

Regione Siciliana

Realizzazione di parco Fotovoltaico della potenza complessiva di 79,61 MW, relativi cavidotto e sottostazione da realizzarsi nel territorio del comune di Catania, c/da Sigona

Elaborato: Relazione preliminare di calcolo strutture fotovoltaiche

Progettazione :		Elab.n°	D
(dott. Ing. Giuseppe De Luca)		LIUD.II	ST
CNERION		FORMATO	A4
MCEGNERIARD COM		SCALA:	
DOTT.ING.		NOTE:	
GIUSEPPE DELUCA 1264		DATA:	
1264 X		NOTE:	
W * 139		DATA EMISSIONE:	MARZO 2021
Ambiente : (dott. Agr. Daniele Monti)	Geologia: (Dr. Geol. Cosimo Pampalone)		
Dott. N. 1050 ALBO PALERMO	Dott, Geol. COSIMO PAMPALONE n. 576 Total		

Sommario

DESCRIZIONE OPERA.	3
NORMATIVA DI RIFERIMENTO	4
MATERIALI IMPIEGATI E RESISTENZE DI CALCOLO	5
ANALISI DEI CARICHI	7
AZIONI SULLA STRUTTURA	7
Carichi permanenti non strutturali	7
Azione del vento	8
Azione sismica	9
DEFINIZIONE DELLE COMBINAZIONI	12
MODELLO DI CALCOLO	13
VERIFICA DEGLI ELEMENTI STRUTTURALI TRACKER A 26 MODULI	14
VERIFICHE GEOTECNICHE	24
CONCLUSIONI	25

DESCRIZIONE OPERA.

La presente relazione illustra le strutture che andranno a sostenere i pannelli fotovoltaici previsti per il progetto di un impianto fotovoltaico di potenza di picco pari a 79,61 MWp in DC da installare nel territorio del comune di Catania (CT).

Le strutture di supporto sono in acciaio zincato ancorata al terreno, nel dettaglio è previsto l'utilizzo di colonne in acciaio con profilo omega alle quali sono incernierate degli arcarecci di sezione scatolare e su quest'ultimi, si vincolano le aste di sezione omega che servono da sostegni ai pannelli fotovoltaici.

NORMATIVA DI RIFERIMENTO

Le fasi di analisi e verifica della struttura sono state condotte in accordo alle seguenti disposizioni normative:

• Legge 5 novembre 1971 n. 1086 (G. U. 21 dicembre 1971 n. 321)

"Norme per la disciplina delle opere di conglomerato cementizio armato, normale e precompresso ed a struttura metallica".

• Legge 2 febbraio 1974 n. 64 (G. U. 21 marzo 1974 n. 76)

"Provvedimenti per le costruzioni con particolari prescrizioni per le zone sismiche".

Indicazioni progettive per le nuove costruzioni in zone sismiche a cura del Ministero per la Ricerca scientifica

Roma 1981.

• D. M. Infrastrutture Trasporti 17/01/2018 (G.U. 20/02/2018 n. 42 - Suppl. Ord. n. 8) "Aggiornamento delle *Norme tecniche per le Costruzioni*".

Inoltre, in mancanza di specifiche indicazioni, ad integrazione della norma precedente e per quanto con esse non in contrasto, sono state utilizzate le indicazioni contenute nelle seguenti norme:

- Circolare 21 gennaio 2019, n. 7 C.S.LL.PP. (G.U. Serie Generale n. 35 del 11/02/2019
- Suppl. Ord. n. 5) Istruzioni per l'applicazione dell'«Aggiornamento delle "Norme tecniche per le costruzioni"» di cui al decreto ministeriale 17 gennaio 2018.
- Eurocodice 3 "Progettazione delle strutture in acciaio" EN 1993-1-1.

MATERIALI IMPIEGATI E RESISTENZE DI CALCOLO

Tutti i materiali strutturali impiegati devono essere muniti di marcatura "CE", ed essere conformi alle prescrizioni del "REGOLAMENTO (UE) N. 305/2011 DEL PARLAMENTO EUROPEO E DEL CONSIGLIO del 9 marzo 2011", in merito ai prodotti da costruzione.

Per la realizzazione dell'opera in oggetto saranno impiegati i seguenti materiali:

Acciaio per carpenteria metallica

Le carpenterie metalliche come profili e piatti saranno del tipo:

		S 275
		JR
Tensione caratteristica di rottura a trazione	f _t [N/mm²]	430,0
(per spessori ≤3mm)		
Tensione caratteristica di snervamento (per	f _y [N/mm²]	275,0
spessori ≤16mm)		

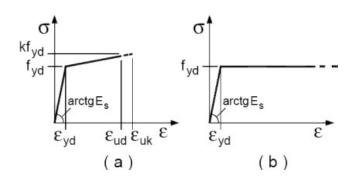


Figura 1 - Diagrammi di calcolo tensione/deformazione acciaio

ANALISI DEI CARICHI

La valutazione dei carichi è stata effettuata in accordo con le disposizioni del punto 3.1 del D.M. 2018. In particolare, è stato fatto utile riferimento alle Tabelle 3.1.I del D.M. 2018, per i pesi propri dei materiali.

La valutazione dei carichi permanenti è effettuata sulle dimensioni definitive.

AZIONI SULLA STRUTTURA

Le azioni sulla struttura in esame sono valute in accordo al capitolo 3 del D.M. 2018. In particolare sono presenti:

- Carichi permanenti strutturali e non strutturali;
- Azione del vento;
- Azione sismica.

Le azioni così ottenute sono opportunamente combinate tra loro in base alle combinazioni di carico indicate dalla norma di riferimento e riportate in dettaglio al §6 della presente. Da queste si ottengono i valori di progetto delle sollecitazioni da impiegare successivamente nelle verifiche. I calcoli e le verifiche sono condotti con il metodo semiprobabilistico degli stati limite secondo le indicazioni del D.M. 2018.

Carichi permanenti non strutturali

Peso proprio dei pannelli fotovoltaici, ognuno dei quali avente peso di 250 N.

Azione del vento

Zona	Zona $V_{b,0}$ (m/s)		K _s
4	28	500	0.36

Categoria di esposizione	K _r	$z_0(m)$	$\mathbf{z}_{\min}\left(\mathbf{m}\right)$
2	0.19	0.05	4

Altitudine: $a_s = 72 \text{ m} \text{ s.l.m.}$

Distanza dalla costa: terra - entro 10 Km

<u>Classe di rugosità terreno</u>: D

Altezza manufatto: h = 2.60 m

<u>Periodo di ritorno</u>: $T_R = 50.0 \text{ anni} = >$

 $T_R = 50.0 \text{ anni} => c_R = 0.75 \{1 - 0.2 \ln[-\ln(1 - 1/T_R)]\}^{0.5} = 1.00$

<u>Velocità di riferimento del vento</u>: $V_b = ca \cdot V_{b,0}$ con:

 $\begin{array}{ll} ca{=}1 & \text{per } a_s \leq a_0 \\ ca{=}1{+}K_s \cdot (a_s/a_0 \text{--}1) & \text{per } a_s \geq a_0 \end{array}$

 $V_b = 28.000 \text{ m/s}$

 $V_b(T_R) = c_R V_b = 28.021 \text{ m/s}$

<u>Coefficiente dinamico</u>: $C_d = 1.00$

Coefficiente di forma: $C_p = 1.20$

Coefficiente di attrito: $C_f = 0.02$

Coefficiente di topografia: $C_t = 1.00$

Coefficiente di esposizione: $C_e(z) = K_r^2 C_t \ln(z/z_0) [7 + C_t \ln(z/z_0)]$ per $z \ge z_{min}$

 $\mathbf{C_e(z)} = \mathbf{C_e(z_{min})}$ per z < z_{min}

 $C_e(z) = 1.80$

Le azioni del vento si traducono in pressioni (positive) e depressioni (negative) agenti normalmente alla superficie degli elementi che compongono la costruzione. La pressione agente su un singolo elemento è data dall'espressione:

$$\mathbf{p} = q_b C_e C_p C_d = 1060.27 Pa$$

dove:

 $\mathbf{q_b} = 1/2 r \mathbf{v_b}^2$ e' la pressione cinetica di riferimento;

 $r = 1.25 \text{ kg/m}^3$ e' la densita' dell'aria

L'azione tangente per unità di superficie parallela alla direzione del vento è:

 $p_f = q_b C_e C_f = 17.67 Pa$

Azione sismica

L'azione sismica è stata valutata in conformità alle indicazioni riportate al §3.2 del D.M. 2018 "Norme tecniche per le Costruzioni".

Tabella 9 - Coordinate sito

Latitudine	Longitudine	Altitudine
[°]	[°]	[m]
37.2838	14.9961	72

L'opera in oggetto è stata progettata per una Vita Nominale pari a 50 e per Classe d'Uso pari a 2.

In base alle indagini geognostiche effettuate si è classificato il **suolo** di fondazione di **categoria B**, cui corrispondono i seguenti valori per i parametri necessari alla costruzione degli spettri di risposta orizzontale e verticale:

Spettro: SpettroNT_2018

Il calcolo degli spettri e del fattore di comportamento sono stati calcolati per la seguente tipologia di terreno e struttura.

Spettro: SpettroNT_2018 Il calcolo degli spettri e del fattore di comportamento sono stati calcolati per la seguente tipologia di terreno e struttura.

Vita della struttura					
Tipo	Opere ordinarie (50-100)				
Vita nominale VN [anni]	50.0				
Classe d'uso	II				
Coefficiente d'uso CU	1.000				
Periodo di riferimento VR [anni]	50.000				
Probabilità di superamento PVR allo Stato limite di esercizio - SLD	63.0%				
Probabilità di superamento PVR allo Stato limite ultimo - SLV	10.0%				
Periodo di ritorno TR SLD [anni]	50.0				
Periodo di ritorno TR SLV [anni]	475.0				
Parametri del sito	173.0				
Comune	Unnamed Road, 96016 Lentini SR, Italia				
Longitudine	14.9961				
Latitudine	37.2838				
Id reticolo del sito	48753-48975-48976-48754				
Valori di riferimento del sito					
Accelerazione orizzontale massima del sito Ag/g - SLD (TR=50.0)	0.0688				
Fattore di amplificazione dello spettro Fo - SLD (TR=50.0)	2.4905				
Periodo di riferimento di inizio del tratto a velocità costante T*C [s] - SLD (TR=50.0)	0.268				
Accelerazione orizzontale massima del sito Ag/g - SLV (TR=475.0)	0.2663				
Fattore di amplificazione dello spettro Fo - SLV (TR=475.0)	2.2700				
Periodo di riferimento di inizio del tratto a velocità costante T*C [s] - SLV (TR=475.0)	0.420				
Coefficiente Amplificazione Topografica St	1.000				
Categoria terreno	В				
Stato limite SLV					
Coefficiente di amplificazione stratigrafica Ss	1.16				
Periodo di inizio del tratto ad accelerazione costante dello spettro TB [s]	0.18				
Periodo di inizio del tratto a velocità costante dello spettro TC [s]	0.55				
Periodo di inizio del tratto a spostamento costante dello spettro TD [s]	2.67				
Stato limite SLD					
Coefficiente di amplificazione stratigrafica Ss	1.20				
Periodo di inizio del tratto ad accelerazione costante dello spettro TB [s]	0.13				
Periodo di inizio del tratto a velocità costante dello spettro TC [s]	0.38				
Periodo di inizio del tratto a spostamento costante dello spettro TD [s]	1.88				
Fattore di comportamento (SLV)					
Classe duttilità	В				
Tipo struttura	Cemento armato				
Fattore di riduzione per regolarità in altezza Kr- Struttura non regolare	0.800000				
Fattore di riduzione per rottura pareti Kw	1.000				
Regolare in pianta	SI				
Coefficiente moltiplicativo Ce - struttura a telaio, a pareti accoppiate e miste	3.000				
Au/A1 - Telaio + piani + campate	1.300				
Fattore di comportamento q = Kw*Kr*q0=Kw*Kr*Ce*Au/A1	3.120				
Fattore di comportamento (SLD)					
q	1.500				

T SLV [s]	Sd SLV[a/g]	T SLD [s]	Sd SLD[a/g]
0.00000	0.30845	0.00000	0.08262
0.18318	0.22442	0.12770	0.13717
0.54953	0.22442	0.38310	0.13717
0.74187	0.16624	0.56964	0.09225
0.93422	0.13201	0.75618	0.06950
1.12656	0.10947	0.94271	0.05574
1.31891	0.09351	1.12925	0.04654
1.51125	0.08161	1.31578	0.03994
1.70359	0.07239	1.50232	0.03498
1.89594	0.06505	1.68885	0.03112
2.08828	0.05906	1.87539	0.02802
2.28062	0.05408	2.11146	0.02211
2.47297	0.05327	2.34752	0.01788
2.66531	0.05327	2.58359	0.01476
2.88776	0.05327	2.81966	0.01377
3.11021	0.05327	3.05573	0.01377
3.33266	0.05327	3.29180	0.01377
3.55510	0.05327	3.52786	0.01377
3.77755	0.05327	3.76393	0.01377
4.00000	0.05327	4.00000	0.01377

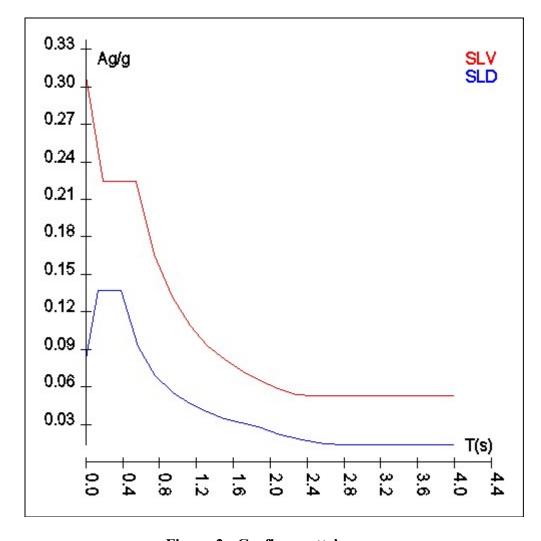


Figura 2 - Grafico spettri

DEFINIZIONE DELLE COMBINAZIONI

Le azioni sulla costruzione sono state sono stati combinate secondo le regole previste dalla normativa vigente.

Le combinazioni previste sono destinate al controllo di sicurezza della struttura ed alla verifica degli spostamenti e delle sollecitazioni.

Ai fini delle verifiche degli stati limite si definiscono le seguenti combinazioni delle azioni:

Combinazione fondamentale SLU

$$\gamma_{G1}\cdot G_1+\gamma_{G2}\cdot G_2+\gamma_{P}\cdot P+\gamma_{Q1}\cdot Q_{k1}+\gamma_{Q2}\cdot \psi_{02}\cdot Q_{k2}+\gamma_{Q3}\cdot \psi_{03}\cdot Q_{k3}+\dots$$

Combinazione caratteristica (rara) SLE

$$G_{1k} + G_{2k} + P + Q_{k1} + \psi_{02} \square Q_{k2} + \psi_{03} \cdot Q_{k3} + \dots$$

Combinazione frequente SLE

$$G_{1k} + G_{2k} + P + \psi_{11} \cdot Q_{k1} + \psi_{22} \cdot Q_{k2} + \psi_{23} \cdot Q_{k3} + \dots$$

Combinazione quasi permanente SLE

$$G1k + G2k + P + \psi_{21} \cdot Q_{k1} + \psi_{22} \cdot Q_{k2} + \psi_{23} \cdot Q_{k3} + \dots$$

Combinazione sismica, impiegata per gli stati limite ultimi e di esercizio connessi all'azione sismica

$$E + G_{1k} + G_{2k} + P + \psi_{21} \cdot Q_{k1} + \psi_{22} \cdot Q_{k2} + \dots$$

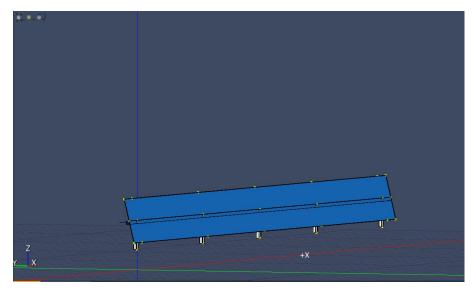
Le verifiche strutturali e geotecniche delle fondazioni sono state effettuate con l'**Approccio 2** attraverso la combinazione **A1+M1+R3**.

I valori di resistenza del terreno sono stati ridotti tramite i coefficienti della colonna M1 definiti nella Tab. 6.2.II del D.M. 2018.

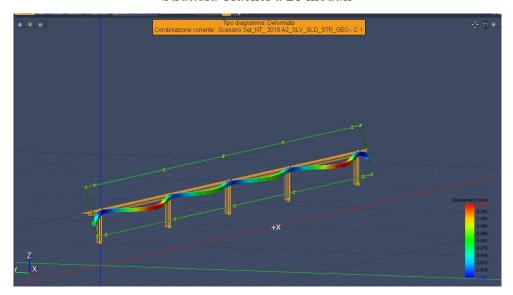
I valori calcolati delle resistenze totali dell'elemento strutturale sono stati divisi per i coefficienti R3 della Tab. 6.4.I del D.M. 2018 per le fondazioni superficiali.

MODELLO DI CALCOLO

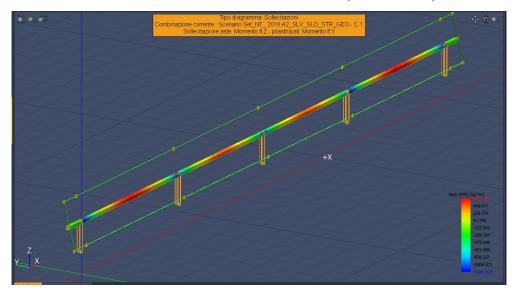
Le verifiche strutturali preliminari sono state condotte utilizzando un modello di calcolo composto da elementi beam, simulanti il comportamento delle membrature componenti.


Nel dettaglio, per i pali di supporto della struttura si è considerato un incastro per i nodi inferiori. Per gli arcarecci longitudinali sono state modellate come aste libere all'estremità, e irrigidite nel nodo interno trave pilastro, per tenere conto della piastra di collegamento.

Il modello della struttura viene creato automaticamente dal codice di calcolo, individuando i vari elementi strutturali e fornendo le loro caratteristiche geometriche e meccaniche.


Qui di seguito si riportano i modelli suddivisi per tipologia (14 o 18 moduli).

Poiché la il carico da vento risulta essere la condizione più gravosa si riportano gli schemi dell'andamento delle deformate e delle tensioni relative alla condizione peggiorativa.


VERIFICA DEGLI ELEMENTI STRUTTURALI TRACKER A 26 MODULI

Struttura Tracker a 26 moduli

Deformata Struttura Tracker a 26 moduli (azione vento)

Andamento tensioni struttura Tracker a 26 moduli (azione vento)

Verifica Stabilità aste Metalliche

Scenario di calcolo: Set_NT_ 2018 A2_SLV_SLD_STR_GEO

```
Simbologia
L [cm]
               Lunghezza teorica elemento (da nodo a nodo)
Ln1 [cm]
               Luce libera nella direzione principale 1 dell'elemento
               Luce libera nella direzione principale 2 dell'elemento
Ln2 [cm]
               Sezione Generica (Sigla)
Sez. G
               Tensione di progetto snervamento acciaio
fyd [kg/cmq]
               Tensione di rottura acciaio
ft [kg/cmq]
               Coefficiente di sicurezza acciaio
\square M
N [kg]
               Sforzo Normale massimo
My [kg*m]
               My massimo
Mz [kg*m]
               Mz massimo
                :A*fy,Resistenza caratteristica instabilità a compressione (1)
NRk [kg]
MyRk [kg*m] :Wy*fy,Momento resistente caratteristico all'instabilità in direzione Y (¹)
MzRk [kg*m] :Wz*fyMomento resistente caratteristico all'instabilità in direzione Z (¹)
        Snellezza in direzione y
\Box y
\Box z
        Snellezza in direzione z
        Coefficiente di riduzione per la presso flessione dir y
\Box y
        Coefficiente di riduzione per la presso flessione dir z
\Box z
\square LT
        Coefficiente di riduzione per la instabilità flesso-torsionale, il coefficiente è applicato al termine relativo
all'asse forte
kyy,kyz
kzy,kzz Coefficienti di interazione per l'instabilità (cfr. EC3 Annex B, tab B1 e B2, e cfr. Circ.NTC tab. C4.2.IV e
C4.2.V)
Myeq [kg*m]
                My equivalente uguale a kyy*My oppure kzy*My
Mzeq [kg*m]
                Mz equivalente uguale a kyz*Mz oppure kzz*Mz
                 :Resistenza instabilità a compressione (<sup>2</sup>)
NRd [kg]
MyRd [kg*m]
                :Momento resistente all'instabilità in direzione Y (<sup>2</sup>)
                 :Momento resistente all'instabilità in direzione Z (²)
MzRd [kg*m]
        Ccoefficiente di sicurezza (asta verificata se >=1)
SF
       Combinazione di carico: quando Comb non è sismica è individuata dal codice [ C ], quando è sismica è
individuata dal codice [(Cx+Cy) Cm Sc].
- C
        Individua la Combinazione di Carico non sismica (1, 2, ecc. come da scenario);
- Cx
        Individua la Combinazione di Carico sismica in direzione x (SismaX, come da scenario);
- Cy
        Individua la Combinazione di Carico sismica in direzione y (SismaY, come da scenario);
        Individua la Combinazione spostamento masse (I, II, III, IV, V, ecc. come da Combinazioni Sisma in
- Cm
Spostamento masse impalcato);
- Sc
        Individua la sottocombinazione ottenuta mediante la permutazione dei segni (1, 2, 3, 4, 5, 6, 7, 8):
      1)
               Sc = + SismaZ*fz + SismaX*fx + SismaY*fy
      2)
               Sc = + SismaZ*fz + SismaX*fx - SismaY*fy
      3)
               Sc = + SismaZ*fz - SismaX*fx + SismaY*fy
      4)
               Sc = + SismaZ*fz - SismaX*fx - SismaY*fy.
               Sc = -SismaZ*fz + SismaX*fx + SismaY*fy
      5)
      6)
               Sc = - SismaZ*fz + SismaX*fx - SismaY*fy
               Sc = - SismaZ*fz - SismaX*fx + SismaY*fy
      7)
               Sc = - SismaZ*fz - SismaX*fx - SismaY*fy.
```

Le ultime quattro sono assenti quando non è richiesto il contributo del sisma in direzione verticale. Le combinazioni delle azioni sismiche così ottenute vengono combinate con i carichi verticali (come da scenario).

Note

(1) Y è l'asse forte della sezione, e Z l'asse debole della sezione; i valori da utilizzare per le resistenze sono $N_{Rk}=fy*A, M_{yRk}=fy*Wy, M_{zRk}=fy*Wz$ dove:

Classe	1	2	3	4
A	A	A	A	A,eff
Wy	Wpl,y	Wpl,y	Wel,y	Wely,eff
Wz	Wpl,z	Wpl,z	Wel,z	Welz,eff

(²) le equazioni di verifica, le azioni e le resistenze di progetto sono date dalle seguenti equazioni:

$$\begin{split} \frac{N_{ed}}{\frac{\chi_{y}N_{Rk}}{\gamma_{M1}}} + k_{yy} \frac{M_{y,Ed}}{\chi_{LT} \frac{M_{yRk}}{\gamma_{M1}}} + k_{yz} \frac{M_{z,Ed}}{\frac{M_{zRk}}{\gamma_{M1}}} \leq 1 \\ \frac{N_{ed}}{\frac{\chi_{z}N_{Rk}}{\gamma_{M1}}} + k_{zy} \frac{M_{y,Ed}}{\chi_{LT} \frac{M_{yRk}}{\gamma_{M1}}} + k_{zz} \frac{M_{z,Ed}}{\frac{M_{zRk}}{\gamma_{M1}}} \leq 1 \\ N_{Rdy} = \frac{\chi_{y}N_{Rk}}{\gamma_{M1}} \qquad M_{yRd} = \frac{\chi_{LT}M_{yRk}}{\gamma_{M1}} \qquad M_{zRd} = \frac{M_{yRk}}{\gamma_{M1}} \\ M_{yyEq} = k_{yy}M_{yEd} \qquad M_{yzEq} = k_{yz}M_{z,Ed} \\ M_{yzEq} = k_{zy}M_{yEd} \qquad M_{zzEq} = k_{zz}M_{z,Ed} \\ \frac{N_{ed}}{N_{Rdy}} + \frac{M_{yyEq}}{M_{yRd}} + \frac{M_{yzEq}}{M_{zRd}} \leq 1 \\ \frac{N_{ed}}{N_{Rdz}} + \frac{M_{zyEq}}{M_{yRd}} + \frac{M_{zzEq}}{M_{zRd}} \leq 1 \end{split}$$

Asta: 1 [1,2] Sez. G: OMCF 160x160x50x6 L=140.0 cm Ln1=140.0 cm Ln2=140.0 cm Crit.: Acciaio_CompSemp \square M=1.05 fyk/ \square M=2619 kg/cmq ft=4300 kg/cmq :**Verificato** SF \square =8.540

N	My	Mz	NRk	MyRk	MzRk	$\Box Y$	$\Box Z$	$\Box Y$	$\Box Z$	\Box LT	kyy	kyz	kzy	kzz
kg	kg*m	kg*m	kg	kg*m	kg*m									
-10712	0	0	88341	6184	4762	19	23	0.65	0.65		1.12	0.67	0.67	1.12

Cls	2	N	4	Mzeq	6	MyRd	8	Comb.	10
		kg	kg*m	kg*m	kg	kg*m	kg*m		
1	Y	10712	0	0	54870	5889	4535	2	5.1
1	Z	10712	0	0	54870	5889	4535	2	5.1

Asta: 2 [101,3] Sez. G: OMCF 160x160x50x6 L=140.0 cm Ln1=140.0 cm Ln2=140.0 cm Crit.: Acciaio_CompSemp \square M=1.05 fyk/ \square M=2619 kg/cmq ft=4300 kg/cmq :**Verificato** SF \square =8.540

N	My	Mz	NRk	MyRk	MzRk	$\Box Y$	$\Box Z$	$\Box Y$	$\Box Z$	\Box LT	kyy	kyz	kzy	kzz
kg	kg*m	kg*m	kg	kg*m	kg*m									
-346	0	0	88341	6184	4762	19	23	0.65	0.65		1.00 4	0.60	0.60	1.00

Cls	2	N	4	Mzeq	6	MyRd	8	Comb.	10
		kg	kg*m	kg*m	kg	kg*m	kg*m		
1	Y	346	0	0	54870	5889	4535	2	>100
1	Z	346	0	0	54870	5889	4535	2	>100

Asta: 3 [201,4] Sez. G: OMCF 160x160x50x6 L=140.0 cm Ln1=140.0 cm Ln2=140.0 cm Crit.: Acciaio_CompSemp \Box M=1.05 fyk/ \Box M=2619 kg/cmq ft=4300 kg/cmq :**Verificato** SF \Box =8.540

- 2															
	N	My	Mz	NRk	MyRk	MzRk	$\Box Y$	$\Box Z$	$\Box Y$	$\Box Z$	\Box LT	kyy	kyz	kzy	kzz
	kg	kg*m	kg*m	kg	kg*m	kg*m									
	-323	0	0	88341	6184	4762	19	23	0.65	0.65		1.00	0.60	0.60	1.00

Cls	2	N	4	Mzeq	6	MyRd	8	Comb.	10
		kg	kg*m	kg*m	kg	kg*m	kg*m		
1	Y	323	0	0	54870	5889	4535	2	>100
1	Z	323	0	0	54870	5889	4535	2	>100

Asta: 4 [301,5] Sez. G: OMCF 160x160x50x6 L=140.0 cm Ln1=140.0 cm Ln2=140.0 cm Crit.: Acciaio_CompSemp \square M=1.05 fyk/ \square M=2619 kg/cmq ft=4300 kg/cmq :**Verificato** SF \square =8.540

N	My	Mz	NRk	MyRk	MzRk	$\Box Y$	$\Box Z$	$\Box Y$	$\Box Z$	\Box LT	kyy	kyz	kzy	kzz
kg	kg*m	kg*m	kg	kg*m	kg*m									
-346	0	0	88341	6184	4762	19	23	0.65	0.65		1.00	0.60	0.60	1.00

Cls	2	N	4	Mzeq	6	MyRd	8	Comb.	10
		kg	kg*m	kg*m	kg	kg*m	kg*m		
1	Y	346	0	0	54870	5889	4535	2	>100
1	Z	346	0	0	54870	5889	4535	2	>100

Asta: 5 [401,6] Sez. G: OMCF 160x160x50x6 L=140.0 cm Ln1=140.0 cm Ln2=140.0 cm Crit.: Acciaio CompSemp

\Box M=1.05 fyk/ \Box M=2619 kg/cmq ft=4300 kg/cmq : Verificato SF_ \Box =8.540

N	My	Mz	NRk	MyRk	MzRk	$\Box Y$	$\Box Z$	$\Box Y$	$\Box Z$	\Box LT	kyy	kyz	kzy	kzz
kg	kg*m	kg*m	kg	kg*m	kg*m									
-10692	0	0	88341	6184	4762	19	23	0.65	0.65	1	1.12 0	0.67	0.67	1.12

Cls	2	N	4	Mzeq	6	MyRd	8	Comb.	10
		kg	kg*m	kg*m	kg	kg*m	kg*m		
1	Y	10692	0	0	54870	5889	4535	2	5.1
1	Z	10692	0	0	54870	5889	4535	2	5.1

```
Scenario di calcolo: Set_NT_2018 A2_SLV_SLD_STR_GEO
Simbologia
L [cm]
                     Lunghezza teorica elemento (da nodo a nodo)
Sez. G
                     Sezione Generica (Sigla)
fyd [kg/cmq]
                     Tensione di progetto snervamento acciaio
                     Tensione di rottura acciaio
ft [kg/cmq]
\square M
                    Coefficiente di sicurezza acciaio
X [cm]
                     Punto di verifica
                     Sforzo Normale
N [kg]
TY [kg]
                     Taglio dir Y
                     Taglio dir Z
TZ [kg]
MT [kg*m]
                     Momento torcente
MY [kg*m]
                     Momento flettente dir Y
MZ [kg*m]
                     Momento flettente dir Z
                     Momento flettente dir Y + N*□ez, per sezioni di classe 4
MY4 [kg*m]
MZ4 [kg*m]
                     Momento flettente dir Z + N^*\Boxey, per sezioni di classe 4
                     Classe della sezione per la sollecitazione della combinazione corrente
cls
Comb.
                     Combinazione della sollecitazione
                     Sforzo Normale resistente
Nr [kg]
Vyr [kg]
                     Taglio resistente in dir Y
Vzr [kg]
                     Taglio resistente dir Z
                     Momento flettente resistente dir Y
Mry [kg*m]
Mrz [kg*m]
                     Momento flettente resistente dir Z
SF V
                     Coefficiente di sicurezza taglio
SF_M
                    Coefficiente di sicurezza pressoflessione
SF
                    Coefficiente di sicurezza complessivo (asta verificata se \ge 1)(1)
Gerarchia travi/pilastri (quando richiesto):
                          Sforzo Normale di verifica
     NEd [kg]
      Npl,Rd [kg]
                          Sforzo Normale resistente (NTC 4.2.4.1.2)
      VEdY(*) [kg]
                           Taglio trave dir Y dovuto ai momenti ultimi Mpl,RdZ di estremità (cfr. NTC f.(7.5.6))
      Vpl,RdY [kg]
                          Taglio resistente dir Y (NTC 4.2.4.1.2)
      VEdZ(*) [kg]
                          Taglio trave dir Z dovuto ai momenti ultimi Mpl,RdY di estremità (cfr. NTC f.(7.5.6))
      Vpl,RdZ [kg]
                          Taglio resistente dir Z (NTC 4.2.4.1.2)
      MEdY [kg*m]
                          Momento flettente dir Y
                          Momento resistente dir Y (NTC 4.2.4.1.2)
     Mpl,RdY [kg*m]
                          Momento flettente dir Z
      MEdZ [kg*m]
                          Momento resistente dir Z (NTC 4.2.4.1.2)
      Mpl,RdZ [kg*m]
Verifiche Incendio:
     Ky
                           fy(T)/fy(20°) fattore riduzione resistenza alla temperatura T
     KE
                          E(T)/E(20) fattore riduzione modulo elastico alla temperatura T
SF
                     Coefficiente di sicurezza (asta verificata se \ge 1)(2)
                     Smplificazione sollecitazioni sismiche (solo per q>1)(3)
Fatt.Ampl.Sisma
                    Fattore moltiplicativo di gruppo per le azioni sismiche (solo se diverso da 1.0)
Note:
(1): SF rappresenta il minimo tra SF V ed SF M dove:
     - SF V = VR/Vd con VR e Vd azione tagliante resistente ed agente
     - SF M = 1/[N/Nr + MY/Mry + MZ/Mrz], i valori di Mry ed Mrz sono ridotti opportunamente quando Vd > 0.5 Vr
(²): SF rappresenta il minimo tra i seguenti rapporti:
     - MEdY/Mpl,RdY (travi)
     - MEdZ/Mpl,RdZ (travi)
     - NEd/(0.15*Npl,Rd) (travi)
     - VEdY(*)/(0.5*Vpl,RdY) (travi)
     - VEdZ(*)/(0.5*Vpl,RdZ) (travi)
     - VEdY/(0.5*Vpl,RdY) (pilastri)

    VEdZ/(0.5*Vpl,RdZ) (pilastri)

    \Box^* = \min(q, 1.1 * \Box \text{ov} * \Box), con \Box secondo NTC 7.5.4.2
```

Verifica Resistenza aste Metalliche

Asta: 0 [2,3] Sez. G: TuboR160x160x6.3 L=812.0 cm Crit.: Acciaio_Flessione \(\text{M}=1.05 \) fyk/\(\text{M}=2619 \) kg/cmq ft=4300 kg/cmq : Verificato

		*	1								
	X	cls	N	TY	TZ	MT	MY	MZ	My4	Mz4	Comb.
	cm		kg	kg	kg	kg*m	kg*m	kg*m			
Γ	0	1	0	-864	-160	0	217	-1179			1

X	cls	Nr	Vyr	Vzr	Mry	Mrz	MTrd	SF_V.	SF_M	SF_Mt	SF
cm		kg	kg	kg	kg*m	kg*m	kg*m				
0	1	101442	29284	29284	5850	5850	4108	34	4.2	>100	4.2

Asta: 1 [3,4] Sez. G: TuboR160x160x6.3 L=699.0 cm Crit.: Acciaio_Flessione □M=1.05 fyk/□M=2619 kg/cmq ft=4300 kg/cmq :**Verificato**

X	cls	N	TY	TZ	MT	MY	MZ	My4	Mz4	Comb.
cm		kg	kg	kg	kg*m	kg*m	kg*m			
699	1	1	742	138	0	161	-868			2

X	cls	Nr	Vyr	Vzr	Mry	Mrz	MTrd	SF_V.	SF_M	SF_Mt	SF
cm		kg	kg	kg	kg*m	kg*m	kg*m				
699	1	101442	29284	29284	5850	5850	4108	39	5.7	>100	5.7

Asta: 1 [1,2] Sez. G: OMCF 160x160x50x6 L=140.0 cm Crit.: Acciaio_CompSemp □M=1.05 fyk/□M=2619 kg/cmq ft=4300 kg/cmq :**Verificato**

X	cls	N	TY	TZ	MT	MY	MZ	My4	Mz4	Comb.
cm		kg	kg	kg	kg*m	kg*m	kg*m			
0	1	-10712	-0	-1104	0	773	-0			2

	X	cls	Nr	Vyr	Vzr	Mry	Mrz	MTrd	SF_V.	SF_M	SF_Mt	SF
(cm		kg	kg	kg	kg*m	kg*m	kg*m				
	0	1	84134	23589	29032	4535	5889	136	26	3.4	>100	3.4

Asta: 2 [4,5] Sez. G: TuboR160x160x6.3 L=699.0 cm Crit.: Acciaio_Flessione \Box M=1.05 fyk/ \Box M=2619 kg/cmq ft=4300 kg/cmq :**Verificato**

X	cls	N	TY	TZ	MT	MY	MZ	My4	Mz4	Comb.
cm		kg	kg	kg	kg*m	kg*m	kg*m			
0	1	1	-742	-138	0	161	-868			2

X	cls	Nr	Vyr	Vzr	Mry	Mrz	MTrd	SF_V.	SF_M	SF_Mt	SF
cm		kg	kg	kg	kg*m	kg*m	kg*m				
0	1	101442	29284	29284	5850	5850	4108	39	5.7	>100	5.7

Asta: 2 [101,3] Sez. G: OMCF 160x160x50x6 L=140.0 cm Crit.: Acciaio_CompSemp □M=1.05 fyk/□M=2619 kg/cmq ft=4300 kg/cmq :**Verificato**

X	cls	N	TY	TZ	MT	MY	MZ	My4	Mz4	Comb.
cm		kg	kg	kg	kg*m	kg*m	kg*m			
0	1	-346	-0	-1597	0	1118	-0			2

X	cls	Nr	Vyr	Vzr	Mry	Mrz	MTrd	SF_V.	SF_M	SF_Mt	SF
cm		kg	kg	kg	kg*m	kg*m	kg*m				
0	1	84134	23589	29032	4535	5889	136	18	4.0	>100	4.0

Asta: 3 [5,6] Sez. G: TuboR160x160x6.3 L=812.0 cm Crit.: Acciaio_Flessione \(\text{M}=1.05 \) fyk/\(\text{M}=2619 \) kg/cmq ft=4300 kg/cmq : Verificato

	- 0									
X	cls	N	TY	TZ	MT	MY	MZ	My4	Mz4	Comb.
cm		kg	kg	kg	kg*m	kg*m	kg*m			
812	1	0	865	160	0	217	-1181			1

X	cls	Nr	Vyr	Vzr	Mry	Mrz	MTrd	SF_V.	SF_M	SF_Mt	SF
cm		kg	kg	kg	kg*m	kg*m	kg*m				
812	1	101442	29284	29284	5850	5850	4108	34	4.2	>100	4.2

Asta: 3 [201,4] Sez. G: OMCF 160x160x50x6 L=140.0 cm Crit.: Acciaio_CompSemp \Box M=1.05 fyk/ \Box M=2619 kg/cmq ft=4300 kg/cmq :**Verificato**

		<u> </u>	D								
	X	cls	N	TY	TZ	MT	MY	MZ	My4	Mz4	Comb.
C	m		kg	kg	kg	kg*m	kg*m	kg*m			
	0	1	-323	0	-1484	0	1039	-0			2

X	cls	Nr	Vyr	Vzr	Mry	Mrz	MTrd	SF_V.	SF_M	SF_Mt	SF
cm		kg	kg	kg	kg*m	kg*m	kg*m				
0	1	84134	23589	29032	4535	5889	136	20	4.3	>100	4.3

Asta: 4 [6,106] Sez. G: TuboR160x160x6.3 L=100.0 cm Crit.: Acciaio_Flessione □M=1.05 fyk/□M=2619 kg/cmq ft=4300 kg/cmq : **Verificato**

X	cls	N	TY	TZ	MT	MY	MZ	My4	Mz4	Comb.
cm		kg	kg	kg	kg*m	kg*m	kg*m			
0	1	-0	-184	-109	6	150	-133			1

X	cls	Nr	Vyr	Vzr	Mry	Mrz	MTrd	SF_V.	SF_M	SF_Mt	SF
cm		kg	kg	kg	kg*m	kg*m	kg*m				
0	1	101442	29242	29242	5850	5850	4108	>100	21	>100	21

Asta: 4 [301,5] Sez. G: OMCF 160x160x50x6 L=140.0 cm Crit.: Acciaio_CompSemp \Box M=1.05 fyk/ \Box M=2619 kg/cmg ft=4300 kg/cmg :**Verificato**

X	cls	N	TY	TZ	MT	MY	MZ	My4	Mz4	Comb.
cm		kg	kg	kg	kg*m	kg*m	kg*m			
0	1	-346	0	-1596	0	1117	0			2

X	cls	Nr	Vyr	Vzr	Mry	Mrz	MTrd	SF_V.	SF_M	SF_Mt	SF
cm		kg	kg	kg	kg*m	kg*m	kg*m				
0	1	84134	23589	29032	4535	5889	136	18	4.0	>100	4.0

Asta: 5 [102,2] Sez. G: TuboR160x160x6.3 L=100.0 cm Crit.: Acciaio_Flessione \Box M=1.05 fyk/ \Box M=2619 kg/cmq ft=4300 kg/cmq : **Verificato**

X	cls	N	TY	TZ	MT	MY	MZ	My4	Mz4	Comb.
cm		kg	kg	kg	kg*m	kg*m	kg*m			
0	1	-0	-184	-109	6	150	-133			1

X	cls	Nr	Vyr	Vzr	Mry	Mrz	MTrd	SF_V.	SF_M	SF_Mt	SF
cm		kg	kg	kg	kg*m	kg*m	kg*m				
0	1	101442	29242	29242	5850	5850	4108	>100	21	>100	21

Asta: 5 [401,6] Sez. G: OMCF 160x160x50x6 L=140.0 cm Crit.: Acciaio_CompSemp \Box M=1.05 fyk/ \Box M=2619 kg/cmq ft=4300 kg/cmq :**Verificato**

X	cls	N	TY	TZ	MT	MY	MZ	My4	Mz4	Comb.
cm		kg	kg	kg	kg*m	kg*m	kg*m			
0	1	-10692	0	-1049	-0	734	0			2

X	cls	Nr	Vyr	Vzr	Mry	Mrz	MTrd	SF_V.	SF_M	SF_Mt	SF
cm		kg	kg	kg	kg*m	kg*m	kg*m				
0	1	84134	23589	29032	4535	5889	136	28	3.5	>100	3.5

VERIFICHE GEOTECNICHE

È previsto che le strutture metalliche verticali siano infisse nel terreno, per cui al fine di verificare il sistema terreno-fondazione, si procederà secondo quanto disposto dal punto 6.4.3.1 del D.M. 17/01/2018 per gli SLU per le fondazioni profonde.

Dai risultati dell'analisi, ipotizzando un coefficiente di correlazione cautelativo pari a ζ =1.7, i coefficienti di sicurezza relativi alle azioni di trazione e orizzontali, sono rispettivamente CS_T = 1.14 e CS_O = 6.

CONCLUSIONI

L'opera sopra descritta è conforme ai requisiti prestazioni richiesti dalle vigenti Norme Tecniche per le Costruzioni, D.M. del 17/01/2018. Ulteriori indicazioni e aspetti saranno analizzati nella fase esecutiva del progetto.

IL PROGETTISTA

(DOTT. ING. GIUSEPPE DE LUCA)

