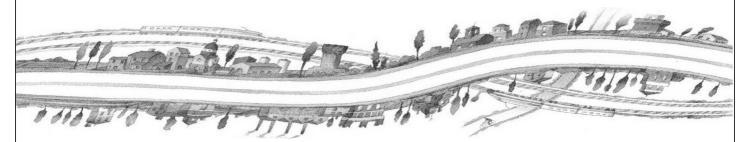


AUTOSTRADA REGIONALE CISPADANA DAL CASELLO DI REGGIOLO-ROLO SULLA A22 AL CASELLO DI FERRARA SUD SULLA A13

CODICE C.U.P. E81B08000060009


PROGETTO DEFINITIVO

ASSE AUTOSTRADALE (COMPRENSIVO DEGLI INTERVENTI LOCALI DI COLLEGAMENTÒ VIARIO AL SISTEMA AUTOSTRADALE)

OPERE STRUTTURALI

OPERE D'ARTE MAGGIORI - PONTI

VPO02 - CAVALCAVIA SP 8 DIRAMAZIONE S. FELICE - PONTE SUL CANALE DIVERSIVO DI BURANA **RELAZIONE DI CALCOLO**

IL PROGETTISTA

Ing. Antonio De Fazio

RESPONSABILE INTEGRAZIONE PRESTAZIONI SPECIALISTICHE

Ing. Emilio Salsi Albo Ing. Reggio Emilia nº 945 IL CONCESSIONARIO

Autostrada Regionale Cispedena S.p.A. IL PRESIDENTE

G								
F								
Е								
D								
С								
В								
А	17.04.2012	EMISSIONE	GADOTTI	DE FAZIO	SALSI			
REV.	DATA	DESCRIZIONE	REDAZIONE	CONTROLLO	APPROVAZIONE			

IDENTIFICAZIONE ELABORATO

NUM. PROGR.						
2	2	5	5	8		

FASE PD

LOTTO 0

CRUPPO V|2

CODICE OPERA WBS |O|0|2

TRATTO OPFRA 0

AMRITO OM TIPO FLABORATO C

PROGRESSIVO 0 1

DATA: MAGGIO 2012 RFV. Α

SCALA:

PROGETTO DEFINITIVO

OPERE D'ARTE MAGGIORI-PONTI
VPO02 – CAVALCAVIA SP8 - PONTE SUL CANALE DIVERSIVO DI BURANA
RELAZIONE DI CALCOLO

INDICE

1. DESCRIZIONE DELL'OPERA	3
2. NORMATIVA TECNICA DI RIFERIMENTO	5
3. CARATTERISTICHE DEI MATERIALI	6
4. INCIDENZE	
5. DATI DI BASE	
5.1. DATI GENERALI	
5.2. APERTURA LIMITE DELLE FESSURE	
5.3. DATI SISMICI	
5.4. PARAMETRI GEOTECNICI	10
6. DIMENSIONAMENTO DELL'OPERA: SPALLA	11
6.1. CRITERI DI CALCOLO	11
6.1.1. Angolo d'attrito terreno/parete	11
6.1.2. Spinta delle terre: fase statica	11
6.1.3. Spinta delle terre: fase sismica	11
6.1.4. Stato Limite Ultimo	12
6.1.4.1. Situazione Statica	
6.1.4.2. Situazione Sismica	
6.1.5.1. Combinazione 'rara'	
6.1.5.2. Combinazioni 'frequente' e 'quasi permanente' (Fessurazion	
6.1.6. Sovraccarico su terrapieno	13
6.1.7. Pareti di risvolto – Fase Sismica	18
6.1.8. Paraghiaia	19
6.1.9. Orecchie	19
6.1.10. Pali	
6.1.10.1. Verifiche Geotecniche	
6.1.10.3. Verifiche SLU: Pressoflessione	
6.1.11. Fondazione; Parete centrale; Muri di risvolto	20
6.2. ANALISI CON CODICE DI CALCOLO	20
6.3. VERIFICHE	23
6.3.1. Pali	
6.3.1.1. Verifiche Geotecniche	
6.3.1.2. Portanza Orizzontale	
6.3.1.4. Verifiche SLE: Fessurazione	38
6.3.1.5. Verifiche SLU: Taglio	
6.3.2. Paraghiaia	
6.3.2.1. Sollecitazioni – SLU: Fase Sismica	

AUTOSTRADA REGIONALE CISPADANA dal casello di Reggiolo-Rolo sulla A22 al casello di Ferrara Sud sulla A13

PROGETTO DEFINITIVO

OPERE D'ARTE MAGGIORI-PONTI
VPO02 – CAVALCAVIA SP8 - PONTE SUL CANALE DIVERSIVO DI BURANA
RELAZIONE DI CALCOLO

6.3.2	2.3. Sollecitazioni – SLE	41
6.3.2		
6.3.2		
6.3.2	2.6. Verifiche SLU: Tensioni Normali	43
6.3.3	3. Pareti di risvolto	46
6.3.3		
6.3.3		53
6.3.3		-
6.3.3		
6.3.4	l. Parete centrale	
6.3.4		
6.3.4 6.3.4		
6.3.5	5. Fondazione	
6.3.5		73
6.3.5 6.3.5		
6.3.5		
6.4. AP	PPOGGI E BAGGIOLI	
6.4.1	l. Appoggi	82
6.4.2	2. Baggioli	82
6.5. SIN	NTESI ARMATURE	84
6.5.1	l. Pali	84
6.5.2	2. Fondazione	84
6.5.3	3. Parete Centrale	84
6.5.4	I. Paraghiaia	85
6.5.5	5. Pareti di Risvolto	85
6.5.6	S. Baggioli	85
6.5.7	7. Soletta	86
7. DIMEN	NSIONAMENTO DELL'OPERA: IMPALCATO	87
8. ALLEC	GATO: DIMENSIONAMENTO IMPALCATO	89

AUTOSTRADA REGIONALE CISPADANA dal casello di Reggiolo-Rolo sulla A22 al casello di Ferrara Sud sulla A13

PROGETTO DEFINITIVO

OPERE D'ARTE MAGGIORI-PONTI

VPO02 – CAVALCAVIA SP8 - PONTE SUL CANALE DIVERSIVO DI BURANA RELAZIONE DI CALCOLO

1. DESCRIZIONE DELL'OPERA

La presente relazione riguarda l'Opera denominata "APO 02", prevista nell'ambito della Progettazione Definitiva inerente la costruzione della Autostrada Cispadana.

Il Ponte sovra passa il "Canale Diversivo Burana", è posto alla progr. 25+294 (Spalla Ovest) ed ha lunghezza pari a 26.03 m (distanza tra asse appoggi sulle spalle). Lo scavalco dell'interferenza è realizzato mediante 1 impalcato, di larghezza media pari a 12.15 m. Da evidenziare che il tracciato stradale planimetrico in corrispondenza dell'impalcato prevede il raccordo clotoidico tra rettifili ed una curva di raggio pari a 235.00m.

Il Ponte è in obliquo.

Il singolo **impalcato** è realizzato mediante nº4 travi a 'V' di altezza 1 .60 m, poste ad interasse 2.52 m (2.60min asse appoggi). Per la geometria vedi fig. 1-1.

Gli appoggi sono di tipo "Vasoflon".

Il **sistema di vincolo** è costituito da nº2 appoggi fissi e nº2 unidirezio nali trasversali sulla Spalla B e da nº2 unidirezionali trasversali e nº2 multidirezionali s ulla spalla A.

Sinteticamente quindi il singolo viadotto è vincolato longitudinalmente sulla Spalla B, trasversalmente su entrambe le Spalle. Non sono necessari ritegni sismici.

Le spalle sono di tipo 'chiuso'. Per la geometria vedi fig. 5-2.

Ogni spalla grava su n°12 pali Ø1200 di lunghezza 32.0 m.

PROGETTO DEFINITIVO

OPERE D'ARTE MAGGIORI-PONTI
VPO02 – CAVALCAVIA SP8 - PONTE SUL CANALE DIVERSIVO DI BURANA
RELAZIONE DI CALCOLO

Spalla A: H1 \cong 5.57 m; H2 \cong 2.60 m (valore medio).

Spalla B: H1 \cong 4.17 m; H2 \cong 2.60 m (valore medio).

Le pareti di risvolto sono gradonate: la parte al di sotto della linea tratteggiata ha spessore 1.0 m, la parte superiore e l'orecchia 0.5 m. Il ricoprimento anteriore 'T' è pari a \approx 0.5 m e verrà trascurato nei calcoli che seguono.

NOTA: l'interasse pali effettivo - riportato nelle Tavole - è superiore di alcuni centimetri rispetto a quello qui indicato.

I calcoli vengono comunque sviluppati, a favore di sicurezza, con gli interassi ridotti riportati in figura (a meno della verifica dello zoccolo anteriore, dove l'assunzione non sarebbe a favore di sicurezza e quindi viene assunta la distanza effettiva).

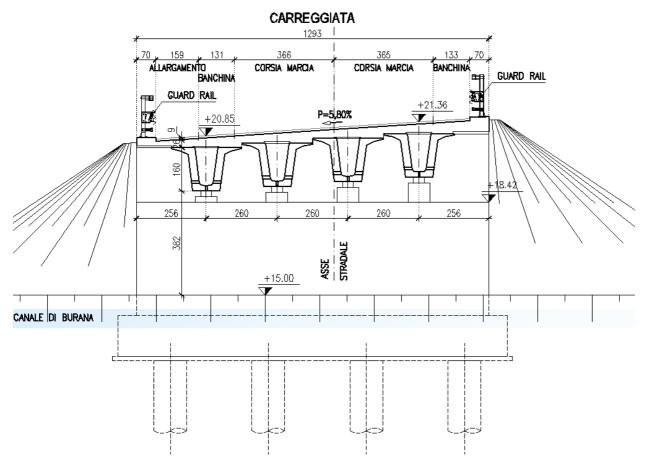


Fig. 1-1.

AUTOSTRADA REGIONALE CISPADANA dal casello di Reggiolo-Rolo sulla A22 al casello di Ferrara Sud sulla A13

PROGETTO DEFINITIVO

OPERE D'ARTE MAGGIORI-PONTI
VPO02 – CAVALCAVIA SP8 - PONTE SUL CANALE DIVERSIVO DI BURANA
RELAZIONE DI CALCOLO

2. NORMATIVA TECNICA DI RIFERIMENTO

Per quanto attiene alle normative di riferimento si veda l'elaborato generale:

PD_0_0000_0000_0_GE_KT_01

AUTOSTRADA REGIONALE CISPADANA dal casello di Reggiolo-Rolo sulla A22 al casello di Ferrara Sud sulla A13

PROGETTO DEFINITIVO

OPERE D'ARTE MAGGIORI-PONTI
VPO02 – CAVALCAVIA SP8 - PONTE SUL CANALE DIVERSIVO DI BURANA
RELAZIONE DI CALCOLO

3. CARATTERISTICHE DEI MATERIALI

Per quanto attiene alle caratteristiche dei materiali si veda l'elaborato generale:

PD_0_000_00000_0_GE_TB_01

AUTOSTRADA REGIONALE CISPADANA dal casello di Reggiolo-Rolo sulla A22 al casello di Ferrara Sud sulla A13

PROGETTO DEFINITIVO

OPERE D'ARTE MAGGIORI-PONTI
VPO02 – CAVALCAVIA SP8 - PONTE SUL CANALE DIVERSIVO DI BURANA
RELAZIONE DI CALCOLO

4. INCIDENZE

				Incidenza kg/mc													
	Cod Wbs	Descrizione Opera	Parte d'opera	Pali	Diaframmi	Diaframmi Idraulici	Trave di coronamento Diafr. Idraulici		Elevazione	Pulvino	Paraghiaia	Muri d'ala (parte inferiore)	Muri d'ala (parte superiore)	Baggioli e ritegni	Soletta di transizione	Soletta Marciapiede su Spalla	Soletta (escluso predalles)
	V24-VPO02	Ponte alla progr.25+294	SPALLA CHIUSA	120	NA	NA	NA	105	95	NA	100	165	175	200	80	NA	185
			PILA su Pali											200			

AUTOSTRADA REGIONALE CISPADANA dal casello di Reggiolo-Rolo sulla A22 al casello di Ferrara Sud sulla A13

PROGETTO DEFINITIVO

OPERE D'ARTE MAGGIORI-PONTI
VPO02 – CAVALCAVIA SP8 - PONTE SUL CANALE DIVERSIVO DI BURANA
RELAZIONE DI CALCOLO

5. DATI DI BASE

5.1. DATI GENERALI

Luce (interasse appoggi): 26.03 m

Impalcati: 1

Larghezza impalcato singolo: 12.15 m
N° Corsie per impalcato (Effettive): 2
N° Corsie per impalcato (di Calcolo): 3

Travi: CAP (n⁹ per impalcato)

Spalle: Chiuse

Altezza parete centrale Spalla A: 5.57 m
Altezza parete centrale Spalla A: 4.17 m

Lunghezza Spalla: 12.93 m

• Vincolamento: appoggi fissi su Spalla B

5.2. APERTURA LIMITE DELLE FESSURE

Al Cap.3 viene stabilita, per ogni calcestruzzo, la Classe di Esposizione .

Ciò, ai sensi della Tab. 4.1.III della Norma, qualifica automaticamente la 'Condizione ambientale'.

Tale dato – assieme alla tipologia di armatura 'sensibile' o 'poco sensibile', va inserito nella Tab. 4.1.IV della Norma. In tale Tabella va inoltre considerato che l'armatura è del tipo 'poco sensibile'.

Conseguentemente a quanto sopra, per lo Stato Limite di apertura delle fessure si ha :

TAB. 5.2-1

Elemento	Classe Esposizione	Condizione	Armatura	Combinazione	w _d ≤
Palo; Spalla e Pila (Fondazione)	XC2 *	Ordinaria	poco sensibile	frequente	W_3
				quasi permanente	W_2
Palo; Spalla e Pila (Fondazione)	XA1**	Aggressiva	poco sensibile	frequente	W_2
				quasi permanente	W ₁
Palo; Spalla e Pila (Fondazione)	XA2***	Molto Aggressiva	poco sensibile	frequente	W_1
				quasi permanente	W ₁
Spalla (Elevazione)	(XC4) - XD3	Molto Aggressiva	poco sensibile	frequente	W_1
				quasi permanente	W ₁
Pile (Elevazione)	XC4	Aggressiva	poco sensibile	frequente	W_2
				quasi permanente	W_1
Traversi; Travi prefabbricate	XC3	Ordinaria	poco sensibile	frequente	W ₃
				quasi permanente	W ₂
Solette	XC4	Aggressiva	poco sensibile	frequente	W_2
				quasi permanente	W ₁
* : zone non di seguito precisate					
** pk : 9500-12900; 15000-15800 ; 2040	0-35000 ; 48700-48900 ; 56	6300-59600			
*** pk : 35000-48700 ; 48900-56300					

AUTOSTRADA REGIONALE CISPADANA dal casello di Reggiolo-Rolo sulla A22 al casello di Ferrara Sud sulla A13

PROGETTO DEFINITIVO

OPERE D'ARTE MAGGIORI-PONTI
VPO02 – CAVALCAVIA SP8 - PONTE SUL CANALE DIVERSIVO DI BURANA
RELAZIONE DI CALCOLO

In particolare, per quanto riguarda le sole sottostrutture, le sollecitazioni delle combinazioni 'frequente' e 'quasi permanente' (influenzate principalmente da diversi coefficienti applicati ai carichi mobili) sono essenzialmente coincidenti.

Di conseguenza per l'apertura limite delle fessure si assumerà la condizione peggiorativa (quasi permanente).

Risulta pertanto:

Spalla (Elevazione): C35/45 – Apertura limite: w₁ = 0.2 mm

Pila (Elevazione): C32/40 – Apertura limite: w₁ = 0.2 mm

• Pali e Fondazioni

Classe XC2 : C25/30 – Apertura limite: $w_2 = 0.3 \text{ mm}$

Classe XA1 : C28/35 – Apertura limite: $w_1 = 0.2 \text{ mm}$

Classe XA2 : C32/40 – Apertura limite: $w_1 = 0.2 \text{ mm}$

Per l'opera in questione : Pali e Fondazioni XA1

5.3. DATI SISMICI

• Vita nominale: 50 anni

• Classe d'uso: III \Rightarrow C_U = 1.5

Probabilità di superamento 'P_{VR}' per lo Stato SLV : 10%

Periodo di Ritorno 'T_R' = - V_R / ln(1-P_{VR}) = 712 anni

• Longitudine: 11.1466; Latitudine 44.8626

Tipo di Suolo (vedi Relazione Sismica) : 'C' ⇒ S = 1.4356

• a_{gh} : 0.1719*1.4356 = 0.2468;

AUTOSTRADA REGIONALE CISPADANA dal casello di Reggiolo-Rolo sulla A22 al casello di Ferrara Sud sulla A13

PROGETTO DEFINITIVO

OPERE D'ARTE MAGGIORI-PONTI
VPO02 – CAVALCAVIA SP8 - PONTE SUL CANALE DIVERSIVO DI BURANA
RELAZIONE DI CALCOLO

5.4. PARAMETRI GEOTECNICI

I parametri necessari a definire le caratteristiche del terreno a tergo della spalla sono estratti dal Documento 'Criteri Generali per le verifiche Geotecniche'.

Si assume:

 $\gamma = 19.5 \text{ kN/m}^3$; $\emptyset = 38.0^{\circ} [M1]$

dove:

γ: peso specifico del terrapieno

Ø: angolo d'attrito caratteristico del terrapieno

Le curve di portanza, di sollecitazione e di deformazione dei pali sono estratte dalla Relazione Geotecnica dell'Opera.

PROGETTO DEFINITIVO

OPERE D'ARTE MAGGIORI-PONTI
VPO02 – CAVALCAVIA SP8 - PONTE SUL CANALE DIVERSIVO DI BURANA
RELAZIONE DI CALCOLO

6. DIMENSIONAMENTO DELL'OPERA: SPALLA

6.1. CRITERI DI CALCOLO

6.1.1. Angolo d'attrito terreno/parete

Viene assunto nullo, a favore di sicurezza.

6.1.2. Spinta delle terre: fase statica

Quale valore del Coefficiente di spinta si assume quello 'a riposo'. Il valore è pari a:

$$k_0 = 1-\sin\emptyset = 1-\sin38^\circ = 0.38$$

6.1.3. Spinta delle terre: fase sismica

Si adotta la formula di Mononobe-Okabe

L'espressione adottata è quella di EC8 – Parte 5 – Annesso E – par. E.4 – espressione E.2:

$$k_{a} = \frac{\sin^{2}(\psi + \phi - \vartheta)}{\cos\vartheta * \sin^{2}\psi * \sin(\psi - \vartheta - \delta) * \left[1 + \sqrt{\frac{\sin(\phi + \delta) * \sin(\phi - \beta - \vartheta)}{\sin(\psi - \vartheta - \delta) * \sin(\psi + \beta)}}\right]^{2}}$$

dove:

ψ: angolo inclinazione superficie di applicazione del vettore rispetto a orizzontale.

Nel caso in questione: $\psi = 90^{\circ}$

δ : angolo d'attrito terreno/parete

Nel caso in questione si assume, a favore di sicurezza: $\delta = 0^{\circ}$

■ Ø: angolo di attrito del materiale costituente il terrapieno

In funzione di quanto al par. 4.4 si ha: $\emptyset = 38^{\circ}$

$$\begin{split} \theta &= k_h / (1 \pm k_v) \\ k_h &= 0.2468 \;\; ; \; k_v = \pm 0.5^* k_h = \pm 0.1234 \; (EC8 - Parte \; 5 - Annesso \; E - par. \; E.4 - espressione \; E.6) \\ \theta &= arctg[k_h / (1 \pm k_v)] \Rightarrow \theta_{(kv+)} = 12.4^\circ; \;\; \theta_{(kv-)} = 15.7^\circ \end{split}$$

In definitiva il coefficiente di spinta in fase sismica 'kE' risulta:

PROGETTO DEFINITIVO

OPERE D'ARTE MAGGIORI-PONTI

VPO02 - CAVALCAVIA SP8 - PONTE SUL CANALE DIVERSIVO DI BURANA **RELAZIONE DI CALCOLO**

$$k_E [k_{v-}] = 0.4149 ; k_E [k_{v+}] = 0.3680$$

Il vettore spinta, ortogonale alla parete, va poi moltiplicato per il fattore (1±kv) [espressione E.1 di Norma citata]. Per quanto precisato in Relazione Geotecnica l'espressione è da assumere con segno ± invertito. Si ottiene:

$$k_E = MAX [(1-k_v)^* k_E [k_{v-}]]$$
; $k_E = [(1+k_v)^* k_E [k_{v+}]] = MAX [0.3637; 0.4134] = 0.4134$

6.1.4. Stato Limite Ultimo

6.1.4.1. Situazione Statica

Premessa generale è che le azioni trasversali (vento, eventuale azione centrifuga) non sono certo dimensionanti per spalle la cui dimensione trasversale minima (in caso ospitino un solo impalcato) è di circa 17 m.

In conseguenza di ciò e con riferimento alla Tab.5.1.IV della Norma, i Gruppi di Azioni da prendersi in conto sono '1' e 2a'.

In entrambi i Gruppi, quale coefficiente 'γ' (Norma, Tab.5.1.V) si assumerà il valore 1.35 per tutte la 'azioni elementari' (Permanenti da impalcato e da spalla, Attrito appoggi, Carico Tandem, Carico distribuito su impalcato, Frenatura), mentre si assumerà un valore 1.50 per quanto riguarda il sovraccarico sul terrapieno.

Quali coefficienti Ψ (Norma, Tab.5.1.VI) assumerà:

Gruppo 1

Variabili 'Tandem' e attrito appoggi: 1.0 ; Variabili 'Distribuito' e attrito appoggi: 1.0 ; Frenatura: 0.0

Gruppo 2a

Variabili 'Tandem' e attrito appoggi: 0.75 ; Variabili 'Distribuito' e attrito appoggi: 0.40 ; Frenatura: 1.0

Tranne ove esplicitamente dichiarato il carico derivante dalla folla non viene preso in conto (assenza di marciapiedi).

6.1.4.2. Situazione Sismica

Si prenderà in conto la sola situazione di Sisma prevalente in direzione longitudinale, con solo verso concorde alla spinta del terreno.

Con tale sisma prevalente '+Ex' verranno assunte, quali azioni concomitanti :

- '+0.3*Ey' (sisma trasversale, assunto con il solo verso positivo considerata la simmetria della spalla assunta nel calcolo)
- '±0.3*Ez' (sisma verticale, assunto con entrambi i versi al fine di ottenere azioni nei pali massime dimensionanti per portata – e minime – dimensionanti per pressoflessione)

PROGETTO DEFINITIVO

OPERE D'ARTE MAGGIORI-PONTI
VPO02 – CAVALCAVIA SP8 - PONTE SUL CANALE DIVERSIVO DI BURANA

RELAZIONE DI CALCOLO

6.1.5. Stato Limite di Esercizio

6.1.5.1. Combinazione 'rara'

Risulta significativa solo quando si effettua una ridistribuzione del momento flettente rispetto all'analisi elastica. Nel progetto della spalla non sono previste ridistribuzioni di sorta. Di conseguenza la combinazione 'rara non verrà considerata.

6.1.5.2. Combinazioni 'frequente' e 'quasi permanente' (Fessurazione)

Ove l'elemento possa essere considerato come 'snello' si procederà con il metodo 'diretto' di valutazione dell'ampiezza della fessura.

Ove invece l'elemento sia tozzo, gli algoritmi riportati in normativa per il calcolo dell'ampiezza della fessura non sono più utilizzabili e si procederà con il metodo 'indiretto' di limitazione delle tensioni nell'acciaio. Si procede come prescritto alla tab. C4.1.II della Norma, limitando – in funzione del diametro della barra adottata - la tensione nell'acciaio ai limiti ivi prescritti. Con riferimento all'apertura massima della fessure (par. 4.2):

$$\sigma_{s max} - N/mm^2$$

25≥∅

160

6.1.6. Sovraccarico su terrapieno

Ai sensi del par. C5.1.3.3.7.1 della Circolare Feb 09 gli assi tandem possono essere sostituiti da un carico uniforme di valore pari a :

$$q(Q) = Q_{ik}/(3.0*2.20)$$

Detto carico uniforme risulta – per le singole corsie – pari a:

1a Corsia: $q(Q1) = 90.9 \text{ kN/m}^2$; 2a Corsia: $q(Q2) = 60.6 \text{ kN/m}^2$; 3a Corsia: $q(Q3) = 30.3 \text{ kN/m}^2$

4a Corsia: $q(Q4) = 0 \text{ kN/m}^2$

Ai su elencati carichi, estesi su una lunghezza pari a 2.2 m, va sommato quello dovuto ai carichi q_{ik}, estesi indefinitamente:

1a Corsia: $q(q1) = 9.0 \text{ kN/m}^2$

2a, 3a e 4a Corsia: $q(q2) = q(q3) = q(q4) = 2.5 \text{ kN/m}^2$

PROGETTO DEFINITIVO

OPERE D'ARTE MAGGIORI-PONTI

VPO02 - CAVALCAVIA SP8 - PONTE SUL CANALE DIVERSIVO DI BURANA **RELAZIONE DI CALCOLO**

Per semplicità di analisi e a seguito di considerazioni riportate in 'NOTA' si assume un valore unico del sovraccarico per l'intero terrapieno, valore esteso sull'intero estradosso del cuneo di spinta, pari a:

$$q_v = 25.0 \text{ kN/m}^2$$

La diffusione di tale sovraccarico lungo l'altezza, sempre ai sensi del paragrafo della Circolare già citato, comporterebbe poi una diminuzione del valore del sovraccarico alle varie quote.

Sempre a favore di sicurezza si assume un andamento costante pari al valore massimo.

In conseguenza al coefficiente di spinta su precisato (0.38) si assume in definitiva un sovraccarico orizzontale uniforme lungo l'altezza pari a:

$$q_o = 0.38*25 = 9.5 \text{ kN/m}^2$$

NOTA

Ogni corsia – di larghezza 3.0 m - trasmette alla parete un'azione orizzontale dovuta in parte al carico verticale distribuito 'q', indefinitamente esteso a tergo e in parte al carico 'Q', esteso su una profondità a tergo pari a 2.2 m. Entrambi i carichi cambiano da corsia a corsia.

Affiancando le 4 corsie si ottiene un'azione orizzontale totale 'R': si cerca quel carico verticale uniforme che induce la stessa azione 'R'.

Il problema è di valutare l'azione dovuta al carico 'Q'. Si opera in conseguenza a quanto riportato in figg. 5.1-1 e -2.

1) Determinazione di ε (fig.5.1-2)

$$c=0 \Rightarrow B=0 \; ; \qquad \qquad \alpha=\delta=\beta=0 \Rightarrow M=sin\phi \; ;$$

$$\phi=38^\circ; \qquad \qquad tan \; \epsilon=cos\phi/(1+sin\phi)=0.49 \Rightarrow \epsilon=26^\circ$$

2) Determinazione di θ (fig.5.1-1)

$$\theta = 38+26 = 64^{\circ}$$

3) Determinazione dell'altezza di spinta h_f

$$a=0$$
 m \Rightarrow h_f inizia da sommità parete ; $b=2.2$ m ; $h_f=2.2$ *tg(90-64) = 2.2 *tg26°= 1.07 m

4) Determinazione della Risultante generica ΔS

Il fatto che 'a' sia nullo comporta che le pressioni minima e massima siano uguali (vedi espressioni si $\Delta \sigma$ in fig. 5.2-

1). La risultante di un carico 'fa' risulta pari a:

AUTOSTRADA REGIONALE CISPADANA dal casello di Reggiolo-Rolo sulla A22 al casello di Ferrara Sud sulla A13

PROGETTO DEFINITIVO

OPERE D'ARTE MAGGIORI-PONTI

VPO02 - CAVALCAVIA SP8 - PONTE SUL CANALE DIVERSIVO DI BURANA

$$\Delta S = f_a * b * sin(\theta-\phi)/cos(\theta-\phi)$$
; $\theta-\phi = \epsilon = 26^\circ \Rightarrow \Delta S = f_a * 2.2 * tg 26^\circ = f_a * 1.07$

5) Determinazione della Risultante ΔSi dovuta ai carichi Q_{ik} per la singola corsia i-esima

1°Corsia: Δ S1 = 90.9*1.07 kN/m ; 2°Corsia: Δ S2 = 60.6*1.07 kN/m

3°Corsia: Δ S3 = 30.3*1.07 kN/m ; 4°Corsia: Δ S4 = 0 kN/m

I carichi di cui sopra sono riferiti ad una striscia di parete di lunghezza unitaria, come anche i successivi ΔVi

6) Determinazione della Risultante ΔVi dovuta ai carichi q_{ik} per la singola corsia i-esima

Si assume un'altezza della parete pari a 7.0 m

1°Corsia: $\Delta V1 = 0.38*9.0*7.0 = 23.9 \text{ kN/m}$; 2°4°Corsia: $\Delta V2-3-4 = 0.38*2.5*7.0 = 6.7 \text{ kN/m}$

3°Corsia: Δ S3 = 30.3*1.07 kN/m ; 4°Corsia: Δ S4 = 0 kN/m

7) Determinazione della Risultante totale R su una lunghezza di parete pari a 12.0 m (nº4 corsie nomin ali)

R = 3.0*[1.07*(90.9+60.6+30.3) + (23.9+3*6.7)] = 715 kN

8) Determinazione del sovraccarico equivalente 'q_v'

 $q_v^*0.38^*7.0^*12.0 = 715 \text{ kN} \Rightarrow q_v = 22.4 \text{ kN/m}^2$

In definitiva si assume, a favore di sicurezza, un sovraccarico pari a 25.0 kN/m²

AUTOSTRADA REGIONALE CISPADANA dal casello di Reggiolo-Rolo sulla A22 al casello di Ferrara Sud sulla A13

PROGETTO DEFINITIVO

OPERE D'ARTE MAGGIORI-PONTI

VPO02 - CAVALCAVIA SP8 - PONTE SUL CANALE DIVERSIVO DI BURANA

RELAZIONE DI CALCOLO

Fig. 6.1-1

Strip surcharge

For vertical strip loading f_s acting parallel with structure on the ground surface along an infinitely long strip the trapezoidal increment of active earth pressure applied to the structure over a given segment h_j is assumed – see figure.

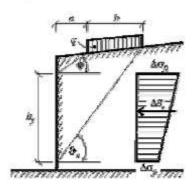


Diagram of increment of active earth pressure due to strip loading f,

This segment is determined by intersection of the structure and lines drawn from the edge points of the strip loading having slopes associated with angles φ and θ_s . The angle θ_s corresponding to critical slip plane follows from:

$$\theta_o = \varphi + \varepsilon$$

The formula is described in details in section "Active earth pressure - line surcharge".

Variation of pressure increment is trapezoidal; the larger intensity of $\Delta \sigma_0$ is applied at the upper end while the smaller intensity of $\Delta \sigma_0$ at the bottom end. The two increments are given by:

$$\Delta \sigma_{jk} = \frac{f_a b K_{qf}}{h_{j}} \left(1 + \frac{a}{a+b} \right)$$

$$\Delta \sigma_{f} = \frac{f_{a}bK_{qf}}{h_{f}} \left(1 - \frac{a}{a+b}\right)$$

where: fa - magnitude of strip surcharge

- width of the strip surcharge acting normal to the structure

- section loaded by active earth pressure increment

$$Z_{ab} = \frac{\sin(\theta_a - \varphi)}{\cos(\theta_a - \varphi - \delta)}$$

angle of critical slip plane

- angle of internal friction of soil - angle of friction structure - soll ō

The resultant of the increment of active earth pressure due to strip loading f_e is provided by:

$$\Delta S_a = f_a b \frac{\sin(\theta_a - \varphi)}{\cos(\theta_a - \varphi - \delta)}$$

where: d_a - angle of critical slip plane

φ - angle of internal friction of soil δ - angle of friction structure - soil f. - magnitude of strip surcharge

b - width of the strip surcharge

For non-homogeneous soils the program proceeds as follows.

AUTOSTRADA REGIONALE CISPADANA dal casello di Reggiolo-Rolo sulla A22 al casello di Ferrara Sud sulla A13

PROGETTO DEFINITIVO

OPERE D'ARTE MAGGIORI-PONTI
VPO02 – CAVALCAVIA SP8 - PONTE SUL CANALE DIVERSIVO DI BURANA

RELAZIONE DI CALCOLO

Fig. 6.1-2

Line surcharge

Vertical infinitely long line loading f acting on the ground surface parallel with structure leads to a triangular increment of active earth pressure applied to the structure over a given segment h_f – see figure:

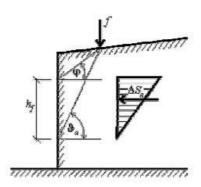


Diagram of increment of active earth pressure due to vertical

line loading acting on ground surface

Action of the line surcharge is deterimened such that two lines are drawn from the point of application following angles φ and ϑ_a (corresponding to the critical slip surface), which is provided by:

$$S_a = \varphi + \varepsilon$$

where: ϕ - angle of internal friction of soil

ε - angle derived from the following formulas

$$\tan \varepsilon = \frac{\cos(\varphi - \alpha)\sin(\varphi - \beta)\cos(\alpha + \delta) + B\cos(\varphi - \beta - \alpha - \delta)}{\sin(\varphi - \alpha)\sin(\varphi - \beta)\cos(\alpha + \delta) + B\sin(\varphi - \beta - \alpha - \delta) + M}$$

$$M = \sqrt{(\sin(\varphi - \beta)\cos(\beta - \alpha) + \beta).(\sin(\varphi + \delta)\cos(\alpha + \delta) + \beta)}$$

$$B = \frac{2c\cos\alpha\cos(\beta - \alpha)\cos\varphi}{\gamma h\cos(\beta - \alpha) + \frac{2\sigma_z\cos\alpha\cos\beta}{\gamma h}}$$

where: β - slope inclination

 φ - angle of internal friction of soil δ - angle of friction structure - soil a - back face inclination of the structure

c - cohesion of soil
y - unit weight of soil
h - assumed depth

PROGETTO DEFINITIVO

OPERE D'ARTE MAGGIORI-PONTI
VPO02 – CAVALCAVIA SP8 - PONTE SUL CANALE DIVERSIVO DI BURANA
RELAZIONE DI CALCOLO

6.1.7. Pareti di risvolto - Fase Sismica

Durante la fase sismica la massa di terreno inscatolato induce un'azione orizzontale pari al peso moltiplicato per il coefficiente sismico k_h . Nel caso di sisma prevalente in direzione trasversale, tale azione è funzione lineare della larghezza della spalla – larghezza diminuita degli spessori dei muri di risvolto.

Sembra a chi scrive che l'azione suddetta vada comunque assoggettata ad un limite superiore (in caso contrario, per una larghezza della spalla tendente all'infinito, l'azione tenderebbe anch'essa all'infinito).

Ad esempio, assumendo un coefficiente k_h pari a 0.34 (valore rappresentativo per l'infrastruttura in questione, assumendo un tipo di suolo 'C') per una spalla che ospiti 2 impalcati (larghezza indicativa 34 m), la pressione consequente sui muri di risvolto risulterebbe pari a:

$$q = 19.5*34*0.34 = 225 \text{ kN/m}^2$$

valore chiaramente inaccettabile che indurrebbe sollecitazioni 'fuori scala'.

Si assumerà quindi che la massa che può essere attivata abbia una dimensione orizzontale trasversale pari a quella del cuneo di spinta attiva per un angolo d'attrito di 38°.

A titolo indicativo, per un'altezza del muro di risvolto pari a 7.0 m, tale dimensione risulta pari a circa 9.0 m.

La pressione conseguente risulterebbe quindi: 19.5*9.0*0.34 = 60 kN/m².

Tale assunzione si concretizzerà nell'assegnare una opportuna 'estensione' del terreno inscatolato nel Codice di Calcolo, con risultati a favore di sicurezza poiché verrà assunta una pressione uniforme e non triangolare con vertice in basso.

Per contro però, operando in tale modo, il Codice – durante l'analisi del sisma in direzione prevalente longitudinale, dimensionante in termini di azioni sui pali - valuterà un'azione orizzontale trasversale (30%) errata e sottodimensionata, poiché sui pali andrà di fatto ad agire l'intera massa e non quella 'ridotta' presa in conto dal Codice. Di conseguenza si svilupperà anche un'analisi manuale tendente a determinare le azioni globali effettive alla base: saranno i risultati di tale analisi ad essere presi a base del dimensionamento dei pali.

PROGETTO DEFINITIVO

OPERE D'ARTE MAGGIORI-PONTI VPO02 – CAVALCAVIA SP8 - PONTE SUL CANALE DIVERSIVO DI BURANA

RELAZIONE DI CALCOLO

6.1.8. Paraghiaia

Indipendentemente dai risultati conseguenti all'analisi condotta con il Codice automatico, il paraghiaia verrà dimensionato in base ad un'analisi locale che tenga conto delle prescrizioni della Norma, par. C5.1.3.3.7.2.

Si assumerà quindi un'azione longitudinale di frenatura, applicata in testa del muro, pari a 180 kN, concomitante con un carico verticale di 300 kN.

6.1.9. Orecchie

Indipendentemente dai risultati conseguenti all'analisi condotta con il Codice automatico, le Orecchie verranno dimensionate in base ad un'analisi locale. Poiché esse – ove presenti – sono uguali per tutte le spalle, tranne ove esplicitamente dichiarato, il dimensionamento verrà effettuato non per l'accelerazione sismica di progetto dell'Opera specifica, ma – considerato che detta accelerazione varia in un campo ristretto – pari a quella massima assoluta per tutte le Opere. Il valore di tale accelerazione è comunque inessenziale, poiché si mostrerà che la Fase dimensionante è quella Statica e non quella Sismica.

6.1.10. Pali

6.1.10.1. Verifiche Geotecniche

Oltre all'usuale verifica di capacita portante verticale, la Norma prevede ora anche la verifica di capacità portante orizzontale: relativamente ad entrambe le problematiche le azioni di progetto verranno confrontate con quelle emergenti dalle curve fornite dal Progettista Geotecnico.

6.1.10.2. Verifiche SLU: Taglio

La Norma NTC (nonché EC) non regolamenta le verifiche a Taglio delle sezioni circolari. Nella Norma ACI invece la sezione circolare viene semplificata assumendo un rettangolo equivalente di larghezza \varnothing ed altezza $0.8^*\varnothing$: <u>si</u> seguirà tale approccio.

Di conseguenza, per quanto riguarda la verifica dell'armatura, applicando l'espressione [NTC 4.1.18]:

 $V_{Rsd} = 0.9^* d^* (A_{sw}/s)^* f_{yd}^* cotg\theta$; dove : $d = 0.95^* 0.8^* \varnothing$; cotg $\theta = 1.0 \rightarrow V_{Rsd} = 0.68^* \varnothing (A_{sw}/s)^* f_{yd}$ Per quanto riguarda la verifica lato cls. si fa riferimento all'espressione [NTC 4.1.19], sempre adottando la medesima 'd' su precisata.

$$V_{Rcd} = 0.9^* d^* b_w^* \alpha_c^* f'_{cd}$$
; dove : $d = 0.95^* 0.8^* \varnothing$; $b_w = \varnothing \rightarrow V_{Rcd} = 0.68^* \varnothing^{2*} \alpha_c^* f'_{cd}$; $(f'_{cd} = 0.5^* f_{cd})$

Il coefficiente α_c verrà assunto unitario in prima ipotesi, e incrementato come concesso dalla Norma se necessario.

AUTOSTRADA REGIONALE CISPADANA dal casello di Reggiolo-Rolo sulla A22 al casello di Ferrara Sud sulla A13

PROGETTO DEFINITIVO

OPERE D'ARTE MAGGIORI-PONTI

VPO02 – CAVALCAVIA SP8 - PONTE SUL CANALE DIVERSIVO DI BURANA RELAZIONE DI CALCOLO

6.1.10.3. Verifiche SLU: Pressoflessione

Verranno effettuate le verifiche nelle sezioni a quota 0.0 e a quota 1.0 m superiore a quella di cambio armatura (si assume una lunghezza di ancoraggio indicativa della barra generica pari appunto a 1.0 m)

6.1.11. Fondazione; Parete centrale; Muri di risvolto

Il dimensionamento delle armature e le verifiche a fessurazione verranno effettuate direttamente dal Codice di Calcolo.

Il Codice comunque non effettua automaticamente le verifiche a Taglio, limitandosi a riportare le mappe di tale sollecitazione. Di conseguenza si opererà manualmente per verificare che gli elementi strutturali in questione non necessitino di armatura specifica a Taglio.

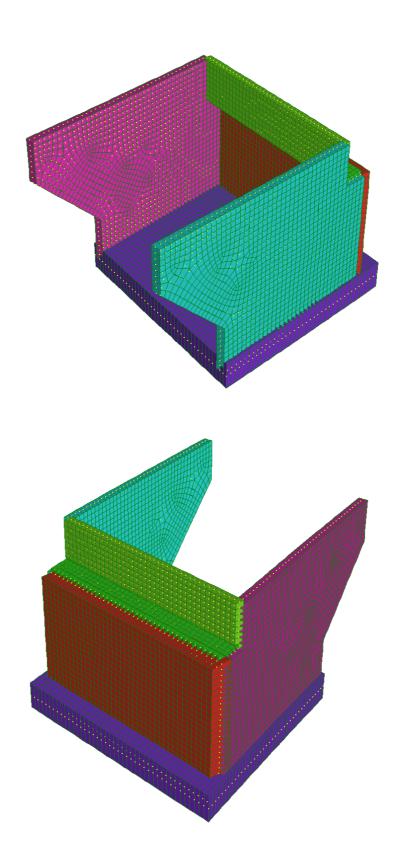
6.2. ANALISI CON CODICE DI CALCOLO

L'analisi è sviluppata mediante il Codice di Calcolo Straus 7 R2.4.4 distribuito in Italia dalla Società 'HSH Srl" di Padova.

L'input è riportato in Allegato – parte 'A'. L'output è incluso nel presente documento.

Sono stati realizzati i modelli delle due Spalle A e B al fine di determinare le sollecitazioni sui pali e sugli elementi strutturali che compongono la struttura oggetto di analisi.

Nelle immagini che seguono vengono rappresentati i modelli realizzati:

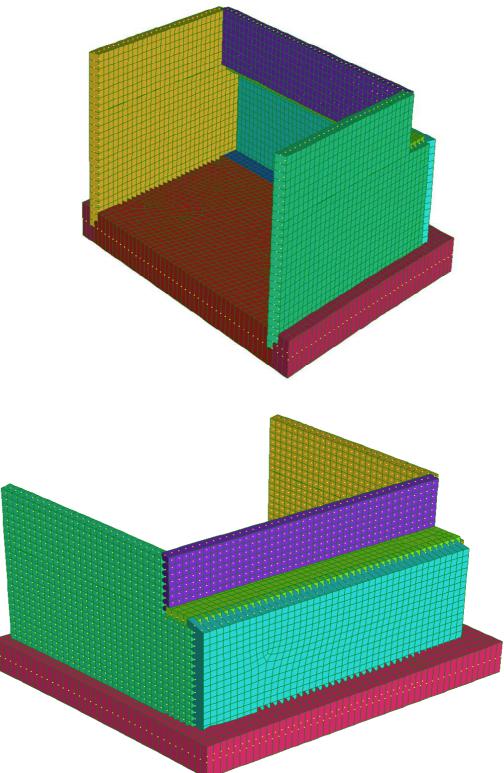

AUTOSTRADA REGIONALE CISPADANA dal casello di Reggiolo-Rolo sulla A22 al casello di Ferrara Sud sulla A13

PROGETTO DEFINITIVO

OPERE D'ARTE MAGGIORI-PONTI
VPO02 – CAVALCAVIA SP8 - PONTE SUL CANALE DIVERSIVO DI BURANA

RELAZIONE DI CALCOLO

Fig. 5.2-1 - SPALLA A


AUTOSTRADA REGIONALE CISPADANA dal casello di Reggiolo-Rolo sulla A22 al casello di Ferrara Sud sulla A13

PROGETTO DEFINITIVO

OPERE D'ARTE MAGGIORI-PONTI

VPO02 – CAVALCAVIA SP8 - PONTE SUL CANALE DIVERSIVO DI BURANA RELAZIONE DI CALCOLO

Fig. 5.2-2 - SPALLA B

PROGETTO DEFINITIVO

OPERE D'ARTE MAGGIORI-PONTI
VPO02 – CAVALCAVIA SP8 - PONTE SUL CANALE DIVERSIVO DI BURANA
RELAZIONE DI CALCOLO

6.3. VERIFICHE

6.3.1. Pali

Si ribadisce che il dimensionamento dei pali verrà effettuato sulla scorta delle risultanze ottenute dal modello di calcolo.

Spalla A

		Combinaz	zioni A1 - SLU	
Palo	Ν	Ν	Ν	Ν
	[kN]	[kN]	[kN]	[kN]
1	-2720	-2014	-2643	-2715
2	-2718	-1967	-2638	-2662
3	-2716	-1921	-2633	-2609
4	-2714	-1874	-2629	-2557
5	-3698	-2762	-3581	-3653
6	-3696	-2716	-3576	-3600
7	-3694	-2669	-3571	-3547
8	-3692	-2623	-3566	-3494
9	-4676	-3511	-4518	-4590
10	-4674	-3464	-4513	-4537
11	-4672	-3418	-4508	-4484
12	-4670	-3371	-4504	-4432
			Minimo	-4676
	V	V	V	V
	[kN]	[kN]	[kN]	[kN]
1	495	387	495	495
2	495	387	495	495
3	495	387	495	495
4	495	387	495	495
5	495	387	495	495
6	495	387	495	495
7	495	387	495	495
8	495	387	495	495
9	495	387	495	495
10	495	387	495	495
11	495	387	495	495
12	495	387	495	495
			Massimo	495

AUTOSTRADA REGIONALE CISPADANA dal casello di Reggiolo-Rolo sulla A22 al casello di Ferrara Sud sulla A13

PROGETTO DEFINITIVO

OPERE D'ARTE MAGGIORI-PONTI

VPO02 – CAVALCAVIA SP8 - PONTE SUL CANALE DIVERSIVO DI BURANA RELAZIONE DI CALCOLO

		Combinazioni	A2 - SLU	
Palo	Ν	Ν	Ν	Ν
	[kN]	[kN]	[kN]	[kN]
1	-2019	-2102	-1951	-2014
2	-2016	-2044	-1946	-1967
3	-2014	-1986	-1941	-1921
4	-2011	-1928	-1937	-1874
5	-2802	-2885	-2700	-2762
6	-2800	-2827	-2695	-2716
7	-2797	-2769	-2690	-2669
8	-2795	-2712	-2685	-2623
9	-3585	-3668	-3448	-3511
10	-3583	-3611	-3444	-3464
11	-3580	-3553	-3439	-3418
12	-3578	-3495	-3434	-3371
				-3668
	V	V	V	V
	[kN]	[kN]	[kN]	[kN]
1	387	387	387	387
2	387	387	387	387
3	387	387	387	387
4	387	387	387	387
5	387	387	387	387
6	387	387	387	387
7	387	387	387	387
8	387	387	387	387
9	387	387	387	387
10	387	387	387	387
11	387	387	387	387
12	387	387	387	387
				387

AUTOSTRADA REGIONALE CISPADANA dal casello di Reggiolo-Rolo sulla A22 al casello di Ferrara Sud sulla A13

PROGETTO DEFINITIVO

OPERE D'ARTE MAGGIORI-PONTI

VPO02 - CAVALCAVIA SP8 - PONTE SUL CANALE DIVERSIVO DI BURANA **RELAZIONE DI CALCOLO**

Palo 1 2 3 4 5 6 7 8 9 10 11 12	Combinazioni Si N [kN] -1010 -1149 -1288 -1427 -2166 -2305 -2445 -2584 -3323 -3462 -3601 -3740	smiche - SLU N [kN] -1435 -1291 -1146 -1002 -2592 -2447 -2303 -2158 -3748 -3604 -3459 -3315 -3748
1 2 3 4 5 6 7 8 9 10 11	V [kN] 840 840 840 840 840 840 840 840 840 840	V [kN] 840 840 840 840 840 840 840 840

AUTOSTRADA REGIONALE CISPADANA dal casello di Reggiolo-Rolo sulla A22 al casello di Ferrara Sud sulla A13

PROGETTO DEFINITIVO

OPERE D'ARTE MAGGIORI-PONTI
VPO02 – CAVALCAVIA SP8 - PONTE SUL CANALE DIVERSIVO DI BURANA

RELAZIONE DI CALCOLO

Spalla B

		Combinazio	oni A1 - SLU	
Palo	Ν	Ν	Ν	Ν
	[kN]	[kN]	[kN]	[kN]
1	-3320	-3416	-3312	-3384
2	-3704	-3736	-3696	-3720
3	-4088	-4056	-4079	-4055
4	-4471	-4375	-4463	-4391
5	-2678	-2774	-2626	-2698
6	-3061	-3094	-3009	-3033
7	-3445	-3413	-3393	-3369
8	-3829	-3733	-3776	-3704
9	-2035	-2131	-1939	-2011
10	-2419	-2451	-2322	-2346
11	-2803	-2771	-2706	-2682
12	-3186	-3090	-3089	-3017
				-4471
	V	V	V	V
	[kN]	[kN]	[kN]	[kN]
1	517	517	557	557
2	517	517	557	557
3	517	517	557	557
4	517	517	557	557
5	517	517	557	557
6	517	517	557	557
7	517	517	557	557
8	517	517	557	557
9	517	517	557	557
10	517	517	557	557
11	517	517	557	557
12	517	517	557	557
				557

AUTOSTRADA REGIONALE CISPADANA dal casello di Reggiolo-Rolo sulla A22 al casello di Ferrara Sud sulla A13

PROGETTO DEFINITIVO

OPERE D'ARTE MAGGIORI-PONTI

VPO02 - CAVALCAVIA SP8 - PONTE SUL CANALE DIVERSIVO DI BURANA

RELAZIONE DI CALCOLO

		Combinazio	oni A2 - SLU	
Palo	Ν	Ν	Ν	Ν
	[kN]	[kN]	[kN]	[kN]
1	-2509	-2593	-2502	-2565
2	-2813	-2840	-2805	-2826
3	-3116	-3088	-3108	-3087
4	-3419	-3336	-3411	-3349
5	-1982	-2065	-1936	-1999
6	-2285	-2313	-2239	-2260
7	-2588	-2561	-2542	-2521
8	-2891	-2808	-2845	-2783
9	-1454	-1538	-1371	-1433
10	-1758	-1785	-1674	-1694
11	-2061	-2033	-1976	-1956
12	-2364	-2281	-2279	-2217
				-3419
	V	V	V	V
	[kN]	[kN]	[kN]	[kN]
1	398	398	433	433
2	398	398	433	433
3	398	398	433	433
4	398	398	433	433
5	398	398	433	433
6	398	398	433	433
7	398	398	433	433
8	398	398	433	433
9	398	398	433	433
10	398	398	433	433
11	398	398	433	433
12	398	398	433	433
				433

AUTOSTRADA REGIONALE CISPADANA dal casello di Reggiolo-Rolo sulla A22 al casello di Ferrara Sud sulla A13

PROGETTO DEFINITIVO

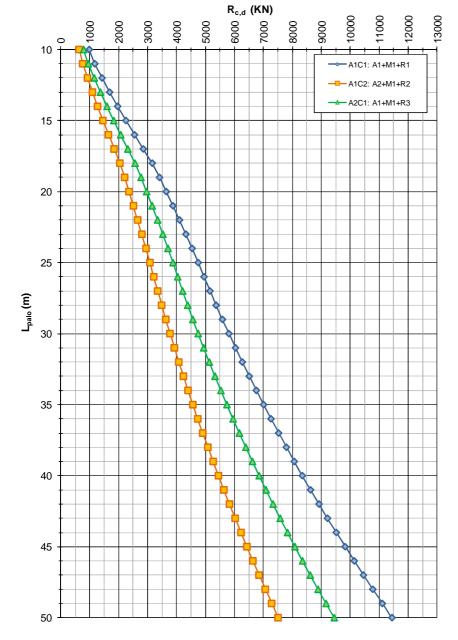
OPERE D'ARTE MAGGIORI-PONTI

VPO02 - CAVALCAVIA SP8 - PONTE SUL CANALE DIVERSIVO DI BURANA **RELAZIONE DI CALCOLO**

	Combinazioni Sis	smiche - SIII
Palo	N	N
	[kN]	[kN]
1	-2653	-3053
	-2856	-3195
3	-3060	-3337
2 3 4 5	-3264	-3479
5	-1947	-2039
6	-2151	-2181
7	-2354	-2324
8	-2558	-2466
9	-1241	-1026
10	-1445	-1168
11	-1649	-1310
12	-1852	-1453
		-3479
	V	V
	[kN]	[kN]
1	687	841
2	687	841
3	687	841
2 3 4 5	687	841
5	687	841
6 7	687	841
	687	841
8	687	841
9	687	841
10	687	841
11	687	841
12	687	841
		841

PROGETTO DEFINITIVO

OPERE D'ARTE MAGGIORI-PONTI
VPO02 – CAVALCAVIA SP8 - PONTE SUL CANALE DIVERSIVO DI BURANA
RELAZIONE DI CALCOLO


6.3.1.1. Verifiche Geotecniche

Portanza Verticale

Alla Figura seguente è riportata la curva di portata a compressione per un palo Ø1200 nel suolo in questione.

Fig. 6.33-1

VPO02 - Ponte sul canale Diversivo di Burana - ZO12 NTC del 14/01/2008 Capacità portante a compressione - Pali trivellati φ 1200mm

PROGETTO DEFINITIVO

OPERE D'ARTE MAGGIORI-PONTI

VPO02 – CAVALCAVIA SP8 - PONTE SUL CANALE DIVERSIVO DI BURANA RELAZIONE DI CALCOLO

Si è ottenuto che la <u>massima azione di compressione</u> N_{sd} è pari a 4676kN (App1C1 - Fase Statica), 3748kN (App2C1 - Fase Sismica) e 3668kN (App1C2 - Fase Statica), mentre <u>l'azione verticale globale massima</u> è pari a 44340kN (App1C1 - Fase Statica), 28500kN (App2C1 - Fase Sismica) e 33580kN (App1C2 - Fase Statica).

Devono essere effettuate due verifiche:

Palo Singolo

L'azione verticale massima deve essere confrontata con le curve di portanza di cui sopra.

Dalla figura precedente si ottiene che un palo di lunghezza 32.0 m ha una portanza:

App1C1 -
$$R_{c,d} \cong 6271 \text{ kN}$$
; $\Rightarrow R_{c,d} / N_{sd} = 1.34 > 1.0$

App1C2 -
$$R_{c,d} \cong 4080 \text{ kN}$$
; $\Rightarrow R_{c,d} / N_{sd} = 1.11 > 1.0$

App2C1 -
$$R_{c,d} \cong 5132 \text{ kN}$$
; $\Rightarrow R_{c,d} / N_{sd} = 1.37 > 1.0$

Pali in Gruppo

L'azione verticale globale massima deve essere confrontata con la portanza del gruppo.

Dalla Relazione Geotecnica si ha che i pali sono posti in: Sabbia Densa. Conseguentemente (interassi pari a 3.0Ø) alla curva di portanza di figura va applicato un coefficiente riduttivo pari a 0.70.

App1C1 -
$$N_{med} = 44340/12 = 3695 \text{ kN}$$

$$R_{c,d} \cong 6271*0.70 = 4390 \text{ kN}; \implies R_{c,d} / N_{med} = 1.19 > 1.0$$

$$App1C2 - N_{med} = 33580/12 = 2798 \text{ kN}$$

$$R_{c,d} \cong 4080^*0.70 = 2856 \text{ kN}; \implies R_{c,d} / N_{med} = 1.03 > 1.0$$

$$App2C1 - N_{med} = 28500/12 = 2375 \text{ kN}$$

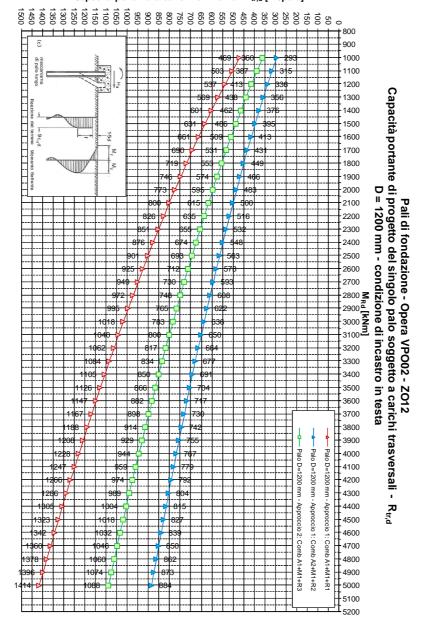
$$R_{c,d} \cong 5132*0.70 = 3592 \text{ kN}; \implies R_{c,d} / N_{med} = 1.51 > 1.0$$

Si conferma quindi la lunghezza pari a : L_{palo} = 32.0 m

PROGETTO DEFINITIVO

OPERE D'ARTE MAGGIORI-PONTI
VPO02 – CAVALCAVIA SP8 - PONTE SUL CANALE DIVERSIVO DI BURANA
RELAZIONE DI CALCOLO

Verifica a trazione


I pali non risultano mai tesi.

6.3.1.2. <u>Portanza Orizzontale</u>

Alla Figura seguente è riportata la curva di portata per il palo di cui sopra.

Fig. 6.3-2

Capacità portante a carichi orizzontali $R_{tr,d}$ [kN/palo]

PROGETTO DEFINITIVO

OPERE D'ARTE MAGGIORI-PONTI
VPO02 – CAVALCAVIA SP8 - PONTE SUL CANALE DIVERSIVO DI BURANA
RELAZIONE DI CALCOLO

Si è ottenuto che la massima azione di taglio V_{sd} è pari a 557kN (App1C1 - Fase Statica), 841kN (App2C1 - Fase Sismica) e 433kN (App1C2 - Fase Statica).

Devono essere effettuate due verifiche:

Palo Singolo

Dalla curva di capacità portante ai carichi orizzontali si ricava in funzione del taglio massimo sul singolo palo il valore del momento resistente che la sezione deve garantire per sopportare le azioni orizzontali. Vengono inoltre ricavati gli sforzi normali minimi sollecitanti necessari per eseguire la verifica

$$\begin{split} & \text{App1C1 - V}_{\text{Sd}} \cong 557 \text{ kN}; \Rightarrow \text{ M}_{\text{Rd}} = 1300 \text{ kNm}; \Rightarrow \text{ N}_{\text{Sd,min}} = 1874 \text{ kN} \\ & \text{App1C2 - V}_{\text{Sd}} \cong 433 \text{ kN}; \Rightarrow \text{ M}_{\text{Rd}} = 1700 \text{ kNm}; \Rightarrow \text{ N}_{\text{Sd,min}} = 1874 \text{ kN} \\ & \text{App2C1 - V}_{\text{Sd}} \cong 841 \text{ kN}; \Rightarrow \text{ M}_{\text{Rd}} = 3400 \text{ kNm}; \Rightarrow \text{ N}_{\text{Sd,min}} = 1002 \text{ kN} \end{split}$$

Pali in Gruppo

Dalla Relazione Geotecnica si ha che i pali sono posti in: Sabbia Densa. Conseguentemente (interassi pari a 3.0Ø) alla curva di portanza di figura va applicato un coefficiente riduttivo pari a 0.80.

$$\begin{split} \text{App1C1 - V}_{\text{Sd}} &\cong 557 \text{ kN / 0,80} = 697 \text{kN;} \Rightarrow \text{ M}_{\text{Rd}} = 1700 \text{ kNm;} \Rightarrow \\ & \text{N}_{\text{Sd,min}} = \text{N}_{\text{med,min}} = 42880/12 = 3573 \text{ kN} \\ \text{App1C2 - V}_{\text{Sd}} &\cong 433 \text{ kN / 0,80} = 541 \text{kN;} \Rightarrow \text{ M}_{\text{Rd}} = 2400 \text{ kNm;} \Rightarrow \\ & \text{N}_{\text{Sd,min}} = \text{N}_{\text{med,min}} = 32310/12 = 2693 \text{ kN} \\ \text{App2C1 - V}_{\text{Sd}} &\cong 841 \text{ kN / 0,80} = 1051 \text{kN;} \Rightarrow \text{ M}_{\text{Rd}} = 4700 \text{ kNm;} \Rightarrow \\ & \text{N}_{\text{Sd,min}} = \text{N}_{\text{med,min}} = 28500/12 = 2375 \text{ kN} \end{split}$$

La sezione in sommità viene armata con 52Φ26

PROGETTO DEFINITIVO

OPERE D'ARTE MAGGIORI-PONTI

VPO02 – CAVALCAVIA SP8 - PONTE SUL CANALE DIVERSIVO DI BURANA RELAZIONE DI CALCOLO

DATI GENERALI SEZIONE IN C.A.

Descrizione Sezione:

Metodo di calcolo resistenza:

Tipologia sezione:

Percorso sollecitazione:

Riferimento Sforzi assegnati:

Riferimento alla sismicità:

Posizione sezione nell'asta: In prossimità dell'attacco a nodo

CARATTERISTICHE DI RESISTENZA DEI MATERIALI IMPIEGATI

CONGLOMERATO -	Classe:	Rck350

Resis. compr. di calcolo fcd : 154,36 daN/cm²
Resis. traz. di calcolo fctd: 12,60 daN/cm²
Modulo Elastico Normale Ec : 337216 daN/cm²
Coeff. di Poisson : 0,20
Resis. media a trazione fctm: 28,80 daN/cm²

ACCIAIO - Tipo: FeB44k

Resist. caratt. snervam. fyk: 4300,0 daN/cm² Resist. caratt. rottura ftk: 5400,0 daN/cm² Resist. snerv. di calcolo fyd: 3739,1 daN/cm² Resist. ultima di calcolo ftd: 3739,1 daN/cm² Deform. ultima di calcolo Epu: 0,010

Modulo Elastico Ef : 2060000 daN/cm²

CARATTERISTICHE DOMINI CONGLOMERATO

DOMINIO Nº 1

Forma del Dominio: Circolare Classe Conglomerato: Rck350

Raggio circonferenza: 60,00 cm Ascissa X centro circ.: 0,00 cm Ordinata Y centro circ.: 0,00 cm

DATI GENERAZIONI CIRCOLARI DI BARRE

N.Gen. Numero assegnato alla singola generazione circolare di barre
Xcentro Ascissa del centro della circonf. lungo cui sono disposte le barre gen.
Ycentro Ordinata del centro della circonf. lungo cui sono disposte le barre gen.
Raggio Raggio in cm della circonferenza lungo cui sono disposte le barre gen.
N.Barre Numero di barre generate equidist. disposte lungo la circonf.

Diametro in mm della singola barra generata

N.Gen. Xcentro,cm Ycentro,cm Raggio,cm N.Barre Diam.Ø,mm

1 0,00 0,00 52,00 52 26

ST.LIM.ULTIMI - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

N	Sforzo normale in daN applicato nel Baric. (+ se di compressione)
Mx	Coppia concentrata in daNm applicata all'asse x princ. d'inerzia
	con verso positivo se tale da comprimere il lembo sup. della sez.
My	Coppia concentrata in daNm applicata all'asse y princ. d'inerzia
	con verso positivo se tale da comprimere il lembo destro della sez.
Vy	Componente del Taglio [daN] parall. all'asse princ.d'inerzia y
Vx	Componente del Taglio [daN] parall. all'asse princ.d'inerzia x

N.Comb.	N	Mx	Му	Vy	Vx
1	187400	130000	0	0	0
2	187400	170000	0	0	0
3	100200	340000	0	0	0

PROGETTO DEFINITIVO

OPERE D'ARTE MAGGIORI-PONTI

VPO02 - CAVALCAVIA SP8 - PONTE SUL CANALE DIVERSIVO DI BURANA

RELAZIONE DI CALCOLO

4	357300	170000	0	0	0
5	269300	240000	0	0	0
6	237500	470000	Ω	0	0

RISULTATI DEL CALCOLO

Copriferro netto minimo barre longitudinali: 6,7 cm Interferro netto minimo barre longitudinali: 3,7 cm

METODO AGLI STATI LIMITE ULTIMI - RISULTATI PRESSO-TENSO FLESSIONE

Ver	S = combinazione verificata / N = combin. non verificata
N	Sforzo normale assegnato [in daN] (positivo se di compressione)
Mx	Momento flettente assegnato [in daNm] riferito all'asse x princ. d'inerzia
My	Momento flettente assegnato [in daNm] riferito all'asse y princ. d'inerzia
N ult	Sforzo normale ultimo [in daN] nella sezione (positivo se di compress.)
Mx ult	Momento flettente ultimo [in daNm] riferito all'asse x princ. d'inerzia
My ult	Momento flettente ultimo [in daNm] riferito all'asse y princ. d'inerzia
Mis.Sic.	Misura sicurezza = rapporto vettoriale tra (N ult,Mx ult,My ult) e (N,Mx,My)
	Verifica positiva se tale rapporto risulta >=1.000

ica positiva se tale rapporto risulta >=1.000

N.Comb.	Ver	N	Mx	Му	N ult	Mx ult	My ult	Mis.Sic.
1	S	187400	130000	0	187410	472476	0	3,634
2	S	187400	170000	0	187410	472476	0	2,779
3	S	100200	340000	0	100212	454349	0	1,336
4	S	357300	170000	0	357279	500228	0	2,943
5	S	269300	240000	0	269289	487046	0	2,029
6	S	237500	470000	0	237472	481769	0	1.025

METODO AGLI STATI LIMITE ULTIMI - DEFORMAZIONI UNITARIE ALLO STATO ULTIMO

ec	max	Deform. unit. massima del conglomerato a compressione
ec	3/7	Deform. unit. del conglomerato nella fibra a 3/7 dell'altezza efficace
ХC	max	Ascissa in cm della fibra corrisp. a ec max (sistema rif. X,Y,O sez.)
Yc	max	Ordinata in cm della fibra corrisp. a ec max (sistema rif. X,Y,O sez.)
ef	min	Deform. unit. minima nell'acciaio (negativa se di trazione)
Xf	min	Ascissa in cm della barra corrisp. a ef min (sistema rif. X,Y,O sez.)
Yf	min	Ordinata in cm della barra corrisp. a ef min (sistema rif. X,Y,O sez.)
ef	max	Deform. unit. massima nell'acciaio (positiva se di compress.)
Xf	max	Ascissa in cm della barra corrisp. a ef max (sistema rif. X,Y,O sez.)
Yf	max	Ordinata in cm della barra corrisp. a ef max (sistema rif. X,Y,O sez.)

N.Comb.	ec max	ec 3/7 2	Xc max Y	c max	ef min X	f min Y	f min	ef max 2	Xf max	Yf max
1	0,00350	-0,00072	0,0	60,0	0,00284	0,0	52,0	-0,00568	0,0	-52,0
2	0,00350	-0,00072	0,0	60,0	0,00284	0,0	52,0	-0,00568	0,0	-52,0
3	0,00350	-0,00105	0,0	60,0	0,00279	0,0	52,0	-0,00641	0,0	-52,0
4	0,00350	-0,00018	0,0	60,0	0,00293	0,0	52,0	-0,00451	0,0	-52,0
5	0,00350	-0,00044	0,0	60,0	0,00289	0,0	52,0	-0,00508	0,0	-52,0
6	0,00350	-0,00054	0,0	60,0	0,00287	0,0	52,0	-0,00530	0,0	-52,0

POSIZIONE ASSE NEUTRO PER OGNI COMB. DI RESISTENZA

a	Coeff. a nell'eq. dell'asse neutro aX+bY+c=0 nel rif. X,Y,O gen.
b	Coeff. b nell'eq. dell'asse neutro aX+bY+c=0 nel rif. X,Y,O gen.
С	Coeff. c nell'eq. dell'asse neutro aX+bY+c=0 nel rif. X,Y,O gen.
x/d	Rapp. di duttilità a rottura in presenza di sola fless.(travi)
C.Rid.	Coeff. di riduz. momenti per sola flessione in travi continue

N.Comb.	a	b	C	x/d	C.Rid.
1 2	•	•	-0,001417691 -0,001417691		

AUTOSTRADA REGIONALE CISPADANA dal casello di Reggiolo-Rolo sulla A22 al casello di Ferrara Sud sulla A13

PROGETTO DEFINITIVO

OPERE D'ARTE MAGGIORI-PONTI
VPO02 – CAVALCAVIA SP8 - PONTE SUL CANALE DIVERSIVO DI BURANA
RELAZIONE DI CALCOLO

4	0,00000000	0,000071539	-0,000792317
5	0,00000000	0,000076594	-0,001095635
6	0,00000000	0,000078593	-0,001215590

6.3.1.3. <u>Verifiche SLU: Pressoflessione</u>

Si premette che il meccanismo di rottura ipotizzato nell'estrapolazione delle curve di capacità portante orizzontale presuppone che a collasso si formi una seconda cerniera plastica – oltre a quella in testa – posizionata a circa 3÷4Ø. Di conseguenza l'armatura (assai rilevante) inserita per in testa verrà proseguita sino a quota -5.0 m (punto di momento pressoché nullo). Successivamente si armerà in funzione del momento massimo relativo ottenibile dalla figura precedente (quota -8.0m). Tale armatura verrà proseguita per 12 m. Successivamente l'armatura non verrà sottoposta a verifica puntuale (momento flettente nullo).

Dai valori dei tagli orizzontali precedentemente calcolati è possibile valutare il momento sollecitante allo SLU a quota -8.0m che viene impiegato nelle condizioni di verifica. Un taglio di 1000kN in testa produce a quota -9.0 un momento sollecitante pari a 1073kNm; in tale posizione l'azione di taglio è nulla essendo il massimo valore del momento.

		Profondità 0.0			Profondità 9.0	
	V_{Sd,u} [kN]	M_{Sd,u} [kNm]	${f N}_{\sf Sd,min}$ $[\ k{f N}\]$	V _{Sd,u} [kN]	M_{Sd,υ} [kNm]	
App1C1	557	1300	1874	0	598	
App1C2	433	1700	1874	0	465	
App2C1	841	3400	1002	0	902	
App1C1	697	1700	3573	0	748	
App1C2	541	2400	2693	0	580	
App2C1	1051	4700	2375	0	1128	

La sezione viene armata con $26\Phi26$.

DATI GENERALI SEZIONE IN C.A.

Descrizione Sezione:
Metodo di calcolo resistenza:
Tipologia sezione:
Percorso sollecitazione:
Riferimento Sforzi assegnati:

Stati Limite Ultimi Sezione generica A Sforzo Norm. costante Assi x,y principali d'inerzia

AUTOSTRADA REGIONALE CISPADANA dal casello di Reggiolo-Rolo sulla A22 al casello di Ferrara Sud sulla A13

PROGETTO DEFINITIVO

OPERE D'ARTE MAGGIORI-PONTI

VPO02 - CAVALCAVIA SP8 - PONTE SUL CANALE DIVERSIVO DI BURANA

RELAZIONE DI CALCOLO

Riferimento alla sismicità: Zona non classificata sismica Posizione sezione nell'asta: In prossimità dell'attacco a nodo

CARATTERISTICHE DI RESISTENZA DEI MATERIALI IMPIEGATI

CONGLOMERATO - CLASSE: RCK330	CONGLOMERATO	_	Classe:	Rck350
-------------------------------	--------------	---	---------	--------

Resis. compr. di calcolo fcd : 154.36 daN/cm² Resis. traz. di calcolo fctd: 12,60 daN/cm² Modulo Elastico Normale Ec : 337216 daN/cm²

Coeff. di Poisson 0,20 Resis. media a trazione fctm: 28,80 daN/cm²

Tipo: FeB44k ACCTATO

> Resist. caratt. snervam. fyk: 4300,0 daN/cm² 5400,0 daN/cm² Resist. caratt. rottura ftk: Resist. snerv. di calcolo fyd: 3739,1 daN/cm² Resist. ultima di calcolo ftd: 3739,1 daN/cm²

Deform. ultima di calcolo Epu: 0,010

Modulo Elastico Ef : 2060000 daN/cm²

CARATTERISTICHE DOMINI CONGLOMERATO

DOMINIO Nº 1

Circolare Forma del Dominio: Classe Conglomerato: Rck350

Raggio circonferenza: 60,00 cm Ascissa X centro circ.: 0,00 cm Ordinata Y centro circ.: 0,00 cm

DATI GENERAZIONI CIRCOLARI DI BARRE

N. Gen. Numero assegnato alla singola generazione circolare di barre Xcentro Ascissa del centro della circonf. lungo cui sono disposte le barre gen. Ycentro Ordinata del centro della circonf. lungo cui sono disposte le barre gen. Raggio in cm della circonferenza lungo cui sono disposte le barre gen. Raggio N.Barre Numero di barre generate equidist. disposte lungo la circonf.

Diam. Diametro in mm della singola barra generata

N.Gen. Xcentro,cm Ycentro,cm Raggio,cm N.Barre Diam.Ø,mm 1 0,00 0,00 52,00 26 26

ST.LIM.ULTIMI - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

Sforzo normale in daN applicato nel Baric. (+ se di compressione) Coppia concentrata in daNm applicata all'asse x princ. d'inerzia Mx con verso positivo se tale da comprimere il lembo sup. della sez. Му Coppia concentrata in daNm applicata all'asse y princ. d'inerzia con verso positivo se tale da comprimere il lembo destro della sez. Componente del Taglio [daN] parall. all'asse princ.d'inerzia y Componente del Taglio [daN] parall. all'asse princ.d'inerzia x Vν Vχ

N.Comb.	N	Mx	My	Vy	Vx
1	187400	59800	0	0	0
2	187400	46500	0	0	0
3	100200	90200	0	0	0
4	357300	74800	0	0	0
5	269300	58000	0	0	0
6	237500	112800	0	0	0

AUTOSTRADA REGIONALE CISPADANA dal casello di Reggiolo-Rolo sulla A22 al casello di Ferrara Sud sulla A13

PROGETTO DEFINITIVO

OPERE D'ARTE MAGGIORI-PONTI
VPO02 – CAVALCAVIA SP8 - PONTE SUL CANALE DIVERSIVO DI BURANA
RELAZIONE DI CALCOLO

RISULTATI DEL CALCOLO

Copriferro netto minimo barre longitudinali: 6,7 cm Interferro netto minimo barre longitudinali: 9,9 cm

METODO AGLI STATI LIMITE ULTIMI - RISULTATI PRESSO-TENSO FLESSIONE

Ver	S = combinazione verificata / N = combin. non verificata
N	Sforzo normale assegnato [in daN] (positivo se di compressione)
Mx	Momento flettente assegnato [in daNm] riferito all'asse x princ. d'inerzia
My	Momento flettente assegnato [in daNm] riferito all'asse y princ. d'inerzia
N ult	Sforzo normale ultimo [in daN] nella sezione (positivo se di compress.)
Mx ult	Momento flettente ultimo [in daNm] riferito all'asse x princ. d'inerzia
My ult	Momento flettente ultimo [in daNm] riferito all'asse y princ. d'inerzia
Mis.Sic.	Misura sicurezza = rapporto vettoriale tra (N ult, Mx ult, My ult) e (N, Mx, My)
	Verifica positiva se tale rapporto risulta >=1.000

verifica positiva se tare rapporto risurta >-1.000

N.Comb.	Ver	N	Mx	Му	N ult	Mx ult	My ult	Mis.Sic.
1	S	187400	59800	0	187407	290376	0	4,856
2	S	187400	46500	0	187407	290376	0	6,245
3	S	100200	90200	0	100218	265886	0	2,948
4	S	357300	74800	0	357314	328622	0	4,393
5	S	269300	58000	0	269298	310344	0	5,351
6	S	237500	112800	0	237509	302758	0	2,684

METODO AGLI STATI LIMITE ULTIMI - DEFORMAZIONI UNITARIE ALLO STATO ULTIMO

ec max	Deform. unit. massima del conglomerato a compressione
ec 3/7	Deform. unit. del conglomerato nella fibra a 3/7 dell'altezza efficace
Xc max	Ascissa in cm della fibra corrisp. a ec max (sistema rif. X,Y,O sez.)
Yc max	Ordinata in cm della fibra corrisp. a ec max (sistema rif. X,Y,O sez.)
ef min	Deform. unit. minima nell'acciaio (negativa se di trazione)
Xf min	Ascissa in cm della barra corrisp. a ef min (sistema rif. X,Y,O sez.)
Yf min	Ordinata in cm della barra corrisp. a ef min (sistema rif. X,Y,O sez.)
ef max	Deform. unit. massima nell'acciaio (positiva se di compress.)
Xf max	Ascissa in cm della barra corrisp. a ef max (sistema rif. X,Y,O sez.)
Yf max	Ordinata in cm della barra corrisp. a ef max (sistema rif. X,Y,O sez.)
N.Comb.	ec max ec $3/7$ Xc max Yc max ef min Xf min Yf min ef max Xf max

N.Comb.	ec max	ec 3/7.	Xc max	Yc max	ef min X	i min	Yi min	ei max X	i max Y	i max
1	0,00350	-0,00136	0,0	60.0	0.00274	0,0	52.0	-0,00708	0,0	-52.0
2	0,00350	-0,00136	0,0	60,0	0,00274	0,0	52,0	-0,00708	- , -	-52,0
3	0,00350	-0,00201	0,0	60,0	0,00264	0,0	52,0	-0,00851	0,0	-52,0
4	0,00350	-0,00047	0,0	60,0	0,00288	0,0	52,0	-0,00515	0,0	-52,0
5	0,00350	-0,00089	0,0	60,0	0,00282	0,0	52,0	-0,00606	0,0	-52,0
6	0,00350	-0,00106	0,0	60,0	0,00279	0,0	52,0	-0,00644	0,0	-52,0

POSIZIONE ASSE NEUTRO PER OGNI COMB. DI RESISTENZA

a	Coeff. a nell'eq. dell'asse neutro aX+bY+c=0 nel rif. X,Y,O gen.
b	Coeff. b nell'eq. dell'asse neutro aX+bY+c=0 nel rif. X,Y,O gen.
С	Coeff. c nell'eq. dell'asse neutro aX+bY+c=0 nel rif. X,Y,O gen.
x/d	Rapp. di duttilità a rottura in presenza di sola fless.(travi)
C.Rid.	Coeff. di riduz. momenti per sola flessione in travi continue

N.Comb.	a	b	C	x/d	C.Rid.
1 2 3 4 5	0,00000000 0,00000000 0,00000000 0,000000	0,000094492 0,000094492 0,000107207 0,000077227 0,000085352 0,000088737	-0,002169545 -0,002169545 -0,002932441 -0,001133612 -0,001621130 -0,001824234		

AUTOSTRADA REGIONALE CISPADANA dal casello di Reggiolo-Rolo sulla A22 al casello di Ferrara Sud sulla A13

PROGETTO DEFINITIVO

OPERE D'ARTE MAGGIORI-PONTI
VPO02 – CAVALCAVIA SP8 - PONTE SUL CANALE DIVERSIVO DI BURANA
RELAZIONE DI CALCOLO

6.3.1.4. <u>Verifiche SLE: Fessurazione</u>

Si procede in analogia al paragrafo precedente.

A quota 0.0 e quota 9.0 le condizioni di verifica sono le seguenti:

Profondità 0.0			Profor	ndità 9.0
$V_{Sd,u}$ [kN]	M_{Sd,u} [kNm]	${\sf N}_{\sf Sd,min}$ [kN]	V_{Sd,u} [kN]	M _{Sd,u} [kNm]
433	1700	1874	0	465
541	2400	2693	0	580

A quota 0.0 la verifica viene eseguita con un'armatura di 52 □ 26:

COMB. FREQUENTI (S.L.E.) - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

N	Sforzo normale in daN applicato nel Baricentro (+ se di compressione)
Mx	Coppia concentrata in daNm applicata all'asse x princ. d'inerzia
	con verso positivo se tale da comprimere il lembo superiore della sez.
My	Coppia concentrata in daNm applicata all'asse y princ. d'inerzia
	con verso positivo se tale da comprimere il lembo destro della sez.

N.Comb.	N	Mx	My
1	187400	170000	0
2	269300	240000	0

COMBINAZIONI FREQUENTI IN ESERCIZIO - MASSIME TENSIONI NORMALI ED APERTURA FESSURE

Ver	S = combinazione verificata / N = combin. non verificata
Sc max	Massima tensione positiva di compressione nel conglomerato [daN/cm²]
Xc max	Ascissa in cm della fibra corrisp. a Sc max (sistema rif. X,Y,O)
Yc max	Ordinata in cm della fibra corrisp. a Sc max (sistema rif. X,Y,O)
Sf min	Minima tensione negativa di trazione nell'acciaio [daN/cm²]
Xf min	Ascissa in cm della barra corrisp. a Sf min (sistema rif. X,Y,O)
Yf min	Ordinata in cm della barra corrisp. a Sf min (sistema rif. X,Y,O)
Ac eff.	Area di conglomerato [cm²] in zona tesa considerata aderente alle barre
D fess.	Distanza calcolata tra le fessure espressa in mm
К3	Coeff. di normativa dipendente dalla forma del diagramma delle tensioni
Ap.fess.	Apertura calcolata delle fessure espressa in mm

N.Comb.	Ver	Sc max	Xc max	Yc max	Sf min	Xf min	Yf min	Ac eff. I) fess.	кз :	Ap.Fess.
1	s	94,4	0,0	0,0	-1379	0,0	-52,0	2234	 194	0,183	0,187
2	S	17,4	0,0	0,0	-925	0,0	-52,0	0	0		0,000

A quota 9.0 la verifica viene eseguita con un'armatura di $26\Phi26$:

La sezione risulta non fessurata.

AUTOSTRADA REGIONALE CISPADANA dal casello di Reggiolo-Rolo sulla A22 al casello di Ferrara Sud sulla A13

PROGETTO DEFINITIVO

OPERE D'ARTE MAGGIORI-PONTI VPO02 – CAVALCAVIA SP8 - PONTE SUL CANALE DIVERSIVO DI BURANA

RELAZIONE DI CALCOLO

6.3.1.5. Verifiche SLU: Taglio

Si riportano le curve di sollecitazione per azione tagliante unitaria in testa.

Verifica lato Acciaio

L'espressione

 $V_{Rsd} = cot(\theta)^* 0.68^* \emptyset^* (A_{sw}/s)^* f_{yd}$; dove $\emptyset = 1200 \text{ mm e } f_{yd} = 391.3 \text{ N/mm}_2$

assume i seguenti valori per armature e passi variabili:

TAB. 6.3-1

Palo Φ	1200	$\cot \theta = 1.0$	$\cot \theta = 1.5$	$\cot \theta = 2.0$	$\cot \theta = 2.5$
\emptyset – mm	s - mm		V_{Rsd}	- kN	
10	200	251	376	502	627
10	100	502	752	1.003	1.254
12	200	361	542	722	903
12	100	722	1.083	1.444	1.806
16	200	642	963	1.284	1.605
16	100	1.284	1.926	2.568	3.210
20	200	1.003	1.505	2.006	2.508
20	100	2.006	3.009	4.012	5.016

Dalla fig. precedente emerge che il taglio in testa (1016*1.2 = 1220 kN) si riduce al 60% dell'azione in testa (735 kN) a quota -4.0 m, per poi scendere a valori inferiori al 20% dell'azione in testa (245 kN) a quote inferiori a -7.0m

Conseguentemente – assumendo $\cot\theta$ = 2.0 - si adotta una staffatura:

da testa a quota -7.0 : st Ø 16/200 $V_{Rsd} = 1284 \text{ kN} > 1051 \text{ kN}$

da quota -7.0 a fine palo : st \emptyset 12/200 $V_{Rsd} = 722 \text{ kN} > 214 \text{ kN}$

Verifica lato Cls.

 $f'_{cd} = 0.5^* f_{cd} = 7.1 \text{ N/mm}^2 \Rightarrow V_{Rcd} = 0.68^* 1200^{2*} 1.0^* 7.1 \equiv 6952 \text{ kN} >> V_{Sd}$

AUTOSTRADA REGIONALE CISPADANA dal casello di Reggiolo-Rolo sulla A22 al casello di Ferrara Sud sulla A13

PROGETTO DEFINITIVO

OPERE D'ARTE MAGGIORI-PONTI
VPO02 – CAVALCAVIA SP8 - PONTE SUL CANALE DIVERSIVO DI BURANA

RELAZIONE DI CALCOLO

6.3.2. Paraghiaia

Il paraghiaia (spessore 0.50 m) viene trattato in base alla massima accelerazione di progetto valida per l'insieme delle opere.

$$a_g = 2.420 \text{ m/s}^2$$
; $a_g/g = 0.246 \text{ m/s}^2 k_v = 0.123$; $k_E = 0.4125$

Considerato che l'altezza del paraghiaia è condizionato dall'altezza della trave e che questa, per gli impalcati in CAP utilizzati nel presente progetto, può arrivare a 1.6 m, si sviluppa un'analisi di validità generale per altezze di paraghiaia sino a 3.0.

Volendo attribuire alla presente trattazione una validità generale per tutti i paraghia presenti su spalle che sostengono impalcati in CAP, chiuse o aperte che siano:

• si considera l'inerzia del terreno inscatolato considerando la massa del cuneo di spinta attivo che agisce dietro al paraghiaia (viene considerata uno spessore del terreno di 2.0m).

6.3.2.1. Sollecitazioni – SLU: Fase Sismica

Si considera una fascia di lunghezza unitaria.

Azioni verticali

Peso proprio : 25*0.50*3.0 = 37.5 kN

Azioni orizzontali

Peso proprio : q = 0.246*25*0.50 = 3.1 kN/m

Terreno inscatolato : q = 0.246*19.5*2.00 = 9.6 kN/m

Spinta delle terre : $q_{max} = 19.5*0.4125*3.0 = 24.2 \text{ kN/m}$

Sollecitazioni alla base

N = 37.5 kN; H = (3.1+9.6)*3.0+24.2*3.0/2 = 74.4 kN

 $M = (3.1+9.6)*3.0^2/2 + 24.2*3.0^2/6 = 93.5 \text{ kNm}$

AUTOSTRADA REGIONALE CISPADANA dal casello di Reggiolo-Rolo sulla A22 al casello di Ferrara Sud sulla A13

PROGETTO DEFINITIVO

OPERE D'ARTE MAGGIORI-PONTI

VPO02 - CAVALCAVIA SP8 - PONTE SUL CANALE DIVERSIVO DI BURANA

RELAZIONE DI CALCOLO

6.3.2.2. Sollecitazioni - SLU: Fase Statica

Azioni verticali

Peso proprio: 37.5 kN

Azione Q_{1k} = 300 kN (n^o2 carichi posti a distanza trasversale 2.0 m)

Azioni orizzontali

Spinta delle terre : $q_{max} = 19.5*0.38*3.0 = 22.2 \text{ kN/m}$

Sovraccarico : q = 25.0*0.38 = 9.5 kN/m

Azione di Frenatura: H = 180 kN

Sollecitazioni alla base

Si considera una diffusione delle azioni concentrate a 45°.

Di conseguenza i carichi Q_{1k} vengono considerati agenti su una lunghezza trasversale pari a:

$$B1 = 2.0 + 2*3.0 = 8.0 \text{ m}$$

mentre l'azione da Frenatura viene considerata agente su una lunghezza trasversale pari a:

$$B2 = 2*3.0 = 6.0 \text{ m}$$

N = 1.35*37.5 + 1.35*300/8.0 = 101.5 kN/m

H = 1.35*22.2*3.0/2 + 1.50*9.5*3.0 + 1.35*180/6.0 = 128.2 kN/m

 $M = 1.35*22.2*3.0^2/6 + 1.50*9.5*3.0^2/2 + 1.35*180*3.0 /6.0 = 230.6 \text{ kN/m}$

6.3.2.3. Sollecitazioni - SLE

N = 37.5 + 300/8.0 = 74.5 kN/m

H = 22.2*3.0/2 + 9.5*3.0 + 180/6.0 = 91.8 kN/m

 $M = 22.2*3.0^2/6 + 9.5*3.0^2/2 + 180*3.0/6.0 = 166.1 \text{ kN/m}$

AUTOSTRADA REGIONALE CISPADANA dal casello di Reggiolo-Rolo sulla A22 al casello di Ferrara Sud sulla A13

PROGETTO DEFINITIVO

OPERE D'ARTE MAGGIORI-PONTI
VPO02 – CAVALCAVIA SP8 - PONTE SUL CANALE DIVERSIVO DI BURANA
RELAZIONE DI CALCOLO

6.3.2.4. Verifiche SLE: Fessurazione

Si ipotizza un'armatura verticale costituita da Ø20/100 controterra e Ø16/200 all'esterno

b=100cm

h=50cm

 $A_{s,est} = 5\phi16$ d=6cm

 $A_{s,int} = 10\phi 20$ d=44cm

Azioni sollecitanti allo SLE

 $N_{Sd,SLE} = -7450 daN$

 $M_{Sd,SLE} = +16610 daNm$

 $\sigma_{s,traz}$ = +117MPa < 160MPa

Quindi la deformazione è contenuta nei limiti

AUTOSTRADA REGIONALE CISPADANA dal casello di Reggiolo-Rolo sulla A22 al casello di Ferrara Sud sulla A13

PROGETTO DEFINITIVO

OPERE D'ARTE MAGGIORI-PONTI
VPO02 – CAVALCAVIA SP8 - PONTE SUL CANALE DIVERSIVO DI BURANA
RELAZIONE DI CALCOLO

6.3.2.5. Verifiche SLU: Taglio

Resistenza della sezione

f_{ck} f_{cd}	37,4 21,2	MPa MPa
$V_{Rd,c} =$	266,9	kN
$C_{Rd,c} = k = 0$ $k = 0$ $\rho_{I} = 0$ $v_{min} = 0$ $\gamma_{c} = 0$	0,120 1,667 0,0070 0,460 1,50	
b = d =	1000 450	mm mm

La resistenza a taglio delle sola sezione in c.a. è superiore al valore sollecitante massimo 128.2kN.

6.3.2.6. Verifiche SLU: Tensioni Normali

DATI GENERALI SEZIONE IN C.A.

Descrizione Sezione:

Metodo di calcolo resistenza:

Tipologia sezione:

Percorso sollecitazione:

Condizioni Ambientali:

Riferimento Sforzi assegnati:

Riferimento alla sismicità:

Posizione sezione nell'asta: In prossimità dell'attacco a nodo

CARATTERISTICHE DI RESISTENZA DEI MATERIALI IMPIEGATI

CONGLOMERATO	- Classe: Rck450		
	Resis. compr. di calcolo f	cd :	179,90 daN/cm ²
	Resis. traz. di calcolo f	ctd:	15,64 daN/cm ²
	Modulo Elastico Normale E	c :	346254 daN/cm ²
	Coeff. di Poisson	:	0,20
	Resis. media a trazione f	ctm:	$33,52 \text{ daN/cm}^2$
	Coeff. Omogen. S.L.E.	:	15,0
	Combinazioni Rare in Esercizio	(Tens.L	imite):
	Sc Limi	te :	224,10 daN/cm ²
	Apert.Fess.Limi	te :	Non prevista
ACCIAIO	- Tipo: FeB44k		
	Resist. caratt. snervam.	fyk:	4300,0 daN/cm ²
	Resist. caratt. rottura	ftk:	$5400,0 daN/cm^2$
	Resist. snerv. di calcolo	fyd:	3739,1 daN/cm ²
	Resist. ultima di calcolo	ftd:	3739,1 daN/cm ²

AUTOSTRADA REGIONALE CISPADANA dal casello di Reggiolo-Rolo sulla A22 al casello di Ferrara Sud sulla A13

PROGETTO DEFINITIVO

OPERE D'ARTE MAGGIORI-PONTI

VPO02 - CAVALCAVIA SP8 - PONTE SUL CANALE DIVERSIVO DI BURANA **RELAZIONE DI CALCOLO**

Deform. ultima di calcolo Epu: 0,010

Modulo Elastico Ef : 2060000 daN/cm² ist. ß1*ß2 : Coeff. Aderenza 1,00 daN/cm² Coeff. Aderenza diff. £1*£2: 0,50 daN/cm² Comb.Rare Sf Limite : 3010,0 daN/cm²

CARATTERISTICHE DOMINI CONGLOMERATO

DOMINIO Nº 1

Forma del Dominio: Poligonale Classe Conglomerato: Rck450

N.vertice	Ascissa X,	cm Ordinata Y, cm
1	0,00	0,00
2	0,00	50,00
3	100,00	50,00
4	100,00	0,00

DATI BARRE ISOLATE

N.Barra Numero assegnato alle singole barre isolate e nei vertici dei domini Ascissa X Ascissa in cm del baricentro della barra nel sistema di rif. gen. X, Y, O Ordinata Y Ordinata in cm del baricentro della barra nel sistema di rif. gen. X, Y, O Diametro in mm della barra Diam.

N.Barra	Ascissa X, cm	Ordinata Y, cm	Diam.Ø,mm
1	5,00	5,00	20
2	95,00	5,00	20
3	5,00	45,00	16
4	95,00	45,00	16

DATI GENERAZIONI LINEARI DI BARRE

N.Gen. Numero assegnato alla singola generazione lineare di barre N.Barra In. Numero della barra iniziale cui si riferisce la gener. N.Barra Fin. Numero della barra finale cui si riferisce la gener. N.Barre Numero di barre generate equidist. inserite tra la barra iniz. e fin.

Diametro in mm della singola barra generata Diam.

N.Gen.	N.Barra In.	N.Barra Fin.	N.Barre	Diam.Ø,mm
1	1	2	8	20
2	3	4	3	16

ST.LIM.ULTIMI - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

N	Sforzo normale in daN applicato nel Baric. (+ se di compressione)
Mx	Coppia concentrata in daNm applicata all'asse x princ. d'inerzia
	con verso positivo se tale da comprimere il lembo sup. della sez.
My	Coppia concentrata in daNm applicata all'asse y princ. d'inerzia
	con verso positivo se tale da comprimere il lembo destro della sez.
Vy	Componente del Taglio [daN] parall. all'asse princ.d'inerzia y
Vx	Componente del Taglio [daN] parall, all'asse princ.d'inerzia x

N.Comb.	N	Mx	My	Vy	Vx
1	7440	9350	0	0	0
2	10150	23060	0	0	0

COMB. RARE (S.L.E.) - SFORZI PER OGNI COMBINAZIONE ASSEGNATA

N Sforzo normale in daN applicato nel Baricentro (+ se di compressione) Coppia concentrata in daNm applicata all'asse x princ. d'inerzia Mx con verso positivo se tale da comprimere il lembo superiore della sez.

AUTOSTRADA REGIONALE CISPADANA dal casello di Reggiolo-Rolo sulla A22 al casello di Ferrara Sud sulla A13

PROGETTO DEFINITIVO

OPERE D'ARTE MAGGIORI-PONTI

VPO02 - CAVALCAVIA SP8 - PONTE SUL CANALE DIVERSIVO DI BURANA **RELAZIONE DI CALCOLO**

Му

Coppia concentrata in daNm applicata all'asse y princ. d'inerzia con verso positivo se tale da comprimere il lembo destro della sez.

N.Comb.	N	Mx	My
1	0	17000	0

RISULTATI DEL CALCOLO

Copriferro netto minimo barre longitudinali: 4,0 cm Interferro netto minimo barre longitudinali: 8,0 cm

METODO AGLI STATI LIMITE ULTIMI - RISULTATI PRESSO-TENSO FLESSIONE

Ver	S = combinazione verificata / N = combin. non verificata
N	Sforzo normale assegnato [in daN] (positivo se di compressione)
Mx	Momento flettente assegnato [in daNm] riferito all'asse x princ. d'inerzia
My	Momento flettente assegnato [in daNm] riferito all'asse y princ. d'inerzia
N ult	Sforzo normale ultimo [in daN] nella sezione (positivo se di compress.)
Mx ult	Momento flettente ultimo [in daNm] riferito all'asse x princ. d'inerzia
My ult	Momento flettente ultimo [in daNm] riferito all'asse y princ. d'inerzia
Mis.Sic.	Misura sicurezza = rapporto vettoriale tra (N ult,Mx ult,My ult) e (N,Mx,My)
	Verifica positiva se tale rapporto risulta >=1.000

N.Comb.	Ver	N	Mx	My	N ult	Mx ult	My ult	Mis.Sic.
1	S	7440	9350	0	7444	50382	0	5,336
2	S	10150	23060	0	10177	50909	0	2,200

AUTOSTRADA REGIONALE CISPADANA dal casello di Reggiolo-Rolo sulla A22 al casello di Ferrara Sud sulla A13

PROGETTO DEFINITIVO

OPERE D'ARTE MAGGIORI-PONTI
VPO02 – CAVALCAVIA SP8 - PONTE SUL CANALE DIVERSIVO DI BURANA
RELAZIONE DI CALCOLO

6.3.3. Pareti di risvolto

Si premette che, come dichiarato al par. 5.1.7, la pressione conseguente all'inerzia del terreno per sisma agente in direzione trasversale è stata assunta come uniforme lungo l'altezza, con valore pari a quello della larghezza del cuneo di spinta valutata in sommità. In realtà la pressione dovuta al cuneo di spinta ha andamento triangolare lungo l'altezza, con vertice in basso. Di conseguenza le sollecitazioni ottenute sulla parete tramite il Codice di Calcolo sono sovradimensionate.

AUTOSTRADA REGIONALE CISPADANA dal casello di Reggiolo-Rolo sulla A22 al casello di Ferrara Sud sulla A13

PROGETTO DEFINITIVO

OPERE D'ARTE MAGGIORI-PONTI
VPO02 – CAVALCAVIA SP8 - PONTE SUL CANALE DIVERSIVO DI BURANA

RELAZIONE DI CALCOLO

6.3.3.1. Armature Orizzontali

Parte superiore del muro di risvolto (lato orecchio)

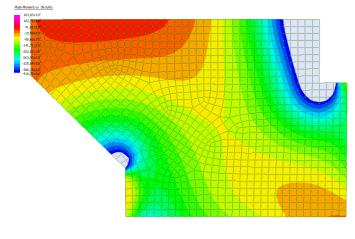
b=100cm

h=50cm

 $A_{s,est} = 5\phi16$ d=5cm

 $A_{s,int} = 5\phi 26$ d=45cm

Momenti allo stato limite ultimo


 $M_{Rd,SLU} = -41670 daNm$

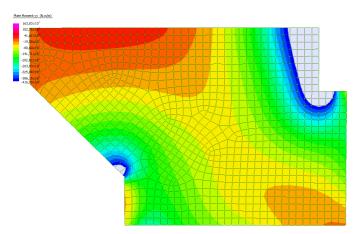
 $M^{+}_{Rd,SLU} = +16383daNm$

Momento che induce una tensione pari a 160MPa sull'armatura tesa.

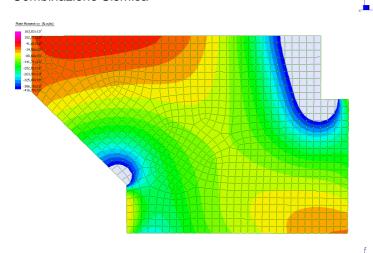
 $M_{Rd,1600}^{-} = -17700 daNm$

Vengono inseriti i valori limite nel diagramma di sollecitazione per le diverse combinazioni di carico

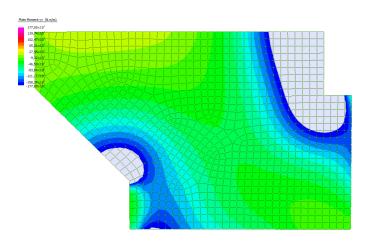
AUTOSTRADA REGIONALE CISPADANA dal casello di Reggiolo-Rolo sulla A22 al casello di Ferrara Sud sulla A13


PROGETTO DEFINITIVO

OPERE D'ARTE MAGGIORI-PONTI


VPO02 - CAVALCAVIA SP8 - PONTE SUL CANALE DIVERSIVO DI BURANA

RELAZIONE DI CALCOLO


Combinazione Gruppo 2a

Combinazione Sismica

Verifica a fessurazione

Parte superiore del muro di risvolto (lato paraghiaia)

AUTOSTRADA REGIONALE CISPADANA dal casello di Reggiolo-Rolo sulla A22 al casello di Ferrara Sud sulla A13

PROGETTO DEFINITIVO

OPERE D'ARTE MAGGIORI-PONTI
VPO02 – CAVALCAVIA SP8 - PONTE SUL CANALE DIVERSIVO DI BURANA

RELAZIONE DI CALCOLO

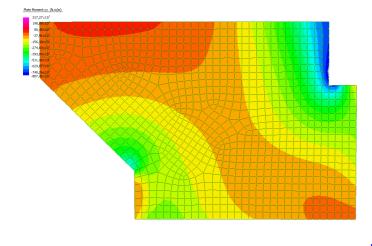
b=100cm

h=50cm

 $A_{s,est} = 10\phi16$ d=5cm

 $A_{s,int} = 10\phi 26$ d=45cm

Momenti allo stato limite ultimo

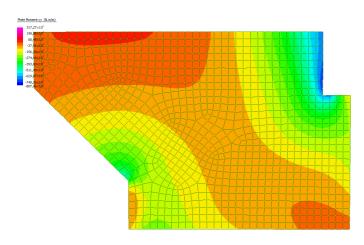

 $M_{Rd,SLU}^{-} = -80746 daNm$

 $M^{+}_{Rd,SLU} = +31727 daNm$

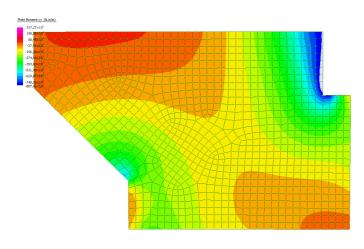
Momento che induce una tensione pari a 160MPa sull'armatura tesa.

 $M_{Rd,1600} = -34400 daNm$

Vengono inseriti i valori limite nel diagramma di sollecitazione per le diverse combinazioni di carico


AUTOSTRADA REGIONALE CISPADANA dal casello di Reggiolo-Rolo sulla A22 al casello di Ferrara Sud sulla A13

PROGETTO DEFINITIVO


OPERE D'ARTE MAGGIORI-PONTI
VPO02 – CAVALCAVIA SP8 - PONTE SUL CANALE DIVERSIVO DI BURANA

RELAZIONE DI CALCOLO

Combinazione Gruppo 2a

Combinazione Sismica

AUTOSTRADA REGIONALE CISPADANA dal casello di Reggiolo-Rolo sulla A22 al casello di Ferrara Sud sulla A13

PROGETTO DEFINITIVO

OPERE D'ARTE MAGGIORI-PONTI
VPO02 – CAVALCAVIA SP8 - PONTE SUL CANALE DIVERSIVO DI BURANA

RELAZIONE DI CALCOLO

Parte inferiore del muro di risvolto

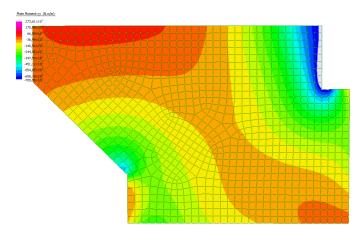
b=100cm

h=80cm

 $A_{s,est} = 5\phi16$ d=5cm

 $A_{s,int} = 5\phi 26$ d=75cm

Momenti allo stato limite ultimo

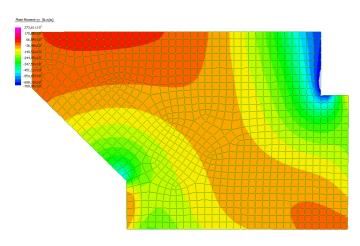

 $M_{Rd,SLU} = -70995 daNm$

 $M^{\dagger}_{Rd,SLU} = +27361daNm$

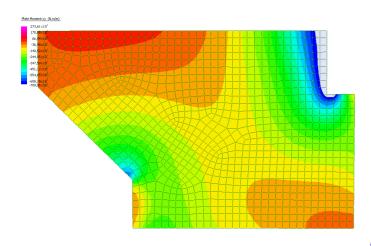
Momento che induce una tensione pari a 160MPa sull'armatura tesa.

 $M_{Rd,1600} = -29900 daNm$

Vengono inseriti i valori limite nel diagramma di sollecitazione per le diverse combinazioni di carico


AUTOSTRADA REGIONALE CISPADANA dal casello di Reggiolo-Rolo sulla A22 al casello di Ferrara Sud sulla A13

PROGETTO DEFINITIVO


OPERE D'ARTE MAGGIORI-PONTI
VPO02 – CAVALCAVIA SP8 - PONTE SUL CANALE DIVERSIVO DI BURANA

RELAZIONE DI CALCOLO

Combinazione Gruppo 2a

Combinazione Sismica

AUTOSTRADA REGIONALE CISPADANA dal casello di Reggiolo-Rolo sulla A22 al casello di Ferrara Sud sulla A13

PROGETTO DEFINITIVO

OPERE D'ARTE MAGGIORI-PONTI

VPO02 - CAVALCAVIA SP8 - PONTE SUL CANALE DIVERSIVO DI BURANA

RELAZIONE DI CALCOLO

6.3.3.2. Armature Verticali

Parte superiore del muro di risvolto

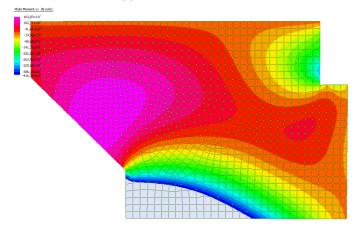
b=100cm

h=50cm

 $A_{s,est} = 5\phi 16$ d=5cm

 $A_{s,int} = 5\phi 26$ d=45cm

Momenti allo stato limite ultimo


 $M_{Rd,SLU} = -41670 daNm$

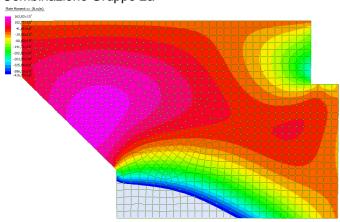
 $M^{+}_{Rd,SLU} = +16383daNm$

Momento che induce una tensione pari a 160MPa sull'armatura tesa.

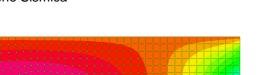
 $M_{Rd,1600}^{-} = -17700 daNm$

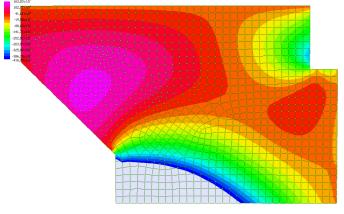
Vengono inseriti i valori limite nel diagramma di sollecitazione per le diverse combinazioni di carico

AUTOSTRADA REGIONALE CISPADANA dal casello di Reggiolo-Rolo sulla A22 al casello di Ferrara Sud sulla A13

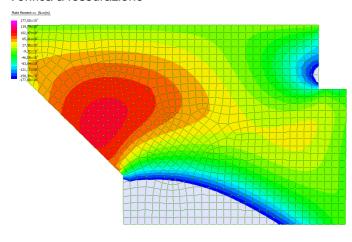

PROGETTO DEFINITIVO

OPERE D'ARTE MAGGIORI-PONTI


VPO02 - CAVALCAVIA SP8 - PONTE SUL CANALE DIVERSIVO DI BURANA


RELAZIONE DI CALCOLO

Combinazione Gruppo 2a



Combinazione Sismica

Verifica a fessurazione

AUTOSTRADA REGIONALE CISPADANA dal casello di Reggiolo-Rolo sulla A22 al casello di Ferrara Sud sulla A13

PROGETTO DEFINITIVO

OPERE D'ARTE MAGGIORI-PONTI

VPO02 - CAVALCAVIA SP8 - PONTE SUL CANALE DIVERSIVO DI BURANA

RELAZIONE DI CALCOLO

Parte inferiore del muro di risvolto lato muro frontale

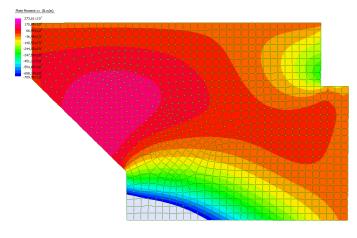
b=100cm

h=80cm

 $A_{s,est} = 5\phi 16$ d=5cm

 $A_{s,int} = 5\phi 26$ d=75cm

Momenti allo stato limite ultimo

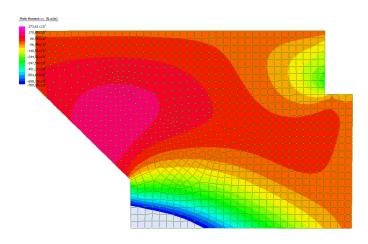

 $M_{Rd,SLU} = -70995 daNm$

 $M^{+}_{Rd,SLU} = +27361daNm$

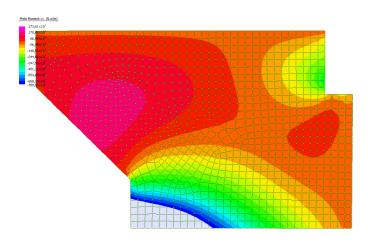
Momento che induce una tensione pari a 160MPa sull'armatura tesa.

 $M_{Rd,1600} = -29900 daNm$

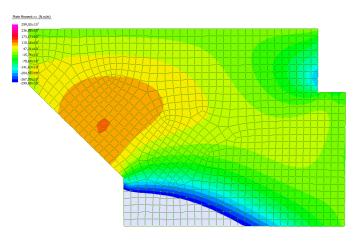
Vengono inseriti i valori limite nel diagramma di sollecitazione per le diverse combinazioni di carico


AUTOSTRADA REGIONALE CISPADANA dal casello di Reggiolo-Rolo sulla A22 al casello di Ferrara Sud sulla A13

PROGETTO DEFINITIVO


OPERE D'ARTE MAGGIORI-PONTI

VPO02 - CAVALCAVIA SP8 - PONTE SUL CANALE DIVERSIVO DI BURANA **RELAZIONE DI CALCOLO**


Combinazione Gruppo 2a

Combinazione Sismica

Verifica a fessurazione

AUTOSTRADA REGIONALE CISPADANA dal casello di Reggiolo-Rolo sulla A22 al casello di Ferrara Sud sulla A13

PROGETTO DEFINITIVO

OPERE D'ARTE MAGGIORI-PONTI

VPO02 – CAVALCAVIA SP8 - PONTE SUL CANALE DIVERSIVO DI BURANA RELAZIONE DI CALCOLO

Parte inferiore del muro di risvolto lato di estremità

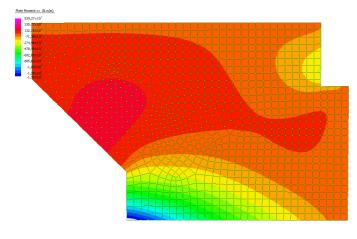
b=100cm

h=80cm

 $A_{s,est} = 10\phi16$ d=5cm

 $A_{s,int} = 10\phi 26$ d=75cm

Momenti allo stato limite ultimo


 $M_{Rd,SLU} = -139448 daNm$

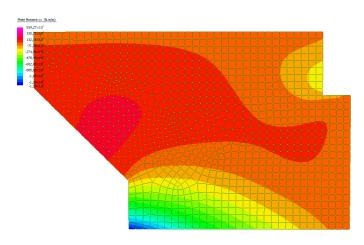
 $M^{\dagger}_{Rd,SLU} = +53927 daNm$

Momento che induce una tensione pari a 160MPa sull'armatura tesa.

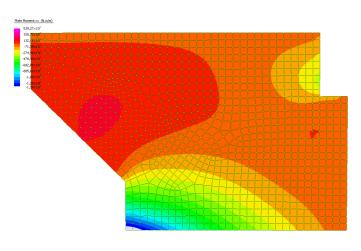
 $M_{Rd,1600} = -63800 daNm$

Vengono inseriti i valori limite nel diagramma di sollecitazione per le diverse combinazioni di carico

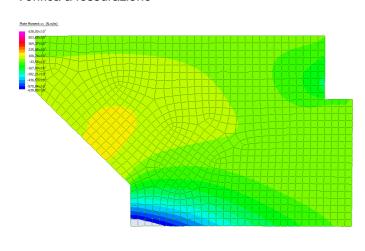
AUTOSTRADA REGIONALE CISPADANA dal casello di Reggiolo-Rolo sulla A22 al casello di Ferrara Sud sulla A13


PROGETTO DEFINITIVO

OPERE D'ARTE MAGGIORI-PONTI


VPO02 - CAVALCAVIA SP8 - PONTE SUL CANALE DIVERSIVO DI BURANA

RELAZIONE DI CALCOLO


Combinazione Gruppo 2a

Combinazione Sismica

Verifica a fessurazione

AUTOSTRADA REGIONALE CISPADANA dal casello di Reggiolo-Rolo sulla A22 al casello di Ferrara Sud sulla A13

PROGETTO DEFINITIVO

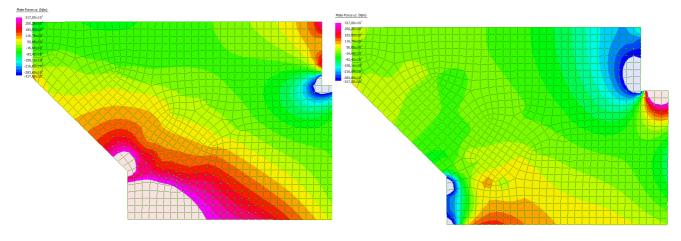
OPERE D'ARTE MAGGIORI-PONTI
VPO02 – CAVALCAVIA SP8 - PONTE SUL CANALE DIVERSIVO DI BURANA

RELAZIONE DI CALCOLO

6.3.3.3.

6.3.3.4. <u>Taglio</u>

Parte superiore del muro di risvolto


b=100cm

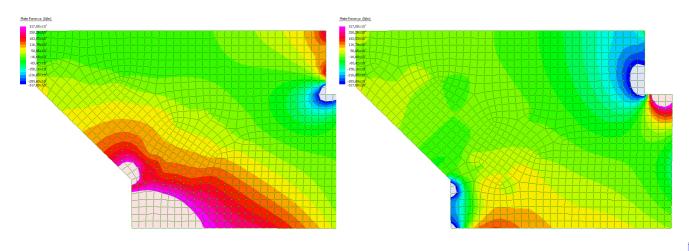
h=50cm

 $A_s = 10\phi 26$

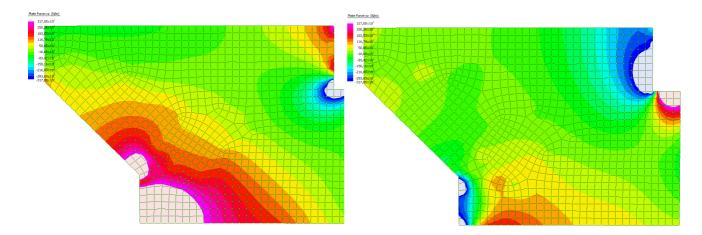
Resistenza della sezione

${\sf f}_{\sf ck}$ ${\sf f}_{\sf cd}$	37,4 21,2	MPa MPa
$V_{Rd,c} =$	317,9	kN
$C_{Rd,c} = k =$	0,120 1,667	
$\rho_{l} =$	0,0118	
$v_{min} =$	0,460	
$\gamma_c =$	1,50	
b =	1000	mm
d =	450	mm

AUTOSTRADA REGIONALE CISPADANA dal casello di Reggiolo-Rolo sulla A22 al casello di Ferrara Sud sulla A13


PROGETTO DEFINITIVO

OPERE D'ARTE MAGGIORI-PONTI


VPO02 - CAVALCAVIA SP8 - PONTE SUL CANALE DIVERSIVO DI BURANA

RELAZIONE DI CALCOLO

Combinazione Gruppo 2a

Combinazione Sismica

AUTOSTRADA REGIONALE CISPADANA dal casello di Reggiolo-Rolo sulla A22 al casello di Ferrara Sud sulla A13

PROGETTO DEFINITIVO

OPERE D'ARTE MAGGIORI-PONTI VPO02 – CAVALCAVIA SP8 - PONTE SUL CANALE DIVERSIVO DI BURANA

RELAZIONE DI CALCOLO

Parte superiore del muro di risvolto lato paraghiaia

b=100cm

h=50cm

 $A_s = 10\phi 26$

Armatura a taglio spilli

12 maglia 20x20

Resistenza della sezione con armatura al taglio

$f_{ywd} =$	391,3	MPa
$V_{Rd,s} = V_{Rd,max} =$	448,1 2143,0	kN kN
$A_{sw} = s = z = \theta = \theta$	565 200 405 0,785 45	mm² mm mm
$\cot \theta = \ lpha_{c} =$	1,000 1,00	acg

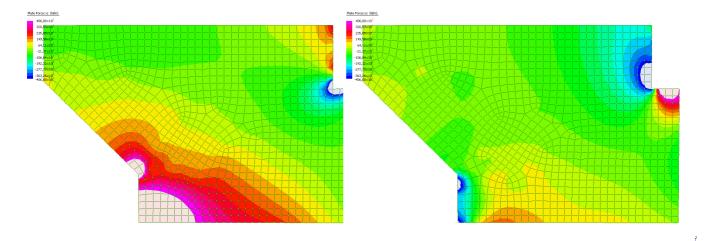
AUTOSTRADA REGIONALE CISPADANA dal casello di Reggiolo-Rolo sulla A22 al casello di Ferrara Sud sulla A13

PROGETTO DEFINITIVO

OPERE D'ARTE MAGGIORI-PONTI

VPO02 – CAVALCAVIA SP8 - PONTE SUL CANALE DIVERSIVO DI BURANA **RELAZIONE DI CALCOLO**

Parte inferiore del muro di risvolto


b=100cm

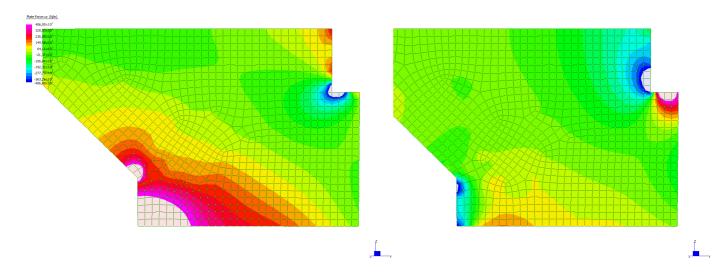
h=80cm

 $A_s = 10\phi 26$

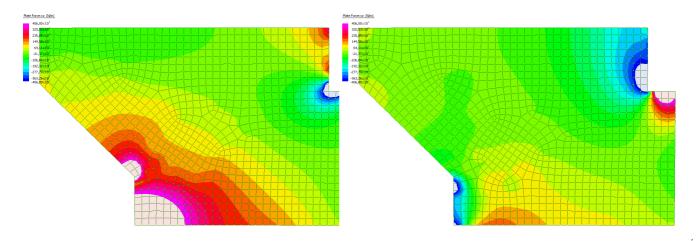
Resistenza della sezione

${\sf f_{ck}}$	37,4 21,2	MPa MPa
$V_{Rd,c} =$	406,6	kN
$C_{Rd,c} = k = \rho_{I} = v_{min} = \gamma_{c} =$	0,120 1,516 0,0071 0,399 1,50	
b = d =	1000 750	mm mm

AUTOSTRADA REGIONALE CISPADANA dal casello di Reggiolo-Rolo sulla A22 al casello di Ferrara Sud sulla A13


PROGETTO DEFINITIVO

OPERE D'ARTE MAGGIORI-PONTI


VPO02 - CAVALCAVIA SP8 - PONTE SUL CANALE DIVERSIVO DI BURANA

RELAZIONE DI CALCOLO

Combinazione Gruppo 2a

Combinazione Sismica

AUTOSTRADA REGIONALE CISPADANA dal casello di Reggiolo-Rolo sulla A22 al casello di Ferrara Sud sulla A13

PROGETTO DEFINITIVO

OPERE D'ARTE MAGGIORI-PONTI
VPO02 – CAVALCAVIA SP8 - PONTE SUL CANALE DIVERSIVO DI BURANA

RELAZIONE DI CALCOLO

Parte inferiore del muro di risvolto lato estremo libero

b=100cm

h=80cm

 $A_s = 10\phi 26$

Armatura a taglio spilli

12 maglia 20x20

Resistenza della sezione con armatura al taglio

$f_{ywd} =$	391,3	MPa
$V_{Rd,s} = V_{Rd,max} =$	746,8 3571,6	kN kN
$A_{sw} =$	565	mm^2
$A_{sw} = s = s$	200	mm
z =	675	mm
$\theta =$	0,785	
	45	deg
$\cot \theta =$	1,000	
$\alpha_c =$	1,00	

AUTOSTRADA REGIONALE CISPADANA dal casello di Reggiolo-Rolo sulla A22 al casello di Ferrara Sud sulla A13

PROGETTO DEFINITIVO

OPERE D'ARTE MAGGIORI-PONTI
VPO02 – CAVALCAVIA SP8 - PONTE SUL CANALE DIVERSIVO DI BURANA
RELAZIONE DI CALCOLO

6.3.4. Parete centrale

6.3.4.1. Armature Verticali

Parte superiore della parete centrale

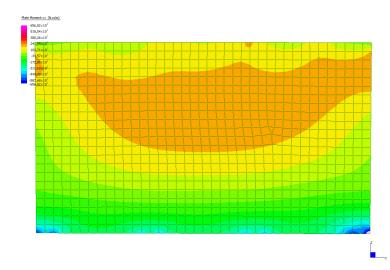
b=100cm

h=120cm

 $A_{s,est} = 5\phi20$ d=6cm

 $A_{s,int} = 5\phi 20$ d=114cm

Momenti allo stato limite ultimo

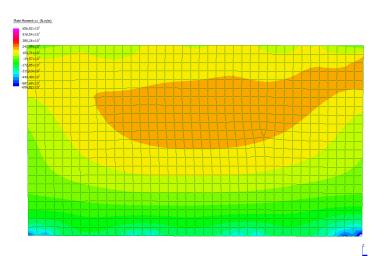

 $M_{Rd,SLU} = -65682 daNm$

 $M^{+}_{Rd,SLU} = +65682 daNm$

Momento che induce una tensione pari a 160MPa sull'armatura tesa.

 $M_{Rd,1600}^{-} = -27800 daNm$

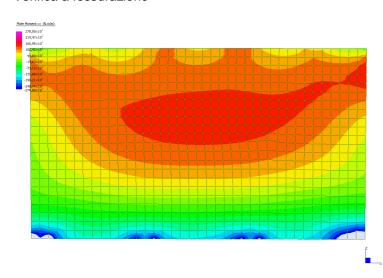
Vengono inseriti i valori limite nel diagramma di sollecitazione per le diverse combinazioni di carico


AUTOSTRADA REGIONALE CISPADANA dal casello di Reggiolo-Rolo sulla A22 al casello di Ferrara Sud sulla A13

PROGETTO DEFINITIVO

OPERE D'ARTE MAGGIORI-PONTI VPO02 – CAVALCAVIA SP8 - PONTE SUL CANALE DIVERSIVO DI BURANA

RELAZIONE DI CALCOLO


Combinazione Gruppo 2a

Combinazione Sismica

Verifica a fessurazione

AUTOSTRADA REGIONALE CISPADANA dal casello di Reggiolo-Rolo sulla A22 al casello di Ferrara Sud sulla A13

PROGETTO DEFINITIVO

OPERE D'ARTE MAGGIORI-PONTI

VPO02 – CAVALCAVIA SP8 - PONTE SUL CANALE DIVERSIVO DI BURANA RELAZIONE DI CALCOLO

Parte inferiore della parete centrale

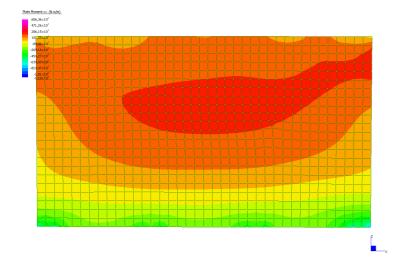
b=100cm

h=120cm

 $A_{s,est} = 5\phi20$ d=6cm

 $A_{s,int} = 5\phi 26$ d=114cm

Momenti allo stato limite ultimo


 $M_{Rd,SLU} = -110213daNm$

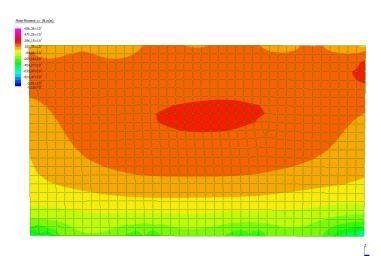
 $M^{+}_{Rd,SLU} = +65636daNm$

Momento che induce una tensione pari a 160MPa sull'armatura tesa.

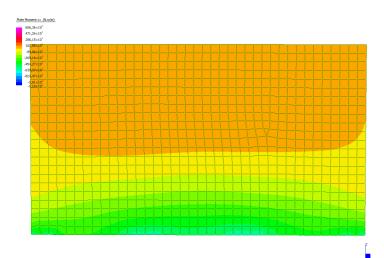
 $M_{Rd,1600} = -46500 daNm$

Vengono inseriti i valori limite nel diagramma di sollecitazione per le diverse combinazioni di carico

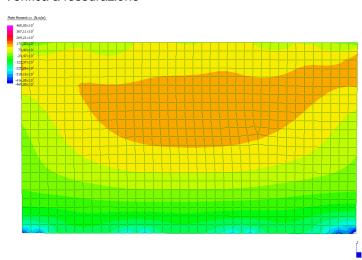
AUTOSTRADA REGIONALE CISPADANA dal casello di Reggiolo-Rolo sulla A22 al casello di Ferrara Sud sulla A13


PROGETTO DEFINITIVO

OPERE D'ARTE MAGGIORI-PONTI


VPO02 - CAVALCAVIA SP8 - PONTE SUL CANALE DIVERSIVO DI BURANA

RELAZIONE DI CALCOLO


Combinazione Gruppo 2a

Combinazione Sismica

Verifica a fessurazione

AUTOSTRADA REGIONALE CISPADANA dal casello di Reggiolo-Rolo sulla A22 al casello di Ferrara Sud sulla A13

PROGETTO DEFINITIVO

RELAZIONE DI CALCOLO

OPERE D'ARTE MAGGIORI-PONTI
VPO02 – CAVALCAVIA SP8 - PONTE SUL CANALE DIVERSIVO DI BURANA

6.3.4.2. Armature Orizzontali

Parete centrale

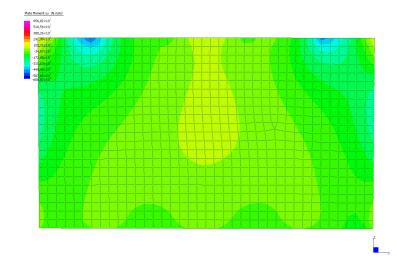
b=100cm

h=120cm

 $A_{s,est} = 5\phi20$ d=6cm

 $A_{s,int} = 5\phi20$ d=114cm

Momenti allo stato limite ultimo

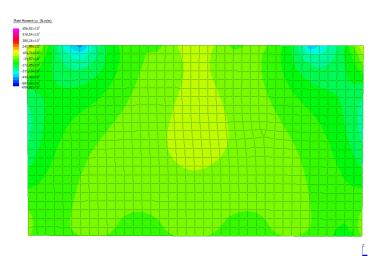

 $M_{Rd,SLU} = -65682 daNm$

 $M^{+}_{Rd,SLU} = +65682 daNm$

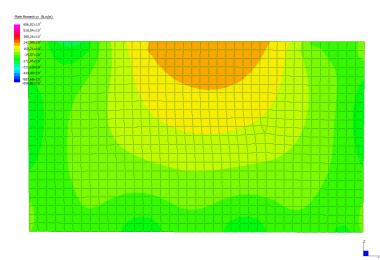
Momento che induce una tensione pari a 160MPa sull'armatura tesa.

 $M_{Rd,1600}^{-} = -27800 daNm$

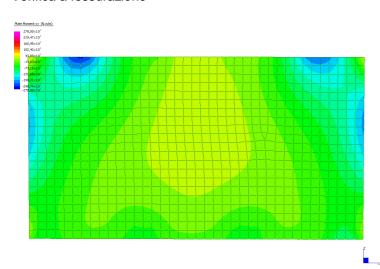
Vengono inseriti i valori limite nel diagramma di sollecitazione per le diverse combinazioni di carico


AUTOSTRADA REGIONALE CISPADANA dal casello di Reggiolo-Rolo sulla A22 al casello di Ferrara Sud sulla A13

PROGETTO DEFINITIVO


OPERE D'ARTE MAGGIORI-PONTI

VPO02 – CAVALCAVIA SP8 - PONTE SUL CANALE DIVERSIVO DI BURANA **RELAZIONE DI CALCOLO**


Combinazione Gruppo 2a

Combinazione Sismica

Verifica a fessurazione

AUTOSTRADA REGIONALE CISPADANA dal casello di Reggiolo-Rolo sulla A22 al casello di Ferrara Sud sulla A13

PROGETTO DEFINITIVO

OPERE D'ARTE MAGGIORI-PONTI

VPO02 - CAVALCAVIA SP8 - PONTE SUL CANALE DIVERSIVO DI BURANA

RELAZIONE DI CALCOLO

6.3.4.3. <u>Taglio</u>

Parte inferiore del muro di risvolto

b=100cm

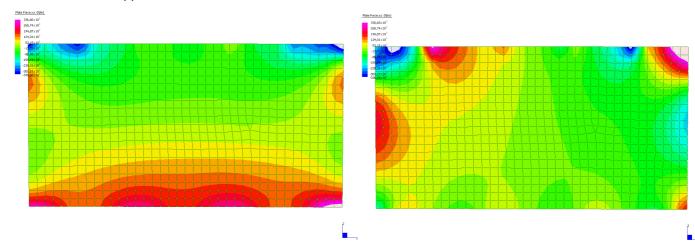
h=120cm

 $A_{s} = 5\phi 20$

Resistenza della sezione

f_{ck}	37,4	MPa
f_{cd}	21,2	MPa

$$V_{Rd,c} = 406,6 \quad kN$$


$$C_{Rd,c} = 0,120$$
 $k = 1,516$
 $\rho_1 = 0,0071$
 $v_{min} = 0,399$

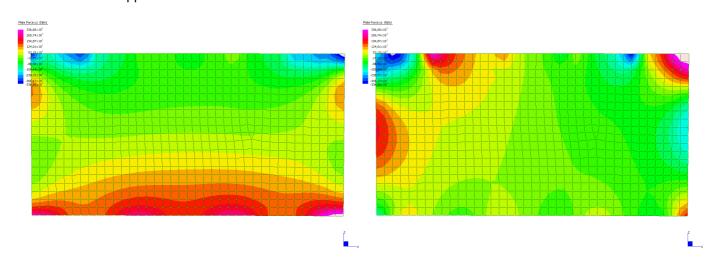
750

mm

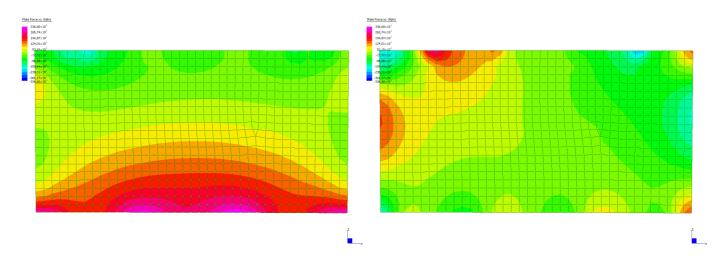
Combinazione Gruppo 1

d =

AUTOSTRADA REGIONALE CISPADANA dal casello di Reggiolo-Rolo sulla A22 al casello di Ferrara Sud sulla A13


PROGETTO DEFINITIVO

OPERE D'ARTE MAGGIORI-PONTI


VPO02 - CAVALCAVIA SP8 - PONTE SUL CANALE DIVERSIVO DI BURANA

RELAZIONE DI CALCOLO

Combinazione Gruppo 2a

Combinazione Sismica

AUTOSTRADA REGIONALE CISPADANA dal casello di Reggiolo-Rolo sulla A22 al casello di Ferrara Sud sulla A13

PROGETTO DEFINITIVO

OPERE D'ARTE MAGGIORI-PONTI
VPO02 – CAVALCAVIA SP8 - PONTE SUL CANALE DIVERSIVO DI BURANA
RELAZIONE DI CALCOLO

6.3.5. Fondazione

6.3.5.1. Armature in direzione longitudinale (asse ponte)

Parte superiore della parete centrale

b=100cm

h=150cm

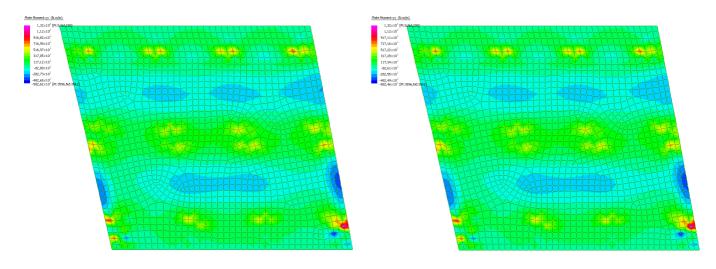
 $A_{s,sup} = 10\phi20$ d=6cm

 $A_{s,inf} = 5\phi 20$ d=114cm

Momenti allo stato limite ultimo

 $M_{Rd,SLU} = -82994 daNm$

 $M^{\dagger}_{Rd,SLU} = +164524 daNm$

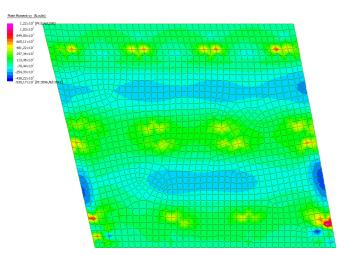

Momento che induce una tensione pari a 160MPa sull'armatura tesa.

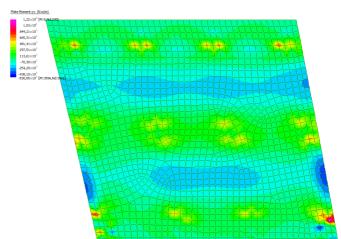
 $M_{Rd,1600}^{-} = -32500 daNm$

 $M^{+}_{Rd,1600} = +69500 daNm$

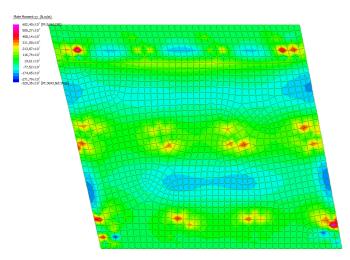
Vengono inseriti i valori limite nel diagramma di sollecitazione per le diverse combinazioni di carico

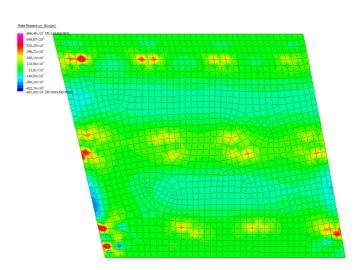
Combinazione Gruppo 1

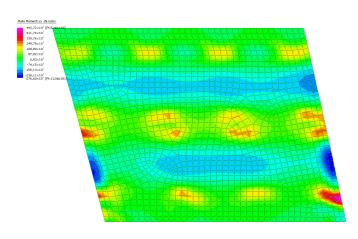

AUTOSTRADA REGIONALE CISPADANA dal casello di Reggiolo-Rolo sulla A22 al casello di Ferrara Sud sulla A13


PROGETTO DEFINITIVO

OPERE D'ARTE MAGGIORI-PONTI


VPO02 – CAVALCAVIA SP8 - PONTE SUL CANALE DIVERSIVO DI BURANA RELAZIONE DI CALCOLO


Combinazione Gruppo 2a



Combinazione Sismica

Verifica a fessurazione

AUTOSTRADA REGIONALE CISPADANA dal casello di Reggiolo-Rolo sulla A22 al casello di Ferrara Sud sulla A13

PROGETTO DEFINITIVO

OPERE D'ARTE MAGGIORI-PONTI

VPO02 – CAVALCAVIA SP8 - PONTE SUL CANALE DIVERSIVO DI BURANA RELAZIONE DI CALCOLO

6.3.5.2. Armature in direzione trasversale

Parte superiore della parete centrale

b=100cm

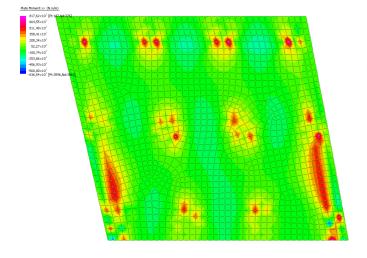
h=150cm

 $A_{s,sup} = 10\phi20$ d=6cm

 $A_{s,inf} = 5\phi 20$ d=114cm

Momenti allo stato limite ultimo

 $M_{Rd,SLU} = -82994 daNm$


 $M^{\dagger}_{Rd,SLU} = +164524 daNm$

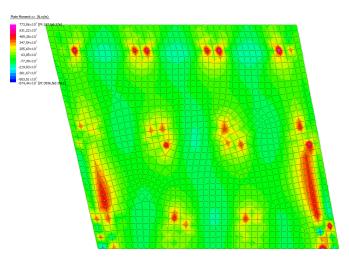
Momento che induce una tensione pari a 160MPa sull'armatura tesa.

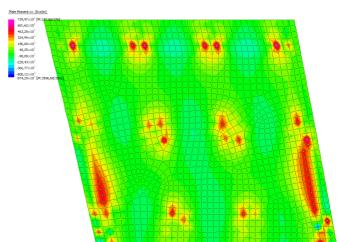
 $M_{Rd,1600} = -27800 daNm$

Vengono inseriti i valori limite nel diagramma di sollecitazione per le diverse combinazioni di carico

Combinazione Gruppo 1

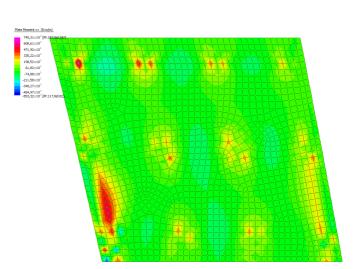
AUTOSTRADA REGIONALE CISPADANA dal casello di Reggiolo-Rolo sulla A22 al casello di Ferrara Sud sulla A13

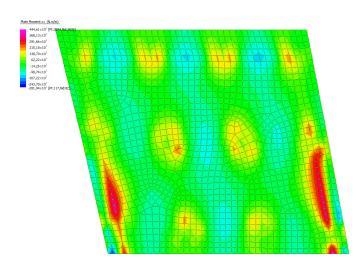

PROGETTO DEFINITIVO


OPERE D'ARTE MAGGIORI-PONTI

VPO02 - CAVALCAVIA SP8 - PONTE SUL CANALE DIVERSIVO DI BURANA

RELAZIONE DI CALCOLO


Combinazione Gruppo 2a



Combinazione Sismica

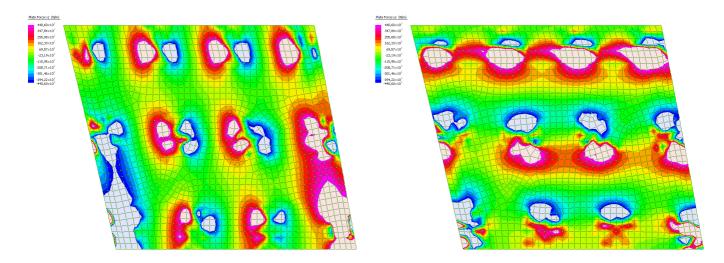
Verifica a fessurazione

AUTOSTRADA REGIONALE CISPADANA dal casello di Reggiolo-Rolo sulla A22 al casello di Ferrara Sud sulla A13

PROGETTO DEFINITIVO

OPERE D'ARTE MAGGIORI-PONTI

VPO02 - CAVALCAVIA SP8 - PONTE SUL CANALE DIVERSIVO DI BURANA

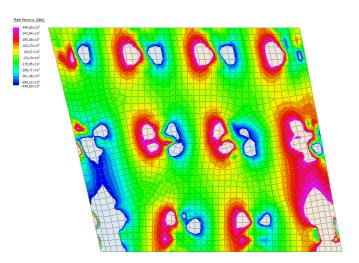

RELAZIONE DI CALCOLO

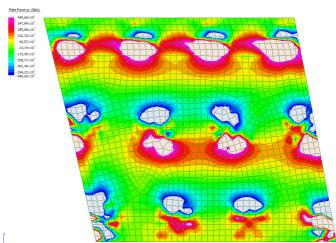
6.3.5.3. <u>Taglio</u>

Resistenza della sezione

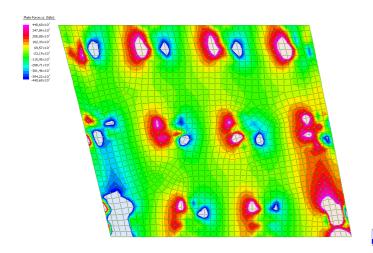
${\sf f}_{\sf ck}$ ${\sf f}_{\sf cd}$	29,1 16,5	MPa MPa
$V_{Rd,c} =$	440,6	kN
$C_{Rd,c} = \\ k = \\ \rho_{I} = \\ v_{min} = \\ \gamma_{c} = $	0,120 1,371 0,0022 0,303 1,50	
b = d =	1000 1450	mm mm

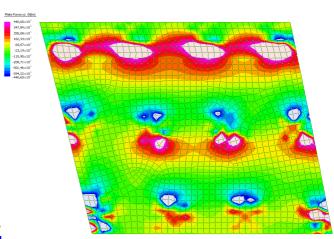
Combinazione Gruppo 1

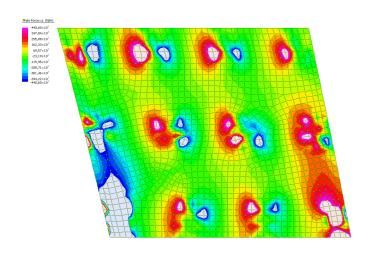

AUTOSTRADA REGIONALE CISPADANA dal casello di Reggiolo-Rolo sulla A22 al casello di Ferrara Sud sulla A13


PROGETTO DEFINITIVO

OPERE D'ARTE MAGGIORI-PONTI


VPO02 - CAVALCAVIA SP8 - PONTE SUL CANALE DIVERSIVO DI BURANA **RELAZIONE DI CALCOLO**

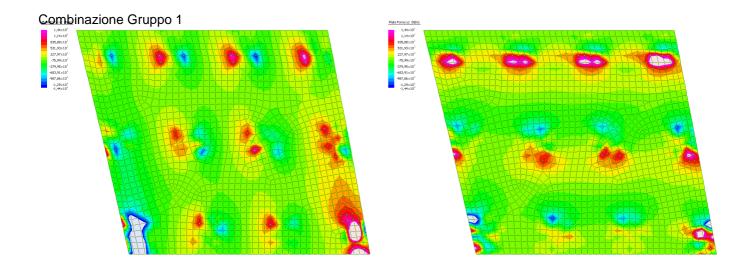

Combinazione Gruppo 2a



Combinazione Sismica

AUTOSTRADA REGIONALE CISPADANA dal casello di Reggiolo-Rolo sulla A22 al casello di Ferrara Sud sulla A13

PROGETTO DEFINITIVO

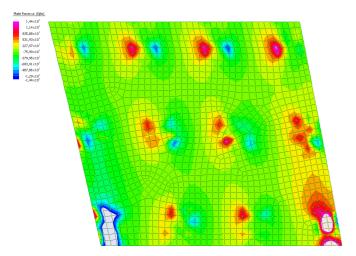

OPERE D'ARTE MAGGIORI-PONTI

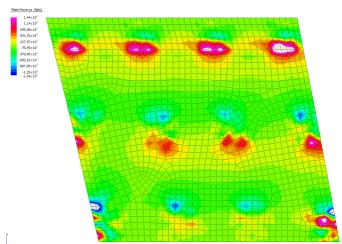
VPO02 - CAVALCAVIA SP8 - PONTE SUL CANALE DIVERSIVO DI BURANA **RELAZIONE DI CALCOLO**

Viene inserita un'armatura specifica a taglio F12 maglia 20x20 per una fascia di 2,00m lungo i muri d'ala e in corrispondenza dei pali di fondazioni per un quadrato di 2,00m x 2,00m.

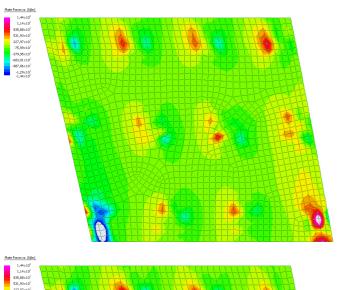
Resistenza della sezione con armatura al taglio

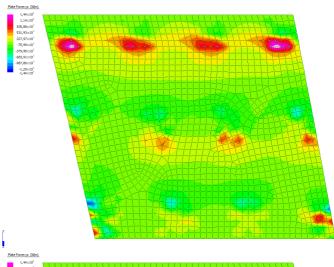
$f_{ywd} =$	391,3	MPa
$V_{Rd,s} = V_{Rd,max} =$	1443,8 5370,6	kN kN
$A_{sw} = s = z = \theta = \theta$	565 200 1305 0,785 45	mm² mm mm
$\cot \theta = $ $\alpha_c =$	1,000 1,00	· ·

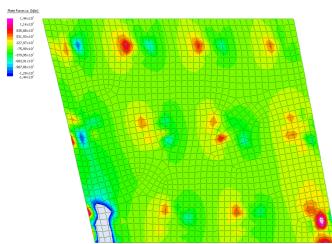

AUTOSTRADA REGIONALE CISPADANA dal casello di Reggiolo-Rolo sulla A22 al casello di Ferrara Sud sulla A13

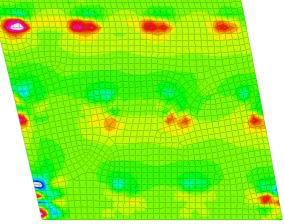

PROGETTO DEFINITIVO

OPERE D'ARTE MAGGIORI-PONTI

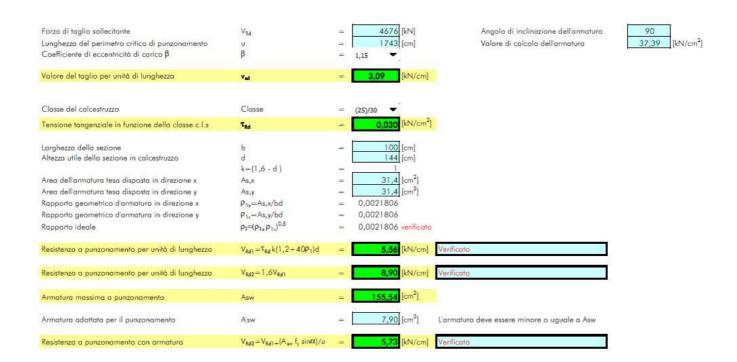

VPO02 – CAVALCAVIA SP8 - PONTE SUL CANALE DIVERSIVO DI BURANA RELAZIONE DI CALCOLO


Combinazione Gruppo 2a





Combinazione Sismica


AUTOSTRADA REGIONALE CISPADANA dal casello di Reggiolo-Rolo sulla A22 al casello di Ferrara Sud sulla A13

PROGETTO DEFINITIVO

OPERE D'ARTE MAGGIORI-PONTI
VPO02 – CAVALCAVIA SP8 - PONTE SUL CANALE DIVERSIVO DI BURANA
RELAZIONE DI CALCOLO

6.3.5.4. Verifica a Punzonamento

Vengono verificati a punzona mento il palo interno, quelli perimetrali agiscono direttamente sotto il muro di risvolto e sotto il muro frontale.

AUTOSTRADA REGIONALE CISPADANA dal casello di Reggiolo-Rolo sulla A22 al casello di Ferrara Sud sulla A13

PROGETTO DEFINITIVO

OPERE D'ARTE MAGGIORI-PONTI
VPO02 – CAVALCAVIA SP8 - PONTE SUL CANALE DIVERSIVO DI BURANA
RELAZIONE DI CALCOLO

6.4. APPOGGI E BAGGIOLI

6.4.1. Appoggi

Si riportano in Tabella gli elementi principali di dimensionamento degli appoggi.

APP	$N_{ extsf{SLU}}$ [kN]	N_{SLE} [kN]	H [kN]
F	1800	1300	430
M	2200	1550	
UL	1800	1300	400
UT	2200	1550	430

Dove: F, M, UL, UT è la sigla degli appoggi Fisso, Multidirezionale, Unidirezionale Trasversale e Unidirezionale Longitudinale, rispettivamente.

 N_{slu} ed N_{sle} sono le azioni verticali allo SLU ed allo SLE, rispettivamente, mentre H è l'azione tagliante orizzontale in condizione sismica.

6.4.2. Baggioli

Si conduce una sommaria analisi tendente al dimensionamento del baggiolo tipo. Analisi più approfondite verranno sviluppate nella successiva Fase di Progetto Esecutivo.

Il Baggiolo ha dimensioni in pianta 'a x b = 0.8x0.8 m'. L'altezza massima 'h' è pari a 0.7 m.

- A favore di sicurezza si considera l'azione normale minima
- A favore di sicurezza si pone l'azione orizzontale in sommità baggiolo
- Si adotta un meccanismo 'tirante puntone'

L'angolo di inclinazione del puntone rispetto all'orizzontale risulta:

$$tg\alpha = h/a' = 700/650 = 0.83 \implies \alpha \approx 47^{\circ}$$

L'azione verticale di trazione 'T' nel tirante risulta:

$$T = H^* tg\alpha = 430^*1.08 = 398 kN \implies A_{T,min} = 398000/391 = 1018 mm^2$$

Si dispongono n°6 Ø20 verticali su ogni lato, più n°4 Ø20 agli spigoli ottenendo (Lunghezza barre = 1.0 m)

$$A_T = 6*314 = 1884 \text{ mm}^2$$

Per quanto riguarda la sollecitazione a taglio si considera:

AUTOSTRADA REGIONALE CISPADANA dal casello di Reggiolo-Rolo sulla A22 al casello di Ferrara Sud sulla A13

PROGETTO DEFINITIVO

OPERE D'ARTE MAGGIORI-PONTI
VPO02 – CAVALCAVIA SP8 - PONTE SUL CANALE DIVERSIVO DI BURANA
RELAZIONE DI CALCOLO

Resistenza della sezione

f_{ck} f_{cd}	37,4 21,2	MPa MPa
$V_{Rd,c} =$	248,1	kN
$C_{Rd,c} = k = 0$ $k = 0$ $\rho_{l} = 0$ $v_{min} = 0$ $\gamma_{c} = 0$	0,120 1,516 0,0031 0,399 1,50	
b = d =	800 750	mm mm

La sola sezione in c.a. non è in grado di sopportare il taglio sollecitante, si prevedono staffe \varnothing 16 a due bracci disposte a passo 15cm.

Resistenza della sezione con armatura al taglio

$f_{ywd} =$	391,3	MPa
$V_{Rd,s} =$	708,1	kN
$V_{Rd,max} =$	2857,3	kN
$A_{sw} =$	402	mm^2
s =	150	mm
z =	675	mm
$\theta =$	0,785	
	45	deg
$\cot \theta =$	1,000	
$\alpha_c =$	1,00	

AUTOSTRADA REGIONALE CISPADANA dal casello di Reggiolo-Rolo sulla A22 al casello di Ferrara Sud sulla A13

PROGETTO DEFINITIVO

OPERE D'ARTE MAGGIORI-PONTI
VPO02 – CAVALCAVIA SP8 - PONTE SUL CANALE DIVERSIVO DI BURANA
RELAZIONE DI CALCOLO

6.5. SINTESI ARMATURE

6.5.1. Pali

Armatura trasversale

Da quota 0.0 a -7.0 : st Ø16/200; Da quota -7.0 a fine palo: st Ø12/200

Armatura verticale

Da quota 0.0 a quota -5.0 : n⁵2 Ø26 (L_{barra} : 6 m);

Da quota -4.0 a quota -16.0 nº26 Ø26 (L_{barra}: 12 m)

da quota – 15.0 a fine palo : n°13 Ø20 (L_{barra}: 12m + 6m)

6.5.2. Fondazione

Armatura in direzione longitudinale X

Estradosso: \emptyset 20/100 ; Intradosso: \emptyset 20/200

Intermedia: Ø16/400

Armatura in direzione trasversale Y

Estradosso: Ø20/100 ; Intradosso: Ø20/200

Intermedia: Ø16/400

• Spilli Ø12/200x200 su una larghezza 2.00 m lungo tutto il muro di risvolto e su quadrati di 2.00m x 2.00m in corrispondenza dei pali di fondazione.

6.5.3. Parete Centrale

Armatura in direzione trasversale Y

Interno: Ø20/200; Esterno: Ø20/200

Armatura in direzione verticale Z

Interno: Barre ripresa Ø26/200 L 4.0 m ; Esterno: Ø20/200 per tutta la larghezza

Successivamente

Interno: Ø20/200 ; Esterno: Ø20/200

AUTOSTRADA REGIONALE CISPADANA dal casello di Reggiolo-Rolo sulla A22 al casello di Ferrara Sud sulla A13

PROGETTO DEFINITIVO

OPERE D'ARTE MAGGIORI-PONTI
VPO02 – CAVALCAVIA SP8 - PONTE SUL CANALE DIVERSIVO DI BURANA
RELAZIONE DI CALCOLO

6.5.4. Paraghiaia

Armatura in direzione trasversale Y

Interno: Ø12/200; Esterno: Ø12/200

Armatura in direzione verticale Z

Interno: Ø20/100; Esterno: Ø16/200

6.5.5. Pareti di Risvolto

Parte superiore

Armatura in direzione longitudinale X

Interno: Ø26/100 ; Esterno: Ø16/100 per 4.0 m dal paraghiaia

successivamente

Interno: Ø26/200 ; Esterno: Ø16/200

Spilli Ø12/200x200 per dirX 4.0m x dirZ tutta altezza paraghiaia

• Armatura in direzione verticale Z

Interno: Ø26/200 ; Esterno: Ø16/200

Parte inferiore

· Armatura in direzione longitudinale X

Interno: Ø26/200 ; Esterno: Ø16/200

Armatura in direzione verticale Z

Interno: Barre ripresa Ø26/100 L 4.0 m ; Esterno: Ø16/100 per un tratto di 5,00m a partire dalla testa del muro

Successivamente

Interno: Ø26/200 ; Esterno: Ø16/200

Spilli Ø12/200x200 per dirX 5.0m x dirZ 3.0

6.5.6. Baggioli

Armatura in direzione verticale: n²8 Ø20 − L = 2.0 m

Armatura in direzione orizzontale: stØ16 passo 150 − L = 3.2 m

Armatura in direzione verticale (multi direzionali): nº24 Ø12 − L = 1.8 m

AUTOSTRADA REGIONALE CISPADANA dal casello di Reggiolo-Rolo sulla A22 al casello di Ferrara Sud sulla A13

PROGETTO DEFINITIVO

OPERE D'ARTE MAGGIORI-PONTI

VPO02 - CAVALCAVIA SP8 - PONTE SUL CANALE DIVERSIVO DI BURANA

RELAZIONE DI CALCOLO

Armatura in direzione orizzontale (multi direzionali): 5 stØ12 passo 150 − L =3.2 m

6.5.7. Soletta

• Tralicci predalle: interasse 40cm

Corrente inferiore: 2Ø8

Corrente Superiore: Ø12

Armatura longitudinale:

Inferiore: Ø16/200; Superiore: Ø16/200

Alle estremità

Inferiore: \emptyset 16/200 – L = 5.0m ; Superiore: \emptyset 16/200 – L = 5.0m

Armatura trasversale:

Inferiore: Ø16/200; Superiore: Ø16/200

In corrispondenza degli sbalzi della soletta

Superiore: \emptyset 16/200 – L = 4.0m

7. DIMENSIONAMENTO DELL'OPERA: IMPALCATO

REGIONE EMILIA ROMAGNA

AUTOSTRADA REGIONALE CISPADANA dal casello di Reggiolo-Rolo sulla A22 al casello di Ferrara Sud sulla A13

PROGETTO DEFINITIVO

OPERE D'ARTE MAGGIORI-PONTI

VPO02 – CAVALCAVIA SP8 - PONTE SUL CANALE DIVERSIVO DI BURANA RELAZIONE DI CALCOLO

L'impalcato viene realizzato con travi in semplice appoggio collaboranti tra loro grazie all'azione della soletta: esso si presenta, quindi, come una lastra appoggiata sui lati opposti e che presenta una forte ortotropia.

Per la ricerca delle sollecitazioni nei vari elementi componenti l'impalcato si ricorre al metodo di Massonnet che permette, mediante l'ausilio di opportuni coefficienti, di risolvere la ripartizione dei carichi e conoscere le sollecitazioni.

Nel grigliato ortotropo il procedimento di Massonnet trae origine dallo studio di un graticcio appoggiato in corrispondenza degli estremi delle travi principali longitudinali e libero sugli altri estremi; graticcio che si suppone equivalente ad una piastra ortotropa.

Se si osserva un graticcio di travi si constata che si tratta di una struttura a travi bidirezionali a direzioni per lo più ortogonali. Il comportamento dell'impalcato dipende essenzialmente dalle rigidezze flessionali e torsionali dei due ordini di travi e dalla loro reciproca influenza.

Si può, pertanto, pensare di assimilare l'impalcato ad una piastra ortotropa nella quale la caratterizzazione di comportamento nelle due direzioni sia data dalle rigidezze flessionali e torsionali anziché dai legami costitutivi dei materiali.

Maggiori dettagli sui criteri di calcoli vengono riportate nella parte specifica dedicate all'impalcato.

Il dimensionamento dell'Impalcato è riportato in Allegato.

AUTOSTRADA REGIONALE CISPADANA dal casello di Reggiolo-Rolo sulla A22 al casello di Ferrara Sud sulla A13

PROGETTO DEFINITIVO

OPERE D'ARTE MAGGIORI-PONTI
VPO02 – CAVALCAVIA SP8 - PONTE SUL CANALE DIVERSIVO DI BURANA
RELAZIONE DI CALCOLO

AUTOSTRADA REGIONALE CISPADANA dal casello di Reggiolo-Rolo sulla A22 al casello di Ferrara Sud sulla A13

PROGETTO DEFINITIVO

OPERE D'ARTE MAGGIORI-PONTI
VPO02 – CAVALCAVIA SP8 - PONTE SUL CANALE DIVERSIVO DI BURANA

RELAZIONE DI CALCOLO

8. ALLEGATO: DIMENSIONAMENTO IMPALCATO

1. UNITA' DI MISURA E CONVENZIONI DI SEGNO

Ove non sia diversamente specificato, le grandezze contenute nella presente relazione sono espresse nelle seguenti unità di misura:

lunghezza : cm

forza : Kgf

I diametri delle barre di armatura lenta sono sempre espressi in millimetri, i diametri dei trefoli di precompressione sono invece espressi in pollici (=25.4 mm).

I carichi agenti sull'impalcato sono, come è naturale assumere, positivi se diretti verso il basso.

Le tensioni sono positive se di trazione, sia per quanto riguarda il calcestruzzo che l'acciaio.

2. SISTEMA DI RIFERIMENTO

Si considera l'impalcato come un piano in cui un sistema di assi ortogonali x,y individua ogni punto di esso.

L'asse x è assunto longitudinalmente all'asse delle travi, l'asse y ortogonalmente.

L'origine di questo sistema di riferimento è posizionata sulla intersezione tra l'asse di simmetria delle travi prefabbricate e un asse degli appoggi (è indifferente quale dei due assi appoggi viene assunto come origine x).

Le grandezze y rappresentano percio' le eccentricità dei carichi ed hanno segno negativo verso destra e positivo verso sinistra guardando le sezioni nelle figure allegate.

Le grandezze x sono sempre positive.

L'asse delle z, ortogonale al piano x,y, ha lo zero sul fondo delle travi prefabbricate ed ha valori positivi verso l'alto.

AUTOSTRADA REGIONALE CISPADANA dal casello di Reggiolo-Rolo sulla A22 al casello di Ferrara Sud sulla A13

PROGETTO DEFINITIVO

OPERE D'ARTE MAGGIORI-PONTI
VPO02 – CAVALCAVIA SP8 - PONTE SUL CANALE DIVERSIVO DI BURANA
RELAZIONE DI CALCOLO

3. MODALITA' DI COSTRUZIONE DELL'IMPALCATO

L'impalcato viene realizzato con travi prefabbricate in c.a.p. e getto in opera di traversi e soletta collaboranti.

Le travi sono autoportanti, non necessitano quindi di alcun rompitratta o puntellamento provvisorio durante l'esecuzione dell'impalcato.

Si distinguono due fasi successive di lavoro:

PRIMA FASE

Le travi semplicemente appoggiate agli estremi resistono da sole al peso proprio ed a quello della soletta gettata in opera.

SECONDA FASE

Il sistema misto travi precompresse e soletta gettata in opera, divenuto solidale dopo la maturazione del calcestruzzo, resiste al peso delle sovrastrutture e dei carichi accidentali.

3.1. Modalità di costruzione delle travi

Le travi vengono costruite in uno stabilimento di prefabbricazione e successivamente trasportate a piè d'opera e varate.

Il sistema di precompressione è del tipo a fili aderenti.

I trefoli che costituiscono l'armatura di precompressione vengono tesati sino alla tensione σ spi prevista nella presente relazione.

Disposta l'armatura lenta per gli sforzi di taglio (staffe), ultimata la tesatura e fissata la casseratura, si procede al getto del calcestruzzo.

La maturazione del calcestruzzo avviene con ciclo termico a vapore opportunamente tarato in funzione del mix-design e della resistenza Rckj che è richiesta al momento del taglio dei trefoli.

Una volta raggiunta la resistenza Rckj si procede all'allentamento delle armature di precompressione ed allo stoccaggio del manufatto.

AUTOSTRADA REGIONALE CISPADANA dal casello di Reggiolo-Rolo sulla A22 al casello di Ferrara Sud sulla A13

PROGETTO DEFINITIVO

OPERE D'ARTE MAGGIORI-PONTI
VPO02 – CAVALCAVIA SP8 - PONTE SUL CANALE DIVERSIVO DI BURANA
RELAZIONE DI CALCOLO

4. SOVRACCARICHI ADOTTATI E NORME DI CALCOLO

Nella stesura del calcolo sono rispettate le seguenti norme:

Normative sui ponti stradali:

- DM 14/01/2008 Norme tecniche per le costruzioni
- Circolare 2 febbraio 2009 n. 617 Istruzioni per l'applicazione delle "Nuove Norme Tecniche per le costruzioni".

Per la stesura della presente relazione si sono inoltre seguite le indicazioni contenute nei documenti :

- CNR 10024/84 Analisi di strutture mediante elaboratore: impostazione e redazione delle relazioni di calcolo.
- NTC 2008 10.2 Analisi e verifiche svolte con l'ausilio di codici di calcolo

AUTOSTRADA REGIONALE CISPADANA

REGIONE EMILIA ROMAGNA

AUTOSTRADA REGIONALE CISPADANA dal casello di Reggiolo-Rolo sulla A22 al casello di Ferrara Sud sulla A13

PROGETTO DEFINITIVO

RELAZIONE DI CALCOLO

OPERE D'ARTE MAGGIORI-PONTI
VPO02 – CAVALCAVIA SP8 - PONTE SUL CANALE DIVERSIVO DI BURANA

5. METODO ED IPOTESI DI CALCOLO

L'impalcato viene realizzato con travi in semplice appoggio collaboranti tra loro grazie all'azione della soletta.

Esso si presenta quindi come una lastra appoggiata sui lati opposti e che presenta una forte ortotropia.

Per la ricerca delle sollecitazioni nei vari elementi componenti l'impalcato si ricorre al metodo di Massonnet che permette, mediante l'ausilio di opportuni coefficienti, di risolvere la ripartizione dei carichi e conoscere le sollecitazioni.

Questo metodo fu proposto da Guyon nel 1946 per un grigliato di travi prive di rigidezza torsionale, ripreso da Massonnet nel 1950 per tener conto della torsione, infine esteso da Bares; questi ultimi Autori hanno sistemato in modo definitivo la materia in un libro ("Les calcules des grillages de pontres ed dalles orthotropes selon la Method Guyon - Massonet - Bares", Dunod, Parigi, 1966) che fornisce un gran numero di tabelle direttamente utilizzabili dal progettista e che ne ha agevolato una larga diffusione.

Nel grigliato ortotropo il procedimento di Massonnet trae origine dallo studio di un graticcio appoggiato in corrispondenza degli estremi delle travi principali longitudinali e libero sugli altri estremi; graticcio che si suppone equivalente ad una piastra ortotropa.

Se si osserva un graticcio di travi si constata che si tratta di una struttura a travi bidirezionali a direzioni per lo più ortogonali.

Il comportamento dell'impalcato dipende essenzialmente dalle rigidezze flessionali e torsionali dei due ordini di travi e dalla loro reciproca influenza.

Si può, pertanto, pensare di assimilare l'impalcato ad una piastra ortotropa nella quale la caratterizzazione di comportamento nelle due direzioni sia data dalle rigidezze flessionali e torsionali anziché dai legami costitutivi dei materiali.

Il metodo di Massonnet considera l'impalcato reale come una lastra rettangolare di larghezza teorica

 $2 \times B = n \times i$

n = n.travi, i = interasse travi

e lunghezza pari alla luce di calcolo; tiene conto della differente deformabilità della lastra in senso longitudinale e in senso trasversale.

Si considera una condizione di carico

 $p(x;e) = P_m sen (\pi x/I)$

variabile con legge sinusoidale ed agente parallelamente all'asse x con eccentricità e; per tale carico la deformata ha una legge w(x,y;e) che si ottiene integrando l'equazione di Huber. Esprimendo in serie di Levy, la deformata assume la forma

AUTOSTRADA REGIONALE CISPADANA dal casello di Reggiolo-Rolo sulla A22 al casello di Ferrara Sud sulla A13

PROGETTO DEFINITIVO

OPERE D'ARTE MAGGIORI-PONTI
VPO02 – CAVALCAVIA SP8 - PONTE SUL CANALE DIVERSIVO DI BURANA

RELAZIONE DI CALCOLO

 $w(x,y;e) = w(1/2,y;e) sen (\pi x/I)$

considerando una condizione di carico avente la stessa legge di variazione e lo stesso Pm ma distribuito su tutta la larghezza dell'impalcato

 $p(x;e) = (P_m/2b) \operatorname{sen} (\pi x/I)$

si avrà una deformata cilindrica che può assumere la forma

 $w(x) = w(1/2) \text{ sen } (\pi x/I)$

Si può, quindi, definire per una trave di ordinata y e carico di eccentricità e, il coefficiente di ripartizione trasversale (adimensionale)

K(y;e) = w(x,y;e)/w(x) = w(1/2,y;e)/w(1/2)

Si ha, pertanto, per il carico unitario di eccentricità e, il rapporto fra il carico su una trave di ordinata y e il carico medio 1/n dove n è il numero delle travi.

Il valore di K(y;e) è stato calcolato dal Massonnet e tabellato in base ai parametri dai quali dipende e precisamente

- a) dal rapporto y/b rappresentante la posizione della trave longitudinale
 presa in considerazione (e lungo la quale y ha sempre lo stesso valore);
- b) dal rapporto e/b che rappresenta la posizione del carico
- c) dal rapporto di rigidezza torsionale (compreso tra 0 e 1)
- d) dal rapporto adimensionale di rigidezza flessionale

AUTOSTRADA REGIONALE CISPADANA dal casello di Reggiolo-Rolo sulla A22 al casello di Ferrara Sud sulla A13

PROGETTO DEFINITIVO

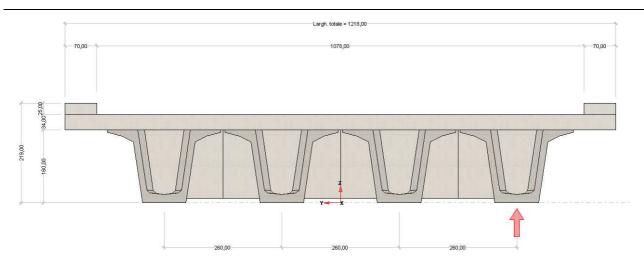
OPERE D'ARTE MAGGIORI-PONTI
VPO02 – CAVALCAVIA SP8 - PONTE SUL CANALE DIVERSIVO DI BURANA
RELAZIONE DI CALCOLO

6. DATI IMPALCATO

Tipo di impalcato: travi in c.a.p. più soletta collaborante

6.1. Dati geometrici

Luce di calcolo	2600,00
Larghezza cordolo sinistro	70,00
Larghezza carreggiata	1078,00
Larghezza cordolo destro	70,00
Larghezza fuori tutto impalcato	1218,00
Numero travi	4
Tipo trave	VH160
Interasse travi	260,00
Larghezza travi	250,00
Lunghezza retrotrave	50,00
Lunghezza ringrosso	100,00
Lunghezza svasatura	50,00
Eccenticità travi-soletta	0,00
Spessore medio soletta	34,00
Spessore minimo soletta	20,00
Luce di calcolo soletta	0,00
Larghezza marciapede sinistro	0,00
Dist. marciapiede sinistro	0,00
Larghezza marciapede destro	0,00
Dist. marciapiede destro	0,00
Spessore medio cordoli	25,00


AUTOSTRADA REGIONALE CISPADANA dal casello di Reggiolo-Rolo sulla A22 al casello di Ferrara Sud sulla A13

PROGETTO DEFINITIVO

OPERE D'ARTE MAGGIORI-PONTI

VPO02 - CAVALCAVIA SP8 - PONTE SUL CANALE DIVERSIVO DI BURANA

RELAZIONE DI CALCOLO

6.2. Traversi in testata

Altezza sezione traversi

150,00

Spessore sezione traversi

50,00

n. X

1 0,00

2 2600,00

AUTOSTRADA REGIONALE CISPADANA dal casello di Reggiolo-Rolo sulla A22 al casello di Ferrara Sud sulla A13

PROGETTO DEFINITIVO

OPERE D'ARTE MAGGIORI-PONTI
VPO02 – CAVALCAVIA SP8 - PONTE SUL CANALE DIVERSIVO DI BURANA
RELAZIONE DI CALCOLO

6.3. Trave prefabricata VH160

Per la descrizione geometrica delle sezioni della trave viene utilizzato il sistema di riferimento x,y locale, avente asse x allineato con l'asse Y globale ma di direzione discorde, ed asse y concorde con asse Z globale.

6.3.1. Sezione in campata

x	у
-48,200	0,000
-68,300	134,000
-93,000	147,000
-125,000	155,000
-125,000	160,000
-58,000	160,000
-38,200	28,100
-31,300	21,600
0,000	19,000
31,300	21,600
38,200	28,100
58,000	160,000
125,000	160,000
125,000	155,000
93,000	147,000
68,300	134,000
48,200	0,000
-48,200	0,000
0,000	53,900
	-48,200 -68,300 -93,000 -125,000 -125,000 -58,000 -38,200 -31,300 38,200 58,000 125,000 125,000 93,000 68,300 48,200 -48,200

Altezza della sezione	160,00
Spessore complessivo anime	28,40
Area sezione di calcestruzzo	7479,99
Ordinata y baricentro	79,97
Ascissa x baricentro	0,00
J baricentro	24411727,61
Peso specifico	0,0025
Coefficiente torsionale	17873575,00

AUTOSTRADA REGIONALE CISPADANA dal casello di Reggiolo-Rolo sulla A22 al casello di Ferrara Sud sulla A13

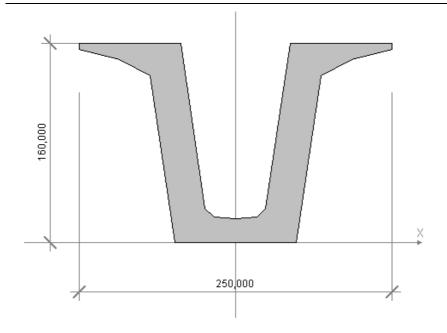
PROGETTO DEFINITIVO

OPERE D'ARTE MAGGIORI-PONTI
VPO02 – CAVALCAVIA SP8 - PONTE SUL CANALE DIVERSIVO DI BURANA
RELAZIONE DI CALCOLO

6.3.2. Sezione in testata

Vertice n.	x	у
1	-48,200	0,000
2	-68,300	134,000
3	-93,000	147,000
4	-125,000	155,000
5	-125,000	160,000
6	-43,780	160,000
7	-24,250	27,000
8	-17,000	20,410
9	0,000	19,000
10	17,000	20,410
11	24,250	27,000
12	43,780	160,000
13	125,000	160,000
14	125,000	155,000
15	93,000	147,000
16	68,300	134,000
17	48,200	0,000
18	-48,200	0,000
19	0,000	53,900

Altezza della sezione	160,00
Spessore complessivo anime	56,00
Area sezione di calcestruzzo	11358,10
Ordinata y baricentro	83,77
Ascissa x baricentro	0,00
J baricentro	30936942,55
Coefficiente torsionale	17873575,00


AUTOSTRADA REGIONALE CISPADANA dal casello di Reggiolo-Rolo sulla A22 al casello di Ferrara Sud sulla A13

PROGETTO DEFINITIVO

OPERE D'ARTE MAGGIORI-PONTI

VPO02 - CAVALCAVIA SP8 - PONTE SUL CANALE DIVERSIVO DI BURANA

RELAZIONE DI CALCOLO

6.2. Parametri dei materiali

Ritiro differenziale trave - soletta	0,00000
Coeff. omogen. E cls soletta / E cls trave	0,89
E trave/soletta (calcolo frecce)	364160,00
Peso specifico calcestruzzo	0,0025

7. RIPARTIZIONE TRASVERSALE DEI CARICHI

7.1. Parametri di Massonnet

Trave verificata: 1	eccentricità Y	-390,00
Luce di calcolo travi principali	L	2600,00
Interasse traversi	L1	1,00
Semilarghezza teorica impalcato	В	520,00
Interasse travi	B1	260,00

Trave:

Ap = 16694,16 (area sezione cls trave+soletta)

Dp = 133,53 (quota baricentro)

64165099,3866 (momento d'inerzia flessionale) Jp =

Cp = 17873575,00 (coefficiente di torsione)

AUTOSTRADA REGIONALE CISPADANA dal casello di Reggiolo-Rolo sulla A22 al casello di Ferrara Sud sulla A13

PROGETTO DEFINITIVO

OPERE D'ARTE MAGGIORI-PONTI

VPO02 - CAVALCAVIA SP8 - PONTE SUL CANALE DIVERSIVO DI BURANA

RELAZIONE DI CALCOLO

Traverso:

Ae = 20,00 (area sezione traverso/soletta)

De = 10,00 (quota baricentro da base sezione)

Je = 666,67 (momento d'inerzia flessionale)

Ce = 666,67 (coefficiente di torsione)

Larghezza soletta collaborante con il traverso = 1,00

Coeff. omogen. E cls soletta / E cls trave = 0,89

Teta = 0,903Radice alfa = 1,000

7.2. Coefficienti

Si calcolano i coefficienti d'influenza della 1^a trave che ha una eccentricita' Y = 390 [cm] e che risulta essere la piu' sollecitata:

Y=	520,00	390,00	260,00	130,00	0,00	-130,00	-260,00	-390,00	-520,00
K_0	-0,188	-0,201	-0,185	-0,067	0,271	0,953	2,020	3,255	4,261
K ₁	0,115	0,170	0,264	0,431	0,710	1,137	1,711	2,271	2,523
Kα	0,115	0,170	0,264	0,431	0,710	1,137	1,711	2,271	2,523

Vengono riportati di seguito i coefficienti μ_a relativi alla sezione Y = 0,00 del traverso, ed alla prima armonica.

Y=	520,00	390,00	260,00	130,00	0,00	-130,00	-260,00	-390,00	-520,00
U.,	-0,020	-0,019	-0,013	0,009	0,085	0.009	-0,013	-0,019	-0,020

AUTOSTRADA REGIONALE CISPADANA dal casello di Reggiolo-Rolo sulla A22 al casello di Ferrara Sud sulla A13

PROGETTO DEFINITIVO

OPERE D'ARTE MAGGIORI-PONTI
VPO02 – CAVALCAVIA SP8 - PONTE SUL CANALE DIVERSIVO DI BURANA
RELAZIONE DI CALCOLO

8. ANALISI DEI CARICHI

8.1 Valori caratteristici delle azioni permanenti

8.1.1. Fase 1

Pesi gravanti sulla trave singola:

Lunghezza trave in asse	2700,00	[cm]
Peso trave (sezione filante)	18,70	[Kgf/cm]
Peso trave (sezione ringrossata)	28,40	[Kgf/cm]
Peso totale trave prefabbricata	52913,75	[Kgf]
Peso soletta gravante sulla trave	29,66	[Kgf/cm]
Peso traverso in testata	2868,75	[Kgf]

8.1.2. Fase 2

8.1.2.1. Pavimentazione

Peso pavimentazione (0,03 [Kgf/cm²]) gravante sulla trave: 8,18 [Kgf/cm]

La larghezza della carreggiata viene suddivisa in 20 intervalli uguali e per ciascuno di essi si determina il valore del coefficiente K_{α} di Massonnet in corrispondenza del proprio baricentro. Si procede poi alla somma di tali effetti in modo da ottenere la porzione del carico pavimentazione agente sulla trave considerata

8.1.2.2. Peso dei cordoli

I cordoli in calcestruzzo non hanno funzione strutturale.

Il loro peso viene applicato al modello di calcolo come carico lineare uniforme distribuito su tutta la luce e posizionato in sezione trasversale con data eccentricità.

	peso lineare [Kgf/cm]	Ecc. Y	peso totale [Kgf]
cordolo sinistro	4,38	574,00	11375,00
cordolo destro	4,38	-574,00	11375,00

Peso totale cordoli = 22750,00

AUTOSTRADA REGIONALE CISPADANA dal casello di Reggiolo-Rolo sulla A22 al casello di Ferrara Sud sulla A13

PROGETTO DEFINITIVO

OPERE D'ARTE MAGGIORI-PONTI
VPO02 – CAVALCAVIA SP8 - PONTE SUL CANALE DIVERSIVO DI BURANA
RELAZIONE DI CALCOLO

8.1.2.3. Lineari di 2a fase sull'impalcato

A questi carichi viene applicato il metodo di Massonnet calcolandone il relativo coefficiente di ripartizione trasversale per la trave in esame.

n.	Descrizione	[Kgf/cm]	Ecc. Y	X'i	Rif.X'i	X'f	Rif.X'f
1	BARRIERA	1,5000	574,00	0,00	Appoggio iniziale	0,00	Appoggio finale
2	BARRIERA	1,5000	-574,00	0,00	Appoggio iniziale	0,00	Appoggio finale

8.2. Valori caratteristici delle azioni variabili

Il numero delle colonne di carichi mobili da considerare nel calcolo dei ponti è quello massimo compatibile con la larghezza della carreggiata, comprese le eventuali banchine di rispetto e per sosta di emergenza, nonché gli eventuali marciapiedi non protetti e di altezza inferiore a 20 cm, tenuto conto che la larghezza di ingombro convenzionale è stabilita per ciascuna colonna in 3.00 m. In ogni caso il numero delle colonne non deve essere inferiore a 2, a meno che la larghezza della sede stradale sia inferiore a 5,40 m.

La disposizione dei carichi ed il numero delle colonne sulla carreggiata saranno volta per volta quelli che determinano le condizioni più sfavorevoli di sollecitazione per la struttura, membratura o sezione considerata.

Categoria ponte : Stradale 1a categoria

Numero assi per corsia: 2

corsia	Nome	carico asse Q	р	α_{Q}	α_{q}
1	Corsia 1	30581,04	0,09	1,00	1,00
2	Corsia 2	20387,36	0,03	1,00	1,00
3	Corsia 3	10193,68	0,03	1,00	1,00

Carico folla sui marciapiedi= 0,05 [Kgf/cm²]

AUTOSTRADA REGIONALE CISPADANA dal casello di Reggiolo-Rolo sulla A22 al casello di Ferrara Sud sulla A13

PROGETTO DEFINITIVO

OPERE D'ARTE MAGGIORI-PONTI

VPO02 – CAVALCAVIA SP8 - PONTE SUL CANALE DIVERSIVO DI BURANA **RELAZIONE DI CALCOLO**

9. COEFFICIENTI DI COMBINAZIONE

9.1. Stati Limite Ultimi

	sup.	inf.
Coeff. sicurezza carichi permanenti	1,35	1,00
Coeff. sicurezza carichi traffico	1,35	0,00
Coeff. sicurezza carichi vento	1,50	0,00

9.2. Stati Limite di Esercizio

Carico	ψ_0	ψ 1	ψ2
LM1/UDL	0,40	0,40	0,00
LM1/TS	0,75	0,75	0,00
forze orizzontali	0,00	0,00	0,00
carico pedonale	0,00	0,00	0,00
LM4 folla	0,00	0,75	0,00
LM3	0,00	0,00	0,00
asse singolo LM2	0,00	0,00	0,00
vento	0,60	0,20	0,00
termico	0,60	0,60	0,50

AUTOSTRADA REGIONALE CISPADANA dal casello di Reggiolo-Rolo sulla A22 al casello di Ferrara Sud sulla A13

PROGETTO DEFINITIVO

OPERE D'ARTE MAGGIORI-PONTI
VPO02 – CAVALCAVIA SP8 - PONTE SUL CANALE DIVERSIVO DI BURANA
RELAZIONE DI CALCOLO

10. APPLICAZIONE DEL METODO DI MASSONNET

10.1. Cordoli

Descrizione	[Kgf/cm]	Ecc. Y	K Massonnet	μ Massonnet
cordolo sinistro	4,38	574,00	0,095	-0,020
cordolo destro	4,38	-574,00	2,604	-0,020

10.2. Lineari per trave

Vengono considerati concentrati in direzione y e uniformemente distribuiti in direzione x.

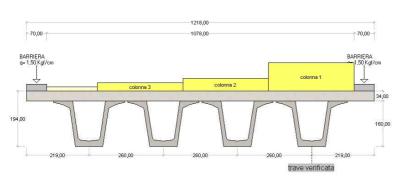
n.	Descrizione	[Kgf/cm]	Ecc. Y	K Massonnet	μ Massonnet
1	BARRIERA	1,50	574,00	0,095	-0,020
2	BARRIERA	1,50	-574,00	2,604	-0,020

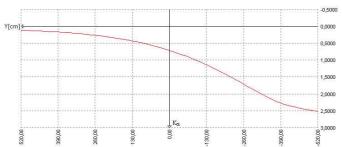
10.3. Carichi mobili per massimo effetto sulla trave 1

Descrizione	Q-α [Kgf]	q-α [Kgf/cm]	Ecc. Y	Larghezza	Ka
Corsia 1	30581,04	27,52	-389,00	300,00	2,268
Corsia 2	20387,36	7,65	-89,00	300,00	0,985
Corsia 3	10193,68	7,65	211,00	300,00	0,317
Zona Rimanente	0,00	4,54	450,00	178,00	0,142
Descrizione	q [Kgf/cm]	Ecc. Y	Larghezza	Ka	

Coefficiente di incremento dinamico = 1.0

Le colonne di carico vengono posizionate in direzione x in modo da generare la massima sollecitazione nella specifica sezione di verifica.


AUTOSTRADA REGIONALE CISPADANA dal casello di Reggiolo-Rolo sulla A22 al casello di Ferrara Sud sulla A13


PROGETTO DEFINITIVO

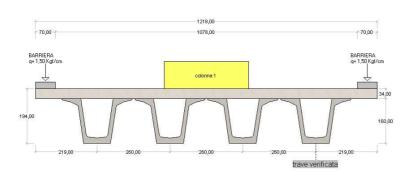
OPERE D'ARTE MAGGIORI-PONTI

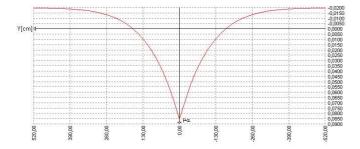
VPO02 – CAVALCAVIA SP8 - PONTE SUL CANALE DIVERSIVO DI BURANA RELAZIONE DI CALCOLO

Diagramma di ripartizione trasversale - coeff. K_{α} di Massonnet

AUTOSTRADA REGIONALE CISPADANA dal casello di Reggiolo-Rolo sulla A22 al casello di Ferrara Sud sulla A13

PROGETTO DEFINITIVO


OPERE D'ARTE MAGGIORI-PONTI
VPO02 – CAVALCAVIA SP8 - PONTE SUL CANALE DIVERSIVO DI BURANA
RELAZIONE DI CALCOLO

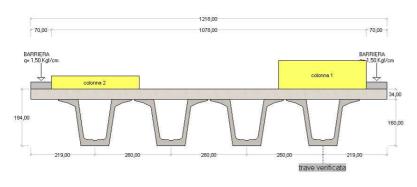

10.4. Carichi mobili per calcolo M max trasv. soletta (effetto globale)

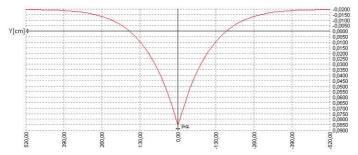
Per la ricerca del massimo momento flettente (che tende le fibre inferiori) si dispongono i carichi in vari modi sia in senso longitudinale che trasversale. Viene qui riportata la configurazione più sfavorevole per la sezione Y=0 in asse travi.

Descrizione	Q-α[Kgf]	q-α[Kgf/cm]	Ecc. Y	Larghezza	μ
Corsia 1	30581,04	27,52	0.00	300,00	0,085

AUTOSTRADA REGIONALE CISPADANA dal casello di Reggiolo-Rolo sulla A22 al casello di Ferrara Sud sulla A13

PROGETTO DEFINITIVO


OPERE D'ARTE MAGGIORI-PONTI
VPO02 – CAVALCAVIA SP8 - PONTE SUL CANALE DIVERSIVO DI BURANA
RELAZIONE DI CALCOLO


10.5. Carichi mobili per calcolo M min trasv. soletta (effetto globale)

Per la ricerca del minimo momento flettente (che tende le fibre superiori) si dispongono i carichi in vari modi sia in senso longitudinale che trasversale. Viene qui riportata la configurazione più sfavorevole per la sezione Y=0 in asse travi.

Descrizione	Q-α[Kgf]	q-α[Kgf/cm]	Ecc. Y	Larghezza	μ
Corsia 1	30581,04	27,52	-389,00	300,00	-0,019
Corsia 2	20387,36	7,65	389,00	300,00	-0,019

Diagramma coeff. μ di influenza del traverso, configurazione del carico per M min

AUTOSTRADA REGIONALE CISPADANA dal casello di Reggiolo-Rolo sulla A22 al casello di Ferrara Sud sulla A13

PROGETTO DEFINITIVO

OPERE D'ARTE MAGGIORI-PONTI
VPO02 – CAVALCAVIA SP8 - PONTE SUL CANALE DIVERSIVO DI BURANA
RELAZIONE DI CALCOLO

11. SOLLECITAZIONI SULLA TRAVE 1

11.1. Valori caratteristici sollecitazioni

11.1.1. Al taglio trefoli ed in opera

Sez.X	Descrizione	peso trave		peso soletta e traversi	
		M	V	М	V
0,00		0,0000	25037,11	0,0000	38564,5000
157,00		3613436,1760	21374,07	5687372,3174	33907,0950
357,00		7510077,9304	17634,08	11868871,3644	27974,0950
757,00		13067775,9230	10154,09	20685413,1487	16108,0950
1300,00	mezzeria	15829756,7786	0,00	25066925,0000	0,0000
2600,00	appoggio	0,0000	-25037,11	0,0000	-38564,5000

11.1.2. Seconda fase - carichi permanenti

Sez.X	Descrizione	peso cordoli		
		М	V	Т
0,00		0,0000	3836,83	-823148,5292
157,00		565844,4202	3373,46	-804053,6128
357,00		1180850,1819	2783,18	-728112,1994
757,00		2058019,9354	1602,62	-455502,2942
1300,00	mezzeria	2493942,5187	0,00	0,0000
2600,00	appoggio	0,0000	-3836,83	823148,5292
Sez.X	Descrizione	peri	nanenti portati	
Sez.X	Descrizione	peri M	manenti portati V	Т
Sez.X 0,00	Descrizione	-	_	T -371652,1033
	Descrizione	М	V	-
0,00	Descrizione	M 0,0000	V 11944,82	-371652,1033
0,00 157,00	Descrizione	M 0,0000 1761584,2173	V 11944,82 10502,25	-371652,1033 -362817,9925
0,00 157,00 357,00	Descrizione mezzeria	M 0,0000 1761584,2173 3676217,2944	V 11944,82 10502,25 8664,59	-371652,1033 -362817,9925 -327778,3911
0,00 157,00 357,00 757,00		M 0,0000 1761584,2173 3676217,2944 6407018,0916	V 11944,82 10502,25 8664,59 4989,26	-371652,1033 -362817,9925 -327778,3911 -203340,8830

PROGETTO DEFINITIVO

OPERE D'ARTE MAGGIORI-PONTI

VPO02 – CAVALCAVIA SP8 - PONTE SUL CANALE DIVERSIVO DI BURANA **RELAZIONE DI CALCOLO**

11.1.3. Seconda fase - carichi da traffico

Sez.X	Descrizione		Tandem-TS	
		М	V	Т
0,00		0,0000	45261,46	-105506,6451
157,00		6664836,8484	42463,80	-357700,0382
357,00		13877333,5109	38899,90	-546567,8121
757,00		24041684,5852	31772,12	-473104,4253
1300,00	mezzeria	28724987,6236	-22096,14	-24029,7718
2600,00	appoggio	0,0000	-45261,46	105506,6451
Sez.X	Descrizione	D	istribuito-UDL	
		M	V	Т
0,00		0,0000	23729,39	-1098027,7331
157,00		3499535,7812	20950,52	-1062222,7955
357,00		7303116,0446	17662,27	-929530,8061
757,00		12728082,3943	11925,07	-548253,3299
1300,00	mezzeria	15424100,2817	5297,25	-102860,2830
2600,00	appoggio	0,0000	-23729,39	1098027,7331
Sez.X	Descrizione		Ila marciapiedi	
	Descrizione	M Fo	V	т
0,00	Descrizione	M 0,0000	V 0,00	0,0000
0,00 157,00	Descrizione	M 0,0000 0,0000	V 0,00 0,00	0,0000 0,0000
0,00 157,00 357,00	Descrizione	M 0,0000 0,0000 0,0000	V 0,00 0,00 0,00	0,0000 0,0000 0,0000
0,00 157,00 357,00 757,00	Descrizione	M 0,0000 0,0000 0,0000 0,0000	V 0,00 0,00 0,00 0,00	0,0000 0,0000 0,0000 0,0000
0,00 157,00 357,00 757,00 1300,00	mezzeria	M 0,0000 0,0000 0,0000 0,0000 0,0000	V 0,00 0,00 0,00 0,00 0,00	0,0000 0,0000 0,0000 0,0000 0,0000
0,00 157,00 357,00 757,00		M 0,0000 0,0000 0,0000 0,0000	V 0,00 0,00 0,00 0,00	0,0000 0,0000 0,0000 0,0000
0,00 157,00 357,00 757,00 1300,00 2600,00	mezzeria	M 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000	V 0,00 0,00 0,00 0,00 0,00 0,00	0,0000 0,0000 0,0000 0,0000 0,0000
0,00 157,00 357,00 757,00 1300,00	mezzeria	M 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000	V 0,00 0,00 0,00 0,00 0,00 0,00 ppo1 (tab. 5.1.IV)	0,0000 0,0000 0,0000 0,0000 0,0000
0,00 157,00 357,00 757,00 1300,00 2600,00	mezzeria	M 0,0000 0,0000 0,0000 0,0000 0,0000 gruj	V 0,00 0,00 0,00 0,00 0,00 0,00 0,00 v	0,0000 0,0000 0,0000 0,0000 0,0000
0,00 157,00 357,00 757,00 1300,00 2600,00 Sez.X	mezzeria	M 0,0000 0,0000 0,0000 0,0000 0,0000 gruj M 0,0000	V 0,00 0,00 0,00 0,00 0,00 0,00 v ppo1 (tab. 5.1.IV) V 68990,84	0,0000 0,0000 0,0000 0,0000 0,0000 T -1203534,3783
0,00 157,00 357,00 757,00 1300,00 2600,00 Sez.X	mezzeria	M 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 grup M 0,0000 10164372,6296	V 0,00 0,00 0,00 0,00 0,00 0,00 V 0ppo1 (tab. 5.1.IV) V 68990,84 63414,32	0,0000 0,0000 0,0000 0,0000 0,0000 T -1203534,3783 -1419922,8336
0,00 157,00 357,00 757,00 1300,00 2600,00 Sez.X 0,00 157,00 357,00	mezzeria	M 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 M 0,0000 10164372,6296 21180449,5555	V 0,00 0,00 0,00 0,00 0,00 0,00 0,00 V 0ppo1 (tab. 5.1.IV) V 68990,84 63414,32 56562,17	0,0000 0,0000 0,0000 0,0000 0,0000 T -1203534,3783 -1419922,8336 -1476098,6182
0,00 157,00 357,00 757,00 1300,00 2600,00 Sez.X 0,00 157,00 357,00 757,00	mezzeria appoggio	M 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 M 0,0000 10164372,6296 21180449,5555 36769766,9795	V 0,00 0,00 0,00 0,00 0,00 0,00 0,00 V 0po1 (tab. 5.1.IV) V 68990,84 63414,32 56562,17 43697,18	0,0000 0,0000 0,0000 0,0000 0,0000 T -1203534,3783 -1419922,8336 -1476098,6182 -1021357,7552
0,00 157,00 357,00 757,00 1300,00 2600,00 Sez.X 0,00 157,00 357,00	mezzeria	M 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 M 0,0000 10164372,6296 21180449,5555	V 0,00 0,00 0,00 0,00 0,00 0,00 0,00 V 0ppo1 (tab. 5.1.IV) V 68990,84 63414,32 56562,17	0,0000 0,0000 0,0000 0,0000 0,0000 T -1203534,3783 -1419922,8336 -1476098,6182

AUTOSTRADA REGIONALE CISPADANA dal casello di Reggiolo-Rolo sulla A22 al casello di Ferrara Sud sulla A13

PROGETTO DEFINITIVO

OPERE D'ARTE MAGGIORI-PONTI

VPO02 - CAVALCAVIA SP8 - PONTE SUL CANALE DIVERSIVO DI BURANA

RELAZIONE DI CALCOLO

11.2. Valori di combinazione

11.2.1. Combinazioni SLU

11.2.1.1. Al taglio dei trefoli

$$E_d = E\{ \gamma_{G1,sup} \cdot G1_{k,1} \}$$

$$E_d = E\{ \gamma_{G1,inf} \cdot G1_{k,1} \}$$

Sez.X	Descrizione	М	V
0,00		0,0000	33800,10
157,00		4878138,8376	28855,00
357,00		10138605,2060	23806,00
757,00		17641497,4961	13708,02
1300,00	mezzeria	21370171,6512	0,00
2600,00	appoggio	0,0000	-33800,10

11.2.1.2. Al getto soletta

$$E_d = E\{\sum \gamma_{G1,sup} \cdot G1_{k,i} + \sum \gamma_{G2,sup} \cdot G2_{k,i}\}$$

$$\mathsf{E}_\mathsf{d} = \mathsf{E} \{ \, \sum \gamma_{\mathsf{G1,inf}^*} \mathsf{G1}_{\mathsf{k},\mathsf{i}} + \sum \gamma_{\mathsf{G2,inf}^*} \mathsf{G2}_{\mathsf{k},\mathsf{i}} \, \}$$

Sez.X	Descrizione	М	V
0,00		0,0000	85862,18
157,00		12556091,4661	74629,57
357,00		26161581,5480	61571,03
757,00		45566805,2468	35453,94
1300,00	mezzeria	55210520,4012	0,00
2600,00	appoggio	0,0000	-85862,18

11.2.1.3. Seconda fase P/T

$$\mathsf{E}_\mathsf{d} = \mathsf{E} \{ \; \sum \gamma_{\mathsf{G1},\mathsf{sup}} \cdot \mathsf{G1}_{\mathsf{k},\mathsf{i}} + \sum \gamma_{\mathsf{G2},\mathsf{sup}} \cdot \mathsf{G2}_{\mathsf{k},\mathsf{i}} \; \}$$

$$\mathsf{E}_\mathsf{d} = \mathsf{E} \{ \; \sum \gamma_{\mathsf{G1},\mathsf{inf}^*} \mathsf{G1}_{\mathsf{k},\mathsf{i}} + \sum \gamma_{\mathsf{G2},\mathsf{inf}^*} \mathsf{G2}_{\mathsf{k},\mathsf{i}} \; \}$$

$$\mathsf{E}_\mathsf{d} = \mathsf{E} \{ \; \sum \gamma_{\mathsf{G1,sup}} \cdot \mathsf{G1}_\mathsf{k,i} + \sum \gamma_{\mathsf{G2,sup}} \cdot \mathsf{G2}_\mathsf{k,i} + \gamma_{\mathsf{Q,traffico}} \cdot \mathsf{Q}_\mathsf{k,gruppo \ 1} \; \}$$

PROGETTO DEFINITIVO

OPERE D'ARTE MAGGIORI-PONTI

VPO02 - CAVALCAVIA SP8 - PONTE SUL CANALE DIVERSIVO DI BURANA

RELAZIONE DI CALCOLO

$$\text{E}_{\text{d}} = \text{E}\{\; \sum \gamma_{\text{G1,inf}} \cdot \text{G1}_{\text{k,i}} + \sum \gamma_{\text{G2,inf}} \cdot \text{G2}_{\text{k,i}} + \gamma_{\text{Q,traffico}} \cdot \text{Qk,gruppo 1} \; \}$$

Sez.X	Descrizione	M	V	Т
0,00		0,0000	202096,76	-3293500,0800
157,00		29684260,8093	180546,45	-3546595,1914
357,00		61863662,1349	154684,13	-3467352,1904
757,00		107594844,7190	104092,56	-2298772,3913
1300,00	mezzeria	129824806,8500	-22678,51	-171301,5739
2600,00	appoggio	0,0000	-202096,76	3293500,0800

11.2.2. Combinazioni SLE

11.2.2.1. Al taglio dei trefoli

 $E_d = E\{ G1_{k,1} \}$

Sez.X	Descrizione	M	V
0,00		0,0000	25037,11
157,00		3613436,1760	21374,07
357,00		7510077,9304	17634,08
757,00		13067775,9230	10154,09
1300,00	mezzeria	15829756,7786	0,00
2600,00	appoggio	0,000	-25037,11

11.2.2.2. Al getto soletta

$$E_d = E\{ \sum_{i=1}^{n} G1_{k,i} + \sum_{i=1}^{n} G2_{k,i} \}$$

Sez.X	Descrizione	M	V
0,00		0,0000	63601,61
157,00		9300808,4934	55281,17
357,00		19378949,2948	45608,17
757,00		33753189,0717	26262,18
1300,00	mezzeria	40896681,7786	0,00
2600,00	appoggio	0,000	-63601,61

11.2.2.3. Seconda fase - S.L.E. Rara 2ªfase

$$E_d = E\{ \sum_{k=1}^{\infty} G_{1k,2}^{a}_{fase} + \sum_{k=1}^{\infty} G_{2k,2}^{a}_{fase} + Q_{k,gruppo} \}$$

PROGETTO DEFINITIVO

OPERE D'ARTE MAGGIORI-PONTI

VPO02 - CAVALCAVIA SP8 - PONTE SUL CANALE DIVERSIVO DI BURANA

RELAZIONE DI CALCOLO

Sez.X	Descrizione	М	V	т
0,00		0,0000	84772,49	-1194800,6325
157,00		12491801,2671	77290,03	-1166871,6053
357,00		26037517,0317	68009,94	-1055890,5905
757,00		45234805,0064	50289,06	-658843,1773
1300,00	mezzeria	54407160,6746	-16798,90	0,0000
2600,00	appoggio	0,000	-84772,49	2398335,0108

11.2.2.4. Seconda fase - S.L.E. Frequente 2ªfase

$$\mathsf{E}_\mathsf{d} = \mathsf{E} \{ \sum \mathsf{G1}_\mathsf{k,2}{}^\mathsf{a}_\mathsf{fase} + \sum \mathsf{G2}_\mathsf{k,2}{}^\mathsf{a}_\mathsf{fase} + \psi_1 \cdot \mathsf{Q}_\mathsf{k,gruppo\ 1} \, \}$$

Sez.X	Descrizione	M	V	Т
0,00		0,0000	59219,50	-1194800,6325
157,00		8725870,5863	54103,77	-1166871,6053
357,00		18186314,0272	47687,60	-1055890,5905
757,00		31587534,4235	35190,99	-658843,1773
1300,00	mezzeria	37971453,5997	-14453,21	0,0000
2600,00	appoggio	0,000	-59219,50	1713141,7096

11.2.2.5. Seconda fase - S.L.E. Quasi permanente 2ªfase

$$\mathsf{E}_\mathsf{d} = \mathsf{E} \{ \sum \mathsf{G1}_\mathsf{k,2}^\mathsf{a}_\mathsf{fase} + \sum \mathsf{G2}_\mathsf{k,2}^\mathsf{a}_\mathsf{fase} + \psi_2 \cdot \mathsf{Q}_\mathsf{k,gruppo\,1} \}$$

Sez.X	Descrizione	М	V	Т
0,00		0,0000	15781,65	-1194800,6325
157,00		2327428,6375	13875,71	-1166871,6053
357,00		4857067,4762	11447,77	-1055890,5905
757,00		8465038,0269	6591,87	-658843,1773
1300,00	mezzeria	10258072,7694	0,00	0,0000
2600,00	appoggio	0,0000	-15781,65	1194800,6325

PROGETTO DEFINITIVO

OPERE D'ARTE MAGGIORI-PONTI
VPO02 – CAVALCAVIA SP8 - PONTE SUL CANALE DIVERSIVO DI BURANA
RELAZIONE DI CALCOLO

12. SOLLECITAZIONI SULLA SOLETTA

Vengono valutati i momenti flettenti massimi e minimi agenti sulla soletta per effetto dei carichi permanenti e del transito dei carichi da traffico.

12.1. Valori caratteristici M

12.1.1. Effetto globale

12.1.1.1. Carichi permanenti

Sez.	Descrizione	peso cordoli	Perm Portati
-520,00	estremità dx	-309,5656	-106,1368
0,00	asse travi	-115,9108	-53,3020
520,00	estremità sx	-309,5656	-106,1368

12.1.1.2. Carichi da traffico

Sez.	Descrizione	Tandem-TS	
		Mmax	Mmin
-520,00	estremità dx	0,0000	0,0000
0,00	asse travi	493,9711	-712,0127
520,00	estremità sx	0,0000	0,0000
Sez.	Descrizione	Distribuito-UDL	-
		Mmax	Mmin
-520,00	estremità dx	0,0000	-67,7875
0,00	asse travi	1555,5881	-434,3812
520,00	estremità sx	0,0000	0,0000

12.1.2. Effetto locale

Il momento massimo trasversale dato dall'effetto locale dei carichi sulla soletta viene determinato servendosi di uno schema semplificato di trave semi incastrata e prendendo il momento in mezzeria.

PROGETTO DEFINITIVO

OPERE D'ARTE MAGGIORI-PONTI
VPO02 – CAVALCAVIA SP8 - PONTE SUL CANALE DIVERSIVO DI BURANA
RELAZIONE DI CALCOLO

I carichi permanenti considerati sono il peso proprio della soletta (G1) e della pavimentazione (G2).

La ricerca del massimo momento flettente generato dai carichi mobili viene condotta considerando il caricoLM2 illustrato nella Normativa al punto 5.1.3.3.5.

Tale schema, considerato autonomamente e assunto a riferimento solo per verifiche locali, è costituito da un singolo asse applicato su specifiche impronte di pneumatico (di dimensioni 35,00x60,00 [cm]) poste ad un interasse di 200,00 [cm]: il carico totale asse è pari a 40774,72 [Kgf]

I carichi concentrati da considerarsi ai fini delle verifiche locali si assumono uniformemente distribuiti sulla superficie della rispettiva impronta. La diffusione attraverso la pavimentazione e lo spessore della soletta si considera avvenire attraverso una diffusione a 45°, fino al piano medio della struttu ra della soletta sottostante

Il momento minimo dato dall'effetto locale, invece, viene valutato come uno schema statico di trave perfettamente incastrata.

Luce Soletta	0,00
Carico per ruota - schema 2	20387,36
Interasse ruote	200,00
Dimensioni impronta ruota LX x BY	35,00x60,00
Larghezza impronta a metà spessore soletta	0,00
Lunghezza influenza	200,00

Momento flettente trasversale [Kgf-cm/cm] (positivo tende le fibre inferiori):

	M max	M min
effetto locale permanenti strutturali	0,0000	0,0000
effetto locale permanenti non strutturali	0,0000	0,0000
effetto locale LM2	0,0000	0,0000
M tot. effetto locale	0,0000	0,0000

12.2. Combinazioni SLU

Nelle combinazioni seguenti vengono sommati effetti globali ed effetti locali.

12.2.1. Persistenti/Transitorie

$$\mathsf{E}_\mathsf{d} = \mathsf{E} \{ \sum \gamma_{\mathsf{G1},\mathsf{sup}} \cdot \mathsf{G1}_{\mathsf{k},\mathsf{i}} + \sum \gamma_{\mathsf{G2},\mathsf{sup}} \cdot \mathsf{G2}_{\mathsf{k},\mathsf{i}} \}$$

$$\mathsf{E}_\mathsf{d} = \mathsf{E}\{\sum \gamma_{\mathsf{G1,inf}} \cdot \mathsf{G1_{k,i}} + \sum \gamma_{\mathsf{G2,inf}} \cdot \mathsf{G2_{k,i}}\}$$

$$\mathsf{E}_\mathsf{d} = \mathsf{E} \{ \, \sum \gamma_{\mathsf{G1,sup}} \cdot \mathsf{G1}_{\mathsf{k},\mathsf{i}} + \sum \gamma_{\mathsf{G2,sup}} \cdot \mathsf{G2}_{\mathsf{k},\mathsf{i}} + \gamma_{\mathsf{Q,traffico}} \cdot \mathsf{Q}_{\mathsf{k,gruppo} \ 1} \, \}$$

PROGETTO DEFINITIVO

OPERE D'ARTE MAGGIORI-PONTI

VPO02 - CAVALCAVIA SP8 - PONTE SUL CANALE DIVERSIVO DI BURANA

$$\mathsf{E}_\mathsf{d} = \mathsf{E} \{ \sum \gamma_\mathsf{G1,inf} \cdot \mathsf{G1}_\mathsf{k,i} + \sum \gamma_\mathsf{G2,inf} \cdot \mathsf{G2}_\mathsf{k,i} + \gamma_\mathsf{Q,traffico} \cdot \mathsf{Qk}_\mathsf{gruppo\ 1} \}$$

Sez.	Descrizione	Mmax	Mmin
-520,00	estremità dx	-309,5656	-577,1187
0,00	asse travi	2650,9941	-1784,0644
520,00	estremità sx	-309,5656	-577,1187

12.3. Combinazioni SLE

12.3.1. Combinazioni Rare

$$E_d = E\{\sum_{k,2}^a f_{ase} + \sum_{k,2}^a G_{k,2}^a f_{ase} + Q_{k,gruppo 1}\}$$

Sez.	Descrizione	Mmax	Mmin
-520,00	estremità dx	-415,7024	-415,7024
0,00	asse travi	1880,3464	-1315,6067
520,00	estremità sx	-415,7024	-415,7024

12.3.2. Combinazioni Frequenti

$$\mathsf{E}_\mathsf{d} = \mathsf{E} \{ \sum \mathsf{G1}_\mathsf{k,2}^\mathsf{a}_\mathsf{fase} + \sum \mathsf{G2}_\mathsf{k,2}^\mathsf{a}_\mathsf{fase} + \psi_1 \cdot \mathsf{Q}_\mathsf{k,gruppo\,1} \}$$

Sez.	Descrizione	Mmax	Mmin
-520,00	estremità dx	-415,7024	-415,7024
0,00	asse travi	823,5008	-876,9748
520,00	estremità sx	-415,7024	-415,7024

12.3.3. Combinazioni Quasi Permanenti

$$\mathsf{E}_\mathsf{d} = \mathsf{E} \{ \sum \mathsf{G1}_\mathsf{k,2}^\mathsf{a}_\mathsf{fase} + \sum \mathsf{G2}_\mathsf{k,2}^\mathsf{a}_\mathsf{fase} + \psi_2 \cdot \mathsf{Q}_\mathsf{k,gruppo\,1} \, \}$$

Sez.	Descrizione	Mmax	Mmin
-520,00	estremità dx	-415,7024	-415,7024
0,00	asse travi	-169,2128	-169,2128
520,00	estremità sx	-415,7024	-415,7024

AUTOSTRADA REGIONALE CISPADANA

REGIONE EMILIA ROMAGNA

AUTOSTRADA REGIONALE CISPADANA dal casello di Reggiolo-Rolo sulla A22 al casello di Ferrara Sud sulla A13

PROGETTO DEFINITIVO

OPERE D'ARTE MAGGIORI-PONTI

VPO02 – CAVALCAVIA SP8 - PONTE SUL CANALE DIVERSIVO DI BURANA RELAZIONE DI CALCOLO

13. TRAVE N.1 VERIFICA ELEMENTO PRECOMPRESSO

13.1 Oggetto della relazione

La presente relazione espone la verifica di una struttura lineare continua soggetta a forze esterne contenute nel piano verticale longitudinale alla struttura stessa e vincolata nel medesimo piano.

La struttura è in calcestruzzo armato precompresso, realizzata per fasi utilizzando travi prefabbricate in c.a.p. e getto successivo eseguito in opera per realizzare traversi di collegamento e soletta collaborante.

13.2 Convenzioni

13.2.1 Sistema di riferimento

Il sistema di riferimento delle grandezze geometriche e delle forze è una terna sinistrogira con l'asse X parallelo all'asse longitudinale della struttura, l'asse Z contenuto nel piano verticale e l'asse Y ortogonale a tale piano e orientato verso l'osservatore che veda le X positive a destra e le Z positive in alto.

I carichi agenti sulla struttura e le reazioni dei vincoli sono positivi se sono diretti verso l'alto e verso destra. I momenti flettenti sulla trave sono positivi quando tendono la fibra inferiore della sezione.

Tensioni e deformazioni sono positive se di trazione, sia per il calcestruzzo che per l'acciaio.

13.2.2 Normativa

Sono state rispettate le seguenti normative:

Legge 05/11/1971 n. 1086: Norme per la disciplina delle opere di conglomerato cementizio armato, normale e precompresso ed a struttura metallica

D.M. 14/01/2008: Norme tecniche per le costruzioni - NTC 2008

13.2.3 Unità di misura

Ove non sia diversamente specificato, le grandezze contenute nella presente relazione sono espresse nelle seguenti unità di misura:

AUTOSTRADA REGIONALE CISPADANA dal casello di Reggiolo-Rolo sulla A22 al casello di Ferrara Sud sulla A13

PROGETTO DEFINITIVO

OPERE D'ARTE MAGGIORI-PONTI

VPO02 - CAVALCAVIA SP8 - PONTE SUL CANALE DIVERSIVO DI BURANA **RELAZIONE DI CALCOLO**

lunghezza [cm] forza [Kgf] angolo [DEG]

I diametri delle barre di armatura lenta sono sempre espressi in [mm], i diametri dei trefoli di precompressione sono invece espressi in [inch] (= 25.4 [mm]).

13.2.4 Codice di calcolo

La verifica è stata condotta con il codice di calcolo automatico TCAP ed. 8.21 - 2/2011 sviluppato da SIGMAc SOFT - Padova.

Procedura di calcolo tensionale per flessione: PREFLErett vers. TCAP/2.0 09/10 - SIGMAcSOFT

Procedura di calcolo a rottura per flessione: FindLim ed. TCAP/1.0 05/10 - SIGMAcSOFT

Procedura di calcolo a rottura per taglio: VrdCalc ed. TCAP/1.0 06/10 - SIGMAcSOFT

Modello iperstatico: TRSP ed. TCAP/1.0 04/10 - SIGMAcSOFT

13.3 Modello di calcolo

Il codice di calcolo TCAP riceve le combinazioni di carico della struttura dal programma di calcolo delle sollecitazioni ed esegue le verifiche nelle situazioni agli Stati Limite Ultimi e agli Stati Limite di Esercizio inserendo nelle combinazioni l'effetto della precompressione.

Per valutare l'effetto della precompressione nelle varie sezioni viene assunto un modello di calcolo appropriato che riproduce le condizioni iperstatiche della struttura reale.

La struttura è considerata lineare e rettilinea, soggetta a deformazione longitudinale assiale generata dalla precompressione e deformazione trasversale per inflessione nel piano verticale. Essa viene schematizzata come una struttura a telaio piano che discretizza i tratti a sezione (e quindi baricentro) costante con aste orizzontali e i tratti a geometria variabile con aste inclinate.

Le forze di precompressione sono rappresentate da forze longitudinali e da coppie di trasporto delle forze stesse alla quota del baricentro locale.

Per il calcolo dei momenti flettenti resistenti a rottura viene utilizzata la procedura FindLim ed. TCAP/1.0 05/10 -SIGMAcSOFT che tiene conto, oltre al contributo del calcestruzzo, del contributo delle armature lente (stesso stato deformativo del calcestruzzo) e del contributo delle armature di precompressione nello stato deformativo effettivo (pretensione).

AUTOSTRADA REGIONALE CISPADANA dal casello di Reggiolo-Rolo sulla A22 al casello di Ferrara Sud sulla A13

PROGETTO DEFINITIVO

OPERE D'ARTE MAGGIORI-PONTI
VPO02 – CAVALCAVIA SP8 - PONTE SUL CANALE DIVERSIVO DI BURANA
RELAZIONE DI CALCOLO

14 DATI DI CALCOLO

14.1 Materiali - resistenze di calcolo

In questo capitolo non valgono le convezioni di segno precedentemente riportate: per il calcestruzzo tutte le grandezze sono indicate con segno positivo e contestualmente viene specificato se si tratta di valori di compressione o di trazione.

14.1.1 Calcestruzzo delle travi prefabbricate

Ai fini del calcolo le caratteristiche rilevanti del calcestruzzo sono date dalla resistenza a rottura, dal modulo elastico e dall'entità dei fenomeni differiti nel tempo.

Le travi prefabbricate in c.a.p. sono precompresse a trefoli aderenti e devono perciò rispettare delle limitazioni tensionali già in fase iniziale, al rilascio dei trefoli.

Data l'entità delle sollecitazioni iniziali si raccomanda di eseguire il trasferimento della precompressione con opportuna gradualità. Nel seguito della relazione si indicherà sinteticamente tale operazione come "taglio dei trefoli".

Calcestruzzo	C45/55
resistenza caratteristica R _{ck28,cub}	550,00
resistenza al taglio dei trefoli R _{ckj,cub}	400,00
coefficiente sicurezza verifiche a rottura	1,500
modulo elastico	364160,00
peso specifico	0,0025
ritiro totale	-0,00030
% ritiro prima del taglio trefoli	0%
% ritiro taglio trefoli-getto soletta	50%
% ritiro da getto soletta a t=inf.	50%
coeff. di viscosità	2,300
% viscosità taglio trefoli-getto soletta	33%
% viscosità da getto soletta a t=inf.	67%

Resistenza caratteristica cilindrica a compressione :

a tempo infinito	f_{ck}	$= 0.83 \cdot R_{ck}$	$= 0.83 \cdot 550,00 = 456,50$	Kgf/cm²
al taglio dei trefoli	f_{ckj}	$= 0.83 \cdot R_{ckj}$	= 0.83-400,00 = 332,00	Kgf/cm²

PROGETTO DEFINITIVO

OPERE D'ARTE MAGGIORI-PONTI

VPO02 - CAVALCAVIA SP8 - PONTE SUL CANALE DIVERSIVO DI BURANA

RELAZIONE DI CALCOLO

Resistenza di calcolo a compressione :

a tempo infinito $f_{cd} = 0.85.456,50/1,5 = 258,68$ Kgf/cm²

al taglio dei trefoli $f_{cdj} = 0.85 \cdot 332,00/1,5 = 188,13$ Kgf/cm²

Nel calcolo a rottura delle sezioni si utilizza il diagramma parabola-rettangolo con tensione massima pari a :

$$f_{cd} = 258,68$$

Resistenza di calcolo a trazione per flessione :

a tempo infinito $f_{ctd} = f_{ctd}/V_{c} = 27,00/1,5 = 32,39$

al taglio dei trefoli $f_{ctdj} = f_{atsi}/V_a = 21,83/1,5 = 26,20$

Nelle condizioni di esercizio la massima tensione di compressione nel calcestruzzo deve rispettare le seguenti limitazioni:

al taglio dei trefoli:

$$\sigma_{cj}$$
 < 0.7· f_{ckj} = 319,55 Kgf/cm²

a cadute avvenute :

 σ_c < 0.6·f_{ck} = 273,90 Kgf/cm² (per comb. caratteristica rara)

 σ_c < 0.45·f_{ck} = 205,43 Kgf/cm² (per comb. quasi permanente)

14.1.2 Calcestruzzo gettato in opera

Calcestruzzo	C28/35
resistenza caratteristica R _{ck,cub}	350,00
coefficiente sicurezza verifiche a rottura	1,5
modulo elastico	325880,00
peso specifico	0,0025
coeff. di omogeneizzazione con cls travi	0,895

AUTOSTRADA REGIONALE CISPADANA dal casello di Reggiolo-Rolo sulla A22 al casello di Ferrara Sud sulla A13

PROGETTO DEFINITIVO

OPERE D'ARTE MAGGIORI-PONTI

VPO02 - CAVALCAVIA SP8 - PONTE SUL CANALE DIVERSIVO DI BURANA

RELAZIONE DI CALCOLO

Resistenza caratteristica cilindrica a compressione :

a tempo infinito $f_{ck} = 0.83 \cdot R_{ck} = 0.83 \cdot 350,00 = 290,50$ Kgf/cm²

Resistenza di calcolo a compressione :

a tempo infinito $f_{cd} = \alpha_{cc} \cdot f_{ck} / \gamma_c = 0.85 \cdot 290, 50/1, 5 = 164,62 \qquad \text{Kgf/cm}^2$

Nel diagramma parabola-rettangolo la tensione massima è pari a :

$$f_{cd} = 164,62$$

Resistenza di calcolo a trazione per flessione :

a tempo infinito $f_{ctd} = f_{ctk}/\gamma_c = 19,97/1,5 = 23,97$

Nelle condizioni di esercizio la massima tensione di compressione del calcestruzzo deve rispettare le seguenti limitazioni:

 σ_c < 0.6·f_{ck} = 174,30 Kgf/cm² (per comb. caratteristica rara)

 σ_c < 0.45-f_{ck} = 130,73 Kgf/cm² (per comb. quasi permanente)

14.1.3 Acciaio per c.a.p.

Acciaio prec.fpk=1860 :

tensione all'1% deform. residua $f_{p(1)k}$	16700,00
Modulo elastico	1950000,00
coeff. di omogeneizzazione a cls travi	6
coefficiente di sicurezza	1,15
% rilassam. prima del taglio trefoli	0%
% rilassam. taglio trefoli-getto soletta	50%
% rilassam. da getto soletta a t=inf.	50%

PROGETTO DEFINITIVO

OPERE D'ARTE MAGGIORI-PONTI

VPO02 - CAVALCAVIA SP8 - PONTE SUL CANALE DIVERSIVO DI BURANA **RELAZIONE DI CALCOLO**

In base al punto 4.1.8.1.5 del D.M. 14/01/2008 le tensioni iniziali all'atto della tesatura dei cavi pre-tesi deve rispettare la più restrittiva delle seguenti limitazioni:

$$\sigma_{spi}$$
 <= 0.80·f_{ptk} = 0.80·18370,00=14696,00 Kgf/cm²

$$\sigma_{spi}$$
 <= 0.90·f_{p(1)k} = 0.90·16700,00=15030,00 Kgf/cm²

E' ammessa una sovratensione iniziale pari a $0.05 f_{p(1)k}$.

La tensione massima in esercizio nella combinazione caratteristica (rara) deve rispettare la seguente limitazione (4.1.8.1.2 e 4.1.2.2.5.2 D.M.14/01/2008):

$$\sigma_{sp}$$
 <= 0.80·f_{p(1)k} 13360,00 Kgf/cm²

Nel calcolo a rottura si utilizza il diagramma triangolo-rettangolo con tensione massima pari a:

$$f_{ptd} = f_{p(1)k}/\gamma_s$$
 = 16700,00/1,15 = 14521,74 Kgf/cm²

14.1.4 Acciaio per armatura lenta

Questo tipo di acciaio costituisce l'armatura destinata ad assorbire gli sforzi di taglio (staffe) ed altri sforzi locali di trazione nel calcestruzzo.

tipo acciaio	B450C
tensione di snervamento fyk	4500,00
coefficiente sicurezza verifiche a rottura	1,15
modulo elastico	2100000,00
coeff. di omogeneizzazione a cls travi	6

La tensione massima consentita (4.1.2.2.5.2 D.M. 14/01/2008) nella combinazione rara deve rispettare la seguente limitazione:

$$\sigma_s$$
 <= 0.80·f_{yk} = 0.80·4500,00 = 3600,00 Kgf/cm²

Nel calcolo a rottura si utilizza il diagramma triangolo-rettangolo con tensione massima pari a:

AUTOSTRADA REGIONALE CISPADANA dal casello di Reggiolo-Rolo sulla A22 al casello di Ferrara Sud sulla A13

PROGETTO DEFINITIVO

OPERE D'ARTE MAGGIORI-PONTI

VPO02 - CAVALCAVIA SP8 - PONTE SUL CANALE DIVERSIVO DI BURANA

RELAZIONE DI CALCOLO

$$f_{yd} = f_{yy}/V_{e}$$
 = 4500,00/1,15 = 3913,04 Kgf/cm²

14.2 Dati geometrici

14.2.1 Schemi statici

L'impalcato viene realizzato con travi prefabbricate in c.a.p. e getto eseguito in opera di traversi e soletta collaborante. Si distinguono due fasi successive di lavoro:

PRIMA FASE: Le travi semplicemente appoggiate agli estremi resistono al peso proprioed a quello del getto eseguito in opera.

SECONDA FASE: Il sistema misto, travi prefabbricate e soletta gettata in opera, divenuto solidale dopo la maturazione del calcestruzzo, resiste al peso delle sovrastrutture e dei carichi accidentali.

14.2.1.1 Prima fase

Nella prima fase i prefabbricati sono soggetti alle seguenti condizioni di vincolo:

In opera al momento del getto di 2a fase:

Sbalzo sinistro = 50,00

Sbalzo destro = 50,00

14.2.1.2 Seconda fase

In seconda fase la struttura è vincolata sugli appoggi definitivi:

appoggio	descrizione	X	luce campata
1	Spalla iniziale	0,00	
2	Spalla finale	2600,00	2600,00

AUTOSTRADA REGIONALE CISPADANA dal casello di Reggiolo-Rolo sulla A22 al casello di Ferrara Sud sulla A13

PROGETTO DEFINITIVO

OPERE D'ARTE MAGGIORI-PONTI

VPO02 – CAVALCAVIA SP8 - PONTE SUL CANALE DIVERSIVO DI BURANA **RELAZIONE DI CALCOLO**

15 CADUTE DI TENSIONE NELL'ACCIAIO DA PRECOMPRESSIONE

15.1 Rilassamento dell'acciaio da precompressione

La valutazione del rilassamento dell'acciaio da precompressione avviene con la formulazione indicata dalla normativa e con i dati forniti dal produttore.

Ad una temperatura costante di 20 [°C] la caduta di tensione $\Delta\sigma_{pr}$ per rilassamento al tempo t è:

classe	tipo	caduta
2	trecce e trefoli stabilizzati	$\Delta \sigma_{pr} = \sigma_{pi} \cdot [0.66 \cdot \rho_{1000} \cdot e^{9.1 \mu} \cdot (t/1000)^{0.75(1-\mu)} \cdot 10^{-5}]$

dove:

 σ_{pi} è la tensione iniziale nel cavo;

 ρ_{1000} è la perdita per rilassamento (in percentuale) a 1000 ore dopo la messa in tensione, a 20 [°C] e a partire da una tensione iniziale pari a 0.7 della resistenza f_p del campione provato:

Acciaio	classe	ρ ₁₀₀₀
1	2	2.5

$$\mu = \sigma_{pi}/f_{pk}$$
;

f_{pk} è la resistenza caratteristica a trazione dell'acciaio;

t è il tempo misurato in ore dalla messa in tensione.

La caduta finale per rilassamento può essere valutata con le formule sopra scritte ed inserendo un tempo di 500000 ore.

Si ottiene così:

Armatura	classe	μ	$\Delta\sigma_{\sf pr}/\sigma_{\sf pi}$	
Trave 1 - gruppo 1	2	0,781	0,056	5,59%

15.2 Ritiro del calcestruzzo

L'accorciamento dovuto al ritiro viene assunto pari a :

AUTOSTRADA REGIONALE CISPADANA dal casello di Reggiolo-Rolo sulla A22 al casello di Ferrara Sud sulla A13

PROGETTO DEFINITIVO

OPERE D'ARTE MAGGIORI-PONTI

VPO02 – CAVALCAVIA SP8 - PONTE SUL CANALE DIVERSIVO DI BURANA RELAZIONE DI CALCOLO

prefabbricati $\varepsilon_{cs1} = -0,00030$

getto in opera $\varepsilon_{cs2} = -0,00030$

e la conseguente caduta di tensione nell'acciaio da precompressione viene calcolata in base al modulo elastico dell'acciaio stesso:

Armatura	$\Delta\sigma_{\scriptscriptstyle{ps}}$
	△O ps

Trave 1 - gruppo 1 -0,00030·1950000,00= -585,00 4,08%

15.3 Viscosità del calcestruzzo

Il valore della deformazione lenta del calcestruzzo (viscosità) si assume, ai fini del calcolo delle cadute di tensione nell'acciaio, secondo quanto indicato dalle norme (11.2.10.7 D.M.14/01/2008), pari a :

 $\Phi_{inf,1} = 2.3$ (cavi pretesi nei prefabbricati)

15.4 Sviluppo nel tempo delle cadute di tensione

Per i cavi pretesi, che agiscono sugli elementi prefabbricati, i valori totali dei fenomeni differiti esposti ai paragrafi precedenti vengono ripartiti nelle diverse fasi tenendo conto delle diverse condizioni ambientali e tensionali.

	rilassamento	ritiro	viscosità
dalla posa in tensione al taglio trefoli	0,00	0,00	0,00
dal taglio trefoli al getto in opera	50,00	50,00	33,00
dal getto in opera a tempo infinito	50,00	50,00	67,00

PROGETTO DEFINITIVO

OPERE D'ARTE MAGGIORI-PONTI
VPO02 – CAVALCAVIA SP8 - PONTE SUL CANALE DIVERSIVO DI BURANA
RELAZIONE DI CALCOLO

16 STATI LIMITE DI ESERCIZIO

16.1 Stato Limite delle tensioni in esercizio - procedimento di calcolo

Per valutare lo stato tensionale nelle sezioni di verifica distingueremo le seguenti fasi :

PRIMA FASE

- a) al manifestarsi della precompressione
- b) prima del getto in opera
- c) subito dopo il getto in opera

SECONDA FASE

- d) impalcato scarico
- e) impalcato carico

In tutte le fasi la determinazione dello stato tensionale degli elementi da verificare avviene in base alla combinazione caratteristica (rara) :

$$S = G_1 + G_2 + P + Q$$

dove:

G₁ = permanenti strutturali

G₂ = permanenti non strutturali

P = precompressione

Q = azioni variabili

16.2 Stato Limite di deformazione

Viene valutata l'entità delle deformazioni significative degli elementi inflessi nelle varie fasi.

La valutazione di tali deformazioni viene fatta assumendo per il modulo elastico del calcestruzzo il valore:

$$E_{travi} = 364160,00$$

PROGETTO DEFINITIVO

OPERE D'ARTE MAGGIORI-PONTI
VPO02 – CAVALCAVIA SP8 - PONTE SUL CANALE DIVERSIVO DI BURANA
RELAZIONE DI CALCOLO

 $E_{\text{soletta}} = 325880,00$

e, per determinare gli effetti sotto l'azione dei carichi permanenti, viene assunto un coefficiente di viscosità pari a:

 $\Phi_{inf} = 2,3$

L'effetto della viscosità viene poi ridotto moltiplicando tutte le deformazioni conseguenti per il valore 0,5 Le frecce calcolate sono positive se rappresentano uno spostamento verso l'alto, negative se verso il basso.

16.2.1 Prima fase

VH160:

	accorciamento	rotaz. testata	rotaz. testata	freccia in
	[cm]	sinistra [DEG]	destra [DEG]	mezzeria [cm]
al taglio trefoli	-0,7142	0,25589	-0,25589	3,2890
al getto soletta	-1,3271	0,18301	-0,18301	2,1075
dopo maturazione	-1,3311	0,18340	-0,18340	2,1107

16.2.2 Seconda fase

Spostamenti X in asse appoggi [cm]:

	dopo maturazione	postesi e	
	soletta	cambio vincoli	t=inf.
Spalla iniziale	0,0000	0,0000	0,0000
Spalla finale	0,000	0,000	-0,2827

Rotazioni in asse appoggi [DEG]:

	dopo maturazione postesi e		
	soletta	cambio vincoli	t=inf.
Spalla iniziale	0,00000	0,00000	0,20222
Spalla finale	0,00000	0,00000	-0,20222

AUTOSTRADA REGIONALE CISPADANA dal casello di Reggiolo-Rolo sulla A22 al casello di Ferrara Sud sulla A13

PROGETTO DEFINITIVO

OPERE D'ARTE MAGGIORI-PONTI

VPO02 - CAVALCAVIA SP8 - PONTE SUL CANALE DIVERSIVO DI BURANA

RELAZIONE DI CALCOLO

Frecce in mezzeria [cm]:

campata	C	dopo maturazione	postesi e	t=inf.	t=inf.
	X	soletta	cambio vincoli	comb. rara max	comb. rara min
1	1300,00	2,1107	2,1107	3,3615	2,0720

AUTOSTRADA REGIONALE CISPADANA dal casello di Reggiolo-Rolo sulla A22 al casello di Ferrara Sud sulla A13

PROGETTO DEFINITIVO

RELAZIONE DI CALCOLO

OPERE D'ARTE MAGGIORI-PONTI
VPO02 – CAVALCAVIA SP8 - PONTE SUL CANALE DIVERSIVO DI BURANA

17 STATI LIMITE ULTIMI

17.1 Stato Limite Ultimo per sollecitazioni flettenti

Il calcolo dei momenti ultimi delle sezioni viene eseguito tenendo conto del diagramma σ — ϵ parabola-rettangolo per il calcestruzzo, con deformazione limite pari a -0.0035 in compressione, e deformazione indefinita a trazione con tensione nulla (sezione fessurata).

Per gli acciai si utilizza un diagramma tensioni-deformazioni linearmente elastico fino alla tensione di rottura e lineare orizzontale fino alla deformazione 0.01, sia in trazione che in compressione.

Si rimanda al capitolo dei materiali per i valori dei moduli elastici e delle tensioni di calcolo.

Nel calcolo del momento ultimo si tiene conto del delta di deformazione ε_{sp} dell'acciaio da precompressione rispetto agli altri materiali.

17.2 Stato Limite Ultimo per sollecitazioni taglianti

Per valutare i tagli e momenti torcenti resistenti viene utilizzata la formulazione indicata dalle norme:

 $V_{Rcd} = 0.9 \cdot d \cdot b_w \cdot \alpha_c \cdot 0.5 \cdot f_{cd} \cdot (cotan\alpha + cotan\theta) / (1 + cotan^2\theta) \qquad \text{(taglio ultimo per rottura delle bielle compresse)}$

 $V_{Rsd} = 0.9 \cdot d \cdot (A_{sw}/s) \cdot f_{yd} \cdot (cotan\alpha + cotan\theta) \cdot sin\alpha$ (taglio ultimo per rottura delle staffe)

Dove:

d: altezza utile della sezione

bw: larghezza minima della sezione

Asw: area armatura trasversale

s: passo staffe

α: inclinazione risp. all'orizzontale delle armature trasversali (90 [deg])

 θ : inclinazione bielle compresse in cls

α_c: coeff. maggiorativo dovuto alla presenza dello sforzo assiale

 $k = 1 + (200/d)^{1/2}$

 $\sigma_{cp} = N_{Ed}/A_{cls}$

AUTOSTRADA REGIONALE CISPADANA dal casello di Reggiolo-Rolo sulla A22 al casello di Ferrara Sud sulla A13

PROGETTO DEFINITIVO

OPERE D'ARTE MAGGIORI-PONTI
VPO02 – CAVALCAVIA SP8 - PONTE SUL CANALE DIVERSIVO DI BURANA
RELAZIONE DI CALCOLO

Nel modello a traliccio a rottura si considerano inclinate a 45 [deg] le bielle compresse di calcestruzzo in sezioni non precompresse, mentre si tiene conto dell'effetto benefico della precompressione valutando una minore inclinazione delle bielle in base alla tensione principale di trazione presente nella sezione a quota baricentrica.

L'inclinazione così determinata viene comunque limitata come indicato nelle norme citate.

PROGETTO DEFINITIVO

OPERE D'ARTE MAGGIORI-PONTI
VPO02 – CAVALCAVIA SP8 - PONTE SUL CANALE DIVERSIVO DI BURANA
RELAZIONE DI CALCOLO

18 VERIFICHE

18.1 Verifica sezione X=1300,00 - MEZZERIA

18.1.1 Prima fase: sola trave

Sezione di calcolo:

Y	Z
-48,20	0,00
-68,30	134,00
-93,00	147,00
-125,00	155,00
-125,00	160,00
-58,00	160,00
-38,20	28,10
-31,30	21,60
0,00	19,00
31,30	21,60
38,20	28,10
58,00	160,00
125,00	160,00
125,00	155,00
93,00	147,00
68,30	134,00
48,20	0,00
-48,20	0,00
	-48,20 -68,30 -93,00 -125,00 -125,00 -38,20 -31,30 0,00 31,30 38,20 58,00 125,00 125,00 93,00 68,30 48,20

A = 7479,990

 $J_f = 24411727,6136$

 $Y_g = 79,97$

Armature di precompressione :

n. Z area

AUTOSTRADA REGIONALE CISPADANA dal casello di Reggiolo-Rolo sulla A22 al casello di Ferrara Sud sulla A13

PROGETTO DEFINITIVO

OPERE D'ARTE MAGGIORI-PONTI

VPO02 - CAVALCAVIA SP8 - PONTE SUL CANALE DIVERSIVO DI BURANA

RELAZIONE DI CALCOLO

1	155,00	5,560
2	60,00	2,780
3	25,50	2,780
4	20,50	2,780
5	15,50	19,460
6	10,50	16,680
7	5,50	16,680

n = 6,000

 $A_{id} = 7813,590$

 $J_{f,id} = 25892036,0549$

 $Y_{g,id} = 77,66$

Cadute di tensione prima del taglio trefoli :

	%	$\Delta\sigma_{sp}$	$\Delta\sigma_{\sf sp}/\sigma_{\sf spi}$
ritiro cls	0,0%	0,00	0,0%
rilassamento acciaio	0.0%	0,00	0,0%

PROGETTO DEFINITIVO

OPERE D'ARTE MAGGIORI-PONTI

VPO02 - CAVALCAVIA SP8 - PONTE SUL CANALE DIVERSIVO DI BURANA

RELAZIONE DI CALCOLO

Sollecitazioni:

istante	M _{esterno}	N _{precomp} .	M _{precomp} .
t=0 dopo taglio trefoli	15829756,78	-957432,00	-51816271,99
prima del getto	15829756,78	-863001,77	-46705702,55
dopo getto 2a fase	40896681,78	-862700,91	-46689420,41

Tensioni sul calcestruzzo:

	$\sigma_{\rm e,max}$	$\sigma_{i,max}$	
t=0 dopo taglio trefoli	-15,13	-223,84	
prima del getto	-18,60	-197,08	
dopo getto 2a fase	-98,32	-121,89	

Tensioni sugli acciai:

$\boldsymbol{\sigma}$		
U	sı)

t=0 dopo taglio trefoli 13399,42 prima del getto 12093,47 dopo getto 2a fase 12344,27

Cadute di tensione dal taglio trefoli al getto soletta :

	%	$\Delta\sigma_{\sf sp}$	$\Delta\sigma_{\sf sp}/\sigma_{\sf spi}$
ritiro cls	50,0%	292,50	2,0%
rilassamento acciaio	35,3%	401,33	2,8%
viscosità cls	45,4%	721,49	5,0%

Cadute di tensione durante maturazione soletta :

	%	$\Delta\sigma_{sp}$	$\Delta\sigma_{\sf sp}/\sigma_{\sf spi}$
ritiro cls	0,1%	0,82	0,0%
rilassamento acciaio	0,1%	1,13	0,0%
viscosità cls	0,2%	2,56	0,0%

18.1.1.1 Momenti di rottura in flessione retta

 $\Delta \varepsilon$ armature pretese: $\varepsilon_{\rm sp,z=25,85}$ =0,00663

AUTOSTRADA REGIONALE CISPADANA dal casello di Reggiolo-Rolo sulla A22 al casello di Ferrara Sud sulla A13

PROGETTO DEFINITIVO

OPERE D'ARTE MAGGIORI-PONTI

VPO02 - CAVALCAVIA SP8 - PONTE SUL CANALE DIVERSIVO DI BURANA

RELAZIONE DI CALCOLO

fless.	Z asse neutro	Mr	$oldsymbol{\mathcal{E}}_{sup}$	ZE_{sup}	$oldsymbol{\mathcal{E}}_{inf}$	ZE _{inf}
(+)	67,11	1,05272E8	-0,00350	160,00	0,00232	5,50
(-)	39,86	-1,316963E7	0,01000	155,00	-0,00346	0,00

 $M_{d,max} = 55210520,40 < Mr$

18.1.1.2 Verifica rottura a taglio

Calcestruzzo	θ ι	[DEG]	bw	Staffe:	Asw
		0,007	28,40		0,151
d	K	${\sf A}_{\sf sl}$	ρι	$\sigma_{\scriptscriptstyle \mathrm{cp}}$	α _c
155,00	1,359	61,160	0,0139	115,37	1,250
\mathbf{V}_{Rd}		V_{Rsd}		V_Rcd	
105183,70		87925,34	22087	3,50	

 $V_{d,max} = 0.00 < 105183.72$

AUTOSTRADA REGIONALE CISPADANA dal casello di Reggiolo-Rolo sulla A22 al casello di Ferrara Sud sulla A13

PROGETTO DEFINITIVO

OPERE D'ARTE MAGGIORI-PONTI

VPO02 - CAVALCAVIA SP8 - PONTE SUL CANALE DIVERSIVO DI BURANA **RELAZIONE DI CALCOLO**

18.1.2 Seconda fase: trave + getto in opera

Tensioni sul calcestruzzo:

	$\sigma_{e,max}$	$\sigma_{i,max}$
trave prefabbricata	-98,33	-121,81
getto in opera	0,00	0,00

18.1.2.2 Verifica in esercizio

Sezione di calcolo:

n.	Y	Z	
1	-48,20	0,00	
2	-68,30	134,00	
3	-93,00	147,00	
4	-125,00	155,00	
5	-125,00	160,00	
6	-58,00	160,00	
7	-38,20	28,10	
8	-31,30	21,60	
9	0,00	19,00	
10	31,30	21,60	
11	38,20	28,10	
12	58,00	160,00	
13	125,00	160,00	
14	125,00	155,00	
15	93,00	147,00	
16	68,30	134,00	
17	48,20	0,00	fine prefabb.
18	-48,20	0,00	
19	-219,00	194,00	getto in opera
20	130,00	194,00	(m=0,895)
21	130,00	160,00	
22	-219,00	160,00	
23	-219,00	194,00	

AUTOSTRADA REGIONALE **CISPADANA**

REGIONE EMILIA ROMAGNA

AUTOSTRADA REGIONALE CISPADANA dal casello di Reggiolo-Rolo sulla A22 al casello di Ferrara Sud sulla A13

PROGETTO DEFINITIVO

OPERE D'ARTE MAGGIORI-PONTI

VPO02 - CAVALCAVIA SP8 - PONTE SUL CANALE DIVERSIVO DI BURANA

RELAZIONE DI CALCOLO

A = 18098,652

 $J_f = 66748812,9470$

 $Y_g = 136,90$

Armature di precompressione :

n.	Z	area
1	155,00	5,560
2	60,00	2,780
3	25,50	2,780
4	20,50	2,780
5	15,50	19,460
6	10,50	16,680
7	5,50	16,680

n = 6,000

 $A_{id} = 18432,252$

 $J_{f,id} = 71332975,8860$

 $Y_{g,id} = 134,89$

Cadute di tensione da maturazione soletta a t=inf. :

	%	$\Delta\sigma_{sp}$	$\Delta\sigma_{\sf sp}/\sigma_{\sf spi}$
ritiro cls	49,9%	291,68	2,0%
rilassamento acciaio	35,2%	400,20	2,8%
viscosità cls	54,4%	863,50	6,0%

Tensioni sul cls - VH160:

	$\sigma_{\rm e,max}$	$\sigma_{e,min}$	$\sigma_{i,max}$	$\sigma_{i,min}$
dopo iniezione cavi	-98,33	-98,33	-121,81	-121,81
t=infSLE Rare	-96,78	-115,93	8,61	-94,27
t=infSLE Frequenti	-96,78	-110,14	-22,47	-94,27

PROGETTO DEFINITIVO

OPERE D'ARTE MAGGIORI-PONTI

VPO02 - CAVALCAVIA SP8 - PONTE SUL CANALE DIVERSIVO DI BURANA

RELAZIONE DI CALCOLO

t=infSLE Quasi Permanenti	-96,78	-100,39	-74,87	-94,27

Tensioni sul cls - getto in opera :

	$\sigma_{\rm e,max}$	$\sigma_{e,min}$	$\sigma_{i,max}$	$\sigma_{\scriptscriptstyle i,min}$
dopo iniezione cavi	0,00	0,00	0,00	0,00
t=infSLE Rare	-3,55	-43,90	1,39	-15,75
t=infSLE Frequenti	-3,55	-31,71	1,39	-10,57
t=infSLE Quasi Permanenti	-3,55	-11,16	1,39	-1,84

Tensioni sugli acciai:

 σ_{sp} dopo iniezione cavi 12340,11 t=inf.-SLE Rare 12872,61 t=inf.-SLE Frequenti 12746,99 t=inf.-SLE Quasi Permanenti 12535,19

18.1.2.2.1 Momenti di rottura per flessione retta armature di precompressione :

		Z	$\Delta\epsilon_{sp}$				
Arr	mature pretese	25,85	0,00639				
fless.	Z asse neutro		Mr	$\mathbf{\mathcal{E}}_{sup}$	ZE_{sup}	$\mathbf{\epsilon}_{inf}$	$z\epsilon_{inf}$
(+)	166,44	1,531	182E8	-0,00171	194,00	0,01000	5,50
(-)	38,52	-1,3386	601E7	0,01000	155,00	-0,00331	0,00

 $M_{d,max} = 129824806,85 < Mr$

18.1.2.2.2 Verifica rottura per taglio

Calcestruzzo	θ :	[DEG]	b _W	Staffe:	Asw
		0,007	28,40		0,151
d	K	A_{sl}	$ ho_{\scriptscriptstyle ext{l}}$	$\sigma_{\sf cp}$	C ℓ _c
188,50	1,326	61,160	0,0114	101,46	1,250

AUTOSTRADA REGIONALE CISPADANA dal casello di Reggiolo-Rolo sulla A22 al casello di Ferrara Sud sulla A13

PROGETTO DEFINITIVO

OPERE D'ARTE MAGGIORI-PONTI

VPO02 - CAVALCAVIA SP8 - PONTE SUL CANALE DIVERSIVO DI BURANA

RELAZIONE DI CALCOLO

 V_{Rd}

 V_{Rsd}

 V_{Rcd}

113703,00

106928,60

268610,30

 $V_{d,max} = 22678,51 < 113703,02$

AUTOSTRADA REGIONALE CISPADANA dal casello di Reggiolo-Rolo sulla A22 al casello di Ferrara Sud sulla A13

PROGETTO DEFINITIVO

OPERE D'ARTE MAGGIORI-PONTI
VPO02 – CAVALCAVIA SP8 - PONTE SUL CANALE DIVERSIVO DI BURANA
RELAZIONE DI CALCOLO

18.2 VERIFICA SEZIONE X=0,00 - APPOGGIO

18.2.1 Prima fase: sola trave

Sezione di calcolo:

n.	Υ	Z
1	-48,20	0,00
2	-68,30	134,00
3	-93,00	147,00
4	-125,00	155,00
5	-125,00	160,00
6	-43,78	160,00
7	-24,25	27,00
8	-17,00	20,41
9	0,00	19,00
10	17,00	20,41
11	24,25	27,00
12	43,78	160,00
13	125,00	160,00
14	125,00	155,00
15	93,00	147,00
16	68,30	134,00
17	48,20	0,00
18	-48,20	0,00

A = 11358,102

 $J_f = 30936942,5510$

 $Y_g = 83,77$

<nessuna armatura di precompressione>

Armature lente longitudinali:

n.	Z	area	
1	6,00	24,127	12Ø16 armatura longit, appoggio

AUTOSTRADA REGIONALE CISPADANA dal casello di Reggiolo-Rolo sulla A22 al casello di Ferrara Sud sulla A13

PROGETTO DEFINITIVO

OPERE D'ARTE MAGGIORI-PONTI

VPO02 - CAVALCAVIA SP8 - PONTE SUL CANALE DIVERSIVO DI BURANA

RELAZIONE DI CALCOLO

n = 15,000

 $A_{id} = 11695,887$

 $J_{f,id} = 32920704,2374$

 $Y_{g,id} = 81,52$

18.2.1.2 Verifica rottura a taglio

Calcestru	zzo: θ	[DEG]	bw	Staffe:	Asw
	4	5,000	56,00		0,452
d	к	A_{sl}	$\rho_{\scriptscriptstyle ext{l}}$	$\sigma_{\scriptscriptstyle cp}$	$lpha_{c}$
154,00	1,360	24,127	0,0028	0,00	1,000
\	/ _{Rd}	\mathbf{V}_{Rsd}	v	Rcd	
33331,	15	251985,80	501949	,10	

 $V_{d,max} = 85862,18 < 251985,81$

AUTOSTRADA REGIONALE CISPADANA dal casello di Reggiolo-Rolo sulla A22 al casello di Ferrara Sud sulla A13

PROGETTO DEFINITIVO

OPERE D'ARTE MAGGIORI-PONTI
VPO02 – CAVALCAVIA SP8 - PONTE SUL CANALE DIVERSIVO DI BURANA
RELAZIONE DI CALCOLO

18.2.2 Seconda fase: trave + getto in opera

18.2.2.2 Verifica in esercizio

Sezione di calcolo:

n.	Υ	z	
1	-48,20	0,00	
2	-68,30	134,00	
3	-93,00	147,00	
4	-125,00	155,00	
5	-125,00	160,00	
6	-43,78	160,00	
7	-24,25	27,00	
8	-17,00	20,41	
9	0,00	19,00	
10	17,00	20,41	
11	24,25	27,00	
12	43,78	160,00	
13	125,00	160,00	
14	125,00	155,00	
15	93,00	147,00	
16	68,30	134,00	
17	48,20	0,00	fine prefabb.
18	-48,20	0,00	
19	-219,00	194,00	getto in opera
20	130,00	194,00	(m=1,000)
21	130,00	160,00	
22	-219,00	160,00	
23	-219,00	194,00	

A = 23224,103

 $J_f = 82525404,1946$

 $Y_g = 131,40$

<nessuna armatura di precompressione>

AUTOSTRADA REGIONALE CISPADANA dal casello di Reggiolo-Rolo sulla A22 al casello di Ferrara Sud sulla A13

PROGETTO DEFINITIVO

OPERE D'ARTE MAGGIORI-PONTI

VPO02 - CAVALCAVIA SP8 - PONTE SUL CANALE DIVERSIVO DI BURANA

RELAZIONE DI CALCOLO

Armature lente longitudinali:

Z n. area 1 6,00 24.127

12Ø16 armatura longit. appoggio

n = 15,000

 $A_{id} = 23561,887$

 $J_{f,id} = 87761164,5494$

 $Y_{q,id} = 129,60$

18.2.2.2.2 Verifica rottura per taglio

Calcestruzzo	θ:	[DEG]	b _W	Staffe:	Asw
		0,014	56,00		0,452
d	К	A_{sl}	$ ho_{\scriptscriptstyle ext{l}}$	$\sigma_{\scriptscriptstyle cp}$	αc
188,00	1,326	24,127	0,0023	0,00	1,000
V_{Rd}		\mathbf{V}_{Rsd}	,	V _{Rcd}	
38388,02		307619,00	612769	9,10	

 $V_{d,max} = 202096,76 < 307619,04$

18.3 Verifica sezione X=157,00

18.3.1 Prima fase: sola trave

Sezione di calcolo:

n.	Y	Z
1	-48,20	0,00
2	-68,30	134,00
3	-93,00	147,00
4	-125,00	155,00
5	-125,00	160,00
6	-58,00	160,00

AUTOSTRADA REGIONALE CISPADANA dal casello di Reggiolo-Rolo sulla A22 al casello di Ferrara Sud sulla A13

PROGETTO DEFINITIVO

OPERE D'ARTE MAGGIORI-PONTI

VPO02 - CAVALCAVIA SP8 - PONTE SUL CANALE DIVERSIVO DI BURANA

RELAZIONE DI CALCOLO

7	-38,20	28,10
8	-31,30	21,60
9	0,00	19,00
10	31,30	21,60
11	38,20	28,10
12	58,00	160,00
13	125,00	160,00
14	125,00	155,00
15	93,00	147,00
16	68,30	134,00
17	48,20	0,00
18	-48,20	0,00

A = 7479,990

 $J_f = 24411727,6136$

 $Y_g = 79,97$

Armature di precompressione :

n.	Z	area
1	155,00	5,560
2	60,00	2,780
3	25,50	2,780
4	20,50	2,780
5	15,50	19,460
6	10,50	2,780
7	5,50	8,340

n = 6,000

 $A_{id} = 7702,390$

 $J_{f,id} = 25353717,3155$

 $Y_{g,id} = 78,66$

Cadute di tensione prima del taglio trefoli :

	%	$\Delta\sigma_{sp}$	$\Delta\sigma_{sp}\!/\sigma_{spi}$
ritiro cls	0,0%	0,00	0,0%

AUTOSTRADA REGIONALE CISPADANA dal casello di Reggiolo-Rolo sulla A22 al casello di Ferrara Sud sulla A13

PROGETTO DEFINITIVO

OPERE D'ARTE MAGGIORI-PONTI

VPO02 - CAVALCAVIA SP8 - PONTE SUL CANALE DIVERSIVO DI BURANA

RELAZIONE DI CALCOLO

rilassamento acciaio 0,0% 0,00 0,0%

Sollecitazioni:

istante	M _{esterno}	$N_{precomp.}$	M _{precomp} .
t=0 dopo taglio trefoli	3613436,18	-638288,00	-29045596,16
prima del getto	3613436,18	-586202,03	-26675399,41
dopo getto 2a fase	9300808,49	-586014,02	-26666844,04

Tensioni sul calcestruzzo:

	$\sigma_{\rm e,max}$	$\sigma_{i,max}$	
t=0 dopo taglio trefoli	-3,97	-159,17	
prima del getto	-4,59	-145,27	
dopo getto 2a fase	-22,84	-127,62	

Tensioni sugli acciai:

Q	sp

t=0 dopo taglio trefoli 13721,32 prima del getto 12604,20 dopo getto 2a fase 12653,76

Cadute di tensione dal taglio trefoli al getto soletta :

	%	$\Delta\sigma_{\sf sp}$	$\Delta\sigma_{\sf sp}/\sigma_{\sf spi}$
ritiro cls	50,0%	292,50	2,0%
rilassamento acciaio	35,3%	401,33	2,8%
viscosità cls	35,5%	477,17	3,3%

Cadute di tensione durante maturazione soletta :

	%	$\Delta\sigma_{sp}$	$\Delta\sigma_{\sf sp}/\sigma_{\sf spi}$
ritiro cls	0,1%	0,82	0,0%
rilassamento acciaio	0,1%	1,13	0,0%
viscosità cls	0,2%	2,28	0,0%

18.3.1.1 Momenti di rottura in flessione retta

 $\Delta \varepsilon$ armature pretese: $\varepsilon_{\text{sp,z=34,47}}$ =0,00676

AUTOSTRADA REGIONALE CISPADANA dal casello di Reggiolo-Rolo sulla A22 al casello di Ferrara Sud sulla A13

PROGETTO DEFINITIVO

OPERE D'ARTE MAGGIORI-PONTI

VPO02 - CAVALCAVIA SP8 - PONTE SUL CANALE DIVERSIVO DI BURANA

RELAZIONE DI CALCOLO

fless.	Z asse neutro	Mr	$\mathbf{\mathcal{E}}_{sup}$	\mathbf{ZE}_{sup}	$oldsymbol{\mathcal{E}}_{inf}$	$z\epsilon_{inf}$
(+)	120,19	7,399284E7	-0,00347	160,00	0,01000	5,50
(-)	30,96	-1,513293E7	0,01000	155,00	-0,00250	0,00

 $M_{d,max} = 12556091,47 < Mr$

18.3.1.2 Verifica rottura a taglio

Calcestruzzo	θ	[DEG]	bw	Staffe:	Asw	
		0,007	28,40		0,452	
d	K	A_{sl}	$\rho_{\scriptscriptstyle i}$	$\sigma_{\scriptscriptstyle \mathrm{cp}}$	αc	
155,00	1,359	36,140	0,0082	78,37	1,250	
V_{Rd}		V_{Rsd}		V_{Rcd}		
76084,17		263776,00	22087	3,50		

 $V_{d,max} = 74629,57 < 220873,49$

AUTOSTRADA REGIONALE CISPADANA dal casello di Reggiolo-Rolo sulla A22 al casello di Ferrara Sud sulla A13

PROGETTO DEFINITIVO

OPERE D'ARTE MAGGIORI-PONTI

VPO02 – CAVALCAVIA SP8 - PONTE SUL CANALE DIVERSIVO DI BURANA RELAZIONE DI CALCOLO

18.3.2 Seconda fase: trave + getto in opera

Tensioni sul calcestruzzo:

	$\sigma_{\rm e,max}$	$\sigma_{i,max}$
trave prefabbricata	-22,84	-127,57
getto in opera	0,00	0,00

18.3.2.2 Verifica in esercizio

Sezione di calcolo:

n.	Υ	Z	
1	-48,20	0,00	
2	-68,30	134,00	
3	-93,00	147,00	
4	-125,00	155,00	
5	-125,00	160,00	
6	-58,00	160,00	
7	-38,20	28,10	
8	-31,30	21,60	
9	0,00	19,00	
10	31,30	21,60	
11	38,20	28,10	
12	58,00	160,00	
13	125,00	160,00	
14	125,00	155,00	
15	93,00	147,00	
16	68,30	134,00	
17	48,20	0,00	fine prefabb.
18	-48,20	0,00	
19	-219,00	194,00	getto in opera
20	130,00	194,00	(m=0,895)
21	130,00	160,00	
22	-219,00	160,00	
23	-219,00	194,00	

AUTOSTRADA REGIONALE CISPADANA dal casello di Reggiolo-Rolo sulla A22 al casello di Ferrara Sud sulla A13

PROGETTO DEFINITIVO

OPERE D'ARTE MAGGIORI-PONTI

VPO02 - CAVALCAVIA SP8 - PONTE SUL CANALE DIVERSIVO DI BURANA **RELAZIONE DI CALCOLO**

A = 18098,652

 $J_f = 66748812,9470$

 $Y_g = 136,90$

Armature di precompressione :

n.	Z	area
1	155,00	5,560
2	60,00	2,780
3	25,50	2,780
4	20,50	2,780
5	15,50	19,460
6	10,50	2,780
7	5,50	8,340

n = 6,000

 $A_{id} = 18321,052$

 $J_{f,id} = 69548706,7359$

 $Y_{q,id} = 135,66$

Cadute di tensione da maturazione soletta a t=inf. :

	%	$\Delta\sigma_{\sf sp}$	$\Delta\sigma_{\sf sp}/\sigma_{\sf spi}$
ritiro cls	49,9%	291,68	2,0%
rilassamento acciaio	35,2%	400,20	2,8%
viscosità cls	64,3%	863,50	6,0%

Tensioni sul cls - VH160:

	$\sigma_{\rm e,max}$	$\sigma_{e,min}$	$\sigma_{i,max}$	$\sigma_{\scriptscriptstyle i,min}$
dopo iniezione cavi	-22,84	-22,84	-127,57	-127,57
t=infSLE Rare	-21,58	-25,95	-85,43	-109,79

AUTOSTRADA REGIONALE CISPADANA dal casello di Reggiolo-Rolo sulla A22 al casello di Ferrara Sud sulla A13

PROGETTO DEFINITIVO

OPERE D'ARTE MAGGIORI-PONTI

VPO02 - CAVALCAVIA SP8 - PONTE SUL CANALE DIVERSIVO DI BURANA

RFI	AZIONE	DI CAI	COLO
		. שו טתו	-00-0

t=infSLE Frequenti	-21,58	-24,63	-92,77	-109,79
t=infSLE Quasi Permanenti	-21,58	-22,39	-105,25	-109,79

Tensioni sul cls - getto in opera :

	$\sigma_{e,max}$	$\sigma_{\sf e,min}$	$\sigma_{i,max}$	$\sigma_{i,min}$
dopo iniezione cavi	0,00	0,00	0,00	0,00
t=infSLE Rare	-2,01	-11,39	1,13	-2,78
t=infSLE Frequenti	-2,01	-8,56	1,13	-1,60
t=infSLE Quasi Permanenti	-2,01	-3,76	1,13	0,40

Tensioni sugli acciai:

 σ_{sp}

dopo iniezione cavi 12649,73 t=inf.-SLE Rare 12811,71 t=inf.-SLE Frequenti 12784,32 t=inf.-SLE Quasi Permanenti 12737,77

18.3.2.2.1 Momenti di rottura per flessione retta

armature di precompressione :

		Z	$\Delta\epsilon_{sp}$				
Arr	nature pretese	34,47	0,00652				
fless.	Z asse neutro		Mr	$\mathbf{\mathcal{E}}_{sup}$	ZE _{sup}	$\mathbf{\epsilon}_{inf}$	$z\epsilon_{inf}$
(+)	172,10	9,800	001E7	-0,00131	194,00	0,01000	5,50
(-)	30,20	-1,5199	918E7	0,01000	155,00	-0,00242	0,00

 $M_{d,max} = 29684260,81 < Mr$

18.3.2.2.2 Verifica rottura per taglio

Calcestruzzo:	θ [DEG]	b_W	Staffe:	A _{SW}
	0,008	28,40		0,452

AUTOSTRADA REGIONALE CISPADANA dal casello di Reggiolo-Rolo sulla A22 al casello di Ferrara Sud sulla A13

PROGETTO DEFINITIVO

OPERE D'ARTE MAGGIORI-PONTI

VPO02 - CAVALCAVIA SP8 - PONTE SUL CANALE DIVERSIVO DI BURANA

RELAZIONE DI CALCOLO

d	K	A_{sl}	$\rho_{\scriptscriptstyle l}$	$\sigma_{\sf cp}$	℃ c
188,50	1,326	13,900	0,0026	69,10	1,250

 V_{Rd}
 V_{Rsd}
 V_{Rcd}

 75152,14
 316785,10
 310277,90

 $V_{d,max} = 180546,45 < 310277,85$

18.4 Verifica sezione X=357,00

18.4.1 Prima fase: sola trave

Sezione di calcolo:

n.	Υ	Z
1	-48,20	0,00
2	-68,30	134,00
3	-93,00	147,00
4	-125,00	155,00
5	-125,00	160,00
6	-58,00	160,00
7	-38,20	28,10
8	-31,30	21,60
9	0,00	19,00
10	31,30	21,60
11	38,20	28,10
12	58,00	160,00
13	125,00	160,00
14	125,00	155,00
15	93,00	147,00
16	68,30	134,00
17	48,20	0,00
18	-48,20	0,00

A = 7479,990

AUTOSTRADA REGIONALE CISPADANA dal casello di Reggiolo-Rolo sulla A22 al casello di Ferrara Sud sulla A13

PROGETTO DEFINITIVO

OPERE D'ARTE MAGGIORI-PONTI

VPO02 - CAVALCAVIA SP8 - PONTE SUL CANALE DIVERSIVO DI BURANA

RELAZIONE DI CALCOLO

 $J_f = 24411727,6136$

 $Y_q = 79,97$

Armature di precompressione :

n.	Z	area
1	155,00	5,560
2	60,00	2,780
3	25,50	2,780
4	20,50	2,780
5	15,50	19,460
6	10,50	16,680
7	5,50	8,340

n = 6,000

 $A_{id} = 7771,890$

 $J_{f,id} = 25673714,7615$

 $Y_{g,id} = 78,05$

Cadute di tensione prima del taglio trefoli :

	%	$\Delta\sigma_{\sf sp}$	$\Delta\sigma_{sp}\!/\sigma_{spi}$
ritiro cls	0,0%	0,00	0,0%
rilassamento acciaio	0,0%	0,00	0,0%

Sollecitazioni :

istante	M _{esterno}	$N_{precomp}$.	$\mathbf{M}_{precomp.}$
t=0 dopo taglio trefoli	7510077,93	-837753,00	-42903271,68
prima del getto	7510077,93	-758996,63	-38869975,62
dopo getto 2a fase	19378949,29	-758715,43	-38855574,84

Tensioni sul calcestruzzo:

 $\sigma_{e,max}$ $\sigma_{i,max}$

AUTOSTRADA REGIONALE CISPADANA dal casello di Reggiolo-Rolo sulla A22 al casello di Ferrara Sud sulla A13

PROGETTO DEFINITIVO

OPERE D'ARTE MAGGIORI-PONTI

VPO02 - CAVALCAVIA SP8 - PONTE SUL CANALE DIVERSIVO DI BURANA

RELAZIONE DI CALCOLO

t=0 dopo taglio trefoli	0,04	-210,49
prima del getto	-2,22	-188,56
dopo getto 2a fase	-40,10	-152,48

Tensioni sugli acciai:

 σ_{sp}

t=0 dopo taglio trefoli 13486,76 prima del getto 12225,66 dopo getto 2a fase 12339,59

Cadute di tensione dal taglio trefoli al getto soletta :

	%	$\Delta\sigma_{sp}$	$\Delta\sigma_{sp}\!/\sigma_{spi}$
ritiro cls	50,0%	292,50	2,0%
rilassamento acciaio	35,3%	401,33	2,8%
viscosità cls	43,1%	655,20	4,6%

Cadute di tensione durante maturazione soletta :

	%	$\Delta\sigma_{\sf sp}$	$\Delta\sigma_{sp}\!/\sigma_{spi}$
ritiro cls	0,1%	0,82	0,0%
rilassamento acciaio	0,1%	1,13	0,0%
viscosità cls	0,2%	2,87	0,0%

18.4.1.1 Momenti di rottura in flessione retta

 $\Delta \varepsilon$ armature pretese: $\varepsilon_{sp,z=28,76}$ =0,00667

fless.	Z asse neutro	Mr	$oldsymbol{\mathcal{E}}_{sup}$	\mathbf{ZE}_{sup}	$oldsymbol{\epsilon}_{inf}$	$z\epsilon_{inf}$
(+)	87,09	9,488968E7	-0,00350	160,00	0,00392	5,50
(-)	36,95	-1,405843E7	0,01000	155,00	-0,00313	0,00

 $M_{d,max} = 26161581,55 < Mr$

18.4.1.2 Verifica rottura a taglio

AUTOSTRADA REGIONALE CISPADANA dal casello di Reggiolo-Rolo sulla A22 al casello di Ferrara Sud sulla A13

PROGETTO DEFINITIVO

OPERE D'ARTE MAGGIORI-PONTI

VPO02 - CAVALCAVIA SP8 - PONTE SUL CANALE DIVERSIVO DI BURANA

RELAZIONE DI CALCOLO

Calcestruzzo	θ :	[DEG]	bw	Staffe:	Asw
		0,007	28,40		0,452
d	к	${\sf A}_{\sf sl}$	$ ho_{\scriptscriptstyle ext{I}}$	$oldsymbol{\sigma}_{\sf cp}$	α _c
155,00	1,359	50,040	0,0114	101,47	1,250
V _{Rd} 94126,13		V _{Rsd} 263776,00	22087	V_{Rcd} 3,50	

 $V_{d,max} = 61571,03 < 220873,49$

AUTOSTRADA REGIONALE CISPADANA dal casello di Reggiolo-Rolo sulla A22 al casello di Ferrara Sud sulla A13

PROGETTO DEFINITIVO

OPERE D'ARTE MAGGIORI-PONTI

VPO02 - CAVALCAVIA SP8 - PONTE SUL CANALE DIVERSIVO DI BURANA **RELAZIONE DI CALCOLO**

18.4.2 Seconda fase: trave + getto in opera

Tensioni sul calcestruzzo:

	$\sigma_{\rm e,max}$	$\sigma_{i,max}$
trave prefabbricata	-40,11	-152,40
getto in opera	0.00	0,00

18.4.2.2 Verifica in esercizio

Sezione di calcolo:

n.	Υ	Z	
1	-48,20	0,00	
2	-68,30	134,00	
3	-93,00	147,00	
4	-125,00	155,00	
5	-125,00	160,00	
6	-58,00	160,00	
7	-38,20	28,10	
8	-31,30	21,60	
9	0,00	19,00	
10	31,30	21,60	
11	38,20	28,10	
12	58,00	160,00	
13	125,00	160,00	
14	125,00	155,00	
15	93,00	147,00	
16	68,30	134,00	
17	48,20	0,00	fine prefabb.
18	-48,20	0,00	
19	-219,00	194,00	getto in opera
20	130,00	194,00	(m=0,895)
21	130,00	160,00	
22	-219,00	160,00	
23	-219,00	194,00	

AUTOSTRADA REGIONALE CISPADANA dal casello di Reggiolo-Rolo sulla A22 al casello di Ferrara Sud sulla A13

PROGETTO DEFINITIVO

OPERE D'ARTE MAGGIORI-PONTI

VPO02 - CAVALCAVIA SP8 - PONTE SUL CANALE DIVERSIVO DI BURANA

RELAZIONE DI CALCOLO

A = 18098,652

 $J_f = 66748812,9470$

 $Y_g = 136,90$

Armature di precompressione :

n.	Z	area
1	155,00	5,560
2	60,00	2,780
3	25,50	2,780
4	20,50	2,780
5	15,50	19,460
6	10,50	16,680
7	5,50	8,340

n = 6,000

 $A_{id} = 18390,552$

 $J_{f,id} = 70633256,2793$

 $Y_{q,id} = 135,18$

Cadute di tensione da maturazione soletta a t=inf. :

	%	$\Delta\sigma_{\sf sp}$	$\Delta\sigma_{\sf sp}/\sigma_{\sf spi}$
ritiro cls	49,9%	291,68	2,0%
rilassamento acciaio	35,2%	400,20	2,8%
viscosità cls	56,8%	863,50	6,0%

Tensioni sul cls - VH160:

	$\sigma_{\rm e,max}$	$\sigma_{e,min}$	$\sigma_{i,max}$	$\sigma_{i,min}$
dopo iniezione cavi	-40,11	-40,11	-152,40	-152,40
t=infSLE Rare	-38,65	-47,80	-78,68	-128,52
t=infSLE Frequenti	-38,65	-45,04	-93,71	-128,52
t=infSLE Quasi Permanenti	-38,65	-40,36	-119,22	-128,52

AUTOSTRADA REGIONALE CISPADANA dal casello di Reggiolo-Rolo sulla A22 al casello di Ferrara Sud sulla A13

PROGETTO DEFINITIVO

OPERE D'ARTE MAGGIORI-PONTI

VPO02 – CAVALCAVIA SP8 - PONTE SUL CANALE DIVERSIVO DI BURANA RELAZIONE DI CALCOLO

Tensioni sul cls - getto in opera :

	$\sigma_{\rm e,max}$	$\sigma_{e,min}$	$\sigma_{i,max}$	$\sigma_{i, min}$
dopo iniezione cavi	0,00	0,00	0,00	0,00
t=infSLE Rare	-2,96	-22,36	1,31	-6,88
t=infSLE Frequenti	-2,96	-16,51	1,31	-4,41
t=infSLE Quasi Permanenti	-2,96	-6,58	1,31	-0,22

Tensioni sugli acciai:

18.4.2.2.1 Momenti di rottura per flessione retta armature di precompressione :

		Z	$\Delta\epsilon_{sp}$				
Arr	mature pretese	28,76	0,00638				
fless.	Z asse neutro		Mr	$oldsymbol{\mathcal{E}}_{sup}$	$Z\mathcal{E}_{sup}$	$oldsymbol{\epsilon}_{inf}$	ZE_{inf}
(+)	168,49	1,3224	107E8	-0,00157	194,00	0,01000	5,50
(-)	35,54	-1,4240)93E7	0,01000	155,00	-0,00298	0,00

 $M_{d,max} = 61863662,13 < Mr$

18.4.2.2.2 Verifica rottura per taglio

Calcestru	zzo: θ	[DEG]	\mathbf{b}_{W}	Staffe	: A _{SW}
		0,007	28,40		0,452
d	K	A_{sl}	$\rho_{\scriptscriptstyle l}$	$\sigma_{\sf cp}$	C C _c
188,50	1,326	33,360	0,0062	89,29	1,250
V	/ _{Rd}	V_{Rsd}		V_{Rcd}	
98036,	27	320785,70	2686	310,30	

AUTOSTRADA REGIONALE CISPADANA dal casello di Reggiolo-Rolo sulla A22 al casello di Ferrara Sud sulla A13

PROGETTO DEFINITIVO

OPERE D'ARTE MAGGIORI-PONTI
VPO02 – CAVALCAVIA SP8 - PONTE SUL CANALE DIVERSIVO DI BURANA
RELAZIONE DI CALCOLO

 $V_{d,max} = 154684,13 < 268610,31$

AUTOSTRADA REGIONALE CISPADANA dal casello di Reggiolo-Rolo sulla A22 al casello di Ferrara Sud sulla A13

PROGETTO DEFINITIVO

OPERE D'ARTE MAGGIORI-PONTI

VPO02 – CAVALCAVIA SP8 - PONTE SUL CANALE DIVERSIVO DI BURANA RELAZIONE DI CALCOLO

18.5 Verifica sezione X=757,00

18.5.1 Prima fase: sola trave

Sezione di calcolo:

n.	Υ	Z
1	-48,20	0,00
2	-68,30	134,00
3	-93,00	147,00
4	-125,00	155,00
5	-125,00	160,00
6	-58,00	160,00
7	-38,20	28,10
8	-31,30	21,60
9	0,00	19,00
10	31,30	21,60
11	38,20	28,10
12	58,00	160,00
13	125,00	160,00
14	125,00	155,00
15	93,00	147,00
16	68,30	134,00
17	48,20	0,00
18	-48,20	0,00

A = 7479,990

 $J_f = 24411727,6136$

 $Y_g = 79,97$

Armature di precompressione :

n.	Z	area
1	155,00	5,560
2	60,00	2,780
3	25,50	2,780

AUTOSTRADA REGIONALE CISPADANA dal casello di Reggiolo-Rolo sulla A22 al casello di Ferrara Sud sulla A13

PROGETTO DEFINITIVO

OPERE D'ARTE MAGGIORI-PONTI

VPO02 - CAVALCAVIA SP8 - PONTE SUL CANALE DIVERSIVO DI BURANA

RELAZIONE DI CALCOLO

4	20,50	2,780
5	15,50	19,460
6	10,50	16,680
7	5.50	16.680

n = 6,000

 $A_{id} = 7813,590$

 $J_{f,id} = 25892036,0549$

 $Y_{g,id} = 77,66$

Cadute di tensione prima del taglio trefoli :

	%	$\Delta\sigma_{\sf sp}$	$\Delta\sigma_{sp}\!/\sigma_{spi}$
ritiro cls	0,0%	0,00	0,0%
rilassamento acciaio	0,0%	0,00	0,0%

Sollecitazioni:

istante	M _{esterno}	N _{precomp} .	M _{precomp.}
t=0 dopo taglio trefoli	13067775,92	-957432,00	-51816271,99
prima del getto	13067775,92	-861602,40	-46629968,86
dopo getto 2a fase	33753189,07	-861281,36	-46612593,86

Tensioni sul calcestruzzo :

	$\sigma_{\rm e,max}$	$\sigma_{i,max}$
t=0 dopo taglio trefoli	-6,35	-232,13
prima del getto	-9,87	-204,97
dopo getto 2a fase	-75,65	-142,92

Tensioni sugli acciai:

	O s

t=0 dopo taglio trefoli	13371,79
prima del getto	12046,49
dopo getto 2a fase	12253,44

AUTOSTRADA REGIONALE CISPADANA dal casello di Reggiolo-Rolo sulla A22 al casello di Ferrara Sud sulla A13

PROGETTO DEFINITIVO

OPERE D'ARTE MAGGIORI-PONTI

VPO02 – CAVALCAVIA SP8 - PONTE SUL CANALE DIVERSIVO DI BURANA RELAZIONE DI CALCOLO

Cadute di tensione dal taglio trefoli al getto soletta :

	%	$\Delta\sigma_{sp}$	$\Delta\sigma_{\sf sp}\!/\sigma_{\sf spi}$
ritiro cls	50,0%	292,50	2,0%
rilassamento acciaio	35,3%	401,33	2,8%
viscosità cls	46,1%	742,46	5,2%

Cadute di tensione durante maturazione soletta :

	%	$\Delta\sigma_{sp}$	$\Delta\sigma_{sp}\!/\sigma_{spi}$
ritiro cls	0,1%	0,82	0,0%
rilassamento acciaio	0,1%	1,13	0,0%
viscosità cls	0,2%	2,86	0,0%

18.5.1.1 Momenti di rottura in flessione retta

 $\Delta \varepsilon$ armature pretese: $\varepsilon_{sp,z=25,85}=0,00662$

fless.	Z asse neutro	Mr	$\mathbf{\mathcal{E}}_{sup}$	\textbf{ZE}_{sup}	$oldsymbol{\epsilon}_{inf}$	$z\epsilon_{inf}$
(+)	67,15	1,052794E8	-0,00350	160,00	0,00232	5,50
(-)	39,80	-1,317908E7	0,01000	155,00	-0,00346	0,00

 $M_{d,max} = 45566805,25 < Mr$

18.5.1.2 Verifica rottura a taglio

Calcestruzzo:		[DEG]	b _W	Staffe:	Staffe: A _{SV}	
		0,007	28,40		0,226	
d	К	A_{sl}	ρι	$\sigma_{\scriptscriptstyle{cp}}$	αc	
155,00	1,359	52,963	0,0120	115,19	1,250	
V_{Rc}	ı	\mathbf{V}_{Rsd}		V _{Rcd}		
103676,90)	131888,00	22087	3,50		

 $V_{d,max} = 35453,94 < 131888,00$

AUTOSTRADA REGIONALE CISPADANA dal casello di Reggiolo-Rolo sulla A22 al casello di Ferrara Sud sulla A13

PROGETTO DEFINITIVO

OPERE D'ARTE MAGGIORI-PONTI

VPO02 - CAVALCAVIA SP8 - PONTE SUL CANALE DIVERSIVO DI BURANA

RELAZIONE DI CALCOLO

18.5.2 Seconda fase: trave + getto in opera

Tensioni sul calcestruzzo:

	$\sigma_{e,max}$	$\sigma_{i,max}$
trave prefabbricata	-75,66	-142,83
getto in opera	0,00	0,00

18.5.2.2 Verifica in esercizio

Sezione di calcolo:

n.	Y	Z	
1	-48,20	0,00	
2	-68,30	134,00	
3	-93,00	147,00	
4	-125,00	155,00	
5	-125,00	160,00	
6	-58,00	160,00	
7	-38,20	28,10	
8	-31,30	21,60	
9	0,00	19,00	
10	31,30	21,60	
11	38,20	28,10	
12	58,00	160,00	
13	125,00	160,00	
14	125,00	155,00	
15	93,00	147,00	
16	68,30	134,00	
17	48,20	0,00	fine prefabb.
18	-48,20	0,00	
19	-219,00	194,00	getto in opera
20	130,00	194,00	(m=0,895)
21	130,00	160,00	
22	-219,00	160,00	
23	-219,00	194,00	

AUTOSTRADA REGIONALE CISPADANA dal casello di Reggiolo-Rolo sulla A22 al casello di Ferrara Sud sulla A13

PROGETTO DEFINITIVO

OPERE D'ARTE MAGGIORI-PONTI

VPO02 - CAVALCAVIA SP8 - PONTE SUL CANALE DIVERSIVO DI BURANA

RELAZIONE DI CALCOLO

A = 18098,652

 $J_f = 66748812,9470$

 $Y_g = 136,90$

Armature di precompressione :

n.	Z	area
4	1EE 00	
1	155,00	5,560
2	60,00	2,780
3	25,50	2,780
4	20,50	2,780
5	15,50	19,460
6	10,50	16,680
7	5,50	16,680

n = 6,000

 $A_{id} = 18432,252$

 $J_{f,id} = 71332975,8860$

 $Y_{g,id} = 134,89$

Cadute di tensione da maturazione soletta a t=inf. :

	%	$\Delta\sigma_{\sf sp}$	$\Delta\sigma_{\sf sp}/\sigma_{\sf spi}$
ritiro cls	49,9%	291,68	2,0%
rilassamento acciaio	35,2%	400,20	2,8%
viscosità cls	53,7%	863,50	6,0%

Tensioni sul cls - VH160:

	$\sigma_{\rm e,max}$	$\sigma_{e,min}$	$\sigma_{i,max}$	$\sigma_{i,min}$
dopo iniezione cavi	-75,66	-75,66	-142,83	-142,83
t=infSLE Rare	-74,11	-90,03	-29,76	-115,30
t=infSLE Frequenti	-74,11	-85,23	-55,56	-115,30
t=infSLE Quasi Permanenti	-74,11	-77,09	-99,29	-115,30

Tensioni sul cls - getto in opera :

AUTOSTRADA REGIONALE CISPADANA dal casello di Reggiolo-Rolo sulla A22 al casello di Ferrara Sud sulla A13

PROGETTO DEFINITIVO

OPERE D'ARTE MAGGIORI-PONTI

VPO02 - CAVALCAVIA SP8 - PONTE SUL CANALE DIVERSIVO DI BURANA

RELAZIONE DI CALCOLO

	$\sigma_{\rm e.max}$	$\sigma_{ m e.min}$	G i.max	G i.min
dopo iniezione cavi	0,00	0,00	0,00	0,00
t=infSLE Rare	-3,55	-37,09	1,39	-12,86
t=infSLE Frequenti	-3,55	-26,97	1,39	-8,56
t=infSLE Quasi Permanenti	-3,55	-9,83	1,39	-1,28

Tensioni sugli acciai:

 σ_{sp}

dopo iniezione cavi 12249,00 t=inf.-SLE Rare 12711,40 t=inf.-SLE Frequenti 12607,10 t=inf.-SLE Quasi Permanenti 12430,38

18.5.2.2.1 Momenti di rottura per flessione retta

38,27

armature di precompressione :

		Z	$\Delta\epsilon_{sp}$			
Arr	mature pretese	25,85	0,00634			
fless.	Z asse neutro		Mr	$oldsymbol{\mathcal{E}}_{sup}$	ZE _{sup}	ϵ_{inf}
(+)	166,45	1,5310	066E8	-0,00171	194,00	0,01000

-1,342119E7

0.01000

155,00

 $M_{d,max} = 107594844,72 < Mr$

(-)

18.5.2.2.2 Verifica rottura per taglio

Calcestruz	zzo: θ	[DEG]	bw	Staffe:	Asw
		0,007	28,40		0,226
d	K	A _{sl}	ρι	$\sigma_{\sf cp}$	C C _c
188,50	1,326	61,160	0,0114	101,27	1,250
V	Rd	\mathbf{V}_{Rsd}	,	V_Rcd	
113550,	60	160392,80	26861	0,30	

 $V_{d,max} = 104092,56 < 160392,85$

-0,00328

 $z\epsilon_{inf}$

5,50

0,00