COMMITTENTE: RETE FERROVIARIA ITALIANA GRUPPO FERROVIE DELLO STATO ITALIANE PROGETTAZIONE: **TALFERR** GRUPPO FERROVIE DELLO STATO ITALIANE CUP J14H20000970001 U.O. GEOLOGIA TECNICA, DELL'AMBIENTE E DEL TERRITORIO PROGETTO DI FATTIBILITA' TECNICA ED ECONOMICA ELETTRIFICAZIONE TRENTO-BASSANO DEL GRAPPA **LOTTO 1: Tratta Trento-Borgo Valsugana Est** Schede di rilievo geomeccanico SCALA: LOTTO FASE ENTE TIPO DOC. OPERA/DISCIPLINA COMMESSA PROGR. REV. Α 0 6 9 R|H|GE 0 0 0 5 0 0 3 Descrizione Data Verificato Data Approvato Data Autorizzato Data F. Sciascia M.C. Morandi S. Lo Presti Maggio Maggio Maggio Emissione esecutiva M. Comedini 2021 Ler 2021 2021 Maggio 2021 I ITALFERR

n. Elab.:

File:

ELETTRIFICAZIONE TRENTO-BASSANO DEL GRAPPA

LOTTO 1: Tratta Trento-Borgo Valsugana Est

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 IT1J
 10
 R 69 RH
 GE 0005 003
 A
 2 di 72

INDICE

1	PRE	EMESSA	5
2	RILI	EVAMENTO GEOMECCANICO	6
	2.1	JRC	11
	2.2	JCS	11
3	SCH	HEDE DI RILIEVO GEOMECCANICO	13
	3.1	SG1	13
	3.2	SG2	24
	3.3	SG3	32
	3.4	SG4	39
	3.5	SG5	48
	3.6	SG6	56
	3.7	SG7	64

ELETTRIFICAZIONE TRENTO-BASSANO DEL GRAPPA

LOTTO 1: Tratta Trento-Borgo Valsugana Est

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 IT1J
 10
 R 69 RH
 GE 0005 003
 A
 3 di 72

FIGURE

FIGURA 1. PLANIMETRIA UBICAZIONE STAZIONI GEOMECCANICHE	5
Figura 2. Schema delle discontinuità	6
Figura 3. Linea di scansione.	7
Figura 4. Linea di scansione - schema.	
Figura 5. Misura del rimbalzo del martello di Schmidt	_
Figura 6. Rilievo del profilo di rugosità e risultanza dello stesso.	
Figura 7. Da destra: profilometro (pettine di Barton), sclerometro da roccia e bussola da geologo	9
Figura 8. Profili standard di Burton.	11
Figura 9: SG1 - Ubicazione stazione geomeccanica	13
Figura 10: SG1 – Stereonet dei poli.	
FIGURA 11: SG1 – STEREONET CONCENTRAZIONE DEI POLI.	
Figura 12: SG1 – Stereonet giacitura media discontinuità principali	
Figura 13: SG1 – Affioramento.	23
Figura 14: SG1 – Dettaglio affioramento.	23
FIGURA 15: SG2 - UBICAZIONE STAZIONE GEOMECCANICA	24
FIGURA 16: SG2 – STEREONET DEI POLI.	29
FIGURA 17: SG2 – STEREONET CONCENTRAZIONE DEI POLI.	29
Figura 18: SG2 – Stereonet giacitura media discontinuità principali	30
Figura 19: SG2 – Affioramento	31
Figura 20: SG2 – Dettaglio affioramento	31
FIGURA 21: SG3 - UBICAZIONE STAZIONE GEOMECCANICA	32
FIGURA 22: SG3 – STEREONET DEI POLI.	36
FIGURA 23: SG3 – STEREONET CONCENTRAZIONE DEI POLI.	36
FIGURA 24: SG3 – STEREONET GIACITURA MEDIA DISCONTINUITÀ PRINCIPALI	37
Figura 25: SG3 – Affioramento	38
Figura 26: SG3 – Dettaglio affioramento.	38
FIGURA 27: SG4 - UBICAZIONE STAZIONE GEOMECCANICA	39
FIGURA 28: SG4 – STEREONET DEI POLI.	45
FIGURA 29: SG4 – STEREONET CONCENTRAZIONE DEI POLI.	45
Figura 30: SG4 – Stereonet giacitura media discontinuità principali	46
Figura 31: SG4 – Affioramento.	47
Figura 32: SG4 – Dettaglio affioramento.	47
FIGURA 33: SG5 - UBICAZIONE STAZIONE GEOMECCANICA	48
FIGURA 34: SG5 – STEREONET DEI POLI.	53
FIGURA 35: SG5 – STEREONET CONCENTRAZIONE DEI POLI.	53
Figura 36: SG5 – Stereonet giacitura media discontinuità principali	54
FIGURA 37: SG5 – AFFIORAMENTO	55
FIGURA 38: SG5 – DETTAGLIO AFFIORAMENTO.	55
FIGURA 39: SG6 - UBICAZIONE STAZIONE GEOMECCANICA	56
FIGURA 40: SG6 – STEREONET DEI POLI.	61
FIGURA 41: SG6 – STEREONET CONCENTRAZIONE DEI POLI.	61
FIGURA 42: SG6 – STEREONET GIACITURA MEDIA DISCONTINUITÀ PRINCIPALI	62
FIGURA 43: SG6 – AFFIORAMENTO	63
Figura 44: SG6 – Dettaglio affioramento.	63
FIGURA 45: SG7 - UBICAZIONE STAZIONE GEOMECCANICA	64
FIGURA 46: SG7 – STEREONET DEI POLI.	70
FIGURA 47: SG7 – STEREONET CONCENTRAZIONE DEI POLI.	70
Figura 48: SG7 – Stereonet giacitura media discontinuità principali	71
Figura 49: SG7 – Affioramento.	72

ELETTRIFICAZIONE TRENTO-BASSANO DEL GRAPPA LOTTO 1: Tratta Trento-Borgo Valsugana Est

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 IT1J
 10
 R 69 RH
 GE 0005 003
 A
 4 di 72

TABELLE

TABELLA 1: MODELLO DELLA SCHEDA DI RILIEVO GEOMECCANICO	10
TABELLA 2: SG1 – SCHEDA DI RILIEVO GEOMECCANICO.	15
TABELLA 3: SG1 – MISURE DELLA COMPRESSIONE UNIASSIALE ESEGUITA TRAMITE MARTELLO DI SCHMIDT.	17
TABELLA 4: SG1 – CLASSI DI SPAZIATURA.	18
TABELLA 5: SG1 – PROFILI DI RUGOSITÀ.	20
TABELLA 6: SG2 – SCHEDA DI RILIEVO GEOMECCANICO.	25
TABELLA 7: SG2 – MISURE DELLA COMPRESSIONE UNIASSIALE ESEGUITA TRAMITE MARTELLO DI SCHMIDT.	26
TABELLA 8: SG2 – CLASSI DI SPAZIATURA.	27
Tabella 9: SG2 – Profili di rugosità.	28
TABELLA 10: SG3 – SCHEDA DI RILIEVO GEOMECCANICO.	34
TABELLA 11: SG3 – CLASSI DI SPAZIATURA.	35
TABELLA 12: SG4 – SCHEDA DI RILIEVO GEOMECCANICO.	41
TABELLA 13: SG4 – MISURE DELLA COMPRESSIONE UNIASSIALE ESEGUITA TRAMITE MARTELLO DI SCHMIDT.	42
TABELLA 14: SG4 – CLASSI DI SPAZIATURA.	43
Tabella 15: SG4 – Profili di rugosità	44
TABELLA 16: SG5 – SCHEDA DI RILIEVO GEOMECCANICO.	49
TABELLA 17: SG5 – MISURE DELLA COMPRESSIONE UNIASSIALE ESEGUITA TRAMITE MARTELLO DI SCHMIDT.	50
TABELLA 18: SG5 – CLASSI DI SPAZIATURA.	
Tabella 19: SG5 – Profili di rugosità.	52
TABELLA 20: SG6 – SCHEDA DI RILIEVO GEOMECCANICO.	57
TABELLA 21: SG6 – MISURE DELLA COMPRESSIONE UNIASSIALE ESEGUITA TRAMITE MARTELLO DI SCHMIDT.	58
TABELLA 22: SG6 – CLASSI DI SPAZIATURA.	59
Tabella 23: SG6 – Profili di rugosità.	
TABELLA 24: SG7 – SCHEDA DI RILIEVO GEOMECCANICO.	66
TABELLA 25: SG7 – MISURE DELLA COMPRESSIONE UNIASSIALE ESEGUITA TRAMITE MARTELLO DI SCHMIDT.	67
Tabella 26: SG7 – Classi di spaziatura.	68
Tabella 27: SG7 – Profili di rugosità.	69

1 PREMESSA

Il presente documento costituisce il rapporto tecnico relativo alle operazioni di rilevamento geomeccanico di campagna eseguito nell'ambito del progetto di elettrificazione Trento-Bassano del Grappa – Lotto 1: tratta Trento-Borgo Valsugana est.

Tale attività ha portato alla realizzazione di 7 stazioni geomeccaniche sulle due formazioni geologiche litoidi affioranti in corrispondenza delle quattro gallerie (Malpensa, Serra, Albi e Cantaghel) interessate da lavori di adeguamento ai fini del presente progetto di elettrificazione:

- Formazione di Monte Zugna (Calcari Grigi auct.): SG1 ÷ SG6;
- Dolomia Principale: SG7.

L'ubicazione delle stazioni geomeccaniche è riporta in Figura 1.

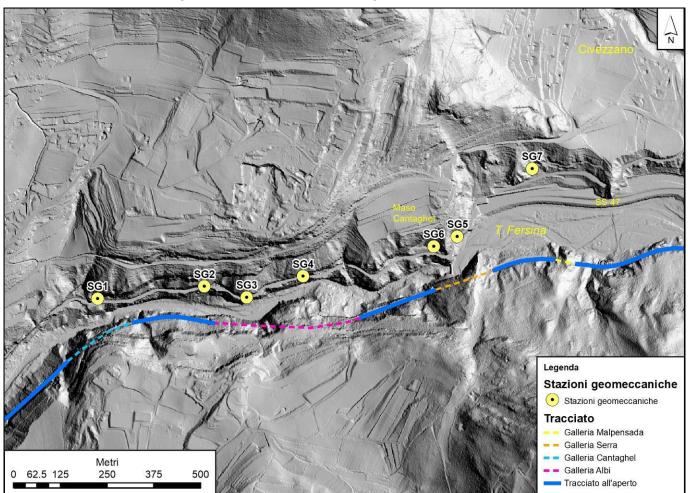


Figura 1: Planimetria ubicazione stazioni geomeccaniche

La sintesi delle stazioni gemeccaniche è riportata nel documento "Tavola di sintesi delle analisi geomeccaniche" (IT1J10R69G6GE0005001A).

2 RILEVAMENTO GEOMECCANICO

Il rilievo geomeccanico viene eseguito lungo affioramenti significativi per l'opera in progetto. La finalità è quella di riuscire a definire la classe di qualità di un ammasso roccioso, consentendone inoltre una ricostruzione spaziale che possa facilitare la comprensione dell'intero volume di ammasso interessato dall'opera di progetto. Per definire al meglio la classe dell'ammasso roccioso, oltre al rilievo geologico e al rilievo geomeccanico, sono utilizzati anche i risultati delle prove geognostiche in sito (sondaggi, prove di permeabilità, indagini geofisiche, ecc.) e prove di laboratorio. Per ammasso roccioso si intende l'insieme formato dalla roccia intatta e dalle fratture, o discontinuità, che la pervadono, come esemplificato in Figura 2.

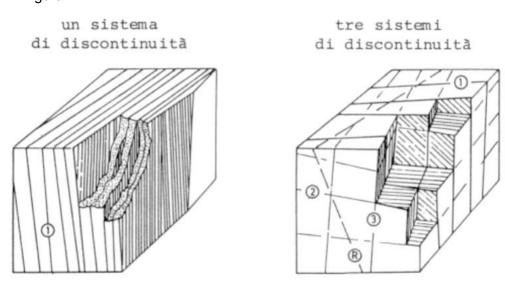


Figura 2. Schema delle discontinuità

Il rilevamento geomeccanico consiste quindi nel raccogliere, in corrispondenza di una linea di scansione, i dati relativi allo stato di fratturazione dell'ammasso roccioso in esame. La linea di scansione è definita tramite la posa di una cordella metrica lungo l'affioramento roccioso. Una volta determinata la lunghezza della linea di scansione, si definisce il verso di rilievo mediante l'individuazione del punto di partenza che costituisce quindi il punto zero.

Lungo la linea di scansione si individuano le discontinuità dell'ammasso (piani di strato, giunti, faglie, ecc.), rilevandone l'assetto e la distanza dallo zero iniziale. Le discontinuità sono poi riunite in famiglie e codificate con un codice di riconoscimento (S, K1, K2; ecc.). Si rileva infine la distanza tra le discontinuità appartenenti alla stessa famiglia e se ne definisce la spaziatura (Spaziatura - Figura 3 e Figura 4).

ELETTRIFICAZIONE TRENTO-BASSANO DEL GRAPPA

LOTTO 1: Tratta Trento-Borgo Valsugana Est

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 IT1J
 10
 R 69 RH
 GE 0005 003
 A
 7 di 72

Figura 3. Linea di scansione

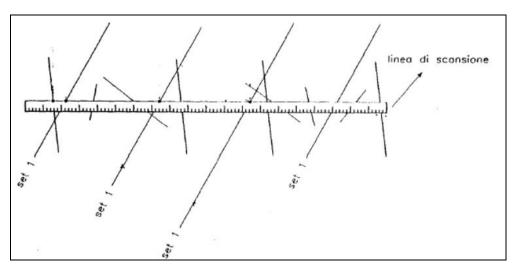


Figura 4. Linea di scansione - schema

Per ogni famiglia di discontinuità si misura:

- direzione di immersione e inclinazione delle discontinuità, utilizzando una bussola da geologo;
 si esegue inoltre la misura dei piani di strato;
- spaziatura delle discontinuità (lungo la linea di scansione);
- misura del rimbalzo del martello di Schmidt (sclerometro da roccia). Un esempio di misura è riportato in Figura 5;

- tracciamento del profilo delle discontinuità con pettine di Barton. Un esempio di misura è riportato in Figura 6;
- si valuta infine la presenza di acqua nelle fratture.

In Figura 7 è riportata un'immagine della strumentazione utilizzata per il rilievo delle caratteristiche delle discontinuità.

Figura 5. Misura del rimbalzo del martello di Schmidt

Figura 6. Rilievo del profilo di rugosità e risultanza dello stesso

ELETTRIFICAZIONE TRENTO-BASSANO DEL GRAPPA

LOTTO 1: Tratta Trento-Borgo Valsugana Est

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
IT1J	10	R 69 RH	GE 0005 003	Α	9 di 72

Figura 7. Da destra: profilometro (pettine di Barton), sclerometro da roccia e bussola da geologo

I dati di cui sopra vengono raccolti in campagna utilizzando un apposito modulo (vedi Tabella 1) e successivamente elaborati tramite software dedicati (per una *scanline* di 10 m occorre mediamente un tempo variabile da 60 a 180 minuti circa, a seconda della complessità dell'ammasso roccioso).

Per ogni stazione geomeccanica si riporta:

- scheda di rilievo geomeccanico contenente i dati rilevati lungo la linea di scansione (distanza della frattura dallo zero del nastro, tipo di terminazione, giacitura, apertura, ondulazione, persistenza, alterazione, tipo di giunto, ecc.) secondo ISRM (1978);
- dati ottenuti da battute sclerometriche con martello di Schmidt;
- spaziature delle discontinuità;
- profili di rugosità;
- stereonet equiangolari sull'emisfero inferiore dei poli dei piani, della densità e della giacitura delle famiglie principali;
- documentazione fotografica.

	SCHEDA DI RILIEVO GEOMECCANICO													
COM	ЛПТEN	TE:		ITALF	ERR									
RILIE	RILIEVO GEOMECCANICO N° stop 28 DATA:													
UBICA	AZIONE	:							RILEV	'ATORE:				
FORM	1AZION	E:							LITOL	OGIA:				
GIACI	TURA A	AFFIORA	MENTO (i	imm/in	cl):	-			LUNG	HEZZA S	CAN-LIN	NE (m):	10	
ID	D (m)	IMM (°)	INCL(°)	Т	L (m)	A (cm)	R	O (cm)	s	P (%)	C (%)	SP (m)	ALT.	TIPO DI GIUNTO
T: tipo o L: dista R: mate O: ondu	di termina nza della	azione A : c a terminazio	ne dal nast	a disco ro	ntinutà, I:	nella mai cementat ezza		rocciosa, O: non visibile o estesa oltre l'estremità dell'affioramento A: apertura della discontinutà nilonite") Ca: calcite Cc: coesivo Gr. granulare P: persistenza Sp: spaziatura				ento		
Note:														

Tabella 1: modello della scheda di rilievo geomeccanico

I dati raccolti durante i rilievi permettono quindi di caratterizzare e di classificare gli ammassi rocciosi secondo le metodologie di seguito indicate:

- Rock Mass Rating (RMR) di Bieniawski;
- Sistema Q di Barton.

2.1 JRC

Il parametro JRC (Coefficiente di rugosità dei giunti), è stato stimato confrontando i profili rilevati in sito con i profili standard di Barton facendo riferimento alla tabella in Figura 8.

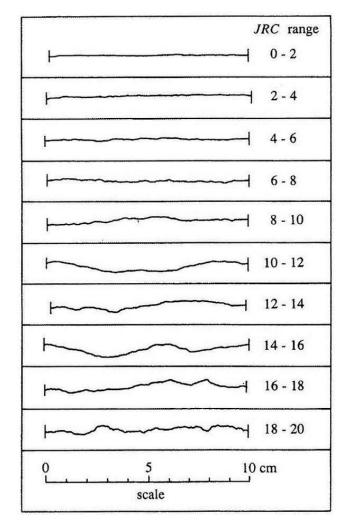


Figura 8. Profili standard di Barton

2.2 JCS

Il calcolo di JCS (Coefficiente di resistenza del giunto) è stato elaborato utilizzando l'equazione di Miller secondo cui:

$$Log(JCS) = 0.00088*\gamma*R+1.01$$

dove:

- JCS: coefficiente di resistenza del giunto;
- γ : peso di volume della roccia;

R: indice di rimbalzo del martello di Schmidt su giunto liscio.

I risultati ottenuti sono riportati in apposite tabelle in cui sono individuati:

- ID: numero identificativo della misura;
- Famiglia: la famiglia di appartenenza della misura;
- Indice di rimbalzo: misurato con martello di Schmidt;
- Indice di rimbalzo normalizzato: indice di rimbalzo corretto in funzione dell'orientazione del martello in fase di misura (secondo la convezione per cui

$$\alpha = -90^{\circ} \quad \boxed{\bot} \quad \alpha = -45^{\circ} \quad \checkmark \quad \alpha = 90^{\circ} \quad \boxed{\uparrow} \quad \alpha = 45^{\circ} \quad \checkmark \quad \alpha = 0^{\circ} \quad \boxed{\longleftarrow}$$

- JCS per misura: riporta il valore di JCS calcolato per ogni misura effettuata;
- JCS medio: calcolato escludendo le prime 5 misure e mediando le rimanenti secondo quanto riportato in ISRM (1978).

3 SCHEDE DI RILIEVO GEOMECCANICO

3.1 SG1

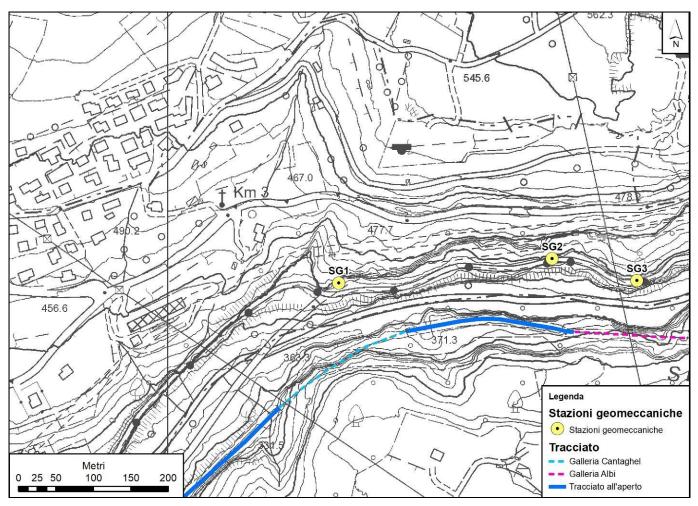


Figura 9: SG1 - Ubicazione stazione geomeccanica

LOTTO 1: Tratta Trento-Borgo Valsugana Est

Schede di rilievo geomeccanico

COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO

IT1J 10 R 69 RH GE 0005 003 A 14 di 72

СО	COMMITTENTE / OPERA: Italferr													
ST	STAZIONE GEOMECCANICA: SG1 Data: 01/02/2021 Operatore/i: Benedetti Sciascia													
	E,	X SS47 -	Caller	ia Car	thaab	امر	Ori	ientamer	nto nai	ete (°)		Formazione / Litotipo		
1		imbocc			_		SI: 5	0÷60						
Loc	calità:	IIIIDOCC	Suga	_	vai	O.	ار. ار	0.00		mm.	-	incl.	\dashv	Formazione di Monte
			Ouga	ı ıa						130		80		Zugna (Calcari Grigi)
	SCHEDA DI RILIEVO GEOMECCANICO													
LUNG	LUNGHEZZA SCAN-LINE (m):													
ID	D	IMM	INCL	Т	L	Α	R	0	S	Р	С	SP	ALT.	TIPO DI GIUNTO
1	0.00	11	75	O-A		-								Giunto
2	0.20	15	80	O-A		-								Giunto
3	0.40	108	88	O-A		-								Giunto
4	0.45	20	82	O-A		-								Giunto
5	0.50	112	88	O-A		1÷2	С							Giunto
6	0.56	12	80	O-A		-								Giunto
7	0.80	6	80	O-A		-								Giunto
8	0.80	105	88	O-A		-								Giunto
9	0.90	100	88	O-A		1	С							Giunto
10	1.10	128	88	O-A		-								Giunto
11	1.10	10	76	O-A		-								Giunto
12	1.20	16	78	O-A		-								Giunto
13	1.30	120	88	O-A		-								Giunto
14	1.50	110	88	O-A		-								Giunto
15	1.50	22	80	O-A		-								Giunto
16	1.50	5	88	O-A		-								Giunto
17	1.70	10	85	O-A		-								Giunto
18	1.75	192	88	O-A		-								Giunto
19	1.80	115	88	O-A		-								Giunto
20	2.10	8	88	O-A		-								Giunto
21	2.30	105	88	O-A		-								Giunto
22	2.40	179	88	O-A		-								Giunto
23	2.50	15	88	O-A		-								Giunto
24	2.60	105	88	O-A		-								Giunto
25	2.80	15	75	O-A		-								Giunto
26	2.90	117	88	O-A		-								Giunto
27	3.10	115	88	O-A		-								Giunto
28	3.20	18	77	O-A		-								Giunto
29	3.70	22	80	O-A		-								Giunto
30	4.10	20	82	O-A		-								Giunto
31	4.10	16	84	O-A		-								Giunto
32	4.30	10	82	O-A		-								Giunto
33	4.70	10	84	O-A		-								Giunto
34	5.40	120	88	O-A		-								Giunto

D: distanza della frattura intercettata dallo zero del nastro

O: ondulazioneS: scabrezzaP: persistenzaC: consistenzaF: frequenzaSp: spaziatura

Note: Parete bagnata, venute d'acqua tra gli strati

T: tipo di terminazione A: contro un'altra discontinutà, I: nella matrice rocciosa, O: non visibile o estesa oltre l'estremità dell'affioramento

L: distanza della terminazione dal nastro A: apertura della discontinutà

R: materiale di riempimento: C: cataclastico M: breccia cementata ("milonite") Ca: calcite Cc: coesivo Gr: granulare T: terrigena

Tabella 2: SG1 – Scheda di rilievo geomeccanico.

		DATI DI INPUT			DATI DI OUTPUT
NUMERO DELLA DISCONTINUITÁ	DENSITÁ DELLA ROCCIA	ANGOLO SCHMIDT HAMMER vs ORIZZONTALE	INDICE DI RIMBALZO	INDICE DI RIMBALZO NORMALIZZATO	UNIAXIAL COMPRESSIVE STRENGTH
(O STRATO)	γ (kN/m 3)	α (°)	R	R _{corretto}	σ _c (Mpa)
	24.0	0	44	42	78
	24.0	0	50	48	105
	24.0	0	50	48	105
	24.0	0	40	37	63
	24.0	0	38	35	57
1	24.0	0	46	44	86
	24.0	0	44	42	78
	24.0	0	38	35	57
	24.0	0	38	35	57
	24.0	0	46	44	86
	24.0	0	40	37	63
	24.0	0	58	56	158
	24.0	0	58	56	158
	24.0	0	40	37	63
0	24.0	0	48	46	95
3	24.0	0	48	46	95
3	24.0	0	50	48	105
	24.0	0	50	48	105
	24.0	0	48	46	95
	24.0	0	46	44	86
	24.0	0	48	46	95
	24.0	0	52	50	118
	24.0	0	48	46	95
	24.0	0	52	50	118
_	24.0	0	40	37	63
5	24.0	0	52	50	118
	24.0	0	46	44	86
	24.0	0	52	50	118
	24.0	0	40	37	63
	24.0	0	60	58	174
	24.0	0	56	54	143
	24.0	0	52	50	118
	24.0	0	52	50	118
	24.0	0	54	52	130
_	24.0	0	56	54	143
8	24.0	0	50	48	105
	24.0	0	52	50	118
	24.0	0	54	52	130
	24.0	0	60	58	174
	24.0	0	52	50	118

	1		i		
	24.0	0	56	54	143
	24.0	0	60	58	174
	24.0	0	58	56	158
	24.0	0	60	58	174
9	24.0	0	54	52	130
9	24.0	0	50	48	105
	24.0	0	58	56	158
	24.0	0	60	58	174
	24.0	0	56	54	143
	24.0	0	52	50	118
	24.0	0	34	31	47
	24.0	0	38	35	57
	24.0	0	42	40	71
	24.0	0	44	42	78
13	24.0	0	38	35	57
13	24.0	0	38	35	57
	24.0	0	44	42	78
	24.0	0	44	42	78
	24.0	0	44	42	78
	24.0	0	48	46	95

UCS media						
σ _c (Mpa)	105					

Tabella 3: SG1 – Misure della compressione uniassiale eseguita tramite martello di Schmidt.

LOTTO 1: Tratta Trento-Borgo Valsugana Est

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 IT1J
 10
 R 69 RH
 GE 0005 003
 A
 18 di 72

	STAZIONE GEOMECCANICA SG1									
Località: Data:	EX SS47 - Gal 01/02/2021	leria Canthaghel imboo	cco lato Borgo Val Sugana							
Orientazione parete:	130 80	(dip direction) (dip)	Litotipo: Calcari							
FAMIGLIA DI DISCONTINUITÀ										

ANALISI DELLE SPAZIATURE

DESCRIZIONE CLASSE	SPAZIATURA CLASSI (mm)	N° dati	FREQUENZA (%)	MEDIA	Dev. St
spaziatura estremamente stretta	<20		0		
spaziatura molto stretta	20÷60	6	16.2	50.0	0.00
spaziatura stretta	60÷200	30	81.1	125.0	36.55
spaziatura moderata	200÷600	1	2.7	300.0	-
spaziatura larga	600÷2000				
spaziatura molto larga	2000÷6000				
spaziatura estremamente larga	>6000	·			

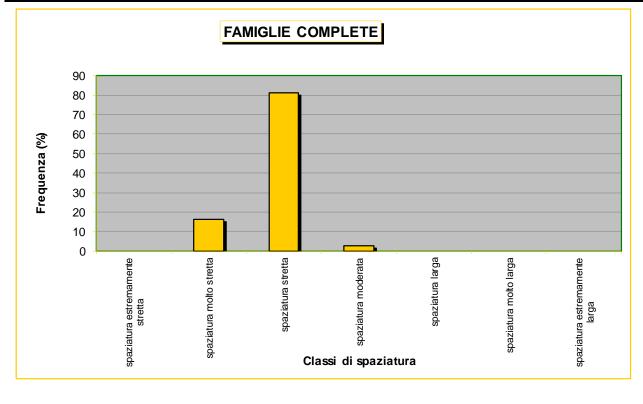
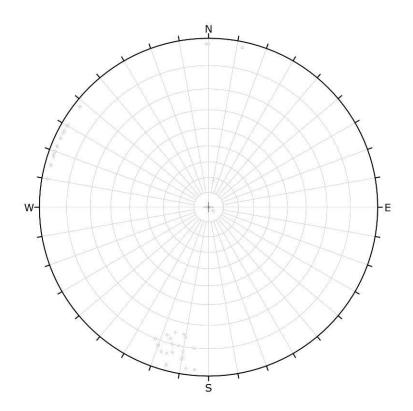


Tabella 4: SG1 - Classi di spaziatura.

LOTTO 1: Tratta Trento-Borgo Valsugana Est

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 IT1J
 10
 R 69 RH
 GE 0005 003
 A
 19 di 72


COMMITTENTE / OPERA: Italferr	
STAZIONE GEOMECCANICA: SG1 Data: 01/02/2021 Operatore/i: Benedetti Sciascia	
Località: EX SS47 - Galleria Canthaghel imbocco lato Borgo Val Sugana Orientamento parete Formazione / Dip Dip Direction Formazione / Zugna (Calca	di Monte
Riferimento normativo: RACCOMANDAZIONI IRSM	
PROFILI DI RUGOSITA'	
N° giunto	JRC
	16÷18
3	4÷6
5	2÷4
8	10÷12
9	0÷2

COMMITTENTE	: / OPERA:				Italferr		
STAZIONE	GEOME	CCANICA:	SG1	Data: 0	1/02/2021	Operatore/i:	Benedetti Sciascia
Località:	EXSS		a Canthaghel o Val Sugana		Orientame Dip 130	ento parete Dip Direction	Formazione / Litotipo
Riferimento	normativ	o:	RACC	COMAND	AZIONI IRSM	1	
			PROFIL	LI DI RI	JGOSITA	1	
N° giunto							JRC
13							4:6
18							10÷12

Tabella 5: SG1 – Profili di rugosità.

Symbol	Feature	
٥	Pole Vectors	
	Plot Mode	Pole Vectors
	Vector Count	49 (49 Entries)
	Hemisphere	Lower
	Projection	Equal Angle

Figura 10: SG1 - Stereonet dei poli.

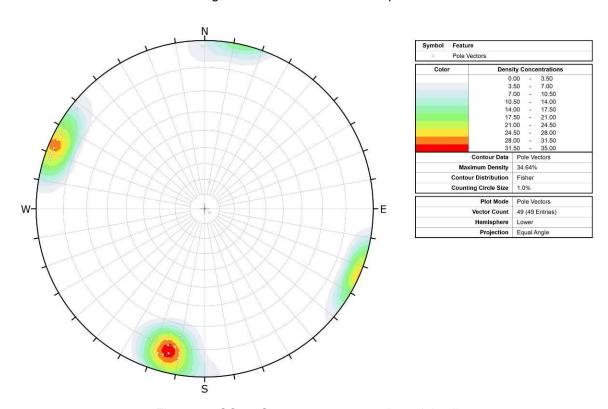


Figura 11: SG1 - Stereonet concentrazione dei poli.

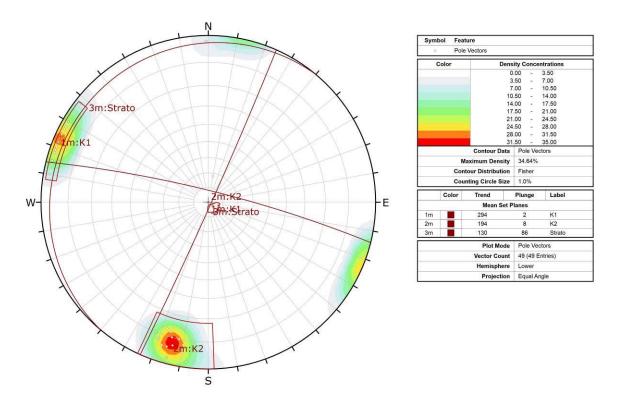


Figura 12: SG1 – Stereonet giacitura media discontinuità principali.

ELETTRIFICAZIONE TRENTO-BASSANO DEL GRAPPA

LOTTO 1: Tratta Trento-Borgo Valsugana Est

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 IT1J
 10
 R 69 RH
 GE 0005 003
 A
 23 di 72

Figura 13: SG1 - Affioramento.

Figura 14: SG1 – Dettaglio affioramento.

3.2 SG2

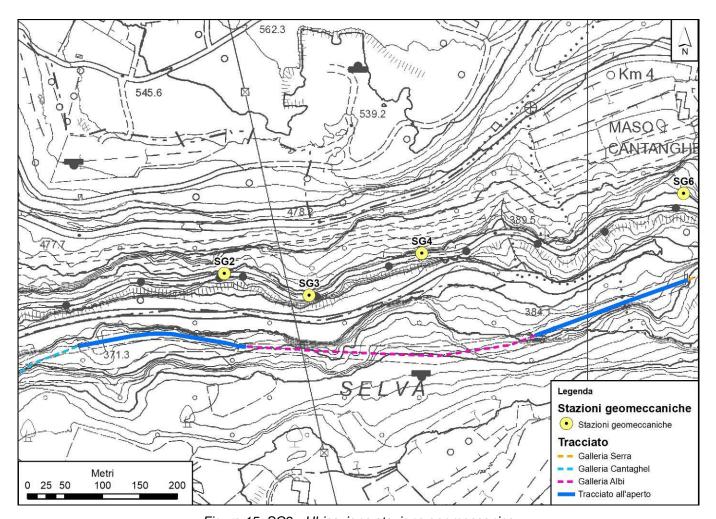


Figura 15: SG2 - Ubicazione stazione geomeccanica

CO	MMITTENTE	E / OPERA:								Italferr				
ST	AZIONE	GEOME	CCAN	IICA:	S	3 2	Da	ata: 0	1/02/2	2021	Opera	atore/i:		Benedetti Sciascia
									Ori	entamer	nto par	ete (°)		Formazione / Litotipo
Loc	l alità:	EXSS47		_		۱ G	SI: 5	0÷60		nm.		incl.		Formazione di Monte
LOC	ana.	Alt	oi lato	Trento)						<u> </u>		-	Zugna (Calcari Grigi)
			-	<u> </u>	-D 4	<u> </u>		-WO		160	004	90		<u> </u>
LINIC		CANLLIN		CHE	:DA		KILIL	= VO	GE	OME	CCA	NIC	U	
_	HEZZA S			_		<u>16</u>				Б		CD		TIDO DI CILINITO
ID 1	D	IMM	INCL	Т	L	Α	R	0	S	Р	С	SP	ALT.	TIPO DI GIUNTO
1	0.00	142	90											Giunto
2	0.40	215	85											Giunto
3	1.00 1.20	179 120	85 85											Giunto Giunto
5	2.50	212	85				+							Giunto
6	2.20	132	85				+							Giunto
7	3.40	203	85				1	1			1	-	-	Giunto
8	3.20	115	85											Giunto
9	5.40	134	85											Giunto
10	5.70	202	85											Giunto
11	6.60	186	85											Giunto
12	7.70	134	85											Giunto
13	8.00	185	85											Giunto
14	8.20	113	85											Giunto
15	9.10	198	85											Giunto
16	8.60	131	81											Giunto
17	9.00	130	85											Giunto
18	11.20	123	85											Giunto
19	11.80	214	85											Giunto
20	11.90	126	85											Giunto
21	12.40	113	85											Giunto
22	13.50	205	85											Giunto
23	15.30	193	85											Giunto
24	15.90	11	85											Giunto
25		160	1											Strato
26														
27														
28														
29														
30														
31							ļ	1			1			
32							1-				<u> </u>		<u> </u>	
33							-	1						
tipo (dista mate	ınza della t	ione A : cor erminazion	ntro un'a e dal na C: catao	ltra disc estro	continut M: bred	à, I: ne		("miloni	A :	apertura d calcite Co	ella disc	ontinutà	a	I mità dell'affioramento e T: terrigena
	sistenza			F: freq					aziatura					
	Stillicio,	sorgenti			uonza			υ μ . σμ	uzidiul (4				
٠.٠.	J,	Jorgonti	goluic											

Tabella 6: SG2 – Scheda di rilievo geomeccanico.

		DATI DI INPUT			DATI DI OUTPUT
NUMERO DELLA DISCONTINUITÁ	DENSITÁ DELLA ROCCIA	ANGOLO SCHMIDT HAMMER vs ORIZZONTALE	INDICE DI RIMBALZO	INDICE DI RIMBALZO NORMALIZZATO	UNIAXIAL COMPRESSIVE STRENGTH
(O STRATO)	γ (kN/m 3)	α (°)	R	R _{corretto}	σ _c (Mpa)
	24.0	0	54	52	130
	24.0	0	46	44	86
	24.0	0	48	46	95
	24.0	0	48	46	95
3	24.0	0	38	35	57
3	24.0	0	50	48	105
	24.0	0	44	42	78
	24.0	0	50	48	105
	24.0	0	46	44	86
	24.0	0	44	42	78
	24.0	0	42	40	71
	24.0	0	40	37	63
	24.0	0	30	27	38
	24.0	0	28	25	34
6	24.0	0	28	25	34
O	24.0	0	28	25	34
	24.0	0	30	27	38
	24.0	0	46	44	86
	24.0	0	32	29	43
	24.0	0	36	33	52
	24.0	0	40	37	63
	24.0	0	50	48	105
	24.0	0	36	33	52
	24.0	0	30	27	38
22	24.0	0	28	25	34
23	24.0	0	40	37	63
	24.0	0	38	35	57
	24.0	0	36	33	52
	24.0	0	36	33	52
	24.0	0	40	37	63

UCS r	nedia
σ _c (Mpa)	66

Tabella 7: SG2 – Misure della compressione uniassiale eseguita tramite martello di Schmidt.

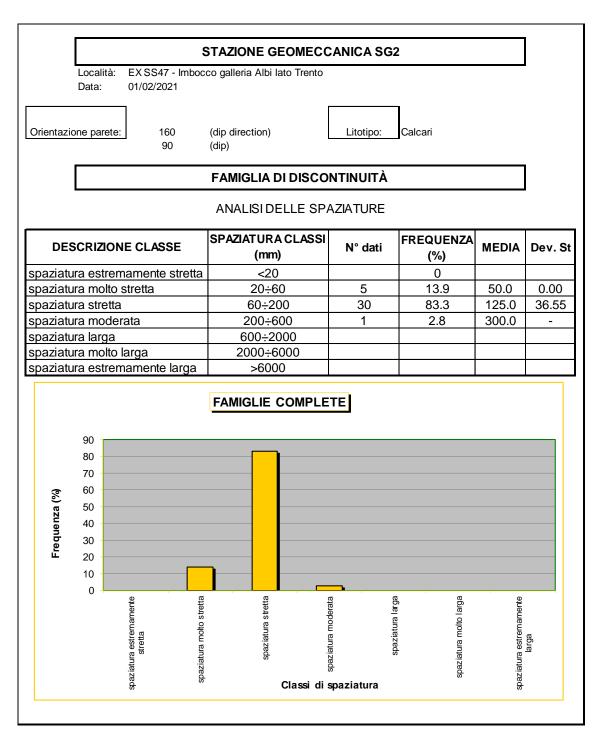


Tabella 8: SG2 - Classi di spaziatura.

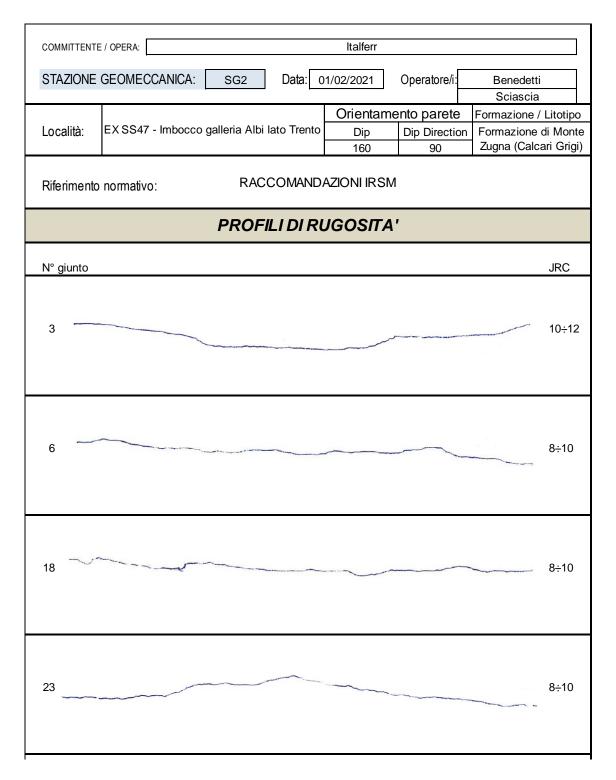
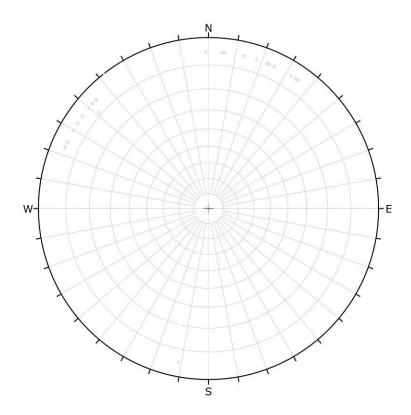



Tabella 9: SG2 – Profili di rugosità.

Symbol	Feature							
0	Pole Vectors							
	Plot Mode	Pole Vectors						
	Vector Count	25 (25 Entries)						
	Hemisphere	Lower						
	Projection	Equal Angle						

Figura 16: SG2 – Stereonet dei poli.

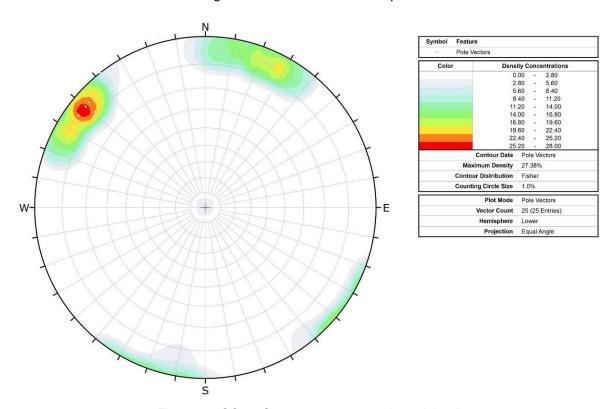


Figura 17: SG2 - Stereonet concentrazione dei poli.

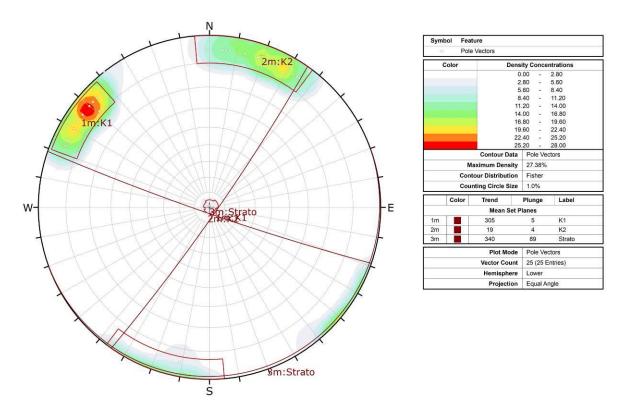


Figura 18: SG2 – Stereonet giacitura media discontinuità principali.

ELETTRIFICAZIONE TRENTO-BASSANO DEL GRAPPA

LOTTO 1: Tratta Trento-Borgo Valsugana Est

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 IT1J
 10
 R 69 RH
 GE 0005 003
 A
 31 di 72

Figura 19: SG2 - Affioramento.

Figura 20: SG2 – Dettaglio affioramento.

GRUPPO FERROVIE DELLO STATO ITALIANE	ELETTRIFICAZIONE TRENTO-BASSANO DEL GRAPPA LOTTO 1: Tratta Trento-Borgo Valsugana Est							
Schede di rilievo geomeccanico	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO		
-	IT1J	10	R 69 RH	GE 0005 003	Α	32 di 72		

3.3 SG3

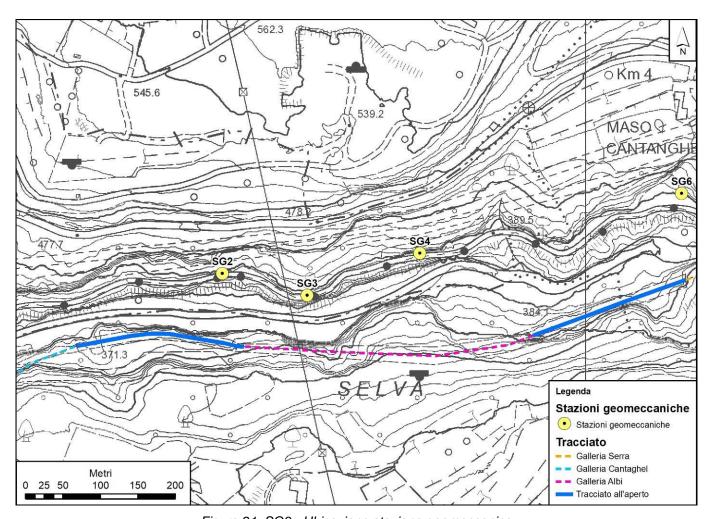


Figura 21: SG3 - Ubicazione stazione geomeccanica

LOTTO 1: Tratta Trento-Borgo Valsugana Est

Schede di rilievo geomeccanico

COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO

IT1J 10 R 69 RH GE 0005 003 A 33 di 72

СО	MMITTENTE	E / OPERA:								Italferr				
ST	AZIONE	GEOME	CCAN	IICA:	SG	3	Da	ata: 0	1/02/2	2021	Oper	atore/i:	:	Benedetti
										•				Sciascia
	_		.						Or	ientame	nto pa	rete (°)	1	Formazione / Litotipo
Loc	alità:	x SS47			oi zona	G	SI: 5	0÷60	i	mm.		incl.		Formazione di Monte
			centra	aie						170		80		Zugna (Calcari Grigi)
			_	0115				- V			200		_	<u> </u>
			5	CHE	:DA	וע	KILI	=VO	GE	OME	CCA	ANIC	U	
LUNG	HEZZA S	CAN-LIN	E (m):			20								
ID	D	IMM	INCL	Т	L	Α	R	0	S	Р	С	SP	AL	T. TIPO DI GIUNTO
1	0.00	110	85	O-A										Giunto
2	0.50	210	85	O-A										Giunto
3	0.60	122	85	O-A							4			Giunto
4	1.00	124	85	O-A										Giunto
5	1.50	190	85	O-A										Giunto
6	1.10	145	85	O-A										Giunto
7	1.80	205	85	O-A										Giunto
8	2.00	121	85	O-A										Giunto
9	2.00	204	85	O-A										Giunto
10	2.40	208	85	O-A										Giunto
11	2.60	128	85	O-A										Giunto
12	3.00	205	85	O-A										Giunto
13	1.90	132	85	O-A										Giunto
14	4.20	192	85	O-A										Giunto
15	4.00	115	85	O-A										Giunto
16	4.80	205	85	O-A										Giunto
17	5.60	176	85	O-A										Giunto
18	7.00	166	85	O-A										Giunto
19	7.70	97	85	O-A										Giunto
20	8.90	198	85	O-A				<u> </u>						Giunto
21	10.70	202	85	O-A										Giunto
22	11.50	110	85	O-A								1		Giunto
23	12.80	177	85	O-A				<u> </u>						Giunto
24	12.50	110	85	O-A				<u> </u>		ļ	-			Giunto
25	13.70	198	85	O-A										Giunto
26	15.00	119	85	O-A				1						Giunto
27	15.70	200	85	O-A							-	-		Giunto
28	16.80	196	85	O-A							-	1	<u> </u>	Giunto
29	16.40	114	85	O-A							-			Giunto
30	17.50	174	85	O-A							-	-		Giunto
31	17.60	60	70	O-A							-			Giunto
32	18.70	182	85	O-A				1			+	-	<u> </u>	Giunto
33	18.10	84	85	O-A								-		Giunto
34	19.40	184	85	O-A	ro dol no									Giunto

R: materiale di riempimento: C: cataclastico M: breccia cementata ("milonite") Ca: calcite Cc: coesivo Gr: granulare T: terrigena

O: ondulazione S: scabrezza P: persistenza C: consistenza F: frequenza Sp: spaziatura

Note: Stillicidio, reti in aderenza non hanno permesso il rilievo con pettine di Barton e sclerometro

D: distanza della frattura intercettata dallo zero del nastro

T: tipo di terminazione A: contro un'altra discontinutà, I: nella matrice rocciosa, O: non visibile o estesa oltre l'estremità dell'affioramento

L: distanza della terminazione dal nastro A: apertura della discontinutà

Tabella 10: SG3 - Scheda di rilievo geomeccanico.

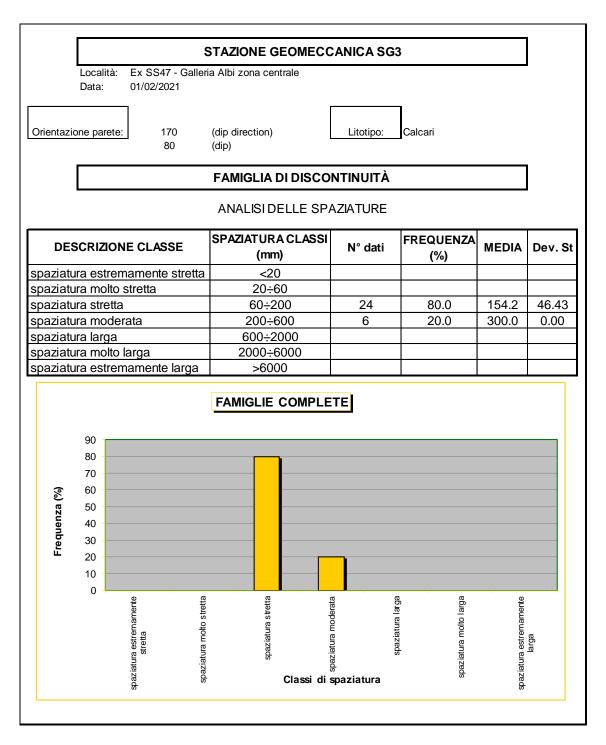
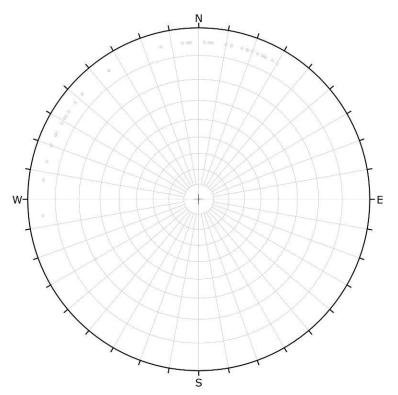



Tabella 11: SG3 – Classi di spaziatura.

Symbol	Feature								
0	Pole Vectors								
	Plot Mode	Pole Vectors							
	Vector Count	36 (36 Entries)							
	Hemisphere	Lower							
	Projection	Equal Angle							

Figura 22: SG3 – Stereonet dei poli.

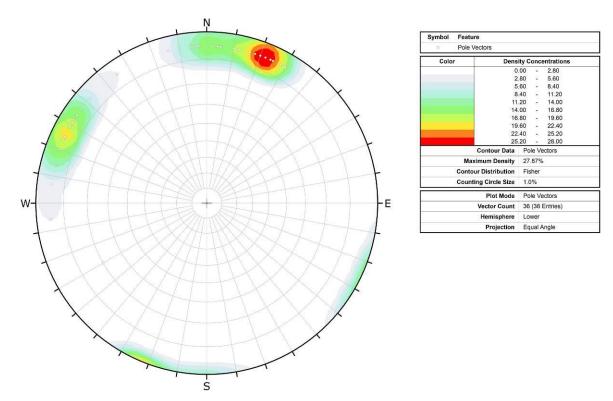


Figura 23: SG3 – Stereonet concentrazione dei poli.

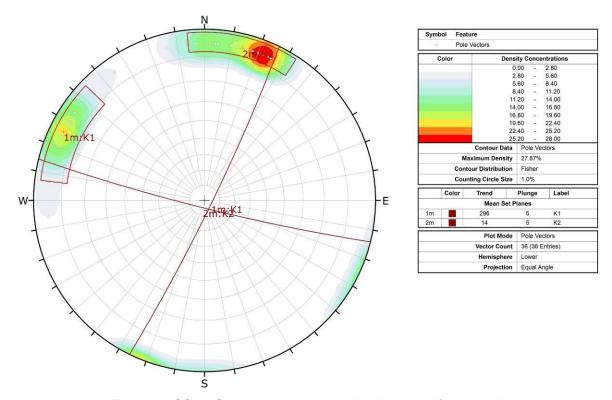


Figura 24: SG3 – Stereonet giacitura media discontinuità principali.

ELETTRIFICAZIONE TRENTO-BASSANO DEL GRAPPA

LOTTO 1: Tratta Trento-Borgo Valsugana Est

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 IT1J
 10
 R 69 RH
 GE 0005 003
 A
 38 di 72

Figura 25: SG3 – Affioramento.

Figura 26: SG3 – Dettaglio affioramento.

3.4 SG4

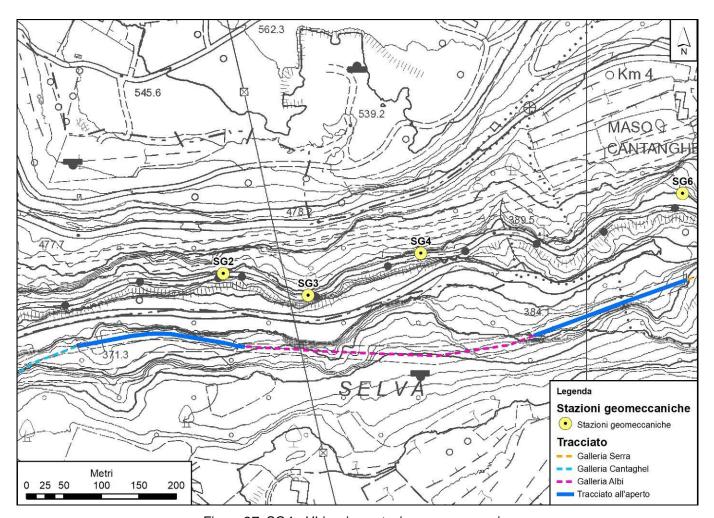


Figura 27: SG4 - Ubicazione stazione geomeccanica

ELETTRIFICAZIONE TRENTO-BASSANO DEL GRAPPA

LOTTO 1: Tratta Trento-Borgo Valsugana Est

Schede di rilievo geomeccanico

COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO

IT1J 10 R 69 RH GE 0005 003 A 40 di 72

СО	MMITTENTI	E / OPERA:								Italferr					
_															
ST	AZIONE	GEOME	CCAN	ANICA: SG4 Data: 01/02/2021 Operatore/i:						Benedetti					
											Sciascia				
		0047	0-11	Galleria Albi lato						Orientamento parete (°)					Formazione / Litotipo
Loc	calità:			Val Sugana			GSI: 5	0÷60	i	mm.		i	ncl.		Formazione di Monte
		Богд	ju vai							180			90	ヿ	Zugna (Calcari Grigi)
			C		-DA			-1/0			-0	<u> </u>		^	
			3	СПЕ	DA	וע	RILIE	= VO	GE	OIVI E		CA	NIC	<u> </u>	
LUNG	HEZZA S	CAN-LIN	E (m):												
ID	D	IMM	INCL	Т	L	Α	R	0	S	Р		С	SP	AL.	T. TIPO DI GIUNTO
1	0.40	130	88	O-A											Giunto
2	0.40	225	88	O-A											Giunto
3	1.00	126	85	O-A											Giunto
4	0.90	214	88	O-A											Giunto
5	2.10	127	88	O-A											Giunto
6	1.90	199	88	O-A											Giunto
7	2.40	136	88	O-A											Giunto
8	2.30	210	88	O-A											Giunto
9	2.70	210	88	O-A											Giunto
10	3.20	217	88	O-A											Giunto
11	3.60	144	88	O-A											Giunto
12	3.60	227	88	O-A											Giunto
13	3.90	141	88	O-A											Giunto
14	3.50	30	42	O-A											Giunto
15	4.30	131	88	O-A											Giunto
16	4.20	233	58	O-A											Giunto
17	4.00	26	60	O-A											Giunto
18	4.70	132	88	O-A											Giunto
19	4.90	235	88	O-A							_ _				Giunto
20	5.20	148	88	O-A											Giunto
21	5.40	192	88	O-A											Giunto
22	5.50	220	88	O-A											Giunto
23	5.90	142	88	O-A											Giunto
24	6.20	20	70	O-A										<u> </u>	Giunto
25	6.50	135	88	O-A											Giunto
26	6.60	233	88	O-A											Giunto
27	6.70	225	60	O-A											Giunto
28	6.90	122	88	O-A											Giunto
29	7.20	214	88	O-A											Giunto
30	7.70	119	88	O-A							_ _				Giunto
31	9.10	40	88	O-A											Giunto
32	9.40	134	88	O-A							\perp				Giunto
33	9.70	204	88	O-A											Giunto
34	10.40	116	88	O-A											Giunto

A: apertura della discontinutà

R: materiale di riempimento: C: cataclastico M: breccia cementata ("milonite") Ca: calcite Cc: coesivo Gr: granulare T: terrigena

O: ondulazione S: scabrezza P: persistenza C: consistenza F: frequenza Sp: spaziatura

Note: Stillicidio

D: distanza della frattura intercettata dallo zero del nastro

T: tipo di terminazione A: contro un'altra discontinutà, I: nella matrice rocciosa, O: non visibile o estesa oltre l'estremità dell'affioramento

L: distanza della terminazione dal nastro

ST	STAZIONE GEOMECCANICA: SG4 Data: 01/02/2021 Operatore/i: Benedetti Sciascia													
	SCHEDA DI RILIEVO GEOMECCANICO													
ID	D	IMM	INCL	Т	L	Α	R	0	S	Р	С	SP	ALT.	TIPO DI GIUNTO
35	11.60	135	85											Giunto
36	11.50	237	88											Giunto
37	12.20	225	88											Giunto
38	12.50	196	88											Giunto
39	14.00	130	88											Giunto
40	14.40	131	79											Giunto
41	14.4	251	88											Giunto
42	14.6	121	88											Giunto
43	14.8	219	88											Giunto
44	14.9	122	88											Giunto
45	16.6	255	88											Giunto
46	17.8	156	88											Giunto
47	17.2	232	88											Giunto
48	18.6	145	88											Giunto
49	18.8	142	88											Giunto
50	19.3	140	88											Giunto
51	19.7	124	88		_		_							Giunto
52	20	207	88											Giunto
53		260	7											Strato

Tabella 12: SG4 – Scheda di rilievo geomeccanico.

		DATI DI INPUT			DATI DI OUTPUT
NUM ERO DELLA DISCONTINUITÁ	DENSITÁ DELLA ROCCIA	ANGOLO SCHMIDT HAMMER vs ORIZZONTALE	INDICE DI RIMBALZO	INDICE DI RIMBALZO NORMALIZZATO	UNIAXIAL COMPRESSIVE STRENGTH
(O STRATO)	γ (kN/m 3)	α (°)	R	R _{corretto}	σ _c (Mpa)
	24.0	0	50	48	105
	24.0	0	44	42	78
	24.0	0	42	40	71
	24.0	0	44	42	78
40	24.0	0	46	44	86
40	24.0	0	46	44	86
	24.0	0	44	42	78
	24.0	0	40	37	63
	24.0	0	42	40	71
	24.0	0	42	40	71
	24.0	0	48	46	95
	24.0	0	32	29	43
	24.0	0	44	42	78
	24.0	0	30	27	38
41	24.0	0	40	37	63
41	24.0	0	36	33	52
	24.0	0	34	31	47
	24.0	0	44	42	78
	24.0	0	30	27	38
	24.0	0	40	37	63
	24.0	0	40	37	63
	24.0	0	40	37	63
	24.0	0	40	37	63
	24.0	0	40	37	63
47	24.0	0	34	31	47
41	24.0	0	36	33	52
	24.0	0	44	42	78
	24.0	0	40	37	63
	24.0	0	36	33	52
	24.0	0	36	33	52

UCS media							
σ _c (Mpa)	66						

Tabella 13: SG4 – Misure della compressione uniassiale eseguita tramite martello di Schmidt.

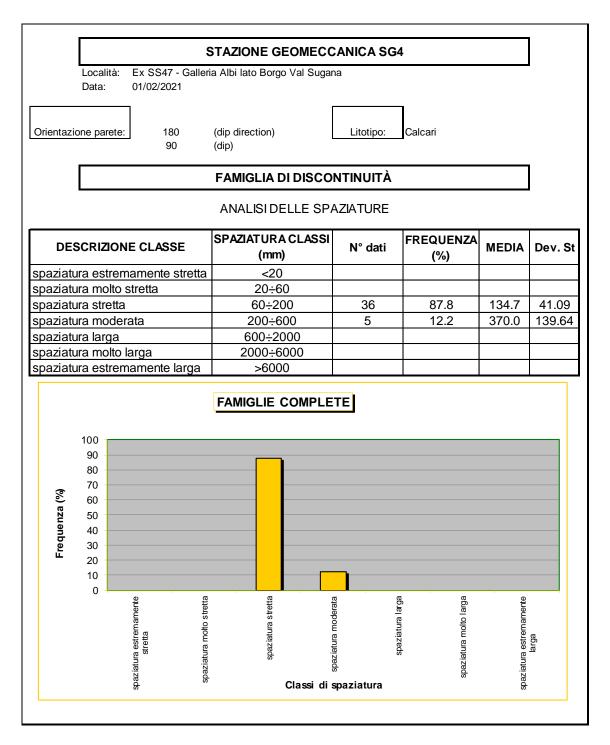


Tabella 14: SG4 - Classi di spaziatura.

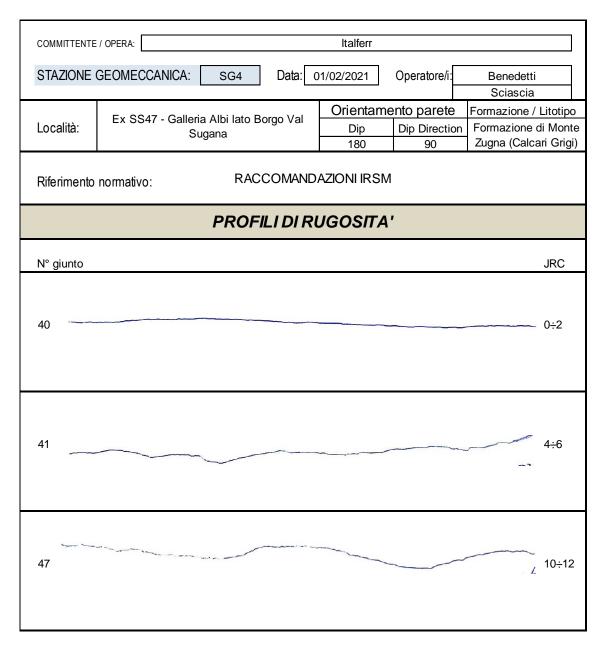
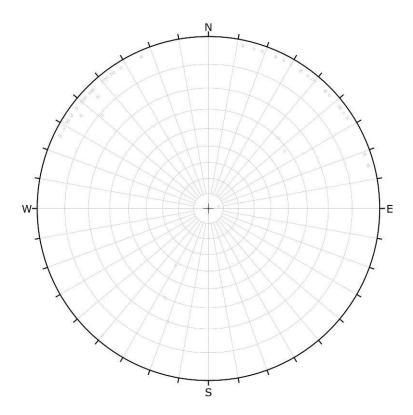



Tabella 15: SG4 - Profili di rugosità.

Symbol	Feature	
ò	Pole Vectors	
	Plot Mode	Pole Vectors
	Vector Count	53 (53 Entries)
	Hemisphere	Lower
	Projection	Equal Angle

Figura 28: SG4 – Stereonet dei poli.

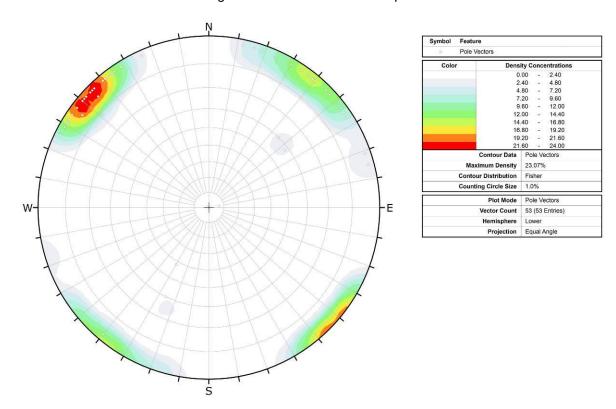


Figura 29: SG4 - Stereonet concentrazione dei poli.

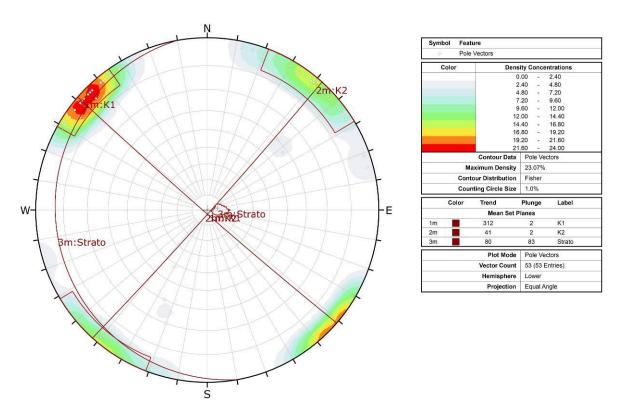


Figura 30: SG4 – Stereonet giacitura media discontinuità principali.

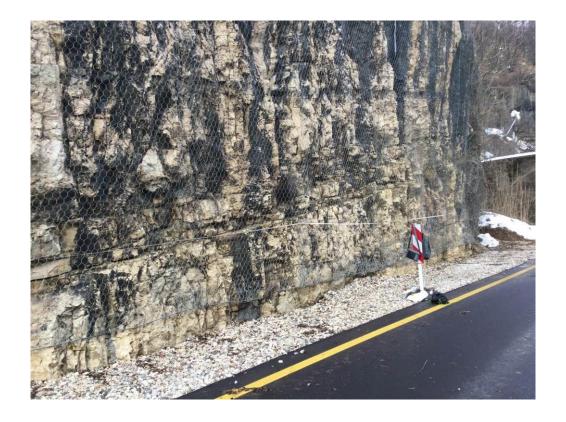


Figura 31: SG4 – Affioramento.

Figura 32: SG4 – Dettaglio affioramento.

3.5 SG5

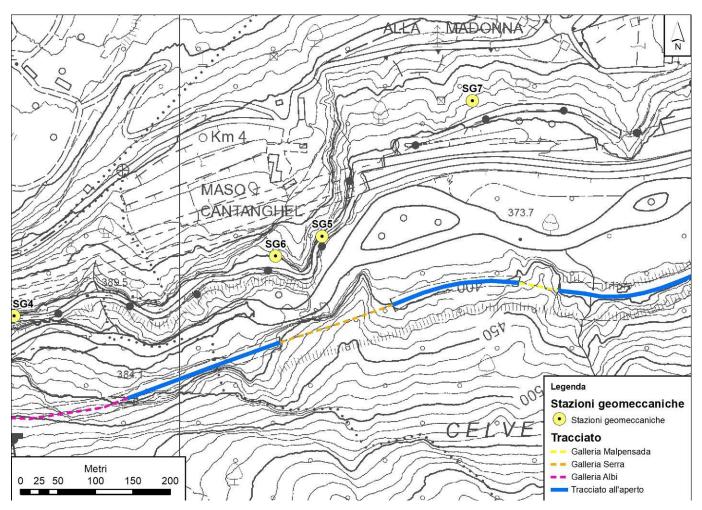


Figura 33: SG5 - Ubicazione stazione geomeccanica

ELETTRIFICAZIONE TRENTO-BASSANO DEL GRAPPA LOTTO 1: Tratta Trento-Borgo Valsugana Est

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 IT1J
 10
 R 69 RH
 GE 0005 003
 A
 49 di 72

CO	MMITTENTE	E / OPERA:								Italferr				
ST	AZIONE	GEOME	CCAN	IICA:	SC	35	Da	ıta: c	2/02/2	2021	Oper	atore/i		Benedetti
								-			•			Sciascia
									Ori	entamer	nto nar	ete (°)		Formazione / Litotipo
Loc	alità: CO	Serra la	to Bor	no Val	Suga	na G	SI: 50	0÷60		nm.	1	incl.		Formazione di Monte
LUC	alla.	3 0		go . a.	o aga		.						-	Zugna (Calcari Grigi)
						_				140		88	_	
			S	CHE	DA	DI	RILIE	EVO	GE	OME	CCA	NIC	0	
JNG	HEZZA S	CAN-LIN	E (m):			<u>15</u>								
ID	D	IMM	INCL	T	L	Α	R	0	S	Р	С	SP	ALT.	TIPO DI GIUNTO
1	0.30	13	88	O-A										Giunto
2	0.00	30	60	O-A										Giunto
3	1.80	170	88	O-A										Giunto
4	2.20	110	88	O-A										Giunto
5	3.70	240	88	O-A										Giunto
6 7	3.80 5.00	130 210	88	O-A O-A			-				1			Giunto Giunto
<i>1</i> 8	5.00	120	88 88	O-A										Giunto
9	5.30	125	88	O-A										Giunto
10	5.40	120	88	O-A										Giunto
11	5.60	100	88	O-A										Giunto
12	5.60	180	88	O-A										Giunto
13	7.80	110	88	O-A										Giunto
14	7.80	200	88	O-A										Giunto
15	8.40	200	88	O-A										Giunto
16	8.40	120	88	O-A										Giunto
17	9.20	120	70	O-A										Giunto
18	9.60	180	88	O-A										Giunto
19	9.6	120	88	O-A										Giunto
20	10.10	190	88	O-A										Giunto
21	10.10	130	88	O-A										Giunto
22	10.50	130	88	O-A										Giunto
23	11.20	60	60	O-A										Giunto
24	13.90	210	88	O-A							-			Giunto
25 26	14.20	130 30	88 70	O-A O-A			+				1	-	-	Giunto Giunto
26 27	14.10	20	88	O-A			1				1			Giunto
28	17.00	20	- 50	<u> </u>			+				1			Sidillo
29							†				1			
30														
31														
32														
33														
34														
tipo dista mate	ınza della t eriale di rie	ione A : cor erminazion	ntro un'a e dal na C: catao	iltra disc estro clastico I	continuta	a, I: ne		("miloni	A : ate") Ca:	apertura d calcite Co	ella disc	ontinut	a	emità dell'affioramento re T: terrigena
	ulazione			S: scal					sistenza					
cons	sistenza			F: frequ	uenza			Sp: spaziatura						

Tabella 16: SG5 – Scheda di rilievo geomeccanico.

		DATI DI INPUT			DATI DI OUTPUT
NUM ERO DELLA DISCONTINUITÁ	DENSITÁ DELLA ROCCIA	ANGOLO SCHMIDT HAMMER vs ORIZZONTALE	INDICE DI RIMBALZO	INDICE DI RIMBALZO NORMALIZZATO	UNIAXIAL COMPRESSIVE STRENGTH
(O STRATO)	γ (kN/m 3)	α (°)	R	R _{corretto}	σ _c (Mpa)
	24.0	0	50	48	105
	24.0	0	54	52	130
	24.0	0	44	42	78
	24.0	0	46	44	86
6	24.0	0	48	46	95
О	24.0	0	46	44	86
	24.0	0	44	42	78
	24.0	0	46	44	86
	24.0	0	44	42	78
	24.0	0	42	40	71
	24.0	0	32	29	43
	24.0	0	30	27	38
	24.0	0	32	29	43
	24.0	0	30	27	38
24	24.0	0	28	25	34
	24.0	0	30	27	38
	24.0	0	32	29	43
	24.0	0	34	31	47
	24.0	0	36	33	52
	24.0	0	28	25	34

UCS media							
σ _c (Mpa)	65						

Tabella 17: SG5 – Misure della compressione uniassiale eseguita tramite martello di Schmidt.

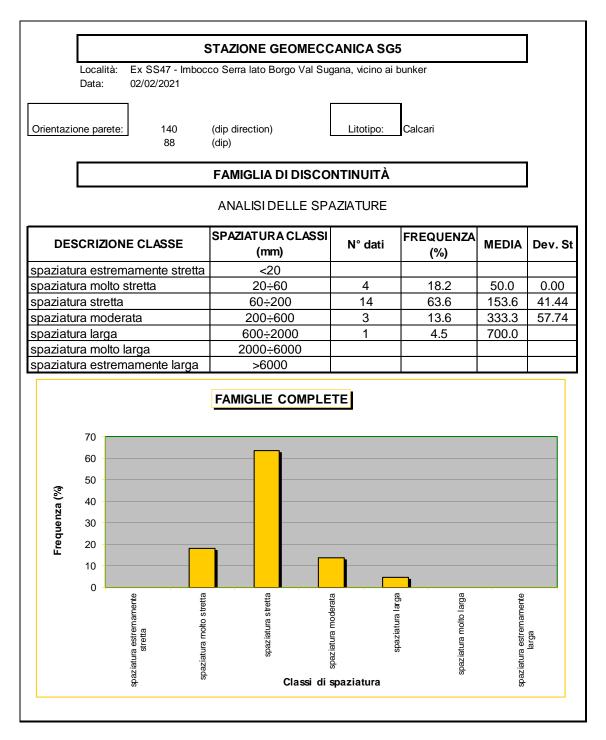


Tabella 18: SG5 – Classi di spaziatura.

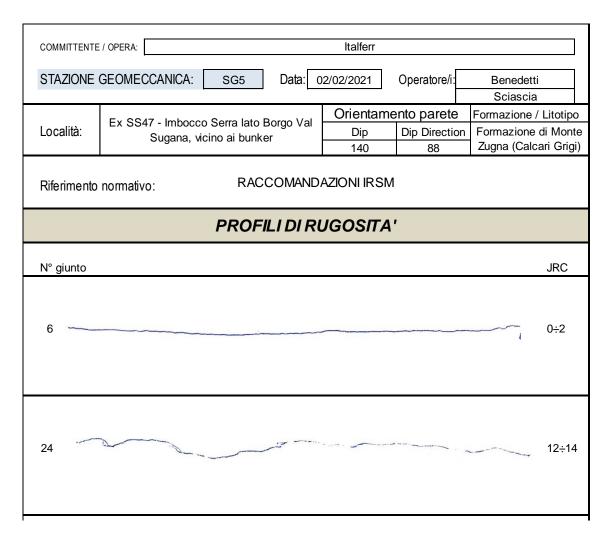
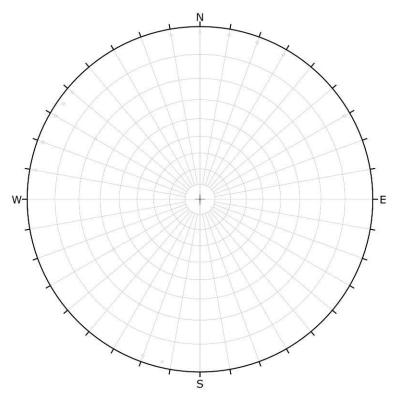



Tabella 19: SG5 – Profili di rugosità.

Symbol	Feature								
0	Pole Vectors								
	Plot Mode	Pole Vectors							
	Vector Count	27 (27 Entries)							
	Hemisphere	Lower							
	Projection	Equal Angle							

Figura 34: SG5 – Stereonet dei poli.

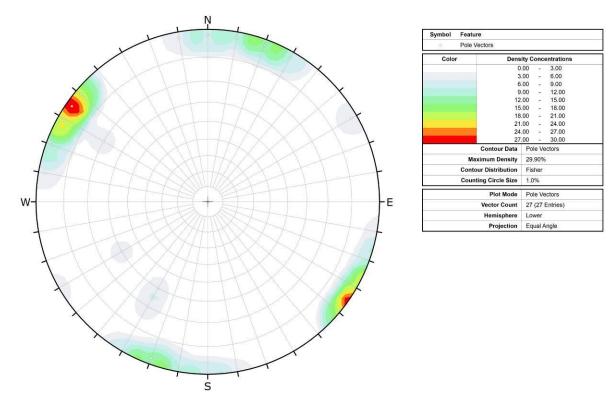


Figura 35: SG5 – Stereonet concentrazione dei poli.

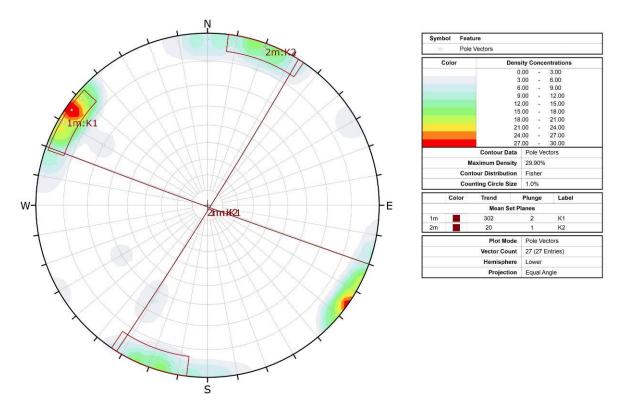


Figura 36: SG5 – Stereonet giacitura media discontinuità principali.

ELETTRIFICAZIONE TRENTO-BASSANO DEL GRAPPA

LOTTO 1: Tratta Trento-Borgo Valsugana Est

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 IT1J
 10
 R 69 RH
 GE 0005 003
 A
 55 di 72

Figura 37: SG5 – Affioramento.

Figura 38: SG5 – Dettaglio affioramento.

3.6 SG6

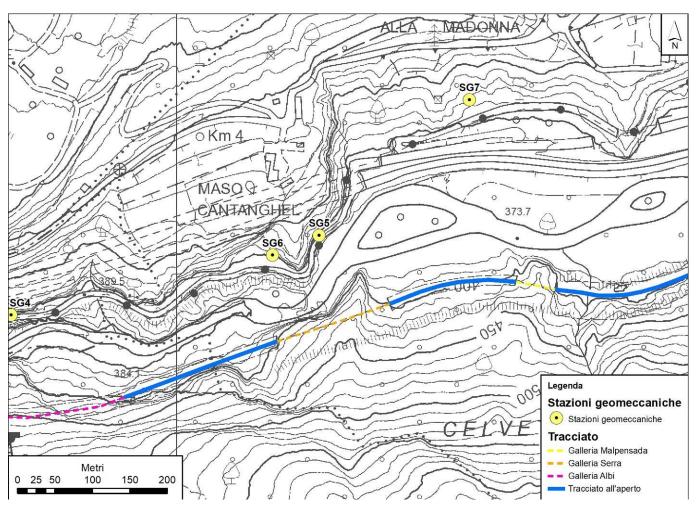


Figura 39: SG6 - Ubicazione stazione geomeccanica

ELETTRIFICAZIONE TRENTO-BASSANO DEL GRAPPA

LOTTO 1: Tratta Trento-Borgo Valsugana Est

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 IT1J
 10
 R 69 RH
 GE 0005 003
 A
 57 di 72

СО	MMITTENTE	E / OPERA:								Italferr				
ST	TAZIONE	GEOME	CCAN	IICA:	SC	3 6] Da	ata: 0	02/02/2	2021	Opera	atore/i:	:	Benedetti Sciascia
						\top			Ori	ientamer	nto par	rete (°))	Formazione / Litotipo
10	I:42 .	_				G	SI: 5	50÷60						•
LOC	calità: E	x SS47	 Galle Trent 		rra late	٥	Oi. C	0.00		mm. 210	+-'	incl. 90	\dashv	Formazione di Monte Zugna (Calcari Grigi)
					ĐΑ	DI	RILII	EVO	GE	OME	CCA	NIC	0	
UNC	SHEZZA S	CAN-LIN	E (m):			10								
ID	D	IMM	INCL	Т	L	Α	R	0	S	Р	С	SP	ALT.	TIPO DI GIUNTO
1	0.80	70	80	O-A			\top							Giunto
2	1.20	120	80	O-A		<u> </u>	+	†			†		t	Giunto
3	1.40	100	60	O-A			\dagger	†			†	†	 	Giunto
4	1.70	100	58	O-A		<u> </u>	+	†			†		t	Giunto
5	3.30	105	75	O-A			\dagger	†			†	†	 	Giunto
6	3.30	110	63	O-A			+	†			†		 	Giunto
7	3.30	112	64	O-A			+	†			†		 	Giunto
8	3.40	212	85	O-A			+	†			†	<u> </u>	 	Giunto
9	3.50	104	63	O-A			+-	+	\vdash		+-	+-	\vdash	Giunto
10	3.50	205	85	O-A			+-	+	$\vdash \vdash \vdash$		+	+-	+-	Giunto
11	3.60	106	64	O-A			+-	+	\vdash		+	+-	+-	Giunto
12	4.80	200	85	O-A			+-	+	\vdash		+	\vdash	\vdash	Giunto
13	5.40	46	85	O-A			+	+	 		+	+-	+	Giunto
14	5.40	103	85	O-A	\vdash		+-	+		 	+	 	+	Giunto
15	5.40	24	75	O-A	\vdash		+-	+	\vdash	\vdash	+	+-	+-	Giunto
16	6.40	126	67	O-A	\vdash		+-	┼──	 -		+	\vdash	+	Giunto
17	6.60	50	61	O-A	\vdash		+-	+	\vdash		+	\vdash	+-	Giunto
18	6.90	35	61	O-A	\vdash		+-	+	\vdash	 	+	\vdash	+-	Giunto
19		114	58	O-A	\vdash		+-	+	\vdash		+	\vdash	+	
20	6.70 6.50	28	86	O-A	\vdash		+-	+	\vdash	 	+	+-	+-	Giunto Giunto
21	7.00	50	74	O-A	\vdash		+-	┼──	 -		+	\vdash	+	
				1	$\vdash \vdash \vdash$		+-	┼──	<u> </u>		 	\vdash	₩	Giunto
22	7.70	156	85 85	O-A	\vdash		+-	+	 		+	\vdash	\vdash	Giunto
23	7.10	45	_	O-A	\vdash		+-	+	 		+	\vdash	\vdash	Giunto
24	7.90	158	85	O-A	$\vdash \vdash \vdash$		+-	+	 		┼──	\vdash	\vdash	Giunto
25	7.00	23	85	O-A	\vdash	—	+-	₩		⊢—	₩	\vdash	₩	Giunto
26	7.00	56	69	O-A	\vdash		+-	┼──	<u> </u>	├──	┼──	\vdash	┼	Giunto
27	8.70	31	80	O-A	\vdash		+-	┼	<u> </u> '	├──	┼──	┼	┼──	Giunto
28	8.70	102	85	O-A	\longmapsto		+-	┼──	<u> </u> '	⊢—	┼	\vdash	\vdash	Giunto
29	10.30	125	59	O-A	\longmapsto		+-	 				\vdash	┼	Giunto
30	10.30	42	65	O-A	\longmapsto		+-	┼			 	\vdash	┼	Giunto
31	10.60	52	64	O-A	\vdash		$+\!-\!\!\!-$	↓	<u> </u> '		┼	₩	₩	Giunto
32	10.50	29	72	O-A	\longmapsto		+-	—	<u> </u>		├ ──	\vdash	₩	Giunto
33	\vdash	250	32	igwdapprox	\longmapsto		+-	↓ —	<u> </u>		├ ──	\vdash	—	Strato
34		Confluence Conflu					Ь	Ь			Ь		Ь	
ī: tipo (.: dista R: mate	anza della te eriale di rier	ione A : con erminazion	ntro un'a ne dal na	altra disc astro clastico I	continutà	à, I : ne		("miloni	A : a	apertura d : calcite Cc	ella disc	continutà	à	emità dell'affioramento re T: terrigena
	lulazione			S: scal					sistenza					
	sistenza			F: frequ	uenza			Sp : sp	oaziatura	3				
iote:	Stillicidio) .												

Tabella 20: SG6 – Scheda di rilievo geomeccanico.

		DATI DI INPUT			DATI DI OUTPUT
NUMERO DELLA DISCONTINUITÁ	DENSITÁ DELLA ROCCIA	ANGOLO SCHMIDT HAMMER vs ORIZZONTALE	INDICE DI RIMBALZO	INDICE DI RIMBALZO NORMALIZZATO	UNIAXIAL COMPRESSIVE STRENGTH
(O STRATO)	γ (kN/m 3)	α (°)	R	R _{corretto}	σ _c (Mpa)
	24.0	0	48	46	95
	24.0	0	48	46	95
	24.0	0	38	35	57
	24.0	0	30	27	38
13	24.0	0	48	46	95
13	24.0	0	34	31	47
	24.0	0	36	33	52
	24.0	0	44	42	78
	24.0	0	48	46	95
	24.0	0	40	37	63
	24.0	0	40	37	63
	24.0	0	50	48	105
	24.0	0	56	54	143
	24.0	0	52	50	118
28	24.0	0	38	35	57
	24.0	0	48	46	95
	24.0	0	52	50	118
	24.0	0	46	44	86
	24.0	0	38	35	57
	24.0	0	52	50	118

UCS r	nedia
σ _c (Mpa)	84

Tabella 21: SG6 – Misure della compressione uniassiale eseguita tramite martello di Schmidt.

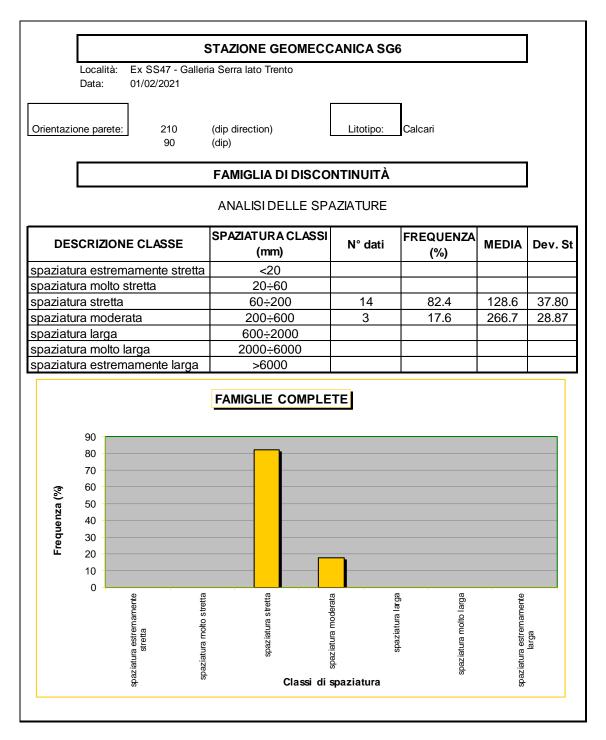


Tabella 22: SG6 - Classi di spaziatura.

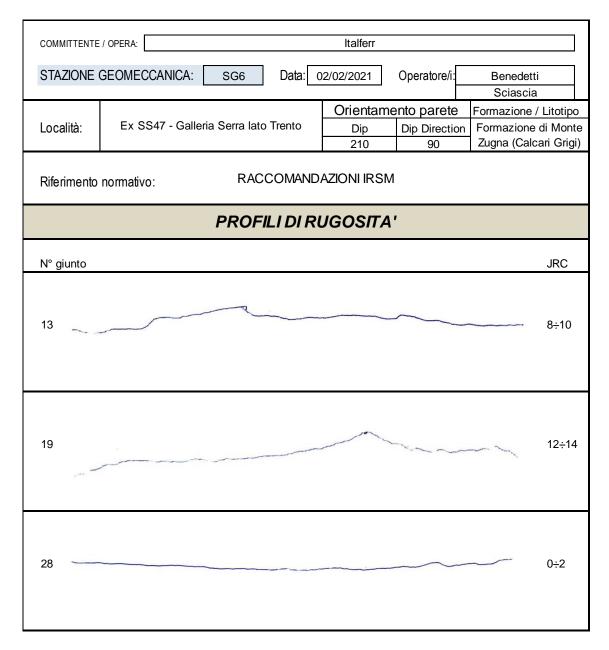
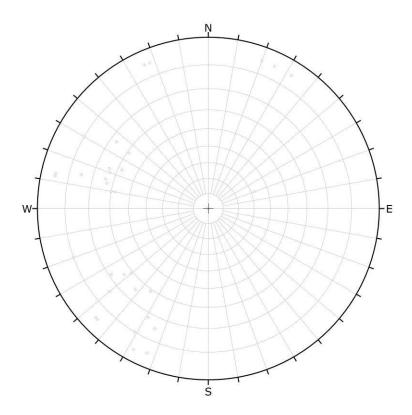



Tabella 23: SG6 - Profili di rugosità.

Symbol	Feature	
(4)	Pole Vectors	
	Plot Mode	Pole Vectors
	Vector Count	33 (33 Entries)
	Hemisphere	Lower
	Projection	Equal Angle

Figura 40: SG6 – Stereonet dei poli.

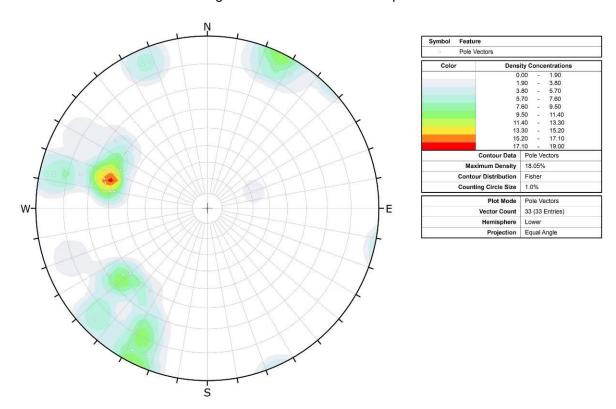


Figura 41: SG6 - Stereonet concentrazione dei poli.

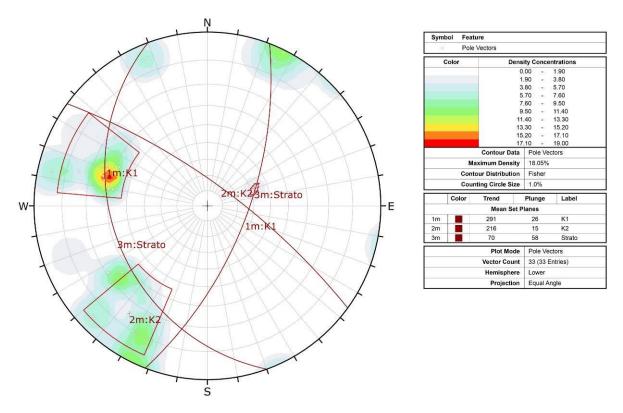


Figura 42: SG6 – Stereonet giacitura media discontinuità principali.

ELETTRIFICAZIONE TRENTO-BASSANO DEL GRAPPA

LOTTO 1: Tratta Trento-Borgo Valsugana Est

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 IT1J
 10
 R 69 RH
 GE 0005 003
 A
 63 di 72

Figura 43: SG6 – Affioramento.

Figura 44: SG6 – Dettaglio affioramento.

3.7 SG7

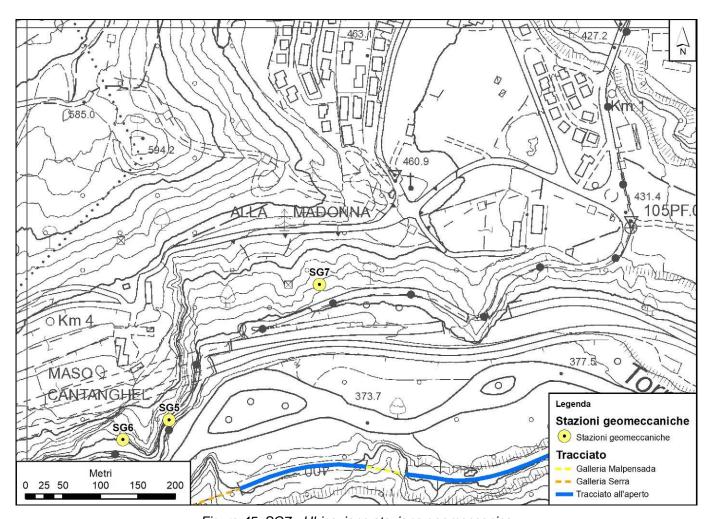


Figura 45: SG7 - Ubicazione stazione geomeccanica

ELETTRIFICAZIONE TRENTO-BASSANO DEL GRAPPA

LOTTO 1: Tratta Trento-Borgo Valsugana Est

COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO Schede di rilievo geomeccanico IT1J 10 R 69 RH GE 0005 003 65 di 72

CO	MMITTENTE	E / OPERA:									Italferr				
		_, _, _,													
ST	AZIONE	GEOME	CCAN	IICA:	SC	37		Da	ata: 0	2/02/2	2021	Ope	ratore/i		Benedetti
												•			Sciascia
										Ori	ientame	nto pa	rete (°)		Formazione / Litotipo
Loc	alità:	Villazzar			alleria		GSI	l· 4	0÷50		mm.		incl.		· omaziono / znonpo
LOC	alla.	N	1alpen:	sada			00.		0.00					-	Dolomia Principale
						_					175		90		
			S	CHE	EDA	D	<i>IR</i>	ILIE	EVO	GE	OME	CCA	ANIC	0	
LUNG	HEZZA S	CAN-LIN	E (m):			1.	3								
ID	D	IMM	INCL	Т	L	P		R	0	S	Р	С	SP	AL	T. TIPO DI GIUNTO
1	0.10	174	81	Α								L	L		Giunto
2	0.00	100	69	Α											Giunto
3	0.00	193	62	Α											Giunto
4	0.40	145	63	Α											Giunto
5	1.80	236	86	Α											Mega giunto
6	1.90	293	66	Α											Giunto
7	2.10	126	72	Α											Giunto
8	2.50	215	89	Α											Giunto
9	2.60	35	71	Α											Giunto
10	3.00	80	69	Α											Giunto
11	3.00	297	25	Α											Giunto
12	3.30	150	32	Α											Giunto
13	4.20	208	80	Α											Giunto
14	4.40	153	41	Α											Giunto
15	4.80	196	89	Α											Faglia Pitch 106/36
16	4.10	300	44	Α											Giunto
17	4.80	152	56	Α											Giunto
18	5.40	32	73	Α											Giunto
19	5.40	197	89	Α											Giunto
20	4.50	292	23	Α											Giunto
21	5.10	154	46	Α											Giunto
22	5.30	28	71	Α											Giunto
23	5.50	27	77	Α											Giunto
24	6.00	139	74	Α											Giunto
25	6.20	151	53	Α											Giunto
26	6.40	218	90	Α											Giunto
27	6.10	315	49	Α											Giunto
28	6.60	21	78	Α											Giunto
29	9.70	220	29	Α											Giunto
30	9.80	14	59	Α											Giunto
31	9.40	37	63	Α											Giunto
32	10.00	34	54	Α											Giunto
33	9.60	99	53	Α											Giunto
34	11.20	194	79	Α											Giunto

R: materiale di riempimento: C: cataclastico M: breccia cementata ("milonite") Ca: calcite Cc: coesivo Gr: granulare T: terrigena

O: ondulazione S: scabrezza P: persistenza C: consistenza F: frequenza Sp: spaziatura

Note: Stillicidio

T: tipo di terminazione A: contro un'altra disconfinutà, I: nella matrice rocciosa, O: non visibile o estesa oltre l'estremità dell'affioramento A: apertura della discontinutà

L: distanza della terminazione dal nastro

Tabella 24: SG7 – Scheda di rilievo geomeccanico.

		DATI DI INPUT			DATI DI OUTPUT
NUM ERO DELLA DISCONTINUITÁ	DENSITÁ DELLA ROCCIA	ANGOLO SCHMIDT HAMMER vs ORIZZONTALE	INDICE DI RIMBALZO	INDICE DI RIMBALZO NORMALIZZATO	UNIAXIAL COMPRESSIVE STRENGTH
(O STRATO)	γ (kN/m 3)	α (°)	R	R _{corretto}	σ _c (Mpa)
	24.0	0	40	37	63
	24.0	0	42	40	71
	24.0	0	50	48	105
	24.0	0	46	44	86
1	24.0	0	46	44	86
ı	24.0	0	38	35	57
	24.0	0	38	35	57
	24.0	0	42	40	71
	24.0	0	38	35	57
	24.0	0	48	46	95
	24.0	0	56	54	143
	24.0	0	52	50	118
	24.0	0	48	46	95
	24.0	0	52	50	118
9	24.0	0	48	46	95
9	24.0	0	58	56	158
	24.0	0	42	40	71
	24.0	0	42	40	71
	24.0	0	52	50	118
	24.0	0	54	52	130
	24.0	45	28	22	30
16	24.0	45	32	27	37
	24.0	45	42	38	64
	24.0	45	44	40	71
	24.0	45	30	24	33
	24.0	45	40	35	55
	24.0	45	28	22	30
	24.0	45	52	49	109
	24.0	45	30	24	33
	24.0	45	40	35	55

UCS media						
σ _c (Mpa)	79					

Tabella 25: SG7 – Misure della compressione uniassiale eseguita tramite martello di Schmidt.

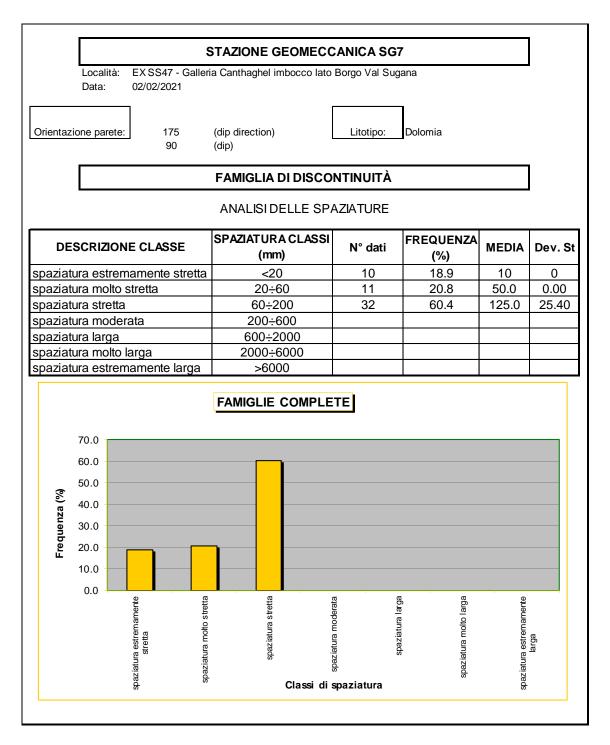


Tabella 26: SG7 – Classi di spaziatura.

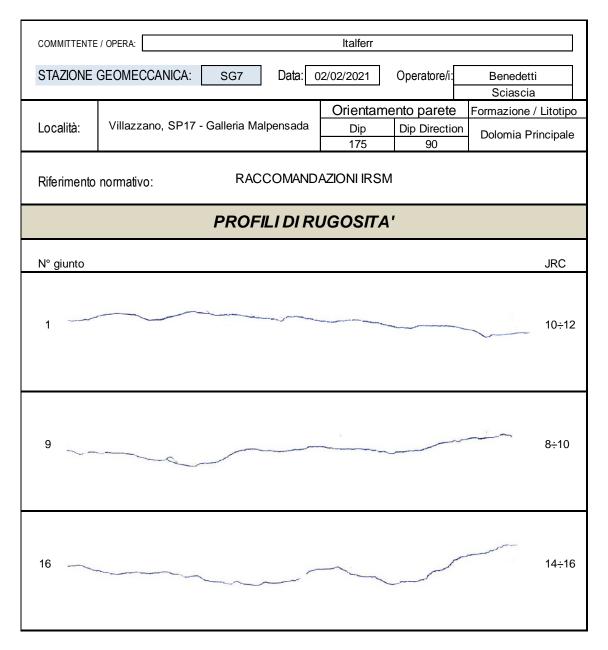
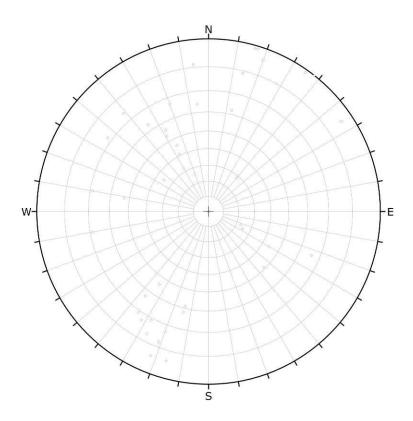



Tabella 27: SG7 - Profili di rugosità.

Symbol	Feature	
0	Pole Vectors	
	Plot Mode	Pole Vectors
	Vector Count	43 (43 Entries)
	Hemisphere	Lower
	Projection	Equal Angle

Figura 46: SG7 – Stereonet dei poli.

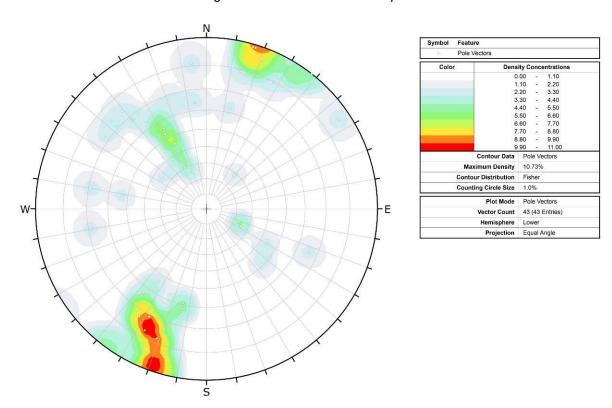


Figura 47: SG7 - Stereonet concentrazione dei poli.

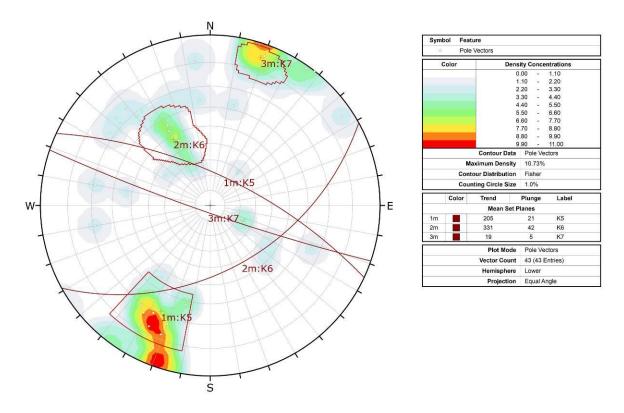


Figura 48: SG7 – Stereonet giacitura media discontinuità principali.

Figura 49: SG7 – Affioramento.