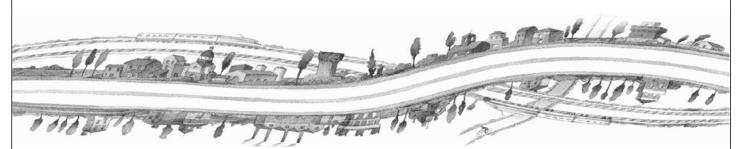


IL CONCESSIONARIO

AUTOSTRADA REGIONALE CISPADANA DAL CASELLO DI REGGIOLO-ROLO SULLA A22 AL CASELLO DI FERRARA SUD SULLA A13

CODICE C.U.P. E81B08000060009

PROGETTO DEFINITIVO


ASSE AUTOSTRADALE (COMPRENSIVO DEGLI INTERVENTI LOCALI DI COLLEGAMENTO VIARIO AL SISTEMA AUTOSTRADALE)

OPERE STRUTTURALI

OPERE D'ARTE MAGGIORI - PONTI

IPO02 - ALLARGAMENTO PONTE SU CAVO ACQUE BASSE REGGIANE

RELAZIONE DI CALCOLO

IL PROGETTISTA

Ing. Antonello Mezzaluna Albo Ing. Bologna n° 5225 A

Ing. Giancarlo Guadagnini Albo Ing. Ravenna n° 700 A Carelo Puelquin

RESPONSABILE INTEGRAZIONE PRESTAZIONI SPECIALISTICHE

Ing. Emilio Salsi Albo Ing. Reggio Emilia nº 945 IL CONCESSIONARIO

Autostrada Regionale Clapadana S.p.A. IL PRESIDENTE Graziano Pattuzzi

G						
F						
Е						
D						
С						
В						
Α	17.04.2012	EMISSIONE	Castorri	Mezz	aluna	Salsi
REV.	DATA	DESCRIZIONE	REDAZIONE	CON	ITROLLO	APPROVAZIONE
IDENTIE	ICAZIONE ELA	BORATO			DATA:	00-00-00-0

N	UM. I	PRUGI	۲.
2	5	4	1

FASE PD LOTTO 0

GRUPPO 0 2 CODICE OPERA WBS 00|2 TRATTO OPFRA 0

AMRITO TIPO FLABORATO OM С

PROGRESSIVO 0 1

REV. Α MAGGIO 2012

SCALA:

PROGETTO DEFINITIVO

OPERE D'ARTE MAGGIORI
IPO 02 'PONTE SUL CANALE ACQUE BASSE REGGIANE'
RELAZIONE DI CALCOLO

INDICE

1.	DESCRIZIONE GENERALE DELL'OPERA	4
2.	NORMATIVA TECNICA DI RIFERIMENTO	6
3.	CARATTERISTICHE DEI MATERIALI	7
4.	INCIDENZE	c
4.		
5.	DATI DI BASE	
Ę	5.1. DATI GENERALI	9
Ę	5.2. APERTURA LIMITE DELLE FESSURE	9
Ę	5.3. DATI SISMICI	10
Ę	5.4. PARAMETRI GEOTECNICI	11
6.	DIMENSIONAMENTO DELL'OPERA: SPALLA	12
6	6.1. CRITERI DI CALCOLO	12
	6.1.1. Angolo d'attrito terreno/parete	12
	6.1.2. Spinta delle terre: fase statica	12
	6.1.3. Spinta delle terre: fase sismica	12
	6.1.4. Stato Limite Ultimo	
	6.1.4.1 Situazione Statica	
	6.1.5. Stato Limite di Esercizio.	
	6.1.5.1 Combinazione 'rara'	
	6.1.5.2 Combinazioni 'frequente' e 'quasi permanente' (Fessurazione)	14
	6.1.6. Sovraccarico su terrapieno	14
	6.1.7. Pareti di risvolto – Fase Sismica	19
	6.1.8. Paraghiaia	
	6.1.9. Orecchie	20
	6.1.10. Pali	
	6.1.10.1 Verifiche Geotecniche	
	6.1.10.3 Verifiche SLU: Pressoflessione	21
6	6.2. ANALISI	22
	6.2.1. Azioni globali: Fase Sismica	23
	6.2.2. Azioni globali: Fase Statica	24
	6.2.3. Azioni globali: SLE	25
	6.2.4. Azioni sul palo singolo: sintesi	26
6	6.3. VERIFICHE	26
	6.3.1. Pali	26
	6.3.1.1 Verifiche Geotecniche	26

AUTOSTRADA REGIONALE CISPADANA dal casello di Reggiolo-Rolo sulla A22 al casello di Ferrara Sud sulla A13

PROGETTO DEFINITIVO

OPERE D'ARTE MAGGIORI
IPO 02 'PONTE SUL CANALE ACQUE BASSE REGGIANE'
RELAZIONE DI CALCOLO

	6.3.2.	Verifiche SLU	32
	6.3.2.1 6.3.2.2	-9	
		Verifiche SLE	
	6.3.3.1		
	6.3.3.2	P Deformazione	38
6.4	l. ORE	CCHIE	39
	6.4.1.		
	6.4.1.1 6.4.1.2		
	6.4.2.	Sollecitazioni e Verifiche	-
	6.4.2.1		
	6.4.2.2		_
6.5	. PAR	ETI DI RISVOLTO	47
		Azioni	
	6.5.1.1 6.5.1.2		
	6.5.2.	Sollecitazioni e Verifiche	49
	6.5.2.1	1 SLE	49
	6.5.2.2		_
6.6	S. PAR	AGHIAIA	57
	6.6.1.	Sollecitazioni – SLU: Fase Sismica	
	6.6.2.	Sollecitazioni – SLU: Fase Statica	58
	6.6.3.	Sollecitazioni – SLE	
	6.6.4.	Verifiche SLE: Fessurazione	
	6.6.5.	Verifiche SLU: Taglio	
	6.6.6.	Verifiche SLU: Pressoflessione	61
6.7	. PUL		62
	6.7.1.	Armatura longitudinale	
	6.7.2.	Armatura trasversale e di parete	63
6.8	B. SINT	TESI ARMATURE	64
	6.8.1.	Pali (Ø1200)	64
	6.8.2.	Pulvino	64
	6.8.3.	Paraghiaia	64
	6.8.4.	Pareti di Risvolto	65
	6.8.5.	Orecchie	65
7. I	DIMENS	SIONAMENTO DELL'OPERA: IMPALCATO	66
		FERI DI CALCOLO	66
,.,	7.1.1.	Descrizione	
	7.1.1.		
	7.1.1.2	2 Vincolamento	67

AUTOSTRADA REGIONALE CISPADANA dal casello di Reggiolo-Rolo sulla A22 al casello di Ferrara Sud sulla A13

PROGETTO DEFINITIVO

OPERE D'ARTE MAGGIORI
IPO 02 'PONTE SUL CANALE ACQUE BASSE REGGIANE'
RELAZIONE DI CALCOLO

	7.1.2.	Modello di calcolo	69
	7.1.3.	Condizioni elementari di carico	70
	7.1.3.1	Peso proprio degli elementi strutturali (SW)	
	7.1.3.2	Carichi permanenti portati (DL)	70
	7.1.3.3	U ,	
	7.1.3.4 7.1.3.5	Azioni della temperatura	
	7.1.3.6	Azioni parassite dei vincoli	
	7.1.3.7		
	7.1.3.8	Azione longitudinale di frenamento (BRK)	73
	7.1.3.9		
		O Azione del vento (WL)	
		1 Azioni sismiche	
	7.1.4.	Combinazioni di carico di progetto	77
7.2	. RISU	LTATI DELL'ANALISI – STATICA	80
	7.2.1.	Reazioni vincolari	80
	7.2.2.	Azioni interne	81
7.3	RISU	LTATI DELL'ANALISI - SISMICA	89
	7.3.1.	Sisma Orizzontale	89
	7.3.2.	Sisma Verticale	89
	7.3.3.	Azioni sismiche globali	91
	7.3.4.	Reazioni vincolari (FASE SISMICA)	94
7.4	. VERI	FICA DEGLI ELEMENTI STRUTTURALI	95
	7.4.1.	Verifiche di resistenza a SLU	95
	7.4.1.1	Determinazione delle larghezze collaboranti di soletta	
	7.4.2.	Verifica del concio C1	99
	7.4.3.	Verifica concio C2 (Mezzeria)	.101
	7.4.4.	Verifiche di deformabilità (SLE)	.103
	7.4.5.	Verifica allo stato limite di collasso (SLC)	.103
7.5.	. APPC	OGGI	104

AUTOSTRADA REGIONALE CISPADANA

AUTOSTRADA REGIONALE CISPADANA dal casello di Reggiolo-Rolo sulla A22 al casello di Ferrara Sud sulla A13

PROGETTO DEFINITIVO

OPERE D'ARTE MAGGIORI
IPO 02 'PONTE SUL CANALE ACQUE BASSE REGGIANE'

RELAZIONE DI CALCOLO

1. DESCRIZIONE GENERALE DELL'OPERA

La presente relazione riguarda l'Opera denominata "IPO 02", prevista nell'ambito della Progettazione Definitiva inerente la costruzione della Autostrada Cispadana.

Il Ponte sovrappassa il "Canale Acque Basse Reggiane"; è posto alla progr. 00+353 (Spalla Nord) dello svincolo autostradale di interconnessione con L'Autostrada A22; ha lunghezza totale pari a 42.0 m (distanza tra asse appoggi sulle spalle).

Il Ponte è in rettifilo.

Lo scavalco dell'interferenza è realizzato mediante 1 impalcato, di larghezza totale pari a 10.70 m.

L'impalcato è realizzato in sezione mista acciaio-calcestruzzo ed è costituito da una struttura metallica con altezza minima pari a 1.55 m e 3 anime verticali su cui poggia una soletta collaborante in c.a. di spessore pari a 0.35 m. La sezione è completata dai cordoli in c.a. di posizionamento dei guard-rail e da tutti gli elementi di arredo del ponte (strutture leggere reggi-impianti, impianti, elementi di scolo e di raccolta delle acque meteoriche, impianto di illuminazione della rampa di svincolo, ecc).

Per la geometria si veda la figura 1-1.

Il **sistema di vincolamento** dell'impalcato alle sottostrutture è previsto tramite isolatori a pendolo ad attrito che permettono lo spostamento relativo tra la sovrastruttura e la sottostruttura secondo una superficie sferica. Sono inquadrabili secondo la tipologia di "Isolatori a scorrimento".

Le spalle sono di tipo 'passante a due file di pali'.

Ogni spalla grava su n[®] pali (2 file da 4 pali ciascuna) di diametro Ø1200 e lunghezza pari a 25.0 m.

Per la geometria si veda la figura 1-2.

PROGETTO DEFINITIVO

OPERE D'ARTE MAGGIORI
IPO 02 'PONTE SUL CANALE ACQUE BASSE REGGIANE'
RELAZIONE DI CALCOLO

Fig. 1-1

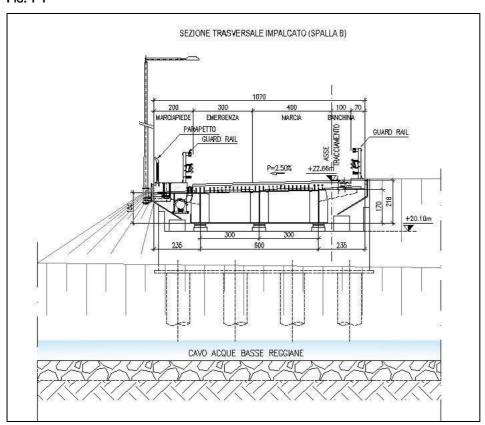
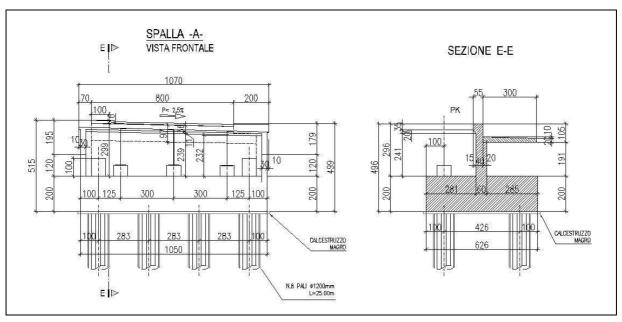



Fig. 1-2

AUTOSTRADA REGIONALE CISPADANA dal casello di Reggiolo-Rolo sulla A22 al casello di Ferrara Sud sulla A13

PROGETTO DEFINITIVO

OPERE D'ARTE MAGGIORI
IPO 02 'PONTE SUL CANALE ACQUE BASSE REGGIANE'
RELAZIONE DI CALCOLO

2. NORMATIVA TECNICA DI RIFERIMENTO

Vedi Elaborato "PD-0-000-000-0-GE-KT-01: Elenco delle Normative di riferimento"

PROGETTO DEFINITIVO

OPERE D'ARTE MAGGIORI
IPO 02 'PONTE SUL CANALE ACQUE BASSE REGGIANE'
RELAZIONE DI CALCOLO

3. CARATTERISTICHE DEI MATERIALI

Vedi Elaborato "PD-0-000-000-0-GE-TB-01: Tabella Materiali e Classi di esposizione del calcestruzzo".

Si precisa che si sono assunti i seguenti valori per la resistenza caratteristica a snervamento e di calcolo dell'acciaio da carpenteria.

ACCIAIO DA CARPENTERIA "CORTEN" S355JOW (ex 510C) e S355K2G1W (ex 510D)								
Spessore elemento	f _{yk} (MPa)	f _{yd} (MPa)						
t <= 40 mm	355.0	338.1						
t > 40 mm	335.0	319.0						

AUTOSTRADA REGIONALE CISPADANA dal casello di Reggiolo-Rolo sulla A22 al casello di Ferrara Sud sulla A13

PROGETTO DEFINITIVO

OPERE D'ARTE MAGGIORI
IPO 02 'PONTE SUL CANALE ACQUE BASSE REGGIANE'
RELAZIONE DI CALCOLO

4. INCIDENZE

Si anticipano qui di seguito le incidenze d'armatura relative ai singoli elementi costituenti l'Opera.

NA: NON APPLICABILE.

			Incidenza kg/mc												Incidenza kg/mq
WBS	Descrizione Opera	Parte d'opera	Pali	Diaframmi	Diaframmi Idraulici	Trave coronamento Diafr. Idraulici	Fondazione	Elevazione	Pulvino	Baggioli e ritegni	Soletta di transizione	Soletta Marciapiede su Spalla	Soletta (escluso predalles)	Traverso	Carpenteria met Impalcato
IPO 02	Allargamento Ponte 'AB Reggiane'	SPALLA PASSANTE (su 1 fila di pali)	95	NA	NA	NA	90	90	NA	290	80	NA	NA	NA	NA
IPO 02	Allargamento Ponte 'AB Reggiane	IMPALCATO ACCIAIO	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	130	NA	470

AUTOSTRADA REGIONALE CISPADANA dal casello di Reggiolo-Rolo sulla A22 al casello di Ferrara Sud sulla A13

PROGETTO DEFINITIVO

OPERE D'ARTE MAGGIORI
IPO 02 'PONTE SUL CANALE ACQUE BASSE REGGIANE'
RELAZIONE DI CALCOLO

5. DATI DI BASE

5.1. DATI GENERALI

Luce (interasse appoggi): 42.0 m

Impalcati: 1

Larghezza impalcato: 10,7 m

Travi: Acciaio

Spalle: Passanti a 2 file di paliLunghezza Spalla: 10.7 m

Vincolamento: isolatori a pendolo inverso

5.2. APERTURA LIMITE DELLE FESSURE

Al cap. 3 viene stabilita, per ogni calcestruzzo, la Classe di Esposizione.

Ciò, ai sensi della Tab. 4.1.III della Norma, qualifica automaticamente la 'Condizione ambientale'.

Tale dato – assieme alla tipologia di armatura 'sensibile' o 'poco sensibile', va inserito nella Tab. 4.1.IV della Norma. In tale Tabella va inoltre considerato che l'armatura è del tipo 'poco sensibile'.

Conseguentemente a quanto sopra, per lo Stato Limite di apertura delle fessure si ha :

TAB. 5.2-1

Elemento	Classe Esposizione	Condizione	Armatura	Combinazione	w _d ≤
Palo; Spalla e Pila (Fondazione)	XC2 *	Ordinaria	poco sensibile	frequente	W_3
				quasi permanente	W ₂
Palo; Spalla e Pila (Fondazione)	XA1**	Aggressiva	poco sensibile	frequente	W_2
				quasi permanente	W ₁
Palo; Spalla e Pila (Fondazione)	XA2***	Molto Aggressiva	poco sensibile	frequente	W_1
				quasi permanente	W ₁
Spalla (Elevazione)	(XC4) - XD3	Molto Aggressiva	poco sensibile	frequente	W_1
				quasi permanente	W ₁
Pile (Elevazione)	XC4	Aggressiva	poco sensibile	frequente	W_2
				quasi permanente	W ₁
Traversi; Travi prefabbricate	XC3	Ordinaria	poco sensibile	frequente	W_3
				quasi permanente	W ₂
Solette	XC4	Aggressiva	poco sensibile	frequente	W ₂
				quasi permanente	W ₁
* : zone non di seguito precisate					
** pk : 9500-12900; 15000-15800 ; 204	00-35000 ; 48700-48900 ; 56	300-59600			
*** pk : 35000-48700 ; 48900-56300					

AUTOSTRADA REGIONALE CISPADANA dal casello di Reggiolo-Rolo sulla A22 al casello di Ferrara Sud sulla A13

PROGETTO DEFINITIVO

OPERE D'ARTE MAGGIORI
IPO 02 'PONTE SUL CANALE ACQUE BASSE REGGIANE'
RELAZIONE DI CALCOLO

In particolare, per quanto riguarda le sole sottostrutture, le sollecitazioni delle combinazioni 'frequente' e 'quasi permanente' (influenzate principalmente da diversi coefficienti applicati ai carichi mobili) sono essenzialmente coincidenti.

Di conseguenza per l'apertura limite delle fessure si assumerà la condizione peggiorativa (quasi permanente).

Risulta pertanto:

Spalla (Elevazione): C35/45 – Apertura limite: w₁ = 0.2 mm

Pila (Elevazione): C32/40 – Apertura limite: w₁ = 0.2 mm

Pali e Fondazioni

Classe XC2 : C25/30 – Apertura limite: $w_2 = 0.3 \text{ mm}$

Classe XA1 : C28/35 – Apertura limite: $w_1 = 0.2 \text{ mm}$

Classe XA2 : C32/40 – Apertura limite: $w_1 = 0.2 \text{ mm}$

Per l'opera in questione : Pali e Fondazioni XC2

5.3. DATI SISMICI

Vita nominale: 100 anni
Classe d'uso: IV ⇒ C_U = 2.0

(Elab. "PD-0-000-000-0-GE-KT-02: Vita utile e Classe d'Uso delle opere")

TAB. 5.3-1

	latitudine	longitudine		ag	Suolo	Ct	Tr	F0	Tc*	Ss	Сс	St	S	amax	Tb	Tc	Td	Fv
IPO 01	44.9120	10.8852	Orizzontale SLV	0.232	С	T1	1898	2.478	0.284	1.355	1.591	1.000	1.355	0.314	0.150	0.451	2.528	
			Orizzontale SLC	0.258	С	T1	2475	2.456	0.287	1.32	1.585	1.000	1.32	0.341	0.152	0.455	2.631	
			Verticale SLV	0.151	С	T1	1898			1.000		1.000	1.000	0.151	0.050	0.150	1.000	1.611
			Verticale SLC	0.177	С	T1	2475			1.000		1.000	1.000	0.177	0.050	0.150	1.000	1.683

AUTOSTRADA REGIONALE CISPADANA dal casello di Reggiolo-Rolo sulla A22 al casello di Ferrara Sud sulla A13

PROGETTO DEFINITIVO

OPERE D'ARTE MAGGIORI
IPO 02 'PONTE SUL CANALE ACQUE BASSE REGGIANE'
RELAZIONE DI CALCOLO

5.4. PARAMETRI GEOTECNICI

I parametri necessari a definire le caratteristiche del terreno a tergo della spalla sono estratti dal Documento 'Criteri Generali per le verifiche Geotecniche'.

Si assume:

$$\gamma = 19.5 \text{ kN/m}^3$$
; $\emptyset = 38.0^{\circ} [M1]$; $\emptyset' = 32.01^{\circ} [M2]$

dove:

γ: peso specifico del terrapieno

Ø: angolo d'attrito caratteristico del terrapieno

Ø': angolo d'attrito efficace del terrapieno

Le curve di portanza, di sollecitazione e di deformazione dei pali sono estratte dalla Relazione Geotecnica dell'Opera.

PROGETTO DEFINITIVO

OPERE D'ARTE MAGGIORI
IPO 02 'PONTE SUL CANALE ACQUE BASSE REGGIANE'
RELAZIONE DI CALCOLO

6. DIMENSIONAMENTO DELL'OPERA: SPALLA

6.1. CRITERI DI CALCOLO

6.1.1. Angolo d'attrito terreno/parete

Viene assunto nullo, a favore di sicurezza.

6.1.2. Spinta delle terre: fase statica

Quale valore del Coefficiente di spinta si assume quello 'a riposo'. Il valore è pari a:

$$k_0 = 1-\sin\emptyset = 1-\sin38^\circ = 0.38$$

6.1.3. Spinta delle terre: fase sismica

Si adotta la formula di Mononobe-Okabe

L'espressione adottata è quella di EC8 – Parte 5 – Annesso E – par. E.4 – espressione E.2:

$$k_{a} = \frac{\sin^{2}(\psi + \phi - \vartheta)}{\cos \vartheta * \sin^{2} \psi * \sin(\psi - \vartheta - \delta) * \left[1 + \sqrt{\frac{\sin(\phi + \delta) * \sin(\phi - \beta - \vartheta)}{\sin(\psi - \vartheta - \delta) * \sin(\psi + \beta)}}\right]^{2}}$$

dove:

ψ: angolo inclinazione superficie di applicazione del vettore rispetto a orizzontale.

Nel caso in questione: $\psi = 90^{\circ}$

δ : angolo d'attrito terreno/parete

Nel caso in questione si assume, a favore di sicurezza: $\delta = 0^{\circ}$

■ Ø : angolo di attrito del materiale costituente il terrapieno

In funzione di quanto al par. 5.4 si ha: $\emptyset = 38^{\circ}$

$$\begin{split} \theta &= k_h \! / \! (1 \pm k_v) \\ k_h &= 0.314 \; \; ; \; k_v = \pm 0.5^* k_h = 0.157 \; (EC8 - Parte \; 5 - Annesso \; E - par. \; E.4 - espressione \; E.6) \\ \theta &= arctg[k_h \, / \! (1 \pm k_v)] \Rightarrow \theta_{(kv+)} = 15.2^\circ; \; \; \theta_{(kv-)} = 20.5^\circ \end{split}$$

PROGETTO DEFINITIVO

RELAZIONE DI CALCOLO

OPERE D'ARTE MAGGIORI
IPO 02 'PONTE SUL CANALE ACQUE BASSE REGGIANE'

In definitiva il coefficiente di spinta in fase sismica 'kE' risulta:

$$k_E (k_{v-}) = 0.497$$
; $k_E (k_{v+}) = 0.407$

Il vettore spinta, ortogonale alla parete, va poi moltiplicato per il fattore (1±kv) [espressione E.1 di Norma citata]. Per quanto precisato in Relazione Geotecnica l'espressione è da assumere con segno ± invertito. Si ottiene:

$$k_E = MAX[(1-0.157)*0.497 ; k_E = (1+0.157)*0.407] = MAX[0.419 ; 0.471] = 0.471$$

6.1.4. Stato Limite Ultimo

6.1.4.1 Situazione Statica

Premessa generale è che le azioni trasversali (vento, eventuale azione centrifuga) non sono certo dimensionanti per spalle la cui dimensione trasversale minima (in caso ospitino un solo impalcato) è di circa 17 m.

In conseguenza di ciò e con riferimento alla Tab.5.1.IV della Norma, i Gruppi di Azioni da prendersi in conto sono '1' e 2a'.

In entrambi i Gruppi, quale coefficiente ' γ ' (Norma, Tab.5.1.V) si assumerà il valore 1.35 per tutte la 'azioni elementari' (Permanenti da impalcato e da spalla, Attrito appoggi, Carico Tandem, Carico distribuito su impalcato, Frenatura), mentre si assumerà un valore 1.50 per quanto riguarda il sovraccarico sul terrapieno.

Quali coefficienti Ψ (Norma, Tab.5.1.VI) assumerà:

Gruppo 1

Variabili 'Tandem' e attrito appoggi: 1.0; Variabili 'Distribuito' e attrito appoggi: 1.0; Frenatura: 0.0

• Gruppo 2a

Variabili 'Tandem' e attrito appoggi: 0.75 ; Variabili 'Distribuito' e attrito appoggi: 0.40 ; Frenatura: 1.0

Tranne ove esplicitamente dichiarato il carico derivante dalla folla non viene preso in conto (assenza di marciapiedi).

6.1.4.2 <u>Situazione Sismica</u>

Si prenderà in conto la sola situazione di Sisma prevalente in direzione longitudinale, con solo verso concorde alla spinta del terreno.

Con tale sisma prevalente '+Ex' verranno assunte, quali azioni concomitanti :

- '+0.3*Ey' (sisma trasversale, assunto con il solo verso positivo considerata la simmetria della spalla assunta nel calcolo)
- '±0.3*Ez' (sisma verticale, assunto con entrambi i versi al fine di ottenere azioni nei pali massime –
 dimensionanti per portata e minime dimensionanti per pressoflessione)

PROGETTO DEFINITIVO

OPERE D'ARTE MAGGIORI IPO 02 'PONTE SUL CANALE ACQUE BASSE REGGIANE'

RELAZIONE DI CALCOLO

6.1.5. Stato Limite di Esercizio

6.1.5.1 Combinazione 'rara'

Risulta significativa solo quando si effettua una ridistribuzione del momento flettente rispetto all'analisi elastica. Nel progetto della spalla non sono previste ridistribuzioni di sorta. Di conseguenza laq combinazione 'rara non verrà considerata.

6.1.5.2 Combinazioni 'frequente' e 'quasi permanente' (Fessurazione)

Ove l'elemento possa essere considerato come 'snello' si procederà con il metodo 'diretto' di valutazione dell'ampiezza della fessura.

Ove invece l'elemento sia tozzo, gli algoritmi riportati in normativa per il calcolo dell'ampiezza della fessura non sono più utilizzabili e si procederà con il metodo 'indiretto' di limitazione delle tensioni nell'acciaio. Si procede come prescritto alla tab. C4.1.II della Norma, limitando - in funzione del diametro della barra adottata - la tensione nell'acciaio ai limiti ivi prescritti. Con riferimento all'apertura massima della fessure (par.5.2):

$$\sigma_{\text{s max}} - \text{N/mm}^2$$

25≥∅ 160

6.1.6. Sovraccarico su terrapieno

Ai sensi del par. C5.1.3.3.7.1 della Circolare Feb 09 gli assi tandem possono essere sostituiti da un carico uniforme di valore pari a :

$$q(Q) = Q_{ik}/(3.0*2.20)$$

Detto carico uniforme risulta – per le singole corsie – pari a:

1a Corsia: $q(Q1) = 90.9 \text{ kN/m}^2$; 2a Corsia: $q(Q2) = 60.6 \text{ kN/m}^2$; 3a Corsia: $q(Q3) = 30.3 \text{ kN/m}^2$

4a Corsia: $q(Q4) = 0 \text{ kN/m}^2$

Ai su elencati carichi, estesi su una lunghezza pari a 2.2 m, va sommato quello dovuto ai carichi qik, estesi indefinitamente:

1a Corsia: $q(q1) = 9.0 \text{ kN/m}^2$

2a, 3a e 4a Corsia: $q(q2) = q(q3) = q(q4) = 2.5 \text{ kN/m}^2$

PROGETTO DEFINITIVO

OPERE D'ARTE MAGGIORI

IPO 02 'PONTE SUL CANALE ACQUE BASSE REGGIANE'
RELAZIONE DI CALCOLO

Per semplicità di analisi e a seguito di considerazioni riportate in '<u>NOTA</u>' si assume un valore unico del sovraccarico per l'intero terrapieno, valore esteso sull'intero estradosso del cuneo di spinta, pari a:

$$q_v = 25.0 \text{ kN/m}^2$$

La diffusione di tale sovraccarico lungo l'altezza, sempre ai sensi del paragrafo della Circolare già citato, comporterebbe poi una diminuzione del valore del sovraccarico alle varie quote.

Sempre a favore di sicurezza si assume un andamento costante pari al valore massimo.

In conseguenza al coefficiente di spinta su precisato (0.38) si assume in definitiva un sovraccarico orizzontale uniforme lungo l'altezza pari a:

$$q_0 = 0.38*25 = 9.5 \text{ kN/m}^2$$

NOTA

Ogni corsia – di larghezza 3.0 m - trasmette alla parete un'azione orizzontale dovuta in parte al carico verticale distribuito 'q', indefinitamente esteso a tergo e in parte al carico 'Q', esteso su una profondità a tergo pari a 2.2 m. Entrambi i carichi cambiano da corsia a corsia.

Affiancando le 4 corsie si ottiene un'azione orizzontale totale 'R': si cerca quel carico verticale uniforme che induce la stessa azione 'R'.

Il problema è di valutare l'azione dovuta al carico 'Q'. Si opera in conseguenza a quanto riportato in figg. 5.1-1 e -2.

1) Determinazione di ε (fig.5.1-2)

$$c=0\Rightarrow B=0\;;\qquad \qquad \alpha=\delta=\beta=0\Rightarrow M=sin\phi\;;$$

$$\phi=38^\circ;\qquad tan\,\epsilon=cos\phi/(1+sin\phi)=0.49\Rightarrow\epsilon=26^\circ$$

2) Determinazione di θ (fig.5.1-1)

$$\theta = 38 + 26 = 64^{\circ}$$

Determinazione dell'altezza di spinta h_f

$$a = 0 \text{ m} \Rightarrow h_f$$
 inizia da sommità parete ; $b = 2.2 \text{ m}$; $h_f = 2.2 \text{*tg}(90\text{-}64) = 2.2 \text{*tg}26 \text{°} = 1.07 \text{ m}$

4) Determinazione della Risultante generica ΔS

Il fatto che 'a' sia nullo comporta che le pressioni minima e massima siano uguali (vedi espressioni si $\Delta\sigma$ in fig. 5.2-

1). La risultante di un carico 'fa' risulta pari a:

AUTOSTRADA REGIONALE CISPADANA dal casello di Reggiolo-Rolo sulla A22 al casello di Ferrara Sud sulla A13

PROGETTO DEFINITIVO

OPERE D'ARTE MAGGIORI

IPO 02 'PONTE SUL CANALE ACQUE BASSE REGGIANE' **RELAZIONE DI CALCOLO**

$$\Delta S = f_a * b * \sin(\theta - \phi)/\cos(\theta - \phi)$$
; $\theta - \phi = \varepsilon = 26^\circ \Rightarrow \Delta S = f_a * 2.2 * tg 26^\circ = f_a * 1.07$

5) Determinazione della Risultante ΔSi dovuta ai carichi Q_{ik} per la singola corsia i-esima

1°Corsia: Δ S1 = 90.9*1.07 kN/m ; 2°Corsia: Δ S2 = 60.6*1.07 kN/m

3°Corsia: Δ S3 = 30.3*1.07 kN/m ; 4°Corsia: Δ S4 = 0 kN/m

I carichi di cui sopra sono riferiti ad una striscia di parete di lunghezza unitaria, come anche i successivi ΔVi

6) Determinazione della Risultante ΔVi dovuta ai carichi q_{ik} per la singola corsia i-esima

Si assume un'altezza della parete pari a 7.0 m

1°Corsia: $\Delta V1 = 0.38*9.0*7.0 = 23.9 \text{ kN/m}$; 2°-4°Corsia: $\Delta V2-3-4 = 0.38*2.5*7.0 = 6.7 \text{ kN/m}$

3°Corsia: Δ S3 = 30.3*1.07 kN/m ; 4°Corsia: Δ S4 = 0 kN/m

7) Determinazione della Risultante totale R su una lunghezza di parete pari a 12.0 m (nº4 corsie nomin ali)

R = 3.0*[1.07*(90.9+60.6+30.3) + (23.9+3*6.7)] = 715 kN

8) Determinazione del sovraccarico equivalente 'q_v'

 $q_v^*0.38^*7.0^*12.0 = 715 \text{ kN} \Rightarrow q_v = 22.4 \text{ kN/m}^2$

In definitiva si assume, a favore di sicurezza, un sovraccarico pari a 25.0 kN/m²

PROGETTO DEFINITIVO

OPERE D'ARTE MAGGIORI
IPO 02 'PONTE SUL CANALE ACQUE BASSE REGGIANE'
RELAZIONE DI CALCOLO

Fig. 6.1-1

Strip surcharge

For vertical strip loading f_a acting parallel with structure on the ground surface along an infinitely long strip the trapezoidal increment of active earth pressure applied to the structure over a given segment h_f is assumed – see figure.

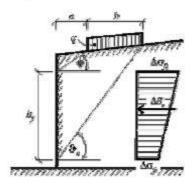


Diagram of increment of active earth pressure due to strip loading fa

This segment is determined by intersection of the structure and lines drawn from the edge points of the strip loading having slopes associated with angles φ and θ_s . The angle θ_s corresponding to critical slip plane follows from:

$$\theta_o = \varphi + \varepsilon$$

The formula is described in details in section "Active earth pressure - line surcharge".

Variation of pressure increment is trapezoidal; the larger intensity of $\Delta \sigma_{p}$ is applied at the upper end while the smaller intensity of $\Delta \sigma_{g}$ at the bottom end. The two increments are given by:

$$\Delta\sigma_{jk} = \frac{f_abK_{qf}}{h_f} \left(1 + \frac{a}{a+b}\right)$$

$$\Delta \sigma_{f} = \frac{f_{a}bK_{qf}}{h_{f}} \left(1 - \frac{a}{a+b}\right)$$

where: fa - magnitude of strip surcharge

h - width of the strip surcharge acting normal to the structure

 $h_{\tilde{I}}$ - section loaded by active earth pressure increment

$$E_{d} = \frac{\sin(\theta_{d} - \varphi)}{\cos(\theta_{d} - \varphi - \delta)}$$

where: θ_c - angle of critical slip plane

 ϕ - angle of internal friction of soil δ - angle of friction structure - soil

The resultant of the increment of active earth pressure due to strip loading f_x is provided by:

$$\Delta S_a = f_a b \frac{\sin(\theta_a - \varphi)}{\cos(\theta_a - \varphi - \delta)}$$

where: θ_a - angle of critical slip plane

φ - angle of internal friction of soil
 δ - angle of friction structure - soil

f. - magnitude of strip surcharge

b - width of the strip surcharge

For non-homogeneous soils the program proceeds as follows.

PROGETTO DEFINITIVO

OPERE D'ARTE MAGGIORI
IPO 02 'PONTE SUL CANALE ACQUE BASSE REGGIANE'
RELAZIONE DI CALCOLO

Fig. 6.1-2

Line surcharge

Vertical infinitely long line loading f acting on the ground surface parallel with structure leads to a triangular increment of active earth pressure applied to the structure over a given segment h_f – see figure:

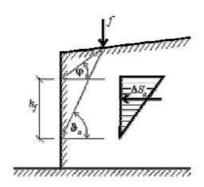


Diagram of increment of active earth pressure due to vertical

line loading acting on ground surface

Action of the line surcharge is deterimened such that two lines are drawn from the point of application following angles φ and ϑ_a (corresponding to the critical slip surface), which is provided by:

$$\mathcal{G}_a = \varphi + \varepsilon$$

where: ϕ - angle of internal friction of soil

ε - angle derived from the following formulas

$$\tan \varepsilon = \frac{\cos(\varphi - \alpha)\sin(\varphi - \beta)\cos(\alpha + \delta) + \beta\cos(\varphi - \beta - \alpha - \delta)}{\sin(\varphi - \alpha)\sin(\varphi - \beta)\cos(\alpha + \delta) + \beta\sin(\varphi - \beta - \alpha - \delta) + M}$$

$$M = \sqrt{(\sin(\varphi - \beta)\cos(\beta - \alpha) + \beta) \cdot (\sin(\varphi + \delta)\cos(\alpha + \delta) + \beta)}$$

$$B = \frac{2c\cos\alpha\cos(\beta - \alpha)\cos\varphi}{\gamma h\cos(\beta - \alpha) + \frac{2\sigma_{\rm g}\cos\alpha\cos\beta}{\gamma h}}$$

where: β - slope inclination

 φ - angle of internal friction of soil δ - angle of friction structure - soil a - back face inclination of the structure

c - cohesion of soil
y - unit weight of soil
h - assumed depth

AUTOSTRADA REGIONALE CISPADANA dal casello di Reggiolo-Rolo sulla A22 al casello di Ferrara Sud sulla A13

PROGETTO DEFINITIVO

OPERE D'ARTE MAGGIORIIPO 02 'PONTE SUL CANALE ACQUE BASSE REGGIANE'

RELAZIONE DI CALCOLO

6.1.7. Pareti di risvolto - Fase Sismica

Durante la fase sismica la massa di terreno inscatolato induce un'azione orizzontale pari al peso moltiplicato per il coefficiente sismico k_h . Nel caso di sisma prevalente in direzione trasversale, tale azione è funzione lineare della larghezza della spalla – larghezza diminuita degli spessori dei muri di risvolto.

Sembra a chi scrive che l'azione suddetta vada comunque assoggettata ad un limite superiore (in caso contrario, per una larghezza della spalla tendente all'infinito, l'azione tenderebbe anch'essa all'infinito).

Ad esempio, assumendo un coefficiente k_h pari a 0.34 (valore rappresentativo per l'infrastruttura in questione, assumendo un tipo di suolo 'C') per una spalla che ospiti 2 impalcati (larghezza indicativa 34 m), la pressione conseguente sui muri di risvolto risulterebbe pari a:

$$q = 19.5*34*0.34 = 225 \text{ kN/m}^2$$

valore chiaramente inaccettabile che indurrebbe sollecitazioni 'fuori scala'.

Si assumerà quindi che la massa che può essere attivata abbia una dimensione orizzontale trasversale pari a quella del cuneo di spinta attiva per un angolo d'attrito di 38°.

A titolo indicativo, per un'altezza del muro di risvolto pari a 7.0 m, tale dimensione risulta pari a circa 9.0 m.

La pressione conseguente risulterebbe quindi: 19.5*9.0*0.34 = 60 kN/m².

Tale assunzione si concretizzerà nell'assegnare una opportuna 'estensione' del terreno inscatolato nel Codice di Calcolo, con risultati a favore di sicurezza poiché verrà assunta una pressione uniforme e non triangolare con vertice in basso.

Per contro però, operando in tale modo, il Codice – durante l'analisi del sisma in direzione prevalente longitudinale, dimensionante in termini di azioni sui pali - valuterà un'azione orizzontale trasversale (30%) errata e sottodimensionata, poiché sui pali andrà di fatto ad agire l'intera massa e non quella 'ridotta' presa in conto dal Codice. Di conseguenza si svilupperà anche un'analisi manuale tendente a determinare le azioni globali effettive alla base: saranno i risultati di tale analisi ad essere presi a base del dimensionamento dei pali.

PROGETTO DEFINITIVO

RELAZIONE DI CALCOLO

OPERE D'ARTE MAGGIORI
IPO 02 'PONTE SUL CANALE ACQUE BASSE REGGIANE'

6.1.8. Paraghiaia

Indipendentemente dai risultati conseguenti all'analisi condotta con il Codice automatico, il paraghiaia verrà dimensionato in base ad un'analisi locale che tenga conto delle prescrizioni della Norma, par. C5.1.3.3.7.2.

Si assumerà quindi un'azione longitudinale di frenatura, applicata in testa del muro, pari a 180 kN, concomitante con un carico verticale di 300 kN.

6.1.9. Orecchie

Indipendentemente dai risultati conseguenti all'analisi condotta con il Codice automatico, le Orecchie verranno dimensionate in base ad un'analisi locale. Poiché esse – ove presenti – sono uguali per tutte le spalle, tranne ove esplicitamente dichiarato, il dimensionamento verrà effettuato non per l'accelerazione sismica di progetto dell'Opera specifica, ma – considerato che detta accelerazione varia in un campo ristretto – pari a quella massima assoluta per tutte le Opere. Il valore di tale accelerazione è comunque inessenziale, poiché si mostrerà che la Fase dimensionante è quella Statica e non quella Sismica.

6.1.10. Pali

6.1.10.1 Verifiche Geotecniche

Oltre all'usuale verifica di capacita portante verticale, la Norma prevede ora anche la verifica di capacità portante orizzontale: relativamente ad entrambe le problematiche le azioni di progetto verranno confrontate con quelle emergenti dalle curve fornite dal Progettista Geotecnico.

6.1.10.2 Verifiche SLU: Taglio

La Norma NTC (nonché EC) non regolamenta le verifiche a Taglio delle sezioni circolari. Nella Norma ACI invece la sezione circolare viene semplificata assumendo un rettangolo equivalente di larghezza \varnothing ed altezza $0.8^*\varnothing$: <u>si</u> seguirà tale approccio.

Di conseguenza, per quanto riguarda la verifica dell'armatura, applicando l'espressione [NTC 4.1.18]:

$$V_{Rsd} = 0.9^* d^* (A_{sw}/s)^* f_{vd}^* cotg\theta \; ; \quad dove \; : \; d = 0.95^* 0.8^* \varnothing \; ; \; cotg\theta = 1.0 \\ \rightarrow V_{Rsd} = 0.68^* \varnothing^* (A_{sw}/s)^* f_{vd}^* (A_$$

Per quanto riguarda la verifica lato cls. si fa riferimento all'espressione [NTC 4.1.19], sempre adottando la medesima 'd' su precisata.

$$V_{Rcd} = 0.9^* d^* b_w ^* \alpha_c ^* f'_{cd} \; ; \; dove \; : \; d = 0.95^* 0.8^* \varnothing \; ; \; b_w = \varnothing \rightarrow V_{Rcd} = 0.68^* \varnothing^{2*} \alpha_c ^* f'_{cd} \; \; ; \; (f'_{cd} = 0.5^* \; f_{cd}) \; ; \; dove \; : \; d = 0.95^* 0.8^* \varnothing \; ; \; b_w = \varnothing \rightarrow V_{Rcd} = 0.68^* \varnothing^{2*} \alpha_c ^* f'_{cd} \; ; \; (f'_{cd} = 0.5^* \; f_{cd}) \; ; \; dove \; : \; d = 0.95^* 0.8^* \varnothing \; ; \; dove \; : \; d = 0.9$$

Il coefficiente α_c verrà assunto unitario in prima ipotesi, e incrementato come concesso dalla Norma se necessario.

AUTOSTRADA REGIONALE CISPADANA dal casello di Reggiolo-Rolo sulla A22 al casello di Ferrara Sud sulla A13

PROGETTO DEFINITIVO

OPERE D'ARTE MAGGIORI
IPO 02 'PONTE SUL CANALE ACQUE BASSE REGGIANE'
RELAZIONE DI CALCOLO

6.1.10.3 Verifiche SLU: Pressoflessione

Verranno effettuate le verifiche nelle sezioni a quota 0.0 e a quota 1.0 m superiore a quella di cambio armatura (si assume una lunghezza di ancoraggio indicativa della barra generica pari appunto a 1.0 m)

AUTOSTRADA REGIONALE CISPADANA dal casello di Reggiolo-Rolo sulla A22 al casello di Ferrara Sud sulla A13

PROGETTO DEFINITIVO

OPERE D'ARTE MAGGIORI
IPO 02 'PONTE SUL CANALE ACQUE BASSE REGGIANE'
RELAZIONE DI CALCOLO

6.2. ANALISI

Si premette una tabella nella quale vengono sintetizzate le azioni globali – prive di coefficienti - trasmesse in Fase Statica da un singolo impalcato.

TAB. 6.2-1 – AZIONI TRASMESSE DA IMPALCATO

	IPO 02					
1 Campata		L=				
SPALLA	Reaz Vert	Reaz Long	Reaz Trasv			
31 ALLA	KN	KN	KN			
PP + Permanenti Portati	4.621	0	0			
Carichi Mobili Qik	976	0	0			
Carichi Mobili qik	935	0	0			
Frenamento	0	237	0			
Vento Trasversale	0	0	273			
Sisma Longitudinale (SLD)	0	102	0			
Sisma Trasversale (SLD)	0	0	102			
Sisma Verticale (SLD)	132	0	0			
Sisma Longitudinale (SLV)	0	317	0			
Sisma Trasversale (SLV)	0	0	317			
Sisma Verticale (SLV)	532	0	0			

NOTA – Le reazioni fornite al Cap.7 potrebbero apparire non immediatamente congruenti con quanto in tabella, in quanto espresse in forma 'additiva'. A titolo di esempio:

Permanenti (tabella) = 4621

Permanenti (Cap.7) = 1638+1488+1638 = 4764 ≈ 4621

PROGETTO DEFINITIVO

OPERE D'ARTE MAGGIORI
IPO 02 'PONTE SUL CANALE ACQUE BASSE REGGIANE'
RELAZIONE DI CALCOLO

6.2.1. Azioni globali: Fase Sismica

TAB. 6.2-2

Dimensioni				
	X - m	Y - m	Z1 - m	Z2 - m
Pulvino	5.60	10.70	2.00	
Paraghiaia	0.60	9.50	2.90	
Da paragh. A bordo pulvino	2.80			
Risvolti	2.20	0.60	2.90	
Orecchie	3.00	0.50	1.00	3.00
Posiz. Appoggi (da est. pulvino)	1.00			
Parametri				
peso specifico terrapieno - kN/m3	19.50			
k0	0.380			
kh (masse)	0.314			
kv+ (masse)	0.151			
kv- (terreno)	0.157			
kE	0.407			

TAB. 6.2-3

SISMA DIR LONGITUDINALE (X)					
Azioni Verticali					
	N - kN	x - m	M(0) - kNm	e - m	M _v - kNm
Pulvino	2'996	2.80	8'389		,
Paraghiaia	413	3.10	1'281		
Risvolti	191	4.50	861		
Orecchie	150	6.85	1'028		
Terreno inscatolato	1'182	4.50	5'319		
	4'933		16'877	-0.62	-3'066
Impalcati (1) [permanenti]	4'621	1.00	4'621	1.80	8'318
	9'554		21'498		5'252
kv (masse eccetto impalcato)30%	223			-0.62	-139
kv (solo impalcato)30%	160	1.00	160	1.80	287
	383				148
Totale (Kv+)	9'937				5'400
Totale (Kv-)	9'171				5'103
Azioni Orizzontali					
	H _x - kN	z - m	M _y - kNm		
Pulvino	941	1.00	941		
Paraghiaia	130	3.45	448		
Risvolti	60	3.45	207		
Orecchie	47	3.82	180		
Terreno inscatolato	371	3.45	1'280		
Impalcati (1)	317	2.30	729		
	1'866		3'785		
Spinta Mononobe	1'180	1.63	1'927		
	3'045		5'712		
SISMA DIR TRASVERSALE (Y)					
Azioni Orizzontali					
	H _y - kN	z - m	M _x - kNm		
	1'866		3'785		
Spinta Mononobe su Orecchia	60	3.12	186		
30%	578		1'191		

PROGETTO DEFINITIVO

OPERE D'ARTE MAGGIORI
IPO 02 'PONTE SUL CANALE ACQUE BASSE REGGIANE'
RELAZIONE DI CALCOLO

TAB. 6.2-4

Azioni alla Base						
		N - kN	H _x - kN	H _y - kN	M _y - kNm	M _x - kNm
	Kv+	9'937	3'045	578	11'112	1'191
	Kv-	9'171	3'045	578	10'815	1'191
Pali						
Diametro - mm		1'200	in dir Y	in dir X		
N°file - n			2	4		
Interasse - m			2.90	3.60		
Azioni su palo singolo		H - kN	N max - kN	N min - kN		
	Kv+	387	2'076	465		
	Kv-	387	1'903	390		

6.2.2. Azioni globali: Fase Statica

TAB. 6.2-5

Parametri					
peso specifico terrapieno - kN/m³	19.50				
k0	0.380				
Sovraccarico a tergo - kN/m²	25.00				
Azioni Verticali - Permanenti					
	N - kN	x - m	M(0) - kNm	e - m	M _y - kNm
Fondazione	2'996	2.80	8'389		
Parete centrale	413	3.10	1'281		
Risvolti	191	5	861		
Paraghiaia	150	7	1'028		
Orecchie	150	6.85	1'028		
Terreno inscatolato	1'182	4.50	5'319		
Impalcati (2) [permanenti]	4'621	1.00	4'621		
	9'704		22'526	0.48	4'644
Azioni Verticali - Accidentali					
	N - kN	x - m	M(0) - kNm	e - m	M _y - kNm
Sovraccarico a tergo	12.5	4.50	56	-1.7	-21
Carichi Mobili (Tandem+distribuiti)	1'911	1.00	1'911	1.80	3'440
Azioni Orizzontali - Permanenti					
Coeff. Attrito appoggi	0.06				
	H _x - kN	z - m	M _y - kNm		
Attrito appoggi	277	2.30	638		
Spinta Terreno	952	1.63	1'555		
Azioni Orizzontali - Accidentali					
	H _x - kN	z - m	M _y - kNm		
Attrito appoggi (Tandem+distrib.)	115	2.30	264		
Sovraccarico a tergo	498	2.45	5 1'220		
Frenatura	237	7.14	1'692		
Vento	non consid	erato			

PROGETTO DEFINITIVO

OPERE D'ARTE MAGGIORI
IPO 02 'PONTE SUL CANALE ACQUE BASSE REGGIANE'
RELAZIONE DI CALCOLO

TAB. 6.2-6

Combinazione 1 & 2a	Coeff. γ	Coeff. Ψ	N - kN	M _y (N) - kNı	H _x - kN	M _y (H) - kNm	M _y (tot) - kNm
Azioni Verticali Permanenti	1.35		13'100	6'270			6'270
Az. Vert. Carichi Mobili	1.35	1.00	2'580	4'644			4'644
Azioni Orizz. Perm.: Attrito App.	1.35				374	861	861
Azioni Orizz. Perm.: Spinta Terreno	1.35				1'285	2'099	2'099
Azioni Orizz. Acc.: Attrito	1.35	1.00			155	356	356
Azioni Orizz. Acc.: Sovraccarico	1.50		19	-32	747	1'830	1'799
Azioni Orizz. Acc.: Frenatura	1.35	1.00			320	2'284	2'284
Azioni alla Base			15'698	10'882	2'881	7'431	18'312
Pali							
Diametro - mm	1'200	in dir Y	in dir X				
N°file - n		2	4				
Interasse - m		2.90	3.60				
Azioni su palo singolo	H - kN	N max - kN	N min - kN				
Combinazione 1	360	3'234	691				

6.2.3. Azioni globali: SLE

Si riporta la sola combinazione 2°, che fornisce az ioni sui pali pressoché coincidenti con quelle fornite dalla '1' e comunque peggiorative.

TAB. 6.2-7

SLE	Coeff. γ	Coeff. Ψ	N - kN	M _y (N) - kN	H _x - kN	M _y (H) - kNm	M _y (tot) - kNm
Azioni Verticali Permanenti	1.00		9'704	4'644			4'644
Az. Vert. Carichi Mobili	1.00	1.00	1'911	3'440			3'440
Azioni Orizz. Perm.: Attrito App.	1.00				277	638	638
Azioni Orizz. Perm.: Spinta Terreno	1.00				952	1'555	1'555
Azioni Orizz. Acc.: Attrito	1.00	1.00			115	264	264
Azioni Orizz. Acc.: Sovraccarico	1.00		13	-21	498	1'220	1'199
Azioni Orizz. Acc.: Frenatura	1.00	1.00			237	1'692	1'692
Azioni alla Base			11'627	8'063	2'079	5'369	13'431
Pali							
Diametro - mm	1'200	in dir Y	in dir X				
N°file - n		2	4				
Interasse - m		2.90	3.60				
Azioni su palo singolo	H - kN	N max - kN	N min - kN				
Combinazione 1	260	2'386	521				

PROGETTO DEFINITIVO

OPERE D'ARTE MAGGIORI
IPO 02 'PONTE SUL CANALE ACQUE BASSE REGGIANE'
RELAZIONE DI CALCOLO

6.2.4. Azioni sul palo singolo: sintesi

TAB. 6.2-8

Quota 0.0	N _{max} - kN	N _{min} - kN	H - kN
SLU - Sismica Kv+	2'076	465	387
SLU - Sismica Kv-	1'903	390	387
SLU - Statica	3'234	691	360
SLE	2'386	521	260

6.3. VERIFICHE

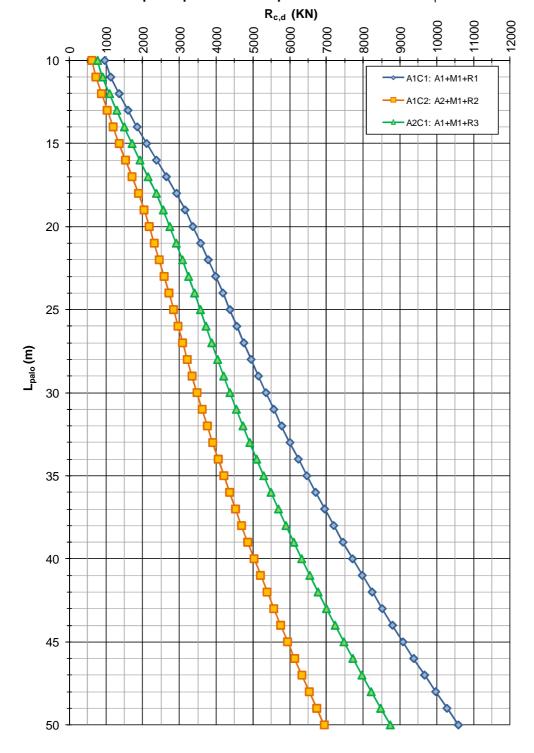
6.3.1. Pali

Si ribadisce che il dimensionamento dei Pali verrà effettuato mediante l'analisi di par. 6.2.

6.3.1.1 <u>Verifiche Geotecniche</u>

Portanza verticale

Alla Figura seguente è riportata la curva di portata per un palo Ø1200 nel suolo in questione.



PROGETTO DEFINITIVO

OPERE D'ARTE MAGGIORI
IPO 02 'PONTE SUL CANALE ACQUE BASSE REGGIANE'
RELAZIONE DI CALCOLO

Fig. 6.3-1

IPO01 - Allargamente Ponte sul Parmigiana Moglia - ZO2 NTC del 14/01/2008 Capacità portante a compressione - Pali trivellati φ 1200mm

AUTOSTRADA REGIONALE CISPADANA dal casello di Reggiolo-Rolo sulla A22 al casello di Ferrara Sud sulla A13

PROGETTO DEFINITIVO

OPERE D'ARTE MAGGIORI
IPO 02 'PONTE SUL CANALE ACQUE BASSE REGGIANE'
RELAZIONE DI CALCOLO

Dal par. 6.2 si è ottenuto che la <u>massima azione di compressione</u> N_{sd} è pari a 3234 kN (Fase Statica), mentre <u>l'azione verticale globale massima</u> è pari a 15698 kN (Fase Statica).

Devono essere effettuate due verifiche:

Palo Singolo

L'azione verticale massima deve essere confrontata con le curve di portanza di cui sopra.

Dalla figura precedente si ottiene che un palo di lunghezza 25.0 m ha una portanza:

$$R_{c,d} \cong 3500 \text{ kN}; \implies R_{c,d} / N_{sd} = 1.08 > 1.0$$

Pali in Gruppo

L'azione verticale globale massima deve essere confrontata con la portanza del gruppo.

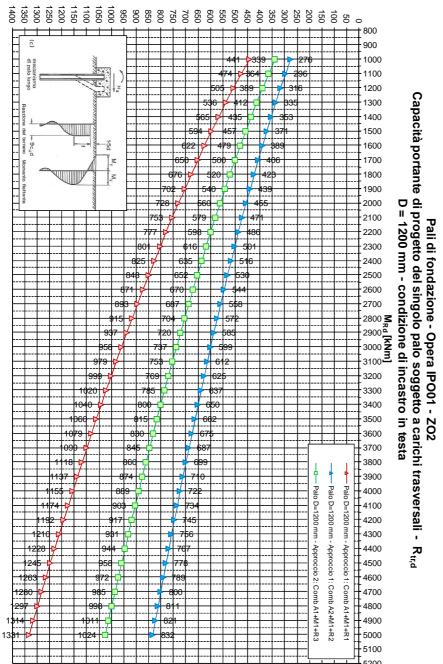
Dalla Relazione Geotecnica si ha che i pali sono posti in: Sabbia Densa. Conseguentemente (interassi pari a 3Ø) alla curva di portanza di figura va applicato un coefficiente riduttivo pari a 0.7.

$$N_{med} = 15698/8 = 1962 \text{ kN}$$

$$R_{c,d} \cong 3500^*0.7 = 2450 \text{ kN}; \implies R_{c,d} / N_{med} = 1.25 > 1.0$$

Si conferma quindi la lunghezza pari a : Lpalo = 25.0 m


PROGETTO DEFINITIVO


OPERE D'ARTE MAGGIORI
IPO 02 'PONTE SUL CANALE ACQUE BASSE REGGIANE'
RELAZIONE DI CALCOLO

Portanza Orizzontale

Alla Figura seguente è riportata la curva di portanza per il palo di cui sopra.

Fig. 6.3-2

PROGETTO DEFINITIVO

OPERE D'ARTE MAGGIORI
IPO 02 'PONTE SUL CANALE ACQUE BASSE REGGIANE'
RELAZIONE DI CALCOLO

Anche in questo caso va condotta una doppia verifica.

Palo singolo

Non vengono applicati coefficienti riduttivi alla curva di portanza.

Dal par. 6.2.4 si è ottenuto che la massima azione tagliante V_{Sd} è pari a 387 kN (Fase Sismica).

La portanza orizzontale $R_{tr,d} = V_{sd}$ viene raggiunta in corrispondenza di un Momento Ultimo pari a circa:


$M_u = 1200 \text{ kNm}$

Tale momento va raggiunto in corrispondenza dell'azione verticale minima nei pali, per la situazione nella quale si attinge il valore del taglio massimo preso in considerazione:

 $N_{min} \cong 465 \text{ kN}$

Si ha:

Fig. 6.3-3

Risultano necessari nº24 Ø20

PROGETTO DEFINITIVO

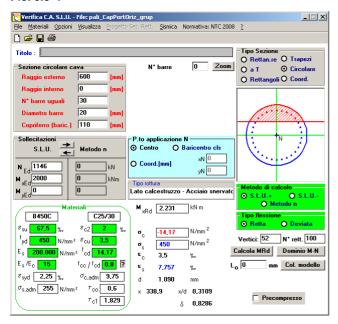
OPERE D'ARTE MAGGIORI
IPO 02 'PONTE SUL CANALE ACQUE BASSE REGGIANE'
RELAZIONE DI CALCOLO

Pali in gruppo

Viene applicato un coefficiente minore dell'unità (si assume 0.7) per tenere conto dell'effetto Gruppo. La resistenza da raggiungere risulta pari quindi a :

$$R_{tr,d} = 387/0.7 = 552 \text{ kN}$$

La portanza orizzontale R_{tr.d} = V_{sd} viene raggiunta in corrispondenza di un Momento Ultimo pari a circa:


$M_u = 2000 \text{ kNm}$

Tale momento va raggiunto in corrispondenza dell'azione verticale media nei pali, sempre per la situazione nella quale si attinge il valore del taglio massimo preso in considerazione:

$$N_{med} = 9171/8 = 1146 \text{ kN}$$

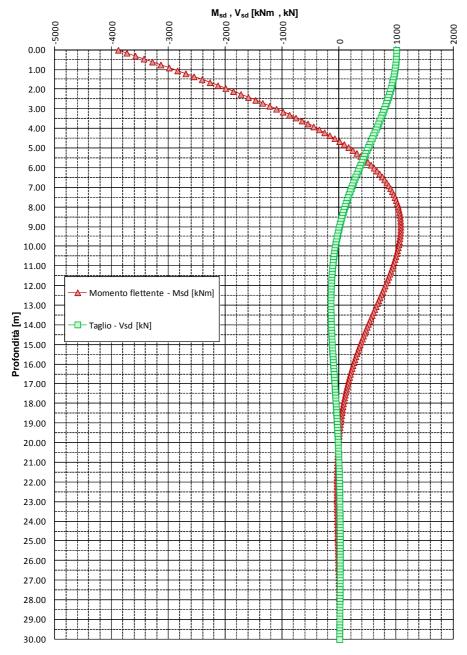
Si ha:

Fig. 6.3-4

<u>L'armatura viene incrementata a n30 Ø20.</u>

PROGETTO DEFINITIVO

OPERE D'ARTE MAGGIORI IPO 02 'PONTE SUL CANALE ACQUE BASSE REGGIANE' RELAZIONE DI CALCOLO


6.3.2. Verifiche SLU

6.3.2.1 Taglio

Si riportano le curve di sollecitazione per azione tagliante e flettente unitaria in testa.

Fig. 6.3-5

Pali di fondazione da p.c. - Opera IPO01 - ZO2
Diagrammi di sollecitazione flettente e tagliante per un'azione orizzontale di 1000kN
D = 1200 mm - condizione di incastro in testa

PROGETTO DEFINITIVO

OPERE D'ARTE MAGGIORI
IPO 02 'PONTE SUL CANALE ACQUE BASSE REGGIANE'
RELAZIONE DI CALCOLO

Si opera in conformità a quanto dichiarato al par. 6.1.10.2

In accordo alla Relazione Geotecnica, le azioni vengono incrementate del 20% per tenere conto delle effetto gruppo.

Verifica lato Acciaio

L'espressione:

$$V_{Rsd} = cot(\theta)^* 0.68^* \varnothing^* (A_{sw}/s)^* f_{yd} \; ; \; dove \; \varnothing = 1200 \; mm \; e \; f_{yd} = 391.3 \; N/mm_2$$

assume i seguenti valori per armature e passi variabili:

TAB. 6.3-1

Palo Φ	1200	$\cot \theta = 1.0$	$\cot \theta = 1.5$	$\cot \theta = 2.0$	$\cot \theta = 2.5$			
\emptyset – mm	s - mm		V _{Rsd} - kN					
10	200	251	376	502	627			
10	100	502	752	1.003	1.254			
12	200	361	542	722	903			
12	100	722	1.083	1.444	1.806			
16	200	642	963	1.284	1.605			
16	100	1.284	1.926	2.568	3.210			
20	200	1.003	1.505	2.006	2.508			
20	100	2.006	3.009	4.012	5.016			

Dalle fig. precedenti emerge che il taglio in testa (387*1.2 = 464 kN) si riduce – a partire da quota -4.5 m – a valori inferiori al 60% dell'azione in testa (155 kN).

Conseguentemente – assumendo $\cot\theta$ = 2.0 - si adotta una staffatura:

da testa a quota -4.0 : $st \varnothing 16/200$ $V_{Rsd} = 1284 \text{ kN} > 464 \text{ kN}$

da quota -4.0 a fine palo : st \emptyset 12/200 $V_{Rsd} = 722 \text{ kN} > 155 \text{ kN}$

Verifica lato Cls.

$$f'_{cd} = 0.5^* f_{cd} = 7.1 \text{ N/mm}^2 \Rightarrow V_{Rcd} = 0.68^* 1200^{2*} 1.0^* 7.1 \equiv 6952 \text{ kN} >> V_{Sd}$$

PROGETTO DEFINITIVO

OPERE D'ARTE MAGGIORI
IPO 02 'PONTE SUL CANALE ACQUE BASSE REGGIANE'
RELAZIONE DI CALCOLO

6.3.2.2 Pressoflessione

Si premette che il meccanismo di rottura ipotizzato nell'estrapolazione delle curve di capacità portante orizzontale presuppone che a collasso si formi una seconda cerniera plastica – oltre a quella in testa – posizionata a circa 3÷4Ø. Di conseguenza l'armatura (assai rilevante) inserita in testa verrà proseguita sino a quota -5.0 m (punto di momento pressoché nullo). Successivamente si armerà in funzione del momento massimo relativo ottenibile dalla figura precedente (quota -9.0m).

Dai valori SLU di TAB. 6.2-7 e tenendo conto delle figure precedenti si ottiene:

TAB. 6.3-2

SLU					
Quota	0.0		N _{max} - kN	N _{min} - kN	M - kNm
Ceff. 'M' da Taglio		3.95			
SLU - Sismica Kv+			2'076	465	1'837
SLU - Sismica Kv-			1'903	390	1'837
SLU - Statica			3'234	691	1'707
Quota	-9.0				
Ceff. 'M' da Taglio		1.05			
			N _{max} - kN	N _{min} - kN	M - kNm
SLU - Sismica Kv+			2'076	465	488
SLU - Sismica Kv-			1'903	390	488
SLU - Statica			3'234	691	454

A quote inferiori il momento rimane al di sotto del valore della quota minima precedente.

Si trascura – a favore di sicurezza - il modesto incremento di sforzo normale dovuto al peso proprio del palo.

Nell'effettuazione della verifica a presso flessione si assume :

Diametro palo: 1200 mm; ricoprimento barra: 75+16 = 91 mm (*)

(*) Si adotterà un copriferro (in asse barra) costantemente pari a 110 mm.

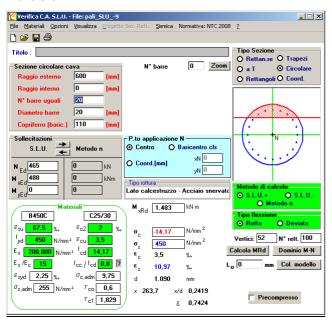
L'armatura generica sarà compresa tra 0.3÷4% e della sezione effettiva :

 $0.003^*\pi^*600^2 = 3500 \text{ mm}^2$; $0.04^*\pi^*600^2 = 45000 \text{ mm}^2$

PROGETTO DEFINITIVO

OPERE D'ARTE MAGGIORI
IPO 02 'PONTE SUL CANALE ACQUE BASSE REGGIANE'
RELAZIONE DI CALCOLO

Da quota 0.0 a quota -5.0 (L_{barra} 6.0m)


N30Ø20.

La sezione è già stata verificata per uno sforzo normale pari al minore delle azioni possibili e per un'azione flettente superiore a quelle in gioco. Di conseguenza la verifica non viene ripetuta.

Da quota -4.0 a quota -16.0 (L_{barra} 12.0m)

n20 Ø20

Fig. 6.3-6

Da quota -15.0 a fine palo (L_{barra} 10.0 m)

n⁹2 Ø20 (0.33%).

La sezione non viene verificata, diminuendo il momento flettente a valori irrilevanti.

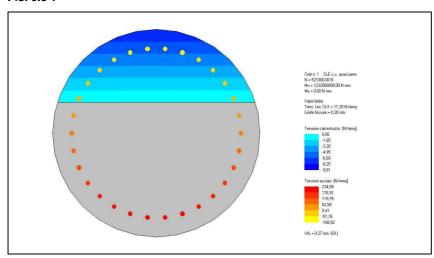
PROGETTO DEFINITIVO

OPERE D'ARTE MAGGIORI
IPO 02 'PONTE SUL CANALE ACQUE BASSE REGGIANE'
RELAZIONE DI CALCOLO

6.3.3. Verifiche SLE

6.3.3.1 Fessurazione

Dai valori SLE di Tab. 5.2-8 e tenendo conto della Fig. 6.3-5 si ottiene:


TAB. 6.3-3

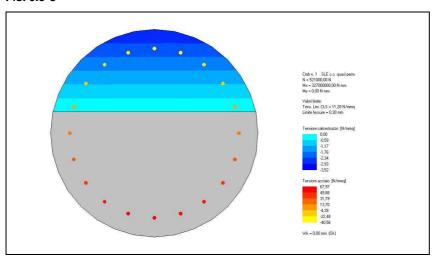
SLE				
Quota	0.0	N _{max} - kN	N _{min} - kN	M - kNm
SLE - 2a		2'386	521	1'232
Quota	-9.0	N _{max} - kN	N _{min} - kN	M - kNm
SLE - 2a		2'386	521	327

Da quota 0.0 a quota -5.0 (L barra 6.0m)

L'Armatura precedente (30Ø20) non risulta sufficiente. Viene incrementata a 30Ø25.

Fig. 6.3-7

La verifica è soddisfatta.


PROGETTO DEFINITIVO

OPERE D'ARTE MAGGIORI
IPO 02 'PONTE SUL CANALE ACQUE BASSE REGGIANE'
RELAZIONE DI CALCOLO

Da quota -4.0 a quota -16.0 (L barra 12m)

Armatura: 20Ø20

Fig. 6.3-8

La verifica è soddisfatta.

In definitiva si arma con:

• Armatura trasversale

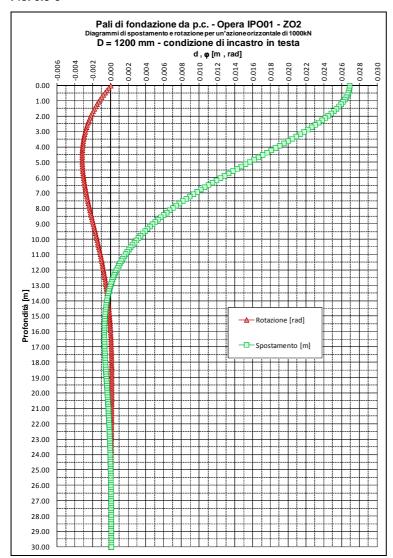
Da quota 0.0 a -4.0 : st \varnothing 16/200; Da quota -4.0 a -fine palo: st \varnothing 12/200

Armatura verticale

Da quota 0.0 a quota -5.0 : n30 Ø25 (L_{barra} : 6.0 m);

Da quota -4.0 a quota -16.0 : n20 Ø20 (L_{barra}: 12.0 m)

Da quota -15.0 a fine palo : n°12 Ø20 (L_{barra}: 10.0 m)


PROGETTO DEFINITIVO

OPERE D'ARTE MAGGIORI
IPO 02 'PONTE SUL CANALE ACQUE BASSE REGGIANE'
RELAZIONE DI CALCOLO

6.3.3.2 Deformazione

Si riportano in figura seguente le deformazioni per sollecitazioni in testa unitarie.

Fig. 6.3-9

Conseguentemente (si assumono le sole azioni peggiorative SLE) le deformazioni effettive risultano:

TAB. 6.3-4

DEFORMAZIONI		
Quota	0.0	H - kN
SLE - 2a		260
Coeff. 'η' da Taglio		0.027
η max - mm		7

Le deformazioni vengono ritenute compatibili con la funzionalità dell'opera.

PROGETTO DEFINITIVO

OPERE D'ARTE MAGGIORI
IPO 02 'PONTE SUL CANALE ACQUE BASSE REGGIANE'
RELAZIONE DI CALCOLO

6.4. ORECCHIE

6.4.1. <u>Azioni</u>

6.4.1.1 SLU

L'Orecchia ha spessore 0.6m, lunghezza 3.2m, altezza minore 1.0m e maggiore 3.1m. Nel seguito si riporta l'analisi di un'orecchia di dimensioni lievemente differenti (sp.0.5m; lungh. 3.0m; Hmin 1.0m; Hmax 3.0m): le dimensioni sono pressoché coincidenti con quelle reali e non si ritiene necessario sviluppare un'analisi ad hoc.

si assume la massima accelerazione di progetto valida per l'insieme delle opere. Questa, valutata per lat 44.7925 long 11.4197 (Opera APO19, Cat. Suolo D), vale:

$$a_0 = 0.376$$

Inserendo tale valore nelle espressioni di par.6.1.3, si ha:

$$\begin{aligned} k_v &= 0.188 \; ; \; \theta_{min} = 17.6^\circ \Rightarrow k_E = 0.592 \; ; \; \theta_{max} = 24.86^\circ \Rightarrow k_E = 0.445 \\ k_E &= MAX[0.592^*(1\text{-}0.188) \; ; \; 0.445^*(1\text{+}1.188)] = 0.53 \end{aligned}$$

Ciò premesso, nella Fase Statica l'Orecchia è soggetta, oltre che al peso proprio:

• ad un regime di pressione uniforme 'p' - dovuta al sovraccarico agente sul terrapieno:

$$p = 1.50*0.38*25.0 = 1.50*9.5 = 14.3 \text{ kN/m}^2$$

 ad un regime di pressioni linearmente variabili con la profondità 'q' – dovute alla spinta delle terre, trascurando il contributo di resistenza fornito dal cono di terreno anteriore - il cui valore massimo vale, in corrispondenza degli spigoli corrispondenti all'altezza di 1.0 e 3.0 m:

$$q_{(1.0)} = 1.35^*0.38^*19.5^*1.0 = 1.35^*7.4 = 10.0 \text{ kN/m}^2 \; ; \; q_{(3.0)} = 1.35^*0.38^*19.5^*3.0 = 1.35^*22.2 = 30.0 \text{ kN/m}^2 \; ; \; q_{(3.0)} = 1.35^*0.38^*19.5^*3.0 = 1.35^*22.2 = 30.0 \text{ kN/m}^2 \; ; \; q_{(3.0)} = 1.35^*0.38^*19.5^*3.0 = 1.35^*22.2 = 30.0 \text{ kN/m}^2 \; ; \; q_{(3.0)} = 1.35^*0.38^*19.5^*3.0 = 1.35^*22.2 = 30.0 \text{ kN/m}^2 \; ; \; q_{(3.0)} = 1.35^*0.38^*19.5^*3.0 = 1.35^*22.2 = 30.0 \text{ kN/m}^2 \; ; \; q_{(3.0)} = 1.35^*0.38^*19.5^*3.0 = 1.35^*22.2 = 30.0 \text{ kN/m}^2 \; ; \; q_{(3.0)} = 1.35^*0.38^*19.5^*3.0 = 1.35^*22.2 = 30.0 \text{ kN/m}^2 \; ; \; q_{(3.0)} = 1.35^*0.38^*19.5^*3.0 = 1.35^*22.2 = 30.0 \text{ kN/m}^2 \; ; \; q_{(3.0)} = 1.35^*0.38^*19.5^*3.0 = 1.35^*22.2 = 30.0 \text{ kN/m}^2 \; ; \; q_{(3.0)} = 1.35^*0.38^*19.5^*3.0 = 1.35^*22.2 = 30.0 \text{ kN/m}^2 \; ; \; q_{(3.0)} = 1.35^*0.38^*19.5^*3.0 = 1.35^*22.2 = 30.0 \text{ kN/m}^2 \; ; \; q_{(3.0)} = 1.35^*0.38^*19.5^*3.0 = 1.35^*22.2 = 30.0 \text{ kN/m}^2 \; ; \; q_{(3.0)} = 1.35^*0.38^*19.5^*3.0 = 1.35^*22.2 = 30.0 \text{ kN/m}^2 \; ; \; q_{(3.0)} = 1.35^*0.38^*19.5^*3.0 = 1.35^*22.2 = 30.0 \text{ kN/m}^2 \; ; \; q_{(3.0)} = 1.35^*22.2 = 30.0 \text{ kN/m}^2$$

Nella Fase Sismica l'Orecchia è soggetta, oltre che al peso proprio:

ad un regime di pressione uniforme 'p' - dovuta all'inerzia:
 p = 0.376*25*0.5 = 4.7 kN/m² << 14.3 kN/m²

• ad un regime di pressioni linearmente variabili con la profondità 'q' – dovute alla spinta di Mononobe - il cui valore massimo vale, in corrispondenza degli spigoli corrispondenti all'altezza di 1.0 e 3.0 m:

$$q_{(1,0)} = 0.53*19.5*1.0 = 10.3 \text{ kN/m}^2 \cong 10.0 \text{ kN/m}^2$$
; $q_{(3,0)} = 1.0*0.53*19.5*3.0 = 31.0 \text{ kN/m}^2 \cong 30.0 \text{ kN/m}^2$

Una comparazione delle azioni omologhe nelle due Fasi mostra che quelle Statiche sono peggiorative. Di conseguenza si procederà con l'analisi della sola Fase Statica.

PROGETTO DEFINITIVO

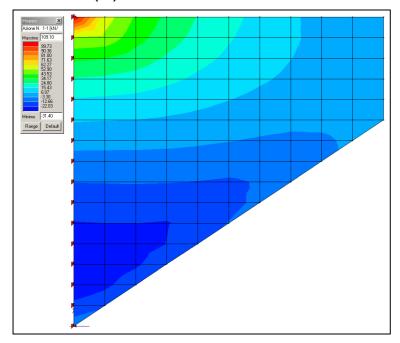
OPERE D'ARTE MAGGIORI
IPO 02 'PONTE SUL CANALE ACQUE BASSE REGGIANE'
RELAZIONE DI CALCOLO

6.4.1.2 SLE

Dal paragrafo precedente si ha:

 $p = 9.5 \text{ kN/m}^2$; $q_{(1.0)} = 7.4 \text{ kN/m}^2$; $q_{(3.0)} = 22.2 \text{ kN/m}^2$

6.4.2. Sollecitazioni e Verifiche


6.4.2.1 SLE

L'Orecchia viene assunta come incastrata lungo la dimensione verticale maggiore.

Convenzioni - Asse X: orizzontale (Asse 1-1); Asse Y: verticale (asse 2-2).

Il pedice della sollecitazione flettente indica l'asse momento.

Fig. 6.4-1 N1-1 (Nx)

PROGETTO DEFINITIVO

OPERE D'ARTE MAGGIORI
IPO 02 'PONTE SUL CANALE ACQUE BASSE REGGIANE'
RELAZIONE DI CALCOLO

Fig. 6.4-2 M1-1 (MY)

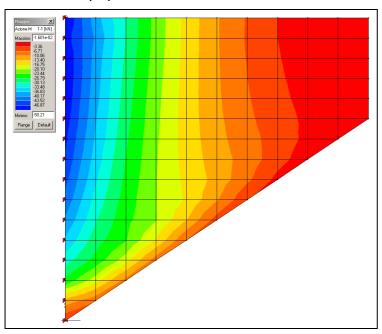
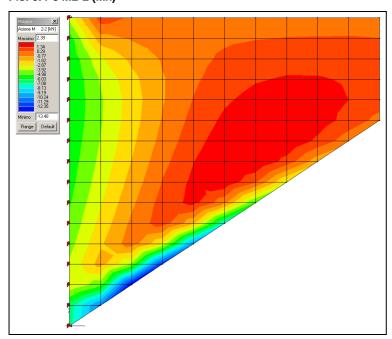



Fig. 6.4-3 M2-2 (Mx)

AUTOSTRADA REGIONALE CISPADANA dal casello di Reggiolo-Rolo sulla A22 al casello di Ferrara Sud sulla A13

PROGETTO DEFINITIVO

OPERE D'ARTE MAGGIORI IPO 02 'PONTE SUL CANALE ACQUE BASSE REGGIANE' RELAZIONE DI CALCOLO

La sollecitazione flettente ad asse momento orizzontale risulta inessenziale e non verrà preso in conto.

La massima sollecitazione flettente ad asse momento verticale risulta pari a 50 kNm/m.

Lì dove essa viene attinta (primo metro verticale in corrispondenza del lato incastrato) sussiste uno sforzo di trazione il cui valore medio (elementi di dimensione verticale pari a 0.20 m) vale circa:

$$N_{med} = (109+6)/2 = 58 \text{ kN/m}$$

Si ipotizza in prima approssimazione un'armatura tesa costituita da Ø16/200.

TAB. 6.4-1

Verifica a fessurazione [NTC 08 - par.4.1.2.2.4.1; 4.1.2.2.4.6; 11.10.1.2]	valore	unità	Note / Limitazioni
Materiali			
Acciaio B450C			
Calcestruzzo: resistenza cilindrica caratteristica : f _{ck}	35	N/mm ²	
Caratteristiche geometriche			
b : Base	1.000	mm	
h : Altezza		mm	
r : Ricoprimento barre tese		mm	
r' : Ricoprimento barre compresse		mm	
n° barre armatura tesa	5		
φ : Diametro medio armatura tesa		mm	
A _s : Armatura tesa	1.005	mm ²	
i : Interasse barre tese		mm	
c : Copriferro barre tese [r+\phi/2]	68	mm	
n° barre armatura compressa	5		
φ': Diametro medio armatura compressa		mm	
A' _s : Armatura compressa	565	mm ²	
c' : Copriferro barre compresse [r'+\phi'/2]		mm	
n : Coefficiente omogeneizzazione	15		
Sollecitazioni			
M : Momento flettente		kNm	
N : Sforzo normale	-58,0		
E _s : modulo elasticità acciaio	210.000		
Coefficiente di viscosita φ	0,0		0 : breve durata; 1,5: lunga durata
$Ecm = [22000*((f_{ck}+8)/10)^0,3](1+\phi)$	34.077		
$\alpha = \text{Es/Ecm}$	6,16		rapporto moduli elastici
Verifica a pressoflessione			
y: Dist. asse neutro da lembo compresso		mm	
σ_c : Tensione calcestruzzo		N/mm ²	
σ_s : Tensione acciaio teso	152,21		
σ' _s : Tensione acciaio compresso	-5,40	N/mm ²	
Elementi di calcolo sezione soggetta a (N,M)			
u = M/N - h/2	-1112		NO!
d = h-c+u	-680		
d' = c' + u	-1046		
$p = u^2 2*n*(A'_s*d'+A_s*d)/b$	1,25E+06		
$q = u^3 \cdot 3*n*(A'_s*d'^2 + A_s*d^2)/b$	-1,40E+09		
$Q=(-p)^3+q^2$	2,18E+02		
Z	-1057	mm	
	0,00000		
y = z - u		mm	
$Sn = b*y^{2}/2 + n*A'_{s}*(y-c')-n*A_{s}*(h-c-y)$	-8,86E+05	mm ³	
Verifica allo stato limite di formazione delle fessure			
Momento di formazione delle fessure "M _{fcfd} "		1	
A : Area sezione omogeneizzata [b*h+α*(A _s +A' _s)]	509.680		
S : momento statico	1,27E+08		
Y _g : baricentro [S/A]		mm	1
J : momento d'inerzia	1,07E+10		
W : modulo resistenza [J/Yg]	4,31E+07		
f _{ctm}	3,21		1
σ_i : $f_{cm}/1,2$	2,67	N/mm ²	1
$\mathbf{M}_{\text{fess}} = (\sigma_{\text{t}} + \text{N/A}) * \mathbf{W}$	110,4	kNm	1
Mfess > M : OK			

Il Momento di prima fessurazione risulta maggiore del Momento sollecitante.

PROGETTO DEFINITIVO

OPERE D'ARTE MAGGIORI
IPO 02 'PONTE SUL CANALE ACQUE BASSE REGGIANE'
RELAZIONE DI CALCOLO

6.4.2.2 SLU

Fig. 6.4-4 N1-1 (Nx)

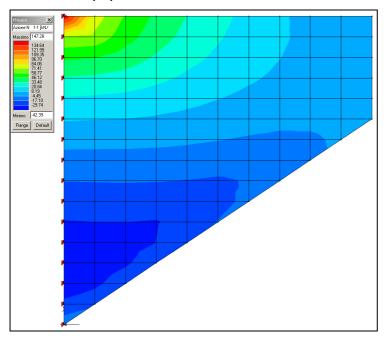
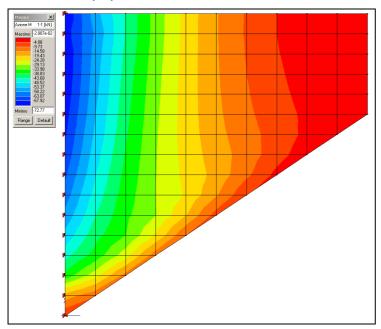



Fig. 6.4-5 M1-1 (MY)

AUTOSTRADA REGIONALE CISPADANA dal casello di Reggiolo-Rolo sulla A22 al casello di Ferrara Sud sulla A13

PROGETTO DEFINITIVO

OPERE D'ARTE MAGGIORI
IPO 02 'PONTE SUL CANALE ACQUE BASSE REGGIANE'
RELAZIONE DI CALCOLO

Fig. 6.4-6 V1-3

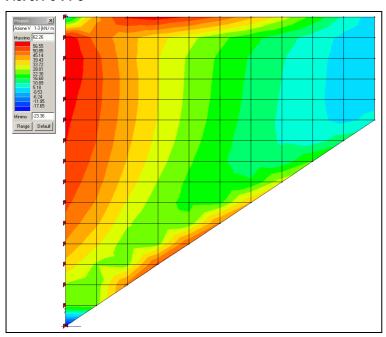
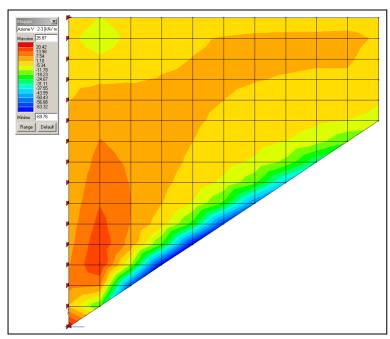
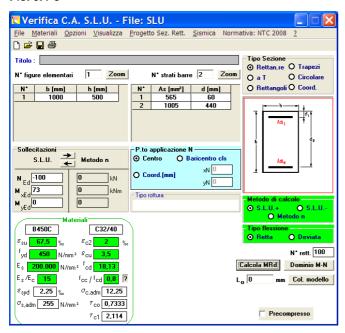



Fig. 6.4-7 V2-3

PROGETTO DEFINITIVO

OPERE D'ARTE MAGGIORI
IPO 02 'PONTE SUL CANALE ACQUE BASSE REGGIANE'
RELAZIONE DI CALCOLO


Verifica a Tensoflessione

La massima sollecitazione flettente ad asse momento verticale risulta pari a 73 kNm/m.

Lì dove essa viene attinta (primo metro verticale in corrispondenza del lato incastrato) sussiste uno sforzo di trazione il cui valore medio (elementi di dimensione verticale pari a 0.20 m) vale circa:

 $N_{med} = (148+42)/2 = 100 \text{ kN/m}$

Fig. 6.4-8

L'armatura ipotizzata nella verifica SLE viene confermata.

AUTOSTRADA REGIONALE CISPADANA dal casello di Reggiolo-Rolo sulla A22 al casello di Ferrara Sud sulla A13

PROGETTO DEFINITIVO

OPERE D'ARTE MAGGIORI
IPO 02 'PONTE SUL CANALE ACQUE BASSE REGGIANE'
RELAZIONE DI CALCOLO

Verifica a Taglio

La massima sollecitazione tagliante vale: 70 kN/m

TAB. 6.4-2

VRd1 (assenza di armatura specifica a taglio) TRAVI

azione tagliante sollecitante - VSd	70	kN	
base bw	1000	mm	
altezza h	500	mm	
n°barre armatura tesa	5		
φ diametro medio armatura tesa	16	mm	
Asl (tesa)	1005	mm2	
ricoprimento r	60	mm	
ct (copriferro al lembo teso - riferito a baricentro armatura)	68	mm	
altezza utile d	432	mm	
ρΙ	0,00233		
Nsd (positiva se di compressione)	0	kN	
Ac	500000	mm2	
σср	0,000	MPa	
fck	35	MPa	
γ	1,50		
ingranamento inerti = k	1,680		
VRd	175,3	kN	
vmin	0,45	kN	
	194,9	kN	
VRd	195	kN	[eq 4.1.14]
	ok		

Non risulta necessaria armatura specifica a Taglio.

PROGETTO DEFINITIVO

OPERE D'ARTE MAGGIORI
IPO 02 'PONTE SUL CANALE ACQUE BASSE REGGIANE'
RELAZIONE DI CALCOLO

6.5. PARETI DI RISVOLTO

Analogamente a quanto sviluppato per l'Orecchia anche la Parete di risvolto (spessore 0.60 m) viene trattata in base alla massima accelerazione di progetto valida per l'insieme delle opere.

$$a_0 = 0.376$$
; $k_v = 0.188$

$$\theta_{\text{min}}$$
 = 17.6° \Rightarrow k_{E} = 0.592 ; θ_{max} = 24.86° \Rightarrow k_{E} = 0.445

$$k_E = MAX[0.592*(1-0.188); 0.445*(1+1.188] = 0.53$$

L'analisi che segue ha validità generale per le Pareti di tutti gli interventi su spalle passanti a 2 file di pali.

La Parete può essere riguardata come lastra rettangolare di dimensioni 2.20 m (L) x 4.30 m (Hmax) incastrata alla base (pulvino) e lungo un lato verticale (paraghiaia). L'orecchia è posta sul lato verticale opposto.

6.5.1. Azioni

6.5.1.1 SLU

Tralasciando per il momento le azioni trasmesse alla parete dall'orecchia, nella <u>Fase Statica</u> la Parete è soggetta alle seguenti azioni orizzontali:

pressione uniforme 'p1', dovuta al sovraccarico agente sul terrapieno:

$$p1 = 1.50*0.38*25.0 = 1.50*9.5 = 14.3 \text{ kN/m}^2$$

regime di pressioni linearmente variabili 'q1', dovute alla spinta delle terre, il cui valore massimo (in basso) vale:

$$q1_{(4,3)} = 1.35*0.38*19.5*4.3 = 1.35*7.4 = 43.0 \text{ kN/m}^2$$

Nella Fase Sismica la parete è soggetta alle seguenti azioni orizzontali:

• pressione uniforme 'p2', dovuta all'inerzia della parete:

$$p2 = 0.376*25*0.5 = 4.7 \text{ kN/m}^2$$

• regime di pressioni linearmente variabili 'q2', dovute alla spinta di Mononobe, il cui valore massimo (in basso) vale:

$$q2_{(4,3)} = 0.53*19.5*4.3 = 44.4 \text{ kN/m}^2$$

• regime di pressioni linearmente variabili 'q3', dovute all'inerzia del terreno inscatolato, il cui valore massimo (in alto) vale:

$$q3_{(0,0)} = 0.376*19.5*4.3/(tan 38°) = 40.3 kN/m2$$

PROGETTO DEFINITIVO

OPERE D'ARTE MAGGIORI
IPO 02 'PONTE SUL CANALE ACQUE BASSE REGGIANE'
RELAZIONE DI CALCOLO

Il valore di cui sopra è determinando assumendo una 'profondità' trasversale della massa di terreno pari a quella del cuneo di spinta.

Prendendo ora in esame le azioni trasmesse dall'Orecchia, nel paragrafo precedente si è ottenuto che l'azione orizzontale <u>totale</u> agente sull'Orecchia – e quindi trasmessa alla Parete - è pari a:

Fase Statica

• $V1_{sta} = 14.3*((1.0+3.0)*3.0/2 = 85.8 \text{ kN}$

•
$$V2_{sta} = \int_{0.0}^{3.0} [(1.35*0.38*19.5) + (1.35*0.38*19.5*tg(33.69)*y] * dy =$$

$$= \int_{0.0}^{3.0} [10.0 + 6.67*y]*dy = [10*y + 6.67*y^2/2]_{0.0}^{3.0} = 60 \text{ kN}$$

Fase Sismica

• $V3_{sis} = 4.7*((1.0+3.0)*3.0/2 = 27.0 \text{ kN}$

•
$$V2_{sta} = \int_{0.0}^{3.0} [(0.53*19.5) + (0.53*19.5*tg(33.69)*y]*dy =$$

$$= \int_{0.0}^{3.0} [10.3 + 6.89*y]*dy = [10.3*y + 6.89*y^2/2]_{0.0}^{3.0} = 61.9 \text{ kN}$$

Al fine di effettuare un confronto tra le due Fasi, si analizza una mensola di altezza (4.3m) e sviluppo (2.2m) pari a quelle della Parete.

- Fase Statica

$$T = [(14.3*4.3 + 43.0*4.3/2)] + [85.8 + 60.0]/2.2 = 220 \text{ kN/m}$$

$$M = [(14.3*4.3^2/2 + 43.0*4.3^2/6] + [(85.8+60.0)*(4.3-1.11)]/2.2 = 436 \text{ kNm/m}^{(1)}$$

(1) con valutazione approssimata le azioni derivanti dall'orecchia sono state applicate nel baricentro della stessa.

- Fase Sismica

$$T = [(4.7*4.3 + 44.4*4.3/2) + 40.3*4.3/2] + [27.0 + 61.9]/2.2 = 222 \text{ kN/m}$$

$$M = [(4.7*4.3^2/2 + 44.4*4.3^2/6 + 40.3*4.3^2*2/3] + [(27.0+61.9)*(4.3-1.11)]/2.2 = 805 \text{ kNm/m}$$

In definitiva la Fase sismica è nettamente peggiorativa e sarà l'unica ad essere presa in conto

PROGETTO DEFINITIVO

OPERE D'ARTE MAGGIORI
IPO 02 'PONTE SUL CANALE ACQUE BASSE REGGIANE'
RELAZIONE DI CALCOLO

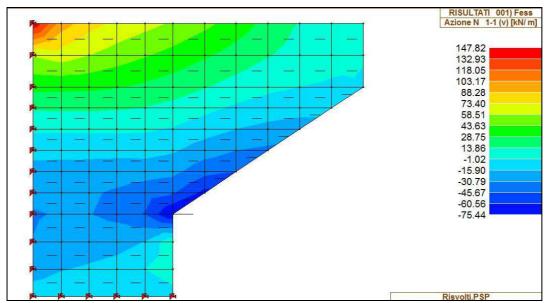
6.5.1.2 SLE

Dal paragrafo precedente si ha:

 $p = 9.5 \text{ kN/m}^2$; $q_{(4.3)} = 31.8 \text{ kN/m}^2$

6.5.2. Sollecitazioni e Verifiche

Nella modellazione viene inserita anche l'orecchia, poiché mentre per la Parete la fase peggiorativa è quella Sismica, per l'Orecchia stessa è quella Statica (vedi paragrafo precedente). I risultati della modellazione attuale concernenti l'Orecchia non verranno presi in conto.


Convenzioni - Asse X: orizzontale (Asse 1-1); Asse Y: verticale (asse 2-2).

Il pedice della sollecitazione flettente indica l'asse momento.

Gli elementi hanno dimensioni lievemente diverse l'uno dall'altro, ma, ai fini dell'integrazione dei risultati su un metro lineare, possono essere assunti quadrati (≈0.40x0.40 m).

6.5.2.1 SLE

Fig. 6.5-1 N1-1 (Nx)

PROGETTO DEFINITIVO

OPERE D'ARTE MAGGIORI IPO 02 'PONTE SUL CANALE ACQUE BASSE REGGIANE' RELAZIONE DI CALCOLO

Fig. 6.5-2 M1-1 (MY)

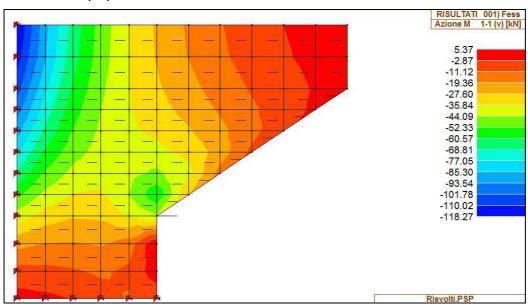
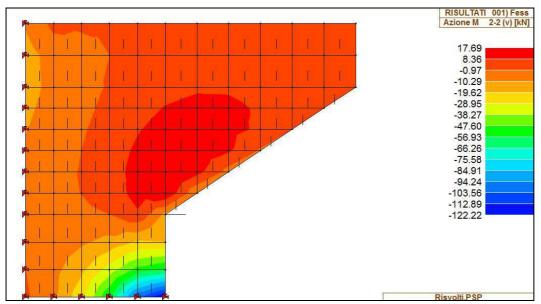



Fig. 6.5-3 M2-2 (Mx)

AUTOSTRADA REGIONALE CISPADANA dal casello di Reggiolo-Rolo sulla A22 al casello di Ferrara Sud sulla A13

PROGETTO DEFINITIVO

OPERE D'ARTE MAGGIORI
IPO 02 'PONTE SUL CANALE ACQUE BASSE REGGIANE'
RELAZIONE DI CALCOLO

La massima sollecitazione flettente ad asse momento orizzontale (spigolo in basso a destra della fig. 6.3-24), integrata su un metro lineare, porta ad un valore pari a $\approx (122+85)/2 = 103 \text{ kNm/m}$.

La massima sollecitazione flettente ad asse momento verticale (spigolo in alto a sinistra della fig. 6.3-23) è pari a 118 kNm/m. Essa è associata ad un valore di trazione dello sforzo normale pari a (148+46)/2 = 97 kN/m

Armatura orizzontale

Si ipotizza in prima approssimazione un'armatura tesa/compressa costituita da ∅16/200.

TAB. 6.5-1

Verifica a fessurazione [NTC 08 - par.4.1.2.2.4.1; 4.1.2.2.4.6; 11.10.1.2]	valore	unità	Note / Limitazioni
Materiali			
Acciaio B450C			
Calcestruzzo: resistenza cilindrica caratteristica : f _{ck}	32	N/mm ²	
Caratteristiche geometriche			
b: Base	1.000		
h : Altezza	600		
r : Ricoprimento barre tese		mm	
r': Ricoprimento barre compresse		mm	
n° barre armatura tesa	5		
φ : Diametro medio armatura tesa		mm	
A _s : Armatura tesa	1.005		
i : Interasse barre tese		mm	
c : Copriferro barre tese [r+\phi/2]	78	mm	
n° barre armatura compressa	5		
φ': Diametro medio armatura compressa		mm	
A' _s : Armatura compressa	1.005	mm ²	
c': Copriferro barre compresse [r'+\phi'/2]		mm	
n : Coefficiente omogeneizzazione	15		
Sollecitazioni			
M : Momento flettente	118,0		
N : Sforzo normale	-97,0		
E _s : modulo elasticità acciaio	210.000	N/mm ²	
Coefficiente di viscosita φ	0,0		0 : breve durata; 1,5: lunga durata
$Ecm = [22000*((f_{ck}+8)/10)^0,3](1+\varphi)$	33.346		
$\alpha = \text{Es/Ecm}$	6,30		rapporto moduli elastici
Verifica a pressoflessione			
y: Dist. asse neutro da lembo compresso		mm	
σ _c : Tensione calcestruzzo		N/mm ²	
σ_s : Tensione acciaio teso	287,06		
σ' _s : Tensione acciaio compresso	-9,06	N/mm ²	
Elementi di calcolo sezione soggetta a (N,M)			
$\mathbf{u} = \mathbf{M/N} - \mathbf{h/2}$	-1516		NO!
d = h-c+u	-994		
$\mathbf{d'} = \mathbf{c'} + \mathbf{u}$	-1438		
$p = u^2 - 2*n*(A'_**d' + A_**d)/b$	2,33E+06		
$q = u^3 - 3 n^4 (A' + A'^2 + A'^2 + A'^2)/b$	-3,55E+09	mm ³	
$Q=(-p)^3+q^2$	2,18E+02	mm ⁶	
Z	-1453	mm	
	0,00000		
y = z - u		mm	
$Sn = b*y^2/2 + n*A'_{\circ}*(y-c')-n*A_{\circ}*(h-c-y)$	-9,76E+05	mm ³	
Verifica allo stato limite di formazione delle fessure			
Momento di formazione delle fessure "M _{fefd} "			
A : Area sezione omogeneizzata [b*h+α*(A¸+A'¸)]	612.662	mm ²	
S : momento statico	1,84E+08		
Y _o : baricentro [S/A]		mm	
J : momento d'inerzia	1,86E+10		
W : modulo resistenza [J/Yg]	6,21E+07		
f_{ctm}	3,02		
σ_i : $f_{ctm}/1,2$		N/mm ²	
$\mathbf{M}_{\text{fesc}} = (\sigma_{\text{t}} + \text{N/A})*\mathbf{W}$	146,6	kNm	
Mfess > M : OK			

Il Momento di prima fessurazione risulta maggiore del Momento sollecitante.

PROGETTO DEFINITIVO

OPERE D'ARTE MAGGIORI
IPO 02 'PONTE SUL CANALE ACQUE BASSE REGGIANE'
RELAZIONE DI CALCOLO

Armatura verticale

Il momento è inferiore al precedente e lo sforzo normale è ora di compressione: si adotta la medesima armatura (Ø16/200 controterra/esterno).

6.5.2.2 SLU

Fig. 6.5-4 N1-1 (Nx)

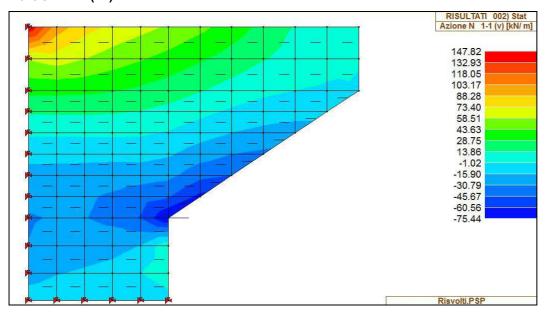
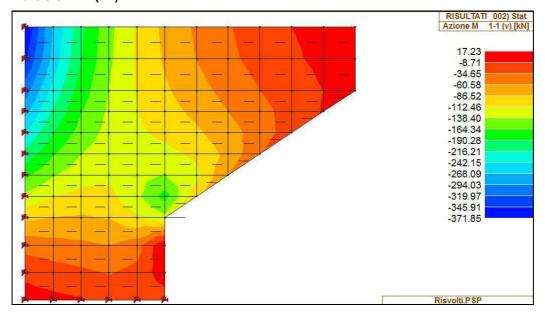



Fig. 6.5-5 M1-1 (MY)

PROGETTO DEFINITIVO

OPERE D'ARTE MAGGIORI
IPO 02 'PONTE SUL CANALE ACQUE BASSE REGGIANE'
RELAZIONE DI CALCOLO

Fig. 6.5-6 M1-1 (MY)

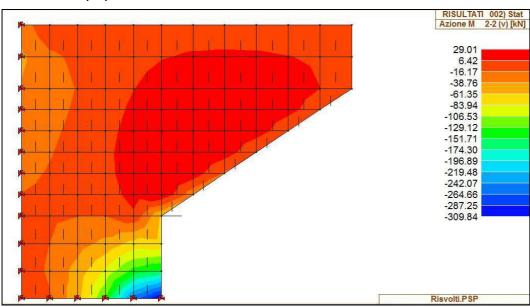
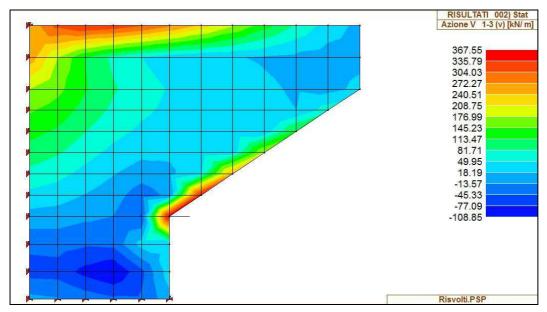



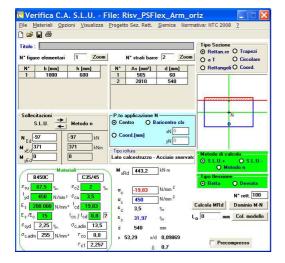
Fig. 6.5-7 V1-3



PROGETTO DEFINITIVO

OPERE D'ARTE MAGGIORI
IPO 02 'PONTE SUL CANALE ACQUE BASSE REGGIANE'
RELAZIONE DI CALCOLO

Fig. 6.5-8 V2-3

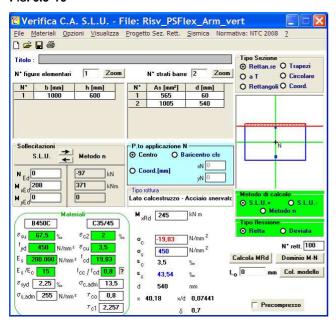

La massima sollecitazione flettente ad asse momento orizzontale, integrata su un metro lineare, porta ad un valore pari a $\approx (310+106)/2 = 208 \text{ kNm/m}$.

La massima sollecitazione flettente ad asse momento verticale è pari a 371 kNm/m. Essa è associata ad un valore di trazione dello sforzo normale pari a (148+44)/2 = 97 kN/m

Armatura orizzontale

L'armatura precedentemente ipotizzata (SLE) non risulta sufficiente: si adottano Ø16/100 controterra

Fig. 6.5-9



PROGETTO DEFINITIVO

OPERE D'ARTE MAGGIORI
IPO 02 'PONTE SUL CANALE ACQUE BASSE REGGIANE'
RELAZIONE DI CALCOLO

Armatura verticale

Fig. 6.5-10

Prudenzialmente si è trascurato l'effetto benefico dello sforzo normale.

L'armatura ipotizzata nella verifica SLE viene confermata (Ø16/200 controterra).

Verifica a Taglio

Preventivamente si determina la sollecitazione per la quale non è necessaria armatura specifica, assumendo un valore nullo dello sforzo normale:

TAB. 6.5-2

VRd1 (assenza di armatura specifica a taglio) TRAVI

azione tagliante sollecitante - VSd	187	kN	
base bw	1000	mm	
altezza h	600	mm	
n°barre armatura tesa	5		
φ diametro medio armatura tesa	16	mm	
Asl (tesa)	1005	mm2	
ricoprimento r	60	mm	
ct (copriferro al lembo teso - riferito a baricentro armatura)	68	mm	
altezza utile d	532	mm	
ρΙ	0,00189		
Nsd (positiva se di compressione)	0	kN	
Ac	600000	mm2	
оср	0,000	MPa	
fck	32	MPa	
γ	1,50		
ingranamento inerti = k	1,613		
VRd	187,6	kN	
vmin	0,41	kN	
	215,8	kN	
VRd	216	kN	[eq 4.1.14]
	ok		

AUTOSTRADA REGIONALE CISPADANA dal casello di Reggiolo-Rolo sulla A22 al casello di Ferrara Sud sulla A13

PROGETTO DEFINITIVO

OPERE D'ARTE MAGGIORI
IPO 02 'PONTE SUL CANALE ACQUE BASSE REGGIANE'
RELAZIONE DI CALCOLO

Il valore (187 kN/m) viene superato nel primo metro sul lato verticale (a partire dall'alto) e nel primo metro sul lato orizzontale (a partire da destra).

a) primo metro sul lato verticale (escludendo i valori di picco in superficie)

 $V_{med} = 240 \text{ kN/m}$

TAB. 6.5-3

Verifica a taglio di sezione rettangolare allo	Verifica a taglio di sezione rettangolare allo SLU - (armature a taglio verticali)						
azione tagliante sollecitante - VSd	272	kN					
base sezione - bw	1000	mm					
altezza totale sezione - h	600	mm					
ct (copriferro al lembo teso - riferito a baricentro armatura)	50	mm					
altezza utile sezione - d	550	mm					
z braccio della copppia interna = 0.9d o 0.8h	495						
fck	32	MPa					
fcd = 0.85*fck/1,5	18,13	MPa					
fywd	391,3	MPa					
v utilizzato =0.5	0,50						
cot θ	1,000		1,0 <cot [4.1.16]<="" td="" θ<2,5=""></cot>				
θ (9	45,00						
numero bracci staffe - n	5						
staffe ∅	12	mm					
Area staffa singola - Ast	113,1	mm2					
passo staffe - s	200	mm					
Ast / S	2,83	mm2/mm					
taglio che provoca la rottura nel puntone di calcestruzzo - VRcd	2244,0	kN	[eq 4.1.19]				
taglio che provoca lo snervamento dell'armatura specifica - VRsd	547,7	kN	[eq 4.1.18]				
sezione verifi	cata						
condizione da soddisfare: Asw * fywd / (bw*s) ≤ 0.5 * v * fcd	0,22	≤	4,53				
condizione sodo	disfatta	·	-				

Si dispongono spilli Ø12/200x200 su una superficie di 1.5x1.5 m.

b) primo metro sul lato orizzontale

 $V_{med} = (832+214)/2 = 523 \text{ kN/m} < V_{Rsd} = 547 \text{ kN/m}$

Si dispongono spilli Ø12/200x200 su una lunghezza di 1.5 m e per tutta l'altezza del lato verticale sino all'attacco con l'orecchia.

AUTOSTRADA REGIONALE CISPADANA

AUTOSTRADA REGIONALE CISPADANA dal casello di Reggiolo-Rolo sulla A22 al casello di Ferrara Sud sulla A13

PROGETTO DEFINITIVO

OPERE D'ARTE MAGGIORI
IPO 02 'PONTE SUL CANALE ACQUE BASSE REGGIANE'

RELAZIONE DI CALCOLO

6.6. PARAGHIAIA

Analogamente a quanto sviluppato per l'Orecchia anche il paraghiaia (spessore 0.60 m) viene trattato in base alla massima accelerazione di progetto valida per l'insieme delle opere.

$$a_{\alpha} = 0.376$$
; $k_{\nu} = 0.188$; $k_{E} = 0.53$

Considerato che l'altezza del paraghiaia è condizionato dall'altezza della trave e che questa può arrivare a 3.0 m, si sviluppa un'analisi di validità generale per altezze di paraghiaia sino a 4.3 m.

Volendo attribuire alla presente trattazione una validità generale per tutti i paraghia presenti su spalle che sostengono impalcati in acciaio, chiuse o aperte che siano:

- si assume un coefficiente di spinta peggiorativo valutato in condizioni 'a riposo' (1-sin38°=0.38), da prendersi in conto in realtà solo per le spalle chiuse
- si considera l'inerzia del terreno inscatolato (per una lunghezza retrostante pari a 4.15 m), da prendersi in conto in realtà solo per le spalle chiuse.
- Le sollecitazioni sono sempre riferite ad una fascia di profondità pari a 1,0 m.

6.6.1. Sollecitazioni – SLU: Fase Sismica

Azioni verticali

Peso proprio: 25*0.60*4.3 = 64.3 kN

Azioni orizzontali

Peso proprio : q = 0.376*25*0.60 = 5.6 kN/m

Terreno inscatolato : q = 0.376*19.5*4.15 = 30.4 kN/m

Spinta delle terre : $q_{max} = 19.5*0.53*4.3 = 44.4 \text{ kN/m}$

Sollecitazioni alla base

N = 64.3 kN; H = (5.6+30.4)*4.3 + 44.4*4.3/2 = 246.4 kN

 $M = (5.6+30.4)*4.3^2/2 + 44.4*4.3^2/6 = 461.3 \text{ kNm}$

PROGETTO DEFINITIVO

OPERE D'ARTE MAGGIORI

IPO 02 'PONTE SUL CANALE ACQUE BASSE REGGIANE' RELAZIONE DI CALCOLO

6.6.2. Sollecitazioni - SLU: Fase Statica

Azioni verticali

Peso proprio: 64.3 kN/m

Azione Q_{1k} = 300 kN (n^o2 carichi posti a distanza trasversale 2.0 m)

Azioni orizzontali

Spinta delle terre : $q_{max} = 19.5*0.38*4.3 = 31.9 \text{ kN/m}$

Sovraccarico : q = 25.0*0.38 = 9.5 kN/m

Azione di Frenatura: H = 180 kN

Sollecitazioni alla base

Si considera una diffusione delle azioni concentrate a 45°.

Di conseguenza i carichi Q_{1k} vengono considerati agenti su una lunghezza trasversale pari a:

$$B1 = 2.0 + 2*4.3 = 10.6 \text{ m}$$

mentre l'azione da Frenatura viene considerata agente su una lunghezza trasversale pari a:

$$B2 = 2*4.3 = 8.6 \text{ m}$$

N = 1.35*64.3 + 1.35*300/10.6 = 125.0 kN/m

H = 1.35*31.9*4.3/2 + 1.50*9.5*4.3 + 1.35*180/8.6 = 182.1 kN/m

 $M = 1.35*31.9*4.3^{2}/6 + 1.50*9.5*4.3^{2}/2 + 1.35*180*4.3/8.6 = 386.0 \text{ kN/m}$

6.6.3. Sollecitazioni - SLE

N = 64.3 + 300/10.6 = 92.6 kN/m

 $M = 31.9*4.3^2/6 + 9.5*4.3^2/2 + 180*4.3/8.6 = 276.0 \text{ kN/m}$

6.6.4. Verifiche SLE: Fessurazione

Si ipotizza in prima approssimazione un'armatura verticale costituita da Ø20/100 controterra e Ø16/200 all'esterno

AUTOSTRADA REGIONALE CISPADANA dal casello di Reggiolo-Rolo sulla A22 al casello di Ferrara Sud sulla A13

PROGETTO DEFINITIVO

OPERE D'ARTE MAGGIORI
IPO 02 'PONTE SUL CANALE ACQUE BASSE REGGIANE'
RELAZIONE DI CALCOLO

TAB. 6.6-1

Verifica a fessurazione [NTC 08 - par.4.1.2.2.4.1; 4.1.2.2.4.6; 11.10.1.2]	valore	unità	Note / Limitazioni
Materiali			
Acciaio B450C			
Calcestruzzo: resistenza cilindrica caratteristica : f _{ck}	35	N/mm ²	
Caratteristiche geometriche			
b : Base	1.000		
h : Altezza	600	mm	
r : Ricoprimento barre tese	70	mm	
r': Ricoprimento barre compresse	70	mm	
n° barre armatura tesa	10		
φ : Diametro medio armatura tesa	20	mm	
A _s : Armatura tesa	3.142	mm ²	
i : Interasse barre tese		mm	
c : Copriferro barre tese [r+\phi/2]	80	mm	
n° barre armatura compressa	5		
Φ': Diametro medio armatura compressa	16	mm	
A's: Armatura compressa	1.005	mm^2	
c' : Copriferro barre compresse [r'+\phi/2]		mm	
n : Coefficiente omogeneizzazione	15		
Sollecitazioni			
M : Momento flettente	276.0	kNm	
N : Sforzo normale	92.6		
E _c : modulo elasticità acciaio	210.000		
Coefficiente di viscosita φ	0.0	1 1/ 111111	0 : breve durata; 1,5: lunga durata
Ecm = $[22000*((f_{ck}+8)/10)^{0},3](1+\varphi)$	34.077	N/mm ²	o : breve darata, 1,5 : ranga darata
$\alpha = \text{Es/Ecm}$	6.16		rapporto moduli elastici
Verifica a pressoflessione	0,10		Tupporto modum ciastici
y: Dist. asse neutro da lembo compresso	131	mm	
σ.: Tensione calcestruzzo		N/mm ²	
σ _s : Tensione acciaio teso	169,05		
σ' _s : Tensione acciaio compresso		N/mm ²	
Elementi di calcolo sezione soggetta a (N.M)	21,70	14/111111	
u = M/N - h/2	2681	mm	>-h/3
$d = h \cdot c + u$	3201		> 11/ 5
d' = c' + u	2759		
$\frac{d - c + d}{p = u^2 \cdot 2^* n^* (A_s^+ d' + A_s^* d)/b}$	7,03E+06		
$\frac{d^{2} - d^{2} - d^$	1,85E+10		
$O=(-p)^3+q^2$	2.18E+02		
7.	2811		
	0.00000	111111	
v = z - u	-,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	mm	
$Sn = b*v^{2}/2 + n*A'_{s}*(v-c')-n*A_{s}*(h-c-v)$	1,31E+06		
Verifica allo stato limite di formazione delle fessure	1,3112700	111111	
Momento di formazione delle fessure "M _{fefd} "			
A : Area sezione omogeneizzata [b*h+\alpha*(A,+A'_c)]	625.555	2	+
S: momento statico	1,85E+08		
Y _o : baricentro [S/A]		mm	
J: momento d'inerzia	1,92E+10		
W : modulo resistenza [J/Yg]	6,51E+07		+
	0,51E+0/ 3.21		
$\frac{\mathbf{f}_{\text{cm}}}{\mathbf{r}_{\text{c}} + \mathbf{f}_{\text{c}} / 1.2}$		N/mm ²	
$ \frac{\sigma_{i} \cdot f_{ctm}/1,2}{M_{forc} = (\sigma_{i} + N/A)*W} $	2,67 183.8		
$\frac{ M_{fess} = (G_t + N/A)^*W}{Mfess < M : occorre procedere a verifica di$		KINIII	
Miless < M : occorre procedere à vernica di	apertura tessure		

PROGETTO DEFINITIVO

OPERE D'ARTE MAGGIORI
IPO 02 'PONTE SUL CANALE ACQUE BASSE REGGIANE'
RELAZIONE DI CALCOLO

	Verifica allo stato limite di apertura delle fessure	valore	unità	Note / Limitazioni
Elementi preparatori				
A_{ce} : Area "effettiva" cls = Min[b*(2,5*(h-d)); b*(h-d)	y)/3; b*h/2]	156.468	mm2	
ρ: rapporto (armatura tesa) / (area effettiva cls)		0,0201		
w _{amm} : apertura ammissibile fessura		0,20	mm	
E _s : modulo elasticità acciaio		200.000	N/mm2	
i _i : distanza tra barre tese min		100	mm	
k _t		0,4		0,6: breve durata; 0,4: lunga durata
k1		0,80		barre aderenza migliorata
k2		0,50		flessione
k3		3,40		
k4		0,425		
Distanza media tra le fessure "s _{rm} "				
limite spaziatura barre : 5*(r+\$\phi/2)		400	mm	
controllo spaziatura		100	mm	OK
Distanza media tra le fessure "Δ _{smax} "				
$\Delta_{\text{max}} = k3*r + k1*k2*k4*\phi/\rho$		407,3384	%	
Deformazione unitaria media dell'armatura ''ε _{rr}	ıı n			
$\varepsilon_{\rm sm} = {\rm Max}[(\sigma_{\rm s} - k_{\rm t} + f_{\rm ctm}/\rho + (1+\alpha + \rho))/{\rm Es}); 0.6 + \sigma_{\rm s}/{\rm E_s}]$		0,0005		
Apertura delle fessure "w _k "				
$W_d = S_{rm} * E_{sm}$		0,197	mm	<wamm=0,2< td=""></wamm=0,2<>

La verifica risulta soddisfatta.

TAB. 6.6-2

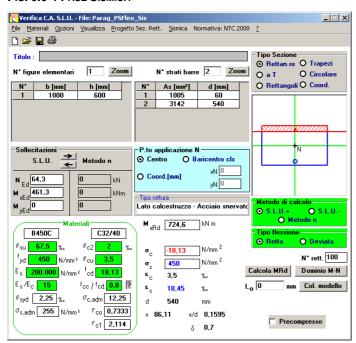
6.6.5. Verifiche SLU: Taglio

Il Taglio massimo risulta attinto nella Fase Sismica (246.4 kN/m). Si ipotizza in prima approssimazione un'armatura verticale costituita da Ø20/100. Prudenzialmente si trascura l'effetto benefico dell'azione normale di compressione.

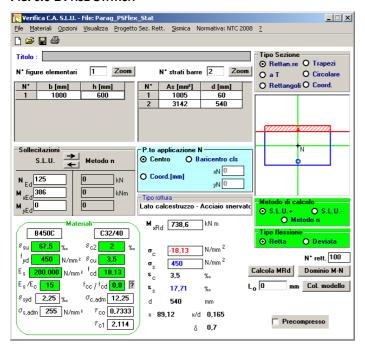
VRd1 (assenza di armatura specifica a taglio) TRAVI

azione tagliante sollecitante - VSd	246,4	kN	
base bw	1000	mm	
altezza h	600	mm	
n°barre armatura tesa	10		
φ diametro medio armatura tesa	20	mm	
Asl (tesa)	3142	mm2	
ricoprimento r	60	mm	
ct (copriferro al lembo teso - riferito a baricentro armatura)	70	mm	
altezza utile d	530	mm	
ρΙ	0,00593		
Nsd (positiva se di compressione)	0	kN	
Ac	600000	mm2	
σср	0,000	MPa	
fck	32	MPa	
γ	1,50		
ingranamento inerti = k	1,614		
VRd	273,8	kN	
vmin	0,41	kN	
	215,2	kN	
VRd	274	kN	[eq 4.1.14]
	ok		

Non risulta necessaria armatura a Taglio.



PROGETTO DEFINITIVO


OPERE D'ARTE MAGGIORI
IPO 02 'PONTE SUL CANALE ACQUE BASSE REGGIANE'
RELAZIONE DI CALCOLO

6.6.6. Verifiche SLU: Pressoflessione

FIG. 6.6-1 FASE SISMICA

Fig. 6.6-2 FASE STATICA

AUTOSTRADA REGIONALE CISPADANA dal casello di Reggiolo-Rolo sulla A22 al casello di Ferrara Sud sulla A13

PROGETTO DEFINITIVO

OPERE D'ARTE MAGGIORI
IPO 02 'PONTE SUL CANALE ACQUE BASSE REGGIANE'
RELAZIONE DI CALCOLO

6.7. PULVINO

Il pulvino può riguardarsi come un elemento monodimensionale di lunghezza 10.7 m, avente sezione di larghezza 5.60 m e altezza minima 2.0 m.

Esso è appoggiato su vincoli fissi (pali) posti a interasse 2.9 m, mentre i due vincoli estremi trovano a 1.0 m dalle estremità del pulvino.

Le azioni esterne sono rappresentate :

- longitudinalmente dalle azioni verticali trasmesse dagli appoggi, posti a interasse 1.80 m al di sotto del singolo impalcato
- trasversalmente dal momento torcente indotto sia dalle azioni orizzontali dovute alla spinta delle terre sia dalle azioni sul piano trasversale (del pulvino) dovute alle azioni orizzontali trasmesse dagli appoggi

6.7.1. Armatura longitudinale

Si considera, a favore di sicurezza, che l'appoggio generico sia intermedio all'interasse pali (2.9/2 = 1.95 m).

Si considera, a favore di sicurezza, che i coefficienti ψ non siano minori dell'unità.

Per semplicità ed a favore di sicurezza si assume un braccio della coppia interna del pulvino pari alla sua altezza decrementata di 200mm (copriferri).

Si adotta un meccanismo 'tirante/puntone' – lecito considerando che la distanza massima dell'azione verticale dall'asse palo è assai simile all'altezza utile del pulvino. La verifica a fessurazione per corpi tozzi non è normata: si assume una limitazione nella tensione dell'acciaio pari a 160 N/mm².

L'armatura di intradosso è indicata con 'Asi':

PROGETTO DEFINITIVO

OPERE D'ARTE MAGGIORI
IPO 02 'PONTE SUL CANALE ACQUE BASSE REGGIANE'
RELAZIONE DI CALCOLO

TAB. 6.7-1

					SLU		SLE
Armatura Longitudinale	N - kN	M trasv - kNm	dist. Appoggi - m	coeff.	Max Reaz Appoggio	SLE	Max Reaz Appoggio
			3.0				
PP + Permanenti Portati	2'311	0		1.35	3'119	1.00	2'311
Carichi Mobili (Max Reaz Vert)	488	0		1.35	659	0.75	366
Carichi Mobili (Max Mom Long)	468	0		1.35	631	0.75	351
Reazione Max Totale					3'750		2'661
Interasse Pali - m	2.90						
Altezza Pulvino - m	2.00						
T - kN	1'511	SLU					
A_{si} - mm ²	3'863						
$\sigma_{\rm s \ lim}$ - N/mm ²	160	SLE					
T - kN	1'072						
A _{si} - mm ²	6'699						

Si arma con $14\varnothing 25$ (6874 mm²) disposti all'interno dell'area circolare occupata dal palo (1.2 m) e con $\varnothing 20/100$ (3768mm²) nella parte restante.

All'estradosso si dispongono ferri Ø20/100.

6.7.2. Armatura trasversale e di parete

Si determina l'armatura trasversale – da palo a palo – operando a favore di sicurezza: si assume lo sforzo normale massimo nel palo e, indipendentemente dal fatto che tale sforzo è già stato assorbito dal tirante longitudinale, si applica nuovamente un meccanismo 'strut&tie' trasversale al 50% dello sforzo nel palo suddetto, assumendo come lunghezza dello sbalzo la distanza tra asse palo e filo paraghiaia (1.8 m).

TAB. 6.7-2

Armatura trasversale		
sbalzo - m	1.8	
N max palo - kN	3'234	SLU
T - kN	1'617	
A _{si} - mm ²	4'136	
N max palo - kN	2'386	SLE
T - kN	1'193	
A _{si} - mm ²	7'457	

Si arma con 16\(\times 25 \) (7856 mm²) disposti su ogni coppia di pali e con \(\times 20/200 \) nella parte restante.

All'estradosso si dispongono Ø20/200.

Quale armatura di parete si dispongono nº4+4 Ø20.

PROGETTO DEFINITIVO

OPERE D'ARTE MAGGIORI
IPO 02 'PONTE SUL CANALE ACQUE BASSE REGGIANE'
RELAZIONE DI CALCOLO

6.8. SINTESI ARMATURE

6.8.1. Pali (Ø1200)

Armatura trasversale

Da quota 0.0 a -4.5 : st Ø16/200; Da quota -4.5 a fine palo: st Ø12/200

• Armatura verticale

Da quota 0.0 a quota -5.0 : n30 Ø25 (L_{barra} : 6.0 m);

Da quota -4.0 a quota -16.0 : n20 Ø20 (L_{barra}: 12.0 m)

Da quota -15.0 a fine palo : n°12 \varnothing 20 (L_{barra}: 10.0 m)

6.8.2. Pulvino

Armatura in direzione longitudinale Y

Estradosso: Ø20/200; Intradosso: n°14 Ø25 sui pali + Ø20/200 fuori dai pali; Parete: n°4+8 Ø20

Armatura in direzione trasversale X

Intradosso: nº16 Ø25 sui pali ; Intradosso & estradosso fuori dai pali : Ø20/200 ; Staffoni: Ø20/300

6.8.3. Paraghiaia

Armatura in direzione trasversale Y

Interno: Ø12/200; Esterno: Ø12/200

Armatura in direzione verticale Z

Interno: Ø16/100; Esterno: Ø16/200

AUTOSTRADA REGIONALE CISPADANA dal casello di Reggiolo-Rolo sulla A22 al casello di Ferrara Sud sulla A13

PROGETTO DEFINITIVO

OPERE D'ARTE MAGGIORI
IPO 02 'PONTE SUL CANALE ACQUE BASSE REGGIANE'
RELAZIONE DI CALCOLO

6.8.4. Pareti di Risvolto

Armatura in direzione longitudinale X

 $Interno: \varnothing 16/100 \; ; \quad Esterno: \varnothing 12/200$

Armatura in direzione verticale Z

Interno: Ø16/200; Esterno: Ø12/200

• Spilli Ø12/200x200 per ≈2.5 m² in alto (attacco paraghiaia) e per ≈ 2.5 m² in basso (lato di attacco orecchia)

6.8.5. Orecchie

Armatura in direzione longitudinale X

Interno: Ø16/200; Esterno: Ø16/200

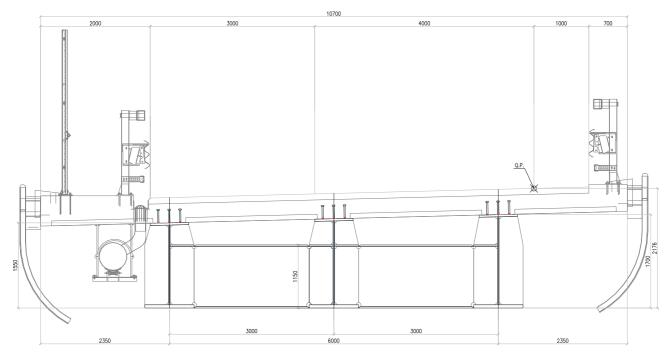
Armatura in direzione verticale Z

Interno: Ø12/200; Esterno: Ø12/200

PROGETTO DEFINITIVO

OPERE D'ARTE MAGGIORI
IPO 02 'PONTE SUL CANALE ACQUE BASSE REGGIANE'
RELAZIONE DI CALCOLO

7. DIMENSIONAMENTO DELL'OPERA: IMPALCATO


7.1. CRITERI DI CALCOLO

7.1.1. <u>Descrizione</u>

7.1.1.1 <u>Impalcato Metallico</u>

L'impalcato del ponte è costituito da tre travi in semplice appoggio con luce pari a 42m, avente sezione a doppio T composta acciaio-calcestruzzo. Le travi hanno un altezza costante pari a 1.55 m, con anime verticali ed è connesso superiormente ad una soletta in calcestruzzo collaborante di spessore pari a 0.35m. In corrispondenza degli appoggi ed in campata con un passo di circa 3.00m, sono previsti diaframmi trasversali a parete piena. Una sezione tipica dell'impalcato è riportata nella figura seguente (fig. 5.1-1):

Fig. 7.1-1

AUTOSTRADA REGIONALE CISPADANA dal casello di Reggiolo-Rolo sulla A22 al casello di Ferrara Sud sulla A13

PROGETTO DEFINITIVO

OPERE D'ARTE MAGGIORIIPO 02 'PONTE SUL CANALE ACQUE BASSE REGGIANE'

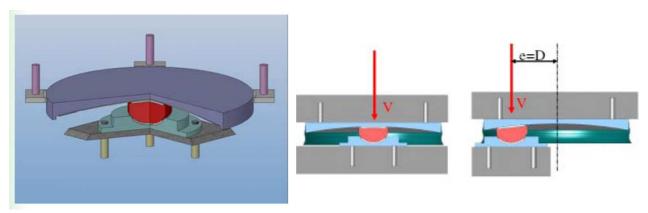
RELAZIONE DI CALCOLO

7.1.1.2 Vincolamento

Il sistema di vincolamento dell'impalcato alle sottostrutture è previsto tramite isolatori a pendolo ad attrito (Friction Pendulum Isolators – FPS) che permettono lo spostamento relativo tra la sovrastruttura e la sottostruttura secondo una superficie sferica. Sono inquadrabili secondo la tipologia di "Isolatori a scorrimento" descritta al punto 11.9.8 delle NTC08. Questi dispositivi sono caratterizzati dalle seguenti peculiarità:

- Il raggio di curvatura dalla superficie sferica di scorrimento determina il periodo proprio di vibrazione della struttura:
- Il periodo proprio è indipendente dalla massa della struttura;
- L'attrito della superficie equivalente determina lo smorzamento viscoso equivalente;
- Si minimizzano i moti torsionali della sovrastruttura. Questo perché la rigidezza orizzontale di ogni singolo isolatore risulta essere proporzionale allo sforzo normale agente su di esso. Ciò permette al centro di rigidezza di essere costantemente coincidente con il centro di massa della struttura compensando così le eventuali l'eccentricità di massa.

Tali dispositivi, nei riguardi delle azioni orizzontali trasmesse alle sottostrutture, presentano un comportamento di tipo attritivo in condizione statica che li rende sostanzialmente rigidi fino al valore della forza d'attrito, e un comportamento attritivo in condizione dinamica che li rende schematizzabili come dei vincoli elastici dotati di un'opportuna rigidezza orizzontale: pertanto finché non viene raggiunta la forza d'attrito statico che dipende dal carico verticale agente sul dispositivo e dal suo coefficiente d'attrito statico, il dispositivo si comporta sostanzialmente come collegamento rigido tra impalcato e sottostrutture. Tale comportamento garantisce che in condizioni di normale esercizio dell'opera l'impalcato risulti rigidamente fissato alle sottostrutture per le azioni orizzontali agenti, e cioè per l'azione del vento agente in direzione trasversale e per l'azione della frenatura dei veicoli agente in direzione longitudinale.


I dispositivi sono sostanzialmente costituiti da 3 elementi d'acciaio sovrapposti: una base concava superiormente, opportunamente sagomata in modo da ottenere il periodo di oscillazione desiderato; una rotula centrale, convessa sia inferiormente che superiormente; infine un terzo elemento che si accoppia con la rotula, consentendo la rotazione.

PROGETTO DEFINITIVO

OPERE D'ARTE MAGGIORI
IPO 02 'PONTE SUL CANALE ACQUE BASSE REGGIANE'
RELAZIONE DI CALCOLO

Fig. 7.1-2 Schemi degli isolatori a scorrimento a superficie curva

Al fine di controllare l'attrito opposto dal movimento delle superfici di scorrimento e rotazione, vengono utilizzati opportuni materiali termoplastici.

In condizione sismica gli isolatori a scorrimento a superficie curva comportano i seguenti vantaggi:

- Essendo dotati in condizione dinamica di rigidezze orizzontali relativamente basse comportano un elevato incremento di periodo proprio di vibrazione della struttura in direzione orizzontale (longitudinale e trasversale): ciò implica una forte riduzione delle azioni sismiche applicate alla sottostrutture;
- Essendo dotati di un coefficiente di smorzamento viscoso equivalente relativamente elevato (15% 30%)
 comportano una riduzione delle azioni sismiche applicate alle sottostrutture e limitano l'incremento degli
 spostamenti orizzontali;
- Sono ricentranti grazie alla loro conformazione sferica, il che garantisce che una volta terminato l'evento sismico il sistema d'isolamento e l'impalcato nella sua globalità presentino spostamenti residui nulli o assai ridotti in modo da non compromettere la sua efficacia operativa nei confronti di ulteriori scosse sismiche;
- La loro rigidezza orizzontale risulta proporzionale al carico assiale agente, il che comporta un sostanziale centraggio tra centro di rigidezza e centro di massa con evidenti riduzioni di effetti torsionali;
- Sono realizzati con materiali innovativi e tecnicamente sofisticati che garantiscono, come confermato da diversi produttori, una vita utile stimabile in circa 75 anni;
- Sono realizzati con materiali altamente resistenti alle variazioni di temperatura e all'usura che comportano una certa stabilità del comportamento dinamico degli isolatori al variare dell'invecchiamento e della temperatura;

Si evidenzia che gli isolatori sono realizzati con materiali che presentano resistenza meccanica alla compressione notevolmente maggiore di quella presentata dal materiale PTFE e questo permette una riduzione di dimensioni.

AUTOSTRADA REGIONALE CISPADANA dal casello di Reggiolo-Rolo sulla A22 al casello di Ferrara Sud sulla A13

PROGETTO DEFINITIVO

OPERE D'ARTE MAGGIORI

IPO 02 'PONTE SUL CANALE ACQUE BASSE REGGIANE' **RELAZIONE DI CALCOLO**

Il sistema di isolamento su descritto riduce gli effetti sulla struttura indotti dall'azione sismica in due differenti modi: spostando il periodo naturale della struttura lontano dalla freguenze predominanti del sisma attraverso il moto pendolare, ed assorbendone l'energia attraverso il comportamento a frizione. La superficie di scorrimento a calotta sferica concava, permette inoltre di convertire l'energia cinetica dell'impalcato indotta dal sisma, in energia potenziale che permette il richiamo della massa oscillante nella posizione iniziale di equilibrio stabile, soddisfando quindi il requisito di auto-ricentraggio del sistema a seguito di un evento sismico.

In condizioni statiche, gli isolatori presentano una elevata rigidezza orizzontale garantita dall'attrito statico tra le superfici di scorrimento, in grado di permettere una connessione rigida con le sottostrutture in per le condizioni di normale esercizio dell'opera (vento e frenamento).

7.1.2. Modello di calcolo

Il dimensionamento dell'opera è stato ottenuto mediante modellazione ad elementi finiti monodimensionali tipo "frames" tramite il programma di calcolo "Midas Civil" v.7.0.2.

Le analisi condotte all'interno del modello agli elementi finiti sono volte a determinare lo stato di sollecitazione del manufatto durante tutta la sua esistenza. Pertanto si è condotta una analisi segmentale per fasi (Staged Construction, abbr. CS) che ripercorre tutte le fasi di vita dell'impalcato, dalle fasi di costruzione sino a tempo infinito, inglobando nell'analisi le caratteristiche reologiche dei materiali (legge di presa, viscosità e ritiro del cls). Tale tipo di analisi per fasi permette di aggiungere e/o togliere e/o modificare all'interno di un unico modello di calcolo, nodi, elementi e vincoli ed inoltre consente di far variare nel tempo le caratteristiche dei materiali impiegati secondo una legge temporale definita dall'utente. Tale analisi rimane nel campo di una analisi statica lineare, dove tuttavia la matrice di rigidezza varia in ogni fase considerata.

Gli effetti sulla struttura dovuti ai carichi mobili sono stati determinati tramite una "analisi per carico mobile" (Moving Load Analysis, abbr. ML), facendo generare al programma le linee di influenza per gli spostamenti nodali, le azioni interne e le reazioni vincolari dovute al transito dei carichi mobili e determinando quindi i massimi e minimi valori di spostamenti nodali, delle azioni interne negli elementi e delle reazioni vincolari, in base alle linee di influenza ottenute. Tale analisi comporta una serie di singole analisi statiche lineari per tutte le condizioni di carico create lungo lo sviluppo del percorso dei carichi mobili, per cercare il massimo ed il minimo valore, che è usato quindi come risultato della analisi. Gli altri casi di analisi utilizzati sono tutti statici lineari.

La valutazione degli effetti dell'azione sismica sull'impalcato è stata effettuata modellando il sistema come elastico lineare. Per le azioni sismiche orizzontali del sistema dotato di isolamento alla base, è stata svolta una analisi lineare statica mentre per la valutazione degli effetti del sisma verticale si è resa necessaria una analisi modale con spettro di risposta.

PROGETTO DEFINITIVO

OPERE D'ARTE MAGGIORI
IPO 02 'PONTE SUL CANALE ACQUE BASSE REGGIANE'
RELAZIONE DI CALCOLO

7.1.3. Condizioni elementari di carico

Nei paragrafi seguenti sono riportate le condizioni di carico prese in considerazione nell'analisi dell'impalcato..

7.1.3.1 Peso proprio degli elementi strutturali (SW)

Il peso proprio della struttura metallica è determinato in automatico dal programma di calcolo ad elementi finiti per il tramite di un moltiplicatore gravitazionale Z = - 1.30 (diretto verso il basso) opportunamente incrementato per tenere in conto del peso degli elementi non direttamente modellati (piastrame e bulloneria).

Il peso della soletta in c.a. gettata in opera, è stato applicato sulla sola struttura metallica nella fase di costruzione denominata "Getto" con un carico totale uniforme pari a 120.55 kN/m.

7.1.3.2 Carichi permanenti portati (DL)

I carichi permanenti portati sono stati assegnati sulla trave composta tramite un carico uniforme distribuito, corrispondente al peso della pavimentazione e dell'arredo stradale, pari a 53.75kN/m.

7.1.3.3 Effetti reologici del calcestruzzo – Viscosità e ritiro (CR-SH)

Gli effetti indotti sulla struttura dai fenomeni reologici del calcestruzzo della soletta sono stati valutati sulla base delle indicazioni contenute nel par. 11.2.10.6 delle NTC08. In particolare si è assunto quanto segue:

- Umidità relativa aria = 60%;
- $f_{ck} = 28 \text{ MPa}$
- $\varepsilon_{c0} = -0.000424$
- $h_0 = 2*(10.70*0.26)/(10.70) = 0.52m$;
- $k_h = 0.7$;

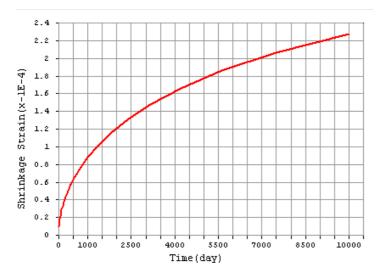
• $\epsilon_{cd,\infty}$ = -0.0002968 ritiro da essiccamento

• $\epsilon_{ca,\infty} = -0.000045$ ritiro autogeno

ε_{cs.∞} = -0.003418 contrazione finale da ritiro a t∞

Ipotizzando l'utilizzo di agenti antiritiro nella miscela di confezionamento del conglomerato cementizio della soletta, è stato ritenuto ragionevole adottare un valore di progetto non superiore ai 2/3 di quello sopra calcolato. Pertanto:

$$\epsilon_{csd,\infty} = \epsilon_{csd} / 1.5 = -0.000227$$



PROGETTO DEFINITIVO

OPERE D'ARTE MAGGIORI
IPO 02 'PONTE SUL CANALE ACQUE BASSE REGGIANE'
RELAZIONE DI CALCOLO

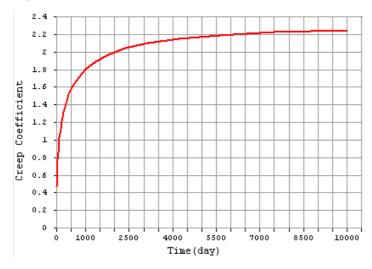

L'azione del ritiro è stata implementata nel modello di calcolo per il tramite di una curva di evoluzione della contrazione nel tempo valutata per un periodo di $t = t^{\infty} = 10~000$ giorni. Tale curva è riportata nella immagine seguente:

Fig. 7.1-3

Il coefficiente di viscosità $\phi(\infty,t_0)$ a tempo infinito, ipotizzando una messa in carico della struttura (applicazione dei carichi permanenti portati) a 30 giorni dalla fine dei getti, è stato determinato pari a $\phi(\infty,t_0)=2.25$. Per tenere in conto degli effetti di ridistribuzione dei carichi nel tempo per effetto della viscosità, si è adottata una curva di variazione del coefficiente di viscosità determinata, al pari del ritiro, per un periodo pari a $t=t\infty=10\,000$ giorni. Tale curva è riportata nella immagine seguente:

Fig. 7.1-4

PROGETTO DEFINITIVO

OPERE D'ARTE MAGGIORI

IPO 02 'PONTE SUL CANALE ACQUE BASSE REGGIANE'
RELAZIONE DI CALCOLO

7.1.3.4 Azioni della temperatura

La variazioni termiche sono state considerate partendo dalle indicazioni riportate al punto 3.5.4 delle NTC08. In particolare si è assunto quanto segue:

• $T_0 = 15 \, \text{C}$; Temperatura iniziale

• $T_{MAX} = 45 \, \text{°C}$; Temperatura massima (estiva)

• $T_{MIN} = -15 \, \text{C}$; Temperatura miniva (invernale)

Le variazioni termiche differenziali, tra la parte superiore e la parte inferiore dell'impalcato composto, ono state valutate secondo le indicazioni fornite dall'EC1 parte 5 per gli impalcati da ponte. In particolare si è fatto riferimento all'approccio non-lineare applicando una contrazione termica alla soletta in cls secondo la procedura semplificata, pari a:

• $\Delta T_1 = +10 \, ^{\circ}$ Condizione di riscaldamento

• $\Delta T_1 = -10 \, \text{°C}$ Condizione di raffreddamento

Le due componenti di variazione della temperatura, uniforme e differenziale, sono state comunque considerate contemporanee poiché l'impalcato a travata semplice non risente di effetti coattivi. Si sono considerate pertanto le seguenti condizioni:

- Massima temperatura (Estate): variazione termica uniforme $\Delta T = +30^{\circ}$ su tutta la struttura, più una variazione di $\Delta T = +10^{\circ}$ nella soletta;
- Minima temperatura (Inverno): variazione termica uniforme $\Delta T = -30^{\circ}$ su tutta la struttura, più una variazione di $\Delta T = -10^{\circ}$ nella soletta;

7.1.3.5 Cedimenti vincolari

Secondo le indicazioni fornite dalle elaborazioni geotecniche, è ragionevole ipotizzare un cedimento verticale pari a 30 mm per quanto attiene alle spalle.

7.1.3.6 Azioni parassite dei vincoli

In base a quanto esposto in precedenza, per quanto riguarda le combinazioni di carico in condizione statica, fino a quando le azioni orizzontali trasmesse dall'impalcato ai dispositivi di vincolamento risultano inferiori alle forze d'attrito, i dispositivi si comportano come collegamenti rigidi; una volta superato tale valore di forza, si comportano come collegamenti elastici di rigidezza crescente all'aumentare dall'azione assiale agente (diversa da combinazione a combinazione) e al diminuire dello spostamento orizzontale (anch'esso diverso tra una combinazione di carico e l'altra). Dal momento però che la condizione dimensionante per le sottostrutture è quella sismica (condizione per cui le forze trasmesse alle sottostrutture vengono lette in modo corretto grazie alla modellazione stessa dei dispositivi)

AUTOSTRADA REGIONALE CISPADANA dal casello di Reggiolo-Rolo sulla A22 al casello di Ferrara Sud sulla A13

PROGETTO DEFINITIVO

OPERE D'ARTE MAGGIORI

IPO 02 'PONTE SUL CANALE ACQUE BASSE REGGIANE'
RELAZIONE DI CALCOLO

in cui viene considerato il ritiro al suo valore caratteristico e le variazioni termiche al 50% del loro valore caratteristico, si considera superflua l'ipotesi di approfondire tale problematica in quanto non vincolante ai fini del dimensionamento delle sottostrutture.

7.1.3.7 Azioni variabili da traffico (ML)

I carichi mobili sono stati considerati in base alle indicazioni previste per i ponti stradali di 1° c ategoria indicati al paragrafo 5.1.3.3.3 delle NTC08. Compatibilmente con la larghezza della carreggiata, ed in previsione di un futuro ampliamento della stessa, sono state individuate due corsie convenzionali soggette alle azioni descritte dalla "Schema di carico 1" cui si è aggiunto, per le aree rimanenti, un carico uniformemente distribuito pari a 2.50 kN/m². Tali azioni sono state applicate al modello tramite di una apposita analisi per carico mobile (ML) disponendo lo schema di carico in modo da indurre le più sfavorevoli condizioni di progetto.

7.1.3.8 Azione longitudinale di frenamento (BRK)

La forza di frenamento o accelerazione è funzione del carico verticale totale agente sulla corsia convenzionale nº1 e per i ponti di 1° categoria vale:

180 kN ≤ $q_3 = 0.6(2Q_{1k}) + 0.10 q_{1k} w_1 L = 474 kN ≤ 900 kN$

Tale forza è stata applicata sull'impalcato come carico uniformemente distribuito agente in direzione longitudinale ed intensità pari a 11.29 kN/m.

7.1.3.9 Azione Centrifuga

Poiché il raggio di curvatura dell'impalcato è superiore a 1 500m, la forza centrifuga da applicare a livello della pavimentazione è nulla.

7.1.3.10 Azione del vento (WL)

L'azione del vento, assimilata ad un carico orizzontale statico ortogonale all'asse del ponte, è stata cautelativamente assunta pari a 2.50 kN/m², inglobando in tale valore la pressione del vento normale alle superfici investite direttamente, i coefficienti di forza dovuti alla forma dell'impalcato e l'azione tangenziale del vento.

7.1.3.11 Azioni sismiche

Le azioni sismiche di progetto, in base alle quali valutare il rispetto dei diversi stati limite, si definiscono a partire dalla pericolosità sismica di base del sito di costruzione, riportata al par. Errore. L'origine riferimento non è stata trovata..

Poiché la struttura è isolata alla base, per la determinazione delle azioni sismiche è necessario caratterizzare il sistema di isolamento. Come anticipato nella descrizione dell'opera, si utilizzano isolatori a pendolo ad attrito (FPS).

PROGETTO DEFINITIVO

OPERE D'ARTE MAGGIORI
IPO 02 'PONTE SUL CANALE ACQUE BASSE REGGIANE'
RELAZIONE DI CALCOLO

Tale sistema di isolamento ha la peculiarità di modificare il periodo proprio di vibrazione della struttura, rendendolo indipendente dalla massa in gioco e legandolo a caratteristiche dell'isolatore stesso.

Per gli isolatori si sono utilizzate le seguenti caratteristiche:

R = 3700mm
 Raggio di curvatura

• $D = \pm 300 \text{ mm}$ Spostamento di progetto

• $\mu = 0.055$ Coefficiente di attrito dinamico

• Kv = 2 100 000 kN / mm rigidezza verticale

Da cui, posto V = carico verticale, si ottiene:

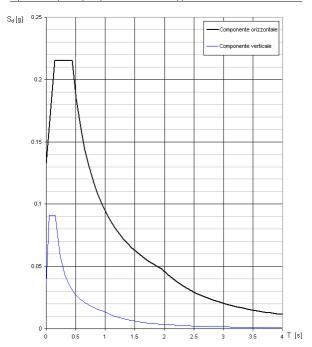
• $K_{eff} = V(1 / R + \mu / D)$ Rigidezza efficace

• $T_{is} = 2\pi (V/K_{eff} g)^{0.5} = 2\pi [RD/g(D + \mu R)]^{0.5} = 2.977 s$ Periodo efficace

 $\xi_{esi} = (2/\pi) [R\mu/(D + \mu R)] = 0.257$ Smorzamento viscoso equivalente

Determinate le caratteristiche del sistema di isolamento equivalente, a partire dalla pericolosità sismica del sito di costruzione, si costruiscono gli spettri di risposta per le tre componenti del moto relativi agli stati limite considerati. Nel dettaglio, per l'opera in oggetto si sono studiate le condizioni sismiche per gli stati limite di "Danno" (SLD), "Salvaguardia della vita" (SLV) e "Collasso" (SLC). Nella fattispecie si è scelto cautelativamente di limitare lo smorzamento viscoso equivalente del sistema isolato ad un valore massimo del 20% ($\xi_{esi} = 0.20$)

Fig. 7.1-5



AUTOSTRADA REGIONALE CISPADANA dal casello di Reggiolo-Rolo sulla A22 al casello di Ferrara Sud sulla A13

PROGETTO DEFINITIVO

OPERE D'ARTE MAGGIORI
IPO 02 'PONTE SUL CANALE ACQUE BASSE REGGIANE'
RELAZIONE DI CALCOLO

Spettri di risposta (componenti orizz. e vert.) per lo stato limite: SLD

PROGETTO DEFINITIVO

OPERE D'ARTE MAGGIORI IPO 02 'PONTE SUL CANALE ACQUE BASSE REGGIANE' RELAZIONE DI CALCOLO

Fig. 7.1-6

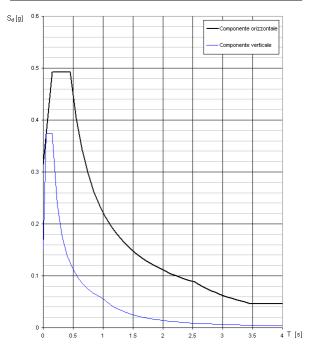
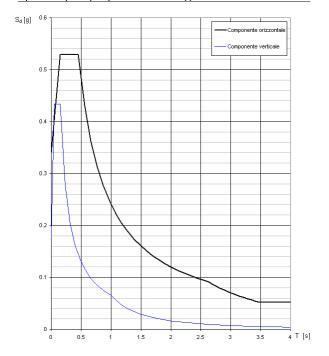



Fig. 7.1-7

Spettri di risposta (componenti orizz. e vert.) per lo stato limite: SLC

PROGETTO DEFINITIVO

OPERE D'ARTE MAGGIORI
IPO 02 'PONTE SUL CANALE ACQUE BASSE REGGIANE'
RELAZIONE DI CALCOLO

7.1.4. Combinazioni di carico di progetto

Nell'ambito delle verifiche di Stato Limite di Esercizio (SLE) e di Stato Limite Ultimo (SLU) si sono considerate le combinazioni di carico riportate nelle tabelle seguenti. Per facilità di esposizione si sono utilizzati gli inviluppi delle singole azioni elementari combinandoli poi opportunamente nelle combinazioni di progetto.

TAB. 7.1-1

	SW + DL	CR/SH
CS_01	1.35	0.00
CS_02	1.35	1.20
CS_03	1.00	1.20

TAB. 7.1-2

	CS_01	CS_02	CS_03
ENV_CS	1.00	1.00	1.00

TAB. 7.1-3 - CONDIZIONE DI INVILUPPO DEI CEDIMENTI VINCOLARI

	Ced. SP1	Ced. SP2
ENV_Ced	1.00	1.00

TAB. 7.1-4 - CONDIZIONE DI INVILUPPO DELL'AZIONE DELLA TEMPERATURA

	Temp. Est	Temp. Inv
ENV_DT	1.00	1.00

TAB. 7.1-5 - CONDIZIONE DI INVILUPPO DELL'AZIONE DEL VENTO

	WL+	WL -
ENV_WL	1.00	1.00

TAB. 7.1-6 - CONDIZIONE DI INVILUPPO DELL'AZIONE LONGITUDINALE DI FRENAMENTO

	BRK +	BRK -
ENV_BRK	1.00	1.00

Alle suddette si aggiunge la condizione determinata dai carichi mobili che è già un inviluppo di un elevato numero di condizioni di carico elementari.

TAB. 7.1-7 - COMBINAZIONI DI SLU

PROGETTO DEFINITIVO

Combinazione	ENV_CS	ENV_Ced	ENV_DT	ENV_WL	ML	ENV_BRK
SLU 01	1.00	1.20	1.20	0.00	0.00	0.00
SLU 02	1.00	1.20	0.60*1.20	0.00	0.00	0.00
SLU 03	1.00	1.20	1.20	0.60*1.50	0.00	0.00
SLU 04	1.00	1.20	0.60*1.20	1.50	0.00	0.00
SLU 05	1.00	1.20	1.20	0.60*1.50	0.75*1.35	0.00
SLU 06	1.00	1.20	0.60*1.20	1.50	0.75*1.35	0.00
SLU 07	1.00	1.20	1.20	0.60*1.50	0.75*1.35	1.00
SLU 08	1.00	1.20	0.60*1.20	1.50	0.75*1.35	1.00
SLU 09	1.00	1.20	0.60*1.20	0.60*1.50	1.35	1.35

TAB. 7.1-8 - COMBINAZIONI SISMICHE

Combinazione	SW+DL	Sisma X	Sisma Y	Sisma Z
SLD 01	1.00	1.00	0.30	0.30
SLD 02	1.00	1.00	0.30	-0.30
SLD 03	1.00	0.30	1.00	0.30
SLD 04	1.00	0.30	1.00	-0.30
SLD 05	1.00	0.30	0.30	1.00
SLD 06	1.00	0.30	0.30	-1.00
SLV 01	1.00	1.00	0.30	0.30
SLV 02	1.00	1.00	0.30	-0.30
SLV 03	1.00	0.30	1.00	0.30
SLV 04	1.00	0.30	1.00	-0.30
SLV 05	1.00	0.30	0.30	1.00
SLV 06	1.00	0.30	0.30	-1.00
SLC 01	1.00	1.00	0.30	0.30
SLC 02	1.00	1.00	0.30	-0.30
SLC 03	1.00	0.30	1.00	0.30

AUTOSTRADA REGIONALE CISPADANA dal casello di Reggiolo-Rolo sulla A22 al casello di Ferrara Sud sulla A13

PROGETTO DEFINITIVO

OPERE D'ARTE MAGGIORI
IPO 02 'PONTE SUL CANALE ACQUE BASSE REGGIANE'
RELAZIONE DI CALCOLO

SLC 04	1.00	0.30	1.00	-0.30
SLC 05	1.00	0.30	0.30	1.00
SLC 06	1.00	0.30	0.30	-1.00

Naturalmente per ogni combinazione sismica si sono adottati i valori di sollecitazione derivanti dallo spettro di risposta corrispondente allo stato limite considerato.

PROGETTO DEFINITIVO

OPERE D'ARTE MAGGIORI
IPO 02 'PONTE SUL CANALE ACQUE BASSE REGGIANE'
RELAZIONE DI CALCOLO

7.2. RISULTATI DELL'ANALISI – STATICA

In Allegato sono riportati i tabulati di Calcolo.

7.2.1. Reazioni vincolari

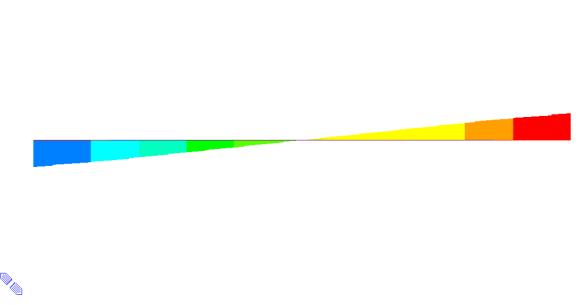
Nelle tabelle a seguire sono riportati i valori delle reazioni nei vincoli per le singole condizioni di carico non fattorizzate e per l'inviluppo delle combinazioni di carico di progetto (SLU). Le reazioni relative alle fasi di costruzione sono di tipo additivo, ossia ogni fase comprende le fasi precedenti.

TAB. 7.2-1 - REAZIONI VINCOLARI APPOGGI IN SPALLA

Spalle SP1-SP2									
		Appoggio SX		Appoggio Centrale		Appoggio DX			
Condizione di Carico	FX	FY	FZ	FX	FY	FZ	FX	FY	FZ
	kN	kN	kN	kN	kN	kN	kN	kN	kN
Sola Struttura Metallica	0	0	358	0	0	388	0	0	358
Getto della Soletta	0	0	1 226	0	0	1 185	0	0	1 226
Applicazione carichi Permanenti (t=t0)	0	0	1 643	0	0	1 478	0	0	1 643
Applicazione carichi Permanenti (t=t∞)	0	0	1 638	0	0	1 488	0	0	1 638
Variazione Termica (Estate)	20	3	1	20	0	-2	20	-3	1
Variazione Termica (Inverno)	-20	-3	-1	-20	0	2	-20	3	-1
Vento Trasversale (dir. Y+)	0	-91	-58	0	-91	11	0	-91	47
Vento Trasversale (dir. Y-)	0	91	47	0	91	11	0	91	-58
Azione Long. di Frenamento (dir. X+)	-79	0	-4	-79	0	-4	-79	0	-4
Azione Long. di Frenamento (dir. X-)	79	0	4	79	0	4	79	0	4
Carichi Mobili (Max)	13	0	1 260	8	0	1 072	11	0	854
Carichi Mobili (Min)	0	0	-82	0	0	-28	-1	0	-182
ENV SLU(max)	180	139	3 969	173	137	3 472	177	139	3 422
ENV SLU(min)	-90	-139	1 463	-90	-137	1 445	-91	-139	1 333

AUTOSTRADA REGIONALE CISPADANA dal casello di Reggiolo-Rolo sulla A22 al casello di Ferrara Sud sulla A13

PROGETTO DEFINITIVO


OPERE D'ARTE MAGGIORI IPO 02 'PONTE SUL CANALE ACQUE BASSE REGGIANE' **RELAZIONE DI CALCOLO**

7.2.2. Azioni interne

Di seguito sono riportate le principali azioni interne nelle aste per le varie condizioni di carico.

Fig. 7.2-1 Fase 1: Struttura METALLICA - TAGLIO (KN)

AUTOSTRADA REGIONALE CISPADANA

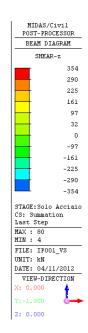
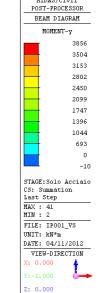
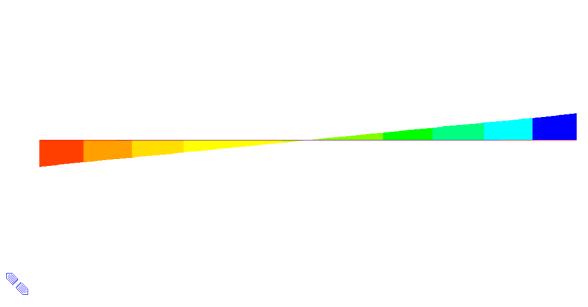



Fig. 7.2-2 Fase 1: Struttura metallica – Momento Flettente MY (kNm)



AUTOSTRADA REGIONALE CISPADANA dal casello di Reggiolo-Rolo sulla A22 al casello di Ferrara Sud sulla A13

PROGETTO DEFINITIVO

Fig. 7.2-3 Fase 2: Getto Soletta in CLS - Taglio (KN)

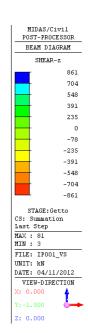
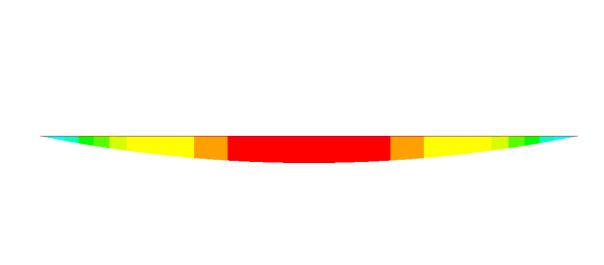
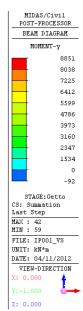
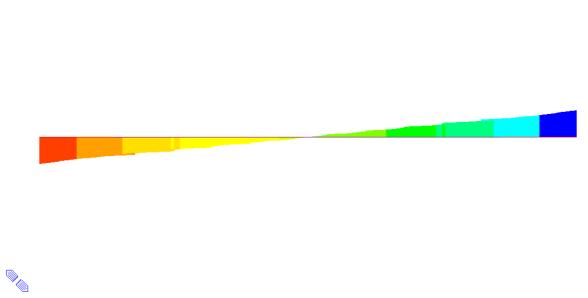




FIG. 7.2-4 FASE 2: GETTO SOLETTA IN CLS - MOMENTO FLETTENTE MY (KNM)



AUTOSTRADA REGIONALE CISPADANA dal casello di Reggiolo-Rolo sulla A22 al casello di Ferrara Sud sulla A13

PROGETTO DEFINITIVO

FIG. 7.2-5 FASE 3: APPLICAZIONE DEI CARICHI PERMANENTI PORTATI – TAGLIO (KN)

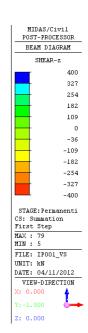
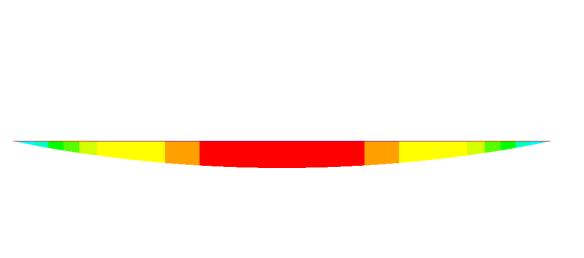
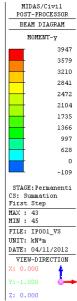
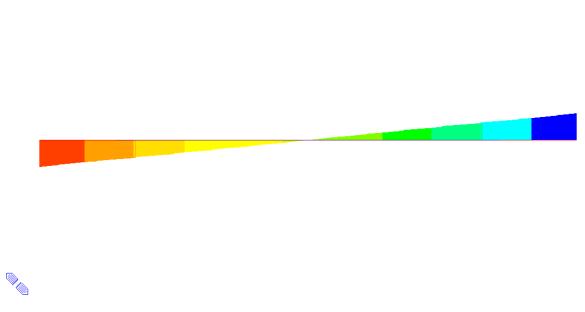
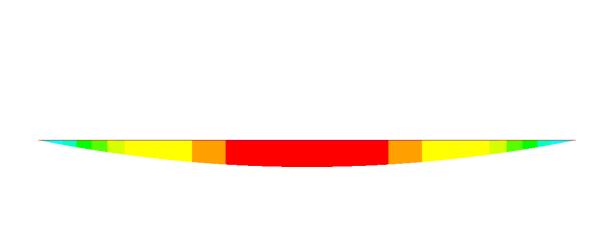




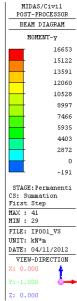
FIG. 7.2-6 FASE 3: APPLICAZIONE DEI CARICHI PERMANENTI PORTATI – MOMENTO FLETTENTE MY (KNM)



AUTOSTRADA REGIONALE CISPADANA dal casello di Reggiolo-Rolo sulla A22 al casello di Ferrara Sud sulla A13

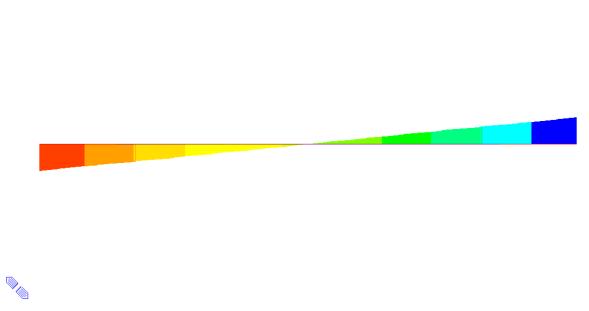
PROGETTO DEFINITIVO


FIG. 7.2-7 AZIONI COMPLESSIVE A T₀ - TAGLIO (KN)



MIDAS/Civil POST-PROCESSOR BEAM DIAGRAM SHEAR-z 1609 1316 1024 731 439 0 -146 -439 -731 -1024 -1316 -1609 STAGE: Permanenti CS: Summation First Step MAX: 81 MIN: 3 FILE: IPOO1_VS UNIT: kN DATE: 04/11/2012 VIEW-DIRECTION Z: 0.000

Fig. 7.2-8 AZIONI COMPLESSIVE A T₀ - MOMENTO FLETTENTE MY (KNM)



AUTOSTRADA REGIONALE CISPADANA dal casello di Reggiolo-Rolo sulla A22 al casello di Ferrara Sud sulla A13

PROGETTO DEFINITIVO

FIG. 7.2-9 AZIONI COMPLESSIVE A T∞ - TAGLIO (KN)

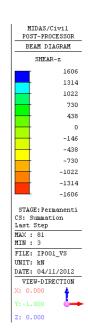
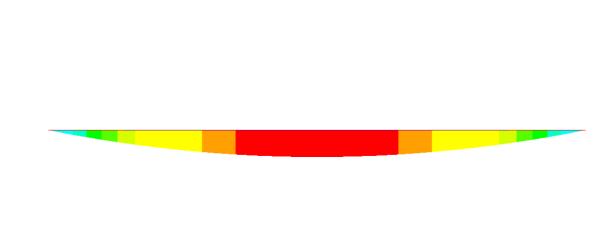
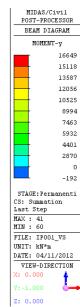
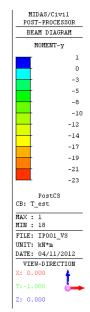




FIG. 7.2-10 AZIONI COMPLESSIVE A T∞ - MOMENTO FLETTENTE MY (KNM)



AUTOSTRADA REGIONALE CISPADANA dal casello di Reggiolo-Rolo sulla A22 al casello di Ferrara Sud sulla A13

PROGETTO DEFINITIVO

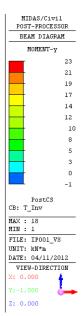
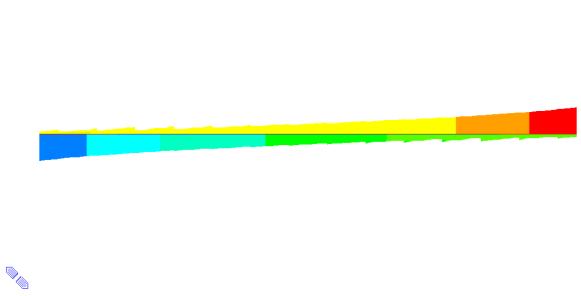

OPERE D'ARTE MAGGIORI
IPO 02 'PONTE SUL CANALE ACQUE BASSE REGGIANE'
RELAZIONE DI CALCOLO

Fig. 7.2-11 Azione della Temperatura (Temp. Estate) – Momento Flettente MY (KN)

FIG. 7.2-12 AZIONE DELLA TEMPERATURA (TEMP. ESTATE) – MOMENTO FLETTENTE MY (KN)



AUTOSTRADA REGIONALE CISPADANA dal casello di Reggiolo-Rolo sulla A22 al casello di Ferrara Sud sulla A13

PROGETTO DEFINITIVO

Fig. 7.2-13 Inviluppo dei Carichi Mobili – Taglio (KN)

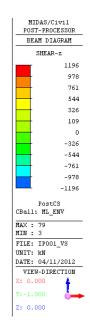
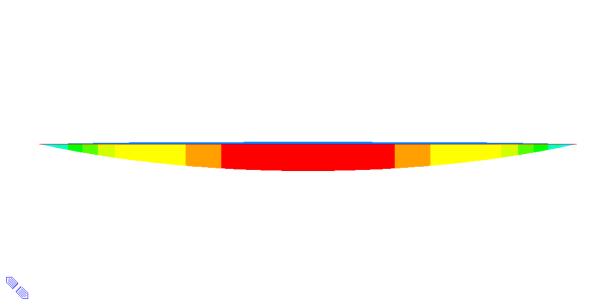
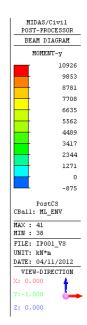
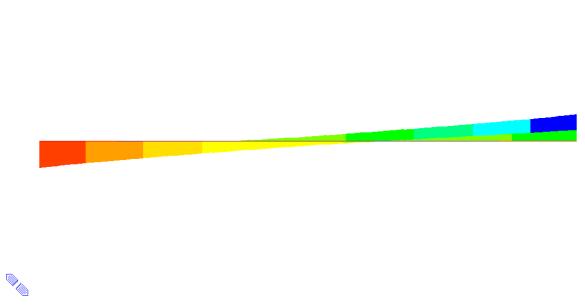




FIG. 7.2-14 INVILUPPO DEI CARICHI MOBILI – MOMENTO FLETTENTE MY (KNM)



AUTOSTRADA REGIONALE CISPADANA dal casello di Reggiolo-Rolo sulla A22 al casello di Ferrara Sud sulla A13

PROGETTO DEFINITIVO

FIG. 7.2-15 INVILUPPO COMBINAZIONI DI SLU - TAGLIO (KN)

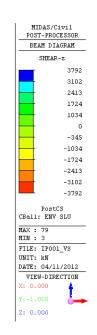
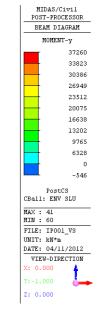



FIG. 7.2-16 INVILUPPO COMBINAZIONI DI SLU – MOMENTO FLETTENTE MY (KNM)

PROGETTO DEFINITIVO

OPERE D'ARTE MAGGIORI
IPO 02 'PONTE SUL CANALE ACQUE BASSE REGGIANE'
RELAZIONE DI CALCOLO

7.3. RISULTATI DELL'ANALISI - SISMICA

7.3.1. Sisma Orizzontale

Le azioni orizzontali dovute al sisma si valutano a partire dalle caratteristiche equivalenti del sistema di isolamento. Nel caso in esame si è ipotizzato:

• R = 3700mm Raggio di curvatura

D = ± 300 mm
 Spostamento di progetto

• $\mu = 0.055$ Coefficiente di attrito dinamico

• Kv = 210 000 kN / mm rigidezza verticale

Da cui, posto V = carico verticale, si ottiene:

• $K_{eff} = V(1 / R + \mu / D)$ Rigidezza efficace

• $T_{is} = 2\pi (V/K_{eff} g)^{0.5} = 2\pi [RD/g(D + \mu R)]^{0.5} = 2.977 s$ Periodo efficace

Le accelerazioni orizzontali cui è sottoposto il sistema isolato, si ottengono per i tre stati limite considerati, dai rispettivi spettri di risposta, rilevando le ordinate spettrali corrispondenti al periodo proprio del sistema isolato.

 $S_e(T_{is})_{SLD} = 0.021 g$

 $S_e(T_{is})_{SLV} = 0.065 g$

 $S_e(T_{is})_{SLC} = 0.072 g$

La forza orizzontale complessiva applicata al sistema di isolamento è pari a:

 $F = M \times S_e(T_{is})$

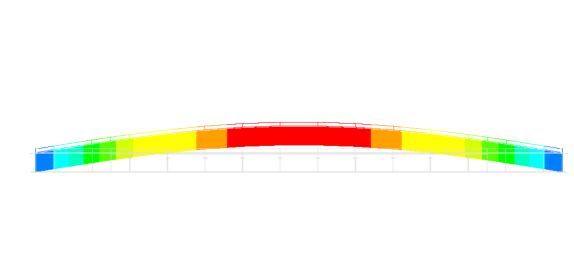
con M = 9 754 kN peso corrispondente alla massa sismica (SW + PP + 0.20ML)

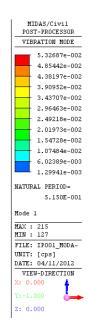
TAB. 7.3-1

	S _e (g)	F
		(kN)
Forza Orizzontale SLD	0.021	205
Forza Orizzontale SLV	0.065	634
Forza Orizzontale SLC	0.072	702

7.3.2. Sisma Verticale

Le sollecitazioni dovute agli effetti sismici verticali sono state valutate per l'impalcato tramite una analisi modale con spettro di risposta volta a determinare le azioni verticali esercitate sul dispositivo di isolamento.


AUTOSTRADA REGIONALE CISPADANA dal casello di Reggiolo-Rolo sulla A22 al casello di Ferrara Sud sulla A13


PROGETTO DEFINITIVO

OPERE D'ARTE MAGGIORI
IPO 02 'PONTE SUL CANALE ACQUE BASSE REGGIANE'
RELAZIONE DI CALCOLO

Si sono considerati nell'analisi le masse associate agli elementi strutturali, agli elementi di arredo stradale (permanenti portati) ed al 20% dei massimi carichi mobili ammissibili sull'impalcato.

Fig. 7.3-1 1° Modo Verticale - T = 0.515s

TAB. 7.3-2 - FORZE SISMICHE VERTICALI

	S _e (g)	F
		(kN)
Forza Verticale SLD	0.027	263
Forza Verticale SLV	0.109	1 063
Forza Verticale SLC	0.127	1 239

PROGETTO DEFINITIVO

OPERE D'ARTE MAGGIORI
IPO 02 'PONTE SUL CANALE ACQUE BASSE REGGIANE'
RELAZIONE DI CALCOLO

7.3.3. Azioni sismiche globali

Le azioni sismiche globali si ottengono dalla combinazione delle tre componenti spaziali dell'azione sismica. Poiché il comportamento del dispositivo di isolamento è influenzato dalla contemporanea presenza di una azione orizzontale e di una azione verticale, per ogni combinazione considerata si avrà una differente rigidezza efficace del sistema isolato.

A partire dalle azioni sismiche globali, si determinano le relative rigidezze efficaci del sistema isolato ed i conseguenti spostamenti sismici. Poiché l'impalcato si considera rigido nel piano orizzontale, tali spostamenti dovranno essere uguali per tutti gli appoggi. Conoscendo l'entità del carico verticale agente sulle singole sottostrutture, si riesce quindi a determinare la reazione orizzontale generata dal sistema di isolamento.

TAB. 7.3-3

Azioni Sismiche a SLD									
	RX	RY	RZ						
	(kN)	(kN)	(kN)						
Peso Totale in fase sismica	0	0	9 754						
Sisma Longitudinale (dir. X)	205	0	0						
Sisma Trasversale (dir. Y)	0	205	0						
Sisma Verticale (dir. Z)	0	0	263						

TAB. 7.3-4

Azioni	Sismiche Glo	obali a SLD	Spostamenti sismici a SLD				
Combinazioni di	RX RY RZ		RZ	K_{eff}	d _X	\mathbf{d}_{Y}	\mathbf{d}_{tot}
Carico	(kN)	(kN)	(kN)	(kN/mm)	(mm)	(mm)	(mm)
SLD_01	205	61	9 833	4.460	46	14	48
SLD_02	205	61	9 675	4.389	47	14	49
SLD_03	61	205	9 833	4.460	14	46	48
SLD_04	61	205	9 675	4.389	14	47	49
SLD_05	61	61	10 017	4.544	14	14	19
SLD_06	61	61	9 491	4.305	14	14	20

Dalle azioni sismiche globali si ricavano per le azioni sulle singole sottostrutture:

TAB. 7.3-5

	Azioni Sulle Sottostrutture a SLD												
		Spalla	a SP1			Spalla	a SP2						
	RZ	RX	RY	RXY	RZ	RX	RY	RXY					
	(kN)	(kN)	(kN)	(kN)	(kN)	(kN)	(kN)	(kN)					
SLD_01	4 917	102	31	107	4 917	102	31	107					
SLD_02	4 837	102	31	107	4 837	102	31	107					
SLD_03	4 917	31	102	107	4 917	31	102	107					
SLD_04	4 837	31	102	107	4 837	31	102	107					
SLD_05	5 009	31	31	43	5 009	31	31	43					
SLD_06	4 745	31	31	43	4 745	31	31	43					

TAB. 7.3-6

PROGETTO DEFINITIVO

OPERE D'ARTE MAGGIORI
IPO 02 'PONTE SUL CANALE ACQUE BASSE REGGIANE'
RELAZIONE DI CALCOLO

Azioni Sismiche a SLV									
	RX	RY	RZ						
	(kN)	(kN)	(kN)						
Peso Totale in fase sismica	0	0	9 754						
Sisma Longitudinale (dir. X)	634	0	0						
Sisma Trasversale (dir. Y)	0	634	0						
Sisma Verticale (dir. Z)	0	0	1 063						

TAB. 7.3-7

Azioni	Sismiche Glo	obali a SLV	Spostamenti sismici a SLV				
Combinazioni di	i di RX RY RZ		RZ	K_{eff}	d _X	d_Y	\mathbf{d}_{tot}
Carico	(kN)	(kN)	(kN)	(kN/mm)	(mm)	(mm)	(mm)
SLV_01	634	190	10 073	4.569	139	42	145
SLV_02	634	190	9 435	4.280	148	44	155
SLV_03	190	634	10 073	4.569	42	139	145
SLV_04	190	634	9 435	4.280	44	148	155
SLV_05	190	190	10 817	4.907	39	39	55
SLV_06	190	190	8 691	3.942	48	48	68

Dalle azioni sismiche globali si ricavano per congruenza le azioni sulle singole sottostrutture:

TAB. 7.3-8

		Azion	i Sulle Sott	ostrutture	a SLV			
		Spalla	a SP1			Spalla	a SP2	
	RZ	RX	RY	RXY	RZ	RX	RY	RXY
	(kN)	(kN)	(kN)	(kN)	(kN)	(kN)	(kN)	(kN)
SLV_01	5 036	317	95	331	5 036	317	95	331
SLV_02	4 718	317	95	331	4 718	317	95	331
SLV_03	5 036	95	317	331	5 036	95	317	331
SLV_04	4 718	95	317	331	4 718	95	317	331
SLV_05	5 409	95	95	134	5 409	95	95	134
SLV_06	4 345	95	95	134	4 345	95	95	134

PROGETTO DEFINITIVO

OPERE D'ARTE MAGGIORI
IPO 02 'PONTE SUL CANALE ACQUE BASSE REGGIANE'
RELAZIONE DI CALCOLO

TAB. 7.3-9

Azioni Sismiche a SLC										
	RX	RY	RZ							
	(kN)	(kN)	(kN)							
Peso Totale in fase sismica	0	0	9 754							
Sisma Longitudinale (dir. X)	702	0	0							
Sisma Trasversale (dir. Y)	0	702	0							
Sisma Verticale (dir. Z)	0	0	1 239							

TAB. 7.3-10

Azioni	Sismiche Glo	obali a SLC		Spostamenti sismici a SLC					
Combinazioni di	RX RY RZ		RZ	K_{eff}	\mathbf{d}_{X}	\mathbf{d}_{Y}	\mathbf{d}_{tot}		
Carico	(kN)	(kN)	(kN) (kN)		(kN/mm) (mm)		(mm)		
SLC_01	702	211	10 126	4.593	153	46	160		
SLC_02	702	211	9 382	4.256	165	50	172		
SLC_03	211	702	10 126	4.593	46	153	160		
SLC_04	211	702	9 382	4.256	50	165	172		
SLC_05	211	211	10 993	4.986	42	42	60		
SLC_06	211	211	8 515	3.863	55	55	77		

Dalle azioni sismiche globali si ricavano per congruenza le azioni sulle singole sottostrutture:

TAB. 7.3-11

	Azioni Sulle Sottostrutture a SLC												
		Spalla	a SP1			Spalla	a SP2						
	RZ	RX	RY	RXY	RZ	RX	RY	RXY					
	(kN)	(kN)	(kN)	(kN)	(kN)	(kN)	(kN)	(kN)					
SLC_01	5 063	351	105	367	5 063	351	105	367					
SLC_02	4 691	351	105	367	4 691	351	105	367					
SLC_03	5 063	105	351	367	5 063	105	351	367					
SLC_04	4 691	105	351	367	4 691	105	351	367					
SLC_05	5 496	105	105	149	5 496	105	105	149					
SLC_06	4 258	105	105	149	4 258	105	105	149					

PROGETTO DEFINITIVO

OPERE D'ARTE MAGGIORI
IPO 02 'PONTE SUL CANALE ACQUE BASSE REGGIANE'
RELAZIONE DI CALCOLO

7.3.4. Reazioni vincolari (FASE SISMICA)

Nelle tabelle a seguire sono riportati i valori delle reazioni nei vincoli delle spalle per le combinazioni sismiche (SLD, SLV e SLC). Le reazioni sono ottenute imponendo, per congruenza, l'eguaglianza degli spostamenti degli spostamenti sui singoli isolatori, determinando le reazioni orizzontali in base alle aliquote di carico verticale agente su di essi.

TAB. 7.3-12 - REAZIONI A SLD

	SPALLA SP1-SP2												
	Sposta	amenti		Isolatori Laterali				Isolatore Cer	ntrale				
Condizione di	dx	dy	FZ	k _{eff}	FX	FY	FZ	k _{eff}	FX	FY			
Carico	mm	mm	kN	kN/mm	kN	kN	kN	kN/mm	kN	kN			
SLD_01	46	14	1 696	0.769	35	11	1 524	0.691	32	10			
SLD_02	47	14	1 669	0.757	35	11	1 500	0.680	32	10			
SLD_03	14	46	1 696	0.769	11	35	1 524	0.691	10	32			
SLD_04	14	47	1 669	0.757	11	35	1 500	0.680	10	32			
SLD_05	14	14	1 728	0.784	11	11	1 553	0.704	10	10			
SLD_06	14	14	1 637	0.743	11	11	1 471	0.667	10	10			
ENV SLD (max)			1 728		35	35	1 553		32	32			
ENV SLD (min)			1 637		-35	-35	1 471		-32	-32			

TAB. 7.3-13 - REAZIONI A SLV

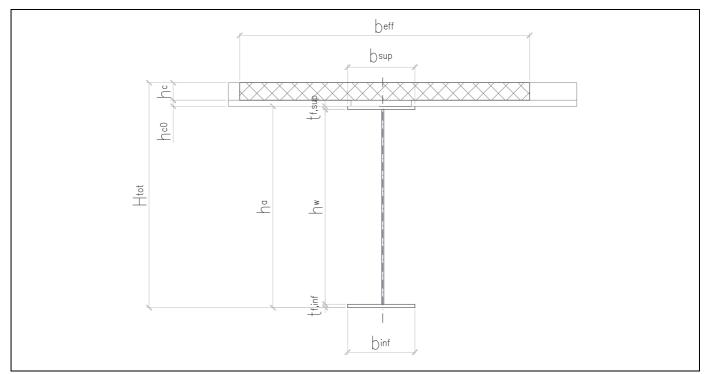
	SPALLA SP1-SP2												
	Sposta	amenti		Isolatori Lat	erali			Isolatore Cer	ntrale				
Condizione di	dx	dy	FZ	k _{eff}	FX	FY	FZ	k _{eff}	FX	FY			
Carico	mm	mm	kN	kN/mm	kN	kN	kN	kN/mm	kN	kN			
SLV_01	139	42	1 738	0.788	109	33	1 561	0.708	98	29			
SLV_02	148	44	1 628	0.738	109	33	1 462	0.663	98	29			
SLV_03	42	139	1 738	0.788	33	109	1 561	0.708	29	98			
SLV_04	44	148	1 628	0.738	33	109	1 462	0.663	29	98			
SLV_05	39	39	1 866	0.846	33	33	1 677	0.761	29	29			
SLV_06	48	48	1 499	0.680	33	33	1 347	0.611	29	29			
ENV SLV (max)			1 866		109	109	1 677		98	98			
ENV SLV (min)			1 499		-109	-109	1 347		-98	-98			

TAB. 7.3-14 - REAZIONI A SLC

	SPALLA SP1-SP2													
	Sposta	amenti		Isolatori Laterali				Isolatore Cer	trale					
Condizione di	dx	dy	FZ	\mathbf{k}_{eff}	FX	FY	FZ	\mathbf{k}_{eff}	FX	FY				
Carico	mm	mm	kN	kN/mm	kN	kN	kN	kN/mm	kN	kN				
SLC_01	153	46	1 747	0.792	121	36	1 569	0.712	109	33				
SLC_02	165	50	1 618	0.734	121	36	1 454	0.660	109	33				
SLC_03	46	153	1 747	0.792	36	121	1 569	0.712	33	109				
SLC_04	50	165	1 618	0.734	36	121	1 454	0.660	33	109				
SLC_05	42	42	1 896	0.860	36	36	1 704	0.773	33	33				
SLC_06	55	55	1 469	0.666	36	36	1 320	0.599	33	33				
ENV SLC (max)			1 896		121	121	1 704		109	109				
ENV SLC (min)			1 469		-121	-121	1 320		-109	-109				

PROGETTO DEFINITIVO

OPERE D'ARTE MAGGIORI
IPO 02 'PONTE SUL CANALE ACQUE BASSE REGGIANE'
RELAZIONE DI CALCOLO


7.4. VERIFICA DEGLI ELEMENTI STRUTTURALI

7.4.1. Verifiche di resistenza a SLU

La sezione dell'impalcato è stata dimensionata secondo il criterio elastico indicato al punto 4.3.4.2.1.1 delle NTC08, limitando quindi le deformazioni al limite elastico dei materiali. Le verifiche sono state effettuate per fasi distinguendo le sollecitazioni in base alla fase considerata, e sommando a valle le tensioni ottenute, in accordo al principio di sovrapposizione degli effetti nell'ipotesi di comportamento elastico lineare.

Nell'ambito delle verifiche della sezione composta è stato trascurato il contributo del calcestruzzo teso e parimenti trascurato il contributo dell'armatura compressa. L'azione tagliante verticale è stata considerata uniformemente distribuita sulle sole anime verticali delle travi. Lo stato tensionale complessivo degli elementi utilizzato come valore di confronto con la resistenza caratteristica del materiale, è stato espresso tramite tensioni ideali secondo il metodo di Von Mises.

Fig. 7.4-1 - CARATTERISTICHE DELLA SEZIONE TIPICA

AUTOSTRADA REGIONALE CISPADANA dal casello di Reggiolo-Rolo sulla A22 al casello di Ferrara Sud sulla A13

PROGETTO DEFINITIVO

OPERE D'ARTE MAGGIORI
IPO 02 'PONTE SUL CANALE ACQUE BASSE REGGIANE'
RELAZIONE DI CALCOLO

Le verifiche, effettuate con l'ausilio di un foglio di calcolo, riportano i valori della sollecitazione nei punti notevoli della sezione determinate secondo la teoria elastica. In particolare sono riportate le tensioni riferite a:

• τ_{med} : tensione tangenziale media nell'anima;

• σ_N : tensione normale nella sezione dovuta all'azione assiale;

• $\sigma_{s, sup}$: tensione normale massima nella piattabanda superiore;

• $\sigma_{w \, sup}$: tensione normale al lembo superiore dell'anima;

• $\sigma_{w \text{ sup,id}}$: tensione ideale al lembo superiore dell'anima;

σ_{w inf}: tensione normale al lembo inferiore dell'anima;

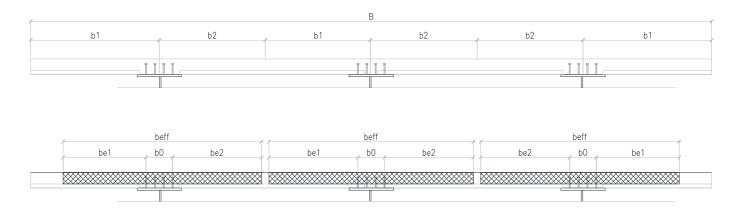
• $\sigma_{w \text{ inf,id}}$: tensione ideale al lembo inferiore dell'anima;

 $\bullet \quad \sigma_{s, \, sup}: \qquad \quad \text{tensione normale massima nella piattabanda inferiore;}$

• $\sigma_{1,c}$: tensione normale massima nella soletta in cls;

 $\bullet \quad \sigma_{\text{f, sup}}: \qquad \quad \text{tensione normale nello strato armature superiore;}$

 \bullet $\sigma_{f, inf}$: tensione normale nello strato armature inferiore.


Le verifiche di stabilità a taglio e flessione dei pannelli d'anima e del fondo (ove necessario) sono state effettuate in accordo alle indicazioni contenute nelle istruzioni CNR10011, adottando il metodo degli stati limite con un coefficiente di sicurezza parziale per i ponti stradali pari a:

y = 1.10

7.4.1.1 Determinazione delle larghezze collaboranti di soletta

Si considera ai fini delle verifiche in direzione longitudinale la sola parte di soletta gettata in opera, trascurando la presenza della lastra tralicciata prefabbricata (predalle) considerata come cassero a perdere.

Fig. 7.4-2

PROGETTO DEFINITIVO

OPERE D'ARTE MAGGIORI

IPO 02 'PONTE SUL CANALE ACQUE BASSE REGGIANE'

RELAZIONE DI CALCOLO

Larghezze efficaci travi laterali "beff,1"

In riferimento alla figura sopra riportata, siano:

 $b_1 = 2350 \text{ mm}$ larghezza disponibile 1 $b_2 = 1500 \text{ mm}$ larghezza disponibile 2

 $b_0 = 400 \text{ mm}$ distanza tra gli assi dei connettori

 $L_e = L_1 = 42.00 \text{ m}$ Luce equivalente

Si ottiene per la mezzeria della 1° campata:

 $b_{e1} = min (L_e/8 ; b_1 - b_0/2) = 2 150 mm$

 $b_{e2} = min (L_e/8 ; b_2 - b_0/2) = 1 300 mm$

da cui:

 $b_{eff,1} = (b_0 + b_{e1} + b_{e2}) = 3850 \text{ mm}$ Larghezza efficace travi laterali in mezzeria

Per gli appoggi di estremità:

 $b_{eff} = b_0 + \beta_1 b_{e1} + \beta_2 b_{e2}$

dove:

 $\beta_i = (0.55 + 0.025 L_e / b_{ei}) \le 1.0$

quindi:

 $\beta_1 = 1.00 \text{ e } \beta_2 = 1.00$

 $b_{eff,0} = b_0 + \beta_1 b_{e1} + \beta_2 b_{e2} = 3 850 \text{ mm}$ Larghezza efficace travi laterali in spalla

Larghezze efficaci trave centrale "beff.c"

In riferimento alla figura sopra riportata, siano:

 $b_1 = b_2 = 1500 \text{ mm}$ larghezza disponibile

 $b_0 = 400 \text{ mm}$ distanza tra gli assi dei connettori

 $L_e = L_1 = 42.00 \text{ m}$ Luce equivalente

Si ottiene per la mezzeria della 1° campata:

 $b_{e1} = min (L_e/8 ; b_1 - b_0/2) = 1 300 mm$

 $b_{e2} = min (L_e/8 ; b_2 - b_0/2) = 1 300 mm$

da cui:

 $b_{eff,1} = (b_0 + b_{e1} + b_{e2}) = 3000 \text{ mm}$ Larghezza efficace trave centrale in mezzeria

Per gli appoggi di estremità:

 $b_{eff} = b_0 + \beta_1 b_{e1} + \beta_2 b_{e2}$

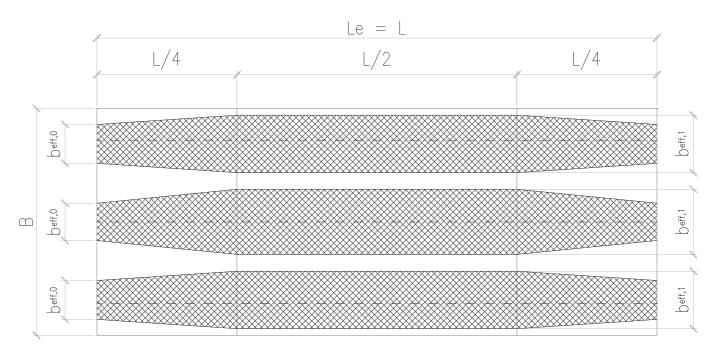
dove:

 $\beta_i = (0.55 + 0.025 L_e / b_{ei}) \le 1.0$

quindi:

 $\beta_1 = 1.00 \text{ e } \beta_2 = 1.00$

 $b_{eff,0} = b_0 + \beta_1 b_{e1} + \beta_2 b_{e2} = 3000 \text{ mm}$ Larghezza efficace travi laterali in spalla



PROGETTO DEFINITIVO

OPERE D'ARTE MAGGIORI
IPO 02 'PONTE SUL CANALE ACQUE BASSE REGGIANE'
RELAZIONE DI CALCOLO

In direzione longitudinale la variazione di larghezza efficace è rappresentata dalla figura seguente:

Fig. 7.4-3

Per il concio C1 si hanno le seguenti larghezze efficaci:

Trave laterale Sezione in spalla: $B_{eff} = B_{eff,0} = 3850 \text{ mm}$

Trave laterale Sezione finale (a 6.50 m) : $B_{\text{eff}} = 3.850 \text{ mm}$

Trave centrale Sezione in spalla: $B_{\text{eff}} = B_{\text{eff},0} = 3\,000 \text{ mm}$

Trave centrale Sezione finale (a 6.50 m): Beff = 3 000 mm

Per il concio C2 si hanno le seguenti larghezze efficaci:

Trave laterale Sezione iniziale (a 6.50 m): $B_{\text{eff}} = 3.850 \text{ mm}$

Trave laterale Sezione di mezzeria : $B_{\text{eff}} = B_{\text{eff},1} = 3 850 \text{ mm}$

Trave centrale Sezione iniziale (a 6.50 m): B_{eff} = 3 000 mm

Trave centrale Sezione di mezzeria : $B_{eff} = B_{eff,1} = 3 000 \text{ mm}$

PROGETTO DEFINITIVO

OPERE D'ARTE MAGGIORI
IPO 02 'PONTE SUL CANALE ACQUE BASSE REGGIANE'
RELAZIONE DI CALCOLO

7.4.2. <u>Verifica del concio C1</u>

Di seguito è riportata la verifica del concio tipo C1. Poiché la soletta è compressa, si è trascurato il contributo dell'armatura compresa nel tratto di soletta collaborante. In ogni caso è comunque prevista una armatura corrente longitudinale costituita da 1+1 Ø 16 / 20 cm.

TAB. 7.4-1 - DATI GEOMETRICI DELLA SEZIONE

h _w	1430	mm
b _{sup}	900	mm
$\mathbf{t}_{f,sup}$	30	mm
b _{inf}	1200	mm
$\mathbf{t}_{f,inf}$	40	mm
t _w	25	mm
h _a	1500	mm
B _c	1500	mm
h _c	260	mm
h _{c0}	90	mm
H_{tot}	1850	mm
Armatura su	ıperiore	
ф sup	16	mm
n _o °	15	
C _{sup}	60	mm
A ^{sup} _{o,tot}	3016	mm^2
Armatura in	feriore	
\phi_{inf }	16	mm
n _o °	15	
Cinf	20	mm
A ^{inf} _{φ,tot}	3016	mm^2

TAB. 7.4-2 – TENSIONI NELLA SEZIONE

Sezi	one acci	aio	Sezione mista: t=t ₀					Sezione mista: t=t∞			
N _{SW+DL1}	0	kN	N _{DL2}	0	kN	N _{LL}		kN	N _{DL2}	0	kN
M _{SW+DL1}	8001	kNm	M_{DL2}	2632	kNm	M _{LL}	5863	kNm	M _{DL2}	2632	kNm
V _{SW+DL1}	1228	kN	V_{DL2}	415	kN	V_{LL}	1415		V_{DL2}	415	kN
Sezione A	cciaio		Sezione Acc	iaio	_	Sezione A	Acciaio)	Sezione Acciaio		
$ au_{med}$	34.3	N/mm ²	$ au_{med}$	11.6	N/mm ²	$ au_{\text{med}}$	39.6	N/mm ²	$ au_{med}$	11.6	N/mm ²
$\sigma_{s, sup}$	-162.3	N/mm ²	$\sigma_{s, sup}$	-14.2	N/mm ²	$\sigma_{\text{s, sup}}$	-31.6	N/mm ²	$\sigma_{s, sup}$	-29.1	N/mm ²
$\sigma_{w \text{ sup}}$	-156.8	N/mm ²	$\sigma_{w \text{ sup}}$	-13.3	N/mm ²	$\sigma_{w sup}$		N/mm ²	$\sigma_{w sup}$		N/mm ²
$\sigma_{w \text{ sup,id}}$	167.7	N/mm ²	$\sigma_{w \text{ sup,id}}$		N/mm ²	$\sigma_{w \; \text{sup,id}}$		N/mm ²	$\sigma_{w \text{ sup,id}}$	34.4	N/mm ²
$\sigma_{w \text{ inf}}$	105.3	N/mm ²	$\sigma_{w \text{ inf}}$	27.7	N/mm ²	$\sigma_{w \text{ inf}}$	61.6	N/mm ²	$\sigma_{w \text{ inf}}$	30.3	N/mm ²
$\sigma_{w \text{ inf, id}}$	120.9	N/mm ²	$\sigma_{w \text{ inf, id}}$	34.2	N/mm ²	$\sigma_{w \; inf, \; id}$	92.2	N/mm ²	$\sigma_{\text{w inf, id}}$	36.4	N/mm ²
$\sigma_{s inf}$	112.6	N/mm ²	$\sigma_{s inf}$	28.8	N/mm ²	$\sigma_{s inf}$	64.2	N/mm ²	$\sigma_{s inf}$	32.0	N/mm ²
			Soletta			Soletta			Soletta		
			$\sigma_{1,c}$	-3.8	N/mm ²	$\sigma_{1,c}$	-8.4	N/mm ²	$\sigma_{1,c}$	-2.2	N/mm ²
			Armatura			Armatura	1		Armatura		
			$\sigma_{f,sup}$	0.0	N/mm ²	$\sigma_{\text{f,sup}}$	0.0	N/mm ²	$\sigma_{f,sup}$	0.0	N/mm ²
			$\sigma_{f,infc}$	0.0	N/mm ²	$\sigma_{f,infc}$	0.0	N/mm ²	$\sigma_{f,infc}$	0.0	N/mm ²

PROGETTO DEFINITIVO

OPERE D'ARTE MAGGIORI
IPO 02 'PONTE SUL CANALE ACQUE BASSE REGGIANE'
RELAZIONE DI CALCOLO

TAB. 7.4-3 – VERIFICA DELLA SEZIONE

Ver. Fe: t=0 (SLU) Sezione Acciaio 34.3 N/mm² τ_{med} -162.3 N/mm² $\sigma_{\text{s, sup}}$ -156.8 N/mm² $\sigma_{\text{w sup}}$ 167.7 N/mm² $\sigma_{\text{w sup,id}}$ 105.3 N/mm² $\sigma_{\text{w inf}}$ 120.9 N/mm² $\sigma_{\text{w inf, id}}$ 112.6 N/mm² $\sigma_{\text{s inf}}$

Ver. Fe	Ver. Fe-Cls: t=t₀ (SLU)						
Sezione Accia							
$ au_{med}$		N/mm ²					
$\sigma_{s, sup}$		N/mm ²					
$\sigma_{w \; sup}$		N/mm ²					
$\sigma_{w \text{ sup,id}}$		N/mm ²					
$\sigma_{w \text{ inf}}$		N/mm ²					
$\sigma_{w \; inf, \; id}$		N/mm ²					
$\sigma_{s inf}$	205.6	N/mm ²					
Soletta							
$\sigma_{1,c}$	-12.1	N/mm ²					
Armatura							
$\sigma_{f,sup}$		N/mm ²					
$\sigma_{f,infc}$	0.0	N/mm ²					
·		•					

Ver. Fe-	Cls: t=t∞	(SLU)
Sezione Accia		
$ au_{med}$		N/mm ²
$\sigma_{s, sup}$		N/mm ²
$\sigma_{w \text{ sup}}$		N/mm ²
$\sigma_{\text{w sup,id}}$		N/mm ²
$\sigma_{ m winf}$	197.2	N/mm ²
$\sigma_{\text{w inf, id}}$	_	N/mm ²
$\sigma_{s inf}$	208.7	N/mm ²
Soletta		
$\sigma_{1,c}$	-10.6	N/mm ²
Armatura		
$\sigma_{f,sup}$		N/mm ²
$\sigma_{f,infc}$	0.0	N/mm ²

Di seguito è riportata la verifica relativa all'anima di altezza maggiore (h = 1 700 mm) con i tre irrigiditori equispaziati. Gli irrigiditori verticali sono costituiti dai diaframmi trasversali posti a passo pari a 3 000 mm.

TAB. 7.4-4 – VERIFICA ALL'IMBOZZAMENTO DEI PANNELLI D'ANIMA

Num. Pannelli		1	
Spessore Anima		25	
Distanza Irr. Verti	cali	3500	
Altezza Anima		1630	mm
σ_1			N/mm²
σ_2		-	N/mm²
τ_{m}		85.5	N/mm²
Pannello	1		
Altezza	1630	mm	
σ_1		N/mm²	
$\Psi_{\sigma 1}$		N/mm²	
$\sigma_{cr,o}$		N/mm²	
Ψ	-0.92	,	
α	2.15		
	20		
Κ-σ	21.86		
Κ-τ	4.97		
$\sigma_{\rm cr}$	975.9	N/mm^2	
$ au_{cr}$	277.2	N/mm^2	
σ_{cfr}	684.6	N/mm^2	
σ _{cfr, rid}	343.8	N/mm^2	
σ_{id}	260.6	N/mm²	
β	0.80		
K min	1.10		
K pannello	1.32		

PROGETTO DEFINITIVO

OPERE D'ARTE MAGGIORI
IPO 02 'PONTE SUL CANALE ACQUE BASSE REGGIANE'
RELAZIONE DI CALCOLO

7.4.3. Verifica concio C2 (Mezzeria)

Di seguito è riportata la verifica del concio di mezzeria (individuato nei disegni di progetto come concio C2). Poiché la soletta è compressa, si è trascurato il contributo dell'armatura compresa nel tratto di soletta collaborante. In ogni caso è comunque prevista una armatura corrente longitudinale costituita da 1+1 Ø 16 / 20 cm.

TAB. 7.4-5 - DATI GEOMETRICI DELLA SEZIONE

h _w	1390	mm
b _{sup}	900	mm
t _{f,sup}	50	mm
b _{inf}	1200	mm
t _{f,inf}	60	mm
t _w	25	mm
h _a	1500	mm
B _c	3000	mm
h _c	260	mm
h _{c0}	90	mm
H_{tot}	1850	mm
Armatura su	ıperiore	
φ _{sup}	16	mm
n _o °	15	
C _{sup}	60	mm
A ^{sup} _{o,tot}	3016	mm^2
Armatura in	feriore	
\Phi inf	16	mm
n _φ °	15	
C _{inf}	20	mm
A ^{inf} _{φ,tot}	3016	mm^2

TAB. 7.4-6 – TENSIONI NELLA SEZIONE

Sezione acciaio			Sezione mista: t=t ₀					Sezione mista: t=t			
N _{SW+DL1}	0	kN	N _{DL2}	0	kN	N _{LL}		kN	N _{DL2}	0	kN
M _{SW+DL1}	16370	kNm	M_{DL2}	5336	kNm	M _{LL}	11900	kNm	M_{DL2}	5336	kNm
V _{SW+DL1}	0	kN	V_{DL2}		kN	V_{LL}	870	kN	V_{DL2}	0	kN
Sezione A			Sezione Acc	ciaio		Sezione .	Acciaio		Sezione Acc	iaio	
$ au_{med}$	0.0	N/mm ²	$ au_{med}$	0.0	N/mm ²	τ_{med}	25.0	N/mm ²	$ au_{med}$	0.0	N/mm ²
$\sigma_{s, sup}$	-225.2	N/mm ²	$\sigma_{s, sup}$	-14.3	N/mm ²	$\sigma_{s, sup}$	-32.0	N/mm ²	$\sigma_{s, sup}$	-33.7	N/mm ²
$\sigma_{w \text{ sup}}$	-212.4	N/mm ²	$\sigma_{\text{w sup}}$	-12.5	N/mm ²	$\sigma_{w \text{ sup}}$		N/mm ²	$\sigma_{w \text{ sup}}$	-31.1	N/mm ²
$\sigma_{w \text{ sup,id}}$	212.4	N/mm ²	σ _{w sup,id}	12.5	N/mm ²	$\sigma_{\text{w sup,id}}$	51.5	N/mm ²	σ _{w sup,id}	31.1	N/mm ²
$\sigma_{ m winf}$	145.2	N/mm ²	$\sigma_{ m w inf}$	38.6	N/mm ²	$\sigma_{ m w \ inf}$	86.2	N/mm ²	σ_{winf}	41.5	N/mm ²
$\sigma_{\text{w inf, id}}$	145.2	N/mm ²	$\sigma_{\text{w inf, id}}$	38.6	N/mm ²	$\sigma_{w \; inf, \; id}$	96.5	N/mm ²	$\sigma_{\text{w inf, id}}$	41.5	N/mm ²
$\sigma_{s inf}$	160.7	N/mm ²	$\sigma_{s inf}$	40.8	N/mm ²	$\sigma_{s inf}$	91.1	N/mm ²	$\sigma_{s inf}$	44.7	N/mm ²
			Soletta			Soletta			Soletta		
			$\sigma_{1,c}$	-4.2	N/mm ²	$\sigma_{1.c}$	-9.4	N/mm ²	$\sigma_{1,c}$	-2.7	N/mm ²
			Armatura			Armatura			Armatura		
			$\sigma_{f,sup}$	0.0	N/mm ²	$\sigma_{\text{f,sup}}$	0.0	N/mm ²	$\sigma_{f,sup}$	0.0	N/mm ²
			$\sigma_{f,infc}$	0.0	N/mm ²	$\sigma_{\rm f,infc}$	0.0	N/mm ²	$\sigma_{f,infc}$		N/mm ²

TAB. 7.4-7 – VERIFICA DELLA SEZIONE

PROGETTO DEFINITIVO

OPERE D'ARTE MAGGIORI

IPO 02 'PONTE SUL CANALE ACQUE BASSE REGGIANE' **RELAZIONE DI CALCOLO**

Ver. Fe: t=0 (SLU)

Sezione Accia		
$ au_{med}$	0.0	N/mm ²
$\sigma_{s. sup}$	-225.2	N/mm ²
$\sigma_{s, sup}$ $\sigma_{w sup}$ $\sigma_{w sup, id}$ $\sigma_{w inf}$	-212.4	N/mm ²
$\sigma_{ m w \ sup.id}$	212.4	N/mm ²
$\sigma_{\text{w inf}}$	145.2	N/mm ²
$\sigma_{w \text{ inf, id}}$	145.2	N/mm ²
σ _{s inf}	160.7	N/mm ²

Ver. Fe-CIs: t=t₀ (SLU)

Sezione Acciaio		
$ au_{med}$		N/mm ²
$\sigma_{s, sup}$		N/mm ²
$\sigma_{w \; \text{sup}}$	-252.7	N/mm ²
$\sigma_{\text{w sup,id}}$	256.4	,
$\sigma_{w \text{ inf}}$		N/mm ²
$\sigma_{w \text{ inf, id}}$		N/mm ²
$\sigma_{s inf}$	292.6	N/mm ²
Soletta		
$\sigma_{1,c}$	-13.6	N/mm ²
Armatura		
$\sigma_{f,sup}$		N/mm ²
$\sigma_{f,infc}$	0.0	N/mm ²

Ver. Fe-Cls: t=t (SLU)

VCI. I C-013. L-L. (OLO)						
Sezione Accia						
$ au_{med}$		N/mm ²				
$\sigma_{s, sup}$		N/mm ²				
$\sigma_{w \text{ sup}}$		N/mm ²				
$\sigma_{w \text{ sup,id}}$	274.8	N/mm ²				
$\sigma_{ m winf}$	272.9	N/mm ²				
$\sigma_{w inf, id}$		N/mm ²				
$\sigma_{s inf}$	296.4	N/mm ²				
Soletta						
$\sigma_{1,c}$	-12.1	N/mm ²				
Armatura						
$\sigma_{f,sup}$		N/mm ²				
$\sigma_{\rm f,infc}$	0.0	N/mm ²				

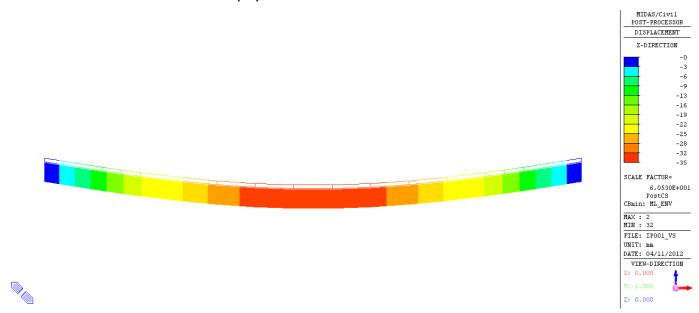
Di seguito è riportata la verifica relativa all'anima di altezza maggiore (h = 1 700 mm) con i tre irrigiditori equispaziati. Gli irrigiditori verticali sono costituiti dai diaframmi trasversali posti a passo pari a 3 000 mm.

TAB. 7.4-8 – VERIFICA ALL'IMBOZZAMENTO DEI PANNELLI D'ANIMA

Num. Pannelli		1	
Spessore Anima	a	25	mm
Distanza Irr. Ve	rticali	3500	mm
Altezza Anima		1590	mm
σ_1		-271.4	N/mm²
σ_2		272.9	N/mm²
$ au_{m}$		25.0	N/mm²
Pannello	1		
Altezza	1590		
σ_1		N/mm²	
$\Psi_{\sigma 1}$	_	N/mm²	
$\sigma_{cr,o}$	46.9	N/mm ²	
Ψ	-1.01		
α	2.20		
Κ-σ	23.90		
Κ-τ	4.93		
	4404.4	N1/ 2	
σ_{cr}		N/mm²	
$ au_{cr}$		N/mm²	
σ_{cfr}		N/mm²	
$\sigma_{cfr, rid}$		N/mm²	
$\sigma_{\sf id}$		N/mm²	
β	0.80		
K min	1.10		
K pannello	1.10		
it parificilo	1.21		

PROGETTO DEFINITIVO

OPERE D'ARTE MAGGIORI
IPO 02 'PONTE SUL CANALE ACQUE BASSE REGGIANE'
RELAZIONE DI CALCOLO


7.4.4. Verifiche di deformabilità (SLE)

Ai fini della valutazione della deformabilità del ponte, si è valutata la massima freccia verticale dell'implacato per la condizione di transito dei carichi mobili e lo si è rapportato al valore limite di L/1 000 accettabile per la tipologia di opera in oggetto. La massima freccia in campata centrale vale:

$$dZ_{max} = -35 \text{ mm}$$
 \rightarrow $dZ_{max} / L = 35 \text{mm} / 42 \ 000 \text{mm} = 1 / 1 \ 200 < 1 / 1 \ 000$

La verifica risulta soddisfatta.

Fig. 7.4-4 DEFORMAZIONI PER CARICO MOBILE (MM)

7.4.5. Verifica allo stato limite di collasso (SLC)

I dispositivi del sistema di isolamento devono essere in grado di sostenere senza rotture gli spostamenti d₂ valutati per un terremoto avente probabilità di superamento pari a quella prevista per lo stato limite di collasso.

Il massimo spostamento a SLC, combinato nelle due direzioni orizzontali, si ottiene dalle combinazioni SLC_02 e SLC_04 e vale:

$$dXY_{max} = 172 \text{ mm}$$
 < $D_{max} = 300 \text{ mm}$

La verifica risulta soddisfatta.

AUTOSTRADA REGIONALE CISPADANA dal casello di Reggiolo-Rolo sulla A22 al casello di Ferrara Sud sulla A13

PROGETTO DEFINITIVO

OPERE D'ARTE MAGGIORI
IPO 02 'PONTE SUL CANALE ACQUE BASSE REGGIANE'
RELAZIONE DI CALCOLO

7.5. APPOGGI

In funzione di quanto ottenuto nei par. 7.2 e 7.3 si riporta la tabella di dimensionamento degli appoggi.

TAB. 7.5-1

	Spalle SP1-SP2									
	P	Appoggio SX			Appoggio centrale			Appoggio DX		
Condizione di Carico	FX	FY	FZ	FX	FY	FZ	FX	FY	FZ	
	kN	kN	kN	kN	kN	kN	kN	kN	kN	
ENV SLU(max)	180	139	3 969	173	137	3 472	177	139	3 422	
ENV SLU(min)	-90	-139	1 463	-90	-137	1 445	-91	-139	1 333	
ENV SLD (max)	35	35	1 728	32	32	1 553	35	35	1 728	
ENV SLD (min)	-35	-35	1 637	-32	-32	1 471	-35	-35	1 637	
ENV SLV (max)	109	109	1 866	98	98	1 677	109	109	1 866	
ENV SLV (min)	-109	-109	1 499	-98	-98	1 347	-109	-109	1 499	
ENV SLC (max)	121	121	1 896	109	109	1 704	121	121	1 896	
ENV SLC (min)	-121	-121	1 469	-109	-109	1 320	-121	-121	1 469	
Tipo isolatore	D M1	D M1050/600 (3700)			050/600 (3700)	D M1	050/600 ((3700)	
Diametro Φ			750 mm			750 mm	n 750 m		750 mm	
N _{ed} ⁽¹⁾ (deve essere ≥ max Fz _(ENV SLC))			2 650 kN	2 650 kN		2 650 kN	2 650 ki		2 650 kN	
Raggio di curvatura R		3	3 700 mm	3 700 mm			3 700 mm			
Escursione (2) D		5	± 300 mm	± 300 mm			± 300 mm			
Rotazione combinata con max D		1	0.01 rad	± 0.01 rad					± 0.01 rad	
Coeff. di attrito dinamico μ			0.055	0.055		0.055	0.05		0.055	
Rigidezza verticale		2 100 0	0 kN/mm	2 100 00 kN/mm		0 kN/mm		2 100 0	00 kN/mm	
Rigidezza efficace orizzontale ⁽³⁾ per N _{ed}		1 200 kN/m		1 200 kN/m		200 kN/m		1	200 kN/m	
Periodo efficacie ⁽⁴⁾		2.977 sec		2.977 sec		2.977 sec			2.977 sec	
Smorzamento viscoso equivalente (5)		25.7 %		25.7 %			25.7 %			

NOTE: (1) massimo carico verticale ammesso nelle combinazioni comprensive della azione sismica (SLC)

- (2) Il massimo spostamento a SLC, combinato nelle due direzioni orizzontali, si ottiene dalle combinazioni SLC_02 e SLC_04 e vale: $d_{XYmax} = 172 \text{ mm}$ < $D_{max} = 300 \text{ mm}$ (= escursione isolatore).
- (3) $K_{eff} = V(1 / R + \mu / D)$
- (4) $T_{is} = 2\pi (V/K_{eff} g)^{0.5} = 2\pi [RD/g(D + \mu R)]^{0.5} = 2.977 s$
- (5) lo smorzamento viscoso equivalente del sistema isolato ξ_{esi} = (2/ π) [R μ / (D + μ R)] = 0.257 è cautelativamente limitato nei calcoli al un valore del 20% (ξ_{esi} = 0.20)