REGIONE BASILICATA

COMUNE DI VENOSA

COMUNE DI LAVELLO

Provincia POTENZA

PROGETTO DEFINITIVO PER LA REALIZZAZIONE DI UN IMPIANTO EOLICO DENOMINATO "CE MONTEMILONE" COSTITUITO DA 8 AEROGENERATORI CON POTENZA COMPLESSIVA DI 48 MW E RELATIVE OPERE DI CONNESSIONE ALLA R.T.N.

RELAZIONE PRELIMINARE SULLE STRUTTURE

ELABORATO

A.11

PROPONENTE:

ABEI ENERGY GREEN ITALY II S.R.L. Via Vincenzo Bellini, 22 00198 Roma (RM)

pec: abeienergygreenitaly2@legalmail.it

PROGETTO:

ATECH srl

Via della Resistenza 48 70125- Bari (BA) pec: atechsrl@legalmail.it

II DIRETTORE TECNICO dott. Ing. Orazio Tricarico

dott. Ing. Alessandro Antezza

Studio di Impatto Ambientale, Geologia, Paesaggio:

Via Sergio Amidei, 43 - 00128 Roma - Italy tel (+39) 06.50.79.64.16 - fax (+39) 06.94.80.36.43 www.studiodiconsulenza3e.it

info@studiodiconsulenza3e.it

Environment II Responsabile del Gruppo di Engineering Progettazione Ambientale

Dott. Geol. Andrea RONDINARA **Il Geologo**

Dott. Geol. Andrea RONDINARA Dott. Geol. Davide PISTILLO

Paesaggio

Dott. Arch. Vincenzo BONASORTA

0	MAGGIO 2022	B.C.C.	A.A O.T.	A.A O.T.	Progetto Definitivo
EM./REV.	DATA	REDATTO	VERIFICATO	APPROVATO	DESCRIZIONE

Redazione: Atech srl

Progetto definitivo

Proponente: ABEI ENERGY GREEN ITALY II Srl

Progetto definitivo per la realizzazione di un impianto eolico denominato "CE Montemilone" costituito da 8 turbine con una potenza complessiva di 48 MW e relative opere di connessione alla R.T.N.

A.11.a. PREMESSA	3
A.11.b. CARATTERIZZAZIONE DEL SITO	3
A.11.b.1. Inquadramento territoriale	3
A.11.b.2. Inquadramento geologico ed idrogeologico	10
A.11.c. IPOTESI DI PROGETTO DELLA FONDAZIONE	13
A.11.d. MODELLO DI CALCOLO	15
A.11.e. NORME DI RIFERIMENTO	16
A.11.f. MATERIALI STRUTTURALI	16
A.11.g. ANALISI DEI CARICHI	17
A.11.g.1. Azioni derivanti dalla sovrastruttura	17
A.11.g.2. Peso proprio della fondazione	19
A.11.g.3. Peso proprio del riempimento	19
A.11.g.4. Azione sismica	20
A.11.g.5. Approcci di progetto e combinazioni di carico	25
A.11.h. VERIFICHE DI SICUREZZA GLOBALI	27
A.11.h.1. Gapping	28
A.11.h.2. Ribaltamento	29
A.11.h.3. Carico limite	29
A.11.h.4. Slittamento	35
A.11.h.5. Valutazione del modulo di reazione (Winkler)	37
A.11.h.6. Valutazione dei cedimenti	37
A.11.i. VERIFICHE STRUTTURALI	38
A.11.i.1. Risultati dell'analisi	38
A.11.i.2. Verifiche della resistenza a flessione	46

Elaborato: Relazione preliminare delle strutture

Redazione: Atech srl

Redazione. Atech Sii

Proponente: ABEI ENERGY GREEN ITALY II Srl

Progetto definitivo

Progetto definitivo per la realizzazione di un impianto eolico denominato "CE Montemilone" costituito da 8 turbine con una potenza complessiva di 48 MW e relative opere di connessione alla R.T.N.

A.11.i.3.	Dimensionamento delle armature superiori	. 46
A.11.i.4.	Dimensionamento delle armature inferiori	. 47
A.11.i.5.	Dimensionamento delle armature circonferenziali superiori	. 49
A.11.i.6.	Dimensionamento delle armature circonferenziali inferiori	. 50
A.11.i.7.	Verifica a taglio	. 51
A.11.i.8.	Verifiche tensionali/di fessurazione	. 52

Redazione: Atech srl Progetto definitivo

Proponente: ABEI ENERGY GREEN ITALY II Srl

Progetto definitivo per la realizzazione di un impianto eolico denominato "CE Montemilone" costituito da 8 turbine con una potenza complessiva di 48 MW e relative opere di connessione alla R.T.N.

A.11.a. PREMESSA

La presente relazione ha lo scopo di illustrare i criteri adottati per il dimensionamento strutturale preliminare delle fondazioni delle torri eoliche individuate per la realizzazione del parco eolico di potenza complessiva pari a 48 MW e relative opere di connessione alla RTN da realizzare nel comune di Venosa e Lavello (Provincia di Potenze, in Regione Basilicata), proposto dalla società ABEI ENERGY GREEN ITALY II S.r.l.

Questa fase progettuale ha carattere preliminare, pertanto dovranno essere rimandati alla fase esecutiva gli aspetti più dettagliati e peculiari dell'opera. In questa fase si illustreranno le ipotesi di partenza dalle quali si è partiti per il pre-dimensionamento delle strutture fondali, nonché gli esiti delle verifiche strutturali e geotecniche.

A.11.b. CARATTERIZZAZIONE DEL SITO

A.11.b.1. Inquadramento territoriale

L'intervento in oggetto, come anticipato, è finalizzato alla realizzazione di un impianto di produzione di energia elettrica tramite conversione da fonte eolica, in zone classificate agricole, non di pregio, dal vigente strumento urbanistico comunale, da ubicare nel territorio dei comuni di **Lavello** a nord **e Venosa** a sud, in provincia di Potenza.

Progetto definitivo per la realizzazione di un impianto eolico denominato "CE Montemilone" costituito da 8 turbine con una potenza complessiva di 48 MW e relative opere di connessione alla R.T.N.

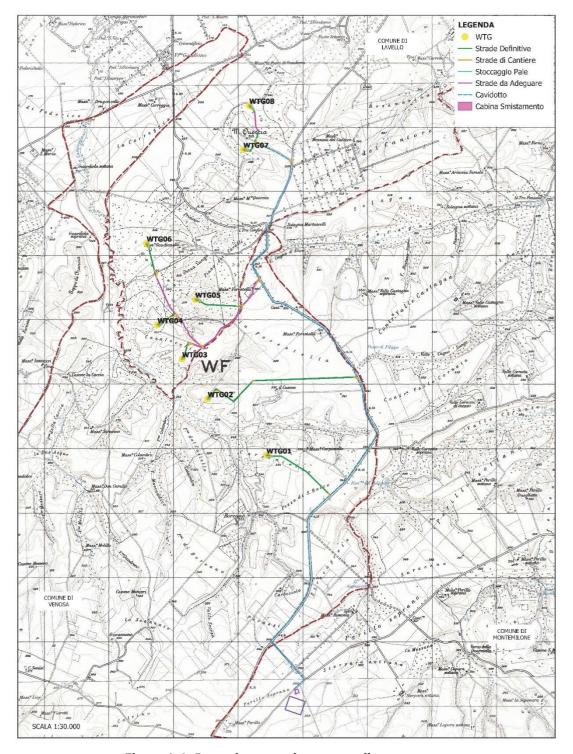


Figura 1-1: Inquadramento intervento di area vasta

Il sito di intervento è situato nell'area ad ovest del centro abitato di Montemilone, a circa 6 km, mentre, dista circa 6.2 km ad est dal centro abitato del comune di Lavello, a nord ovest, dista circa 9 km dal centro abitato di Venosa.

È raggiungibile a nord, direttamente dalla SP 78 e dalla SP52, a sud percorrendo la SS655, successivamente imboccando la SP18.

L'impianto è composto da 8 macchine con potenza unitaria di 6 MW, per una potenza complessiva pari a 48 MW.

Il sistema, quindi, sarà composto dai seguenti elementi principali:

- N° 8 Aerogeneratori tripala, di potenza unitaria pari a 6 MW, altezza mozzo 135 m, diametro rotore 170 m;
- Vani tecnici di trasformazione interni alle torri;
- Quadri elettrici MT;
- Sottostazione di trasformazione utente.

Gli interventi per l'installazione dei singoli aerogeneratori sono analoghi per le diverse aree; pertanto, di seguito saranno descritte le tipologie standard previste in progetto.

Infine, si evidenzia che tutti gli aerogeneratori componenti il Parco Eolico in oggetto sono stati installati su aree non potenzialmente in frana, lontane da bordi di scarpata e da creste rocciose molto strette ed allungate.

Le coordinate geografiche nel sistema UTM (WGS84; Fuso 33) ove sono posizionati gli aerogeneratori sono le seguenti:

ID TURBINA	UTM WGS84 33N Est (m)	UTM WGS84 33N Nord (m)
WTG01	575374 m E	4542707m N
WTG02	574464 m E	4543583 m N
WTG03	574068 m E	4544201 m N
WTG04	573686 m E	4544729 m N

Progetto definitivo

Proponente: ABEI ENERGY GREEN ITALY II Srl

Redazione: Atech srl

Progetto definitivo per la realizzazione di un impianto eolico denominato "CE Montemilone" costituito da 8 turbine con una potenza complessiva di

48 MW e relative opere di connessione alla R.T.N.

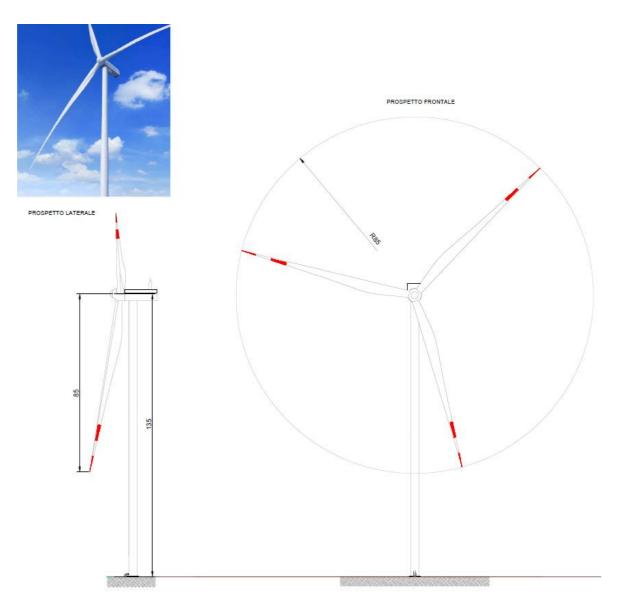
WTG05	574272 m E	4545128 m N
WTG06	573516 m E	4546000 m N
WTG07	575017 m E	4547459 m N
WTG08	575108 m E	4548144 m N

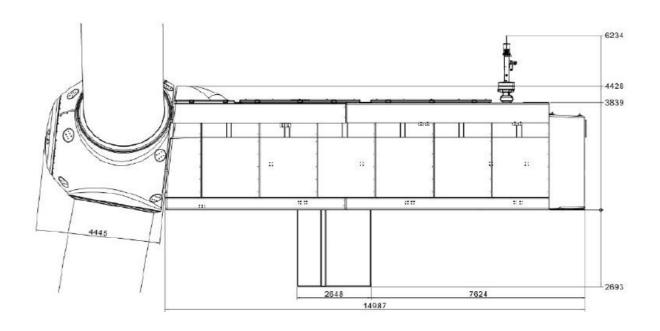
La struttura tipo dell'aerogeneratore individuato consiste in:

- una torre a struttura metallica tubolare di forma circolare, suddivisa in n. 5 tronchi da assemblarsi in cantiere. La base della torre viene ancorata alla fondazione mediante una serie di barre pre-tese (anchor cages);
- navicella, costituita da una struttura portante in acciaio e rivestita da un guscio in materiale composito (fibra di vetro in fibra epossidica), vincolata alla testa della torre tramite un cuscinetto a strisciamento che le consente di ruotare sul suo asse di imbardata contenente l'albero lento, unito direttamente al mozzo, che trasmette la potenza captata dalle pale al generatore attraverso un moltiplicatore di giri;
- un mozzo a cui sono collegate 3 pale, in materiale composito, formato da fibre di vetro in matrice epossidica, costituite da due gusci collegati ad una trave portante e con inserti di acciaio che uniscono la pala al cuscinetto e quindi al mozzo.

Di seguito si presentano le dimensioni e le caratteristiche tecniche dell'aerogeneratore tipo SIEMENS GAMESA SG 6-170 135m.

Progetto definitivo per la realizzazione di un impianto eolico denominato "CE Montemilone" costituito da 8 turbine con una potenza complessiva di 48 MW e relative opere di connessione alla R.T.N.




Figura 2: Struttura aerogeneratore

Progetto definitivo

Proponente: ABEI ENERGY GREEN ITALY II Srl

Progetto definitivo per la realizzazione di un impianto eolico denominato "CE Montemilone" costituito da 8 turbine con una potenza complessiva di 48 MW e relative opere di connessione alla R.T.N.

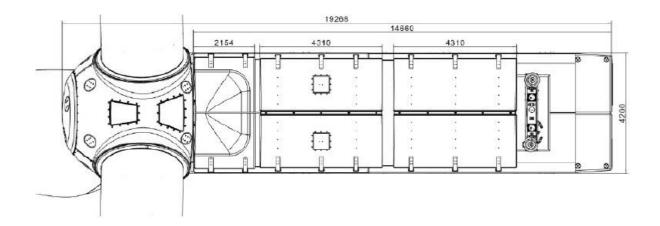


Figura 3: Tipico navicella WTG

Redazione: Atech srl Progetto definitivo

Proponente: ABEI ENERGY GREEN ITALY II Srl Progetto definitivo per la realizzazione di un impianto eolico denominato "CE Montemilone" costituito da 8 turbine con una potenza complessiva di

48 MW e relative opere di connessione alla R.T.N.

Potenza nominale	6 MW
Numero di pale	3
Diametro rotore	170 m
Altezza del mozzo	135 m
Velocità del vento di cut-in	3 m/s
Velocità del vento di cut-out	25 m/s
Velocità del vento nominale	11 m/s
Generatore	Asincrono
Tensione	690 V

Le principali infrastrutture viarie esistenti in prossimità del sito sono:

- > la Strada Statale 93;
- > la strada Statale SS655
- la Strada Provinciale 18;
- I a Strada Provinciale 78;
- > la Strada Provinciale 52;

Il sito di impianto è attraversato altresì da:

- > reti di telecomunicazione
- > reti di distribuzione gas
- > reti elettriche BT aeree su palificate
- > rete elettriche MT aeree su palificate
- tombinature e reti di impluvi naturali.

Redazione: Atech srl Progetto definitivo

Proponente: ABEI ENERGY GREEN ITALY II Srl

Progetto definitivo per la realizzazione di un impianto eolico denominato "CE Montemilone" costituito da 8 turbine con una potenza complessiva di 48 MW e relative opere di connessione alla R.T.N.

A.11.b.2. Inquadramento geologico ed idrogeologico

Così come riportato nell'allegato A.2 – Relazione Geologica, documento di progetto, redatto in ottemperanza alla vigente normativa sui terreni di fondazione, al quale si rimanda per una consultazione di maggior dettaglio, il sito dove avranno sede gli aerogeneratori ricade Foglio 175 "Cerignola" della Carta Geologica d'Italia in scala 1:100.000 e si sviluppa a quote comprese tra i circa 250 e i 330 metri sul livello medio del mare.

Redazione: Atech srl

Proponente: ABEI ENERGY GREEN ITALY II Srl

Progetto definitivo per la realizzazione di un impianto eolico denominato "CE Montemilone" costituito da 8 turbine con una potenza complessiva di 48 MW e relative opere di connessione alla R.T.N.

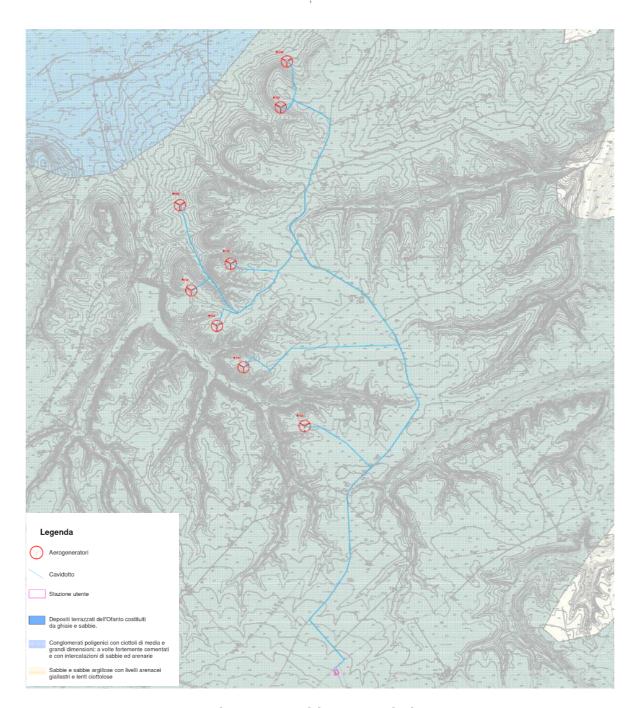


Figura 2-1: Stralcio Carta Geologica

In particolare tutta l'area interessata dal progetto in essere ricade sui depositi conglomeratici con livelli sabbiosi ed arenaceo-calcarei.

Progetto definitivo

Redazione: Atech srl

Proponente: ABEI ENERGY GREEN ITALY II Srl

Progetto definitivo per la realizzazione di un impianto eolico denominato "CE Montemilone" costituito da 8 turbine con una potenza complessiva di 48 MW e relative opere di connessione alla R.T.N.

Dal punto di vista morfologico, l'area di interesse è ubicata in una zona dotata di bassa acclività per cui, data la suborizzontalità del piano campagna, si possono escludere fenomeni erosivi degni di rilievo e tanto più problemi di instabilità quali frane e smottamenti.

La morfologia subpianeggiante di tale zona dipende essenzialmente dalla giacitura orizzontale o appena inclinata delle formazioni plio-pleistoceniche. Per la presenza nella parte alta di livelli conglomeratici e di crostoni calcarei, che proteggono in parte dal dilavamento le sottostanti formazioni sabbiose, si determinano laddove l'incisione è più attiva fianchi più scoscesi o a gradinata.

Per quanto riguarda l'aspetto sismo-tettonico, l'area non è direttamente interessata da lineamenti strutturali superficiali.

Dal punto di vista idrologico, la permeabilità di gran parte delle Formazioni presenti e le condizioni climatiche caratterizzate da precipitazioni concentrate nei mesi autunno-vernini e da notevole aridità nei mesi estivi permettono lo sviluppo di una rete idrografica superficiale. Ciò nonostante, le acque meteoriche hanno agito arealmente in questa area addolcendo, in una certa misura, le forme dei litotipi facilmente erodibili.

Sono presenti incisioni testimonianti un'apprezzabile attività delle acque, come alcuni elementi idrici superficiali del Fiume Ofanto, i quali scorrono in diverse direzioni.

Inoltre, in passato, le acque meteoriche hanno creato delle linee di deflusso preferenziale, in parte obliterate, orientate in differenti direzioni, che convogliavano le acque piovane verso le zone topograficamente più ribassate.

La circolazione delle acque di precipitazione è, come la morfologia, condizionata dalla natura dei terreni affioranti. In corrispondenza degli affioramenti argillosi, impermeabili, le acque piovane non riescono a permeare a grande profondità per cui danno luogo ad un reticolo di fossi a sviluppo calanchivo ed attività limitata ai periodi piovosi.

E' da sottolineare inoltre che nella zona non esiste una falda di tipo "profondo". La falda acquifera che alimenta i pozzi della zona, dalle portate estremamente modeste e variabili, comprese tra 5 e 30 litri/minuto, trova sede quasi esclusivamente nelle sabbie e nei conglomerati.

Nell'area d'interesse, considerata la stratigrafia è verosimile l'assenza di una falda acquifera in senso stretto, ma piuttosto va considerata l'ipotesi circa la presenza di accumuli d'acqua poco profondi ed a carattere stagionale, concentrati essenzialmente nell'area di massima depressione

morfologica, laddove a causa della scarsa permeabilità dei litotipi, le diverse soggiacenze superficiali di acqua, posseggono il tempo necessario alla loro lenta permeazione nelle sottostanti porzioni di suolo.

Il programma di studi e le indagini geognostiche prese in riferimento **nella relazione Geologica** (**cfr. allegato A.2**), hanno consentito di caratterizzare sotto il profilo geologico e geomorfologico il sito di indagine nonché i terreni di fondazione interessati dall'opera di progetto, da realizzarsi in agro Lavello (PZ), e Venosa (PZ).

In virtù di quanto rilevato, è possibile affermare che la realizzazione del progetto di che trattasi non andrà ad interferire con l'attuale stato di equilibrio dei luoghi e, quindi, assolutamente sarà ininfluente sul grado di pericolosità/rischio.

A.11.c. IPOTESI DI PROGETTO DELLA FONDAZIONE

Le fondazione in progetto è in calcestruzzo armato, con pianta di forma circolare di diametro De = 20.80 m, a spessore variabile da un minimo di 0.5 m, sul bordo esterno, ad un massimo di 3mt in corrispondenza della zona centrale di attacco della parte in elevazione della torre.

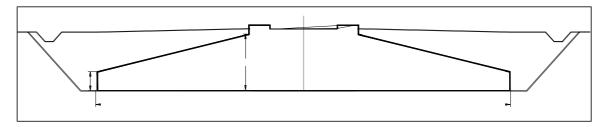


Figura 5: sezione qualitativa plinto fondazione

La base della torre è solidarizzata alla struttura fondale mediante un sistema di tirafondi (anchor cages) pre-tesi ed annegati nel getto del plinto di fondazione.

Redazione: Atech srl

Proponente: ABEI ENERGY GREEN ITALY II Srl

Progetto definitivo per la realizzazione di un impianto eolico denominato "CE Montemilone" costituito da 8 turbine con una potenza complessiva di 48 MW e relative opere di connessione alla R.T.N.

Figura 3: Posa anchor cages tipo

Figura 4: armatura plinto tipo

In questa fase progettuale si è optato per fondazioni di tipo superficiale, con piano di posa impostato a -3mt dal piano campagna.

A.11.d. MODELLO DI CALCOLO

La fondazione è stata modellata con elementi finiti tipo "shell-thick" vincolati su suolo elastico alla Winkler e bloccati in modo isostatico contro le labilità di piano. La costante di sottofondo k (di Winkler) è stata calcolata come riportato al paragrafo A.11.h.5;

Il terreno è considerato col modello alla Winkler – molle non reagenti a trazione, pertanto le verifiche condotte sono di tipo non lineare.

I carichi provenienti dalla struttura in elevazione (Fz, Fx, Fy, Mz, Mx, My) vengono applicati ad un nodo centrale posto ad una quota superiore rispetto al piano medio della piastra; questo nodo è collegato, attraverso una serie di elementi rigidi, alla corona di nodi (indicati con C nella figura 9) cui corrisponde l'attacco della torre alla fondazione.

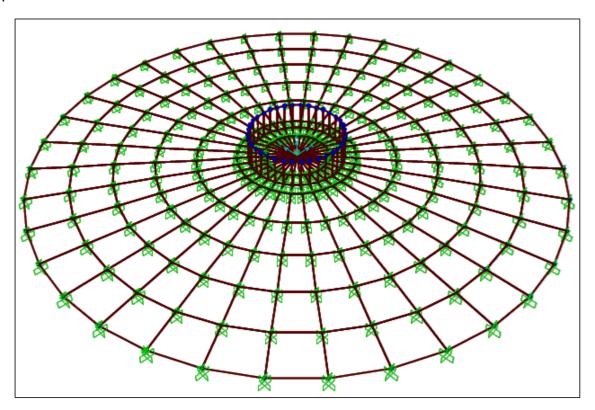


Figura 5: modello di calcolo a elementi finiti

Progetto definitivo per la realizzazione di un impianto eolico denominato "CE Montemilone" costituito da 8 turbine con una potenza complessiva di 48 MW e relative opere di connessione alla R.T.N.

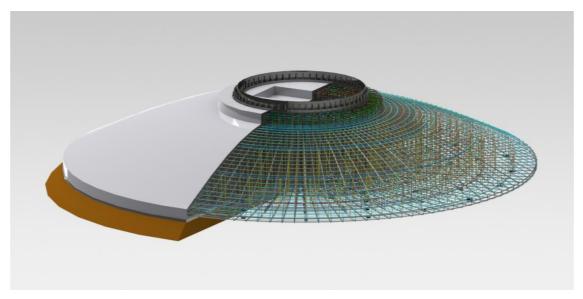


Figura 6: Modello 3d fondazione

A.11.e. NORME DI RIFERIMENTO

- DM 17/01/2018 Nuove norme tecniche per le costruzioni
- Circ. 21 Gennaio 2019, n. 7/C.S.LL.PP.

A.11.f. MATERIALI STRUTTURALI

CALCESTRUZZO STRUTTURALE

Classe di resistenza C28/35 (Rck > = 35 N/mm²) Classe di esposizione XC2 - Prospetto 4 UNI 11104 Dosaggio di cemento > = 320kg/mc d'impasto Rapporto A/C < = 0,55

Contenuto max di cloruri Cl 0,20%

Dimensione max inerti 25 mm

Consistenza S4

Copriferro min 50 mm

Rck	35	N/mm²
fck	29.05	N/mm²

Elaborato: Relazione preliminare delle strutture

Redazione: **Atech srl Progetto definitivo**

Proponente: ABEI ENERGY GREEN ITALY II Srl

Progetto definitivo per la realizzazione di un impianto eolico denominato "CE Montemilone" costituito da 8 turbine con una potenza complessiva di 48 MW e relative opere di connessione alla R.T.N.

γc	1.50	
αcc	0.85	
fcd	16.46	N/mm²
fctm	2.83	N/mm²
fctd	1.32	N/mm²
v1	0.50	
f'cd	8.23	N/mm²
Ecm	32588.11	N/mm²

ACCIAIO PER ARMATURE

Tipo	B 450 C
fy	450.00 N/mm ²
ft	540.00 N/mm ²
γs	1.15
fyd	391.30 N/mm ²
Es	210'000.00 N/mm
εyd	1.86
εud	67.50

A.11.g. ANALISI DEI CARICHI

I carichi considerati nel modello sono:

- 1) I carichi provenienti dalla struttura in elevazione (Fz, Fx, Fy, Mz, Mx, My);
- 2) Il peso proprio della fondazione (calcolato in automatico dal software di calcolo);
- 3) Il peso del terreno di rinterro (sovraccarico permanente).

A.11.g.1. Azioni derivanti dalla sovrastruttura

Per quanto concerne gli scarichi in fondazione derivanti dall'aerogeneratore si farà riferimento alle specifiche di seguito riportate. Si precisa che I carichi sono <u>non fattorizzati</u> ("excl. PLF") pertanto ad essi sono da applicare i "Partial Load Factor" riportati nella 3° colonna, e che sono in accordo con quanto riportato nella norma tabella 3 § 7.6.2.1.

Redazione: Atech srl

Proponente: ABEI ENERGY GREEN ITALY II Srl

Progetto definitivo per la realizzazione di un impianto eolico denominato "CE Montemilone" costituito da 8 turbine con una potenza complessiva di 48 MW e relative opere di connessione alla R.T.N.

Characteristic Extreme								
Lead	LC/Family	PLF	Туре	Mbt	Mzt	FndFr	Fzt	Ref
Sensor	[-]	[-]	[-]	[kNm]	[kNm]	[kN]	[kN]	[-]
Mbt	23CoEogVra4(fam180)	1.10	Abs	125500	-698.8	1176	-4946	[2]
Mzt	22VOGHWO300(fam168)	1.10	Abs	21970	-10060	203.9	-4774	[2]
FndFr	23CoEogVra5(fam181)	1.10	Abs	125300	-536.4	1201	-4961	[2]
Fzt	22VOGHWO200(fam167)	1.10	Abs	36490	1621	367.4	-5040	[1]

Figura 7: Scarichi in fondazione – Condizioni di carico Abnormal

Characteristic Extreme								
Lead	LC/Family	PLF	Туре	Mbt	Mzt	FndFr	Fzt	Ref
Sensor	[-]	[-]	[-]	[kNm]	[kNm]	[kN]	[kN]	[-]
Mbt	32PREogVra11(fam242)	1.35	Abs	106000	-498.6	968.4	-4936	[1]
Mzt	21RPY8Vo1a00(fam116)	1.35	Abs	36880	-9622	343.8	-4840	[2]
FndFr	14EcdVrpa00(fam54)	1.35	Abs	98730	-1765	973.7	-4946	[2]
Fzt	12IceUHWO100(fam27)	1.35	Abs	37170	2040	379.6	-5094	[2]

Figura 8: Scarico in fondazione – Condizioni di carico Normal

Production loads										
		Char. load	Prob.:1e-2	Prob.:1e-4		Ref				
Mres	[kNm]	106000.00	73172.11	81799.59	[1]	[2]	[1]			
Mz	[kNm]	-9622.07	-4079.72	-6879.56	[2]	[1]	[1]			
Fres	[kN]	973.74	679.73	777.36	[2]	[2]	[2]			
Fz	[kN]	-5094.38	-4979.90	-5012.99	[2]	[2]	[2]			

Figura 9: Scarico in fondazione - Riepilogo delle massimi caratteristici delle componenti

Table 3 - Partial safety factors for loads 7

	Favourable loads		
Туре			
Normal (N)	Abnormal (A)	Transport and erection (T)	All design situations
1,35	1,1	1,5	0,9

Figura 10: Coefficienti di combinazione previsti dalla specifica tecnica

Progetto definitivo per la realizzazione di un impianto eolico denominato "CE Montemilone" costituito da 8 turbine con una potenza complessiva di 48 MW e relative opere di connessione alla R.T.N.

A.11.g.2. Peso proprio della fondazione

La geometria della fondazione è di seguito definita:

Diametro del plinto di fondazione:	De	=	20.80	m
Diametro esterno del piedistallo:	Di	=	5.50	m
Diametro interno del piedistallo:	Dint	=	3.00	m
Altezza minima plinto (al bordo):	Hedge	=	1.50	m
Altezza massima plinto (al centro):	Hslab	=	3.30	m
Altezza massima plinto + piedistallo:	Н	=	3.60	m
Scalino esterno del piedistallo:	H - Hslab	=	0.30	m
Scalino interno del piedistallo:	Hint	=	0.20	m
Pendenza estradosso soletta:	α	=	19.46	%
Pendenza profilo terreno:	δ	=	2.00	%
Ricoprimento minimo:	Hbackfill,mir	n =	0.30	m

I volume del plinto è di 1.032,19 m³ pertanto il peso è pari a 25.804,75 kN.

A.11.g.3. Peso proprio del riempimento

È previsto un rinterro al di sopra e a fianco del plinto di fondazione, da realizzarsi con materiale drenante di buone caratteristiche meccaniche. Si assume, in sede di analisi, un peso di volume pari a 17.5 kN/m3, e si assegna questo peso come pressione verticale variabile applicata sigli elementi shell che modellano il plinto, secondo quanto riportato nella successiva tabella.

Raggio	Raggio	H = spessore	q riempim.	
interno [m]	esterno [m]	riempim. [m]	[kN/m ²]	
2.750	4.600	0.62	8.31	
4.600	6.450	0.95	13.89	
6.450	8.300	1.27	19.50	
8.300	10.150	1.59	25.13	
10.150	12.000	1.92	30.76	

Figura 11: carichi dovuti al riempimento

Redazione: **Atech srl Progetto definitivo**

Proponente: ABEI ENERGY GREEN ITALY II Srl

Progetto definitivo per la realizzazione di un impianto eolico denominato "CE Montemilone" costituito da 8 turbine con una potenza complessiva di 48 MW e relative opere di connessione alla R.T.N.

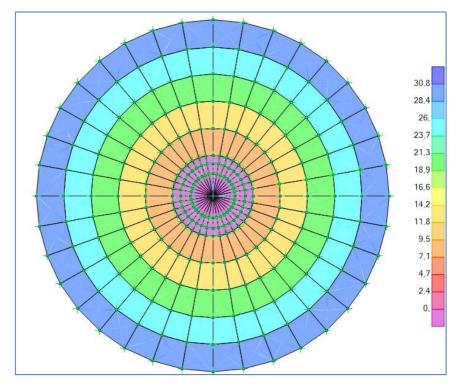


Figura 12: Distribuzione delle pressioni dovute al riempimento sul plinto

Il peso totale del riempimento è pari a 9.574 kN.

A.11.g.4. Azione sismica

La pericolosità sismica di un sito, costituisce l'elemento di conoscenza primario per la determinazione delle azioni sismiche; essa deve essere descritta in modo da renderla compatibile con le NTC e da dotarla di un sufficiente livello di dettaglio, sia in termini geografici che in termini temporali; tali condizioni possono ritenersi soddisfatte se i risultati dello studio di pericolosità sono forniti:

 in termini di valori di accelerazione orizzontale massima ag e dei parametri che permettono di definire gli spettri di risposta ai sensi delle NTC, nelle condizioni di sito di riferimento rigido orizzontale sopra definite

Redazione: **Atech srl Progetto definitivo**

Proponente: ABEI ENERGY GREEN ITALY II Srl

Progetto definitivo per la realizzazione di un impianto eolico denominato "CE Montemilone" costituito da 8 turbine con una potenza complessiva di 48 MW e relative opere di connessione alla R.T.N.

 in corrispondenza dei punti di un reticolo i cui nodi sono sufficientemente vicini fra loro (non distano più di 10 km);

 per diverse probabilità di superamento in 50 anni e/o diversi periodi di ritorno TR ricadenti in un intervallo di riferimento compreso almeno tra 30 e 2475 anni, estremi inclusi;

Per le categorie di sottosuolo di fondazione (**categoria C** per il sito in esame) definite dal D.M. 17/01/2018 al comma 3. 2. 2, i coefficienti **Ss** e **Cc** possono essere calcolati in funzione dei valori di **F**₀ e **Tc**, relativi al sottosuolo di categoria A, mediante le espressioni fornite nella Tabella 3.2.V, nelle quali g è l'accelerazione di gravità ed il tempo è espresso in secondi.

Inoltre, poiché l'area in esame presenta pendenze nulle, si attribuisce ad essa la Categoria topografica T1 e pertanto il coefficiente da considerare vale 1,0.

Di seguito vengono inseriti i dati utili allo studio della pericolosità sismica del sito:

Denominazione parametro sismico	Valore di input
Vita nominale (anni)	30
Classe d'uso	I
Categoria di sottosuolo	В
Categoria topografica	T1
Coordinate geografiche	Latitudine: 41.0441
coordinate geografiche	Longitudine: 15.6075

Progetto definitivo per la realizzazione di un impianto eolico denominato "CE Montemilone" costituito da 8 turbine con una potenza complessiva di 48 MW e relative opere di connessione alla R.T.N.

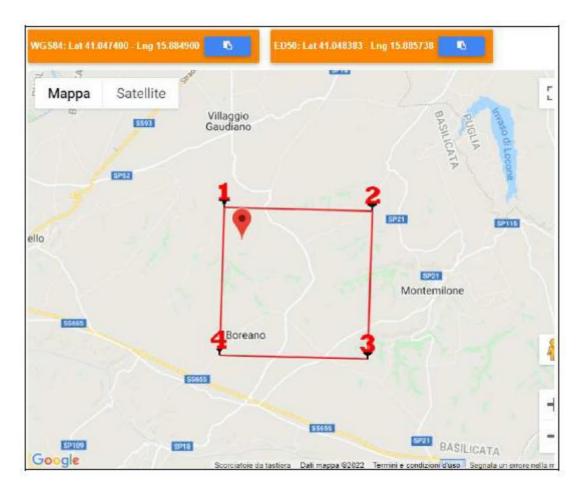


Figura 13: Reticolo sismico di base

Per determinare, in via del tutto teorica e approssimativa, i valori di F0 , T*c e Ag utili alla definizione dello spettro di risposta elastico in accelerazione delle componenti orizzontali, sempre secondo le Norme tecniche del D.M. 17/01/2018, le azioni sismiche sulle costruzioni vengono valutate in relazione ad un periodo di riferimento Vr, ricavato per ciascun tipo di costruzione, moltiplicandone la vita nominale Vn per il coefficiente d'uso Cu.

Nel caso in esame, come detto, si è fatto quindi riferimento ad una **Vita Nominale di 30 anni** e ad un coefficiente di **Classe d'uso I** che ha valore pari ad **0,7**.

Pertanto i valori delle forme spettrali da considerarsi sono i seguenti (da Geostru Parametri sismici – figura seguente):

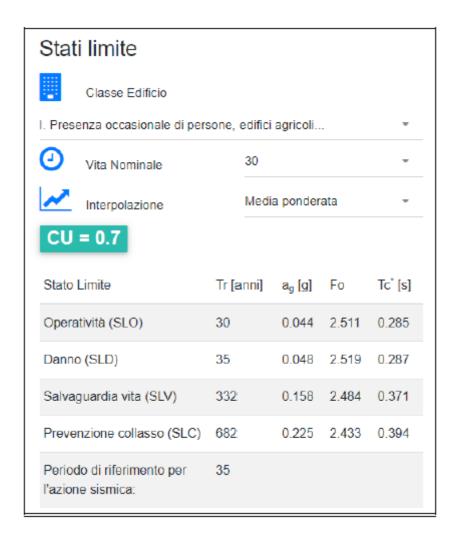


Figura 14: Forme spettrali

Dal punto di vista sismico l'area in oggetto è classificata come zona sismica 2 (O.P.C.M. 3274/'03). Si riportano le seguenti ipotesi di caratterizzazione sismica del sito e dell'opera in oggetto:

Zona sismica	Zona 2
Vita nominale	50 anni
Classe d'uso	IV
C _U	2,0
Periodo di riferimento per l'azione sismica – $V_R = V_N * C_U$	100 anni
Categoria suolo di fondazione	С
Categoria topografica	T1 (i < 15°)

Progetto definitivo per la realizzazione di un impianto eolico denominato "CE Montemilone" costituito da 8 turbine con una potenza complessiva di 48 MW e relative opere di connessione alla R.T.N.

In funzione dei dati sopra riportati si calcolano i parametri utili alla costruzione dello spettro elastico di progetto:

Stati limite		P _{VR}	T _R	ag	F _o	T _c *
		FVR	[anni]	[m/s2]	[-]	[s]
Stati limite di	SLO	81%	30	0,037g	2,420	0,278
esercizio	SLD	63%	35	0,039g	2,423	0,289
Stati limite	SLV	10%	332	0,085g	2,635	0,429
ultimi	SLC	5%	682	0,104g	2,729	0,456

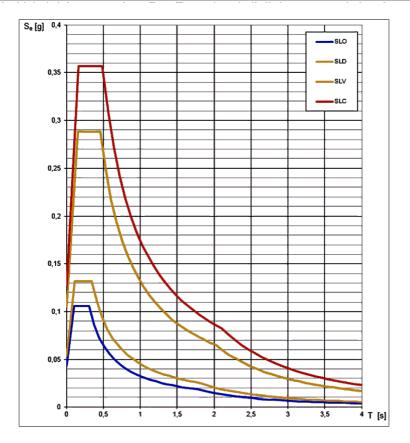


Figura 15: Spettri elastici di progetto

In linea generale nelle strutture eoliche l'azione orizzontale prevalente è quella dovuta ai venti, pertanto, a meno di valutazioni più specifiche, l'azione sismica è trascurabile in questo tipo di analisi.

Ai fini della presente relazione si fa riferimento a scenari di progetto non sismici, assumendo come carichi dimensionanti quelli calcolati con le simulazioni di cui al § 6.3 - scenari di progetto non sismici previsti dalla norma, condizioni di carico di tipo Normal/Abnormal.

A.11.g.5. Approcci di progetto e combinazioni di carico

Per le verifiche geotecniche si fa riferimento all'approccio 2, in accordo la combinazione A1+M1+R3 e le tabelle seguenti:

CARICHI	EFFETTO	Coefficiente Parziale y _F (o y _E)	EQU	(A1) STR	(A2) GEO
Permanenti	Favorevole		0,9	1,0	1,0
remanenn	Sfavorevole	Ϋ́GI	l,l	1,3	1,0
Permanenti non strutturali (1)	Favorevole		0,0	0,0	0,0
remanenti non strutturan	Sfavorevole	γ _{G2}	1,5	1,5	1,3
Vorink!!:	Favorevole		0,0	0,0	0,0
Variabili	Sfavorevole	Ύοί	1,5	1,5	1,3

VERIFICA	COEFFICIENTE	COEFFICIENTE	COEFFICIENTE		
	PARZIALE	PARZIALE	PARZIALE		
	(R1)	(R2)	(R3)		
Capacità portante	$\gamma_R = 1.0$	$\gamma_R = 1.8$	$\gamma_R = 2.3$		
Scorrimento	$\gamma_R = 1.0$	$\gamma_R = 1,1$	$\gamma_{\rm R} = 1.1$		

Nella logica del metodo degli Stati Limite ogni azione è stata classificata in base al tipo di "sorgente" e al tipo di carico. Ciò anche nell'ottica di operare una corretta applicazione della norma [5], specifica per gli aerogeneratori, assieme con i criteri di progettazione previsti dalla norma [1] valida per tutte le costruzioni civili ed industriali.

AZIONE	TIPO DI CARICO	NORMA DI	COEFFICIENTI PARZIALI γ _F			
, LIONE	THE BIGHNIES	RIFERIMENTO	STR-GEO	EQU		
Peso proprio fondazione	Permanente fondazione	[1]	1,00 / 1,30	0,90		
Peso terreno riempimento	Permanente fondazione	[1]	0,80 / 1,50	0,80		
Peso aerogeneratore [Fzt]	Permanente aerogener.	[5]	0,90 / 1,10 1,35	0,90		
Vento aerogen. [FndFr]	Variabile aerogeneratore	[5]	/ 1,10 / 1,35	/ ^{1,10} / 1,35		

Figura 16: Possibili valori dei coefficienti parziali delle azioni adottati nel presente progetto

Nella tabella a seguire si riporta l'elenco completo delle combinazioni di carico adottate nelle verifiche della fondazione dell'aerogeneratore in oggetto. Le ultime 6 colonne "N","V","M" indicano: "N" – carichi permanenti dell'aerogeneratore (indicati con F_{zi} in tabella 8 e tabella 9)

"V","M" – azione derivante dal vento agente sull'aerogeneratore, valutata secondo [5]

Il pedice "Nor" oppure "Abn" identifica il tipo di combinazione in accordo con [5].

	Combinazione	Peso proprio	Peso del terreno di	Componenti dello scarico derivante dall'aerogeneratore					
		fondazione	riempimento	NNor	NAbn	VNor	VAbn	MNor	MAbn
1	Normal SLU1	1,30	1,50	1,35		1,35		1,35	
2	Normal SLU2	1,00	1,00	0,90		1,35		1,35	
3	Abnormal 1.10	1,30	1,50		1,10		1,10		1,10
4	Abnormal 0.90	1,00	1,00		0,90		1,10		1,10
5	Normal EQU	0,90	0,00	0,90		1,35		1,35	
6	Abnormal EQU	0,90	0,00		0,90		1,10		1,10
7	Normal	1,00	1,00	1,00		1,00		1,00	
8	Abnormal	1,00	1,00		1,00		1,00		1,00
9	Quasi permanente	1,00	1,00	1.00		1,00		1,00	

Figura 17: Coefficienti parziali delle azioni utilizzati ai fini del presente progetto

Come si può notare, in queste combinazioni (che, come si è detto, sono state analizzate in assumendo la non linearità del modello) le prime 4 sono riconducibili a stati limite ultimi e, pertanto, sono state adottate per le verifiche di resistenza STR/GEO. Anche la 5-6 sono riconducibili a stati limite ultimi, ma di tipo EQU, pertanto sono state utilizzate unicamente nelle verifiche a ribaltamento.

Nella combinazione 7 gli scarichi N_{Nor} , V_{Nor} e M_{Nor} si riferiscono ai valori riportati in tabella 10 (valori caratteristici), pertanto la combinazione 7 è stata adottata per la valutazione delle tensioni (SLE R) su calcestruzzo e armatura, oltre che per la valutazione dei cedimenti di fondazione.

L'assenza di dati relativi all'azione del vento con tempo di ritorno tipici dei valori frequenti/quasi permanenti costituisce un limite in questa fase di progettazione, non permettendo di condurre le verifiche di fessurazione rispetto a valori plausibili delle sollecitazioni in fondazione. Queste verifiche sono, pertanto, state condotte assumendo i momenti flettenti della combinazione rara (n. 7, peraltro coincidente con la 8 per quanto detto). Per lo stesso motivo, le verifiche di gapping (di

cui al 6.2) saranno condotte per le combinazioni 7, 8 e 9, assumendo per la combinazione quasi permanente gli stessi valori di scarico della 7.

Nella tabelle a seguire si riporta un riepilogo dei fattori parziali, dei coefficienti e fattori di sicurezza.

Verifica		Tipo di combinazione		Coefficienti parziali delle azioni γ?					
					Peso proprio	Riempimento	Fz	Н	M
CEO	Carico limite	Approccio 2	A1+M1+R3	Abnormal 2	1.00	1.00	0.90	1.10	1.10
GEO (abnormal)	Carico limite	Approccio 2	A1+M1+R3	Abnormal 1	1.30	1.50	1.10	1.10	1.10
	Scorrimento	Approccio 2	A1+M1+R3	Abnormal 2	1.00	1.00	0.90	1.10	1.10
050	Carico limite	Approccio 2	A1+M1+R3	Normal SLU2	1.00	1.00	0.90	1.35	1.35
GEO (normal)	Carico limite	Approccio 2	A1+M1+R3	Normal SLU1	1.30	1.50	1.35	1.35	1.35
(normal)	Scorrimento	Approccio 2	A1+M1+R3	Normal SLU2	1.00	1.00	0.90	1.35	1.35
	Ribaltamento	IEC	normal case	Normal EQU	0.90	0.00	0.90	1.35	1.35
EQU	Kibaitainento	IEC	abnormal case	Abnorm.EQU	0.90	0.00	0.90	1.10	1.10
EQU	Gapping	IEC	normal case	Normal	1.00	1.00	1.00	1.00	1.00
	Сарріпід	IEC	abnormal case	Abnormal	1.00	1.00	1.00	1.00	1.00

Verifica Tipo o		di combinazio	di combinazione		Coefficiente materiale (terreno) γ?			F.S.	
					tan(φ')	c'	Cu	γ ?	г.э.
GEO	Carico limite	Approccio 2	A1+M 1+R3	Abnormal 2	1.00	1.00	1.00	2.30	3.11
(abnormal)	Carico limite	Approccio 2	A1+M 1+R3	Abnormal 1	1.00	1.00	1.00	2.30	-
(abrioritial)	Scorrimento	Approccio 2	A1+M 1+R3	Abnormal 2	1.00	1.00	1.00	1.10	2.77
GEO	Carico limite	Approccio 2	A1+M 1+R3	Normal SLU2	1.00	1.00	1.00	2.30	2.91
(normal)	Carico limite	Approccio 2	A1+M 1+R3	Normal SLU1	1.00	1.00	1.00	2.30	3.01
(Horrital)	Scorrimento	Approccio 2	A1+M 1+R3	Normal SLU2	1.00	1.00	1.00	1.10	2.37
	Ribaltamento	IEC	normal case	Normal EQU					2.25
EQU	Kibanamento	IEC	abnormal case	Abnorm.EQU					2.33
LQU	Gapping	IEC	normal case	Normal					1.11
	Gapping	IEC	abnormal case	Abnormal					2.19

A.11.h. VERIFICHE DI SICUREZZA GLOBALI

Le verifiche riguardanti la sicurezza degli elementi strutturali sono state eseguite in accordo con il metodo degli stati limite di cui ai cap. 2, 4 e 6 di [1], tenendo conto delle ulteriori richieste prestazionali previste nella normativa di settore [5].

Le verifiche esposte nel seguito si fondano sui dati di calcolo forniti dal progettista della parte in elevazione, e che sono riassunti nelle successive tabelle (§ 6.3).

Sono state condotte le verifiche seguenti:

1) verifiche globali di ribaltamento

Elaborato: Relazione preliminare delle strutture

Progetto definitivo per la realizzazione di un impianto eolico denominato "CE Montemilone" costituito da 8 turbine con una potenza complessiva di 48 MW e relative opere di connessione alla R.T.N.

- 2) verifiche globali di gapping (parzializzazione delle pressioni sul piano di appoggio)
- 3) verifiche geotecniche di resistenza a slittamento e carico limite
- 4) valutazioni dei cedimenti massimi assoluti e differenziali
- 5) valutazione della costante di Winkler
- 6) verifiche di resistenza a flessione / taglio della piastra di fondazione
- 7) verifiche a fessurazione della piastra di fondazione.

A.11.h.1. Gapping

La verifica di GAPPING è condotta assumendo che in combinazione 9 (quasi permanente, che nel nostro caso, coincide con la Normal) si abbia un'impronta sul terreno pari al 100 % della sagoma del plinto. Per le combinazioni 7 e 8 si assume, invece, che l'impronta possa ridursi fino al 50% della sagoma del plinto. Per garantire il 100% di sezione reagente occorre che la risultante abbia un'eccentricità massima e non superiore a 0,125 D - essendo D pari al diametro del plinto - mentre per garantire che la porzione compressa sia non inferiore al 50% dell'area di base del plinto occorre limitare l'eccentricità a 0,294 D. Di seguito si riportano le verifiche di gapping rispetto alla combinazione Qp, Normal e Abnormal tutte non fattorizzate.

	TO	OWER BOTTO	M	FOUNDATION BOTTOM				
		CHARACTERISTIC VALUES						
	0.5	Normal	Abnormal	0.5	Normal	Abnormal		
	Q.p.	Nomai	FC = 1	Q.p.	Nomai	FC = 1		
Fz	5'094.00	5'094.00	5'040.00	40'472.32	40'472.32	40'418.32		
Fxy	973.00	973.00	1'201.00	973.00	973.00	1'201.00		
Mxy	106'000.00	106'000.00	125'500.00	109'823.89	109'823.89	130'219.93		
		Dl	ESIGN VALUI	ES (FACTORE	ED)			
Fz	5'094.00	5'094.00	5'040.00	40'472.32	40'472.32	40'418.32		
Fxy	973.00	973.00	1'201.00	973.00	973.00	1'201.00		
Mxy	106'000.00	106'000.00	125'500.00	109'823.89	109'823.89	130'219.93		

Figura 18: Analisi scarichi in fondazione – Tower bottom (= estradosso) e

Foundation bottom (intradosso plinto)

Redazione: Atech srl

Progetto definitivo per la realizzazione di un impianto eolico denominato "CE Montemilone" costituito da 8 turbine con una potenza complessiva di 48 MW e relative opere di connessione alla R.T.N.

		QP	Normal	Abnormal
Eccentricity	e [m] =	2.71	2.71	3.22
	(e/D) =	0.113	0.113	0.134
	(e / D) max	0.125	0.294	0.294
Check	FS =	1.1056	2.600	2.190

Figura 19: Verifica di Gapping

A.11.h.2. Ribaltamento

La verifica a ribaltamento è dettagliata nelle seguenti tabelle.

	Peso proprio	Riempimento	Fz	Н	М
Normal EQU	0.90	0.00	0.90	1.35	1.35
Abnor. EQU	0.90	0.00	0.90	1.10	1.10

Figura 20: Coefficienti di combinazione per la verifica a ribaltamento

	Normal EQU	Abnor. EQU
Mo (overturning) [kNm]	148'262.25	143'241.92
Ms (stabilizing) [kNm]	333'706.47	333'123.27
$FS = M_S / M_O$	2.251	2.326

Figura 21: Verifica a ribaltamento

A.11.h.3. Carico limite

Le verifiche a carico limite, per condizioni drenate e non drenate, sono dettagliate nelle successive tabelle. Si è adottato il metodo di verifica di cui all'appendice D di [4].

SCARICHI DI PROGETTO PER VERIFICHE DI PORTANZA

	Peso proprio	Riempimento	Fz	Н	М
Normal SLU2	1.00	1.00	0.90	1.35	1.35
Normal SLU1	1.30	1.50	1.35	1.35	1.35
Abnormal 2	1.00	1.00	0.90	1.10	1.10
Abnormal 1	1.30	1.50	1.10	1.10	1.10

		TOWER B	OTTOM		FOUNDATION BOTTOM			
	Normal SLU		Abnormal SLU		Normal SLU		Abnormal SLU	
Fz	4'584.60	6'876.90	4'536.00	5'544.00	39'962.92	54'783.44	39'914.32	53'450.54
Fxy	1'313.55	1'313.55	1'321.10	1'321.10	1'313.55	1'313.55	1'321.10	1'321.10
Mxy	143'100.00	143'100.00	138'050.00	138'050.00	148'262.25	148'262.25	143'241.92	143'241.92

Figura 22: Analisi scarichi in fondazione

Redazione: Atech srl

Progetto definitivo per la realizzazione di un impianto eolico denominato "CE Montemilone" costituito da 8 turbine con una potenza complessiva di 48 MW e relative opere di connessione alla R.T.N.

VERTICAL BEARING CAPACITY CHECK

Soil unit weight	γ	18.70	kPa
Backfilling unit weight	γ*	17.50	kPa
Friction angle	φ'	22.0°	
Effective cohesion	c'	25.00	kPa
Undrained cohesion	C_{u}	200	kPa
Design bending moment Mxy		143'242	kNm
Design torque moment	$M_{\rm Z}$	12'172.60	kNm
Design vertical load	Fz	39'914	kN
Design tangential load	Н	1'321	kN
Radius	R	12.00	m
Depth of foundation	D		m
Eccentricity	e Mxy/Fz	3.59	m
Ellipse minor axes	Be 2*(R-e)	16.82	m
Ellipse major axes 22.90 m Effective loaded - e²)¹¹²] 282.73 (Aeff*Le/Be)¹¹² Effective width Horizontal force	$$\rm m^2$$ Effective lenght $$\rm L_{\rm eff}$$ $19.62~\rm m$ $$\rm B_{\rm eff}$$ $$\rm L_{\rm eff}*B_{\rm e}/L_{\rm e}$$	14.41 3'053.40	m
Inclination of foundation η	H' $2*Mz/I_{eff}+[H^2+(2*Mz/I_{eff})^2]^{1/2}$	0.0°	kN
Nc Nc	$(7.82 - 1) / \tan (22.0^{\circ}) = 16.883$		
$N_{ m q}$ $N_{ m q}$	Minte		
N_{γ} N_{γ}	2*(7.82-1)*tan(22.0°) = 5.512		
Shape factor	Sc (1.28 * 7.82 - 1) / (7.82 - 1) =	1.316	
Shape factor	Sq III	1	
Shape factor	sγ 1 - 0.3 * 14.41 / 19.62 =	0.780	
Load inclination factor	i_c 0.92 - (1 - 0.92)/(16.88 - 1) =	0.912	
Load inclination factor	$i_{\mathbf{q}}$ (1-305.4) (3994-2027) 25.0) to (207))/1.39 =	0.917	
Load inclination factor	i_{γ} (13053.41 (9994 + 202.73 * 25.01 tan (27))/(1.58+1) =	0.869	
Found. inclination fact.	b_c 1.0 - (1 - 1.0)/(16.88 * tan (22.0°)) =	1.000	
Found. inclination fact.	b_q (1 - rad(0.0°) * tan (22.0°))² =	1.000	
Found. inclination fact.	b _γ 1.0 =	1.000	

Elaborato: Relazione preliminare delle strutture

Rev. 0 – Maggio 2022

Redazione: Atech srl Progetto definitivo

Proponente: ABEI ENERGY GREEN ITALY II Srl

Progetto definitivo per la realizzazione di un impianto eolico denominato

"CE Montemilone" costituito da 8 turbine con una potenza complessiva di

48 MW e relative opere di connessione alla R.T.N.

Backfill pressure	q'	17.5 * 0.0 =	0.00	kPa
Component c		25.0 * 16.88 * 1.32 * 0.91 * 1.0 =	506.516	6 kPa
Component q		0.0 * 7.82 * 1.28 * 0.92 * 1.0 =	0.000) kPa
Component γ		18.7 * 14.41/2 * 5.51 * 0.78 * 0.87 * 1.0 =	502.97	l kPa
Resistance factor				
Resistance factor	γR		2.300)
Design bearing capacity qrd	γR	(506.52 + 0.0 + 502.97)/2.3 =	2.300 439	kPa
110010101010101	γR Qsd	(506.52 + 0.0 + 502.97)/2.3 = 39'914.32 / 282.73 =		

Figura 23: Verifica a carico limite in condizioni drenate – Combinazione Abnormal 2 (4)

Consulenza: Atech srl

Proponente: BLUE STONE RENEWABLE VII Srl

Progetto per la realizzazione di un impianto eolico costituito da 8 turbine e relative opere di connessione da realizzarsi nel comune di Rotello e Montorio nei Frentani (CB)

VERTICAL BEARING CAPACITY CHECK

Soil unit weigh	t	γ			18.70	kPa
Backfilling unit	weight	γ*			17.50	kPa
Friction angle	φ'	22.0°				
Effective cohe	sion	c'			25.00	kPa
Undrained coh	esion	Cu			200	kPa
Design bending	moment	Mxy			148'262	kNm
Design torque	moment	$M_{\rm Z}$			17'536.10	kNm
Design vertical	load	Fz			39'963	kN
Design tangent	ial load	Н			1'314	kN
Radius	R	12.00 m				
Depth of dound	lation	D				m
Eccentricity	e	M_{xy}/F_z	3.71 m			
Ellipse minor ax	kes	Be	2*(R-e)		16.58	m
Ellipse major an Effective loade Effective lengt	d area Aeff 2*[I	2 R [1-(1-F) arccos(e) Leff	3e/2R) ²] ^{1/2} /R)-e*(R ² - e ²) ^{1/2}	$\begin{array}{ccc} & 22.82 & m \\ & 277.19 & m^2 \\ & (Aeff^*Le/Be)^{1/2} \end{array}$		
Effective width		Leff*Be/L		10	14.19 m	
Horizontal force Inclination of for		2*Mz/Ieff η	$+[H^2+(2*Mz/Ieff)]$	[2] 1/2	4'020.07 0.0°	kN
Nc Nc	(7.82 - 1) / tan (22.0°) =	16.883			0.0	
N_q N_q	b(\$+10° {\$ a \$ b \$	101				
N_{γ} N_{γ}	2 * (7.82 - 1) * tan (22.0°) =	5.512				
Shape factor	Sc	(1.27 * 7.8	32 - 1) / (7.82 - 1) =	:	1.312	2
Shape factor	Sq	1 + 10.9 655 ° sm (DJ*) :	11			
Shape factor	Sγ	1 - 0.3 * 1	4.19 / 19.53 =	0.782		
Load inclination	n factor	ic		0.89 - (1 - 0.89)/(16.88 - 1) =	0.884	ļ
Load inclination	n factor	i q (1-4020.	07 / (39963 + 277.19 * 25.0 / tan (22.0°)))*1.58 =		0.89	1
Load inclination	n factor	i γ (14020.07	(39963 + 277.19 * 25.0 / tan (22°)))*(1.58+1) =		0.82	3
Found. inclination	on fact.	be	1.0 - (1 - 1	.0)/(16.88 * tan (22.0°)) =	1.000	
Found. inclination	on fact.	bq	(1 -	rad(0.0°) * tan (22.0°)) ² =	1.000	
Found. inclination	on fact.	b_{γ}		1.0 =	1.000	

Elaborato: Relazione preliminare delle strutture

Rev. 0 - Giugno 2021

kPa

Consulenza: Atech srl

Proponente: BLUE STONE RENEWABLE VII Srl

Progetto per la realizzazione di un impianto eolico costituito da 8 turbine e relative opere di connessione da realizzarsi nel comune di Rotello e Montorio nei Frentani (CB)

0.00 kPa

Backfill pressure q' Component c 489.683 kPa 25.0 * 16.88 * 1.31 * 0.88 * 1.0 = Component q 0.0 * 7.82 * 1.27 * 0.89 * 1.0 = 0.000 kPa

17.5 * 0.0 =

18.7 * 14.19/2 * 5.51 * 0.78 * 0.83 * 1.0 = 473.785 kPa Component γ

Resistance factor 2.300 γR

Design bearing capacity (489.68 + 0.0 + 473.79)/2.3 =419 qrd kPa

Design pressure qsd 39'962.92 / 277.19 = 144

Bearing check FS 418.9 / 144.17 = 2.906 > 1 OK

Figura 24: Verifica a carico limite in condizioni drenate – Combinazione Normal SLU 2

VERTICAL BEARING CAPACITY CHECK

Soil unit weight	γ		18.70	kPa
Backfilling unit weight	$\gamma*$		17.50	kPa
Friction angle	φ'		22.0°	
Effective cohesion	c'		25.00	kPa
Undrained cohesion	Cu		200	kPa
Design bending moment	Mxy		148'262	kNm
Design torque moment	M_z		17'536.10	kNm
Design vertical load	F_z		54'783	kN
Design tangential load	Н		1'314	kN
Radius	R		12.00	m
Depth of doundation	D			m
Eccentricity	e	Mxy/Fz	2.71	m
Ellipse minor axes	${ m Be}$	2*(R-e)	18.59	m
Ellipse major axes	Le	2 R [1-(1-Be/2R) ²] ^{1/2}	23.38	m
Effective loaded area	\mathbf{A} eff	$2*[R^2 \arccos(e/R)-e*(R^2 - e^2)^{1/2}]$	323.60	m²
Effective lenght	Leff	$(Aeff*Le/Be)^{1/2}$	20.18	m
Effective width	\mathbf{B} eff	Leff*Be/Le	16.04	m
Horizontal force	H'	$2*Mz/Ieff+[H^2+(2*Mz/Ieff)^2]^{1/2}$	3'917.14	kN
Inclination of foundation	η		0.0°	
Nc	Nc	2 + π =	5.142	
N_q	N_{q}	1 =	1.000	
N_{γ}	N_{γ}	0 =	0.000	
Shape factor	Sc	1 + 0.2 * (16.04 / 20.18) =	1.159	
Shape factor	Sq	1 =	1.000	
Shape factor	$S\gamma$	1 =	1.000	
Load inclination factor	ic	1/2 * [1 + \(1 - 3'917.14 / 323.6 / 200.0)] =	0.985	
Load inclination factor	$\mathbf{i}_{ ext{q}}$	1 =	1.000	

Elaborato: Relazione preliminare delle strutture

PROGETTO DEFINITIVO

Proponente: BLUE STONE RENEWABLE VII Srl

Consulenza: Atech srl

Progetto per la realizzazione di un impianto eolico costituito da 8 turbine e relative opere di connessione da realizzarsi nel comune di Rotello e Montorio nei Frentani (CB)

Load inclination factor	iγ	1 =	1.000	
Found. inclination fact.	bc	$1 - 2 * rad(0.0^{\circ}) / (2 + \pi) =$	1.000	
Found. inclination fact.	bq	1 =	1.000	
Found. inclination fact.	b_{γ}	1 =	1.000	
Backfill pressure	q'	17.5 * 0.0 =	0.00	kPa
Component c		200.0 * 5.14 * 1.16 * 0.98 * 1.0 =	1'173.496	kPa
Component q		0.0 * 1.0 * 1.0 * 1.0 * 1.0 =	0.000	kPa
Component γ		18.7 * 16.04/2 * 0.0 * 1.0 * 1.0 * 1.0 =	0.000	kPa
Resistance factor	γR		2.300	
Design bearing capacity	qrd	(1'173.5 + 0.0 + 0.0)/2.3 =	510	kPa
Design pressure	qsd	54'783.44 / 323.6 =	169	kPa
Bearing check	FS	510.22 / 169.3 =	3.014	> 1 OK

Figura 25: Verifica a carico limite in condizioni non drenate – Combinazione Normal SLU 1

Consulenza: Atech srl

Proponente: BLUE STONE RENEWABLE VII Srl

Progetto per la realizzazione di un impianto eolico costituito da 8 turbine e relative opere di connessione da realizzarsi nel comune di Rotello e Montorio nei Frentani (CB)

A.11.h.4. Slittamento

Di seguito di dettaglia la verifica a slittamento.

	DEAD	BACKFILL	Fz	Н	М
Normal SLU2	1.00	1.00	0.90	1.35	1.35
Abnormal 2	1.00	1.00	0.90	1.10	1.10

		TOWER BOTTOM		FOUNDATION BOTTOM		
_		Normal SLU2	Abnormal 2	Normal SLU2	Abnormal 2	
ĺ	Fz	4'584.60	4'536.00	39'962.92	39'914.32	
	Fxy	1'313.55	1'321.10	1'313.55	1'321.10	
ı	Mxy	143'100.00	138'050.00	148'262.25	143'241.92	

Figura 26: Analisi scarichi in fondazione

SLIDING CHECK

1				
Soil unit weight	γ		18.70	kPa
Backfilling unit weight	γ^*		17.50	kPa
Undrained cohesion	Cu		200	kPa
Design bending moment	M_{xy}		143'242	kNm
Design torque moment	M_z		14'288.67	kNm
Design vertical load	F_z		39'914	kN
Design tangential load	H		1'321	kN
Radius	R		12.00	m
Eccentricity	e	M_{xy}/F_z	3.59	m
Ellipse minor axes	$\mathbf{B}\mathbf{e}$	2*(R-e)	16.82	m
Ellipse major axes	Le	2 R [1-(1-Be/2R) ²] ^{1/2}	22.90	m
Effective loaded area	\mathbf{A} eff	$2*[R^2 \arccos(e/R)-e^*(R^2 - e^2)^{1/2}]$	282.73	m²
Effective lenght	Leff	$(Aeff^*Le/Be)^{1/2}$	19.62	m
Effective width	\mathbf{B} eff	Leff*Be/Le	14.41	m
Horizontal force	H'	$2*M_z/I_{eff}+[H^2+(2*M_z/I_{eff})^2]^{1/2}$	3'423.10	kN
Friction angle	φ'		22.0°	
Structground friction	δ'	2/3 * 22° =	14.7°	
Undrained adhesion	Ca		200	kPa
Resistance factor	γR		1.100	
Design sliding resist.	Rd	Fz $tan(\delta) / \gamma$? =	9'497	kN
Sliding check	FS	9'496.83 / 3'423.1 =	2.774	>1 OK

Figura 27: Verifica a slittamento – Combinazione Abnormal SLU 2

Proponente: BLUE STONE RENEWABLE VII Srl

Progetto per la realizzazione di un impianto eolico costituito da 8 turbine e relative opere di connessione da realizzarsi nel comune di Rotello e Montorio nei Frentani (CB)

SLIDING CHECK

Soil unit weight		γ			18.70	kPa
Backfilling unit weight		γ^*			17.50	kPa
Undrained cohesion		Cu			200	kPa
Design bending moment		Mxy			148'262	kNm
Design torque moment		Mz			17'536.10	kNm
Design vertical load		Fz			39'963	kN
Design tangential load		Н			1'314	kN
Radius		R			12.00	m
Eccentricity		e	Mxy/Fz		3.71	m
Ellipse minor axes		Be	2*(R-e)		16.58	m
Ellipse major axes Effective loaded area Effective lenght 19.53 m	Le Aeff	2 R [1-(1-Be/2 2*[R² arccos(e/R)- Leff	, -	$\begin{array}{ccc} 22.82 & m \\ 277.19 & m^2 \\ (Aeff*Le/Be)^{1/2} \end{array}$		
Effective width		\mathbf{B} eff	Leff*Be/Le		14.19	m
Horizontal force		H'	$2*Mz/Ieff+[H^2+$	-(2*Mz/Ieff) ²] ^{1/2}	4'020.07	kN
Friction angle		φ'			22.0°	
Structground friction		δ'		2/3 * 22° =	14.7°	
Undrained adhesion		Ca			200	kPa
Resistance factor		γR			1.100)
Design sliding resist.		Rd		Fz $tan(\delta) / \gamma$? =	9'508	kN
Sliding check		FS		9'508.39 / 4'020.07 =	2.365	> 1 OK

Figura 28: Verifica a slittamento – Combinazione Normal SLU 2

Proponente: BLUE STONE RENEWABLE VII Srl

Progetto per la realizzazione di un impianto eolico costituito da 8 turbine e relative opere di connessione da realizzarsi nel comune di Rotello e Montorio nei Frentani (CB)

A.11.h.5. Valutazione del modulo di reazione (Winkler)

VALUTAZIONE MODULO DI REAZIONE SOTTOFONDO (WINKLER)

n. stratigraphy 1

on stratum over bedrock

on stratum over half-space

embledded in stratum over bedrock

Parameter	Symbol	Expression / note	Va	lue
Static shear modulus	G		7.69	N/mm²
Static Young modulus	Е		20.00	N/mm²
Poisson ratio	v		0.30	-
Foundation radius	R		12.00	m
Thickness of layer	Н		120.00	m
	αr	(for circular rigid foundation)		-
Winkler modulus	Kw	$\frac{4GR}{1-\nu}(1+1.28\frac{R}{H})\frac{1}{\pi R^2}$	1'315.21	kN/m^3

Figura 29: Valutazione della costante di Winkler

A.11.h.6. Valutazione dei cedimenti

Il cedimento medio in combinazione SLE Rara (Normal) si assume pari al rapporto tra la pressione media e la costante di Winkler di ui al punto precedente.

La pressione media, sulla base dell'analisi di carichi esposta ai punti precedenti, vale

 $Q_{MEDIA,SLE} = 40472/(3,1416*12^2) = 89 \text{ kN/m}^2$

Cedimento elastico medio atteso = $100 * 80 / 1315 \approx 6$ cm.

Il cedimento differenziale massimo atteso, sempre in combinazione rara, secondo la formulazione di Bowles:

Proponente: BLUE STONE RENEWABLE VII Srl

Progetto per la realizzazione di un impianto eolico costituito da 8 turbine e relative opere di connessione da realizzarsi nel comune di Rotello e Montorio nei Frentani (CB)

Parameter	Symbol	Expression / note	Value
Poisson ratio	v		
Static Young modulus	Е	(Layer 1)	20.00 N/mm ²
		(Layer 2)	0.00 N/mm ²
		(mean value)	20.00 N/mm ²
Thickness of Layer 1	t1	(Layer 1)	120.00 m
Bending moment (Qp)	M	(normal quasi permanent)	109'823.89 kNm
Influence factor	$\mathbf{I}\Theta$	(rigid circular spread foundation)	5.53
Static rotation	$tan(\theta)$	$\tan(\theta) = \frac{(1 - \upsilon^2)}{E} \frac{M}{B^2 L} I_{\theta}$	2.00 mm/m

Figura 30: Valutazione del cedimento massimo differenziale (rotazione) in combinazione SLE rara (Normal)

A.11.i. VERIFICHE STRUTTURALI

A.11.i.1. Risultati dell'analisi

A seguire si riportano le tabelle relative alle sollecitazioni di piastra, ottenute dall'analisi strutturale in accordo ai criteri di modellazione su esposti. Nel seguito si assume la convenzione che considera:

- i momenti radiali di piastra indicati con M11 o anche come M2
- i momenti circonferenziali di piastra con M22 o anche come M1

Momenti di piastra (valori	M ₁₁₍₊₎	M ₁₁₍₋₎	M ₂₂₍₊₎	M ₂₂₍₋₎
max/min)	[kNm/m]	[kNm/m]	[kNm/m]	[kNm/m]
Normal SLU 1	9'976.29	-7'246.51	6'050.36	-3'142.56
Normal SLU 2	9'664.23	-7'503.30	5'552.23	-3'653.56
Abnormal 0,9	10'239.19	-7'927.33	5'790.81	-3'970.22
Abnormal 1,1	10'262.49	-7'987.51	6'083.09	-3'658.01

Figura 31: Valori massimi dei momenti di piastra

Proponente: BLUE STONE RENEWABLE VII Srl

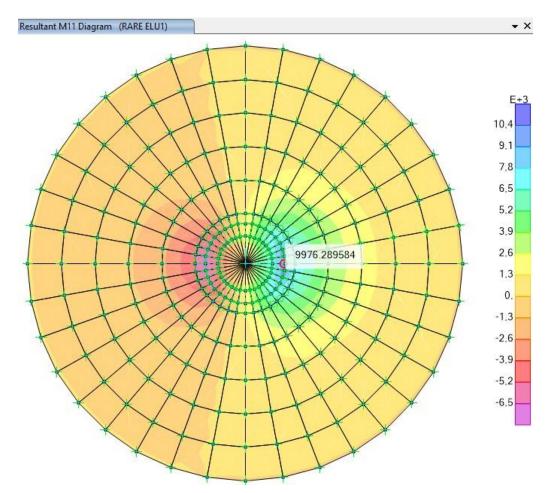


Figura 32: Momento Massimo M₁₁ Normal SLU 1 [kNm/m]

Proponente: BLUE STONE RENEWABLE VII Srl

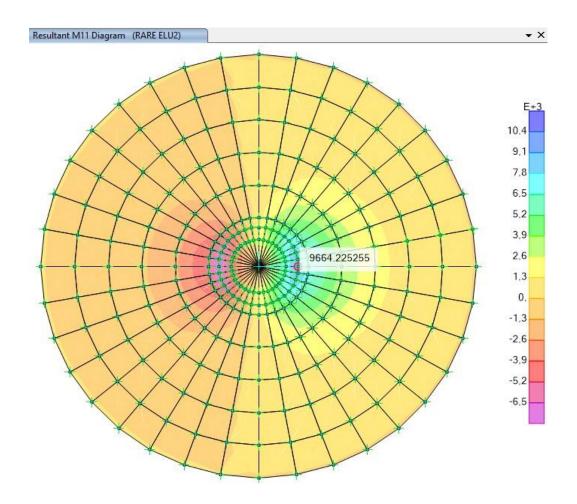


Figura 33: Momento Massimo M₁₁ Normal SLU 2 [kNm/m]

Proponente: BLUE STONE RENEWABLE VII Srl

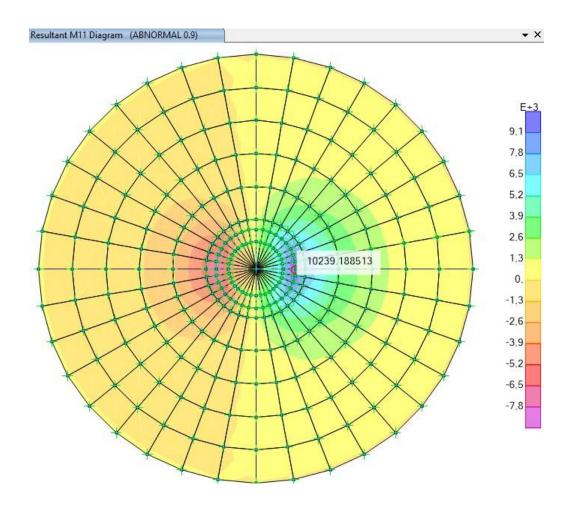


Figura 34: Momento Massimo M₁₁ ABNORMAL 0.9 [kNm/m]

Proponente: BLUE STONE RENEWABLE VII Srl

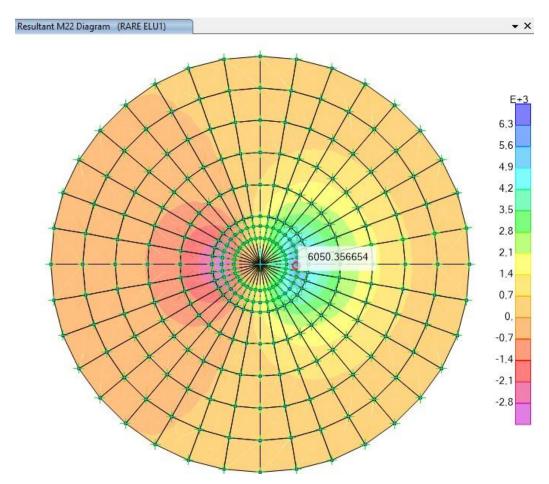


Figura 35: Momento Massimo M₂₂ Normal SLU 1 [kNm/m]

Proponente: BLUE STONE RENEWABLE VII Srl

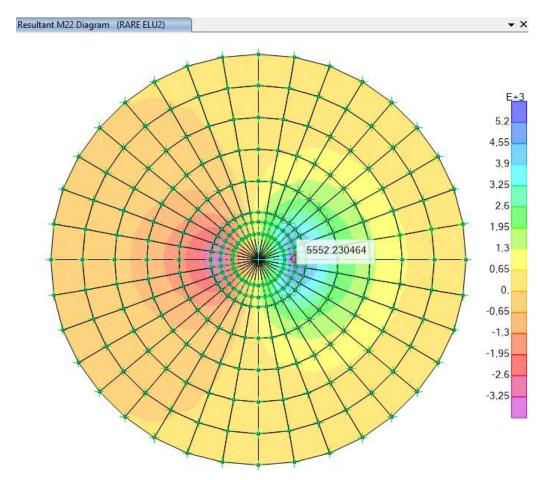


Figura 36: Momento Massimo M₂₂ Normal ELU 2 [kNm/m]

Proponente: BLUE STONE RENEWABLE VII Srl

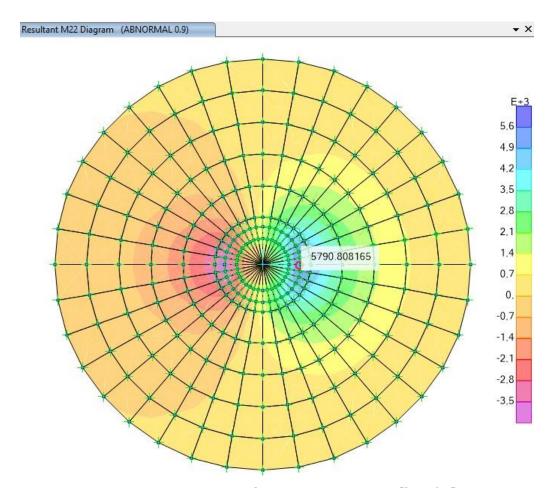


Figura 37: Momento Massimo M₂₂ ABNORMAL 0.9 [kNm/m]

Proponente: BLUE STONE RENEWABLE VII Srl

Progetto per la realizzazione di un impianto eolico costituito da 8 turbine e relative opere di connessione da realizzarsi nel comune di Rotello e Montorio nei Frentani (CB)

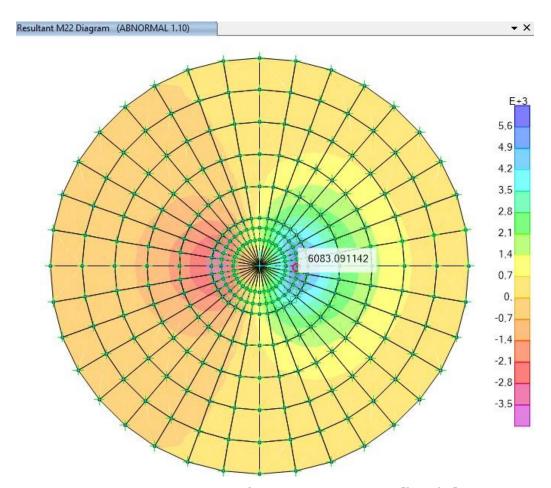


Figura 38: Momento Massimo M₂₂ ABNORMAL 1.10 [kNm/m]

	SOLLECITAZIONI DI PIASTRA								
	Raggio [m]	2.200	2.750	4.600	6.450	8.300	10.150	12.000	
MOMENTI RADIALI	M2(+) [kNm/m]	9'976.3	7'510.8	3'582.1	1'791.9	743.0	167.2	-17.9	
NORMALSLU1	M2(-) [kNm/m]	-7'246.5	-5'219.7	-2'340.2	-1'152.9	-476.6	-106.9	11.6	
MOMENTIRADIALI	M2(+) [kNm/m]	9'664.2	7'257.4	3'461.4	1'735.7	721.8	163.0	-17.1	
NORMALSLU2	M2(-) [kNm/m]	-7'503.3	-5'404.8	-2'371.8	-1'114.5	-422.3	-82.9	10.1	
MOMENTIRADIALI	M2(+) [kNm/m]	10'239.2	7'692.2	3'675.6	1'845.5	768.4	173.8	-18.1	
ABNORMAL 0.9	M2(-) [kNm/m]	-7'927.3	-5'694.7	-2'467.9	-1'140.2	-427.5	-83.4	10.4	
MOMENTIRADIALI	M2(+) [kNm/m]	10'262.5	7'703.7	3'664.6	1'834.6	762.0	172.0	-18.3	
ABNORMAL 1.10	M2(-) [kNm/m]	-7'987.5	-5'785.9	-2'610.9	-1'285.8	-530.3	-118.5	13.0	
TAGLIO RADIALE	M2(+) [kNm/m]	4'522.9	3'316.8	1'656.7	879.3	509.6	242.8	120.8	
NORMALSLU1	M2(-) [kNm/m]	4'077.2	2'587.9	1'186.7	585.1	329.9	156.0	77.5	
TAGLIO RADIALE	M2(+) [kNm/m]	4'454.9	3'212.4	1'594.1	844.4	490.8	234.7	117.1	
NORMALSLU2	M2(-) [kNm/m]	4'144.0	2'701.2	1'252.5	612.7	327.7	140.5	62.8	
TAGLIO RADIALE	M2(+) [kNm/m]	4'713.7	3'394.5	1'684.8	893.7	520.4	249.2	124.5	
ABNORMAL 0.9	M2(-) [kNm/m]	4'397.9	2'875.5	1'331.7	644.2	338.4	143.6	63.9	
TAGLIO RADIALE	M2(+) [kNm/m]	4'737.2	3'426.1	1'700.6	899.2	521.2	248.8	124.0	
ABNORMAL 1.10	M2(-) [kNm/m]	4'376.1	2'830.8	1'312.5	652.6	368.3	173.8	86.1	
	Raggio [m]	2.200	2.750	4.600	6.450	8.300	10.150	12.000	

Proponente: BLUE STONE RENEWABLE VII Srl

Progetto per la realizzazione di un impianto eolico costituito da 8 turbine e relative opere di connessione da realizzarsi nel comune di Rotello e Montorio nei Frentani (CB)

MOMENTIRADIALI	M2(+) [kNm/m]	7'315.3	5'504.0	2'626.1	1'315.4	546.2	123.0	-13.1
QP SLE	M2(-) [kNm/m]	-5'442.4	-3'926.0	-1'760.8	-865.9	-357.2	-80.0	8.8

Figura 39: Valori massimi/minimi delle sollecitazioni di piastra in funzione della distanza R dal centro del plinto

A.11.i.2. Verifiche della resistenza a flessione

L'armatura tesa è stata dimensionata secondo la nota formula As = Med/(0.9*d*fyd) essendo:

d = altezza utile

M_{ed} = momento di progetto di piastra

L'armatura principale (radiale) è stata dimensionata tenendo conto dei minimi normativi previsti per le travi nel cap. 4 di [1].

$$A_{Smin_ELU} = 0.26 (f_{ctm} / f_{yk}) b d$$

Non sono, invece, stati tenuti in considerazione i minimi normativi di cui al cap. 7 della stessa norma, avendo optato per una progettazione in campo elastico (fattore di struttura q = 1).

A.11.i.3. Dimensionamento delle armature superiori

	r _i [m]	h = altezza [m]	d = altezza utile [m]	M ₂ [kNm/m]	2π r _i M ₂ [kNm]	f yd [N/mm ²]
SUP.	2.200	3.600	3.510	7'246.51	100'117.79	391.30
	2.750	3.300	3.210	5'219.68	90'143.86	391.30
RADIALE	4.600	2.940	2.850	2'340.24	67'604.94	391.30
	6.450	2.580	2.490	1'114.47	45'142.57	391.30
TUL	8.300	2.220	2.130	422.27	22'010.42	391.30
ARMATURA	10.150	1.860	1.770	82.92	5'285.39	391.30
AR	12.000	1.500	1.410	-13.01	-980.68	391.30

Proponente: BLUE STONE RENEWABLE VII Srl

Progetto per la realizzazione di un impianto eolico costituito da 8 turbine e relative opere di connessione da realizzarsi nel comune di Rotello e Montorio nei Frentani (CB)

As da calcolo	${f A}$ cls	\mathbf{A} s',min $[\mathbf{mm^2}]$	n.Ø 26	n.Ø 32	n.Ø 32	n.Ø 32
[mm ²]	[mm ²]	(0,26 f _{ctm} / f _{yk} A _{cls})	calcolo	disposta	disposta	disposta
80'992.90	49'737'600	81'156	153	120	60	
79'739.58	56'991'000	92'774	151	120	60	
67'356.01	84'930'720	137'782	127	120	60	
51'478.95	104'505'480	168'791	97	120	60	60
29'342.12	115'715'280	185'801	56	120	60	60
8'479.04	118'560'120	188'812	16	120	60	60
-1'974.93	113'040'000	177'824	-4	120	60	60

CHECK	interferro min/max	As,calcolo	\mathbf{A} s,min [mm^2/m]	A s,disposta	As, min fessura z
	netto orizz. [cm]	[mm²/m]	(0,26 f _{ctm} / f _{yk} A _{cls})	[mm²/m]	[mm²/m]
OK	8.3 / 19.8	5'862.25	5'874.04	10'472.73	4'119.42
OK	11.2 / 25.6	4'617.23	5'371.98	8'378.18	3'776.14
OK	8.8 / 20.9	2'331.63	4'769.52	5'008.70	3'364.19
OK	13.7	1'270.90	4'167.05	4'762.79	2'952.25
OK	18.5	562.93	3'564.59	3'701.20	2'540.31
OK	23.4	133.02	2'962.12	3'026.60	2'128.37
OK	28.2	-26.21	2'359.66	2'560.00	1'716.43

Figura 40: Dimensionamento e verifica dei minimi normativi per i ferri radiali superiori (3 strati Ø32)

Si dispongono 120Ø32 radiali su primo strato e 60Ø32 su secondo strato, entrambi per tutta la lunghezza radiale, in sovrapposizione con 60Ø32 efficaci a partire dalla sezione di raggio R=4,60 m.

A.11.i.4. Dimensionamento delle armature inferiori

	$\mathbf{r_{i}}$	h = altezza	d = altezza	\mathbf{M}_2	$2\pi r_i M_2$	f yd
INF.	[m]	[m]	utile [m]	[kNm/m]	[kNm]	[N/mm ²]
	2.200	3.600	3.510	10'262.49	141'786.61	391.30
RADIALE	2.750	3.300	3.210	7'703.75	133'043.68	391.30
RAE	4.600	2.940	2.850	3'675.60	106'180.78	391.30
RA	6.450	2.580	2.490	1'845.49	74'753.53	391.30
UT	8.300	2.220	2.130	768.38	40'050.82	391.30
ARMATURA	10.150	1.860	1.770	173.80	11'078.30	391.30
AR	12.000	1.500	1.410	-17.10	-1'288.77	391.30

Proponente: BLUE STONE RENEWABLE VII Srl

As da calcolo	A cls	\mathbf{A} s,min $[\mathbf{m}\mathbf{m}^2]$	n.Ø 26	n.Ø 28	n.Ø 32	n.Ø 32
[mm²]	[mm ²]	(0,26 f _{ctm} / f _{yk} A _{cls})	calcolo	disposta	disposta	disposta
114'701.98	49'737'600	81'156	217	88	140	
117'687.96	56'991'000	92'774	222	88	140	
105'789.82	84'930'720	137'782	200	88	140	
85'246.23	104'505'480	168'791	161	88		17
53'391.80	115'715'280	185'801	101	88		17
17'772.26	118'560'120	188'812	34	88		17
-2'595.37	113'040'000	177'824	-5	88		17

CHECK	interferro min/max	As,calcolo	As,min [mm²/m]	${f A}$ S,d is pos ta	As, min fessuraz
	netto orizz. [cm]	[mm ² /m]	(0,26 fctm / fyk AcIs)	[mm ² /m]	[mm²/m]
OK	6.7 / 12.9	8'302.11	5'874.04	12'065.45	4'119.42
OK	9.1 / 16.8	6'814.59	5'371.98	9'652.36	3'776.14
OK	17.4 / 30.0	3'662.07	4'769.52	5'770.43	3'364.19
OK	12.3	2'104.53	4'167.05	4'829.77	2'952.25
OK	16.7	1'024.32	3'564.59	3'753.25	2'540.31
OK	21.1	278.82	2'962.12	3'069.16	2'128.37
OK	25.5	-34.44	2'359.66	2'596.00	1'716.43

Figura 41: Dimensionamento e verifica dei minimi normativi per i ferri radiali inferiori (3 strati Ø32)

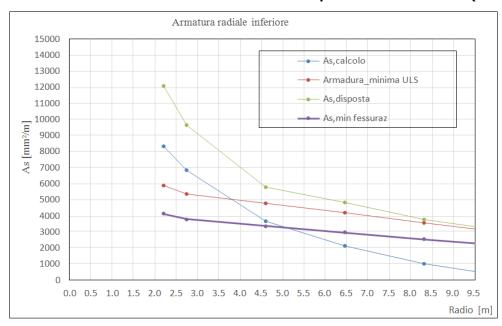


Figura 42: Area armatura radiale inferiore: da calcolo, minima (da norma), effettivamente disposta e da fessurazione

Proponente: BLUE STONE RENEWABLE VII Srl

Progetto per la realizzazione di un impianto eolico costituito da 8 turbine e relative opere di connessione da realizzarsi nel comune di Rotello e Montorio nei Frentani (CB)

A.11.i.5. Dimensionamento delle armature circonferenziali superiori

	r _i	$\mathbf{h_i} = altezza$ $\mathbf{d^*} = altezza$	
	[m]	sez. [m]	utile $[\mathbf{m}]$
SUP	2.200	3.600	3.510
RA 12. 9	3.675	3.120	3.030
T. REN	5.525	2.760	2.670
ARMATURA ONFERENZ.	7.375	2.400	2.310
ARMATURA CIRCONFERENZ. SUP	10.150	1.860	1.770
CIR			

M_1	fyd As',calcolo		n.Ø 25 / m
[kNm/m]	[N/mm ²]	[mm ² /m]	(strett. necessaria)
3'142.56	391.30	2542.25	6
2'037.52	391.30	1909.43	4
1'091.78	391.30	1161.10	3
546.04	391.30	671.20	2
167.33	391.30	268.44	1

A cls	As',min [mm²/m]	As',min fessuraz.
[mm²]	20% As,long,inf	[mm²/m]
3'600'000	2095	4119.42
3'120'000	1339	3570.17
2'760'000	977	3158.22
2'400'000	846	2746.28
1'860'000	673	2128.37

n.Ø 25 / m	n.Ø 25 / sect.	n.Ø 25 / m	A s',disposta	CHECK
(min)	disposta	disposta	[mm²/m]	
5.18	16	12.80	6283.19	OK
3.89	9	4.86	2388.03	OK
2.37	8	4.32	2122.70	OK
1.73	7	3.78	1857.36	OK
1.38	14	3.78	1857.36	OK

Figura 43: Dimensionamento e verifica dei minimi normativi per i ferri circonferenziali superiori

Proponente: BLUE STONE RENEWABLE VII Srl

Progetto per la realizzazione di un impianto eolico costituito da 8 turbine e relative opere di connessione da realizzarsi nel comune di Rotello e Montorio nei Frentani (CB)

A.11.i.6. Dimensionamento delle armature circonferenziali inferiori

	r _i	$\mathbf{h_i} = altezza$	d* = altezza
	[m]	sez . [m]	utile $[\mathbf{m}]$
N R	2.200	3.600	3.510
RA Z.	3.675	3.120	3.030
ARMATURA ONFERENZ.	5.525	2.760	2.670
₹M/	7.375	2.400	2.310
ARMATURA CIRCONFERENZ. INF	10.150	1.860	1.770
CIR			

M ₁	f yd	As,calcolo	n.Ø 25 / m
[kNm/m]	[N/mm ²]	[mm²/m]	(strett.
6'083.09	391.30	4921.08	11
4'005.82	391.30	3753.98	8
2'236.24	391.30	2378.21	5
1'199.47	391.30	1474.41	4
422.39	391.30	677.61	2

A cls	As,min [mm²/m]	As,min fessuraz.
[mm²]	20% As,long,inf	[mm²/m]
3'600'000	2413	4119.42
3'120'000	1542	3570.17
2'760'000	1060	3158.22
2'400'000	858	2746.28
1'860'000	682	2128.37

n.Ø 25 / m	n.Ø 25 / sect.	n.Ø 25 / m	$\mathbf{A}_{s,disposta}$	CHECK
(min)	disposta	disposta	[mm²/m]	
10.03	14	11.20	5497.79	OK
7.65	15	8.11	3980.06	OK
4.85	9	5.38	2643.17	OK
3.01	6	4.62	2265.57	OK
1.39	11	3.85	1887.98	OK

Figura 44: Dimensionamento e verifica dei minimi normativi per i ferri circonferenziali inferiori

Proponente: BLUE STONE RENEWABLE VII Srl

Progetto per la realizzazione di un impianto eolico costituito da 8 turbine e relative opere di connessione da realizzarsi nel comune di Rotello e Montorio nei Frentani (CB)

A.11.i.7. Verifica a taglio

A seguire si riportano le verifiche a taglio di piastra, agente sulle sezioni aventi normale parallela alla direzione radiale. Si dispone un'armatura trasversale costituita da staffe a 2 braccia Ø 20

Ai fini della verifica si procede secondo due step:

- 1) verifica dell'effettiva necessità di armatura trasversale
- 2) valutazione, se richiesta, dell'area di armatura trasversale per unità di superficie (armatura trasversale di piastra).

	Resistenza a taglio senza armatura trasversale							
Raggio	VEd	d altezza utile	\mathbf{A} s,rad	K < 2	ρl < 2%	VRd,c	VRd,c >	
[m]	[kN/m]	[m]	[cm ² /m]	11 \ 2	pr < 270	[kN/m]	VEd	
2.75	3'426	3.21	96.52	1.250	0.301 %	1'002	Richiesta	
4.60	1'701	2.85	57.70	1.265	0.202 %	789	Richiesta	
6.45	899	2.49	48.30	1.283	0.194 %	694	Richiesta	
8.30	521	2.13	37.53	1.306	0.176 %	610	Non richiesta	
10.15	249	1.77	30.69	1.336	0.173 %	524	Non richiesta	
12.00	125	1.41	25.96	1.377	0.184 %	437	Non richiesta	

Figura 45: Verifica a taglio in assenza di armatura trasversale

Resistenza con armatura trasversale					
(Asw/s)min	Passo	Check			
[cm ² /m ²]	circonfer.	radiale	[cm²/m²]		
12.12	0.29 m	0.65 m	33.57	OK	
6.78	0.48 m	0.65 m	20.07	ОК	
4.10	0.68 m	0.65 m	14.31	ОК	
2.78	0.87 m	0.65 m	11.12	ОК	
1.60					
1.00					

Figura 46: Dimensionamento dell'armatura trasversale (a taglio) di piastra

Proponente: BLUE STONE RENEWABLE VII Srl

Progetto per la realizzazione di un impianto eolico costituito da 8 turbine e relative opere di connessione da realizzarsi nel comune di Rotello e Montorio nei Frentani (CB)

A.11.i.8. Verifiche tensionali/di fessurazione

Le verifiche a fessurazione sono state condotte nella combinazione RARA, assieme alle verifiche dei limiti tensionali di esercizio.

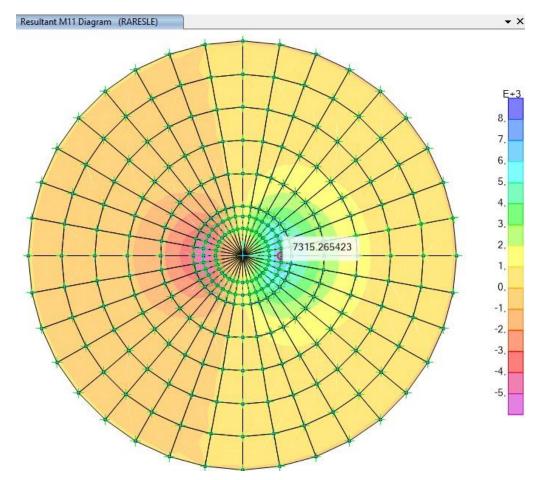


Figura 47: Momento radiale in combinazione SLE Rara [kNm/m]

