RETE FERROVIARIA ITALIANA O FERROVIE DELLO STATO ITALIANE	
	TALFERR IE DELLO STATO ITALIANE
ENTE E TERRITORIO	
RONA RUTTURALE DELLO SCALO DI E	DI BRESCIA
	-
G MA0000 0 0 1 C	
ta Verificato Data Approvato Data	Autorizzato Data
naio S. Chiuchiolo Gennaio L. Barchi Gennaio 22 G. Dajelli 2022 2022	25
rzo G. Dajelli Marzo A.Campanella Marzo 22 2022 2022	
glio S. Chiuchiols Luglio Acampanella Luglio 2022	R S. I
	Ordin

PROGETTO DEFINITIVO

LINEA A.V. /A.C. MILANO - VERONA

NODO DI BRESCIA

POTENZIAMENTO INFRASTRUTTURALE DELLO SCALO DI BRESCIA

	1					
PROGETTO MONITORAGGIO AMBIENTALE	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
Relazione generale	IN1M	10	D 22 RG	SA0001 001	С	2 di 56
						·

INDICE	4.2	Acq	QUE SUPERFICIALI	18
1. PREMESSA	4	4.2.1	Obiettivi del monitoraggio	18
2. DESCRIZIONE DELL'INTERVENTO	5	4.2.2	Normativa di riferimento	18
2.1 GLI INTERVENTI IN PROGETTO	5	4.2.3	Criteri di individuazione delle aree da monitorare	19
2.2 DESCRIZIONE DEL SISTEMA DI CANTIERIZZAZIONE	5	4.2.4	Parametri oggetto del monitoraggio	
3. RICETTORI, PUNTI DI MISURA E TEMPI	7		Indagini quantitative	
3.1 I RICETTORI	7	4.2.5	Metodiche e strumentazione di monitoraggio	23
3.2 PUNTI DI MISURA	7		Misure di Portata Campionamento per Analisi di Laboratorio	
3.3 TEMPI E FREQUENZE	7		Indice STAR ICMI	
3.4 RESTITUZIONE DEI DATI	7		Indice NISECI	24
3.5 STRUMENTI PER LA CONDIVISIONE DEI DATI DI MONITORAGGIO	8	4.2.6	Articolazione temporale delle attività di monitoraggio	26
4. RELAZIONI SPECIFICHE DELLE SINGOLE COMPONENTI AMBIENTALI	4.3 0	Acq	QUE SOTTERRANEE	28
4.1 ATMOSFERA	0	4.3.1	Obiettivi del monitoraggio	28
4.1.1 Obiettivi del monitoraggio1	10	4.3.2	Normativa di riferimento	28
4.1.2 Normativa di riferimento		4.3.3	Criteri di individuazione delle aree da monitorare	28
4.1.3 Criteri di individuazione delle aree da monitorare		4.3.4	Parametri oggetto del monitoraggio	29
			Indagini quantitative	
4.1.4 Parametri oggetto del monitoraggio		4.3.5	Specifiche e strumentazione di monitoraggio	31
4.1.5 Metodiche e strumentazione di monitoraggio	3		Misure in situ	
Metodologia di acquisizione parametri non convenzionali			Prelievo campioni per analisi di laboratorio	31
Deposizione e microscopia		4.3.6	Articolazione temporale delle attività di monitoraggio	32
Distribuzione granulometrica		Suo	DLO E SOTTOSUOLO	33

PROGETTO DEFINITIVO LINEA A.V. /A.C. MILANO – VERONA NODO DI BRESCIA

POTENZIAMENTO INFRASTRUTTURALE DELLO SCALO DI BRESCIA

PROGETTO MONITORAGGIO AMBIENTALE	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
Relazione generale	IN1M	10	D 22 RG	SA0001 001	С	3 di 56

	4.4.2	Normativa di riferimento	33
	4.4.3	Criteri di individuazione delle aree da monitorare	33
	4.4.4	Parametri oggetto del monitoraggio	33
	4.4.5	Metodiche e strumentazione di monitoraggio	34
		Generalità	34
		Profilo del suolo	35
		Descrizione del profilo	35
		Parametri pedologici	35
		Designazione orizzonti e parametri fisico-chimici	37
		Parametri chimici	38
	4.4.6	Articolazione temporale delle attività di monitoraggio	38
4.5	Ru	MORE	39
	4.5.1	Obiettivi del monitoraggio	20
	4.5.1	Objettivi dei monitoraggio	39
	4.5.2	Normativa di riferimento	39
	4.5.3	Criteri di individuazione delle aree da monitorare	39
	4.5.4	Metodiche e strumentazione di monitoraggio	40
	4.5.5	Articolazione temporale delle attività di monitoraggio	41
4.6	VIBI	RAZIONI	42
	4.6.1	Obiettivi del monitoraggio	42
	4.6.2	Normativa di riferimento	42
	4.6.3	Criteri di individuazione delle aree da monitorare	42
	4.6.4	Strumentazione	43
	4.6.5	Modalità di monitoraggio e parametri	43
	4.6.6	Elaborazioni delle misure	44

	4.6.7	Articola	azione temporale delle attivita di monitoraggio	44
4.7	VEC	GETAZION	IE, FLORA, FAUNA ED ECOSISTEMI	45
	4.7.1	Obietti	vi del monitoraggio	45
	4.7.2	Norma	tiva di riferimento	45
		Normat	iva comunitaria	45
		Normat	iva Nazionale	46
	4.7.3	Criteri d	di individuazione delle aree da monitorare	46
	4.7.4	Parame	etri oggetto del monitoraggio	46
		Vegeta	zione e flora	47
			Analisi floristica fascia campione distale alla linea ferroviaria	47
			Monitoraggio dello stato di conservazione dei cumuli di materiale vegetale depositati in cantiere	47
			Monitoraggio delle specie vegetali messe a dimora	47
		Fauna	47	
			Fauna mobile terrestre	47
			Analisi quali-quantitativa delle comunità ornitiche degli ecosistemi	47
	4.7.5	Metodio	che e strumentazione di monitoraggio	48
		Vegeta	zione e flora	48
			Rilievo fitosociologico	48
			Rilievo della composizione floristica e della copertura percentuale delle singole specie	48
			Monitoraggio dello stato di conservazione dei cumuli di materiale vegetale depositati in cantiere	49
			Monitoraggio delle specie vegetali messe a dimora	49
		Fauna	49	
			Fauna mobile terrestre – Mammiferi grandi e piccoli	49
			Fauna mobile terrestre – Anfibi e rettili	50
			Avifauna 50	
	4.7.6	Articola	azione temporale delle attività di monitoraggio	51
		Flora e	vegetazione	51
		Fauna	52	
5.	PLANI	METRIA	A DI LOCALIZZAZIONE DEI PUNTI DI MISURA	54

1. PREMESSA

La presente relazione fa parte degli elaborati relativi al Progetto definitivo di "Potenziamento infrastrutturale dello scalo di Brescia".

Il presente documento è stato redatto ai sensi della Normativa vigente in materia ambientale, e in conformità delle "Linee guida per il progetto di monitoraggio ambientale delle infrastrutture strategiche ed insediamenti produttivi di cui al Decreto Legislativo 12 aprile 2006, n. 163" (norme tecniche di attuazione dell'allegato XXI) REV. 2 del 23 luglio 2007" predisposte dalla Commissione Speciale VIA, aggiornate nel 2014: "Linee guida per la predisposizione del Progetto di Monitoraggio Ambientale (PMA) delle opere soggette a procedure di VIA (D. Lgs. 152/2006 e s.m.i., D. Lgs. 163/2006 e s.m.i.) – Indirizzi metodologici generali REV. 1 del 16 giugno 2014", "Linee guida per la predisposizione del Progetto di Monitoraggio Ambientale (PMA) delle opere soggette a procedure di VIA (D. Lgs. 152/2006 e s.m.i., D. Lgs. 163/2006 e s.m.i.) – Indirizzi metodologici specifici per componente/fattore ambientale: Atmosfera REV. 1 del 16 giugno 2014", "Linee guida per la predisposizione del Progetto di Monitoraggio Ambientale (PMA) delle opere soggette a procedure di VIA (D. Lgs.152/2006 e s.m.i., D.Lgs. 163/2006 e s.m.i.) – Indirizzi metodologici specifici per componente fattore ambientale: Ambiente idrico REV.1 del 17/06/2015", "Linee guida per la predisposizione del Progetto di Monitoraggio Ambientale (PMA) delle opere soggette a procedure di VIA (D. Lgs. 152/2006 e s.m.i., D. Lgs. 163/2006 e s.m.i.) – Indirizzi metodologici specifici per componente/fattore ambientale: Agenti fisici – Rumore REV. 1 del 30 dicembre 2014", "Linee quida per la predisposizione del Progetto di Monitoraggio Ambientale (PMA) delle opere soggette a procedure di VIA (D. Lgs. 152/2006 e s.m.i., D. Lgs. 163/2006 e s.m.i.) – Indirizzi metodologici specifici per componente/fattore ambientale: Biodiversità (Vegetazione, Flora, Fauna) REV. 1 del 13 marzo 2015". .

Il progetto di monitoraggio, in base alle risultanze degli studi effettuati a supporto del progetto nel Progetto Ambientale della Cantierizzazione – Relazione generale (NF0Q00F69RGCA0000001A) e nello Studio di impatto ambientale (NF0Q00F22RGSA0000001A), individua le principali componenti ambientali da indagare, le modalità e le tempistiche connesse alle attività di monitoraggio.

Il Progetto di Monitoraggio Ambientale (di seguito PMA) indica gli obiettivi, i requisiti ed i criteri metodologici per il Monitoraggio Ante Operam (AO), il Monitoraggio in Corso d'Opera (CO) ed il Monitoraggio Post Operam o in esercizio (PO), tenendo conto della realtà territoriale ed ambientale in cui il progetto dell'opera si inserisce e dei potenziali impatti che esso determina sia in termini positivi che negativi.

Con riferimento alla presente emissione del Progetto di monitoraggio ambientale (rev C) si specifica che:

- La presente relazione e gli elaborati cartografici di localizzazione dei punti di misura, riportati al capitolo
 5 della relazione stessa, sono stati sviluppati tenendo conto di:
 - Osservazioni espresse da Ministero della transizione ecologica con nota prot. 4498 del 05.07.2022, da Ministero della Cultura – Soprintendenza Speciale per il PNRR di cui alla nota prot. 79103 del 23.06.22 e da Regione Lombardia con nota 30.06.22, prot. MiTE n. 81291
 - Nuovo assetto del sistema della cantierizzazione, riportato nell'elaborato "Planimetria delle aree di cantiere e della viabilità di accesso" (IN1M10F53P6CA0000001C), il quale, con riferimento all'emissione presentata in sede di istanza VIA, può essere sinteticamente descritto nei seguenti termini:

Rilocalizzazione delle aree di cantiere, inizialmente previste in corrispondenza di zone a rimboschimento, in corrispondenza di aree artificializzate e/o scarsamente vegetate e, comunque, sempre prive di vegetazione arbustiva

- Proposta di interventi di compensazione contenuti nell'elaborato "Quaderno di territorializzazione" (IN1M10D22DXSA0001001A)
- La classificazione dei punti di misura inseriti nella presente emissione, al fine di dare loro maggiore evidenza, è stata operata adottando una numerazione progressiva rispetto a quella della precedente emissione, con ciò non tenendo conto della loro localizzazione rispetto alla progressivazione della linea ferroviaria
- Nel presente documento, le parti di testo riportate in colore amaranto indicano le modifiche ed integrazioni operate rispetto alla revisione presentata in sede di istanza VIA
- Negli elaborati cartografici, le etichette dei punti di monitoraggio riportati in colore amaranto indicano quelli che sono stati aggiunti in aggiunta a quelli già presenti nella revisione presentata in sede di istanza VIA

2. DESCRIZIONE DELL'INTERVENTO

2.1 Gli interventi in progetto

L'opera in oggetto è composta dagli interventi così articolati:

- Infrastruttura ferroviaria:
- Asta 350 metri
 L'intervento consiste nell'allungamento di due aste esistenti, presenti sul sedime in affiancamento alla linea

 AV nella parte terminale lato Milano;
- Asta 750 metri
 L'intervento consiste nella realizzazione di un'asta di manovra, localizzata in aree non di proprietà di RFI,
 atta a permettere l'instradamento dei treni verso Verona;
- Scalo e binario XIII
 L'intervento consiste nella configurazione finale a 17 binari del fascio merci.

Il binario XIII rappresenta l'asse preso a riferimento per lo studio dello scalo, all'interno del quale tutti i binari di progetto risultano essere complanari, ed è il binario che, di fatto, attraversa l'intera area dello scalo partendo dalla p.s. del deviatoio S60U/400/0.094DX ubicato sul binario dispari della linea AV/AC e terminando dopo uno sviluppo pari a circa 1.266m, in corrispondenza del respingente terminale posto all'estremità dello scalo lato Brescia:

Rettifica della Linea AV/AC
L'intervento, limitato ad un breve tratto posto in prossimità dell'attraversamento della Tangenziale Ovest di
Brescia, consiste nella modifica di una curva circolare con i relativi raccordi transizione, in modo da far sì
che il binario realizzi un rettifilo per consentire il posizionamento del nuovo deviatoio di collegamento ad
alcuni binari dello scalo:

Opere viarie connesse

Le opere viarie connesse sono finalizzate a risolvere le interferenze con sentieri locali determinate dalla nuova Asta 750 metri ed a consentire la riconnessione con le aree altrimenti intercluse del Parco Mella. Le viabilità in questione sono costituite dalla NV01 ed NV02 e dalle relative sottovia SL01 ed SL02.

2.2 Descrizione del sistema di cantierizzazione

Sulla base di quanto riportato nella Relazione di cantierizzazione (IN1M10D53RGCA0000001C), le tipologie di aree finalizzate alla realizzazione dell'opera in progetto sono le seguenti:

- Cantieri Base (CB)
- Cantieri Operativi (CO)
- Aree tecniche (AT)
- Aree di Stoccaggio (AS)
- Cantieri armamento (CA)

Le aree di cantiere sono state selezionate sulla base delle seguenti esigenze principali:

- disponibilità di aree libere in prossimità delle opere da realizzare;
- lontananza da ricettori critici e da aree densamente abitate;
- facile collegamento con la viabilità esistente, in particolare con quella principale
- minimizzazione del consumo di territorio;
- minimizzazione dell'impatto sull'ambiente naturale ed antropico.
- Interferire il meno possibile con il patrimonio culturale esistente

Con riferimento al quadro delle aree di cantiere, riportate nella successiva Tabella 2-1, si rammenta che la loro localizzazione è stato l'esito di un processo di profonda revisione del sistema della cantierizzazione che, come premesso, si è concretizzato nella loro nuova localizzazione in aree già artificializzate e/o scarsamente vegetate. A tal riguardo, con riferimento al sistema della cantierizzazione prodotto in sede di istanza VIA, si specifica che:

- Il nuovo assetto del sistema della cantierizzazione è coerente con quanto richiesto da MIC in merito allo spostamento dei cantieri «negli spazi aperti di risulta presenti già privi di vegetazione. onde evitare un'ulteriore riduzione del verde naturale esistente»
- Le aree CB.01, CO.01 e AS.01, che nella precedente emissione insistevano su aree di rimboschimento, sono state rilocalizzate.

Nello specifico:

- L'area CB.01, inizialmente prevista lungo il tratto di Via Girelli posto in prossimità della NV02, è stata localizzata lungo Via Industriale
- L'area CO.01, che nella revisione A del progetto di cantierizzazione era localizzata lungo Via Girelli subito dopo la NV02, è stata frazionata in due parti, di cui quella di maggiori dimensioni (CO.01 bis – 3.200 m² circa) in corrispondenza della porzione dell'area del centro Azimut posta tra l'area di lavoro relativa all'Asta 750 e l'insediamento produttivo contermine
- L'area AS.01 è stata localizzata in corrispondenza dell'ambito intercluso tra l'Asta 750 e la NV01

	PROGETTO DEFINITIVO LINEA A.V. /A.C. MILANO – VERONA						
ITALFERR	NODO DI BRESCIA POTENZIAMENTO INFRASTRUTTURALE DELLO SCALO DI BRESCIA						
PROGETTO MONITORAGGIO AMBIENTALE	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO	
Relazione generale	IN1M	10	D 22 RG	SA0001 001	С	6 di 56	

- Le restanti aree di cantiere, ossia le aree di stoccaggio AS.02, AS.03 ed AS.04; ed il cantiere armamento CA.01 sono state conservate nella loro originaria localizzazione, già prevista in corrispondenza dello scalo ferroviario
- Le aree di cantiere Aree tecniche AT.01 ed AT.02, essendo necessarie alla realizzazione delle opere d'arte in progetto, sono per loro stessa funzione non delocalizzabili

Stante quanto premesso, principali dati delle singole aree di cantiere, nella loro configurazione di revisione C, sono sintetizzati nella tabella seguente.

Tabella 2-1 – Tabella riepilogativa aree di cantiere¹

Denominazione cantiere	Sigla	Superficie
Cantiere Operativo	CO.01	2.040 m ²
Cantiere Operativo	CO.01 bis	3.200 m ²
Cantiere Base	CB.01	1.640 m ²
Area di Stoccaggio	AS.01	2.700 m ²
Area di Stoccaggio	AS.02	1.300 m ²
Area di Stoccaggio	AS.03	600 m ²
Area di Stoccaggio	AS.04	2.300 m ²
Cantiere Armamento	CA.01	2.100 m ²
Area Tecnica	AT.01	1.000 m ²
Area Tecnica	AT.02	1.100 m ²

Relativamente al sistema di cantierizzazione sopra riportato si evidenzia che tutte le aree occupate temporaneamente dai cantieri al termine dei lavori saranno ripristinate allo stato quo-ante e restituite al territorio.

¹ In grassetto le aree di cantiere che sono state oggetto di nuova localizzazione

3. RICETTORI, PUNTI DI MISURA E TEMPI

3.1 I ricettori

Il fattore caratterizzante il contesto di localizzazione dell'opera in progetto risiede nella ridotta presenza di ricettori ad uso abitativo.

A tal riguardo è possibile distinguere le due seguenti condizioni:

- Ricettori posta a ridotta distanza dalle aree di cantiere fisso / aree di lavoro (< 50 metri): Presenza di un unico ricettore a destinazione mista, ristorativo / residenziale, posto a circa 15 metri dall'area di stoccaggio AS.01 e dal cantiere operativo CO.01, nonché dall'area di lavoro dell'Asta 750 metri
- Ricettori posti a rilevante distanza dalle aree di cantiere fisso / aree di lavoro (> 100 metri): fronte residenziale posto a circa 100 metri dall'area di stoccaggio AS.02

A prescindere da dette due specifiche situazioni, il contesto di localizzazione dell'opra in progetto risulta connotato dalla presenza di ricettori ad uso produttivo e/o commerciale, come nel caso del mercato ortofrutticolo.

Per la localizzazione dei ricettori si rimanda alla consultazione degli elaborati grafici allegati alla presente relazione

3.2 Punti di misura

Nel presente PMA per le aree di intervento e per ciascuna area di cantiere sono state individuate le componenti ambientali da monitorare, la tipologia di monitoraggio (orario, 24 h, settimanale, bisettimanale) e la frequenza delle campagne di misura nelle diverse fasi ante-operam, corso d'opera e post-operam (una volta, mensile, trimestrale).

Per ognuna delle componenti ambientali selezionate sono stati definiti univocamente i siti nei quali predisporre le stazioni di monitoraggio per eseguire misure e prelievi, a seconda dei casi specifici.

Ciascun punto di monitoraggio è stato posizionato sulla base di analisi di dettaglio in campo, condotte in questa fase di progettazione definitiva, delle criticità e significatività specifica per singola componente ambientale messa in evidenza nel Piano Ambientale della Cantierizzazione (in seguito denominato PAC), sottoponendo il punto ad accertamento delle condizioni di accessibilità e mappandolo in carta. Per ognuno di tali punti si è previsto di

individuarne la fase in cui esso verrà monitorato, le attività di monitoraggio che in esso avranno luogo e le relative frequenze e durate.

L'esatta localizzazione dei punti di monitoraggio è riportata nelle tavole allegate alla presente relazione (cfr. cap. 5 "Planimetria localizzazione punti di monitoraggio".

Ad ogni modo, si sottolinea che il posizionamento finale in sito può subire delle variazioni a seguito di eventi, quali: indisponibilità dei proprietari/recettori, indisponibilità di allaccio alla rete elettrica per l'alimentazione degli strumenti di monitoraggio, variazione della posizione dei cantieri in fase esecutiva, ecc.

3.3 Tempi e frequenze

Nel presente PMA per ogni componente ambientale, in funzione delle aree monitorate sono state individuate le frequenze delle campagne di misura nelle diverse fasi ante-operam, corso d'opera e post-operam.

Per quanto riguarda la durata delle misure, essa è legata generalmente ad aspetti normativi o ad aspetti di significatività e rappresentatività dei dati. In particolare, per la fase corso d'opera le frequenze sono legate soprattutto ai tempi di realizzazione dell'opera o ai tempi di permanenza dei cantieri. La durata complessiva del monitoraggio in corso d'opera quindi dipenderà chiaramente dai tempi di realizzazione delle opere stesse ma soprattutto dalla durata delle lavorazioni più impattanti legate alle componenti da monitorare.

3.4 Restituzione dei dati

Le modalità di restituzione dei dati seguiranno le indicazioni di cui alle "Linee guida per la predisposizione del Progetto di Monitoraggio Ambientale (PMA) delle opere soggette a procedure di VIA (D. Lgs. 152/2006 e s.m.i., D. Lgs. 163/2006 e s.m.i.) – Indirizzi metodologici generali REV. 1 del 16 giugno 2014", anche ai fini dell'informazione al pubblico, di seguito elencate:

- Saranno predisposti idonei rapporti tecnici periodici descrittivi delle attività svolte e dei risultati del monitoraggio ambientale, sviluppati secondo i contenuti ed i criteri indicati nelle suddette Linee guida;
- I dati di monitoraggio saranno strutturati secondo formati idonei alle attività di analisi e valutazione da parte dell'autorità competente;
- Saranno restituiti i dati territoriali georeferenziati per la localizzazione degli elementi significativi del monitoraggio ambientale.

I dati così raccolti saranno condivisi il pubblico. Inoltre, le informazioni ambientali potranno essere riutilizzate per accrescere le conoscenze sullo stato dell'ambiente e sulla sua evoluzione, oltre ad essere riutilizzati per la predisposizione di ulteriori studi ambientali.

I rapporti tecnici conterranno:

- le finalità specifiche dell'attività di monitoraggio condotta in relazione alla componente/fattore ambientale;
- la descrizione e la localizzazione delle aree di indagine e delle stazioni/punti di monitoraggio;
- i parametri monitorati;
- l'articolazione temporale del monitoraggio in termini di frequenza e durata;
- i risultati del monitoraggio e le relative elaborazioni e valutazioni, comprensive delle eventuali criticità riscontrate e delle relative azioni correttive intraprese.

Inoltre, i rapporti tecnici includeranno per ciascuna stazione/punto di monitoraggio apposite **schede di sintesi** contenenti le seguenti informazioni:

- stazione/punto di monitoraggio: codice identificativo (es.ATM_01 per un punto misurazione della qualità dell'aria ambiente), coordinate geografiche (espresse in gradi decimali nel sistema di riferimento WGS84 o ETRS89), componente/fattore ambientale monitorata, fase di monitoraggio;
- area di indagine (in cui è compresa la stazione/punto di monitoraggio): codice area di indagine, territori
 ricadenti nell'area di indagine (es. comuni, province, regioni), destinazioni d'uso previste dagli strumenti
 di pianificazione e programmazione vigenti (es. residenziale, commerciale, industriale, agricola, naturale),
 uso reale del suolo, presenza di fattori/elementi antropici e/o naturali che possono condizionare
 l'attuazione e/o gli esiti del monitoraggio (descrizione e distanza dall'area di progetto);
- ricettori sensibili: codice del ricettore (es. RIC_01): localizzazione (indirizzo, comune, provincia, regione), coordinate geografiche (espresse in gradi decimali nel sistema di riferimento WGS84 o ETRS89), descrizione (es. civile abitazione, scuola, area naturale protetta, ecc.);
- parametri monitorati: strumentazione e metodiche utilizzate, periodicità, durata complessiva dei monitoraggi.

La scheda di sintesi sarà corredata da:

- inquadramento generale che riporti l'intera opera, o parti di essa, la localizzazione della stazione/punto di monitoraggio unitamente alle eventuali altre stazioni/punti previste all'interno dell'area di indagine;
- rappresentazione cartografica su Carta Tecnica Regionale (CTR) e/o su foto aerea (scala 1:10.000) dei seguenti elementi:
 - stazione/punto di monitoraggio;

- elemento progettuale compreso nell'area di indagine (es. porzione di tracciato ferroviario, aree di cantiere, opere di mitigazione);
- o ricettori sensibili;
- eventuali fattori/elementi antropici e/o naturali che possono condizionare l'attuazione e gli esiti del monitoraggio;
- immagini fotografiche descrittive dello stato dei luoghi.

I dati di monitoraggio contenuti nei rapporti tecnici periodici saranno forniti anche in formato tabellare aperto XLS o CSV. Nelle tabelle sarà riportato:

- · codice identificativo della stazione/punto di monitoraggio;
- · codice identificativo della campagna di monitoraggio;
- data/periodo di campionamento;
- parametro monitorato e relativa unità di misura;
- valori rilevati;
- range di variabilità individuato per lo specifico parametro;
- valori limite (ove definiti dalla pertinente normativa);
- superamenti dei valori limite o eventuali situazioni critiche/anomale riscontrate.

Con riferimento ai dati territoriali georeferenziati necessari per la localizzazione degli elementi significativi del monitoraggio ambientale, si individuerà quanto segue:

- elementi progettuali significativi per le finalità del monitoraggio ambientale (es. area di cantiere, opera di mitigazione, porzione di tracciato ferroviario);
- aree di indagine;
- ricettori sensibili;
- · stazioni/punti di monitoraggio.

I dati territoriali saranno predisposti in formato SHP in coordinate geografiche espresse in gradi decimali nel sistema di riferimento WGS84 o ETRS89.

3.5 Strumenti per la condivisione dei dati di monitoraggio

Così come specificato nelle "Linee guida per la predisposizione del Progetto di Monitoraggio Ambientale (PMA) delle opere soggette a procedure di VIA (D. Lgs. 152/2006 e s.m.i., D. Lgs. 163/2006 e s.m.i.) – Indirizzi metodologici generali REV. 1 del 16 giugno 2014", per le opere strategiche di preminente interesse nazionale

TITALFERR .	PROGETTO DEFINITIV LINEA A.V. /A.C. MILAI NODO DI BRESCIA POTENZIAMENTO INFI	NO – VERONA	ELLO SCALO DI BRESCI	Δ.		
PROGETTO MONITORAGGIO AMBIENTALE	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
Relazione generale	IN1M	10	D 22 RG	SA0001 001	С	9 di 56

(Legge Obiettivo), sarà cura del proponente restituire i dati di monitoraggio attraverso un proprio sistema informativo (portale web) con la finalità di garantire l'accesso, la ricerca, la consultazione dei dati di monitoraggio.

A tal proposito, proprio per garantire una più efficace gestione dei dati di monitoraggio e una più rapida consultazione di tutte le informazioni disponibili in relazione alle specifiche opere, Italferr è fornita di una banca dati ambientale, denominata SIGMAP, che, attraverso un portale web GIS, consente la centralizzazione, l'archiviazione, I'analisi e il download sia dei dati territoriali geografici che di quelli cartografici, garantendo la consultazione di mappe tematiche relative in particolare alla Progettazione, al Monitoraggio Ambientale. Tale banca dati è consultabile e visionabile online attraverso un profilo utente, attivabile dagli stakeolder coinvolti nel progetto. All'avvio delle attività di monitoraggio saranno fornite le necessarie credenziali per l'accesso, dandone comunicato al MATTM-DVA.

Infine, per garantire la condivisione delle informazioni, la documentazione relativa al monitoraggio ambientale (PMA, rapporti tecnici, dati di monitoraggio, dati territoriali) sarà predisposta e trasmessa al MATTM secondo le "Specifiche tecniche per la predisposizione e la trasmissione della documentazione in formato digitale per le procedure di VAS e VIA ai sensi del D.Lgs. 152/2006 e s.m.i.".

4. RELAZIONI SPECIFICHE DELLE SINGOLE COMPONENTI AMBIENTALI

4.1 Atmosfera

4.1.1 Obiettivi del monitoraggio

Le finalità del monitoraggio ambientale per la componente atmosfera sono:

- valutare l'effettivo contributo connesso alle attività di cantiere in termini di emissione sullo stato di qualità dell'aria complessivo;
- fornire ulteriori informazioni evidenziando eventuali variazioni intervenute rispetto alle valutazioni effettuate in fase di progettazione, con la finalità di procedere per iterazioni successive in corso d'opera ad un aggiornamento della valutazione delle emissioni prodotte in fase di cantiere;
- verificare l'efficacia degli interventi di mitigazione e delle procedure operative per il contenimento degli impatti connessi alle potenziali emissioni prodotte nella fase di cantierizzazione dell'opera;
- fornire dati per l'eventuale taratura e/o adeguamento dei modelli previsionali utilizzati negli studi di impatto ambientale.

I parametri rilevati durante il monitoraggio, opportunamente acquisiti ed elaborati, permetteranno nella fase di cantiere una corretta e tempestiva gestione della componente ambientale in oggetto.

In fase di corso d'opera, si valuterà l'opportunità di eseguire o meno le misure di atmosfera in assenza di attività di cantiere significative svolte nelle immediate vicinanze"

4.1.2 Normativa di riferimento

I principali riferimenti sono rappresentati da:

- D.P.C.M. 28/3/1983 Limiti massimi di accettabilità delle concentrazioni e di esposizione relativi ad inquinanti dell'aria nell'ambiente esterno;
- D.P.R. 203/88 (relativamente agli impianti preesistenti) ed altri decreti attuativi Attuazione Direttive n. 80/779, 82/884, 84/360, 85/203 concernenti norme in materia di qualità dell'aria relativamente a specifici agenti inquinanti e di inquinamento prodotto dagli impianti industriali ai sensi dell'art. 15 della Legge 16/4/87 n. 183;
- D.M. 20/5/1991 Criteri per l'elaborazione dei piani regionali per il risanamento e la tutela della qualità dell'aria;
- D.M. 15/4/1994 Norme tecniche in materia di livelli e di stati di attenzione e di allarme per gli inquinanti atmosferici nelle aree urbane, ai sensi degli artt. 3 e 4 del D.P.R. 24 maggio 1988, n. 203 e dell'art. 9 del

D.M. 20 maggio 1991;

- D.M. 25/11/1994 Aggiornamento delle norme tecniche in materia di limiti di concentrazione e di livelli di attenzione e di allarme per gli inquinanti atmosferici nelle aree urbane e disposizioni per la misura di alcuni inquinanti di cui al decreto ministeriale 15 aprile 1994;
- D.M. 16/5/1996 Attivazione di un sistema di sorveglianza di inquinamento da ozono;
- D.Lgs. 4/8/99 n. 351 Attuazione della direttiva 96/62 in materia di valutazione e gestione della qualità dell'aria:
- D.M. 1/10/2002 n.261 Regolamento recante le direttive tecniche per la valutazione preliminare della qualità dell'aria ambiente, i criteri per l'elaborazione dei piani e dei programmi di cui agli articoli 8 e 9 del decreto legislativo 4 agosto 1999, n. 351;
- D. Lgs. 21/05/2004 n.183: Attuazione della direttiva 2002/03/CE relativa all'ozono nell'aria;
- D. Lgs. 3/8/2007 n.152 Attuazione della direttiva 2004/107/CE concernente l'arsenico, il cadmio, il mercurio, il nichel e gli idrocarburi policiclici aromatici nell'aria ambiente;
- D. Lgs. 13/8/2010 n.155, Attuazione della direttiva 2008/50/CE relativa alla qualità dell'aria ambiente e per un'aria più pulita in Europa;
- D. Lgs. 250/2012, Modifiche ed integrazioni al decreto legislativo 13 agosto 2010, n. 155, recante attuazione della direttiva 2008/50/CE relativa alla qualità dell'aria ambiente e per un'aria più pulita in Europa.

Norme tecniche

- UNI EN 12341:2014 Aria ambiente Metodo gravimetrico di riferimento per la determinazione della concentrazione in massa di particolato sospeso PM10 o PM2,5
- UNI EN 14211:2012 "Qualità dell'aria ambiente Metodo normalizzato per la misurazione della concentrazione di diossido di azoto e monossido di azoto mediante chemiluminescenza"

Come anticipato in premessa, il progetto di monitoraggio del fattore ambientale in esame è stato redatto in conformità con le "Linee guida per la predisposizione del Progetto di Monitoraggio Ambientale (PMA) delle opere soggette a procedure di VIA (D. Lgs. 152/2006 e s.m.i., D. Lgs. 163/2006 e s.m.i.) – Indirizzi metodologici specifici per componente/fattore ambientale: Atmosfera REV. 1 del 16 giugno 2014", nonché con il documento "Criteri per la valutazione dei piani di monitoraggio ambientale (matrice atmosfera)" elaborato dal Settore Monitoraggi Ambientali di ARPA Lombardia.

Inoltre, il progetto di monitoraggio nel seguito descritto è stato definito sulla base del documento "Linee Guida per il monitoraggio dell'atmosfera nei cantieri di grandi opere" prodotto da Italferr a Giugno 2012.

I risultati delle simulazioni modellistiche che sono stati eseguite sono stati confrontati con i limiti di legge contenuti nelle tabelle 1,2,3 del D.Lgs. 250/2012. Vengono riportate di seguito le Tabelle indicate.

Tabella 4-1 Valori limite ai sensi del D.Lgs. 250/2012, Allegato XI

	ori limite ai sensi del D.Lgs. 250/2012, Allegato XI
PERIODO DI MEDIAZIONE	VALORE LIMITE
BIOSSIDO DI ZOLFO (SO ₂)	
1 ora	350 μg/m³
Tota	(da non superare più di 24 volte per anno civile)
1 giorno	125 μg/m³
i gioino	(da non superare più di 3 volte per anno civile)
BIOSSIDO DI AZOTO (NO ₂)	
1 ora	200 μg/m³
i ora	(da non superare più di 18 volte per anno civile)
Anno civile	40 μg/m³
BENZENE	
Anno civile	5 μg/m³
MONOSSIDO DI CARBONIO (CO)
Media massima	
giornaliera calcolata su	10 mg/m ³
8 ore	
Ріомво (Рв)	
Anno civile	0,5 μg/m³
PM ₁₀	
1 giorno	50 μg/m³
1 giorno	(da non superare più di 35 volte per anno civile)
Anno civile	40 μg/m³
PM _{2,5}	
FASE 1	
Anno civile	25 μg/m³
FASE 2	
	Valore limite da stabilire con successivo decreto ai sensi
Anno civile	dell'art.22, comma 6, tenuto conto del valore indicativo di 20 μg/m³
	e delle verifiche effettuate dalla Commissione Europea.

Tabella 4-2 Livelli critici per la protezione della vegetazione ai sensi del D. lgs. 250/2012

IDE	ella 4-2 Livelli Chiici per la protezione della vegetazione ai serisi dei D. 19s. 250.				
	PERIODO DI MEDIAZIONE	VALORE LIMITE			
	BIOSSIDO DI ZOLFO (SO2)				
	Livello critico annuale	20 μg/m ³			
	Livello critico invernale	20 μg/m ³			
	BIOSSIDO DI AZOTO (NO2)				
	Livello critico annuale	30 μg/m ³			

Tabella 4-3 Soglie di informazione e di allarme per l'ozono ai sensi del D. Igs. 250/2012

FINALITÀ	PERIODO DI MEDIAZIONE	Soglia
Informazione	1 ora	180 μg/m ³
Allarme	1 ora	240 μg/m ³

Come anticipato in premessa, il progetto di monitoraggio della componente atmosfera, descritto di seguito, è stato redatto in conformità delle "Linee guida per la predisposizione del Progetto di Monitoraggio Ambientale (PMA) delle opere soggette a procedure di VIA (D. Lgs. 152/2006 e s.m.i., D. Lgs. 163/2006 e s.m.i.) – Indirizzi metodologici specifici per componente/fattore ambientale: Atmosfera REV. 1 del 16 giugno 2014".

Inoltre il progetto di monitoraggio della componente atmosfera descritto in questo elaborato è stato definito sulla base del documento "Linee Guida per il monitoraggio dell'atmosfera nei cantieri di grandi opere" prodotto da Italferr a Giugno 2012.

4.1.3 Criteri di individuazione delle aree da monitorare

La scelta della localizzazione delle aree di indagine e, nell'ambito di queste, dei punti (stazioni) di monitoraggio, è effettuata sulla base delle analisi e delle valutazioni degli impatti sulla qualità dell'aria contenute nel SIA e/o nel Progetto Ambientale della Cantierizzazione.

Di seguito si elencano i principali criteri per la localizzazione dei punti di monitoraggio nelle diverse fasi (AO, CO, PO), così come riportati nelle Linee Guida ministeriali:

- presenza di ricettori sensibili in relazione alla protezione della salute, della vegetazione e degli ecosistemi, dei beni archeologici e monumentali e dei materiali;
- punti di massima rappresentatività territoriale delle aree potenzialmente interferite e/o dei punti di massima di ricaduta degli inquinanti (CO e PO) in base alle analisi e alle valutazioni condotte mediante modelli e stime nell'ambito dello SIA;

- caratteristiche microclimatiche dell'area di indagine (con particolare riferimento all'anemologia);
- presenza di altre stazioni di monitoraggio afferenti a reti di monitoraggio pubbliche/private che permettano un'efficace correlazione dei dati;
- · morfologia dell'area di indagine;
- aspetti logistici e fattibilità a macroscala e microscala;
- tipologia di inquinanti e relative caratteristiche fisico-chimiche;
- possibilità di individuare e discriminare eventuali altre fonti emissive, non imputabili all'opera, che possano generare interferenze con il monitoraggio;
- caratteristiche geometriche (in base alla tipologia puntuale, lineare, areale, volumetrica) ed emissive (profilo temporale) della/e sorgente/i (per il monitoraggio CO).

L'ubicazione dei punti di monitoraggio è stata effettuata valutando sia il posizionamento dei ricettori, sia la severità dei potenziali impatti (legata alla tipologia delle lavorazioni e alla sensibilità del territorio) e della durata delle attività connesse alla realizzazione dell'opera.

Il monitoraggio verrà effettuato in alcuni punti significativi denominati "stazioni di monitoraggio".

Per "stazione" si intende una zona definita in cui si ritiene necessario prevedere la determinazione del potenziale contributo della cantierizzazione in termini di inquinanti atmosferici. In particolare, nel nostro caso si definiscono due tipologie di sezione di monitoraggio:

- monitoraggio delle aree di cantiere presenti per tutta la durata dei lavori.
- monitoraggio del traffico veicolare di cantiere

Per ciascuna sezione di monitoraggio, sempre secondo le finalità definite sopra, si prevede l'ubicazione di almeno due punti di monitoraggio, in particolare:

- un punto di monitoraggio in un'area interessata da emissioni atmosferiche prodotte dall'attività di cantiere (Influenzata);
- un secondo punto di monitoraggio in una postazione di misura assolutamente equivalente alla prima in termini di condizioni ambientali al contorno, ma non influenzato dal cantiere e, ovviamente, non influenzato da altri cantieri o punti di immissione singolare (Non Influenzata).

Nel caso in esame, in ragione delle caratteristiche del contesto localizzativo dell'opera in progetto e delle condizioni di distanza intercorrenti tra le aree di cantiere fisso ed i ricettori ad uso abitativo presenti al loro intorno, la rete di monitoraggio sarà composta dalle seguenti sezioni di monitoraggio:

2 punti influenzati dalle attività di cantiere (ATC)

Il numero complessivo dei punti di monitoraggio previsti è pari a 2.

Tutti i punti saranno monitorati sia in fase ante operam che in corso d'opera. In virtù della natura dell'opera, non si prevedono elementi di impatto per la componente atmosfera durante l'esercizio dell'opera, quindi non si prevede di eseguire monitoraggi in fase post operam, per detta componente.

L'ubicazione dei punti di monitoraggio che costituiranno ciascuna stazione è determinata in riferimento ai risultati delle analisi ambientali di progetto e potrà essere modificata durante la fase di corso d'opera, sempre con la finalità di evidenziare nella sezione il contributo delle emissioni di cantiere.

In particolare, l'ubicazione esatta dei punti da monitorare dovrà essere confermata a seguito della verifica dell'effettiva cantierizzazione che sarà effettuata in sede di approfondimento del progetto esecutivo.


La localizzazione delle sezioni di monitoraggio con indicazione dei possibili punti di monitoraggio viene rappresentata negli elaborati grafici al capitolo 5 "Planimetria localizzazione punti di monitoraggio" della presente relazione.

4.1.4 Parametri oggetto del monitoraggio

Sulla base del documento "Linee Guida per il monitoraggio dell'atmosfera nei cantieri di grandi opere" prodotto da Italferr a Giugno 2012, i parametri della qualità dell'aria di cui si prevede il monitoraggio sono di due tipi: il primo tipo si riferisce ad inquinanti convenzionali, ovvero quelli inclusi nella legislazione vigente per i quali sono stati stabiliti limiti normativi, mentre il secondo tipo riguarda una serie di parametri ed analisi non convenzionali che non sono previsti dalla vigente legislazione sulla qualità dell'aria ma che sono necessari per definire il potenziale contributo di inquinanti verosimilmente prodotti durante le fasi di cantierizzazione dell'opera.

Nota la finalità del monitoraggio per detta componente i parametri oggetto di indagine sono:

- Parametri convenzionali
 - particolato avente diametro aerodinamico inferiore a 10 μm (PM₁₀)
 - particolato avente diametro aerodinamico inferiore a 2.5 μm (PM_{2.5})
 - Biossido di azoto (NO₂)
- · Parametri non convenzionali
 - misura ed interpretazione quali-quantitativa dei dati relativi al particolato sedimentabile (deposizioni);
 - analisi della composizione chimica del particolato sedimentabile (deposizioni) relativamente agli elementi terrigeni;

 misura simultanea della distribuzione granulometrica del particolato ad alta risoluzione temporale mediante contatori ottici (contaparticelle) e delle polveri con metodo gravimetrico (PM10 e PM2.5).

Sarà inoltre prevista la misura dei parametri meteoclimatici necessari a valutare i fenomeni di diffusione e di trasporto a distanza dell'inquinamento atmosferico, e ad avere una base sito specifica dei parametri meteo da utilizzare nelle simulazioni atmosferiche:

- velocità del vento
- direzione del vento
- umidità relativa
- temperatura
- precipitazioni atmosferiche
- · pressione barometrica

4.1.5 Metodiche e strumentazione di monitoraggio

Metodologia di acquisizione parametri convenzionali

Per l'acquisizione dei dati di monitoraggio atmosferico è necessario utilizzare stazioni di misura conformi, ai sensi dell'art.1 comma 4 lettera g) del D. Lgs. 155/10 e s.m.i., per quanto riguarda:

- i requisiti richiesti per la strumentazione;
- l'utilizzo di metodiche riconosciute o equivalenti a quelle previste da normative;
- l'utilizzo di strumentazione che permetta un'acquisizione e restituzione dei dati utile ad intervenire tempestivamente in caso di anomalie.

In particolare, per il campionamento e le analisi dei parametri sopra indicati vanno utilizzate strumentazione e metodiche previste dalla normativa vigente in materia (D. Lgs. 155/2010 e s.m.i.) e le principali norme tecniche (ad esempio, la norma UNI EN 12341:2014 per le polveri sottili). In questo modo è possibile ottenere dei dati validati e confrontabili con quelli delle centraline per la determinazione della qualità dell'aria degli Enti territorialmente competenti (ai sensi dell'art. 1 del D. Lgs. 155/10 e s.m.i.), avere delle indicazioni sull'andamento della qualità dell'aria nei territori in cui insistono le lavorazioni e valutare l'eventuale contributo delle attività di realizzazione dell'opera ferroviaria.

Figura 4-1 Campionatore sequenziale automatico

L'analisi gravimetrica su base giornaliera (24 ore) viene effettuata con campionatori (vedi ad esempio Figura 4-1) automatici o semiautomatici che impiegano linee di campionamento (teste di taglio comprese) e sistemi di misura dei parametri di campionamento "conformi" alla normativa (D.Lgs. 155/2010 e s.m.i.). A tale fine, possono essere utilizzati sistemi che consentono la misura diretta basata su principi di tipo fisico (ad es. assorbimento di raggi beta) coerenti con la legislazione attualmente in vigore (con certificazione di equivalenza) o strumenti che prevedono il campionamento su membrane filtranti da sottoporre a misura gravimetrica secondo i dettami della norma UNI EN 12341:2014. La corretta esecuzione delle procedure ivi descritte è garantita dalla Certificazione del Laboratorio e dal Sistema di Gestione della Qualità dell'Azienda che le svolge, ai sensi della norma UNI CEI EN ISO/IEC 17025:2018 (Requisiti generali per la competenza dei laboratori di prova e taratura).

Le membrane filtranti (dette anche "filtri") possono essere composte di vari materiali (vetro, quarzo, PTFE, ecc.) ma sempre con caratteristiche conformi alla norma UNI EN 12341:2014 e sono preparate in laboratorio secondo quanto previsto dalla medesima norma mediante l'utilizzo di pinzette smussate al fine di evitare contaminazione e/o danni. Di seguito si riportano le procedure di preparazione dei filtri:

controllo dei filtri per rilevare imperfezioni o possibile contaminazione dovuta al trasporto;

- condizionamento dei filtri per 48 ore su speciali piatti forati, protetti dal materiale particellare presente nell'aria all'interno di una camera di pesata con aria condizionata ed esposti a condizioni di termoigrometriche di 20±1°C e umidità relativa di 50±5% costanti;
- pesata dei filtri usando una bilancia con risoluzione di almeno 10 μg;
- conservazione dei filtri in cassette etichettate e sigillate;
- redazione di un rapporto di laboratorio dove è indicato il peso del filtro.

Tali filtri "bianchi" sono successivamente caricati nei campionatori automatici per effettuare il monitoraggio e al termine della campagna sono inviati al laboratorio per essere nuovamente sottoposti alla procedura illustrata sopra e determinarne il peso a seguito del campionamento.

La differenza in peso pre- e post- campionamento, congiuntamente al valore del volume campionato (restituito dal campionatore automatico) permette di determinare delle concentrazioni PM₁₀ e PM_{2.5}. In Figura 4-2 è riportata una fotografia di esempio di un filtro bianco e un filtro campionato a confronto.

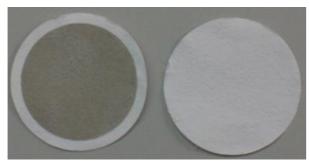


Figura 4-2 - Filtro campionato (sinistra) - Filtro bianco (destra)

Per quanto concerne la strumentazione finalizzata al monitoraggio degli ossidi di azoto, l'analizzatore di ossidi di azoto (NOX) sarà conforme alle specifiche dell'All.VI del Dlgs. 155 15/08/10 descritta nella norma UNI EN 14212:2005.

Il principio di misura è basato sulla chemiluminescenza: l'ozono proveniente da un generatore integrato attraversa la camera di reazione dove è presente il campione da misurare. Le molecole di NO reagiscono con quelle di O3, dando luogo a NO2 + O2 e ad una emissione di fotoni (chemiluminescenza), la cui intensità, proporzionale alla concentrazione di NO nel campione, viene misurata da un fotomoltiplicatore ad elevata sensibilità. La misura di NOx (NO + NO2) viene effettuata facendo passare ciclicamente il campione in un convertitore catalitico che riduce tutto l'NO2 ad NO. Un amplificatore differenziale sottrae quindi dal segnale NOx il segnale di NO ricavandone il segnale di NO2.

Per quanto concerne la strumentazione finalizzata al monitoraggio degli ossidi di azoto, l'analizzatore di ossidi di azoto (NO_X) sarà conforme alle specifiche dell'All.VI del Dlgs. 155 15/08/10 descritta nella norma UNI EN 14212:2005.

Il principio di misura è basato sulla chemiluminescenza: l'ozono proveniente da un generatore integrato attraversa la camera di reazione dove è presente il campione da misurare. Le molecole di NO reagiscono con quelle di O₃, dando luogo a NO₂ + O₂ e ad una emissione di fotoni (chemiluminescenza), la cui intensità, proporzionale alla concentrazione di NO nel campione, viene misurata da un fotomoltiplicatore ad elevata sensibilità. La misura di NOx (NO + NO₂) viene effettuata facendo passare ciclicamente il campione in un convertitore catalitico che riduce tutto l'NO₂ ad NO. Un amplificatore differenziale sottrae quindi dal segnale NOx il segnale di NO ricavandone il segnale di NO₂.

Metodologia di acquisizione parametri non convenzionali

Deposizione e microscopia

Per l'analisi del particolato sedimentabile è previsto l'utilizzo di un campionatore e della microscopia ottica. Nella fase di campionamento viene impiegata un'apparecchiatura Wet-Dry (deposimetro, vedi ad esempio Figura 4-3) in modalità "Dry-Only", al fine di raccogliere il materiale sedimentabile in assenza di precipitazioni.

Tale materiale viene successivamente valutato per microscopia ottica automatica dopo essere stato raccolto su adeguato vetrino di osservazione. La Figura 4-4 riportata di seguito si riferisce ad un campione di particolato atmosferico sedimentato.

Figura 4-3 Campionatore Wet-Dry

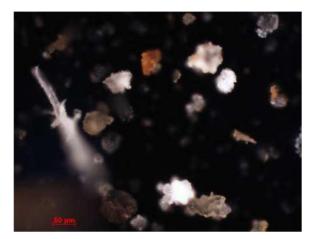


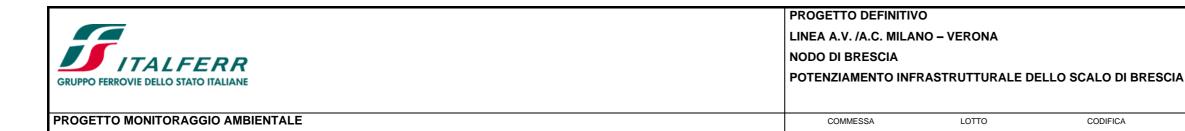
Figura 4-4 Campione di particolato atmosferico al microscopio

Questa tecnica combinata prevede il campionamento su periodi prolungati (tipicamente 7 - 10 gg) del particolato atmosferico sedimentabile, ossia la frazione più pesante del particolato aerotrasportato. In questo modo vengono acquisiti i dati di deposizione di massa (mg/m²*giorno) delle polveri e, attraverso l'utilizzo di vetrini e microscopio ottico, viene effettuata l'osservazione qualitativa della natura e della distribuzione in termini di colore, aspetto e dimensione delle polveri. Tale osservazione si riferisce, in pratica, a particelle sedimentate di dimensioni superiori a 3 µm circa.

L'analisi automatica dell'immagine permette di acquisire informazioni relative alla distribuzione granulometrica delle polveri e alla loro classificazione/suddivisone in classi di "colore". Tali informazioni vengono tipicamente riportate in tabelle (vedi Tabella 4-4 di esempio) ove sono mostrate 8 classi granulometriche da 1 a 200 µm di diametro e tre classi di colore (nero, bianco, marrone).

		Class 1 1_10	Class 2 10_20	Class 3 20_30	Class 4 30_40	Class 5 40_50	Class 5 50_100	Class 7 100_200	Class 8 >200
YTS	site 7	4152	634	276	144	95	141	27	4
WHITEBLEMENTS	site 10	3058	483	212	118	72	141	32	4
TEB	site 4	2500	417	207	87	54	47	7	2
S	site 9	246	45	30	7	9	3	2	1
STA	site 7	8696	1140	306	90	37	33	3	1
BLACK ELEMENTS	site 10	6852	1523	665	276	124	92	5	0
Q E	site 4	10576	3468	1674	611	229	134	8	0
BLA	site 9	2222	436	169	97	38	55	11	2
ENTS	site 7	9403	717	241	104	53	90	19	1
BROWN ELEMENTS	site 10	5831	537	195	114	54	86	6	2
	site 4	2412	176	70	34	12	18	1	0
BRC	site 9	1928	37	7	3	4	5	2	1

Tabella 4-4 Esempio di tabella per analisi dimensionale e di colore


L'analisi del colore delle deposizioni atmosferiche avviene tramite il confronto con la tavola dei colori del sistema R.A.L. e la conseguente suddivisione secondo le 3 sopracitate classi di colore, così caratterizzate:

- grigio/nero: associabile principalmente a particolato connesso a sorgenti di tipo antropico, quali emissioni
 derivanti dall'uso di combustibili fossili (autoveicoli, camini domestici e non), dall'usura di pneumatici, freni
 e manto stradale, da processi industriali, da termovalorizzazione di rifiuti, ecc.;
- bianco: associabile principalmente a un particolato connesso a sale marino, polvere domestica, materiale da erosione di rocce, ecc.;
- marrone: associabile principalmente a un particolato connesso a lavorazioni agricole con dispersione in atmosfera di terra (sabbia, limo, argilla tipicamente di colore giallastro-marrone), a piante (pollini e residui vegetali) e spore, a materiale di erosione di rocce, ecc.

Resta inteso che la colorazione delle polveri va contestualizzata nell'area di indagine prendendo in considerazione le caratteristiche del territorio monitorato e le attività ivi presenti.

Composizione chimica (elementi terrigeni)

Per determinare la concentrazione di elementi di origine terrigena (Silicio, Alluminio, Ferro, Calcio, Magnesio, Potassio, Titanio, Fosforo ed altri eventuali) viene effettuata un'analisi chimica del particolato con la tecnica XRF (X-Ray Fluorescence), che consente di individuare gli elementi chimici costitutivi di un campione grazie all'analisi della radiazione X (fluorescenza X caratteristica) emessa dallo stesso in seguito ad eccitazione atomica con

opportuna energia. L'analisi è non distruttiva, non richiede alcun tipo di preparazione del campione, può operare in aria e non altera il materiale analizzato.

Nel caso in esame può essere effettuata un'analisi XRF a dispersione di energia (acronimo ED-XRF) con un opportuno spettrometro o, in alternativa, può essere utilizzato un microscopio elettronico a scansione (SEM), nel qual caso l'analisi viene definita SEM-EDX (Energy Dispersive X-ray Analysis). Tali metodiche permettono un'analisi simultanea di molti elementi anche su piccolissime parti di campione, quali quelle derivanti dal campionamento del particolato sedimentabile (deposizioni) su opportuni supporti.

L'analisi qualitativa prevede l'identificazione delle righe X caratteristiche di emissione di ogni elemento chimico (disponibili nella bibliografia scientifica di settore), mentre l'analisi quantitativa richiede di correlare i dati di intensità delle diverse righe X emesse con le analoghe emissioni di campioni standard contenenti quantità conosciute dell'elemento da stimare.

In questo modo viene eseguita la determinazione dei principali elementi terrigeni e l'analisi di detti elementi sotto forma di ossidi per la valutazione della percentuale in massa delle polveri terrigene rispetto alla massa complessiva di particolato. Se necessario questo tipo di analisi può essere svolta anche sulle frazioni PM₁₀ e PM_{2.5} del particolato raccolto tramite campionatori gravimetrici.

Distribuzione granulometrica

Relazione generale

L'analisi della distribuzione granulometrica delle polveri compatibilmente alle variazioni dei parametri meteo ed emissivi viene effettuata con contatori ottici (contaparticelle, vedi Figura 4-5) ad alta risoluzione temporale (tipicamente 1 dato al secondo) che coprono l'intervallo sotteso dalle PM₁₀ e PM_{2.5}.

Figura 4-5 - Contaparticelle

Al fine di determinare il rapporto tra particelle fini e grossolane e verificare la loro evoluzione nel tempo, i contaparticelle sfruttano metodi ottici di diffusione/scattering della luce, dove un fascio laser emesso da un diodo (fonte di luce) investe un flusso d'aria di portata nota contenete le particelle in sospensione, mentre al contempo un sensore ottico misura la luce diffusa per restituire il diametro ottico delle particelle e non il diametro aerodinamico equivalente (utilizzato dai campionatori gravimetrici quale metodo di selezione dimensionale). Tali contatori sono generalmente in grado di misurare particelle aventi un diametro minimo di 0.3 µm e un diametro massimo di 10 µm. Alcuni di questi strumenti sono in grado di calcolare la concentrazione di massa equivalente per le frazioni PM₁₀ e PM_{2.5} utilizzando apposite curve di calibrazione. Tali misure consentono di verificare il rapporto tra particelle fini e grossolane in integrazione alle analisi gravimetriche e chimiche.

D 22 RG

DOCUMENTO

SA0001 001

REV.

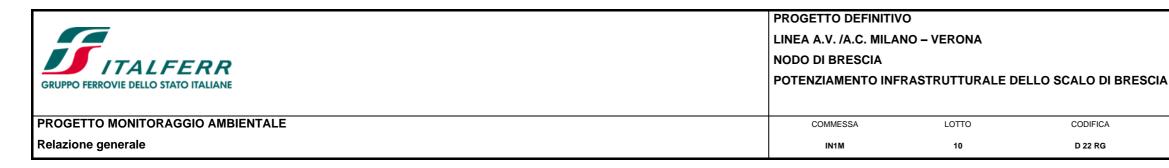
FOGLIO

16 di 56

4.1.6 Articolazione temporale delle attività di monitoraggio

Il monitoraggio della componente atmosfera viene svolto nelle fasi di:

- Ante operam: in assenza di attività di cantiere;
- Corso d'opera: durante la realizzazione delle attività di cantiere.


Di seguito si riporta il dettaglio delle attività di monitoraggio previste, delle misure e le relative frequenze riferite alle diverse metodiche di rilievo selezionate.

Monitoraggio ante-operam

Le attività previste per lo svolgimento del monitoraggio nella fase di AO sono così definite:

- analisi bibliografica e conoscitiva;
- sopralluogo ed identificazione dei punti di monitoraggio;
- espletamento di tutte le attività relative al reperimento in situ delle connessioni alle reti necessarie alla strumentazione e all'ottenimento dei permessi necessari;
- esecuzione delle campagne di rilievo;
- analisi ed elaborazione dei risultati;
- restituzione dei risultati secondo quanto indicato nelle schede di rilevamento;
- produzione del rapporto descrittivo e inserimento dei dati nel sistema informativo.

Si prevede di effettuare le misure della fase ante operam entro la fase di prima cantierizzazione e comunque non oltre l'effettivo inizio delle lavorazioni nei cantieri.

Monitoraggio corso d'opera

Le attività di monitoraggio dovranno essere precedute da un'analisi dell'effettiva cantierizzazione che sarà eseguita in fase di progetto esecutivo.

Italferr provvederà a confermare o eventualmente modificare le ubicazioni delle sezioni di monitoraggio e a comunicarle agli Enti competenti.

Le attività previste per lo svolgimento del monitoraggio nella fase di CO sono da eseguirsi per ogni anno di durata dei lavori e sono così definite:

- verifica della tempistica di campionamento in funzione delle fasi di costruzione dell'opera e delle relative attività di lavorazione;
- sopralluogo e riconoscimento dei punti di monitoraggio;
- espletamento di tutte le attività relative al reperimento in situ delle connessioni alle reti necessarie alla strumentazione e all'ottenimento dei permessi necessari con particolare riferimento all'installazione delle centraline per il monitoraggio in continuo;
- esecuzione delle campagne di rilievo secondo quanto descritto nelle specifiche tecniche;
- restituzione dei risultati nelle schede di rilievo;
- valutazione dei risultati;

La durata e la frequenza con la quale saranno condotte le misure, secondo le metodiche prima indicate al par. 4.1.5, sono le seguenti:

- Fase ante operam (AO)
 - Durata: 12 mesi
 - Frequenza: due volte nell'anno precedente l'inizio lavori per postazione
- Fase corso d'opera (CO)
 - Durata: per tutta la durata dei lavori
 - Frequenza: quattro volte l'anno per tutta la durata dei lavori

Le campagne di misura in ciascun punto di monitoraggio avranno durata di 15 giorni; la tabella che segue riporta il numero di campagne di monitoraggio previste per ogni fase.

A tal riguardo si rammenta che, in presenza di giornate piovose (ovvero giornate in cui si siano registrati più di 1 mm di pioggia) la durata della campagna dovrà essere corrispondentemente prolungata sino ad un massimo di 21 giorni.

DOCUMENTO

SA0001 001

REV.

FOGLIO

17 di 56

CODIFICA

D 22 RG

Tabella 4-5 Atmosfera: Programmazione del monitoraggio

Codice punto	Frequenza	N° campagne Ante Operam (12 mesi)	N° campagne Corso d'opera (~3,2 anni)	Localizzazione
ATC 01	trimestrale	4	13	AS.01 CO.01
ATC 02	trimestrale	4	13	AS.02

La localizzazione dei punti di misura ATC. è riportata nelle tavole al capitolo 5 "Planimetria localizzazione punti di monitoraggio" della presene relazione.

Per quanto riguarda invece i punti "non influenzati" si dovrà fare riferimento ai dati della rete di rilevamento della qualità dell'aria (RRQA).

4.2 Acque superficiali

4.2.1 Obiettivi del monitoraggio

Il monitoraggio dell'ambiente idrico superficiale è finalizzato a valutare le eventuali variazioni delle caratteristiche dei corpi idrici dovute alla realizzazione dell'opera.

Il monitoraggio AO ha lo scopo di definire le condizioni esistenti e le caratteristiche dei corsi d'acqua in assenza di eventuali disturbi provocati dalle lavorazioni e dalle opere in progetto.

Il monitoraggio in Corso d'Opera (CO), ha lo scopo di controllare che l'esecuzione dei lavori per la realizzazione dell'opera non induca alterazioni dei caratteri idrologici e qualitativi del sistema delle acque superficiali. Inoltre, si pone l'obiettivo di controllare che l'esecuzione dei lavori non induca alterazioni qualitative e in termini di portata del sistema delle acque superficiali.

Nel caso in cui sia evidenziata una possibile correlazione tra il superamento e le lavorazioni di cantiere, il Direttore dei Lavori emette un Ordine di Servizio nei confronti dell'Appaltatore per verificare se tale circostanza sia generata dalle lavorazioni eseguite, dal mancato rispetto o dalla insufficienza delle mitigazioni ambientali. In caso di accertata responsabilità dell'Appaltatore, quest'ultimo provvede ad eliminare le cause di perturbazione dell'ambiente idrico per far rientrare i parametri di indagine nei limiti prestabiliti.

Il monitoraggio Post Operam (PO), ha lo scopo di evidenziare eventuali alterazioni subite dal corso d'acqua a seguito delle attività dei cantieri.

Inoltre, il monitoraggio AO, ha anche lo scopo di definire gli interventi possibili per ristabilire condizioni di disequilibrio che dovessero verificarsi in fase CO o PO, garantendo un quadro di base delle conoscenze delle caratteristiche dei corsi d'acqua tale da evitare soluzioni non compatibili con il particolare ambiente idrico.

A tal fine saranno eseguite misure in situ e saranno prelevati campioni d'acqua da analizzare in laboratorio sotto il profilo fisico-chimico-batteriologico e sotto il profilo biologico.

4.2.2 Normativa di riferimento

Per quanto riguarda le norme a cui far riferimento per l'esecuzione degli accertamenti in campo, nonché per quanto attiene i limiti imposti, il tipo di strumentazione da utilizzare e le grandezze da misurare, si citano i seguenti riferimenti:

Normativa Comunitaria

- Direttiva del Parlamento europeo e del Consiglio 12 agosto 2013, n. 2013/39/UE Direttiva che modifica le direttive 2000/60/CE e 2008/105/CE per quanto riguarda le sostanze prioritarie nel settore della politica delle acque;
- Direttiva della Commissione delle Comunità europee 31 luglio 2009, n. 2009/90/Ce Direttiva che stabilisce, conformemente alla direttiva 2000/60/CE del Parlamento europeo e del Consiglio, specifiche tecniche per l'analisi chimica e il monitoraggio dello stato delle acque;
- Direttiva del Parlamento europeo e del Consiglio 16 dicembre 2008, n. 2008/105/CE Direttiva sugli standard di qualità ambientale nel settore della politica delle acque (modifica e abrogazione delle Dir. 82/176/CEE, 83/513/CEE, 84/156/CEE, 84/491/CEE e 86/280/CEE e modifica della Dir. 2000/60/CE);
- Direttiva del Parlamento europeo, 15 febbraio 2006, n. 2006/11/CE Direttiva 2006/11/Ce del Parlamento europeo e del Consiglio del 15 febbraio 2006 concernente l'inquinamento provocato da certe sostanze pericolose scaricate nell'ambiente idrico della Comunità;
- Direttiva 2000/60/CE del 23 ottobre 2000 che istituisce un quadro per l'azione comunitaria in materia di acque;
- Direttiva 1991/271/CE del 21 maggio 1991 concernente il trattamento delle acque reflue urbane, ovvero la tipologia di trattamento che devono subire le acque reflue che confluiscono in reti fognarie prima dello scarico;
- Direttiva del Consiglio del 4 maggio 1976, n. 76/464/CEE Direttiva concernente l'inquinamento provocato da certe sostanze pericolose scaricate nell'ambiente idrico della Comunità.

Normativa Nazionale

- Legge 28 dicembre 2015, n. 221 Disposizioni in materia ambientale per promuovere misure di green economy e per il contenimento dell'uso eccessivo di risorse naturali;
- D.Lgs. 13 ottobre 2015, n. 172 Attuazione della direttiva 2013/39/UE, che modifica le direttive 2000/60/CE per quanto riguarda le sostanze prioritarie nel settore della politica delle acque. Entrata in vigore del provvedimento: 11/11/2015;
- Legge 22 maggio 2015, n. 68 Disposizioni in materia di delitti contro l'ambiente;
- Decreto del Ministero dell'Ambiente 27 novembre 2013, n. 156 Regolamento recante i criteri tecnici per l'identificazione dei corpi idrici artificiali e fortemente modificati per le acque fluviali e lacustri, per la modifica delle norme tecniche del D.Lgs. 3 aprile 2006, n. 152, recante Norme in materia ambientale, predisposto ai sensi dell'articolo 75, comma 3, del medesimo decreto legislativo;
- D.Lgs. 10 dicembre 2010, n. 219 Attuazione della direttiva 2008/105/Ce relativa a standard di qualità ambientale nel settore della politica delle acque, recante modifica e successiva abrogazione delle direttive

PROGETTO DEFINITIVO
LINEA A.V. /A.C. MILANO – VERONA
NODO DI BRESCIA
POTENZIAMENTO INFRASTRUTTURALE DELLO SCALO DI BRESCIA

LOTTO

PROGETTO MONITORAGGIO AMBIENTALE

Relazione generale

82/176/Cee, 83/513/Cee, 84/156/Cee, 84/491/Cee, 86/280/Cee, nonché modifica della direttiva 2000/60/Ce e recepimento della direttiva 2009/90/Ce che stabilisce, conformemente alla direttiva 2000/60/Ce, specifiche tecniche per l'analisi chimica e il monitoraggio dello stato delle acque;

- D.M. 8 novembre 2010, n. 260 Regolamento recante i criteri tecnici per la classificazione dello stato dei corpi idrici superficiali, per la modifica delle norme tecniche del decreto legislativo 3 aprile 2006, n. 152, recante norme in materia ambientale, predisposto ai sensi dell'articolo 75, comma 3, del medesimo decreto legislativo;
- Legge 25 febbraio 2010, n. 36 Disciplina sanzionatoria dello scarico di acque reflue.
- D.M. 14 aprile 2009, n. 56 Regolamento recante "Criteri tecnici per il monitoraggio dei corpi idrici e l'identificazione delle condizioni di riferimento per la modifica delle norme tecniche del decreto legislativo 3 aprile 2006, n. 152, recante Norme in materia ambientale, predisposto ai sensi dell'articolo 75, comma 3, del decreto legislativo medesimo";
- Legge 27 febbraio 2009, n. 13 Conversione in legge, con modificazioni, del decreto-legge 30 dicembre 2008, n. 208, recante misure straordinarie in materia di risorse idriche e di protezione dell'ambiente;
- D.L. 30 dicembre 2008, n. 208 e ss.mm.ii. Misure straordinarie in materia di risorse idriche e di protezione dell'ambiente;
- D.M. 16 giugno 2008, n. 131 Regolamento recante i criteri tecnici per la caratterizzazione dei corpi idrici (tipizzazione, individuazione dei corpi idrici, analisi delle pressioni) per la modifica delle norme tecniche del decreto legislativo 3 aprile 2006, n. 152, recante: "Norme in materia ambientale", predisposto ai sensi dell'articolo 75, comma 4, dello stesso decreto;
- D.Lgs. 16 gennaio 2008, n. 4 Ulteriori disposizioni correttive ed integrative del D.Lgs 3 aprile 2006, n.
 152, recante norme in materia ambientale;
- D.Lgs. 8 novembre 2006, n. 284 Disposizioni correttive e integrative del decreto legislativo 3 aprile 2006,
 n. 152, recante norme in materia ambientale;
- D.M. 2 maggio 2006 Norme tecniche per il riutilizzo delle acque reflue, ai sensi dell'articolo 99, comma 1, del decreto legislativo 3 aprile 2006, n. 152;
- D.Lgs. 3 aprile 2006, n. 152 e ss.mm.ii. Norme in materia Ambientale (TU ambientale). In particolare, la Parte Terza del suddetto decreto, concernente: "Norme in materia di difesa del suolo e lotta alla desertificazione, di tutela delle acque dall'inquinamento e di gestione delle risorse idriche" e successivi Decreti legislativi correttivi (D.Lgs. n. 284 del 8 novembre 2006, D.Lgs. n. 4 del 16 gennaio 2008);
- Direttiva del Ministero dell'Ambiente e della tutela del territorio e del mare 27 maggio 2004 Disposizioni interpretative delle norme relative agli standard di qualità nell'ambiente acquatico per le sostanze pericolose;

 D.M. 6 aprile 2004, n.174 - Regolamento concernente i materiali e gli oggetti che possono essere utilizzati negli impianti fissi di captazione, trattamento, adduzione e distribuzione delle acque destinate al consumo umano:

DOCUMENTO

SA0001 001

REV.

FOGLIO

19 di 56

CODIFICA

D 22 RG

- D.M. 12 giugno 2003, n. 185 Regolamento recante norme tecniche per il riutilizzo delle acque reflue in attuazione dell'articolo 26, comma 2, del decreto legislativo 11 maggio 1999, n.152;
- D. M. 18 settembre 2002 e s.m.i. Modalità di informazione sullo stato di qualità delle acque, ai sensi dell'art. 3, comma 7, del decreto legislativo 11 maggio 1999, n. 52;
- D.Lgs. 2 febbraio 2001, n. 31 e ss.mm.ii. Attuazione della direttiva 98/83/Ce Qualità delle acque destinate al consumo umano.

•

COMMESSA

Linee guida regionali

- Criteri per la predisposizione e la valutazione dei Piani di Monitoraggio Ambientale (PMA) Acque superficiali e sotterranee (Rev. 18 dicembre 2017, ARPA Lombardia)
- Criteri per la predisposizione di Piani di Monitoraggio Ambientale (PMA) Infrastrutture lineari di trasporto (Revisione 1 – gennaio 2020)

4.2.3 Criteri di individuazione delle aree da monitorare

Come anticipato in premessa, il progetto di monitoraggio per la componente in esame è stato redatto in conformità agli "Indirizzi metodologici specifici per componente/fattore ambientale: Ambiente idrico REV. 1 del 17 giugno 2015".

In base ai dettami del documento, le aree oggetto di monitoraggio dovranno essere individuate in ragione della tipologia di opera e della sensibilità e/o vulnerabilità dell'area potenzialmente interferita; pertanto l'individuazione dei punti dovrà essere strettamente connessa a:

- interferenze opera ambiente idrico e alla valutazione dei relativi impatti;
- reti di monitoraggio (nazionale, regionale e locale) meteo idro-pluviometriche e quali quantitative esistenti, in base alla normativa di settore.

Al fine di eseguire un'analisi a scala di sito e, quindi, strettamente calata sulle emergenze idriche da monitorare, i punti di monitoraggio sono stati individuati secondo il criterio idrologico Monte-Valle (M-V) rispetto ai corsi d'acqua interessati dalle attività di cantiere, così da poter valutare le variazioni di specifici parametri/indicatori derivanti da un'eventuale contaminazione connessa a dette attività (ad esempio a seguito di sversamenti

accidentali di sostanze inquinanti). Tali punti di indagine rimangono fissi per tutte le fasi di monitoraggio, previa verifica che nel tratto ricompreso non vi siano derivazioni, scarichi o immissioni d'acqua.

Per quanto specificatamente riguarda le acque di ruscellamento delle aree di cantiere destinate allo stoccaggio temporaneo delle terre, si specifica che la loro gestione, qualora presenti, sarà regolamentata nel momento in cui l'appaltatore chiederà le necessarie autorizzazioni per la raccolta, smaltimento e/o scarico presso le autorità competenti.

4.2.4 Parametri oggetto del monitoraggio

Secondo quanto indicato nelle citate linee guida ministeriali, la scelta degli indicatori deve essere fatta in funzione della tipologia del corpo idrico potenzialmente interferito, ponendo particolare attenzione alla valutazione dell'obiettivo di "non deterioramento" delle componenti ecosistemiche del corpo idrico, introdotto dalla Direttiva Quadro sulle Acque.

Dal momento che non si può escludere a priori che la realizzazione delle opere in progetto non comprometta il raggiungimento degli "obiettivi di qualità" e/o variazioni di "stato/classe di qualità" del corpo idrico, così come definiti dalla normativa di settore e contenuti negli strumenti settoriali di pianificazione/programmazione, verranno utilizzati gli indicatori/indici (con le relative metriche di valutazione) indicati dal D. Lgs. 152/2006 e s.m.i..

Le attività di monitoraggio prevedono controlli mirati all'accertamento dello stato quali-quantitativo delle risorse idriche superficiali. Tali controlli consistono in indagini del seguente tipo:

- Indagini quantitative: misure di portata;
- Indagini qualitative, a loro volta articolate in:
 - Parametri chimico-fisici
 - Parametri chimici e batteriologici
 - Parametri biologici e fisiografico-ambientali

Indagini quantitative

Il monitoraggio quantitativo è mirato alla contestualizzazione dei valori provenienti delle analisi qualitative chimiche, fisiche e batteriologiche, pertanto verrà rilevato il seguente parametro:

Portata (in situ)

È il parametro che quantifica l'entità dei deflussi, fornendo un dato che può essere messo in correlazione sia al quadro di riferimento idrologico del corso d'acqua, per identificare eventuali impatti dovuti alle lavorazioni limitrofe impattanti il regime idrologico, sia ai parametri chimico-fisici di qualità dell'acqua per valutare l'entità dei carichi di inquinanti che defluiscono nella sezione di controllo (dato essenziale per la stima di bilanci di inquinanti nella rete idrografica).

Indagini qualitative

Parametri chimico-fisici

I parametri chimico-fisici potranno fornire un'indicazione generale sullo stato di qualità delle acque dei corsi d'acqua preliminare all'inizio dei lavori, ed in relazione alle problematiche di interferenza con le opere in costruzione. Verranno rilevati i seguenti parametri:

- Temperatura acqua
- Temperatura aria
- pH
- Conducibilità elettrica
- Ossigeno disciolto
- Solidi disciolti totali (TDS)
- Solidi sospesi totali (TSS)

Nelle acque superficiali il pH è caratterizzato da variazioni giornaliere e stagionali e può variare a seguito del rilascio/scarico di sostanze acide e/o basiche.

La conducibilità elettrica varia in funzione del contenuto di sali disciolti, quindi è strettamente correlata al grado di mineralizzazione e solubilità delle rocce a contatto con le acque, ma può variare in maniera importante in presenza di inquinanti.

La concentrazione di ossigeno disciolto dipende da diversi fattori naturali/parametri ambientali, quali: pressione atmosferica, temperatura, salinità, attività fotosintetica, condizioni cinetiche di deflusso. Brusche variazioni del contenuto di ossigeno disciolto possono essere correlate a scarichi civili, industriali e agricoli, infatti una carenza di ossigeno può indicare la presenza di sostanza organica o inorganica riducente. La solubilità dell'ossigeno varia sensibilmente in funzione della temperatura e della pressione barometrica, pertanto i risultati analitici devono essere riferiti al valore di saturazione caratteristico delle condizioni registrate al momento del prelievo.

TITALFERR .	PROGETTO DEFINITIVO LINEA A.V. /A.C. MILANO – VERONA NODO DI BRESCIA POTENZIAMENTO INFRASTRUTTURALE DELLO SCALO DI BRESCIA					
PROGETTO MONITORAGGIO AMBIENTALE	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
Relazione generale	IN1M	10	D 22 RG	SA0001 001	С	21 di 56

Anche la presenza di organismi fotosintetici (alghe, periphyton e macrofite acquatiche) influenza il valore di saturazione di ossigeno, comportando potenziali condizioni di ipersaturazione nelle ore diurne e di debito di ossigeno in quelle notturne.

I solidi sospesi totali sono indicativi, anche in associazione alla torbidità rilevata strumentalmente e alla misura del trasporto solido in sospensione, di potenziali alterazioni riconducibili ad attività dirette di cantiere o a interventi in grado di alterare il regime delle velocità di flusso in alveo e/o l'erosione del suolo/sponda (sistemazioni idrauliche, aree di cantiere, cava o discarica, dissesti, ecc.). Concentrazioni elevate di solidi in sospensione per tempi prolungati possono avere ripercussioni sulla quantità degli habitat per i macroinvertebrati e la fauna ittica.

• Parametri chimici e microbiologici acqua

Le analisi chimiche e microbiologiche daranno indicazione delle eventuali interferenze tra le lavorazioni in atto ed il chimismo e la carica batteriologica di "bianco" dei corsi d'acqua. Verranno analizzati parametri tipicamente legati alle attività di lavorazione e secondariamente all'esercizio dell'infrastruttura ferroviaria. Verranno rilevati i seguenti parametri:

- Calcio
- Sodio
- Potassio
- Magnesio
- Cloruri
- Cloro attivo
- Fluoruri
- Solfati
- Bicarbonati
- Nitrati
- Nitriti
- Ammonio
- Ferro
- Cromo VI
- Cromo totale

- Idrocarburi Btex
- Idrocarburi Totali
- Piombo
- Zinco
- Rame
- Nichel
- Cadmio
- Fosforo totale
- Tensioattivi anionici
- Tensioattivi non ionici
- COD
- TOC
- Alluminio
- Ferro
- Escherichia coli

I cloruri sono sempre presenti nell'acqua in quanto possono avere origine minerale. Valori elevati possono essere collegati a scarichi civili, industriali e allo spandimento di fertilizzanti clorurati e all'impiego di sali antigelo sulle piattaforme stradali. Possono inoltre derivare da processi di depurazione dovuti ad attività di cantiere, dove viene utilizzato l'acido cloridrico (HCL) come correttore di pH, oppure derivano dal processo di potabilizzazione per aggiunta di ipoclorito di sodio NaClO, utilizzato per ossidare le sostanze presenti nell'acqua, liberando ossigeno.

Cromo, Nichel, Zinco sono metalli potenzialmente riferibili al traffico veicolare. Il Cadmio è indicativo della classe di qualità dei corsi d'acqua ed è correlabile alle possibilità di vita dei pesci. La presenza di alcuni metalli può essere inoltre correlata alle lavorazioni, in quanto presenti nel calcestruzzo (cromo) o tramite vernici, zincature e cromature. La presenza di oli e idrocarburi è riconducibile all'attività di macchine operatrici di cantiere, a sversamenti accidentali, al lavaggio di cisterne e automezzi e al traffico veicolare.

- Parametri biologici e fisiografico-ambientali
 - STAR.ICMI

- Indice NISECI
- Indice IFF

Lo STAR-ICMI è un indice che viene calcolato attraverso la combinazione di sei metriche correlate alle caratteristiche di tolleranza, abbondanza/habitat e diversità/ricchezza riscontrabili nei siti fluviali. L'indice è costruito per valutare la qualità generale dei siti fluviali, e viene espresso in Rapporto di Qualità ecologica (RQE), dato dal rapporto del parametro biologico "osservato" ed il valore dello stesso parametro corrispondente ad un "bianco" per la tipologia di corpo idrico considerato.

L'indice NISECI (Nuovo Indice dello Stato Ecologico delle Comunità Ittiche) utilizza come principali criteri per la valutazione dello stato ecologico di un determinato corso d'acqua la naturalità della comunità ittica (intesa come completezza della composizione in specie indigene attese in relazione al quadro zoogeografico ed ecologico), e la condizione biologica delle popolazioni presenti (quantificata positivamente per le specie indigene attese e negativamente per le aliene), in termini di abbondanza e struttura di popolazione tali da garantire la capacità di autoriprodursi ed avere normali dinamiche ecologico-evolutive. Tale metodo di valutazione della fauna ittica per la classificazione dei corpi idrici fluviali, oltre alle metriche definite dalla WFD (composizione, abbondanza e struttura di età), prende in considerazione anche la presenza di specie endemiche e quella di specie aliene e di ibridi.

L'indice IFF (Manuale APAT 2007) permette di valutare lo stato complessivo dell'ambiente fluviale e la sua funzionalità, ad esempio la funzione tampone svolta dall'ecotono ripario, la struttura morfologica dell'alveo, delle rive e dell'intero corso del fiume che deve essere in grado di dare riparo e garantire un habitat idoneo a diverse comunità biologiche.

Il corso d'acqua, inteso come "sistema fluviale", viene quindi osservato in tutto il suo percorso analizzandone le componenti abiotiche (morfologiche, strutturali) e biotiche (vegetazione in alveo, vegetazione riparia e vegetazione perifluviale). L'IFF permette di individuare sia i tratti di corso d'acqua ad alta valenza ecologica che quelli degradati, evidenziandone le criticità funzionali e valutandone l'eventuale grado di allontanamento dalla condizione di massima funzionalità.

Per il monitoraggio delle acque superficiali sono stati selezionati dei parametri-indicatori tra quelli previsti nelle linee guida ministeriali e nei documenti "Criteri per la predisposizione e la valutazione dei piani di monitoraggio ambientale (PMA) – Acque superficiali e sotterranee (Rev. 18 dicembre 2017)" e "Criteri per la predisposizione

di Piani di Monitoraggio Ambientale (PMA) - Infrastrutture lineari di trasporto (Revisione 1 – gennaio 2020)", ritenuti significativi, in relazione alla tipologia ed alle caratteristiche dei corsi d'acqua interferiti.

Il set di parametri-indicatori oggetto del monitoraggio e le metodiche di analisi per le acque superficiali sono riassunte nella tabella di seguito e sarà utilizzato per le fasi : AO, CO e PO.

Per il monitoraggio delle acque superficiali sono stati selezionati dei parametri-indicatori tra quelli previsti nelle linee guida ministeriali, ritenuti significativi, in relazione alla tipologia ed alle caratteristiche dei corsi d'acqua interferiti.

Il set di parametri-indicatori oggetto del monitoraggio e le metodiche di analisi per le acque superficiali sono riassunte nella tabella di seguito e sarà utilizzato per le fasi : AO, CO e PO.

Tabella 4-6 Acque superficiali: Parametri da monitorare (fasi AO, CO e PO)

Parametro	Metodo	U.M.
Temperatura acqua	APAT2100-campo	°C
Temperatura aria	Strumentale - campo	°C
pH	APAT2060-campo	upH
Conducibilità elettrica	APAT2030-campo	μS/cm
Ossigeno disciolto	ASTM D888-campo	mgO2/l
Solidi disciolti Totali (TDS)	UNI 15216	mg/l
Solidi Sospesi Totali (TSS)	APAT2090 B	mg/l
Portata	Correntometro - strumentale	mc/s
Calcio	EPA 6010D	mg/l
Sodio	EPA 6010D	mg/l
Potassio	EPA 6010D	mg/l
Magnesio	EPA 6010D	mg/l
Cloro attivo	APAT4080	mg/l
Fluoruri	APAT4020	mg/l
Solfati	APAT4020	mg/l
Bicarbonati	APAT2010B	mg/l
Nitrati	APAT4020	mg/l
Nitriti	APAT4020	mg/l
Ammonio	APAT 4030 B	mg/l

Relazione generale

PROGETTO MONITORAGGIO AMBIENTALE

LINEA A.V. /A.C. MILANO - VERONA NODO DI BRESCIA POTENZIAMENTO INFRASTRUTTURALE DELLO SCALO DI BRESCIA

Parametro	Metodo	U.M.
Ferro	EPA6020	μg/l
CromoVI	EPA7199	μg/l
Cromo totale	EPA6020	μg/l
Btexs	EPA5030 + EPA8260	μg/l
idrocarburi totali (cone n-esano)	EPA5021 + EPA8015 + UNIENISO9377	mg/l
Piombo	EPA6020	mg/l
Zinco	EPA6020	mg/l
Rame	EPA6020	mg/l
Nichel	EPA6020	μg/l
Cadmio	EPA6020	mg/l
Indice STAR-ICMI	MANUALE ISPRA 2017	-
Indice NISECI	Protocollo Ispra	-

Nel corso delle campagne di monitoraggio, in caso di scostamento tra i valori rilevati nella sezione analizzata, occorrerà valutare l'opportunità di eseguire indagini di approfondimento su parametri da valutare di volta in volta.

4.2.5 Metodiche e strumentazione di monitoraggio

Misure di Portata

Nelle campagne di misura, il punto preciso di indagine sarà a discrezione dell'esperienza dell'operatore e delle condizioni del corso d'acqua.

La rilevazione della portata verrà eseguita effettuando misure correntometriche. Tali misure saranno eseguite utilizzando mulinelli, provvisti di un set di eliche, idonee per misure in qualsiasi condizione di velocità; quando, per via delle condizioni idrologiche, non sarà possibile utilizzare il mulinello (metodo correntometrico), la portata sarà determinata con il metodo volumetrico o con il galleggiante.

Le sezioni di misura verranno predisposte al rilievo, eseguendo la pulizia del fondo e delle sponde o i manufatti esistenti per applicare i dispositivi di supporto e di calata.

Sulla stessa sezione fluviale, nel caso di misure ripetute in periodi diversi, verranno, per quanto possibile, mantenute metodiche e condizioni di misura analoghe, per favorire la confrontabilità dei dati.

Prima di ogni campagna di misura dovrà essere verificata l'efficienza e la manutenzione della strumentazione. La definizione della distanza tra le verticali e il loro posizionamento nella sezione è lasciata all'esperienza dell'operatore. Le verticali dovranno essere più frequenti laddove il fondo è irregolare.

DOCUMENTO

SA0001 001

REV.

FOGLIO

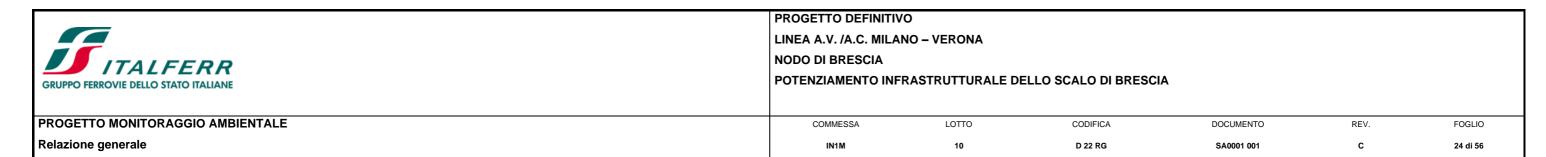
23 di 56

Il numero di punti di misura per ogni verticale è determinato dal diametro dell'elica o dalle caratteristiche del peso (se utilizzato). Indicando con altezza la profondità della verticale e con profondità la profondità del punto di misura, per la determinazione delle profondità dei punti di misura si seguiranno i seguenti criteri:

Micromulinello con elica da 5 cm

LOTTO

PROGETTO DEFINITIVO


COMMESSA

Da 5 a 8 cm di altezza della verticale:1 misura a 2.5 cm di profondità;

CODIFICA

D 22 RG

- Da 8 a 10 cm due misure a 2.5 di prof e a 2.5 dal fondo;
- Da 10 a 15 si aggiunge una misura a profondità=2.5+(altezza-5)/2;
- Da 15 a 35 alle due misure di superficie e di fondo si aggiungono due misure a prof=2.5+(altezza-5)/3, prof=2.5+(altezza-5)*2/3;
- Da 35 a 70 alle due misure di fondo e di superficie si aggiungono 3 punti a prof=2.5+(altezza-5)/4, prof=2.5+(altezza-5)*2/4, prof=2.5+(altezza-5)*3/4;
- Misure a guado con elica da 12 cm di diametro;
- Da 12 a 13 cm di altezza della verticale una misura a 6 cm di prof.;
- Da 13 a 25 cm si aggiunge una misura al 6 cm dal fondo;
- Da 25 a 50 cm alle due misure di superficie e di fondo si aggiunge una terza a prof=6+(altezza-12)/2;
- Oltre 50 cm di altezza alle due misure di superficie e di fondo si aggiungono due misure a prof=6+(altezza-12)/3 e prof=6+(altezza-12)*2/3.
- Misure con peso da 25--50 kg con distanza asse peso-fondo=12 cm
 - Da 18 a 24 cm di altezza della sezione una misura a 6 cm di profondità;
 - Da 25 a 30 cm una misura a 6 cm di profondità ed una a 12 cm dal fondo;
 - Da 31 a 50 alle due misure di superficie e di fondo si aggiunge un punto a prof=6+(altezza-18)/2;
 - Da 51 a 150 cm di profondità alle due misure di superficie e di fondo si aggiungono due punti a prof=6+(altezza-18)/3 e prof=6+(altezza-18)*2/3;
 - Da 150 a 200 cm alle due misure di superficie e di fondo si aggiungono 3 punti a prof=6+(altezza-18)/4, prof=6+(altezza-18)*2/4, prof=6+(altezza-18)*3/4;

- Oltre 200 cm alle due misure di superficie e di fondo si aggiunge un punto ogni 50 cm di profondità.
- Misure con peso da 25--50 kg con distanza asse peso-fondo=20 cm
 - Da 26 a 32 cm di altezza della sezione una misura a è cm di profondità;
 - Da 33 a 49 cm una misura a 6 cm di profondità ed una a 20 cm dal fondo;
 - Da 50 a 65 alle due misure di superficie e di fondo si aggiunge un punto a prof=6+(altezza-26)/2;
 - Da 66 a 150 cm di profondità alle due misure di superficie e di fondo si aggiungono due punti a prof=6+(altezza-26)/3 e prof=6+(altezza-26)*2/3;
 - Da 150 a 200 cm alle due misure di superficie e di fondo si aggiungono 3 punti a prof=6+(altezza-26)/4, prof=6+(altezza-26)*2/4, prof=6+(altezza-26)*3/4;
 - Oltre 200 cm alle due misure di superficie e di fondo si aggiunge un punto ogni 50 cm di profondità.

Campionamento per Analisi di Laboratorio

Il campionamento sarà realizzato tramite sonda a trappola che sarà immersa nel filone principale della corrente al di sotto del pelo libero. Si dovranno preferire punti ad elevata turbolenza evitando zone di ristagno e zone dove possano manifestarsi influenze del fondo, della sponda o di altro genere.

Per la raccolta del campione si utilizzerà una scheda predisposta e sarà redatto un verbale di campionamento che sarà trasmesso in copia al laboratorio di analisi.

In occasione del campionamento saranno misurati la temperatura dell'acqua e dell'aria, la Conducibilità elettrica, il pH e l'Ossigeno disciolto. I valori rilevati saranno la media di tre determinazioni consecutive.

Tutte le misure saranno effettuate previa taratura degli strumenti.

I contenitori utilizzati dovranno essere contrassegnati da apposite etichette di tipo autoadesivo con sopra riportate le seguenti informazioni:

- punto di prelievo (nome del corso d'acqua);
- sezione del corso d'acqua su cui si effettua il prelievo;
- data e ora del campionamento.

Per impedire il deterioramento dei campioni, questi andranno stabilizzati termicamente tramite refrigerazione a 4 °C e recapitati al laboratorio di analisi entro le ventiquattro ore dal prelievo prevedendone il trasporto in casse refrigerate.

Indice STAR ICMI

L'indice STAR-ICMI è un indice multimetrico, per il cui calcolo vengono combinate sei metriche riconducibili alle categorie generali di tolleranza, abbondanza/habitat e diversità ricchezza, ad ogni metrica viene attribuito un peso differente

Tabella 4-7 Metriche compongono lo STAR-ICMI e peso attribuito nel calcolo

Tipo di informazione	Tipo di metrica	Metrica	Descrizione e taxa considerati	Peso
Tolleranza	Indice	ASPT	Intera comunità (livello di Famiglia)	0.333
Abbondanza/ Habitat	Abbondanza	Log ₁₀ (Sel_EPTD +1)	Log ₁₀ (somma delle abbondanze di Heptagenlidae, Ephemeridae, Leptophlebildae, Brachycentridae, Goeridae, Polycentropodidae, Limnephilidae, Odontoceridae, Dolichopodidae, Stratyomidae, Dixidae, Empididae, Athericidae e Nemouridae +1)	0.266
	Abbondanza	1-GOLD	1 - (abbondanza relativa di Gastropoda, Oligochaeta e Diptera)	0.067
Ricchezza /Diversità	Numero taxa	Numero totale di Famiglie	Somma di tutte le famiglie presenti nel sito	0.167
	Numero taxa	Numero di Famiglie di EPT	Somma delle famiglie di Ephemeroptera, Plecoptera e Trichoptera	0.083
	Indice Diversità	Indice di diversità di Shannon-Wiener	$D_{S \to W} = -\sum_{i=1}^{s} \left(\frac{n_i}{A}\right) \cdot \ln\left(\frac{n_i}{A}\right)$ (sull'intera comunità)	0.083

L'indice STAR-ICMI viene espresse in Rapporto di qualità ecologica (RQE) dato dal rapporto del parametro biologico "osservato" ed il valore dello stesso parametro corrispondente alle "condizioni di riferimento" per la tipologia di corpo idrico considerato, e assume valori tra 0 e 1.

Il calcolo dell'indice prevede i seguenti passaggi:

- Calcolo dei valori grezzi che compongono l'indice;
- Conversione dei valori di ciascuna metrica in RQE;
- Calcolo della media ponderata dei valori di RQE delle sei metriche secondo i pesi forniti nella tabella 8;
- Normalizzazione del valore ottenuto dividendo il valore del campione in esame per il valore di STAR-ICMI nelle condizioni di riferimento.

Al valore di STAR-ICMI calcolato viene attribuito un giudizio di qualità, sulla base della suddivisione della variabilità dell'indice in 5 classi di qualità.

Indice NISECI

Lo stato ecologico di un corpo idrico può essere considerato come la misura degli effetti dell'attività umana sugli ecosistemi acquatici ed è misurato mediante elementi di qualità biologici, supportato da elementi idromorfologici e fisico-chimici. Per la definizione dello stato ecologico di fiumi e laghi, la Direttiva Quadro sulle Acque

PROGETTO MONITORAGGIO AMBIENTALE
Relazione generale

PROGETTO DEFINITIVO
LINEA A.V. /A.C. MILANO – VERONA
NODO DI BRESCIA

POTENZIAMENTO INFRASTRUTTURALE DELLO SCALO DI BRESCIA

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
IN1M	10	D 22 RG	SA0001 001	С	25 di 56

2000/60/CE (Water Framework Directive, WFD) prende in considerazione elementi biologici riferiti ai diversi livelli trofici: flora acquatica (fitoplancton, fitobenthos, macrofite), macroinvertebrati bentonici, fauna ittica, di quest'ultima valutandone, per i fiumi, composizione tassonomica, abbondanza e struttura della popolazione. La classificazione di ciascun corpo idrico viene effettuata mediante l'espressione di un singolo giudizio complessivo, definito "Stato ecologico", che viene calcolato mediante l'attribuzione del giudizio più basso tra gli elementi di qualità biologici considerati (principio "one out/all out").

Lo stato di qualità viene espresso come rapporto di qualità ecologica (RQE) calcolato rapportando "i valori dei parametri biologici riscontrati in un dato corpo idrico superficiale a quelli costatabili nelle condizioni di riferimento applicabili al medesimo corpo" (Direttiva 2000/60/CE, Allegato V, punto 1.4.1). L'RQE, varia da 0 (stato pessimo) a 1 (stato elevato) e viene suddiviso in 5 intervalli corrispondenti ad altrettante classi di stato ecologico.

Gli indici elaborati per l'implementazione della WFD, in Italia così come a livello europeo, sono in linea di massima di tipo multimetrico: si tratta quindi di indici che integrano tra loro differenti metriche, calcolate utilizzando elenchi floristici e faunistici redatti sulla base di campionamenti effettuati secondo modalità standardizzate (ISPRA, 2014).

La condizione di riferimento (corrispondente allo stato ecologico elevato), rispetto alla quale vengono confrontate le comunità ittiche osservate, è rappresentata da una comunità in cui siano presenti tutte le specie autoctone attese, con popolazioni in buona condizione biologica, e siano assenti specie aliene o ibridi.

Struttura dell'indice

La formulazione multimetrica dell'indice, il cui valore varia, così come quello di tutte le metriche e sub metriche costitutive, tra 0 e 1, è data da:

NISECI =
$$0.1 x_1^{0.5} + 0.1 x_2^{0.5} + 0.8 (x_1 \times x_2) - 0.1 (1 - x_3)$$

 $\times (0.1 x_1^{0.5} + 0.1 x_2^{0.5} + 0.8 (x_1 \times x_2))$

dove: x_1 = metrica "presenza/assenza di specie indigene"

x₂ = metrica "condizione biologica delle popolazioni di specie autoctone"

x₃ = metrica "presenza di specie aliene o ibridi, struttura delle relative popolazioni e rapporto numerico rispetto alle specie indigene"

Poiché i valori di stato ecologico, ai sensi della normativa europea, devono essere espressi sotto forma di Rapporto di Qualità Ecologica (RQE), ovvero il rapporto tra lo stato della comunità ittica osservata e quello della corrispondente comunità di riferimento, sono stati calcolati i valori soglia di NISECI in modo da definire intervalli RQE di uguale ampiezza per ciascuna delle 5 classi previste. La relazione tra NISECI e RQE_{NISECI} è stata ottenuta tramite simulazione di 21000 casi, nel corso della quale le 3 metriche dell'indice sono state fatte variare da 0 a 1 per incrementi di 0.1:

$$RQE_{NISECI} = (log NISECI + 1.1283)/1.0603$$

Poiché la classificazione dello stato ecologico deve essere espressa in 5 classi, sono stati calcolati i valori soglia di NISECI in modo da definire intervalli RQE di uguale ampiezza per ciascuna classe, suddivisi tra area alpina e area mediterranea:

Stato ecologico	Area alpina	Area mediterranea
Elevato	$0.80 \le RQE_{NISECI}$	$0.80 \le RQE_{NISECI}$
Buono	$0.52 \le RQE_{NISECI} \le 0.80$	$0.60 \le RQE_{NISECI} \le 0.80$
Moderato	$0.40 \le RQE_{NISECI} \le 0.52$	$0.40 \le RQE_{NISECI} \le 0.60$
Scadente	$0.20 \le RQE_{NISECI} \le 0.40$	$0.20 \le RQE_{NISECI} \le 0.40$
Cattivo	RQE _{NISECI} < 0.20	RQE _{NISECI} < 0.20

La metrica presenza/assenza di specie indigene confronta la composizione specifica della comunità ittica autoctona osservata con quella attesa.

La condizione biologica delle popolazioni di specie autoctone attese presenti è data dall'integrazione tra struttura di popolazione e consistenza demografica o abbondanza. Il valore totale della metrica viene calcolato come la media dei valori calcolati per ciascuna specie.

Per la metrica Presenza di specie aliene o ibridi, struttura delle relative popolazioni e rapporto numerico rispetto alle specie indigene, le specie aliene sono state suddivise in tre gruppi in funzione della loro nocività, definita sulla base del livello di impatto sulla fauna ittica autoctona. Gli elenchi delle specie appartenenti ai tre diversi gruppi sono riportati nell'Allegato 3 del Manuale e linee guida 159/2017 "Nuovo Indice dello Stato Ecologico delle Comunità Ittiche (NISECI)" pubblicato da ISPRA, sulla base delle valutazioni effettuate da Zerunian et al. (2009).

Per quanto riguarda il metodo di calcolo delle metriche e submetriche, si farà riferimento al documento su citato dell'ISPRA (Manuale e linee guida 159/2017 "Nuovo Indice dello Stato Ecologico delle Comunità Ittiche (NISECI)").

Indice IFF

L'indagine viene effettuata in un periodo compreso tra il regime idrologico di morbida e magra in fase di attività vegetativa. L'indagine consiste in 14 domande relative ai comparti ambientali che costituiscono il fiume oggetto di studio, distinguendo tra sponda destra e sinistra poiché possono presentare caratteristiche notevolmente diverse, alle risposte vengono assegnati dei pesi numerici raggruppati in quattro classi.

L'IFF viene valutato compilando in campo una scheda mentre si risale il fiume da valle a monte, identificando di volta in volta un tratto omogeneo in base alle caratteristiche da rilevare, per il quale andrà compilata un'unica scheda. Questa si compone di un'intestazione con la richiesta di alcuni metadati riguardanti il bacino, il corso d'acqua, la località, la larghezza dell'alveo di morbida, la lunghezza del tratto omogeneo in esame, la quota media del tratto, la data del rilievo, il numero della scheda, il numero della foto e il codice del tratto omogeneo.

Le domande contenute nella scheda sono relative ai seguenti aspetti:

- Condizioni vegetative delle rive e del territorio circostante al corso d'acqua;
- Ampiezza dell'alveo bagnato e struttura delle rive;
- Struttura dell'alveo:
- Caratteristiche biologiche.

Dopo la compilazione della scheda si effettua la somma dei punteggi ottenuti, determinando il valore di IFF per ciascuna sponda, al valore di IFF viene associato il relativo Livello di funzionalità e Giudizio di Funzionalità consentendo di avere un giudizio sintetico sulle caratteristiche degli ecosistemi biotici e abiotici presenti.

Tabella 8 Livelli di i	funzionalità e relativo	giudizio e color	e di riferimenti.

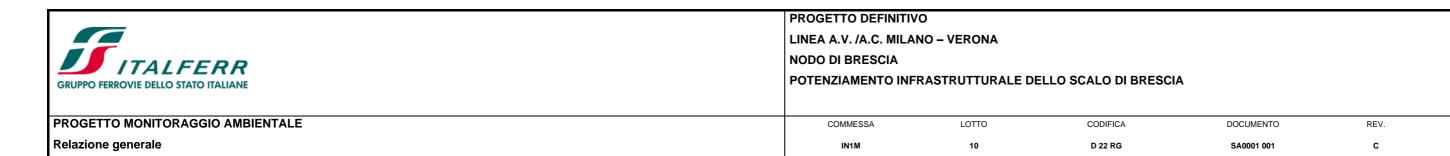
VALORE DI I.F.F.	LIVELLO DI FUNZIONALITÀ	GIUDIZIO DI FUNZIONALITÀ	COLORE	
261 - 300	I	ottimo	Blu	
251 - 260	1-11	ottimo-buono		
201-250	II	buono	verde	
181 - 200	п-ш	buono-mediocre		
121 - 180	Ш	mediocre	giallo	
101 - 120	III-IV	mediocre-scadente		
61 - 100	IV	scadente	arancio	
51 - 60	IV-V	scadente-pessimo		
14 - 50	V	pessimo	rosso	

L'IFF sarà valutato sui fiumi Biferno e Saccione, in corrispondenza delle principali opere di attraversamento per una lunghezza di circa 1 km (500 metri a monte e 500 metri a valle dell'opera), individuando i tratti omogenei del corso fluviale

4.2.6 Articolazione temporale delle attività di monitoraggio

Il monitoraggio dei corpi idrici superficiali è eseguito nelle 3 fasi AO, CO e PO e, per ogni fase, prevede:

- analisi chimico-fisiche speditive in-situ, campionamenti e analisi chimiche di laboratorio con frequenza trimestrale;
- una campagna di rilievo degli indici IFF, ISECI e STAR-ICMI.


Il Monitoraggio su un corso d'acqua, in ognuna delle suddette fasi, si esegue attraverso una sezione, composta da due punti di monitoraggio, uno a monte ed uno a valle rispetto alle opere da realizzare, nonché rispetto alle aree di cantiere prossime al corso d'acqua in oggetto.

I due punti di monitoraggio a monte ed a valle saranno sempre gli stessi nelle tre fasi AO, CO e PO, previa verifica che nel tratto compreso tra esse non vi siano derivazioni, scarichi o immissioni d'acqua.

Le misure saranno condotte in corrispondenza dei punti selezionati con le metodiche prima riportate e secondo durata e frequenza come di seguito riportato:

- Fase Ante operam (AO)
 - Durata 12 mesi
 - Frequenza: (trimestrale) 4 volte nell'anno precedente l'inizio lavori per postazione
- Fase Corso d'opera (CO)
 - Durata: per tutta la durata dei lavori (3,2 anni)
 - Frequenza: (trimestrale) quattro volte l'anno per tutta la durata dei lavori
- Fase Post operam (PO)
 - Durata: 12 mesi
 - Frequenza: (trimestrale) 4 volte nei 6 mesi successivi all'entrata in esercizio dell'infrastruttura.

Appare evidente che la frequenza del monitoraggio della componente acque superficiali in fase CO e PO potrà essere variata in funzione delle caratteristiche torrentizie/stagionali dei diversi corsi d'acqua impattati e sulla base degli esiti del monitoraggio eseguito in fase AO.

FOGLIO

27 di 56

Tabella 4-9 Programmazione del monitoraggio delle acque superficiali

MISURE	Corso d'acqua da MONITORARE/PK	ANTE OPERAM (12 MESI)	CORSO D'OPERA N. CAMPAGNE (~3,2 anni)	POST OPERAM (12 MESI)	
ASU_01	Fiume Mella	Trimestrale (4 volte)	13 (4 volte / anno)	Trimestrale (4 volte)	
ASU_02	Traine mena	Timesaale (Treate)	To (1 voice / arme)	Transcalais (Trons)	
ASU_03	Roggia Fiumicella	Trimestrale (4 volte)	13 (4 volte / anno)	Trimestrale (4 volte)	
ASU_04		Trimodiale (4 voite)	10 (1 voite / drille)	Timocadio (4 Volto)	

La localizzazione dei punti di misura ASU. è riportata nelle tavole allegate al capitolo 5 "Planimetria localizzazione punti di monitoraggio" della presente relazione.

4.3 Acque sotterranee

4.3.1 Obiettivi del monitoraggio

Il monitoraggio dell'ambiente idrico sotterraneo ha lo scopo di controllare l'impatto dell'opera sul sistema idrogeologico, al fine di prevenirne le alterazioni, ed eventualmente programmare efficaci interventi di contenimento e mitigazione.

4.3.2 Normativa di riferimento

Per quanto riguarda le norme a cui far riferimento per l'esecuzione degli accertamenti in campo, nonché per quanto attiene i limiti imposti, il tipo di strumentazione da utilizzare e le grandezze da misurare, si citano i seguenti riferimenti:

Normativa Comunitaria

- Direttiva della Commissione 20 giugno 2014, n. 2014/80/UE Direttiva che modifica l'allegato II della direttiva 2006/118/CE del Parlamento europeo e del Consiglio sulla protezione delle acque sotterranee dall'inquinamento e dal deterioramento;
- Direttiva del Parlamento europeo, 12 dicembre 2006, n. 2006/118/CE Direttiva 2006/118/CE del Parlamento europeo e del Consiglio del 12 dicembre 2006 sulla protezione delle acque sotterranee dall'inquinamento e dal deterioramento.
- Direttiva del Parlamento europeo, 15 febbraio 2006, n. 2006/11/CE Direttiva 2006/11/Ce del Parlamento europeo e del Consiglio del 15 febbraio 2006 concernente l'inquinamento provocato da certe sostanze pericolose scaricate nell'ambiente idrico della Comunità.

Normativa nazionale

- D.Lgs. 16 marzo 2009, n. 30 Attuazione della direttiva 2006/118/CE, relativa alla protezione delle acque sotterranee dall'inquinamento e dal deterioramento;
- D. Lgs. n. 152 del 3 Aprile 2006, Norma in materia ambientale, e s.m.i. Norme in materia Ambientale (TU ambientale).

4.3.3 Criteri di individuazione delle aree da monitorare

Come anticipato in premessa, il progetto di monitoraggio per la componente in esame è stato redatto in conformità agli "Indirizzi metodologici specifici per componente/fattore ambientale: Ambiente idrico REV. 1 del

17 giugno 2015", in linea generale il monitoraggio della componente acque sotterranee è rivolto ai seguenti ambiti:

- aree di captazione idrica, sorgenti e/o pozzi, per uso idropotabile, industriale e irriguo;
- zone interessate da rilevanti opere in sotterraneo quali gallerie e/o movimenti terra e scavi, aree di
 cantiere, siti di deposito soggette a potenziali contaminazioni, con possibili interferenze con la superficie
 freatica o con eventuali falde confinate o sospese, che possono determinare sia la variazione nel regime
 della circolazione idrica sotterranea che mettere in comunicazione acquiferi superficiali di scarsa qualità
 con acquiferi profondi di buona qualità, spesso sfruttati per uso idropotabile o causare variazione della
 posizione dell'interfaccia acqua dolci/acque salmastre (cuneo salino) nelle zone costiere;
- corsi d'acqua superficiali in interconnessione con la falda;
- aree di particolare sensibilità e rilevanza ambientale e/o socio-economica (es. sorgenti, aree umide protette, laghi alimentati in parte dalla falda, aree di risorgive carsiche);
- aree di cantiere, per effetto di sversamenti accidentali, perdite di carburanti, presenza di serbatoi con sostanze inquinanti etc;
- aree di captazione idrica;
- aree per le quali si prevedono rilevanti opere in sotterraneo, aree di cantiere e deposito soggette a
 potenziali contaminazioni, ponendo particolare attenzione per quelle che andranno ad interessare delle
 zone vulnerabili.

Linee guida regionali

- Criteri per la predisposizione e la valutazione dei Piani di Monitoraggio Ambientale (PMA) Acque superficiali e sotterranee (Rev. 18 dicembre 2017, ARPA Lombardia)
- Criteri per la predisposizione di Piani di Monitoraggio Ambientale (PMA) Infrastrutture lineari di trasporto (Revisione 1 – gennaio 2020)

In tal senso, nel caso in specie il criterio sulla scorta del quale localizzare i punti di monitoraggio ha tenuto conto delle caratteristiche idrogeologiche del contesto territoriale di intervento, così come definite nella Relazione Geologica (NF0Q00F69RGGE0001001C), e delle opere e delle lavorazione previste, privilegiando, nella scelta degli areali di localizzazione di detti punti, quelli nei quali le aree di lavoro interessano zone aventi grado di permeabilità maggiore rispetto a quello individuato lungo l'intero tracciato in progetto.

I punti di monitoraggio sono determinati individuando, per ognuno dei suddetti areali, una coppia di punti di rilevazione disposti secondo il criterio Monte-Valle rispetto alla direzione di deflusso della falda. In questo modo

sarà possibile valutare in dettaglio le caratteristiche quali-quantitative delle acque di falda unitamente alle condizioni di deflusso sotterraneo, ed individuare "tempestivamente" eventuali variazioni di un determinato parametro e, consequentemente, valutare se tali impatti siano riconducibili alla realizzazione dell'opera.

La rete di monitoraggio, come riportato in Tabella 4-10, è costituita da:

4 postazioni di rilievo utilizzate in coppia (M-V)

Qualora emerga la necessità di installare ulteriori punti, l'esatta ubicazione è stabilita in situ tenendo in considerazione le lavorazioni e le opere da realizzare nell'area, cioè posizionando ogni piezometro in una zona protetta da danni accidentali o atti di vandalismo e al contempo facilmente accessibile. I piezometri di nuova realizzazione saranno installati in modo tale da intercettare la falda, quindi presenteranno un tratto filtrante compatibile con lo spessore dell'acquifero.

Le misure sono condotte in corrispondenza dei punti riportati in Tabella 4-10

Tabella 4-10 Acque sotterranee: Punti di monitoraggio

ID PUNTO	TIPOLOGIA	PK	QUOTA FALDA (DA PC)	Dата	COD SONDAGGIO	CANTIERE/OPERA DA
			Max-Min			MONITORARE
ASO.01	Monte	0+300	-11,00	29.09.2021	S2_PD_BS	SL01
ASO.02	Valle	0+340	-	-	Nuovo piezometro	0201
ASO.03	Monte	0+500	-	-	Nuovo piezometro	SL02
ASO.04	Valle	0+600	-	-	Nuovo piezometro	0202

Si specifica che 1 punto di misura (S2_PD_BS) risulta corrispondente ai sondaggi eseguiti per la progettazione definitiva (Italferr 2021), mentre l'altro è previsto attraverso un nuovo piezometro che andrà eseguito in tempo utile per poter permettere le attività di monitoraggio Ante Operam.

La localizzazione dei punti di misura ASO. è riportata nelle tavole allegate al capitolo 5 "Planimetria localizzazione punti di monitoraggio" della presente relazione.

4.3.4 Parametri oggetto del monitoraggio

I parametri descrittori che verranno indagati sono quelli ritenuti più significativi, perché correlabili alle attività connesse alla realizzazione dell'infrastruttura ferroviaria, alle attività previste, agli scarichi di cantiere, ad

eventuali sversamenti accidentali, e all'eventuale filtrazione delle acque superficiali di ruscellamento e percolazione provenienti dalle aree di stoccaggio temporaneo dei materiali di scavo.

Il monitoraggio sulla presente componente prevedrà indagini quantitative e indagini qualitative:

Indagini quantitative

livello piezometrico su pozzi

Il monitoraggio quantitativo è mirato alla valutazione di massima degli andamenti stagionali della falda e delle modalità di deflusso delle acque sotterranee, al fine di individuare eventuali interferenze che le opere in trincea e galleria possono operare sul deflusso di falda. Il conseguimento di tali finalità richiede la disponibilità di dati sufficienti a definire le curve di ricarica e di esaurimento della falda. Pertanto, all'avvio del monitoraggio dovranno essere a disposizione tutte le informazioni idonee a restituire un quadro conoscitivo completo e dettagliato dei pozzi e delle sorgenti presenti nell'areale di progetto, inoltre dovranno essere aggiornati i dati relativi ai pozzi esistenti mediante sopralluoghi ad hoc, e dovranno essere redatte delle schede sintetiche descrittive dei dati caratteristici di tutti i punti monitorati.

Indagini qualitative

Parametri chimico-fisici

Verranno rilevati i seguenti parametri:

- Temperatura
- pH
- Conducibilità

La determinazione dei parametri chimico-fisici fornirà un'indicazione generale sullo stato di qualità delle acque di falda in relazione alle opere in progetto.

Ad esempio, significative variazioni di pH possono essere collegate a fenomeni di dilavamento di conglomerati cementizi e contatto con materiale di rivestimento di opere in sotterraneo. Variazioni della conducibilità elettrica possono essere ricondotti a fenomeni di dilavamento di pasta di cemento con conseguente aumento di ioni o sversamenti accidentali. Infine, variazioni significative di temperatura possono indicare modifiche o alterazioni nei meccanismi di alimentazione della falda (sversamenti, apporti di acque superficiali).

Parametri chimici e microbiologici acqua
 Verranno rilevati i seguenti parametri:

- Calcio
- Sodio
- Potassio
- Magnesio
- Cloruri
- Fluoruri
- Solfati
- Bicarbonati
- Nitrati
- Nitriti
- Ammonio
- Solidi disciolti totali (TDS)
- Solidi sospesi totali (TSS)
- Ferro
- Cromo totale
- Piombo
- Zinco
- Rame
- Nichel
- Cadmio
- Idrocarburi totali

Il set di parametri descrittori della qualità della componente oggetto di studio, sono quelli ritenuti più significativi perché correlabili alle attività connesse alla realizzazione dell'infrastruttura ferroviaria.

In definitiva, per la definizione delle caratteristiche quantitative e qualitative delle acque sotterranee si determineranno, tramite misure di campagna o di laboratorio, i parametri riportati nella Tabella 4-11.

I set parametrici proposti di seguito sono da intendersi come set standard che possono essere eventualmente implementati, nel caso di specifiche esigenze rilevabili in itinere legate alle caratteristiche territoriali in cui si colloca l'opera.

I parametri si riferiscono a tutte le fasi: Ante Operam (AO), Corso d'Opera (CO) e Post Operam (PO).

Per il monitoraggio dei corpi idrici sotterranei presenti nel territorio in esame è stato scelto di valutare i parametri di base definiti dal D.Lgs. 152/2006 e s.m.i. e di indagare soprattutto i parametri che consentano di valutare i possibili effetti di inquinamento dovuti alle attività ed agli scarichi di cantiere ed eventuali sversamenti accidentali.

Preliminarmente, in fase ante operam, saranno inoltre eseguite tutte le operazioni finalizzate all'installazione dell'attrezzatura di perforazione per la realizzazione dei sondaggi, fatto salvo quanto anticipato sopra relativamente all'eventuale presenza di piezometri già esistenti e ritenuti idonei allo scopo del monitoraggio.

Tabella 4-11 Parametri monitorati per la componente acque sotterranee

ATTIVITÀ DI CAMPO	METODICA	U.M.
Misura del livello statico/piezometrico	-	
Misure speditive dei parametri chimico-fisici	Multiparametrica	
Prelievo campioni per analisi chimico-fisiche e batteriologiche	-	
ÎNDAGINI DI LABORATORIO		
Determinazione in laboratorio dei parametri fisici e chimici inorganici:		
calcio	EPA6010	mg/l
sodio	EPA6010	mg/l
potassio	EPA6010	mg/l
magnesio	EPA6010	mg/l
cloruri	APAT4020	mg/l
fluoruri	APAT4020	μg/l
solfati	APAT4020	mg/I
bicarbonati	APAT CNR IRSA 2010 B Man 29	meq/I HCO3
biodi boridii	2003	
nitrati	APAT4020	mg/l
nitriti	APAT4020	μg/l
ammonio	APAT CNR IRSA 4030 B Man 29	mg/l
anmone	2003	
solidi disciolti totali (TDS)	UNI EN 15216:2008	mg/l
Solidi sospesi totali (TSS)	APAT CNR IRSA 2090 B Man 29	mg/I
Solidi Sospesi totali (199)	2003	
ferro	EPA6020	μg/l
cromo totale	EPA6020	μg/l
piombo	EPA6020	μg/l

PROGETTO DEFINITIVO
LINEA A.V. /A.C. MILANO – VERONA
NODO DI BRESCIA
POTENZIAMENTO INFRASTRUTTURALE DELLO SCALO DI BRESCIA

PROGETTO MONITORAGGIO AMBIENTALE	
Relazione generale	

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
IN1M	10	D 22 RG	SA0001 001	С	31 di 56

ATTIVITÀ DI CAMPO	METODICA	U.M.
zinco	EPA6020	μg/l
rame	EPA6020	μg/l
nichel	EPA6020	μg/l
cadmio	EPA6020	μg/l
idrocarburi totali (cone n-esano)	EPA5021 8015 UNI 9377	μg/l

Nello specifico, lo spurgo viene eseguito mediante la tecnica del basso flusso fino alla stabilizzazione dei parametri speditivi.

Per la verifica dei parametri in situ potrà essere utilizzata una sonda multiparametrica o altra strumentazione idonea. Al fine di consentire una definizione della variabilità stagionale dei parametri, si dovrà cercare di eseguire i rilievi o il prelievo di campioni nei momenti di minimo/massima condizioni idrologiche (periodo di magra e di ricarica della falda) per definire meglio il range della variabilità stagionale (es. a primavera, fine estate, autunno o dopo un periodo caratterizzato da precipitazioni eccezionali.).

4.3.5 Specifiche e strumentazione di monitoraggio

Misure in situ

Le misure del livello statico verranno effettuate mediante sonda elettrica il cui cavo sia marcato almeno ogni centimetro. La misura andrà effettuata dalla bocca del piezometro (bordo del rivestimento) o da altro punto fisso e ben individuabile; verrà quindi misurata l'altezza della bocca del piezometro o del punto di riferimento rispetto al suolo. L'indicazione del punto di riferimento dovrà essere riportata sulla scheda di misura. Il livello statico sarà indicato con l'approssimazione del centimetro.

La misura della temperatura dell'aria e dell'acqua potrà essere effettuata mediante termometro a mercurio o elettronico ed andrà riportata con l'approssimazione del mezzo grado. L'ossigeno disciolto verrà determinato tramite apposita sonda, il pH e la Conducibilità Elettrica saranno determinati con pH-metro e conducimetro elettronici che andranno tarati all'inizio ed alla fine di ogni giornata di lavoro. I risultati della taratura saranno annotati su apposite schede. In relazione agli strumenti da utilizzare per la determinazione di questi ultimi parametri, potranno essere impiegate, in alternativa, anche sonde multi-parametriche.

I rilievi ed i campionamenti dovranno essere eseguiti sempre con le stesse procedure e gli stessi strumenti in tutti i punti di misura ed in tutte le fasi; analogamente il grado di approssimazione dei valori numerici dei parametri dovrà essere identico.

Prima dell'esecuzione del monitoraggio ante operam, il soggetto incaricato di tale attività dovrà provvedere a:

- determinare la quota assoluta dell'estremità superiore della tubazione (testa piezometro)
- rilievo della posizione del piezometro in termini di coordinate geografiche

Il rilievo dei parametri fisici - chimici da valutare in campo su ciascun campione d'acqua dovrà essere eseguito subito dopo la misura del livello statico della falda e dopo un adeguato spurgo del pozzo/piezometro e la stabilizzazione delle condizioni idrochimiche.

Prelievo campioni per analisi di laboratorio

Il campionamento da piezometri dovrà essere preceduto dallo spurgo di un congruo volume di acqua in modo da scartare l'acqua giacente e prelevare acqua veramente rappresentativa della falda. Con la stessa pompa si provvederà poi a riempire direttamente le bottiglie come di seguito indicate:

- bottiglia sterile da 0,5 litri per le analisi batteriologiche
- bottiglia di due litri in vetro per le analisi chimico-fisiche
- bottiglia di due litri in plastica per le analisi di metalli e di anioni

Qualora il campionamento da pompa non fosse praticabile dovrà essere utilizzato un recipiente unico ben pulito per raccogliere le acque destinate alle analisi chimiche, riempiendo poi con questa acqua le bottiglie ed evitando di lasciare aria tra il pelo libero ed il tappo. Il campionamento per le analisi batteriologiche invece richiede la massima attenzione nell'evitare qualsiasi contatto tra l'acqua ed altri corpi estranei diversi dalla bottiglia sterile. La stessa bocca di acqua va sterilizzata con fiamma a gas del tipo portatile.

Per pozzi invece non serviti da pompa si dovrà, campionare per immersione della bottiglia sterile sotto il pelo libero dell'acqua.

Analoghe precauzioni, nei limiti delle possibilità, dovranno essere adottate per il campionamento da piezometri.

I contenitori utilizzati dovranno essere contrassegnati da apposite etichette di tipo autoadesivo con sopra riportate le seguenti informazioni:

- sigla identificativa del pozzo o del piezometro
- data e ora del campionamento

Per ogni prelievo dovrà essere redatto un verbale di campionamento che verrà trasmesso in copia al laboratorio di analisi.

Inoltre, per impedire il deterioramento dei campioni, questi andranno stabilizzati termicamente tramite refrigerazione a 4°C e recapitati al laboratorio di analisi entro le ventiquattro ore dal prelievo prevedendone il trasporto in casse refrigerate. Le analisi di laboratorio saranno effettuate in accordo agli standard in uso, presso laboratori certificati che seguiranno metodiche standard, quali ad esempio le procedure indicate da APAT, ISPRA, CNR, IRSA, ISO, EPA, UNI. Le misurazioni saranno accompagnate da idoneo certificato. L'affidabilità e la precisione dei risultati dovranno essere assicurati dalle procedure di qualità interne ai laboratori che effettuano le attività di campionamento ed analisi e, pertanto, i laboratori coinvolti nelle attività di monitoraggio dovranno essere accreditati ed operare in modo conforme a quanto richiesto dalla UNI CEN EN ISO 17025.

4.3.6 Articolazione temporale delle attività di monitoraggio

Le misure saranno condotte con durata e frequenza come di seguito riportato:

- Fase Ante operam (AO)
 - Durata: 1 anno
 - Frequenza: trimestrale, per un totale di 4 campagne da eseguirsi nei 6 mesi precedenti l'inizio lavori
- Fase Corso d'opera (CO)
 - Durata: per tutta la durata dei lavori (circa 3,2 anni)
 - Frequenza: trimestrale, per un totale di 4 campagne/anno per tutta la durata dei lavori
- Fase Post operam (PO)
 - Durata: 1 anno
 - Frequenza: trimestrale, per un totale di 4 campagne da eseguirsi nei 6 mesi successivi all'entrata in esercizio dell'infrastruttura

Tabella 4-12 Punti di monitoraggio e frequenza per la componente acque sotterranee

ID PUNTO	TIPOLOGIA	PK	Ao	Co	Po
			(1 ANNO)	(3,2 ANNI)	(1 ANNO)
ASO.01	Monte	0+300	4 volte	Trimestrale	4 volte
ASO.02	Valle	0+340	4 volte	Trimestrale	4 volte
ASO.03	Monte	0+500	4 volte	Trimestrale	4 volte
ASO.04	Valle	0+600	4 volte	Trimestrale	4 volte

Si prevede un'intensificazione del monitoraggio nel caso di eventi piovosi di particolare intensità, quando il livello della falda possa risalire fino a raggiungere il livello delle lavorazioni; tale accorgimento è di carattere puntuale, in base alle valutazioni in corso d'opera.

Con riferimento ai punti di monitoraggio di cui alla precedente tabella si precisa che:

- La scelta della localizzazione dei punti di monitoraggio è stata operata con riferimento a quelle tipologie di manufatti che, in ragione delle modalità realizzative, presentano una maggiore possibilità di interessamentoo dell'acquifero sotterraneo; in tal senso ai fini localizzativi si è fatto riferimento al sottovia SL01 la cui realizzazione, così come nel caso dell'analogo sottovia SL02, comporta una profondità di scavo che risulta superiore a quella prevista per le restanti opere
- La localizzazione dei punti di monitoraggio di cui alla precedente tabella è contenuta nell'elaborato cartografico "Planimetria di localizzazione punti di monitoraggio", riportato al capitolo 5 della presente relazione

4.4 Suolo e sottosuolo

4.4.1 Obiettivi del monitoraggio

Il monitoraggio della componente suolo e sottosuolo ha la funzione di:

- garantire il controllo della qualità del suolo intesa come capacità agro-produttiva e fertilità
- rilevare eventuali alterazioni dei terreni al termine dei lavori
- garantire un adeguato ripristino ambientale delle aree di cantiere

Le attività di monitoraggio consentono di valutare le eventuali modificazioni delle caratteristiche pedologiche dei terreni nelle aree sottoposte ad occupazione temporanea dai cantieri, dove possono avvenire modifiche delle caratteristiche fisico-chimiche dei terreni per: compattazione dei terreni, modificazioni delle caratteristiche di drenaggio, rimescolamento degli strati costitutivi, sversamenti accidentali.

In tal senso, si ritiene necessario prevedere le seguenti fasi di monitoraggio:

- ante-operam (AO) al fine di costituire un database di informazioni sugli aspetti pedologici iniziali di confronto per la restituzione all'uso agricolo delle aree occupate temporaneamente dai cantieri
- post-operam (PO) al fine di evidenziare eventuali alterazioni subite dal terreno a seguito delle attività dei cantieri. Questo consentirà di determinare le eventuali aree in cui sarà necessario effettuare le operazioni di bonifica dei terreni superficiali prima della risistemazione definitiva

4.4.2 Normativa di riferimento

La normativa di riferimento in accordo alla quale il presente progetto di monitoraggio è stato redatto fa riferimento ai criteri adottati dagli organismi nazionali ed internazionali per quel che concerne le descrizioni di campagna e la classificazione dei suoli.

- Decreto Legislativo 3 aprile 2006, n. 152 e s.m.i. "Norme in materia ambientale";
- Comunicazione della Commissione "Verso una strategia tematica per la protezione del suolo" COM (2002) 179 del 16 aprile 2002;
- Legge 7 agosto 1990 n. 253 "Disposizioni integrative alla legge 18 maggio 1989 n. 183, recante norme per il riassetto organizzativo e funzionale della difesa del suolo";
- Legge 18 maggio 1989, n. 183 "Norme per il riassetto organizzativo e funzionale della difesa del suolo (testo coordinato con le modifiche apportate a tutto il 6 maggio 1996)".

4.4.3 Criteri di individuazione delle aree da monitorare

I punti di monitoraggio in situ sono localizzati in corrispondenza di quelle aree di cantiere che insistono su aree allo stato ante operam non artificializzate, per le quali sia prevista una pavimentazione ancorché temporanea, e delle quali sia previsto il ripristino allo stato attuale al termine dei lavori.

4.4.4 Parametri oggetto del monitoraggio

Per le fasi di ante operam e post operam sarà previsto l'accertamento dei seguenti parametri:

- parametri pedologici
- parametri chimico fisici
- · parametri chimici
- parametri topografico-morfologici e piezometrici

Più in dettaglio, le caratteristiche dei suoli saranno investigate, descritte e dimensionate fino a profondità massima di 1.5 m, mediante l'esecuzione di scavi (di larghezza di almeno 2 m) che consentano accurate descrizioni di profili pedologici.

Per ogni punto di monitoraggio, oltre ai riferimenti geografici (comprese le coordinate) e temporali, saranno registrati i caratteri stazionali dell'area di appartenenza: quota, pendenza, esposizione, uso del suolo e pratiche colturali precedenti all'insediamento del cantiere, vegetazione, substrato pedogenetico, rocciosità affiorante, pietrosità superficiale, altri aspetti superficiali, stato erosivo, permeabilità, profondità della falda.

Nella descrizione del profilo del suolo saranno definiti i diversi orizzonti e, relativamente a ciascuno di questi, i seguenti parametri: profondità, tipo e andamento del limite inferiore; umidità; colore; screziature; tessitura; contenuto in scheletro; struttura; consistenza; presenza di pori e fenditure; presenza di attività biologica e di radici; presenza (e natura) di pellicole, concrezioni, noduli, efflorescenze saline; reazione (pH); effervescenza all'HCI.

Il contesto areale di ogni punto di monitoraggio e lo spaccato del profilo pedologico saranno documentati anche fotograficamente

Dovranno essere determinati i seguenti parametri del sito durante le fasi Ante Operam (AO) e Post Operam (PO), ossia rispettivamente: prima di eseguire lo scotico del terreno e, a fine lavori, dopo aver eseguito i ripristini, al fine di verificare le caratteristiche dei suoli riportati.

PROGETTO DEFINITIVO LINEA A.V. /A.C. MILANO - VERONA NODO DI BRESCIA POTENZIAMENTO INFRASTRUTTURALE DELLO SCALO DI BRESCIA

PROGETTO MONITORAGGIO AMBIENTALE

COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO Relazione generale D 22 RG SA0001 001 34 di 56

Tabella 4-13 Set di analisi per la componente suolo e sottosuolo (fasi ao e po)

	PARAMETRI SUOLO E SOTTOSUOLO
	(FASI AO E PO)
	Esposizione
	Pendenza
	Uso del suolo
	Microrilievo
gici	Pietrosità superficiale
òolop	Rocciosità affiorante
Parametri pedologici	Fenditure superficiali
amel	Vegetazione
Par	Stato erosivo
	Permeabilità
	Classe di drenaggio
	Substrato pedogenetico
	Profondità falda
	Designazione orizzonte
	Limiti di passaggio
(oi	Colore allo stato secco e umido
rato	Tessitura
Parametri chimico – fisici (rilievi e misure in situ e/o in laboratorio)	Struttura
ico – e/o ir	Consistenza
chim situ (Porosità
netri Ire in	Umidità
Parar misu	Contenuto in scheletro
evi e	Concrezioni e noduli
E)	Efflorescenze saline
	Fenditure o fessure
	Ph
MICI orio)	Capacità di scambio cationico
CHII	Azoto totale
TRI Ji lab	Azoto assimilabile
PARAMETRI CHIMIC (Analisi di Iaboratorio)	Fosforo assimilabile
PAR (An	Carbonati totali

PARAMETRI SUOLO E SOTTOSUOLO		
(FASI AO E PO)		
Sostanza organica		
Capacità di ritenzione idrica		
Conducibilità elettrica		
Permeabilità		
Densità apparente		

4.4.5 Metodiche e strumentazione di monitoraggio

Generalità

Un termine comunemente usato dai pedologi rilevatori per indicare un'osservazione pedologica nel suo insieme è "profilo" ["soil profile" in USDA-SCS, 1998 citato più in alto; HODGSON, J.M. (ed.) (1997) - Soil survey field handbook. SoilSurv. Tech. Monogr. No. 5, Silsoel, che viene esposto per mezzo di un taglio verticale attraverso il suolo realizzato a mano o tramite un escavatore. L'ampiezza di un profilo varia da pochi decimetri ad alcuni metri, o più; dovrebbe avere dimensioni tali da includere le unità strutturali più grandi.

L'altro modo per realizzare un'osservazione pedologica è la "trivellata" [GUAITOLI F., MATRANGA M.G., PALADINO A., PERCIABOSCO M., PUMO A., COSTANTINI E.A.C. (1998) - Manuale per l'esecuzione e la descrizione della trivellata. Regione Siciliana, Ass. Agricoltura e Foreste. Sez. operativa n. 8 - S. Agata Militello (ME)], consistente in una perforazione eseguita con trivella a mano.

A volte l'osservazione pedologica è realizzata in parte con un profilo (fossa), in parte con trivella, di solito per raggiungere profondità superiori a quelle direttamente visibili nella fossa (se i materiali sono penetrabili).

Per il presente lavoro, in ogni punto di monitoraggio le caratteristiche dei suoli saranno studiate mediante l'esecuzione di uno scavo, da effettuarsi con escavatore meccanico a benna rovescia, e la descrizione del profilo.

Preliminarmente allo scavo si registreranno, in corrispondenza del punto, oltre ai riferimenti geografici e temporali, anche i caratteri stazionali dell'area di appartenenza.

Il contesto areale del punto di monitoraggio ed il profilo del suolo andranno inoltre documentati fotograficamente.

Contemporaneamente, in corrispondenza di ogni punto di monitoraggio sarà prelevato un campione di terreno da destinare alle successive determinazioni di laboratorio, chimico-fisiche ed eco-tossicologiche.

Preliminarmente alle attività in campagna, si dovranno effettuare una serie di sopralluoghi preparatori nelle aree e nei punti da monitorare, con lo scopo di verificare l'idoneità del sito prescelto in relazione alle operazioni da

PROGETTO DEFINITIVO
LINEA A.V. /A.C. MILANO – VERONA
NODO DI BRESCIA

COMMESSA

POTENZIAMENTO INFRASTRUTTURALE DELLO SCALO DI BRESCIA

LOTTO

PROGETTO MONITORAGGIO AMBIENTALE

Relazione generale

eseguire (accessibilità con strumenti e mezzi per il rilevamento) ed agli obiettivi dell'indagine (rappresentatività delle caratteristiche pedo-ambientali dell'area).

Tutti i dati del monitoraggio, con le classificazioni pedologiche da questi derivate, saranno registrati in apposite schede e, associandoli spazialmente ai punti di monitoraggio, inseriti in forme numeriche e/o grafiche nell'ambito del sistema informativo di gestione del progetto.

Profilo del suolo

Per la descrizione del suolo si considererà una profondità standard del profilo di 1.5 metri, mentre la larghezza sarà di almeno 2 metri. Nello scavo della fossa, realizzabile sia a mano che con pala meccanica (escavatore a braccio rovescio) si terrà separata la parte superficiale con il cotico erboso dal resto dei materiali scavati, in due mucchi ben distinti; nella fase di riempimento il cotico erboso verrà riposizionato per ultimo in modo da lasciare la superficie nelle condizioni migliori. I mucchi saranno appoggiati su fogli di plastica o teloni.

Per le posizioni in pendio, il piano di scavo della faccia a monte (normale alla linea di massima pendenza), sarà reso il più verticale possibile.

Se il suolo è molto ricco in materiali grossolani (suolo scheletrico) e lo scavo viene eseguito a mano, può essere utile tenere separati i materiali >5-7 cm di diametro dagli altri per facilitare le successive operazioni di riempimento della fossa con la pala, ma anche per migliorare la stima visiva del contenuto volumetrico in materiali grossolani, integrando l'esame sulle pareti della fossa.

Sia in piano sia in pendio è possibile che nel corso dello scavo si incontri una falda superficiale; l'esistenza di una falda può essere talvolta prevedibile ancora prima dell'inizio dello scavo individuando la presenza di specie igrofite (in ambienti naturali e seminaturali) od accertabile direttamente per mezzo di un controllo preliminare con trivella (sempre consigliabile, anche in assenza di falda). Se la portata della falda è molto elevata l'approfondimento della fossa si limiterà al piano della falda, con qualche pericolo di crollo delle pareti secondo il tipo e le dimensioni dei materiali nella zona di contatto; se la falda è di dimensioni molto ridotte e con portata molto bassa, può essere tenuta sotto controllo svuotando (o meglio drenando la fossa con una pompa e, nelle situazioni in pendio, realizzando un vero e proprio drenaggio con un tubo di plastica che funzioni da sifone), ma le operazioni di descrizione saranno comunque rese più complicate dalla fanghiglia che si forma sul fondo. La massima profondità descrivibile sarà comunque condizionata dal piano superiore della falda stessa.

Ultimate le operazioni di scavo, le superfici scelte per la descrizione vanno ripulite accuratamente e se una parte è molto umida, in contrasto con una parte poco umida, sarebbe consigliabile attendere (se c'è tempo disponibile e le condizioni ambientali sono favorevoli) fino a che la superficie più umida sia in parte asciugata. Nel caso di

suoli, od orizzonti, con forme strutturate rilevanti, la preparazione della superficie dovrebbe essere fatta "a coltello" (agendo cioè sulle fessure naturali tra aggregato ed aggregato) in modo da evidenziare queste strutture, sia per realizzare una ripresa fotografica più significativa, sia per facilitare l'individuazione di orizzonti specifici. I piani scelti per foto e descrizione possono essere lisciati grattando la superficie con un coltello od una cazzuola in modo uniforme, per rimuovere tutti i segni lasciati dagli strumenti di scavo. Le condizioni migliori per evidenziare le forme aggregate naturali sono legate al contenuto idrico, e così è anche per molti colori, perciò le classi da umido a poco umido sono considerate le più favorevoli. Se il suolo è troppo secco le eventuali aggregazioni diventano prominenti, ma i contrasti di colore risultano molto attenuati. In queste condizioni sarà opportuno inumidire la faccia del profilo prima della ripresa fotografica con un nebulizzatore, in modo da esaltarne gli aspetti cromatici (meglio ancora, per sottolineare questi aspetti, inumidire solo una striscia ad es. tra un lato della faccia ed il nastro graduato delle profondità posto verso il centro del profilo, lasciando l'altra metà in condizioni secche). Il "make up" preparatorio per foto e descrizione comprende anche la rimozione di tutte le imbrattature dei materiali estranei agli orizzonti che si realizzano durante lo scavo, la verticalizzazione del piano (cercando però di lasciare in loco le pietre, anche se sporgenti, e gli spezzoni di radici in modo da rispettare l'architettura dei sistemi radicali), la rimozione di tutti i materiali caduti sul fondo durante queste operazioni.

DOCUMENTO

SA0001 001

REV.

FOGLIO

35 di 56

CODIFICA

D 22 RG

Dopo lo scatto delle fotografie si passerà poi all'esame visivo dell'insieme del profilo, alla suddivisione dello stesso in orizzonti, alla descrizione degli orizzonti, alla determinazione dei parametri fisici in situ, e al prelievo dei campioni, per la determinazione dei parametri fisici e chimici in laboratorio.

Descrizione del profilo

La descrizione del profilo, nonché il rilievo dei parametri fisici e la analisi dei parametri chimici richiesti, saranno effettuati come di seguito descritto

Parametri pedologici

La descrizione dei parametri pedologici si riferisce all'intorno dell'osservazione, cioè al sito che comprende al suo interno il punto di monitoraggio, per esso dovranno essere riportate le seguenti informazioni:

- Esposizione: immersione dell'area in corrispondenza del punto di monitoraggio, misurata sull'arco di 360°, a partire da nord in senso orario;
- Pendenza: inclinazione dell'area misurata lungo la linea di massima pendenza ed espressa in gradi sessagesimali;
- Uso del suolo: tipo di utilizzo del suolo riferito ad un'area di circa 100 mq attorno al punto di monitoraggio;
- Microrilievo: la descrizione di eventuali caratteri specifici del microrielievo del sito, secondo come di seguito specificato:

COD.	DESCRIZIONE
RA	Da ribaltamento di alberi
AG	Da argille dinamiche (ad es. Gilgai)
CE	Cuscinetti erbosi (crionivali)
СР	"suoli" poligonali (crionivali)
СТ	Terrazzette (crionivali)
CS	"suoli" striati (crionivali)
MM	Cunette e rilievi da movimenti di massa
AL	Altro tipo di microrilievo (specificare in nota per ampliare i codici)
Z	Assente

• Pietrosità superficiale: percentuale relativa di frammenti di roccia alterata (di dimensioni oltre 25 cm nelle definizioni U.S.D.A.) presenti sul suolo nell'intorno areale del punto di monitoraggio, rilevata utilizzando i codici numerici corrispondenti alle classi di pietrosità di seguito elencate:

COD.	DESCRIZIONE
0	Nessuna pietrosità: pietre assenti o non in grado d'interferire con le coltivazioni con le moderne macchine agricole (<0,01% dell'area)
1	Scarsa pietrosità: pietre in quantità tali da ostacolare ma non impedire l'utilizzo di macchine agricole (0,01=0,1 % dell'area)
2	Comune pietrosità: pietre sufficienti a impedire l'utilizzo di moderne macchine agricole (0,1=3% dell'area). Suolo coltivabile a prato o con macchine leggere
3	Elevata pietrosità: pietre ricoprenti dal 3 al 15% dell'area. Uso di macchinari leggeri o strumenti manuali ancora possibile
4	Eccessiva pietrosità: pietre ricoprenti dal 15 al 90% della superficie, tali da rendere impossibile l'uso di qualsiasi tipo di macchina
5	Eccessiva pietrosità: pietrosità tra il 15 e il 50% dell'area
6	Eccessiva pietrosità: pietrosità tra il 50 e il 90% dell'area
7	Pietraia: pietre oltre il 90% dell'area

- Rocciosità affiorante: percentuale di rocce consolidate affioranti entro una superficie di 1000 mq attorno al punto di monitoraggio;
- Fenditure superficiali: indicare per un'area di circa 100 mq il numero, la lunghezza, la larghezza e la profondità (valori più frequenti di circa 10 misurazioni) in cm delle fessure presenti in superficie;

- Vegetazione: descrizione, mediante utilizzo di unità sintetiche fisionomiche o floristiche, della vegetazione naturale eventualmente presente nell'intorno aerale del punto di monitoraggio;
- Stato erosivo: presenza di fenomeni di erosione o deposizione di parti di suolo;
- Permeabilità: velocità di flusso dell'acqua attraverso il suolo saturo in direzione verticale rilevato attraverso la determinazione della classe di permeabilità attribuibile allo stato a granulometria più fine presente nel suolo, utilizzando la seguente scala numerica:

SCALA NUMERICA	GRANULOMETRIA	PERMEABILITÀ
6	Ghiaie lavate	Molto alta
5	Ghiaie/sabbie grosse	Alta
4	Sabbie medie/sabbie gradate	Medio alta
3	Sabbie fini/sabbie limose	Media
2	Sabbie argillose	Medio bassa
1	Limi/limi argillosi	Bassa
0	Argille	Molto bassa

Classe di drenaggio: a seconda di come l'acqua viene rimossa dal suolo, si individueranno le seguenti classi:

CLASSE	DESCRIZIONE	
Rapido	L'acqua è rimossa dal suolo molto rapidamente	
Moderatamente rapido	L'acqua è rimossa dal suolo rapidamente	
Buono	L'acqua è rimossa dal suolo prontamente ma non rapidamente	
Mediocre	In alcuni periodi dell'anno l'acqua è rimossa dal suolo lentamente	
Lento L'acqua è rimossa dal suolo lentamente		
Molto lento	L'acqua è rimossa così lentamente che i suoli sono periodicamente bagnati a poca profondità per lunghi periodi durante la stagione di crescita	
Impedito	L'acqua è rimossa così lentamente che i suoli sono periodicamente bagnati in superficie o in prossimità di questa per lunghi periodi durante la stagione di crescita	

Designazione orizzonti e parametri fisico-chimici

Si riferisce al suolo e al suo profilo, e comprende le caratteristiche degli orizzonti individuati ed ordinati in sequenza in rapporto alla profondità, seguita dalla descrizione dei parametri fisici degli orizzonti. Dovrà riportare le seguenti informazioni:

- Designazione orizzonte: designazione genetica mediante codici alfanumerici e secondo le convenzioni definite in IUSS-ISRIC-FAO-ISSDS (1999) e SOIL SURVEY STAFF (1998);
- Limiti di passaggio: confine tra un orizzonte e quello immediatamente sottostante, definito quanto a "profondità" (distanza media dal piano di campagna), "tipo" (ampiezza dell'intervallo di passaggio), "andamento" (geometria del limite);
- Colore allo stato secco e umido: colore della superficie interna di un aggregato di suolo in condizioni secche e umide, definito mediante confronto con le "Tavole Munsell" (Munsell Soil Color Charts) utilizzando i codici alfanumerici previsti dalla stessa notazione Munsell (hue, value, chroma);
- Tessitura: stima delle percentuali di sabbia, limo e argilla presenti nella terra fine, determinate rispetto al totale della terra fine, come definite nel triangolo tessiturale della "SoilTaxonomy U.S.D.A.":

Classe tessiturale (codice)
Sabbiosa (S)
Sabbioso franca (SF)
Franco sabbiosa (FS)
Franca (F)
Franco limosa (FL)
Limosa (L)
Franco sabbioso argillosa (FSA)
Franco argillosa (FA)
Franco limoso argillosa (FLA)
Argillosa (A)
Argilloso sabbiosa (AS)
Argilloso limosa (AL)

 Struttura: entità e modalità di aggregazione di particelle elementari del suolo in particelle composte separate da superfici di minor resistenza, a dare unità strutturali naturali relativamente permanenti (aggregati), o meno persistenti quali zolle e frammenti (tipici di orizzonti superficiali coltivati); definire "grado" di distinguibilità-stabilità, "dimensione" e "forma" degli aggregati;

- Consistenza: caratteristica del suolo determinata dal tipo di coesione e adesione, definita, in relazione al differente grado di umidità del suolo, quanto a "resistenza", "caratteristiche di rottura", "cementazione", "massima adesività" e "massima plasticità";
- Porosità: vuoti di diametro superiore a 60 micron, definiti quanto a "diametro" e "quantità";
- Umidità: condizioni di umidità dell'orizzonte al momento del rilevamento, definite mediante i codici numerici corrispondenti alle seguenti suddivisioni:

Codice	Descrizione
1	Asciutto
2	Poco umido
3	Umido
4	Molto Umido
5	Bagnato

- Contenuto in scheletro: frammenti di roccia consolidata di dimensioni superiori a 2 mm presenti nel suolo, rilevato quanto ad "abbondanza" (percentuale riferita al totale del suolo), "dimensioni" (classe dimensionale prevalente), "forma" (predominante nella classe dimensionale prevalente), "litologia" (natura prevalente dei frammenti di roccia);
- Concrezioni e noduli: presenza di cristalli, noduli, concrezioni, concentrazioni, cioè figure d'origine pedogenetica definite quanto a "composizione", "tipo", "dimensioni" e "quantità";
- Efflorescenze saline: determinazione indiretta della presenza (e stima approssimata della quantità) di carbonato di calcio, tramite effervescenza all'HCI ottenuta facendo gocciolare poche gocce di HCI (in concentrazione del 10%) e osservando l'eventuale sviluppo di effervescenza, codificata come segue:

Codice	Descrizione	Stima quantità carbonato di calcio
0	Nessuna effervescenza	CaCO ₃ ≤ 0,1%
1	Effervescenza molto debole	CaCO ≈ 0,5%
2	Effervescenza debole	CaC0 ₃ 1÷2%
3	Effervescenza forte	CaC0₃ ≈ 5%
4	Effervescenza molto forte	CaC0₃ ≥ 10%

• Fenditure o Fessure: vuoti ad andamento planare, delimitanti aggregati, zolle, frammenti, definiti quanto alla "larghezza";

 pH: grado di acidità/alcalinità del suolo, rilevata direttamente sul terreno mediante apposito kit (vaschetta di ceramica; indicatore universale in boccetta contagocce; scala cromatica) e/o determinata in laboratorio.

I parametri sopra descritti saranno rilevati in situ o in laboratorio; quando possibile si determineranno in entrambi i contesti.

Parametri chimici

In laboratorio si effettueranno le determinazioni dei seguenti parametri, utilizzando i metodi elencati, o altri metodi certificati nei riferimenti normativi (per i dettagli dei metodi si vedano i riferimenti normativi), se non diversamente specificato.

 Capacità di scambio cationico: valutata come di seguito, espressa in meq/100 g di suolo, tramite il metodo Bascom modificato, che prevede l'estrazione di potassio, calcio, magnesio e sodio con una soluzione di bario cloruro e trietanolammina, e successivo dosaggio dei cationi estratti per spettrofotometria:

Capacità Scambio Cationico (C.S.C.)		
Bassa	< 10 meq/100 g	
Media	10÷20 meq/100 g	
Elevata	20÷30 meq/100 g	
Molto elevata	> 30 meq/100 g	

- Azoto totale: espresso in %, determinato tramite il metodo Kjeldhal;
- Azoto assimilabile;
- Fosforo assimilabile: espresso in mg/kg, viene determinato secondo il metodo Olsen nei terreni con pH in acqua > di 6.5, secondo il metodo Bray e Krutz nei terreni con pH< di 6.5;
- Carbonati totali: determinazione gas-volumetrica del CO2 che si sviluppa trattando il suolo con HCI. Il contenuto di carbonati totali (o calcare totale) viene espresso in % di CaCO3 nel terreno;
- Sostanza organica: contenuto di carbonio organico, espresso in % e determinato secondo il metodo Walkley e Black;
- Capacità di ritenzione idrica;
- Conducibilità elettrica;
- Permeabilità;
- Densità apparente.

4.4.6 Articolazione temporale delle attività di monitoraggio

Le attività di monitoraggio del suolo prevedono le seguenti fasi:

- Ante Operam (AO), utile a costituire un database di informazioni sugli aspetti pedologici iniziali delle aree occupate temporaneamente dai cantieri;
- Post Operam (PO), utile a evidenziare eventuali alterazioni subite dal terreno a seguito delle attività di cantiere e determinare la necessità o meno di effettuare operazioni di bonifica dei terreni superficiali prima della risistemazione definitiva.

Le attività di monitoraggio del suolo e sottosuolo nelle fasi di AO e PO prevedono una campagna nei 6 mesi antecedenti l'inizio dei lavori.

Di seguito la tabella riepilogativa dei punti di misura

Tabella 4-14 Suolo e sottosuolo: Punti di monitoraggio

MISURE	AREA DI CANTIERE	Ao (6 MESI)	Po (6 MESI)	
SUO.01	CB.01	1 volta	1 volta	

Si precisa che la riduzione dei punti di monitoraggio, rispetto a quelli previsti nella precedente emissione del presente Progetto di monitoraggio ambientale, discende dalle scelte operate nella revisione del progetto del sistema della cantierizzazione che ha condotto alla localizzazione di pressoché tutte le aree di cantiere in corrispondenza di aree già artificializzate e che, al termine della fase costruttiva, saranno oggetto di interventi di mitigazione e/o di compensazione.

La localizzazione dei punti di misura SUO. è riportata nelle tavole allegate al capitolo 5 "Planimetria localizzazione punti di monitoraggio" della presente relazione.

4.5 Rumore

4.5.1 Obiettivi del monitoraggio

Il monitoraggio del rumore ha l'obiettivo di controllare l'evolversi della situazione ambientale per la componente in oggetto nel rispetto dei valori imposti dalla normativa vigente.

Il monitoraggio per lo stato corso d'opera è finalizzato a verificare il disturbo sui ricettori nelle aree limitrofe alle aree di lavoro ed intervenire tempestivamente con misure idonee durante la fase costruttiva. Per la fase post operam l'obiettivo del monitoraggio è quello di verificare gli impatti acustici dovuti all'esercizio della nuova linea, accertare la reale efficacia degli interventi di mitigazione e predisporre le eventuali nuove misure per il contenimento del rumore.

Le misure dovranno essere effettuate ante operam, corso d'opera e post operam, ossia dopo l'ingresso in esercizio dell'opera in progetto, in aree con o senza necessità di opere di mitigazione.

In fase di corso d'opera, le misure di rumore non verranno eseguite in assenza di attività di cantiere significative svolte nelle immediate vicinanze.

4.5.2 Normativa di riferimento

Leggi nazionali

- D. Lgs. 19/08/05 n. 194 Attuazione della direttiva 2002/49/CE relativa alla determinazione e alla gestione del rumore ambientale. (GU n. 222 del 23-9-2005) Testo coordinato del Decreto-Legge n. 194 del 19 agosto 2005 (G.U. n. 239 del 13/10/2005) Ripubblicazione del testo del decreto legislativo 19 agosto 2005, n. 194, recante: «Attuazione della direttiva 2002/49/CE relativa alla determinazione e alla gestione del rumore ambientale», corredato delle relative note. (Decreto legislativo pubblicato nella Gazzetta Ufficiale serie generale n. 222 del 23 settembre 2005);
- Presidenza del Consiglio dei Ministri 30 giugno 2005: Parere ai sensi dell'art.9 comma 3 del decreto legislativo 28 agosto 1997 n.281 sullo schema di decreto legislativo recante recepimento della Direttiva 2002/49CE del Parlamento Europeo e del Consiglio relativa alla determinazione e gestione del rumore ambientale;
- Circolare 6 Settembre 2004 Ministero dell'Ambiente e della Tutela del Territorio. Interpretazione in materia di inquinamento acustico: criterio differenziale e applicabilità dei valori limite differenziali. (GU n. 217 del 15-9-2004);

- DECRETO DEL PRESIDENTE DELLA REPUBBLICA 30 Marzo 2004, n. 142 Disposizioni per il contenimento e la prevenzione dell'inquinamento acustico derivante dal traffico veicolare, a norma dell'articolo 11 della legge 26 ottobre 1995, n. 447 (GU n. 127 del 1-6-2004) testo in vigore dal 16-6-2004;
- Decreto 1° aprile 2004 Ministero dell'Ambiente e della Tutela del Territorio. Linee guida per l'utilizzo dei sistemi innovativi nelle valutazioni di impatto ambientale (GU n. 84 del 9-4-2004);
- DECRETO LEGISLATIVO 4 settembre 2002, n.262 Attuazione della direttiva 2000/14/CE concernente l'emissione acustica ambientale delle macchine ed attrezzature destinate a funzionare all'aperto;
- Decreto 23 Novembre 2001 Modifiche dell'allegato 2 del decreto ministeriale 29 novembre 2000 Criteri
 per la predisposizione, da parte delle società e degli enti gestori dei servizi pubblici di trasporto o delle
 relative infrastrutture, dei piani degli interventi di contenimento e abbattimento del rumore. (GU n. 288 del
 12-12-2001);
- Decreto Ministero Ambiente 29 novembre 2000 "Criteri per la predisposizione, da parte delle società e degli enti gestori dei servizi pubblici di trasporto o delle relative infrastrutture, dei piani degli interventi di contenimento e abbattimento del rumore" (Gazzetta Ufficiale n. 285 del 6 dicembre 2000);
- D.P.R. 18 novembre 1998, n. 459: Regolamento recante norme di esecuzione dell'articolo 11 della legge 26 ottobre 1995, n. 447, in materia di inquinamento acustico derivante da traffico ferroviario;
- Decreto Ministeriale 16 marzo 1998 -Tecniche di rilevamento e di misurazione dell'inquinamento acustico;
- D.P.C.M. 5 dicembre 1997 -Determinazione dei requisiti acustici passivi degli edifici;
- D.P.C.M. 14 novembre 1997 -Determinazione dei valori limite delle sorgenti sonore;
- Legge 26 ottobre 1995 n. 447 "LEGGE QUADRO SULL'INQUINAMENTO ACUSTICO";
- II DPCM 1/3/91 "Limiti massimi di esposizione al rumore negli ambienti abitativi e nell'ambiente esterno.

Come anticipato in premessa, il progetto di monitoraggio della componente rumore descritto di seguito è stato redatto in conformità agli" Indirizzi metodologici specifici per componente/fattore ambientale: Agenti fisici – Rumore REV. 1 del 30 dicembre 2014".

4.5.3 Criteri di individuazione delle aree da monitorare

Il monitoraggio del rumore mira a controllare il rispetto degli standard o dei valori limite definiti dalle leggi, in particolare il rispetto dei limiti massimi di rumore nell'ambiente esterno e nell'ambiente abitativo definiti in base alla classificazione acustica del territorio.

Il monitoraggio acustico nelle diverse fasi (ante operam, corso d'opera e post operam) si svolge secondo i seguenti stadi:

• sopralluoghi, acquisizione permessi e posizionamento strumentazione

- monitoraggio per il rilievo in corrispondenza dei punti di misura
- elaborazione dei dati
- emissioni di reportistica ed inserimento in banca dati

In caso di criticità riscontrate, attribuibili all'opera in oggetto, sarà segnalato il superamento registrato in modo da intervenire tempestivamente con misure preventive o di mitigazione.

La metodica di misura si fonda sul rilievo del rumore in postazioni di differenti tipologie:

- RUC, per il monitoraggio del rumore prodotto dalle attività di cantiere (ante operam corso d'opera);
- RUL, per il monitoraggio del rumore prodotto dal FAL (ante operam corso d'opera);
- RUF, per il monitoraggio del rumore prodotto dal transito ferroviario (ante operam post operam).

Nel caso in oggetto, in funzione della tipologia dell'opera da realizzare, della dotazione infrastrutturale e del territorio in cui si inserisce, si prevedono misure di tipo:

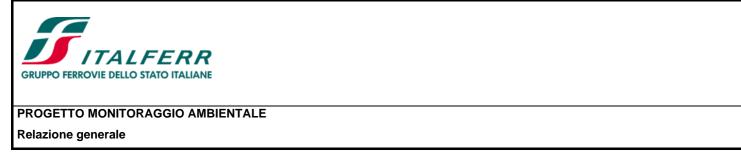
- RUC monitoraggio del rumore prodotto dalle attività di cantiere
- RUL monitoraggio del rumore prodotto dal fronte avanzamento lavori
- RUF monitoraggio del rumore prodotto dal transito ferroviario

Nella fase ante-operam saranno monitorati tutti i punti al fine di caratterizzare lo stato di fondo.

La dislocazione dei punti tiene conto della disposizione dei ricettori rispetto alle sorgenti di rumore, della classificazione acustica e della densità abitativa dell'area, aumentando opportunamente la densità dei punti di monitoraggio, posizionati in corrispondenza degli edifici più esposti.

Le postazioni RUC, finalizzate a verificare l'efficacia delle barriere antirumore di cantiere, fisse e mobili, previste a protezione dei ricettori, sono localizzate in corrispondenza dei ricettori abitativi maggiormente esposti alle attività di cantiere rumorose (realizzazione di opere in elevazione, trincee e rilevati). In tal caso, sono previste misure di 24 ore, con postazioni semi-fisse parzialmente assistite da operatore.

Le postazioni RUL, volte a monitorare gli effetti acustici prodotti dalle lavorazioni condotte lungo le aree di lavoro, sono localizzate in corrispondenza dei ricettori abitativi più prossimi al fronte avanzamento lavori e quindi maggiormente esposti alle attività di realizzazione delle opere. Le misure saranno effettuate, con frequenza semestrale, per tutta la durata dei lavori in prossimità del punto individuato.


Le postazioni RUF, finalizzate al monitoraggio del rumore prodotto dal transito ferroviario ed alla verifica l'efficacia degli interventi di mitigazione acustica. In tal caso, saranno effettuate campagne di misura di 24h.

4.5.4 Metodiche e strumentazione di monitoraggio

L'esecuzione dei rilievi avviene a mezzo di fonometri, che registrano, nel tempo, i livelli di potenza sonora (espressi in dBA) e le frequenze a cui il rumore viene emesso.

Nella tabella seguente sono indicati i principali parametri acustici oggetto del monitoraggio.

Distanza	distanza del microfono dalla sorgente
Altezza	altezza del microfono rispetto al piano campagna
LAE, TR	SEL complessivo dovuto al contributo energetico di tutti i transiti. Esso è ricavato dalla somma logaritmica degli LAEi relativi a ciascun transito nel periodo di riferimento in cui si sono verificati (diurno o notturno). Si ricava dalla formula seguente: $L_{AE} = 10 \bullet \log \sum_{i=1}^n 10^{0.1(L_{AEi})}$
	LAEi è il livello sonoro di un singolo evento (SEL), che riassume il contributo energetico di un transito.
LAeq, TR	è il livello continuo equivalente di pressione sonora ponderata "A" nel periodo di riferimento. Si calcola dalla formula seguente: $L_{Aeq,TR} = 10 \bullet \log \sum_{i=1}^n 10^{0.1(L_{AFi})} - k$
	dove: TR è il periodo di riferimento diurno o notturno; n è il numero di transiti avvenuti nel periodo TR;
	k = 47.6 dB(A) nel periodo diurno (06:00 ÷ 22:00) e $k = 44.6 dB(A)$ nel periodo notturno (22:00 ÷ 06:00).
LA	(livello di rumore ambientale) è il livello continuo equivalente di pressione sonora ponderato "A", prodotto da tutte le sorgenti di rumore esistenti in un dato luogo e durante un determinato tempo. Il rumore ambientale è costituito dall'insieme del rumore residuo e da quello prodotto dalle specifiche sorgenti disturbanti, con l'esclusione degli eventi sonori singolarmente identificabili di natura eccezionale rispetto al valore ambientale della zona. Esso deve essere distinto tra periodo diurno (06:00 ÷ 22:00) e periodo notturno (22:00 ÷ 06:00).
LR	(livello di rumore residuo) è il livello continuo equivalente di pressione sonora ponderato "A", che si rileva quando si esclude la specifica sorgente disturbante. Deve essere misurato con le identiche modalità impiegate per la misura del rumore ambientale e non deve

	contenere eventi sonori atipici. Nel nostro caso è il livello ambientale depurato dal	
	contributo sonoro di tutti i transiti ferroviari.	
Treni N	numero di treni transitati nel periodo di riferimento diurno e notturno.	
LAeq, F	è il livello continuo equivalente riferito solo al passaggio di tutti i convogli nelle 24 ore	

4.5.5 Articolazione temporale delle attività di monitoraggio

Nel corso delle campagne di monitoraggio acustico verranno rilevate le seguenti categorie di parametri:

- parametri acustici;
- parametri meteorologici (temperatura, velocità e direzione del vento, piovosità, umidità);
- parametri di inquadramento territoriale (localizzazione, classificazione acustica prevista dalla zonizzazione, documentazione fotografica, principali caratteristiche territoriali).

La strumentazione di base richiesta per il monitoraggio del rumore è, pertanto, composta dai seguenti elementi:

- analizzatori di precisione real time o fonometri integratori;
- microfoni per esterni con schermo antivento;
- calibratori:
- cavalletti, stativi o aste microfoniche;
- minicabine o valigette stagne, antiurto, complete di batterie e per il ricovero della strumentazione;
- centralina meteorologica.

I punti di monitoraggio acustico, distinti per tipologia di punto (RUC, RUL, RUF), risultano:

- 1 RUC
- 1 RUL
- 2 RUF

Il numero totale delle postazioni ammonta a 5.

PROGETTO DEFINITIVO
LINEA A.V. /A.C. MILANO – VERONA
NODO DI BRESCIA
POTENZIAMENTO INFRASTRUTTURALE DELLO SCALO DI BRESCIA

CODIFICA

D 22 RG

LOTTO

COMMESSA

	contenere eventi sonori atipici. Nel nostro caso è il livello ambientale depurato dal	
	contributo sonoro di tutti i transiti ferroviari.	
Treni N	numero di treni transitati nel periodo di riferimento diurno e notturno.	
LAeq, F	è il livello continuo equivalente riferito solo al passaggio di tutti i convogli nelle 24 ore	

Tabella 4-15 Rumore: Punti di monitoraggio

DOCUMENTO

SA0001 001

REV.

FOGLIO

41 di 56

Punto	CANTIERE/OPERA DA MONITORARE	Fase	FREQUENZA	Durata
RUC 01	CB.01	AO	1 volta	24 h
	02.0.	CO	trimestrale	24 h
RUL 01	0+400	AO	1 volta	24 h
1102 01	01100	CO	1 volta	24 h
RUF 01	(ric 1001)	AO	1 volta	24 h
110. 01	(110 1001)	PO	1 volta	24 h
RUF 02	(ric 1010)	AO	1 volta	24 h
110. 02	(PO	1 volta	24 h

Con riferimento alla tipologia ed al numero dei punti di monitoraggio di cui alla precedente tabella si specifica che:

- La scelta è stata operata in considerazione del ridotto numero di ricettori ad uso abitativo posti in prossimità delle aree di cantiere fisso / lungo linea; nello specifico, in prossimità delle aree di cantiere fisso è unicamente presente un solo ricettore, ad uso ristorativo
- La localizzazione dei punti di misura di tipo RUF e l'identificazione riportata nella precedente Tabella 4-15 è stata operata con riferimento alla "Planimetria di localizzazione dei ricettori con intervento diretto di mitigazione acustica" (IN1M11D22P6IM0004002A)
- La localizzazione dei punti di misura è riportata nelle tavole allegate nelle tavole allegate al capitolo 5 "Planimetria localizzazione punti di monitoraggio" della presente relazione

PROGETTO MONITORAGGIO AMBIENTALE
Relazione generale

PROGETTO DEFINITIVO

LINEA A.V. /A.C. MILANO – VERONA

NODO DI BRESCIA

POTENZIAMENTO INFRASTRUTTURALE DELLO SCALO DI BRESCIA

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 IN1M
 10
 D 22 RG
 \$A0001 001
 C
 42 di 56

4.6 Vibrazioni

4.6.1 Obiettivi del monitoraggio

L'obiettivo del monitoraggio vibrazionale proposto nel presente PMA è quello di prevenire e controllare il disturbo provocato dalle vibrazioni prodotte nella fase costruttiva sugli edifici più esposti e verificare l'eventuale disturbo indotto. In fase di corso d'opera, le misure di vibrazioni non verranno eseguite in assenza di attività di cantiere significative svolte nelle immediate vicinanze.

4.6.2 Normativa di riferimento

Il fenomeno delle vibrazioni negli ambienti di vita, attualmente, non è disciplinato da alcuna normativa nazionale. Ne consegue che, qualora si intenda procedere ad una valutazione strumentale di tale fenomeno fisico, è bene affidarsi alle corrispettive norme tecniche. Nello specifico, il riferimento è costituito dalla normativa tecnica in capo alla UNI 9614 - Misura delle vibrazioni negli edifici e criteri di valutazione del disturbo, aggiornata alla recente versione in vigore.

ISO 2631 "Valutazione sull'esposizione del corpo umano alle vibrazioni"

La ISO 2631-2:2003 si applica a vibrazioni trasmesse da superfici solide lungo gli assi x, y e z per persone in piedi, sedute o coricate. Il campo di frequenze considerato è 1÷80 Hz e il parametro di valutazione è il valore efficace dell'accelerazione a_{rms} definito come:

$$a_{rms} = \sqrt{\frac{1}{T} \int_0^T a^2(t) dt}$$

dove a(t) è l'accelerazione in funzione del tempo, T è la durata dell'integrazione nel tempo dell'accelerazione. La norma definisce tre curve base per le accelerazioni e tre curve base per le velocità (in funzione delle frequenze di centro banda definite per terzi di ottava) che rappresentano le curve approssimate di uguale risposta in termini di disturbo, rispettivamente per le accelerazioni riferite all'asse Z, agli assi X,Y e alla combinazione dei tre assi. Le vibrazioni devono essere misurate nel punto di ingresso nel corpo umano e deve essere rilevato il valore di accelerazione r.m.s. perpendicolarmente alla superficie vibrante.

UNI 9614:2017 "Misura delle vibrazioni negli edifici e criteri di valutazione del disturbo"

La norma è sostanzialmente in accordo con la ISO 2631-2:2003. Tuttavia, sebbene le modalità di misura siano le stesse, la valutazione del disturbo è effettuata sulla base del valore della vibrazione della sorgente V_{sor} (vibrazioni immesse negli edifici dalla specifica sorgente oggetto di indagine. Sono caratterizzate dal valore dell'accelerazione a_{w,95}) il quale è confrontato con una serie di valori limite dipendenti dal periodo di riferimento

(*giorno*, dalle 06:00 alle 22:00, e *notte*, dalle 22:00 alle 06:00) e dalle destinazioni d'uso degli edifici. I livelli di soglia indicati dalla suddetta norma sono riportati nella tabella seguente:

Tabella 4-16 Valori di soglia di vibrazione relativi al disturbo alle persone (UNI 9614:2017)

	Ambiente ad uso abitativo	ASILI CASE DI RIPSO	Luoghi lavorativi	SCUOLE UNIVERSITA	Ospedali, case di cura. Cliniche ed affini
DIURNO	7,2 mm/s ²	3,6 mm/s ²	-	-	-
NOTTURNO	3,6 mm/s ²	3,6 mm/s ²	-	-	-
GIORNATE FESTIVE	5,4 mm/s ²	-	-	-	-
LIMITATAMENTE AI PERIODI DI ESERCIZIO	-	-	14 mm/s²	5,4 mm/s2	-
INDIPENDENTEMENTE DALL'ORARIO	-	-	-	-	2 mm/s ² (misurate ai piedi del letto del paziente)

Le misure devono essere eseguite in conformità alla suddetta norma tecnica. In particolare, la durata complessiva è legata al numero di eventi del fenomeno in esame necessaria ad assicurare una ragionevole accuratezza statistica, tenendo conto non solo della variabilità della sorgente ma anche dell'ambiente di misura. Nel caso di fenomeni caratterizzati da un elevato numero di eventi distinti devono essere acquisiti i segnali relativi ad almeno 15 eventi scelti con i criteri indicati dall'appendice A della suddetta norma tecnica (appendice A2 "Vibrazioni prodotte da traffico ferrotranviario" e A4 "Vibrazioni prodotte da attività di cantiere").

4.6.3 Criteri di individuazione delle aree da monitorare

Per la definizione della rete di monitoraggio sono individuate aree sensibili tenendo conto dei ricettori posti nella fascia di territorio circostante le fonti di emissione e dei seguenti parametri:

- tipo di fonte di vibrazioni (livelli, spettro, durata nel tempo, etc.);
- condizioni geolitologiche e singolarità geolitologiche (caratteristiche geomeccaniche delle formazioni in posto, bancate di strati a maggiore consistenza, falde, etc.);

- presenza di infrastrutture sotterranee tali da interferire nella distribuzione del campo vibrazionale (tunnels, opere in fondazione, etc.);
- sensibilità dei ricettori dipendente da: destinazione d'uso, valore storico testimoniale;
- svolgimento di funzioni di servizio pubblico (ad es.: ospedali), etc.

La distribuzione dei punti di monitoraggio sarà più fitta nelle zone maggiormente edificate e laddove le attività lavorative impattanti per la componente in esame (es: scavo, fondazioni pali, etc.) sono svolte nelle immediate vicinanze dei ricettori o nei casi in cui l'opera in progetto è collocata a ridotta distanza da detti ricettori.

4.6.4 Strumentazione

La valutazione del disturbo può essere effettuata con l'impiego di strumentazione dedicata che, oltre alla acquisizione e registrazione del segnale accelerometrico, esegue l'elaborazione in linea dei dati. In alternativa è possibile far ricorso a sistemi acquisizione dati che memorizzano la storia temporale della accelerazione in forma digitale e di un software specifico per l'elaborazione fuori linea. Di tale software, degli algoritmi, delle librerie utilizzate e della loro versione deve essere riportata indicazione nei rapporti di misurazione, ferma rimanendo la rispondenza alle caratteristiche di analisi richieste dalla UNI EN ISO 8041-1.

Le caratteristiche metrologiche della catena di misura (sensore + sistema di acquisizione e di condizionamento del segnale) quali: curva di risposta in frequenza, dinamica del sistema di acquisizione, rumore di fondo della catena ecc. devono essere conformi alla UNI EN ISO 8041-1. Devono essere implementati i filtri "band limiting" con le caratteristiche indicate nella UNI EN ISO 8041-1 e di ponderazione W_m definita dalla ISO 2631-2 [3]. Più in particolare sono da rispettare i seguenti requisiti:

- sensibilità nominale non minore di 10 mV/(m/s2);
- risposta in frequenza della catena di misura, comprensiva dell'acquisizione, lineare con tolleranza ±5% da 0,5 Hz a 250 Hz;
- acquisizione in forma digitale con frequenza di campionamento non minore di 1 500 Hz, presenza di filtro anti-aliasing con frequenza non minore di 600 Hz, risoluzione preferenziale di 24 bit e minima di 16 bit;
- valore efficace del rumore strumentale, legato al complesso di fenomeni di natura casuale presenti nella catena di misurazione e non dipendenti né dalle vibrazioni immesse né da quelle residue, almeno cinque volte inferiore al minimo valore efficace dei segnali da misurare.

4.6.5 Modalità di monitoraggio e parametri

I rilievi sono eseguiti posizionando la strumentazione al centro della stanza, le postazioni di misurazione devono essere scelte sulla base delle reali condizioni di utilizzo degli ambienti da parte degli abitanti. Le modalità di rilevamento possono variare da caso a caso e, in generale, dipendono dai seguenti fattori:

- tipologia delle fonti di vibrazione;
- evoluzione temporale del fenomeno vibratorio (vibrazioni stazionarie o transitorie);
- · tipologia del macchinario da misurare;
- natura del suolo su cui viene effettuato il rilevamento.

Dall'analisi delle misure il valore che viene estrapolato ai fini del confronto con i limiti è $a_{w,95}$ ovvero il livello di massima accelerazione ponderata statistica stimata al 95° percentile della distribuzione cumulata di probabilità della massima accelerazione ponderata $a_{w,max}$.

$$a_{w,95} = \overline{a_{w,max}} + 1.8 \cdot \sigma$$

Equazione 1 Massima accelerazione ponderata al 95° percentile

Dove:

 $\overline{a_{w,max}}$ = è la media aritmetica delle massime accelerazioni ponderati relative gli eventi considerati (minimo 15) ovvero:

$$a_{w,max,j} = \max(a_w(t))$$

Equazione 2 accelerazione massima

 σ = è lo scarto tipo della distribuzione delle massime accelerazioni ponderate $a_{w,max,j}$ calcolate mediante l'equazione:

$$\sigma = \sqrt{\frac{\sum_{j=1}^{N} (a_{w,max,j} - \overline{a_{w,max}})^{2}}{N-1}}$$

Equazione 3 Scarto tipo della distribuzione delle massime accelerazioni (N è il numero degli eventi misurati)

Mentre:

 $a_w(t)$ = è il valore istantaneo del modulo del vettore accelerazione calcolato come somma vettoriale delle sue tre componenti cartesiane, la w sta per la ponderazione in frequenza ottenuta utilizzando la curva W_m

LINEA A.V. /A.C. MILANO - VERONA NODO DI BRESCIA POTENZIAMENTO INFRASTRUTTURALE DELLO SCALO DI BRESCIA

PROGETTO MONITORAGGIO AMBIENTALE

Relazione generale

$$a_w(t) = \sqrt{a_{w,rms,x}^2(t) + a_{w,rms,y}^2(t) + a_{w,rms,z}^2(t)}$$

Equazione 4 Accelerazione ponderata globale lungo i tre assi

 $a_{w,rms,i}(t)$ = Valore efficace totale valutato all'istante t sui tre assi di $a_{w,i}(t)$ calcolato in conformità alla UNI EN ISO 8041-1:2017 punto 3.1.2.3

$$a_{w,rms,j}(t) = \sqrt{\frac{1}{\tau}} \left(\int_{t-\tau}^{t} a_{w,j}^{2}(\varepsilon) d\varepsilon \right)$$

$$perj = x, y, z; e \tau = 1s$$

Equazione 5 Calcolo del valore efficace dell'accelerazione ponderata

4.6.6 Elaborazioni delle misure

Per il calcolo delle vibrazioni associate alla sorgente oggetto di indagine è necessario procedere alla misurazione delle Vibrazioni immesse (V_{imm}) e di quelle residue (V_{res}). Entrambi i valori sono determinati dal valore dell'accelerazione aw.95 (Equazione 1), nello specifico le vibrazioni immesse (Vimm) sono le vibrazioni rilevate all'interno dell'edificio generate da tutte le sorgenti attive di gualsiasi origine, mentre le vibrazioni residue vengono misurate in assenza della specifica sorgente oggetto di indagine.

Al fine di determinare le vibrazioni residue, risulta rilevante lo studio preliminare della sorgente in esame, nel caso in cui si tratti di un cantiere è fondamentale individuare i momenti della giornata in cui la sorgente non è in funzione, durante la pausa pranzo ad esempio, in caso di lavorazioni continue è necessaria una misura in fase di Ante Operam. Consequentemente la misurazione delle vibrazioni immesse verrà svolta con sorgente attiva. In entrambe le rilevazioni è indispensabile discretizzare gli eventi (minimo 15). In generale così come riportato dalla norma UNI stessa, un evento si distingue da un altro quando il valore efficace dell'accelerazione ponderata, aw(t) decresce di almeno il 30% fra i due eventi.

Per esempio, se la storia temporale di a_w(t) ha due massimi relativi con valore 10 mm/s² e 12 mm/s² rispettivamente, si è in presenza di due eventi distinti se fra i due massimi relativi il valore istantaneo di a_w(t) ha un minimo relativo non superiore a 7 mm/s².

Una volta misurati i 15 eventi per le vibrazioni residue e 15 eventi per quelle immesse, si procede con il calcolo delle vibrazioni generate dalla sorgente (V_{sor}) come da seguente formula:

$$V_{sor} = \sqrt{V_{imm}^2 - V_{res}^2}$$

Equazione 6 Calcolo delle vibrazioni generate dalla sorgente oggetto di indagine

DOCUMENTO

SA0001 001

REV.

FOGLIO

44 di 56

CODIFICA

D 22 RG

Ad evidenza della buona applicazione della metodica è importante riportare, in formato tabellare nella scheda elaborazione della misura, sia per le vibrazioni residue (V_{res}) che per quelle immesse (V_{imm}), tutti gli eventi individuati con i rispettivi valori efficaci totali valutati all'istante t sui tre assi $a_{w,rms,j}(t)$ da cui è possibile ricavare, previo calcolo dello scarto tipo della distribuzione (σ) delle massime accelerazioni ponderate di accelerazione $(a_{w,max,j})$, il rispettivo valore dell'accelerazione $a_{w,95}$ (Equazione 1) da associare sia per le Vibrazioni residue (V_{res}) che per quelle immesse (V_{imm}). Si precisa che qualora le vibrazioni residue V_{res} abbiano un valore maggiore del 50% di quelle immesse di V_{imm} allora il disturbo prodotto della Vibrazione della sorgente V_{sor} è da considera trascurabile.

4.6.7 Articolazione temporale delle attività di monitoraggio

LOTTO

PROGETTO DEFINITIVO

COMMESSA

Per la componente vibrazioni, in termini generali, si prevedono tre tipologie di postazioni di misura:

- Postazioni di tipo VIC, specifiche per la verifica delle attività di cantiere, da monitorare nelle fasi AO e CO
- Postazioni di tipo VIL, specifiche per la verifica delle attività del FAL, da monitorare nella fase CO
- Postazioni di tipo VIF per la verifica dell'impatto indotto dal transito dei treni nel post operam e per determinare la necessità o meno di interventi di mitigazione, da monitorare nelle fasi AO e PO

Sempre in termini generali, le postazioni VIL sono previste in corrispondenza di quei ricettori maggiormente esposti alle attività di palificazione.

Le postazioni VIF saranno previste in corrispondenza dei ricettori residenziali prossimi alla linea e oggetto di potenziale disturbo, e le misure saranno funzionali al rilievo dell'accelerazione nelle tre direzioni fondamentali e saranno caratterizzate in termini di analisi settoriale ed occorrenza temporale, secondo i dettami e i criteri delle seguenti norme:

- Norma 9614:2017 "Misura delle vibrazioni negli edifici e criteri di valutazione del disturbo"
- Norma 11048:2003 "Vibrazioni meccaniche ed urti Metodo di misura delle vibrazioni negli edifici al fine della valutazione del disturbo"
- Norma 9916:2004 "Criteri di misura e valutazione degli effetti delle vibrazioni sugli edifici"

Le prime due norme si rivolgono specificamente alla definizione dei criteri di valutazione del disturbo alle persone, mentre la terza norma indica criteri per la misura e la valutazione delle vibrazioni con riferimento ai possibili danni strutturali.

Al fine della valutazione del livello di disturbo, saranno impiegati i valori limite da normativa riportati nella tabella sottostante.

Tabella 4-17 Valori di soglia di vibrazione relativi al disturbo alle persone (UNI 9614:2017)

Luogo	Accelerazione [m/s²]
Abitazioni (notte)	3,6*10-3
Abitazioni (giorno)	7,2*10 ⁻³
Luoghi lavorativi	14,0*10 ⁻³
Ospedali, case di cura, ecc	2,0*10-3
Asili e case di risposo	3,6*10 ⁻³
Scuole	5,4*10 ⁻³

In ragione delle condizioni di contesto, in termini di numero e uso in atto dei ricettori presenti all'intorno delle aree di cantiere, nel complesso si prevede:

- 1 VIL
- 1 VIF

per un totale di 2 postazioni di misura.

Nella fase Ante Operam sarà svolta una campagna di misura, mentre nella fase Corso d'Opera sono previste due campagne di misura. In fase di Post Operam sarà svolta una campagna di monitoraggio sui punti VIF.

Nella tabella seguente è riportata l'indicazione delle postazioni di rilievo, e la frequenza e durata del monitoraggio nelle diverse fasi.

Tabella 4-18 Punti di monitoraggio della componente vibrazioni

		- 33		
Punto	CANTIERE/OPERA DA MONITORARE	Fase	FREQUENZA	Durata
VIL01	RI.02 / RI.03	AO	n. 1 campagna	24 h
VILUI RI.	N1.02 / N1.03	со	n. 2 campagne	24 h
VIF 01	0+400	AO	n. 1 campagna	24 h
01	0+400	PO	n. 1 campagna	24 h

La localizzazione del punto di misura VIF è riferita alle progressive dell'Asta 750.

4.7 Vegetazione, flora, fauna ed ecosistemi

4.7.1 Obiettivi del monitoraggio

Il monitoraggio ambientale, relativamente all'ambito vegetazionale e faunistico consiste nel documentare lo stato attuale della componente nella fase ante operam al fine di definire, nelle fasi successive del monitoraggio (corso d'opera e post operam), l'evolversi delle caratteristiche che connotano le componenti stesse. In particolare gli accertamenti non sono finalizzati esclusivamente agli aspetti botanici ma riguardano anche i popolamenti faunistici.

Il monitoraggio ha anche lo scopo di verificare, durante la costruzione, la situazione ambientale, in modo da rilevare tempestivamente eventuali situazioni non previste e predisporre le necessarie azioni correttive.

Il monitoraggio verrà eseguito nelle tre fasi AO, CO e PO.

Le aree da monitorare sono state scelte in funzione della sensibilità del territorio attraversato e della presenza di ambiti con maggior pregio ecologico: quali aree naturali protette, aree boscate e alvei di fossi e torrenti che solcano un territorio caratterizzato da una elevata utilizzazione del terreno per fini agricoli.

Il monitoraggio permetterà di attenzionare lo stato della vegetazione presente e il suo decorso nelle fasi AO, CO, PO, in fase di Post Operam sarà effettuato un controllo sullo stato manutentivo degli interventi di ripristino e di mitigazione ambientale, nelle aree oggetto di interventi di rinaturalizzazione.

4.7.2 Normativa di riferimento

Di seguito sono elencati i principali riferimenti normativi di interesse per l'ambito biotico che sono stati considerati per la redazione del presente progetto di monitoraggio:

Di seguito sono elencati i principali riferimenti normativi di interesse per l'ambito biotico che sono stati considerati per la redazione del presente progetto di monitoraggio.

Normativa comunitaria

 Direttiva 97/62/CE del Consiglio del 27 ottobre 1997: G.U.C.E n. L 305 dell'8/11/1997, recante adeguamento al progresso tecnico e scientifico della direttiva 92/43/CEE del Consiglio relativa alla conservazione degli habitat naturali e seminaturali e della flora e della fauna selvatiche;

- Regolamento CEE 1390/97 della Commissione del 18/07/97 (G.U.C.E. 19/07/97, L.190) che modifica il Regolamento CEE 1021/94 della Commissione relativo alla protezione delle foreste della Comunità contro l'inquinamento atmosferico;
- Regolamento CEE 1091/94 della Commissione del 29/04/94 (G.U.C.E. 18/06/94, L.126) relativo, alle modalità di applicazione del Regolamento CEE 3528/86 del Consiglio sulla protezione delle foreste della Comunità contro l'inquinamento atmosferico;
- Regolamento CEE 2157/92 del Consiglio del 23/07/92 (G.U.C.E. 31/07/92, L. 217) che modifica il Regolamento CEE 3528/86 del Consiglio relativo alla protezione delle foreste della Comunità contro l'inquinamento atmosferico;
- Direttiva (CEE) 92/43 del Consiglio, 21 maggio 1992: G.U.C.E. 22 luglio 1992, n. L 206. Conservazione degli habitat naturali e seminaturali e della flora e della fauna selvatiche;
- Direttiva (CEE) 79/409 del Consiglio, 2 aprile 1979: G.U.C.E. 25 aprile 1979, n. L 103 (e s.m.i.)
 Conservazione degli uccelli selvatici;
- Regolamento CEE 1696/87 della Commissione del 10/06/87 (G.U.C.E. 17/06/87, L.161) relativo, alle modalità di applicazione del Regolamento CEE 3528/86 del Consiglio sulla protezione delle foreste della Comunità contro l'inquinamento atmosferico;
- Regolamento CEE 3528/86 del Consiglio del 17/11/86 (G.U.C.E. 20/11/86, L.326) relativo alla protezione delle foreste della Comunità contro l'inquinamento atmosferico.

Normativa Nazionale

- Decreto del Presidente della Repubblica 8 settembre 1997, n. 357: Regolamento recante attuazione della direttiva 92/43/CEE relativa alla conservazione degli habitat naturali e semi-naturali, nonché della flora e della fauna selvatiche (G.U. N. 284 DEL 23-10-1997, S.O. n.219/L). Testo coordinato al D.P.R. n. 120 del 2003 (G.U. n.124 del 30.05.2003);
- Legge 6 dicembre 1991, n. 394 "Legge quadro sulle aree protette" che detta i principi fondamentali per l'istituzione e la gestione delle aree protette al fine di conservare e valorizzare il patrimonio naturale del paese;
- Legge 8 agosto 1985, n. 431 "Disposizioni urgenti per la tutela delle zone di particolare interesse ambientale";
- Ex Decreto 431/1985 dei beni vincolati (ora art. 146 D. Lgs. 490/99; D. Lgs. 42/04 Codice dei beni culturali e del paesaggio -, modificato dal D. Lgs. 22 gennaio 2006) relativo alla tutela dei beni paesaggistici e ambientali di notevole interesse pubblico, in particolare le aree ricoperte da boschi o vegetazione naturale (zone boscate) e fasce di rispetto dei corsi d'acqua

Come anticipato in premessa, il progetto di monitoraggio delle componenti in oggetto descritto di seguito è stato redatto in conformità delle "Linee guida per la predisposizione del Progetto di Monitoraggio Ambientale (PMA) delle opere soggette a procedure di VIA (D.Lgs. 152/2006 e s.m.i., D.Lgs. 163/2006 e s.m.i.) – Indirizzi metodologici specifici per componente/fattore ambientale: Biodiversità (Vegetazione, Flora, Fauna) REV. 1 del 13 marzo 2015".

4.7.3 Criteri di individuazione delle aree da monitorare

La scelta delle aree è stata effettuata sulla base di criteri differenziati come sotto descritti:

- Rappresentatività in relazione alle diverse unità di vegetazione intese come ambiti naturalistici a diversa idoneità faunistica
- Sensibilità, nel senso che dovranno essere oggetto di controllo diretto in campo tutte quelle aree che
 risultano avere particolari caratteristiche in relazione al valore naturalistico e/o alla fragilità degli equilibri
 in atto (aree verdi ricadenti in ambiti vincolati dal punto di vista ambientale)
- Presenza di attività connesse alla costruzione dell'Opera particolarmente critiche sotto il profilo del potenziale impatto sulla vegetazione e fauna (cantieri)
- Ripristini delle aree occupate temporaneamente per le attività di costruzione della linea ed opere accessorie

Le aree da monitorare sono state scelte in funzione della sensibilità del territorio attraversato e della eventuale presenza di ambiti di pregio naturalistico; considerata la bassa sensibilità di un territorio a vocazione agricola, particolare attenzione è stata rivolta alla presenza di aree naturali protette, che conservano habitat e specie a valenza conservazionistica. Sono state previste delle misure di monitoraggio anche in corrispondenza degli interventi di ripristino e di mitigazione ambientale, con l'obiettivo di verificare il conseguimento delle finalità per le quali sono stati progettati

Di seguito si riportano le specifiche relative alle tre fasi di monitoraggio (ante operam, corso d'opera e post operam) per vegetazione, flora, fauna ed ecosistemi.

4.7.4 Parametri oggetto del monitoraggio

Di seguito vengono riportati i riferimenti scientifici riguardanti le modalità e le tecniche che saranno utilizzate nel corso delle operazioni di monitoraggio. Vengono inoltre indicati i riferimenti normativi relativi alle aree di interesse naturalistico e quelli riguardanti le specie rare o di pregio.

PROGETTO DEFINITIVO LINEA A.V. /A.C. MILANO - VERONA NODO DI BRESCIA POTENZIAMENTO INFRASTRUTTURALE DELLO SCALO DI BRESCIA

PROGETTO MONITORAGGIO AMBIENTALE COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO Relazione generale D 22 RG SA0001 001 47 di 56

Vegetazione e flora

Analisi floristica fascia campione distale alla linea ferroviaria

Comunità vegetali

I rilevamenti fitosociologici saranno eseguiti secondo il metodo di Braun Blanquet (Braun-Blanquet J. 1964; Pignatti S. 1959; Pirola A., 1970; Westhoff V. E Van Der Maarel E. 1978; Giacomini V., Fenaroli L. 1958) e permetteranno (ove il rilievo sia effettuabile rispettando tutti i criteri previsti dal metodo stesso) l'attribuzione delle porzioni vegetazionali rilevate a fitocenosi note e ad una loro classificazione gerarchica di naturalità, e quindi ad un loro eventuale scostamento da tali categorie durante le fasi successive.

Flora

Al fine di fornire una misura confrontabile del livello di antropizzazione della flora nelle aree di interesse sarà utilizzato un indice di naturalità, basato sul rapporto tra le percentuali dei corotipi multizonali (definiti secondo S. Pignatti, 1982 appartenenti alla categoria corologica delle specie ad ampia distribuzione, codice 9) a quelli eurimediterranei (appartenenti, sempre secondo Pignatti alla omonima categoria corologica).

Tale rapporto è stato messo a punto da Menichetti, Petrella e Pignatti nel 1989. In fase di ante operam la presenza delle specie sinantropiche permette di valutare il livello di antropizzazione dell'area e costituisce un riferimento per il confronto nelle fasi successive. Il rapporto "specie sinantropiche/totale specie censite" rappresenta, infatti, uno degli indici utilizzabili per il confronto dei risultati delle fasi di monitoraggio ed un modo per evidenziare le variazioni nell'ambiente naturale connesse con la realizzazione dell'infrastruttura.

Per quanto concerne la sinantropia, si sottolinea che tale attributo non è standardizzato in maniera esaustiva in alcun testo; pertanto si includeranno nella categoria "sinantropiche" quelle specie che:

- appartengono alla categoria corologica delle specie ad ampia distribuzione (cod. 9). La categoria corologica rappresenta anche il carattere preso in considerazione nel calcolo del citato indice di sintesi (Menichetti, Petrella, Pignatti, 1989);
- sono tipiche di un habitat ruderale; rientrano in questo gruppo le entità che si rinvengono comunemente ai bordi delle strade o presso i ruderi, le avventizie naturalizzate, le specie sfuggite a coltura ed inselvatichite, alcune infestanti di campi ed incolti.

Tutte le specie con tali caratteristiche saranno contrassegnate, nelle schede di indagine, con "Sin". Nelle schede di rilevamento le specie vegetali rare o molto rare in Italia saranno contrassegnate dalle sigle R ed RR rispettivamente, quelle rare o molto rare nelle regioni interessate con r ed rr.

Per quanto riguarda la nomenclatura scientifica utilizzata e la verifica della corretta determinazione delle specie nelle indagini floristiche, il testo di riferimento è: S. Pignatti, 1982, Flora d'Italia, Edagricole.

Un ulteriore riferimento per la flora è costituito dalle Liste Rosse (Conti et all., 1992,1997) elaborate dalla Società Botanica Italiana e dal WWF con il contributo del Ministero dell'Ambiente e della Tutela del Territorio. Saranno contrassegnate con LR.

Monitoraggio dello stato di conservazione dei cumuli di materiale vegetale depositati in cantiere

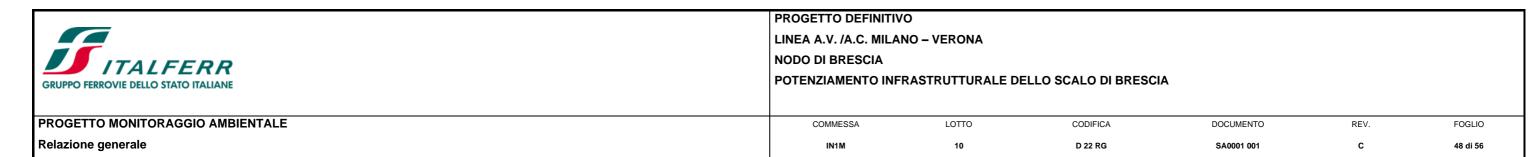
Tale attività consiste nel monitorare i cumuli di materiale vegetale gestiti nell'ambito dell'opera in attesa di sistemazione finale. Oltre all'analisi sul mantenimento del cumulo (dimensioni, altezza, pendenza sponde), si effettueranno analisi per definire le specie autoctone, sinantropiche ed infestanti.

Monitoraggio delle specie vegetali messe a dimora

Tale attività consiste nel rilevare una serie di parametri e/o caratteri significativi (quali, a titolo esemplificativo, parametri morfometrici quali altezza, diametro del fusto e dimensioni della chioma degli individui arborei e/o arbustivi, grado di copertura e altezza del manto erboso, nonché eventuali segni di sofferenza a carico delle parti verdi come ingiallimento o perdita delle foglie) su superfici campione di ca. 100mq, scelte opportunamente in funzione delle differenti tipologie presenti (almeno 1 superficie-campione per ogni tipologia), per monitorare le condizioni degli impianti a verde nelle aree soggette ad interventi di mitigazione e comprendere, così, il grado di riuscita del singolo intervento.

<u>Fauna</u>

Fauna mobile terrestre


Il principale obiettivo di questa indagine è la verifica di eventuali effetti di interruzione della continuità faunistica da parte dell'opera.

Nell'indagine, la corretta attribuzione dei reperti sarà verificata con la consultazione della più aggiornata documentazione bibliografica (manuali, atlanti, guide scientifiche e lavori scientifici).

Saranno inoltre evidenziate le specie animali presenti nelle Liste Rosse.

Analisi quali-quantitativa delle comunità ornitiche degli ecosistemi

Le comunità ornitiche si prestano bene a rappresentare e descrivere la situazione qualitativa ambientale e le sue variazioni nel tempo, in quanto questo gruppo faunistico risponde velocemente agli eventuali cambiamenti degli habitat, grazie alla sua elevata mobilità e sensibilità.

La metodologia scelta per effettuare i rilievi è inoltre particolarmente idonea ad essere applicata in ambienti uniformi ed omogenei, come sono le unità agroecosistemiche, e lungo ambienti che si sviluppano linearmente come le fasce ripariali dei corsi d'acqua.

4.7.5 Metodiche e strumentazione di monitoraggio

Vegetazione e flora

Le attività di monitoraggio della vegetazione e della flora saranno effettuate, con riferimento ad ognuna delle tipologie di indagine prima riportate, saranno effettuate attraverso le seguenti metodiche.

Rilievo fitosociologico

Tale indagine, da condursi con il metodo Braun-Blanquet, è finalizzata all'individuazione di variazioni prodottesi nella struttura delle formazioni vegetali e consente di registrare la presenza delle specie vegetali naturali ed alloctone invasive, nonché di verificarne l'espansione e la contrazione nel corso del tempo.

Le stazioni di rilevamento vengono identificate sulla base dei caratteri fisionomici indicatori dell'unitarietà strutturale della vegetazione considerata. Nella superficie campione (stazione di rilevamento), congruente col minimo areale di sviluppo del popolamento indagato, viene effettuato il censimento delle entità floristiche presenti, che sarà riportato sulla relativa scheda di rilevamento insieme alla percentuale di terreno coperta da ciascuna specie.

Per la stima del grado di copertura della singola specie si utilizza il metodo di Braun-Blanquet (1928). Nel corso dell'indagine l'area in esame deve essere delimitata temporaneamente da una fettuccia metrica. Nel caso di vegetazione pluristratificata, le specie dei diversi strati vengono rilevate separatamente (strato arboreo, arbustivo ed erbaceo).

Risultati attesi

- > Analisi composizionale secondo metodo Braun-Blanquet:
 - Strato
 - Composizione floristica
 - Copertura
 - o Forma
- > Fisionomia e struttura della vegetazione

Rilievo della composizione floristica e della copertura percentuale delle singole specie

L'analisi floristica consiste nell'individuazione delle specie vegetali presenti all'interno di quadrati permanenti opportunamente predisposti in zone campione significative dal punto di vista ecologico e rappresentative dell'area in esame.

Per ogni punto di campionamento, i censimenti della flora vengono realizzati lungo fasce di interesse, di larghezza non superiore ai 30 m, poste ai lati del tracciato dell'opera, opportunamente scelte in modo da attraversare le fitocenosi più rappresentative di ciascuna area d'indagine.

Il censimento delle specie vegetali viene realizzato percorrendo due itinerari paralleli al tracciato in modo tale da distinguere la flora della fascia prossimale alla linea ferroviaria, più esposta all'infiltrazione di specie estranee alla flora originaria, da quella della fascia distale, meno esposta, dove si ritiene persista, almeno in parte, la composizione floristica originaria (o quanto meno più intatta). Si procede per tratti successivi di 100 m con percorsi ad "U". I rilevamenti si considerano conclusi quando l'incremento delle specie censite, con il procedere dei tratti, è inferiore al 10% del totale rilevato fino a quel momento.

Il riconoscimento delle specie è effettuato in campo (quando il campione è certo al livello di specie; viceversa i campioni per i quali sussistono dubbi vengono portati in laboratorio per un'analisi più approfondita): vengono segnalate le specie rare, protette o di particolare interesse naturalistico, e foto-documentate. Inoltre, per meglio evidenziare le variazioni che la realizzazione dell'infrastruttura produce nella flora, vengono distinte le entità sinantropiche presenti nelle due fasce. Il rapporto specie sinantropiche/totale specie censite rappresenta, infatti, uno degli indici previsti per il confronto dei risultati delle fasi di monitoraggio ed un modo per evidenziare le variazioni nell'ambiente naturale connesse con la realizzazione dell'infrastruttura.

In fase di ante operam la presenza delle specie sinantropiche permette di valutare il livello di antropizzazione dell'area e costituisce un riferimento per il confronto nelle fasi successive.

Risultati attesi

- ➤ Lista floristica:
 - Fascia prossimale
 - o Fascia distale
- ➤ Emergenze floristiche
- ➤ Specie sinantropiche
- > Specie invasive/banalizzatrici
- Mappatura percorsi
- ➤ Indice di variazione:

SPECIE SINANTROPICHE / TOT. SPECIE CENSITE

Monitoraggio dello stato di conservazione dei cumuli di materiale vegetale depositati in cantiere

La metodologia da applicare deve consentire la redazione di una lista delle specie reperite sul cumulo, specificando per ciascuna di esse l'eventuale carattere sinantropico-opportunista-ruderale: è pertanto possibile applicare la medesima indagine in uso per il monitoraggio delle fasce campione (indagine di tipo "4").

I dati raccolti devono essere riassunti in tabelle di sintesi in cui saranno riportati alcuni parametri riferiti ai cumuli campionati.

Si precisa che l'attività di monitoraggio della presenza di specie alloctone dovrà riguardare non soltanto i cumuli, quanto anche l'intera area di cantiere e le aree a questa perimetrali.

I dati raccolti devono essere riassunti in tabelle di sintesi in cui saranno riportati alcuni parametri riferiti ai cumuli campionati.

L'identificazione delle specie alloctone ed infestanti sarà condotta sulla base della "Lista nera delle specie alloctone vegetali oggetto di monitoraggio, contenimento o eradicazione" di cui alla DGR. n. XI/2658 del 16.12.2019, avente ad oggetto "Aggiornamento delle liste nere delle specie alloctone animali e vegetali oggetto di monitoraggio, contenimento o eradicazione (ai sensi dell'art.1, comma 3 della legge regionale 10/2008)".

Monitoraggio delle specie vegetali messe a dimora

Le successive indagini finalizzate al controllo della correttezza ed efficacia degli impianti con finalità di mitigazione ambientale dovranno prevedere:

- Controllo della corretta localizzazione ed esecuzione dei reimpianti
- Verifica del grado di attecchimento e accrescimento (con misura dei valori incrementali di altezza e diametro) di individui e specie arborei e arbustivi
- Controllo della presenza e diffusione di specie alloctone invasive

I dati raccolti devono essere riassunti in tabelle e grafici di sintesi in cui saranno riportati alcuni parametri riferiti agli individui arborei e arbustivi campionati.

Per quanto riguarda l'annotazione delle condizioni vegetative si deve fare riferimento all'aspetto complessivo del fogliame, dalla cui osservazione si possono ricavare informazioni utili e, nel contempo, facili da rilevare. Si suggerisce di usare una scala qualitativa a 3 livelli: "condizioni buone", "condizioni precarie", "condizioni pessime".

Le verifiche verranno effettuate con una frequenza pari a 2 volte l'anno, nel periodo primaverile e in quello tardoestivo nel 1° anno di esercizio dell'opera in progetto.

Fauna

In merito ai popolamenti faunistici, nell'ambito del PMA, si svolgono i censimenti volti ad individuare la presenza di popolamenti significativi.

In particolare, nell'ambito del presente PMA, si prevedono censimenti volti ad individuare la presenza dei seguenti Taxa:

- Mammiferi terrestri
- Anfibi e rettili
- Avifauna

Per quanto riguarda il monitoraggio dell'ittiofauna è stato già considerato nella componente acqua superficiali, mediante la determinazione dell'indice NISECI.

La caratterizzazione della fauna sarà effettuata attraverso i seguenti tipi di indagine, la cui metodologia è descritta nei paragrafi seguenti:

- Fauna mobile terrestre Mammiferi grandi e piccoli
- Fauna mobile terrestre Anfibi e rettili
- Analisi quali-quantitativa delle comunità ornitiche degli ecosistemi fluviali e agricoli

Fauna mobile terrestre - Mammiferi grandi e piccoli

Relativamente alla Fauna mobile terrestre - Mammiferi, le specie verranno rilevate attraverso l'osservazione diretta e mediante l'utilizzo dei cosiddetti segni di presenza, efficaci soprattutto per i Mammiferi con abitudini notturne.

Per ogni punto di campionamento si procederà secondo le seguenti indicazioni:

 I metodi utilizzati per la componente dei grandi mammiferi devono consentire la determinazione di parametri ecologici delle popolazioni in esame (es. densità, struttura di popolazione, densità relativa, distribuzione della popolazione, uso dell'habitat).

I metodi per il monitoraggio della microteriofauna (talpe, toporagni, arvicole, ghiri, topi, ratti) non permettono, di solito, di ottenere una stima della densità delle popolazioni in esame, in quanto risulta spesso impossibile ricondurre il campionamento ad una determinata misura di superficie; il conteggio e

l'identificazione degli individui catturati forniscono tuttavia un indice di abbondanza della popolazione, nonché una rappresentazione della biodiversità dei micromammiferi in una data regione

- 2. Le specie verranno rilevate in tutte le fasi del monitoraggio, attraverso:
 - Censimento estensivo mediante unità di osservazione (block count)
 - Rilevamento di indici di presenza (target: mustelidi, lagomorfi)
 - Conteggio delle tane attive (target: mustelidi)
 - Analisi delle borre, con raccolta e dissezione delle borre, dei frammenti delle prede indigeriti e che vengono regolarmente rigurgitati da alcuni uccelli rapaci
- 3. Al fine di ottenere un campionamento meno condizionato dalla casualità delle osservazioni, sarebbe necessario effettuare numerosi rilevamenti in diversi periodi dell'anno, almeno uno per stagione
- 4. L'indagine sarà inoltre estesa sia in ante operam che nei controlli delle fasi successive, a tappeto su l'intera area di indagine e non soltanto lungo itinerari all'interno di fasce di interesse parallele alla linea ferroviaria

I parametri che verranno raccolti saranno i seguenti:

- elenco delle specie presenti;
- loro frequenza e distribuzione all'interno dell'area campionata.

Tutte le verifiche effettuate si traducono, in cartografie in scala 1:1.000, al fine di eventuali azioni alla tutela di habitat che ospitano specie di pregio. In tal senso, i luoghi di ritrovamento dei campioni saranno posizionati sulle carte di progetto (al fine di uno specifico posizionamento attraverso coordinate geografiche), nonché fotografati, riportando sulla cartografia i coni visuali delle foto.

Tutti i dati vengono riportati in apposite schede di rilevamento.

Un'indagine di tipo "E" viene eseguita, in condizioni stagionali e meteo-climatiche adatte. Il protocollo di campionamento prevede l'esecuzione di 3 distinte sessioni di campionamento: Prima sessione: maggio; Seconda sessione: giugno; Terza sessione: settembre.

Fauna mobile terrestre – Anfibi e rettili

Per ogni punto di campionamento si procederà secondo le seguenti indicazioni:

Le specie verranno rilevate in tutte le fasi del monitoraggio, attraverso:

- Osservazione diretta, con ricerca e conteggio degli esemplari lungo transetti o all'interno di aree rappresentative del territorio
- Richiami acustici, con conteggio dei richiami dei maschi in corrispondenza dei punti d'ascolto
- Possono inoltre essere applicati altri metodi a supporto dei precedenti, quali il transetto notturno effettuato su automezzo (night driving, utile per il monitoraggio degli anfibi notturni) e/o la raccolta e l'identificazione degli esemplari uccisi sulle strade (roadkill analysis)
- L'indagine sarà inoltre estesa sia in ante operam che nei controlli delle fasi successive, a tappeto su l'intera area di indagine e non soltanto lungo itinerari all'interno di fasce di interesse parallele alla linea ferroviaria

Tutte le verifiche effettuate si traducono, in cartografie in scala 1:1.000 al fine di eventuali azioni alla tutela di habitat che ospitano specie di pregio. Tutti i dati vengono riportati in apposite schede di rilevamento. In tal senso, i luoghi di ritrovamento dei campioni saranno posizionati sulle carte di progetto (al fine di uno specifico posizionamento attraverso coordinate geografiche), nonché fotografati, riportando sulla cartografia i coni visuali delle foto.

Un'indagine di tipo "E" viene eseguita, in condizioni stagionali e meteo-climatiche adatte, in particolare, si suggerisce di eseguire il monitoraggio tre volte (tre sessioni di campionamento), durante la stagione riproduttiva, e due volte (ulteriori due sessioni di campionamento), durante la stagione post-riproduttiva.

Avifauna

Per quanto riguarda l'avifauna, lo studio sarà condotto sulla base di metodologie approvate dalle seguenti istruzioni: MITO2000 (Monitoraggio ITaliano Ornitologico); INFS (Istituto Nazionale per la Fauna Selvatica); CISO (Centro Italiano Studi Ornitologici).

Per ogni punto di campionamento si procederà secondo le seguenti indicazioni:

- 1. Lo studio sull'avifauna sarà condotto nel corso dei mesi primaverili-estivi e riguarderà la raccolta di dati sulla comunità delle specie nidificanti attraverso il metodo dei sentieri campione (Transect Method)
- 2. Le specie verranno rilevate in tutte le fasi del monitoraggio, attraverso:
 - Il rilievo mediante stazioni di ascolto (point counts), metodo qualitativo, è particolarmente adatto per ambienti boschivi e/o specie difficili da osservare
 - Il rilievo su transetti lineari, con registrazione dei contatti (visivi od auditivi) ottenuti da un osservatore durante il tempo impiegato a percorrere un transetto di lunghezza predeterminata
 - Le tecniche di inanellamento, basata sul marcaggio individuale degli uccelli

Per le specie particolarmente elusive o rare (es. rapaci) potranno essere applicate metodiche particolari, quali ad esempio battute di ascolto in particolari momenti della giornata (es. al tramonto per gli strigiformi), ricerca dei nidi o dei segni di presenza, induzione di risposta canora (censimento al playback)

- 3. In ante operam verranno registrati tutti gli individui osservati od uditi all'interno di una fascia di 100 metri di ampiezza, ai due lati dell'itinerario campione, mentre nelle fasi successive si effettueranno i controlli di quanto osservato preliminarmente, per verificare eventuali scostamenti.
- 4. I luoghi di ritrovamento dei campioni o di osservazione saranno posizionati sulle carte di progetto in scala 1:1.000 e fotografati, riportando in cartografia i coni visuali.

I parametri e gli indici che saranno considerati ed elaborati sono i seguenti:

- S = ricchezza di specie, numero totale di specie nel biotopo o nell'area esaminata; questo valore è direttamente collegato all'estensione del biotopo campionato ed al grado di maturità e complessità, anche fisionomico-vegetazionale, dello stesso (Mac Arthur & Mac Arthur, 1961);
- H = indice di diversità calcolato attraverso l'indice Shannon & Wiener (1963) già in precedenza descritto
- J = indice di equiripartizione di Lloyd & Ghelardi (1964) in cui J = H/Hmax:, dove Hmax = InS; l'indice misura il grado di ripartizione delle frequenze delle diverse specie nella comunità o in altri termini il grado di lontananza da una equiripartizione (una comunità costituita da specie con eguale numero di individui); l' indice varia tra 0 e 1;
- % non-Pass. = percentuale delle specie non appartenenti all'ordine dei Passeriformi; il numero di non-Passeriformi è direttamente correlato, almeno, negli ambienti boschivi, al grado di maturità della successione ecologica (Ferry e Frochot, 1970);
- d = dominanza; sono state ritenute dominanti quelle specie che compaiono nella comunità con una frequenza relativa uguale o maggiore di 0,05 (Turcek, 1956; Oelke, 1980); si tratta del numero di individui della specie i-esima sul numero totale di individui presenti lungo il transetto effettuato. Le specie dominanti diminuiscono con l'aumentare del grado di complessità e di maturità dei biotopi.
- Abbondanza: numero di individui/15' = numero di individui osservati di una determinata specie nell'unità
 di tempo di 15'; numero di individui/1000 m = numero di individui osservati di una determinata specie in
 1000 metri di transetto. Si utilizzeranno entrambi gli indici per effettuare confronti e verifiche con rilievi
 svolti da altri autori in ambienti analoghi del comprensorio padano-veneto.

La localizzazione delle aree campione e dei transetti di censimento verrà rappresentata in un opportuno elaborato grafico, alla scala 1:1.000 o adeguate, su base cartografica oppure su ortofoto. I risultati delle attività di censimento verranno riportati in opportune schede di rilevamento, check-list, tabelle.

Un'indagine di tipo "F" viene eseguita, in condizioni stagionali e meteo-climatiche adatte, ed è da considerarsi rappresentativa per anno di monitoraggio, fatto salvo la necessità di replicare mensilmente alcuni tipi di campionamento.

4.7.6 Articolazione temporale delle attività di monitoraggio

Flora e vegetazione

Il monitoraggio della vegetazione e flora riguarderà le fasi di AO, CO e PO.

Per l'intero periodo di monitoraggio sono previste le seguenti freguenze di misura:

A : }	ANTE OPERAM (12 MESI)	CORSO D' OPERA (~3,2 ANNI)	POST OPERAM (12 / 36 MESI)
Attività	(FREQUENZA)	(FREQUENZA)	(FREQUENZA)
Censimento floristico Flora - analisi floristica distale all'opera (c)	semestrale (Primavera/tarda estate)	semestrale (Primavera/tarda estate)	semestrale (Primavera/tarda estate)
Monitoraggio delle specie vegetali messe a dimora (Indagine di tipo "3")	-	-	semestrale (Primavera/tarda estate)
Monitoraggio dello stato di conservazione dei cumuli di materiale vegetale depositati in cantiere (Indagine di tipo "4")	-	semestrale (Primavera/tarda estate)	-

Tabella 4-19 Flora e vegetazione: Tipologia di rilievi e frequenza prevista

Il monitoraggio del corso d'opera seguirà tutto lo sviluppo delle lavorazioni, mentre quello relativo alla fase anteoperam e post operam avrà una rispettiva durata di 12 mesi prima e alla fine delle lavorazioni, fatto salvo il monitoraggio delle specie vegetazionali messe a dimora, per il quale la durata del monitoraggio è prevista in 36 mesi.

Rinvii temporanei di prelievi e/o misure potranno essere previsti in corrispondenza delle singole aree in presenza di:

- precipitazioni e contestuali di intensità tali da rendere impossibili le indagini;
- oggettivi e documentati impedimenti all'accesso ai siti di indagini.

TITALFERR .	PROGETTO DEFINITIVE LINEA A.V. /A.C. MILA NODO DI BRESCIA POTENZIAMENTO INF	ANO – VERONA	ELLO SCALO DI BRESCIA	A		
PROGETTO MONITORAGGIO AMBIENTALE	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
Relazione generale	IN1M	10	D 22 RG	SA0001 001	С	52 di 56

I rilievi in campo dovranno essere effettuati nel periodo primaverile (I campagna) e nel periodo tardo estivo (II campagna) escludendo il periodo estivo, in presenza di temperature alte e clima secco; coerentemente sarà escluso anche il periodo invernale in cui le temperature risultano essere molto basse e avverse alla vegetazione.

I punti di monitoraggio previsti sono riportati alla Tabella 4-20.

Tabella 4-20 Flora e Vegetazione: Punti di monitoraggio²

Punto	Tipo di indagine	Progr. Km/Area di cantiere	A.O. (12 MESI)	C.O. (~3,2 anni)	P.O. (12 / 36 MESI)
VEG.01	VEG8 – Indagine di tipo "3"	0+250			•
VEG.02	VEG9 – Indagine di tipo "4"	AS01		•	
VEG.03	VEG4.1 - Indagine tipo C	0+400	•	•	•
VEG.04	VEG8 – Indagine di tipo "3"	0+750			•
VEG.05	VEG9 – Indagine di tipo "4"	AS.03		•	
VEG.06	VEG9 – Indagine di tipo "4"	AS.02		•	
VEG.07	VEG9 – Indagine di tipo "4"	AS.04		•	
VEG.08	VEG4.1 - Indagine tipo C	0+500	•	•	•
VEG.09	VEG4.1 - Indagine tipo C	0+550	•	•	•
VEG.10	VEG8 – Indagine di tipo "3"	0+650			•
VEG.11	VEG8 – Indagine di tipo "3"	0+800			•

Al fine di una più immediata lettura della tabella sopra riportata, la corrispondenza intercorrente tra le codifiche in essa indicate e le tipologie di analisi previste risulta la seguente:

- VEG4.1 Indagine di tipo "C": Analisi floristica della fascia campione distale alla linea ferroviaria.
 Il punto si colloca per caratterizzare le formazioni vegetazionali ed ecosistemiche dell' asta della Roggia Fiumicella interferita dal progetto.
- VEG9 indagine di tipo "4": Monitoraggio dello stato di conservazione dei cumuli di materiale vegetale depositati in cantiere
- VEG8 Indagine di tipo "3": Monitoraggio delle specie vegetali messe a dimora

Con riferimento ai punti di monitoraggio di cui alla precedente tabella si precisa che:

- L'individuazione dei punti di monitoraggio e delle tipologie di analisi ad essi associate è stata operata in ragione dei fattori di peculiarità del caso in specie, identificati nell'essere parte dell'opera in progetto e, segnatamente, l'Asta 750 metri ricadente all'interno di:
 - Corridoio ecologico individuato dalle reti ecologiche di livello regionale (RER), provinciale (REP)
 e comunale (REC),
 - PLIS "Parco delle Colline di Brescia"
- La localizzazione dei punti finalizzati al monitoraggio delle specie vegetali messe a dimora (VEG8 –
 Indagine di tipo "3") è stata operata tenendo conto sia degli interventi di mitigazione che di quelli di
 compensazione, così come indicati nel "Quaderno di territorializzazione" (IN1M10D22DXSA0001001A)
- La localizzazione dei punti di monitoraggio di cui alla precedente tabella è contenuta nell'elaborato cartografico "Planimetria di localizzazione punti di monitoraggio", riportato al capitolo 5 della presente relazione

<u>Fauna</u>

Il monitoraggio della Fauna riguarderà le fasi di AO, CO e PO.

La durata del periodo di monitoraggio in corso d'opera sarà di circa 3,2 anni; mentre quello relativo alla fase postoperam sarà di ventiquattro mesi.

Per l'intero periodo di monitoraggio sono previste le seguenti frequenze di misura:

Tabella 4-21 Tipologia di rilievi e frequenza prevista per la componente Fauna

Attività	A. O.	C.O.	P. O.
Allivila	(12 mesi)	(~3,2 anni)	(24 mesi)
Fauna mobile terrestre –			
Mammiferi di medie e piccole	3 volte	3/anno	3/anno
dimensioni (MT)			
Fauna mobile terrestre – Anfibi e	5 volte	5/anno	5/anno
rettili (MT)	o voite	5,41110	O/A/IIIO
Avifauna	2 volte	2 volte/anno	2 volte/anno

² Le progressive di identificazione dei punti di monitoraggio sono relative all'Asta 750 metri

ITALFERR	PROGETTO DEFINITIV LINEA A.V. /A.C. MILA NODO DI BRESCIA POTENZIAMENTO INF	NO – VERONA	ELLO SCALO DI BRESCI <i>l</i>	A		
PROGETTO MONITORAGGIO AMBIENTALE	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
Relazione generale	IN1M	10	D 22 RG	SA0001 001	С	53 di 56

L'individuazione dei punti di monitoraggio è stata operata sulla scorta dei medesimi aspetti di specificità prima indicati con riferimento agli aspetti vegetazionali.

Tabella 4-22 Fauna: Punti di monitoraggio

	Tipo di indagine		D		Classe			Indagini previste		
Punto			Progr. Anfibi e	Mammiferi	Avifauna	A.O.	C.O.	P.O.		
				rettili			(12 mesi)	(~ 3,2 anni)	(24 mesi)	
	FAU.1	Indagine di tipo "E"								
FAU 01	FAU.2	Indagine di tipo "E"	0+750	•	•	•	•	•	•	
	FAU.4	Indagine di tipo "F"								
EALLOS	FAU.1	Indagine di tipo "E"	0+650	-						
FAU 02	FAU.2	Indagine di tipo "E"	0+050	•	•	-	•	•	•	

ITALFERR .	PROGETTO DEFINITIV LINEA A.V. /A.C. MILA NODO DI BRESCIA POTENZIAMENTO INF	NO – VERONA	ELLO SCALO DI BRESCIA	A		
PROGETTO MONITORAGGIO AMBIENTALE	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
Relazione generale	IN1M	10	D 22 RG	SA0001 001	С	54 di 56

5. PLANIMETRIA DI LOCALIZZAZIONE DEI PUNTI DI MISURA

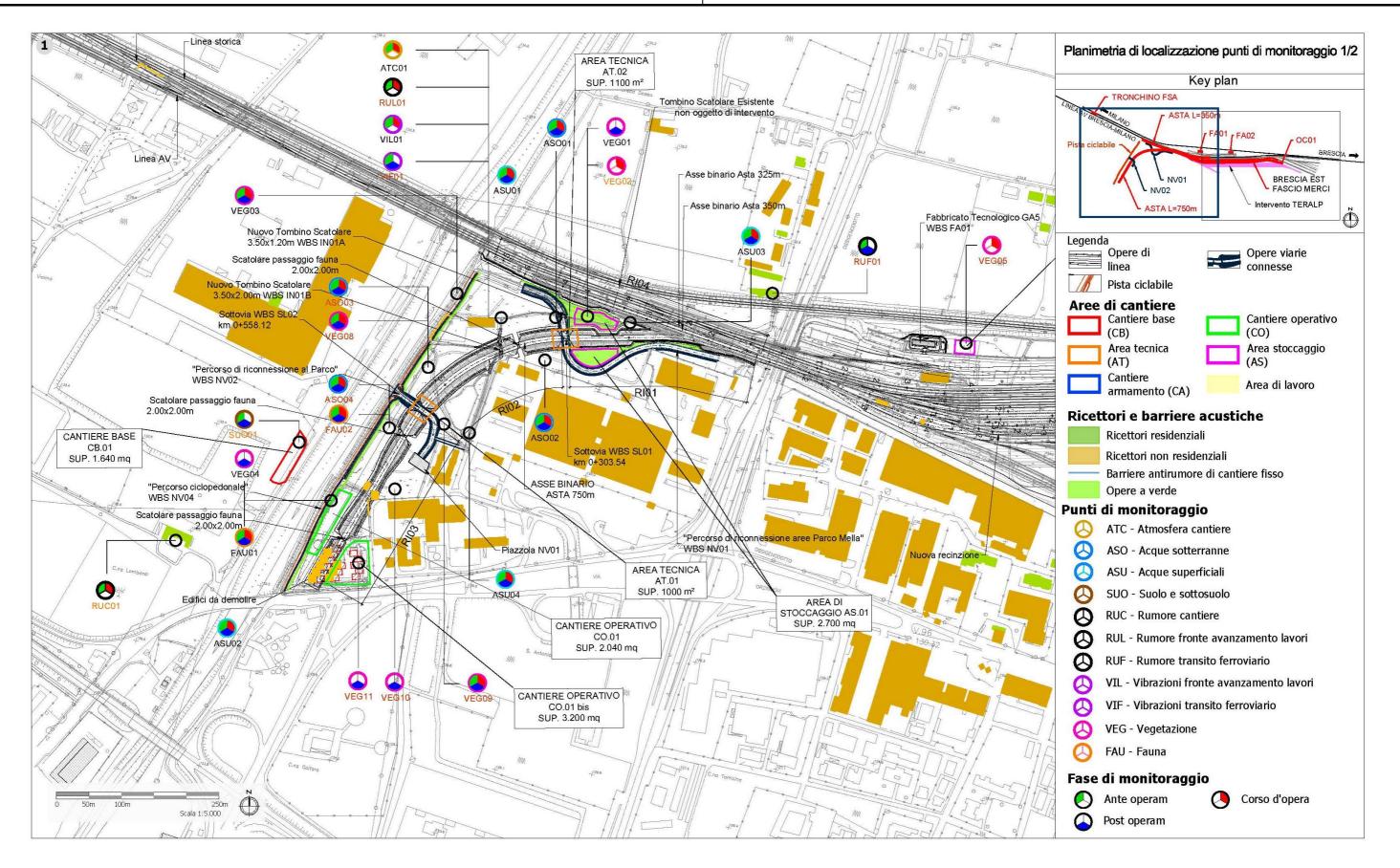
Ai fini di una più chiara ed immediata comprensione dell'elaborato cartografico è stata assunta la seguente convenzione grafica nella rappresentazione delle etichette dei punti di monitoraggio:

•	Etichette in colore nero	Punti già presenti nella precedente emissione del Progetto di
		monitoraggio ambientale
•	Etichette in colore arancio	Punti già presenti nella precedente emissione del Progetto di
		monitoraggio ambientale ed oggetto di nuova localizzazione nella presente revisione
•	Etichette in colore amaranto	Punti previsti dalla presente revisione del Progetto di monitoraggio
		ambientale

PROGETTO DEFINITIVO

LINEA A.V. /A.C. MILANO – VERONA

NODO DI BRESCIA


POTENZIAMENTO INFRASTRUTTURALE DELLO SCALO DI BRESCIA

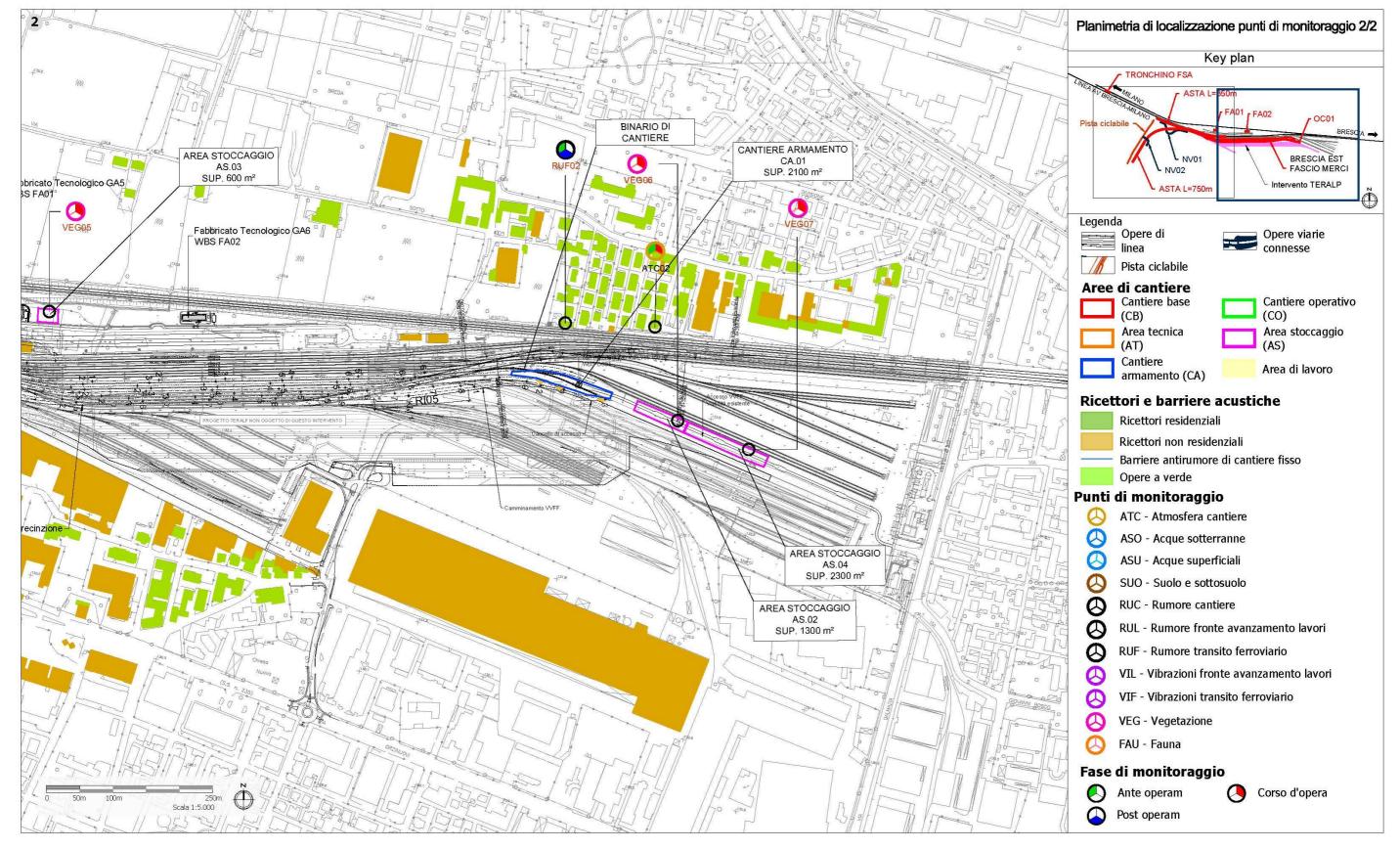
PROGETTO MONITORAGGIO AMBIENTALE

COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO

Relazione generale

IN1M 10 D 22 RG SA0001 001 C 55 di 56

PROGETTO DEFINITIVO


LINEA A.V. /A.C. MILANO – VERONA

NODO DI BRESCIA

POTENZIAMENTO INFRASTRUTTURALE DELLO SCALO DI BRESCIA

 PROGETTO MONITORAGGIO AMBIENTALE
 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 Relazione generale
 IN1M
 10
 D 22 RG
 SA0001 001
 C
 56 di 56

