

CITTA' DI BRINDISI

REGIONE PUGLIA

Impianto agrovoltaico"Ricchiuti" della potenza di 69,31 MW in DC PROGETTO DEFINITIVO

COMMITTENTE:

RICCHIUTI srl Viale Duca d'Aosta, 51 39100 Bolzano (BZ) P.IVA: 03033800214 Tel: 0039 3409196155

PROGETTAZIONE:

TÈKNE srl Via Vincenzo Gioberti, 11 - 76123 ANDRIA Tel +39 0883 553714 - 552841 - Fax +39 0883 552915 www.gruppotekne.it e-mail: contatti@gruppotekne.it

PROGETTISTA: Dott. Ing. Renato Pertuso (Direttore Tecnico)

LEGALE RAPPRESENTANTE: dott. Renato Mansi CONSULENTE: dott. geol. Angelo Ruta

RELAZIONE GEOLOGICA, RELAZIONE DI COMPATIBILITA' IDROGEOLOGICA ED IDRAULICA

Filename:

TKA539-PD-RE02-RelazioneGeo-R0.doc

	PROGETTO DEFINITION	VO				
Da	ata 1°emissione:	Redatto:	Verificato:	Approvato:	Scala:	Protocollo Tekne:
S	Settembre 2021	A.RUTA	G.PERTOSO	R.PERTUSO		
ne	1					
ISIO	2					
ē	3					TKA539
È	4					

RELAZIONE GEOLOGICA

PREMESSA	1
PIANO DI BACINO – PAI	4
CARATTERI MORFOLOGICI, GEOLOGICI ED IDROGEOLOGICI	9
SISMOLOGIA	22
COEFFICIENTI SISMICI	
INDAGINI MASW	30
VS,EQ E CATEGORIA DI SOTTOSUOLO	35
INDAGINI SISMICHE A RIFRAZIONE	37
PARAMETRI SISMICI E GEOTECNICI	41
CONCLUSIONI	44

RELAZIONE DI COMPATIBILITA' IDROLOGICA ED IDRAULICA

PREMESSA	45
BACINI IDROGRAFICI	46
DATI PLUVIOMETRICI E CALCOLO DELLE PORTATE	49
ANALISI IDRAULICA "RETICOLO NORD"	57
ANALISI IDRAULICA "RETICOLO SUD"	84
ANALISI IDRAULICA BACINO ENDOREICO	95
CARTE FINALI DELLA PERICOLOSITA' IDRAULICA	101

Su incarico affidato allo scrivente dalla Società di Ingegneria TÈKNE con sede in Andria (BAT), è stata redatta la seguente relazione geologica e della pericolosità sismica di base in merito al progetto di realizzazione di un impianto agrovoltaico.

L'area in studio è ubicata in agro del Comune di Brindisi in località "Masseria Chiodi" e censita al catasto terreni al Fg 137 p.lle 35,36,71,72,182,186,188,190,192,194,65,137,141,180,196,198,200, 134,135,142,143,149,152,209,211,213,215,145,147,139,150.

Inquadramento territoriale

Presa visione dei luoghi, ed in accordo con la committenza, sono state concordate le seguenti indagini:

- Rilevamento geologico di dettaglio;
- Analisi vincolistica Idraulica e Geomorfologica
- Modellazione geologica ed idrogeologica
- Pericolosità sismica di base
- Indagine MASW, Vseq e classificazione del suolo di fondazione.
- Indagine geofisica
- Parametrizzazione geotecnica del substrato di fondazione.

I dati di campagna sono stati integrati con la bibliografia specialistica esistente sulla zona. La presente relazione è stata redatta in ottemperanza alla vigente normativa sui terreni di fondazione, L. 64/74, DM 21.01.81, DM 11.03.88, DM 14.09.05 e DM 14.01.08, NTC 2018. Il PAI, adottato con Delibera Istituzionale n°25 del 15/12/2004 ed approvato con Delibera Istituzionale n°39 del 30/11/2005, è finalizzato al miglioramento delle condizioni di regime idraulico e della stabilità dei versanti, necessario a ridurre gli attuali livelli di pericolosità e a consentire uno sviluppo sostenibile del territorio nel rispetto degli assetti naturali, della loro tendenza evolutiva e delle potenzialità d'uso.

L'analisi della "Carta di Rischio e della Pericolosità Idraulica e Geomorfologica" (aggiornata al 19/11/2019), ha permesso di escludere situazioni di pericolosità idraulica e geomorfologica nelle aree oggetto di studio.

Dall'analisi invece della "Carta Idrogeomorfologica" della Regione Puglia si rileva quanto segue:

 l'area oggetto d'installazione dei pannelli fotovoltaici è gravata dalla presenza di un "recapito finale di bacino endoreico" e di due reticoli idrografici. Di tali reticoli uno attraversa i terreni da W ad E ed uno è localizzato ai margini del confine sudorientale, pertanto, in ottemperanza a quanto disciplinato nelle N.T.A. del Piano di Bacino (PAI), si è proceduto allo studio di compatibilità idrolologica ed idraulica. I risultati hanno permesso di perimetrare le aree a pericolosità idraulica che sono di fatto state stralciate dalla superficie utile per l'installazione dei pannelli fotovoltaici.

Per una disamina dettagliata si rimanda a specifica relazione allegata a pag. 49 della presente;

- la cabina di trasformazione è esterna alle aree di rischio idraulico e non rientra tra le aree di rischio di cui gli art. 6 e 10 delle NTA del PAI;
- si rilevano alcune interferenze tra il tracciato del cavidotto interrato ed il reticolo idrografico per le quali si relaziona nel paragrafo successivo.

Le aree d'intervento non sono interessate dalla presenza di "Geositi e Forme ed elementi di origine antropica".

Carta della Pericolosità Idraulica

N

CAVIDOTTO INTERSEZIONI CON RETICOLO IDROGRAFICO

Nella scelta del percorso del cavidotto di collegamento del parco agrovoltaico con la cabina di trasformazione, è stata posta particolare attenzione per individuare il tracciato che minimizzasse interferenze e punti d'intersezione con il reticolo idrografico individuato in sito e sulla Carta Idrogeomorfologica.

Il cavidotto interrato si sviluppa per una lunghezza complessiva di circa 11 km dei quali circa 9 in asse con la viabilità stradale.

Alcuni tratti del cavidotto interrato ricadono in prossimità, costeggiano e attraversano il reticolo idrografico che, nell'area in oggetto, risulta idraulicamente regimato a mezzo di canali sotto stradali e fossi di guardia paralleli alle sedi stradali.

Nello specifico, come da indicazioni fornite dalla committenza, tutte le intersezioni del cavidotto con il reticolo e con le aree perimetrate in pericolosità idraulica saranno risolte con l'utilizzo della trivellazione orizzontale controllata (T.O.C.) per non interferire con l'attuale assetto idraulico dei luoghi.

La realizzazione della restante parte del cavidotto non comporterà alcuna modifica delle livellette e delle opere idrauliche presenti sia per la scelta del percorso (in fregio alla viabilità), sia per le modeste dimensioni di scavo (circa 120cm di profondità e circa 80cm di larghezza) a realizzarsi con escavatore a benna stretta.

A fine lavori si provvederà al ripristino della situazione ante operam delle carreggiate stradali per cui gli interventi previsti non determineranno alcuna modifica territoriale né modifiche dello stato fisico dei luoghi.

In definitiva la realizzazione del cavidotto interrato, sia se realizzato su strade esistenti sia se posto in opera in terreni agricoli, consentirà di proteggere il collegamento elettrico da potenziali effetti delle azioni di trascinamento della corrente idraulica e di perseguire gli obiettivi di contenimento, non incremento e di mitigazione del rischio idrologico/idraulico, dato che la sua realizzazione non comporterà alcuna riduzione della sezione utile per il deflusso idrico.

CARATTERI GEOLOGICI, MORFOLOGICI ED IDROGEOLOGICI

Le aree oggetto di studio sono ubicate ad una distanza di circa 6 ed 11 km in direzione SudEst dell'abitato del Comune di Brindisi.

Stralcio F° 204 I.G.M., Tav. IV N.O. "Porto di Brindisi"

Queste rientrano una nella Tav. IV N.O. "Porto di Brindisi" del F° 204 IGM in scala 1: 25.000 con quota s.l.m. variabile tra circa 29 e 22m e distanza dalla linea di costa pari a circa 5.50 km (Area_1) e l'altra nella Tav. IV S.O. "Stazione di Tuturano" del F° 204 IGM in scala 1: 25.000 con quota s.l.m. variabile tra circa 51 e 42m e distanza dalla linea di costa pari a circa 8 km (Area_2).

I siti in studio ricadono tra i Fogli 203 "Brindisi" e 204 "Lecce" della Carta Geologica d'Italia in scala 1:100.000 e nel Foglio 495 "Mesagne" della Carta Idrogeomorfologica della Regione Puglia.

Da un punto di vista generale le aree in esame ricadono nell'ambito dell'Avanpaese apulo, individuatosi durante l'orogenesi appenninica, ed è costituito da una potente successione di rocce carbonatiche di piattaforma. La piana di Brindisi coincide con una vasta depressione strutturale aperta verso la costa adriatica, che interessa le rocce carbonatiche dell'Avanpaese, nella quale si sono deposti sedimenti del ciclo di riempimento della Fossa Bradanica e depositi marini terrazzati. Morfologicamente il territorio risulta generalmente pianeggiante rispecchiando, dunque, l'assetto tabulare dei depositi plio-pleistocenici e, subordinatamente, mesozoici affioranti.

La morfologia piuttosto dolce dell'intero territorio brindisino trova corrispondenza nel fatto che i piegamenti che hanno colpito le formazioni affioranti sono piuttosto blandi. In superficie non sono rilevabili faglie, a parte una faglia presunta al margine occidentale del foglio Brindisi. Quindi le dislocazioni per faglia o sono quasi del tutto assenti oppure sono anteriori ai terreni pliocenici e pleistocenici che occupano le zone strutturalmente depresse, ed in tal caso risultano sepolte dalle stesse. Si può quindi parlare di fenomeni plicativi precedenti il Pliocene senza poter escludere tuttavia che questi possano essere in parte continuati fino al Pleistocene con manifestazioni assai più blande

Il complesso sedimentario più importante della zona in oggetto è rappresentato dai depositi di terrazzo (Pleistocene medio-sup.).

La successione stratigrafica, iniziando dal termine più antico, comprende:

- Calcare di Altamura (Cretaceo superiore);
- Calcarenite di Gravina (Pleistocene inferiore);
- Argille subappenniniche (Pleistocene inferiore.);
- Depositi marini terrazzati (Pleistocene superiore);
- Depositi palustri (Olocene);

Stralcio Carta Idrogeomorfologica, Foglio 495 "Mesagne". (SIT Puglia)

LEGENDA

ELEMENTI GEOLOGICO-STRUTTURALI

Litologia del substrato

Rocce prevalentemente calcaree o dolomitiche
Rocce evaporitiche (carbonatiche, anidritiche o gessose)
Rocce prevalentemente marnose, marnoso-pelitiche e pelitiche
Rocce prevalentemente arenitiche (arenarie e sabbie)
Rocce prevalentemente ruditiche (ghiaie e conglomerati)
Rocce costituite da alternanze
Depositi sciolti a prevalente componente pelitica e/o sabbiosa
Depositi sciolti a prevalente componente ghiaiosa

Calcare di Altamura.

Nella Piana di Brindisi, il substrato carbonatico mesozoico è costituito da litofacies calcareo- dolomitiche attribuibili alla formazione del Calcare di Altamura. Questa formazione, non affiorante nell'area di specifico interesse, si rinviene a profondità

dell'ordine di circa 40 ÷ 50 metri dal piano campagna. Dal punto di vista litologico, questa successione stratigrafica è costituita da calcari compatti e tenaci con

intercalazioni di calcari dolomitici e di dolomie. I calcari sono prevalentemente micritici o bioclastici, di colore biancastro e contengono, talora, orizzonti macrofossiliferi a Rudiste. I calcari dolomitici e le dolomie, che sono generalmente di origine diagenetica tardiva, presentano una colorazione grigio scura o nocciola ed un aspetto tipicamente saccaroide. La formazione si presenta ben stratificata, talora fittamente laminata ("calcari a chiancarelle") con strati generalmente decimetrici e, più raramente, in banchi. Il limite superiore della formazione è inconforme e frequentemente discordante con le formazioni più recenti. A causa delle vicissitudini tettoniche subite, le rocce del basamento sono interessate da un diffuso stato di fratturazione, spesso associato a manifestazioni di tipo carsico. L'ambiente di deposizione dei sedimenti è identificabile con quello marino interidale di piattaforma interna e sulla base del contenuto microfaunistico, la formazione è ascrivibile al Cenomaniano (Cretaceo superiore).

Calcarenite di Gravina.

Con questo termine si indicano i depositi di base dell'importante ciclo sedimentario che si è sviluppato nella Fossa Bradanica nel corso del Plio-Pleistocene. Anche questa formazione non affiora nell'area di specifico interesse ma è presente nel sottosuolo ad una profondità di circa 30 ÷ 40 metri rispetto al p.c., con spessori variabili da pochi metri fino a 10 ÷ 15 metri. Tale formazione si rinviene localmente in trasgressione al di sopra del substrato calcareo mesozoico, con frequenti discordanze angolari. Il contatto stratigrafico presenta spesso un andamento piuttosto irregolare, in quanto corrisponde ad

un'antica superficie di erosione subaerea rielaborata dall'abrasione marina durante la fase di trasgressione (Cherubini et Al., 1987). Talvolta in corrispondenza del contatto tra le due formazioni può essere rinvenuto un livello conglomeratico a ciottoli calcareodolomitici immersi in matrice calcarenitica, oppure un orizzonte di terre rosse residuali. La formazione risulta costituita, in assoluta prevalenza, da biocalcareniti di colore biancogiallastro, a granulometria media o medio-grossolana, a grado di cementazione medio-basso, di norma tenere e porose, disposte in strati spessi ed in banchi con irregolari cenni di stratificazione. Il contenuto fossilifero è molto abbondante ed è costituito da gusci di lamellibranchi, echinidi, briozoi, brachiopodi, coralli singoli e noduli algali. L'ambiente di deposizione è quello di piana costiera, da circalitorale a infralitorale profondo. Il limite inferiore è inconforme e discordante sul substrato cretaceo. Il limite superiore è invece conforme e in continuità di sedimentazione con le sovrastanti "Argille Subappennine".

Argille Subappennine

Sulla Calcarenite di Gravina, in continuità di sedimentazione, si rinvengono dei sedimenti pelitici attualmente riferiti alla formazione delle Argille Subappennine. Tali terreni sono costituiti da limi sabbioso-argillosi ed argille marnoso-siltose di colore grigio-azzurro, a stratificazione indistinta e solo localmente evidenziata da sottili livelli di sabbie limose di colore grigiogiallastro. Il contenuto in argilla tende generalmente ad aumentare nella parte bassa della formazione, mentre verso il tetto la componente sabbioso- limosa diviene prevalente. Quest'unità presenta un ricco contenuto in macrofossili, costituiti soprattutto da gusci interi di lamellibranchi,

gasteropodi, scafopodi, da coralli singoli ed echinidi e l'ambiente di deposizione de sedimenti è attribuibile alla fascia neritica profonda. Nell'area di studio, così come nell'intera Piana di Brindisi, questa formazione non affiora, ma è presente quasi ovunque nel sottosuolo a profondità variabili tra i 5 e i 20 metri rispetto al p.c.. Il tetto delle argille presenta una generalizzata immersione a NE, passando da quote di oltre 100 metri s.l.m. dell'entroterra di Mesagne ai 10 metri sotto il I.m. della zona di Brindisi nord. Lo spessore delle Argille Subappennine può variare da 5 a 50 metri; in linea generale è riconosciuta una tendenza all'incremento progressivo della potenza della formazione argillosa nella parte meridionale della Piana di Brindisi ed in prossimità della linea di costa (Ricchetti & Polemio, 1996). Nell'area di specifico interesse, la potenza della formazione argillosa è stata valutata tra 15 e 30 metri. Il limite inferiore della formazione è conforme, in continuità di sedimentazione con la sottostante Calcarenite di Gravina, mentre il limite superiore è inconforme e paraconcordante con le formazioni medio e suprapleistoceniche.

Quote altimetriche s.l.m. del tetto delle Argille Subappennine (da Lopez et Al., 2005).

Depositi marini terrazzati

Questa formazione, in trasgressione sui sedimenti argillosi del Pleistocene inf., affiora estesamente su gran parte dell'area in esame. Nel contesto della Piana di Brindisi, quest'unità è costituita da due principali litofacies: una a composizione sabbioso-limosoargillosa e l'altra prettamente calcarenitica o sabbioso- calcarenitica. Litologicamente tali depositi presentano una composizione sabbiosolimoso-argillosa cui si alternano orizzonti di calcareniti e arenarie grigio-giallastre dello spessore di 15-30 cm. A luoghi si rinvengono intercalazioni di lenti di limi siltosi grigiastri con particolare frequenza nella parte più bassa in prossimità del contatto di trasgressione con le sottostanti Argille subappenniniche. Lo spessore di tali depositi

Spessore dei Depositi Marini Terrazzati (da Lopez et Al., 2005).

Depositi alluvionali e palustri

I depositi continentali di origine alluvionale, colluviale e palustre si rinvengono principalmente sul fondo dei principali corsi d'acqua (in particolare nell'alveo del Canale Siedi) nonché nelle depressioni morfologiche che ospitano stagni o lagune costiere, come ad esempio quelle presenti a nord di Punta della Contessa, in località "Salina Vecchia". Questi depositi sono costituiti da limi sabbiosi ed argille limose di colore variabile dal grigio scuro al bruno-nerastro, contenenti lenti ed orizzonti di resti vegetali nerastri di spessore massimo attorno ad 1 metro. In linea generale, lo spessore complessivo dei depositi continentali raramente supera i 5 metri.

Da un punto di vista idrogeologico è possibile individuare due ambienti ben distinti e correlabili ad una falda superficiale freatica ed a una falda carsica profonda.

Schema idrogeologico della falda superficiale e profonda

La falda carsica profonda trae la sua alimentazione sia dalle precipitazioni incidenti direttamente sulla formazione carbonatica, laddove affiorante, sia dai deflussi sotterranei della contigua Murgia, nonché dalle perdite dell'acquifero superficiale. La falda idrica profonda circola in un acquifero permeabile per fessurazione e carsismo defluendo verso la costa con cadenti piezometrici generalmente inferiori allo 0.05%.

La falda freatica superficiale è confinata all'interno dei depositi marini terrazzati, estesamente affioranti nel territorio brindisino, costituendo un acquifero superficiale permeabile per porosità. Tali depositi poggiano su sedimenti del ciclo sedimentario della Fossa Bradanica, i cui termini argilloso-limosi sostengono le acque freatiche, trasgressivi su una potente successione di calcari e dolomie di età cretacea, appartenenti alla formazione del Calcare di Altamura.

Con specifico riferimento ad uno studio svolto sull'acquifero superficiale del territorio brindisino (E. Ricchetti & M. Polemio, 1996) è stato possibile ricostruirne l'assetto tridimensionale.

I dati stratigrafici evidenziano una notevole variabilità locale degli spessori dell'acquifero superficiale e dei depositi argillosi che lo sostengono. Lo spessore massimo dell'acquifero è di 37 m mentre per le argille è di 46 m, con uno spessore medio rispettivamente di 14 m e 22 m circa. Il letto dell'acquifero evidenzia una generale inclinazione in direzione NE con evidenti locali irregolarità imputabili alla originaria morfologia del bacino di sedimentazione.

23

Isoipse del letto dell'acquifero superficiale.

Curve isopache dell'acquifero superficiale

Curve isopache dei depositi argillosi (Argille subappennine).

Le falde idriche superficiali, benché presenti quasi per intero in tutto il territorio brindisino, sono localizzate a profondità tali da non interferire con le opere in progetto.

In generale il quadro sismotettonico di un territorio è caratterizzato da:

- grado di sismicità del territorio;
- grado di sismicità dei territori contigui.

La Puglia è caratterizzata da sismicità rilevante in Capitanata e nel Gargano e più moderata nel Salento; inoltre forti terremoti del basso Ionio e del versante greco-albanese hanno prodotto effetti anche gravi nel territorio pugliese.

Il settore più attivo è il Gargano, colpito nel Seicento da una lunga sequenza di forti terremoti e, nei secoli successivi, da eventi di energia più contenuta (magnitudo MW minore di 6.0). L'evento garganico più importante è quello del 30 luglio 1627 (MW 6.7), che causò danni gravissimi e migliaia di vittime e fu seguito da eventi altrettanto forti nel 1646 (MW 6.6), nel 1647 (MW 5.9) e nel 1657 (MW 6.4).

Il massimo terremoto della Capitanata avvenne il 20 marzo 1731 (MW 6.5), causando il crollo di circa un terzo degli edifici di Foggia, dove ci furono circa 500 morti e danni molto gravi nella pianura e sulle colline circostanti (Cerignola, Ortanova, Ascoli Satriano). Questo terremoto mandò in crisi l'economia di Foggia, che era un importante centro amministrativo e commerciale. Estremamente importante è il terremoto del 20 febbraio 1743 (MW 7.1), localizzato in mare nel basso Ionio, che colpì tutta la penisola salentina e le isole greche di Corfù e Lefkada, causando morti e crolli. A Nardò, la località pugliese più danneggiata, ci furono oltre 100 morti. Danni abbastanza seri si ebbero a Taranto e Brindisi, meno gravi a Lecce e nella penisola salentina. Il terremoto fu avvertito in un'area

vastissima sino a Trento, Milano e Venezia e in numerose località lungo la costa adriatica.

Piuttosto rilevanti sono anche gli effetti in Puglia di terremoti localizzati in Irpinia, in particolare quelli del 1930 (MW 6.6) e del 1962 (MW 6.1).

La sismicità regionale recente è molto più debole di quella storica, ma conferma le stesse strutture attive, con un terremoto di magnitudo ML pari a 5.2, il 30 settembre 1995, pochi eventi di magnitudo ML intorno a 4.5 localizzati in area garganica (1989, 1992, 1998, 2006) e una sequenza concentrata prevalentemente in territorio molisano al confine con la Puglia, nel Subappennino Dauno, nel 2002-2003. Questa sequenza fu caratterizzata da una scossa di magnitudo ML 5.7 il 31 ottobre 2002, che provocò danni gravi a San Giuliano di Puglia (CB) ed effetti del grado 7 MCS in alcune località delle province di Campobasso e Foggia. Il giorno seguente, 1° novembre, si verificò un'altra forte scossa (ML 5.7) con effetti del grado 7 MCS a Castellino del Biferno e Larino (CB) e a Carlantino (FG).

Data	Area epicentrale	IMAX	Mw
1223	Gargano	9	5.8
1361 07 17	Ascoli Satriano	10	6.0
1414	Vieste (FG)	8-9	5.8
1560 05 11	Barletta-Bisceglie	8	5.6
1627 07 30	Gargano	10	6.7
1646 05 31	Gargano	10	6.6
1647 05 05	Gargano	7-8	5.9
1657 01 29	Lesina (FG)	9-10	6.4
1694 09 08	Irpinia-Basilicata	10	6.8
1731 03 20	Foggiano	9	6.5
1743 02 20	Basso Ionio	9	7.1
1875 12 06	San Marco in Lamis (FG)	8	5.9
1889 12 08	Apricena (FG)	7	5.7
1930 07 23	Irpinia	10	6.6
1948 08 18	Puglia settentrionale	7-8	5.6
1962 08 21	Irpinia	9	6.1
1980 11 23	Irpinia-Basilicata	10	6.9
2002 10 31	Monti Frentani, Molise	8-9	5.7
2002 11 01	Subappennino Dauno	7	5.7

Principali terremoti storici che hanno prodotto danni in Puglia (fonte: CPTI11). I_{MAX} è l'intensità massima osservata (scala MCS) e M_W è la magnitudo stimata.

Distribuzione della sismicità storica in Puglia negli ultimi mille anni (fonte: CPTI11, http://emidius.mi.ingv.it/CPTI11).

Terremoti di magnitudo $M_L \ge 2$ registrati dalla Rete Sismica Nazionale dal 1981 al 30 settembre 2013 (fonte: CSI,Bollettino Sismico e ISIDE, http://iside.rm.ingv.it). Il territorio regionale è caratterizzato da una pericolosità sismica da media ad alta, più elevata nell'area garganica e dell'Ofanto, minore nel Salento. Questo significa che gli eventi di magnitudo elevata sono più probabili nel nord della regione che non in altre aree, dove possono comunque verificarsi eventi forti o risentirsi eventi dell'Adriatico come avvenne nel 1743, per quanto la frequenza di forti terremoti è molto bassa. I valori di accelerazione previsti dal modello di pericolosità sismica (probabilità del 10% in 50 anni) sono compresi tra 0.50 e 0.225g, ma la maggior parte del territorio regionale mostra valori maggiori di 0.10g.

La pericolosità sismica della regione è determinata dalla presenza di strutture sismicamente attive del Gargano e della Valle dell'Ofanto, che hanno avuto i loro massimi con i terremoti garganici del 1627 (Mw6.7) e del 1646 (Mw6.6) e quello di Foggia del 1731(Mw6.5).

Pericolosità sismica in Puglia.

Di seguito si riporta l'elenco delle osservazioni macrosismiche di terremoti relative al Comune di Brindisi al di sopra della soglia del "danno".

Storia sismica del Comune di Brindisi limitatamente a valori di Is (x10) \ge 40 (Sito INGV – Database Microsismico Italiano 2011)

Brindisi

🖹 🕉 🔮

PlaceID	IT 62536
Coordinate (lat, lon)	40.637, 17.945
Comune (ISTAT 2015)	Brindisi
Provincia	Brindisi
Regione	Puglia
Numero di eventi riportati	22

Effetti	In occasio	one del terremoto del	
Int.	Anno Me Gi Ho Mi Se Area epicen	trale NMD	P IO Mw
6	🗗 1456 12 05 Appennino o	entro-meridionale 199	11 7 . 19
5	🚱 1694 09 08 11 40 🛛 Irpinia-Bas	vilicata 251	10 6.73
6-7	🗗 1731 03 20 03 🛛 Tavoliere d	lelle Puglie 49	9 6.33
8	🚰 1743 02 20 Ionio sette	ntrionale 84	9 6.68
5	🗗 1777 06 06 16 15 Tirreno mer	idionale 9	
2-3	🚰 1857 12 16 21 15 🛛 Basilicata	340	11 7.12
5	🗗 1875 12 06 Gargano	97	8 5.86
4	🚰 1889 12 08 Gargano	122	7 5.47
5	🗗 1897 05 28 22 40 0 Ionio	132	6 5.46
3	🗗 1905 09 08 01 43 Calabria ce	ntrale 895	10-11 6.95
4	🗗 1909 01 20 19 58 Salento	32	5 4.51
NF	🗗 1910 06 07 02 04 🛛 Irpinia-Bas	vilicata 376	8 5.76
NF	🚱 1913 06 28 08 53 0 Calabria se	ttentrionale 151	8 5.64
NF	🚱 1915 01 13 06 52 4 Marsica	104	1 11 7.08
F	🗗 1930 07 23 00 08 Irpinia	547	10 6.67
NF	🚱 1947 05 11 06 32 1 Calabria ce	ntrale 254	8 5.70
NF	🗗 1951 01 16 01 11 Gargano	73	7 5.22
2	🚰 1978 09 24 08 07 4 Materano	121	6 4.75
5	🗗 1980 11 23 18 34 5 Irpinia-Bas	ilicata 139	4 1 <mark>0 6.81</mark>
NF	🗗 1984 04 29 05 02 5 Umbria sett	entrionale 709	7 5.62
NF	🗗 1990 02 18 20 10 4 Adriatico d	entrale 46	4.24
3-4	🚱 1990 05 05 07 21 2 Potentino	137	5 5.77

In seguito all'Ordinanza PCM del 20 marzo 2003 n° 3274, l'Istituto Nazionale di Geofisica e Vulcanologia ha redatto la nuova mappa di pericolosità sismica di riferimento per l'individuazione delle zone sismiche. La mappa finale è stata ottenuta dall'uso ponderale di tre gruppi di relazioni di attenuazione e due insiemi di intervalli di completezza. La mappa presenta anche una fascia "marginale", dove sono raggruppati quei territori che possono essere inseriti in una zona sismica o in quella contigua, nell'ambito del potere discrezionale che l'Ordinanza affida alle Regioni. Le zone sismiche, distinte in 4 classi di accelerazione massima del suolo (amax) con probabilità di superamento del 10% in 50 anni, sono state individuate in base al sistema dei codici europei (EC8).

ZONA 1 – caratterizzata da valori di accelerazione orizzontale del suolo $0,25 < ag \le 0,35 g$ (alta sismicità)

ZONA 2 - caratterizzata da valori di accelerazione orizzontale del suolo 0,15 < ag \leq 0,25 g (media sismicità)

ZONA 3 - caratterizzata da valori di accelerazione orizzontale del suolo $0,05 < ag \le 0,15 g$ (bassa sismicità)

ZONA 4 - caratterizzata da valori di accelerazione orizzontale del suolo ag \leq 0,05 g (sismicità molto bassa)

Decreti fino al 1984	GdL 1988	Classificazione 2003
I categoria	S=12	Zona 1
II categoria	S=9	Zona 2
III categoria	S=6	Zona 3
N.C.	N.C.	Zona 4

Il territorio di Brindisi è classificato come Zona 4.

COEFFICIENTI SIMICI

Secondo quanto riportato nell'allegato A del D.M. del 14/01/2008, la stima dei parametri spettrali necessari per la definizione dell'azione sismica di progetto viene effettuata calcolandoli direttamente per il sito oggetto d'intervento, utilizzando le informazioni disponibili nel reticolo di riferimento (tabella 1, allegato B del D.M. del 14/01/2008); pertanto la stima della pericolosità sismica, viene definita mediante un approccio "sito-dipendente" e non più tramite un criterio "zona-dipendente".

Area d'intervento e reticolo sismico di riferimento

Stati limite

Classe Edificio

II. Affollamento normale. Assenza di funz. pubbliche e sociali...

Vita Nominale	50			٣
CU = 1	Medi	a ponderata		*
Stato Limite	Tr [anni]	a _g [g]	Fo	Tc* [s]
Operatività (SLO)	30	0.013	2.349	0.150
Danno (SLD)	50	0.018	2.281	0.192
Salvaguardia vita (SLV)	475	0.045	2.498	0.452
Prevenzione collasso (SLC)	975	0.055	<mark>2.571</mark>	0.520
Periodo di riferimento per l'azione sismica:	50			

×

Coefficienti sismici

🔅 Tipo	Sta	bilità dei	pendii e fond	azioni	
Muri di sostegno	che non sono	in grado	di subire spos	stamenti.	
H (m)			Us	s (m)	
Į 1			a 0.	1	
Cat. Sottos	suolo		В		ंड
Cat. Topog	rafica		T1		
		SLO	SLD	SLV	SLC
SS Amplificazione	stratigrafica	1,20	1,20	1,20	1,20
CC Coeff. funz ca	tegoria	1,61	1,53	1,29	1,25
ST Amplificazione	topografica	1,00	1,00	1,00	1,00
Acc.ne massima	attesa al sito [i	m/s²]		;	1.6
Coefficienti	SLO		SLD	SLV	SLC
kh	0.003	}	0.004	0.011	0.013
kv	0.002	2	0.002	0.005	0.007
Amax [m/s ²]	0.151		0.208	0.524	0.651
Beta	0.200)	0.200	0.200	0.200

Cenni metodologici

Il metodo "MASW" è una tecnica d'indagine non invasiva (non è necessario eseguire perforazioni o scavi e ciò limita i costi), che individua il profilo di velocità delle onde di taglio verticali Vs, basandosi sulla misura delle onde superficiali fatta in corrispondenza di diversi sensori (accelerometri o geofoni) posti sulla superficie del suolo.

Il contributo predominante alle onde superficiali è dato dalle onde di Rayleigh, che viaggiano con una velocità correlata alla rigidezza della porzione di terreno interessata dalla propagazione delle onde.

La proprietà fondamentale delle onde superficiali di Rayleigh, sulla quale si basa l'analisi per la determinazione delle Vs, è

costituita dal fenomeno della dispersione che si manifesta in mezzi stratificati. Pertanto, analizzando la curva di dispersione, ossia la variazione della velocità di fase delle onde di Rayleigh in funzione della lunghezza d'onda (o della frequenza, che è inversamente proporzionale alla lunghezza d'onda), è possibile determinare la variazione della velocità delle onde di taglio con la profondità tramite processo di inversione.

A) Velocità delle onde di Rayleigh in funzione della frequenza; B) profilo di velocità delle onde di taglio in funzione della profondità (a destra) ricavato tramite processo d'inversione.
La metodologia per la realizzazione di una indagine sismica MASW prevede 3 passi fondamentali:

1. calcolo della velocità di fase (o curva di dispersione) apparente sperimentale;

2. calcolo della velocità di fase apparente numerica;

3. individuazione del profilo di velocità delle onde di taglio verticali Vs, modificando opportunamente lo spessore h, le velocità delle onde di taglio Vs e di compressione Vp (o in maniera alternativa alle velocità Vp è possibile assegnare il coefficiente di Poisson), la densità di massa degli strati che costituiscono il modello del suolo, fino a raggiungere una sovrapposizione ottimale tra la velocità di fase (o curva di dispersione) sperimentale e la velocità di suolo assegnato.

Il modello di suolo e quindi il profilo di velocità delle onde di taglio verticali possono essere individuati con procedura manuale o con procedura automatica o con una combinazione delle due. Generalmente si assegnano il numero di strati del modello, il coefficiente di Poisson, la densità di massa e si variano lo spessore h e la velocità Vs degli strati.

Nella procedura manuale l'utente assegna per tentativi diversi valori delle velocità Vs e degli spessori h, cercando di avvicinare la curva di dispersione numerica alla curva di dispersione sperimentale. Nella procedura automatica, invece, la ricerca del profilo di velocità ottimale è affidata ad un algoritmo di ricerca globale o locale che cerca di minimizzare l'errore tra la curva sperimentale e la curva numerica. In genere quando l'errore relativo, tra curva sperimentale e curva numerica è compresa tra il 5% e il 10% si ha un soddisfacente accordo tra le due curve e il profilo di velocità delle onde di taglio Vs e quindi il tipo di suolo sismico conseguente

35

rappresentano una soluzione valida da un punto di vista ingegneristico.

Modalità esecutive

La modalità d'esecuzione è la stessa utilizzata per la sismica a rifrazione: sono stati eseguiti due stendimenti di 40 metri lungo i quali sono stati disposti alternativamente e collegati in serie 18 geofoni con frequenza di 4.5 Hz e distanza intergeofonica di 2.00 m. Per l'ubicazione si rimanda al paragrafo relativo all'indagine sismica a rifrazione. Gli shots realizzati, mediante l'utilizzo di una massa battente del peso di 10 kg circa sono stati disposti nel secondo seguente modo:

2 shot esterni allo stendimento ad una distanza di circa 10 mt;

La registrazione dei sismogrammi è stata effettuata mediante un sismografo DoReMi della "SARA e.i." a 16 bit.

Elaborazione e analisi dei risultati

L'elaborazione, eseguita con il software della GeoStru "Easy Masw", ha consentito di determinare un profilo di velocità delle onde "S" fino ad oltre 30 m dal p.c.. La velocità delle onde di taglio, essendo legata alle caratteristiche dello scheletro del materiale, costituisce un parametro di grande rilevanza per la definizione delle caratteristiche geomeccaniche dei materiali. Risulta evidente che a velocità elevate corrispondono materiali con buone caratteristiche geomeccaniche, viceversa a bassi valori corrispondono materiali con scadenti caratteristiche geotecniche. MASW_1

Area_1. Indagine MASW_1: sismogramma, spettro velocità di fase-frequenza, inversione, profilo di velocità Vs

MASW_2

Area_1. Indagine MASW_2: sismogramma, spettro velocità di fase-frequenza, inversione, profilo di velocità Vs

Vs,eq e Categoria di sottosuolo

Per velocità equivalente di propagazione delle onde di taglio si intende la media pesata delle velocità delle onde S negli strati nei primi metri di profondità dal piano di posa della fondazione, secondo la relazione:

$$Vs, eq = \frac{H}{\sum_{strato=1}^{N} \frac{h(strato)}{Vs(strato)}}$$

dove N è il numero di strati individuabili nei primi metri di suolo, ciascuno caratterizzato dallo spessore h(strato) e dalla velocità delle onde S Vs(strato).

Per H si intende la profondità del substrato, definito come quella formazione costituita da roccia o terreno molto rigido, caratterizzata da Vs non inferiore a 800 m/s.

Per depositi con profondità H del substrato superiore a 30 m, la velocità equivalente delle onde di taglio Vs,eq è definita dal parametro Vs30 , ottenuto ponendo H=30 m nella precedente espressione e considerando le proprietà degli strati di terreno fino a tale profondità.

Il terreno di fondazione rientra nella categoria di suolo di fondazione "B.

Categoria	Caratteristiche della superficie topografica
А	Ammassi rocciosi affioranti o terreni molto rigidi caratterizzati da valori di velocità delle onde di taglio superiori a 800 m/s, eventualmente comprendenti in superficie terreni di caratteri- stiche meccaniche più scadenti con spessore massimo pari a 3 m.
В	Rocce tenere e depositi di terreni a grana grossa molto addensati o terreni a grana fina molto consi- stenti, caratterizzati da un miglioramento delle proprietà meccaniche con la profondità e da valori di velocità equivalente compresi tra 360 m/s e 800 m/s.
С	Depositi di terreni a grana grossa mediamente addensati o terreni a grana fina mediamente consi- stenti con profondità del substrato superiori a 30 m, caratterizzati da un miglioramento del- le proprietà meccaniche con la profondità e da valori di velocità equivalente compresi tra 180 m/s e 360 m/s.
D	Depositi di terreni a grana grossa scarsamente addensati o di terreni a grana fina scarsamente consi- stenti, con profondità del substrato superiori a 30 m, caratterizzati da un miglioramento del- le proprietà meccaniche con la profondità e da valori di velocità equivalente compresi tra 100 e 180 m/s.
Е	<i>Terreni con caratteristiche e valori di velocità equivalente riconducibili a quelle definite per le catego-</i> <i>rie C o D,</i> con profondità del substrato non superiore a 30 m.

Tab. 3.2.II – Categorie di sottosuolo che permettono l'utilizzo dell'approccio semplificato.

Controlli	Nr.	Spessore [m]	Velocità [m/s]
Numero di strati: 4 Profondità piano di posa [m]: 0	1	1.67	216
Profondità complessiva [m]: 23.82	2	6	384
Vs, eq (H=13.82) [m/s]: 411.02 Categoria del suolo: B	3	6.15	599
Calcola Apri Salva Scarica PDF	4	10	967

Controlli		Nr.	Spessore [m]	Velocità [m/s]
Numero di strati: Profondità piano di posa [m]:	4	1	2	268
Profondità complessiva [m]:	Applica 23	2	4	363
Vs, eq (H=13) [m/s]: Categoria del suolo:	412.15 B	3	7	536
[Apri Salva Scarica PDF	4	10	904

Cenni metodologici

Il metodo consiste nella rilevazione delle velocità delle onde sismiche, generate da una massa battente, attraverso un'interfaccia tra due mezzi con diverse caratteristiche elastiche. I valori di velocità delle onde sismiche, misurati in sito per ciascun volume di sottosuolo differenziato, unitamente alla "facies litologica" interpretata, hanno consentito di determinare una serie di parametri elasto-meccanici di riferimento.

Questi risultano derivati da correlazioni sperimentali, per tipologia litologica, tra parametri geomeccanici e parametri elastici. I parametri derivati risultano verificati nel complesso struttura/terreno cui si riferiscono e risultano associati ad un volume significativo di suolo che, puntualmente, può presentare caratteri differenti dai valori proposti.

Modalità esecutive

Nel caso in oggetto, su ogni area sono stati eseguiti due stendimenti di lunghezza pari a 40 metri, lungo il quale sono stati disposti alternativamente e collegati in serie 18 geofoni con frequenza di 4.5 Hz e distanza intergeofonica di 2.00 m.

Sono stati realizzati 3 shots, mediante l'utilizzo di una massa battente del peso di 10 kg circa e l'energizzazione è avvenuta secondo il seguente modo:

- 2 shots esterni allo stendimento (0 m e 40 m);
- > 1 shot centrale, in corrispondenza del 9° geofono;

La registrazione dei sismogrammi è stata effettuata mediante un sismografo DoReMi della "SARA e.i." a 16 bit mentre il processing dei dati è stato eseguito con il programma Winsism.

Indagine R_1

Sismogrammi, dromocrona e sezione sismostratigrafica

Sismogrammi, dromocrona e sezione sismostratigrafica

	Range di variazione dei parametri sismici						
Parametri sismici		I orizzonte	II orizzonte	III orizzonte	IV orizzonte		
velocità onde P	m/s	500 - 650	800 - 870	1200 - 1350	2000 - 2200		
velocità onde S	m/s	216 - 268	363 - 384	536 - 599	904 - 967		
modulo di Poisson μ	-	0.39 - 0.40	0.37 - 0.38	0.38 - 0.38	0.37 - 0.38		
densità geofisica γ	g/cm ³	1.66 - 1.75	1.82 - 1.85	1.96 - 2.01	2.16 - 2.20		
modulo di taglio G	MPa	78 - 125	239 - 272	564 - 720	1767 - 2059		
mod. dinamico Young Ed	MPa	215 - 351	656 - 751	1551 - 1983	4847 - 5683		
rigidità sismica R	t/cm ² s	359 - 468	659 - 709	1051 - 1202	1954 - 2128		

Valori caratteristici dei parametri sismici									
Parametri sismici	Parametri sismici I orizzonte II orizzonte III orizzonte IV orizzonte								
velocità onde P	m/s	553	824	1253	2083				
velocità onde S	m/s	232	369	555	923				
modulo di Poisson μ	-	0.39	0.37	0.38	0.38				
densità geofisica γ	g/cm ³	1.69	1.83	1.98	2.18				
modulo di taglio G	MPa	91	249	609	1856				
mod. dinamico Young Ed	MPa	253	685	1679	5116				
rigidità sismica R	t/cm ² s	392	675	1098	2011				

- μ (modulo di Poisson)
- γ (densità geofisica del terreno) $\gamma_{din} = 0,51 \cdot V_p^{0.19}$
- **G** (modulo di taglio) Ohta & Goto $G = Ed / 2 \cdot (1 + \mu)$
- Ed (modulo di Young dinamico) Brown e Roberthshaw
- **R** (rigidità sismica) $R = Vs \cdot \gamma$

$$E_{din} = 0,0102 \cdot \gamma \cdot V_p^2 \cdot \frac{(1+\mu)(1-2\mu)}{(1-\mu)}$$

Valori caratteris	tici	Sismostrato					
Parametri elasto-meccani	ci	Ι	II	III	IV		
litologia		terreno limoso	sabbie limoso-argillose	sabbie limoso-argillose	argille		
compattezza		bassa	medio-bassa	media	alta		
spessore	m	1.80	5.00	6.50	>10		
densità in sito g	g/cm ³	1.69	1.83	1.98	2.18		
modulo di Poisson μ		0.39	0.37	0.38	0.38		
mod. statico di Young Es	Kg/cm ²	109	452	1468	6185		
mod. edometrico Edo	Kg/cm ²	56	206	647	2698		
angolo di attrito Φ gradi		23	24	25	26		
angolo di attrito terrfond. gradi		15	15	16	17		
adesione terrfond. Kg/cm ²		0.02	0.09	0.28	1.16		
coesione c Kg/cm ²		0.040	0.147	0.462	1.927		
coeff. spinta passiva K		2.28	2.35	2.46	2.55		

STRATIGRAFIA DEL TERRENO

					valori ca	ratteristici	
				densità	angolo	Es	с
*	Stratigrafia	Falda	Descrizione	g/cm ³	attrito	Kg/cm ²	Kg/cm ²
0			terreno limoso	1.69	23	109	0.040
3			sabbie limoso-	1.83	24	452	0 147
4			arginose			102	0.111
5							
6							
7							
8.			sabbie limoso-				
9			argillose	1.98	25	1468	0.462
10							
11 -							
12							
13 -							
14							
15							
16							
17			argille	2.18	26	6185	1.927
18							
19							
20 -							
21 -	1						

CONSIDERAZIONI CONCLUSIVE

Con riferimento a tutto quanto precedentemente analizzato è possibile riepilogare quanto segue:

- Peculiarità litologiche: i terreni in oggetto, al di sotto della copertura agraria in facies limosa mediamente spessa 1.80 m, sono costituiti da depositi di sabbie limoso-argillose fino ad una profondità di circa 13m dal p.c. e da argille indagate fino a circa 20 m dal p.c
- Peculiarità geomorfologiche: il sito di intervento è caratterizzato da una blanda pendenza di circa 0.4% in direzione NE con differenze di quota variabili tra circa 31 e 24 m s.l.m.; i terreni in esame risultano possedere caratteri geomorfologici che ne assicurano la stabilità generale; non sono presenti nella zona di studio fenomeni geodinamici di dissesto attivi o incipienti che possono alterare l'attuale equilibrio.
- Peculiarità idrogeologiche in virtù della tipologia d'intervento è possibile escludere interferenze delle strutture fondali con gli acquiferi superficiali e profondi.
- *Piano di Bacino AdB Puglia*: in riferimento a quanto prescritto dalle N.T.A. del (PAI), si precisa che:
 - le aree destinate all'installazione dei pannelli fotovoltaici, dei cavidotti e della cabina di trasformazione non sono perimetrate tra le aree a pericolosità idraulica e/o geomorfologica;
 - le aree destinate all'installazione dei pannelli fotovoltaici sono gravate dalla presenza di due reticoli idrografici: in ottemperanza a quanto disciplinato nelle N.T.A. del Piano di Bacino (PAI), si è proceduto allo studio di compatibilità

idrolologica ed idraulica i cui risultati hanno permesso di perimetrare le aree a pericolosità idraulica che sono di fatto state stralciate dalla superficie utile per l'installazione dei pannelli fotovoltaici.

- l'area destinata all'installazione della cabina di trasformazione dista oltre 150 m dalle linee d'impluvio principali e non rientra pertanto tra le aree di rischio come da articoli 6 e 10 delle NTA del PAI;
- sebbene alcuni tratti del cavidotto presentino alcune interferenze con il reticolo idrografico, la messa in opera dello stesso non incrementerà il rischio idrologico/idraulico poiché la sua realizzazione non comporterà alcuna riduzione della sezione utile per il deflusso idrico.
- Classificazione del terreno di fondazione: le indagini sperimentali hanno permesso di classificare il terreno di fondazione in classe "B".

Per quanto esposto, le opere in progetto risultano compatibili con le caratteristiche geologiche dei luoghi.

In fase esecutiva sarà possibile verificare direttamente l'attendibilità dei risultati sperimentali e la loro omogeneità tridimensionale apportando, all'uopo, adeguate modifiche a favore della sicurezza.

A salvaguardia dell'attuale assetto morfologico ed idrogeologico si raccomanda di limitare quanto più possibile operazioni di scavo e riporto di terreni.

Ruvo di Puglia, settembre '21

DEI dott. geol. Andelo

RELAZIONE DI COMPATIBILITA' IDROLOGICA ED IDRAULICA

Con riferimento a quanto prescritto dalle N.T.A. del Piano di Bacino (PAI), si precisa che, in base alla cartografia ufficiale, i terreni oggetto d'intervento non rientrano tra le aree perimetrate a pericolosità idraulica e/o geomorfologica mentre sono interessati dalla presenza di un recapito finale di bacino endoreico e da due reticoli idrografici: uno (di seguito denominato "Reticolo_Nord") che attraversa i terreni da W ad E, cartografato nella relativa tavoletta IGM, ed uno (di seguito denominato "Reticolo_Sud") localizzato ai margini del confine sudorientale; tale reticolo è anch'esso riportato nella tavoletta IGM ma ad una distanza di circa 150 m dai terreni in studio.

Stralcio Fº 204 I.G.M., Tav. IV N.O. "Porto di Brindisi"

Partendo quindi dalla delimitazione dei bacini idrologici nonché dalle determinazioni idrologiche – probabilistiche della portata di piena, attesa con diversi tempi di ritorno (30, 200, 500 anni), si è proceduto alla "*Modellazione idraulica del corso d'acqua*", simulando la propagazione dell'onda di piena nell'alveo e determinando l'altezza che il livello idrico potrebbe raggiungere nelle varie sezioni dello stesso.

Lo studio idrogeologico ed idraulico è stato così strutturato:

- studio morfologico e litologico del bacino sotteso con la caratterizzazione del reticolo idrografico;
- quantificazione idrologica dei deflussi;
- simulazione idraulica delle portate transitanti con l'impiego del codice HEC – RAS secondo lo schema di moto permanente monodimensionale

Bacino Idrografico

L'individuazione dei bacini idrografici è stata ottenuta attraverso la ricostruzione del modello digitale del terreno (DTM) facendo riferimento ai dati cartografici informatizzati reperibili dal SIT Puglia. Con l'utilizzo di software tipo GIS è stato possibile determinare i bacini e sottobacini idrografici sottesi alle porzioni di reticolo oggetto del presente studio.

Individuazione dei bacini idrografici sottesi ai reticoli in studio.

"Reticolo_Nord": bacino principale

I dati morfometri del bacino sono i seguenti

Superficie (kmq)	2.370
Quota minima (m s.l.m.m.)	18.68
Quota massima (m s.l.m.m.)	39.98
Quota media (m s.l.m.m.)	29.85
Pendenza media (m/m)	0.01529
Lunghezza asta principale fino al displuvio (m)	4223
CN medio	84

"Reticolo_Nord": bacino secondario

I dati morfometri del bacino sono i seguenti

Superficie (kmq)	0.148			
Quota minima (m s.l.m.m.)	25.92			
Quota massima (m s.l.m.m.)	32.47			
Quota media (m s.l.m.m.)	29.30			
Pendenza media (m/m)				
Lunghezza asta principale fino al displuvio (m)				
CN medio	84			

I dati morfometri del bacino sono i seguenti

Superficie (kmq)	1.04
Quota minima (m s.l.m.m.)	20.19
Quota massima (m s.l.m.m.)	35.53
Quota media (m s.l.m.m.)	28.96
Pendenza media (m/m)	0.0160
Lunghezza asta principale fino al displuvio (m)	2350
CN medio	84

Dati pluviometrici

La curva segnalatrice di possibilità pluviometrica è stata individuata secondo il metodo probabilistico TCEV. I risultati, riportati nel sito dell'Autorità di Bacino della Puglia, suddividono la Puglia in sei sottozone omogenee, ognuna caratterizzata da parametri diversi.

Sottozone omogenee (TCEV)

Il bacino oggetto di studio ricade all'interno della **Zona 6** (Puglia meridionale), in cui la curva di probabilità pluviometrica ha la seguente formula:

Zona 6:
$$X(t,z) = 33.7 t^{(0.488+0.0022z)/3.178}$$

Dopo aver trovato il valore di Xt (per prefissato tempo di ritardo) si calcola il fattore di crescita K_t in funzione del tempo di ritorno, utilizzando la formula:

$$K_t = a + b \ln T$$

a = 0,1599b = 0,5166T = tempo di ritorno

T (anni)	5	10	20	30	40	50	100	200	500	1000
кт	1,26	1,53	1,82	2,00	2,13	2,23	2,57	2,90	3,3 8	3,73

Valori del coefficiente di crescita KT per la Puglia Centro-Meridionale

Il metodo usualmente denominato "Curve Number", elaborato dal Soil Conservation Service, assume che la produzione del volume di deflusso superficiale, Q, sia data dalla seguente espressione:

$$\frac{F}{S} = \frac{Q}{(P-I)}$$

in cui:

F = volume specifico infiltrato;

S = volume specifico di saturazione di un terreno;

P = precipitazione;

I = assorbimento iniziale;

quindi, tenendo conto dell'equazione di continuità:

$$F = P - I - Q$$

dalla precedente, si ottiene :

$$Q = \frac{(P-I)^2}{(P-I+S)}$$

Il volume specifico di saturazione dipende dalla natura del terreno e dall'uso del suolo, fattori che vengono espressi, per mezzo del CN, attraverso la seguente relazione:

$$S = S_0 \left(\frac{100}{CN} - 1\right)$$

in cui:

 S₀ è un fattore di scala, pari a 254 se la pioggia viene espressa in mm; CN è il parametro di cui sopra, che può essere un valore compreso fra zero e cento.

Tale modello, quindi, prende in considerazione le due variabili I ed S. In realtà, il termine I rappresenta un volume specifico di pioggia, generalmente sottratto a priori al bilancio in esame, che descrive in modo globale diversi processi, quali l'intercettazione, l'accumulo nelle depressioni superficiali, l'imbibimento iniziale del terreno. Nella procedura SCS-CN standard, I viene valutato come una quota parte di S, specificatamente il 20%.

Per la valutazione del parametro CN occorre preliminarmente individuare il parametro CN2 che è legato alle caratteristiche geolitologiche del bacino e alla capacità di risposta in termini di infiltrazione e ruscellamento a seguito di un evento meteorico.

Litologia dei bacini in studio

Come da stralcio della carta litologica si evince che la totalità dei bacino in studio è costituita da unità a prevalentemente componente siltoso-sabbiosa e/o arenitica.

Dal punto di vista della permeabilità i suoli si caratterizzano secondo la seguente classificazione:

Gruppo A	Gruppo A Suoli aventi scarsa potenzialità di deflusso. Comprende sabbie profonde, co scarsissimo limo ed argilla e ghiaie profonde, molto permeabili. Capacità infiltrazione in condizioni di saturazione molto elevata.						
Gruppo B	Suoli aventi moderata potenzialità di deflusso. Comprende la maggior parte dei suoli sabbiosi meno profondi che nel gruppo A. Elevate capacità di infiltrazione anche in condizioni di saturazione.						
Gruppo C	Suoli aventi potenzialità di deflusso moderatamente alta. Suoli contenenti considerevoli quantità di argilla e colloidi. Scarsa capacità di infiltrazione e saturazione.						
Gruppo D	Potenzialità di deflusso molto elevata. Argille con elevata capacità di rigonfiamento, ma anche suoli sottili con orizzonti pressocchè impermeabili in vicinanza della superficie. Scarsissima capacità di infiltrazione a saturazione.						

Nel caso in oggetto i suoli sono stati classificati nel "Gruppo C."

A seconda del gruppo di appartenenza e attraverso l'analisi della carta dell'uso del suolo (SIT Puglia), sono state individuate le classi CN per le varie porzioni del bacino in esame; nello specifico si è fatto riferimento allo studio ACLA condotto dal CHIEAM-BARI in che individua le seguenti classi:

Stralcio carta uso del suolo

Uso del Suolo	Α	В	С	D
 Aree agricole con presenza di spazi naturali Seminativi in aree non irrigue Vigneti non irrigui Colture temporanee associate a colture permanenti Frutteti e frutti minori non irrigui 	62	71	78	81
Aree Urbane	92	92	92	92
Area residenziale	77	85	90	92
Bacini d'acqua	100	100	100	100
 Colture erbacee da pieno campo a ciclo primaverile estivo Colture orticole a ciclo estivo autunnale/primaverile Colture orticole a ciclo primaverile-estivo Frutteti e frutteti minori irrigui Oliveti irrigui Sistemi colturali e particellari complessi Vigneti irrigui Sistemi colturali e particellari complessi Vigneti irrigui Sistemi colturali e particellari complessi Vigneti irrigui 	72	81	88	91
Prati stabili non irrigui	30	58	71	78
Zone Boscate	45	66	77	83

I valori del CN per le verifiche in oggetto sono i seguenti:

CN (AMC I)	61
CN (AMC II)	78
CN (AMC III)	89

La stima delle portate di piena è stata effettuata considerando il valore medio tra CN(AMC II) e CN(AMC III) pari ad 84.

Per il calcolo della portata al colmo, la metodologia Soil Conservation Service, considera un idrogramma approssimato di forma triangolare con una fase crescente di durata t_a (tempo di accumulo) ed una fase di esaurimento di durata te (tempo di esaurimento) e il cui volume V, in m³, ha la seguente espressione:

$$V = \frac{Q_p}{2} \left(t_a + t_e \right) = \frac{Q_p \cdot t_b}{2}$$

con tb durata dell'evento di piena.

Idrogramma triangolare utilizzato per il calcolo della portata al colmo con il metodo SCS

A seguito di analisi sperimentali dell'SCS è stato stabilito che nella fase crescente dell'idrogramma defluisce un volume idrico che è pari al 37.5% del volume totale V di deflusso, ne consegue che la durata della fase crescente è pari a 0.375 volte la durata dell'evento di piena t_b e pertanto:

$$t_{b} = 2.67 \cdot t_{a}$$

Di conseguenza è possibile esprimere la portata al colmo secondo al relazione qui di seguito riportata:

$$Q_P = 0.208 \cdot \frac{V \cdot A}{t_a}$$

in cui:

V = volume di deflusso espresso in mm;

A = area del bacino espressa in Km2;

ta = tempo di accumulo espresso in h.

La determinazione di t_a , nell'ipotesi di precipitazione di intensità costante, di durata t_p e indicando con t_L . il tempo di ritardo (distanza tra il baricentro dello istogramma ed il picco dell'idrogramma triangolare), si effettua con la semplice relazione:

$$t_a = 0.5 \cdot t_p + t_L$$

Per la determinazione del tempo di ritardo, espresso in ore, si utilizza la formula di Mockus:

$$t_L = 0.342 \cdot \frac{L^{0.8}}{s^{0.5}} \cdot \left(\frac{1000}{CN} - 9\right)^{0.7}$$

in cui s è la pendenza del bacino espressa in percentuale, L è la lunghezza dell'asta principale, prolungata fino alla displuviate espressa in Km.

Sulla base di determinazioni empiriche effettuate dall'SCS, è possibile affermare che il rapporto tL/tc è pari a 0,6, con tc tempo di corrivazione del bacino.

Attraverso la convoluzione di tale afflusso netto con l'idrogramma definito dal SCS, precedentemente valutato per il bacino in esame, si ottengono i risultati contenuti nelle seguenti tabelle:

"Reticolo_Nord"						
Area Bacino (km ²)	CN	Q Tr_30 (m ³ /s)	Q Tr_200 (m³/s)	Q Tr_500 (m ³ /s)		
2.370	84	5.89	11.00	13.59		
0.148	84	1.18	2.33	2.93		

"Reticolo_Sud"						
Area Bacino (km ²)	Area Bacino (km²) CN		Q Tr_200 (m ³ /s)	Q Tr_500 (m³/s)		
1.040	84	3.67	6.97	8.65		

L'analisi è stata effettuata utilizzando il software HEC–RAS (Hydrologic Enginee ring Center – River Analysis Sistem).

L'HecRas è un modello di calcolo monodimensionale che consente la simulazione dei flussi idrici ed il calcolo del profilo del pelo libero della corrente.

Il lavoro si è articolato come di seguito indicato:

- input dei dati geometrici;
- inserimento dei dati inerenti le portate di verifica;
- definizione delle condizioni al contorno;
- esecuzione della modellazione.

Si riporta di seguito il tracciato geometrico, il profilo longitudinale e le sezioni caratteristiche del tratto di canale analizzato dell'impluvio.

Per tutte le sezioni esaminate è stato assunto come coefficiente di Manning pari a 0.045 scaturito dallo studio analitico dei luoghi eseguito secondo l'equazione di Cowan:

$$n = (n_0 + n_1 + n_2 + n_3 + n_4) m_5$$

dove:

- n₀ = la quota parte di scabrezza corrispondente ad un alveo rettilineo con andamento uniforme regolare;
- n₁ = il valore aggiuntivo che tiene conto della irregolarità della superficie dell'alveo;

- n₂ = il contributo alla scabrezza dovuto alle variazioni di forma e dimensioni delle sezioni trasversali lungo il tratto in esame;
- n₃ = il valore tiene conto di ostruzioni quali detriti, alberi morti, ecc;
- n₄ = il contributo dovuto alla presenza di vegetazione;
- m₅ = un fattore di correzione per alveo meandriforme;

I coefficienti di espansione e contrazione assunti, sono compresi tra 0,1 e 0,3 (infatti, non ci sono bruschi cambiamenti di sezione).

Profilo del tirante idraulico

Profilo velocità

Visione prospettica

Di seguito si allegano i risultati delle elaborazioni definitive effettuate in condizioni di moto permanente.

È possibile osservare sia i profili del pelo libero che le sezioni del corso d'acqua esaminato.

Esportando dal software Hec–Ras i risultati ottenuti, è stato possibile effettuare la perimetrazione delle aree inondabili.

Sono stati delineati 3 profili relativi a tempi di ritorno di 30, 200 e 500 anni che individuano rispettivamente:

- le aree ad alta probabilità d'inondazione (Tr = 30 anni)
- le aree a media probabilità d'inondazione (Tr = 200 anni)
- le aree a bassa probabilità d'inondazione (Tr = 500 anni).

Carta della Pericolosità Idraulica

Legenda

SCALA 1:10,000

and the second se							
Alta_AP_Tr_30							
Media_MP_Tr_200	0	100	200	400	600	800	1,000
Bassa BP Tr 500							Metri

Carta della Pericolosità Idraulica

Legenda

Alta_AP_Tr_30
Media_MP_Tr_200
Bassa BP Tr 500

0	50	100	200	300	400	500
-			10 m	100		Metri

Carta della Pericolosità Idraulica

TILC-TO-IS T IA	II. FIAITUT LU	cations, user	Denneu									
River	Reach	River Sta	Profile	Q Total	Min Ch El	W.S. Elev	Crit W.S.	E.G. Elev	E.G. Slope	Vel Chnl	Flow Area	Top Width
				(m3/s)	(m)	(m)	(m)	(m)	(m/m)	(m/s)	(m2)	(m)
Affluente	sn	120.2111	Tr_30	1.18	27.13	27.22	27.22	27.24	0.051939	0.73	1.62	29.64
Affluente	sn	120.2111	Tr_200	2.33	27.13	27.25	27.25	27.29	0.046350	0.86	2.70	35.11
Affluente	sn	120.2111	Tr_500	2.93	27.13	27.26	27.26	27.31	0.045940	0.93	3.16	36.91
Affluente	sn	52.5866	Tr_30	1.18	26.21	26.34	26.34	26.38	0.047623	0.88	1.35	17.50
Affluente	sn	52.5866	Tr_200	2.33	26.21	26.39	26.39	26.44	0.041967	1.01	2.31	22.11
Affluente	sn	52.5866	Tr_500	2.93	26.21	26.41	26.41	26.47	0.042676	1.09	2.70	23.47
Principale	Monte	2272.075	Tr_30	5.89	30.14	30.30	30.30	30.34	0.037992	0.95	6.17	59.74
Principale	Monte	2272.075	Tr_200	11.00	30.14	30.35	30.35	30.41	0.043109	1.05	10.47	96.28
Principale	Monte	2272.075	Tr 500	13.59	30.14	30.37	30.37	30.44	0.040035	1.11	12.27	98.63
Principale	Monte	2176.204	Tr 30	5.89	30.26	30.50	30.50	30.57	0.039672	1.16	5.07	37.79
Principale	Monte	2176 204	Tr 200	11.00	30.26	30.57	30.57	30.66	0.036187	1.33	8.25	46.62
Principale	Monte	2176.204	Tr 500	13.59	30.26	30.60	30.60	30.70	0.035072	1.40	9.74	50.15
Principale	Monte	2084 484	Tr 30	5.89	30 14	30.31	30.31	30.37	0 041887	1.06	5.57	49 77
Principale	Monte	2084 484	Tr 200	11.00	30.14	30.37	30.37	30.45	0.037895	1 23	8.93	58.79
Principale	Monte	2084 484	Tr 500	13.59	30.14	30.40	30.40	30.49	0.036276	1.20	10.51	62.23
Thropare	monte	2004.404	11_000	10.00	50.14	50.40	50.40	50.45	0.000210	1.20	10.01	02.20
Principale	Monte	1097 030	Tr 30	5.90	20.99	30.02	30.02	30.07	0.043401	0.96	6.16	65.60
Principale	Monte	1087 030	Tr 200	11.00	20.00	30.02	30.02	30.14	0.040322	1 13	0.10	77.06
Principale	Monte	1987 939	Tr 500	13.50	29.00	30.00	30.00	30.14	0.040322	1.13	11.46	81.52
Thropare	Monte	1301.333	11_000	15.55	23.00	50.05	50.05	30.17	0.030303	1.15	11.40	01.02
Principalo	Monto	1906 520	Tr 20	5.90	20.41	20.56	20.56	20.60	0.044500	0.07	6.07	64.41
Principale	Monte	1090.539	Tr 200	11.00	29.41	29.00	29.00	29.00	0.044509	1.12	0.07	75.60
Principale	Monte	1090.539	Tr 500	12.50	29.41	29.01	29.01	29.07	0.040190	1.13	3.71	70.05
Fincipale	Monte	1090.039	11_300	15.09	29.41	29.05	29.05	29.10	0.030110	1.19	11.59	79.95
Dringingle	Manta	4700.00	T- 20	5.00	27.00	20.44	20.44	20.40	0.000507	4.45	5.07	27.62
Principale	Monte	1709.30	Tr. 200	5.69	27.90	20.11	20.11	20.10	0.039367	1.10	5.07	31.02
Principale	Monte	1789.30	11_200	11.00	27.90	28.19	28.19	28.28	0.030080	1.30	8.11	44.11
Principale	Monte	1789.30	11_500	13.59	27.90	28.22	28.22	28.32	0.034337	1.43	9.52	40.03
Deinschaufen		4070.050	T- 00	5.00	07.70	07.04	07.04		0.040047	0.00	5.00	
Principale	Monte	1676.953	T- 000	5.89	27.76	27.91	27.91	27.96	0.042647	0.98	5.99	60.48
Principale	Monte	16/6.953	Tr_200	11.00	27.76	27.96	27.90	28.03	0.039474	1.10	9.50	70.81
Principale	Monte	10/0.953	11_500	13.59	21.10	27.99	27.99	28.00	0.038088	1.22	11.18	/5.42
Dringingle	Manta	4500.044	Tr 00	5.00	27.40	27.22	27.22	27.27	0.044202	0.00	6.44	66.00
Principale	Monte	1500.041	T- 000	5.09	27.10	21.33	21.33	21.31	0.044363	0.90	0.14	00.06
Principale	Monte	1568.041	Tr_200	11.00	27.18	27.38	27.38	27.44	0.040480	1.12	9.83	78.48
Principale	Monte	1568.041	11_500	13.59	27.18	27.40	27.40	21.41	0.038893	1.18	11.50	83.21
Principale	Valle	1446 377	Tr 30	7.07	26.04	26.13	26.24	27.26	2 410005	4 73	1 50	29.48
Principale	Valle	1446.377	Tr 200	13.33	26.04	26.16	26.31	27.33	1 459344	4 78	2 79	37.02
Principale	Valle	1446.377	Tr 500	16.52	26.04	26.18	26.34	27.36	1 245127	4 81	3 44	40.30
					20.01	20.10	20.01	2				
Principale	Valle	1381 664	Tr 30	7.07	26.30	26.55	26.55	26.66	0.033501	1 47	4 82	22.27
Principale	Valle	1381 664	Tr 200	13.33	26.30	26.67	26.67	26.83	0.029911	1.73	7.69	25.35
Principale	Valle	1381 664	Tr 500	16.52	26.30	26.72	26.72	26.90	0.028916	1.83	9.01	26.66
					20.00							
Principale	Valle	1380		Culvert								
Throparo	- uno	1000		ourrent								
Principale	Valle	1353 928	Tr 30	7.07	26.20	26.55	26.55	26.69	0.031576	1.61	4 20	16.84
Principale	Valle	1353 928	Tr 200	13.32	26.20	26.33	26.00	26.89	0.028649	1.86	7 17	20.57
Principale	Valle	1353 928	Tr 500	16.53	26.20	26.76	26.76	26.00	0.027810	1.00	8.46	20.07
. Intoparo	7 dillo	1000.020	11_000	10.52	20.20	20.70	20.70	20.30	0.021010	1.33	0.40	22.10
Principale	Valle	1311 604	Tr 30	7.07	25.00	26.10	26.10	26.16	0.040694	1 10	6.40	52 /1
Principale	Valle	1311 604	Tr 200	13.22	25.50	26.10	26.10	26.70	0.036843	1.10	10 22	61.02
Principale	Valle	1311 604	Tr 500	16.53	25.50	26.10	26.10	26.20	0.035559	1.25	12.15	65.75
Thropaic	7 dillo	1011.004	11_000	10.32	23.80	20.13	20.13	20.29	0.000000	1.30	12.13	03.75
Principale	Valle	1251 524	Tr 30	7.07	25.42	25.24	25.24	25.44	0.020500	1.16	6.00	45.40
Principale	Valle	1251.534	Tr 200	12.22	20.13	20.34	20.34	20.41	0.039000	1.10	0.09	40.19 54.52
Principale	Valle	1251.534	Tr 500	13.33	20.13	20.42	20.42	20.01	0.030095	1.34	11 66	50.05
Thropate	valie	1201.004	11_500	10.02	20.13	20.40	20.40	20.00	0.034009	1.42	11.00	00.00

Principale	Valle	1168 582	Tr 30	7.07	24.90	25.10	25.10	25.16	0.040359	1 11	6 30	51.88
Principale	Valle	1100.302	T_ 000	1.07	24.50	25.10	25.10	25.10	0.040339	1.11	0.39	51.00
Principale	valle	1108.582	Tr_200	13.33	24.90	25.17	25.17	25.25	0.036691	1.28	10.44	03.54
Principale	Valle	1168.582	Tr_500	16.52	24.90	25.20	25.20	25.29	0.035890	1.35	12.28	67.99
Principale	Valle	1083.564	Tr_30	7.07	22.60	22.96	22.96	23.09	0.031588	1.60	4.41	16.98
Principale	Valle	1083.564	Tr 200	13.33	22.60	23.11	23.11	23.28	0.028834	1.86	7.18	20.76
Principale	Valle	1083 564	Tr 500	16.52	22.60	23.17	23.17	23.36	0.027913	1.95	8 47	22.23
Thropaic	Vano	1000.004	11_000	10.02	22.00	20.11	20.11	20.00	0.021010	1.00	0.47	22.20
Principale	Valle	1019.218	1r_30	1.07	22.85	23.29	23.29	23.43	0.032061	1.61	4.40	17.15
Principale	Valle	1019.218	Tr_200	13.33	22.85	23.44	23.44	23.62	0.029104	1.85	7.22	21.21
Principale	Valle	1019.218	Tr_500	16.52	22.85	23.50	23.50	23.69	0.028199	1.93	8.55	22.92
Principale	Valle	935.9186	Tr 30	7.07	22.83	23.19	23.19	23.31	0.032665	1.54	4.59	19.31
Principale	Valle	035 0186	Tr 200	13.33	22.83	23.32	23.32	23.48	0.029643	1 79	7.46	23.35
Drineinele	Valle	005.0400	T- 500	10.00	22.03	23.32	23.32	23.40	0.023043	1.73	7.40	23.55
Fincipale	valle	955.9100	11_300	10.52	22.03	23.31	23.31	23.33	0.020092	1.00	0.00	24.50
Principale	Valle	886.1039	Tr_30	7.07	22.63	22.96	22.96	23.08	0.033140	1.51	4.70	20.67
Principale	Valle	886.1039	Tr_200	13.33	22.63	23.09	23.09	23.24	0.030114	1.74	7.66	25.24
Principale	Valle	886.1039	Tr_500	16.52	22.63	23.14	23.14	23.31	0.029180	1.83	9.05	27.12
Principale	Valle	806 5002	Tr 30	7.07	21.10	21.50	21.50	21.62	0.032732	1.55	4.56	19.03
Principalo	Valle	806 5002	Tr 200	12 22	21.10	21.50	21.50	21.02	0.002102	1.00	7.00	22.05
Drincipale	Valle	000.0002	Tr. 500	13.33	21.10	21.04	21.04	21.00	0.029014	1.60	1.40	22.00
Principale	Valle	806.5002	Ir_500	16.52	21.10	21.69	21.69	21.87	0.028624	1.90	8.70	24.23
Principale	Valle	751.8384	Tr_30	7.07	20.93	21.15	21.15	21.24	0.036394	1.30	5.44	32.08
Principale	Valle	751,8384	Tr 200	13 33	20.93	21.25	21 25	21.37	0.032828	1.51	8 82	38.32
Principale	Valle	751.8384	Tr 500	16.53	20.00	21.20	21.20	21.07	0.031714	1.50	10.32	40.52
Thropale	valie	731.0304	11_300	10.52	20.55	21.20	21.20	21.42	0.031714	1.55	10.50	40.52
		705 45 1	7.67									
Principale	Valle	705.8746	Tr_30	7.07	20.10	20.49	20.49	20.63	0.030616	1.69	4.18	14.39
Principale	Valle	705.8746	Tr_200	13.33	20.10	20.66	20.66	20.85	0.028285	1.94	6.86	18.09
Principale	Valle	705.8746	Tr_500	16.52	20.10	20.73	20.73	20.93	0.027621	2.02	8.18	19.99
Principale	Valle	651.3436	Tr 30	7.07	20.38	20.75	20.75	20.86	0.033505	1.48	4.77	21.71
Principalo	Valle	651 2426	Tr 200	12.22	20.00	20.00	20.70	21.00	0.020704	1.70	7.05	27.20
Principale	Valle	001.0400	T- 500	13.33	20.30	20.00	20.00	21.03	0.030704	1.70	1.00	21.29
Principale	valle	651.3436	1r_500	16.52	20.38	20.93	20.93	21.09	0.029872	1.78	9.30	29.56
Principale	Valle	579.1453	Tr_30	7.07	21.20	21.45	21.45	21.55	0.034509	1.40	5.04	25.47
Principale	Valle	579.1453	Tr_200	13.33	21.20	21.56	21.56	21.69	0.031141	1.64	8.12	29.94
Principale	Valle	579.1453	Tr 500	16.52	21.20	21.60	21.60	21.76	0.029799	1.72	9.59	31.86
			-									
Dringingle	Valle	577		Culvert								
Fincipale	valle	5//		Cuivert								
Principale	Valle	552.0723	Tr_30	7.07	20.85	20.98	20.98	21.04	0.039840	1.13	6.28	49.17
Principale	Valle	552.0723	Tr_200	13.33	20.85	21.05	21.05	21.15	0.034966	1.38	9.63	50.03
Principale	Valle	552.0723	Tr_500	16.52	20.85	21.08	21.08	21.19	0.033076	1.48	11.17	50.42
Principale	Valle	464 2313	Tr 30	7 07	20.56	20.89	20.89	20.98	0.035178	1.38	5 13	26.99
Principalo	Vallo	464 2212	Tr 200	12.22	20.56	21.00	21.00	21.12	0.022504	1.52	9.76	27.45
Principale	Valle	404.2313	T- 500	13.33	20.50	21.00	21.00	21.12	0.032394	1.02	0.70	37.43
Principale	valle	404.2313	Tr_500	10.52	20.56	21.04	21.04	21.17	0.032389	1.57	10.50	42.58
Principale	Valle	413.2994	Tr_30	7.07	20.23	20.55	20.55	20.64	0.035231	1.34	5.26	28.75
Principale	Valle	413.2994	Tr_200	13.33	20.23	20.66	20.66	20.77	0.033455	1.45	9.20	43.20
Principale	Valle	413.2994	Tr_500	16.52	20.23	20.71	20.71	20.82	0.033297	1.47	11.26	51.74
Principale	Valle	341 8556	Tr 30	7.07	20.08	20.30	20.30	20.36	0.039270	1.16	6.09	44.96
Principale	Valle	241.0550	Tr 200	12.22	20.00	20.00	20.30	20.30	0.035210	1.10	0.03	FE 40
Principale	Valle	341.0000	T- 500	13.33	20.00	20.37	20.37	20.40	0.030019	1.34	9.97	55.40
Principale	valle	341.8556	Tr_500	10.52	20.08	20.41	20.41	20.50	0.034505	1.40	11.82	60.00
				ļ								
Principale	Valle	266.7484	Tr_30	7.07	19.89	20.12	20.12	20.20	0.038047	1.22	5.78	38.47
Principale	Valle	266.7484	Tr_200	13.33	19.89	20.21	20.21	20.31	0.034570	1.42	9.40	46.74
Principale	Valle	266.7484	Tr_500	16.52	19.89	20.24	20.24	20.36	0.033394	1.49	11.11	50.11
Principale	Valle	195.9283	Tr_30	7.07	20.31	20.50	20.50	20.56	0.040589	1.11	6.35	51.28
Principale	Valle	195.9283	Tr_200	13.33	20.31	20.57	20.57	20.66	0.036804	1.29	10.35	62.37
Principale	Valle	195.9283	Tr_500	16.52	20.31	20.60	20.60	20.69	0.035713	1.35	12.26	67.46
Principalo	Valle	141 6821	Tr 30	7.07	19.00	10.20	10.20	10.40	0 022702	1 46	A 0E	22.24
Drineirala	Valle	444.6024	Tr 000	1.01	10.82	19.29	19.28	13.40	0.000182	1.40	4.00	22.14
Principale	valle	141.6821	11_200	13.33	18.92	19.42	19.42	19.56	0.031022	1.68	7.93	28.12
Principale	Valle	141.6821	fr_500	16.52	18.92	19.47	19.47	19.62	0.029988	1.76	9.39	30.37
Principale	Valle	25.40997	Tr_30	7.07	19.01	19.36	19.36	19.47	0.032262	1.47	4.93	23.47
Principale	Valle	25.40997	Tr 200	13.33	19.01	19.48	19.48	19.62	0.028955	1.69	8.14	29.20
Principale	Valle	25 40997	Tr 500	16.52	10.01	10.52	10.52	10.62	0.028697	1 79	0.9.0	21.60
- mopale	+ ano	20.40001	1-300	10.32	18.01	18.33	18.33	13.00	0.020007	1./0	5.00	31.00

"Reticolo_Sud"

Profilo del tirante idraulico

Profilo velocità

Visione prospettica

Di seguito si allegano i risultati delle elaborazioni definitive effettuate in condizioni di moto permanente.

È possibile osservare sia i profili del pelo libero che le sezioni del corso d'acqua esaminato.

Esportando dal software Hec–Ras i risultati ottenuti, è stato possibile effettuare la perimetrazione delle aree inondabili.

Sono stati delineati 3 profili relativi a tempi di ritorno di 30, 200 e 500 anni che individuano rispettivamente:

- le aree ad alta probabilità d'inondazione (Tr = 30 anni)
- le aree a media probabilità d'inondazione (Tr = 200 anni)
- le aree a bassa probabilità d'inondazione (Tr = 500 anni).

Carta della Pericolosità Idraulica

Tr_200 Tr_500

0	50	100	200	300	400	500
-						Metri

Carta della Pericolosità Idraulica

Legenda							
Tr_30							
Tr_200	0	20	40	80	120	160	200
Tr_500	-			-		-	Metri

Reach	River Sta	Profile	Q Total	Min Ch El	W.S. Elev	Crit W.S.	E.G. Elev	E.G. Slope	Vel Chnl	Flow Area	Top Width
			(m3/s)	(m)	(m)	(m)	(m)	(m/m)	(m/s)	(m2)	(m)
Ret	438.6151	Tr_30	3.95	24.36	24.52	24.52	24.56	0.044731	0.96	4.11	44.4
Ret	438.6151	Tr_200	7.40	24.36	24.57	24.57	24.62	0.044731	0.99	7.44	76.4
Ret	438.6151	Tr_500	9.15	24.36	24.59	24.59	24.64	0.042046	1.03	8.87	82.4
Ret	396.1994	Tr_30	3.95	24.21	24.33	24.33	24.37	0.045293	0.90	4.41	53.3
Ret	396.1994	Tr_200	7.40	24.21	24.37	24.37	24.43	0.041882	1.06	6.98	61.9
Ret	396.1994	Tr_500	9.15	24.21	24.39	24.39	24.46	0.040038	1.12	8.20	65.28
Ret	375.3938	Tr_30	3.95	24.21	24.33	24.33	24.37	0.047536	0.91	4.34	53.2
Ret	375.3938	Tr_200	7.40	24.21	24.37	24.37	24.43	0.041904	1.06	7.01	62.64
Ret	375.3938	Tr_500	9.15	24.21	24.39	24.39	24.45	0.040443	1.11	8.23	66.2
Ret	359.8347	Tr 30	3.95	24.25	24.37	24.37	24.41	0.045764	0.88	4.48	55.9
Ret	359.8347	Tr_200	7.40	24.25	24.41	24.41	24.47	0.042113	1.05	7.08	64.5
Ret	359.8347	Tr_500	9.15	24.25	24.43	24.43	24.49	0.040831	1.10	8.29	68.12
Ret	310.1836	Tr_30	3.95	24.28	24.42	24.42	24.47	0.044299	0.96	4.11	44.0
Ret	310.1836	Tr_200	7.40	24.28	24.47	24.47	24.54	0.039864	1.15	6.46	49.2
Ret	310.1836	Tr_500	9.15	24.28	24.49	24.49	24.57	0.037437	1.20	7.59	51.2
Ret	307		Culvert								
Ret	277 941	Tr 30	3.95	24 19	24 32	24 32	24 37	0 044330	0.97	4.06	42.94
Ret	277.941	Tr 200	7.40	24.19	24.38	24.38	24.44	0.039488	1.15	6.42	48.1
Ret	277.941	Tr_500	9.15	24.19	24.40	24.40	24.47	0.038044	1.22	7.49	50.09
Ret	216.2256	Tr 30	3.95	22,80	22.94	22.94	22.99	0.044526	0,97	4.09	43.74
Ret	216.2256	Tr 200	7.40	22.80	22.99	22.99	23.06	0.039970	1.12	6.58	51.6
Ret	216.2256	Tr_500	9.15	22.80	23.02	23.02	23.09	0.039410	1.19	7.68	54.6
Ret	159.3121	Tr 30	3.95	22,60	22,75	22.75	22.80	0.043788	0,99	3.97	40.1
Ret	159.3121	Tr 200	7.40	22.60	22.80	22.80	22.87	0.039222	1.16	6.35	46.69
Ret	159.3121	Tr 500	9.15	22.60	22.83	22.83	22.90	0.037982	1.23	7.46	49.42

"Recapito finale di bacino endoreico"

Nella porzione meridionale dei terreni in studio si rileva infine la presenza di un recapito finale di bacino endoreico.

Recapito finale di bacino endoreico

La verifica idraulica è stato così strutturata:

- studio morfologico e litologico del bacino;
- quantificazione idrologica dei volumi di massimo invaso;
- determinazione delle fasce di allagamento;

L'individuazione del bacino idrografico è stata ottenuta attraverso la ricostruzione del modello digitale del terreno (DTM) facendo riferimento ai dati cartografici informatizzati reperibili dal SIT Puglia.

Con l'utilizzo di software GIS è stato possibile determinare i parametri morfometrici del bacino.

DTM del bacino endoreico e relativi valori di altitudine s.l.m.

Bacino endoreico su carta litologica

Superficie (kmq)				
Quota minima (m s.l.m.m.)	27.58			
Quota massima (m s.l.m.m.)	28.88			
Quota media (m s.l.m.m.)	28.28			
Volume totale del bacino (mc)	41575			
SCS Group	C			

Modello di infiltrazione di Horton

Nel caso dei bacini endoreici, viene valutata la pioggia di "durata" critica che massimizza il "volume" depositato, quindi la pericolosità risulta connessa ai livelli idrici che si accumulano in corrispondenza dei recapiti finali delle aree depresse.

Per far ciò si è utilizzato il modello di Horton descritto dall'equazione:

$$f(t) = f_c + (f_0 - f_c)e^{-t/k}$$

dove:

fc(t) = velocità di infiltrazione al tempo t [mm/h] f0 = velocità di infiltrazione all'inizio della precipitazione [mm/h] f1 = velocità di infiltrazione in condizioni di saturazione [mm/h] K = costante che rappresenta riduzione velocità nel tempo [1/h]

Questa equazione esprime il modo in cui varia la velocità di infiltrazione nel tempo durante l'evento. La velocità di infiltrazione è una grandezza dimensionalmente uguale all'intensità di precipitazione ed è con essa che si deve confrontare. Se in un generico intervallo di tempo Δt l'intensità media di precipitazione im(t) è maggiore della velocità di infiltrazione f(t), la quantità f(t)* Δt si infiltra e la differenza [im(t) -f(t)]* Δt defluisce.

Se viceversa l'intensità media di precipitazione im(t) è minore della velocità di infiltrazione f(t), la quantità che si infiltrerà nel terreno sarà $im(t)^* \Delta t$. Infatti bisogna considerare che la velocità di infiltrazione

del terreno non varia perché trascorre il tempo, bensì varia perché, nel tempo, il terreno va imbibendosi sempre di più. Ciò equivale a dire che se durante l'evento l'intensità di precipitazione è sempre superiore alla velocità di infiltrazione allora la variazione della velocità di infiltrazione nel tempo sarà correttamente espressa dalla legge di Horton mentre se l'intensità di precipitazione è talvolta inferiore alla velocità di infiltrazione, il terreno non potrà imbibirsi tanto quanto sarebbero le proprie potenzialità e la legge di Horton non è più valida.

$$F(t-t_0) = f_c(t-t_0) + \frac{(f_0 - f_c)}{k} (1 - e^{-k(t-t_0)})$$

SCS GROUP	fc [mm/h]	fo [mm/h]	k [min]
A	25.4	250.0	30
В	12.7	200.0	30
С	6.3	125.0	30
D	2.5	76.0	30

Classifica SCS del terreno e relativi parametri di calcolo

I volumi di massimo invaso sono i seguenti:

TR	V [mm]	Vtot [mc]
30	10.65	319
200	46.06	1382
500	65.55	1967

Partendo dai suddetti volumi, con l'ausilio di software gis, è stato possibile innalzare per step successivi la quota di fondo del bacino ottenendo quindi, per differenza di volume, le diverse quote dei tiranti idraulici con conseguente perimetrazione delle aree allagabili.

Carta della pericolosità idraulica

Legenda Alta_AP_Tr_30 Media_MP_Tr_200 Bassa_BP_Tr_500

Carta della Pericolosità Idraulica

N