o 6,7 cm e aste lunghe 4,6 m con diametro di 6,7 cm. La grande varietà di opzioni relative alle aste permette di configurare la macchina perforatrice in base alle specifiche esigenze del committente.

CICLI DI PRODUZIONE IMPAREGGIABILI. II D40x55 S3 presenta una velocità del carrello di 57,3 m/min, registrando un aumento del 7% rispetto al suo predecessore (il D36x50 Serie II) e permettendo così di coprire maggiori lunghezze lineari al giorno.

RIDUZIONE SIGNIFICATIVA DELLA RUMOROSITÀ. Grazie al livello di potenza sonora garantito di 104 dB(A) e di rumorosità all'orecchio dell'operatore di 82,9 dB(A) (75,7 dB(A) all'interno della cabina), il D40x55 S3 è molto più silenzioso rispetto ai suoi predecessori, contribuendo a creare un ambiente di lavoro più tranquillo, a limitare la confusione nelle aree circostanti e a migliorare la comunicazione tra gli addetti ai lavori.

CABINA CONFORTEVOLE. La cabina, simile a quella degli escavatori, offre uno spazio maggiore per le gambe dell'operatore ed aumenta il comfort.

DISPLAY TOUCH AURORA™. II display touch a colori interattivo fornisce dati in tempo reale facili da interpretare e localizzare nonché piani di perforazione, contribuendo ad incrementare la produttività.

D40x55 S3 NAVIGATOR PERFORATORE ORIZZONTALE DIREZIONALE

PESI E DIMENSIONI GENERALI

Lunghezza di trasporto min: : 6,1 m Larghezza di trasporto min: 226,1 cm

Altezza di trasporto min: 193 cm Altezza (con cabina): 233,7 cm

Peso min: 10.151,4 kg Peso max: 14.288 kg

MOTORE OPZIONE UNO

Marca e modello: John Deere 4045

Tipo di carburante: Diesel a tenore di zolfo ultra basso

Giri/min max del motore: 2.400 giri/min

Potenza lorda: 140 hp (104 kW)

Classificazione delle emissioni: Tier 4 Final (EU Stage IV)

MOTORE OPZIONE DUE

Marca e modello: John Deere 4045

Tipo di carburante: Diesel a tenore di zolfo ultra basso

Giri/min max del motore: 2.400 giri/min

Potenza lorda: 140 hp (104 kW)

Classificazione delle emissioni: Tier 3 (EU Stage IIIA)

OPERATIVITA'

Tiro/spinta: 40.000 lb (177,9 kN)

Velocità max carrello a giri/min del motore max: 57,3 m/min Coppia max mandrino (bassa a giri/min del motore max): 7.457 Nm

Velocità max mandrino a giri/min del motore max: 227 rpm

Diametro min del foro: 10,2 cm

Velocità max di avanzamento nel terreno a giri/min del motore max

(marcia avanti): 5.3 km/h

Livello di rumorosità all'orecchio dell'operatore: 82,9 dB(A)

Livello di rumorosità all'orecchio dell'operatore (cabina): 75,7 dB(A)

Angolo cremagliera perforazione (barra da 3 m): 15,5-20,5° (27,7-37,4%)

Angolo cremagliera perforazione (barra da 4,6 m): $12,5-17,5^{\circ}$ (22,2-31,5%)

CAPACITÀ FLUIDI

Serbatoio fluidi: 166,6 L

Capacità del serbatoio dell'antigelo: 6 L

SISTEMA DI FLUIDI DI PERFORAZIONE OPZIONE UNO

Flusso max: 189,3 L/min

Pressione massima: 10,2 bar (1050 psi)

SISTEMA DI FLUIDI DI PERFORAZIONE OPZIONE DUE

Flusso max: 265 L/min

Pressione massima: 87 bar (1300 psi)

CARATTERISTICHE

Sistema di disserraggio: Morsa idraulica standard

Luci presso il punto di perforazione: Standard

Indicatore di flusso: Standard Sistema di ancoraggio: Standard Segnalatore di scossa: Standard

Blocco a distanza: Standard

ASTA DI PERFORAZIONE OPZIONE UNO

Tipo: Asta di perforazione Firestick®

Lunghezza: 3 m

Diametro dell'asta: 6 cm

Peso: 36,3 kg

Raggio di curvatura: 51,8 m

ASTA DI PERFORAZIONE OPZIONE DUE

Tipo: Asta di perforazione Firestick

Lunghezza: 3 m

Diametro dell'asta: 7 cm

Peso: 59,4 kg

Raggio di curvatura: 69,5 m

ASTA DI PERFORAZIONE OPZIONE TRE

Tipo: Asta di perforazione Firestick

Lunghezza: 4,6 m

Diametro dell'asta: 6.7 cm

Peso: 74,9 kg

Raggio di curvatura: 51,8 m

Vermeer

MB120

CODICE/CODE	TIPO DI MOTORE/ENGINE TYPE	kW - (HP)	Kg
020704	Benzina / Petrol Honda GX690 A.E. (bicilindrico / two-cylinder)	18,0 - (24,0)	286,0

Caratteristiche tecniche / Technical specifications

0	Lisciatrice doppia con 2 rotori / Double trowel with 2 rotors	. Ø 1200 mm
0	Velocità di rotazione pale / Blades rotation speed	. 40÷150 rpm
0	Sedile centrale e regolabile / Central and adjustable seat	
0	Serbatoio acqua / Water tank	30 L
0	Fari di illuminazione per lavori notturni / Illumination headlights for night works	
0	Livello di emissione sonora / Sound emission level	107 dB
0	Dimensioni (LxLxH) / Dimensions (LxWxH)	2400x1250x1270 mm

Optional

CODICE/CODE	DESCRIZIONE/DESCRIPTION	
020419	PALA FINITURA / FINISHING BLADES dim.455X150 mm	
020422	ALA SGROSSATURA / FLOATING BLADES dim.455X250 mm	
020417	PALA COMBINATA / COMBINATION BLADES dim.455X200 mm	
****** CARRELLO PER TRASPORTO / TRANSPORT TROLLEY		
020705	MB120 CON PIATTI DI LISCIATURA / WITH SMOOTHING PLATES	

^{*}La macchina è venduta completa di pale finitura e sgrossatura, documentazione tecnica e certificato CE.

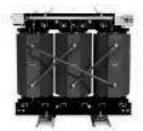
^{*}The machine is sold complete with finishing and floating blades, technical documentation and CE certificate.

ing. SMALDINO Michele Vito Massimo – Tecnico Competente in Acustica Ambientale
ALLEGATO 4
Schede tecniche sorgenti fisse.
3

General data	
Maximum permissible value for relative humidity (non-condensing)	0% to 95%
Maximum permissible value for relative humidity (condensing)	> 95% to 100% (up to two months per year)
Maximum operating altitude up to MSL 1000 m / 2000 m / 3000 m	Standard equipment / optional (maximum overvoltage +10%) / optional (maximum overvoltage +10%)
Fresh air consumption	6500 m³/h
Operating temperature range	-25°C to +60°C
Temperature range (stand-by)	-40°C to +60°C
Temperature range (storage)	-40°C to +70°C
Equipment	
AC connection	Track system
Communication	Ethernet, Modbus master, Modbus slave
Type of communication with SMA String-Monitor (transmission medium)	Modbus TCP / Ethernet (FO MM, Cat-5)
Color enclosure / roof	RAL 9016 / RAL 7004
Color of base	Galvanized steel
Supply transformer for external loads	Optional 2.5 kVA
Standards and directives complied with	CE, IEC / EN 62109-1, IEC / EN 62109-2, AR-N 4110, IEEE1547,
	UL 840 Cat. IV, Arrêté du 23/04/08
EMC standards	IEC 55011, FCC Part 15 Class A
Quality standards and directives complied with	VDI/VDE 2862 page 2, DIN EN ISO 9001

16.2 Sunny Central 4200 UP

DC input	
MPP voltage range at 25°C / 50°C	921 V to 1325 V / 921 V to 1100 V
Minimum DC input voltage	891 V
Start voltage	1071 V
Maximum DC voltage	1500 V
Maximum DC current (PV) at 25°C / 50°C	4750 A / 4037 A
Maximum DC current per input (DC-DC Converter)	500 A
Maximum DC current (with PV and when using DC-DC Converter)	4800 A


Operating manual SC-UP-DC-Coup-BE-en-11 231

DC input	
Maximum short-circuit current	6400 A
DC connection	Terminal lugs
Number of DC inputs (PV)	18 two-pole fuse / 36 A single-pole fuse
Number of DC inputs (DC-DC Converter)	6 two-pole fuse
Maximum cable cross-section per DC cable	400 mm ²
Integrated zone monitoring	optional
Available DC fuse sizes (PV, per input)	200 A / 250 A / 315 A / 350 A / 400 A / 450 A / 500 A
Available DC fuse sizes (DC-DC Converter, per input)	750 A
AC output	
Nominal AC power at $\cos \varphi = 1$ and 25° C / 50° C	4200 kVA / 3570 kVA
Nominal AC power at $\cos \varphi = 0.8$ and 25° C / 50° C	3200 kW / 2856 kW
##Maximum output current $I_{AC, max}$ = Nominal AC current $I_{AC, nom}$ at 25 °C / at 50 °C	3850 A / 3273 A
Maximum total harmonic distortion	< 3% at nominal power
Nominal AC voltage / nominal AC voltage range	630 V / 504 V to 756 V
AC power frequency	50 Hz / 47 Hz to 53 Hz 60 Hz / 57 Hz to 63 Hz
Min. short-circuit ratio at AC terminals	> 2
Power factor at rated power/displacement power factor adjustable	1 / 0.8 overexcited to 0.8 underexcited
Efficiency	
Maximum efficiency, measured without internal power supply	98.7%*
European weighted efficiency, measured without internal power supply	98.6%*
CEC weighted efficiency, measured with internal power supply	98.5%*
* Preliminary indication	
Protective Devices	
Input-side disconnection point	DC load-break switch
AC disconnection point	AC circuit breaker
DC surge protection	Surge arrester, type I
AC overvoltage protection"	Surge arrester, class I

Protective Devices	
Overvoltage category AC power path	III
Overvoltage category DC power path	II
Overvoltage category AC control voltage (communication)	II
Overvoltage category AC control voltage (external)	III
Overvoltage category DC control voltage (communication)	I
Lightning protection (according to IEC 62305-1)	Lightning protection level III
AC overcurrent protection device	Nominal current of 3850 A Short-circuit current of 70 kA
Ground fault monitoring remote-controlled	Optional
Insulation monitoring	Optional
Degree of protection (as per IEC 60529): electronics / air duct / connection area	IP54 / IP34 / IP34
Degree of protection (as per NEMA)	3R
General data	
Width x height x depth	2815 mm x 2318 mm x 1588 mm
Weight (without packaging)	< 3600 kg
Maximum self-consumption (rated operation) / self-consumption (standby)	< 8100 W / < 370 W
Internal auxiliary supply / external auxiliary supply	Integrated 8.4 kVA transformer / optional
Noise emission with distance 10 m	67.0 dB(A)
Maximum permissible value for relative humidity (non-condensing)	0% to 95%
Maximum permissible value for relative humidity (condensing)	> 95% to 100% (up to two months per year)
Maximum operating altitude up to MSL 1000 m / 2000 m	Standard features / optional (maximum overvoltage +10%)
Fresh air consumption	6500 m³/h
Operating temperature range	-25°C to +60°C
Temperature range (stand-by)	-40°C to +60°C
Temperature range (storage)	-40°C to +70°C
Equipment	
AC connection	Track system

Trasformatori in resina T-Cast Merlin Gerin

Catalogo 2003

Dati tecnici

Caratteristiche elettriche

Dati comun	i a tutte le pote	enze nor	minali												
tensione pri	3 - 4,	16 - 6	10 -	9/10	13,8	- 15 - 10	0/15	20 -	22 - 23	- 8,4/20	- 9/20 -	10/20 - 1	15/20 - 1	5/22	
livello d'isol	7	,2	1	2		17,5					24				
tensione sea a vuoto (V)	400 (a richi	400 (a richiesta: 231 - 231/400)													
regolazione	MT (%)	± 2 x 2 (a richi	,5 % esta +2	-3 % -	± 3 x 2,	5%)									
collegamen	ti	Triango	olo/stella	con nei	ıtro - Dy	n11									
sovratempe avvolgiment		classe (a richi	F/F esta clas	sse B/F	- classe	e B/B)									
Dati relativi	alle diverse po	otenze n	ominali												
potenza nom	inale kVA (1)	100	160	200	250	315	400	500	630	800	1000	1250	1600	2000	2500
perdite (W)	a vuoto	460	660	800	880	1000	1200	1400	1650	2000	2300	2700	3100	4000	5000
	a carico														
	75 C°	1950	2550	3050	3250	3900	4700	5700	6600	8000	9400	11200	13700	16200	19700
	120 C°	2300	3000	3600	3800	4600	5500	6700	7800	9400	11000	13000	16000	19000	23000
tensione di c.to c.to Ucc% (2)		6	6	6	6	6	6	6	6	6	6	6	6	6	6
corrente a v	uoto lo%	2,2	1,9	1,7	1,5	1,4	1,3	1,2	1,2	1,1	1	1	0,9	0,9	0,8
corrente d'inserzione	valore di cresta li/ln	11	11	10,5	10,5	10,5	10	10	9	9	9	8,5	8,5	8	8
	costante di tempo (s)	0,1	0,1	0,15	0,15	0,2	0,2	0,25	0,25	0,3	0,3	0,35	0,4	0,5	0,6
caduta	carico 100%														
di tensione	cosφ 1	2,48	2,06	1,98	1,7	1,64	1,56	1,52	1,42	1,38	1,28	1,22	1,18	1,13	1,1
a 120°C (%)	cosφ 0,8	5,5	5,17	5,11	4,89	4,85	4,78	4,75	4,67	4,64	4,57	4,52	4,49	4,45	4,43
rendimento	carico 100%														
a 120°C (%)	cosφ 1	97,31	97,76	97,85	98,16	98,25	98,35	98,41	98,52	98,57	98,69	98,76	98,82	98,86	98,89
	cosφ 0,8	96,67	97,22	97,32	97,71	97,83	97,95	98,02	98,16	98,22	98,36	98,45	98,53	98,58	98,62
	carico 75%														
	cosφ 1	97,72	98,08	98,15	98,42	98,50	98,59	98,64	98,74	98,78	98,88	98,94	99,00	99,03	99,05
	cosφ 0,8	97,16	97,61	97,70	98,03	98,14	98,24	98,31	98,43	98,48	98,61	98,68	98,76	98,79	98,82
rumore (dB)	pressione acustica Lpa a 1 m	50	51	52	54	55	56	56	57	58	59	60	62	64	65
	potenza acustica Lwa	61	63	63	65	67	68	69	70	71	73	74	76	79	80

Schneider Electric

⁽¹⁾ La potenza nominale è riferita a circolazione naturale dell'aria (AN).
Può essere aumentata del 30% con l'applicazione di ventilatori di raffreddamento forzato (AF).
(2) A richiesta: 4% - 5% - 7% - 8%.

Nota: Per caratteristiche differenti consultare Schneider Electric

SPECIFICA TECNICA

Pagina 68 di 74

Titolo:

REQUISITI E CARATTERISTICHE DI RIFERIMENTO DELLE STAZIONI ELETTRICHE DELLA RTN

Rev. 01 del 30.10.2006

39-AUTOTRASFORMATORE TRIFASE 400/155 E 400/135 VARIABILE	KV A RAPF	PORTO
CARATTERISTICHE NOMINALI E FUNZIONALI	Š.	
Тіро	Immers	o in olio
Installazione	Pere	sterno
Numero delle fasi (n°)		3
Numero avvolgimenti (n°)	1 3	2
Frequenza nominale (Hz)	5	0
Potenza nominale (MVA)	25	50
Simbolo di collegamento	YN	, a0
Tensioni nominali		
Avvolgimento AT1 (kV)	40	00
Avvolgimento AT2 (kV)	155	135
Collegamento avvolgimenti		
Avvolgimenti AT1 e AT2	stella con n esterno (pre collegamen terra)	evisto per
Regolazione della tensione		
Tipo di regolazione della tensione	sul cent	ro stella
Tipo di commutatore	Sotto	carico
Tipo di prese	a piena	potenza
Campo di regolazione	400/(15	5±10%)
	400/(13	5±10%)
Sistema di raffreddamento	Ç.	
Simbolo identificativo	OF	AF
Avvolgimento AT1		
Tipo di isolamento	non un	iforme
Tensione massima (kV)	42	20
Tensione massima terminale di neutro (kV)	72	2,5
Livelli di isolamento (CEI EN 60076-3)		
Tensione nom. di tenuta a impulso atmosferico per i terminali di linea (kV)	13	00

SPECIFICA TECNICA

Pagina 69 di 74

Titolo:

REQUISITI E CARATTERISTICHE DI RIFERIMENTO DELLE STAZIONI ELETTRICHE DELLA RTN

Rev. 01 del 30.10.2006

Tensione nom. di tenuta a impulso di manovra per i terminali di linea (kV)	10	50		
Tensione nom, di tenuta di breve durata a f.i. per il terminale di neutro (kV)(***)	140			
Tensione nom, di tenuta indotta di lunga durata "FILD"	Secondo CE art			
Avvolgimento AT2				
Tipo di isolamento	non ur	iforme		
Tensione massima (kV)	170	145		
Livelli di isolamento (CEI EN 60076-3)				
Tensione nom, di tenuta ad impulso atmosferico per i terminali di linea (kV)	650	550		
Tensione di corto circuito		U		
Temperatura di riferimento (°C)	7	5		
Tensioni di corto circuito in funzione posizione commutatore (% Vn):				
-5	11,5	12,5		
0	11,6	13		
+5	11,8	13,2		
Corrente a vuoto				
Corrente a vuoto a Vn (% In)	0	,2		
Corrente a vuoto a 1,1 Vn (%In)	0	.6		
(valori diversi o comunque superiori possono essere concordati)	900			
Livello massimo di potenza acustica [dB(A)] (****)	9	5		
Perdite				
Perdite a vuoto a Vn (nota 1) (kW)	75	80		
Perdite a vuoto a 1,1 Vn (nota 1) (kW)	100	105		
Perdite a carico riferite a 75 °C (nota 1) (kW)	465	500		
Tenuta al corto circuito (CEI EN 60076-5)				
Corrente di corto circuito in rete lato 400 kV (kA)	6	3		
Corrente di corto circuito in rete lato 135 o 155 kV (kA)	31,5			
Rapporto X ₀ /X _d in rete	0,8	3+3		

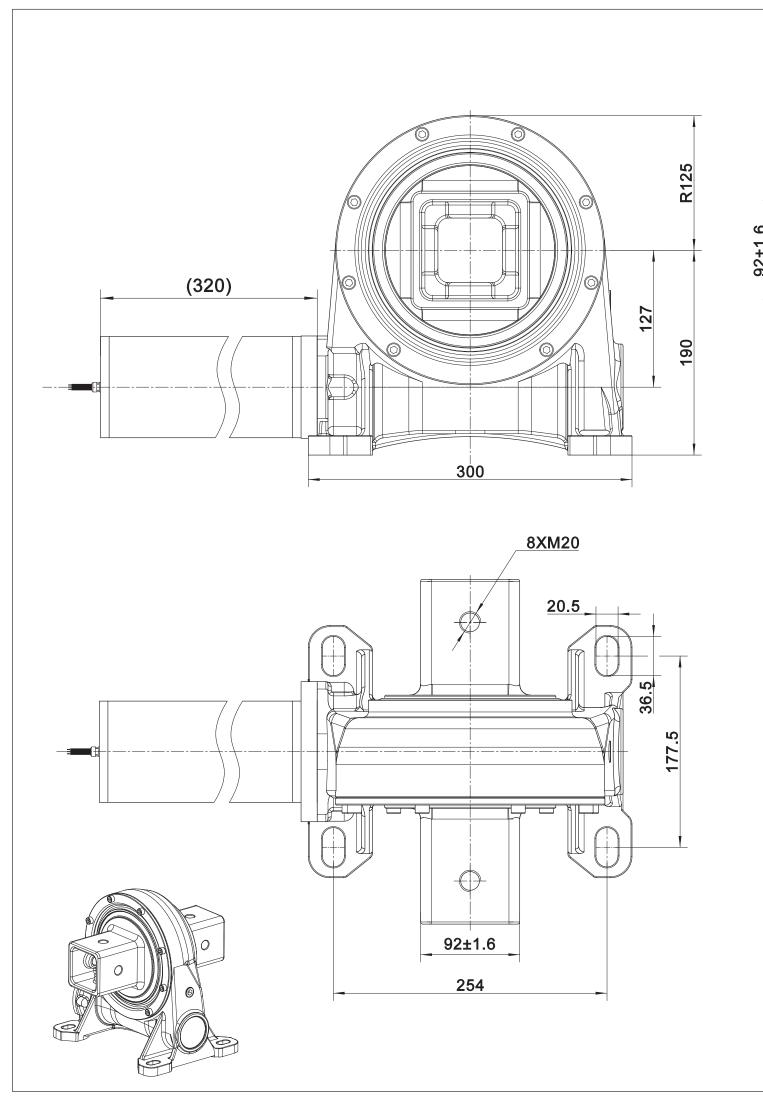
SPECIFICA TECNICA

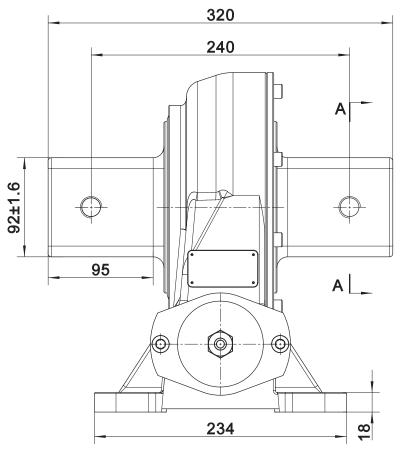
Pagina 70 di 74

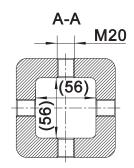
Titolo:

REQUISITI E CARATTERISTICHE DI RIFERIMENTO DELLE STAZIONI ELETTRICHE DELLA RTN

Rev. 01 del 30.10.2006

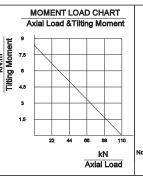

Sovreccitazione in esercizio (%V _{1n})	1	110	
Tenuta alla brusca messa in tensione (lato AT e BT)			
Tensione di rete (lato AT o BT) (%Vn)	1	05	
Condizioni di sovraccarico (Nota 2)	009		
Sovraccarico permanente con tutti gli aerotermi in servizio e con sovratemperature dell'olio e degli avvolgimenti nei limiti previsti dalla Norma CEI EN 60076-2 (% Pn)		8	
Sovraccarico per 30 min. a partire dalle condizioni nominali di regime termico con un aerotermo fuori servizio (pompe e ventilatori fermi) con sovratemperature dell'olio e degli avvolgimenti nei limiti previsti dalla Norma CEI EN 60076-2 aumentate di 10°C(% Pn)	10		
Impedenze omopolari riferiti a 1/3 Vn (valori indicativi)	00		
Lato AT1 con AT2 aperta (% Zn)	115	115	
Lato AT2 con AT1 aperta (%Zn)	140	140	
Lato AT2 con AT1 in corto circuito (%Zn)	11	12,5	
Tolleranze rispetto ai valori nominali	7-17		
Rapporto di trasformazione a vuoto (%)	± 0,5 s principale, altre	Control of the second of the second	
Tensione di corto circuito (funz. sulla presa principale) (*) (%)	± 10		
Perdite a vuoto a Vn e 1,1 Vn (%) (**)	+ 15		
Perdite a carico (%)(**)	+ 15		
Perdite totali (%)	+ 10		
Rumore (%)	+ 0		
Corrente a vuoto a Vn. (%)	+	30	

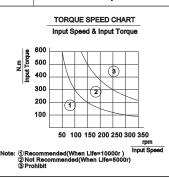

^{(*)= +15%} su prese diverse dalla principale


Nota 1: Le perdite sono calcolate con la formula P = (2*P1+P2+P3)/4 dove:

- P1 è il valore delle perdite con il commutatore predisposto nella posizione corrispondente al rapporto nominale.
- P2 e P3 sono i valori delle perdite riferiti alle posizioni estreme del commutatore.
- Nota 2: Le prestazioni sono valide con collegamento su qualsiasi presa.

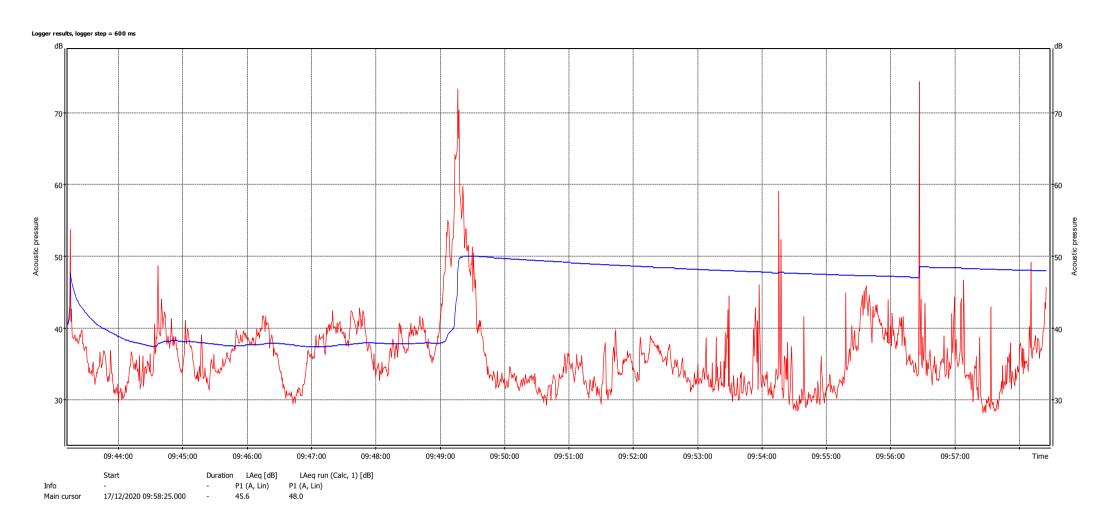
^{(***)=} ai fini di un'eventuale gestione del neutro dell'ATR in modo isolato da terra, è opportuno concordare con il GRTN anche il livello, di tenuta ad impulso atmosferico per il terminale di neutro stesso, e dell'eventuale dispositivo di protezione utilizzato (****)=a vuoto, in condizioni di induzione massima dell'area di lavoro, e con il sistema di raffreddamento inserito.



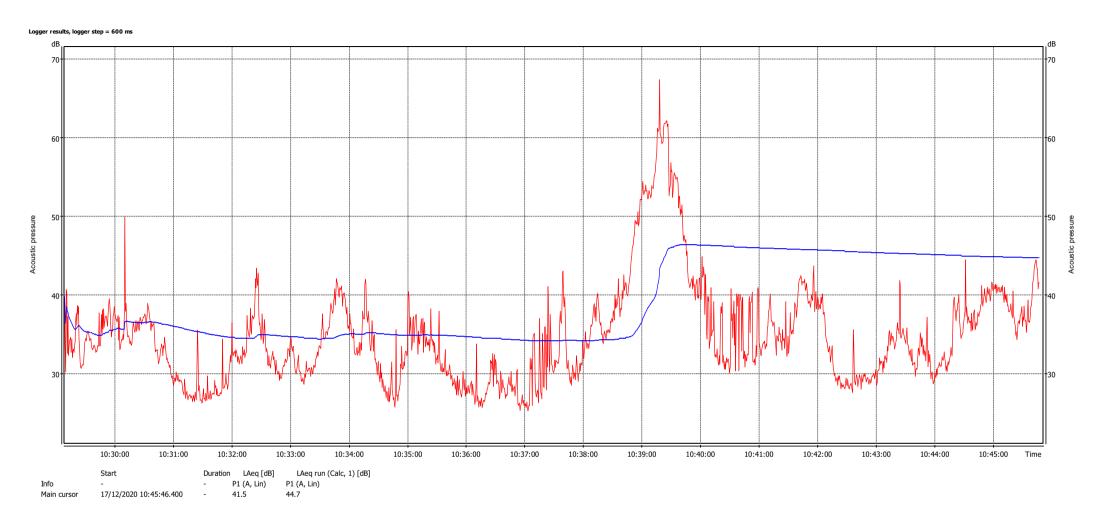

- Wire Define:
 1.(Black RVV0.75)motor 2.(Red RVV0.75)motor+
 3.(Yellow Green)RVV0.75 GND

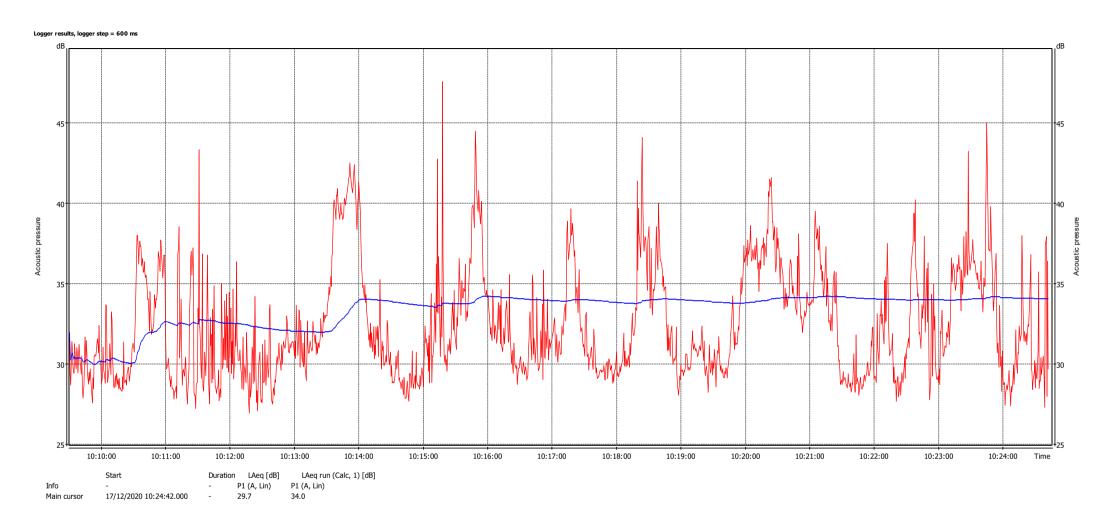
Slewing Drive Performance Parameters							
Nominal Torque	6000 N.m						
Maximum Torque	8000 N.m						
Static Axial Load Rating	110KN						
Static Radial Load Rating	60KN						
Dynamic Axial Load Rating	100KN						
Dynamic Radial Load Rating	55KN						
Tilting Moment	8KN.m						
Holding Torque	39KN.m						
Gear Ratio	60:1						
IP Class	IP65						
Corrosion-proofing grade	35years(C3)						
Hard Limit	±60°						
Precision	≤0.2°						
Efficiency	40%						

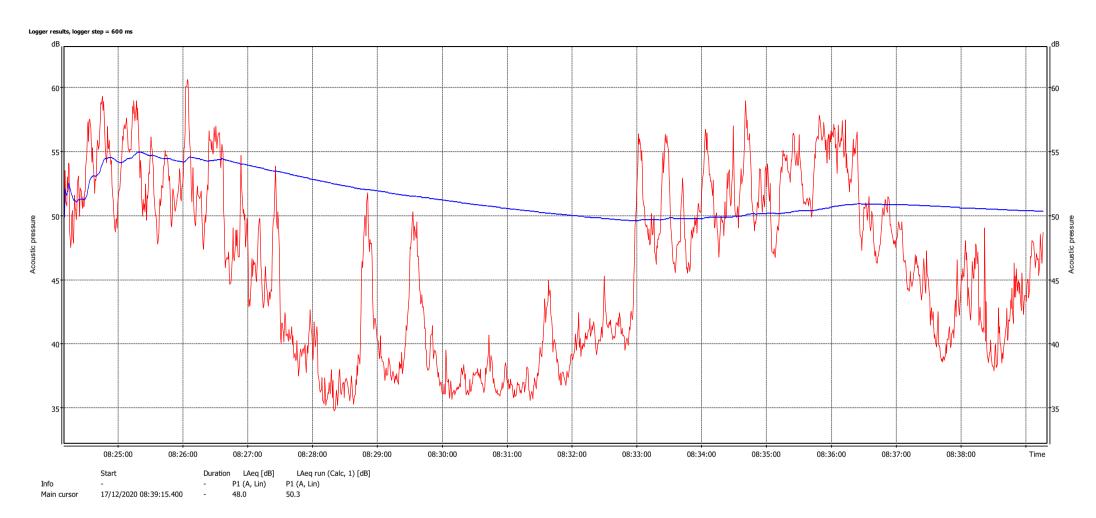
24VDC Planetary Reducer Brushed Motor Performance Data						
Rated Voltage	24 VDC					
Rated Current	<u>∕B</u> <10.2A					
Noises	≤65 dB					
IP Class	B IP65					
Temperature	-40°C-+60°C					
Gear Ratio	745:1					

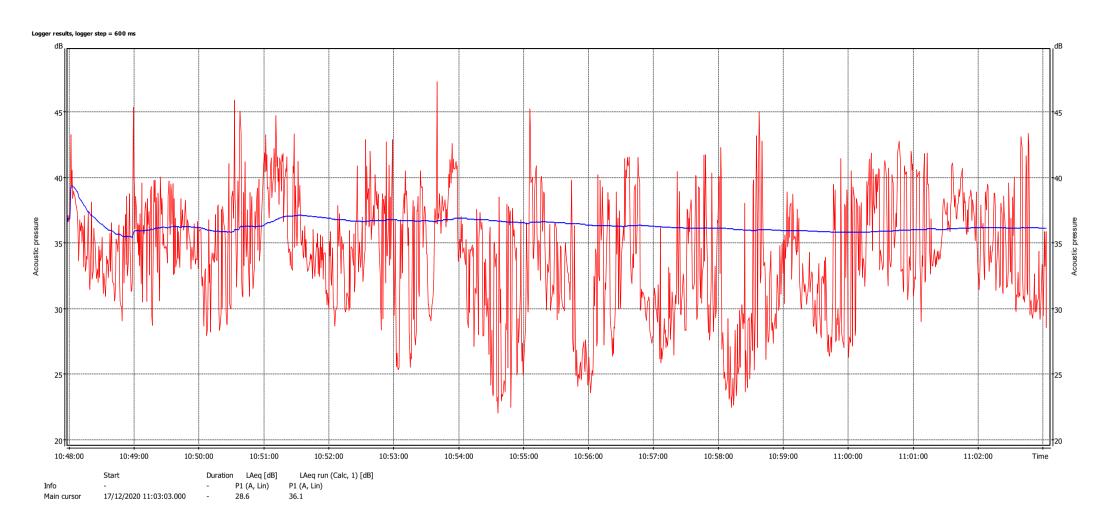

Output Parameters								
6000 N.m								
8400 N.m								
0.05rpm								

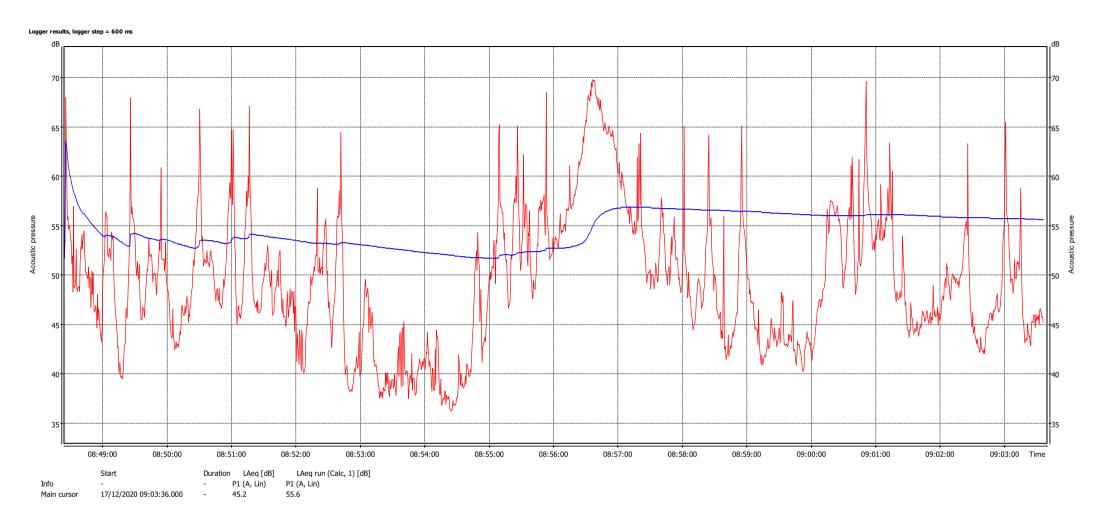
	`		•					Acial Load	@ FTOIIDI			
	С	20 ⁻	17.10.24		HXL		Add the	Mounting Size of Outp	ut Square Tube.			
	В	20	17.8.14		QXY	Modify the motor performance data						
	REV.		Date		Reviser			Description				
	Designed E	Зу	2017.10	.24	HXL			Jiangvin SunSlew Ma	achinery Equipment Co	Ltd		
	Checked By 2		2017.10	.24	CQN	6	11	www.sunslew.com				
Approved By 2017.10.24 HW						Suns	siew	www.s	unsiew.com			
		of manufact	ıre wi	t is property of SunSlew thout previous advice a	VVEIGH	SCALE	Slew	ring Drive				
	duty of communication. It is not allowable any copy or reproduction of this certificated copy with the original not under control.						1:4	Olevv	ing Drive			
	SYMBOLE I						A3	VD6-60-LC-88JB		REV		
			'	_		SHEET	1/1	ו-טס-סטטי	LC-00JDV	С		

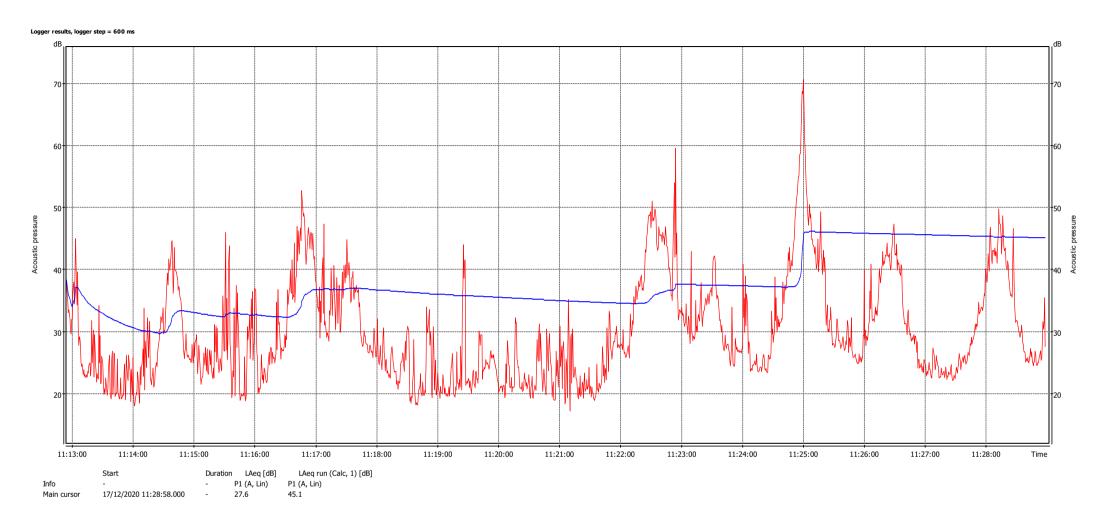

	Ing. SMALDINO Michele Vito Massimo	- Tecnico Competente in Acustica Ambientale
ALLEGATO 5		
Registrazioni 1	fonometriche.	
•		


Rilievo impianto F1 - Leq = 48,0 dB(A)


Rilievo impianto R1 - Leq = 47,0 dB(A)


Rilievo impianto R2 - Leq = 44,7 dB(A)


Rilievo impianto R3 - Leq = 34,0 dB(A)


Rilievo sottostazione F2 - Leq = 50,3 dB(A)

Rilievo sottostazione R4 – Leq = 36,1 dB(A)

Rilievo sottostazione R5 - Leq = 55,6 dB(A)

Rilievo lavori cavidotto RC - Leq = 45,1 dB(A)

	Ing. SMALDINO Michele	e Vito Massimo	- Tecnico Competente in Ac	sustica Ambientale
ALLEGATO 6				
Certificati di calibratore.	i taratura	del	fonometro	e del

35030 Caselle di Selvazzano (PD)

Delta OHM S.r.l. a socio unico

Calibration Centre

LAT Nº 124

Laboratorio Misure di Elettroacustica Electroacoustic Measurement Laboratory

> Pagina 1 di 8 Page 1 of 8

CERTIFICATO DI TARATURA LAT 124 20001405 Certificate of Calibration

- data di emissione

2020-05-26

date of issue

Via Marconi, 5

Tel. 0039-0498977150

Fax 0039-049635596 e-mail: info@deltaghm.com Web Site: snew.deltaphm.com

- cliente customer

Torann S.a.s. di Anniochiarico M. & C. -Viale Luigi Sturzo, 31 - 70125 Bari (BA)

 destinatario receiver

Castoro Arch. Vito Donato -Via Gen. Cantore, 4 - 70032 Bitonto (BA)

- richiesta

application

101-0023-20

- in data date.

2020-05-19

Si riferisce a

Referring to - oggetto

Mam

- costruttore

manufacturer

- modello

model.

- matricola serial number

data delle misure

date of measurements.

- registro di laboratorio laboratory reference

Fonometro

Delta Ohm S.r.I.

HD2010

11033042469

2020/5/25

41003

Il presente certificato di taratura è emesso in base all'accreditamento LAT Nº 124 rilasciato in accordo al decreti attuativi della legge n. 273/1991 che ha istituito il Sistema Nazionale di Taratura (SNT). ACCREDIA attesta le capacità di misura e di taratura, le competenze metrologiche del Centro e la riferibilità delle tarature eseguite ai campioni nazionali e internazionali delle unità di misura del Sistema Internazionale delle Unità (SI).

Questo certificato non può essere riprodotto in modo parziale, salvo espressa autorizzazione scritta da parte del Centro.

This certificate of calibration is issued in compliance with the accreditation LAT N° 124 granted according to decrees connected with Italian law No. 273/1991 which has established the National Calibration System, ACCREDIA attests the calibration and capability, measurement the metrological competence of the Centre and the traceability of calibration results to the national and international standards of the International System of Units (SI). This certificate may not be partially reproduced, except with the prior written permission of the issuing Centre

I risultati di misura riportati nel presente Certificato sono stati ottenuti applicando le procedure di taratura citate alla pagina seguente, dove sono specificati anche i campioni o gli strumenti che garantiscono la catena di riferibilità del Centro e i rispettivi certificati di taratura in corso di validità. Essi si riferiscono esclusivamente all'oggetto in taratura e sono validi nel momento e nelle condizioni di taratura, salvo diversamente specificato.

The measurement results reported in this Certificate were obtained following the calibration procedures given in the following page, where the reference standards or instruments are indicated which quarantee the traceability chain of the laboratory, and the related calibration certificates in the course of validity are indicated as well. They relate only to the calibrated item and they are valid for the time and conditions of calibration, unless otherwise specified.

Le incertezze di misura dichiarate in questo documento sono state determinate conformemente alla Guida ISO/IEC 98 e al documento EA-4/02. Solitamente sono espresse come incertezza estesa ottenuta moltiplicando l'incertezza tipo per il fattore di copertura k corrispondente ad un livello di fiducia di circa il 95 %. Normalmente tale fattore k vale 2.

The measurement uncertainties stated in this document have been determined according to the ISO/IEC Guide 98 and to EA-4/02. Usually, they have been estimated as expanded uncertainty obtained multiplying the standard uncertainty by the coverage factor k corresponding to a confidence level of about 95%. Normally, this factor k is 2.

> Il Responsabile del Centro Head of the Centre

Pierantonio Benvenuti

Member of GHM GROUP

Delta OHM S.r.l. a socio unico Via Marconi, 5 35030 Caselle di Selvazzano (PD) Tel. 0039-0498977150 Fax 0039-049635596 e-mail: Info@deltachm.com Web Site: www.deltaohm.com

Calibration Centre

LAT Nº 124

Laboratorio Accreditato di Taratura

Laboratorio Misure di Elettroacustica Electroacoustic Measurement Laboratory

Pagina 2 di 8 Page 2 of 8

CERTIFICATO DI TARATURA LAT 124 20001405 Certificate of Calibration

I risultati di misura riportati nel presente Certificato sono stati ottenuti applicando le seguenti procedure, sviluppate secondo le prescrizioni della Norma EN 61672-3:2006: DHLE - E - 07 rev. 1.

The measurement results reported in this Certificate were obtained following the procedures, developed according to EN 61672-3:2006 standard requirements: DHLE - E - 07 rev. 1.

Incertezze - Uncertainties

Le incertezze di misura dichiarate in questo documento e riportate nella tabella successiva, sono espresse come incertezza estesa ottenuta moltiplicando l'incertezza tipo per il fattore di copertura k=2 confapondente ad un livello di fiducia di circa il 95 %,

The measurement uncertainties stated in this document, shown in the following table, have been estimated as expanded uncertainty abtained multiplying the standard uncertainty by the coverage factor k=2 corresponding to a confidence level of about 95%.

Fonometro Sound level meter	Livello sonoro Sound level /dB	Frequenza Frequency /Hz	Incertezza Uncertainty /dB
Regolazione della sensibilità acustica Adjustment of acoustic sensibility	94, 104, 114, 124	250, 1000	0.20
Verifica con Il calibratore acustico associato Test with supplied sound calibrator	94, 104, 114, 124	250, 1000	0.15
Risposta in frequenza - Frequency response	25 + 140	31.5 + 16000	0.21 + 0.36 *
Rumore auto-generate con microfono Self-generated noise with microphone			2.0
Rumore auto-generato con dispositivo di ingresso per segnali elettrici Self-generated noise with electrical input signal device			1.0
Prove elettriche - Electrical tests	25 + 140	31.5 + 16000	0.11 + 0.16 **
Calibratori acustici - Sound calibrators	94 / 114	1 000	0.11

In funzione della frequenza – Depending on frequency

Campioni di riferimento - Reference standards

La catena di riferibilità ha inizio dai campioni di riferimento, muniti di certificati validi di taratura, elencati nella tabella "Campioni di riferimento".

Traceability is through reference standards, validated by certificates of calibration, listed in the table "Reference Standards".

Campioni di riferimento Reference standards	Costruttore Manufacturer	Modello Model	Numero di serie Serial number	Certificate Numero Certificate number
Microfano - Microphane	B&K	4180	2101416	INRIM 19-0914-01
Pistonofono - Pistonphone	B&K	4228	2163696	INRIM 19-0914-02
Multimetro - Multimeter	HP	3458A	2823A21870	INRIM 18-0961-01

Campioni di lavoro Working standards	Costruttore Manufacturer	Modello Model	Numero di serie Serial number
Calibratore Monofrequenza – Single-frequency calibrator	B&K	4231	2191058
Calibratore Multifrequenza – Multi-frequency calibrator	B&K	4226	2141950
Calibratore Multifrequenza – Multi-frequency calibrator	B&K	4226	1806636

Lo Sperimentatore The operator Bicciato Bernardino

Il Responsabile del Centro

Head of the Centre Pierantonio Benvenuti

^{**} In funzione della specifica prova - Depending on actual test

Delta OHM S.r.l. a socio unico

Via Narconi, 5 35030 Caselle di Selvazzano (PD) Tel. 0039-0498977150 Fax 0039-049535596 e-mail: Info@deltaohm.com Web Site: www.deltaohm.com

Laboratorio Misure di Elettroscustica Electroacoustic Measurement Laboratory

Calibration Centre Laboratorio Accreditato

di Taratura

LAT Nº 124

Pagina 3 di 8 Page 3 of 8

CERTIFICATO DI TARATURA LAT 124 20001405 Certificate of Calibration

Strumentazione in taratura - Instruments to be calibrated

Strumento Instrument	Costruttore Manufacturer	Modello Model	Numero di serie Serial number
Fonometro - Sound level meter	Delta Ohm S.r.l.	HD2010	11033042469
Preamplificatore - Preamplifier	Delta Ohm Srl	HD2010PN	09027828
Cavo prolunga – Extension cable			
Microfono - Microphone	MG	MK221	33685
Schemo antivento - Windshield		÷0	- 8
Calibratore acustico - Acoustic calibrator	Delta Ohm	HD9101	10038470

Correzioni in frequenza - Frequency corrections

Per tenere in considerazione la risposta in frequenza in campo libero del microfono, includendo eventuali effetti dovuti alla diffrazione del corpo dello strumento e dello schemo antivento ed all'utilizzo del cavo prolunga, è necessario sommare, all'indicazione del fonometro, delle correzioni in frequenza secondo le specifiche del costruttore. Pertanto nelle seguenti prove:

- 1.1 Regolazione della sensibilità acustica
- 1.2 Verifica con il calibratore acustico associato al fonometro
- 1.3 Risposta in frequenza del fonometro con il microfono

I livelli riportati nel certificato includono le correzioni fornite nella tabella seguente.

in order to account for the microphone free field response, including possible diffraction effects due to the instrument body and the windshield and to the use of the extension cable, frequency corrections, according to manufacturer specifications, must be summed to the sound level meter indications. Therefore in the following tests:

- 1.1 Adjustment of acoustic sensitivity
- 1.2 Test with sound calibrator supplied with sound level meter
 - 1.3 Frequency response of sound level meter with microphone

Levels recorded in the certificate include corrections given in the following table.

Frequenza – Frequency	Correzioni – Corrections		
/Hz	Pressione - Campo libero Pressure - Free field	Schermo antivento + Corpo Windshield + Body	
31.5	0.0	0.0	
63	0.0	0.0	
125	0.0	0.0	
250	0.0	0.0	
500	0.0	0.0	
1000	0.0	0.0	
2000	0.2	0.1	
4000	1.1	-0.7	
8000	3.3	-1.0	
12500	6.0	-1.0	
16000	8.0	-0.7	

I valori delle correzioni riportate in tabella sono fornite dai costruttore del fonometro. Correction values shown in the table are provided by sound level meter manufacturer.

Lo Sperimentatore The operator Bicciato Bernardino Il Responsabile del Centro Head of the Centre Pierantonio Benvenuti

O Member of GHM GROUP

Delta OHM S.r.I. a socio unico Via Marconi, 5 35030 Caselle di Selvazzano (PD)

Laboratorio Misure di Elettroacustica Electroacoustic Messurement Laboratori

Tel. 0039-0498977150 Fax 0039-049635596 e-mail: infe@deltechm.com Web Site: www.deltachm.com Calibration Centre

LAT Nº 124

Laboratorio Accreditato di Taratura

> Pagina 4 di 8 Page 4 of 8

CERTIFICATO DI TARATURA LAT 124 20001405

Certificate of Calibration

Parametri ambientali Environmental parameters

Le condizioni ambientali di riferimento sono:

Reference environmental parameters are:

Temperatura / Temperature = (23 ± 2) °C Pressione atmosferica / Static pressure = (1013.25 ± 35) hPa Umidità relativa / Relative humidity = (50 ± 10) %R.H.

Lo strumento in taratura è stato mantenuto in condizioni ambientali controllate per almeno 4 ore prima della taratura.

The instrument submitted for test was kept under controlled environmental conditions for at least 4h before calibration.

Temperature Temperature	Pressione atmosferica Static Pressure /hPa	Umidità relativa Relative Humidity	
23	1022	41.3	

1.0 PROVE CON SEGNALI ACUSTICI - TESTS WITH ACOUSTIC SIGNALS

Le misure acustiche sono state realizzate in accoppiatore chiuso applicando le correzioni per il campo acustico dichiarate dal costruttore.

Tests with acoustic signals were carried out in a closed acoustic coupler taking into account the sound field corrections provided by the sound level meter manufacturer.

Il campo di misura principele è: 50 dB + 130 dB The reference level range is:

Il livello di riferimento per la messa in punto è: 94 dB. The reference level for calibration is:

La frequenza di riferimento è: 1000Hz The reference frequency is:

Regolazione della sensibilità acustica - Adjustment of acoustic sensitivity

Si esegue la messa in punto del fonometro in ponderazione Z, secondo le indicazioni del costruttore, mediante l'applicazione del livello di pressione sonora di riferimento, generato dal calibratore campione B&K 4226,

The edjustment of sound level meter acoustic sensitivity, with frequency weighting Z, is performed, according to manufacturer specifications, applying the reference sound pressure level, generated by reference standard acoustic calibrator B&K 4226.

SPL				
Applicato	Messa in punto Adjustment		Correzioni	
Applied	Prima Before	Dopo After	Corrections	
	/dBA			
7			0.0	PP-FF
94.0	94.2	94.0	0.0	Schermo Windshield
V. 3841.5		0.0	Corpo Body	

Lo Sperimentatore The operator Bicciato Bernardino

1.2 Verifica con il calibratore acustico associato al fonometro - Test with sound calibrator supplied with the sound level meter

Si verifica con il fonometro in ponderazione Z, il livello di pressione generato dal calibratore in dotazione.

The sound level of the supplied accustic calibrator is checked by the sound level meter with frequency weighting Z.

SPL		325 77.		
Nominale Nominal	Misurato Measured	Correction Correction	Uncertainty	
111	a bad balous bag	/dB		
94.0	94.0	0.0	0.45	
114.0	114.1	0.0	0.15	

1.3 Risposta in frequenza del fonometro con il microfono - Frequency response of sound level meter with microphone

Si verifica la risposta in frequenza del fonometro e del microfono in ponderazione C, nell'intervallo di frequenza 31.5 Hz + 16000 Hz, a passi di ottava incluse il punto a 12500 Hz. A tale scopo si utilizza il calibratore multifrequenza B&K 4226, campione di lavoro.

The frequency response of the sound level meter with microphone is measured, with weighting C, in the frequency range 31.5 Hz + 16000 Hz, at octave steps including the 12500 Hz value. For this purpose the working standard multi-frequency acoustic calibrator B&K 4226 is used.

Frequenza Frequency	ΔSPL	Incertezza Uncertainty	CI, 1 Tol.
/Hz	/dB		
31.5	0.2		± 2.0
63	0.2	0.39	0.004
125	0.2		± 1.5
250	0.1		6.0%
500	0.1		±1.4
1000	0.0		±1.1
2000	0.0	1	
4000	-0.9		±1.6
8000	-1.5	0.69	+ 2.1 ; -3.1
12500	-2.4	0.77	+ 3.0 ; -6.0
16000	-1.2	0.72	+ 3.5 ; -17

Il Responsabile del Centro
Head of the Centre
Pierantonio Benvenuti

Delta OHM S.r.l. a socio unico Via Marconi, 5 35030 Caselle di Selvazzano (PD) Tel. 0039-0498977150 Fax 0039-049635596 e-mail: info@deltachm.com

Web Site: www.deltaphm.com

Calibration Centre

LAT Nº 124

Laboratorio Accreditato di Taratura

Laboratorio Misure di Elettroacustica Electroacoustic Measurement Laboratory

Pagina 5 di 8 Page 5 of 8

CERTIFICATO DI TARATURA LAT 124 20001405

Certificate of Calibration

1.4 Rumore autogenerato - Self-generated noise

Si misura il minimo livello sonoro equivalente (Leg) ponderato A in una cabina insonorizzata, applicando la correzione associata al rumore di fondo ambientale.

The minimum equivalent sound level (Leg) is measured in a soundproof box, applying the correction resulting from the environmental noise.

Rumore di fondo Background noise	Leq	Leq corretto Corrected Leq	Incertezza Uncertainty
		dBA	
15.0	18.8	16.5	2.0

PROVE CON SEGNALI ELETTRICI - TESTS 2.0 WITH ELECTRICAL SIGNALS

Le misure elettriche sono state realizzate sostituendo il microfono del fonometro con un dispositivo per l'ingresso di segnali elettrici, secondo le specifiche del costruttore.

Salvo diversa indicazione le prove sono state effettuate nel campo misure principale indicato dal costruttore.

Electrical measurements were performed replacing the sound level meter microphone with an electrical input signal device. eccording to manufacturer specifications.

Unless otherwise specified tests were performed in the reference level range.

2.1 Rumore autogenerato - Self-generated noise

I valori del livello sonoro equivalente nel campo misure di massima sensibilità, riportati nella tabella seguente per le ponderazioni di frequenza del fonometro, sono stati ottenuti terminando il dispositivo di ingresso per segnali elettrici come specificato nel manuale d'uso.

Sound equivalent levels in the maximum sensitivity level range, shown in the following table for the sound level meter frequency weightings, were obtained terminating the electrical input signal device as specified in the instruction manual.

Ponderazioni di frequenza Frequency weightings	Leq	Incertezza Uncertainty
rrequency meginings		/dB
Z	22.8	
A	15.2	1.0
С	20.4	

2.2 Indicatore di sovraccarico - Overload detector

La verifica dell'indicatore di sovraccarico viene eseguita, nel campo misure di minore sensibilità, confrontando la risposta del fonometro a singoli semi-cicli, positivi e negativi, alla frequenza di 4 kHz e di ampiezza tale da attivare l'indicazione di sovraccarico. La differenza delle ampiezze, aumentata dell'incertezza di misura, deve risultare inferiore ai limiti di tolleranza specificati.

The overload detector is tested on the least-sensitive level range with positive and negative one-half cycle sinusoidal

Lo Sperimentatore The operator Bicciato Bernardino signals at a frequency of 4kHz. The difference between the input levels producing the first indication of overload, extended by the expanded uncertainty shall not exceed the tolerance

Livello di ingresso Input level	Cicio	Differenza Difference	Incertezza Uncertainty	CI. 1 tol.
/dBV	Cycle	/dB		
23.76	Pos	0.8	0.17	+1.8
22.97	Neg	U.5	9.17	I1-0

2.3 Ponderazioni in frequenza - Frequency weightings

Le risposte in frequenza delle ponderazioni in dotazione al fonometro, sono state verificate applicando un segnale di 45 dB Inferiore al limite superiore del campo di misura principale ad 1kHz, quindi misurando la risposta in frequenza nell'intervallo 31.5 Hz +16000 Hz, a passi di ottava incluso il punto a 12500 Hz, compensando il livello di ingresso per l'attenuazione nominale della ponderazione.

Frequency responses for sound level meter supplied weightings, were verified applying an input signal level 45 dB lower than the upper limit of the reference level range at 1 kHz. and measuring the frequency response in the range 31.5 Hz +16000 Hz, at octave steps including the 12500 Hz value, compensating the input level for the weighting nominal attenuation.

Freq.	Risposta in frequenza Frequency response		Marie Control of the	Incertezza	CLIDE	
	A	C	Z	Uncertainty		
/Hz		-	/dE	3		
31.5	0.0	-0.1	-0.7		±2,0	
63	0.1	0.0	-0.2			
125	0.1	0.0	-0.1		±1.5	
250	0.0	-0.1	-0.1		±1.4	
500	0.0	0.0	0.0		11.4	
1000	0.0	0.0	0.0	0.15	±1.1	
2000	0.0	0.1	0.0			
4000	0.0	0.1	0.0		±1.6	
8000	0.0	0.0	0.0		+2.1 ; -3.1	
12500	-0.2	-0.2	-0.1		+ 3.0 ; -6.0	
16000	-0.1	-0.1	-0.3		+3.5 ; -17	

Il Responsabile del Centro Head of the Centre Pierantenio Beavenuti

Delta OHM S.r.l. a socio unico

Via Merconi, 5 35030 Caselle di Selvazzano (PD) Tel. 0039-0406977150 Fex 0039-049635596 e-mali: info@detachm.com

Laboratorio Misure di Elettroacustica Electroacoustic Measurement Laboratory

Web Site: www.deltaphm.com

Centro di Taratura LAT Nº 124 Calibration Centre

Laboratorio Accreditato di Taratura

> Pagina 6 di 8 Page 6 of 8

CERTIFICATO DI TARATURA LAT 124 20001405

Certificate of Calibration

2.4 Linearità del campo di misura principale - Reference level range linearity

La verifica della linearità di livello del fonometro nel campo di misura principale e stata effettuata con ponderazione A e frequenza del segnale in ingresso pari a 8 kHz, Il livello di partenza 94.0 dBA, specificato nel manuale d'uso, è stato ottenuto con un livello di ingresso pari a 55.58 mV.

The sound level meter level linearity on the reference level range, with frequency weighting A, was verified at 8kHz input signal frequency. The test starting point 94.0 dBA, specified in the instruction menual, was obtained with an input signal level equal to 55.58 mV.

Liv. misurato Meas, level	ΔLeq	Incertezza Uncertainty	Cl. 1 tol.		
	/dB				
94.0	0.0	0.11			
129.0	0.1				
124.0	0.1	0.1			
119.0	0.1	1			
114.0	0.1				
109.0	0.1	T I			
104.0	0.1				
99.0	0.1				
94.0	0.0	1			
89.0	0.0]			
84.0	0.0	0.12	± 1.1		
79.0	0.0	0.12	2 1.1		
74.0	0.0]			
69.0	0.0	1			
64.0	0.0	1			
59.0	0.0]			
58.0	0.0	1			
57.0	0.0				
56.0	0.0				
55.0	0.0				
54.0	0.0	1			
48.6	0.1	*4			

(*1) Indicazione di sotto-campo corrispondente a Under range indication corresponding to 0.298 mV.

2.5 Linearità del campi di misura - Linearity of level ranges

Si verifica la linearità dei campi misura con ponderazione di frequenza A, con l'esclusione dei campo principale, applicando un segnale in ingresso a 1kHz al livello di riferimento 94dBA.

The linearity of level ranges with frequency weighting A, excluding the reference level range, applying a 1kHz input signal at the reference level 94dBA.

Campo di misura Level range	∆Leq	Incertezza Uncertainty	CI. 1 tol.
	/dBA		/dB
60+140	0.1	0.12	
40+120	0.1		±1.1
30+110	0.0		21.1
20+100	-0.1		

I campi misura vengono inoltre verificati in ponderazione A applicando un segnale in ingresso alla frequenza di 1 kHz di ampiezza corrispondente al limite superiore del campo misure diminuito di 5dB.

Besides level ranges were tested with frequency weighting A applying a 1kHz input signal at a level 5dB lower than the upper limit of the level range.

Campo di misura Level range	ΔLeq	Incertezza Uncertainty	Cl. 1 tol.
	/dBA		/dB
60+140	0.2		
50+130	0.1		r nemer
40+120	0.1	0.12	± 1.1
30+110	0.0		
20+100	-0.1	1	

Ponderazioni di frequenza e temporali a 1kHz -Frequency and time weightings at 1kHz

Si verificano le indicazioni del fonometro con ponderazioni di frequenza C e Z in risposta ad un segnale sinuscidale a 1kHz di ampiezza tale da fornire una indicazione di livello sonoro ponderato A con costante FAST peri al livello di riferimento 94dR.

Sound level meter indications for frequency weightings C and Z are checked with a 1kHz sinusoidal input signal that yields an indication of the reference sound level 94dB with frequency weighting A and time constant FAST.

Frequ	zione in fr vency weig SPL FAS	hting	Incertezza Uncertainty	Cl. 1 tol.
A	C	Z	10	
		/4	B	
0.0	0.0	0.0	0.15	±0.4

Lo Sperimentatore The operator Biociato Bernardino

Lemmal 0

Il Responsabile del Centro Head of the Sentre Pierantonio Benvenuti

Delta OHM S.r.l. a socio unico via Marcon, 5 35030 Caselle di Selvazzano (PD) Tel. 0039-0498977150 Fax 0039-049635596 e-mail: info@deltaohm.com

Web Site: www.deltaohm.com

Calibration Centre

LAT Nº 124

Laboratorio Accreditato di Taratura

Laboratorio Misure di Elettroacustica Electroacquetic Measurement Laboratory

Pagina 7 di 8 Page 7 of 8

CERTIFICATO DI TARATURA LAT 124 20001405 Certificate of Calibration

Si verificano inoltre le indicazioni dei fonometro, in risposta al medesimo segnale, con le diverse ponderazioni temporali e nella misura del livello equivalente.

Besides, sound level meter indications for supplied time weightings are checked with the same input signal.

	erazione ten Time weighti A L	Incertezza Uncertainty	Cl. 1 tol.	
FAST	SLOW	Leq	7	
		MB		
0.0	0.0	0.0	0.15	± 0.3

2.7 Risposta ai treni d'onda - Toneburst response

Si verifica la risposta del fonometro in ponderazione A ai treni d'onda con le diverse ponderazioni temporali in dotazione e nella misura del livello di esposizione sonoro. Il livello del segnale in ingresso, ricavato da un segnale sinusoldale continuo alla frequenza di 4 kHz, viene determinato in modo da fornire un'indicazione di 3dB inferiore rispetto al limite superiore del campo misure. La durata del treno d'onda dipende dalla costante di tempo in esame.

Sound level meter response to tonebursts is tested with frequency weighting A on the reference level range for the supplied time weightings and the sound exposure level. The level of the input signal, extracted from a 4kHz steady sinusoidal signal, is adjusted to display a level 3dB lower than the upper limit of the linearity range. The duration of the toneburst depends on the time weighting under test.

Costante di tempo Time weighting	Durata Duration	ΔSPL	Incertezza Uncertainty	Ci. 1 tol.
	/ms			
FAST MAX	200	0.0		± 0.8
	2	-0.1	0.19	+1.3; -1.8
	0.25	-0.3		+1.3; -3.3
SLOW	200	-0.3	0.40	± 0.8
MAX	2	0.0	0.19	+ 1.3 ; - 3.3
SEL	200	0.0	0.19	± 0.8
	2	0.0		+ 1.3 ; - 1.8
	0.25	-0.2		+1.3; -3.3

Risposta ai treni d'onda con costante IMPULSE -Toneburst response for IMPULSE time weighting

Si verifica la risposta del fonometro al treni d'onda in ponderazione A con costante IMPULSE. Il livello del segnale in ingresso, ricavato da un segnale sinuscidale continuo alla frequenza di 4 kHz, viene determinato in modo da fornire un'indicazione pari al limite superiore del campo misure.

Sound level meter response to tonebursts is tested with frequency weighting A and time weighting IMPULSE on the reference level range. The level of the input signal, extracted from a 4kHz steady sinusoidal signal, is adjusted to display the upper limit of the linearity range.

Costante di tempo	Durata Duration	ΔSPL	Incertezza Uncertainty	Cl. 1 tol.
Time weighting	Time	/dB		
IMPULSE	20	-0.3		± 1.8
MAX	5	-0.6	0.19	± 2.3
	2	-0.4	7.6%	1 23

2.9 Rivelatore di picco ponderato C - Peak C sound level

La verifica dell'indicazione del livello sonoro di picco ponderato O viene effettuata nel campo misure di minima sensibilità con segnali di ingresso sinuscidali sia con singoli cicli ad 8kHz che con semi-cicli, positivi e negativi a 500Hz. Il livello del segnale in ingresso, ricavato da un segnale sinusoidale continuo, viene determinato in modo da fornire un'indicazione di 8dB inferiore rispetto al limite superiore del campo misure con ponderazione C e costante di tempo FAST.

The test of indication of C weighted peak sound level is performed on the least-sensitive level range with 8kHz single cycle and 500Hz half-cycle, positive and negative, sinusoidal input signals. The level of the input, extracted from a steady sinusoidal signal, is adjusted to display a level 8db lower than the upper limit of the linearity range with frequency weighting C and time weighting FAST.

Frequenza Frequency	Ciclo	∆SPL	Incertezza Uncertainty	Cl. 1 tol.
/Hz	Cycle		/dB	
8000	Singolo	-0.4		± 2.4
500	1/2 Positivo	-0.3	0.17	
500	1/2 Negativo	-0.2		± 1.4

Nota: Il separatore decimale usato in questo documento è il punto. Note: Throughout this document the decimal point is indicated by a dot.

Lo Sperimentatore The operator Bicciato Bernardino

Il Responsabile del Centro

Head of the Centre Pigrantonio Benyanuti

Member of GHM GROUP

Delta OHM S.r.l. a socio unico via Marconi, 5 15030 Caselle di Selvazzano (PD) Tel. 0039-0498977150 Fax 0039-049535596 e-mail: info@deltechm.com Web Site: www.deltaohm.com

Laboratorio Misure di Elettroacustica Electroacoustic Measurement Laboratory

Centro di Taratura LAT Nº 124 Calibration Centre

ac-MR

Laboratorio Accreditato di Taratura

> Pagina 8 di 8 Page 8 of 8

CERTIFICATO DI TARATURA LAT 124 20001405 Certificate of Calibration

Il fonometro sottoposto alle prove ha superato con esito positivo le prove periodiche della classe 1 della IEC 61672-3:2006, per le condizioni ambientali nelle quali esse sono state eseguite. Poiché è disponibile la prova pubblica, da parte di un'organizzazione di prova indipendente responsabile dell'approvazione dei risultati delle prove di valutazione del modello eseguite secondo la IEC 61672-2:2003, per dimostrare che il modello di fonometro è risultato completamente conforme alle prescrizioni della IEC 61672-1:2002, IL FONOMETRO SOTTOPOSTO ALLE PROVE È CONFORME ALLE PRESCRIZIONI DELLA CLASSE 1 DELLA IEC 61672-1:2002.

The Sound Level Meter submitted for testing has successfully completed the class 1 periodic tests of IEC 61672-3:2006, for the environmental conditions under which the tests were performed. As public evidence was available, from an independent testing organization responsible for approving the results of pattern evaluation tests performed in accordance with IEC 61672-2:2003, to demonstrate that the model of sound level meter fully conformed to the requirements in IEC 61672-1:2002, THE SOUND LEVEL METER SUBMITTED FOR TESTING CONFORMS TO THE CLASS 1 REQUIREMENTS OF IEC 61672-1:2002.

Lo Sperimentatore The operator Biccisto Bernardino

Il Responsabile del Centro Head of the Gentre Pierantonio Benyenuti

Member of GHM GROUP Delta OHM S.r.l. a socio unico

Centro di Taratura LAT Nº 124 Calibration Centre

di Taratura

Laboratorio Accreditato

LAT Nº 124

Tel. 0039-0498977150 Fax 0039-049635596 e-mail: info@deltaohm.com Web Site: www.deltaohm.com

35030 Caselle di Selvazzano (PD)

Laboratorio Misure di Elettroacustica Electroacoustic Measurement Laboratory

> Pagina 1 di 7 Page 1 of 7

CERTIFICATO DI TARATURA LAT 124 20001406 Certificate of Calibration

 data di emissione. date of issue

2020-05-28

- cliente customer

Via Marconi,

Torann S.a.s. di Annicchiarico M. & C. -Viale Lulgi Sturzo, 31 - 70125 Bari (BA)

- destinatario receiver

Castoro Arch. Vito Donato -

Via Gen. Cantore, 4 - 70032 Bitonto (BA)

- richiesta

101-0023-20

application

- in data

date

2020-05-19

Si riferiace a Referring to

- oggetto Mem

Filtri acustici

- costruttore

Delta Ohm S.r.l.

manufacturer

- modella model.

HD2010

- matricola

11033042469

serial number

2020/5/25

- data delle misure date of measurements

registro di laboratorio

laboratory reference

41000

Il presente certificato di taratura è emesso in base all'accreditamento LAT Nº 124 rilasciato in accordo ai decreti attuativi della legge n. 273/1991 che ha istituito Il Sistema Nazionale di Taratura (SNT). ACCREDIA attesta le capacità di misura e di taratura, le competenze metrologiche del Centro e la riferibilità delle tarature eseguite ai campioni nazionali e internazionali delle unità di misura del Sistema Internazionale delle Unità (SI).

Questo cartificato non può essere riprodotto in modo parziale, salvo espressa autorizzazione scritta da

parte del Centro.

This certificate of calibration is issued in compliance with the accreditation LAT N° 124 granted according to decrees connected with Italian law No. 273/1991 which has established the National Calibration System. ACCREDIA attests the calibration and capability. the metrological measurement competence of the Centre and the traceability of calibration results to the national and international standards of the International System of Units (SI). This certificate may not be partially reproduced, except with the prior written permission of the issuing Centre.

I risultati di misura riportati nel presente Certificato sono stati ottenuti applicando le procedure di taratura citate alla pagina seguente, dove sono specificati anche i campioni o gli strumenti che garantiscono la catena di riferibilità del Centro e i rispettivi certificati di taratura in corso di validità. Essi si riferiscono esclusivamente all'oggetto in taratura e sono validi nel momento e nelle condizioni di taratura, salvo diversamente specificato.

The measurement results reported in this Certificate were obtained following the calibration procedures given in the following page, where the reference standards or instruments are indicated which guarantee the traceability chain of the laboratory, and the related calibration certificates in the course of validity are indicated as well. They relate only to the calibrated item and they are valid for the time and conditions of calibration, unless otherwise specified.

Le incertezze di misura dichiarate in questo documento sono state determinate conformemente alla Guida ISO/IEC 98 e al documento EA-4/02. Solitamente sono espresse come incertezza estesa ottenuta moltiplicando l'incertezza tipo per il fattore di copertura k corrispondente ad un livello di fiducia di circa il 95 %. Normalmente tale fattore k vale 2.

The measurement uncertainties stated in this document have been determined according to the ISO/IEC Guide 98 and to EA-4/02. Usually, they have been estimated as expanded uncertainty obtained multiplying the standard uncertainty by the coverage factor k corresponding to a confidence level of about 95%. Normally, this factor k is 2.

> Il Responsabile del Centro Head of the Centre

Pierantonio Benvenuti

Centro di Taratura LAT Nº 124 ○ Member of GHM GROUP Calibration Centre

LAT Nº 124

Delta OHM S.r.l. a socio unico

Via Marcont, 35030 Caselle di Selvazzano (PO) Tel. 0039-0498977150 Fax 0039-049635596 e-mail: infolkdeltachm.com Web Site: www.deltaohm.com

Laboratorio Accreditato di Taratura

Laboratorio Misure di Elettroacustica Electroacoustic Measurement Laboratory

> Pagina 2 di 7 Page 2 of 7

CERTIFICATO DI TARATURA LAT 124 20001406 Certificate of Calibration

I risultati di misura riportati nel presente Certificato sono stati ottenuti applicando le procedure N. DHLE - E - 06 rev. 2 The measurement results reported in this Certificate were obtained following procedures No.

Riferimenti - References

La norma di riferimento è la IEC 61260:1995 "Electroacoustics - Octave-band and fractional-octave-band filters". The reference standard is IEC 61260:1995 "Electroacoustics - Octave-band and fractional-octave-band filters".

Incertezze - Uncertainties

Le incertezze di misura dichiarate in questo documento e riportate nella tabella successiva, sono espresse come incertezza estesa ottenuta moltiplicando l'incertezza tipo per il fattore di copertura k=2 corrispondente ad un livello di fiducia di circa il 95 %.

The measurement uncertainties stated in this document, shown in the following table, have been estimated as expanded uncertainty obtained multiplying the standard uncertainty by the coverage factor k=2 corresponding to a confidence level of about 95%.

Ordine del banco di filtri Order of filter set	Frequenze centrali Central frequencies	Incertezza Uncertainty /dB
Ottava - Octave	31.5 Hz + 16 kHz	0.1 + 0.80
Terzo d'ottava - Third octave	20 Hz + 20 kHz	0.1 + 0.80

Campioni di riferimento - Reference standards

Campioni di Riferimento	Costruttore	Modello	Numero di serie	Certificate Numero
Reference Standards	Manufacturer	Model	Serial number	Certificate number
Multimetro - Multimeter	HP	3458A	2823A21870	INRIM 18-0961-01

Strumentazione in taratura - Instruments to be calibrated

Costruttore	Modello	Ordine	Classe	Numero di serie
Manufacturer	Model	Order	Class	Serial number
Delta Ohm S.r.l.	HD2010	3	1	11033042469

Parametri ambientali - Environmental parameters

I parametri ambientali di riferimento sono:

Temperatura = (23 ± 2) °C, Umidità relativa = (50 ± 10) %U.R.

La strumento in taratura è stato mantenuto in laboratorio, in condizioni ambientali controllate, per almeno 4 ore prima della taratura.

Reference environmental parameters are:

Temperature = (23 ± 2) °C. Relative humidity = (50 ± 10) %R.H.

The instrument submitted for test was kept in the laboratory, under controlled environmental conditions, for at least 4h before calibration.

Temperatura Temperature	Umidità relativa Relative Humidity
/°C	/%R.H.
23.2	44.8

Lo Sperimentatore The operator Bicciato Bernardino Il Responsabile del Centro Head of the Centre Pierantonio Benvenuti

Member of GHM GROUP

Centro di Taratura LAT Nº 124 Calibration Centre

Laboratorio Accreditato di Taratura

LAT Nº 124

Delta OHM S.r.l. a socio unico

Via Marcont, 5 35030 Caselle di Selvazzano (PD) Tel. 0039-0498977150 Fax 0039-049635596 e-mail: info@deltachm.com

Web Site: www.deltaohm.com

Laboratorio Misure di Elettroacustica Electroacoustic Measurement Laboratory

CERTIFICATO DI TARATURA LAT 124 20001406 Certificate of Calibration

Pagina 3 di 7 Page 3 of 7

RISULTATI DELLE PROVE - TEST RESULTS

La risposta del banco di filtri è stata rilevata utilizzando il rivelatore di valore efficace del fonometro. Il segnale di ingresso è stato collegato al fonometro sostituendo il microfono con un adattatore capacitivo di impedenza elettrica equivalente, secondo le istruzioni del costruttore.

The filter response was measured using the sound level meter root mean square meter. The test input signal was connected replacing the microphone with an equivalent impedance adaptor, according to manufacturer instructions.

Messa in punto - Adjustment

Le prove sono state eseguite dopo avere messo in punto il fonometro al livello di pressione sonora di riferimento:

Tests were performed after adjusting the filter set at the reference level:

94 dB

nel campo di misura principale: in the reference level range:

50 dB + 130 dB.

Attenuazione relativa - Relative attenuation

L'attenuazione relativa del filtri è stata verificata applicando un segnale in ingresso di amplezza pari al fondo scala del campo principale diminuito di 1dB, e misurando le risposte dei filtri variando la frequenza del segnale di ingresso secondo le specifiche della norma di riferimento.

Filter relative attenuation was verified applying an input signal level 1dB lower than the upper limit of the reference level range and measuring filter responses changing the input signal frequency according to the reference standard specifications.

Freq. /Hz	20Hz /dB	Freq. /Hz	25Hz /dB
3.6	78.0	4.6	77.9
6.4	96.1	8,1	68,4
13.9	33.1	17.5	45,8
15.6	35.5	19.7	20.7
17.5	2.6	22.1	2.1
18.1	1.3	22.8	0.9
18.6	0.0	23.5	0.2
19.2	0.1	.24.2	0.0
19.7	0.0	24.8	-0.1
20.2	0.1	26.6	0.0
20.6	0.4	26.2	0.3
21.4	1.3	27.0	1.0
22.1	2.7	27.8	2.4
24.8	17.4	31.2	21.1
27.8	50.1	35.1	52.1
60.4	80.0	76.1	80.0
107.0	80.0	134.B	90.0

Freq.	31.5Hz /dB	Freq.	40Hz /dB	Freq.	50Hz /dB
5.8	80.0	7.2	0.08	9.1	0.08
10.2	79.2	12.8	77.8	16.2	60.0
22.1	48.2	27.8	53.2	35.1	58.9
24.8	17.8	31.2	28.3	39.4	30.0
27.B	2.4	35.1	2.3	44.2	2.6
28.7	1.0	36,2	0,6	45.6	0.0
29.6	0.3	37.3	0.2	47.0	0.1
30.4	0.0	38.3	0.0	45.3	0.0
31.3	0.0	39,4	-0.1	49.6	-0.1
32.1	0.0	40.4	.0.0	50.9	0.0
33.0	0.2	41.8	0.2	52.4	0.2
34.0	0.8	62.8	0.8	54.0	0.0
36.1	2.6	64.2	2.4	85.7	2.8
39.4	38.1	49.6	40.0	62.5	40.1
44.2	58.4	55.7	60.7	70.2	63.8
95.9	80.0	120.9	80,0	152.3	0.08
169.8	80.0	214.8	90,0	269.6	80.0

Freq.	63Hz /dB	Freq.	80Hz /dB	Freq.	100Hz /dB
11.5	80,0	14.5	90,08	18.3	80.0
20.4	80.0	25,7.	90.0	32.3	80.0
44.2	57.8	55.7	93.8	70.2	69.4
49.6	42.2	62.5	41.4	78.7	53.1
55.7	3.0	70.2	3.1	88.4	2.9
57.5	0.9	72.4	0.9	91.2	0.7
59.2	0.2	74.6	0.2	94.0	0.1
60.9	-0.1	76.7	0.1	95.6	0.0
62.5	-0.1	78.7	0.0	99.2	0.0
84.2	-0.1	80.9	0.0	101.9	0.0
66.0	0.1	85.2	0.1	104.8	0.2
68.0	0.8	85.7	0.7	107,9	0.6
70.2	3.0	88.4	3.0	111.4	3.0
78.7	45.1	99.2	52.0	125.0	57.0
68.4	49.6	111.4	74.1	140.3	79.9
191.8	70.4	241.7	80.0	304.5	80.0
339.7	75.4	428.0	80.0	539.2	80.0

Lo Sperimentatore The operator Bicciato Bernardino

Il Responsabile del Centro Head of the Centre Pierantonio Benvenuti_

Laboratorio Misure di Elettroacustica Electroacoustic Measurement Laboratory

Via Marconi, 5 35030 Caselle di Selvezzeno (PD)


Twl. 0039-0498977150
Fax 0039-049835596
e-mail: info@deltaphm.com
Web Site: www.deltaphm.com

O Member of GRM GROUP

Delta OHM S.r.l. a socio unico

Seltacia Centro di Taratura LAT Nº 124

Calibration Centre

LAT Nº 124

Pagina 4 di 7 Page 4 of 7

CERTIFICATO DI TARATURA LAT 124 20001406 Certificate of Calibration

Freq.	125Hz /dB	Freq.	160Hz /dB	Freq.	200Hz /dB
23.0	80.0	29.0	80.0	35.5	80.0
40.7	90.0	51.3	.0.08	64.6	80.0
56.4	73.2	111,4	78.5	140.3	80.0
99.2	55.1	125.0	56.1	157.5	62.3
111.4	3.0	140.3	3.1	176.8	3.2
114.9	0.7	144.8	0.6	182.4	0.0
158.4	0.1	149.1	0.2	167.9	0.5
121.7	0,0	155.4	0.0	190.3	0.0
125.0	0.0	157.5	-0.1	198.4	0.0
128.3	0.0	161.7	0.0	203.7	0.0
132.0	0.1	186.3	0.1	209,5	0.1
136.0	0.6	171.3	0.6	215.8	0.6
140.3	3.1	176.8	3.2	222.7	3.1
157.0	01.3	198.4	66.7	250.0	59.6
176,8	80.0	222.7	80.0	280.6	90.0
383.7	80.0	483.4	0.09	609,1	80.0
679.3	80.0	855.9	80.0	1678.4	80.0

Freq.	250Hz /dB	Freq.	315Hz /dB	Freq. /Hz	400Hz /dB
46.0	80.0	58.0	80.0	78.0	0.08
81.4	80.0	102.6	80.0	129.3	80.0
176.8	80.0	222.7	53.7	280.6	57.2
196.4	96.3	280.0	28.5	315.0	40.0
222.7	3.1	280.8	2.4	363.6	2.7
229.8	0.6	289.6	0.9	364.8	0.8
236.0	0.0	298.3	0.3	375.8	0.1
243.5	0.0	306.8	0.1	386.5	0.0
250.0	0.0	315.0	-0.1	386.9	-0.1
258.7	0.0	323.4	0.0	407.5	0.0
284.0	0.1	332.6	0.2	419.1	0.2
271.9	0.5	342.6	0.7	435.7	0.9
290.6	3.3	353.6	2.3	445.4	2.9
315.0	80.0	396.8	39.9	500.0	40.4
253.6	80.0	445.4	60.7	561.2	63.8
767.4	80.0	986.8	80.0	1218.2	80.0
1358.7	60.0	1711.6	80.0	2155.8	80.0

Freq. /Hz	500Hz /dB	Freq.	630Hz /dB	Freq. /Hz	800Hz /dB
92.0	80.0	115.9	0.08	145.0	0.00
162.9	80.0	205.2	80.0	258.6	80.0
363.6	58.4	445.5	63.8	561.2	89.4
395.9	42.1	500.0	41.6	630.0	53.1
445,5	2.9	561.2	3.1	707.1	3.0
459.7	0.9	579.1	0.9	729.7	0.7
473.5	0.2	596.6	0.2	751.7	0.1
487.0	0.0	613.6	0.0	773.0	0.0
500.0	0.0	630.0	0.0	793.7	-0.1
513.4	0.0	646.8	0.0	814.9	0.0
528.0	0.2	665.2	0.2	638.1	0.1
543.9	0.8	686.2	0.8	863.4	0.7
561.2	2.9	707.1	3.1	890.9	3.1
630.0	45.1	793.7	52.1	1000.0	56.9
707.1	70.9	890.9	74.3	1122.5	79.8
1534.8	80.0	1933.7	90.0	2436.3	40.0
2717.4	90.0	3423.7	80.0	4313.6	80.D

Freq.	1kHz /dB	Freq. /Hz	1.25kHz /dB	Freq. /Hz	1.6kHz /dB
164.0	80.0	231,8	80:0	292.1	80.0
325.8	80.0	410.6	80.0	517.1	50.0
707.1	73.3	890.9	78.5	1122.5	80.0
799.7	55.2	1000.0	56.0	1258.8	62.5
890.9	3.2	1122.5	3.1	1414.2	3.2
919.3	0.8	1158.3	0.6	1459.3	0.7
947.0	0.2	1193.2	D.1	1503.3	0.2
973.9	0.1	1227.1	D.0	1546.0	0.1
1000.0	0.0	1259.9	0.0	1587.4	0.0
1026,8	0.0	1293.6	0.0	1629.9	U.t.
1066.9	0.2	1330.4	0.2	1676.2	0.2
1087.8	0.7	1370.5	0.6	1726.7	0.7
1122.5	3.1	1414.2	3.1	1781.8	3.2
1259,9	81.5	1587.4	85.8	2000.0	69.8
1414.2	80.0	1781.0	60.0	2244.9	90.0
3069.6	0.03	3867.4	60.08	4872.6	90.0
5434.7	80.0	6847.3	80.0	8627.1	80.0

Freq. /Hz	2kHz /dB	Freq. /Hz	2.5kHz /dB	Freq. /Hz	3.15kHz /dB
388.0	80.0	463.7	80.0	584.2	80.0
651.6	80.0	620.9	60.0	1034.3	0.08
1414.2	80.0	1781.8	53.7	2244.9	57.5
1587.4	66,3	2000.0	28.5	2519.8	40.1
1781.6	3.3	2244.9	2.4	2829.4	2.6
1838.6	0.7	2316.5	0.9	2918.7	0.9
1894.0	0.2	2386.3	0.3	3006.6	0.2
1947.9	0.1	2454.2	0.1	3092.1	0.0
2000.0	0.0	2519.6	0.0	3174.8	0.0
2053.5	0.1	2587.3	0.0	3259.8	0.0
2111.9	0.3	2990.8	0.2	3352.4	0.2
2175.5	0.8	2741.D	0.8	3453.4	0.9
2244.9	3.3	2828.4	2.4	3663.6	3.0
2519.6	80.0	3174.8	39.9	4000.0	40.4
3828.4	90,0	3563:6	6.08	4489.8	69.9
6139.1	80.0	7734.8	90.0	8745,2	80.0
10869.5	80.0	13094.7	80.0	17254.2	80.0

Freq. /Hz	4kHz /dB	Freq.	5kHz /dB	Freq.	6.3kHz /dB
736.0	80.0	927.3	60.0	1168.3	80.0
1303.1	80.0	2541.8	80.0	2068.6	80.0
2828.4	58.4	3563.6	64.0	4489.9	69.4
3174.8	42.1	4000.0	41.6	5039.7	63,1
3563.6	3.0	4489.9	3.2	5656.9	3.0
3877.3	0.9	4933.1	1.0	5837.3	0.7
3768.1	0.3	4772.7	0.2	6013.2	0.1
3996.8	0.1	4908.4	0.8	6194.5	0.0
4000.8	0.0	5039.7	0.0	6349.6	0.0
4107.D	0.1	5174.5	0.1	6519,5	0.1
4223.8	0.2	6321.6	0.2	8704.6	0.2
4351.0	0.9	5482.0	0.9	6906.8	0.8
4489.8	3.0	5656.8	3.1	7127.2	3.1
5039.7	45.1	6349.6	52.2	8000.0	57.0
5656.8	70.9	7127.2	74.3	8979.7	79.7
12278.2	.80.0	15469.6	89.0	19490.4	0.08
21739.0	80.0	27289.4	80.0	34508.4	80.0

Lo Sperimentatore The operator Bicciato Bernardino Il Responsabile del Centro Head of the Centre Pierantonio Benvenuti

O Member of GHM GROUP

Centro di Taratura LAT Nº 124 Calibration Centre

LAT Nº 124

Delta OHM S.r.l. a socio unico Via Marconi, 5 35030 Caselle di Selvazzano (PD)

Tel. 0039-0498977150 Fax 0039-049635596 e-mail: Info@deltachm.com Web Site: www.deltaohm.com Laboratorio Accreditato di Taratura

Laboratorio Misure di Elettroacustica Electroacoustic Measurement Laboratory

Pagina 5 di 7 Page 5 of 7

CERTIFICATO DI TARATURA LAT 124 20001406 Certificate of Calibration

Freq. /Hz	8kHz /dB	Freq.	10kHz /dB	Freq. /Hz	12.5kHz /dB
1472.0	80,0	1854.6	80.0	2336.7	80,0
2606.2	80.0	1283.7	80.0	4137.1	80.0
5656.9	73.3	7127.2	78.4	8979.7	80.0
6349.6	65.3	8000.D	58.0	10079.4	82.4
7127.2	3.2	8979.7	3.1	11313.7	3.2
7354.6	0.8	9265.2	0.7	11574.6	0.7
7576.2	0.3	9545.4	0.2	12026.4	0.2
7791.5	0.1	5816.7	0.1	12366.3	0.1
8000.0	0.0	10079.4	0.0	12039.2	0.1
8214.1	0.1	10349.1	0.1	13039.0	0.2
8447.5	0.2	10643.2	0.2	13409.6	0.3
8702.1	0.7	10983.9	7.0	13813.7	0.9
8079,7	3.2	11313.7	3.2	14254.4	3,4
10079.4	61.5	12699.2	65.8	16000.6	70.0
11313.7	80.0	14264.3	80.0	17959.3	80,0
24556.4	80.0	30939.1	80.0	38980.9	80.0
43477.9	80.0	54778.7	80.0	69016.9	0.08

Freq. /Hz	16kHz /dB	Freq. /Hz	20kHz /dB
2044.0	83.0	3709.2	80/0
3212.5	80.0	6567.3	79:0
11313.8	0.08	14254.4	80.0
12699.2	69.2	160000.0	72.7
14254.4	1.2	17959.4	2.0
16709.1	6.6	18532.3	0.4
15152.3	0.2	19090.7	0.0
15583.0	0.0	19633.4	0.0
16000.0	0.0	20158.7	0.0
16426.2	0.2	20698.2	0.1
16886.0	0.4	21286.4	0.4
17404.2	0.0	21927.9	1.3
17959.4	3.4	22627.4	4.3
20158.7	76.0	25398.4	57.5
22627.4	0.08	28508.7	79.0
49112.8	80.0	61678.3	80.6
50955.8	80.0	109557.5	80.0

Somma dei segnali d'uscita - Summation of output signals

La verifica che la somma dei segnali di uscita dei filtri del banco è pari al segnale di ingresso è stata eseguita utilizzando le misure effettuate nella prova di "Attenuazione relativa". Le frequenze di prova sono le due frequenze di taglio e la frequenza centrale per tutti i filtri esclusi quelli con la minore e la maggiore frequenza centrale del banco.

The test that the summation of output signals is equal to the Input signal was performed using the "Relative attenuation" test measurements. The test frequencies are the two bandedge frequencies and the central frequency for all filters but the lower and higher central frequency filters of the set.

Filter	Freq.	ΔΣ /dB	Filter /Hz	Freq.	ΔΣ /dB
71 14	15.6	0.4	11.00	500.0	0.0
20	19.2	0.1	630	613.5	0.0
20	21.4	0.6	930	685.2	-0.0
-	19.7	0.6	-	630.0	-0.0
25			atro	773.0	0.1
-20	24.2	0.2	900	963.4	-0.1
_	27.0	0.6	-		-0.1
10.4	24.8	0.0	1000	798.7 973.9	0.0
31.5	30.4		1000		-0.1
-	34.0	0.0	_	1087.8	-0.1
40	31.2		1250	1000.0	0.0
40	38.3 42.8	0.1	1200	1227.1	-0.1
-	149.00		-		
70	38.4	0.5	4000	1259.9	-0.1
60	48.3	0.1	1600:	1546.0	0.0
-	54.0	0.1	-	1726.7	-0.2
-	49.6	0.1	-	1507,4	-0.2
63	60.9	0.1	2000	1947.9	0.0
-	88.0	-0.0	-	2175.5	0.2
-	82.5	-0.0	-	2000.0	0.2
80	76.7	0.0	2500	2454.2	0.0
_	86.7	0.1	-	2741.0	0.4
10000	78.7	0.1	4.000	2519.8	0.4
100	96.6	0.0	3150	3092.1	0.0
_	107.8	0.0	-	3453.4	0.0
120	99.2	0.0		3174.8	0.0
125	521.7	0.0	4000	3895.6	0.0
-	136.0	-0.1	-	4351.0	-0.1
100	125.0	-0.1	10000	4000.0	-0.1
160	153.4	0.1	8000	4908.4	0.0
	171.3	-0.2	-	5482.0	-0.0
	157.5	-0.2		5039.7	-0.0
200	193.3	0.0	6300	6184,1	0.0
	215.8	-0.1	-	6906.8	-0.1
-	198.4	-0.1	2222	6349.6	-0.1
250	243.5	0.0	8000	7791.5	0.0
	271.9	0.2	-	8702.1	-0,1
	250.0	0.2	40044	8000.0	-0.1
315	306.8	0.1	10000	9816.7	0.0
	342.6	0.5	-	10953.9	-0.2
1110	315.0	0.5	20000	10079.4	0.2
400	386.5	0.1	12600	12368.3	-0.1
	431.7	0.1	10000	13813.7	-0.3
	395.9	0.1		12699.2	-0.3
500	487.0	0.0	19000	15583.0	0.0
	563.9	0.0		17404.2	-0.1

Lo Sperimentatore The operator Bicciato Bernardino

Il Responsabile del Centro Head of the Centre

Pierantonio Benventti

Delta OHM S.r.l. a socio unico

Member of GHM GROUP

Centro di Taratura LAT Nº 124 Calibration Centre

LAT Nº 124

35030 Caselle di Selvazzano (PO) Tel. 0039-0498977150 Laboratorio Accreditato di Taratura Fax 0039-049635596

Laboratorio Misure di Elettroacustica Electroacoustic Measurement Laboratory

e-mail: info@deltachm.com Web Site: www.deltaohm.com

> Pagina 6 di 7 Page 6 of 7

CERTIFICATO DI TARATURA LAT 124 20001406 Certificate of Calibration

Campo di funzionamento lineare - Linear operating range

La linearità dei filtri, è stata verificata in tutti i campi di misura misurando il Leg. La freguenza del segnale di prova applicato è pari alla frequenza centrale nominale del filtro in

Linear operating range was verified for each available level range, measuring Leq. The applied test signal frequency was equal to the nominal central frequency of the filter under

Le misure nel campo principale sono state eseguite per i due filtri con frequenze centrali agli estremi del banco a passi di 5 dB sino a 5 dB dagli estremi della scala ed a passi di 1 dB vicino ad essi.

Measurements in the reference level range were performed for the two filters with central frequencies at the limits of the filter set at 5 dB steps up to 5 dB from range limits and at 1 dB steps near them.

Livello Level	ΔLeq 20 Hz	ΔLeq 20k Hz
	/dB	
130	0.1	0.1
129	0.1	0.1
128	0.1	-0.0
127	0.1	0.1
126	0.1	0.1
125	0.1	0.1
120	0.1	0,1
115	0.1	0.1
110	0.1	0.1
105	0.1	0,1
100	-0.0	-0.0
95	-0.0	-0.0
90	-0.0	+0.0
85	-0.0	0.0
80	-0.0	-0.0
75	0.1	-0.0
70	-0.0	-0.0
65	-0.0	-0.0
60	-0.0	-0.0
55	-0.0	-0.0
54	0.0	0.0
53	0.0	0.0
52	0.0	+0.0
51	-0.0	-0.0
50	-0.0	-0.0

Per ogni campo di misura sono state eseguite 2 misure. con livelli di ingresso a 2 dB dalle estremità della scala mantenendo un livello superiore al rumore autogenerato di almeno 16 dB.

For each measurement range two measurements were performed at 2 dB from the range limits, keeping a level at least 16 dB higher than the self-generated noise,

Campo di misura Level range	Livello Level	ΔLeq 20 Hz	ΔLeq 20k Hz
	/dB		
200 440	138	0.2	0.1
60+140	62	0.1	0.1
ED. 430	128	0.1	-0.0
50+130	52	0.0	0.1
40 400	118	0.1	0.1
40+ 120	42	-0.0	-0.0
30+110 -	108	-0.0	-0.0
30+110	39	-0.1	0.1
20+ 100	98	-0.1	-0.1
20+ 100	39	-0.1	-0.0

Funzionamento in tempo reale - Real-time operation

Il funzionamento in tempo reale è stato verificato per tutti i filtri, nel campo principale, utilizzando un segnale di ingresso vobulato in frequenza.

Real-time operation of all fitters was verified, in the reference level range, using a swept-frequency input signal.

Intervallo di freguenza: 8 Hz + 50000 Hz

Frequency range:

Tempo di vobulazione: 55.0 s

Sweep time:

Tempo di integrazione del Leq: 60.0 s.

Leg averaging time:

Filtro Filter	ΔLEQ	Filtro Filter	ALEQ
/Hz	/dB	ЛHz	/dB
20	0.1	800	0.0
25	0.3	1k	-0.1
31.5	0.2	1.25k	0.0
40	0.2	1.6k	-0.1
50	0.1	2k	-0.1
63	0.0	2.5k	0.1
80	0.0	3.15k	0.0
100	0.0	4k	0.0
125	0.0	5k	-0.1
160	0.0	6.3k	0.0
200	0.0	8k	-0.1
250	0.0	10k	0.0
315	0.1	12.5k	-0.1
400	0.0	16k	-0.1
500	0.0	20k	-0.3
630	-0.1		7,7,117

Lo Sperimentatore The operator Bicciato Bernardino Il Responsabile del Centro Head of the Centre Plerantonio Benvenuti

O Member of GHM GROUP

Centro di Taratura LAT Nº 124 Calibration Centre

LAT Nº 124

Delta OHM S.r.l. a socio unico

Via Marconi, 5
35030 Caselle di Selvazzano (PD)
Tel. 0039-0498977150
Fax 0039-049635596
e-mail: arfo@deltaohm.com
Web Site: www.deltaohm.com

Laboratorio Accreditato di Taratura

Laboratorio Misure di Elettroacustica Electroacoustic Measurement Laboratory

CERTIFICATO DI TARATURA LAT 124 20001406 Certificate of Calibration

Pagina 7 di 7 Page 7 of 7

Filtri anti-ribaltamento - Anti-alias filters

L'efficacia dei filtri anti-ribaltamento è stata verificata nel campo misure principale misurando la risposta di ciascun filtro ad un segnale in ingresso di frequenza pari alla frequenza di campionamento meno la frequenza centrale nominale e di livello pari al fondo scala.

The performance of anti-alias filters was tested in the reference level range measuring the response of each filter to an input signal at the upper boundary of the linear range with frequency equal to the sampling frequency minus the filter nominal central frequency.

La frequenza di campionamento dei filtri è pari a:

Filter sampling frequency is equal to:

48000 kHz.

Filtro Filter /tiz	Att. relativa Relative Att. /dB	Filtro Filter /Hz	Att. relativa Relative Att. /dB
20	75.6	800	78.7
25	74.6	1k	80.0
31.5	74.1	1.25k	0.08
40	74.0	1.6k	80.0
50	74.0	2k	75.2
63	74.0	2.5k	73.1
80	74.0	3.15k	75.1
100	74.1	4k	80.0
125	74.0	5k	77.4
160	73.9	6.3k	72.8
200	74.2	8k	0.08
250	74.2	10k	74.4
315	74.5	12.5k	80.0
400	74.8	16k	80.0
500	75.5	20k	59.5
630	76.7		

Nota: Il separatore decimale usato in questo documento è il punto.

Note: Throughout this document the decimal point is indicated by a dot.

Lo Sperimentatore The operator Bicciato Bernardino Il Responsabile del Centro Head of the Centre Pierantonio Benvenuti

Member of GHM GROUP

Calibration Centre

LAT Nº 124

Pagina 1 di 5

Delta OHM S.r.l. a socio unico

Via Marconi, 5 35030 Caselle di Selvazzano (PD) Tel. 0039-0498977150 Fax 0039-049635596 e-mail: info@deltachm.com Web Site: www.deltanhm.com

Laboratorio Accreditato di Taratura

Laboratorio Misure di Elettroacustica Electroacoustic Measurement Laboratory

Page 1 of 5

CERTIFICATO DI TARATURA LAT 124 20001407 Certificate of Calibration

- data di emissione

date of issue

- cliente customer

- destinatario receiver

richiesta

application

- in data date

101-0023-20

2020-05-26

Torann S.a.s. di Annicchiarico M. & C. -

Viale Luigi Sturzo, 31 - 70125 Bari (BA)

Via Gen. Cantore, 4 - 70032 Bitonto (BA)

Castoro Arch. Vito Donato -

2020-05-19

Si riferisce a Referring to

- oggetto (term)

 costruttore manufacturer

- modello model.

- matricola serial number

- data delle misure date of measurements

 registro di laboratorio laboratory reference

Calibratore

Delta Ohm S.r.I.

HD9101A

10038470

2020/5/20

40980

Il presente certificato di taratura è emesso in base all'accreditamento LAT Nº 124 rilasciato in accordo ai decreti attuativi della legge n. 273/1991 che ha istituito il Sistema Nazionale di Taratura (SNT). ACCREDIA attesta le capacità di misura e di taratura, le competenze metrologiche del Centro e la riferibilità delle tarature eseguite ai campioni nazionali e internazionali delle unità di misura del Sistema Internazionale delle Unità (SI).

Questo certificato non può essere riprodotto in modo parziale, salvo espressa autorizzazione scritta da parte del Centro.

This certificate of calibration is issued in compliance with the accreditation LAT N° 124 granted according to decrees connected with Italian law No. 273/1991 which has established the National Calibration System. ACCREDIA attests the calibration and capability, the metrological measurement competence of the Centre and the traceability of calibration results to the national and international standards of the International System of Units (SI). This certificate may not be partially reproduced, except with the prior written permission of the issuing Centre.

I risultati di misura riportati nel presente Certificato sono stati ottenuti applicando le procedure di taratura citate alla pagina seguente, dove sono specificati anche i campioni o gli strumenti che garantiscono la catena di riferibilità del Centro e i rispettivi certificati di taratura in corso di validità. Essi si riferiscono esclusivamente all'oggetto in taratura e sono validi nel momento e nelle condizioni di taratura, salvo diversamente specificato.

The measurement results reported in this Certificate were obtained following the calibration procedures given in the following page, where the reference standards or instruments are indicated which guarantee the traceability chain of the laboratory, and the related celibration certificates in the course of validity are indicated as well. They relate only to the calibrated item and they are valid for the time and conditions of calibration, unless otherwise specified.

Le incertezze di misura dichiarate in questo documento sono state determinate conformemente alla Guida ISO/IEC 98 e al documento EA-4/02. Solitamente sono espresse come incertezza estesa ottenuta moltiplicando l'incertezza tipo per il fattore di copertura è corrispondente ad un livello di fiducia di circa il 95 %. Normalmente tale fattore k vale 2.

The measurement uncertainties stated in this document have been determined according to the ISO/IEC Guide 98 and to EA-4/02. Usually, they have been estimated as expanded uncertainty obtained multiplying the standard uncertainty by the coverage factor is corresponding to a confidence level of about 95%. Normally, this factor k is 2.

> Il Responsabile del Centro Head of the Centre Pierantonio-Benvenuti-

Member of GRM GROUP

Calibration Centre

LAT Nº 124

Delta OHM S.r.l. a socio unico

Wa Marconi, 5 35030 Caselle di Selvazzano (PD) Tel. 0039-0498977150 Fax 0039-049635596 e-mail: info@deltachm.com Web Site: www.deltechm.com

Laboratorio Accreditato di Taratura

Laboratorio Misure di Elettroacustica Electroacoustic Measurement Laboratory

> Pagina 2 di 5 Page 2 of 5

CERTIFICATO DI TARATURA LAT 124 20001407 Certificate of Calibration

I risultati di misura riportati nel presente Certificato sono stati ottenuti applicando le procedure N. DHLE - E - 01 rev. 3 The measurement results reported in this Certificate were obtained following procedures No.

Riferimenti - References

La norma di riferimento è la IEC 60942:2003 "Electroacoustics - Sound Calibrators".

The reference standard is IEC 60942:2003 "Electroacoustics - Sound Calibrators".

Incertezze - Uncertainties

Le incertezze di misura dichiarate in questo documento e riportate nella tabella successiva, sono espresse come incertezza estesa ottenuta moltiplicando l'incertezza tipo per il fattore di copertura k=2 corrispondente ad un livello di fiducia di circa il 95 %.

The measurement uncertainties stated in this document, shown in the following table, have been estimated as expanded uncertainty obtained multiplying the standard uncertainty by the coverage factor k=2 corresponding to a confidence level of about 95%.

Segnale sonoro Sound signal	Intervalio Range /dB	Frequenza Frequency /Hz	Incertezza Uncertainty
		31.5	0.14 /dB
		63	0.12 /dB
Livello	94 + 124	125 + 2000	0.11 /dB
Level		4000	0.14 /dB
		8000	0.18 /dB
		12500 + 16000	0.25 /dB
Frequenza Frequency	94 + 124		0.01 /%
Distorsione	04 - 424	31.5 + 500	0.57%
Distortion	94 + 124	1000 + 16000	0.37 /%

Campioni di riferimento - Reference standards

Campioni di Riferimento Reference Standards	Costruttore Manufacturer	Modello Model	Numero di serie Serial number	Certificate numero Certificate number
Microfono - Microphone	B&K	4180	2101416	INRIM 19-0914-01
Pistonofono - Pistonphone	B&K	4228	2163696	INRIM 19-0914-02
Multimetro - Multimeter	HP	3458A	2823A21870	INRIM 18-0961-01

Strumenti di laboratorio Laboratory Instruments	Costruttore Manufacturer	Modello Model	Numero di serie Serial number
Sorgente A.C A.C. Source	HP	3245A	2831A4542
Amplificatore - Amplifier	B&K	2610	2102907
Analizz. audio - Sound Analyser	HP	8903B	2614A01827
Microfono 1/2 " - 1/2" Microphone -	B&K	4134	2123613
microtono /2 - /2 microphone	B&K	4180	1886372

Strumentazione in taratura - Instruments to be calibrated

Costruttore	Modello	Numero di serie
Manufacturer	Model	Serial number
Delta Ohm S.r.I.	HD9101A	10038470

Lo sperimentatore The operator Bernardino Bicciato Il Responsabile del Centro Head of the Centre Pierantonio Benyandti

Member of GHM GROUP

Calibration Centre

LAT Nº 124

Delta OHM S.r.l. a socio unico

Via Marconi, 5 35030 Caselle di Selvazzano (PD) Tel. 0039-0498977150 Fex 0039-049635596 mail; info@deltaohm.com Web Site: www.deltaohm.com

Laboratorio Accreditato di Taratura

Laboratorio Misure di Elettroacustica Electroacoustic Measurement Laboratory

Pagina 3 di 5 Page 3 of 5

CERTIFICATO DI TARATURA LAT 124 20001407 Certificate of Calibration

Parametri ambientali Environmental parameters

I parametri ambientali di riferimento sono:

Temperatura = (23 ± 2) °C, Pressione atmosferica = (1013.25 ± 35) hPa, Umidità relativa = (50 ± 10) %U.R.

Lo strumento in taratura è stato mantenuto in laboratorio, in condizioni ambientali controllate, per almeno 4 ore prima della taratura.

Reference environmental parameters are:

Temperature = (23 ± 2) °C, Static pressure = (1013.25 ± 35) hPa, Relative humidity = (50 ± 10) %R.H.

The instrument submitted for test was kept in the laboratory, under controlled environmental conditions, for at least 4h before

Parametri ambientali Environmental parameters					
Temperatura Temperature	Pressione atmosferica Static Pressure	Umidità relativa Relative Humidity			
/°C	hPa	/%R.H.			
23.1	1011.0	55.4			

Formule Formulas

Down:

Di seguito si riporta la formula di calcolo del livello di pressione sonora generato dal calibratore:

The sound pressure level generated by the acoustic calibrator was calculated using the formula:

SPL Ref = 20 Log
$$V_C$$
 - S_{0C} - ε_T - ε_P - ε_H - ε_{Vp} + 93.9794

Where:		
SPL Ref	/dB	Livello di pressione sonora generato dal calibratore alle condizioni ambientali di riferimento. Sound pressure level generaled by the acoustic calibrator under reference envirormental conditions.
V _C	N	Valore della tensione inserita V Inserted voltage V
Soc	/dB	Sensibilità del microfono campione Reference microphone sensitivity
ET	/dB	Correzione per la temperatura ambiente (dB Environmental temperature correction
Ep	/dB	Correzione per la pressione ambiente /dB Environmental static pressure correction
£u	/dB	Correzione per l'umidità ambiente /dB Environmental relative humidity correction
$\epsilon_{V\mu}$	/dB	Correzione per la tensione di polarizzazione microfonica /dB. Correction for the microphone polarization voltage

N.B. Il separatore decimale usato in questo documento è il punto. Throughout this document the decimal point is indicated by a dot.

Lo sperimentatore The operator Bernardino Bicciato Il Responsabile del Centro Head of the Centre Pierantonio Benvenuti

Member of GHM-GROUP

Centro di Taratura LAT Nº 124 Calibration Centre

Delta OHM S.r.l. a socio unico Via Marconi, S

35030 Caselle di Selvazzano (PD) Tel. 0039-8498977150 Fax 0039-049535596 e-mail: info@deftaohm.com Web Site: www.deltaohm.com

Laboratorio Accreditato di Taratura

Laboratorio Misure di Elettroacustica Electroacoustic Measurement Laborator

> Pagina 4 di 5 Page 4 of 5

CERTIFICATO DI TARATURA LAT 124 20001407 Certificate of Calibration

Verifica della frequenza del segnale generato

Test of the frequency of the sound generated by the sound calibrator

AF é la differenza tra la frequenza generata e la frequenza nominale. Consideríamo trascurabile l'incertezza del laboratorio (0.01%).

AF is the difference between the generated frequency and the nominal one. The measurement uncertainty (0.01%) is considered negligible.

Frequenza nominale Nominal Frequency	ΔF	Tolleranza classe : Class 1 tolerance
/Hz	7%	/%
1000.00	-0.72	±1

Verifica della distorsione totale del segnale generato

Test of the distortion of the sound generated by the sound calibrator

La distorsione, aumentata della relativa incertezza, deve essere inferiore ai limiti di tolleranza indicati.

The measured distortion, extended by the expanded uncertainty, shall not exceed the specified tolerance limits,

SPL /dB	Distorsione totale Total Distortion	Incertezza Uncertainty /%	Tolleranza classe 1 Class 1 tolerance /%	
94.00	0.1	0.27		
114.00	0.1	0.37	3	

Verifica del livello di pressione sonora generato

Test of the sound level generated by the sound calibrator

La differenza in valore assoluto tra il livello sonoro misurato ed il livello nominale, aumentata della relativa incertezza, deve essere inferiore ai limiti di tolleranza indicati.

The absolute difference between the measured sound level ant the nominal one, extended by the expanded uncertainty, shall not exceed the specified tolerance limits.

SPL Ref = 20 Log $V_C - S_{CC} - \varepsilon_T - \varepsilon_P - \varepsilon_H - \varepsilon_{Vp} + 93.9794$									
Sec /dB	V _c /mV	eve /dB	Et /dB	€» /dB	£н /dB	SPL _{Ref} /dB	Δ /dB	Incertezza Uncertainty /dB	Toll. classe f Class 1 tol. /d8
-38.32	12.204	0.00	0.00	-0.00	-0.00	94.02	0.02	0.11	± 0.4
-38.32	121.683	0.00	0.00	-0.00	-0.00	114.00	0.00		

Lo sperimentatore The operator Bernardino Bicciato Il Responsabile del Centro Head of the Gentre Pierantonio Benvenuti

Member of GHM GROUP

Calibration Centre

LAT Nº 124

Delta OHM S.r.l. a socio unico

Via Marconi, 5 35030 Caselle di Selvazzano (PD) Tel. 0039-0498977150 Fax 0039-049635596 e-mail: info@deltaghm.com Web Site: www.deltaohm.com

Laboratorio Accreditato di Taratura

Laboratorio Misure di Elettroncustica Electroacoustic Measurement Laboratory

> Pagina 5 di 5 Page 5 of 5

CERTIFICATO DI TARATURA LAT 124 20001407 Certificate of Calibration

Il Calibratore Acustico ha dimostrato di essere conforme alle prescrizioni della classe 1 per le prove periodiche, descritte nell'allegato B della IEC 60942: 2003 per i livelli di pressione sonora e frequenza dichiarati, per le condizioni ambientali in cui sono state eseguite le prove. Tuttavia, poiché non è disponibile la prova pubblica da parte di un'organizzazione di prova responsabile dell'approvazione dei modelli, per dimostrare che il modello di calibratore acustico è conforme alle prescrizioni delle prove di valutazione descritte nell'allegato A della IEC 60942: 2003, non è possibile fornire alcuna dichiarazione o conclusione generale sulla conformità del calibratore acustico ai requisiti della IEC 60942: 2003.

The Sound Calibrator has been shown to conform to the class 1 requirements for periodic testing, described in Annex B of IEC 60942:2003 for the sound pressure levels and frequency stated, for the environmental conditions under which the tests were performed. However, as public evidence was not available, from a testing organization responsible for pattern approval, to demonstrate that the model of sound calibrator conformed to the requirements for pattern evaluation described in Annex A of IEC 60942:2003, no general statement or conclusion can be made about conformance of the sound calibrator to the requirements of IEC 60942:2003.

Lo sperimentatore The operator Bernardino Bicciato Il Responsabile del Centro Head of the Centre Pierantonio Benyanuti

ALLEGATO 7

Det. Dirigenziale di iscrizione all'elenco del T.C.A.A. della Provincia di Bari.

SERVIZIO "POLIZIA PROVINCIALE, PROTEZIONE CIVILE E AMBIENTE

DETERMINAZIONE N.	559	Reg.	Servizio Ambiente	19.06.2012
-------------------	------------	------	-------------------	------------

OGGETTO: Legge 26.10.1995 n. 447 art. 2 - Iscrizione nell'elenco dei tecnici competenti in acustica- Mellano M., Lassandro F, Samldino M., LoiudiceP..

IL DIRIGENTE DEL SERVIZIO

PREMESSO CHE:

La legge quadro sull'inquinamento acustico n.447 del 26.10.1995 ha istituito, la figura del "tecnico competente" in acustica definendola all'art. 2, comma 6, come "la figura professionale idonea ad effettuare le misurazioni, verificare l'ottemperanza ai valori definiti dalle vigenti norme, redigere i piani di risanamento acustico, svolgere le relative attività di controllo" ed, inoltre, nel fissare i requisiti per il riconoscimento, ha previsto che "Il tecnico competente deve essere in possesso del diploma di scuola media superiore ad indirizzo tecnico o del diploma universitario ad indirizzo scientifico ovvero del diploma di laurea ad indirizzo scientifico";

il comma 7 dell'art. 2 della citata legge quadro ha, inoltre, stabilito che "l'attività di tecnico competente può essere svolta previa presentazione di apposita domanda all'Assessorato regionale competente in materia ambientale corredata da documentazione comprovante l' aver svolto attività in modo non occasionale, nel campo dell'acustica ambientale da almeno quattro anni per i diplomati e due anni per i laureati o per i titolari di diploma universitario";

i successivi commi 8 e 9 del predetto art.2 prevedono che l'attività di tecnico competente in acustica può essere altresì svolta "da coloro che, in possesso del diploma di scuola media superiore, siano in servizio presso le strutture pubbliche territoriali e vi svolgano la propria attività nel campo dell'acustica ambientale, alla data di entrata in vigore della presente legge e successive modifiche e integrazioni. I soggetti che effettuano i controlli devono essere diversi da quelli che svolgono le attività sulle quali deve essere effettuato il controllo";

la Giunta regionale, con deliberazione n.1126 del 27.03.96, ha recepito "Le indicazioni generali applicative dell'art.2, commi 6, 7, 8 e 9 della legge n.447/95 assunte in sede di Conferenza dei Presidenti delle Regioni e delle Province Autonome di Trento e Bolzano nella seduta del 25.1.96" con le quali sono state stabilite le modalità di presentazione e di valutazione delle domande nonché la documentazione da allegare alle stesse. Nella citata deliberazione è anche stabilito che le domande dovranno essere valutate da apposita Commissione interna costituita da esperti in materia di acustica ambientale;

la legge regionale 12.02.2002 n.3 recante "Norme di indirizzo per il contenimento e la riduzione dell'inquinamento acustico" all'art.4, comma 1, lett.f) precisa che la Regione provvede "a tenere ed aggiornare, su base semestrale, l'Albo dei tecnici competenti alle misurazioni fonometriche di cui all'articolo 2 della legge 28 ottobre 1995, n.447";

la legge regionale 14.06.2007, n.17, all'art.5, comma 1, ha inoltre stabilito che "La tenuta e gestione dell'elenco dei tecnici competenti in acustica ambientale di cui alla legge 26 ottobre 1995, n.447 (Legge quadro sull'inquinamento acustico), già attribuita alla Regione ai sensi dell'articolo 4

della legge regionale 12 febbraio 2002, n.3 (Norme di indirizzo per il contenimento e la riduzione dell'inquinamento acustico), a decorrere dal 1° luglio 2007 è attribuita alle Competenze delle province";

con Determinazione n. 28 del 25.02.2008 del Servizio Ambiente è stata istituita la Commissione Elenco dei Tecnici Competenti in Acustica, quale organo delegato all'istruttoria e all'esame delle istanze pervenute alla Provincia di Bari;

la Giunta Provinciale con delibera n. 154 del 01.08.2008 avente ad oggetto "Elenco dei tecnici competenti in acustica ambientale di cui all'articolo 2 della legge n. 26 ottobre 1995, n. 447 - Approvazione modulistica e criteri di esame delle domande di riconoscimento dei tecnici competenti in acustica – Definizione requisiti minimi dei corsi di perfezionamento per laureati o dei corsi di formazione post-diploma per tecnici competenti in acustica ambientale (legge regionale 12 febbraio 2002 n. 3; legge regionale 14 giugno 2007, n. 17)" ha definito, fra l'altro, i criteri di esame delle domande di riconoscimento dei tecnici competenti in acustica ed ha stabilito che l'esame delle domande deve essere affidato ad una apposita Commissione Provinciale interna, presieduta dal Dirigente del Servizio Ambiente e costituita da tre Commissari di cui uno individuato nell'ambito del Comitato contro l'Inquinamento Atmosferico Provinciale;

con Determinazione n. 218 del 16.09.2008, in esecuzione della predetta D.P.G. n.154 del 01.08.08, è stata revocata la precedente Determinazione del Servizio Ambiente n. 28 del 25 febbraio 2008 e sono stati nominati i componenti della Commissione Elenco Tecnici Competenti in Acustica, quale organo tecnico per l'istruttoria e l'esame delle istanze pervenute alla Provincia di Bari;

con successive Determinazioni Dirigenziali n. 347 del 25.11.2008, n. 12 del 22.01.2010, e n.129 del 21.02.2012 è stata aggiornata la composizione delle predetta Commissione di valutazione;

con Deliberazione n.44 del 06.04.2009 ad oggetto "corsi di formazione professionale autonomamente finanziati – corsi di perfezionamento per laureati o di formazione post diploma per Tecnici competenti in Acustica Ambientale –D.G.P. n.154 del 01/08/2008, modifica parziale" la Giunta Provinciale ha apportato parziali modifiche alla D.G.P. n.154 del 01.08.09;

la Commissione Elenco Tecnici Competenti in Acustica nella riunione del 12.06.2012, esaminata la documentazione prodotta a corredo delle istanze, acquisite rispettivamente in atti al prot n.90559 del 29.05.2012, n. 90836 del 29.05.2012, n. 90843 del 29.05.2012, n.90849 del 29.05.2012 ha accertato il possesso dei requisiti prescritti per l'iscrizione nell'Elenco dei Tecnici Competenti in acustica prescritti dalla D.G.P. n.154/08 dei sottoindicati tecnici:

COGNOME	NOME	DATA DI NASCITA	LUOGO DI NASCITA	RESIDENZA
Mellano	Mario	08.02.1973	Bari	Via Trisorio Liuzzi, 3H - Bari
Lassandro	Francesco Luciano	22.08.1979	Santeramo in Colle (BA)	Via dei Gracchi, 16 - Santeramo in Colle (BA)
Smaldino	Michele Vito Massimo	26.03.1970	Gioia del Colle (BA)	Via S. Viapiano, 60- Cassano delle Murge
Loiudice	Paolo	09.09.1972	Altamura (BA)	Viale Martire del 1799, n.133- Altamura (BA)

Pertanto, viste le risultanze istruttorie;

Accertato che i tecnici istanti hanno espresso il proprio consenso al trattamento dei dati personali facoltativi, ai sensi del D.Lgs. n.196/03, ai fini del procedimento amministrativo che la Provincia di Bari ha attivato per l'iscrizione nell'Elenco dei Tecnici Competenti in Acustica;

Vista la legge quadro sull'inquinamento acustico 26 ottobre 1995 n. 447;

Visto il D.P.C.M. 31.03.98;

Vista le leggi regionali 12.02.2002 n. 3 e 14 giugno 2007 n. 17;

Vista la D.G.P. n.154/08:

Visto lo Statuto della Provincia di Bari;

Visto l'art.107 del D.Lgs. n.267/2000,

DETERMINA

1) di iscrivere, sulla base delle disposizioni normative dianzi richiamate, nell'Elenco dei Tecnici competenti in Acustica della Provincia di Bari, ai sensi della legge n.447 del 26.10.01995:

COGNOME	NOME	DATA	LUOGO	RESIDENZA
		DI NASCITA	DI NASCITA	
Mellano	Mario	08.02.1973	Bari	Via Trisorio Liuzzi, 3H -
				Bari
Lassandro	Francesco	22.08.1979	Santeramo in	Via dei Gracchi, 16 -
	Luciano		Colle (BA)	Santeramo in Colle (BA)
Smaldino	Michele Vito	26.03.1970	Gioia del Colle	Via S. Viapiano, 60-
	Massimo		(BA)	Cassano delle Murge
Loiudice	Paolo	09.09.1972	Altamura (BA)	Viale Martire del 1799,
				n.133- Altamura (BA)

- 2) di pubblicare la presente determinazione all'Albo Pretorio di questo Ente per 15 giorni consecutivi;
- 3) di pubblicare sul sito web della Provincia di Bari l'Elenco dei Tecnici Competenti in Acustica con i nomi dei tecnici sopra indicati;
- 4) di notificare il presente provvedimento all' ing. Mellano Mario residente in Bari, alla Via Trisorio Liuzzi, n.3H, 3; all' ing. Lassandro Francesco Luciano, residente in Santeramo in Colle (BA), alla Via A. Pacinotti, 8/C, al geom. Smaldino Michele Vito Massimo, residente in Cassano delle Murge, alla Via S. Viapiano, 60- all'ing. Loiudice Paolo, residente in Altamura (Ba), Viale Martire del 1799, n.133;
- 5) di dare atto che la presente determinazione non da luogo ad oneri ed impegno di spesa a carico del bilancio della Provincia di Bari.
- 6) di rendere noto che avverso il suesteso provvedimento è ammesso ricorso dinanzi al Tribunale Amministrativo regionale competente per territorio entro 60 giorni dalla data di notificazione o dell'avvenuta piena conoscenza dello stesso, ovvero ricorso straordinario al Presidente della Repubblica entro 120 giorni dalla data di notificazione o dell'avvenuta piena conoscenza dello stesso, ai sensi del DPR 24.11.1971 n.1199

Bari,

Istruttore direttivo amministrativo: F.to dott.ssa Maddea Miccolis

Il Dirigente Responsabile del Servizio Polizia Provinciale, Protezione Civile e Ambiente F.to Dott. Ing. Francesco Luisi