

PROTOCOLLO

Direzione Progettazione e Realizzazione Lavori

S.S. N. 4 "SALARIA"

ADEGUAMENTO DEL TRATTO TRISUNGO-ACQUASANTA TERME. TRATTO GALLERIA VALGARIZIA - ACQUASANTA TERME. LOTTO 2 DAL KM 155+400 AL KM 159+000 (EX AN6)

PROGETTO DEFINITIVO

COD. AN257

3engeko

ICARIA tà di ingegneria

Dott. Ing. C.Muller

ATI SINTAGMA - GP INGEGNERIA - ENGEKO - GDG - ICARIA PROGETTAZIONE:

Dott. Ing. Giorgio Guiducci MANDATARIA: MANDANTI: Ordine degli Ingegneri della Prov. di Roma n° 14035 Sintagma II PROGETTISTA: Dott.Ing. N.Granieri Dott. Ing. Dott.Ing.Vasco Truffini V.Truffini Dott.Ing. Ordine degli Ingegneri della Prov. di Perugia A659 Dott.Ing. L.Spaccini Dott. Ind Dott.Arch. A.Bracchini E.Bartolocci Dott. Ing. Dott. Arch. Dott. Geol. Dott.Ing. IL GEOLOGO: L.Casavecchia G.Cerquiglini Dott.Ing. Dott. Geol. Giorgio Cerquiglini Dott.Geol. Dott. Ing. Ordine dei Geologi della Regione Umbria n°108 Dott.Ing. F.Pambianco Dott.Ing. Dott.Arch. M.Abram C.Presciutti IL COORDINATORE PER LA SICUREZZA IN FASE DI PROGETTAZIONE: Dott. Agr. F.Berti Nulli Dott. Ing. Dott. Ing. Dott. Ing. Marco Abram Geom. S.Scopetta M.Zucconi Ordine degli Ingegneri della Prov. di Perugia n° A2808 Geom. Dott. Ing. II RESPONSABILE DI PROGETTO Pianificatore Territoriale Marco Colazza II R.U.P. Dott. Ing. Vincenzo Catone

IL RESPONSABILE DELL'INTEGRAZIONE DELLE PRESTAZIONI SPECIALISTICHE:

DATA

IL GRUPPO DI PROGETTAZIONE:

GPIngegneria

G.Guiducci E.Moscatelli A.Signorelli A.Belà G.Lucibello G.Guastella M.Leonardi

D.Carlaccini C.Consorti E.Loffredo S.Sacconi

Dott. Ing. Dott. Ing. Dott. Ing. Dott. Ing. Dott. Ing.

V.Rotisciani F.Macchioni G.Verini V.Piunno G.Pulli

AMBIENTE PIANO DI MONITORAGGIO AMBIENTALE Relazione Generale

CODICE PROGETTO PROGETTO LIV. PROG. ANNO		NOME FILE TOO-MOOO-MOA-REO1-B			REVISIONE	SCALA:	
DPAN		CODICE ELAB.	TOOMOOOM	0ARE	0 1	В	-
В	Emissione per consegna finale			giu-22	L.Giannetti	V.Truffini	G.Guiducci
Α	Emissione			mag-22	L.Giannetti	V.Truffini	G.Guiducci
DEV/	DECCRIZIONE			DATA	DEDATTO	VEDIEICATO	APPROVATO

Piano di Monitoraggio Ambientale – Reazione Generale

INDICE

1	(GLI OBIETTIVI GENERALI DEL MONITORAGGIO AMBIENTALE	. 7
2	[DESCRIZIONE DEL PROGETTO E DELLA CANTIERIZZAZIONE	. 8
3	ı	REQUISITI GENERALI DEL MONITORAGGIO AMBIENTALE	11
4	ı	REQUISITI DEL PMA ED I FATTORI DI SPECIFICITÀ DEL CASO	13
5	l	LE SCELTE STRUTTURANTI IL PMA	14
5	5.1	LE FASI TEMPORALI OGGETTO DI MONITORAGGIO	14
į	5.2	LE COMPONENTI AMBIENTALI OGGETTO DI MONITORAGGIO	14
6	-	ATMOSFERA	16
6	5.1	FINALITÀ ED ARTICOLAZIONE TEMPORALE DEL MONITORAGGIO	16
		6.1.1 OBIETTIVI DEL MONITORAGGIO	16
		6.1.2 RIFERIMENTI NORMATIVI	
6	5.2	MONITORAGGIO DELLA QUALITÀ DELL'ARIA	20
		6.2.1 LOCALIZZAZIONE DELLE AREE DI MONITORAGGIO	20
		6.2.2 METODOLOGIA E STRUMENTAZIONE	21
		6.2.2.1 PARAMETRI DA MONITORARE	
		6.2.2.3 TEMPI E FREQUENZA DEL MONITORAGGIO	
6	5.3	GESTIONE DELLE ANOMALIE	25
6	5.4	DOCUMENTAZIONE DA PRODURRE	26
6	5.5	CONCLUSIONI	26
7	1	ACQUE SUPERFICIALI	28
7	7.1	FINALITÀ ED ARTICOLAZIONE TEMPORALE DEL MONITORAGGIO	28
		7.1.1 OBIETTIVI DEL MONITORAGGIO	28
		7.1.2 RIFERIMENTI NORMATIVI	28
-	7.2	MONITORAGGIO DELLA QUALITÀ DELLE ACQUE	29

	7.2.1 LOCALIZZAZIONE DELLE AREE DI MONITORAGGIO	29
	7.2.2 METODOLOGIA E STRUMENTAZIONE	30
	7.2.2.1 TIPOLOGIA DI MONITORAGGIO	30
	7.2.2.2 PARAMETRI DA MONITORARE	30
	7.2.2.3 METODICHE DI MONITORAGGIO	32
	7.2.3 TEMPI E FREQUENZA DEL MONITORAGGIO	35
7.3	GESTIONE DELLE ANOMALIE	36
	7.3.1 AZIONI CORRETTIVE	37
7.4	CONCLUSIONI	37
8	ACQUE SOTTERRANEE	39
8.1	FINALITÁ ED ARTICOLAZIONE TEMPORALE DEL MONITORAGGIO	39
	8.1.1 OBIETTIVI DEL MONITORAGGIO	39
	8.1.2 RIFERIMENTI NORMATIVI	39
8.2	MONITORAGGIO DELLA QUALITÀ DELLE ACQUE	40
	8.2.1 LOCALIZZAZIONE DELLE AREE DI MONITORAGGIO	40
	8.2.2 METODOLOGIA E STRUMENTAZIONE	41
	8.2.2.1 TIPOLOGIA DI MONITORAGGIO	41
	8.2.2.2 PARAMETRI OGGETTO DI MONITORAGGIO	41
	8.2.3 METODOLOGIE DI MONITORAGGIO	45
	8.2.4 TEMPI E FREQUENZA DEL MONITORAGGIO	46
8.3	GESTIONE DELLE ANOMALIE	46
	8.3.1 AZIONI CORRETTIVE	47
8.4	CONCLUSIONI	48
9	SUOLO	49
9.1	FINALITÁ ED ARTICOLAZIONE TEMPORALE DEL MONITORAGGIO	49
	9.1.1 OBIETTIVI DEL MONITORAGGIO	49
	9.1.2 RIFERIMENTI NORMATIVI	49

	MONITO	RAGGIO DELLA QUALITÀ E FERTILITÀ DEL SUOLO	.50
	9.2.1 LO	CALIZZAZIONE DELLE AREE DI MONITORAGGIO	. 50
	9.2.2 ME 9.2.2.1 9.2.2.2 9.2.2.3 9.2.2.4	TIPOLOGIA E STRUMENTAZIONE)) -
9.3	GESTION	IE DELLE ANOMALIE	.51
	9.3.1 AZ	IONI CORRETTIVE	. 52
9.4	CONCLU	SIONI	.52
10	RUMORE		53
10.	1 FINALITÀ	A ED ARTICOLAZIONE TEMPORALE DEL MONITORAGGIO	.53
	10.1.10B	IETTIVI DEL MONITORAGGIO	. 53
	10.1.2RIF	ERIMENTI NORMATIVI	. 53
10.	2 MONITO	RAGGIO DEL RUMORE STRADALE	.54
			г 1
	10.2.1LO	CALIZZAZIONE DELLE AREE DI MONITORAGGIO	. 54
		ETODOLOGIA E STRUMENTAZIONE	. 55
			. 55 ;
	10.2.2ME 10.2.2.1 10.2.2.2 10.2.2.3	TIPOLOGIA E STRUMENTAZIONE	55
10.	10.2.2ME 10.2.2.1 10.2.2.2 10.2.2.3 10.2.3TE	TIPOLOGIA E STRUMENTAZIONE	. 55
10.	10.2.2ME 10.2.2.1 10.2.2.2 10.2.2.3 10.2.3TE	TIPOLOGIA E STRUMENTAZIONE TIPOLOGIA DI MONITORAGGIO PARAMETRI DA MONITORARE METODICHE DI MONITORAGGIO MPI E FREQUENZA DEL MONITORAGGIO	. 55 . 57
10.	10.2.2ME 10.2.2.1 10.2.2.2 10.2.2.3 10.2.3TE 3 MONITO 10.3.1LO	TIPOLOGIA E STRUMENTAZIONE TIPOLOGIA DI MONITORAGGIO PARAMETRI DA MONITORARE METODICHE DI MONITORAGGIO MPI E FREQUENZA DEL MONITORAGGIO PRAGGIO DEL RUMORE INDOTTO DAL CANTIERE	. 55 . 57 . 57
10.	10.2.2ME 10.2.2.1 10.2.2.2 10.2.2.3 10.2.3TE 3 MONITO 10.3.1LO	TIPOLOGIA DI MONITORAGGIO	. 55 . 57 . 57
10.	10.2.2ME 10.2.2.1 10.2.2.2 10.2.2.3 10.2.3TE 3 MONITO 10.3.1LO 10.3.2ME 10.3.2.1 10.3.2.2 10.3.2.3	TIPOLOGIA E STRUMENTAZIONE	. 55 6 6 . 57 . 57 . 57

11	VIBRAZION	NI	60
1:	L.1 FINALITÀ	ED ARTICOLAZIONE TEMPORALE DEL MONITORAGGIO	60
	11.1.1OBI	ETTIVI DEL MONITORAGGIO	60
	11.1.1RIFE	ERIMENTI NORMATIVI	60
1:	L.2 MONITOR	RAGGIO DELLE VIBRAZIONI	61
	11.2.1LOC	CALIZZAZIONE DELLE AREE DI MONITORAGGIO	61
	11.2.2ME	TODOLOGIA E STRUMENTAZIONE	61
	11.2.2.1	TIPOLOGIA DI MONITORAGGIO	61
	11.2.2.2	PARAMETRI DA MONITORARE	61
	11.2.2.3	METODICHE DI MONITORAGGIO	61
	11.2.3TEN	MPI E FREQUENZA DEL MONITORAGGIO	62
13	L.3 CONCLUS	SIONI	63
12	VEGETAZIO	ONE	64
12	2.1 FINALITÀ	ED ARTICOLAZIONE TEMPORALE DEL MONITORAGGIO	64
	12.1.10BI	ETTIVI DEL MONITORAGGIO	64
	12.1.2RIFE	ERIMENTI NORMATIVI	64
12	2.2 MONITOR	RAGGIO DELLA VEGETAZIONE	65
	12.2.1LOC	CALIZZAZIONE DELLE AREE DI MONITORAGGIO	65
	12.2.2ME	TODOLOGIA E STRUMENTAZIONE	65
	12.2.2.1	TIPOLOGIA DI MONITORAGGIO	65
	12.2.2.2	PARAMETRI DA MONITORARE	66
	12.2.2.3	METODICHE DI MONITORAGGIO	67
	12.2.3TEN	MPI E FREQUENZA DEL MONITORAGGIO	68
12	2.3 MONITOR	RAGGIO DEGLI INTERVENTI A VERDE E DEI RIPRISTINI	68
	12.3.1LOC	CALIZZAZIONE DELLE AREE DI MONITORAGGIO	68
	12.3.2ME	TODOLOGIA E STRUMENTAZIONE	68
	12.3.2.1	TIPOLOGIA DI MONITORAGGIO	68
	12.3.2.2	PARAMETRI DA MONITORARE	69

	12.3.2.3	METODICHE DI MONITORAGGIO	69
	12.3.3TEM	PI E FREQUENZA DEL MONITORAGGIO	69
4.5	. 4 60 NGUUS	0.11	70
12	.4 CONCLUSI	ONI	/0
13	FAUNA		71
13	3.1 FINALITÀ E	ED ARTICOLAZIONE TEMPORALE DEL MONITORAGGIO	71
	13.1.10BIE	TTIVI DEL MONITORAGGIO	71
	13.1.2RIFE	RIMENTI NORMATIVI	71
13	3.2 MONITOR	AGGIO DELLA FAUNA	71
	13.2.1LOC/	ALIZZAZIONE DELLE AREE DI MONITORAGGIO	71
	13.2.2MET	ODOLOGIA E STRUMENTAZIONE	72
	13.2.2.1	TIPOLOGIA DI MONITORAGGIO	72
	13.2.2.2	PARAMETRI DA MONITORARE	73
	13.2.2.3	METODICHE DI MONITORAGGIO	76
	13.2.3TEM	PI E FREQUENZA DEL MONITORAGGIO	77
13	3.3 CONCLUSI	ONI	78
14	PAESAGGIC)	79
14	I.1 FINALITÀ E	ED ARTICOLAZIONE TEMPORALE DEL MONITORAGGIO	79
	14.1.10BIE	TTIVI DEL MONITORAGGIO	79
	14.1.2RIFE	RIMENTI NORMATIVI	79
14	I.2 MONITOR	AGGIO DELLA PERCEZIONE VISIVA DA/VERSO IL RICETTORE	79
	14.2.1LOC	ALIZZAZIONE DEI PUNTI DI MONITORAGGIO	79
	14.2.2MET	ODOLOGIA E STRUMENTAZIONE	80
	14.2.2.1	TIPOLOGIA DI MONITORAGGIO	80
	14.2.2.2	PARAMETRI DA MONITORARE	80
	14.2.2.3	METODICHE DI MONITORAGGIO	80
	14.2.3TEM	PI E FREQUENZA DEL MONITORAGGIO	81

Piano di Monitoraggio Ambientale – Reazione Generale

15	RESTITUZIONE DATI	. 83
15	5.1 IL SISTEMA INFORMATIVO DEL MONITORAGGIO	83
	15.1.1CONTENUTI E FINALITÀ	. 83
	15.1.2ARCHITETTURA DEL SISTEMA	. 83
15	5.2 RESTITUZIONE E MEMORIZZAZIONE DATI	86
	15.2.1I RAPPORTI DI MISURA	. 86
	15.2.2I RAPPORTI DI CAMPAGNA	. 86
	15.2.31 RAPPORTI ANNIJALI	86

MANDANTE

Piano di Monitoraggio Ambientale – Reazione Generale

GLI OBIETTIVI GENERALI DEL MONITORAGGIO AMBIENTALE

Il presente documento costituisce il Piano di Monitoraggio Ambientale (PMA), redatto nell'ambito del Progetto Definitivo SS4 Salaria - Adeguamento del tratto Trisungo-Acquasanta Terme. Tratto galleria Valgarizia - Acquasanta Terme. Lotto 2 dal km 155+400 al km 159+000.

In termini generali, il monitoraggio ambientale è volto ad affrontare, in maniera approfondita e sistematica, la prevenzione, l'individuazione ed il controllo dei possibili effetti negativi prodotti sull'ambiente dall'esercizio di un'opera in progetto e dalla sua realizzazione.

Lo scopo principale è quindi quello di esaminare il grado di compatibilità dell'opera stessa, intercettando, sia gli eventuali impatti negativi e le cause per adottare opportune misure di riorientamento, sia gli effetti positivi segnalando azioni meritevoli di ulteriore impulso.

Gli obiettivi principali si possono riassumere quindi come segue:

- documentare la situazione attuale al fine di verificare la naturale dinamica dei fenomeni ambientali in atto:
- individuare le eventuali anomalie ambientali che si manifestano nell'esercizio dell'infrastruttura in modo da intervenire immediatamente ed evitare lo sviluppo di eventi gravemente compromettenti la qualità ambientale;
- accertare la reale efficacia dei provvedimenti adottati per la mitigazione degli impatti sull'ambiente e risolvere eventuali impatti residui;
- verificare le modifiche ambientali intervenute per effetto dell'esercizio degli interventi infrastrutturali, distinguendole dalle alterazioni indotte da altri fattori naturali o legati alle attività antropiche del territorio;
- fornire agli Enti di Controllo competenti gli elementi per la verifica della corretta esecuzione delle procedure di monitoraggio.

In questa fase di lavoro, l'obiettivo principale è quindi quello di definire gli ambiti di monitoraggio, l'ubicazione dei punti di misura, le modalità operative e le tempistiche.

Si sottolinea che il presente Piano di monitoraggio riprende quanto indicato nell'analisi degli impatti dello SIA, con lo scopo di controllare i parametri ambientali maggiormente significativi sia in fase di cantiere che di esercizio.

Piano di Monitoraggio Ambientale – Reazione Generale

2 DESCRIZIONE DEL PROGETTO E DELLA CANTIERIZZAZIONE

Il tracciato prevede una nuova viabilità in variante rispetto all'attuale SS4 Salaria e ottimizza il tracciato della Provincia di Ascoli Piceno sviluppato a livello di Progettazione definitiva del 2005.

La soluzione interessa esclusivamente il versante in sinistra del fiume, che non presenta fenomeni morfogenetici ed incontra inoltre una situazione idrogeologica favorevole, consentendo di avere un tracciato dalle caratteristiche plano-altimetriche soddisfacenti, anche in considerazione del fatto che corre prevalentemente in sotterraneo.

Il tracciato il progetto si configura come un **unico lotto** con sviluppo pari a 4,9 Km. Il tracciato, sezione "C1" del D.M. 2001, si sviluppa dall'uscita dell'esistente galleria "Valgarizia", mantenendo la possibilità di un collegamento da Roma per Acquasanta Terme sulla Salaria esistente, e prosegue subito con la galleria naturale "Favalanciata" di 1,8 km. Successivamente dopo un breve tratto all'aperto di poco più di 70 m (con il viadotto "Quintodecimo"), prosegue con la galleria naturale "Acquasanta Terme" di 2,27 km, sino a raggiungere il versante su cui insiste l'attuale svincolo di Acquasanta con un viadotto sul fiume Tronto (viadotto "Tronto") di circa 286 m. Si prevede il completo rifacimento dello svincolo a livelli sfalsati esistente, con un nuovo impianto planimetrico e rampe dedicate al raccordo tra il nuovo asse in variante, l'esistente Salaria e la viabilità locale.

Figura 1 - Planimetria su fotomosaico

MANDANTE

Piano di Monitoraggio Ambientale – Reazione Generale

Il sistema di cantierizzazione delle opere di progetto individua e caratterizza i cantieri principali (base e operativi) ed i cantieri secondari (aree tecniche ed aree di stoccaggio), prevede l'utilizzo principalmente della viabilità esistente e fornisce alcune indicazioni sugli aspetti riguardanti la gestione idrica (fornitura e scarico) ed energetica nei cantieri, la gestione dei rifiuti ed il ripristino delle aree di cantiere.

I criteri di tipizzazione e localizzazione dei cantieri sono dettati da esigenze di tipo operativo, opportunamente calate nel contesto ambientale di intervento, in termini di: accessibilità ai siti, grado di antropizzazione del territorio, tutela paesaggistica, ecc. L'individuazione delle aree da adibire a cantiere è stata eseguita prendendo in considerazione i seguenti fattori:

- caratteristiche e ubicazione delle opere da realizzare;
- agevole accessibilità dalla rete viaria principale;
- esistenza di una viabilità di collegamento fra le diverse aree di lavoro;
- lavorazioni in sito e stoccaggio temporaneo dei materiali di risulta;
- funzioni e strutture necessarie al normale svolgimento delle attività di cantiere e all'accoglimento del personale;
- impatti ambientali;
- la tipologia e gli aspetti logistici delle aree di cantiere;
- le modalità costruttive degli interventi ed i mezzi d'opera necessari;
- gli aspetti relativi all'approvvigionamento dei materiali;
- l'impatto delle lavorazioni nella fase di cantiere;
- aspetti archeologici del territorio.

Per lo sviluppo delle attività lavorative sono state individuate un numero di aree di cantiere proporzionale alla lunghezza del tracciato e di conseguenza alla quantità di opere da realizzare per la costruzione dell'infrastruttura. Sarà previsto quindi l'allestimento di aree per lo svolgimento delle attività di costruzione delle opere che comprendono in generale:

- Cantieri Base: ospitano box prefabbricati e le attrezzature necessarie per il controllo, la direzione dei lavori e tutte le strutture per l'alloggiamento delle maestranze e del personale di cantiere (dormitori, mense, servizi igienici, parcheggi dei mezzi). Inoltre le aree dovranno prevedere aree operative e di stoccaggio dei materiali da costruzione e delle terre di scavo. La loro ubicazione è prevista prevalentemente nelle vicinanze di aree antropizzate e a ridosso alle viabilità principali per facilitarne il raggiungimento.
- Cantieri Operativi: sono aree fisse di cantiere distribuite lungo il tracciato che svolgono la funzione di cantiere-appoggio per tratti d'opera su cui realizzare più manufatti. Al loro interno saranno previste aree logistiche, aree per lo stoccaggio dei materiali da costruzione e di stoccaggio temporaneo delle terre di scavo. Oltre alle normali dotazioni di cantiere, alcune aree saranno dotate di impianto di betonaggio e impianti di frantumazione.
- Aree tecniche: sono le aree in corrispondenza delle opere d'arte che devono essere realizzate, data la loro dimensione e ubicazione, tali cantieri ospiteranno le dotazioni minime di cantiere oltre che aree di stoccaggio materiali da costruzione e stoccaggio terre ridotte. Data la loro tipologia e il loro carattere di aree mobili, le aree tecniche si modificheranno e sposteranno parallelamente alla costruzione dell'opera a cui si riferiscono. Principalmente tali aree saranno ubicate agli imbocchi delle gallerie, sulle aree di realizzazione dei viadotti e in avanzamento con la realizzazione del rilevato stradale.

Piano di Monitoraggio Ambientale – Reazione Generale

Nella tabella seguente si riporta la composizione dei cantieri previsti per il tracciato:

TRATTA	NOME	PK	COMUNE	SUPERFICIE [mq]	DESCRIZIONE
Est	AO 1	-	Acquasanta Terme	1.575	Area Operativa 1
Est	AT 1	1+450	Acquasanta Terme	1.570	Area Tecnica 1
Est	AT 2	3+350	Acquasanta Terme	4.917	Area Tecnica 2
Ovest	AO2	5+900	Acquasanta Terme	10.475	Area Operativa 2
Ovest	AT 3	5+900	Acquasanta Terme	681	Area Tecnica 3
Ovest	AT 4	5+900	Acquasanta Terme	322	Area Tecnica 4
Ovest	СВ	-	Acquasanta Terme	6.067	Campo Base

Tabella 1 - Elenco aree di cantiere previste

Per far fronte alla gestione del materiale di scavo sono state considerate delle aree dedicate, ubicate il più vicino possibile alle aree di scavo o in prossimità dei cantieri operativi. In tal modo sarà possibile gestire le terre internamente al cantiere incidendo meno sulle viabilità locali principali durante tutte le fasi del lavoro.

Il volume di stoccaggio stimato totale è di circa 654.670 mc.

TRATTA	PK	COMUNE	SUPERFICIE [mq]	DESCRIZIONE	VOLUME STOCCAGGIO [mc]
Est	-	Acquasanta Terme	1.067	Area Stoccaggio Terre	4.160
Est	4+300	Acquasanta Terme	12.096	Area Stoccaggio Terre	212.940
Ovest	-	Acquasanta Terme	20.860	Area Stoccaggio Terre	437.570

Tabella 2- Elenco aree per lo stoccaggio temporaneo delle terre

Piano di Monitoraggio Ambientale – Reazione Generale

3 I REQUISITI GENERALI DEL MONITORAGGIO AMBIENTALE

Al fine di rispondere agli obiettivi ed al ruolo attribuiti al Monitoraggio Ambientale, il PMA, ossia lo strumento tecnico-operativo di programmazione delle attività di monitoraggio, deve rispondere a quattro sostanziali requisiti, così identificabili:

Rispondenza rispetto alle finalità del MA

Ancorché possa apparire superfluo, si evidenzia che il monitoraggio ambientale trova la sua ragione in quella che nel precedente paragrafo è stata identificata come sua finalità ultima, ossia nel dare concreta efficacia al progetto, mediante il costante controllo dei termini in cui nella realtà si configura il rapporto Opera-Ambiente e la tempestiva attivazione di misure correttive diversificate nel caso in cui questo differisca da quanto stimato e valutato sul piano previsionale.

La rispondenza a detta finalità ed obiettivi rende il monitoraggio ambientale delle opere sostanzialmente diverso da un più generale monitoraggio dello stato dell'ambiente, in quanto, a differenza di quest'ultimo, il monitoraggio deve trovare incardinazione nell'opera al controllo dei cui effetti è rivolto.

Tale profonda differenza di prospettiva del monitoraggio deve essere tenuta in conto nella definizione del PMA che, in buona sostanza, deve operare una programmazione delle attività che sia coerente con le anzidette finalità ed obiettivi.

- Specificità rispetto all'opera in progetto ed al contesto di intervento

Il secondo profilo rispetto al quale si sostanzia la coerenza tra monitoraggio e finalità ed obiettivi ad esso assegnati, risiede nella specificità del PMA rispetto all'opera in progetto ed al contesto di intervento.

Se, come detto, uno degli obiettivi primari del MA risiede nel verificare l'esistenza di una effettiva rispondenza tra il rapporto Opera-Ambiente e quello risultante dalla effettiva realizzazione ed esercizio di detta opera, il PMA non può risolversi in un canonico repertorio di attività e specifiche tecniche di monitoraggio; quanto invece deve trovare la propria logica e coerenza in primo luogo nelle risultanze delle analisi ambientali al cui controllo è finalizzato ed in particolare negli impatti significativi in detta sede identificati.

Il soddisfacimento di detto requisito porta necessariamente a concepire ciascun PMA come documento connotato di una propria identità concettuale e contenutistica, fatti ovviamente salvi quegli aspetti comuni che discendono dal recepimento di criteri generali riguardanti l'impostazione e l'individuazione delle tematiche oggetto di trattazione.

Tale carattere di specificità si sostanzia in primo luogo nella identificazione delle componenti e fattori ambientali oggetto di monitoraggio le quali, stante quanto affermato, devono essere connesse alle azioni di progetto relative all'opera progettata ed agli impatti da queste determinati.

- Proporzionalità rispetto all'entità degli impatti attesi

Il requisito della proporzionalità del PMA, ossia il suo essere commisurato alla significatività degli impatti ambientali previsti, si pone in stretta connessione con quello precedente della specificità e ne costituisce la sua coerente esplicitazione. In buona sostanza, così come è necessario che ogni PMA trovi la propria specificità nella coerenza con l'opera progettata e con il contesto di sua localizzazione, analogamente il suo dettaglio, ossia le specifiche riguardanti l'estensione

MSintagma

MANDANTE

Piano di Monitoraggio Ambientale – Reazione Generale

dell'area di indagine, i parametri e la frequenza dei rileva- menti debbono essere commisurati alla significatività degli impatti previsti.

- Flessibilità rispetto alle esigenze

Come premesso, il PMA costituisce uno strumento tecnico-operativo per la programmazione delle attività di monitoraggio che dovranno accompagnare, per un determinato lasso temporale, la realizzazione e l'esercizio di un'opera.

Tale natura programmatica del PMA, unitamente alla variabilità delle condizioni che potranno determinarsi nel corso della realizzazione e dell'esercizio dell'opera al quale detto PMA è riferito, determinano la necessità di configurare il Piano come strumento flessibile.

Ne consegue che, se da un lato la struttura organizzativa ed il programma delle attività disegnato dal PMA debbono essere chiaramente definiti, dall'altro queste non debbono configurarsi come scelte rigide e difficilmente modificabili, restando con ciò aperte alle eventuali necessità che potranno rappresentarsi nel corso della sua attuazione.

Tale requisito si sostanzia precipuamente nella definizione del modello organizzativo che deve essere tale da contenere al suo interno le procedure atte a poter gestire i diversi imprevisti ed al contempo essere rigoroso.

Piano di Monitoraggio Ambientale – Reazione Generale

4 I REQUISITI DEL PMA ED I FATTORI DI SPECIFICITÀ DEL CASO

Come illustrato al paragrafo precedente i Piani di monitoraggio ambientale debbono rispondere a quattro requisiti sostanziali, i quali nel loro insieme sono sintetizzabili nella coerenza intercorrente tra il PMA redatto e le specificità di caso al quale questo è riferito.

Muovendo da tale presupposto, è possibile distinguere i seguenti profili di coerenza intercorrenti tra i requisiti prima indicati ed i fattori di specificità di caso.

Requisiti PMA	Fattori di specificità del caso
Specificità	Elementi di peculiarità dell'opera progettata e del relativo contesto di riferimento.
Proporzionalità	Risultanze degli studi effettuati nell'ambito dell'analisi degli impatti dello SIA generati dall'opera in progetto, nella sua fase di realizzazione e di esercizio.

Tabella 3 Quadro di correlazione Requisiti PMA – Fattori di specificità

Piano di Monitoraggio Ambientale – Reazione Generale

5 LE SCELTE STRUTTURANTI IL PMA

5.1 LE FASI TEMPORALI OGGETTO DI MONITORAGGIO

Il Piano di monitoraggio ambientale è articolato in tre fasi temporali, ciascuna delle quali contraddistinta da uno specifico obiettivo, così sintetizzabile:

Fase	Descrizione	Obiettivi
Ante Operam	Periodo che precede l'avvio delle attività di cantiere.	Obiettivo del monitoraggio risiede nel conoscere lo stato ambientale della porzione territoriale che sarà interessata dalle azioni di progetto relative alla realizzazione dell'opera ed al suo esercizio, prima che queste siano poste in essere.
Corso d'Opera	Periodo che comprende le attività di cantiere per la realizzazione dell'opera quali l'allestimento del cantiere, le specifiche lavorazioni per la realizzazione dell'opera, lo smantellamento del cantiere, il ripristino dei luoghi.	Le attività sono rivolte a misurare gli effetti determinati dalla fase di cantierizzazione dell'opera in progetto, a partire dall'approntamento delle aree di cantiere sino al loro funzionamento a regime. L'entità di tali effetti è determinata mediante il confronto tra i dati acquisiti in detta fase e quella di Ante Operam.
Post Operam	Periodo che comprende le fasi di esercizio e quindi riferibile: - al periodo che precede l'entrata in esercizio dell'opera nel suo assetto funzionale definitivo; - all'esercizio dell'opera eventualmente articolato a sua volta in diversi orizzonti temporali (breve, medio, lungo periodo).	Il monitoraggio è finalizzato a verificare l'entità degli impatti ambientali dovuti al funzionamento dell'opera in progetto, e ad evidenziare la eventuale necessità di attuare misure ed interventi di mitigazione integrative.

Tabella 4 Fasi temporali del monitoraggio

Appare evidente come lo schema logico sotteso a tale tripartizione dell'azione di monitoraggio, concepisca ognuna delle tre fasi come delle attività a sé stanti, che si susseguono una in serie all'altra: l'iniziale monitoraggio Ante Operam, una volta avviati i cantieri, è seguito da quello in Corso d'Opera sino al completamento della fase di realizzazione, terminata la quale ha avvio il monitoraggio Post Operam.

5.2 LE COMPONENTI AMBIENTALI OGGETTO DI MONITORAGGIO

Al fine di rispondere agli obiettivi propri del monitoraggio ambientale, il primo passaggio in tale direzione è quello di definire le componenti ambientali ed i temi che, sulla base dei risultati delle analisi condotte, si ritiene debbano essere oggetto del monitoraggio nel caso del progetto in esame.

Piano di Monitoraggio Ambientale – Reazione Generale

Tale screening permette di individuare i soli temi con particolare rilevanza. Questo implica l'esclusione dal Piano di monitoraggio di una serie di temi che non ne presentano questione centrale in termini di impatto stimato.

In ragione di quanto detto, nel caso dell'infrastruttura viaria di studio, le componenti ambientali oggetto di monitoraggio sono:

- Atmosfera;
- Acque superficiali;
- Acque sotterranee;
- Suolo;
- Rumore;
- Vibrazioni;
- Vegetazione;
- Fauna;
- Paesaggio.

Per la redazione del PMA si è tenuto conto delle "Linee Guida per la predisposizione del Progetto di Monitoraggio Ambientale (PMA) delle opere soggette a procedure di VIA (D. Lgs.152/2006 e s.m.i., D. Lgs.163/2006 e s.m.i.)" predisposte dal Ministero dell'Ambiente e della Tutela del Territorio e del Mare -Direzione per le Valutazioni Ambientali (rev.1 del 16/06/2014).

Per gli aspetti specialistici si farà riferimento alle normative vigenti specifiche.

Nei paragrafi successi verranno analizzate le varie componenti ambientali, specificando la tipologia di misura da eseguire e presentando una pianificazione con le indicazioni dei punti di misura, della tempistica di misure e della cadenza nelle varie fasi Ante, Corso e Post Operam.

L'elenco degli elaborati costituenti la documentazione di progetto del PMA è la seguente:

	PIANO DI MONITORAGGIO AMBIENTALE										
Т	0	0	МО	0	0	MOA	RE	0	1	А	Relazione generale
Т	0	0	MO	0	0	MOA	PU	0	1	А	Planimetria di localizzazione dei punti di monitoraggio

Piano di Monitoraggio Ambientale – Reazione Generale

ATMOSFERA

6.1 FINALITÀ ED ARTICOLAZIONE TEMPORALE DEL MONITORAGGIO

6.1.1 OBIETTIVI DEL MONITORAGGIO

Il monitoraggio della componente Atmosfera è volto ad affrontare, in maniera approfondita e sistematica, la prevenzione, l'individuazione ed il controllo dei possibili effetti negativi prodotti sull'ambiente, e più specificatamente sulla qualità dell'aria nelle diverse fasi del progetto (Ante Operam, Corso d'Opera e Post Operam).

Lo scopo principale è quindi quello di esaminare il grado di compatibilità dell'opera stessa, focalizzando l'attenzione sulle concentrazioni di inquinanti prodotti in atmosfera durante la realizzazione/esercizio dell'opera in progetto, al fine di definire e adottare opportune misure di riorientamento.

Gli obiettivi principali si possono riassumere quindi come segue:

- documentare la situazione attuale al fine di verificare la naturale dinamica dei fenomeni ambientali in atto;
- individuare le eventuali anomalie ambientali che si manifestano nella realizzazione e nell'esercizio dell'infrastruttura in modo da intervenire immediatamente ed evitare lo sviluppo di eventi gravemente compromettenti la qualità dell'aria;
- accertare la reale efficacia dei provvedimenti adottati per la mitigazione degli impatti sull'ambiente e risolvere eventuali impatti residui;
- verificare le modifiche ambientali intervenute per effetto dell'esercizio degli interventi infrastrutturali, distinguendole dalle alterazioni indotte da altri fattori naturali o legati alle attività antropiche del territorio;
- fornire agli Enti di Controllo competenti gli elementi per la verifica della corretta esecuzione delle procedure di monitoraggio.

Secondo le risultanze della modellazione atmosferica condotta nello SIA, gli impatti sulla qualità dell'aria legati all'esercizio dell'opera sono riconducibili principalmente alla diffusione di inquinanti generati dal traffico veicolare in previsione. I valori di concentrazione di inquinanti più elevati si rilevano in corrispondenza dei recettori più prossimi all'infrastruttura. Per quanto riguarda la fase di cantiere, invece, lo studio specialistico rileva problematiche in termini di diffusione di polveri in atmosfera legate alle attività di movimentazione del materiale polverulento. Ne consegue pertanto come per il monitoraggio della qualità dell'aria siano previste azioni di controllo relative sia all'esercizio dell'infrastruttura stradale, sia alla sua realizzazione.

Le risultanze di tale monitoraggio permetteranno, quindi, di verificare, rispetto alla situazione attualmente presente nell'area, l'eventuale incremento dei livelli di concentrazione di polveri e di inquinanti durante l'esercizio dell'opera in funzione delle modificazioni del traffico veicolare e durante la fase di cantierizzazione in funzione delle attività di cantiere più critiche per la componente atmosfera.

6.1.2 _ RIFERIMENTI NORMATIVI

Il riferimento normativo è il Decreto Legislativo 13 agosto 2010, n.155, recante "Attuazione della direttiva 2008/50/CE relativa alla qualità dell'aria ambiente e per un'aria più pulita in Europa". Tale decreto sostituisce le disposizioni di attuazione della direttiva 2004/107/CE, e istituisce un quadro unitario in materia di valutazione e di gestione della qualità dell'aria ambiente.

Tra le finalità indicate dal decreto, che si configura come un testo unico, vi sono:

// Sintagma

Piano di Monitoraggio Ambientale – Reazione Generale

- l'individuazione degli obiettivi di qualità dell'aria ambiente volti a evitare, prevenire o ridurre effetti nocivi per la salute umana e per l'ambiente nel suo complesso;
- la valutazione della qualità dell'aria ambiente sulla base di metodi e criteri comuni su tutto il territorio nazionale:
- la raccolta di informazioni sulla qualità dell'aria ambiente come base per individuare le misure da adottare per contrastare l'inquinamento e gli effetti nocivi dell'inquinamento sulla salute umana e sull'ambiente e per monitorare le tendenze a lungo termine;
- il mantenimento della qualità dell'aria ambiente, laddove buona, e il miglioramento negli altri casi;
- la garanzia di fornire al pubblico corrette informazioni sulla qualità dell'aria ambiente;
- la realizzazione di una migliore cooperazione tra gli Stati dell'Unione europea in materia di inquinamento atmosferico.

Il provvedimento si compone di 22 articoli, 16 allegati e 11 appendici destinate, queste ultime, a definire aspetti strettamente tecnici delle attività di valutazione e gestione della qualità dell'aria e a stabilire, in particolare:

- i valori limite per le concentrazioni nell'aria ambiente di biossido di zolfo, biossido di azoto, benzene, monossido di carbonio, PM10 e PM2.5 (allegato XI punto 1);
- i livelli critici per le concentrazioni nell'aria ambiente di biossido di zolfo e ossidi di azoto (allegato XI punto 3);
- le soglie di allarme per le concentrazioni nell'aria ambiente di biossido di zolfo e biossido di azoto (allegato XII parte 1); il valore limite, il valore obiettivo, l'obbligo di concentrazione dell'esposizione e l'obiettivo nazionale di riduzione dell'esposizione per le concentrazioni nell'aria ambiente di PM2,5 (allegato XIV);
- i valori obiettivo per le concentrazioni nell'aria ambiente di arsenico, cadmio, nichel e benzo(a)pirene (allegato XIII);
- i valori obiettivo (allegato VII punto 2), gli obiettivi a lungo termine (allegato VII punto 3), le soglie di allarme e le soglie di informazione per l'ozono (allegato XII parte 2).

Nelle seguenti tabelle si riportano i limiti degli inquinanti individuati dalla normativa.

Direzione Progettazione e Realizzazione Lavori

PROGETTO DEFINITIVO

Piano di Monitoraggio Ambientale – Reazione Generale

Periodo di mediazione	Valore limite	Margine di tolleranza	Data entro la quale il va- lore limite deve essere raggiunto
Biossido di zolf	o (SO ₂)		
1 ora	350 μg/m3, da non superare più di 24 volte per anno civile		- (1)
1 giorno	125 μg/m3, da non superare più di 3 volte per anno civile		— (1)
Biossido di azot	to (NO ₂)*		
1 ora	200 μg/m³ da non su- perare più di 18 volte per anno civile	50 % il 19 luglio 1999, con una riduzione il 1° gennaio 2001 e successivamente ogni 12 mesi secondo una percentuale annua costante fino a raggiungere lo 0 % entro il 1° gennaio 2010	1 1° gennaio 2010
Anno civile	40 μg/m³ NO₂	50 % il 19 luglio 1999, con una riduzione il 1° gennaio 2001 e successivamente ogni 12 mesi secondo una percentuale annua costante fino a raggiungere lo 0 % entro il 1° gennaio 2010	1° gennaio 2010
Benzene*			
Anno civile	5,0 μg/m³	5 μ g/m3 (100 %) il 13dicembre 2000, con unariduzione il 1° gennaio 2006e successivamente ogni 12mesi di 1 μ g/m3 fino araggiungere lo 0 % entro il 1°gennaio 2010	1° gennaio 2010
Monossido di c	arbonio	_	
Media mas- sima giorna- liera calcolata su 8 ore (2)	10 mg/ m ³		- (1)
PM ₁₀ **		50 0/ II 40 L II 4000	443
1 giorno	50 µg/m³ da non supe- rare più di 35 volte per anno civile	50 % il 19 luglio 1999, con una riduzione il 1° gennaio 2001 e successivamente ogni 12 mesi secondo una percentuale annua costante fino a raggiungere lo 0 % entro il 1° gennaio 2005	- (1)
Anno civile	40 μg/m³	20 % il 19 luglio 1999, con una riduzione il 1° gennaio 2001 e successivamente ogni 12 mesi secondo una percentuale annua costante fino a raggiungere lo 0 % entro il 1° gennaio 2005	- (1)
PM _{2,5} – fase 1			
Anno civile	25 μg/m ³	20 % il 11 giugno 2008, con una riduzione il 1° gennaio successivo e successivamente ogni 12 mesi secondo una percentuale annua costante fino a raggiungere lo 0 % entro il 1° gennaio 2015	1° gennaio 2015
PM _{2,5} – fase 2 (4			
Anno civile (1) Già in vigore d	(4) lal 1° gennaio 2005.		1° gennaio 2010

(1) Già in vigore dal 1° gennaio 2005.

Piano di Monitoraggio Ambientale – Reazione Generale

Periodo di Valore limite Margine di tolleranza Data entro la quale il vamediazione lore limite deve essere raggiunto

- (2) La massima concentrazione media giornaliera su 8 ore si determina con riferimento alle medie consecutive su 8 ore, calcolate sulla base di dati orari ed aggiornate ogni ora. Ogni media su 8 ore in tal modo calcolata è riferita al giorno nel quale la serie di 8 ore si conclude: la prima fascia di calcolo per un giorno è quella compresa tra le ore 17:00 del giorno precedente e le ore 01:00 del giorno stesso; l'ultima fascia di calcolo per un giorno è quella compresa tra le ore 16:00 e le ore 24:00 del giorno stesso.
- (3) Tale valore limite deve essere raggiunto entro il 1° gennaio 2010 in caso di aree poste nelle immediate vicinanze delle fonti industriali localizzate presso siti contaminati da decenni di attività industriali. In tali casi il valore limite da rispettare fino al 1° gennaio 2010 è pari a 1,0 μg/m³. Le aree in cui si applica questo valore limite non devono comunque estendersi per una distanza superiore a 1.000 m rispetto a tali fonti industriali.
- (4) Valore limite da stabilire con successivo decreto ai sensi dell'articolo 22, comma 6, tenuto conto del valore indicativo di 20 μg/m³ e delle verifiche effettate dalla Commissione europea alla luce di ulteriori informazioni circa le conseguenze sulla salute e sull'ambiente, la fattibilità tecnica e l'esperienza circa il perseguimento del valore obiettivo negli Stati membri.
 - * Per le zone e gli agglomerati per cui è concessa la deroga prevista dall'articolo 9, comma 10, i valori limite devono essere rispettati entro la data prevista dalla decisione di deroga, fermo restando, fino a tale data, l'obbligo di rispettare tali valori aumentati del margine di tolleranza massimo.
- ** Per le zone e gli agglomerati per cui è concessa la deroga prevista dall'articolo 9, comma 10, i valori limite devono essere rispettati entro l'11 giugno 2011, fermo restando, fino a tale data, l'obbligo di rispettare tali valori aumentati del margine di tolleranza massimo.

Tabella 5 Valori limite - Allegato XI del D.Lgs. 155/2010

Finalità	Periodo di mediazione	Valore Obiettivo	Data entro la deve essere raggiunto il valore obiet- tivo (1)
Ozono			
Protezione della salute uma-	MEDIA massimagiornalie- ra calcolatasu 8 ore ⁽²⁾	120 μ g/m3 da non superare più di25 volte per anno civile come mediasu tre anni $^{(3)}$	1.1.2010

- (1) Il raggiungimento del valore obiettivo è valutato nel 2013, con riferimento al triennio 2010-2012, per laprotezione della salute umana.
- (2) La massima concentrazione media giornaliera su 8 ore deve essere determinata esaminando le medieconsecutive su 8 ore, calcolate in base a dati orari e aggiornate ogni ora. Ogni media su 8 ore così calcolataè riferita al giorno nel quale la stessa si conclude. La prima fascia di calcolo per ogni singolo giorno èquella compresa tra le ore 17:00 del giorno precedente e le ore 01:00 del giorno stesso; l'ultima fascia dicalcolo per ogni giorno é quella compresa tra le ore 16:00 e le ore 24:00 del giorno stesso.
- (3) Se non è possibile determinare le medie su tre o cinque anni in base ad una serie intera e consecutiva didati annui, la valutazione della conformità ai valori obiettivo si può riferire, come minimo, ai dati relativi a un anno per il valore-obiettivo ai fini della protezione della salute umana.

Tabella 6 Valori limite – Allegato VII D.Lgs. 155/2010

Periodo di media- zione	Livello critico annuale (anno civile)	Livello critico invernale (1° ottobre - 31 marzo)	Margine di tolleranza
Biossido di zolfo			
	20 μg/m³	20 μg/m³	Nessuno
Ossidi di azoto			
	$30 \mu g/m^3 NO_x$		Nessuno

Tabella 7 Livelli critici per la protezione della vegetazione - Allegato XI del D.Lgs. 155/2010

Piano di Monitoraggio Ambientale – Reazione Generale

Inquinante	Valore obiettivo (¹)
Arsenico	6,0 ng/m ³
Cadmio	5,0 ng/m ³
Nichel	20,0 ng/m ³
Benzo(a)pirene	1,0 ng/m ³

⁽¹) Il valore obiettivo è riferito al tenore totale di ciascun inquinante presente nella frazione PM10 del materiale particolato, calcolato come media su un anno civile.

Tabella 8 Valori obiettivo per arsenico, cadmio, nichel, benzo(a)pirene

6.2 MONITORAGGIO DELLA QUALITÀ DELL'ARIA

6.2.1 _ LOCALIZZAZIONE DELLE AREE DI MONITORAGGIO

Al fine di stimare le concentrazioni degli inquinanti considerati nelle attività di monitoraggio e determinare i parametri meteorologici durante la realizzazione dei lavori e l'esercizio dell'opera in progetto, sono state individuate complessivamente 4 stazioni, come indicato nella tabella seguente.

Punti	Ricettori e cantieri di riferimento	Coordinata X	Coordinata Y
ATM_01	Ricettore non censito sulla SS4 Salaria	2386246	4735676
ATM_02	R002	2387702	4736328
ATM_03	Ricettore non censito sulla SS4 Salaria	2388230	4735824
ATM_04	R036	2390064	4736903

Tabella 9 Punti di monitoraggio della qualità dell'aria

Le stazioni di monitoraggio sono state scelte nel rispetto di differenti criteri.

In particolare, i punti ATM_02 e ATM_04 sono collocati in prossimità dei ricettori più vicini alle aree di lavoro per la realizzazione della nuova infrastruttura.

Il punto ATM_02 collocato nei pressi del ricettore R002 è vicino all'area di lavoro per la realizzazione del viadotto, il punto ATM_04, nei pressi del ricettore R036, si trova vicino all'area tecnica 2 e a poca distanza dall'area di lavoro per la realizzazione dell'opera. Il punto ATM_04 sarà oggetto di monitoraggio anche in fase di PO per le emissioni dovute al traffico veicolare sulla nuova viabilità.

I punti ATM_01 e ATM_03 saranno destinato al monitoraggio delle emissioni dovute al traffico stradale, entrambi ubicati sulla SS4 Salaria andranno a monitorare come le emissioni da traffico si evolveranno dalla fase AO alla fase PO.

Per la localizzazione dei punti di monitoraggio della qualità dell'aria è possibile fare riferimento all'elaborato grafico T00MO00MOAPU01_A "Planimetria di localizzazione punti di monitoraggio".

MSintagma

Piano di Monitoraggio Ambientale – Reazione Generale

6.2.2 <u>METODOLOGIA E STRUMENTAZIONE</u>

Per il monitoraggio della qualità dell'aria si prevedono delle campagne mediante mezzo mobile sul territorio in prossimità dell'intervento, con particolare riferimento alle aree critiche più vicine all'infrastruttura, in accordo ai risultati ottenuti dallo studio modellistico. Saranno utilizzati inoltre campionatori sequenziali/gravimetrici delle polveri e deposimetri.

6.2.2.1 PARAMETRI DA MONITORARE

I parametri da rilevare sono i seguenti:

Polveri aerodisperse:

- PTS;
- PM10;
- PM2,5.

Inquinanti da traffico veicolare:

- NOx;
- CO;
- Benzene;
- NO₂;
- SO₂;
- O₃;
- Metalli (Piombo, Arsenico, Cadmio, Nichel).

Parametri meteorologici

- T temperatura media dell'aria, °C;
- DV direzione del vento, gradi sessagesimali;
- VV velocità media vento, m/s;
- UR umidità relativa aria, %;
- PP entità precipitazioni, mm;
- PA pressione atmosferica, kPa.

I parametri di qualità dell'aria verranno monitorati attraverso la strumentazione installata sul laboratorio mobile, rilevando contemporaneamente i parametri meteorologici durante tutto il periodo di misurazione e su base oraria. Saranno utilizzati inoltre campionatori sequenziali/gravimetrici delle polveri e deposimetri.

6.2.2.2 METODICHE DI MONITORAGGIO

La metodica di monitoraggio si compone delle fasi di seguito descritte:

- Installazione: in tale fase vengono stabilite le posizioni dei punti di misura destinate al monitoraggio delle concentrazioni. Le posizioni dei punti di misura dovranno essere georeferenziate e fotografate;
- Svolgimento della campagna di misure: ogni campagna prevede lo scarico e l'analisi dei dati, la stampa dei grafici; la restituzione media oraria dei dati acquisiti. Tutti i parametri si intendono

Piano di Monitoraggio Ambientale – Reazione Generale

misurati in conformità alle normative attualmente in vigore. La rappresentazione grafica del trend dei dati rilevati; elaborazione file per caricamento dati output nel Sistema Informativo, condotti in situ e/o forniti dai laboratori di analisi;

• Compilazione di Rapporti di misura.

Nella realizzazione e collocazione delle stazioni di misura si dovrà tener conto degli aspetti indicati al punto 4 dell'allegato III del D.Lgs 155/2010:

- assenza di fonti di interferenza;
- protezione rispetto all'esterno;
- possibilità di accesso;
- disponibilità di energia elettrica e di connessioni telefoniche;
- impatto visivo dell'ambiente esterno;
- sicurezza della popolazione e degli addetti;
- opportunità di effettuare il campionamento di altri inquinanti nello stesso sito fisso di campionamento;
- conformità agli strumenti di pianificazione territoriale.

La strumentazione utilizzata relativa ai <u>mezzi mobili</u> si compone di alcuni laboratori mobili dotati di adeguato sistema di condizionamento per garantire una continua ed ottimale distribuzione della temperatura al suo interno; questo permette agli analizzatori di lavorare sempre in condizioni controllate e standard.

Le stazioni di rilevamento sono organizzate in tre blocchi principali:

- analizzatori automatici per la valutazione degli inquinanti aerodispersi;
- centralina per la valutazione dei parametri meteorologici;
- unità di acquisizione ed elaborazione dati.

In particolare, un analizzatore è tipicamente costituito da un sistema di aspirazione dell'aria (una pompa) che ne preleva una parte immettendola in una piccola camera, detta "cella di misura" e che contiene i dispositivi per la misura.

Contemporaneamente al rilevamento dei parametri di qualità dell'aria dovranno essere rilevati su base oraria i parametri meteorologici, mediante l'impiego di sensori:

- barometro,
- igrometro,
- gonio anemometro,
- pluviometro,
- radiometro,
- termometro.

Il sistema di misura è costituito da un laboratorio mobile dotato di strumentazione del tipo a funzionamento in continuo in grado di monitorare i parametri indicati nel paragrafo precedente in automatico. In particolare, i singoli sistemi automatizzati sono conformi alle prescrizioni del D.P.C.M. 28 marzo 1983, al

D.P.R. 24 maggio 1988 n.203, così come riportato dal Rapporto ISTISAN 89/10, dal D.M. 20 maggio 1991, DM 60 del 2 aprile 2002 e dal recente DLGS 155/2010.

Piano di Monitoraggio Ambientale – Reazione Generale

Le apparecchiature mediante le quali sarà effettuato il monitoraggio della qualità dell'aria dovranno essere sottoposte a verifiche periodiche, ovvero a controlli della risposta strumentale su tutto il campo di misura. A seconda del tipo di analizzatore installato, consistono in controlli con cadenza almeno annuale o con periodicità più frequente secondo indicazioni fornite dal costruttore o in base alla criticità dell'impianto e comunque dopo interventi di manutenzione conseguenti a guasto degli analizzatori.

In apposito registro saranno riportati tutti gli interventi effettuati sul sistema, sia di verifica che di manutenzione, secondo le indicazioni richieste.

Le operazioni di taratura dovranno essere eseguite periodicamente (almeno con cadenza annuale o secondo indicazioni diverse del costruttore) e comunque dopo ogni intervento di manutenzione sulla strumentazione analitica a seguito di guasto o dopo una modifica impiantistica che comporti variazione all'emissione.

Per quanto concerne le verifiche in campo, esse consistono nelle attività destinate all'accertamento della corretta esecuzione delle misure nelle effettive condizioni operative di tutta la catena di misura. Esse sono condotte sotto la supervisione dal Responsabile di Settore e dovranno essere eseguite ogni anno con l'impianto nelle normali condizioni di funzionamento.

6.2.2.3 TEMPI E FREQUENZA DEL MONITORAGGIO

La costruzione e l'esercizio delle opere di progetto possono dar vita ad impatti sulla qualità dell'aria sia durante le fasi di costruzione delle opere stesse sia nella fase Post Operam.

Le emissioni che possono causare alterazione dei livelli di qualità dell'aria nelle zone limitrofe ai cantieri per la realizzazione dell'opera, sono quelle derivanti da qualsiasi fase lavorativa che può generare uno specifico inquinante perché utilizza o processa un materiale che lo contiene (o che contiene un suo precursore).

La complessità dell'opera determina quindi la necessità di monitorare la componente atmosferica nei tre momenti, ben distinti, identificabili, per consuetudine, nelle tre fasi in cui il progetto viene distinto:

- Ante Operam (AO);
- Corso d'Opera (CO);
- Post Operam (PO).

Il Piano di Monitoraggio **Ante Operam** prevede l'analisi di monitoraggi ad hoc in cui vengono rilevati gli inquinanti atmosferici ed i parametri meteoclimatici allo stato attuale nell'area di intervento. La determinazione del fondo ambientale delle concentrazioni dei diversi contaminanti sarà pertanto affiancata in questa fase, per quanto possibile, all'individuazione delle cause generatrici dei singoli inquinanti presenti nelle aree di indagine.

Misure di 1 mese:

Al fine di analizzare la qualità dell'aria attuale nell'area di intervento, sono previste due campagne di misura della durata di un mese, prima dell'apertura dei cantieri, con cadenza trimestrale. La fase AO avrà la durata di 6 mesi.

Il monitoraggio in **Corso d'Opera** viene predisposto in funzione della distribuzione spaziale e temporale delle diverse attività di cantiere individuando le aree di lavorazione maggiormente critiche per la componente atmosfera. Questo consente di disporre di segnali tempestivi per poter attivare eventuali

Piano di Monitoraggio Ambientale – Reazione Generale

azioni correttive rispetto a quelle preventive già predisposte ed adottate sulla base degli esiti dello studio atmosferico (es.: emissioni da cumuli, movimenti terra e mezzi d'opera). Allo stesso modo del PMA Ante Operam, per ogni punto di monitoraggio individuato vengono analizzate le concentrazioni di inquinanti ed i parametri metereologici.

Misure di 7 giorni:

Il monitoraggio in CO comprende il periodo di realizzazione dell'infrastruttura, dall'apertura dei cantieri fino al loro completo smantellamento ed al ripristino dei siti, si prevede 1 campagna della durata di 7 gg con frequenza trimestrale.

Questa fase è probabilmente quella che presenta la maggiore variabilità, poiché strettamente legata all'avanzamento dei lavori e perché soggetta all'influenza dalle eventuali modifiche nella localizzazione ed organizzazione dei cantieri apportate dalle imprese aggiudicatarie dei lavori.

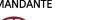
In ultimo, il monitoraggio da effettuare nella fase Post Operam è variabile in termini di tempistiche in funzione della tipologia di opera e delle caratteristiche territoriali dell'area in esame. In particolare, tali dati consentono di effettuare sia il confronto con la fase di ante-operam a fine lavori, ossia in assenza di emissioni/immissioni dovute alla fase di costruzione, sia per disporre di un nuovo quadro conoscitivo "exante" rispetto all'esercizio delle opere (in particolare qualora fossero intervenuti altri fattori indipendenti dai lavori a modificare lo stato di qualità dell'aria).

Misure di 14 giorni:

Il monitoraggio PO prevede 1 campagna di misure della durata di 2 settimane con frequenza trimestrale, per 1 anno. Il monitoraggio dovrà iniziare entro 3 mesi dall'entrata in esercizio dell'opera.

La frequenza e la durata delle misure, opportunamente definite, con attenzione alla singola fase di monitoraggio, consentiranno di valutare, attraverso la misura degli indicatori ritenuti significativi, lo stato di qualità dell'aria e l'entità degli effetti indotti dalla realizzazione delle opere e dall'esercizio delle infrastrutture.

Di seguito vengono specificate le tempistiche dei monitoraggi Ante Operam, in Corso d'Opera e Post Operam, sia in relazione alla durata della specifica indagine sia alla ripetitività della stessa durante il periodo di monitoraggio.


La durata delle attività inerenti al monitoraggio Ante Operam e Post Operam sarà rispettivamente di 6 mesi e di un anno solare, mentre per la fase di Corso d'Opera il monitoraggio avrà la durata della costruzione.

Di seguito si riporta una descrizione della strumentazione utilizzata per effettuare i rilevamenti dei diversi inquinanti monitorati:

- Campionatore sequenziale/gravimetrico per polveri Totali Sospese (PTS)
- Campionatore sequenziale/gravimetrico per Polveri PM10, PM2,5
- Analizzatore di Ossidi di Azoto;
- Analizzatore di Biossido di Zolfo;
- Analizzatore di Monossido di Carbonio;
- Analizzatore di Ozono;
- stazione meteorologica.

Ante Operam

Piano di Monitoraggio Ambientale – Reazione Generale

Al fine di analizzare la qualità dell'aria attuale nell'area di intervento, sono previste campagne di misura della durata di un mese, prima dell'apertura dei cantieri, con cadenza trimestrale. La fase AO avrà la durata di 6 mesi. Il monitoraggio AO è previsto per i punti ATM_01 e ATM_03.

Corso d'opera

Il monitoraggio in CO comprende il periodo di realizzazione dell'infrastruttura, dall'apertura dei cantieri fino al loro completo smantellamento ed al ripristino dei siti, durerà quindi 3 anni e prevede 1 campagna della durata di 7 gg con frequenza trimestrale.

Questa fase è probabilmente quella che presenta la maggiore variabilità, poiché strettamente legata all'avanzamento dei lavori e perché soggetta all'influenza dalle eventuali modifiche nella localizzazione ed organizzazione dei cantieri apportate dalle imprese aggiudicatarie dei lavori.

Il monitoraggio in CO è previsto nelle stazioni di monitoraggio ATM_02 e ATM_04.

Post Operam

Il monitoraggio PO prevede 1 campagna di misure della durata di 2 settimane con frequenza trimestrale, per 1 anno. Il monitoraggio dovrà iniziare entro 3 mesi dall'entrata in esercizio dell'opera. Il monitoraggio PO è previsto peri punti ATM_01, ATM_03, ATM_04.

6.3 GESTIONE DELLE ANOMALIE

Per la definizione delle criticità si ritiene opportuno in fase di corso d'opera fare riferimento ai soli parametri relativi al particolato PM10 e PTS.

I principali impatti sulla qualità dell'ambiente atmosferico sono infatti legati:

- alle polveri generate durante le operazioni di scavo, movimentazione terre e materiali di cantiere;
- alle polveri e agli inquinanti emessi o risospesi dai mezzi di trasporto e dal traffico legato alle attività di cantiere.

Al fine di individuare tempestivamente e puntualmente situazioni di incipiente degrado, si conviene di focalizzare il monitoraggio della componente sui parametri PM10 e PTS in quanto più direttamente legati alle attività di movimentazione terre, scavi, passaggio di mezzi su piste sterrate, demolizioni, ecc., impostando un sistema di individuazione soglie condiviso con l'OA di pertinenza.

In attesa di individuare opportune soglie di intervento con l'OA, il principale criterio per individuare l'insorgenza di anomalie è il confronto con i limiti di riferimento normativi previsti dal D.Lgs 155/2010.

Qualora si verifichi il superamento del valore di soglia o del limite normativo, il responsabile di gestione operativa esegue un'analisi di contesto per individuare le cause del superamento, avvia azioni correttive (interventi) adeguate a garantire il rapido rientro delle concentrazioni all'interno dei valori ammessi e ne dà tempestiva comunicazione all'Osservatorio Ambientale via mail e/o tramite SIT.

La segnalazione di anomalia riporta le seguenti indicazioni:

- date di emissione, di sopralluogo e analisi del dato;
- parametro o indice indicatore di riferimento;
- superamento della soglia di attenzione e/o di allarme;
- cause ipotizzate e possibili interferenze;
- note descrittive ed eventuali foto;
- verifica dei risultati ottenuti.

Piano di Monitoraggio Ambientale – Reazione Generale

6.4 **DOCUMENTAZIONE DA PRODURRE**

Nel corso del monitoraggio dovranno essere rese disponibili le seguenti evidenze:

- Schede di misura.
- Relazioni di fase AO.
- Relazioni di fase CO.
- Relazioni di fase PO
- Dati sul SIT.

Schede di misura:

È prevista la compilazione della scheda di misura con gli esiti dei campionamenti in situ e in laboratorio.

Relazioni di fase:

Al fine di restituire una sintesi dei dati acquisiti nella fase di CO, saranno redatte relazioni e/o bollettini con frequenza trimestrale.

6.5 **CONCLUSIONI**

Per quanto riguarda le attività di monitoraggio dell'atmosfera queste sono finalizzate alla verifica della qualità dell'aria indotta dal traffico veicolare sulla strada di progetto e dalle attività in corso d'opera in relazione al cronoprogramma lavori.

In questo secondo caso il monitoraggio è utile anche alla verifica dell'efficacia degli interventi di mitigazione ritenuti necessarie per l'abbattimento delle polveri generate dalle lavorazioni.

Il monitoraggio si svolge attraverso centralina mobile, campionatore sequenziale/gravimetrico e deposimetro. Le metodiche di monitoraggio sono funzione della tipologia di indagine, come indicato nella successiva tabella.

Tematica	Punti	Fase	Frequenza e durata	Parametri	Metodologia	Quantità misure per punto
Atmosfera	ATM_02	60	misure trimestrali	(PTS, PM10, PM2.5,	Campionatori	16
cantiere	ATM_04	CO della durata di 7 giorni		Meteo)	gravimetrici sequenziali	16
Atmosfera traffico	ATM_01 ATM_03 ATM_04	AO	Misure trimestrali della durata di 1 mese nei 6 mesi antecedenti la costruzione	(PTS, PM10, PM2.5, O3, CO, NOx, NO2, SO2, Benzene, Metalli, Meteo)	Laboratorio mobile	2

Piano di Monitoraggio Ambientale – Reazione Generale

	РО	Misure trimestrali della durata di 14 giorni nell'anno successivo all'entrata in esercizio	PTS, PM10, PM2.5, O3, CO, NOx, NO2, SO2, Benzene, Metalli, Meteo)		4
--	----	---	---	--	---

Tabella 10 Quadro sinottico PMA componente atmosfera

MANDANTE

Piano di Monitoraggio Ambientale – Reazione Generale

7 ACQUE SUPERFICIALI

7.1 FINALITÀ ED ARTICOLAZIONE TEMPORALE DEL MONITORAGGIO

7.1.1 OBIETTIVI DEL MONITORAGGIO

Il monitoraggio delle Acque è volto ad analizzare, in relazione alla costruzione e all'esercizio dell'opera, le eventuali variazioni, rispetto alla situazione Ante Operam, di tutti i parametri utilizzati per definire le caratteristiche qualitative dei corpi idrici superficiali potenzialmente interessati dalle azioni di progetto.

I principali obiettivi del monitoraggio e le conseguenti attività atte alla verifica del loro raggiungimento sono:

- verifica dello scenario ambientale di riferimento e caratterizzazione delle condizioni ambientali da confrontare con le successive fasi di monitoraggio mediante la rilevazione dei parametri caratterizzanti lo stato della componente in esame e le relative tendenze in atto prima dell'avvio dei lavori per la realizzazione dell'opera (monitoraggio Ante Operam);
- verifica delle previsioni degli impatti ambientali e delle variazioni dello scenario di base mediante la rilevazione dei parametri presi a riferimento per le analisi delle acque a seguito dell'attuazione dell'opera nelle sue diverse fasi (monitoraggio degli effetti ambientali in Corso d'Opera e Post Operam).

Secondo le risultanze delle analisi condotte nello SIA è emerso che gli impatti potenziali interessanti la componente in esame consistono essenzialmente nell'eventuale modifica delle caratteristiche qualitative dei corpi idrici superficiali.

Tali potenziali impatti sono riconducibili, nella fase di realizzazione dell'opera e di esercizio della stessa, alle attività che interessano direttamente i corsi d'acqua anche con interventi di sistemazione idraulica necessari al fine di garantire le condizioni normative delle nuove opere senza aggravare i livelli di pericolosità idraulica sul territorio.

7.1.2 _ RIFERIMENTI NORMATIVI

Il piano di monitoraggio deve essere contestualizzato nell'ambito della normativa di settore rappresentata, a livello comunitario, dalla Direttiva Quadro sulle Acque 2000/60/CE (DQA), che istituisce un quadro per l'azione comunitaria in materia di acque.

Le disposizioni comunitarie sono state recepite dal D.Lgs. 152/2006 e smi, in particolare alla Parte III - Norme in materia di difesa del suolo e lotta alla desertificazione, di tutela delle acque dall'inquinamento e di gestione delle risorse idriche; si richiamo i principali aggiornamenti del Decreto in materia di tutela e monitoraggio dell'ambiente idrico:

- D.Lgs. 16/01/08, n. 4 Ulteriori disposizioni correttive ed integrative del Decreto Legislativo 3 aprile 2006, n. 152, recante Norme in materia ambientale;
- DM 14/04/2009, n. 56 Regolamento recante "Criteri tecnici per il monitoraggio dei corpi idrici e l'identificazione delle condizioni di riferimento per la modifica delle norme tecniche del Decreto

MSintagma ...

Piano di Monitoraggio Ambientale – Reazione Generale

Legislativo n. 152 del 3/04/2006 recante Norme in materia ambientale, predisposto ai sensi dell'articolo 75, comma 3, del decreto legislativo medesimo;

- D.Lgs. 10/12/2010, n. 219 Attuazione della direttiva 2008/105/CE relativa a standard di qualità ambientale nel settore della politica delle acque, recante modifica e successiva abrogazione delle direttive 82/176/CEE, 83/513/CEE, 84/156/CEE, 84/491/CEE, 86/280/CEE, nonché modifica della di- rettiva 2000/60/CE e recepimento della direttiva 2009/90/CE che stabilisce, conformemente alla direttiva 2000/60/CE, specifiche tecniche per l'analisi chimica e il monitoraggio dello stato delle acque;
- DM 8/11/10, n. 260 Regolamento recante i criteri tecnici per la classificazione dello stato dei corpi idrici superficiali, per la modifica delle norme tecniche del Decreto Legislativo 3 aprile 2006 n. 152, recante Norme in materia ambientale, predisposto ai sensi dell'articolo 75, comma 3, del medesimo decreto legislativo.
- D.Lgs 13/10/15 n.172 Attuazione della direttiva 2013/39/UE, che modifica le direttive 2000/60/CE per quanto riguarda le sostanze prioritarie nel settore della politica delle acque.

In particolare, del D.Lgs 152/06 e smi si richiama:

- l'Allegato 1 alla Parte III: Il monitoraggio e classificazione delle acque in funzione degli obiettivi di qualità ambientale, nel quale sono riportate le indicazioni sulle modalità di svolgimento delle attività inerenti al monitoraggio; in particolare per quanto riguarda il monitoraggio chimico, si fa riferimento alle tabelle 1/A (Standard di qualità ambientale nella colonna d'acqua e nel biota per le sostanze dell'elenco di priorità) ed 1/B (Standard di qualità ambientale espresso come valore medio annuo "SQA-MA") del D. Lgs. n. 172 del 13 ottobre 2015;
- l'Allegato 5 alla Parte III: Limiti di emissione degli scarichi idrici, per monitorare la conformità allo scarico; in particolare i riferimenti sono quelli di cui alla Tabella 3 nel quale sono indicati gli specifici set di parametri chimico-fisici e i relativi valori limite;
- l'Allegato 5 Parte IV: in relazione ai sedimenti a livello nazionale non sono stati stabiliti degli standard di qualità specifici per i sedimenti ma, in mancanza di indicazioni normative, si utilizzano i valori di concentrazioni limite fissati per i suoli alla Tabella 1.

7.2 MONITORAGGIO DELLA QUALITÀ DELLE ACQUE

7.2.1 _ LOCALIZZAZIONE DELLE AREE DI MONITORAGGIO

Nella definizione della localizzazione dei punti di monitoraggio della componente acque, si è deciso di andare a monitorare i corsi d'acqua interferiti dal tracciato o nelle immediate vicinanze ed in particolare il Fiume Tronto, ed il Rio di Novele.

Verranno posizionati 2 punti di monitoraggio (monte/valle) in corrispondenza del Rio di Novele e 2 coppie di punti di monitoraggio sul Fiume Tronto.

Di seguito si riporta la tabella relativa ai punti di monitoraggio previsti:

Punti	Coordinata X	Coordinata Y
ASUP_01_M	2383755	4736042
ASUP_01_V	2383986	4736016

Piano di Monitoraggio Ambientale – Reazione Generale

ASUP_02_M	2387552	4736297
ASUP_02_V	2387662	4736114
ASUP_03_M	2389910	4736821
ASUP_03_V	2390104	4737106

Tabella 11 Punti di monitoraggio delle acque

Per la localizzazione dei punti di monitoraggio è possibile fare riferimento all'elaborato grafico TOOMOOOMOAPUO1_A "Planimetria di localizzazione punti di monitoraggio".

7.2.2 _ METODOLOGIA E STRUMENTAZIONE

TIPOLOGIA DI MONITORAGGIO 7.2.2.1

Per quanto riguarda il monitoraggio delle acque lo scopo è quello di controllare lo stato qualitativo dei corpi idrici interessati sia dalla fase realizzativa che dall'esercizio dell'infrastruttura stradale in oggetto.

Il monitoraggio dei corpi idrici interessati dal progetto è effettuato mediante una coppia di misure poste a monte e a valle rispetto al tracciato di progetto o alle aree di cantiere.

7.2.2.2 PARAMETRI DA MONITORARE

I parametri assunti per il monitoraggio delle acque sono di natura chimico-fisica e chimica. Per quanto riguarda il monitoraggio chimico, si fa riferimento alle tabelle 1/A (Standard di qualità ambientale nella colonna d'acqua e nel biota per le sostanze dell'elenco di priorità) ed 1/B (Standard di qualità ambientale espresso come valore medio annuo "SQA-MA") del D. Lgs. n. 172 del 13 ottobre 2015.

Nel caso dei parametri chimici, fisici e chimico fisici si fa riferimento per l'esecuzione delle misure, consistenti in acquisizione del campione, conservazione e trasporto dello stesso al laboratorio con conseguente analisi, al documento 'Metodi analitici per le acque' (APAT CNR-IRSA). Il documento tratta argomenti quali le modalità di campionamento, la qualità del dato, la cromatografia ionica, metalli e composti organometallici, microinquinanti organici e metodi tossicologici.

Il monitoraggio dei parametri chimico-fisici avviene in situ, mediante sonda multi-parametrica, e riguarda i seguenti parametri:

- ph;
- temperatura;
- potenziale redox;
- ossigeno disciolto;
- conducibilità elettrica;
- torbidità.

Il monitoraggio dei parametri chimici, riferibili alle tabelle 1/A ed 1/B del D.Lgs 172/2015, viene previsto per i seguenti parametri:

- BOD5;
- COD;

Direzione Progettazione e Realizzazione Lavori

PROGETTO DEFINITIVO

Piano di Monitoraggio Ambientale – Reazione Generale

- solidi sospesi totali;
- cloruri;
- solfati;
- durezza;
- Mg;
- K;
- Na.

Per quanto concerne la determinazione dei parametri Pb e Ni, compresi nella tabella 1/A relativa agli Standard di Qualità Ambientale, stabiliti dal D.Lgs. 172/2015 andranno riferiti alle concentrazioni biodisponibili di tali sostanze, pertanto la loro determinazione sarà eseguita secondo le indicazioni fornite dal documento appositamente redatto da ISPRA, "Linee Guida per il monitoraggio delle sostanze prioritarie secondo D.Lgs. 172/2015", attraverso l'applicazione del modello "Biotic Ligand Model" (BLM) per cui sarà altresì necessario rilevare i seguenti valori:

- ph;
- Calcio;
- DOC (Carbonio Organico Disciolto).

Per il monitoraggio dei sedimenti delle acque correnti, invece, i parametri sono:

Monitoraggio chimico:

- sodio,
- potassio;
- magnesio;
- calcio;
- ferro;
- zinco;
- manganese.

Monitoraggio chimico-fisico:

- descrizione macroscopica: colore, odore, presenza di concrezioni, residui di origine naturale o antropica;
- contenuto d'acqua;
- peso specifico;
- carbonio organico totale.

Infine, per monitorare la conformità allo scarico, i riferimenti sono quelli di cui alla Tabella 3 Allegato 5 alla Parte Terza del D.Lgs. 152/2006 e smi.

Inoltre, in corrispondenza del Fiume Tronto, verrà effettuato in monitoraggio dello <u>stato ecologico</u> attraverso il parametro biologico STAR-ICMI. I punti che saranno oggetto di monitoraggio del parametro saranno i punti ASUP_01 e ASUP_03 (monte e valle).

Lo STAR-ICMI è un indice che viene calcolato attraverso la combinazione di sei metriche correlate alle caratteristiche di tolleranza, abbondanza/habitat e diversità/ricchezza riscontrabili nei siti fluviali. L'indice è costruito per valutare la qualità generale dei siti fluviali, e viene espresso in Rapporto di Qualità ecologica

Piano di Monitoraggio Ambientale – Reazione Generale

(RQE), dato dal rapporto del parametro biologico "osservato" ed il valore dello stesso parametro corrispondente ad un "bianco" per la tipologia di corpo idrico considerato.

7.2.2.3 METODICHE DI MONITORAGGIO

La metodica di monitoraggio si compone delle fasi di seguito descritte.

- Installazione: in tale fase vengono stabilite le posizioni dei punti di misura destinate al monitoraggio tramite GPS. Le posizioni dei punti di misura dovranno essere georeferenziate e fotografate.
- Svolgimento della campagna di misure. Ogni campagna prevede il prelievo del campione e l'analisi in laboratorio, l'elaborazione file per caricamento dati output nel Sistema Informativo.
- Compilazione di Rapporti di misura.

Per quanto concerne l'attività di campionamento delle acque, secondo quanto definito nel manuale "Metodi Analitici per le Acque" - Sezione 1030, il campionamento costituisce la prima fase di ogni processo analitico che porterà a risultati la cui qualità è strettamente correlata a quella del campione prelevato.

Per tale motivo, il campionamento è una fase estremamente complessa e delicata che condiziona i risultati di tutte le operazioni successive e che di conseguenza incide in misura non trascurabile sull'incertezza totale del risultato dell'analisi.

Il campione dovrà quindi essere:

- prelevato in maniera tale che mantenga inalterate le proprie caratteristiche fisiche, chimiche e biologiche fino al momento dell'analisi;
- conservato in modo tale da evitare modificazioni dei suoi componenti e delle caratteristiche da valutare.

Il campionatore dovrà essere costituito da componenti in acciaio inossidabile, vetro e resine fluorocarboniche inerti; sono escluse parti costituite da materiali sintetici o metallici non inerti, valvole lubrificate con olio; anche i cavi di manovra ed i tubi di collegamento dei campionatori calati in foro devono essere in materiale inerte dal punto di vista chimico-fisico.

Per quanto riguarda il prelievo di acque è possibile impiegare due tipi di campionamento:

• dinamico,

La nuova edizione del manuale n.29/2003 rappresenta il risultato di un'attività di revisione periodica e di una armonizzazione dei metodi analitici per la caratterizzazione fisica, chimica, biologica e microbiologica delle acque dell'attività avviata nel 1996.

MSintagma

MANDANTE

¹ Il manuale "Metodi Analitici per le Acque" è pubblicato nella serie editoriale "Manuali e Linee Guida" dell'Agenzia per la Protezione dell'Ambiente e per i servizi Tecnici (APAT).

I metodi analitici riportati nel manuale sono stati elaborati da una Commissione istituita nel 1996 dall'Istituto di Ricerca sulle Acque del Consiglio Nazionale delle Ricerche (IRSA - CNR); un Gruppo di Lavoro, coordinato dall'APAT, e formato dal Servizio di Metrologia Ambientale dell'APAT, dal gruppo IRSA - CNR, dalle Agenzie Regionali per la Protezione dell'Ambiente (ARPA) e dalle Agenzie Provinciali per la Protezione dell'Ambiente (APPA), con il contributo del Centro Tematico Nazionale "Acque interne e marino costiere" (CTN/AIM), ha provveduto ad una revisione critica e ad una integrazione dei metodi analitici prodotti dalla Commissione istituita dall'IRSA-CNR.

Piano di Monitoraggio Ambientale – Reazione Generale

statico.

Particolare cura dovrà essere prestata anche nella scelta del metodo di campionamento al fine di eliminare o ridurre al minimo qualsiasi fonte di contaminazione da parte delle apparecchiature di campionamento. La contaminazione del campione da parte delle apparecchiature di campionamento può rappresentare una rilevante fonte di incertezza da associare al risultato analitico. Deve essere quindi valutata la capacità di assorbire o rilasciare analiti da parte delle diverse componenti del sistema di campionamento (tubi, componenti in plastica o in metallo, ecc.).

Un ulteriore fattore che può condizionare la qualità di una misura di un campione ambientale è rappresentato dal fenomeno di "cross-contamination". Con tale termine si intende il potenziale trasferimento di parte del materiale prelevato da un punto di campionamento ad un altro, nel caso in cui non venga accuratamente pulita l'apparecchiatura di campionamento tra un prelievo ed il successivo. È fondamentale, pertanto, introdurre nell'ambito del processo di campionamento una accurata procedura di decontaminazione delle apparecchiature.

A seguito del campionamento delle acque oggetto di monitoraggio, i campioni verranno trasportati in laboratorio dove saranno analizzati al fine di determinare le concentrazioni dei parametri scelti per la definizione dello stato qualitativo delle acque.

Tutti i parametri si intendono misurati in conformità alle normative attualmente in vigore.

Per quanto riguarda il campionamento e le determinazioni analitiche sui sedimenti si fa riferimento alla teoria degli stream sediments, secondo cui il materiale che si accumula nei letti fluviali è rappresentativo del bacino idrografico a monte del punto di campionamento.

In situ, i campioni di stream sediments saranno prelevati ed analizzati secondo la metodologia operativa elaborata da IRSA-CNR, descritta nel "Progetto Nazionale di Monitoraggio". Tale metodologia prevede l'impiego di carotaggi, impiegati prettamente per raccogliere i sedimenti profondi nelle acque lacustri, e di benne, utilizzate invece per i prelievi in acqua corrente. Inoltre, i campioni di sedimenti devono essere prelevati successivamente alla raccolta dei campioni d'acqua ed è necessario che il campione di sedimento sia raccolto sempre con la stessa modalità per permettere il confronto tra i campioni raccolti nei diversi periodi.

La procedura di campionamento prevede dunque di:

- calare lo strumento per il campionamento recuperarlo lentamente, se è presente l'acqua sovrastante, lasciarla decantare dolcemente fino alla sua completa eliminazione;
- esaminare il sedimento e registrarne il colore, lo spessore dello strato aerobio e la tessitura.

Nel caso in cui non sia possibile utilizzare la benna, si può effettuare la campionatura mediante una paletta di plastica pulita, facendo attenzione alle seguenti accortezze:

- etichettare i contenitori prima del campionamento con la località, la data e il tipo di campione;
- svuotare il campionatore su una superficie pulita;
- riunire il sedimento di almeno 3 calate;
- raccogliere il sedimento direttamente nei contenitori;
- mettere i campioni in contenitori di vetro con sottotappo di Teflon;
- riempire completamente i contenitori e non lasciare spazio in alto;

Piano di Monitoraggio Ambientale – Reazione Generale

- conservarli al buio e al fresco (<4°C);
- se vengono determinati sia composti organici, sia metalli e parametri convenzionali, raccogliere
 500 g di sedimento per ognuno di questi gruppi di parametri.

Per quanto riguarda la conservazione sarebbe opportuno conservare i sedimenti a 4°C e al buio e svolgere le analisi chimiche nel più breve tempo possibile.

Le analisi di laboratorio saranno eseguite seguendo le metodologie ufficiali APAT-IRSA-CNR 2003.

Per quanto riguarda lo STAR-ICMI, questo è un indice multimetrico, per il cui calcolo vengono combinate sei metriche riconducibili alle categorie generali di tolleranza, abbondanza/habitat e diversità ricchezza, ad ogni metrica viene attribuito un peso differente

Tipo di informazione	Tipo di metrica	Metrica	Descrizione e taxa considerati	Peso
Tolleranza	Indice	ASPT	Intera comunità (livello di Famiglia)	0.333
Abbondanza/ Habitat	Abbondanza	Log ₁₀ (Sel_EPTD +1)	Log ₁₀ (somma delle abbondanze di Heptageniidae, Ephemeridae, Leptophlebiidae, Brachycentridae, Goeridae, Polycentropodidae, Limnephilidae, Odontoceridae, Dolichopodidae, Stratyomidae, Dixidae, Empididae, Athericidae e Nemouridae +1)	0.266
	Abbondanza	1-GOLD	1 - (abbondanza relativa di Gastropoda, Oligochaeta e Diptera)	0.067
Ricchezza /Diversità	Numero taxa	Numero totale di Famiglie	Somma di tutte le famiglie presenti nel sito	0.167
	Numero taxa	Numero di Famiglie di EPT	Somma delle famiglie di Ephemeroptera, Plecoptera e Trichoptera	0.083
	Indice Diversità	Indice di diversità di Shannon-Wiener	$D_{S-W} = -\sum_{i=1}^{s} \left(\frac{n_{i}}{A}\right) \cdot \ln\left(\frac{n_{i}}{A}\right)$ (sull'intera comunità)	0.083

Tabella 12 Metriche che compongono lo STAR-ICMI e peso attribuito per il calcolo

L'indice STAR-ICMI viene espresse in Rapporto di qualità ecologica (RQE) dato dal rapporto del parametro biologico "osservato" ed il valore dello stesso parametro corrispondente alle "condizioni di riferimento" per la tipologia di corpo idrico considerato, e assume valori tra 0 e 1.

Il calcolo dell'indice prevede i seguenti passaggi:

- Calcolo dei valori grezzi che compongono l'indice;
- Conversione dei valori di ciascuna metrica in RQE;
- Calcolo della media ponderata dei valori di RQE delle sei metriche secondo i pesi forniti nella tabella 8;
- Normalizzazione del valore ottenuto dividendo il valore del campione in esame per il valore di STAR-ICMI nelle condizioni di riferimento.

Al valore di STAR-ICMI calcolato viene attribuito un giudizio di qualità, sulla base della suddivisione della variabilità dell'indice in 5 classi di qualità.

MSintagma ...

Piano di Monitoraggio Ambientale – Reazione Generale

7.2.3 _ TEMPI E FREQUENZA DEL MONITORAGGIO

Il monitoraggio delle acque è articolato secondo tre momenti, ben distinti, identificabili per consuetudine, nelle tre fasi in cui il progetto viene distinto:

- Ante Operam (AO);
- Corso d'Opera (CO);
- Post Operam (PO).

In particolare, nella fase Ante Operam al fine di ottenere un riferimento di base con il quale confrontare i risultati dei successivi monitoraggi, è stato definito un insieme di parametri analitici da analizzare su campioni prelevati dall'insieme dei due punti, uno a monte ed uno a valle, per i due fossi interferiti dal progetto in esame. Nella fase di Costruzione dell'Opera è necessario controllare gli elementi progettuali che possono avere ricadute in termini di sversamenti in acqua e che possono quindi portare ad una modifica dello stato qualitativo dei corpi idrici. Per quanto concerne la fase Post Operam, invece, il monitoraggio ha lo scopo di controllare lo stato qualitativo dei corpi idrici nella fase successiva alla fine dei lavori.

Nelle tre fasi di riferimento, dunque, si prevedono i seguenti punti di monitoraggio:

There are rash at the rimento, addique, si prevedono i seguenti panti ai monitoraggio.			
ACQUE SUPERFICIALI			
Fiume Tronto	ASUP_01_M		
	ASUP_01_V		
Rio di Novele	ASUP_02_M		
	ASUP_02_V		
Fiume Tronto	ASUP_03M		
	ASUP_03_V		

- 2 punti di monitoraggio (1 a monte e 1a valle) in corrispondenza del Fiume Tronto nei pressi dell'area operativa 1.
- 2 punti di monitoraggio (1 a monte e 1a valle) in corrispondenza del Rio di Novele interferito dal progetto.
- 2 punti di monitoraggio (1 a monte e 1 a valle) in corrispondenza del Fiume Tronto interferito dal progetto.

Al fine di monitorare in modo completo la componente delle acque, sono previste differenti frequenze di campionamento ed analisi.

In fase <u>Ante Operam</u> verranno effettuate misurazioni con cadenza trimestrale per monitorare lo stato qualitativo e quantitativo del corso d'acqua ed una misurazione per le analisi di sedimentazione. In questa fase, che caratterizza i 6 mesi prima dell'inizio dei lavori, i campionamenti e le analisi sono finalizzate al monitoraggio dei parametri che maggiormente potrebbero essere alterati dalla realizzazione e dall'utilizzo dell'infrastruttura.

In fase di <u>Corso d'Opera</u>, ovvero per l'intera durata dei lavori, si prevedono i campionamenti sugli stessi punti individuati nella fase AO; su questi punti si effettueranno, anche in questa fase, ogni trimestre i controlli sulle acque. Le misure verranno comunque effettuate durante le effettive lavorazioni interferenti.

Piano di Monitoraggio Ambientale – Reazione Generale

In fase <u>Post Operam</u>, ovvero per l'intero anno successivo alla fine dei lavori, si prevedono i campionamenti sugli stessi punti assunti per l'AO e il CO al fine di monitorare le acque dei fossi sopra citati. Analogamente alla fase Ante Operam, si prevedono misurazioni con cadenza trimestrale ed una misurazione per le analisi di sedimentazione l'anno.

7.3 GESTIONE DELLE ANOMALIE

I valori determinati in fase di monitoraggio ante operam saranno il riferimento per le successive misure di:

- corso d'opera, al fine di valutare con tempestività eventuali situazioni anomale;
- post operam, al fine di verificare il mantenimento o il ripristino delle condizioni iniziali.

I dati rilevati sia dei parametri in situ che di quelli di laboratorio vengono valutati sia per confronto con i limiti normativi, laddove esistenti, attraverso un metodo di comparazione monte-valle. La misura dei parametri di monte e di valle deve avvenire nello stesso giorno, in modo pressoché isocrono.

Identificazione dei valori limite

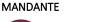
Per il parametro <u>pH</u> si considera superata la soglia di intervento qualora si abbia una variazione tra monte e valle di una unità di pH ($|\Delta pH| > 1$).

Per i parametri non normati, quali conducibilità, SST, cloruri e solfati si procederà con delle soglie di variazione tra Monte-Valle, fissate in AO di concerto con ARPA.

Per tutti gli altri parametri si farà riferimento ai limiti indicati in Tabella 7 corrispondenti alle soglie previste dal D.Lgs 172/2015 e dal D.Lgs 152/06 All. 3 alla parte III, Tab. 1/b "Qualità delle acque idonee alla vita dei pesci salmonidi e ciprinidi".

La segnalazione e la gestione delle anomalie avverrà attraverso il Sistema Informativo Territoriale (SIT).

Una volta riscontrata una anomalia e non appena sono disponibili i risultati delle analisi, entro 48 ore dal riscontro dell'anomalia stessa, è necessario che gli esecutori del Monitoraggio Ambientale predispongano tempestiva comunicazione tramite il Sistema Informativo (o via email), con una nota circostanziata che descriva le condizioni al contorno e le eventuali lavorazioni in essere presso il punto indagato, allo scopo di individuare le probabili cause che hanno prodotto il superamento, e inizia a intraprendere le necessarie azioni correttive.


Tale comunicazione dovrà contenere l'indicazione della tipologia del cantiere interessato e di eventuali scarichi da esso provenienti, la descrizione delle lavorazioni in essere al momento della misura e l'eventuale tipologia di interferenza col corso d'acqua o con la falda; in caso di superamento della soglia di intervento dovrà inoltre essere indicata la data in cui si intende effettuare il nuovo campionamento previsto.

Quest'ultimo potrà essere programmato con tempistiche differenti anche sulla base dei parametri per cui si è registrato il superamento, in funzione della loro pericolosità, volatilità, ecc.

A seguito del nuovo campionamento, il Proponente fornisce i risultati delle analisi condotte non appena disponibili entro il 15° giorno lavorativo; deve essere caricata sul Sistema Informativo la scheda completa della misura. Tale scheda dovrà contenere anche la descrizione delle verifiche effettuate nonché illustrare le misure di miglioramento/mitigazione messe in atto o previste. Gli esiti di tali azioni saranno poi commentati nelle Relazioni di monitoraggio.

Nel paragrafo successivo si riportano le azioni da intraprendere qualora si riscontri una situazione anomala.

Piano di Monitoraggio Ambientale – Reazione Generale

7.3.1 _ AZIONI CORRETTIVE

Qualora venisse riscontrata una situazione anomala si procederà come segue:

- verifica della correttezza del dato mediante controllo della strumentazione e ripetizione eventuale della misura:
- apertura scheda anomalia riportante le seguenti indicazioni e che dovrà essere inviata alla Committente e quindi all'Organo di controllo:
 - date di emissione, sopralluogo e analisi del dato;
 - parametro o indice indicatore di riferimento;
 - superamento della soglia di attenzione e/ o di intervento;
 - cause ipotizzate e possibili interferenze;
 - note descrittive ed eventuali foto;
 - verifica dei risultati ottenuti (da compilare successivamente).

Nel caso in cui il parametro non presenti più anomalia (definita secondo i criteri del paragrafo precedente), si procede alla chiusura della medesima.

Nel caso in cui il parametro si mantenesse anomalo, avendo accertato che la causa sia legata alle lavorazioni in essere, si concorderà con la Committente e con l'Organo di controllo se e quale azione correttiva intraprendere. Le azioni correttive più opportune per tamponare la causa di eventuale compromissione individuata saranno comunque da ricercare nel sistema di gestione che sarà redatto.

7.4 **CONCLUSIONI**

Il monitoraggio delle acque prevede dei punti di controllo in corrispondenza dei fossi interferiti dalla nuova viabilità.

Tematica	Punti	Fase	Frequenza e durata	Metodologia	Quantità misure per punto
	AO	misure trimestrali nei 6 mesi antecedenti la costruzione		2	
	ASUP_01_M ASUP_01_V ASUP_02_M ASUP_02_V ASUP_03_M ASUP_03_V		una misura		1
Acque		СО	misure trimestrali per l'intera durata delle attività di cantiere	Campionamento ed analisi di laboratorio	16
			una misura l'anno per la sedimentazione		4
		PO	misure trimestrali nell'anno successivo all'entrata in esercizio		4
		una misura l'anno per la sedimentazione		1	

// Sintagma

MANDANTE

Piano di Monitoraggio Ambientale – Reazione Generale

ASUP_01_M	AO			1
ASUP_01_V ASUP 03 M	СО	Misure semestrali Star-Icmi	Campionamento e calcolo	8
ASUP_03_V (STAR-ICMI)	РО		dell'indice	2

Tabella 13 Quadro sinottico PMA componente acque superficiali

Piano di Monitoraggio Ambientale – Reazione Generale

ACQUE SOTTERRANEE

8.1 FINALITÁ ED ARTICOLAZIONE TEMPORALE DEL MONITORAGGIO

8.1.1 OBIETTIVI DEL MONITORAGGIO

Il monitoraggio dell'ambiente idrico sotterraneo ha lo scopo di controllare l'impatto della costruzione delle opere sul sistema idrogeologico profondo, al fine di prevenire alterazioni di tipo quali-quantitativo delle acque ed eventualmente programmare efficaci interventi di contenimento e mitigazione.

Le attività che possono comportare ripercussioni sul livello della falda creando sbarramenti o situazioni di drenaggio sono principalmente legate alla costruzione delle fondazioni profonde (ad esempio i viadotti), ma, in generale, possono essere considerate critiche tutte le lavorazioni e le attività che avvengono in cantiere, dove potrebbero verificarsi eventi di sversamento accidentale di sostanze potenzialmente inquinanti o riversarsi nel suolo le acque di piattaforma.

Il monitoraggio delle acque sotterranee consentirà di:

- definire lo stato Ante Operam della suddetta componente ambientale;
- rilevare in Corso d'Opera le eventuali interferenze sulle acque sotterranee indotte dalle azioni di progetto e monitorare la loro evoluzione nel tempo;
- verificare nel Post Operam le caratteristiche chimiche-fisiche delle acque sotterranee.

8.1.2 _ RIFERIMENTI NORMATIVI

Il piano di monitoraggio deve essere contestualizzato nell'ambito della normativa di settore rappresentata, a livello comunitario, dalla Direttiva Quadro sulle Acque 2000/60/CE (DQA), che istituisce un quadro per l'azione comunitaria in materia di acque.

Le disposizioni comunitarie sono state recepite dal D.Lgs. 152/2006 e smi, in particolare alla Parte III -Norme in materia di difesa del suolo e lotta alla desertificazione, di tutela delle acque dall'inquinamento e di gestione delle risorse idriche; si richiamo i principali aggiornamenti del Decreto in materia di tutela e monitoraggio dell'ambiente idrico:

- D.Lgs. 16/01/08, n. 4 Ulteriori disposizioni correttive ed integrative del Decreto Legislativo 3 aprile 2006, n. 152, recante Norme in materia ambientale;
- DM 14/04/2009, n. 56 Regolamento recante "Criteri tecnici per il monitoraggio dei corpi idrici e l'identificazione delle condizioni di riferimento per la modifica delle norme tecniche del Decreto Legislativo n. 152 del 3/04/2006 recante Norme in materia ambientale, predisposto ai sensi dell'articolo 75, comma 3, del decreto legislativo medesimo;
- D.Lgs. 10/12/2010, n. 219 Attuazione della direttiva 2008/105/CE relativa a standard di qualità ambientale nel settore della politica delle acque, recante modifica e successiva abrogazione delle direttive 82/176/CEE, 83/513/CEE, 84/156/CEE, 84/491/CEE, 86/280/CEE, nonché modifica della di- rettiva 2000/60/CE e recepimento della direttiva 2009/90/CE che stabilisce, conformemente alla direttiva 2000/60/CE, specifiche tecniche per l'analisi chimica e il monitoraggio dello stato delle
- DM 8/11/10, n. 260 Regolamento recante i criteri tecnici per la classificazione dello stato dei corpi idrici superficiali, per la modifica delle norme tecniche del Decreto Legislativo 3 aprile 2006 n. 152, recante Norme in materia ambientale, predisposto ai sensi dell'articolo 75, comma 3, del medesimo decreto legislativo.

Piano di Monitoraggio Ambientale – Reazione Generale

D.Lgs 13/10/15 n.172 - Attuazione della direttiva 2013/39/UE, che modifica le direttive 2000/60/CE per quanto riguarda le sostanze prioritarie nel settore della politica delle acque.

In particolare, del D.Lgs 152/06 e smi si richiama:

- l'Allegato 1 alla Parte III: Il monitoraggio e classificazione delle acque in funzione degli obiettivi di qualità ambientale, nel quale sono riportate le indicazioni sulle modalità di svolgimento delle attività inerenti al monitoraggio; in particolare per quanto riguarda il monitoraggio chimico, si fa riferimento alle tabelle 1/A (Standard di qualità ambientale nella colonna d'acqua e nel biota per le sostanze dell'elenco di priorità) ed 1/B (Standard di qualità ambientale espresso come valore medio annuo "SQA-MA") del D. Lgs. n. 172 del 13 ottobre 2015;
- l'Allegato 5 alla Parte III: Limiti di emissione degli scarichi idrici, per monitorare la conformità allo scarico; in particolare i riferimenti sono quelli di cui alla Tabella 3 nel quale sono indicati gli specifici set di parametri chimico-fisici e i relativi valori limite.
- l'Allegato 5 Parte IV: in relazione ai sedimenti a livello nazionale non sono stati stabiliti degli standard di qualità specifici per i sedimenti ma, in mancanza di indicazioni normative, si utilizzano i valori di concentrazioni limite fissati per i suoli alla Tabella 1.

Si richiamano inoltre:

Normativa Comunitaria

- Direttiva della Commissione 20 giugno 2014, n. 2014/80/UE Direttiva che modifica l'allegato II della direttiva 2006/118/CE del Parlamento europeo e del Consiglio sulla protezione delle acque sotterranee dall'inquinamento e dal deterioramento;
- Direttiva del Parlamento europeo, 12 dicembre 2006, n. 2006/118/CE Direttiva 2006/118/CE del Parlamento europeo e del Consiglio del 12 dicembre 2006 sulla protezione delle acque sotterranee dall'inquinamento e dal deterioramento.

Normativa nazionale

D.Lgs. 16 marzo 2009, n. 30 - Attuazione della direttiva 2006/118/CE, relativa alla protezione delle acque sotterranee dall'inquinamento e dal deterioramento.

MONITORAGGIO DELLA QUALITÀ DELLE ACQUE

8.2.1 _ LOCALIZZAZIONE DELLE AREE DI MONITORAGGIO

Nella definizione della localizzazione dei punti di monitoraggio della componente acque sotterranee sono stati individuati i punti di monitoraggio nelle aree di potenziale impatto, atti a caratterizzare i parametri delle acque nei punti ritenuti più critici.

I punti di misura sono stati scelti rispettando il criterio monte - valle rispetto alla direzione di deflusso della falda, al fine di poter valutare non solo le caratteristiche chimico – fisiche delle acque sotterranee e la superficie piezometrica della falda, ma anche di valutare e individuare "tempestivamente" eventuali variazioni di un determinato parametro tra punti di misura ubicati a monte e valle idrogeologico, delle aree

Piano di Monitoraggio Ambientale – Reazione Generale

di cantiere e conseguentemente eventuali impatti legati alle pressioni riconducibili, o meno, alle azioni del progetto.

Si è deciso di andare a monitorare l'area di realizzazione del viadotto Tronto, poiché le fondazioni profonde delle pile del viadotto potrebbero interferire con la falda, si potrebbe quindi determinare una variazione nel regime della circolazione idrica o della qualità delle acque. Inoltre saranno monitorate le aree di realizzazione delle galleria naturali Favalanciata e Acquasanta Terme, oltre i punti a monte a valle delle aree di stoccaggio terre al fine di individuare eventuali inquinanti permeati nella falda.

Di seguito si riporta la tabella relativa ai punti di monitoraggio previsti.

Punti	Coordinata X	Coordinata Y
ASOTT_01_M	2383814	4736103
ASOTT_01_V	2383860	4736023
ASOTT_02_M	2386746	4736117
ASOTT_02_V	2386696	4735996
ASOTT_03_M	2388724	4736530
ASOTT_03_V	2388713	4736452
ASOTT_04_M	2389788	4736895
ASOTT_04_V	2389867	4736852
ASOTT_05_M	2391620	4738537
ASOTT_05_V	2391564	4738645

Tabella 14 Punti di monitoraggio delle acque sotterranee

Per la localizzazione dei punti di monitoraggio è possibile fare riferimento all'elaborato grafico T00MO00MOAPU01_A "Planimetria di localizzazione punti di monitoraggio".

8.2.2 METODOLOGIA E STRUMENTAZIONE

8.2.2.1 TIPOLOGIA DI MONITORAGGIO

Mediante i piezometri, verranno effettate le seguenti attività di rilevamento:

- misura del livello piezometro;
- prelievo di campioni d'acqua e analisi di laboratorio dei parametri fisico-chimici e batteriologici.

8.2.2.2 PARAMETRI OGGETTO DI MONITORAGGIO

Le misure verranno effettate mediante piezometri, del tipo a tubo aperto, appositamente installati nei fori di sondaggio.

Il sondaggio, a carotaggio continuo, permetterà di accertare la stratigrafia locale e di conseguenza definire la profondità di posa del piezometro. Questo sarà costituito da un tubo in PVC, con diametro interno tale da consentire le operazioni di prelievo dei campioni d'acqua (si consiglia 4"), che sarà fenestrato per tutta l'altezza o nel tratto corrispondente allo strato permeabile e, in linea di principio, dovrà permettere di monitorare la falda più superficiale. Il fondo del piezometro dovrà raggiungere il substrato impermeabile (argille varicolori, flysch a prevalente contenuto argilloso) e intestarsi per almeno 50 cm, mentre la quota di posizionamento della porzione filtrante sarà stabilita in funzione dei risultati della perforazione. Il fondo del tubo piezometrico dovrà essere chiuso mediante fondello cieco impermeabile.

Piano di Monitoraggio Ambientale – Reazione Generale

La posa del piezometro dovrà essere preceduta da un accurato lavaggio del foro di sondaggio (fino a quando non esce acqua chiara) e da misure per controllare l'effettiva profondità raggiunta dalla perforazione. Il tubo in PVC sarà circondato da rete REP o da feltro in tessuto non tessuto e da un filtro in sabbia grossolana pulita o in ghiaietto siliceo calibrato, da posizionare nell'intercapedine perforo-tubazione in corrispondenza del tratto fenestrato. Al termine di questa fase verrà estratta la tubazione di rivestimento del foro, curando di aggiungere sabbia se necessario. È opportuno che il tratto terminale del foro, per la lunghezza di almeno 1 metro, sia sigillato con un tappo in materiale argilloso o cementato, per impedire l'ingresso nel piezometro di acque superficiali. La tubazione di misura dovrà sporgere 20 ÷ 30 cm dal piano campagna e sarà protetta da un chiusino carrabile in ghisa, munito di lucchetto. Al termine della perforazione si dovrà redigere la stratigrafia del sondaggio, indicando anche la profondità di posa del piezometro e la lunghezza del tratto forato.

Mediante i piezometri, verranno effettate le seguenti attività di rilevamento:

- misura del livello piezometro;
- prelievo di campioni d'acqua e analisi di laboratorio dei parametri fisico-chimici e batteriologici.

Misura del livello piezometrico

Le misure del livello piezometrico saranno eseguite mediante sondino elettrico (freatimetro) e riportate in apposite schede di rilevamento delle acque sotterranee. Per meglio caratterizzare le connessioni esistenti tra le oscillazioni stagionali della falda e l'andamento delle piogge sulla scheda andranno anche riportati i dati pluviometrici dell'area registrati nel giorno in cui si eseguono le letture piezometriche. Prelievo di campioni d'acqua e analisi di laboratorio

I campionamenti e le successive analisi delle acque verranno eseguite secondo i metodi analitici per le acque stabiliti da APAT e IRSA - CNR (Manuali e linee guida 29/2003).

I punti di analisi dovranno essere catalogati inserendo le suddette caratteristiche:

- 1) coordinate (Gauss-Boaga);
- stratigrafia dei terreni e segnalazione dei livelli saturi incontrati.

Le attrezzature di campionamento dovranno essere decontaminate prima dell'utilizzazione.

Dovranno essere usati contenitori nuovi.

II D. Lgs. 152/2006 (nell'allegato 1 alla parte III) e s.m.i. stabilisce che, "per tutti i corpi idrici sotterranei selezionati il monitoraggio riguarda tutti i parametri di base seguenti:

- tenore di Ossigeno;
- valore di pH;
- conduttività;
- nitrati;
- ione ammonio."

Nell'ambito del presente monitoraggio è previsto di integrare ed estendere la rilevazione dei suddetti parametri; per ciascuno dei punti di monitoraggio saranno rilevati i parametri indicati nella seguente tabella:

Piano di Monitoraggio Ambientale – Reazione Generale

parametri	u.m.	limite di legge	limite di rivelabilità
IDROLOGICI / IDROMORFOLOGICI			
Livello idrico	m slm	-	
FISICO-CHIMICI (IN SITU)			
Conduttività elettrica a 20°C	μs/cm		
Ossigeno disciolto	mg/L		1
pH			
Portata volumetrica sorgenti	m3/s		
Potenziale Redox	mV		
Soggiacenza statica	m		
Temperatura dell'acqua	°C		
Temperatura dell'aria	°C		

Inoltre, nella fase CO si effettueranno determinazioni sul contenuto degli oli minerali nei sedimenti (Idrocarburi C>12). Le attività di misura e di campionamento dovranno essere evitate nei periodi di forte siccità o di intense piogge o in periodi ad essi successivi in quanto, i campioni potrebbero non essere significativi o rappresentativi dell'acquifero.

Piano di Monitoraggio Ambientale – Reazione Generale

CHIMICI (LABORATORIO) D.Lqs. n. 152/2006 ss.mm.ii - PARTE IV -	Titolo V - Allegate	.5	-
Tabella 2 'Concentrazione soglia di conta	•		ranee'
METALLI			
Arsenico	μg/L	10	0,25
Cadmio	μg/L	5	1
Cromo totale	μg/L	50	1
Cromo VI	μg/L	5	2
Ferro	μg/L	200	1
Manganese	μg/L	50	2
Nichel	μg/L	20	2
Piombo	μg/L	10	3
Rame	μg/L	1000	1
Zinco	μg/L	3000	25
INQUINANTI INORGANICI			
Solfati	mg/L	250	1
COMPOSTI ORGANICI AROMATICI			
Benzene	μg/L	1	0,02
Etilbenzene	μg/L	50	0,02
Toluene	μg/L	15	0,02
p-Xilene	μg/L	10	0,02
ALIFATICI CLORURATI CANCEROGENI	μg/L	10	0,04
1.1-Dicloroetilene	ug/l	0.05	0.005
1,2-Dicloroetano	μg/L μg/L	0,05	0,005
Clorometano		1,5	0,1
Cloruro di vinile	μg/L μg/L	0.5	0,00001
Esaclorobutadiene	μg/L	0,15	0,000
Tetracloroetilene	μg/L	1,1	0,003
Tricloroetilene	μg/L	1,5	0,005
Triclorometano	μg/L	0,15	0,003
Sommatoria organoalogenati	μg/L	10	0,000
ALIFATICI CLORURATI NON CANCEROG		10	0,1
		0.05	0.00004
1,1,2,2-Tetracloroetano	μg/L	-,	0,00001
1,1,2-Tricloroetano	μg/L	0,2	0,04
1,1-Dicloroetano	μg/L	810	0,5
1,2,3-Tricloropropano	μg/L	0,001	0,00001
1,2-Dicloroetilene	μg/L	60	0,5
1,2-Dicloropropano	μg/L	0,15	0,04
AMMINE AROMATICHE			
2,4'-DDD	μg/L	0,1	0,01
2,4'-DDE	μg/L	0,1	0,01
2,4'-DDT	μg/L	0,1	0,01
4,4'-DDD	μg/L	0,1	0,01
4,4'-DDE	μg/L	0,1	0,01
4,4'-DDT	μg/L	0,1	0,01
Aldrin	μg/L	0,03	0,01
Beta-esacloroesano	μg/L	0,1	0,01
Dieldrin	μg/L	0,03	0,01
DIOSSINE E FURANI			
Idrocarburi totali	μg/L	350	10
Altro			
MTBE	μg/L	40	2

Tabella 15 Parametri oggetto di monitoraggio

Piano di Monitoraggio Ambientale – Reazione Generale

8.2.3 _ METODOLOGIE DI MONITORAGGIO

<u>Campionamento</u>

Per ogni singolo campione è necessario che siano garantite la stabilità e l'inalterabilità di tutti i costituenti nell'intervallo di tempo che intercorre tra il prelievo e l'analisi.

Un campione ambientale, nel momento stesso in cui viene separato e confinato in un recipiente non rappresenta più, a stretto rigore, il sistema di origine. Da quel momento il campione inizia a modificarsi fisicamente (evaporazione, sedimentazione, adsorbimento alle pareti del contenitore ecc.), chimicamente (reazioni di neutralizzazione, trasformazioni ossidative ecc.) e biologicamente (attacco batterico, fotosintesi ecc.).

Per quanto attiene ai tempi massimi intercorrenti tra il prelievo e l'analisi è raccomandabile eseguire sempre le analisi sui campioni, il più presto possibile dopo la raccolta. La consegna al laboratorio deve avvenire entro 24 ore dal prelievo. Il campione deve essere conservato tramite refrigerazione a 4°C per impedirne il deterioramento.

I contenitori utilizzati per la raccolta e il trasporto dei campioni non devono alterare il valore dei parametri per cui deve essere effettuata la determinazione, in particolare:

- non devono cedere o adsorbire sostanze, alterando la composizione del campione;
- devono essere resistenti ai vari costituenti eventualmente presenti nel campione;
- devono garantire la perfetta tenuta, anche per i gas disciolti e per i composti volatili, ove questi siano oggetto di determinazioni analitiche.

I materiali più usati per i contenitori sono generalmente il vetro e la plastica. Il vetro rimane il materiale da preferire e per il monitoraggio si consiglia di utilizzare:

- contenitore in polietilene da 2 l per le analisi dei metalli e delle specie metalliche, con aggiunta di HNO3 fino a pH<2;
- contenitore in vetro da 1 l per l'analisi del TOC;
- contenitore in vetro da 1 l per le analisi degli idrocarburi;
- contenitore in vetro da 1 l per le analisi dei tensioattivi anionici e non ionici;
- contenitore in polietilene da 500 ml per i nitrati.

I contenitori utilizzati andranno etichettati indicando il codice della stazione di monitoraggio, la data e l'ora del prelievo e dovranno essere recapitati al laboratorio di analisi entro le ventiquattro ore dal prelievo, prevedendone il trasporto mediante contenitore refrigerato alla temperatura di 4°C.

<u>Analisi di laboratorio</u>

Non appena il campione arriverà in laboratorio, prima di procedere con le analisi previste, si dovrà:

- verificare l'assoluta integrità dei campioni (in caso di recipienti danneggiati il campionamento deve essere nuovamente effettuato);
- verificare che ciascun contenitore riporti in modo leggibile tutte le indicazioni che permettano un'identificazione chiara e precisa del punto di monitoraggio;
- verificare la taratura degli strumenti che saranno utilizzati per le determinazioni analitiche.

Il riferimento per la caratterizzazione chimica delle acque è il manuale "Metodi Analitici per le Acque" (IRSA-APAT Rapporto 29/2003).

Le analisi chimiche devono essere eseguite presso laboratori accreditati e certificati secondo la norma UNI CEI EN ISO/IEC 17025.

Dovranno inoltre essere in accordo con la normativa vigente e condotte adottando metodologie ufficialmente riconosciute, tenendo conto di eventuali implementazioni, modifiche o abrogazioni.

Piano di Monitoraggio Ambientale – Reazione Generale

8.2.4 _ TEMPI E FREQUENZA DEL MONITORAGGIO

Il monitoraggio delle acque è articolato secondo tre momenti, ben distinti, identificabili per consuetudine, nelle tre fasi in cui il progetto viene distinto:

- Ante Operam (AO);
- Corso d'Opera (CO);
- Post Operam (PO).

Sarà necessario prevedere una certa flessibilità e adattabilità del monitoraggio alle condizioni meteoclimatiche dell'area e, in caso di impossibilità ad eseguire i rilievi nel periodo previsto dal cronoprogramma, le misure dovranno essere rinviate al primo giorno utile in cui nei piezometri sarà rinvenuta una quantità d'acqua sufficiente per effettuare il campionamento chimico-fisico.

Nell tre fasi di riferimento, dunque, si prevedono i seguenti punti di monitoraggio:

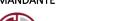
- 2 punti di monitoraggio (1 a monte e 1 a valle) in corrispondenza della galleria Favalanciata;
- 2 punti di monitoraggio (1 a monte e 1 a valle) in corrispondenza della galleria Acquasanta Terme;
- 2 punti di monitoraggio (1 a monte e 1 a valle) in corrispondenza del viadotto Acquasanta Terme;
- 2 punti di monitoraggio (1 a monte e 1 a valle) in corrispondenza dell'area di stoccaggio terre 1;
- 2 punti di monitoraggio (1 a monte e 1 a valle) in corrispondenza dell'area di stoccaggio terre 3.

Al fine di monitorare in modo completo la componente delle acque, sono previste differenti frequenze di campionamento ed analisi.

In fase Ante Operam si dovrà provvedere a eseguire preliminarmente i fori di sondaggi in cui installare i piezometri. Per disporre di un set di dati significativi, il monitoraggio AO dovrà avere durata di almeno 6 mesi, durante i quali verrà effettata 1 misura ogni trimestre. Le misure dovranno coincidere, possibilmente, con la fase di morbida e di massima della falda.

In fase di Corso d'Opera, ovvero per l'intera durata dei lavori, si prevedono i campionamenti sugli stessi punti individuati nella fase AO; su questi punti si effettueranno, anche in questa fase, ogni trimestre i controlli sulle acque.

In fase Post Operam, ovvero per l'intero anno successivo alla fine dei lavori, si prevedono i campionamenti sugli stessi punti assunti per l'AO e il CO al fine di monitorare le acque dei fossi sopra citati. Analogamente alla fase Ante Operam, si prevedono misurazioni con cadenza trimestrale ed una misurazione per le analisi di sedimentazione l'anno.


8.3 **GESTIONE DELLE ANOMALIE**

I valori determinati in fase di monitoraggio Ante Operam saranno il riferimento per le successive misure di:

- Corso d'Opera, al fine di valutare con tempestività eventuali situazioni anomale;
- Post Operam, al fine di verificare il mantenimento o il ripristino delle condizioni iniziali.

I dati rilevati sia dei parametri in situ che di quelli di laboratorio vengono valutati sia per confronto con i limiti normativi, laddove esistenti, attraverso un metodo di comparazione monte-valle.

Piano di Monitoraggio Ambientale – Reazione Generale

La misura dei parametri di monte e di valle deve avvenire nello stesso giorno, in modo pressoché isocrono.

<u>Identificazione dei valori limite</u>

Per il parametro <u>pH</u> si considera superata la soglia di intervento qualora si abbia una variazione tra monte e valle di una unità di pH ($|\Delta pH| > 1$).

Per i parametri non normati, quali conducibilità, SST, cloruri e solfati si procederà con delle soglie di variazione tra Monte-Valle, fissate in AO di concerto con ARPA.

La segnalazione e la gestione delle anomalie avverrà attraverso il Sistema Informativo Territoriale (SIT).

Una volta riscontrata una anomalia e non appena sono disponibili i risultati delle analisi, entro 48 ore dal riscontro dell'anomalia stessa, è necessario che gli esecutori del Monitoraggio Ambientale predispongano tempestiva comunicazione tramite il Sistema Informativo (o via email), con una nota circostanziata che descriva le condizioni al contorno e le eventuali lavorazioni in essere presso il punto indagato, allo scopo di individuare le probabili cause che hanno prodotto il superamento, e inizia a intraprendere le necessarie azioni correttive.

Tale comunicazione dovrà contenere l'indicazione della tipologia del cantiere, la descrizione delle lavorazioni in essere al momento della misura e l'eventuale tipologia di interferenza col corso d'acqua o con la falda; in caso di superamento della soglia di intervento dovrà inoltre essere indicata la data in cui si intende effettuare il nuovo campionamento previsto. Quest'ultimo potrà essere programmato con tempistiche differenti anche sulla base dei parametri per cui si è registrato il superamento, in funzione della loro pericolosità, volatilità, ecc.

A seguito del nuovo campionamento, il Proponente fornisce i risultati delle analisi condotte non appena disponibili entro il 15° giorno lavorativo; deve essere caricata sul Sistema Informativo la scheda completa della misura. Tale scheda dovrà contenere anche la descrizione delle verifiche effettuate nonché illustrare le misure di miglioramento/mitigazione messe in atto o previste. Gli esiti di tali azioni saranno poi commentati nelle Relazioni di monitoraggio.

Nel paragrafo successivo si riportano le azioni da intraprendere qualora si riscontri una situazione anomala.

8.3.1 _ AZIONI CORRETTIVE

Qualora venisse riscontrata una situazione anomala si procederà come segue:

- verifica della correttezza del dato mediante controllo della strumentazione e ripetizione eventuale della misura;
- apertura scheda anomalia riportante le seguenti indicazioni e che dovrà essere inviata alla Committente e quindi all'Organo di controllo:
 - o date di emissione, sopralluogo e analisi del dato;
 - o parametro o indice indicatore di riferimento;
 - o superamento della soglia di attenzione e/ o di intervento;
 - o cause ipotizzate e possibili interferenze;
 - o note descrittive ed eventuali foto;
 - o verifica dei risultati ottenuti (da compilare successivamente).

Nel caso in cui il parametro non presenti più anomalia (definita secondo i criteri del paragrafo precedente), si procede alla chiusura della medesima.

Nel caso in cui il parametro si mantenesse anomalo, avendo accertato che la causa sia legata alle lavorazioni in essere, si concorderà con la Committente e con l'Organo di controllo se e quale azione correttiva intraprendere. Le azioni correttive più opportune per tamponare la causa di eventuale compromissione individuata saranno comunque da ricercare nel sistema di gestione che sarà redatto.

Piano di Monitoraggio Ambientale – Reazione Generale

8.4 CONCLUSIONI

Il monitoraggio delle acque prevede dei punti di controllo in corrispondenza dei fossi interferiti dalla nuova viabilità, in prossimità dell'imbocco su della stessa.

Tematica	Punti	Fase	Frequenza e durata	Metodologia	Quantità misure per punto
ASOTT_01_M ASOTT_01_V	АО	misure trimestrali nei 6 mesi antecedenti la costruzione		2	
Acque sotterranee	1 ASOTT U3 V T	СО	misure trimestrali per l'intera durata delle attività di cantiere	Campionamento ed analisi di laboratorio	16
		PO	misure trimestrali nell'anno successivo all'entrata in esercizio		4

Tabella 16 Quadro sinottico PMA componente acque sotterranee

Piano di Monitoraggio Ambientale – Reazione Generale

SUOLO

9.1 FINALITÁ ED ARTICOLAZIONE TEMPORALE DEL MONITORAGGIO

9.1.1 OBIETTIVI DEL MONITORAGGIO

La componente ambientale Suolo si prefigge la tutela del terreno vegetale e delle coltri pedologiche, quali risorse ambientali non rinnovabili e sostegno primario della biosfera. La realizzazione di un'infrastruttura comporta un inevitabile consumo di suolo, figlio dell'occupazione di territori naturali e agricoli da parte di strutture ed infrastrutture.

Per quanto concerne la componente Suolo, quindi, dalle analisi effettuate, si è rilevato che l'aspetto che necessita di opportuno monitoraggio è quello della qualità e fertilità del suolo in corrispondenza delle aree di cantiere previste per la realizzazione dei lavori, ubicate in zona agricola.

Il progetto prevede il ripristino di queste aree, infatti, al termine della fase di cantiere, si procederà alla ricostruzione e ricompattazione del terreno asportato e dove prevista, alla ricostruzione del manto superficiale erboso.

L'obiettivo del monitoraggio è quello di evitare la perdita di orizzonti superficiali di maggiore fertilità, mediante la verifica delle condizioni chimiche, fisiche e agronomiche del suolo, allo scopo di segnalare eventuali modificazioni e criticità ascrivibili alle successive attività di costruzione, per le quali venga accertato o sospettato un rapporto di causa-effetto con le attività di Corso d'Opera e di Post Operam.

In questo modo, oltre che verificare la presenza o meno di inquinanti, si potrà, nella fase Post Operam, ricostituire i suoli con la loro tessitura e le loro caratteristiche agronomiche per ottimizzare le future attività di ripristino previste.

9.1.2 _ RIFERIMENTI NORMATIVI

Il quadro normativo di riferimento è costituito da:

- Comunicazione della Commissione del 22 settembre 2006: "Strategia tematica per la protezione del suolo";
- Comunicazione della Commissione, del 16 aprile 2002 Verso una strategia tematica per la protezione del suolo (COM(2002) 179);
- D.LGS. 152/2006 E S.M.I. Norme in materia di bonifica dei siti inquinati di cui alla parte guarta titolo V al Decreto;
- ELEMENTI DI PROGETTAZIONE DELLA RETE NAZIONALE DI MONITORAGGIO DEL SUOLO A FINI AMBIENTALI APAT - Versione aggiornata sulla base delle indicazioni contenute nella strategia tematica del suolo dell'unione europea ottobre 2004;
- Guida tecnica sui metodi di analisi dei suoli contaminati Guida tecnica sui metodi di analisi dei suoli contaminati realizzato nell'ambito del Centro Tematico Nazionale 'Suolo e siti contaminati';
- D.M. 13/09/1999 Approvazione dei Metodi ufficiali di analisi chimica del suolo (G.U. n. 185 del 21/10/1999).

Per i valori limite si utilizzano i valori di concentrazioni fissati per i suoli nel D.Lgs. 152/06 (Allegato 5 alla Parte quarta – Tab. 1).

Piano di Monitoraggio Ambientale – Reazione Generale

9.2 MONITORAGGIO DELLA QUALITÀ E FERTILITÀ DEL SUOLO

9.2.1 _ LOCALIZZAZIONE DELLE AREE DI MONITORAGGIO

Il monitoraggio sarà effettuato in corrispondenza del cantiere base, dei campi operativi e nel deposito intermedio, laddove le impronte dei cantieri ricadono in zona agricola, allo scopo di verificare la qualità e la fertilità del suolo, una volta ripristinate le aree.

Punti	Localizzazione	
SUO_01	Area di stoccaggio terre 1	
SUO_02	Area di cantiere operativa 1	
SUO_03	Area di stoccaggio terre 2	
SUO_04	Area di cantiere operativa 2	
SUO_05	Cantiere base 1	
SUO_06	Aree di stoccaggio terre 3	

Tabella 17 Punti di monitoraggio del suolo

Per la localizzazione dei punti di monitoraggio è possibile fare riferimento all'elaborato grafico T00MO00MOAPU01_A "Planimetria di localizzazione punti di monitoraggio".

9.2.2 _ METODOLOGIA E STRUMENTAZIONE

9.2.2.1 TIPOLOGIA DI MONITORAGGIO

Il monitoraggio prevede la verifica diretta delle caratteristiche fisiche, chimiche e agronomiche del suolo attraverso rilievi e analisi.

I rilievi consisteranno nella determinazione del profilo pedologico, attività propedeutica al prelievo dei campioni che saranno poi analizzati in laboratorio.

9.2.2.2 PARAMETRI DA MONITORARE

Per ogni stazione di monitoraggio saranno rilevati gli orizzonti pedologici (descrizione e fotografie). La descrizione riguarderà i seguenti aspetti:

- Esposizione;
- Pendenza;
- uso del suolo;
- microrilievo;
- pietrosità superficiale;
- rocciosità affiorante;
- fenditure superficiali;
- vegetazione;
- stato erosivo;
- permeabilità;
- classe di drenaggio;
- substrato pedogenetico;
- profondità falda.

Per ogni campione saranno individuati i seguenti parametri:

Piano di Monitoraggio Ambientale – Reazione Generale

- Parametri ambientali: Potenziale REDOX, pH, Arsenico, Berillio, Cadmio, Cobalto, Nichel, Piombo, Rame, Zinco, Mercurio, Vanadio, Cromo totale, Cromo VI, Idrocarburi C>12, BTEX, IPA;
- Parametri agronomici: pH, Capacità di scambio cationico (C.S.C.), Tessitura, Basi scambiabili, Contenuto in carbonio organico, Calcare totale, Calcare attivo, Ntot e P assimilabile.

9.2.2.3 METODICHE DI MONITORAGGIO

Per ogni stazione di monitoraggio si prevedono le seguenti attività:

- Profilo pedologico: sarà realizzato uno scavo con mezzo meccanico fino alla profondità di 1-1,5 m, sarà effettuata la scopertura della parete e quindi verrà prodotto un report fotografico con descrizione degli orizzonti individuati;
- Campionamento: sarà prelevato un campione per ciascun orizzonte individuato;
- Analisi di laboratorio:
 - o su tutti i campioni prelevati saranno condotte analisi chimico-fisiche;
 - o solo sui campioni superficiali (0-50 cm) saranno condotte analisi agronomiche.

9.2.2.4 TEMPI E FREQUENZE DEL MONITORAGGIO

Il monitoraggio della componente in esame è articolato secondo due momenti:

- Ante Operam (AO);
- Post Operam (PO).

L'Ante Operam (AO) è finalizzato a fornire una caratterizzazione del suolo prima dell'apertura dei cantieri e sarà volto alla conoscenza dei tre aspetti principali: fertilità, presenza di inquinanti, caratteristiche fisiche del suolo.

Il Post Operam (PO) è finalizzato alla verifica delle caratteristiche del suolo e all'individuazione di eventuali inquinamenti del suolo rispetto alla fase di Ante Operam, a seguito dell'entrata in esercizio dell'infrastruttura e dell'occupazione temporanea dei cantieri. Questo consentirà di determinare le eventuali aree in cui sarà necessario prevedere azioni correttive.

Il monitoraggio sarà effettuato 1 volta in fase di Ante Operam, nei sei mesi antecedenti all'inizio dei lavori, ed 1 volta in fase di Post Operam, nell'anno successivo al loro completamento.

9.3 GESTIONE DELLE ANOMALIE

Per quanto concerne l'analisi chimico-fisica dei campioni prelevati, si definisce "condizione anomala" il superamento dei limiti di legge.

Eventuali superamenti dovranno comunque far riferimento al progetto di utilizzo (destinazione d'uso e Concentrazione soglia di contaminazione riferita alla specifica destinazione d'uso).

Per quanto concerne l'analisi stratigrafica, il confronto della fase di PO deve essere eseguito secondo il seguente criterio:

- se il progetto prevede il ripristino delle condizioni iniziali, l'analisi stratigrafica del PO deve essere confrontata con la fase di AO. Se l'analisi stratigrafica della fase di PO è diversa da quella della fase di AO, allora si definisce una condizione anomala;
- se il progetto prevede una destinazione d'uso del suolo diversa da quanto previsto in fase di AO, l'analisi stratigrafica del PO deve essere conforme a quanto previsto dal progetto in quel punto. Se l'analisi stratigrafica della fase di PO non è conforme a quanto previsto dal progetto, si definisce una condizione anomala.

Piano di Monitoraggio Ambientale – Reazione Generale

9.3.1 _ AZIONI CORRETTIVE

Nel caso in cui alcuni parametri, in AO, presentino valori superiori alle soglie di legge si procede secondo la modalità sotto descritta:

- apertura procedura di gestione dell'anomalia;
- comunicazione alla Committente, alla Direzione Lavori e all'organo di controllo;
- verificare con l'organo di controllo (Dipartimenti locali ARPA) se si tratta di valori di fondo naturale

Nel caso di superamenti naturali, si procede con la chiusura della scheda anomalia spiegando che si tratta di un superamento naturale.

Nel caso di superamenti "non naturali", si procede come segue:

- verifica del corretto funzionamento degli strumenti di analisi utilizzati ed eventuale ripetizione della misura:
- Nel caso di superamenti "non naturali", si concorderà con l'organo di controllo se e come intervenire con eventuali azioni correttive.

Qualora si verifichi una condizione anomala nelle fasi di CO e PO si procede nel seguente modo:

- apertura procedura di gestione dell'anomalia ai sensi dell'art. 242 del D.Lgs 152/06;
- comunicazione alla Committente, alla Direzione Lavori e all'organo di controllo;
- verifica del corretto funzionamento degli strumenti di analisi utilizzati e ripetizione della misura.

Qualora i parametri misurati risultassero inferiori o al limite di legge o ai valori di AO o si dimostrasse che il superamento non è imputabile alle lavorazioni che sono state eseguite, l'anomalia può ritenersi risolta.

9.4 **CONCLUSIONI**

Per quanto riguarda le attività di monitoraggio del suolo questa è finalizzata alla verifica della qualità dei suoli in corrispondenza delle aree di cantiere in termini di caratteristiche chimiche, fisiche ed agronomiche. Il monitoraggio si svolge attraverso la realizzazione di profili pedologici e successivo campionamento per le analisi in laboratorio.

Tematica	Punti	Fase	Frequenza e durata	Metodologia	Quantità misure per punto
Suala	SUO_01 SUO_02 SUO_03	AO	Una volta nei 6 mesi antecedenti l'inizio dei lavori	Profili pedologici Campionamento	1
Suoio	Suolo SUO_03 SUO_04 SUO_05 SUO_06	PO	Una volta nell'anno successivo alla fine dei lavori	ed analisi di laboratorio	1

Tabella 18 Quadro sinottico PMA componente suolo

Piano di Monitoraggio Ambientale – Reazione Generale

10 RUMORE

10.1 FINALITÀ ED ARTICOLAZIONE TEMPORALE DEL MONITORAGGIO

10.1.1 OBIETTIVI DEL MONITORAGGIO

L'obiettivo del monitoraggio della componente Rumore è quello di verificare in maniera approfondita e sistematica la prevenzione, l'individuazione e il controllo dei possibili effetti negativi prodotti sull'ambiente e, più specificatamente, sul clima acustico caratterizzante l'ambito di studio dell'opera in progetto sia in fase di esercizio che di realizzazione.

Lo scopo principale è quindi quello di monitorare il grado di compatibilità dell'opera stessa intercettando sia gli eventuali impatti acustici negativi e le relative cause al fine di adottare opportune misure di riorientamento, sia gli effetti positivi segnalando le azioni meritevoli di ulteriore impulso.

Nello specifico gli obiettivi del monitoraggio acustico possono essere così riassunti:

- documentare la situazione attuale al fine di verificare la naturale dinamica dei fenomeni ambientali in atto;
- individuare le eventuali anomalie ambientali che si manifestano in fase di esercizio dell'infrastruttura stradale in modo da attivare tempestivamente le opportune misure di mitigazione;
- accertare la reale efficacia delle soluzioni individuate nell'ambito dello Studio acustico quali interventi di mitigazione acustica;
- verificare le modifiche sul clima acustico indotto dal traffico veicolare sull'infrastruttura stradale di progetto, distinguendole dalle alterazioni indotte da altri fattori naturali o legati alle attività antropiche del territorio;
- individuare e valutare gli effetti sul clima acustico indotti dalle attività di cantiere connesse alla realizzazione dell'opera in progetto;
- accertare la reale efficacia delle soluzioni mitigative individuate per la fase di Corso d'Opera al fine di contenere la rumorosità indotta dalle azioni di cantiere;
- fornire agli Enti di controllo competenti tutti gli elementi per la verifica sia della corretta esecuzione delle procedure di monitoraggio sia degli esiti delle indagini effettuate.

10.1.2 RIFERIMENTI NORMATIVI

Per quanto attiene il monitoraggio acustico, il quadro normativo di riferimento è costituito da:

- DM 16.03.1998 "Tecniche di rilevamento e misurazione dell'inquinamento acustico";
- DPR 142/2004 "Disposizioni per il contenimento e la prevenzione dell'inquinamento acustico derivante dal traffico veicolare, a norma dell'articolo 11 della L.447/95";
- PCCA dei Comuni territorialmente competenti.

Per quanto concerne il DM 16.03.1998, questo individua le prescrizioni in merito alle metodiche da adottare per le fasi di rilevamento in termini di strumentazione, posizionamento del sistema fonometrico e tipologia della misurazione.

Il DPR n.142 (pubblicato nella Gazz. Uff. 1° giugno 2004, n.127) stabilisce le norme per la prevenzione ed il contenimento dell'inquinamento da rumore avente origine dall'esercizio delle infrastrutture stradali. Alle infrastrutture stradali, così come definite dall.art.2 del decreto legislativo n.285 del 1992, non si applica il disposto degli art. 2, 6, e 7 del DPCM 14/11/1997, ovvero non valgono i limiti di immissione stabiliti dalla Zonizzazione Acustica (Tab. C del DPCM 14/11/1997), ma sono previste ampie fasce di pertinenza (strisce di terreno per ciascun lato dell'infrastruttura misurate a partire dal confine stradale), diversificate in base

Piano di Monitoraggio Ambientale – Reazione Generale

al periodo di realizzazione e alle caratteristiche delle infrastrutture, in cui devono essere verificati i limiti di immissione stabiliti dal presente decreto. Solo al di fuori di tali fasce di pertinenza deve essere verificato il rispetto dei valori stabiliti dalla Zonizzazione Acustica del territorio comunale.

Con l'entrata in vigore del DPR n.142 per una strada di nuova realizzazione del tipo di quella oggetto di studio, classificata Cb Extraurbana secondaria, sono previsti limiti acustici individuati nella seguente tabella:

TIPO DI STRADA	Ampiezza fascia di pertinenza	Scuole, ospedali, case di cura e di riposo		Altri Ricettori	
(secondo codice della strada)	acustica (m)	Diurno dB(A)	Notturno dB(A)	Diurno dB(A)	Notturno dB(A)
Cb – Extraurbana Se-	100 (fascia A)	50	40	70	60
condaria	50 (fascia B)	30	40	65	55

Tabella 19 Valori limite stabiliti per strade di nuova realizzazione e strade esistenti o assimilabili a esistenti

Nella individuazione delle metodiche di monitoraggio per il rumore stradale si è fatto riferimento, oltre che ai suddetti atti normativi, anche alla seguente documentazione di ISPRA:

- Linee guida per il monitoraggio del rumore di origine stradale;
- Linee guida per il monitoraggio del rumore derivante dai cantieri di grandi opere.

Nella seguente tabella si riportano i limiti acustici individuati dal quadro normativo di riferimento.

10.2 MONITORAGGIO DEL RUMORE STRADALE

10.2.1 LOCALIZZAZIONE DELLE AREE DI MONITORAGGIO

Le postazioni per il monitoraggio del rumore stradale attraverso misure in continuo settimanali sono localizzate in prossimità dei ricettori più esposti alla sorgente principale.

Con il presente monitoraggio di traffico si vuole sia verificare gli impatti acustici della nuova viabilità sui ricettori più esposti che andare a monitorare la situazione AO e PO sulla attuale SS4 Salaria. Resta inteso che qualora dalle indagini condotte risultasse necessario espandere l'attività di monitoraggio agli altri ricettori, il piano di monitoraggio verrà integrato in fasi successive in funzione delle priorità.

Punti	Ricettore	Coordinata X	Coordinata Y
RUMS_01	Ricettore non censito sulla SS4 Salaria	2386205	4735698
RUMS_02	Ricettore non censito sulla SS4 Salaria	2387761	4735859
RUMS_03	R036	2390064	4736903

Tabella 20 Punti di monitoraggio del rumore stradale

Per la localizzazione dei punti di monitoraggio è possibile fare riferimento all'elaborato grafico T00M000M0APU01 A "Planimetria di localizzazione punti di monitoraggio".

Piano di Monitoraggio Ambientale – Reazione Generale

10.2.2 METODOLOGIA E STRUMENTAZIONE

10.2.2.1 TIPOLOGIA DI MONITORAGGIO

Il monitoraggio acustico finalizzato alla verifica dei livelli di rumore indotti dal traffico veicolare consiste in una serie di rilevamenti fonometrici in specifici punti individuati sulla base delle risultanze della modellazione acustica.

In corrispondenza dei ricettori per i quali si prevede il monitoraggio, la campagna fonometrica consiste in un rilievo settimanale in ambiente esterno.

Per quanto concerne la strumentazione, questa deve essere conforme alle indicazioni di cui all'art. 2 del DM 16.03.1998, ovvero di classe 1 della norma CEI EN 61672. I filtri ed i microfoni utilizzati devono essere conformi alle specifiche indicate dalle norme CEI EN 61260 e 61094. I calibratori devono essere conformi alla norma CEI EN 60942 per la classe 1.

10.2.2.2 PARAMETRI DA MONITORARE

Per quanto concerne i parametri da monitorare mediante strumentazione fonometrica questi sono:

- Time history del Leq(A) con frequenza di campionamento pari a 1 minuto;
- Leq(A) orari;
- Leq(A) nel periodo diurno (6:00-22:00) su base giornaliera;
- Leg(A) nel periodo notturno (22:00-6:00) su base giornaliera;
- Leq(A) nel periodo diurno e notturno medio settimanale;
- Livelli acustici percentili (L99, L95, L90, L50, L10, L1) su base settimanale;
- Parametri meteorologici (temperatura, precipitazioni atmosferiche, velocità e direzione del vento).

10.2.2.3 METODICHE DI MONITORAGGIO

Il rilievo è effettuato mediante fonometro integratore di classe I dotato di certificato di taratura conforme alle normative vigenti, installato su apposito "box" ovvero postazioni mobili tipo "automezzi attrezzati". Per quanto riguarda i filtri ed i microfoni, questi dovranno essere conformi alle Norme EN 61260 ed EN 61094-1, 61094-2, 61094-3 e 61094-4.

Preliminarmente all'attività di misura è opportuna la caratterizzazione della postazione di misura (coordinate geografiche, Comune, toponimo, indirizzo, tipologia e numero piani del ricettore, documentazione fotografica) e del territorio circostante (destinazione d'uso, presenza di ostacoli e/o di vegetazione, sorgente sonora principale ed eventuale presenza di altre sorgenti inquinanti, stradali e/o ferroviarie e/o puntuali).

Prima e dopo ogni ciclo di misurazioni, la strumentazione dovrà essere calibrata, con le modalità di cui al D.M. 16.03.1998, utilizzando a tale proposito idonea strumentazione (conforme alla Norme IEC 942 - Classe I), il cui grado di precisione non risulti inferiore a quello del fonometro/analizzatore stesso. La differenza massima tollerabile affinché la misura possa essere ritenuta valida a valle del processo di calibrazione è di 0,5 dB.

Il posizionamento del fonometro deve essere conforme a quanto previsto dal DM 16.03.1998, ovvero ad una distanza di 1 metro dalla facciata dell'edificio più esposto ai livelli di rumore più elevati e ad una quota rispetto al piano campagna di 4 metri. Qualora l'edificio sia caratterizzato da più livelli, compatibilmente con le caratteristiche fisiche dell'edificio e la disponibilità di accesso, il microfono dovrà essere preferibilmente posizionato al piano superiore.

Piano di Monitoraggio Ambientale – Reazione Generale

In accordo a quanto previsto dal DM 16.03.1998, le misure devono essere eseguite in assenza di pioggia, neve o nebbia e in condizioni anemometriche caratterizzate da una velocità inferiore ai 5 m/s.

La misura è tipo in continuo per una durata di misurazione di una settimana (7 giorni).

Rilievi parametri meteo

Durante l'intero periodo di misura devono essere rilevati contemporaneamente i dati meteo mediante specifica stazione per il monitoraggio, l'archiviazione e la visualizzazione dei dati ambientali comprensivo di dispositivo per il monitoraggio.

I dati meteorologici oggetto di monitoraggio sono:

- velocità e la direzione del vento;
- temperatura dell'aria;
- l'umidità relativa;
- la pressione atmosferica;
- le precipitazioni.

Le principali caratteristiche prestazionali dei sensori sono:

- Vento:
 - Velocità con precisione ± 3%;
 - o Direzione con precisione ± 3%;
- Precipitazioni: Altezza minima mm 0,01 con precisione ± 5%;
- Temperatura: con precisione ± 0,3°C a 20°C;
- Pressione: con precisione 1 hPa fino a 60°C;
- Umidità relativa: con precisione ± 3% per umidità relativa fino a 90% e ± 5% con umidità relati- va da 90% a 100%.

L'installazione dei sensori di rilevamento è in corrispondenza delle postazioni di monitoraggio acustico. Questa deve essere posizionata ad almeno 5 m da elementi interferenti in grado di produrre turbolenze e in una posizione tale che possa ricevere vento da tutte le direzioni. L'altezza dal piano campagna deve essere superiore a 3 m.

Per ogni ciclo di misura verrà predisposto un report contenente i dati di inquadramento territoriale che permettono l'esatta localizzazione sul territorio dei punti di misura, i parametri acustici, meteo e di traffico rilevati, i valori limite propri secondo il quadro normativo di riferimento, i certificati di taratura della strumentazione e il nominativo del Tecnico Competente in Acustica Ambientale ai sensi della L.447/95 che ha effettuato i rilievi.

Nello specifico quindi ciascun report contiene:

- Coordinate geografiche;
- Stralcio planimetrico e ortofoto con localizzazione del punto di misura rispetto l'asse stradale;
- Caratteristiche di posizionamento del microfono;
- Documentazione fotografica relativa al posizionamento della strumentazione;
- Caratteristiche della strumentazione fonometrica utilizzata;
- Comune territorialmente competente;
- Valori limite dei livelli acustici secondo il quadro normativo;
- Data inizio e fine misura;
- Esito della calibrazione della strumentazione;
- Parametri acustici monitorati;
- Parametri meteo rilevati:

Piano di Monitoraggio Ambientale – Reazione Generale

- Certificati di taratura della strumentazione;
- Firma del Tecnico Competente.

10.2.3 TEMPI E FREQUENZA DEL MONITORAGGIO

Le attività saranno distinte tra le fasi:

- Ante Operam (AO);
- Corso d'opera (CO);
- Post Operam (PO).

Il monitoraggio del rumore stradale allo stato Ante Operam sarà eseguito con un rilevo da effettuarsi nei 6 mesi prima dell'inizio dei lavori.

Poiché le viabilità interessate dal monitoraggio del traffico saranno utilizzate anche dai mezzi di cantiere, si prevede di estendere il monitoraggio anche alla fase CO con rilievi trimestrali per la durata dei lavori.

Il monitoraggio del rumore stradale allo stato Post Operam si attiva, quindi, successivamente all'entrata in esercizio dell'infrastruttura stradale e ha una durata di un anno. Nei 12 mesi successivi all'entrata in esercizio si prevede 1 misura fonometrica settimanale ogni trimestre per un totale di 4 rilevamenti.

10.3 MONITORAGGIO DEL RUMORE INDOTTO DAL CANTIERE

10.3.1 LOCALIZZAZIONE DELLE AREE DI MONITORAGGIO

I punti sono stati individuati sulla scorta degli obiettivi che il monitoraggio intende perseguire e delle attività oggetto di verifica.

La scelta dei punti è determinata anche in funzione della localizzazione dei ricettori potenzialmente coinvolti dal rumore di cantiere sulla base delle aree di lavoro.

Nella tabella seguente si riporta la localizzazione dei punti individuati. In particolare, il punto di misura in corrispondenza del ricettore R041 è stato inserito trattandosi di un ricettore sensibile.

Punti	Ricettore	Coordinata X	Coordinata Y
RUC_01	R002	2387702	4736328
RUC_02	R033	2390084	4736812
RUC_03	R041*	2390551	4737126

^{*}Ricettore sensibile

Tabella 21 Punti di monitoraggio del rumore di cantiere

Per la localizzazione dei punti di monitoraggio è possibile fare riferimento all'elaborato grafico T00M000M0APU01_A "Planimetria di localizzazione punti di monitoraggio".

10.3.2 METODOLOGIA E STRUMENTAZIONE

10.3.2.1 TIPOLOGIA DI MONITORAGGIO

L'obiettivo del monitoraggio di cantiere è quello di verificare i livelli acustici durante la fase di Corso d'Opera indotti dalle attività di cantiere in prossimità dei ricettori più esposti. L'attività consiste pertanto in una serie di misure fonometriche programmate durante l'intero periodo di cantiere in modo da:

• rendere alta la probabilità che il monitoraggio individui le situazioni maggiormente impattante dal punto di vista acustico;

Piano di Monitoraggio Ambientale – Reazione Generale

• consentire di valutare l'emissione sonora del solo cantiere, separandola da quella delle altre sorgenti presenti nella zona.

Ne consegue come le misure fonometriche sono finalizzate al rilevamento dei livelli acustici indotti dalle attività di cantiere rumorose generate dai mezzi di cantiere presenti.

10.3.2.2 PARAMETRI DA MONITORARE

Per quanto concerne i parametri da monitorare mediante strumentazione fonometrica questi sono:

- Time history del Leq(A);
- Leq(A), Lmax, Lmin elivelli acustici percentili (L99, L95, L90, L50, L10, L1);
- Leq(A) nel periodo diurno (6:00-22:00);
- Leq(A) nel periodo notturno (22:00-6:00);
- Analisi spettrale in terzi di ottava;
- Parametri meteorologici.

10.3.2.3 METODICHE DI MONITORAGGIO

Per quanto concerne le metodiche di monitoraggio queste risultano le stesse considerate per il monitoraggio del rumore stradale.

10.3.3 TEMPI E FREQUENZA DEL MONITORAGGIO

Il monitoraggio del cantiere si esplica nelle fasi di Corso d'Opera, ovvero per tutto il periodo di realizzazione dell'opera, tenendo conto del cronoprogramma lavori.

In fase di Corso d'Opera, per ciascun punto di misura si prevedono misure di 24 ore con frequenza trimestrale e comunque in corrispondenza delle attività di cantiere più critiche.

Nella fase di Ante Operam si esegue una misura di 24 h per ciascun punto prima dell'inizio del cantiere.

MANDANTE

Piano di Monitoraggio Ambientale – Reazione Generale

10.4 CONCLUSIONI

Per quanto riguarda le attività di monitoraggio di rumore queste sono finalizzate alla verifica del rumore stradale e del rumore indotto dalle attività di realizzazione dell'opera.

Il monitoraggio si svolge attraverso misure fonometriche con strumentazione di classe I secondo quanto previsto dalla normativa di riferimento. Le metodiche di monitoraggio sono funzione della tipologia di indagine.

Tematica	Punti	Fase	Frequenza e durata	Metodologia	Quantità misure per punto
		AO	1 misura settimanale in ambiente esterno ogni trimestre per i sei mesi antecedenti all'inizio dei lavori		2
Rumore stradale	<u> </u>		1 misura settimanale in ambiente esterno ogni trimestre durante la costruzione		16
		PO	1 misura settimanale in ambiente esterno ogni trimestre per l'anno successivo all'entrata in esercizio	Misure fonometriche Rilievi parametri meteo mediante	4
Rumore	RUC_01 RUC_02 RUC_03 RUC_04	AO	1 misura di 24 h prima dell'inizio dei lavori per punto	stazione	1
Rumore _ indotto dal cantiere	RUC_01 RUC_02 RUC_03 RUC_04	СО	1 misura di 24 h ogni trimestre durante la costruzione		16

Tabella 22 Quadro sinottico PMA componente rumore

Piano di Monitoraggio Ambientale – Reazione Generale

11 VIBRAZIONI

11.1 FINALITÀ ED ARTICOLAZIONE TEMPORALE DEL MONITORAGGIO

11.1.1 OBIETTIVI DEL MONITORAGGIO

L'obiettivo del monitoraggio della componente "Vibrazioni" intende verificare in maniera approfondita e sistematica la prevenzione, l'individuazione e il controllo dei possibili effetti negativi prodotti sui ricettori contermini l'infrastruttura oggetto di studio indotti dalle attività di realizzazione dell'opera. Le lavorazioni e i macchinari necessari per la realizzazione delle opere costituenti il progetto oggetto di studio, determinano la generazione di vibrazioni durante le fasi di costruzione. In tal senso il monitoraggio intende quindi verificare i livelli vibrazionali indotti dalle attività di cantiere sui ricettori posti nelle vicinanze delle diverse aree di cantiere e quindi valutare l'eventuale disturbo e le connesse azioni per il contenimento degli impatti vibrazionali. Nello specifico sono stati considerati quali cantieri più critici quelli riferiti alla realizzazione del viadotto e delle gallerie, certamente caratterizzati da maggiori emissioni vibrazionali, e le aree di lavoro limitrofe a ricettori abitativi.

11.1.1 RIFERIMENTI NORMATIVI

Nello svolgimento delle attività di monitoraggio, dovranno essere considerati i seguenti riferimenti normativi, laddove nello specifico applicabili:

- ISO 4866;
- ISO 2631;
- DIN 4150;
- IEC 184, IEC 222 e IEC 225;
- UNI 9614.

Di seguito i valori di riferimento individuati dalla normativa tecnica di riferimento (UNI 9614:2017), essendo il monitoraggio finalizzato esclusivamente alla valutazione del disturbo sugli edifici e non al danno.

Ricettore – destinazione d'uso	Accelerazione Vsor [mm/s²]
Ambienti ad uso abitativo (diurno)	7,2 mm/s ²
Ambienti ad uso abitativo (notturno)	3,6 mm/s ²
Ambienti ad uso abitativo (diurno - festivo)	5,4 mm/s ²
Luoghi lavorativi	14,0 mm/s ²
Ospedali, case di cura ed affini	2 mm/s ²
Scuole	3,6 mm/s ²
Note:	

Vsor: accelerazione ponderata massima statistica della sorgente come definita al punto 8.6 della norma UNI 9614:2017

Tabella 23 Valori di riferimento individuati dalla normativa tecnica UNI 9614 (versione 2017)

Piano di Monitoraggio Ambientale – Reazione Generale

11.2 MONITORAGGIO DELLE VIBRAZIONI

11.2.1 LOCALIZZAZIONE DELLE AREE DI MONITORAGGIO

I punti sono individuati sulla scorta degli obiettivi che il monitoraggio intende perseguire e delle attività oggetto di verifica, ovvero quella di valutare il contributo vibrazionale indotto dai mezzi e lavorazioni sui ricettori posti nelle immediate vicinanze alle aree di cantiere.

Ne consegue pertanto come l'individuazione dei punti derivi da un'analisi territoriale rispetto all'asse infrastrutturale di progetto. Per ciascun punto individuato si riporta il ricettore all'interno del quale si prevedono le attività di monitoraggio.

Punti	Ricettore	Coordinata X	Coordinata Y
VIB_01	R002	2387702	4736328
VIB_02	R033	2390084	4736812

Tabella 24 Punti di monitoraggio delle vibrazioni

Il punto VIB 01 avrà la funzione di monitorare le vibrazioni indotte sul ricettore più prossimo dalla realizzazione del viadotto, in particolare dalla costruzione delle fondazioni delle pile. Il punto VIB 02 andrà a monitorare gli effetti vibrazionali dovuti alla realizzazione del nuovo svincolo, in particolare durante la fase di compattazione, ed al transito dei mezzi di cantiere.

Per la localizzazione dei punti di monitoraggio è possibile fare riferimento all'elaborato grafico T00M000M0APU01_A "Planimetria di localizzazione punti di monitoraggio".

11.2.2 METODOLOGIA E STRUMENTAZIONE

11.2.2.1 TIPOLOGIA DI MONITORAGGIO

Il monitoraggio è finalizzato alla verifica dei livelli vibrazionali indotti dalle attività di cantiere rispetto al tema del disturbo, ovvero alla valutazione delle vibrazioni in termini di accelerazione e il confronto con i valori di riferimento indicati dalla UNI 9614:2017.

Per quanto riguarda le attività di cantiere la suddetta norma individua specifiche metodiche nell'appendice A punto A.4 "Vibrazioni prodotte da attività di cantiere".

11.2.2.2 PARAMETRI DA MONITORARE

I parametri da rilevare per ciascuna misura sono:

- Accelerazione complessiva (aw) in mm/s2 lungo i tre assi di propagazione (x,y e z);
- Time history e spettri lungo i tre assi di propagazione nel range di frequenza 1-80 Hz.

11.2.2.3 METODICHE DI MONITORAGGIO

Rilievo vibrazione in continuo

I rilievi dovranno essere effettuati con strumentazione rispondente alle Norme IEC 184, IEC 222 e IEC225, così come indicato nella Norma UNI 9614, che è tipicamente costituita da accelerometri triassiali (ovvero monoassiali, nel numero di 3), analizzatori di spettro in tempo reale, cavi schermati per la trasmissione del segnale, oltre che dal software per l'acquisizione dei dati; nel dettaglio, gli accelerometri dovranno essere ottemperanti alla Norme ISO 2631/1 e 2 ed UNI 9614:2017.

Piano di Monitoraggio Ambientale – Reazione Generale

La catena complessiva di misura dovrà essere corredata da Certificato di Taratura, non anteriore a 2 anni dalla misura, rilasciato da laboratorio qualificato (laboratori accreditati S.I.T.), così come richiesto dalle Norme UNI ISO 5347; è inoltre ammessa la taratura indiretta della strumentazione, che consiste nel confronto tra le indicazioni del sensore da tarare/calibrare ed un sensore campione munito di certificato SIT. All'inizio ed alla fine di ogni rilievo, dovrà essere eseguita la calibrazione della catena di misura utilizzando a tale proposito degli appositi calibratori tarati.

Nel corso delle misurazioni dei livelli di vibrazione, è inoltre compresa la caratterizzazione della postazione di misura (coordinate geografiche, Comune, toponimo, indirizzo, tipologia e numero piani del ricettore, presenza di eventuali lesioni nell'edificio, documentazione fotografica) e del territorio circostante (destinazione d'uso e tipologia dell'edificato). Nel corso della misura, in contemporanea lungo i 3 assi di propagazione x, y, z, dovranno essere rilevati l'accelerazione complessiva (aw) espressa in mm/s² per la successiva determinazione del valore di massima accelerazione ponderata. Inoltre, dovranno essere indicati sia i valori riferiti alla specifica sorgente che a quelle residue caratterizzanti il sito di indagine.

La postazione di misurazione deve essere scelta sulla base delle reali condizioni di utilizzo degli ambienti da parte degli abitanti in quanto la misura è finalizzata alla valutazione del disturbo alla persona. Il montaggio degli accelerometri deve garantire la trasmissione rigida del moto dal sistema vibrante all'accelerometro almeno nella banda 0-500 Hz mediante i diversi sistemi previsti in funzione del tipo di elemento di appoggio.

Per ogni ciclo di misura verrà predisposto un report contenente i dati di inquadramento territoriale che permettono l'esatta localizzazione sul territorio dei punti di misura, i parametri vibrazionali, meteo, i valori limite propri secondo il quadro normativo di riferimento e i certificati di taratura della strumentazione.

Nello specifico quindi ciascun report contiene:

- Coordinate geografiche;
- Stralcio planimetrico e ortofoto con localizzazione del punto di misura rispetto l'asse stradale;
- Caratteristiche di posizionamento dell'accelerometro;
- Documentazione fotografica relativa al posizionamento della strumentazione;
- Caratteristiche della strumentazione utilizzata;
- Comune territorialmente competente;
- Valori limite dei livelli secondo la normativa di riferimento;
- Data inizio e fine misura;
- Parametri monitorati;
- Certificati di taratura della strumentazione.

11.2.3 TEMPI E FREQUENZA DEL MONITORAGGIO

Stante nel caso specifico di una infrastruttura viaria la trascurabilità dell'impatto vibrazionale connessa alla fase di esercizio, le attività di monitoraggio si riferiscono esclusivamente alla fase di Corso d'Opera (CO).

La cadenza dei rilievi di CO sarà trimestrale; l'esecuzione degli stessi dovrà essere stabilita con esattezza in funzione del cronoprogramma esecutivo delle attività, concordando lo svolgimento delle misurazioni preventivamente con la DL. In questa sede infatti si ipotizza, cautelativamente, che l'indagine sia effettuata con cadenza trimestrale su tutti i punti individuati; successivamente, in fase di cantiere, si potrà valutare l'opportunità, pertanto, di indagare solo quelli di volta in volta effettivamente interessati dalle lavorazioni.

Piano di Monitoraggio Ambientale – Reazione Generale

11.3 CONCLUSIONI

L'obiettivo del monitoraggio delle vibrazioni è quello di verificare i livelli vibrazionali indotti dalle attività di cantiere, sui ricettori residenziali potenzialmente coinvolti.

Tematica	Punti	Fase	Frequenza e durata	Metodologia	Quantità misure per punto
Vibrazioni	VIB_01	- CO	1 misura di 24 h ogni trimestre durante la costruzione	Rilievi vibrazionali	16
	VIB_02			secondo UNI 9614:2017	16

Tabella 25 Quadro sinottico PMA componente vibrazioni

Piano di Monitoraggio Ambientale – Reazione Generale

12 VEGETAZIONE

12.1 FINALITÀ ED ARTICOLAZIONE TEMPORALE DEL MONITORAGGIO

12.1.1 OBIETTIVI DEL MONITORAGGIO

I monitoraggi sugli effetti diretti determinati dall'opera che risultano rilevanti per la componente Vegetazione sono:

- monitoraggio delle dinamiche di copertura del suolo e della vegetazione reale in relazione alla futura configurazione territoriale derivante dalla sottrazione di suolo nei tratti di nuova realizzazione;
- monitoraggio dell'efficacia degli interventi a verde e dei ripristini di vegetazione eseguiti.

Il monitoraggio riferito ha come scopo primo fondamentale quello di valutare lo stato quali-quantitativo della vegetazione e, di conseguenza, delle specie vegetazionali e floristiche che potrebbero essere potenzialmente interferite dall'esercizio della nuova infrastruttura stradale in progetto.

Altro obiettivo del monitoraggio ambientale è la verifica della corretta realizzazione ed evoluzione degli interventi delle opere a verde previsti dal progetto e del ripristino delle aree di cantiere.

Infatti, qualora a valle di specifiche indagini il livello di attecchimento raggiunto dagli impianti vegetazionali individuati non dovesse dare i risultati previsti, si potranno pianificare azioni per contenere gli effetti negativi o ripianificare gli interventi.

La verifica dell'efficienza degli interventi di inserimento ambientale ha lo scopo di valutare nel medio periodo il livello di attecchimento delle piantumazioni previste, sia in relazione all'affermazione dell'impianto (tasso di mortalità), sia allo sviluppo dell'apparato epigeo delle specie, offrendo indicazioni per eventuali interventi di reintegro delle fallanze.

12.1.2 RIFERIMENTI NORMATIVI

Il quadro normativo di riferimento è costituito da:

- Direttiva Habitat 92/43/CEE del Consiglio del 21/05/1992 relativa alla conservazione degli habitat naturali e seminaturali e della flora e della fauna selvatiche. GU-CE n.206 del 22/07/1992;
- Direttiva Uccelli 2009/147/CE del Parlamento europeo e del Consiglio del 30/11/2009 concernente la conservazione degli uccelli selvatici;
- Regolamento (CE) N.865/2006 della Commissione del 4 maggio 2006 e s.m.i. esso definisce le modalità di applicazione del regolamento (CE) n. 338/97 del Consiglio relativo alla protezione di specie della flora e della fauna selvatiche mediante il controllo del loro commercio.

Nell'individuazione delle metodiche di monitoraggio si è fatto riferimento, oltre che ai suddetti atti normativi, anche alla seguente documentazione:

- Linee guida per la predisposizione del PMA delle opere soggette a procedure di VIA. Indirizzi metodologici specifici: Biodiversità (Vegetazione, Flora e Fauna) – Capitolo 6.4, Rev. 1 del 13/03/2015 (MATTM);
- Linee guida ISPRA su interventi di compensazione e mitigazione (Vari);
- Rapporto ISPRA 141/2016. Manuali per il monitoraggio di specie e habitat di interesse comunitario (Dir. 92/43/CEE) in Italia: specie di animali;
- ANPA, 2000. Selezione di indicatori ambientali per i temi relativi alla biosfera, RTI CTN CON 1/2000;

// Sintagma

Piano di Monitoraggio Ambientale – Reazione Generale

- D.P.R. 357 dell'8 settembre 1997 (con successive modifiche ed aggiornamenti, in particolare il D.P.R.120/2003) "Regolamento recante l'attuazione della Direttiva 92/43/CEE relativa alla conservazione degli habitat naturali e seminaturali, nonché della flora e della fauna selvatiche". Esso recepisce la Direttiva Habitat, compresi gli allegati I, II e IV della Direttiva, per cui gli habitat, le specie animali e vegetali sono oggetto delle medesime forme di tutela anche in Italia;
- Legge 503/1981 "Ratifica ed esecuzione della convenzione relativa alla conservazione della vita selvatica e dell'ambiente naturale in Europa, con allegati, adottata a Berna il 19 settembre 1979";
- Legge 157/1992 "Norme per la protezione della fauna selvatica omeoterma e per il prelievo venatorio". Essa è stata modificata dalla L. 221/2001 (Integrazioni della L. 157/192).

12.2 MONITORAGGIO DELLA VEGETAZIONE

12.2.1 LOCALIZZAZIONE DELLE AREE DI MONITORAGGIO

Gli ambiti di indagine per la componente in esame sono stati individuati nelle aree a maggiore valenza ambientale e nelle aree oggetto di ripristino e interventi di OOVV.

Sono state definite 3 aree rappresentative degli habitat individuati nella zona attorno al tracciato in progetto, come definito nella "Carta della vegetazione reale" T00-IA07-AMB-CT01-A.

Il monitoraggio sarà incentrato a valutare più approfonditamente:

• la verifica della qualità e del grado di conservazione degli habitat di interesse naturalistico

Punti	Habitat individuati	Tipologico Rilievo	
VEG_01	Foreste di Castanea	Floristico,	
	Sativa	fitosociologico	
VEG_02	Boschi orientali di quercia bianca (91AA)	Floristico, fitosociologico	
VEG_03	Foreste alluvionali di Alnus glutinosa e Fraxinus excelsior (91E0)	Floristico, fitosociologico	

Tabella 26 Punti di monitoraggio della vegetazione

Per la localizzazione dei punti di monitoraggio è possibile fare riferimento all'elaborato grafico T00MO00MOAPU01_A "Planimetria di localizzazione punti di monitoraggio".

12.2.2 METODOLOGIA E STRUMENTAZIONE

12.2.2.1 TIPOLOGIA DI MONITORAGGIO

Per ogni punto individuato come rappresentativo e da monitorare si effettueranno due tipologie di rilievo:

- un rilievo floristico, necessario a conoscere lo stato di fatto della flora;
- una indagine mirata al censimento delle comunità vegetali attraverso rilievi fitosociologici con il metodo Braun-Blanquet.

Il rilievo fitosociologico (metodo di valutazione quali-quantitativa) si differenzia dal rilievo strettamente floristico (metodo qualitativo) perché, accanto ad ogni specie, si annotano i valori di "abbondanza-

Piano di Monitoraggio Ambientale – Reazione Generale

dominanza". È necessario sottolineare che tali rilievi possono essere eseguiti solo all'interno di fitocenosi che conservino almeno parte della loro struttura originaria. Nell'area in esame quindi tali rilievi saranno limitati alle stazioni fisionomicamente e strutturalmente delineate.

12.2.2.2 PARAMETRI DA MONITORARE

Per ogni punto di campionamento si procederà secondo le seguenti indicazioni:

RILIEVO FLORISTICO:

Il monitoraggio dovrà prevedere le seguenti azioni:

- Rilievi su campo e raccolta delle specie;
- Determinazione delle specie con l'ausilio degli opportuni strumenti per l'identificazione: microscopio ottico e guide analitiche (Flora d'Italia di S. Pignatti e guide aggiornate per la determinazione delle specie endemiche);
- Stesura di un elenco floristico nel quale vengono riportate:
 - o le specie totali rilevate suddivise per famiglie;
 - o la forma biologica;
 - o la corologia;
 - l'habitat;
 - o lo status di conservazione delle specie endemiche, rare e minacciate;
- Realizzazione della cartografia tematica circa la distribuzione reale e potenziale della vegetazione.

• IL RILIEVO FITOSOCIOLOGICO: fase analitica

Nell'ambito delle predefinite aree di indagine le stazioni di rilevamento saranno identificate sulla base dei caratteri fisionomici indicatori dell'unitarietà strutturale della vegetazione considerata. Nella superficie campione (stazione di rilevamento), circoscritta nel perimetro di un quadrato di almeno 10x10 m di lato, si effettua quindi il censimento delle entità floristiche presenti, che viene riportato sulla relativa scheda di rilevamento, unitamente alla percentuale di terreno coperta da ciascuna specie.

Per la stima del grado di copertura della singola specie si utilizza la scala di abbondanza dominanza di Braun-Blanquet (1928);

o isolati	meno dell'1%	tra 1 e 5%	tra 5 e 25%	tra 25 e 50%	50 e 75%	più del 75%
Individui rari	Ricoprenti	Ricoprenti	Ricoprenti	Ricoprenti	Ricoprenti tra	Ricoprenti

Tabella 27 Scala di abbondanza di Braun-Blaquet (1928)

La mosaicità del paesaggio in senso ecosistemico condizionerà la collocazione delle stazioni di rilevamento rispetto al tracciato e rispetto alle fasce degli itinerari floristici. In particolare:

- laddove l'omogeneità fisionomico-strutturale della vegetazione lo consentirà, le stazioni di rilevamento devono essere estese a comprendere l'intera fitocenosi;
- quando la formazione vegetale presentasse una limitata estensione, la stazione di rilevamento, unica, deve essere posta a cavallo fra la fascia prossimale e distale del percorso floristico o di una di esse;
- quando la formazione fosse sufficientemente estesa ed omogenea, i rilievi dovrebbero essere eseguiti in due stazioni distinte, insistenti ciascuna su una delle due fasce (prossimale e distale) dell'itinerario floristico.

Piano di Monitoraggio Ambientale – Reazione Generale

Le stazioni unitarie scelte saranno posizionate su di una mappa in scala 1:2.000 e specificate attraverso l'indicazione delle coordinate geografiche. Sarà prodotta inoltre idonea documentazione ortofotografica i cui coni visuali saranno riportati in cartografia.

Ulteriori parametri da monitorare dovranno essere: i parametri stazionali (altezza, esposizione, inclinazione), morfometrici (altezza degli alberi, diametro) con breve cenno sulle caratteristiche pedologiche; e informazioni che completano la caratterizzazione della stazione.

Per la misura della superficie rilevata si utilizzerà un doppio decametro e per le misure morfometriche (altezza degli arbusti e diametro degli alberi) una fettuccia metrica; l'altezza degli alberi sarà determinata facendo ricorso al metodo comunemente definito "albero metro".

Nel corso dell'indagine l'area in esame deve essere delimitata temporaneamente da una fettuccia metrica; ove possibile si devono marcare con vernice alcuni elementi-confine (alberi, pali della luce, ecc.) che permettano di individuare nuovamente l'area nella fase di Post Operam. Nel caso di vegetazione pluristratificata, le specie dei diversi strati vanno rilevate separatamente (strato arboreo, arbustivo ed erbaceo).

RILIEVO FITOSOCIOLOGICO: fase sintetica

La tabella ricavata dall'insieme dei rilievi fitosociologici viene riordinata cercando di raggruppare i rilievi più omogenei e rappresentativi di particolari aspetti della vegetazione studiata per ottenere una tabella più strutturata organizzata classificando gli aggruppamenti vegetali² sulla base di associazioni vegetali di riferimento.

Le dimensioni e la forma dei rilievi devono descrivere una situazione omogenea per cui secondo i casi, i rilievi avranno forma lineare, puntuale o areale, e limiti probabilmente irregolari, che ricalcano i contorni spesso sinuosi della microeterogeneità stazionale. La superficie complessiva del rilievo non sarà stabilita a priori ma sarà determinata in funzione al minimo areale, ovvero l'area minima all'interno della quale il popolamento vegetale è sufficientemente rappresentato. Per determinare il minimo areale il metodo più comune è quello di aumentare progressivamente la superficie di rilevamento fino a quando il numero di specie non si stabilizza (ossia non si riesce a censire più alcuna specie nuova nell'ambito del popolamento elementare).

Tutte le verifiche effettuate saranno tradotte in elaborati utilizzabili anche al fine di eventuali azioni finalizzate alla tutela di fitocenosi di pregio. Tutti i dati dovranno essere riportati in apposite schede di rilevamento, preventivamente organizzate in una Banca Dati Generale del Monitoraggio. Gli elaborati saranno analoghi per le tre fasi di indagine in modo da essere facilmente raffrontabili.

12.2.2.3 METODICHE DI MONITORAGGIO

La metodica di monitoraggio si compone delle fasi di seguito descritte.

- sopralluogo: in tale fase vengono stabilite le posizioni dei punti di misura destinate al monitoraggio. Le posizioni dei punti di misura dovranno essere georeferenziate e fotografate;
- svolgimento del rilievo. Ogni rilievo prevede la restituzione, su apposita scheda di rilievo, delle informazioni ottenute e l'elaborazione file per caricamento dati output nel Sistema Informativo;
- compilazione di Rapporti di misura.

² Associazione vegetale= raggruppamento più o meno stabile e in equilibrio con il mezzo ambiente, caratterizzato da una determinata composizione floristica, nella quale alcuni elementi esclusivi o quasi e specie caratteristiche, rivelano con la loro presenza una ecologia particolare e autonoma

Piano di Monitoraggio Ambientale – Reazione Generale

Per la restituzione dei dati e la compilazione delle schede di rilievo si indicheranno delle aree rappresentative all'interno delle quali saranno individuati dei transetti sui quali effettuare il monitoraggio. Le specifiche sono indicate nel precedente paragrafo assieme alla illustrazione dei parametri da monitorare.

12.2.3 TEMPI E FREQUENZA DEL MONITORAGGIO

Le attività saranno distinte tra le fasi:

- Ante Operam (AO);
- Post Operam (PO).

Il monitoraggio Ante Operam (AO) è relativo ai 6 mesi precedenti all'inizio dei lavori e viene previsto con cadenza semestrale (preferibilmente in primavera ed autunno), così come il monitoraggio Post Operam (PO), relativo ai 2 anni successivi alla fine dei lavori, anche esso con cadenza semestrale (primavera ed autunno).

12.3 MONITORAGGIO DEGLI INTERVENTI A VERDE E DEI RIPRISTINI

12.3.1 LOCALIZZAZIONE DELLE AREE DI MONITORAGGIO

In riferimento alla localizzazione dei monitoraggi, si prevede il monitoraggio dell'attecchimento delle OOVV per ogni ambito previsto dagli interventi di inserimento paesaggistico e ambientale.

Gli ambiti previsti sono i seguenti:

AMBITO A - Nuovi impianti arbustivi igrofili per la rinaturalizzazione della vegetazione ripariale esistente in corrispondenza dei corsi d'acqua;

AMBITO B - Nuovi impianti arborei igrofili per la rinaturalizzazione della vegetazione ripariale esistente in corrispondenza dei corsi d'acqua;

AMBITO C - Nuovi impianti arbustivi mesofili per le opere di mitigazione paesaggistica degli interventi;

AMBITO D - Nuovi impianti arborei mesofili per le opere di mitigazione paesaggistica degli interventi;

AMBITO E - Nuovi impianti arbustivi e inerbimento all'interno delle rotatorie;

AMBITO F – Intervento di inerbimento previsto all'interno di tutte le aree.

Punti	Localizzazione	Tipologico Rilievo	
VEG_OOVV_01	AMBITO A -B-C-D-E-F	Efficacia Opere a Verde	

Tabella 28 Punti di monitoraggio delle OOVV

Per la localizzazione dei punti di monitoraggio è possibile fare riferimento all'elaborato grafico T00M000M0APU01 A "Planimetria di localizzazione punti di monitoraggio".

12.3.2 METODOLOGIA E STRUMENTAZIONE

12.3.2.1 TIPOLOGIA DI MONITORAGGIO

Verranno effettuati dei sopralluoghi per il monitoraggio dell'attecchimento degli interventi a verde, nelle aree in cui sono previsti gli interventi di inserimento ambientale. Si tratta di un rilievo quali-quantitativo, finalizzato alla verifica dell'esecuzione a regola d'arte degli interventi di mitigazione relativi alle opere a verde previste.

Piano di Monitoraggio Ambientale – Reazione Generale

12.3.2.2 PARAMETRI DA MONITORARE

L'attività comprende:

- n° di esemplari per specie;
- n° di esemplari per specie per unità di superficie;
- verifica dell'attecchimento delle piante;
- superficie di sviluppo;
- presenza di parti o branche secche o in sofferenza;
- individuazione e determinazione delle specie target esotiche e ruderali presenti secondo i codici di nomenclatura tassonomica, fino al livello di specie e, ove necessario, di subspecie e cultivar;
- rapporto % tra specie impiantate e specie esotiche/ruderali;
- indicazioni su modalità tecnico-operative per la risoluzione delle problematiche che compromettono la riuscita dell'intervento, come ad esempio la presenza di eccessive infestanti che compromettono lo sviluppo delle piantumazioni.

12.3.2.3 METODICHE DI MONITORAGGIO

La metodologia di monitoraggio consta di sopralluoghi per il rilievo quali-quantitativo, finalizzato alla verifica dell'esecuzione a regola d'arte degli interventi di mitigazioni delle opere a verde previsti.

La metodica di monitoraggio si compone delle fasi di seguito descritte.

- Sopralluogo: in tale fase vengono stabilite le posizioni dei punti di misura destinate al monitoraggio. Le posizioni dei punti di misura dovranno essere georeferenziate e fotografate;
- Svolgimento del rilievo. Ogni rilievo prevede la restituzione, su apposita scheda di rilievo, delle informazioni ottenute e l'elaborazione file per caricamento dati output nel Sistema Informativo;
- Compilazione di Rapporti di misura.

Per la restituzione dei dati e la compilazione delle schede di rilievo si indicheranno delle aree rappresentative all'interno delle quali saranno individuati dei transetti sui quali effettuare il monitoraggio. Le specifiche sono indicate nel precedente paragrafo assieme alla illustrazione dei parametri da monitorare.

12.3.3 TEMPI E FREQUENZA DEL MONITORAGGIO

Il monitoraggio dei ripristini con opere a verde viene eseguito solo in Post Operam e per il periodo corrispondente alla manutenzione Post Impianto. Tale attività di ripristino costituisce l'attività di supporto in termini di verifica e controllo della manutenzione Post Impianto.

Per quanto riguarda il monitoraggio dell'attecchimento degli interventi a verde si articola su un periodo temporale di 1 anno a partire dalla realizzazione degli stessi. In tale periodo è prevista l'esecuzione di 2 campagne di rilevamento: una in corrispondenza dell'entrata in esercizio dell'infrastruttura ed una nel periodo vegetativo ricompreso nell'anno successivo.

Piano di Monitoraggio Ambientale – Reazione Generale

12.4 CONCLUSIONI

Il monitoraggio della vegetazione è effettuato per verificare lo stato delle specie e degli habitat presenti oltre al buon esito degli interventi di mitigazione ambientale.

Tematica	Punti	Fase	Frequenza e durata	Metodologia	Quantità misure per punto
YEG VEG	VEG_01	АО	Durante i 6 mesi precedenti all'inizio dei lavori con cadenza semestrale	Rilievo floristico e fitosociologico	1
	VEG_02 VEG_03	РО	Durante i primi due anni successivi alla fine dei lavori con cadenza semestrale (primavera e autunno)	Rilievo floristico e fitosociologico	4
OPERE A VERDE	VEG_OOVV_1	РО	2 rilievi nell'anno successivo al termine dei lavori: il primo in corrispondenza dell'entrata in esercizio dell'infrastruttura ed il secondo nel periodo vegetativo.	Rilievo diretto quali-quantitativo	2

Tabella 29 Quadro sinottico del PMA componente vegetazione

Piano di Monitoraggio Ambientale – Reazione Generale

13 FAUNA

13.1 FINALITÀ ED ARTICOLAZIONE TEMPORALE DEL MONITORAGGIO

13.1.1 OBIETTIVI DEL MONITORAGGIO

Nel tratto iniziale, all'uscita dell'esistente galleria Valgarizia il tracciato lambisce il SIC IT5340018 "Fiume Tronto tra Favalanciata e Acquasanta". Oltrepassata la vallecola a nord di Quintodecimo il tracciato ritorna in galleria per uscire nuovamente allo scoperto all'altezza dell'abitato di Acquasanta terme al fine di realizzare la connessione, mediante uno svincolo, con il tracciato dell'esistente SS Salaria; questo tratto allo scoperto – in viadotto - ricade all'interno del SIC IT5340006 "Lecceto di Acquasanta".

I risultati dello studio dell'area hanno condotto a determinare la necessità di un monitoraggio relativo alla fauna ornitica, ai mammiferi ed ai rettili.

L'obiettivo del monitoraggio è di valutare eventuali variazioni nelle comunità faunistiche, in termini di specie o numero di individui, tra la situazione presente prima della realizzazione dell'opera e quella relativa alla fase successiva al termine dei lavori. Per questo obiettivo la comunità di uccelli è particolarmente indicata, in quanto la loro elevata mobilità, consente loro di rispondere con una certa rapidità ai cambiamenti ambientali.

13.1.2 RIFERIMENTI NORMATIVI

Il quadro normativo di riferimento per il monitoraggio faunistico è costituito da:

- Direttiva Habitat 92/43/CEE del Consiglio del 21/05/1992 relativa alla conservazione degli habitat naturali e seminaturali e della flora e della fauna selvatiche. GU-CE n.206 del 22/07/1992;
- Direttiva Uccelli 2009/147/CE del Parlamento europeo e del Consiglio del 30/11/2009 concernente la conservazione degli uccelli selvatici;
- D.P.R. 357 dell'8 settembre 1997 (con successive modifiche ed aggiornamenti, in particolare il D.P.R.120/2003) "Regolamento recante l'attuazione della Direttiva 92/43/CEE relativa alla conservazione degli habitat naturali e seminaturali, nonché della flora e della fauna selvatiche"; Esso recepisce la Direttiva Habitat, compresi gli allegati I, II e IV della Direttiva, per cui gli habitat, le specie animali e vegetali sono oggetto delle medesime forme di tutela anche in Italia.

Nell'individuazione delle metodiche di monitoraggio si è fatto riferimento, oltre che ai suddetti atti normativi, anche alla seguente documentazione:

- Linee guida per la predisposizione del PMA delle opere soggette a procedure di VIA. Indirizzi
 metodologici specifici: Biodiversità (Vegetazione, Flora e Fauna) Capitolo 6.4, Rev. 1 del
 13/03/2015 (MATTM);
- Manuale ISPRA 141/2016. Manuali per il monitoraggio di specie e habitat di interesse comunitario (Dir. 92/43/CEE) in Italia: specie di animali.

13.2 MONITORAGGIO DELLA FAUNA

13.2.1 LOCALIZZAZIONE DELLE AREE DI MONITORAGGIO

Gli ambiti di indagine per la componente in esame sono stati individuati nelle aree SIC IT5340018 "Fiume Tronto tra Favalanciata e Acquasanta" e SIC IT5340006 "Lecceto di Acquasanta". Inoltre sono stati inseriti i corridoi di connessione ecologica lungo il Rio di Novale ed il Fiume Tronto.

Il monitoraggio sarà incentrato a valutare più approfonditamente:

Piano di Monitoraggio Ambientale – Reazione Generale

- la comunità ornitica presente nelle aree monitorate e a valutarne eventuali variazioni nel tempo;
- i mammiferi presenti nelle aree monitorate e a valutarne eventuali variazioni nel tempo;
- i rettili presenti nelle aree monitorate e a valutarne eventuali variazioni nel tempo.

Punti	Localizzazione	Tipologico rilievo
FAU_01	SIC Fiume Tronto tra Favalanciata e Acquasanta	Transetto lineare avifauna/ Transetto lineare mammiferi/ Transetto lineare rettili
FAU_02	Rio di Novele	Transetto lineare mammiferi/ Transetto lineare rettili
FAU_03	SIC IT5340006 "Lecceto di Acquasanta"	Transetto lineare avifauna/ Transetto lineare mammiferi/ Transetto lineare rettili

Tabella 30 Punti di monitoraggio della fauna

Per la localizzazione dei punti ed aree di monitoraggio è possibile fare riferimento all'elaborato grafico T00MO00MOAPU01 A "Planimetria di localizzazione punti di monitoraggio".

13.2.2 METODOLOGIA E STRUMENTAZIONE

13.2.2.1 TIPOLOGIA DI MONITORAGGIO

Per la componente ornitica sono previste tre tipologie di rilievo:

- Transetto lineare;
- Punto di avvistamento;
- Punto di ascolto.

Sono state individuate tre tecniche di indagine dell'ornitofauna, in considerazione della fenologia delle specie di uccelli che possono frequentare la zona.

La tecnica dei transetti lineari permette di ottenere una valutazione quantitativa della costituzione della comunità ornitica. Tale metodo consente di effettuare confronti nel tempo della comunità ornitica di una data area. Il punto di avvistamento viene utilizzato al fine di rilevare le specie in movimento, con particolare attenzione alle specie migratrici, che potrebbero attraversare l'area durante i loro spostamenti.

La tecnica dei punti di ascolto è utile per l'individuazione delle specie nidificanti.

Per i <u>mammiferi terrestri</u> è prevista una verifica di eventuali effetti di interruzione della continuità faunistica da parte dell'opera.

Le specie verranno rilevate in tutte le fasi del monitoraggio, attraverso l'osservazione diretta e mediante l'utilizzo dei cosiddetti segni di presenza, efficaci soprattutto per i Mammiferi con abitudini notturne. In questi casi si prenderanno in considerazione per il riconoscimento delle specie le tracce, le feci, gli scavi e le tane. Si misureranno le dimensioni (lunghezza, larghezza e profondità) di alcuni reperti quali feci, scavi e tane. Le tracce di Mammiferi verranno identificate ed attribuite alle diverse specie fin dal loro ritrovamento in campagna. In taluni casi, per avere ulteriori conferme, verranno prelevati campioni per sottoporli a successive indagini: al microscopio binoculare verrà effettuato il riconoscimento dei resti alimentari,

Piano di Monitoraggio Ambientale – Reazione Generale

mentre al microscopio ottico verranno analizzati gli eventuali campioni di peli rinvenuti ed opportunamente trattati.

É opportuno sottolineare che, al fine di ottenere un campionamento meno condizionato dalla casualità delle osservazioni, sarebbe necessario effettuare numerosi rilevamenti in diversi periodi dell'anno, almeno uno per stagione. Soltanto uno studio di questo tipo è, infatti, in grado di fornire informazioni precise ed attendibili sulla presenza di tutte le specie agenti nell'area, e permette di stimare le densità e la struttura di popolazione.

Per <u>i rettili</u> il rilevamento verrà eseguito in linea generale prevalentemente mediante un approccio di osservazione diretta "Visual Encounter Surveys", comunemente utilizzato per indagini sull'erpetofauna. La localizzazione dei transetti cercherà di comprendere le differenti tipologie ambientali presenti nel sito. Le perlustrazioni verranno effettuate a velocità molto bassa, sostando e divagando frequentemente dal percorso principale, in modo da visitare tipi diversi di habitat ed avvicinare tutti i punti di particolare interesse. Questo approccio risulta preferibile ad altri metodi di ricerca standardizzata (utilizzo di itineraricampione, selezione di siti-campione, ricerca per tempi definiti, ecc.), poiché questi ultimi possono essere meno efficaci nel rilevare tutte le specie presenti in un territorio.

I Rettili verranno ricercati in modo diverso per le diverse specie, ponendo particolare attenzione agli ambienti e alle condizioni più idonee per ciascuna di esse. Verranno cercati principalmente animali all'aperto durante l'attività diurna di termoregolazione o di ricerca alimentare, negli ambienti e nei punti idonei, mediante osservazione a distanza. Per specie estremamente elusive si cercheranno individui al di sotto di sassi o legni morti.

13.2.2.2 PARAMETRI DA MONITORARE

Il metodo dei **transetti lineari** prevede che l'osservatore, stabilito un itinerario (transetto), identifichi ed annoti tutti gli uccelli avvistati o contattati durante il tempo impiegato a percorrere, ad andatura costante, il suddetto transetto.

Tutti gli uccelli osservati o uditi, durante il tempo impiegato a percorrere l'intero transetto, saranno annotati su un'apposita scheda e, dove possibile, gli individui saranno fotografati.

Nello specifico i dati da riportare nella scheda sono i seguenti:

- Specie osservate o ascoltate;
- Numero di individui osservati o ascoltati:
- Tipo di attività osservata negli individui;
- Data ed ora dello svolgimento del transetto;
- Coordinate del punto di inizio e di fine del transetto;
- Dati localizzazione del transetto (provincia, comune, quota);
- Lunghezza del transetto, ampiezza della fascia laterale ed area totale indagata;
- Caratteristiche ambientali dell'area interessata dal transetto;
- Condizioni meteorologiche.

Nella scheda sarà inserito uno stralcio di planimetria con la localizzazione del transetto ed i punti di vista delle foto (relative all'area di indagine o a luoghi di osservazione delle specie o agli individui osservati) riportate nella scheda stessa.

Inoltre, durante l'attività sul campo, saranno raccolte informazioni sulle variabili ambientali caratterizzanti l'area e utili per la descrizione degli habitat che potrebbero essere utilizzati dalle specie quali siti di sosta, alimentazione e riproduzione.

Piano di Monitoraggio Ambientale – Reazione Generale

Infine, sarà annotata la posizione di eventuali nidi rinvenuti, ai fini di successiva mappatura.

Nella fase successiva alle attività sul campo, per ogni sessione di esecuzione di ciascuno dei transetti, dovranno essere elaborati alcuni indici e parametri ecologici, al fine di avere indicazioni sulla relativa comunità ornitica.

In particolare, gli indici/parametri che dovranno essere elaborati sono i seguenti: ricchezza di specie (S); indice di diversità (H); indice di equiripartizione di Lloyd & Gheraldi (1964) (J); percentuale di non passeriformi (% N-Pass); percentuale delle specie di interesse comunitario (% Sp-Prot); dominanza (D). I suddetti parametri ed indici ecologici saranno riportati nelle schede di rilievo.

La ricchezza di specie è rappresentata dal numero di specie totali contattate nel campionamento: è una importante componente della diversità biologica e può essere considerata un semplice ed immediato indice di qualità ambientale, anche se con alcuni limiti. Essa rappresenta il numero totale di specie presenti distribuite nel tempo e nello spazio.

L'indice di diversità restituisce la probabilità di incontrare individui diversi nel corso del campionamento. Il valore è 0 quando una determinata comunità è composta da una sola specie e cresce all'aumentare della complessità del popolamento.

L'indice di equiripartizione di Lloyd & Gheraldi misura il grado di ripartizione delle frequenze delle diverse specie nella comunità. Il valore dell'indice è massimo quando tutte le specie sono presenti con la stessa abbondanza, mentre ha valori bassi nel caso ci sia una sola specie abbondante e numerose specie rare. L'indice varia da 0 (una sola specie presente) a 1 (tutte le specie presenti con lo stesso numero di individui).

La percentuale di non passeriformi è il rapporto tra il numero dei non passeriformi ed il numero di specie totali: pur trattandosi di un rapporto tra categorie sistematiche, l'incidenza dei non passeriformi può fornire una indicazione sulla rappresentatività di elementi più stenoeci (presenti in proporzione maggiore fra i non passeriformi). È stato osservato che negli stadi iniziali di una successione ecologica i non passeriformi possono essere assenti e aumentano in numero con il progredire della successione verso stadi più maturi.

La percentuale delle specie di interesse comunitario è data dal rapporto tra il numero delle specie citate nell'Allegato I della Direttiva 2009/147/CE ed il numero di specie totali. Questo dato ci fornisce indicazioni sulla presenza di specie di interesse comunitario.

La dominanza restituisce la misura delle specie dominanti con l'aumentare del grado di complessità e di maturità dei biotopi.

La tecnica dei **punti di ascolto o point counts** consiste nel sostare per un tempo determinato, pari a 10 - 15 minuti, nella stazione di ascolto e di individuare, tramite l'ascolto del canto, e annotare tutti gli individui, conteggiandoli una sola volta. Quando possibile si stimerà e annoterà la distanza alla quale sono stati contattati gli individui.

Nello specifico i dati da riportare, nelle schede apposite, sono i seguenti:

- Specie ascoltate;
- Numero di individui ascoltati;
- Data ed ora dello svolgimento del punto di ascolto;
- Coordinate del punto di ascolto;
- Dati localizzazione del punto di ascolto (provincia, comune, quota);
- Caratteristiche ambientali dell'area interessata dal punto di ascolto;
- Condizioni meteorologiche.

Nelle suddette schede di rilievo, sarà inserito uno stralcio cartografico con la localizzazione del punto di ascolto ed una foto dell'area nella quale è ubicato il suddetto punto.

Piano di Monitoraggio Ambientale – Reazione Generale

Inoltre, durante l'attività sul campo, saranno raccolte informazioni sulle variabili ambientali caratterizzanti l'area e utili per la descrizione degli habitat che potrebbero essere utilizzati dalle specie quali siti di sosta, alimentazione e riproduzione.

Infine, sarà annotata la posizione di eventuali nidi rinvenuti, ai fini di successiva mappatura.

La tecnica del **punto di avvistamento o visual counts** prevede l'osservazione da un punto con buona visuale, al fine di rilevare le specie ornitiche di passaggio in volo, con particolare attenzione alle specie migratrici: delle specie osservate saranno conteggiati i singoli individui in volo o, in caso di stormi consistenti, ne sarà stimato il numero.

Saranno identificati e annotati su apposite schede gli individui avvistati in volo entro un raggio di almeno 1 km dal punto di osservazione. In merito agli individui avvistati saranno annotati l'orario di passaggio e i comportamenti adottati (volo multidirezionale, attività di caccia, parata e difesa territoriale, soste su posatoi, volo senza sosta e divagazioni nella traiettoria di migrazione ecc.). Per ogni individuo avvistato sarà riportata la direzione e il verso di volo, nonché l'altezza da terra. Inoltre, saranno riportati sulle schede dati accurati sulla copertura nuvolosa e sulle condizioni del vento (direzione e forza).

Nello specifico i dati da riportare nelle schede apposite sono i seguenti:

- Specie osservate;
- Numero o stima degli individui osservati;
- Ora di osservazione degli individui;
- Direzione e verso di spostamento degli individui osservati;
- Tipo di attività osservata negli individui;
- Data ed ora dello svolgimento del punto di avvistamento;
- Coordinate del punto di avvistamento;
- Dati localizzazione del punto di avvistamento (provincia, comune, quota);
- Caratteristiche ambientali dell'area interessata dal punto di avvistamento;
- Condizioni meteorologiche.

Inoltre, durante l'attività sul campo, saranno raccolte informazioni sulle variabili ambientali caratterizzanti l'area e utili per la descrizione degli habitat che potrebbero essere utilizzati dalle specie quali siti di sosta, alimentazione e riproduzione.

Infine, sarà annotata la posizione di eventuali nidi rinvenuti, ai fini di successiva mappatura.

Per i mammiferi terrestri i parametri che verranno raccolti saranno i seguenti:

- elenco delle specie presenti;
- loro frequenza e distribuzione all'interno dell'area campionata.

I luoghi di ritrovamento dei campioni saranno posizionati sulle carte di progetto in scala 1:1.000 (al fine di uno specifico posizionamento attraverso coordinate geografiche) e saranno fotografati; sulla cartografia saranno riportati anche i coni visuali delle foto.

Per i rettili, verranno rilevati la specie, il numero di individui, lo stadio di sviluppo (giovane, adulto) ed il tipo di ambiente. L'identificazione specifica degli animali contattati verrà eseguita sulla base di caratteristiche morfologiche osservabili a distanza o durante una temporanea cattura e manipolazione. Per la diagnosi delle specie, si farà riferimento alle principali guide disponibili per la fauna italiana ed europea (Arnold e Burton, 1978; Lanza, 1983). La nomenclatura delle specie farà riferimento a quella riportata nei manuali ISPRA (Stoch e Genovesi, 2016). I contatti per cui non sarà possibile ottenere un'identificazione certa non verranno considerati.

Piano di Monitoraggio Ambientale – Reazione Generale

Le indagini saranno effettuate nel periodo indicativamente compreso fra le h. 8.00 e le h. 18.00, privilegiando le ore più calde della giornata. I dati raccolti saranno finalizzati ad un'analisi quali-quantitativa del popolamento dei rettili individuati nell'area indagata.

Per ogni singola stazione di monitoraggio vengono restituiti i seguenti dati tramite opportune schede nelle quali viene indicato:

- indice di ricchezza, ovvero il numero di specie rilevate;
- presenza di siti riproduttivi;
- gli stadi del ciclo vitale rilevati (giovani, subadulti, adulti);
- abbondanza relativa delle specie lungo il transetto, ovvero l'indice di abbondanza I.A. (I.A. =n.individui/lunghezza transetti (in metri).

Per ogni specie individuata nel corso delle campagne di monitoraggio verrà specificata l'appartenenza all'elenco delle specie inserite in Allegato II e IV della Direttiva "Habitat" 92/43/CEE.

Il monitoraggio dei mammiferi su transetti verrà eseguito tramite il rilievo dei segni di attività secondo il metodo naturalistico di osservazione di tracce e di attività trofica (orme, tane, feci, resti di pasto, sentieri

ecc.). Questo metodo è utilizzato per ricavare stime di abbondanza della mesoteriofauna ed è il più semplice ed affidabile che permette la comparazione della densità tra aree diverse in anni diversi.

Per ottenere dati attendibili bisogna considerare che:

- la visibilità deve essere elevata e pressoché costante nei percorsi campione (evitare zone con erba troppo alta);
- devono essere evitati percorsi troppo frequentati e accessibili ai veicoli che al passaggio potrebbero distruggere le fatte (Cavallini, 1993).

I transetti, di almeno 1 Km di lunghezza, verranno scelti tenendo conto della necessità di campionare la maggior varietà di ambienti presenti. Nel caso in cui l'area di monitoraggio non consenta di realizzare un transetto lineare di lunghezza pari a 1 km potranno essere previsti transetti non lineari della stessa lunghezza. Le fatte (scatters) e gli altri segni di presenza di carnivori e ungulati verranno fotografati; quando possibile, gli scatters verranno identificati in situ in base a forma, dimensioni e odore, successivamente raccolti e conservati per un'ulteriore analisi. Sul campo verranno inoltre documentate fotograficamente, quando possibile, le piste, le impronte impresse sul terreno e qualunque altro indice oggettivo di presenza, secondo il classico metodo naturalistico (Locatelli et al., 1995). In particolare per lo studio degli ungulati si terranno in considerazione indizi di presenza specifici come orme, piste, feci, arature, fregoni.

13.2.2.3 METODICHE DI MONITORAGGIO

La metodica di monitoraggio si compone delle fasi di seguito descritte.

- Sopralluogo: in tale fase vengono stabilite le posizioni dei punti e dei percorsi di rilievo destinate al monitoraggio. Le posizioni dei punti e dei percorsi di indagine dovranno essere georeferenziate e fotografate;
- Svolgimento del rilievo. Ogni rilievo prevede la restituzione, su apposita scheda di rilievo, delle informazioni ottenute e, nel caso dei transetti, successiva elaborazione dei dati ottenuti;

Piano di Monitoraggio Ambientale – Reazione Generale

- Svolgimento di osservazioni specifiche nelle aree di esecuzione dei rilievi e zone limitrofe, volte all' individuazione di eventuali habitat idonei quali siti di sosta, alimentazione e riproduzione.
- Compilazione di Rapporti dei rilievi eseguiti.

Per i dati da rilevare e la compilazione delle schede di rilievo le specifiche sono indicate nel precedente paragrafo.

13.2.3 TEMPI E FREQUENZA DEL MONITORAGGIO

I rilievi saranno eseguiti nel periodo primaverile, in condizioni metereologiche buone, in quanto le perturbazioni atmosferiche riducono notevolmente la contattabilità delle specie.

Le indagini saranno svolte nelle prime ore del mattino, in orario compreso tra mezz'ora prima dell'alba e le ore 11:00 circa.

Le attività saranno distinte tra le fasi:

- Ante Operam (AO);
- Corso d'opera (CO);
- Post Operam (PO).

Il monitoraggio Ante Operam (AO) è relativo ai 6 mesi precedenti l'inizio dei lavori, mentre il monitoraggio Post Operam (PO) è relativo ai due anni successivi alla fine dei lavori. Nel corso d'opera le indagini saranno eseguite per tutta la durata dei lavori di realizzazione dell'opera.

Tutte le indagini saranno ripetute due volte l'anno, per ogni punto/percorso di rilievo, nella stagione primaverile, con un intervallo di almeno 15 giorni tra le due sessioni.

Piano di Monitoraggio Ambientale – Reazione Generale

13.3 CONCLUSIONI

Il monitoraggio della fauna è effettuato allo scopo di verificare le specie presenti nell'area di indagine ed eventuali variazioni nelle comunità tra la situazione preesistente all'opera e quella seguente la sua realizzazione.

Tematica	Punti	Fase	Frequenza e durata	Metodologia	Quantità misure per punto
Fauna FAU_0		АО	Durante i 6 mesi precedenti l'inizio dei lavori, due ripetizioni nel periodo primaverile	Rilievo diretto	1
	FAU_01 FAU_02 FAU_03	СО	Durante ogni anno di durata dei lavori, due ripetizioni nel periodo primaverile		8
	РО	Durante i due anni successivi alla fine dei lavori, due ripetizioni nel periodo primaverile		4	

Tabella 31 Quadro sinottico del PMA componente fauna

MANDANTE

Piano di Monitoraggio Ambientale – Reazione Generale

14 PAESAGGIO

14.1 FINALITÀ ED ARTICOLAZIONE TEMPORALE DEL MONITORAGGIO

14.1.1 OBIETTIVI DEL MONITORAGGIO

Il Paesaggio è un sistema dinamico ed in continua evoluzione che racchiude in sé in particolare gli aspetti estetico-percettivi. A tal proposito, dunque, il monitoraggio della componente Paesaggio mira alla determinazione degli aspetti caratterizzanti il contesto d'inserimento dell'opera. Come ogni componente del PMA, il Paesaggio è suscettibile di una caratterizzazione nello spazio e nel tempo; per i fini del presente elaborato, si reputa necessario dunque definire dei punti in cui poter effettuare il monitoraggio visivo della componente naturale ed antropica ed inoltre definirne le tempistiche per tali valutazioni.

Tali punti, saranno localizzati in modo da poter offrire una visuale sugli interventi che introdurranno una variazione significativa sugli elementi sopra elencati, nella fase di esercizio.

In generale, sarà posta l'attenzione al contenimento del rischio di perdita d'identità paesaggistica; infatti, la principale tipologia d'impatto sul paesaggio è legata alla modificazione della percezione visiva dei ricettori sensibili, dovuta a fenomeni di mascheramento visivo totale o parziale, all'alterazione dei lineamenti caratteristici dell'unità paesaggistica, a causa dell'intromissione di nuove strutture fisiche estranee al contesto per forma, dimensione o colore.

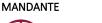
L'obiettivo dell'attività di monitoraggio è dunque quello di verificare l'insorgere di un'alterazione della percezione visiva da/verso il ricettore.

14.1.2 RIFERIMENTI NORMATIVI

Normativa Europea

- Convenzione europea del Paesaggio, Firenze il 20 ottobre 2000;
- Legge 9 gennaio 2006, n. 14 di ratifica della Convenzione europea del Paesaggio;
- Convenzione europea per la tutela del patrimonio archeologico (La Valletta 16 gennaio 1992);
- Convenzione per la salvaguardia del patrimonio architettonico d'Europa (Granata 3 ottobre 1985);
- Convenzione sulla tutela del patrimonio mondiale, culturale e naturale (Parigi, 16 novembre 1972).

Normativa Nazionale


- D.P.C.M. 27 dicembre 1988 (1) "Norme tecniche per la redazione degli studi di impatto ambientale e la formulazione del giudizio di compatibilità" di cui all'art. 6, L. 8 luglio 1986, n. 349, adottate ai sensi dell'art. 3 del D.P.C.M. 10 agosto 1988, n. 377 (2);
- D.P.C.M. 12 dicembre 2005 sull'individuazione della documentazione necessaria alla verifica della
 compatibilità paesaggistica degli interventi proposti, ai sensi dell'articolo 146, comma 3, del Codice dei beni culturali del paesaggio di cui al D.Lgs. 22 gennaio 2004, n. 42. (G.U. n. 25 del 31 gennaio 2006);
- Decreto Legislativo n. 42 del 22 gennaio 2004 "Codice dei beni culturali e del paesaggio" ai sensi dell'articolo 10 della legge 6 luglio 2002, n. 137", (G.U. n. 45 del 24 febbraio 2004 Supplemento Ordinario n. 28) e ss.mm.ii.

14.2 MONITORAGGIO DELLA PERCEZIONE VISIVA DA/VERSO IL RICETTORE

14.2.1 LOCALIZZAZIONE DEI PUNTI DI MONITORAGGIO

La localizzazione dei punti di monitoraggio della percezione visiva da/verso il ricettore si basa sullo studio della visibilità dell'opera nel contesto d'intervento.

Piano di Monitoraggio Ambientale – Reazione Generale

I punti di maggiore visibilità dell'opera saranno oggetto di monitoraggio e sono riportati nella seguente tabella:

Punti	Localizzazione	
PAE_01	Punto di vista da inizio progetto verso Favalanciata e Aquasanta Terme	
PAE_02	Punto di vista dalla SS4 verso il viadotto Quintodecimo	
PAE_03	Punto di vista dalla SS4 verso il viadotto Tronto	

Tabella 32 Punti di monitoraggio del paesaggio

Per la localizzazione dei punti di monitoraggio è possibile fare riferimento all'elaborato grafico T00MO00MOAPU01_A "Planimetria di localizzazione punti di monitoraggio".

14.2.2 METODOLOGIA E STRUMENTAZIONE

14.2.2.1 TIPOLOGIA DI MONITORAGGIO

L'attività di monitoraggio consisterà essenzialmente nella redazione:

- di una scheda di classificazione dell'indagine, condotta per tratti di tracciato di progetto di sviluppo variabile;
- di uno stralcio planimetrico in scala 1:10.000/1: 5.000 con ubicazione dei punti di vista fotografici, compreso nella scheda;
- carta tematica in scala 1:10.000/1: 5.000 (per ambiti di indagine), con individuazione dei coni visuali e dei principali elementi del progetto presenti nel campo visivo;
- carta tematica degli indicatori visivi sensibili, in scala 1: 5.000, con individuazione di eventuali ricettori/ambiti di particolare sensibilità;
- nell'effettuazione di una ricognizione fotografica dell'area di intervento, avendo cura di rilevare le porzioni di territorio ove è prevedibilmente massima la visibilità dell'infrastruttura in progetto e dei suoi elementi di maggiore impatto percettivo (svincoli, opere d'arte maggiori, ecc.).

14.2.2.2 PARAMETRI DA MONITORARE

Sulla base della tipologia di monitoraggio appena definita, i beni da sottoporre a indagine fotografica nel monitoraggio sono:

aree a elevata sensibilità paesaggistica e caratteri percettivi.

La definizione dei punti di visuale dovrà essere opportunamente georiferita in modo da garantire la medesima collocazione della strumentazione fotografica; ciò consentirà la percezione immediata dei mutamenti, e di rilevare con prontezza lo scostamento dallo scenario previsionale, o il verificarsi di alterazioni impreviste, richiedenti la definizione di strategie di contenimento.

14.2.2.3 METODICHE DI MONITORAGGIO

Le riprese fotografiche saranno eseguite secondo la seguente metodologia:

Piano di Monitoraggio Ambientale – Reazione Generale

- Individuazione del punto di ripresa e acquisizione delle coordinate in UTM WGS84 Fuso 33 mediante GPS;
- Esecuzione di riprese fotografiche mediante le seguenti operazioni:
 - l'utilizzo di un obiettivo di lunghezza focale prossima a quella dell'occhio umano (50 55 mm per il formato fotografico 135);
 - esecuzione sequenziale di più riprese fotografie, con buon margine di sovrapposizione tra loro, per comporre il panorama;
 - tali riprese sono eseguite con l'operatore fermo nel punto di ripresa;
 - la macchina fotografica va ruotata da destra a sinistra o viceversa, evitando oscillazioni e spostamenti in alto o in basso, cercando di mantenere l'apparecchio sempre alla medesima di- stanza dal terreno;
 - va coperta tutta la visuale in direzione dell'opera (anche più di 180° se necessario) in modo di rappresentare l'intero orizzonte;
 - Restituzione di una raccolta fotografica delle riprese effettuate accompagnate da schede grafico descrittive sintetiche da allegare.

I rilievi fotografici dovranno essere eseguiti con apposita attrezzatura in modo da coprire 180° di visuale dai punti e nelle direzioni individuate. La tecnica migliore per fotografare tutta la visuale d'interesse è quella di posizionare il corpo macchina su un cavalletto e scattare in sequenza un numero sufficiente di immagini in modo che, una volta accostate, permettano di ricostruire l'intero orizzonte. Il cavalletto dovrà essere posizionato in modo tale che la fotocamera possa essere orientata con il lato lungo del fotogramma parallelo alla linea di orizzonte. Occorrerà avere cura che nelle immediate vicinanze non vi siano ostacoli di dimensioni rilevanti, tali da oscurare il campo visivo da inquadrare.

In fase di post-processing le immagini vanno unite in un'unica immagine mediante software specialistico. I parametri e le opzioni del software utilizzate in fase di unione delle immagini devono essere registrate in apposito file di testo da allegare alla ripresa fotografica unita, insieme alle riprese originali.

14.2.3 TEMPI E FREQUENZA DEL MONITORAGGIO

Le attività saranno distinte tra le fasi:

- Ante Operam (AO);
- Post Operam (PO).

Nell' Ante Operam (AO) lo scopo sarà quello di definire compiutamente la caratterizzazione dello stato dell'area d'indagine prima dell'inizio dei lavori, individuando gli indicatori visivi in grado di consentire il raffronto tra le due fasi del monitoraggio e una valutazione il più possibile oggettiva degli effetti sulla componente. Il controllo verrà effettuato una volta durante la fase di Ante Operam (AO).

Nel Post Operam (PO), le indagini saranno finalizzate per lo più ad accertare l'efficacia delle misure di mitigazione ambientale indicate nel progetto, con particolare riferimento alla percezione visiva dell'opera realizzata. Il controllo verrà effettuato una volta durante la fase di Post Operam (PO).

Piano di Monitoraggio Ambientale – Reazione Generale

14.3 CONCLUSIONI

Il monitoraggio sarà effettuato almeno due volte, una volta nella fase Ante Operam (AO) e una volta nella fase di Post Operam (PO), al fine di rilevare le eventuali modificazioni sulla componente Paesaggio, nei riguardi degli aspetti estetico-percettivi.

Tematica	Punti	Fase	Frequenza e durata	Metodologia	Quantità misure per punto
Percezione visiva	PAE_01 PAE_02 PAF_03	АО	Un rilevamento nei 6 mesi antecedenti all'inizio lavori	Rilievi fotografici	1
		РО	Un rilevamento nell'anno successivo alla fine dei lavori		1

Tabella 33 Quadro sinottico del PMA componente paesaggio

Piano di Monitoraggio Ambientale – Reazione Generale

15 RESTITUZIONE DATI

15.1 IL SISTEMA INFORMATIVO DEL MONITORAGGIO

15.1.1 CONTENUTI E FINALITÀ

Le attività del Monitoraggio Ambientale producono generalmente un importante volume di dati ciascuno dei quali risulta corredato delle proprie connotazioni spazio-temporali; nel caso del Progetto di Monitoraggio Ambientale dell'Opera in esame, stante la sua rilevanza a livello provinciale, regionale, sussiste l'esigenza di gestione di tali dati in quantità quindi rilevanti, e con la necessità di fare partecipare alla gestione stessa numerosi attori ciascuno con le proprie specifiche autorità.

Si impone pertanto l'inserimento tra gli strumenti di gestione del Progetto dell'Opera / Intervento di un sistema complesso e con una articolata struttura di controllo che consenta la gestione avanzata del dato di Monitoraggio Ambientale: il Sistema Informativo Territoriale (S.I.T.), con cui si intende l'insieme degli strumenti hardware e software e delle procedure di amministrazione ed utilizzo che consentono, per il tramite di una struttura di risorse specializzate, il complesso delle operazioni di caricamento (upload), registrazione, validazione, consultazione, elaborazione, scaricamento (download) e pubblicazione dei dati del Monitoraggio Ambientale e dei documenti ad essi correlati.

All'interno del Progetto di Monitoraggio Ambientale, il Sistema Informativo Territoriale (S.I.T.) sarà implementato come un vero e proprio strumento di lavoro a supporto della fase attuativa del Monitoraggio e pertanto dovrà supportare i principali processi di recovery, conoscenza e comunicazione del dato.

Nella definizione del progetto del S.I.T. saranno assunti tra i requisiti di base le indicazioni fornite dalle citate "Linee guida per il progetto di monitoraggio ambientale (PMA) delle infrastrutture strategiche ed insediamenti produttivi", redatte dalla Commissione Speciale di Valutazione di Impatto Ambientale in rev.2 del 23/07/07.

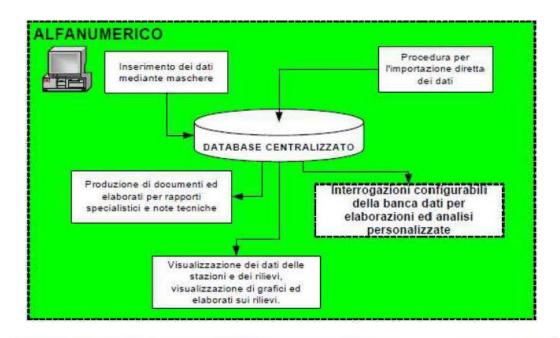
15.1.2 ARCHITETTURA DEL SISTEMA

Il SIM è una banca dati avente due interfacce:

- Interfaccia alfanumerica costruita ad hoc;
- Interfaccia geografica.

La base informativa georeferenziata e costituita dagli elementi caratteristici del progetto e delle diverse componenti ambientali, dal database delle misure, degli indicatori e delle schede di rilevamento. L'entità fondamentale e il sito/strumento di misura, presente sul DB alfanumerico con scheda monografica e scheda dei rilievi, e presente sul GIS per l'analisi spaziale dei dati.

I dati alfanumerici non sono altro che la caratterizzazione dei punti di rilievo e di tutte le misurazioni effettuate e validate dalle ditte specializzate; questi dati vengono archiviati in un database strutturato. Il database alfanumerico e in pratica una collezione di dati già validati, verificati ed elaborati, suddivisi per temi ambientali ed indicatori sintetici di stato d'ambiente; nel diagramma sottostante viene mostrata la struttura che definisce il flusso dei dati alfanumerici.



Direzione Progettazione e Realizzazione Lavori

PROGETTO DEFINITIVO

Piano di Monitoraggio Ambientale – Reazione Generale

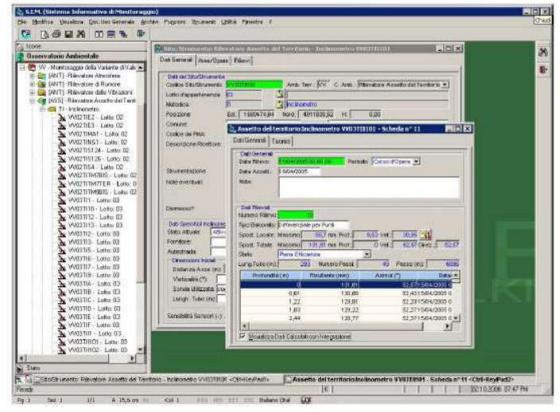


Figura 2 SIM interfaccia alfanumerica

Le tipologie di dati grafici e cartografici che interessano il sistema di monitoraggio sono le seguenti:

- tavole di progetto;
- cartografia geografica e tematica;

Piano di Monitoraggio Ambientale – Reazione Generale

dati territoriali, intesi come localizzazione dei punti di rilievo nel territorio.

Le tavole di progetto sono archiviate in file di tipo Autocad, mentre gli altri dati di tipo cartografico, quali cartografia geografica e tematica e dati territoriali, sono archiviati in un sistema GIS (Geographic Information System) che salva i propri dati in un database.

Con il GIS e possibile eseguire delle interrogazioni cartografiche e creare delle mappe tematiche; ad esempio la visualizzazione di tutti i sensori di rumore che si trovano nell'intorno dell'opera progettata o del fronte d'avanzamento dei lavori, e la stampa di tale carta geografica.

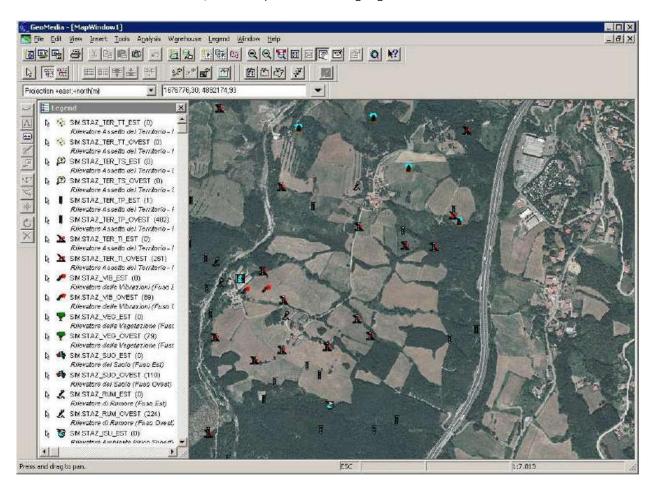


Figura 3 SIM - Interfaccia geografica

I dati che confluiscono nel SIM possono essere raggruppati in due categorie principali:

- dati provenienti da strumentazione —> formati Excel o XML;
- dati forniti da consulenti esterni —> formati di interscambio Excel o Access o XML.

Il processo di importazione fa confluire questi dati in tabelle di appoggio le quali permettono sia il controllo automatico che la validazione del dato da parte dei vari responsabili di componente; solo dati controllati e validati (con registro del processo di controllo e validazione) confluiscono nelle tabelle definitive del SIM.

// Sintagma

Piano di Monitoraggio Ambientale – Reazione Generale

15.2 RESTITUZIONE E MEMORIZZAZIONE DATI

15.2.1 I RAPPORTI DI MISURA

I dati ottenuti attraverso il monitoraggio dovranno essere elaborati e caricati sulla piattaforma SIM. A tal fine saranno predisposte delle schede di rilievo contenenti la codifica (univoca) del rilievo oltre alle seguenti informazioni:

- codice rilievo;
- codice stazione;
- componente monitorata;
- data e ora di inizio e fine rilievo;
- metodo di rilevamento;
- nome/unità di misura/valore del parametro rilevato;
- dati stazionali significativi per il rilievo.

15.2.2 I RAPPORTI DI CAMPAGNA

Al termine di ciascuna campagna di monitoraggio per ciascuna componente ambientale dovranno essere restituiti dei rapporti periodici.

Il rapporto descrive le attività svolte nel periodo di riferimento riportando i dati rilevati in corrispondenza delle singole stazioni e include le seguenti informazioni minime:

- premessa (componente, fase di monitoraggio, campagna di monitoraggio, ecc);
- riferimenti normativi e standard di qualità;
- protocollo di monitoraggio (obiettivi, stazioni, metodi, strumentazione, programma delle attività previste);
- attività eseguite (risultati, analisi ed interpretazione dati, confronto con attività già eseguite);
- attività da eseguire (quadro di sintesi);
- sintesi e conclusioni (considerazioni e valutazioni sullo stato della componente);
- previsione interazioni componente progetto (considerazioni, criticità, eventuali azioni correttive aggiuntive);
- indirizzo per il monitoraggio ambientale (fasi ante opera, corso d'opera, post opera);
- aggiornamento SIM (stato avanzamento caricamento, verifica e validazione dati nel SIM);
- bibliografia;
- appendice 1 Programma avanzamento attività;

15.2.3 I RAPPORTI ANNUALI

Annualmente dovrà essere predisposto un report, che analizza e interpreta le singole componenti sulla base dei dati acquisiti nel periodo precedente all'emissione del rapporto stesso e ha carattere conclusivo per la fase di monitoraggio a cui si riferisce (ante, corso, post).

Prevede la caratterizzazione dello stato delle singole componenti tenendo conto dei dati acquisiti nelle fasi di monitoraggio precedenti.

Il rapporto, con riferimento a ciascuna componente, include le seguenti informazioni minime: introduzione (componente, fase di monitoraggio, periodo di riferimento, finalità);

- area di studio (descrizione);
- riferimenti normativi / standard di qualità;
- protocollo di monitoraggio (obiettivi, stazioni, metodi, strumentazione, programma delle attività eseguite);

Piano di Monitoraggio Ambientale – Reazione Generale

- risultati e analisi (risultati, analisi ed interpretazione conclusive);
- analisi delle criticità (criticità in atto, superamenti soglie normate / standard di qualità);
- quadro interpretativo della componente (considerazioni e valutazioni conclusive sullo stato della componente per il periodo di riferimento);
- previsione interazioni componente progetto (considerazioni conclusive per il periodo di riferimento, criticità, eventuali azioni correttive aggiuntive);
- indirizzo per le fasi/periodi di monitoraggio successivi;
- bibliografia;
- appendice 1 programma avanzamento attività;
- appendice 2 tabella riepilogativa componente-attività-rilievi;
- appendice 3 grafici / tabelle dati;
- appendice 4 documentazione fotografica".

