
REGIONE SICILIA LIBERO CONSORZIO COMUNALE DI TRAPANI COMUNE DI MARSALA

PROGETTO PER LA REALIZZAZIONE DI UN IMPIANTO EOLICO
DI POTENZA PARI A 33,465 MW, SU TERRENO AGRICOLO
NEL COMUNE DI MARSALA (TP) IN C.DA MESSINELLO
IDENTIFICATO AL N.C.T. AL FG. 137 P.LLA 4, 182, FG. 138 P.LLA 109, 112, 115, 160, 161,
173, 174, 175, 207 E ALTRE AFFERENTI ALLE OPERE DI RETE

RELAZIONE IDROLOGICA E IDRAULICA

IDENTIFICAZIONE ELABORATO								
Livello prog.	ID Terna	Tipo Elabor.	Tipo Elabor. N.ro Elabor. Project ID NOME FILE DATA				TA	SCALA
PDef	201900883	Relazione 24 MESSINELLO MESSINELLO Relazione idrologica e idraulica del 21.04.2022 21.04.2022			-			
	REVISIONI							
VERSIONE	DATA		DESCRIZIONE				VERIFICATO	APPROVATO
Rev.00	16.12.2020	Prima emissi	Prima emissione				GR	VM
Rev.01	21.04.2022	Seconda emi	Seconda emissione: Adeguamento a nuova STMG a 36 kV			MTM	GR	VM

IL PROPONENTE

Messinello Wind S.r.L.

Messinello Wind S.r.L.
Corso di Porta Vittoria n. 9 - 20122 - Milano
P.IVA: 11426630965
PEC: messinellowind@mailcertificata.net

PROGETTO DI

Capital Engineering S.n.c.
Sede legale: Via Trinacria, 52 - 90144 - Palermo
e-mail: info@capitalengineering.it

SU INCARICO DI

Grounded Clean Ventures

Coolbine S.r.L.
Sede legale: Via Trinacria, 52 - 90144 - Palermo
e-mail: progettazione@coolbine.it

Data: 28/11/2020 Rev. 00

1.	Premessa	2
2.	Caratteristiche del progetto	2
3.	Inquadramento cartografico dell'area di impianto	.7
4.	Inquadramento sui bacini idrografici dell'area di impianto	.7
5.	Studio Idrologico	11
	5.1 Analisi statistica delle altezze di pioggia e costruzione della CPP1	12
	5.2 Trasformazione pioggia lorda – pioggia netta e metodo afflussi – deflussi e trasferimento de deflusso superficiale	
6.	Studio Idraulico1	6
7.	Caratteristiche strutturali delle opere idrauliche1	8

Data: 28/11/2020 Rev. 00

1. Premessa

Il presente elaborato è stato redatto nell'ambito del progetto di realizzazione dell'impianto eolico "Messinello", per l'esigenza di prevedere delle opere idrauliche da porre in opera per gli attraversamenti delle opere in progetto su due impluvi naturali esistenti.

La relazione descrive lo studio idrologico sviluppato al fine di determinare il deflusso superficiale, e dunque l'idrogramma di piena, dal quale dipende il carico idraulico di cui tenere conto per i successivi dimensionamenti idraulici, illustrati nel medesimo elaborato.

Si specifica che, in linea con la nuova versione dell'Allegato A.2 al Codice di rete proposta da Terna S.p.A. deliberata in data 18 ottobre 2021, che prevede l'introduzione di un nuovo standard di connessione alla Rete di Trasmissione Nazionale (RTN) a 36 kV per gli impianti di potenza fino a 100 MW, la società proponente Messinello Wind S.r.L., valutato che tale nuovo standard di connessione alla RTN persegue soluzione tecniche finalizzate alla promozione dell'efficienza sia dal punto di vista elettrico che dal punto di vista ambientale, ha presentato a Terna S.p.A. richiesta di modifica del preventivo di connessione ricevuto ed accettato in precedenza, scegliendo la soluzione tecnica minima generale (STMG) in virtù del nuovo standard di connessione alla RTN a 36 kV, al fine di cogliere l'opportunità ed i vantaggi che tale nuovo standard offre.

Il presente elaborato dunque è redatto considerando la STMG conforme al nuovo standard di connessione alla RTN a 36 kV.

Si riassume che, da un punto di vista tecnico, la modifica sostanziale dovuta all'adeguamento del progetto al nuovo standard di connessione alla RTN a 36 kV riguarda l'impianto di utenza a cura del proponente, che non prevedrà più la realizzazione della Sotto Stazione Elettrica Utente, poiché la nuova soluzione standard di connessione prevede che l'impianto di produzione venga connesso direttamente ad uno stallo a 36 kV; piuttosto si parlerà di "Cabina di trasformazione utente" in cui avverrà la trasformazione 30 kV (tensione di progetto)/36 kV (tensione di connessione alla RTN).

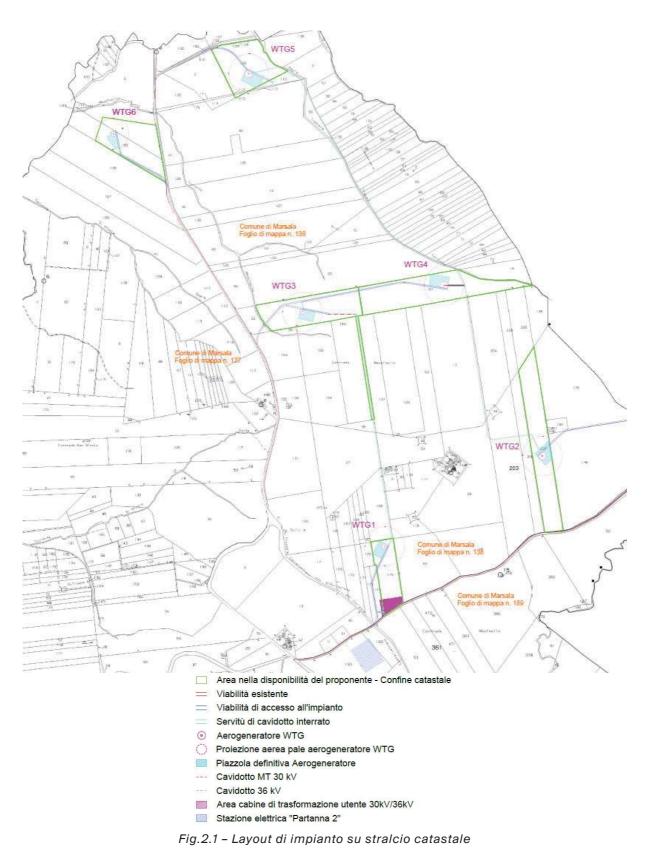
Per maggiori approfondimenti circa la soluzione tecnica dell'impianto in oggetto in funzione della STMG conforme al nuovo standard di connessione alla RTN a 36 kV, si rimanda all'elaborato di progetto "Rel.01 Relazione Generale".

2. Caratteristiche del progetto

Il progetto proposto consiste nella realizzazione di un nuovo impianto eolico denominato "Messinello" di potenza pari a 33,465 MW, costituito da n° 6 aerogeneratori di cui, n°5 aerogeneratori aventi ciascuno potenza pari a 6 MW e n°1 aerogeneratore avente potenza pari a 3,465 MW, di cui si riportano nella seguente Tabella 2.1 le caratteristiche geometriche e funzionali di progetto.

Data: 28/11/2020 Rev. 00

Aerogeneratore	WTG1	WTG 2	WTG 3	WTG 4	WTG 5	WTG 6
Modello (presunto)	SG 6.0 - 170	SG 3.4 - 132				
Potenza Nominale	6,0 MW	3,465 MW				
N° Pale	3	3	3	3	3	3
Tipologia Torre	Troncoconica	Troncoconica	Troncoconica	Troncoconica	Troncoconica	Troncoconica
Diametro Rotore	170 m	132 m				
Altezza Mozzo	115 m	165 m	100 m	165 m	165 m	84 m
Altezza al top	200 m	250 m	185 m	250 m	250 m	150 m
Velocità Cut-in	3 m/s					
Velocità Cut-out	25 m/s					
Intervallo temperatura	-20°C -					
ambiente di riferimento	+45°C	+45°C	+45°C	+45°C	+45°C	+45°C


Tabella 2.1 – Configurazione aree impianto FTV

Il progetto consiste nella realizzazione di un impianto eolico costituito da sei aerogeneratori, dalla cabina utente, dalla cabina di trasformazione utente 30 kV/36 kV e dalle loro opere civili, accessorie e di connessione.

L'impianto eolico Messinello è individuato nel comune di Marsala (TP). I dati di riferimento catastali e le coordinate degli aerogeneratori e della cabina di trasformazione utente 30 kV/36 kV costituenti l'impianto sono mostrati nelle seguenti Tabella 2.2 e Figura 2.1.

Aerogeneratore	Coordinate Geografiche	Foglio	Particella
, torogeneratore		catastale	
WTG1	37°49'20.66"N - 12°40'20.96"E	138	175
WTG2	37°49'33.11"N - 12°40'48.86"E	138	207
WTG3	37°49'53.28"N - 12°40'6.31"E	138	160
WTG4	37°49'56.66"N - 12°40'31.20"E	138	161
WTG5	37°50'26.28"N - 12°39'56.91"E	138	109, 112, 115
WTG6	37°50'18.08"N - 12°39'32.86"E	137	4, 182
Area cabine di trasformazione utente 30 kV/36 kV	37°49'12.55"N - 12°40'21.20"E	138	173, 174, 175

Tabella 2.2 – Informazioni geografiche e catastali

AND TALE FROM THE CONTROL OF THE CON

Data: 28/11/2020 Rev. 00

In ottemperanza alle procedure poste in essere, è stata sottoposta al gestore Terna S.p.A. formale istanza di adeguamento al nuovo standard di connessione alla RTN a 36 kV per l'allacciamento dell'impianto in oggetto. In data 20/12/2021 e con Codice Pratica 201900883 è stata ottenuta da Terna S.p.A. la seguente Soluzione Tecnica Minima Generale (STMG), di cui si riporta di seguito un estratto.

La soluzione tecnica minima generale per Voi elaborata prevede che la Vs. centrale venga collegata in antenna a 36 kV con la futura sezione 36 kV della stazione elettrica (SE) a 220 kV denominata "Partanna 2" della RTN, inserita in entra - esce sulla linea RTN a 220 kV "Fulgatore - Partanna". Detta stazione sarà inoltre collegata, tramite un nuovo elettrodotto 220 kV di collegamento della RTN, con la stazione 220 kV di Partanna, previo ampliamento della stazione a 220 kV di Partanna.

A seguito della STMG ricevuta, adeguata in funzione del nuovo standard di connessione alla RTN a 36 kV e accettata formalmente dalla società proponente Messinello Wind S.r.L. in data 26/01/2022, il presente progetto definitivo prevede la seguente modalità di collegamento alla RTN: l'energia prodotta dai generatori eolici sarà convogliata tramite elettrodotto interrato MT 30 kV alla cabina utente e da qui alla cabina di trasformazione utente 30 kV/36 kV in cui avviene l'innalzamento della tensione da 30 kV a 36 kV. Dunque, passando nuovamente dalla cabina utente, tramite cavidotto interrato 36 kV, l'energia prodotta dagli aerogeneratori viene convogliata alla sezione 36 kV della nuova Stazione Elettrica (SE) 220 kV "Partanna 2" della RTN. La cabina utente e la cabina di trasformazione utente 30 kV/36 kV saranno poste in un'area prossima all'aerogeneratore WTG 1, accessibile da pubblica via, denominata "area cabina di trasformazione utente Messinello Wind S.r.L.".

Si precisa che il cavidotto 36 kV interrato dalla cabina di trasformazione utente alla sezione 36 kV della SE Partanna 2 per il collegamento dell'impianto eolico Messinello alla RTN costituisce impianto di utenza per la connessione, mentre lo stallo arrivo produttore a 36 kV nella medesima SE costituisce impianto di rete per la connessione a cura di Terna S.p.A.

Si prevede dunque la realizzazione delle seguenti opere:

- impianto eolico dalla potenza massima complessiva di 33,465 MW, ubicato in località contrada
 Messinello, nel comune di Marsala (TP);
- 4 vani accumulatori (container/cabina) contenenti i dispositivi di accumulo dell'impianto, posati in opera in prossimità di ciascun aerogeneratore;
- sistema di cavidotti interrati MT a 30 kV per il collegamento degli aerogeneratori alla cabina di trasformazione utente 30 kV/ 36 kV;
- opere elettriche accessorie (apparecchiature elettriche di protezione, gruppi di misura, etc);
- opere civili (strada di accesso, piazzole a servizio degli aerogeneratori, etc);
- impianto di utenza a cura del proponente costituito da:

Data: 28/11/2020 Rev. 00

- 1) cabina utente contenente i quadri BT ed MT, la cabina scada, trasformatore per servizi ausiliari, e apparecchiatura di misura (AdM),
- 2) nuova cabina di trasformazione utente 30 kV/36 kV, da realizzare nel comune di Marsala;
- 3) cavidotto interrato a 36 kV di collegamento tra la nuova cabina di trasformazione utente 30 kV/36 kV e la sezione 36 kV della SE Partanna 2, avente lunghezza di circa 480 m;
- impianto di rete (a cura di Terna S.p.A.) come da soluzione tecnica proposta dal Gestore di Rete adeguata al nuovo standard di connessione alla RTN a 36 kV e accettata formalmente dalla società proponente Messinello Wind S.r.L. in data 26/01/2022, che prevede la realizzazione di una nuova sezione (o stallo) arrivo produttore a 36 kV della nuova Stazione Elettrica RTN 220 kV denominata "Partanna 2", inserita in entra esce sulla linea RTN a 220 kV "Fulgatore Partanna". Detta stazione sarà inoltre collegata, tramite un nuovo elettrodotto a 220 kV di collegamento della RTN con la stazione 220 kV di Partanna, previo ampliamento della stazione a 220 kV di Partanna (si veda l'elaborato di progetto "Rel.10 Preventivo di connessione e accettazione soluzione tecnica di allaccio" nella sua seconda versione "Rev.01" del 21/04/2022).

Le posizioni della cabina utente, della cabina di trasformazione utente, della Stazione Elettrica "Partanna 2" e dei cavidotti 30 kV e 36 kV di collegamento sono riportate negli elaborati progettuali "Tav.06 Layout di impianto su ortofoto", "Tav.07 Inquadramento su stralcio catastale", "Tav.47 Particolare cabina elettrica utente".

Si specifica che le opere elettriche a monte del nuovo stallo arrivo produttore a 36 kV della nuova Stazione Elettrica 220 kV "Partanna 2" saranno realizzate a cura del proponente.

L'impianto di rete per la connessione svolge servizio di pubblica utilità: a termine della vita utile dell'impianto di produzione, l'impianto di rete per la connessione non verrà smantellato.

TITOLARIETA' PROGETTO			
IMPIANTO	Messinello		
COMUNE	Marsala (TP)		
PROPONENTE	Messinello Wind S.r.L.		
AUTORIZZAZIONE ALLA			
COSTRUZIONE ED ESERCIZIO	Messinello Wind S.r.L.		
DELL'IMPIANTO DI PRODUZIONE			
AUTORIZZAZIONE ALLA			
COSTRUZIONE DELLE OPERE DI	Terna S.p.A.		
RETE			
AUTORIZZAZIONE ALL'ESERCIZIO	Terna S.p.A.		
DELLE OPERE DI RETE	Tema o.p.A.		

Tabella 2.3 - Titolarità del progetto

3. Inquadramento cartografico dell'area di impianto

L'impianto eolico Messinello, il suo impianto di utenza e le sue opere accessorie, sono individuate nel comune di Marsala (TP), come si evince dalla seguente Figura 3.1.

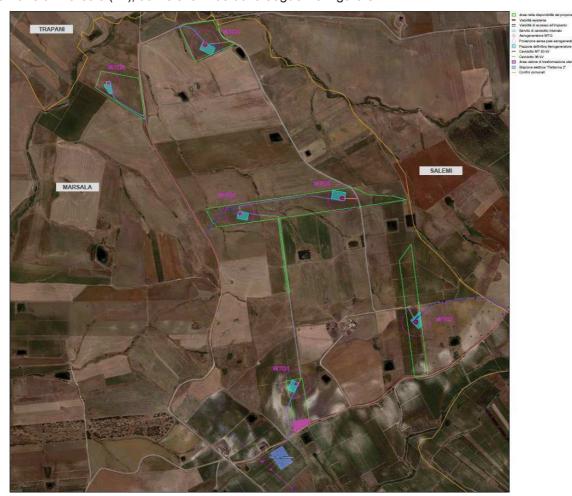


Fig.3.1 – Layout di impianto su ortofoto

4. Inquadramento sui bacini idrografici dell'area di impianto

L'impianto eolico Messinello ricade nel bacino idrografico "Bacino Idrografico del Fiume Birgi (051)" e nel bacino idrografico "Bacino Idrogafico Fiume Màzaro e Area territoriale tra Bacino Idrogafico del Fiume Màzaro ed il Bacino idrografico del Fiume Arena (053)", come si evince dalla successiva Figura 4.1 (si vedano gli elaborati "Rel.22 Relazione descrittiva delle opere di impianto su bacini idrografici" e "Tav.36 Inquadramento su ortofoto delle opere di impianto su bacini idrografici").

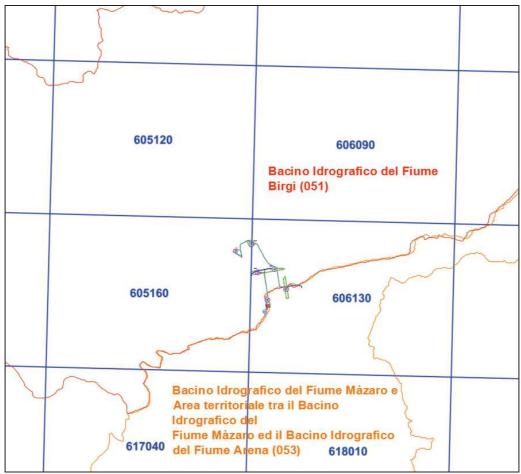


Fig.4.1 - Inquadramento dell'area di impianto sui bacini idrografici

Nella seguente Figura 4.2 si inquadra l'impianto eolico sui reticoli idrografici del Bacino Idrografico del Fiume Birgi e del Bacino Idrografico del Fiume Màzaro e Area territoriale tra il Bacino Idrografico del Fiume Màzaro ed il Bacino Idrografico del Fiume Arena, individuati consultando la CTR 2012-2013 disponibile sul geoportale della Regione Siciliana.

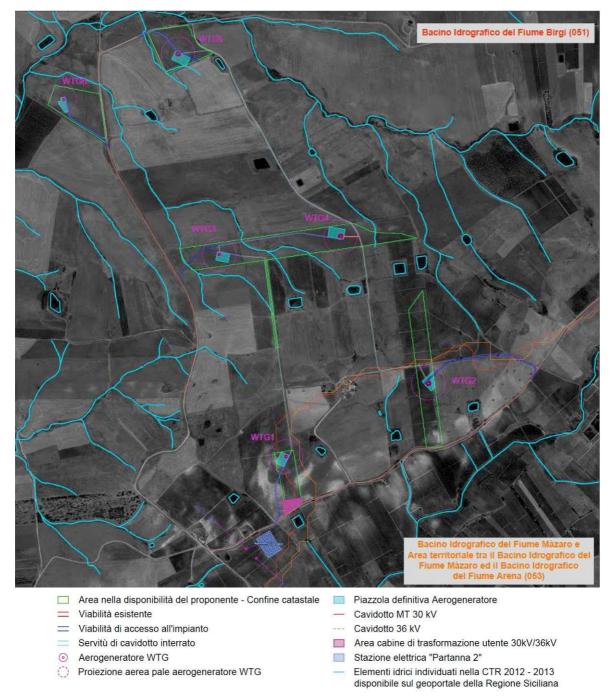


Fig.4.2 – Inquadramento dell'area di impianto sui reticoli idrografici del Bacino Idrografico del Fiume Birgi e del Bacino Idrografico del Fiume Màzaro e Area territoriale tra il Bacino Idrografico del Fiume Màzaro ed il Bacino Idrografico del Fiume Arena

Dall'inquadramento delle opere in progetto sui reticoli idrografici è stato osservato che due elementi idrici della rete idrografica del Bacino Idrografico del Fiume Birgi (051) saranno interessati da un attraversamento con la strada di accesso all'aerogeneratore WTG 3 (ATTRAVERSAMENTO 1) e da un

attraversamento con la strada di accesso all'aerogeneratore WTG 4, e con il cavidotto interrato MT di collegamento tra la WTG 4 e la WTG 3 (ATTRAVERSAMENTO 2), come si evince dalla seguenti Figure 4.3, 4.4 e 4.5.

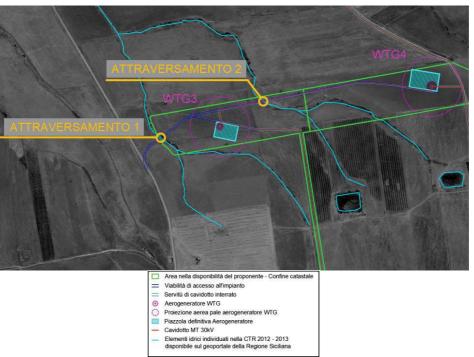


Fig. 4.3 – Attraversamento delle opere in progetto con gli elementi idrici del reticolo idrografico

Fig.4.4 - Inquadramento ATTRAVERSAMENTO 1

Progettazione: CAPITAL ENGINEERING Snc – sede operativa Via Trinacria 52 – 90144 Palermo – tel. +390918437425, e-mail: info@capitalengineering.it

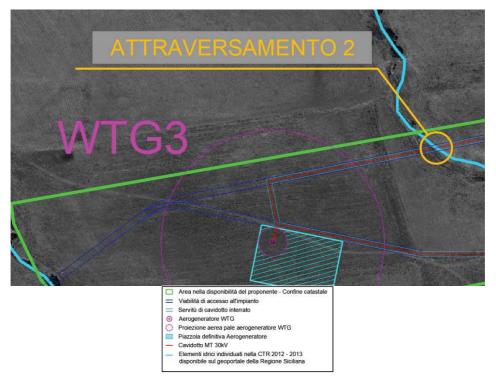


Fig. 4.5 - Inquadramento ATTRAVERSAMENTO 2

I due elementi idrici del reticolo idrografico del Bacino Idrografico del Fiume Birgi interessati sia dall'ATTRAVERSAMENTO 1 che dall'ATTRAVERSAMENTO 2 sono classificati, secondo il metodo di Horton-Strahler, come rami della rete idrografica di ordine 2. Per entrambi gli attraversamenti è stata prevista l'installazione di opere idrauliche, quali strutture in calcestruzzo rivestite in pietra locale, aventi dimensioni tali da permettere il normale deflusso d'acqua senza alcuna alterazione idraulica del loro regime naturale e tali da non ostruire l'eventuale trasporto solido di materiale.

Nei seguenti paragrafi si descrivono gli studi idrogeologici ed idraulici condotti, al fine di dimensionare le opere idrauliche per i due attraversamenti degli elementi idrici di cui sopra.

5. Studio Idrologico

Lo studio idrologico è finalizzato alla determinazione il deflusso relativo alla sezione di chiusura dei due sottobacini in cui sono localizzati i corsi d'acqua oggetto dei due attraversamenti.

Lo studio idrologico si articola nelle seguenti fasi:

- Analisi statistica delle altezze di pioggia massime annuali per la stima dei parametri necessari alla costruzione della Curva di Probabilità Pluviometrica (CPP);
- Trasformazione pioggia lorda pioggia netta costruendo dapprima gli ietogrammi coerenti con la
 CPP, applicando poi il modello afflussi deflussi che permette la stima delle perdite idrologiche e
 della capacità di assorbimento del terreno attraverso cui è possibile determinare l'aliquota che

Data: 28/11/2020 Rev. 00

contribuisce alla formazione del deflusso superficiale, e trasferimento del deflusso superficiale alla sezione di chiusura di ciascun sottobacino.

5.1 Analisi statistica delle altezze di pioggia e costruzione della CPP

La prima fase dello studio idrologico consiste nella determinazione del valore dell'altezza di precipitazione che mediamente viene raggiunto o superato, all'interno del bacino idrografico, ogni T (tempo di ritorno) anni. Per fare ciò è stato necessario determinare le sollecitazioni meteoriche di progetto relative al bacino oggetto di studio, al fine di produrre la curva di Probabilità Pluviometrica (CPP) attraverso il metodo di Gumbel.

I dati pluviometrici utilizzati per le elaborazioni sono quelle relative alle piogge di massima intensità e breve durata (1, 3, 6, 12 e 24 ore), registrati alle stazioni pluviografiche ricadenti nel Bacino Idrografico del Fiume Birgi o più prossime ad esso.

A causa della variabilità spaziale del fenomeno di precipitazione, il volume che questo comporta su una fissata area risulta essere minore di quello che si otterrebbe distribuendo uniformemente il valore della precipitazione. Per risolvere questo problema, è stato effettuato il ragguaglio areale delle altezze di precipitazione di assegnata durata di ciascuna stazione pluviografica. Fatto ciò, per un fissato tempo di ritorno T pari a 60 anni, è stato possibile risalire al quantile T-ennale, ossia il valore dell'altezza di precipitazione che mediamente viene raggiunto o superato ogni T anni, utilizzando la legge di distribuzione EV1, riportati nella seguente Tabella 5.1.

QUANTILI T-ENNALI							
Т		Intervalli orari [ore]					
anni	1	3	6	12	24		
60	62,13825	85,60267	96,03902	108,1671	113,9244		

Tabella 5.1 – Quantili t-ennali per tempo di ritorno T = 60 anni

Si precisa che il valore pari a 60 anni del tempo di ritorno T è stato scelto in maniera cautelativa, considerando un numero di anni del tempo di ritorno maggiore o uguale rispetto la vita utile dell'impianto eolico.

Rappresentando i valori riportati nella tabella 5.1 in un grafico (Durata, quantili T-ennali (h,)), si è ottenuto l'andamento dei valori di precipitazione massima in funzione della durata per fissato tempo di ritorno (Figura 5.1).

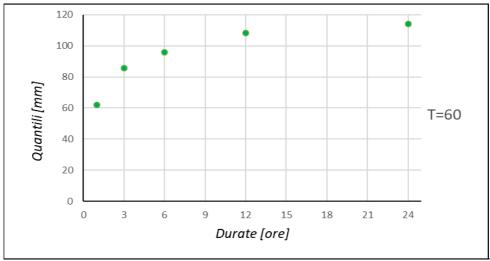


Fig. 5.1.1 – Andamento valori precipitazione massima in funzione della durata per fissato tempo di ritorno $T=60\ anni$

L'andamento dei quantili T-ennali con la durata è espresso tramite la seguente legge di potenza:

$$h_T(d)=a_T d^{n_T}$$

I parametri incogniti della legge di potenza a_T e n_T rappresentano l'intercetta e la pendenza della retta di regressione, ottenuta riportando la stessa legge di potenza in un piano logaritmico (In d, In h_T).

Dunque si è proceduto a ricavare i valori sopra scritti per fissato tempo di ritorno T = 60 anni, considerando come variabile dipendente il logaritmo delle altezze di precipitazione (In h_T) e come variabile indipendente il logaritmo delle durate (In d).

Fatto ciò, avendo a disposizione tutti i parametri per potere utilizzare la legge di potenza di cui sopra, è stata tracciata la Curva di Probabilità Pluviometrica per fissato tempo di ritorno.

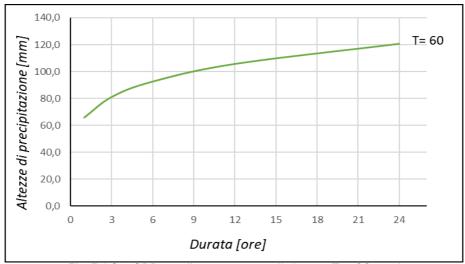


Fig. 5.1.2 - CPP per fissato tempo di ritorno T = 60 anni

Progettazione: CAPITAL ENGINEERING Snc - sede operativa Via Trinacria 52 - 90144 Palermo - tel. +390918437425, e-mail:

5.2 Trasformazione pioggia lorda - pioggia netta e metodo afflussi - deflussi e trasferimento del deflusso superficiale

Utilizzando i dati ricavati dalle CPP, tracciate con il metodo di Gumbel (quantili regolarizzati), è stato possibile distribuire nel tempo l'altezza di precipitazione totale dell'evento servendoci di uno ietogramma sintetico di progetto. Per la presente analisi è stato utilizzato lo ietogramma "*Chicago*", in quanto ritenuto lo ietogramma più utilizzato per il dimensionamento delle opere idrauliche. Nella seguente Figura 5.2.1 si riporta lo ietogramma Chicago ottenuto.

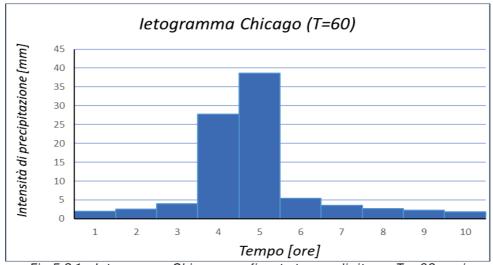


Fig. 5.2.1 – letogramma Chicago per fissato tempo di ritorno T = 60 anni

Lo ietogramma appena ottenuto è rappresentativo delle piogge lorde. Dunque si è proceduto a ricavare lo ietogramma delle piogge nette, il quale rappresenta la quantità di precipitazione che cadendo al suolo forma deflusso superficiale o di piena.

Tale quantità, oltre all'intensità dell'evento meteorico, è funzione delle proprietà granulometriche, delle condizioni di umidità e della percentuale di suolo coperto dalla vegetazione, che determinano la capacità di infiltrazione del suolo in esame.

Tra i modelli a disposizione per eseguire la suddetta analisi, è stato scelto di utilizzare il modello del "CN (Curve Number)". Il CN è un modello concettuale, il quale assimila il bacino ad un serbatoio e prevede che una pioggia lorda cumulata P, depurata di una quantità I_a pari all'assorbimento iniziale, fornisca deflusso superficiale tramite il seguente rapporto di proporzionalità:

$$P_e = (P - I_a)F/S$$

in cui:

- Fè il volume specifico infiltrato;
- S è il volume specifico di saturazione.

Il volume specifico di saturazione dipende dalla tipologia del suolo che governa il processo di trasformazione della pioggia lorda in pioggia netta. E' stato dimostrato che tale grandezza dipende da un parametro chiamato *CN (Curve Number)*, da cui deriva il nome del modello.

Utilizzando il modello del CN è stato ottenuto lo ietogramma delle piogge nette per l'evento di precipitazione per fissato tempo di ritorno T = 60 anni.

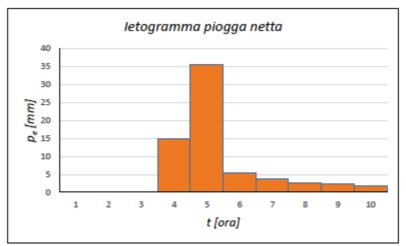


Fig. 5.2.2 - letogramma Chicago piogge nette modello CN con tempo di ritorno T = 60 anni

Sovrapponendo lo ietogramma di pioggia netta a quello della pioggia lorda ricavato in precedenza, è possibile evidenziare le aliquote relative alle perdite.

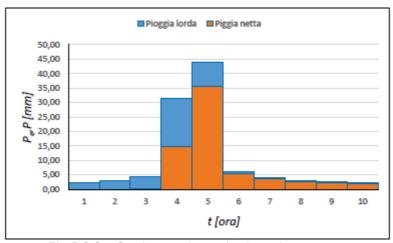


Fig. 5.2.3 - Confronto piogge lorde - piogge nette

A questo punto, prima di analizzare il trasferimento del deflusso superficiale, sono stati definiti i contorni dei due sottobacini inerenti i due corsi d'acqua interessati dall'ATTRAVERSAMENTO 1 e dall'ATTRAVERSAMENTO 2.

Data: 28/11/2020 Rev. 00

Dunque si è proceduto ad analizzare il trasferimento del deflusso superficiale alle sezioni di chiusura dei due sottobacini. Per questa analisi è stato utilizzato il "metodo razionale" attraverso cui è stato possibile ottenere l'idrogramma di piena.

Al fine di applicare tale metodo è stato necessario ricavare il "tempo di corrivazione (t_c)", definito tramite la seguente relazione:

$$t_c = t_a + t_r [s]$$

in cui:

- t_a è il tempo di accesso, cioè il tempo che una particella d'acqua impiega per raggiungere
 l'impluvio oggetto di analisi;
- t_r è il tempo di rete, cioè il tempo che una particella d'acqua impiega per raggiungere la sezione di chiusura del relativo sottobacino.

6. Studio Idraulico

Terminato lo studio idrologico, avendo già delimitato i confini dei due sottobacini oggetto di analisi, si è proceduto al dimensionamento delle opere idrauliche da installare sui tratti dei corsi d'acqua interessati dall'ATTRAVERSAMENTO 1 e dall'ATTRAVERSAMENTO 2. Per fare ciò è stato utilizzato il "modello cinematico", basato sulle seguenti ipotesi:

- la formazione della piena è determinata solo da spostamenti di massa liquida;
- il percorso delle particelle d'acqua è invariabile nel tempo;
- la velocità di una particella non è influenzata dalle altre;
- la portata alla sezione di chiusura di ciascun sottobacino è la somma delle particelle che si presentano al medesimo istante.

Per ciascun sottobacino sono state calcolate le lunghezze dei tratti dei due corsi d'acqua interessati dall'attraversamento, le pendenze, le aree e la percentuale di superficie permeabile.

Fatto ciò, per ciascun sottobacino, è stato eseguito un processo iterativo che ha previsto la costruzione della scala delle portate di moto uniforme e il calcolo della portata al colmo di piena relativa alla sezione di chiusura di ciascun sottobacino, utilizzando la formula razionale.

La scala delle portate di moto uniforme è stata costruita attraverso la **formula di** *Chezy*, mostrata di seguito, da cui è stato possibile ricavare la velocità.

$$Q = A\chi\sqrt{Ri} [m^3/s],$$

in cui:

- A è l'area della sezione bagnata (considerata rettangolare per motivazioni strutturali spiegate nel successivo paragrafo);
- χ è il parametro delle perdite di carico (coefficiente di attrito);
- R è il raggio idraulico;
- i è la pendenza del corso d'acqua.

Data: 28/11/2020 Rev. 00

A sua volta, il parametro delle perdite di carico è stato determinato tramite la seguente espressione di Gauckler-Strickler:

$$\chi = K_s R^{1/6}$$

in cui K_s è il parametro che considera le perdite di carico.

La formula razionale, invece, calcola la portata al colmo di piena relativa alla sezione di chiusura con la seguente equazione:

$$Q = \frac{\varphi i S}{360} \left[\frac{m^3}{s} \right]$$

in cui:

- S è l'area del sottobacino espressa in ettari;
- φ è il valore del coefficiente di afflusso;
- i è l'intensità di pioggia

Il coefficiente di afflusso è stato ricavato tramite il metodo del coefficiente di afflusso:

$$\varphi = \varphi_{permeabile} (1 - \%S_{impermeabile}) + \varphi_{impermeabile} (\%S_{impermeabile})$$

Dato che il sottobacino interessa un'area caratterizzata dal solo terreno naturale al netto di piccoli tratti di strade asfaltate, si è ritenuto trascurabile l'aliquota di superficie impermeabile.

A questo punto si è proceduto alla determinazione dell'intensità di pioggia. Per fare ciò è stato calcolato dapprima il tempo di corrivazione (t_c) dato dalla somma del tempo di accesso e del tempo di rete, come scritto in precedenza. Noto il tempo di corrivazione, è stata applicata la **formula di Ferreri-Ferro** al fine di trovare le altezze di pioggia con durata inferiore all'ora:

$$h=h_{60}t_c^{0,386}$$
 [mm]

in cui h_{60} è l'altezza di pioggia oraria ricavata nello studio idrologico per fissato tempo di ritorno T = 60 anni, mentre t_c è il tempo di corrivazione è espresso in ore.

Dividendo le altezze di pioggia per il tempo di corrivazione sono state trovate le intensità di pioggia. Avendo tutti i dati necessari, si è proceduto al calcolo della portata tramite la formula razionale.

Questo processo iterativo è stato continuato per ciascun sottobacino fino a quando la portata calcolata con la formula razionale è risultata uguale alla portata di moto uniforme. Una volta raggiunta la convergenza è stato possibile ricavare il carico idraulico che interesserà ciascun attraversamento. In particolare è stato stimato un carico idraulico di 0,55 m e 0,76 m rispettivamente per l'ATTRAVERSAMENTO 1 e per l'ATTRAVERSAMENTO 2.

Per ciascuno dei due attraversamenti, dunque, sono state progettate delle opere idrauliche di sezione rettangolare, aventi entrambi una luce di 1 m al fine di consentire il deflusso delle acque a pelo libero, e di cui di seguito si illustrano le caratteristiche.

7. Caratteristiche strutturali delle opere idrauliche

Gli attraversamenti saranno realizzati tramite la posa in opera di una struttura scatolare in cemento armato avente sezione rettangolare.

L'opera è stata progettata per permettere il deflusso naturale delle acque lungo gli impluvi esistenti e per garantire il passaggio in sicurezza dei mezzi di trasporto, durante la fase di realizzazione e manutenzione dell'impianto eolico.

Dunque, in corrispondenza dei due attraversamenti (ATTRAVERSAMENTO 1 e ATTRAVERSAMENTO 2) saranno realizzate due strutture tali da garantire la duplice esigenza sopra riportata, così come indicato nelle Figure 7.1 e 7.2.

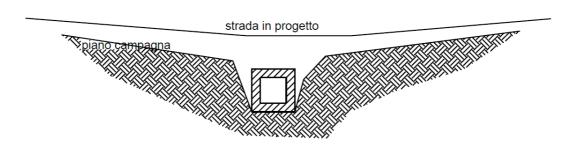


Fig.7.1 – Indicazione della posizione dello scatolare rispetto alla strada in progetto – sezione trasversale

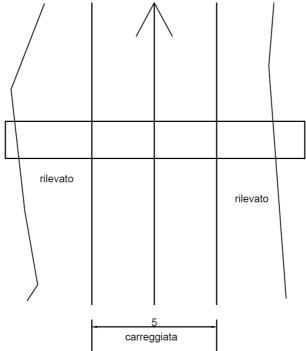


Fig.7.2 - Indicazione della posizione dello scatolare rispetto alla strada in progetto - pianta

La sezione trasversale e longitudinale dell'opera avrà le caratteristiche geometriche riportate nelle Figura 7.3 e 7.4.

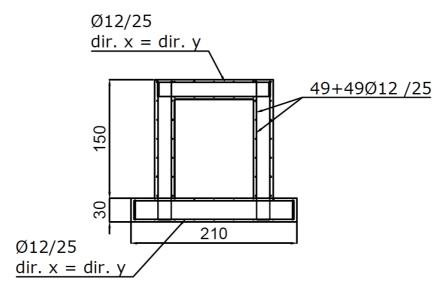


Fig.7.3 - Sezione trasversale dell'opera di attraversamento dell'impluvio

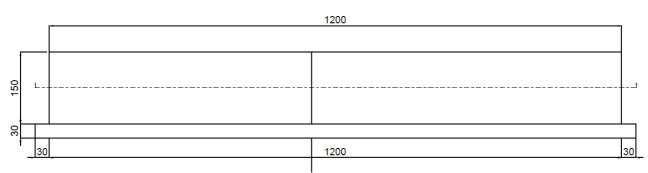


Fig.7.4 - Sezione longitudinale dell'opera di attraversamento dell'impluvio

Per gli ulteriori approfondimenti tecnici strutturali circa l'esecuzione dell'opera si rimanda agli elaborati "Rel.26 Relazione tecnica strutturale delle opere di regimazione idraulica" e "Tav.38 Particolare opere di regimazione idraulica".