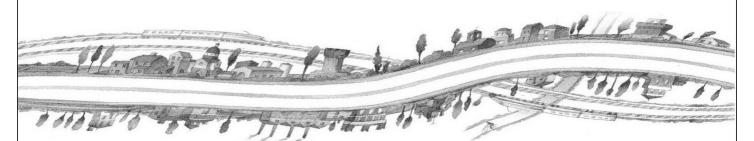


AUTOSTRADA REGIONALE CISPADANA DAL CASELLO DI REGGIOLO-ROLO SULLA A22 AL CASELLO DI FERRARA SUD SULLA A13

CODICE C.U.P. E81B08000060009


PROGETTO DEFINITIVO

ASSE AUTOSTRADALE (COMPRENSIVO DEGLI INTERVENTI LOCALI DI COLLEGAMENTÒ VIARIO AL SISTEMA AUTOSTRADALE)

OPERE STRUTTURALI

OPERE D'ARTE MAGGIORI - CAVALCAVIA SVINCOLO E INTERCONNESSIONE

SCV10 - CAVALCAVIA RAMPA SUD-OVEST DELLO SVINCOLO DI S.FELICE SUL PANARO-FINALE EMILIA RELAZIONE DI CALCOLO IMPALCATO, PILE E SPALLE

IL PROGETTISTA

Ing. Antonio De Fazio Albo Ing. Belogna n° 3696

RESPONSABILE INTEGRAZIONE PRESTAZIONI SPECIALISTICHE

Ing. Emilio Salsi Albo Ing. Reggio Emilia nº 945 IL CONCESSIONARIO

Autostrada Regionale Cispedena S.p.A. IL PRESIDENTE

G					
F					
Е					
D					
С					
В					
А	17.04.2012	EMISSIONE	GADOTTI	DE FAZIO	SALSI
REV.	DATA	DESCRIZIONE	REDAZIONE	CONTROLLO	APPROVAZIONE

IDENTIFICAZION	NE ELA	BORATO
NUM PROCE	FASE	LOTTO

2	8	9	6		

PD

FASE LOTTO 0

CRUPPO S|0|3 CODICE OPERA WBS

TRATTO OPFRA 0

AMRITO OM TIPO FLABORATO C

RFV. Α

PROGRESSIVO

0 1

DATA: MAGGIO 2012

SCALA:

PROGETTO DEFINITIVO

OPERE STRUTTURALI

OPERE D'ARTE MAGGIORI - CAVALCAVIA SVINCOLO E INTERCONNESSIONE SCV10 - CAVALCAVIA RAMPA SUD-OVEST DELLO SVINCOLO DI S.FELICE SUL PANARO-FINALE EMILIA MILIA RELAZIONE DI CALCOLO IMPALCATO , PILE E SPALLE

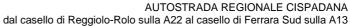
INDICE

AUTOSTRADA REGIONALE CISPADANA

1.	DESC	CRIZIONE DELL'OPERA	3
2.	NORI	MATIVA TECNICA DI RIFERIMENTO	5
3.	CARA	ATTERISTICHE DEI MATERIALI IMPIEGATI	6
4.	INCIE	DENZE	7
5.	DAII	DI BASE	8
5.1	. Dati	Generali	8
5.2	. Aper	tura limite delle fessure	8
5.3	s. Dati	Sismici	11
5.4	. Para	metri geotecnici	11
6 .		NSIONAMENTO DELL'OPERA	
		DELLO DI CALCOLO	
6.2	. ANA	LISI DEI CARICHI	14
	6.2.1.	PESO PROPRIO DELLE STRUTTURE	14
	6.2.2.	CARICHI PERMANENTI PORTATI	14
	6.2.3.	DISTORSIONI E PRESOLLECITAZIONI DI PROGETTO	14
	6.2.4.	RITIRO E VISCOSITA'	15
	6.2.5.	VARIAZIONI TERMICHE	15
	6.2.6.	CEDIMENTI VINCOLARI	16
	6.2.7.	AZIONI VARIABILI DA TRAFFICO	17
	6.2.8.	INCREMENTO DINAMICO ADDIZIONALE	23
	6.2.9.	AZIONE LONGITUDINALE DI FRENAMENTO O DI ACCELERAZIONE	24
	6.2.10.	AZIONE CENTRIFUGA	24
	6.2.11.	AZIONE DEL VENTO	25
	6.2.12.	CARICO DA NEVE	29
	6.2.13.	AZIONI SISMICHE	30
	6.2.14.	URTI	39
	6.2.15.	CARICO DA FATICA	40
6.3	. COM	IBINAZIONI DI CARICO	40

AUTOSTRADA REGIONALE CISPADANA dal casello di Reggiolo-Rolo sulla A22 al casello di Ferrara Sud sulla A13

PROGETTO DEFINITIVO


OPERE STRUTTURALI

OPERE D'ARTE MAGGIORI - CAVALCAVIA SVINCOLO E INTERCONNESSIONE SCV10 - CAVALCAVIA RAMPA SUD-OVEST DELLO SVINCOLO DI S.FELICE SUL PANARO-FINALE EMILIA MILIA RELAZIONE DI CALCOLO IMPALCATO , PILE E SPALLE

6.4.	ANAI	LISI DELLE SOLLECITAZIONI	44
(6.4.1.	SOLETTA DELL'IMPALCATO	44
(6.4.2.	TRAVI METALLICHE PRINCIPALI	48
	6.4.3.	DIAFRAMMI METALLICI TRASVERSALI	54
(6.4.4.	SPALLE	55
(6.4.5.	PARAGHIAIA	
	6.4.6.	PILE	
6.5.	DIME	NSIONAMENTO DEGLI ELEMENTI	66
(6.5.1.	SOLETTA DELL'IMPALCATO	66
(6.5.2.	TRAVI METALLICHE PRINCIPALI	74
(6.5.3.	DIAFRAMMI METALLICI TRASVERSALI	81
(6.5.4.	SPALLE	
(6.5.5.	PARAGHIAIA	
	6.5.6.	PILE	94
(6.5.7.	VERIFICHE DI DEFORMABILITA'	
(6.5.8.	APPARECCHI DI APPOGGIO	103
	650	CHINTI DI DII ATAZIONE	109

AUTOSTRADA REGIONALE CISPADANA

PROGETTO DEFINITIVO

OPERE STRUTTURALI

OPERE D'ARTE MAGGIORI - CAVALCAVIA SVINCOLO E INTERCONNESSIONE 5 V10 - CAVALCAVIA RAMPA SUD-OVEST DELLO SVINCOLO DI S.FELICE SUL PANARO-FINALE EMILIA MILIA RELAZIONE DI CALCOLO IMPALCATO , PILE E SPALLE

1. DESCRIZIONE DELL'OPERA

REGIONALE

CISPADANA

La presente relazione di calcolo è relativa al progetto definitivo dello svincolo SCV10 - CAVALCAVIA RAMPA SUD-OVEST DELLO SVINCOLO DI S.FELICE SUL PANARO-FINALE EMILIA inserito nell'intervento di realizzazione della nuova Autostrada Regionale Cispadana, infrastruttura stradale di categoria A, avente origine in corrispondenza del casello di Reggiolo-Rolo sulla A22 "Autostrada del Brennero" e termine al casello di Ferrara Sud sulla A13 "Autostrada Bologna-Padova". Il presente svincolo ha una larghezza minima della carreggiata di 8 m costituita da una corsia di marcia di 4 m e due banchine di 3 m la prima e di almeno 1 m la seconda (la larghezza della seconda banchina muta in funzione del raggio di curvatura lungo il tracciato); a fianco dello spazio carrabile si prevedono due marciapiedi per una larghezza complessiva minima dell'impalcato di 12 m

FIGURA 1-1 – L'AUTOSTRADA REGIONALE CISPADANA (TRATTO BLU CONTINUO), INSERITA NELLA RETE AUTOSTRADALE NAZIONALE

AUTOSTRADA REGIONALE CISPADANA

AUTOSTRADA REGIONALE CISPADANA dal casello di Reggiolo-Rolo sulla A22 al casello di Ferrara Sud sulla A13

PROGETTO DEFINITIVO

OPERE STRUTTURALI

OPERE D'ARTE MAGGIORI - CAVALCAVIA SVINCOLO E INTERCONNESSIONE ▼10 - CAVALCAVIA RAMPA SUD-OVEST DELLO SVINCOLO DI S.FELICE SUL PANARO-FINALE EMILIA MILIA RELAZIONE DI CALCOLO IMPALCATO , PILE E SPALLE

Il ponte in oggetto è di 1° categoria con vita nomi nale di 100 anni e si sviluppa su 3 campate, le due campate laterali hanno una luce di 44 m mentre quella centrale è di 42 m. La struttura portante è composta da 2 travi principali realizzate in acciaio con piatti saldati e collegate tra loro tramite diaframmi reticolari metallici secondari trasversali. Le travi principali continue sono vincolate alle estremità su spalle ed in posizione intermedie su pile realizzate in cemento armato ordinario gettato in opera. L'altezza massima delle spalle è pari a 2.0 m mentre quella delle pile risulta di 9.35 m.

L'impalcato viene realizzato mediante il getto in opera di una soletta su lastre predalle. A maturazione avvenuta, tale soletta risulta collaborante con le travi metalliche principali mediante idonea connessione alla piattabanda superiore.

L'intervento è geograficamente localizzato tramite le seguenti coordinate: +44° 50' 54.35" latitudine NORD, 11° 11' 2.27" longitudine EST.

Per ulteriori dettagli si rimanda alla relazione illustrativa.

AUTOSTRADA REGIONALE CISPADANA dal casello di Reggiolo-Rolo sulla A22 al casello di Ferrara Sud sulla A13

PROGETTO DEFINITIVO

OPERE STRUTTURALI

OPERE D'ARTE MAGGIORI - CAVALCAVIA SVINCOLO E INTERCONNESSIONE SCV10 - CAVALCAVIA RAMPA SUD-OVEST DELLO SVINCOLO DI S.FELICE SUL PANARO-FINALE EMILIA MILIA RELAZIONE DI CALCOLO IMPALCATO , PILE E SPALLE

2. NORMATIVA TECNICA DI RIFERIMENTO

Si rimanda all'elaborato PD_0_0000_0000_0_GE_KT_01.

AUTOSTRADA REGIONALE CISPADANA dal casello di Reggiolo-Rolo sulla A22 al casello di Ferrara Sud sulla A13

PROGETTO DEFINITIVO

OPERE STRUTTURALI

OPERE D'ARTE MAGGIORI - CAVALCAVIA SVINCOLO E INTERCONNESSIONE CV10 - CAVALCAVIA RAMPA SUD-OVEST DELLO SVINCOLO DI S.FELICE SUL PANARO-FINALE EMILIA MILIA RELAZIONE DI CALCOLO IMPALCATO , PILE E SPALLE

3. CARATTERISTICHE DEI MATERIALI IMPIEGATI

Si rimanda all'elaborato PD_0_0000_0000_0_GE_TB_01.

AUTOSTRADA REGIONALE CISPADANA dal casello di Reggiolo-Rolo sulla A22 al casello di Ferrara Sud sulla A13

PROGETTO DEFINITIVO

OPERE STRUTTURALI

OPERE D'ARTE MAGGIORI - CAVALCAVIA SVINCOLO E INTERCONNESSIONE SCV10 - CAVALCAVIA RAMPA SUD-OVEST DELLO SVINCOLO DI S.FELICE SUL PANARO-FINALE EMILIA MILIA RELAZIONE DI CALCOLO IMPALCATO , PILE E SPALLE

4. INCIDENZE

Si forniscono qui di seguito le incidenze d'armatura relative ai singoli elementi costituenti l'Opera:

					Incidenza kg/mc					Incidenza kg/mq
Cod Wbs	Descrizione Opera	Parte d'opera	Pali	Fondazione	Elevazione	Baggioli e ritegni	Soletta di transizione	Soletta Marciapiede su Spalla	Soletta (escluso predalles)	Carpenteria met Impalcato
S03 - SCV10	Rampa sud-ovest	SPALLA PASSANTE (su 2 file di pali)	130	50	80	200	70	100	N/A	N/A
		PILA su Pali	130	65	70	200	N/A	N/A	N/A	N/A
		IMPALCATO	N/A	N/A	N/A	N/A	N/A	N/A	110	270

AUTOSTRADA REGIONALE CISPADANA

AUTOSTRADA REGIONALE CISPADANA dal casello di Reggiolo-Rolo sulla A22 al casello di Ferrara Sud sulla A13

PROGETTO DEFINITIVO

OPERE STRUTTURALI

OPERE D'ARTE MAGGIORI - CAVALCAVIA SVINCOLO E INTERCONNESSIONE V10 - CAVALCAVIA RAMPA SUD-OVEST DELLO SVINCOLO DI S.FELICE SUL PANARO-FINALE EMILIA MILIA RELAZIONE DI CALCOLO IMPALCATO , PILE E SPALLE

5. DATI DI BASE

5.1. Dati Generali

• Luce (interasse appoggi): 44 m – 42 m – 44 m

Impalcati: 1

Larghezza impalcato singolo: 12,00 m

• N°Corsie per impalcato (Effettive): 1

N° Corsie per impalcato (di Calcolo): 2

Travi: acciaio (n°2)

· Spalle: passanti

Appoggi: isolatori elastomerici in gomma

5.2. Apertura limite delle fessure

Al Cap.3 si rimanda all'elaborato relativo alla tabella materiali in cui è stabilita, per ogni calcestruzzo, la Classe di Esposizione.

Per i pali di fondazione delle spalle e delle pile oltre che per la zattera di fondazione delle pile si hanno indicazioni in merito alla classe di esposizione ottenute in seguito ad indagini chimiche eseguite lungo il tracciato autostradale. Per questi elementi non si ha una classe di esposizione uguale per tutti i manufatti ma è funzione della loro posizione; per la classe di esposizione dei pali di fondazione di spalle e pile e per le zattere di fondazione delle pile si rimanda alle indicazioni contenute nell'elaborato PD_0_0000_0000_0_GE_TB_01 dal titolo "TABELLA MATERIALI E CLASSI DI ESPOSIZIONE CALCESTRUZZO".

La classe di esposizione, ai sensi della Tab. 4.1.III della Norma, qualifica automaticamente la 'Condizione ambientale'.

Tale dato – assieme alla tipologia di armatura 'sensibile' o 'poco sensibile', va inserito nella Tab. 4.1.IV della Norma. In tale Tabella va inoltre considerato che l'armatura è del tipo 'poco sensibile'.

Conseguentemente a quanto sopra, per lo Stato Limite di apertura delle fessure si ha :

AUTOSTRADA REGIONALE CISPADANA

AUTOSTRADA REGIONALE CISPADANA dal casello di Reggiolo-Rolo sulla A22 al casello di Ferrara Sud sulla A13

PROGETTO DEFINITIVO

OPERE STRUTTURALI

OPERE D'ARTE MAGGIORI - CAVALCAVIA SVINCOLO E INTERCONNESSIONE ▼10 - CAVALCAVIA RAMPA SUD-OVEST DELLO SVINCOLO DI S.FELICE SUL PANARO-FINALE EMILIA MILIA RELAZIONE DI CALCOLO IMPALCATO , PILE E SPALLE

TAB. 5.2-1

Elemento	Classe Esposizione	Condizione	Armatura	Combinazione	wd <
Pali pile	XA1*	Aggressiva	poco sensibile	frequente	W_2
				quasi permanente	W_1
Pali spalle	XA1*	Aggressiva	poco sensibile	frequente	W_2
				quasi permanente	W_1
Zattera pile	XA1*	Aggressiva	poco sensibile	frequente	W_2
				quasi permanente	W_1
Zattera spalla	XC4 + XD3	Molto aggressiva	poco sensibile	frequente	W_1
				quasi permanente	W_1
Soletta transizione	XC2	Ordinaria	poco sensibile	frequente	W_3
				quasi permanente	W_2
Elevazione pile	XC4	Aggressiva	poco sensibile	frequente	W_2
				quasi permanente	W_1
Elevazione spalla	XC4 + XD3	Molto aggressiva	poco sensibile	frequente	W_1
				quasi permanente	W_1
Soletta impalcato	XC4	Aggressiva	poco sensibile	frequente	W_2
				quasi permanente	W_1
Lastre predalle	XC3	Ordinaria	poco sensibile	frequente	W_3
				quasi permanente	W_2
Cordolo guardrail	XC4 + XD3	Molto aggressiva	poco sensibile	frequente	W_1
				quasi permanente	W ₁

()* Si riporta la classe di esposizione in funzione della progressiva lungo il tracciato autostradale:

da PK 0+000 A PK 9+500 classe di esposizione XC2 da PK 9+500 A PK 12+900 classe di esposizione XA1 da PK 12+900 A PK 15+000 classe di esposizione XC2 da PK 15+000 A PK 15+800 classe di esposizione XA1 da PK 15+800 A PK 20+400 classe di esposizione XC2 da PK 20+400 A PK 35+000 classe di esposizione XA1 da PK 35+000 A PK 48+700 classe di esposizione XA2 da PK 48+700 A PK 48+900 classe di esposizione XA1 da PK 48+900 A PK 56+300 classe di esposizione XA2 da PK 56+300 A PK 59+600 classe di esposizione XA1

AUTOSTRADA REGIONALE CISPADANA dal casello di Reggiolo-Rolo sulla A22 al casello di Ferrara Sud sulla A13

PROGETTO DEFINITIVO

OPERE STRUTTURALI

OPERE D'ARTE MAGGIORI - CAVALCAVIA SVINCOLO E INTERCONNESSIONE V10 - CAVALCAVIA RAMPA SUD-OVEST DELLO SVINCOLO DI S.FELICE SUL PANARO-FINALE EMILIA MILIA RELAZIONE DI CALCOLO IMPALCATO , PILE E SPALLE

da PK 59+600 A PK 65+500 classe di esposizione XC2

REGIONALE

La progressiva adottata per il manufatto è PK28+350.

In sintesi, tenuto conto di quanto al par. 4.1.2.2.4.1 della Norma, l'apertura limite delle fessure risulta:

• Pali pile (armatura ordinaria)

Comb. frequente: 0,2 mm; Comb. quasi permanente: 0,2 mm

Pali spalle (armatura ordinaria)

Comb. frequente: 0,2 mm; Comb. quasi permanente: 0,2 mm

Zattera pile (armatura ordinaria)

Comb. frequente: 0,2 mm; Comb. quasi permanente: 0,2 mm

• Zattera spalle (armatura ordinaria)

Comb. frequente: 0,2 mm; Comb. quasi permanente: 0,2 mm

• Soletta transizione (armatura ordinaria)

Comb. frequente: 0,4 mm; Comb. quasi permanente: 0,3 mm

• Elevazioni pile (armatura ordinaria)

Comb. frequente: 0,3 mm; Comb. quasi permanente: 0,2 mm

Elevazioni spalle (armatura ordinaria)

Comb. frequente: 0,2 mm; Comb. quasi permanente: 0,2 mm

• Soletta impalcato (armatura ordinaria)

Comb. frequente: 0,3 mm; Comb. quasi permanente: 0,2 mm

Lastre predalle (armatura ordinaria)

Comb. frequente: 0,4 mm; Comb. quasi permanente: 0,3 mm

Cordolo guardrail (armatura ordinaria)

Comb. frequente: 0,2 mm; Comb. quasi permanente: 0,2 mm

AUTOSTRADA REGIONALE CISPADANA

AUTOSTRADA REGIONALE CISPADANA dal casello di Reggiolo-Rolo sulla A22 al casello di Ferrara Sud sulla A13

PROGETTO DEFINITIVO

OPERE STRUTTURALI

OPERE D'ARTE MAGGIORI - CAVALCAVIA SVINCOLO E INTERCONNESSIONE CV10 - CAVALCAVIA RAMPA SUD-OVEST DELLO SVINCOLO DI S.FELICE SUL PANARO-FINALE EMILIA MILIA RELAZIONE DI CALCOLO IMPALCATO , PILE E SPALLE

5.3. Dati Sismici

- Vita nominale: 100 anni (secondo PD_0_0000_0000_0_GE_KT_02)
- Classe d'uso: IV ⇒ CU = 2.0 (secondo PD_0_0000_0000_0_GE_KT_02)
- Probabilità di superamento 'PVR' per lo Stato SLD : 63%
- Probabilità di superamento 'PVR' per lo Stato SLV : 10%
- Probabilità di superamento 'PVR' per lo Stato SLC : 5%
- Periodo di Ritorno per lo Stato SLD 'TR' < 2475 anni = VR / ln(1-PVR) = 201 anni
- Periodo di Ritorno per lo Stato SLV 'TR' < 2475 anni = VR / In(1-PVR) = 1898 anni
- Periodo di Ritorno per lo Stato SLC 'TR' < 2475 anni = VR / In(1-PVR) = 2475 anni
- Longitudine: 11°11' 2.27"; Latitudine 44°50' 54 .35"
- Tipo di Suolo: 'C' (vedi elaborato 0469_PD_0_S03_SCV10_0_GT_RB_01)

5.4. Parametri geotecnici

I parametri necessari a definire le caratteristiche del terreno a tergo della spalla (materiale da rilevato) sono estratti dal Documento '0406_PD_0_A00_A0000_0_GT_RB_03_A "Relazione di verifiche geotecniche".

Si assume:

 $\gamma = 19.5 \text{ kN/m3}$; $\emptyset = 38.0^{\circ} [M1]$; $\emptyset' = 32.01^{\circ} [M2]$

dove:

γ: peso specifico del terrapieno

Ø : angolo d'attrito caratteristico del terrapieno

Ø': angolo d'attrito efficace del terrapieno

Le curve di portanza, di sollecitazione e di deformazione dei pali sono estratte dalla Relazione Geotecnica dell'Opera.

AUTOSTRADA REGIONALE CISPADANA dal casello di Reggiolo-Rolo sulla A22 al casello di Ferrara Sud sulla A13

PROGETTO DEFINITIVO

OPERE STRUTTURALI

OPERE D'ARTE MAGGIORI - CAVALCAVIA SVINCOLO E INTERCONNESSIONE CV10 - CAVALCAVIA RAMPA SUD-OVEST DELLO SVINCOLO DI S.FELICE SUL PANARO-FINALE EMILIA MILIA

RELAZIONE DI CALCOLO IMPALCATO, PILE E SPALLE

6. DIMENSIONAMENTO DELL'OPERA

AUTOSTRADA REGIONALE

CISPADANA

6.1. MODELLO DI CALCOLO

Per le analisi delle sollecitazioni delle travi principali vengono implementati tre modelli monodimensionali; ciascuno modella la trave con elementi beam ed è relativo ad una precisa fase della vita dell'opera. I modelli si differenziano per la rigidezza della soletta collaborante con le travi metalliche come descritto sotto:

- FASE 1 calcestruzzo fresco, modulo elastico nullo;
- FASE 2 modulo di elasticità secante del calcestruzzo per azioni di breve durata;
- FASE 3 modulo di elasticità del calcestruzzo ridotto per azioni permanenti.

Le sollecitazioni totali sulle travi longitudinali sono determinate sommando i contributi relativi alle 3 fasi di calcolo.

Per le analisi dei diaframmi e per calcolare in che modo di distribuiscono tra le travi principali i carichi presenti sull'implacato si implementa un sottomodello che considera le possibili posizioni dei carichi concentrati lungo la sezione trasversale in modo da cogliere il massimo carico possibile per ciascuna trave combinando i carichi delle corsie che ci stanno compatibilmente con la larghezza della carreggiata. In questo sottomodello fatto con elementi beam, le travi longitudinali sono state modellate con delle molle che descrivono la flessibilità del ponte lungo lo sviluppo longitudinale.

Per le analisi delle sollecitazioni sulla soletta dell'impalcato è stata eseguita una modellazione agli elementi finiti di una porzione significativa del ponte. La soletta è modellata con elementi plate in appoggio sulle travi principali; tale modellazione permette la determinazione delle azioni interne nelle due direzioni principali in particolar modo per i carichi variabili concentrati in fase 2.

Le elaborazioni mediante calcolatore sono state eseguite con l'ausilio del seguente programmi:

A U T O S T R A D A R E G I O N A L E CISPADANA

AUTOSTRADA REGIONALE CISPADANA dal casello di Reggiolo-Rolo sulla A22 al casello di Ferrara Sud sulla A13

PROGETTO DEFINITIVO

OPERE STRUTTURALI

OPERE D'ARTE MAGGIORI - CAVALCAVIA SVINCOLO E INTERCONNESSIONE CV10 - CAVALCAVIA RAMPA SUD-OVEST DELLO SVINCOLO DI S.FELICE SUL PANARO-FINALE EMILIA MILIA RELAZIONE DI CALCOLO IMPALCATO , PILE E SPALLE

Straus 7 Release: 2.3.7

Implementato e sviluppato da:

G+D Computing

Suite 1 Level /, 541 Kent St,

Sydney NSW 2000 Australia

Tel +61 2 9264 2977

Fax +61 2 9264 2066

Email strand7@gd.com.au

Distribuito in Italia da:

HSH srl

Via N. Tommaseo 13,

35131 Padova Italia

Tel +39 049 875 2724

Fax +39 049 875 8747

Email hsh@iperv.it

I programmi vengono usati dalla scrivente in forza di regolari licenze d'uso e sono testati periodicamente mediante procedure di controllo, tali da verificarne l'attendibilità delle applicazioni e dei risultati ottenuti ed individuarne eventuali vizi ed anomalie; a tal proposito si evidenzia che Il programma dispone di una serie di test riportati in un VERIFICATION MANUAL che contiene ben 144 test di validazione organizzati in modo sistematico per trattare la casistica delle applicazioni fondamentali del codice. Gli esempi sono strutturati sulla falsariga dei cosiddetti 'benchmark', utilizzando, ove esistenti, i problemi di riferimento proposti da organizzazioni internazionali ben note quali ad esempio la NAFEMS.

AUTOSTRADA REGIONALE CISPADANA

AUTOSTRADA REGIONALE CISPADANA dal casello di Reggiolo-Rolo sulla A22 al casello di Ferrara Sud sulla A13

PROGETTO DEFINITIVO

OPERE STRUTTURALI

OPERE D'ARTE MAGGIORI - CAVALCAVIA SVINCOLO E INTERCONNESSIONE CV10 - CAVALCAVIA RAMPA SUD-OVEST DELLO SVINCOLO DI S.FELICE SUL PANARO-FINALE EMILIA MILIA

RELAZIONE DI CALCOLO IMPALCATO , PILE E SPALLE

6.2. ANALISI DEI CARICHI

Si riporta di seguito in dettaglio l'analisi di tutti carichi considerati nel progetto del ponte in oggetto, sia in termini di azioni esterne che in termini di deformazioni impresse.

6.2.1. PESO PROPRIO DELLE STRUTTURE

Il peso proprio degli elementi strutturali in cemento armato è stato valutato considerando un peso specifico del materiale pari a 25 kN/mc. Nei modelli di calcolo il peso proprio degli elementi in CA è etichettato con la sigla g_1 .

Il peso proprio degli elementi strutturali in carpenteria metallica è stato valutato considerando un peso specifico del materiale pari a 78.5 kN/mc. Nei modelli di calcolo il peso proprio degli elementi metallici è etichettato con la sigla *P prop*.

6.2.2. CARICHI PERMANENTI PORTATI

Sulla parte centrale carrabile dell'impalcato è stato considerato un carico permanente portato distribuito dal valore medio pari a 2.20 kN/mq mentre sulle porzioni laterali adibite a marciapiede è stato considerato un carico permanente portato distribuito dal valore medio pari a 7.5 kN/mq.

Nei modelli di calcolo il carico permanente portato è etichettato con la sigla g_2 .

6.2.3. <u>DISTORSIONI E PRESOLLECITAZIONI DI PROGETTO</u>

Considerata la geometria dei manufatti che vengono realizzati con due campate laterali più corte di quella centrale solitamente si può configurare la situazione in cui, per determinate combinazioni di carico, si verifica il sollevamento delle estremità delle travi dall'appoggio sulle spalle. In questa precisa opera, data la differenza di lunghezza tra campate laterali e centrale e iato l'interasse delle travi non si ha il fenomeno descritto prima pertanto non si prevede nessuno stato sollecitante impresso al momento della posa in opera.

Nei modelli di calcolo l'eventuale presollecitazione di progetto è etichettata con la sigla presoll.

AUTOSTRADA REGIONALE CISPADANA dal casello di Reggiolo-Rolo sulla A22 al casello di Ferrara Sud sulla A13

PROGETTO DEFINITIVO

OPERE STRUTTURALI

OPERE D'ARTE MAGGIORI - CAVALCAVIA SVINCOLO E INTERCONNESSIONE V10 - CAVALCAVIA RAMPA SUD-OVEST DELLO SVINCOLO DI S.FELICE SUL PANARO-FINALE EMILIA MILIA RELAZIONE DI CALCOLO IMPALCATO , PILE E SPALLE

6.2.4. RITIRO E VISCOSITA'

Per la valutazione degli effetti del ritiro si è fatto riferimento al paragrafo # 11.2.10.6 delle Norme Tecniche, la deformazione assiale per ritiro è data dalla somma del ritiro per essiccamento e del ritiro autogeno: $\mathcal{E}_{cs} = \mathcal{E}_{cd} + \mathcal{E}_{ca}$.

Con un'umidità relativa RH=60% il ritiro a tempo infinito per essiccamento è di 0.000336 mentre il ritiro autogeno a tempo infinito vale 0.000041. Il ritiro totale vale: 0.000377

Per tenere in considerazione gli effetti della viscosità nel caso di azioni di lunga durata si considera un modulo di elasticità del calcestruzzo ridotto secondo la seguente espressione (NTC2008 #11.2.10.7) indicata nel paragrafo C4.1.2.2.5 della Circolare n°617:

$$E_{cc} = \frac{E_{cm}}{\varphi \cdot (\infty, t_0)}$$

Ne segue che il modulo elastico finale è calcolato come segue:

$$\mathcal{E}_{c,t=\infty} = \mathcal{E}_{c,0} + \mathcal{E}_{cc} = \frac{\sigma_{C}}{E_{cm}} + \frac{\sigma_{C}}{\frac{E_{cm}}{\varphi \cdot \left(\infty, t_{0}\right)}} = \frac{\sigma_{C}}{\frac{E_{cm}}{1 + \varphi \cdot \left(\infty, t_{0}\right)}} \Rightarrow E_{c,t=\infty} = \frac{E_{cm}}{1 + \varphi \cdot \left(\infty, t_{0}\right)}$$

Il valore di modulo elastico per la valutazione delle sollecitazioni a tempo infinito dovute ai carichi permanenti ai cedimenti vincolari vale 11850 MPa.

Nei modelli di calcolo la sollecitazione dovuta al ritiro è etichettata con la sigla ε_2 .

6.2.5. VARIAZIONI TERMICHE

Le variazioni termiche sono state considerate nel progetto secondo quanto previsto nel paragrafo 5.1.3.2 delle Norme Tecniche per il quale si rimanda all'apposita sezione e secondo quanto previsto nella UNI EN 1991-1-5 mediante le due diverse condizioni di carico seguenti:

 Variazione uniforme +44℃ e -36℃ per una escursio ne totale di 80℃ utilizzata per il calcolo delle deformazioni massime longitudinale nel dimensionamento dei giunti di dilatazione. Per determinare l'entità di tale variazione di temperatura si utilizza la temperatura minima e massima all'ombra fornita

AUTOSTRADA REGIONALE CISPADANA dal casello di Reggiolo-Rolo sulla A22 al casello di Ferrara Sud sulla A13

PROGETTO DEFINITIVO

OPERE STRUTTURALI

OPERE D'ARTE MAGGIORI - CAVALCAVIA SVINCOLO E INTERCONNESSIONE V10 - CAVALCAVIA RAMPA SUD-OVEST DELLO SVINCOLO DI S.FELICE SUL PANARO-FINALE EMILIA MILIA RELAZIONE DI CALCOLO IMPALCATO , PILE E SPALLE

dal DM del 14-01-2008 al paragrafo 3.5 e tramite la figura 6.1 riportata dall'Eurocodice 1991-1-5 si determina la corrispondente temperatura della struttura che vale +49℃ e -11℃ per impalcato tipo 2. Per completare la definizione dell'escursione massima si tiene conto di una temperatura iniziale di 15℃ e un contributo integrativo di 10℃ per consid erare le condizioni di calibratura dei giunti.

 Variazione di temperatura ±10°C tra soletta e tra vi principali metalliche utilizzata per schematizzare il gradiente di temperatura derivante dalla diversa esposizione ai raggi solari. Questa condizione è prevista nella UNI EN 1991-1-5 per ponti a struttura composta (riportata in EN 1991-1-5 figura 6.2b).

Per il calcolo delle sollecitazioni si considerano per i coefficienti di dilatazione termica dei materiali i seguenti valori:

$$\alpha_{CLS} = 10 \cdot \frac{10^{-6}}{C^{\circ}}$$

$$\alpha_{ACCIAIO} = 12 \cdot \frac{10^{-6}}{C^{\circ}}$$

$$\alpha_{ACCIAIO-CLS} = 12 \cdot \frac{10^{-6}}{C^{\circ}}$$

Nei modelli di calcolo la sollecitazione dovuta alla variazione termica è etichettata con la sigla ΔT .

6.2.6. CEDIMENTI VINCOLARI

AUTOSTRADA REGIONALE CISPADANA

Secondo le indicazioni fornite dalle elaborazioni geotecniche è ipotizzabile un cedimento differenziale verticale di ciascun gruppo di pali che sostengo le spalle e le pile di circa L / 5000 dove L è la lunghezza media di due campate adiacenti.

Considerando la lunghezza media delle due campate adiacenti (laterale e centrale) si ipotizza quindi un cedimento differenziale di circa 8.6 mm; tuttavia nelle relazioni geotecniche emerge anche che per l'attivazione della portata di ciascun gruppo di pali ci sia un cedimento di circa 2 cm; ipotizzando a favore di sicurezza che il cedimento totale di ciascun gruppo di pali sia pari a quello differenziale e maggiorando questa quantità a favore di sicurezza per i calcoli delle sollecitazioni si assume che il cedimento differenziale massimo tra le fondazioni sia di 3 cm.

AUTOSTRADA REGIONALE CISPADANA dal casello di Reggiolo-Rolo sulla A22 al casello di Ferrara Sud sulla A13

PROGETTO DEFINITIVO

OPERE STRUTTURALI

OPERE D'ARTE MAGGIORI - CAVALCAVIA SVINCOLO E INTERCONNESSIONE ▼10 - CAVALCAVIA RAMPA SUD-OVEST DELLO SVINCOLO DI S.FELICE SUL PANARO-FINALE EMILIA MILIA RELAZIONE DI CALCOLO IMPALCATO , PILE E SPALLE

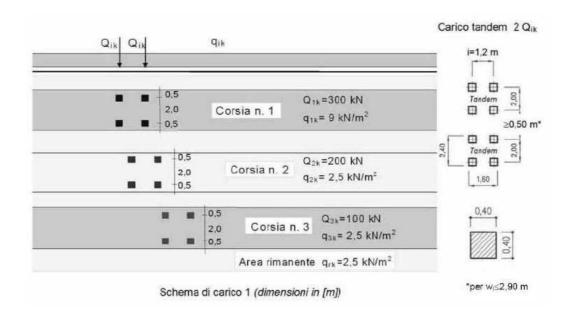
Nei modelli di calcolo la sollecitazione dovuta ai cedimenti vincolari è etichettata con la sigla cv.

6.2.7. AZIONI VARIABILI DA TRAFFICO

AUTOSTRADA REGIONALE CISPADANA

Il ponte oggetto della relazione è classificato come ponte di l'acategoria con riferimento a quanto prescritto nel D.M. del 14 gennaio del 2008. Per la determinazione dei parametri di sollecitazione massimi sono stati considerati i seguenti carichi mobili:

- carichi concentrati da 300 kN su due assi tandem, applicati su impronte di pneumatico quadrata di lato 0.4 m un carico uniformemente distribuiti di 9 kN/m²;
- una condizione di carico sulla seconda corsia analoga alla precedente ma con i carichi concentrati di 200 kN e un carico distribuito di 2.50 kN/m²;
- un carico distribuito di 5 kN/m² su tutte le superfici dei marciapiedi e dei cordoli che diventa di 2.5 kN/m² per le combinazioni con gli altri carichi variabili.


Questi carichi s riferiscono allo schema di carico 1 previsto nel paragrafo # 5.1.3.3.5 del DM del 14-01-2008.

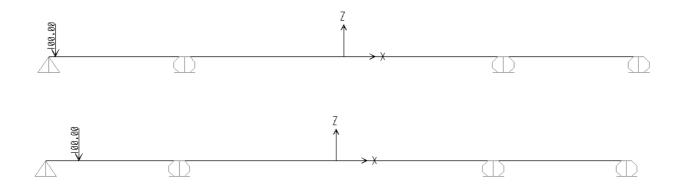
AUTOSTRADA REGIONALE CISPADANA dal casello di Reggiolo-Rolo sulla A22 al casello di Ferrara Sud sulla A13

PROGETTO DEFINITIVO

OPERE STRUTTURALI

OPERE D'ARTE MAGGIORI - CAVALCAVIA SVINCOLO E INTERCONNESSIONE 🕏 V10 - CAVALCAVIA RAMPA SUD-OVEST DELLO SVINCOLO DI S.FELICE SUL PANARO-FINALE EMILIA MILIA RELAZIONE DI CALCOLO IMPALCATO, PILE E SPALLE

AUTOSTRADA REGIONALE CISPADANA

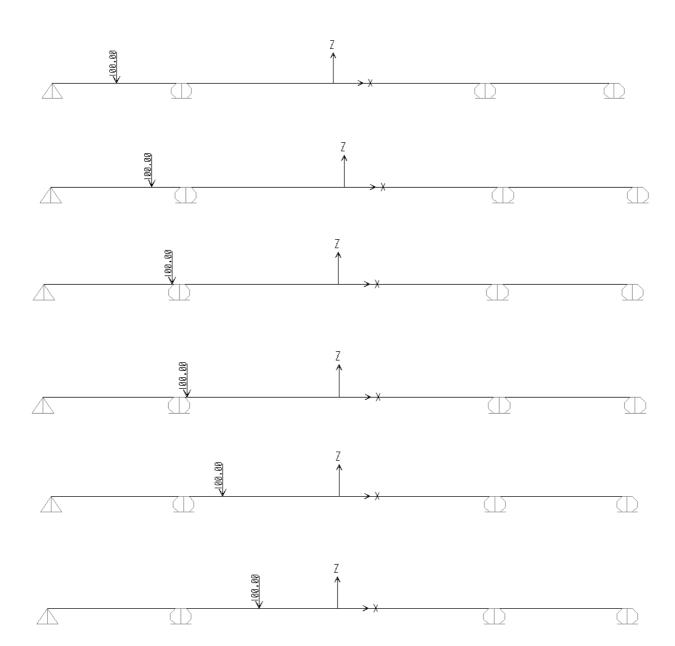

FIGURA 2 CARICHI DA TRAFFICO SULL'IMPALCATO

Le corsie di carico considerate sono 2 in quanto è il numero massimo compatibile con la larghezza della parte carrabile del ponte.

Per massimizzare le sollecitazioni i carichi distribuiti sono stati considerati agenti anche con una distribuzione a scacchiera sia in senso trasversale che longitudinale.

Tutti i carichi mobili sono stati combinati per massimizzare le diverse sollecitazioni negli elementi che compongono il ponte.

Si riportano alcune immagini che chiariscono la distribuzione dei carichi variabili sull'impalcato:

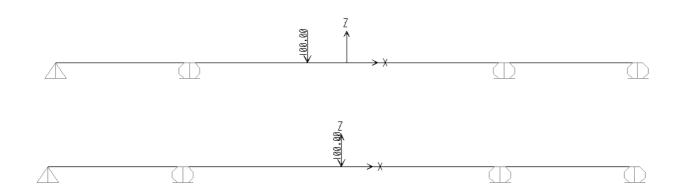

AUTOSTRADA REGIONALE CISPADANA

dal casello di Reggiolo-Rolo sulla A22 al casello di Ferrara Sud sulla A13

PROGETTO DEFINITIVO

OPERE D'ARTE MAGGIORI - CAVALCAVIA SVINCOLO E INTERCONNESSIONE SCV10 - CAVALCAVIA RAMPA SUD-OVEST DELLO SVINCOLO DI S.FELICE SUL PANARO-FINALE EMILIA MILIA RELAZIONE DI CALCOLO IMPALCATO , PILE E SPALLE

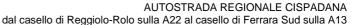
AUTOSTRADA REGIONALE CISPADANA



AUTOSTRADA REGIONALE CISPADANA dal casello di Reggiolo-Rolo sulla A22 al casello di Ferrara Sud sulla A13

PROGETTO DEFINITIVO

OPERE STRUTTURALI


REGIONALE CISPADANA OPERE D'ARTE MAGGIORI - CAVALCAVIA SVINCOLO E INTERCONNESSIONE 🕏 V10 - CAVALCAVIA RAMPA SUD-OVEST DELLO SVINCOLO DI S.FELICE SUL PANARO-FINALE EMILIA MILIA RELAZIONE DI CALCOLO IMPALCATO, PILE E SPALLE

AUTOSTRADA

FIGURA 3 POSIZIONI DEI CARICHI CONCENTRATI VARIABILI DA TRAFFICO

Per il calcolo delle sollecitazioni dovute al carico variabile da traffico si considerano le posizioni illustrate sopra lungo ciascuna trave longitudinale; il carico concentrato è stato inserito come una forza concentrata al posto di due forze in corrispondenza degli assi del mezzo equivalente, questa scelta è a favore di sicurezza in quanto considera una concentrazione maggiore delle sollecitazioni; nel modello delle travi longitudinali viene inserito un carico concentrato di 100 kN che viene poi amplificato in funzione di quanto si distribuisce il carico sull'impalcato tra le travi metalliche. Per stabilire quanto carico concentrato compete a ciascuna trave si implementa un sottomodello che considera le possibili posizioni dei carichi concentrati lungo la sezione trasversale in modo da cogliere il massimo carico possibile per ciascuna trave combinando i carichi delle corsie che ci stanno compatibilmente con la larghezza della carreggiata.

PROGETTO DEFINITIVO

OPERE STRUTTURALI

OPERE D'ARTE MAGGIORI - CAVALCAVIA SVINCOLO E INTERCONNESSIONE 5 V10 - CAVALCAVIA RAMPA SUD-OVEST DELLO SVINCOLO DI S.FELICE SUL PANARO-FINALE EMILIA MILIA RELAZIONE DI CALCOLO IMPALCATO, PILE E SPALLE

FIGURA 4 DISTRIBUZIONE TRASVERSALE DEI CARICHI CONCENTRATI DA TRAFFICO

Per cogliere in maniera precisa la distribuzione delle forze, le travi longitudinali sono state modellate con delle molle che descrivono la flessibilità del ponte lungo lo sviluppo longitudinale.

Nelle combinazioni considerate per il calcolo delle sollecitazioni nelle travi longitudinali sono stati amplificati i carichi concentrati considerando il massimo carico che si può attribuire a ciascuna trave in funzione delle posizioni delle impronte lungo la sezione trasversale e delle differenti rigidezze delle molle.

Sulla trave laterale si scarica al massimo l' 85% del carico concentrato della prima corsia paria 600 kN più il 40% del carico concentrato della seconda corsia paria 400 kN per un totale di:

$$F = 0.86 \cdot 600 \cdot kN + 0.41 \cdot 400 \cdot kN = 680 \cdot kN$$

AUTOSTRADA REGIONALE CISPADANA

Quindi il carico concentrato nel modello della trave viene amplificato di 6.8 volte.

AUTOSTRADA REGIONALE CISPADANA

dal casello di Reggiolo-Rolo sulla A22 al casello di Ferrara Sud sulla A13

PROGETTO DEFINITIVO

OPERE STRUTTURALI

OPERE D'ARTE MAGGIORI - CAVALCAVIA SVINCOLO E INTERCONNESSIONE CV10 - CAVALCAVIA RAMPA SUD-OVEST DELLO SVINCOLO DI S.FELICE SUL PANARO-FINALE EMILIA MILIA RELAZIONE DI CALCOLO IMPALCATO , PILE E SPALLE

Analogamente a quanto fatto per i carichi concentrati è stato fatto per i carichi distribuiti, a titolo di esempio si riporta la scacchiera dei carichi variabili da traffico lungo lo sviluppo longitudinale del ponte:

AUTOSTRADA REGIONALE CISPADANA

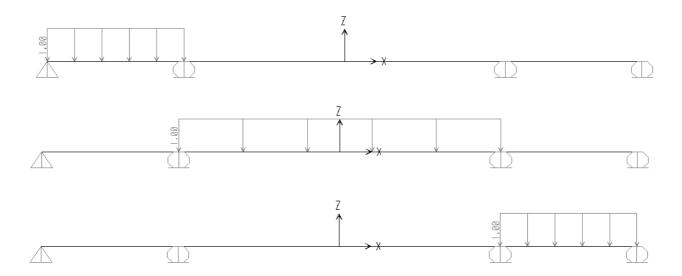
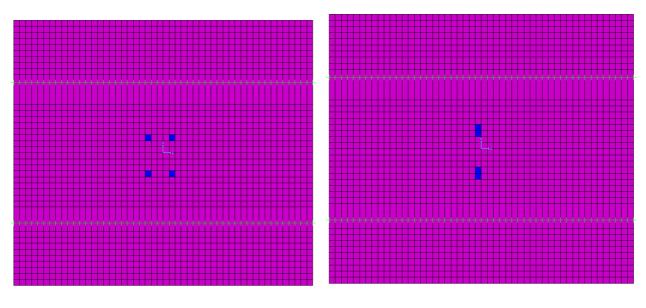


FIGURA 5 DISTRIBUZIONE A SCACCHIERA DEI CARICHI DISTRIBUITI DA TRAFFICO

In questo caso il carico distribuito unitario sulla trave laterale viene amplificato di 35.6.


La soletta che appoggia sulle travi e collabora con esse a resistere ai carichi applicati viene verificata con dei sottomodello specifico in modo da valutare la diffusione dei carichi da traffico (soprattutto quelli concentrati). Si riportano alcune immagini del modello con le impronte di carico concentrato da traffico:

AUTOSTRADA REGIONALE CISPADANA dal casello di Reggiolo-Rolo sulla A22 al casello di Ferrara Sud sulla A13

PROGETTO DEFINITIVO

OPERE STRUTTURALI

OPERE D'ARTE MAGGIORI - CAVALCAVIA SVINCOLO E INTERCONNESSIONE CV10 - CAVALCAVIA RAMPA SUD-OVEST DELLO SVINCOLO DI S.FELICE SUL PANARO-FINALE EMILIA MILIA RELAZIONE DI CALCOLO IMPALCATO , PILE E SPALLE

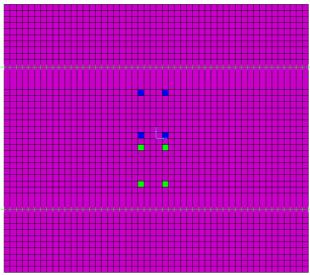


FIGURA 6 IMPRONTE DI CARICO CONCENTRATO

6.2.8. INCREMENTO DINAMICO ADDIZIONALE

AUTOSTRADA REGIONALE CISPADANA

Per calcolare le sollecitazioni in corrispondenza dei punti di discontinuità è stata considerata la condizione di carico che prevede un carico concentrato su un solo asse pari a 400 kN da incrementare con un coefficiente $\beta_{\scriptscriptstyle O}$ che varia tra 1.3 e 1.0 in una fascia compresa tra 0 m e 6 m dal punto di discontinuità.

AUTOSTRADA REGIONALE CISPADANA dal casello di Reggiolo-Rolo sulla A22 al casello di Ferrara Sud sulla A13

PROGETTO DEFINITIVO

OPERE STRUTTURALI

OPERE D'ARTE MAGGIORI - CAVALCAVIA SVINCOLO E INTERCONNESSIONE 5 🕏 🕏 🕏 🕏 🕏 🕏 🕏 Ulava Rampa Sud-Ovest dello svincolo di S.Felice sul panaro-finale emilia milia RELAZIONE DI CALCOLO IMPALCATO, PILE E SPALLE

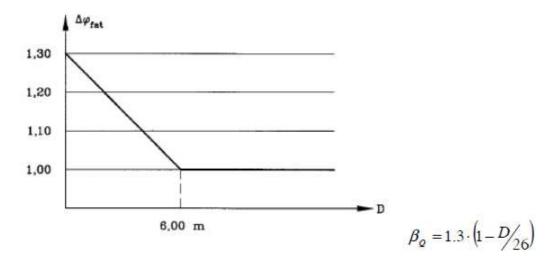


FIGURA 7 DISTRIBUZIONE DELLINCREMENTO DINAMICO DEI CARICHI DA TRAFFICO

6.2.9. AZIONE LONGITUDINALE DI FRENAMENTO O DI ACCELERAZIONE

La forza longitudinale di frenamento o di accelerazione è funzione del carico verticale totale agente sulla corsia convenzionale nº 1. Tale forza, applicata a livello della pavimentazione ed agente lungo l'asse della corsia, è assunta uniformemente distribuita sulla lunghezza caricata.

$$180 \cdot kN \le 0.6 \cdot \left(2 \cdot Q_{1k}\right) + 0.10 \cdot q_{1k} \cdot w_1 \cdot L \le 900 \cdot kN$$

$$180 \cdot kN \le 0.6 \cdot \left(2 \cdot 300 \cdot kN\right) + 0.10 \cdot 9 \cdot \frac{kN}{mq} \cdot 3.0 \cdot m \cdot 130 \cdot m = 711 \cdot kN \le 900 \cdot kN$$

6.2.10. AZIONE CENTRIFUGA

Data lo sviluppo planimetrico dell'asse stradale del manufatto in oggetto con raggio di curvatura inferiore a 200 m la forza centrifuga risulta pari a:

PROGETTO DEFINITIVO

OPERE STRUTTURALI

OPERE D'ARTE MAGGIORI - CAVALCAVIA SVINCOLO E INTERCONNESSIONE V10 - CAVALCAVIA RAMPA SUD-OVEST DELLO SVINCOLO DI S.FELICE SUL PANARO-FINALE EMILIA MILIA RELAZIONE DI CALCOLO IMPALCATO , PILE E SPALLE

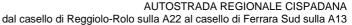
$$Q_4 = 0.2 \cdot \sum_{k=1}^{\infty} 2 \cdot Q_{1k} = 200 \cdot kN$$

6.2.11. AZIONE DEL VENTO

Si determina di seguito la pressione esercitata dal vento in funzione della localizzazione del sito ove sorge la costruzione, dell'altitudine sul livello del mare, della rugosità del terreno e dell'altezza sul suolo del ponte.

Per il calcolo dell'azione trasversale totale si analizzano due situazioni limite:

- Vento a ponte scarico con superficie esposta pari all'altezza delle travi principali;
- Vento a ponte carico con superficie esposta pari all'altezza di altezza 3.0 m a partire dal piano stradale schematizzante i mezzi pensanti in transito (si considera la stessa altezza di 3 m nel caso in cui sia presente la barriere antirumore).


Il sito in cui si realizza la struttura ricade nella zona 2 caratterizzata dai seguenti parametri:

- velocità di riferimento $v_{b,0} = 25 \cdot \frac{m}{s}$
- altitudine di riferimento: $a_0 = 750 \cdot m$
- $\bullet \quad K_a = 0.015 \cdot \frac{1}{s}$

La velocità del vento non subisce incrementi per l'altitudine del sito che risulta ad una quota media di circa 15 m sul livello del mare, che è inferiore a quella di riferimento ma la si incrementa con un coefficiente $\alpha_{\scriptscriptstyle R}=1.039$ per tener conto di un tempo di ritorno di 100 anni.

Il coefficiente $\alpha_R = 1.039$ è determinato con l'espressione prevista dalla Circolare 617 del 2 febbraio 2009:

$$\alpha_{R} = 0.75 \cdot \sqrt{1 - 0.2 \cdot \ln\left[-\ln\left(1 - \frac{1}{T_{R}}\right)\right]} = 0.75 \cdot \sqrt{1 - 0.2 \cdot \ln\left[-\ln\left(1 - \frac{1}{100}\right)\right]} = 1.039$$

PROGETTO DEFINITIVO

OPERE D'ARTE MAGGIORI - CAVALCAVIA SVINCOLO E INTERCONNESSIONE 🛂 10 - CAVALCAVIA RAMPA SUD-OVEST DELLO SVINCOLO DI S.FELICE SUL PANARO-FINALE EMILIA MILIA RELAZIONE DI CALCOLO IMPALCATO, PILE E SPALLE

La velocità del vento e il carico di riferimento risultano:

$$v_b = v_{b,0} \cdot \alpha_R = 25 \cdot \frac{m}{s} \cdot 1.039 = 25.98 \cdot \frac{m}{s}$$

$$q_b = \frac{1}{2} \cdot \rho \cdot v_b^2 = 422 \cdot \frac{N}{m^2}$$

Con una classe di rugosità del terreno D (aree prive di ostacoli, aperta campagna, aree agricole) e una distanza dal mare maggiore a 30 km e una quota inferiore ai 750 m la categoria di esposizione è la II caratterizzata dai parametri:

- $k_r = 0.19$
- $z_0 = 0.05 \cdot m$
- $z_{\min} = 4.0 \cdot m$

Il coefficiente di esposizione è costante al di sotto della z_{min} e varia in maniera logaritmica con l'aumentare della quota. Si considera a favore di sicurezza che il coefficiente sia costante e pari al valore che assume in sommità:

$$c_e = k_r^2 \cdot c_t \cdot \ln\left(\frac{z}{z_0}\right) \cdot \left(7 + c_t \cdot \ln\left(\frac{z}{z_0}\right)\right) = 0.19^2 \cdot 1 \cdot \ln\left(\frac{12}{0.05}\right) \cdot \left(7 + 1 \cdot \ln\left(\frac{12}{0.05}\right)\right) = 2.47$$

Con il coefficiente di esposizione è possibile calcolare il carico da vento:

$$q = q_b \cdot c_e \cdot c_d = 422 \cdot \frac{N}{m^2} \cdot 2.47 \cdot 1 = 1042 \cdot \frac{N}{m^2}$$

Il coefficiente di forma c_p vale:

AUTOSTRADA REGIONALE CISPADANA dal casello di Reggiolo-Rolo sulla A22 al casello di Ferrara Sud sulla A13

PROGETTO DEFINITIVO

OPERE STRUTTURALI

OPERE D'ARTE MAGGIORI - CAVALCAVIA SVINCOLO E INTERCONNESSIONE CV10 - CAVALCAVIA RAMPA SUD-OVEST DELLO SVINCOLO DI S.FELICE SUL PANARO-FINALE EMILIA MILIA RELAZIONE DI CALCOLO IMPALCATO, PILE E SPALLE

$$c = -0.4$$

$$c_p = -0.4$$
 se $\alpha \le +20^\circ$

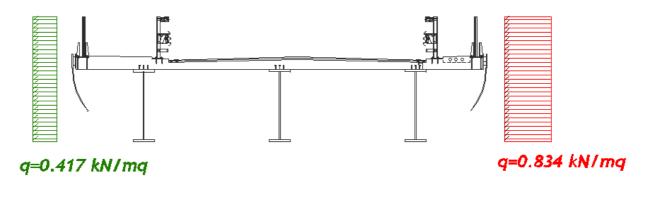
$$c_{-} = +0.8$$

$$c_p = +0.8$$
 se $\alpha \le +60^{\circ}$

Il carico dovuto al vento vale per le superfici sopravento vale

$$q = q_b \cdot c_e \cdot c_d \cdot c_p = 422 \cdot \frac{N}{m^2} \cdot 2.47 \cdot 1 \cdot 0.8 = 0.834 \cdot \frac{kN}{m^2}$$

Il carico dovuto al vento vale per le superfici sottovento vale


$$q = q_b \cdot c_e \cdot c_d \cdot c_p = 422 \cdot \frac{N}{m^2} \cdot 2.47 \cdot 1 \cdot 0.4 = 0.417 \cdot \frac{kN}{m^2}$$

AUTOSTRADA REGIONALE CISPADANA dal casello di Reggiolo-Rolo sulla A22 al casello di Ferrara Sud sulla A13

PROGETTO DEFINITIVO

OPERE STRUTTURALI

OPERE D'ARTE MAGGIORI - CAVALCAVIA SVINCOLO E INTERCONNESSIONE V10 - CAVALCAVIA RAMPA SUD-OVEST DELLO SVINCOLO DI S.FELICE SUL PANARO-FINALE EMILIA MILIA RELAZIONE DI CALCOLO IMPALCATO, PILE E SPALLE

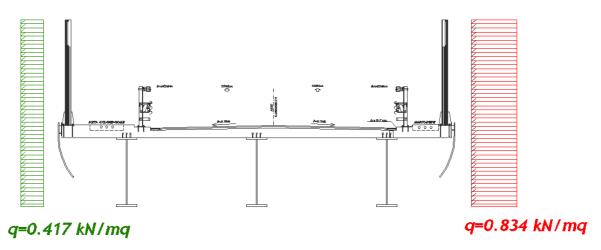


FIGURA 8 SCHEMI DEL CARICO DA VENTO

Per il calcolo delle sollecitazioni dovute al vento si considera una superficie esposta al vento di altezza complessiva minima di 3.0 m e massima di 6.0 m. L'altezza minima è relativa alla situazione con il ponte scarico senza barriere antirumore mentre quella massima considera la colonna di carico alta 3 m (si considera la stessa altezza di 3 m nel caso in cui sia presente la barriere antirumore). Il carico lineare complessivo sul ponte considerando la pressione e la depressione vale:

$$q_{ponte\ s\ carico} = \left(0.834 \cdot \frac{kN}{m^2} + 0.417 \cdot \frac{kN}{m^2}\right) \cdot 3.0 \cdot m = 3.75 \cdot \frac{kN}{m}$$

AUTOSTRADA REGIONALE CISPADANA

PROGETTO DEFINITIVO

OPERE STRUTTURALI

OPERE D'ARTE MAGGIORI - CAVALCAVIA SVINCOLO E INTERCONNESSIONE V10 - CAVALCAVIA RAMPA SUD-OVEST DELLO SVINCOLO DI S.FELICE SUL PANARO-FINALE EMILIA MILIA RELAZIONE DI CALCOLO IMPALCATO , PILE E SPALLE

$$q_{ponte con barriere} = \left(0.834 \cdot \frac{kN}{m^2} + 0.417 \cdot \frac{kN}{m^2}\right) \cdot 6.0 \cdot m = 7.50 \cdot \frac{kN}{m}$$

6.2.12. CARICO DA NEVE

Il sito in cui si realizza la struttura ricade nella Zona I - Mediterranea. Il valore caratteristico del carico da neve per questa area vale:

$$q_{sk} = 1.50 \cdot \frac{kN}{m^2}$$
 per a < 200 m. s.l.m.

Il carico da neve non è incrementato per la quota altimetrica del sito perché è inferiore alla quota di riferimento di 200 m sul livello del mare ma lo si incrementa con un coefficiente $\alpha_{\scriptscriptstyle R}=1.128$ per tener conto di un tempo di ritorno di 100 anni.

Il coefficiente $\alpha_{\scriptscriptstyle R}$ = 1.128 è determinato con l'espressione prevista dalla UNI 1991-1-3 – Appendice D:

$$\alpha_{R} = \frac{1 - V \cdot \frac{\sqrt{6}}{\pi} \cdot \left[\ln \left(-\ln \left(1 - \frac{1}{T_{R}} \right) \right) + 0.57722 \right]}{1 + 2.5923 \cdot V} = 1.128$$

Con:

 $V=0.6\,$ coefficiente di variazione dei massimi annuali

$$T_{\scriptscriptstyle R}=100$$
 anni

Il carico da neve sulla struttura è valutato mediante l'espressione:

AUTOSTRADA REGIONALE CISPADANA

AUTOSTRADA REGIONALE CISPADANA dal casello di Reggiolo-Rolo sulla A22 al casello di Ferrara Sud sulla A13

PROGETTO DEFINITIVO

OPERE STRUTTURALI

OPERE D'ARTE MAGGIORI - CAVALCAVIA SVINCOLO E INTERCONNESSIONE V10 - CAVALCAVIA RAMPA SUD-OVEST DELLO SVINCOLO DI S.FELICE SUL PANARO-FINALE EMILIA MILIA RELAZIONE DI CALCOLO IMPALCATO , PILE E SPALLE

$$q_s = \mu_1 \cdot q_{ref} = 0.8 \cdot (1.50 \cdot 1.128) \cdot \frac{kN}{m^2} = 1.35 \cdot \frac{kN}{m^2}$$

Dato che il carico neve è inferiore a quello da traffico e non viene combinato con quest'ultimo, è quindi possibile trascurare l'azione della neve.

6.2.13. AZIONI SISMICHE

Le azioni sismiche di progetto, in base alle quali valutare il rispetto dei diversi stati limite considerati, si definiscono a partire dalla "pericolosità sismica di base" del sito di costruzione. Tale valore è definito in termini di accelerazione massima attesa.

Per definire l'azione sismica alla quale è soggetta la struttura è necessario individuare la posizione del sito all'interno del reticolo nazionale di riferimento oltre che la categoria di sottosuolo e le condizioni topografiche.

L'opera oggetto della presente relazione è sita ad una latitudine di N +44°50′ 54.35″ e ad una longit udine E + 11°11′ 2.27″ e si trova su un terreno di classe \boldsymbol{C} come si evince dalla relazione geotecnica, inoltre la struttura non si trova in prossimità di creste o pendii pertanto ricade nella categoria topografica T1 caratterizzata da un coefficiente di amplificazione topografico $S_T = 1$.

Le forme spettrali sono definite dalla normativa in funzione della probabilità di superamento nel periodo di riferimento PVR a partire dai seguenti parametri su sito di riferimento rigido:

- a_o accelerazione massima al sito;
- ullet valore massimo del fattore di amplificazione dello spettro in accelerazione
- ullet periodo di inizio del tratto a velocità costante dello spettro in accelerazione

La vita di riferimento della struttura è stata calcolata secondo le indicazioni della tabella 2.4.I del D.M del 14 gennaio 2008 assumendo una vita nominale di 100 anni e secondo la tabella 2.4.II del D.M del 14 gennaio 2008 utilizzando il coefficiente d'uso 2 relativo alla classe d'uso IV.

Nei confronti delle azioni sismiche gli stati limite considerati sono i seguenti:

AUTOSTRADA REGIONALE CISPADANA dal casello di Reggiolo-Rolo sulla A22 al casello di Ferrara Sud sulla A13

BBOOFTTO BEFINITIVE

PROGETTO DEFINITIVO

OPERE STRUTTURALI

OPERE D'ARTE MAGGIORI - CAVALCAVIA SVINCOLO E INTERCONNESSIONE

RELAZIONE DI CALCOLO IMPALCATO, PILE E SPALLE

agli stati limite ultimi per le strutture

Stato Limite di salvaguardia della Vita (SLV): a seguito del terremoto la costruzione subisce rotture e crolli dei componenti non strutturali ed impiantistici e significativi danni dei componenti strutturali cui associa una perdita significativa di rigidezza nei confronti delle azioni orizzontali; la costruzione conserva invece una parte di resistenza e rigidezza per azioni verticali e margine di sicurezza nei confronti del collasso per azioni sismiche orizzontali;

🕏 V10 - CAVALCAVIA RAMPA SUD-OVEST DELLO SVINCOLO DI S.FELICE SUL PANARO-FINALE EMILIA MILIA

agli stati limite ultimi per gli apparecchi di appoggio

AUTOSTRADA REGIONALE CISPADANA

Stato Limite di prevenzione del Collasso (SLC): a seguito del terremoto la costruzione subisce rotture e crolli dei componenti non strutturali ed impiantistici e danni molto gravi dei componenti strutturali; la costruzione conserva ancora un margine di sicurezza per azioni verticali ad esiguo margine di sicurezza nei confronti del collasso per azioni orizzontali.

Nei confronti delle azioni sismiche gli stati limite di esercizio adottati sono i seguenti:

Stato Limite di Danno (SLD): a seguito del terremoto la costruzione nel suo complesso, includendo gli elementi strutturali, quelli non strutturali, le apparecchiature rilevanti al suo funzionamento, subisce danni tali da non mettere a rischi gli utenti e da non compromettere significativamente la capacità di resistenza e di rigidezza nei confronti delle azioni verticali ed orizzontali, mantenendosi immediatamente utilizzabile per nell'interruzione d'uso di parte delle apparecchiature.

SLV – Periodo di ritorno di 1898 anni

$$a_g = 0.259 \cdot g$$

$$F_0 = 2.466$$

$$T_C^* = 0.287 \cdot s$$

SLC - Periodo di ritorno di 2475 anni

$$a_g = 0.287 \cdot g$$

$$F_0 = 2.438$$

AUTOSTRADA REGIONALE CISPADANA

PROGETTO DEFINITIVO

OPERE STRUTTURALI

OPERE D'ARTE MAGGIORI - CAVALCAVIA SVINCOLO E INTERCONNESSIONE CV10 - CAVALCAVIA RAMPA SUD-OVEST DELLO SVINCOLO DI S.FELICE SUL PANARO-FINALE EMILIA MILIA

$$T_C^* = 0.291 \cdot s$$

SLD - Periodo di ritorno di 201 anni

$$a_g = 0.101 \cdot g$$

$$F_0 = 2.582$$

$$T_C^* = 0.269 \cdot s$$

Queste terne di parametri sono stati definiti facendo la media pesata della posizione del sito rispetto ai 4 punti del reticolo di riferimento. I dati sono ottenuti con l'espressione:

$$p = \frac{\sum_{i=1}^{4} \frac{p_i}{d_i}}{\sum_{i=1}^{4} \frac{1}{d_i}}$$

I punti del reticolo presi in considerazione per calcolare la media pesata dei 3 parametri sono il 15174, il 15175, il 15396 e il 15397. Si mostra la posizione del sito in cui viene realizzato il ponte in relazione ai 4 punti del reticolo di riferimento:

AUTOSTRADA REGIONALE CISPADANA dal casello di Reggiolo-Rolo sulla A22 al casello di Ferrara Sud sulla A13

PROGETTO DEFINITIVO

OPERE STRUTTURALI

OPERE D'ARTE MAGGIORI - CAVALCAVIA SVINCOLO E INTERCONNESSIONE V10 - CAVALCAVIA RAMPA SUD-OVEST DELLO SVINCOLO DI S.FELICE SUL PANARO-FINALE EMILIA MILIA RELAZIONE DI CALCOLO IMPALCATO, PILE E SPALLE

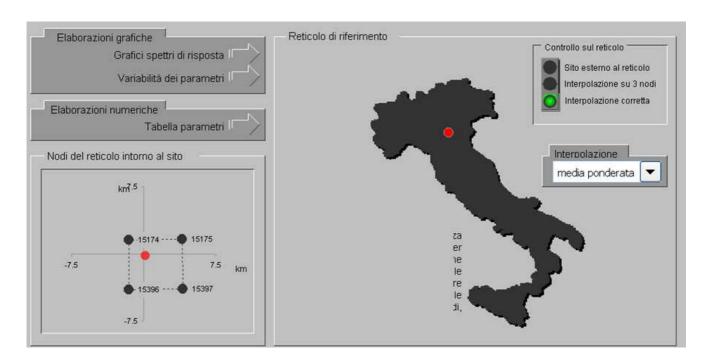


FIGURA 9 POSIZIONE DEL SITO SUL RETICOLO NAZIONALE

Poiché nella Tabella 1 dell'allegato B del D.M. del 14 gennaio 2008 i dati sono riportati per nove valori del periodo di ritorno (Tr 30 anni, 50 anni, 72 anni, 101 anni, 140 anni, 201 anni, 475 anni, 975 anni e 2475 anni) per poter calcolare i valori dei parametri da mediare al tempo di ritorno necessario si interpola con l'espressione:

$$\log \cdot (p) = \log \cdot (p_1) + \log \cdot \left(\frac{p_2}{p_1}\right) \cdot \log \cdot \left(\frac{T_R}{T_{R1}}\right) \cdot \left[\log \cdot \left(\frac{T_R}{T_{R1}}\right)\right]^{-1}$$

AUTOSTRADA REGIONALE CISPADANA

Per il sito in cui si realizza il ponte i parametri a_{g} , F_{0} e T_{C}^{*} valgono:

TR [anni]	ag [g]	F0 [-]	Tc* [s]
30	0.039	2.568	0.251
50	0.051	2.477	0.268
72	0.060	2.495	0.275

PROGETTO DEFINITIVO

OPERE STRUTTURALI

OPERE D'ARTE MAGGIORI - CAVALCAVIA SVINCOLO E INTERCONNESSIONE SCV10 - CAVALCAVIA RAMPA SUD-OVEST DELLO SVINCOLO DI S.FELICE SUL PANARO-FINALE EMILIA MILIA RELAZIONE DI CALCOLO IMPALCATO , PILE E SPALLE

101	0.073	2.531	0.269
140	0.085	2.624	0.261
201	0.101	2.582	0.269
475	0.149	2.588	0.270
975	0.200	2.537	0.277
2475	0.287	2.438	0.291

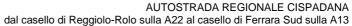
AUTOSTRADA REGIONALE CISPADANA

Per gli stati limite considerati i parametri che definiscono lo spettro di risposta elastico delle componenti orizzontali sono i seguenti:

	SLD	
P _{Vr} =	63	%
T _R =	201	anni
a _g =	0.101	g
F ₀ =	2.582	
T _C * =	0.269	s
S _s =	1.500	
S =	1.500	
η=	1.000	
C _c =	1.619	
T _B =	0.145	s
T _C =	0.436	s
T _D =	2.006	s

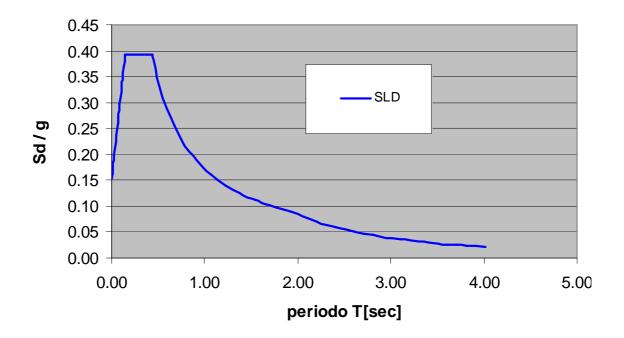
AUTOSTRADA REGIONALE CISPADANA dal casello di Reggiolo-Rolo sulla A22 al casello di Ferrara Sud sulla A13

PROGETTO DEFINITIVO


OPERE STRUTTURALI

OPERE D'ARTE MAGGIORI - CAVALCAVIA SVINCOLO E INTERCONNESSIONE SCV10 - CAVALCAVIA RAMPA SUD-OVEST DELLO SVINCOLO DI S.FELICE SUL PANARO-FINALE EMILIA MILIA RELAZIONE DI CALCOLO IMPALCATO , PILE E SPALLE

	SLV	
P _{Vr} =	10	%
T _R =	1898	anni
a _g =	0.259	g
F ₀ =	2.466	
T _C * =	0.287	s
S _s =	1.316	
S =	1.316	
η =	0.500	
C _C =	1.586	
T _B =	0.152	s
T _C =	0.455	S
T _D =	2.637	S


	SLC	
P _{Vr} =	5	%
T _R =	2476	anni
a _g =	0.287	g
F ₀ =	2.438	
T _C * =	0.291	s
S _s =	1.280	
S =	1.280	
η =	0.500	
C _C =	1.578	
T _B =	0.153	s
T _C =	0.459	s
T _D =	2.750	s

I tre spettri di risposta corrispondenti ai parametri riportati sopra sono:

OPERE STRUTTURALI

OPERE D'ARTE MAGGIORI - CAVALCAVIA SVINCOLO E INTERCONNESSIONE CV10 - CAVALCAVIA RAMPA SUD-OVEST DELLO SVINCOLO DI S.FELICE SUL PANARO-FINALE EMILIA MILIA RELAZIONE DI CALCOLO IMPALCATO, PILE E SPALLE

AUTOSTRADA REGIONALE CISPADANA

FIGURA 10 SPETTRO DI RIEPSOSTA ELASTICO - ACCELERAZIONE ORIZZONTALE ALLO SLD

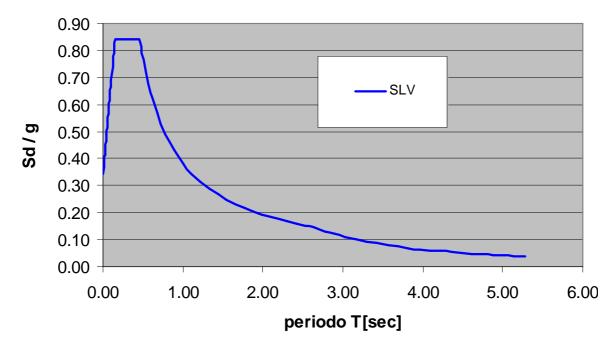
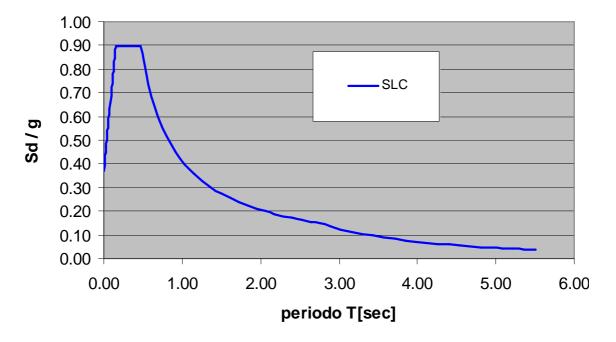



FIGURA 11 SPETTRO DI RISPOSTA ELASTICO – ACCELERAZIONE ORIZZONTALE ALLO SLV

OPERE STRUTTURALI

OPERE D'ARTE MAGGIORI - CAVALCAVIA SVINCOLO E INTERCONNESSIONE V10 - CAVALCAVIA RAMPA SUD-OVEST DELLO SVINCOLO DI S.FELICE SUL PANARO-FINALE EMILIA MILIA RELAZIONE DI CALCOLO IMPALCATO , PILE E SPALLE

AUTOSTRADA REGIONALE CISPADANA

FIGURA 12 SPETTRO DI RISPOSTA ELASTICO – ACCELERAZIONE ORIZZONTALE ALLO SLC

Per il dimensionamento degli apparecchi di appoggio e dei giunti si fa uso di spettri di risposta in spostamento come quelli riportati sotto e derivati dai dati illustrati in precedenza e calcolati con uno smorzamento del 15% dovuto alla natura degli appoggi delle travi:

Spettro di risposta elastico in spostamento in [mm]

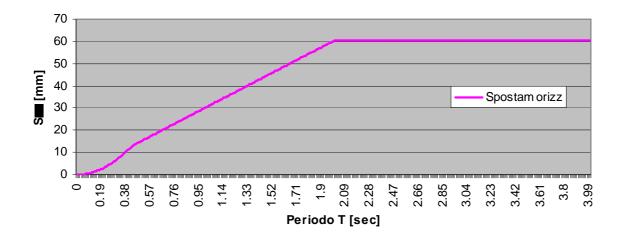
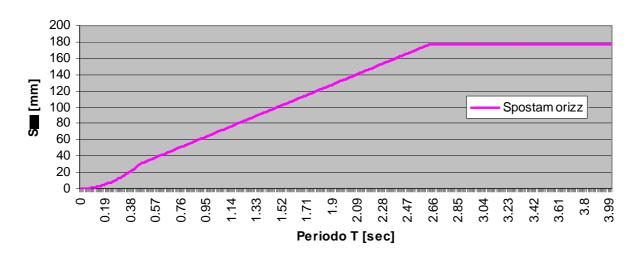


FIGURA 13 SPETTRO DI RISPOSTA IN SPOSTAMENTO ORIZZONTALE ALLO SLD


AUTOSTRADA REGIONALE CISPADANA dal casello di Reggiolo-Rolo sulla A22 al casello di Ferrara Sud sulla A13

PROGETTO DEFINITIVO

OPERE STRUTTURALI

OPERE D'ARTE MAGGIORI - CAVALCAVIA SVINCOLO E INTERCONNESSIONE V10 - CAVALCAVIA RAMPA SUD-OVEST DELLO SVINCOLO DI S.FELICE SUL PANARO-FINALE EMILIA MILIA RELAZIONE DI CALCOLO IMPALCATO, PILE E SPALLE

Spettro di risposta elastico in spostamento in [mm]

AUTOSTRADA REGIONALE

ISPADANA

FIGURA 14 SPETTRO DI RISPOSTA IN SPOSTAMENTO ORIZZONTALE ALLO SLV

Spettro di risposta elastico in spostamento in [mm]

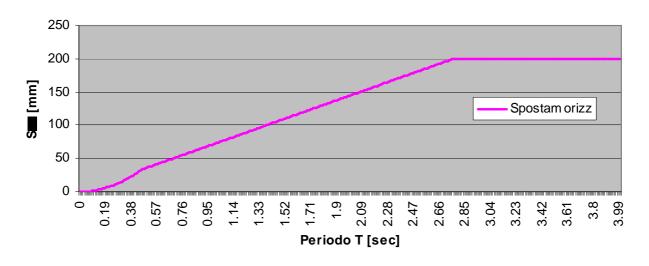


FIGURA 15 SPETTRO DI RISPOSTA IN SPOSTAMENTO ORIZZONTALE ALLO SLC

Questi spettri sono stati utilizzati per calcolare le sollecitazioni dovute al sisma. L'azione del sisma orizzontale viene considerata agente in due direzioni ortogonali con due combinazioni. La prima

REGIONALE

AUTOSTRADA REGIONALE CISPADANA

dal casello di Reggiolo-Rolo sulla A22 al casello di Ferrara Sud sulla A13

PROGETTO DEFINITIVO

OPERE STRUTTURALI

OPERE D'ARTE MAGGIORI - CAVALCAVIA SVINCOLO E INTERCONNESSIONE 🕏 V10 - CAVALCAVIA RAMPA SUD-OVEST DELLO SVINCOLO DI S.FELICE SUL PANARO-FINALE EMILIA MILIA

RELAZIONE DI CALCOLO IMPALCATO, PILE E SPALLE

combinazione considera le sollecitazioni in una direzione e il 30 % delle sollecitazioni dovute all'accelerazione nella direzione ortogonale la seconda combinazione inverte le percentuali delle accelerazioni.

La componente verticale del sisma non è stata considerata per il dimensionamento delle strutture portanti in virtù del fatto che il sito in cui viene realizzato il ponte ricade nella zona 3 (# 3.2.3.1 D.M 14 gennaio 2008 e #7.2.1 D.M 14 gennaio 2008).

La spinta delle terre dovuta al sisma è calcolata secondo quanto riportato nel D.M. del 14 gennaio 2008 al capitolo # 7.11. la spinta a tergo dei muri viene calcolata come una quota parte del peso W del volume di terreno potenzialmente instabile con i metodi pseudostatici (formulazione di Mononobe-Okabe).

6.2.14. URTI

La forza dovuta all'urto dei veicoli contro le pile è determinata dalla Tabella 3.6.III delle Norme Tecniche e vale:

Direzione parallela al senso di marcia $F_{d,r} = 1000 \cdot kN$

Direzione ortogonale al senso di marcia $F_{d,x} = 0.5 \cdot F_{d,x} = 500 \cdot kN$

Il punto di applicazione della forza dovuta all'urto è a 3.2 m dalla base delle pile.

La forza dovuta all'urto dei veicoli contro elementi strutturali orizzontali al di sopra della strada è determinata nel # 3.6.3.3.1 delle Norme Tecniche e vale:

$$F = r \cdot F_{dx} = r \cdot 1000 \cdot kN$$

Con r compreso tra 0 e 1 per altezze comprese tra 6 m e 5 m rispettivamente; per valori intermedi di altezze si interpola linearmente. L'altezza minima prevista per i manufatti sopra l'autostrada è di 5.50 m pertanto la forza ha un valore compreso nell'intervallo [0 ÷ 500] kN.

dal casello di Reggiolo-Rolo sulla A22 al casello di Ferrara Sud sulla A13

PROGETTO DEFINITIVO

OPERE STRUTTURALI

OPERE D'ARTE MAGGIORI - CAVALCAVIA SVINCOLO E INTERCONNESSIONE ▼10 - CAVALCAVIA RAMPA SUD-OVEST DELLO SVINCOLO DI S.FELICE SUL PANARO-FINALE EMILIA MILIA RELAZIONE DI CALCOLO IMPALCATO , PILE E SPALLE

6.2.15. CARICO DA FATICA

AUTOSTRADA REGIONALE CISPADANA

Per il calcolo delle sollecitazioni da fatica per vita illimitata della struttura si assume lo schema di carico 1 di seguito illustrato con una riduzione dei carichi concentrati del 30% e con una riduzione dei carichi distribuiti del 70% ottenendo così i valori riportati di seguito:

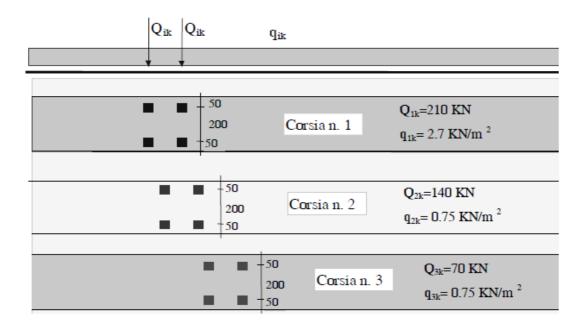


FIGURA 16 CARICHI PER L'ANALISI DELLE SOLLECITAZIONI A FATICA

6.3. COMBINAZIONI DI CARICO

I singoli carichi precedentemente determinati vengono combinati in modo da garantire la sicurezza in conformità a quanto prescritto dalla normativa.

Le combinazioni di carico si differenziano a seconda dello stato limite considerato.

Le verifiche di resistenza sono condotte con le combinazioni previste per gli stati limite ultimi mentre le restanti sono condotte mediante le combinazioni previste per gli stati limite di esercizio.

AUTOSTRADA REGIONALE CISPADANA dal casello di Reggiolo-Rolo sulla A22 al casello di Ferrara Sud sulla A13

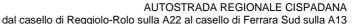
PROGETTO DEFINITIVO

OPERE STRUTTURALI

OPERE D'ARTE MAGGIORI - CAVALCAVIA SVINCOLO E INTERCONNESSIONE SCV10 - CAVALCAVIA RAMPA SUD-OVEST DELLO SVINCOLO DI S.FELICE SUL PANARO-FINALE EMILIA MILIA RELAZIONE DI CALCOLO IMPALCATO , PILE E SPALLE

Ciascuna combinazione di azioni è caratterizzata da precisi coefficienti di combinazione. Nelle combinazioni impiegate per le verifiche agli stati limite ultimi sono inoltre presenti i coefficienti parziali di sicurezza che dipendono dal tipo di azione considerata.

Le azioni considerate sono combinate con la formulazione seguente:


AUTOSTRADA REGIONALE CISPADANA

$$\begin{split} S_{d_SLU} &= \gamma_{G1} \cdot P \operatorname{Pr} op + \gamma_{G1} \cdot g_1 + \gamma_{G2} \cdot g_2 + \gamma_{\varepsilon} \cdot \varepsilon_2 + \gamma_{\varepsilon} \cdot cv + \gamma_{\varepsilon} \cdot \operatorname{Pr} esoll + \\ &+ \gamma_{Qi} \cdot \psi_i \cdot Q_{k,i} + \gamma_{Qi} \cdot \psi_i \cdot q_{k,i} + \gamma_{\Delta T} \cdot \Delta T \end{split}$$

$$\begin{split} S_{d_SLE} &= P \operatorname{Pr} op + g_1 + \psi_i \cdot g_2 + \psi_i \cdot \mathcal{E}_2 + \psi_i \cdot cv + \psi_i \cdot \operatorname{Pr} esoll + \\ &+ \psi_i \cdot Q_{k,i} + \psi_i \cdot q_{k,i} + \psi_i \cdot \Delta T \end{split}$$

I coefficienti utilizzati nel combinare i carichi sono quelli previsti nel DM del 14-01-2008 e che vengono riportati sotto:

		Coefficiente	EQU ⁽¹⁾	A1 STR	A2 GEO
Carichi permanenti	favorevoli sfavorevoli	γ _{G1}	0,90 1,10	1,00 1,35	1,00 1,00
Carichi permanenti non strutturali ⁽²⁾	favorevoli sfavorevoli	γ _{G2}	0,00 1,50	0,00 1,50	0,00 1,30
Carichi variabili da traffico	favorevoli sfavorevoli	γο	0,00 1,35	0,00 1,35	0,00 1,15
Carichi variabili	favorevoli sfavorevoli	γ _{Qi}	0,00 1,50	0,00 1,50	0,00 1,30
Distorsioni e presollecitazioni di progetto	favorevoli sfavorevoli	γ ε1	0,90 1,00 ⁽³⁾	1,00 1,00 ⁽⁴⁾	1,00 1,00
Ritiro e viscosità, Variazioni termiche, Cedimenti vincolari	favorevoli sfavorevoli	γε2, γε3, γε4	0,00 1,20	0,00 1,20	0,00 1,00

OPERE STRUTTURALI

OPERE D'ARTE MAGGIORI - CAVALCAVIA SVINCOLO E INTERCONNESSIONE 🕏 V10 - CAVALCAVIA RAMPA SUD-OVEST DELLO SVINCOLO DI S.FELICE SUL PANARO-FINALE EMILIA MILIA RELAZIONE DI CALCOLO IMPALCATO, PILE E SPALLE

Azioni	Gruppo di azioni (Tabella 5.1.IV)	Coefficiente Ψ₀ di combinazione	Coefficiente \(\psi_1\) (valori frequenti)	Coefficiente ψ ; (valori quasi permanenti)
	Schema 1 (Carichi tandem)	0,75	0,75	0,0
	Schemi 1, 5 e 6 (Carichi distribuiti	0,40	0,40	0,0
	Schemi 3 e 4 (carichi concentrati)	0,40	0,40	0,0
Azioni da traffico	Schema 2	0,0	0,75	0,0
Azioni da traffico (Tabella 5.1.IV)	2	0,0	0,0	0,0
	3	0,0	0,0	0,0
	4 (folla)	PERE!	0,75	0,0
	5	0,0	0,0	0,0
Vento q₅	Vento a ponte scarico SLU e SLE Esecuzione	0,6 0,8	0,2	0,0 0,0
	Vento a ponte carico	0,6		
N.	SLU e SLE	0,0	0,0	0,0
Neve q_5	esecuzione	0,8	0,6	0,5
Temperatura	T _k	0,6	0,6	0,5

Per i carichi permanenti portati sono stati utilizzati gli stessi coefficienti previsti per i pesi propri in quanto sono compiutamente definiti. Al fine di considerare il reale comportamento della struttura l'analisi strutturale, e quindi la combinazione delle sollecitazioni, è stata condotta considerando tre fasi distinte della vita dell'opera:

- Fase 1: in questa fase la struttura portante è data dalle sole membrature in acciaio, i carichi considerati sono il peso proprio della carpenteria metallica e della soletta.
- Fase 2: in questa fase la struttura portante è quella composta sia dalle travi in acciaio che dalla soletta e sono considerati tutti i carichi variabili comprese le variazioni termiche.
- Fase 3: in questa fase si considerano gli effetti della viscosità e del ritiro che si hanno a tempo infinito sulla struttura.

Per le verifiche in condizioni simiche si considera la seguente combinazione dei carichi:

$$S_{Sisma} = E_{(x,y)} + P \operatorname{Pr} op + G_1 + G_2 + \psi \cdot \varepsilon + \psi_{2i} \cdot Q_{k,i}$$

AUTOSTRADA REGIONALE CISPADANA

dal casello di Reg

AUTOSTRADA REGIONALE CISPADANA dal casello di Reggiolo-Rolo sulla A22 al casello di Ferrara Sud sulla A13

PROGETTO DEFINITIVO

OPERE STRUTTURALI

OPERE D'ARTE MAGGIORI - CAVALCAVIA SVINCOLO E INTERCONNESSIONE CV10 - CAVALCAVIA RAMPA SUD-OVEST DELLO SVINCOLO DI S.FELICE SUL PANARO-FINALE EMILIA MILIA RELAZIONE DI CALCOLO IMPALCATO , PILE E SPALLE

Con:

 $E_{(x,y)}$ = azione sismica

 $\psi_{2i} = 0.0$ come prescritto nel DM del 14-01-2008 # 5.1.3.8.

AUTOSTRADA REGIONALE CISPADANA

L'azione sismica è stata calcolata secondo le indicazioni del § 5.1.3.8 secondo il quale le masse associate ai carichi da traffico sono di regola nulle e dove si rimanda al § 3.2.4 solo in caso in casi particolari; i casi particolari indicati dalle Norme Tecniche sono ad esempio le zone di traffico intenso mentre secondo la EN-1998-2:2005 sono i ponti autostradali o le strade di importanza nazionale (si veda la Nota al § 4.1.2 (4)), tutti casi diversi dal manufatto in oggetto. I dati di traffico in possesso della committenza inoltre, evidenziano valori bassi del flusso di traffico per le opere in oggetto pertanto si ha una conferma sulla scelta di assumere come coefficiente di combinazione $\psi_{2i} = 0.0$ per la determinazione dell'azione sismica.

Nel § 2.5.3 si riporta la combinazione sismica da impiegare per le verifiche allo SLU e allo SLE e il coefficiente di combinazione da usare per i variabili è ψ_{2j} , tale coefficiente assume valore nullo per le azioni da traffico così come indicato nella Tabella 5.1.VI riportata nel § 5.1.3.12. Le indicazioni del § 5.1.3.8 sono congruenti con quanto riportato al § 5.1.3.12 e § 2.5.3.

Una norma di comprovata validità quale è l'Eurocodice 8 (EN-1998-2:2005) al § 4.1.2(1) e (4) indica che le azioni da considerare nella modellazione sismica sono quelle dei carichi permanenti assunti con i loro valori caratteristici e i carichi da traffico assunti con il loro valore quasi permanente uguale a ψ_{2j} $Q_{k,1}$ con ψ_{2j} = 0 per ponti con normali condizioni di traffico come è il caso del manufatto in questione; la stessa norma al § 5.5 (1) indica per la combinazione sismica di assumere il carico caratteristico dell'azione da traffico scalato con il fattore ψ_{2j} .

L'Appendice nazionale, contenente i parametri nazionali alla UNI-EN-1998 – 2 e approvata dal Consiglio Superiore dei LL. PP. in data 24/09/2010, indica che per i ponti stradali il coefficiente ψ_{2j} ha generalmente valore nullo confermando quanto indicato nell'Eurocodice 8 e solo per ponti con severe condizioni di traffico, o dove esplicitamente richiesto, è da adottare ψ_{2j} = 0.2.

Anche la norma di comprovata validità quale è l'Eurocodice 0 (EN 1990 – Annesso A2) nella Tabella A2.1 riporta per la condizione quasi permanente il valore del coefficiente di combinazione ψ_{2j} = 0 per i carichi da traffico.

I valori contenuti in questa tabella sono suscettibili di possibili modifiche a livello nazionale ma nell'Appendice nazionale contenente i parametri nazionali all'Appendice A2 della UNI-EN-1990, approvata dal Consiglio Superiore dei LL. PP. in data 24/09/2010, si indica che i valori raccomandati sono proprio quelli riportati dalla tabella citata in precedenza.

AUTOSTRADA REGIONALE CISPADANA dal casello di Reggiolo-Rolo sulla A22 al casello di Ferrara Sud sulla A13

PROGETTO DEFINITIVO

OPERE STRUTTURALI

OPERE D'ARTE MAGGIORI - CAVALCAVIA SVINCOLO E INTERCONNESSIONE ▼10 - CAVALCAVIA RAMPA SUD-OVEST DELLO SVINCOLO DI S.FELICE SUL PANARO-FINALE EMILIA MILIA RELAZIONE DI CALCOLO IMPALCATO , PILE E SPALLE

Per l'analisi simica quindi non avendo avuto esplicite richieste in merito al valore di ψ_{2j} , essendo in condizioni di carico non severe e sulla base delle indicazioni contenute nelle norme citate sopra è stato assunto il coefficiente $\psi_{2i} = 0$.

6.4. ANALISI DELLE SOLLECITAZIONI

AUTOSTRADA REGIONALE CISPADANA

Come accennato nel capitolo delle combinazioni di carico l'analisi strutturale dell'opera è stata eseguita considerando tre distinte fasi di vita del ponte a partire dal getto della soletta dell'impalcato:

- FASE 1 la struttura portante dell'impalcato è rappresentata dalle sole membrature metalliche, il getto fresco della soletta rappresenta un carico;
- FASE 2 la struttura portante è rappresentata sia dalle membrature metalliche che dalla soletta collaborante, si considerano tutti i carichi variabili di breve durata;
- FASE 3 si considerano gli effetti a lungo termine a causa della viscosità e del ritiro del calcestruzzo della soletta collaborante, si considerano tutti i carichi di lunga durata.

Le azioni sollecitanti totali e le relative verifiche verranno condotte considerando i contributi delle tre fasi. Per poter considerare il diverso comportamento dell'opera durante le diverse condizioni sono stati implementati tre diversi modelli caratterizzati da inerzie delle sezioni differenti in base al contributo che in quella specifica fase può dare la soletta gettata di calcestruzzo.

In ogni fase i carichi sull'opera sollecitano le strutture e le verifiche sono condotte sommando su ogni elemento le tensioni date da queste sollecitazioni per ciascuna fase.

6.4.1. SOLETTA DELL'IMPALCATO

Le azioni sollecitanti interne la soletta dell'impalcato sono state determinate mediante una modellazione agli elementi finiti di una porzione significativa del ponte. Tale modellazione permette infatti la determinazione delle azioni interne nelle due direzioni principali in particolar modo per i carichi variabili concentrati in fase 2.

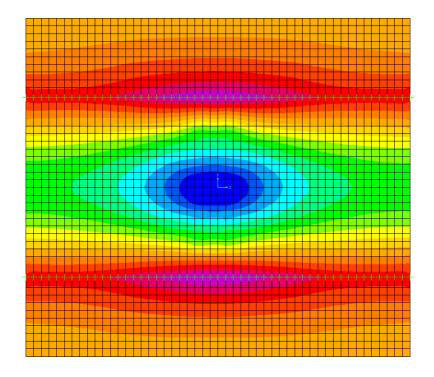
AUTOSTRADA REGIONALE CISPADANA dal casello di Reggiolo-Rolo sulla A22 al casello di Ferrara Sud sulla A13

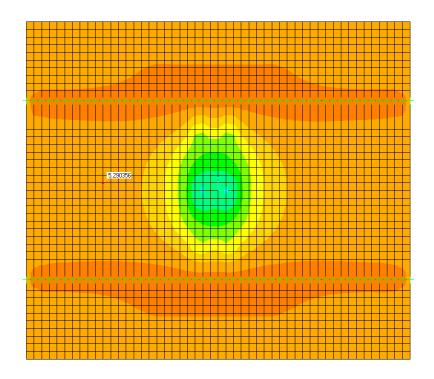
PROGETTO DEFINITIVO

OPERE STRUTTURALI

AUTOSTRADA REGIONALE CISPADANA OPERE D'ARTE MAGGIORI - CAVALCAVIA SVINCOLO E INTERCONNESSIONE CV10 - CAVALCAVIA RAMPA SUD-OVEST DELLO SVINCOLO DI S.FELICE SUL PANARO-FINALE EMILIA MILIA RELAZIONE DI CALCOLO IMPALCATO, PILE E SPALLE

Vengono analizzate di seguito le sezioni più significative maggiormente sollecitate e si riportano alcune immagini del sottomodello utilizzati per il calcolo delle sollecitazioni della soletta con l'inviluppo del diagramma dei momenti flettenti sollecitanti:




FIGURA 17 MOMENTO FLETTENTE - SOLLECITA LE FIBRE ORTOGOALI ALLE TRAVI PRINCIPALI

AUTOSTRADA REGIONALE CISPADANA dal casello di Reggiolo-Rolo sulla A22 al casello di Ferrara Sud sulla A13

PROGETTO DEFINITIVO

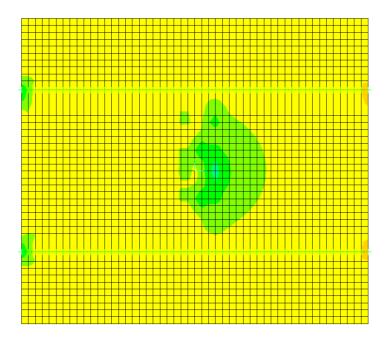
OPERE STRUTTURALI

OPERE D'ARTE MAGGIORI - CAVALCAVIA SVINCOLO E INTERCONNESSIONE SCV10 - CAVALCAVIA RAMPA SUD-OVEST DELLO SVINCOLO DI S.FELICE SUL PANARO-FINALE EMILIA MILIA RELAZIONE DI CALCOLO IMPALCATO , PILE E SPALLE

AUTOSTRADA REGIONALE CISPADANA

FIGURA 18 MOMENTO FLETTENTE - SOLLECITA LE FIBRE PARALLELE ALLE TRAVI PRINCIPALI

I momenti sono riportati con la seguente scala cromatica che ha per limite superiore e inferiore 200 kNm/m e -100 kNm/m rispettivamente.



AUTOSTRADA REGIONALE CISPADANA dal casello di Reggiolo-Rolo sulla A22 al casello di Ferrara Sud sulla A13

PROGETTO DEFINITIVO

OPERE STRUTTURALI

OPERE D'ARTE MAGGIORI - CAVALCAVIA SVINCOLO E INTERCONNESSIONE SCV10 - CAVALCAVIA RAMPA SUD-OVEST DELLO SVINCOLO DI S.FELICE SUL PANARO-FINALE EMILIA MILIA RELAZIONE DI CALCOLO IMPALCATO , PILE E SPALLE

AUTOSTRADA REGIONALE CISPADANA

FIGURA 19 TAGLIO IN DIREZIONE VERTICALE LATO SEZIONE TRASVERSALE

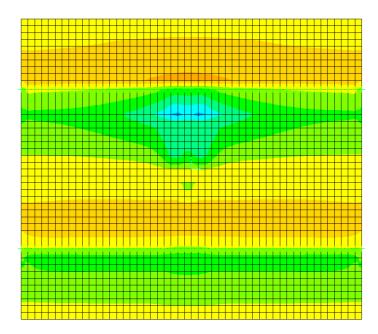


FIGURA 20 TAGLIO VERTICALE LATO SEZIONE LONGITUDINALE

I tagli sono riportati con la seguente scala cromatica che ha per limite superiore e inferiore 250 kN/m e -250 kN/m rispettivamente.

AUTOSTRADA REGIONALE CISPADANA dal casello di Reggiolo-Rolo sulla A22 al casello di Ferrara Sud sulla A13

PROGETTO DEFINITIVO

OPERE STRUTTURALI

OPERE D'ARTE MAGGIORI - CAVALCAVIA SVINCOLO E INTERCONNESSIONE CV10 - CAVALCAVIA RAMPA SUD-OVEST DELLO SVINCOLO DI S.FELICE SUL PANARO-FINALE EMILIA MILIA RELAZIONE DI CALCOLO IMPALCATO , PILE E SPALLE

Le sollecitazioni sono state calcolate senza considerare alcuna diffusione dei carichi sulla soletta che si ha attraverso il manto che ricopre il cemento armato della soletta.

Si riportano i valori dell'inviluppo delle sollecitazioni che si hanno sulla soletta gettata sopra le travi metalliche:

$$M_{Sd,trasv}^{-} = 125.1 \cdot \frac{kNm}{m}$$

$$M_{Sd,trasv}^{+} = 235.0 \cdot \frac{kNm}{m}$$

$$M_{Sd,long}^- = -20.4 \cdot \frac{kNm}{m}$$

$$M_{Sd,long}^{+} = 115.3 \cdot \frac{kNm}{m}$$

$$V_{Sd,trasv} = 181.3 \cdot \frac{kN}{m}$$

$$V_{Sd,long} = 113.4 \cdot \frac{kN}{m}$$

6.4.2. TRAVI METALLICHE PRINCIPALI

Le azioni sollecitanti interne le singole travi principali sono state determinate mediante lo sviluppo di tre modelli unifilari ciascuno relativo ad una precisa fase. I modelli si differenziano per la rigidezza della soletta:

- FASE 1 calcestruzzo fresco, modulo elastico nullo;
- FASE 2 modulo di elasticità secante del calcestruzzo per azioni di breve durata;
- FASE 3 modulo di elasticità del calcestruzzo ridotto per azioni permanenti.

AUTOSTRADA REGIONALE CISPADANA

dal casello di Reggiolo-Rolo sulla A22 al casello di Ferrara Sud sulla A13

PROGETTO DEFINITIVO

OPERE STRUTTURALI

OPERE D'ARTE MAGGIORI - CAVALCAVIA SVINCOLO E INTERCONNESSIONE V10 - CAVALCAVIA RAMPA SUD-OVEST DELLO SVINCOLO DI S.FELICE SUL PANARO-FINALE EMILIA MILIA

RELAZIONE DI CALCOLO IMPALCATO, PILE E SPALLE

La ridistribuzione delle azioni dall'impalcato alla singola trave metallica principale è stata determinata mediante lo studio della sezione trasversale sempre nelle 3 fasi sopra descritte. Nei modelli impiegati le travi principali sono state vincolate a terra mediante opportuni appoggi elastici al fine di schematizzare la rigidezza delle stesse travi principali.

La tensione sollecitante totale ciascun piatto metallico costituente la trave è quindi determinata sommando i contributi relativi alle 3 fasi di calcolo determinati come segue:

Sollecitazioni in fase 1:

P Prop: peso proprio delle strutture metalliche

AUTOSTRADA REGIONALE

- g₁: peso proprio della soletta
- Presoll: deformazione impressa alle travi metalliche per evitare la trazione all'appoggio sulle spalle.

La combinazione *env* g_1 +*Presoll* rappresenta l'inviluppo dei contributi del peso proprio della soletta g_1 e della deformata iniziale impressa *Presoll*.

Sollecitazioni in fase 2:

- env q: inviluppo del carico distribuito da traffico combinato a scacchiera
- env Qi inviluppo del carico concentrato da traffico, combinato a scacchiera
- ΔT: variazioni termiche tra intradosso e estradosso del soppalco

Sollecitazioni in fase 3:

- g₂: permanenti portati;
- ε₂: permanenti portati;
- cv: cedimenti vincolari

La combinazione **env** g_2 - ε_2 -cv rappresenta l'inviluppo dei contributi dei permanenti portati, del ritiro e dei cedimenti vincolari.

OPERE STRUTTURALI

OPERE D'ARTE MAGGIORI - CAVALCAVIA SVINCOLO E INTERCONNESSIONE 5 V10 - CAVALCAVIA RAMPA SUD-OVEST DELLO SVINCOLO DI S.FELICE SUL PANARO-FINALE EMILIA MILIA RELAZIONE DI CALCOLO IMPALCATO, PILE E SPALLE

Le sezioni analizzate per il calcolo delle sollecitazioni sono 9 e si trovano nei seguenti punti dell'opera:

- Sezione 1: appoggio sulla spalla
- Sezione 2: sul primo quarto della campata laterale

REGIONALE CISPADANA

- Sezione 3: a metà della campata laterale
- Sezione 4: sul terzo quarto della campata laterale
- Sezione 5: appoggio sulla pila
- Sezione 6: sul primo ottavo della campata centrale
- Sezione 7: sul primo quarto della campata centrale
- Sezione 8: sul terzo ottavo della campata centrale
- Sezione 9: sulla mezzeria della campata centrale

Si riporta l'immagine del ponte con le sezioni considerate sul prospetto del ponte:

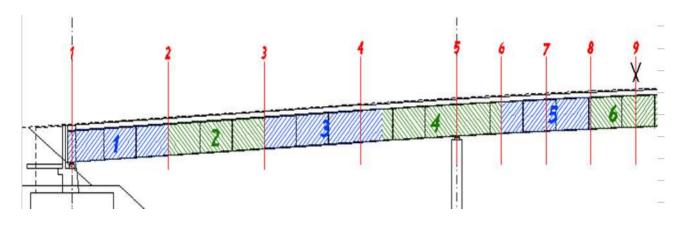


FIGURA 21 PROSPETTO DEL PONTE CON EVIDENZIATE LE SEZIONI DI ANALISI

Si riportano le tabelle delle sollecitazioni per ciascuna sezione considerata:

AUTOSTRADA REGIONALE CISPADANA dal casello di Reggiolo-Rolo sulla A22 al casello di Ferrara Sud sulla A13

PROGETTO DEFINITIVO

OPERE STRUTTURALI

OPERE D'ARTE MAGGIORI - CAVALCAVIA SVINCOLO E INTERCONNESSIONE SCV10 - CAVALCAVIA RAMPA SUD-OVEST DELLO SVINCOLO DI S.FELICE SUL PANARO-FINALE EMILIA MILIA RELAZIONE DI CALCOLO IMPALCATO , PILE E SPALLE

AUTOSTRADA REGIONALE CISPADANA

N°sezione	Fase	distanza dal	Condizione	Tag	glio	Mom	ento
di verifica	considerata	1°appoggio	di carico	Vmin	Vmax	Mmin	Mmax
[-]	[-]	[m]	[-]	KN	KN	KN-m	KN-m
1	1	0	P Prop	-171	-171	0	0
1	1	0	env g ₁₊ Presoll	-1549	-1147	0	0
1	2	0	env q	-655	-596	0	0
1	2	0	env Q _i	-638	33	0	0
1	2	0	DT	-50	50	-1311	1311
1	3	0	env g ₂ -ε ₂ -CV	-593	-441	1523	1828
N°sezione	Fase	distanza dal	Condizione		glio	Mom	ento
di verifica	considerata	1°appoggio	di carico	Vmin	Vmax	Mmin	Mmax
[-]	[-]	[m]	[-]	KN	KN	KN-m	KN-m
2	1	11	P Prop	-65	-65	1297	1297
2	1	11	env g ₁₊ Presoll	-591	-438	8720	11772
2	2	11	env q	-285	-226	4522	5171
2	2	11	env Q _i	-472	42	-366	5192
2	2	11	DT	-54	54	-983	983
2	3	11	env g ₂ -ε ₂ -CV	-245	-183	4575	5977
N° sezione	Fase	distanza dal	Condizione	Tag		Mom	
di verifica	considerata	1°appoggio	di carico	Vmin	Vmax	Mmin	Mmax
[-]	[-]	[m]	[-]	KN	KN	KN-m	KN-m
3	1	22	P Prop	40	40	1433	1433
3	1	22	env g ₁₊ Presoll	272	367	9636	13008
3	2	22	env q	84	143	4979	6277
3	2	22	env Q _i	-273	208	-731	6006
3	2	22	DT	-60	60	-656	656
3	3	22	env g ₂ -ε ₂ -CV	74	102	4796	6305
N°sezione	Fase	distanza dal	Condizione	Tag		Mom	
di verifica	considerata	1°appoggio	di carico	Vmin	Vmax	Mmin	Mmax
[-]	[-]	[m]	[-]	KN	KN	KN-m	KN-m
4	1	33	P Prop	146	146	408	408
4	1	33	env g ₁₊ Presoll	981	1324	2747	3708
4	2	33	env q	454	513	1370	3317
4	2	33	env Q _i	-106	407	-1097	3482
4	2	33	DT	-64	64	-328	328
4	3	33	env g ₂ -ε ₂ -CV	331	450	2186	2810
N°sezione	Fase	distanza dal	Condizione		glio		ento
di verifica	considerata	1°appoggio	di carico	Vmin	Vmax	Mmin	Mmax
[-]	[-]	[m]	[-]	KN	KN	KN-m	KN-m
5	1	44	P Prop	251	251	-1777	-1777
5	1	44	env g ₁₊ Presoll	1691	2282	-16128	-11947
5	2	44	env q	750	809	-4445	-1979

AUTOSTRADA REGIONALE CISPADANA dal casello di Reggiolo-Rolo sulla A22 al casello di Ferrara Sud sulla A13

PROGETTO DEFINITIVO

OPERE STRUTTURALI

OPERE D'ARTE MAGGIORI - CAVALCAVIA SVINCOLO E INTERCONNESSIONE SCV10 - CAVALCAVIA RAMPA SUD-OVEST DELLO SVINCOLO DI S.FELICE SUL PANARO-FINALE EMILIA MILIA RELAZIONE DI CALCOLO IMPALCATO , PILE E SPALLE

AUTOSTRADA REGIONALE CISPADANA

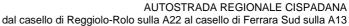
5	2	44	env Q _i	6	665	-2949	-256
5	2	44	DT	-67	67	-13	13
5	3	44	env g_2 - ϵ_2 -CV	589	797	-4508	-3256
N°sezione	Fase	distanza dal	Condizione	Tag	glio	Mom	ento
di verifica	considerata	1°appoggio	di carico	Vmin	Vmax	Mmin	Mmax
[-]	[-]	[m]	[-]	KN	KN	KN-m	KN-m
6	1	49.25	P Prop	-151	-151	-851	-851
6	1	49.25	env g₁₊Presoll	-1371	-1016	-7728	-5725
6	2	49.25	env q	-647	0	-3709	-2443
6	2	49.25	env Q _i	-609	13	-2527	2227
6	2	49.25	DT	-8	8	-98	98
6	3	49.25	env g ₂ -ε ₂ -CV	-498	-369	-1625	-1136
N°sezione	Fase	distanza dal	Condizione	Tag	glio	Mom	ento
di verifica	considerata	1°appoggio	di carico	Vmin	Vmax	Mmin	Mmax
[-]	[-]	[m]	[-]	KN	KN	KN-m	KN-m
7	1	54.5	P Prop	-101	-101	-190	-190
7	1	54.5	env g ₁₊ Presoll	-914	-677	-1728	-1280
7	2	54.5	env q	-471	0	-3709	493
7	2	54.5	env Q _i	-523	71	-2105	4148
7	2	54.5	DT	-7	7	-197	197
7	3	54.5	env g_2 - ϵ_2 -CV	-332	-246	285	442
N°sezione	Fase	distanza dal	Condizione	Tag	glio	Mom	ento
di verifica	considerata	1°appoggio	di carico	Vmin	Vmax	Mmin	Mmax
[-]		[ma]	[-]	KN	KN	1281	KN-m
	[-]	[m]				KN-m	
8	1	59.75	P Prop	-50	-50	206	206
8	1	•					
8	1	59.75	P Prop	-50	-50	206	206
8 8 8 8	1 1 2 2	59.75 59.75	P Prop env g ₁₊ Presoll	-50 -457	-50 -339	206 1387	206 1872
8 8 8	1 1 2	59.75 59.75 59.75	P Prop env g ₁₊ Presoll env q	-50 -457 -295	-50 -339 0	206 1387 -3709	206 1872 2502
8 8 8 8	1 1 2 2	59.75 59.75 59.75 59.75	P Prop env g ₁₊ Presoll env q env Q _i	-50 -457 -295 -433	-50 -339 0 157	206 1387 -3709 -1683	206 1872 2502 5357
8 8 8 8	1 1 2 2 2	59.75 59.75 59.75 59.75 59.75	P Prop env g ₁₊ Presoll env q env Q _i DT	-50 -457 -295 -433 -5 -166 Ta	-50 -339 0 157 5	206 1387 -3709 -1683 -295 1088	206 1872 2502 5357 295
8 8 8 8 8 8 N° sezione di verifica	1 1 2 2 2 2 3 Fase considerata	59.75 59.75 59.75 59.75 59.75 59.75	P Prop env g ₁₊ Presoll env q env Q _i DT env g ₂ -ε ₂ -CV Condizione di carico	-50 -457 -295 -433 -5 -166 Tay	-50 -339 0 157 5 -123 glio Vmax	206 1387 -3709 -1683 -295 1088 Mom	206 1872 2502 5357 295 1611 ento Mmax
8 8 8 8 8 8 N° sezione di verifica [-]	1 1 2 2 2 2 3 Fase considerata [-]	59.75 59.75 59.75 59.75 59.75 59.75 distanza dal 1°appoggio [m]	P Prop env g ₁₊ Presoll env q env Q _i DT env g ₂ -ε ₂ -CV Condizione di carico [-]	-50 -457 -295 -433 -5 -166 Tag Vmin KN	-50 -339 0 157 5 -123 glio Vmax KN	206 1387 -3709 -1683 -295 1088 Mom Mmin KN-m	206 1872 2502 5357 295 1611 ento Mmax KN-m
8 8 8 8 8 8 N° sezione di verifica	1 1 2 2 2 2 3 Fase considerata	59.75 59.75 59.75 59.75 59.75 59.75 distanza dal 1°appoggio	P Prop env g ₁₊ Presoll env q env Q _i DT env g ₂ -ε ₂ -CV Condizione di carico	-50 -457 -295 -433 -5 -166 Tay	-50 -339 0 157 5 -123 glio Vmax	206 1387 -3709 -1683 -295 1088 Mom	206 1872 2502 5357 295 1611 ento Mmax
8 8 8 8 8 8 N° sezione di verifica [-] 9	1 1 2 2 2 2 3 Fase considerata [-] 1	59.75 59.75 59.75 59.75 59.75 59.75 distanza dal 1°appoggio [m]	P Prop env g ₁₊ Presoll env q env Q _i DT env g ₂ -ε ₂ -CV Condizione di carico [-]	-50 -457 -295 -433 -5 -166 Tag Vmin KN	-50 -339 0 157 5 -123 glio Vmax KN 0	206 1387 -3709 -1683 -295 1088 Mom Mmin KN-m	206 1872 2502 5357 295 1611 ento Mmax KN-m
8 8 8 8 8 8 N° sezione di verifica [-]	1 1 2 2 2 2 3 Fase considerata [-] 1	59.75 59.75 59.75 59.75 59.75 59.75 distanza dal 1°appoggio [m] 65	P Prop env g ₁₊ Presoll env q env Q _i DT env g ₂ -ε ₂ -CV Condizione di carico [-] P Prop	-50 -457 -295 -433 -5 -166 Tay Vmin KN 0	-50 -339 0 157 5 -123 glio Vmax KN 0	206 1387 -3709 -1683 -295 1088 Mom Mmin KN-m 338	206 1872 2502 5357 295 1611 ento Mmax KN-m 338
8 8 8 8 8 8 N° sezione di verifica [-] 9	1 1 2 2 2 2 3 Fase considerata [-] 1 2 2	59.75 59.75 59.75 59.75 59.75 59.75 distanza dal 1°appoggio [m] 65	P Prop env g ₁₊ Presoll env q env Q _i DT env g ₂ -ε ₂ -CV Condizione di carico [-] P Prop env g ₁₊ Presoll env q env Q _i	-50 -457 -295 -433 -5 -166 Tag Vmin KN 0	-50 -339 0 157 5 -123 glio Vmax KN 0	206 1387 -3709 -1683 -295 1088 Mom Mmin KN-m 338 2275	206 1872 2502 5357 295 1611 ento Mmax KN-m 338 3072
8 8 8 8 8 8 N° sezione di verifica [-] 9	1 1 2 2 2 2 3 Fase considerata [-] 1	59.75 59.75 59.75 59.75 59.75 59.75 distanza dal 1°appoggio [m] 65 65	P Prop env g ₁₊ Presoll env q env Q _i DT env g ₂ -ε ₂ -CV Condizione di carico [-] P Prop env g ₁₊ Presoll env q	-50 -457 -295 -433 -5 -166 Tay Vmin KN 0 0 -118	-50 -339 0 157 5 -123 glio Vmax KN 0 0	206 1387 -3709 -1683 -295 1088 Mom Mmin KN-m 338 2275 -3709	206 1872 2502 5357 295 1611 ento Mmax KN-m 338 3072 3586

AUTOSTRADA REGIONALE CISPADANA dal casello di Reggiolo-Rolo sulla A22 al casello di Ferrara Sud sulla A13

PROGETTO DEFINITIVO

OPERE STRUTTURALI

OPERE D'ARTE MAGGIORI - CAVALCAVIA SVINCOLO E INTERCONNESSIONE CV10 - CAVALCAVIA RAMPA SUD-OVEST DELLO SVINCOLO DI S.FELICE SUL PANARO-FINALE EMILIA MILIA RELAZIONE DI CALCOLO IMPALCATO , PILE E SPALLE


Per comodità di implementazione le condizioni di carico env g_1 +Presolle env g_2 - ε_2 -CV sono riportate già considerando i fattori parziali di sicurezza sui casi di carico.

AUTOSTRADA REGIONALE CISPADANA

Si riportano le sollecitazioni allo stato limite ultimo per ciascuna sezioni in ogni fase combinando i contributi riportati sopra:

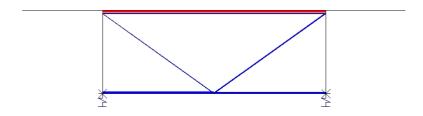
	FASE 1				
	Vmin	Vmax	Mmin	Mmax	
	KN	KN	KN-m	KN-m	
Sezione 1	-1720	-1318	0	0	
Sezione 2	-656	-503	10017	13069	
Sezione 3	312	407	11069	14441	
Sezione 4	1127	1470	3155	4116	
Sezione 5	1942	2534	-17905	-13724	
Sezione 6	-1523	-1167	-8580	-6576	
Sezione 7	-1015	-778	-1918	-1470	
Sezione 8	-508	-389	1593	2078	
Sezione 9	0	0	2614	3410	
			FASE 2		
	Vmin	Vmax	Mmin	Mmax	
	KN	KN	KN-m	KN-m	
Sezione 1	-1806	-491	-1573	1573	
Sezione 2	-1087	-105	2849	15170	
Sezione 3	-357	547	3205	17368	
Sezione 4	235	1318	-504	9571	
Sezione 5	939	2070	-9997	-3001	
Sezione 6	-1706	25	-8537	682	
Sezione 7	-1351	104	-8085	6502	
Sezione 8	-988	217	-7633	10964	
Sezione 9	-622	337	-7182	13100	
			FASE3		
	Vmin	Vmax	M3,min	M3,max	
	KN	KN	KN-m	KN-m	
Sezione 1	-593	-441	1523	1828	
Sezione 2	-245	-183	4575	5977	
Sezione 3	74	102	4796	6305	
Sezione 4	331	450	2186	2810	
Sezione 5	589	797	-4508	-3256	
Sezione 6	-498	-369	-1625	-1136	
Sezione 7	-332	-246	285	442	
Sezione 8	-166	-123	1088	1611	
Sezione 9	0	0	1246	1910	

OPERE STRUTTURALI

OPERE D'ARTE MAGGIORI - CAVALCAVIA SVINCOLO E INTERCONNESSIONE 5 🕏 🕏 🕏 🕏 🕏 🕏 🕏 🕏 🕏 UL-OVEST DELLO SVINCOLO DI S.FELICE SUL PANARO-FINALE EMILIA MILIA RELAZIONE DI CALCOLO IMPALCATO, PILE E SPALLE

Si riportano le sollecitazioni delle sezioni per le verifica a fatica:

REGIONALE CISPADANA

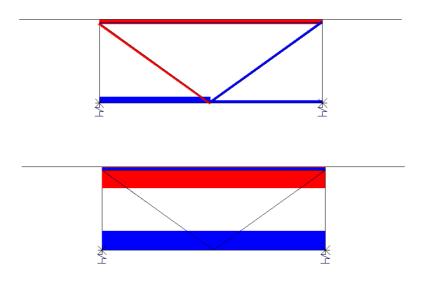

	FATICA			
	Vmin	Vmax	Mmin	Mmax
	KN	KN	KN-m	KN-m
Sezione 1	-643	-156	0	0
Sezione 2	-416	-39	1101	5186
Sezione 3	-166	189	982	6087
Sezione 4	62	439	-357	3432
Sezione 5	229	708	-3398	-773
Sezione 6	-620	9	-2882	826
Sezione 7	-508	50	-2586	3052
Sezione 8	-391	110	-2291	4500
Sezione 9	-273	173	-1995	5113

6.4.3. DIAFRAMMI METALLICI TRASVERSALI

Le azioni sollecitanti interne ai diaframmi trasversali di collegamento tra le travi principali sono stati determinati per mezzo dello studio della sezione trasversale sempre nelle 3 fasi sopra descritte. Nei modelli impiegati le travi principali sono state vincolate a terra mediante opportuni appoggi elastici al fine di schematizzare la rigidezza delle stesse travi principali.

La tensione sollecitante totale ciascun piatto metallico costituente la trave è quindi determinata sommando i contributi relativi alle 3 fasi di calcolo combinandoli con lo stesso criterio adottato per le travi principali.

Si riportano i valori delle sollecitazioni massime dei traversi e delle diagonali e il diagramma delle azioni assiali per alcune condizioni di carico allo scopo di illustrare come lavorano i diaframmi:



AUTOSTRADA REGIONALE CISPADANA dal casello di Reggiolo-Rolo sulla A22 al casello di Ferrara Sud sulla A13

PROGETTO DEFINITIVO

OPERE STRUTTURALI

OPERE D'ARTE MAGGIORI - CAVALCAVIA SVINCOLO E INTERCONNESSIONE CV10 - CAVALCAVIA RAMPA SUD-OVEST DELLO SVINCOLO DI S.FELICE SUL PANARO-FINALE EMILIA MILIA RELAZIONE DI CALCOLO IMPALCATO, PILE E SPALLE

AUTOSTRADA REGIONALE CISPADANA

FIGURA 22 DIAGRAMMI AZIONE ASSIALE DEI DIAFRAMMI RETICOLARI

Il valore massimo delle sollecitazioni assiali dei diaframmi reticolari derivante dall'inviluppo delle combinazioni allo stato limite ultimo sono:

$$N_{traverso \text{ sup } eriore} = 210 \cdot kN$$

$$N_{diagonali} = 332 \cdot kN$$

$$N_{traverso inf eriore} = 269 \cdot kN$$

6.4.4. SPALLE

Oltre ai carichi trasmessi dall'impalcato, le spalle risultano sollecitate orizzontalmente sia dalla spinta del terreno che dai carichi presenti sul terreno stesso.

La spalla è composta da una zattera di base 5.6 m x 12.8 m e spessore 2 m sostenuta da 8 pali trivellati di diametro 120 cm..

AUTOSTRADA REGIONALE CISPADANA dal casello di Reggiolo-Rolo sulla A22 al casello di Ferrara Sud sulla A13

PROGETTO DEFINITIVO

OPERE STRUTTURALI

OPERE D'ARTE MAGGIORI - CAVALCAVIA SVINCOLO E INTERCONNESSIONE ▼10 - CAVALCAVIA RAMPA SUD-OVEST DELLO SVINCOLO DI S.FELICE SUL PANARO-FINALE EMILIA MILIA RELAZIONE DI CALCOLO IMPALCATO , PILE E SPALLE

La spalla deve resistere alle forze verticali dovute al peso del ponte e dei carichi sul suo impalcato oltre alle forze orizzontali dovute al sisma, al frenamento e all'accelerazione dei mezzi e al vento. Le sollecitazioni verticali e le spinte orizzontali parallele all'asse del ponte sono considerate per le verifiche di ribaltamento, le forze orizzontali ortogonali all'asse del ponte sono considerate per le verifiche alla traslazione che verranno esplicitate nel paragrafo dei pali. Si riportano le azioni considerate nelle verifiche sotto facendo riferimento allo schema seguente:

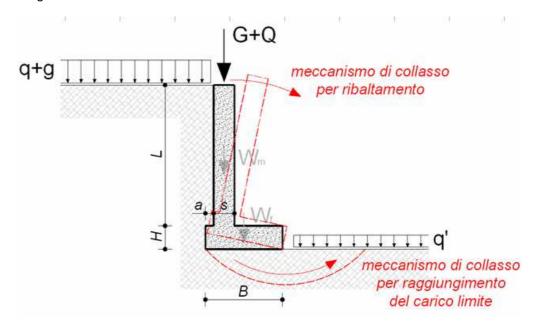
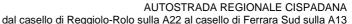



FIGURA 23 SCHEMA DELLE AZIONI

$a_g =$	0.259	g
S =	1.316	-
$a_{max} =$	0.341	g
$\gamma_{\text{terreno}} =$	19.5	kN/mc
ø A1 =	38.0	٥
ø A1 =	0.663	rad
ø A2 =	32.0	٥
ø A2 =	0.559	rad
ka A1 =	0.238	-
ka A2 =	0.307	-
k0 A1 =	0.384	-
k0 A2 =	0.470	-

OPERE STRUTTURALI

OPERE D'ARTE MAGGIORI - CAVALCAVIA SVINCOLO E INTERCONNESSIONE CV10 - CAVALCAVIA RAMPA SUD-OVEST DELLO SVINCOLO DI S.FELICE SUL PANARO-FINALE EMILIA MILIA

RELAZIONE DI CALCOLO IMPALCATO, PILE E SPALLE

AUTOSTRADA REGIONALE CISPADANA

Le forze verticali derivano dai modelli di calcolo della struttura superiore del manufatto, le spinte orizzontali del sisma sono esplicitate nell'ultimo capitolo relativo al dimensionamento degli appoggi (le forze orizzontali del vento risultano meno gravose del sisma pertanto non sono riportate).

Per il calcolo delle spinta del terreno a tergo del muro si utilizza la formulazione di Mononobe- Okabe la quale per il manufatto oggetto della presente relazione prevede un coefficiente di spinta attiva pari a:

$$k_a = 0.534$$

$$k_{a,progetto} = 0.561$$

Per quanto riguarda i parametri utilizzati in condizione sismica si precisa che l'influenza del coefficiente sismico verticale K_v sul valore finale della spinta orizzontale secondo la formulazione di Mononobe- Okabe è di modesta entità, in ragione di tale considerazione è stato considerato un unico coefficiente di spinta in condizioni sismica incrementato del 5% rispetto al caso kv=0, mentre si considera Kv per guanto riguarda le azioni inerziali innescate dai pesi propri degli elementi.

Si calcola la forza inerziale orizzontale e verticale che si ha a tergo del muro dovuta al sisma come percentuale del peso del volume potenzialmente instabile che in questo caso si assume pari al cuneo in stato di equilibrio limite attivo. Le spinte del cuneo di terreno dietro al muro sono date da:

$$F_h = k_h \cdot W$$
.

$$F_{v} = k_{v} \cdot W$$

Con

OPERE STRUTTURAL

OPERE D'ARTE MAGGIORI - CAVALCAVIA SVINCOLO E INTERCONNESSIONE - CAVALCAVIA RAMPA SUD-OVEST DELLO SVINCOLO DI S.FELICE SUL PANARO-FINALE EMILIA MILIA

RELAZIONE DI CALCOLO IMPALCATO , PILE E SPALLE

$$W = Vol \cdot \gamma = 2024 \cdot kN$$

$$k_h = \beta \cdot \frac{a_{\text{max}}}{g} = \beta \cdot \frac{S_S \cdot S_T \cdot a_g}{g} = 0.376$$

$$k_v = \pm 0.5 \cdot k_h$$

La spinta attiva del terreno per la combinazione M1 è data dall'espressione:

$$\sigma_{H,a} = k_a \cdot \sigma_V = \frac{1 - sen \cdot \phi}{1 + sen \cdot \phi} \cdot (z \cdot \gamma)$$

Con $\phi_{M1} = 38^{\circ} e \text{ con } \gamma = 19.5 \text{ kN/m}^{3}$:

$$\sigma_{H,a} = k_a \cdot \sigma_V = \frac{1 - sen \cdot \phi}{1 + sen \cdot \phi} \cdot \left(z \cdot \gamma\right) = \frac{1 - sen \cdot 38}{1 + sen \cdot 38} \cdot 19.5 \cdot \frac{kN}{m^3} \cdot z = 0.238 \cdot 19.5 \cdot \frac{kN}{m^3} \cdot z = 4.64 \cdot \frac{kN}{m^2} \cdot$$

Questa forza agisce ad un terzo della profondità considerata.

La spinta attiva del terreno per la combinazione M2 è data dall'espressione:

$$\sigma_{H,a} = k_a \cdot \sigma_V = \frac{1 - sen \cdot \phi}{1 + sen \cdot \phi} \cdot (z \cdot \gamma)$$

Con ϕ_{M2} = 32°e con γ = 19.5 kN/m³:

$$\sigma_{H,a} = k_a \cdot \sigma_V = \frac{1 - sen \cdot \phi}{1 + sen \cdot \phi} \cdot (z \cdot \gamma) = \frac{1 - sen \cdot 32}{1 + sen \cdot 32} \cdot 19.5 \cdot \frac{kN}{m^3} \cdot z = 0.307 \cdot 19.5 \cdot \frac{kN}{m^3} \cdot z = 5.99 \cdot \frac{kN}{m^2} \cdot z$$

Questa forza agisce ad un terzo della profondità considerata.

La spinta a riposo del terreno per la combinazione M1 è data dall'espressione:

OPERE STRUTTURALI

OPERE D'ARTE MAGGIORI - CAVALCAVIA SVINCOLO E INTERCONNESSIONE CAVALCAVIA RAMPA SUD-OVEST DELLO SVINCOLO DI S.FELICE SUL PANARO-FINALE EMILIA MILIA RELAZIONE DI CALCOLO IMPALCATO , PILE E SPALLE

$$\sigma_{H_{\alpha}} = k_0 \cdot \sigma_V = 1 - sen \cdot \phi \cdot (z \cdot \gamma)$$

Con $\phi_{M1} = 38^{\circ} e \text{ con } v = 19.5 \text{ kN/m}^{3}$:

$$\sigma_{H,a} = k_a \cdot \sigma_V = 1 - sen \cdot \phi \cdot (z \cdot \gamma) = 1 - sen \cdot 38 \cdot 19.5 \cdot \frac{kN}{m^3} \cdot z = 0.384 \cdot 19.5 \cdot \frac{kN}{m^3} \cdot z = 7.49 \cdot \frac{kN}{m^2} \cdot z$$

Questa forza agisce ad un terzo della profondità considerata.

La spinta a riposo del terreno per la combinazione M2 è data dall'espressione:

$$\sigma_{H,a} = k_a \cdot \sigma_V = 1 - sen \cdot \phi \cdot (z \cdot \gamma)$$

Con ϕ_{M2} = 32°e con γ = 19.5 kN/m³:

$$\sigma_{H,a} = k_a \cdot \sigma_V = 1 - sen \cdot \phi \cdot (z \cdot \gamma) = 1 - sen \cdot 32 \cdot 19.5 \cdot \frac{kN}{m^3} \cdot z = 0.470 \cdot 19.5 \cdot \frac{kN}{m^3} \cdot z = 9.17 \cdot \frac{kN}{m^2} \cdot z$$

Questa forza agisce ad un terzo della profondità considerata.

Il permanente portato g e i variabili q sul piano campagna producono una forza orizzontale su una striscia di un metro di muro pari a:

Combinazione M1 – spinta attiva:

$$g_{muro} = k_a \cdot g = 0.238 \cdot 7 \cdot \frac{kN}{m^2} = 1.67 \cdot \frac{kN}{m^2}$$

$$q_{muro} = k_a \cdot q = 0.238 \cdot 30 \cdot \frac{kN}{m^2} = 7.14 \cdot \frac{kN}{m^2}$$

Combinazione M1 – spinta a riposo

$$g_{muro} = k_a \cdot g = 0.384 \cdot 7 \cdot \frac{kN}{m^2} = 2.69 \cdot \frac{kN}{m^2}$$

OPERE D'ARTE MAGGIORI - CAVALCAVIA SVINCOLO E INTERCONNESSIONE V10 - CAVALCAVIA RAMPA SUD-OVEST DELLO SVINCOLO DI S.FELICE SUL PANARO-FINALE EMILIA MILIA RELAZIONE DI CALCOLO IMPALCATO , PILE E SPALLE

$$q_{muro} = k_a \cdot q = 0.384 \cdot 30 \cdot \frac{kN}{m^2} = 11.52 \cdot \frac{kN}{m^2}$$

Queste due forze agiscono a metà della profondità considerata.

Combinazione M2 – spinta attiva:

$$g_{muro} = k_a \cdot g = 0.283 \cdot 7 \cdot \frac{kN}{m^2} = 1.98 \cdot \frac{kN}{m^2}$$

$$q_{muro} = k_a \cdot q = 0.283 \cdot 30 \cdot \frac{kN}{m^2} = 8.49 \cdot \frac{kN}{m^2}$$

Combinazione M2 – spinta a riposo:

$$g_{muro} = k_a \cdot g = 0.470 \cdot 7 \cdot \frac{kN}{m^2} = 3.29 \cdot \frac{kN}{m^2}$$

$$q_{muro} = k_a \cdot q = 0.470 \cdot 30 \cdot \frac{kN}{m^2} = 14.10 \cdot \frac{kN}{m^2}$$

Queste due forze agiscono a metà della profondità considerata.

Si assume la spinta attiva o a riposo nel caso in cui le pressioni generino un momento ribaltante concorde o discorde alle forze derivanti dall'impalcato.

Si riportano ora gli stati di sollecitazione considerati per le verifiche:

SLU - Statico		
A1 - Nmax N =	18308	kN
M =	15740	kNm
V =	3340	kN
A1 - Nmin N =	9855	kN
M =	5582	kNm

OPERE STRUTTURALI

OPERE D'ARTE MAGGIORI - CAVALCAVIA SVINCOLO E INTERCONNESSIONE CV10 - CAVALCAVIA RAMPA SUD-OVEST DELLO SVINCOLO DI S.FELICE SUL PANARO-FINALE EMILIA MILIA RELAZIONE DI CALCOLO IMPALCATO, PILE E SPALLE

V =	1886	kN
A2 - Nmax N =	14619	kN
M =	14343	kNm
V =	3315	kN
A2 - Nmin N =	9855	kN
M =	6194	kNm
V =	1774	kN
SLU - Sisma		
N =	9855	kN
Mpos =	16336	kNm
V =	5536	kN
N =	9855	kN
Mpos =	307	kNm
V =	5076	kN

AUTOSTRADA REGIONALE CISPADANA

La spalla appoggia su 8 pali di diametro 1.2 m e profondi 30 m disposti su due file da 4 distanti tra loro 3 diametri. Si riportano le sollecitazioni assiali massime per le sei combinazioni riportate sopra:

A1 - Nmax:

$$N_{Sd} = 3382 \cdot kN$$

$$V_{sd} = 417.5 \cdot kN$$

A1 - Nmin:

Caso non significativo, sforzi minori del caso precedente.

A2 - Nmax:

$$N_{Sd} = 2823 \cdot kN$$

$$V_{Sd} = 414.4 \cdot kN$$

AUTOSTRADA REGIONALE CISPADANA dal casello di Reggiolo-Rolo sulla A22 al casello di Ferrara Sud sulla A13

PROGETTO DEFINITIVO

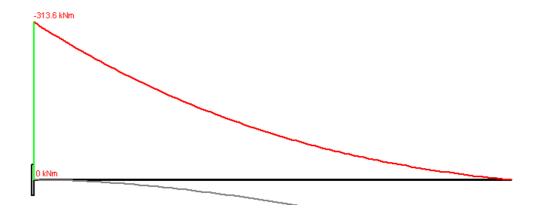
OPERE STRUTTURALI

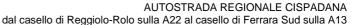
OPERE D'ARTE MAGGIORI - CAVALCAVIA SVINCOLO E INTERCONNESSIONE V10 - CAVALCAVIA RAMPA SUD-OVEST DELLO SVINCOLO DI S.FELICE SUL PANARO-FINALE EMILIA MILIA RELAZIONE DI CALCOLO IMPALCATO , PILE E SPALLE

A2 - Nmin:

Caso non significativo, sforzi minori del caso precedente.

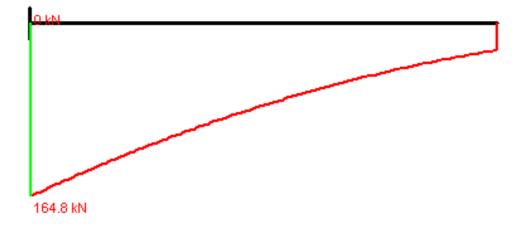
Sisma - Mpos:


$$N_{sd} = 97 \cdot kN$$
 per 4 pali


$$N_{sd} = 2366 \cdot kN$$
 per 4 pali

$$V_{Sd} = 634.5 \cdot kN$$

6.4.5. PARAGHIAIA


Sopra le zattere delle spalle si trova un muro paraghiaia alto 3.75 m e spesso 60 cm. Si riporta il diagramma del momento e del taglio sollecitanti allo stato limite ultimo calcolati con i valori di pressione del terreno a tergo indicati nel capitolo precedente:

OPERE STRUTTURALI

OPERE D'ARTE MAGGIORI - CAVALCAVIA SVINCOLO E INTERCONNESSIONE CV10 - CAVALCAVIA RAMPA SUD-OVEST DELLO SVINCOLO DI S.FELICE SUL PANARO-FINALE EMILIA MILIA RELAZIONE DI CALCOLO IMPALCATO, PILE E SPALLE

6.4.6. PILE

Le forze verticali riportate successivamente derivano dai modelli di calcolo della struttura superiore del manufatto, le spinte orizzontali del sisma sono esplicitate nell'ultimo capitolo relativo al dimensionamento degli appoggi (le forze orizzontali del vento risultano meno gravose del sisma pertanto non sono riportate).

Le pile sono soggette alle seguenti sollecitazioni:

AUTOSTRADA REGIONALE CISPADANA

A1 - Nmax:

$$N_{Sd} = 28256 \cdot kN$$

$$M_{Sd,long} = 1600 \cdot kNm$$

$$M_{Sd,trasv} = 3200 \cdot kNm$$

$$V_{Sd,long} = 500 \cdot kN$$

$$V_{Sd.trasv} = 1000 \cdot kN$$

AUTOSTRADA REGIONALE CISPADANA dal casello di Reggiolo-Rolo sulla A22 al casello di Ferrara Sud sulla A13

PROGETTO DEFINITIVO

OPERE STRUTTURAL

OPERE D'ARTE MAGGIORI - CAVALCAVIA SVINCOLO E INTERCONNESSIONE V10 - CAVALCAVIA RAMPA SUD-OVEST DELLO SVINCOLO DI S.FELICE SUL PANARO-FINALE EMILIA MILIA RELAZIONE DI CALCOLO IMPALCATO , PILE E SPALLE

<u> A1 - Nmin:</u>

Caso non significativo, sforzi minori del caso precedente.

A2 - Nmax:

$$N_{Sd} = 22875 \cdot kN$$

$$M_{Sd,long} = 1600 \cdot kNm$$

$$M_{Sd,trasy} = 3200 \cdot kNm$$

$$V_{Sd,long} = 500 \cdot kN$$

$$V_{Sd,trasv} = 1000 \cdot kN$$

A2 - Nmin:

Caso non significativo, sforzi minori del caso precedente.

Sisma base pila

$$N_{Sd} = 11819 \cdot kN$$

$$V_{Sd,trasv} = 634 \cdot kN$$

$$M_{Sd,trasy} = 4676 \cdot kNm$$

$$V_{Sd,long} = 2112 \cdot kN$$

$$M_{Sd,long} = 15585 \cdot kNm$$

Sisma base zattera

$$N_{sd} = 16411 \cdot kN$$

AUTOSTRADA REGIONALE CISPADANA dal casello di Reggiolo-Rolo sulla A22 al casello di Ferrara Sud sulla A13

PROGETTO DEFINITIVO

OPERE STRUTTURALI

OPERE D'ARTE MAGGIORI - CAVALCAVIA SVINCOLO E INTERCONNESSIONE V10 - CAVALCAVIA RAMPA SUD-OVEST DELLO SVINCOLO DI S.FELICE SUL PANARO-FINALE EMILIA MILIA RELAZIONE DI CALCOLO IMPALCATO , PILE E SPALLE

$$V_{Sd,trasv} = 1103 \cdot kN$$

$$M_{Sd,trasv} = 5151 \cdot kNm$$

$$V_{Sd,long} = 3678 \cdot kN$$

$$M_{Sd,long} = 21375 \cdot kNm$$

Si riporta la sollecitazione su ciascuno dei 10 pali da 1.2 m di diametro e 28 m di lunghezza:

A1 - Nmax:

$$N_{Sd} = 3004 \cdot kN$$

$$V_{Sd} = 112 \cdot kN$$

<u>A2 - Nmax:</u>

$$N_{Sd} = 2466 \cdot kN$$

$$V_{Sd} = 112 \cdot kN$$

<u>Sisma</u>

 $N_{sd} = 3007 \cdot kN$ di compressione massima

 $N_{Sd} = 275 \cdot kN$ di compressione minima

$$V_{Sd} = 384 \cdot kN$$

AUTOSTRADA REGIONALE CISPADANA

AUTOSTRADA REGIONALE CISPADANA dal casello di Reggiolo-Rolo sulla A22 al casello di Ferrara Sud sulla A13

PROGETTO DEFINITIVO

OPERE STRUTTURALI

OPERE D'ARTE MAGGIORI - CAVALCAVIA SVINCOLO E INTERCONNESSIONE ▼10 - CAVALCAVIA RAMPA SUD-OVEST DELLO SVINCOLO DI S.FELICE SUL PANARO-FINALE EMILIA MILIA RELAZIONE DI CALCOLO IMPALCATO , PILE E SPALLE

6.5. DIMENSIONAMENTO DEGLI ELEMENTI

L'analisi strutturale dell'opera è stata eseguita considerando tre distinte fasi di vita del ponte a partire dal getto della soletta dell'impalcato:

- FASE 0 la struttura portante dell'impalcato è rappresentata dalle sole membrature metalliche, il getto fresco della soletta rappresenta un carico;
- FASE 1 la struttura portante è rappresentata sia dalle membrature metalliche che dalla soletta collaborante, si considerano tutti i carichi variabili di breve durata;
- FASE 2 si considerano gli effetti a lungo termine a causa della viscosità e del ritiro del calcestruzzo della soletta collaborante, si considerano tutti i carichi di lunga durata.

Le azioni sollecitanti totali e le relative verifiche verranno condotte considerando i contributi delle tre fasi.

6.5.1. SOLETTA DELL'IMPALCATO

Si verifica di seguito la resistenza della soletta confrontando le azioni sollecitanti con quelle resistenti in termini di momento flettente e di taglio nelle sezioni significative che sono la mezzeria della soletta tra una trave metallica e l'altra e la base dello sbalzo in prossimità della trave laterale.

Si riportano i valori dell'inviluppo delle sollecitazioni:

$$M_{Sd,trasv}^{-} = 125.1 \cdot \frac{kNm}{m}$$

$$M_{Sd,trasv}^{+} = 235.0 \cdot \frac{kNm}{m}$$

$$M_{Sd,long}^- = -20.4 \cdot \frac{kNm}{m}$$

$$M_{Sd,long}^+ = 115.3 \cdot \frac{kNm}{m}$$

AUTOSTRADA REGIONALE CISPADANA dal casello di Reggiolo-Rolo sulla A22 al casello di Ferrara Sud sulla A13

PROGETTO DEFINITIVO

OPERE STRUTTURALI

OPERE D'ARTE MAGGIORI - CAVALCAVIA SVINCOLO E INTERCONNESSIONE CV10 - CAVALCAVIA RAMPA SUD-OVEST DELLO SVINCOLO DI S.FELICE SUL PANARO-FINALE EMILIA MILIA RELAZIONE DI CALCOLO IMPALCATO , PILE E SPALLE

$$V_{Sd,trasv} = 181.3 \cdot \frac{kN}{m}$$

$$V_{Sd,long} = 113.4 \cdot \frac{kN}{m}$$

Verifiche a flessione all'attacco dello sbalzo:

La soletta considerata nel calcolo della resistenza è spessa 40 cm (lastra predalle da 9 cm più getto integrativo di 31 cm); è stato trascurato lo strato superiore della soletta gettato per dare la pendenza necessaria all'impalcato.

L'armatura all'attacco dello sbalzo è costituita da:

Armatura trasversale: barre superiori 3ø20/m compresi nei tralicci delle lastre

barre superiori 5ø16/m

barre inferiori 6ø20/m comprese nei tralicci delle lastre

barre inferiori 3ø16/m

barre diagonali dei tralicci 6 file ø12/20

Armature longitudinale: barre superiori 5ø16/m

barre inferiori 5ø16/m

AUTOSTRADA REGIONALE CISPADANA dal casello di Reggiolo-Rolo sulla A22 al casello di Ferrara Sud sulla A13

PROGETTO DEFINITIVO

OPERE STRUTTURALI

OPERE D'ARTE MAGGIORI - CAVALCAVIA SVINCOLO E INTERCONNESSIONE SCV10 - CAVALCAVIA RAMPA SUD-OVEST DELLO SVINCOLO DI S.FELICE SUL PANARO-FINALE EMILIA MILIA RELAZIONE DI CALCOLO IMPALCATO, PILE E SPALLE

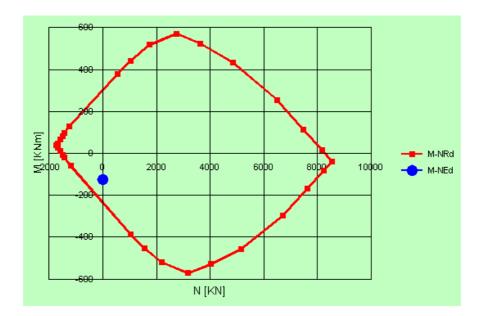


FIGURA 24 DOMINIO RESISTENTE SEZIONE TRASVERSALE ATTACCO DELLO SBALZO

$$M_{Sd,trasv}^- \le M_{Rd,trav}^- = -220.7 \cdot \frac{kNm}{m}$$

AUTOSTRADA REGIONALE CISPADANA

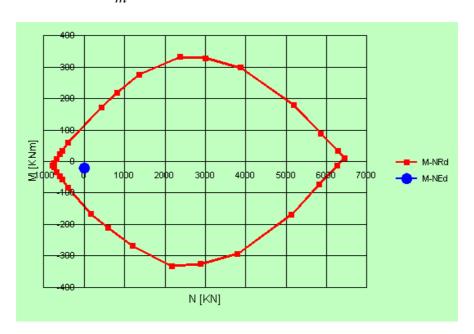


FIGURA 25 DOMINIO RESISTENTE SEZIONE LONGITUDINALE ATTACCO DELLA SBALZO

AUTOSTRADA REGIONALE CISPADANA dal casello di Reggiolo-Rolo sulla A22 al casello di Ferrara Sud sulla A13

PROGETTO DEFINITIVO

OPERE STRUTTURALI

OPERE D'ARTE MAGGIORI - CAVALCAVIA SVINCOLO E INTERCONNESSIONE V10 - CAVALCAVIA RAMPA SUD-OVEST DELLO SVINCOLO DI S.FELICE SUL PANARO-FINALE EMILIA MILIA RELAZIONE DI CALCOLO IMPALCATO , PILE E SPALLE

$$M_{Sd,long}^- < M_{Rd,long}^- = -146.7 \cdot \frac{kNm}{m}$$

Verifiche a flessione tra le travi metalliche:

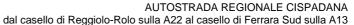
La soletta considerata nel calcolo della resistenza è spessa 40 cm (lastra predalle da 9 cm più getto integrativo di 31 cm); è stato trascurato lo strato superiore della soletta gettato per dare la pendenza necessaria all'impalcato.

L'armatura della soletta in campata tra una trave e l'altra è costituita da:

Armatura trasversale: barre superiori 3ø20/m compresi nei tralicci delle lastre

barre superiori 5ø16/m

barre inferiori 6ø20/m comprese nei tralicci delle lastre


barre inferiori 3ø16/m

barre diagonali dei tralicci 6 file ø12/20

Armature longitudinale: barre superiori 5ø16/m

barre inferiori 5ø16/m

Si riporta il dominio di resistenza delle sezioni trasversali e longitudinali:

OPERE STRUTTURALI

OPERE D'ARTE MAGGIORI - CAVALCAVIA SVINCOLO E INTERCONNESSIONE SCV10 - CAVALCAVIA RAMPA SUD-OVEST DELLO SVINCOLO DI S.FELICE SUL PANARO-FINALE EMILIA MILIA RELAZIONE DI CALCOLO IMPALCATO, PILE E SPALLE

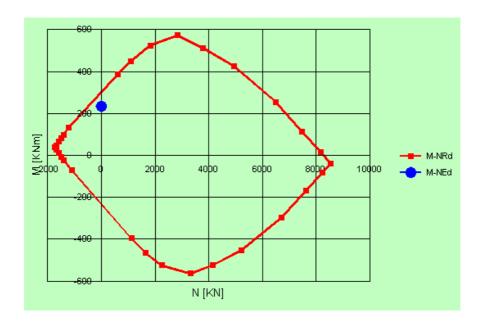


FIGURA 26 DOMINIO RESISTENTE SEZIONE TRASVERSALE CAMAPATA SOLETTA

$$M_{Sd,trasv}^+ < M_{Rd,trasv}^+ = 320.3 \cdot \frac{kNm}{m}$$

AUTOSTRADA REGIONALE CISPADANA

FIGURA 27 DOMINIO RESISTENTE SEZIONE LONGITUDINALE CAMAPATA SOLETTA

OPERE STRUTTURALI

OPERE D'ARTE MAGGIORI - CAVALCAVIA SVINCOLO E INTERCONNESSIONE CV10 - CAVALCAVIA RAMPA SUD-OVEST DELLO SVINCOLO DI S.FELICE SUL PANARO-FINALE EMILIA MILIA RELAZIONE DI CALCOLO IMPALCATO , PILE E SPALLE

$$M_{Sd,long}^{+} < M_{Rd,long}^{+} = 120.4 \cdot \frac{kNm}{m}$$

Verifiche a taglio trasversale:

Per la verifica del taglio su utilizza l'espressione indicata nel DM del 14-01-2008 per sezioni armate con armature trasversali date dalle diagonali del traliccio, si riporta una sintesi del calcolo del taglio resistente:

$$\begin{array}{rclcrcl} A_{sw} = & 3917.8 & mm^2/m \\ \rho_w = & 0.00392 & - \\ A_{sw \, min} = & 1500.0 & mm^2/m \\ \rho_{w \, min} = & 0.0015 & - \\ inclinazione \, bielle \, \bigcirc = & 22 & \circ \\ tan \, \bigcirc = & 0.404 & - \\ cot \, \bigcirc = & 2.475 & - \\ cot \, \alpha = & 0.58 \\ V_{rsd} = & 1010.78 & kN \\ V_{rsc} = & 1118.50 & kN \\ V_{rd} = & \textbf{1010.78} & kN \\ \end{array}$$

$$V_{Rd,trasv} = 1010.78 \cdot \frac{kN}{m}$$

Verifiche a taglio longitudinale

Per la verifica del taglio longitudinale su utilizza l'espressione indicata nel DM del 14-01-2008 per sezioni prive di armature trasversali, si riporta una sintesi del calcolo del taglio resistente:

$$k = 1.845$$

 $\sigma = 0$ Mpa

OPERE STRUTTURALI

OPERE D'ARTE MAGGIORI - CAVALCAVIA SVINCOLO E INTERCONNESSIONE CV10 - CAVALCAVIA RAMPA SUD-OVEST DELLO SVINCOLO DI S.FELICE SUL PANARO-FINALE EMILIA MILIA RELAZIONE DI CALCOLO IMPALCATO , PILE E SPALLE

$$k_1 = 0.15$$
 - $v_{min} = 0.496$ Mpa $V_{rd,min} = kN$ $V_{rd} = 138.95$ kN

AUTOSTRADA REGIONALE CISPADANA

$$V_{Rd,trasv} = 138.95 \cdot \frac{kN}{m}$$

Verifiche a fessurazione

Verifiche sezione in campata tra le travi metalliche – combinazione frequente

Si riportano le verifiche di fessurazione allo stato limite di esercizio per la combinazione frequente in cui la soletta è sollecitata trasversalmente da un momento di $M_{sd,trasv} = 117.6$ kNm/m e longitudinalmente da un momento di $M_{sd,long} = 40$ kNm/m.

Verifica della fessurazione in senso longitudinale:

Il momento di prima fessurazione risulta paria 103.18 kNm pertanto la sezione non si fessura longitudinalmente.

Verifica della fessurazione in senso trasversale:

REGIONALE

AUTOSTRADA REGIONALE CISPADANA dal casello di Reggiolo-Rolo sulla A22 al casello di Ferrara Sud sulla A13

PROGETTO DEFINITIVO

OPERE STRUTTURALI

OPERE D'ARTE MAGGIORI - CAVALCAVIA SVINCOLO E INTERCONNESSIONE

🕏 V10 - CAVALCAVIA RAMPA SUD-OVEST DELLO SVINCOLO DI S.FELICE SUL PANARO-FINALE EMILIA MILIA RELAZIONE DI CALCOLO IMPALCATO, PILE E SPALLE

> 0.425 k₄ =

275 distanza tra le fessure $s_{r,max} =$ mm

ampiezza delle fessure w_m = 0.221 mm

L'ampiezza delle fessure per la combinazione frequente è inferiore del limite previsto (per ampiezza limite relativa alla classe di esposizione si rimanda al capitolo 4.2)

Verifiche sezione in campata tra le travi metalliche – combinazione quasi permanente

Si riportano le verifiche di fessurazione allo stato limite di esercizio per la combinazione quasi permanete in cui la soletta è sollecitata trasversalmente da un momento di circa 10 kNm/m e longitudinalmente da un momento di 8 kNm/m

Verifica della fessurazione in senso longitudinale:

Il momento di prima fessurazione vale 56.51 kNm pertanto non si hanno fessurazioni in senso longitudinale.

Verifica della fessurazione in senso trasversale

Il momento di prima fessurazione vale 66.23 kNm pertanto non si hanno fessurazioni in senso trasversale.

Verifiche sezione all'attacco dello sbalzo – combinazione frequente

Si riportano le verifiche di fessurazione allo stato limite di esercizio per la combinazione frequente in cui la soletta all'attacco dello sbalzo è sollecitata trasversalmente da un momento di M_{sd,trasv} = 104 kNm/m e longitudinalmente da un momento di M_{sd,long} = 21 kNm/m.

Verifica della fessurazione in senso longitudinale:

Il momento di prima fessurazione vale 103.7 kNm pertanto non si hanno fessurazioni in senso longitudinale.

OPERE STRUTTURALI

OPERE D'ARTE MAGGIORI - CAVALCAVIA SVINCOLO E INTERCONNESSIONE CV10 - CAVALCAVIA RAMPA SUD-OVEST DELLO SVINCOLO DI S.FELICE SUL PANARO-FINALE EMILIA MILIA **RELAZIONE DI CALCOLO IMPALCATO, PILE E SPALLE**

Verifica della fessurazione in senso trasversale

REGIONALE CISPADANA

Il momento di prima fessurazione risulta pari a 108.97 kNm pertanto la sezione non si fessura trasversalmente.

Verifiche sezione all'attacco dello sbalzo – quasi permanente

Si riportano le verifiche di fessurazione allo stato limite di esercizio per la combinazione quasi permanete in cui la soletta all'attacco dello sbalzo è sollecitata trasversalmente da un momento di M_{sd.trasv} = 67.4 kNm/m e longitudinalmente da un momento di 11 kNm/m

Verifica della fessurazione in senso longitudinale:

Il momento di prima fessurazione vale 103.7 kNm pertanto non si hanno fessurazioni in senso longitudinale.

Verifica della fessurazione in senso trasversale

Il momento di prima fessurazione vale 108.97 kNm pertanto non si hanno fessurazioni in senso trasversale.

6.5.2. TRAVI METALLICHE PRINCIPALI

Le verifiche di resistenza delle travi principali si sviluppano in termini di tensioni nei singoli piatti. Nel calcolo della resistenza flessionale sono state considerate le proprietà elastiche della sezione completa o efficace in base alla classe di appartenenza.

Si riporta la tabella con le caratteristiche geometriche delle sezioni considerate:

Campata laterale		ВоН	Sp	Aeff
		[mm]	[mm]	[mm ²]
	Piatto inferiore	800	40	32 000
Sez. 1	Piatto superiore	800	40	32 000
362. 1	Anima	2520	15	37 800
	Soletta	3000	400	1 200 000
	Piatto inferiore	800	40	32 000
Sez. 2	Piatto superiore	800	40	32 000
3 6 2. 2	Anima	2520	15	37 800
	Soletta	5000	400	2 000 000
Sez. 3	Piatto inferiore	900	40	36 000
	Piatto superiore	800	40	32 000

AUTOSTRADA REGIONALE CISPADANA dal casello di Reggiolo-Rolo sulla A22 al casello di Ferrara Sud sulla A13

PROGETTO DEFINITIVO

OPERE STRUTTURALI

OPERE D'ARTE MAGGIORI - CAVALCAVIA SVINCOLO E INTERCONNESSIONE ▼10 - CAVALCAVIA RAMPA SUD-OVEST DELLO SVINCOLO DI S.FELICE SUL PANARO-FINALE EMILIA MILIA RELAZIONE DI CALCOLO IMPALCATO , PILE E SPALLE

			i	
	Anima	2520	15	37 800
	Soletta	7000	400	2 800 000
	Piatto inferiore	900	40	36 000
Sez. 4	Piatto superiore	800	40	32 000
Jez. 4	Anima	2520	15	37 800
	Soletta	7000	400	2 800 000
	Piatto inferiore	900	50	45 000
Sez. 5	Piatto superiore	900	50	45 000
3ez. 5	Anima	2 500	20	50 000
	Soletta	2000	400	800 000
Campa	ata centrale	ВоН	Sp	Aeff
Campa	ila Centrale	[mm]	[mm]	[mm²]
Sez. 6	Piatto inferiore	900	50	45 000
	Piatto superiore	800	40	32 000
	Anima	2510	20	50 200
	Soletta	2000	400	800 000
	Piatto inferiore	900	50	45 000
0. 7	Piatto superiore	800	40	32 000
SA7 /				
Sez. 7	Anima	2510	20	50 200
Sez. /	Anima Soletta	2510 4000	20 400	
Sez. /			<u> </u>	50 200
	Soletta	4000	400	50 200 1 600 000
Sez. 7	Soletta Piatto inferiore	4000 900	400 50	50 200 1 600 000 45 000
	Soletta Piatto inferiore Piatto superiore	4000 900 800	400 50 30	50 200 1 600 000 45 000 21 553
	Soletta Piatto inferiore Piatto superiore Anima	4000 900 800 2520	400 50 30 20	50 200 1 600 000 45 000 21 553 50 400
Sez. 8	Soletta Piatto inferiore Piatto superiore Anima Soletta	4000 900 800 2520 5000	400 50 30 20 400	50 200 1 600 000 45 000 21 553 50 400 2 000 000
	Soletta Piatto inferiore Piatto superiore Anima Soletta Piatto inferiore	4000 900 800 2520 5000 900	400 50 30 20 400 55	50 200 1 600 000 45 000 21 553 50 400 2 000 000 49 500

AUTOSTRADA REGIONALE CISPADANA

Il ponte viene suddiviso in 11 conci caratterizzati dallo stesso spessore dei piatti delle ali e dell'anima, i primi tre conci costituiscono i tre quarti della campata laterale, il quarto concio è all'appoggio sulla pila mentre il quinto e il sesto realizzano la prima metà della campata centrale, i 5 conci rimanenti sono simmetrici ai primi 5. Gli spessori utilizzati nella verifica delle sezioni sono dati dagli spessori previsti per ciascun concio, nella prossima tabella si riporta le sezioni corrispondenti a ciascun concio con i relativi spessori:

AUTOSTRADA REGIONALE CISPADANA dal casello di Reggiolo-Rolo sulla A22 al casello di Ferrara Sud sulla A13

PROGETTO DEFINITIVO

OPERE STRUTTURALI

OPERE D'ARTE MAGGIORI - CAVALCAVIA SVINCOLO E INTERCONNESSIONE CV10 - CAVALCAVIA RAMPA SUD-OVEST DELLO SVINCOLO DI S.FELICE SUL PANARO-FINALE EMILIA MILIA RELAZIONE DI CALCOLO IMPALCATO , PILE E SPALLE

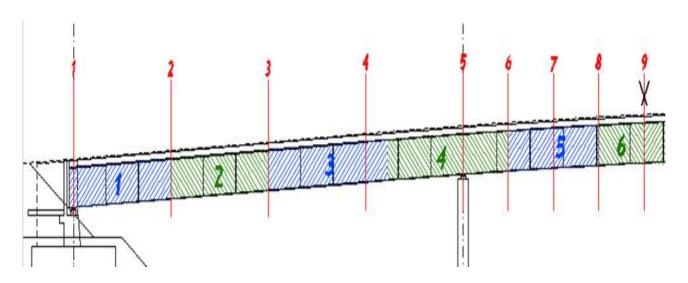


FIGURA 28 SUDDIVISIONE DELLE TRAVI IN CONCI

Concio	Sezioni relative
Primo concio	1 e 2
Secondo concio	2 e 3
Terzo concio	3 e 4
Quarto concio	4, 5 e 6
Quinto concio	6, 7 e 8
Sesto concio	8 e 9

AUTOSTRADA REGIONALE CISPADANA

	Sp ala sup	B ala sup	Sp ala inf	B ala inf	Sp anima
Primo concio	40	800	40	800	15
Secondo concio	40	800	40	900	15
Terzo concio	40	800	40	900	15
Quarto concio	50	900	50	900	20
Quinto concio	40	800	50	900	20
Sesto concio	30	800	55	900	20

Con queste caratteristiche sono state calcolate le tensioni per ciascuna fase e vengono riportate di seguito per il minimo e il massimo valore delle sollecitazioni che derivano dall'inviluppo delle combinazioni:

AUTOSTRADA REGIONALE CISPADANA dal casello di Reggiolo-Rolo sulla A22 al casello di Ferrara Sud sulla A13

PROGETTO DEFINITIVO

OPERE STRUTTURALI

OPERE D'ARTE MAGGIORI - CAVALCAVIA SVINCOLO E INTERCONNESSIONE SCV10 - CAVALCAVIA RAMPA SUD-OVEST DELLO SVINCOLO DI S.FELICE SUL PANARO-FINALE EMILIA MILIA RELAZIONE DI CALCOLO IMPALCATO , PILE E SPALLE

Sollecitazioni MINIME:

	FASE 1		
Tensioni	$\sigma_{ m acc,inf}$	$\sigma_{ m acc, sup}$	
Mmin	[Mpa]	[Mpa]	
Sezione 1	0	0	
Sezione 2	104	104	
Sezione 3	106	114	
Sezione 4	30	32	
Sezione 5	-135	-135	
Sezione 6	-67	-82	
Sezione 7	-15	-18	
Sezione 8	13	19	
Sezione 9	20	31	

AUTOSTRADA REGIONALE CISPADANA

	FASE 2				
Tensioni	$\sigma_{ m acc,inf}$	$\sigma_{ m acc, sup}$	$\sigma_{ m cls,inf}$	$\sigma_{ m cls, sup}$	
Mmin	[Mpa]	[Mpa]	[Mpa]	[Mpa]	
Sezione 1	-16	-16	0	0	
Sezione 2	23	1	0	1	
Sezione 3	23	1	0	1	
Sezione 4	-4	0	0	0	
Sezione 5	-75	-75	0	0	
Sezione 6	-67	-81	0	0	
Sezione 7	-63	-77	0	0	
Sezione 8	-63	-92	0	0	
Sezione 9	-55	-86	0	0	
		FASI	E 3		
Tensioni	$\sigma_{ m acc,inf}$	$\sigma_{ m acc, sup}$	$\sigma_{ m cls,inf}$	$\sigma_{ m cls, sup}$	
Mmin	[Mpa]	[Mpa]	[Mpa]	[Mpa]	
Sezione 1	-16	-16	0	0	
Sezione 2	38	11	1	1	
Sezione 3	36	8	0	1	
Sezione 4	17	4	0	0	
Sezione 5	-75	-75	0	0	
Sezione 6	-67	-81	0	0	
Sezione 7	-63	-77	0	0	
Sezione 8	-63	-92	0	0	
Sezione 9	-55	-86	0	0	

TENSIONI TOTALI ACCIAIO E VEF	
	(I = I (. Δ

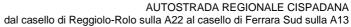
AUTOSTRADA REGIONALE CISPADANA dal casello di Reggiolo-Rolo sulla A22 al casello di Ferrara Sud sulla A13

PROGETTO DEFINITIVO

OPERE STRUTTURALI

OPERE D'ARTE MAGGIORI - CAVALCAVIA SVINCOLO E INTERCONNESSIONE SCV10 - CAVALCAVIA RAMPA SUD-OVEST DELLO SVINCOLO DI S.FELICE SUL PANARO-FINALE EMILIA MILIA RELAZIONE DI CALCOLO IMPALCATO , PILE E SPALLE

Tensioni	$\sigma_{ m acc,inf}$	$\sigma_{ m acc, sup}$	$\sigma_{ m rd,acc}$	Verifica
Mmin	[Mpa]	[Mpa]	[Mpa]	[-]
Sezione 1	-33	-33	338.1	Verificato
Sezione 2	165	117	338.1	Verificato
Sezione 3	165	123	338.1	Verificato
Sezione 4	43	36	338.1	Verificato
Sezione 5	-286	-286	338.1	Verificato
Sezione 6	-201	-244	338.1	Verificato
Sezione 7	-142	-172	338.1	Verificato
Sezione 8	-112	-165	338.1	Verificato
Sezione 9	-90	-141	338.1	Verificato


AUTOSTRADA REGIONALE CISPADANA

	TENSIONI TOTALI CLS E VERIFICA				
Tensioni	$\sigma_{ m cls,inf}$	$\sigma_{ m cls, sup}$	$\sigma_{ m cd,cls}$	Verifica	
Mmin	[Mpa]	[Mpa]	[Mpa]	[-]	
Sezione 1	0	0	15.9	Verificato	
Sezione 2	1	2	15.9	Verificato	
Sezione 3	1	2	15.9	Verificato	
Sezione 4	0	0	15.9	Verificato	
Sezione 5	0	0	15.9	Verificato	
Sezione 6	0	0	15.9	Verificato	
Sezione 7	0	0	15.9	Verificato	
Sezione 8	0	0	15.9	Verificato	
Sezione 9	0	0	15.9	Verificato	

Sollecitazioni MASSIME:

	FASE 1		
Tensioni	$\sigma_{ m acc,inf}$	$\sigma_{ m acc, sup}$	
Mmax	[Mpa]	[Mpa]	
Sezione 1	0	0	
Sezione 2	136	136	
Sezione 3	138	148	
Sezione 4	39	42	
Sezione 5	-104	-104	
Sezione 6	-51	-63	
Sezione 7	-12	-14	
Sezione 8	17	25	
Sezione 9	26	41	

	FASE 2				
Tensioni	$\sigma_{ m acc,inf}$	$\sigma_{ m acc, sup}$	$\sigma_{ m cls,inf}$	$\sigma_{ m cls, sup}$	

PROGETTO DEFINITIVO

OPERE STRUTTURALI

OPERE D'ARTE MAGGIORI - CAVALCAVIA SVINCOLO E INTERCONNESSIONE SCV10 - CAVALCAVIA RAMPA SUD-OVEST DELLO SVINCOLO DI S.FELICE SUL PANARO-FINALE EMILIA MILIA RELAZIONE DI CALCOLO IMPALCATO , PILE E SPALLE

Mmax	[Mpa]	[Mpa]	[Mpa]	[Mpa]
Sezione 1	13	2	0	1
Sezione 2	121	7	1	4
Sezione 3	126	4	1	4
Sezione 4	69	2	0	2
Sezione 5	-23	-23	0	0
Sezione 6	5	6	0	0
Sezione 7	38	6	1	2
Sezione 8	64	7	1	3
Sezione 9	71	7	1	3

AUTOSTRADA REGIONALE CISPADANA

	FASE 3					
Tensioni	$\sigma_{ m acc,inf}$	$\sigma_{ m acc, sup}$	$\sigma_{ m cls,inf}$	$\sigma_{ m cls, sup}$		
Mmax	[Mpa]	[Mpa]	[Mpa]	[Mpa]		
Sezione 1	16	7	0	1		
Sezione 2	50	14	1	1		
Sezione 3	48	11	1	1		
Sezione 4	21	5	0	0		
Sezione 5	-23	-23	0	0		
Sezione 6	5	6	0	0		
Sezione 7	3	1	0	0		
Sezione 8	10	5	0	0		
Sezione 9	11	4	0	0		

	TENSIONI TOTALI ACCIAIO E VERIFICA				
Tensioni	$\sigma_{ m acc,inf}$	$\sigma_{ m acc, sup}$	$\sigma_{ m rd,acc}$	Verifica	
Mmax	[Mpa]	[Mpa]	[Mpa]	[-]	
Sezione 1	29	9	338.1	Verificato	
Sezione 2	307	158	338.1	Verificato	
Sezione 3	312	163	338.1	Verificato	
Sezione 4	130	49	338.1	Verificato	
Sezione 5	-149	-149	338.1	Verificato	
Sezione 6	-41	-50	338.1	Verificato	
Sezione 7	30	-7	338.1	Verificato	
Sezione 8	91	37	338.1	Verificato	
Sezione 9	108	52	338.1	Verificato	

	TENSIONI TOTALI CLS E VERIFICA						
Tensioni	$\sigma_{ m cls,inf}$	$\sigma_{ m cls,inf}$ $\sigma_{ m cls,sup}$ $\sigma_{ m cd,cls}$ Verifica					
Mmax	[Mpa]	[Mpa]	[Mpa]	[-]			
Sezione 1	1	1	15.9	Verificato			
Sezione 2	2	6	15.9	Verificato			

OPERE STRUTTURALI

OPERE D'ARTE MAGGIORI - CAVALCAVIA SVINCOLO E INTERCONNESSIONE 🕏 V10 - CAVALCAVIA RAMPA SUD-OVEST DELLO SVINCOLO DI S.FELICE SUL PANARO-FINALE EMILIA MILIA RELAZIONE DI CALCOLO IMPALCATO, PILE E SPALLE

Sezione 3	1	5	15.9	Verificato
Sezione 4	1	3	15.9	Verificato
Sezione 5	0	0	15.9	Verificato
Sezione 6	0	0	15.9	Verificato
Sezione 7	1	2	15.9	Verificato
Sezione 8	1	3	15.9	Verificato
Sezione 9	1	3	15.9	Verificato

AUTOSTRADA REGIONALE CISPADANA

Si riportano le tensioni dovute all'azione di taglio calcolata avendo attribuito all'anima metallica la somma dei tagli calcolati nelle tre fasi:

Tensioni	$ au_{ ext{min,acc}}$	$ au_{ m max,acc}$	$ au_{ m rd,acc}$	Verifica
Vmin -Vmax	[Mpa]	[Mpa]	[Mpa]	[-]
Sezione 1	-108.9	-59.5	195.2	Verificato
Sezione 2	-52.6	-21.0	195.2	Verificato
Sezione 3	0.8	27.9	195.2	Verificato
Sezione 4	44.8	85.7	195.2	Verificato
Sezione 5	69.4	108.0	195.2	Verificato
Sezione 6	-74.2	-30.1	195.2	Verificato
Sezione 7	-53.7	-18.3	195.2	Verificato
Sezione 8	-33.0	-5.9	195.2	Verificato
Sezione 9	-12.4	6.7	195.2	Verificato

Le ali e le anime delle travi metalliche sono verificate a fatica. Il coefficiente di sicurezza impiegato per le verifiche a fatica considera che le conseguenze della rottura per fatica siano significative e che la struttura sia sensibile alla rottura per fatica pertanto si ha che:

$$\gamma_{Mf} = 1.35$$

Si riporta la tabella con il confronto delle tensioni calcolate per la combinazione di carico a fatica e la massima tensione compatibile con il dettaglio costruttivo impiegato.

FATICA					
Tensioni	$\Delta\sigma_{ m acc,inf}$	$\Delta\sigma_{ m acc, sup}$	Classe dettaglio	$\Delta oldsymbol{\sigma}_{ ext{dettaglio}}$	Verifica
Mmax	[Mpa]	[Mpa]	[Mpa]	[Mpa]	[-]

OPERE STRUTTURALI

OPERE D'ARTE MAGGIORI - CAVALCAVIA SVINCOLO E INTERCONNESSIONE CV10 - CAVALCAVIA RAMPA SUD-OVEST DELLO SVINCOLO DI S.FELICE SUL PANARO-FINALE EMILIA MILIA RELAZIONE DI CALCOLO IMPALCATO, PILE E SPALLE

Sezione 1	0	0	80	43.67	Verificato
Sezione 2	33	2	80	43.67	Verificato
Sezione 3	37	1	80	43.67	Verificato
Sezione 4	28	1	80	43.67	Verificato
Sezione 5	16	5	80	43.67	Verificato
Sezione 6	23	7	80	43.67	Verificato
Sezione 7	33	5	80	43.67	Verificato
Sezione 8	40	4	80	43.67	Verificato
Sezione 9	39	4	80	43.67	Verificato

		FATICA			
Tensioni	$\Delta au_{ m acc}$	Classe dettaglio	$\Delta au_{ ext{maxo}}$	Verifica	
Mmax	[Mpa]	[Mpa]	[Mpa]	[-]	
Sezione 1	13	100	35.19	Verificato	
Sezione 2	10	100	35.19	Verificato	
Sezione 3	9	100	35.19	Verificato	
Sezione 4	10	100	35.19	Verificato	
Sezione 5	10	100	35.19	Verificato	
Sezione 6	13	100	35.19	Verificato	
Sezione 7	11	100	35.19	Verificato	
Sezione 8	10	100	35.19	Verificato	
Sezione 9	9	100	35.19	Verificato	

Le sezioni delle travi che costituiscono il ponte sono verificate.

AUTOSTRADA REGIONALE CISPADANA

6.5.3. DIAFRAMMI METALLICI TRASVERSALI

Le verifiche di resistenza degli elementi metallici costituenti i diaframmi trasversali si sviluppano di seguito confrontando le azioni sollecitanti con quelle resistenti. Si riporta una sintesi delle forze sollecitanti:

$$N_{traverso \text{ sup } eriore} = 210 \cdot kN$$

$$N_{diagonali} = 332 \cdot kN$$

$$N_{traverso inf eriore} = 269 \cdot kN$$

OPERE STRUTTURALI

AUTOSTRADA REGIONALE CISPADANA OPERE D'ARTE MAGGIORI - CAVALCAVIA SVINCOLO E INTERCONNESSIONE CV10 - CAVALCAVIA RAMPA SUD-OVEST DELLO SVINCOLO DI S.FELICE SUL PANARO-FINALE EMILIA MILIA RELAZIONE DI CALCOLO IMPALCATO, PILE E SPALLE

Il traverso superiore è realizzato con due profili UPN240 accoppiati, se ne riporta la verifica a trazione e a compressione:

$$N_{traverso \ \text{sup eriore}} = \frac{A \cdot f_y}{\gamma} = 2860 \cdot kN$$

La resistenza nei confronti dell'instabilità vale:

2 UPN 240 Acciaio S355	(Fe510) fy	(N/mm2) 355			
$\gamma_{M1} = 1.1$ $\beta_{A} = 1.0$ $\epsilon = 0.81$ $\lambda = 93.9 \epsilon = 76.4$					
	Instabilità at	torno all'asse			
	y-y	z - z			
Snellezza 1	75.92	173.25			
Snellezza adimensionale $\bar{\lambda} = \lambda \lambda_1 \beta_A^{0.5}$	0.9938	2.2678			
Curva di instabilità	С	С			
Coefficiente di imperfeziona a	0.49	0.49			
$\phi = 0.5 \left[1 + \alpha (\lambda - 0.2)^2 + \lambda \right]$	1.1883	3.578			
$\chi = 1 / [\phi + (\phi^2 - \lambda^2)^0 0.5]$	0.5436	0.1576			
$N_{b,Rd} = \chi \beta_A A f_y / \gamma_{M1} \qquad (kN)$	1484.088	430.265			

Il traverso inferiore è realizzato con due profili UPN200 accoppiati, se ne riporta la verifica a trazione :

$$N_{traverso\ inf\ eriore} = \frac{A \cdot f_y}{\gamma} = 2177 \cdot kN$$

Le diagonali sono realizzate con due profili UPN240 accoppiati, se ne riporta la verifica a trazione e a compressione:

OPERE STRUTTURALI

OPERE D'ARTE MAGGIORI - CAVALCAVIA SVINCOLO E INTERCONNESSIONE CV10 - CAVALCAVIA RAMPA SUD-OVEST DELLO SVINCOLO DI S.FELICE SUL PANARO-FINALE EMILIA MILIA RELAZIONE DI CALCOLO IMPALCATO , PILE E SPALLE

$$N_{diagonali} = \frac{A \cdot f_{y}}{\gamma} = 2860 \cdot kN$$

La resistenza nei confronti dell'instabilità vale:

AUTOSTRADA REGIONALE CISPADANA

2 UPN 240 Acciaio S355	(Fe510) fy	(N/mm2) 355			
$\gamma_{M1} = 1.1$ $\beta_{A} = 1.0$ $\epsilon = 0.81$ $\lambda = 93.9 \epsilon = 76.4$					
Instabilità attorno all'asse					
	у-у	z - z			
Snellezza X	46.64	106.43			
Snellezza adimensionale $\bar{\lambda} = \lambda \lambda_1 \beta_A^{0.5}$ 0.6105 1.3931					
Curva di instabilità	С	С			
Coefficiente di imperfezion $oldsymbol{lpha}$	0.49	0.49			
$\phi = 0.5 \left[1 + \alpha(\lambda - 0.\overline{2})^{2} + \lambda \right]$	0.7869	1.7626			
$\chi = 1 / [\phi + (\phi^2 - \lambda^2)^{-2}]^{-0.5}$	0.7792	0.3518			
$N_{b,Rd} = \chi \beta_A A f_y / \gamma_{M1} \qquad (kN)$	2127.351	960.515			

6.5.4. **SPALLE**

L'equilibrio rotazionale e la traslazione della spalla è garantito dalla portata dei pali di fondazione che lavorano assialmente e a taglio e flessione. Le sollecitazioni sui pali riportate nei capitoli precedenti sono ora verificate secondo due tipi di approccio:

Approccio 1 per le combinazioni statiche:

- Combinazione 1 (A1+M1+R1)
- Combinazione 2 (A2+M1+R2)

AUTOSTRADA REGIONALE

AUTOSTRADA REGIONALE CISPADANA dal casello di Reggiolo-Rolo sulla A22 al casello di Ferrara Sud sulla A13

PROGETTO DEFINITIVO

OPERE STRUTTURALI

OPERE D'ARTE MAGGIORI - CAVALCAVIA SVINCOLO E INTERCONNESSIONE 🕏 V10 - CAVALCAVIA RAMPA SUD-OVEST DELLO SVINCOLO DI S.FELICE SUL PANARO-FINALE EMILIA MILIA

RELAZIONE DI CALCOLO IMPALCATO, PILE E SPALLE

Approccio 2 per la combinazione sismica

(A1+M1+R3)

Verifiche geotecniche:

La capacità portante dei pali trivellati è determinata sulla base delle indicazioni contenute nella relazione geotecnica di relativa all'opera in oggetto (vedi elaborato 0469 PD 0 S03 SCV10 0 GT RB 01).

Tutti i valori di portata dei pali tengono conto della resistenza flessionale dei pali calcolata considerando una armatura verticale di 40 barre ø30 e una armatura a taglio realizzata con spirale di diametro ø12 e passo 15 (in seguito si riportano le verifiche di resistenza del palo).

Combinazione slu A1+M1+R1

Nelle combinazioni allo stato limite ultimo combinate secondo (A1+M1+R1) la compressione massima dei pali vale 3382 kN e i pali sono soggetti ad una azione tagliante massima di 417.5kN ciascuno.

La resistenza a compressione per pali di diametro 1.2 m e di lunghezza 30 m per la combinazione (A1+M1+R1) per palo singolo vale circa 6400 kN, riducendo la resistenza con un fattore 0.7 per considerare l'effetto della presenza di altri pali posizionati ad una distanza inferiore agli 8 diametri si ha una resistenza pari a 4480 kN.

La portata laterale di ciascun palo è funzione della resistenza a flessione del palo stesso. Il palo soggetto ad un taglio di 417.5 kN ha una resistenza a pressoflessione pari a:

$$M_{Rd}(N_{Sd} = 3382 \cdot kN) = 4943 \cdot kNm$$

Con questo momento resistente si ha una resistenza nei confronti dell'azione di taglio pari a 1298 kN tenendo anche conto della penalizzazione per l'effetto gruppo dei pali.

Combinazione slu A2+M1+R2

AUTOSTRADA REGIONALE CISPADANA dal casello di Reggiolo-Rolo sulla A22 al casello di Ferrara Sud sulla A13

PROGETTO DEFINITIVO

OPERE STRUTTURALI

OPERE D'ARTE MAGGIORI - CAVALCAVIA SVINCOLO E INTERCONNESSIONE ▼10 - CAVALCAVIA RAMPA SUD-OVEST DELLO SVINCOLO DI S.FELICE SUL PANARO-FINALE EMILIA MILIA RELAZIONE DI CALCOLO IMPALCATO , PILE E SPALLE

Nelle combinazioni allo stato limite ultimo combinate secondo (A2+M1+R2) la compressione massima dei pali vale 2870 kN e i pali sono soggetti ad una azione tagliante massima di 414.4 kN ciascuno.

La resistenza a compressione per pali di diametro 1.2 m e di lunghezza 30 m per la combinazione (A2+M1+R2) per palo singolo vale circa 4100 kN, riducendo la resistenza con un fattore 0.7 per considerare l'effetto della presenza di altri pali posizionati ad una distanza inferiore agli 8 diametri si ha una resistenza pari a 2870 kN.

La portata laterale di ciascun palo è funzione della resistenza a flessione del palo stesso. Il palo soggetto ad un taglio di 414.4 kN ha una resistenza a pressoflessione pari a:

$$M_{Rd}(N_{Sd} = 2823 \cdot kN) = 4881 \cdot kNm$$

REGIONALE CISPADANA

Con questo momento resistente si ha una resistenza nei confronti dell'azione di taglio pari a 804 kN tenendo anche conto della penalizzazione per l'effetto gruppo dei pali.

Combinazione slu sismica A1+M1+R3

Nelle combinazioni allo stato limite ultimo per le azioni sismiche, per la combinazione che massimizza il le sollecitazioni nei pali, una compressione di 97 kN su 4 pali e una compressione di 2366 kN su gli altri 4 pali e tutti sono soggetti ad un taglio di 634.5 kN. La resistenza compressione dei pali da 1.2 m di diametro e di 30 m di lunghezza valgono:

$$C_{Rd} = 3640 \cdot kN$$

I valori riportati tengono già conto di una riduzione che considera l'effetto gruppo dei pali.

La resistenza a flessione dei pali vale:

$$M_{Rd}(N_{Sd} = 2366 \cdot kN) = 4814 \cdot kNm$$

dal casello di Reggiolo-Rolo sulla A22 al casello di Ferrara Sud sulla A13

PROGETTO DEFINITIVO

OPERE STRUTTURALI

AUTOSTRADA REGIONALE CISPADANA OPERE D'ARTE MAGGIORI - CAVALCAVIA SVINCOLO E INTERCONNESSIONE CV10 - CAVALCAVIA RAMPA SUD-OVEST DELLO SVINCOLO DI S.FELICE SUL PANARO-FINALE EMILIA MILIA RELAZIONE DI CALCOLO IMPALCATO, PILE E SPALLE

$$M_{Rd}(N_{Sd} = 97 \cdot kN) = 4392 \cdot kNm$$

Con questo momento resistente si ha una resistenza nei confronti dell'azione di taglio pari a 925 kN per i pali compressi con 97 kN e una resistenza nei confronti dell'azione di taglio pari a 982 kN per i pali compressi con 2366 kN tenendo anche conto della penalizzazione per l'effetto gruppo dei pali; il taglio resistente complessivo vale 7400 kN contro uno sollecitante di 5076 kN.

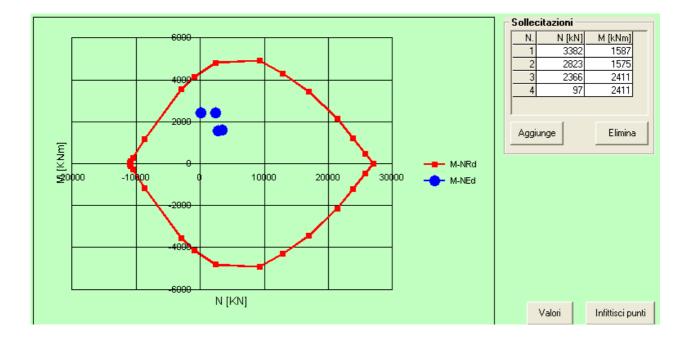
Verifiche di resistenza del palo:

Per la verifica del taglio su utilizza l'espressione indicata nel DM del 14-01-2008 per sezioni armate con armature trasversali date dalle diagonali del traliccio, si riporta una sintesi del calcolo del taglio resistente:

$$V_{Rd,palo} = 907 \cdot \frac{kN}{m}$$

Il taglio resistente di ciascun palo vale 907 kN.

AUTOSTRADA REGIONALE CISPADANA dal casello di Reggiolo-Rolo sulla A22 al casello di Ferrara Sud sulla A13


PROGETTO DEFINITIVO

OPERE STRUTTURALI

OPERE D'ARTE MAGGIORI - CAVALCAVIA SVINCOLO E INTERCONNESSIONE CV10 - CAVALCAVIA RAMPA SUD-OVEST DELLO SVINCOLO DI S.FELICE SUL PANARO-FINALE EMILIA MILIA RELAZIONE DI CALCOLO IMPALCATO, PILE E SPALLE

I pali sono soggetti ad un taglio massimo di 634.5 kN che provoca un momento flettente lungo il palo di 650 kNm ad una profondità di circa 8.5 m e 2411 kNm in sommità. La verifica di resistenza a pressoflessione condotta per valutare la portata laterale dei pali indica che la resistenza flessionale è maggiore di quella sollecitante dovuta alla azione orizzontale. Si riporta il dominio di resistenza a pressoflessione dei pali:

AUTOSTRADA REGIONALE CISPADANA

Verifiche di fessurazione del palo:

La fessurazione nei pali della spalla è controllata tramite il calcolo diretto. Nella combinazione più sfavorevole allo SLE la sollecitazione flessionale lungo il palo è di 317 kNm ad una profondità di circa 8.5m e 1211 kNm in sommità contestualmente ad una azione assiale pari a 1750 kN.

k t=	0.6	
h c,ef=	165.8	mm
A c,eff=	179010	mmq
ho p,eff=	0.095	
α e=	6.452	
(esm-ecm)=	0.0003	

AUTOSTRADA REGIONALE CISPADANA dal casello di Reggiolo-Rolo sulla A22 al casello di Ferrara Sud sulla A13

PROGETTO DEFINITIVO

OPERE STRUTTURALI

OPERE D'ARTE MAGGIORI - CAVALCAVIA SVINCOLO E INTERCONNESSIONE V10 - CAVALCAVIA RAMPA SUD-OVEST DELLO SVINCOLO DI S.FELICE SUL PANARO-FINALE EMILIA MILIA RELAZIONE DI CALCOLO IMPALCATO , PILE E SPALLE

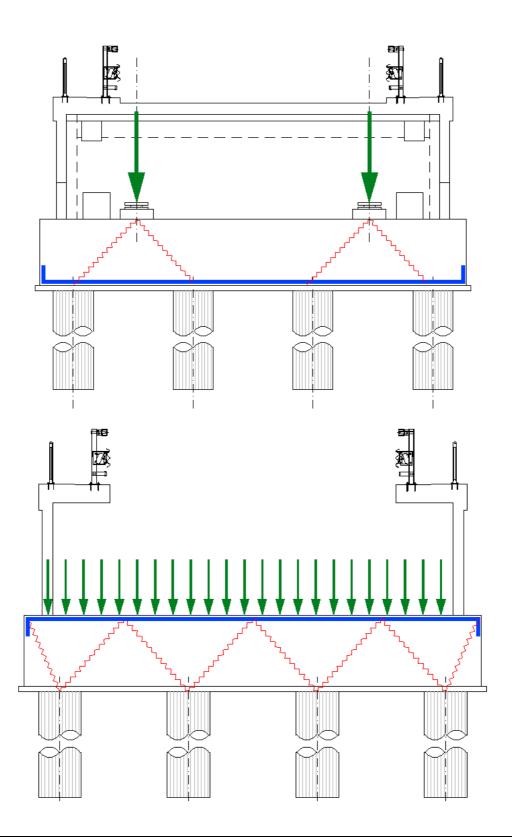
spaziatura orizzontale barre (baricentrico)	150	mm
limite normativo del campo	575	mm
k 1=	0.8	
k 2=	0.5	
k 3=	3.4	
k 4=	0.425	
s r,max=	394	mm
w k=	0.115	mm
ampiezza delle fessure w m=	0.195	mm

AUTOSTRADA REGIONALE CISPADANA

L'ampiezza delle fessure per la combinazione frequente è inferiore del limite previsto (per ampiezza limite relativa alla classe di esposizione si rimanda al capitolo 4.2)

Verifiche di resistenza e fessurazione della zattera della spalla:

Per trasferire il carico delle travi e del terreno ai pali, visto che la zattera della spalla è un elemento tozzo, si prevedono degli schemi a puntone-tirante come quelli illustrati in seguito:

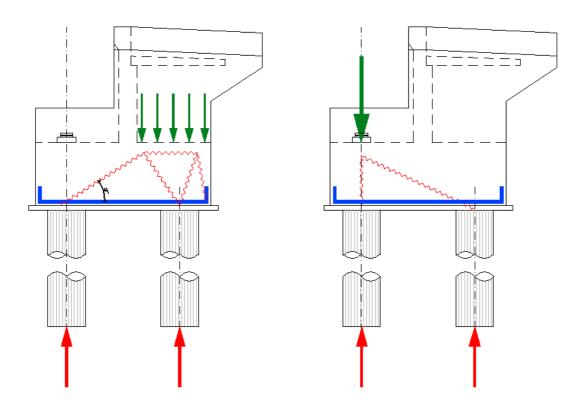

AUTOSTRADA REGIONALE CISPADANA dal casello di Reggiolo-Rolo sulla A22 al casello di Ferrara Sud sulla A13

PROGETTO DEFINITIVO

OPERE STRUTTURALI

OPERE D'ARTE MAGGIORI - CAVALCAVIA SVINCOLO E INTERCONNESSIONE SCV10 - CAVALCAVIA RAMPA SUD-OVEST DELLO SVINCOLO DI S.FELICE SUL PANARO-FINALE EMILIA MILIA RELAZIONE DI CALCOLO IMPALCATO , PILE E SPALLE

AUTOSTRADA REGIONALE CISPADANA


REGIONE EMILIA ROMAGNA

AUTOSTRADA REGIONALE CISPADANA dal casello di Reggiolo-Rolo sulla A22 al casello di Ferrara Sud sulla A13

PROGETTO DEFINITIVO

OPERE STRUTTURALI

OPERE D'ARTE MAGGIORI - CAVALCAVIA SVINCOLO E INTERCONNESSIONE ▼V10 - CAVALCAVIA RAMPA SUD-OVEST DELLO SVINCOLO DI S.FELICE SUL PANARO-FINALE EMILIA MILIA RELAZIONE DI CALCOLO IMPALCATO , PILE E SPALLE

Le armature trasversali sono progettate con i primi due schemi mentre quelle longitudinali secondo i secondi due.

Le barre trasversali superiori e inferiori sono di diametro 20 mm disposte con un passo di 20 cm e sono soggette allo stato limite ultimo ad una tensione massima di 206.6 MPa e allo stato limite di esercizio per la combinazione frequente ad una tensione massima di 158.9 MPa.

Le barre longitudinali superiori e inferiori sono di diametro 20 mm disposte con un passo di 20 cm e sono soggette allo stato limite ultimo ad una tensione massima di 43.5 MPa e allo stato limite di esercizio per la combinazione frequente ad una tensione massima di 33.5 MPa.

La tensione di snervamento delle barre vale:

AUTOSTRADA REGIONALE CISPADANA

AUTOSTRADA REGIONALE CISPADANA dal casello di Reggiolo-Rolo sulla A22 al casello di Ferrara Sud sulla A13

PROGETTO DEFINITIVO

OPERE STRUTTURALI

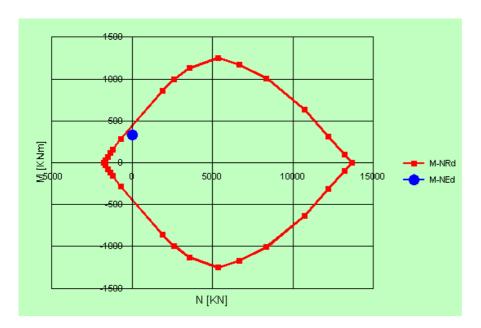
OPERE D'ARTE MAGGIORI - CAVALCAVIA SVINCOLO E INTERCONNESSIONE CV10 - CAVALCAVIA RAMPA SUD-OVEST DELLO SVINCOLO DI S.FELICE SUL PANARO-FINALE EMILIA MILIA RELAZIONE DI CALCOLO IMPALCATO , PILE E SPALLE

$$f_{yd} = \frac{450 \cdot \frac{N}{mm^2}}{1.15} = 391 \cdot \frac{N}{mm^2}$$

La fessurazione in corrispondenza dei tiranti dei tralicci è controllata, tramite il metodo indiretto previsto al paragrafo C.4.1.2.2.4 della Circolare applicativa n 617 limitando le tensioni e verificando che ci sia un passo minimio delle barre.

La tensione nelle barre di diametro massimo 20 mm è inferiore a 160 MPa e il passo è 200 mm pertanto si può considerare verificato il controllo delle fessurazioni per la classe di esposizione della zattera della spalla.

Per presidiare la zona di introduzione della forza alla sommità dei pali si prevedono 10 cavallotti di diametro 16 mm alti 1.8 m disposti metà lungo la direzione trasversale e metà lungo la direzione longitudinale.



OPERE D'ARTE MAGGIORI - CAVALCAVIA SVINCOLO E INTERCONNESSIONE 🕏 V10 - CAVALCAVIA RAMPA SUD-OVEST DELLO SVINCOLO DI S.FELICE SUL PANARO-FINALE EMILIA MILIA RELAZIONE DI CALCOLO IMPALCATO, PILE E SPALLE

6.5.5. PARAGHIAIA

Verifiche di resistenza

Sopra le zattere delle spalle si trova un muro paraghiaia circa 3.75 m e spesso 60 cm sono soggetti allo stato limite ultimo ad un momento flettente di 313.6 kNm/m e ad un taglio 164.8 kN/m; si riporta la verifica a flessione e taglio per una sezione armata simmetricamente con barre verticali ø24/20 cm e barre orizzontali ø12/20 cm:

$$M_{Rd} = 446.5 \cdot kNm/m$$

Per la verifica del taglio su utilizza l'espressione indicata nel DM del 14-01-2008 per sezioni prive di armature trasversali specifiche per la resistenza al taglio, si riporta una sintesi del calcolo del taglio resistente:

Per la verifica del taglio longitudinale su utilizza l'espressione indicata nel DM del 14-01-2008 per sezioni prive di armature trasversali, si riporta una sintesi del calcolo del taglio resistente:

AUTOSTRADA REGIONALE CISPADANA dal casello di Reggiolo-Rolo sulla A22 al casello di Ferrara Sud sulla A13

PROGETTO DEFINITIVO

OPERE STRUTTURALI

OPERE D'ARTE MAGGIORI - CAVALCAVIA SVINCOLO E INTERCONNESSIONE SCV10 - CAVALCAVIA RAMPA SUD-OVEST DELLO SVINCOLO DI S.FELICE SUL PANARO-FINALE EMILIA MILIA RELAZIONE DI CALCOLO IMPALCATO , PILE E SPALLE

 $V_{rd} = 250.57 \text{ kN}$

$$V_{Rd} = 250.577 \cdot \frac{kN}{m}$$

Verifiche di fessurazione

Caratteristiche ideali (sezione interamente reagente)

area ideale	$A_i =$	670 745	mmq
momento statico ideale	$S_i =$	2.006E+08	mm ³
distanza lembo sup da baricentro	y _c =	299	mm
distanza lembo inf da baricentro	y'c =	301	mm
distanza armatura inf da baricentro	y _s =	221	mm
distanza armatura sup da baricentro	y' _s =	219	mm
momento d'inerzia ideale	$J_i =$	2.142E+10	mm^4

Momento di prima fessurazione [EC1992-1-1:2005 (3.23)]				
	M=	228.51	kNm	

Il momento di prima fessurazione è maggiore di quello sollecitante per la combinazione frequente (Msle = 169.4 kNm) pertanto si considera soddisfatta la verifica a fessurazione.

AUTOSTRADA REGIONALE CISPADANA dal casello di Reggiolo-Rolo sulla A22 al casello di Ferrara Sud sulla A13

PROGETTO DEFINITIVO

OPERE STRUTTURALI

OPERE D'ARTE MAGGIORI - CAVALCAVIA SVINCOLO E INTERCONNESSIONE 🕏 V10 - CAVALCAVIA RAMPA SUD-OVEST DELLO SVINCOLO DI S.FELICE SUL PANARO-FINALE EMILIA MILIA

RELAZIONE DI CALCOLO IMPALCATO, PILE E SPALLE

6.5.6. PILE

L'equilibrio rotazionale e la traslazione della spalla è garantito dalla portata dei pali di fondazione che lavorano assialmente e a taglio e flessione.

Verifiche geotecniche:

AUTOSTRADA REGIONALE

La capacità portante dei pali trivellati è determinata sulla base delle indicazioni contenute nella relazione geotecnica di relativa all'opera in oggetto (vedi elaborato 0469_PD_0_S03_SCV10_0_GT_RB_01).

Tutti i valori di portata dei pali tengono conto della resistenza flessionale dei pali calcolata considerando una armatura verticale di 40 barre ø30 e una armatura a taglio realizzata con spirale di diametro ø12 e passo 15 (in seguito si riportano le verifiche di resistenza del palo).

Combinazione slu A1+M1+R1

Nelle combinazioni allo stato limite ultimo combinate secondo (A1+M1+R1) la compressione massima dei pali vale 3004 kN e i pali sono soggetti ad una azione tagliante massima di 112 kN ciascuno.

La resistenza a compressione per pali di diametro 1.2 m e di lunghezza 28 m per la combinazione (A1+M1+R1) per palo singolo vale circa 5800 kN, riducendo la resistenza con un fattore 0.7 per considerare l'effetto della presenza di altri pali posizionati ad una distanza inferiore agli 8 diametri si ha una resistenza pari a 4060 kN.

La portata laterale di ciascun palo è funzione della resistenza a flessione del palo stesso. Il palo soggetto ad un taglio di 112 kN ha una resistenza a pressoflessione pari a:

$$M_{Rd}(N_{Sd} = 3004 \cdot kN) = 4901 \cdot kNm$$

Con questo momento resistente si ha una resistenza nei confronti dell'azione di taglio pari a 1293 kN tenendo anche conto della penalizzazione per l'effetto gruppo dei pali.

AUTOSTRADA REGIONALE CISPADANA dal casello di Reggiolo-Rolo sulla A22 al casello di Ferrara Sud sulla A13

PROGETTO DEFINITIVO

OPERE STRUTTURALI

OPERE D'ARTE MAGGIORI - CAVALCAVIA SVINCOLO E INTERCONNESSIONE CV10 - CAVALCAVIA RAMPA SUD-OVEST DELLO SVINCOLO DI S.FELICE SUL PANARO-FINALE EMILIA MILIA

RELAZIONE DI CALCOLO IMPALCATO , PILE E SPALLE

Combinazione slu A2+M1+R2

R E G I O N A L E

Nelle combinazioni allo stato limite ultimo combinate secondo (A2+M1+R2) la compressione massima dei pali vale 2466 kN e i pali sono soggetti ad una azione tagliante massima di 112 kN ciascuno.

La resistenza a compressione per pali di diametro 1.2 m e di lunghezza 28 m per la combinazione (A2+M1+R2) per palo singolo vale circa 3750 kN, riducendo la resistenza con un fattore 0.7 per considerare l'effetto della presenza di altri pali posizionati ad una distanza inferiore agli 8 diametri si ha una resistenza pari a 2625 kN.

La portata laterale di ciascun palo è funzione della resistenza a flessione del palo stesso. Il palo soggetto ad un taglio di 112 kN ha una resistenza a pressoflessione pari a:

$$M_{Rd}(N_{Sd} = 2466 \cdot kN) = 4829 \cdot kNm$$

Con questo momento resistente si ha una resistenza nei confronti dell'azione di taglio pari a 800 kN tenendo anche conto della penalizzazione per l'effetto gruppo dei pali.

Combinazione slu sismica A1+M1+R3

Nelle combinazioni allo stato limite ultimo per le azioni sismiche si ha per la combinazione che massimizza il momento una compressione minima di 275 kN e una compressione massima di 3007 kN e tutti sono soggetti ad un taglio di 384 kN. La resistenza a trazione e a compressione dei pali da 1.2 m di diametro e di 28 m di lunghezza valgono:

$$C_{Rd} = 3325 \cdot kN$$

I valori riportati tengono già conto di una riduzione che considera l'effetto gruppo dei pali.

La resistenza a flessione dei pali vale:

$$M_{Rd}(N_{Sd} = 3007 \cdot kN) = 4902 \cdot kNm$$

AUTOSTRADA REGIONALE CISPADANA dal casello di Reggiolo-Rolo sulla A22 al casello di Ferrara Sud sulla A13

PROGETTO DEFINITIVO

OPERE STRUTTURALI

OPERE D'ARTE MAGGIORI - CAVALCAVIA SVINCOLO E INTERCONNESSIONE CV10 - CAVALCAVIA RAMPA SUD-OVEST DELLO SVINCOLO DI S.FELICE SUL PANARO-FINALE EMILIA MILIA RELAZIONE DI CALCOLO IMPALCATO , PILE E SPALLE

$$M_{Rd}(N_{Sd} = 275 \cdot kN) = 4430 \cdot kNm$$

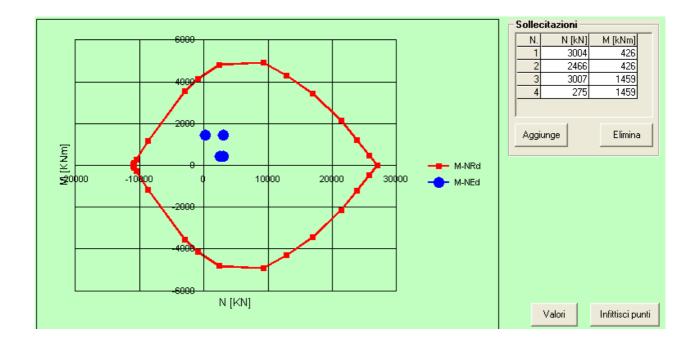
Con questo momento resistente si ha una resistenza minima nei confronti dell'azione di taglio pari a 931 kN per i pali compressi con 275 kN; il taglio resistente complessivo vale 9310 kN contro uno sollecitante di 3840 kN.

Verifiche di resistenza del palo:

Per la verifica del taglio su utilizza l'espressione indicata nel DM del 14-01-2008 per sezioni armate con armature trasversali date dalle diagonali del traliccio, si riporta una sintesi del calcolo del taglio resistente:

$$\begin{array}{rclcrcl} A_{sw} = & 1508.0 & mm^2/m \\ \rho_w = & 0.00129 & - \\ A_{sw\,min} = & 1755.0 & mm^2/m \\ \rho_{w\,min} = & 0.0015 & - \\ & & & \\ inclinazione \, bielle \, \bigcirc = & 22 & \circ \\ & & & \\ tan \, \bigcirc = & 0.404 & - \\ & & & \\ cot \, \bigcirc = & 2.475 & - \\ & & & \\ cot \, \alpha = & 0.00 & \\ & & & \\ V_{rsd} = & 906.96 & kN \\ & & & \\ V_{rsc} = & 1787. & kN \\ & & & \\ V_{rd} = & \textbf{906.96} & kN \\ \end{array}$$

$$V_{Rd,palo} = 907 \cdot \frac{kN}{m}$$


I pali sono soggetti ad un taglio massimo di 384 kN che provoca un momento flettente lungo il palo di 394 kNm ad una profondità di circa 8.5 m e 1459 kNm in sommità. La verifica di resistenza a pressoflessione condotta per valutare la portata laterale dei pali indica che la resistenza flessionale è maggiore di quella sollecitante dovuta alla azione orizzontale. Si riporta il dominio di resistenza a pressoflessione dei pali:

AUTOSTRADA REGIONALE CISPADANA dal casello di Reggiolo-Rolo sulla A22 al casello di Ferrara Sud sulla A13

PROGETTO DEFINITIVO

OPERE STRUTTURALI

OPERE D'ARTE MAGGIORI - CAVALCAVIA SVINCOLO E INTERCONNESSIONE 🕏 V10 - CAVALCAVIA RAMPA SUD-OVEST DELLO SVINCOLO DI S.FELICE SUL PANARO-FINALE EMILIA MILIA RELAZIONE DI CALCOLO IMPALCATO, PILE E SPALLE

Verifiche di fessurazione del palo:

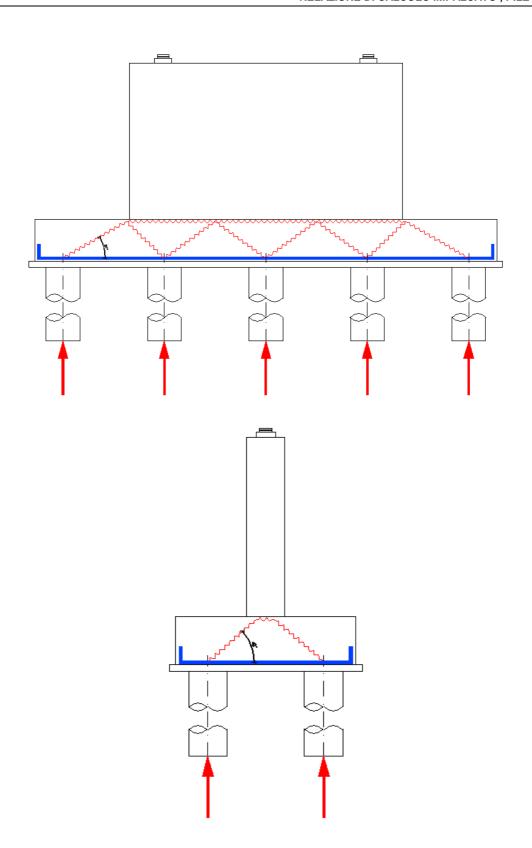
La fessurazione nei pali della spalla è controllata tramite il calcolo diretto. Nella combinazione più sfavorevole allo SLE la sollecitazione flessionale lungo il palo è di 48 kNm ad una profondità di 8.5 m e 178 kNm in sommità contestualmente ad una azione assiale pari a 1641 kN.

Il momento di prima fessurazione vale 665 kNm (calcolato trascurando a favore di sicurezza l'azione assiale) pertanto si considera soddisfatta la verifica a fessurazione.

Verifiche di resistenza e fessurazione della zattera della pila:

AUTOSTRADA REGIONALE CISPADANA

Per trasferire il carico delle travi e del terreno ai pali, visto che la zattera della pila è un elemento tozzo, si prevedono degli schemi a puntone-tirante come quelli illustrati in seguito:


AUTOSTRADA REGIONALE CISPADANA dal casello di Reggiolo-Rolo sulla A22 al casello di Ferrara Sud sulla A13

PROGETTO DEFINITIVO

OPERE STRUTTURALI

OPERE D'ARTE MAGGIORI - CAVALCAVIA SVINCOLO E INTERCONNESSIONE SCV10 - CAVALCAVIA RAMPA SUD-OVEST DELLO SVINCOLO DI S.FELICE SUL PANARO-FINALE EMILIA MILIA RELAZIONE DI CALCOLO IMPALCATO , PILE E SPALLE

AUTOSTRADA REGIONALE CISPADANA

AUTOSTRADA REGIONALE CISPADANA

AUTOSTRADA REGIONALE CISPADANA dal casello di Reggiolo-Rolo sulla A22 al casello di Ferrara Sud sulla A13

PROGETTO DEFINITIVO

OPERE STRUTTURALI

OPERE D'ARTE MAGGIORI - CAVALCAVIA SVINCOLO E INTERCONNESSIONE ▼10 - CAVALCAVIA RAMPA SUD-OVEST DELLO SVINCOLO DI S.FELICE SUL PANARO-FINALE EMILIA MILIA RELAZIONE DI CALCOLO IMPALCATO , PILE E SPALLE

Le armature trasversali sono progettate con il primo schema mentre quelle longitudinali con il secondo.

Le barre sia trasversali che longitudinali, superiori e inferiori, sono di diametro 20 mm disposte con un passo di 20 cm e sono soggette allo stato limite ultimo ad una tensione massima di 204 MPa e allo stato limite di esercizio per la combinazione frequente ad una tensione massima di 146 MPa.

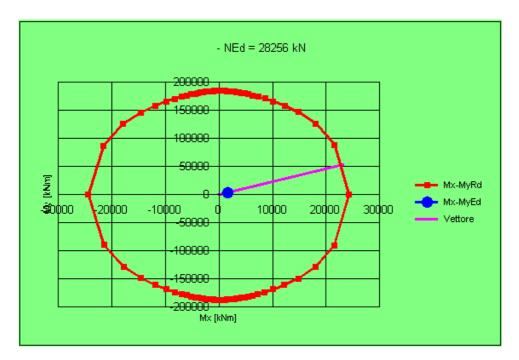
La tensione di snervamento delle barre vale:

$$f_{yd} = \frac{450 \cdot \frac{N}{mm^2}}{1.15} = 391 \cdot \frac{N}{mm^2}$$

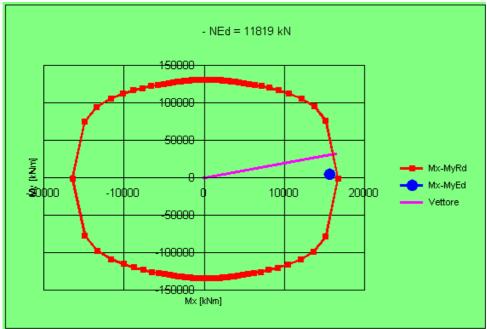
La fessurazione è controllata, tramite il metodo indiretto previsto al paragrafo C.4.1.2.2.4 della Circolare applicativa n 617 limitando le tensioni e verificando che ci sia un passo minimio delle barre.

La tensione nelle barre di diametro massimo 20 mm è inferiore a 160 MPa e il passo è 200 mm pertanto si può considerare verificato il controllo delle fessurazioni per la classe di esposizione della zattera della pila.

Per presidiare la zona di introduzione della forza alla sommità dei pali si prevedono 10 cavallotti di diametro 16 mm alti 1.3 m disposti metà lungo la direzione trasversale e metà lungo la direzione longitudinale.


L'elevazione della pila è realizzata con un setto spesso 1.2 m e largo 9.7 m armato con barre verticali 1ø24/20 cm, sui due lati e barre orizzontali 1ø14/20 cm; si riporta il dominio di resistenza dell' elemento:

AUTOSTRADA REGIONALE CISPADANA dal casello di Reggiolo-Rolo sulla A22 al casello di Ferrara Sud sulla A13

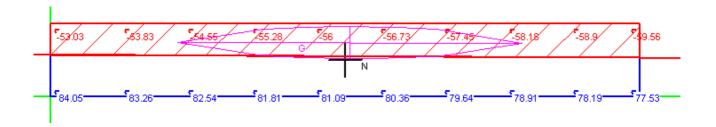

PROGETTO DEFINITIVO

OPERE STRUTTURALI

OPERE D'ARTE MAGGIORI - CAVALCAVIA SVINCOLO E INTERCONNESSIONE SCV10 - CAVALCAVIA RAMPA SUD-OVEST DELLO SVINCOLO DI S.FELICE SUL PANARO-FINALE EMILIA MILIA RELAZIONE DI CALCOLO IMPALCATO, PILE E SPALLE

AUTOSTRADA REGIONALE CISPADANA

La fessurazione è controllata, tramite il metodo indiretto previsto al paragrafo C.4.1.2.2.4 della Circolare applicativa n 617 limitando le tensioni e verificando che ci sia un passo minimio delle barre.



AUTOSTRADA REGIONALE CISPADANA dal casello di Reggiolo-Rolo sulla A22 al casello di Ferrara Sud sulla A13

PROGETTO DEFINITIVO

OPERE STRUTTURALI

OPERE D'ARTE MAGGIORI - CAVALCAVIA SVINCOLO E INTERCONNESSIONE CV10 - CAVALCAVIA RAMPA SUD-OVEST DELLO SVINCOLO DI S.FELICE SUL PANARO-FINALE EMILIA MILIA RELAZIONE DI CALCOLO IMPALCATO , PILE E SPALLE

$$\sigma_{sd,\max} = 84.05 \cdot \frac{N}{mm^2}$$

La tensione nelle barre di diametro massimo 24 mm è inferiore a 160 MPa e il passo è 200 mm pertanto si può considerare verificato il controllo delle fessurazioni per la classe di esposizione dell'elevazione della pila.

AUTOSTRADA REGIONALE CISPADANA dal casello di Reggiolo-Rolo sulla A22 al casello di Ferrara Sud sulla A13

PROGETTO DEFINITIVO

OPERE STRUTTURALI

OPERE D'ARTE MAGGIORI - CAVALCAVIA SVINCOLO E INTERCONNESSIONE CV10 - CAVALCAVIA RAMPA SUD-OVEST DELLO SVINCOLO DI S.FELICE SUL PANARO-FINALE EMILIA MILIA RELAZIONE DI CALCOLO IMPALCATO , PILE E SPALLE

6.5.7. VERIFICHE DI DEFORMABILITA'

Nelle combinazione di carico allo stato limite di esercizio si verifica infine la deformata verticale del ponte. Nella prossima tabella si riporta il contributo dei diversi carichi per la deformata delle campate e la loro combinazione:

Condizione di	δ Campata	δ Campata	
carico	laterale	centrale	
[-]	[mm]	[mm]	
P Prop	7.7	0.5	
env g1	51	2.7	
env q	28.0	17.5	
env Qi	21.1	12.9	
DT	-1	2	
env g2	18.8	4.5	
SLE - frequente	103.9	25.6	
(L/♂) _{frequente}	423	1642	
SLE - quasi perm	77	8.7	
(L/	571.4	4827.6	

Il ponte è sufficientemente rigido in quanto lo spostamento verticale in mezzeria delle due campate è inferiore e L/300 per la combinazione frequente e inferiore a L/300 per la combinazione quasi permanente.

AUTOSTRADA REGIONALE CISPADANA

AUTOSTRADA REGIONALE CISPADANA dal casello di Reggiolo-Rolo sulla A22 al casello di Ferrara Sud sulla A13

PROGETTO DEFINITIVO

OPERE STRUTTURALI

OPERE D'ARTE MAGGIORI - CAVALCAVIA SVINCOLO E INTERCONNESSIONE SCV10 - CAVALCAVIA RAMPA SUD-OVEST DELLO SVINCOLO DI S.FELICE SUL PANARO-FINALE EMILIA MILIA RELAZIONE DI CALCOLO IMPALCATO , PILE E SPALLE

6.5.8. APPARECCHI DI APPOGGIO

Si riportano di seguito le azioni verticali sollecitanti alla base degli apparecchi di appoggio divise nelle diverse combinazioni di carico.

Nodo	Carico	Carico Valore		R trasv	R vert	
[-]	[-]	[-]	KN	KN	KN	
1	P Prop		0	0	171	
1	g1		0	0	1 147	
1	g2		0	0	429	
1	env q	Max	0	0	664	
1	env q	Min	0	0	574	
1	env Qi	Max	0	0	637	
1	env Qi	Min	0	0	-51	
2	P Prop		0	0	165	
2	g1		0	0	1 171	
2	g2		0	0	443	
2	env q	Max	0	0	655	
2	env q	Min	0	0	596	
2	env Qi	Max	0	0	638	
2	env Qi	Min	0	0	-33	
3	P Prop		0	0	165	
3	g1		0	0	1 171	
3	g2		0	0	443	
3	env q	Max	0	0	655	
3	env q	Min	0	0	-30	
3	env Qi	Max	0	0	10	
3	env Qi	Min	0	0	-31	
4	P Prop		0	0	171	
4	g1		0	0	1 147	
4	g2		0	0	429	
4	env q	Max	0	0	664	

AUTOSTRADA REGIONALE CISPADANA dal casello di Reggiolo-Rolo sulla A22 al casello di Ferrara Sud sulla A13

PROGETTO DEFINITIVO

OPERE STRUTTURALI

OPERE D'ARTE MAGGIORI - CAVALCAVIA SVINCOLO E INTERCONNESSIONE SCV10 - CAVALCAVIA RAMPA SUD-OVEST DELLO SVINCOLO DI S.FELICE SUL PANARO-FINALE EMILIA MILIA RELAZIONE DI CALCOLO IMPALCATO , PILE E SPALLE

9	P Prop		0	0	436
8	env Qi	Min	0	0	-33
8	env Qi	Max	0	0	10
8	env q	Min	0	0	-32
8	env q	Max	0	0	656
8	g2		0	0	441
8	g1		0	0	1 168
8	P Prop		0	0	165
7	env Qi	Min	0	0	-35
7	env Qi	Max	0	0	638
7	env q	Min	0	0	593
7	env q	Max	0	0	656
7	g2		0	0	441
7	g1		0	0	1 168
7	P Prop		0	0	165
6	env Qi	Min	0	0	-90
6	env Qi	Max	0	0	371
6	env q	Min	0	0	618
6	env q	Max	0	0	823
6	g2		0	0	1 078
6	g1		0	0	3 021
6	P Prop		0	0	436
5	env Qi	Min	0	0	51
5	env Qi	Max	0	0	687
5	env q	Min	0	0	823
5	env q	Max	0	0	1 706
5	g2		0	0	1 078
5	g1		0	0	3 021
5	P Prop		0	0	436
4	env Qi	Min	0	0	-48
4	env Qi	Max	0	0	16
4	env q	Min	0	0	-42

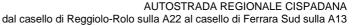
AUTOSTRADA REGIONALE CISPADANA

AUTOSTRADA REGIONALE CISPADANA dal casello di Reggiolo-Rolo sulla A22 al casello di Ferrara Sud sulla A13

PROGETTO DEFINITIVO

OPERE STRUTTURALI

OPERE D'ARTE MAGGIORI - CAVALCAVIA SVINCOLO E INTERCONNESSIONE CV10 - CAVALCAVIA RAMPA SUD-OVEST DELLO SVINCOLO DI S.FELICE SUL PANARO-FINALE EMILIA MILIA RELAZIONE DI CALCOLO IMPALCATO , PILE E SPALLE


Ī	İ	İ	İ		l I
9	g2		0	0	1 080
9	env q	Max	0	0	1 710
9	env q	Min	0	0	822
9	env Qi	Max	0	0	687
9	env Qi	Min	0	0	52
10	P Prop		0	0	436
10	g1		0	0	3 024
10	g2		0	0	1 080
10	env q	Max	0	0	822
10	env q	Min	0	0	618
10	env Qi	Max	0	0	373
10	env Qi	Min	0	0	-92
13	P Prop		0	0	453
13	g1		0	0	3 045
13	g2		0	0	1 092
13	env q	Max	0	0	1 738
13	env q	Min	0	0	815
13	env Qi	Max	0	0	685
13	env Qi	Min	0	0	55
14	P Prop		0	0	453
14	g1		0	0	3 045
14	g2		0	0	1 092
14	env q	Max	0	0	815
14	env q	Min	0	0	620
14	env Qi	Max	0	0	388
14	env Qi	Min	0	0	-104

AUTOSTRADA REGIONALE CISPADANA

Le reazioni sono state riportate facendo riferimento ai nodi delle travi del manufatto nelle diverse fasi considerate e se ne riporta la descrizione:

Nodo 1: prima spalla della trave in fase 1

Nodo 2: prima spalla della trave in fase 2

OPERE STRUTTURALI

OPERE D'ARTE MAGGIORI - CAVALCAVIA SVINCOLO E INTERCONNESSIONE 🕏 V10 - CAVALCAVIA RAMPA SUD-OVEST DELLO SVINCOLO DI S.FELICE SUL PANARO-FINALE EMILIA MILIA RELAZIONE DI CALCOLO IMPALCATO , PILE E SPALLE

Nodo 3: seconda spalla della trave in fase 2

AUTOSTRADA REGIONALE CISPADANA

Nodo 4: seconda spalla della trave in fase 1

Nodo 5: prima pila della trave in fase 2

Nodo 6: seconda pila della trave in fase 2

Nodo 7: prima spalla della trave in fase 3

Nodo 8: seconda spalla della trave in fase 3

Nodo 9: prima pila della trave in fase 3

Nodo 10: seconda spalla della trave in fase 3

Nodo 13: prima pila della trave in fase 1

Nodo 14: seconda pila della trave in fase 1

Si riporta una sintesi con il minimo e il massimo delle reazioni vincolari agli appoggi delle travi metalliche:

	SLE (con	nb. RARA)	SLU - A1		SLU - A2		SISMA	
	MAX	MIN	MAX	MIN	MAX	MIN	MAX	MIN
SPALLE	3052	1697	4120	1676	3246	1688	1759	1759
PILE	6972	4578	9412	4578	7810	4578	4578	4578

In caso di vento e sisma si hanno le seguenti sollecitazioni orizzontali massime sulle spalle e sulle pile:

Spalle:

Forza massima prima direzione: 1264 KN

Forza massima seconda direzione: 379 kN

Pile:

Forza massima prima direzione: 1204 KN

Forza massima seconda direzione: 361 kN

AUTOSTRADA REGIONALE CISPADANA

dal casello di Reggiolo-Rolo sulla A22 al casello di Ferrara Sud sulla A13

PROGETTO DEFINITIVO

OPERE STRUTTURALI

OPERE D'ARTE MAGGIORI - CAVALCAVIA SVINCOLO E INTERCONNESSIONE CV10 - CAVALCAVIA RAMPA SUD-OVEST DELLO SVINCOLO DI S.FELICE SUL PANARO-FINALE EMILIA MILIA

RELAZIONE DI CALCOLO IMPALCATO, PILE E SPALLE

Si riporta una sintesi dei calcoli eseguiti per determinare le azioni orizzontali dovute al sisma (le forze orizzontali dovute al vento risultano essere meno gravose).

Forze su apparecchi di appoggio delle spalle e pile:

AUTOSTRADA REGIONALE

Lo spostamento massimo atteso allo stato limite di collasso è di 145 mm che sommato allo spostamento termico e allo spostamento per ritiro per la combinazione sismica da uno spostamento complessivo di 166 mm. Per avere uno spostamento tale in concomitanza di una forza verticale pari a 4578 kN si utilizza un dispositivo isolatore elastomerico tipo "SI-N 800/130" capaci di uno spostamento laterale massimo di 250 mm, sia per le pile che per le spalle, di produzione della FIP, tuttavia sono impiegabili prodotti equivalenti. Questo dispositivo è in grado di resistere ad una forza verticale massima allo stato limite ultimo pari a 14990 kN pertanto soddisfa anche questa condizione dato che si ha una compressione massima di 9412 kN.

Forze su spalle e pile:

Lo spostamento massimo atteso allo stato limite di vita per il periodo del ponte è di 135 mm che sommato allo spostamento termico e a quello per ritiro per la combinazione sismica da uno spostamento complessivo di 156 mm.

La rigidezza di ciascuno degli 8 dispositivi scelte è pari a K_e = 3.09 kN/mm pertanto il periodo di oscillazione del ponte vale:

$$T = 2 \cdot \pi \cdot \frac{\sqrt{M_{totale \ struttura}}}{\sqrt{n_{isolatori} \cdot K_e}} = 2.01 \cdot \sec$$

Con questo periodo è stato verificato lo spostamento sismico atteso.

La forza sismica complessiva corrispondente a questo periodo per lo stato limite di vita vale 4816 kN.

La forza sismica viene distribuita proporzionalmente al numero degli smorzatori presenti sulle spalle e sulle pile incrementando, a favore di sicurezza, la forza sulle spalle in ragione di una maggior rigidezza del complesso della spalla rispetto alla pila

Su ciascuna pila sono presenti 2 isolatori pertanto la forza che vi compete vale 1204 KN. Sulla spalla sono presenti altri 2 isolatori pertanto la forza che vi compete vale 1264 kN ottenuta incrementando, a favore di

AUTOSTRADA REGIONALE CISPADANA

AUTOSTRADA REGIONALE CISPADANA dal casello di Reggiolo-Rolo sulla A22 al casello di Ferrara Sud sulla A13

PROGETTO DEFINITIVO

OPERE STRUTTURALI

OPERE D'ARTE MAGGIORI - CAVALCAVIA SVINCOLO E INTERCONNESSIONE ▼10 - CAVALCAVIA RAMPA SUD-OVEST DELLO SVINCOLO DI S.FELICE SUL PANARO-FINALE EMILIA MILIA RELAZIONE DI CALCOLO IMPALCATO , PILE E SPALLE

sicurezza, la forza dei dispositivi di appoggio in ragione di una maggior rigidezza del complesso della spalla rispetto alla pila.

La forza sismica inerziale della zattera della spalla, della zattera della pila e della pila stessa vale:

$$E_{zattera\ spalla} = 1222 \cdot kN$$

$$E_{pila} = 908 \cdot kN$$

$$E_{zattera\ pila} = 1566 \cdot kN$$

6.5.9. GIUNTI DI DILATAZIONE

Per "capacità di spostamento" dei giunti di dilatazione posti alle estremità dell'impalcato si intende la capacità di deformarsi in allungamento (dilatazione), di accorciarsi (contrazione) e di deformarsi trasversalmente (scorrimento). I giunti previsti garantiscono:

- capacità di spostamento, senza danneggiarsi, l'assorbimento degli spostamenti longitudinali e trasversali dovuti al normale esercizio dell'opera (SLE) per le variazioni termiche, l'azione di frenatura, l'azione del vento, le azioni dei carichi mobili e quelle dovute ai carichi permanenti portati;
- capacità di spostamento, senza danneggiarsi, l'assorbimento degli spostamenti longitudinali e trasversali dovuti allo Stato Limite di Danno (SLD) in condizione sismica, opportunamente combinati con quelli derivanti dalle variazioni termiche e dai carichi permanenti portati;
- la fruibilità del ponte in condizioni sismiche violente (SLC) opportunamente combinato con le variazioni termiche e i carichi permanenti, anche se irreversibilmente danneggiati in termini di capacità di spostamento;
- l'assenza di fenomeni longitudinali di martellamento per un sisma violento (SLC) opportunamente combinato con le variazioni termiche e i carichi permanenti.

Si prevede pertanto l'adozione di giunti di dilatazione che presentino le seguenti caratteristiche:

AUTOSTRADA REGIONALE CISPADANA

AUTOSTRADA REGIONALE CISPADANA dal casello di Reggiolo-Rolo sulla A22 al casello di Ferrara Sud sulla A13

PROGETTO DEFINITIVO

OPERE STRUTTURALI

OPERE D'ARTE MAGGIORI - CAVALCAVIA SVINCOLO E INTERCONNESSIONE V10 - CAVALCAVIA RAMPA SUD-OVEST DELLO SVINCOLO DI S.FELICE SUL PANARO-FINALE EMILIA MILIA RELAZIONE DI CALCOLO IMPALCATO , PILE E SPALLE

- Capacità di spostamento longitudinale: +/- 80 mm;
- Capacità di scorrimento trasversale: +/- 55 mm;
- Carrabilità per spostamenti longitudinali: +/- 166 mm;
- Carrabilità per scorrimenti trasversali: +/- 145 mm.

Il varco strutturale tra la testata della soletta e il muro frontale di spalla sarà non inferiore a 230 mm in modo tale da scongiurare fenomeni di martellamento in caso di sisma violento.

Il giunti di dilatazione previsto è tipo "GPE 400" di produzione della FIP, tuttavia sono impiegabili prodotti equivalenti.