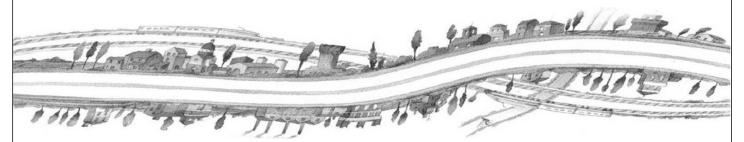


AUTOSTRADA REGIONALE CISPADANA DAL CASELLO DI REGGIOLO-ROLO SULLA A22 AL CASELLO DI FERRARA SUD SULLA A13

CODICE C.U.P. E81B08000060009

PROGETTO DEFINITIVO

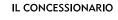

ASSE AUTOSTRADALE

OPERE STRUTTURALI

ARCHITETTONICI

CENTRO SICUREZZA AUTOSTRADALE - S.Felice sul Panaro

RELAZIONE DI CALCOLO STRUTTURE


IL PROGETTISTA

Ing. Antonio De Fazio Albo Ing. Prov. Bologna n°3696

RESPONSABILE INTEGRAZIONE PRESTAZIONI SPECIALISTICHE

Ing. Emilio Salsi Albo Ing. Reggio Emilia nº 945

Autostrada Regionale Cispedene S.p.A. II. PRESIDENTE Grazieno Pattuzzi

G					
F					
Е					
D					
С					
В					
Α	17.04.2012	EMISSIONE	Zadra	De Fazio	Salsi
REV.	DATA	DESCRIZIONE	REDAZIONE	CONTROLLO	APPROVAZIONE

N	NUM. PRUGR.					
3	4	7	5			

P D

О

GRUPPO S 0 3 S F B 0 3

TRATTO OPERA

F B

R C

0 4

REV.

Α

PROGRESSIVO

DATA: MAGGIO 2012

SCALA:

AUTOSTRADA REGIONALE CISPADANA dal casello di Reggiolo-Rolo sulla A22 al casello di Ferrara Sud sulla A13

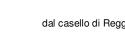
PROGETTO DEFINITIVO

OPERE STRUTTURALI

ARCHITETTONICI CENTRO SICUREZZA AUTOSTRADALE (S.Felice sul Panaro) RELAZIONE DI CALCOLO STRUTTURE

INDICE

1.	INTRODUZIONE	5
2.	DESCRIZIONE DELL'OPERA	6
3.	RIFERIMENTI NORMATIVI	8
4.	SOFTWARE IN USO	9
5.	CARATTERISTICHE DEI MATERIALI IMPIEGATI	10
6.	SICUREZZA E PRESTAZIONI ATTESE	11
6.1	. COMBINAZIONI DELLE AZIONI	1
6.2	2. VALORI LIMITE DI APERTURA DELLE FESSURE	12
7.	PARAMETRI DI PROGETTO	13
7.1	. ELABORATO DI RIFERIMENTO	13
7.2	2. VITA NOMINALE	1
7.3	S. CLASSI D'USO	14
7.4	PERIODO DI RIFERIMENTO PER L'AZIONE SISMICA	14
8.	MODELLAZIONE DELLA STRUTTURA E DELLE AZIONI SISMICHE	15
8.1	. ANALISI SISMICA	1
8.2	CRITERI DI VERIFICA	16
8.3	B. DIMENSIONAMENTO E VERIFICA DEGLI ELEMENTI STRUTTURALI	16
9.	ANALISI DEI CARICHI	18
9.1	. AZIONI STATICHE	18
9.2	2. AZIONI SISMICHE	2 ⁻
10.	MODELLO DI CALCOLO EDIFICI 1 – 2	24
10.	1. MATERIALI	24
10.	2. MODELLAZIONE ELEMENTI STRUTTURALI	2
10.	3. LIVELLI E TRONCHI	20
10.	4. CONDIZIONI DI CARICO	20



AUTOSTRADA REGIONALE CISPADANA dal casello di Reggiolo-Rolo sulla A22 al casello di Ferrara Sud sulla A13

PROGETTO DEFINITIVO

OPERE STRUTTURALI ARCHITETTONICI

10.5. COMBINAZIONI DI CARICO	26
11. MODELLO DI CALCOLO EDIFICI 2 – 3	30
11.1. MATERIALI	30
11.2. MODELLAZIONE ELEMENTI STRUTTURALI	31
11.3. LIVELLI E TRONCHI	32
11.4. CONDIZIONI DI CARICO	32
11.5. COMBINAZIONI DI CARICO	33
12. MODELLO DI CALCOLO EDIFICIO 6	36
12.1. MATERIALI	36
12.2. MODELLAZIONE ELEMENTI STRUTTURALI	37
12.3. LIVELLI E TRONCHI	38
12.4. CONDIZIONI DI CARICO	40
12.5. COMBINAZIONI DI CARICO	
13. MODELLO DI CALCOLO FONDAZIONI	44
13.1. MATERIALI	44
13.2. MODELLAZIONE ELEMENTI STRUTTURALI	45
13.3. CONDIZIONI DI CARICO	
13.4. COMBINAZIONI DI CARICO	
14. ANALISI DELLA SOLLECITAZIONE EDIFICI 1 - 2	
14.1. RISULTATI DELL'ANALISI SISMICA	50
14.1.1. RISULTATI ANALISI MODALE	
14.1.2. TAGLI AI LIVELLI	
14.1.3. EQUILIBRIO DELLE FORZE	52
14.1.4. SPOSTAMENTI DI INTERPIANO ESTREMI	54
14.1.5. VERIFICA EFFETTI SECONDO ORDINE	
14.1.6. VERIFICA DEFORMABILITA' TORSIONALE DELLA STRUTTURA	
14.2. INVILUPPO SOLLECITAZIONI - PILASTRI	57
14.3. INVILUPPO SOLLECITAZIONI – TRAVI COPERTURA	
15. ANALISI DELLA SOLLECITAZIONE EDIFICI 2 - 3	62
15.1. RISULTATI DELL'ANALISI SISMICA	62

AUTOSTRADA REGIONALE CISPADANA

AUTOSTRADA REGIONALE CISPADANA dal casello di Reggiolo-Rolo sulla A22 al casello di Ferrara Sud sulla A13

PROGETTO DEFINITIVO

OPERE STRUTTURALI

ARCHITETTONICI

15.1.1. RISULTATI ANALISI MODALE	62
15.1.2. TAGLI AI LIVELLI	
15.1.3. EQUILIBRIO DELLE FORZE	
15.1.4. SPOSTAMENTI DI INTERPIANO ESTREMI	
15.1.5. VERIFICA REFERENCE AND ORDINE	_
15.1.6. VERIFICA DEFORMABILITA' TORSIONALE DELLA STRUTTURA	
15.3. INVILUPPO SOLLECITAZIONI – TRAVI COPERTURA	73
16. ANALISI DELLA SOLLECITAZIONE EDIFICIO 6	75
16.1. RISULTATI DELL'ANALISI SISMICA	75
16.1.1. RISULTATI ANALISI MODALE	75
16.2. INVILUPPO SOLLECITAZIONI - PILASTRI	76
16.3. INVILUPPO SOLLECITAZIONI – TRAVI COPERTURA PRINCIPALI	79
16.4. CALCOLO GIUNTI SISMICI	80
17. VERIFICHE AGLI STATI LIMITE ULTIMI E DI ESERCIZIO EDIFICI 1 - 2	81
17.1. VERIFICHE SLU ED SLE TRAVI IN ELEVAZIONE	81
17.2. VERIFICHE SLU ED SLE PILASTRI	87
17.3. VERIFICA SOLAI	90
18. VERIFICHE AGLI STATI LIMITE ULTIMI E DI ESERCIZIO EDIFICI 3 - 4	93
18.1. VERIFICHE SLU ED SLE TRAVI IN ELEVAZIONE	93
18.2. VERIFICHE SLU ED SLE PILASTRI	100
18.3. VERIFICA SOLAI	103
19. VERIFICHE AGLI STATI LIMITE ULTIMI E DI ESERCIZIO EDIFICIO 6	105
19.1. VERIFICHE SLU-SLV	105
19.2. VERIFICHE DI RESISTENZA AL FUOCO	111
19.3. VERIFICHE DI STABILITA' GLOBALE (ANALISI DI BUCKLING)	114
19.4. VERIFICHE DI DEFORMABILITA'	116
20. VERIFICHE FONDAZIONI	120
20.1. VERIFICHE STRUTTURALI DELLE FONDAZIONE	
21. VERIFICA DELLE PRESSIONI SUL TERRENO	199
	1 -

AUTOSTRADA REGIONALE CISPADANA dal casello di Reggiolo-Rolo sulla A22 al casello di Ferrara Sud sulla A13

PROGETTO DEFINITIVO

OPERE STRUTTURALI

ARCHITETTONICI

AUTOSTRADA REGIONALE CISPADANA dal casello di Reggiolo-Rolo sulla A22 al casello di Ferrara Sud sulla A13

PROGETTO DEFINITIVO

OPERE STRUTTURALI ARCHITETTONICI

CENTRO SICUREZZA AUTOSTRADALE (S.Felice sul Panaro)

RELAZIONE DI CALCOLO STRUTTURE

1. INTRODUZIONE

La presente relazione di calcolo è relativa al progetto definitivo del complesso di fabbricati che fanno parte del "Centro Servizi" nell'ambito dell'intervento di realizzazione della nuova Autostrada Regionale Cispadana, infrastruttura stradale di categoria A, avente origine in corrispondenza del casello di Reggiolo-Rolo sulla A22 "Autostrada del Brennero" e termine al casello di Ferrara Sud sulla A13 "Autostrada Bologna-Padova".

Nello specifico il complesso di edifici in oggetto sarà costruito in località San Felice sul Panaro.

AUTOSTRADA REGIONALE CISPADANA dal casello di Reggiolo-Rolo sulla A22 al casello di Ferrara Sud sulla A13

PROGETTO DEFINITIVO

OPERE STRUTTURALI

ARCHITETTONICI CENTRO SICUREZZA AUTOSTRADALE (S.Felice sul Panaro)

RELAZIONE DI CALCOLO STRUTTURE

2. DESCRIZIONE DELL'OPERA

Il "Centro Servizi" è un complesso di edifici composto da cinque corpi di fabbrica, due di forma rettangolare e speculari fra di loro (Vedi edifici 1 e 2 di Figura 1), due di forma ad L e speculari fra di loro (Vedi edifici 3 e 4 di Figura 1) e uno di forma quadrata (Vedi edificio 6 di Figura 1).

Gli edifici 1 e 2 sono identici fra di loro e sono realizzati con struttura portante intelaiata in c.a. gettata in opera, analogalmente anche gli edifici 3 e 4 sono uguali fra di loro e sono realizzati con struttura portante intelaiata in c.a. gettata in opera, mentre l'edificio 6 è realizzato con struttura portante in acciaio.

I cinque edifici sono indipendenti l'uno dall'altro in elevazione, mentre hanno la struttura di fondazione in comune.

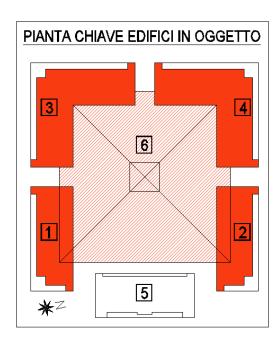


FIGURA 2 - 1: PIANTA CHIAVE DEGLI EDIFICI IN OGGETTO.

Nello specifico, il corpo degli edifici 1 e 2 presenta una forma rettangolare di dimensioni massime in pianta pari a *14.30x35.30 ml* ed è costituito da un unico piano terra e dal solaio di copertura. Considerata la struttura dei due edifici vengono realizzati pilastri e travi in elevazione in c.a. gettate in opera con solaio tipo predalles avente spessore 45 cm (4+36+5 cm). I pilastri vengono realizzati con sezione costante 50x50cm. A quota copertura trovano disposizione le travi principali in altezza (T1) aventi sezione 50x120 cm e la trave principale in spessore (T2) avente sezione 70x45 cm. Il raccordo tra i telai a quota copertura, consta di cordoli realizzati con sezione rettangolare di dimensioni 50x45cm.

AUTOSTRADA REGIONALE CISPADANA dal casello di Reggiolo-Rolo sulla A22 al casello di Ferrara Sud sulla A13

> PROGETTO DEFINITIVO **OPERE STRUTTURALI**

ARCHITETTONICI

CENTRO SICUREZZA AUTOSTRADALE (S.Felice sul Panaro)

RELAZIONE DI CALCOLO STRUTTURE

Il corpo degli edifici 3 e 4 presenta una forma ad L che risulta iscritta in un rettangolo di dimensioni massime in pianta pari a 34.95x35.00 ml ed è costituito da un unico piano terra e dal solaio di copertura. Considerata la struttura dei due edifici vengono realizzati pilastri e travi in elevazione in c.a. gettate in opera con solaio tipo predalles avente spessore 45 cm (4+36+5 cm). I pilastri vengono realizzati con sezione costante 50x50cm. A quota copertura troyano disposizione le travi principali in altezza (T1) aventi sezione 50x120 cm e le travi principali in spessore (T2) avente sezione 70x45 cm. Il raccordo tra i telai a quota copertura, consta di cordoli realizzati con sezione rettangolare di dimensioni 50x45cm.

Il corpo dell'edificio 6 presenta una forma rettangolare di dimensioni massime in pianta pari a 57.45x57.45 ml ed è costituito da un unico piano terra e dalla struttura di copertura. Considerata la forma particolare dell'edificio quest'ultimo viene realizzato con pilastri in acciaio costituiti da profili tubolari C609.6x25. la struttura di copertura a forma di pagoda viene invece realizzata con travi principali (cantonali e profili sommitali alla base del cupolino) in profilo composto ad H di altezza 1200 mm, trave di imposta perimetrale in profilo HEA700, travi secondarie in falda in profilo HEA600 ed arcarecci in profili HEA200; sono previste controventature di falda costituite da doppi angolari ad L.

Considerata la struttura del complesso di edifici vengono realizzate travi di fondazione a T rovescia, Per quanto concerne le travi a T rovescia di fondazione sottostanti agli edifici 1, 2, 3, 4 esse presentano ciabatta di fondazione 240x40cm e collo 60x60cm; in corrispondenza delle colonne in acciaio dell'edificio 6 e delle colonne in c.a. degli edifici 1,2,3,4 che si elevano lungo il perimetro dell'edificio 6 vengono realizzate delle ciabatte di fondazione di sezione 400x50 cm sulle quali si sviluppano dei colli di fondazione 90x120 cm al di sotto delle colonne in acciaio e dei cordoli di ringrosso di sezione 60x60 cm in corrispondenza delle colonne in c.a.. La quota di imposta dell'intradosso delle fondazioni è a -2.00 m da piano campagna.

Nella presente relazione si eseguiranno i dimensionamenti e le verifiche strutturali degli edifici sopra descritti come richiesti nella redazione di un progetto definitivo considerando le azioni sismiche, l'azione neve e l'azione del vento definite dalla normativa vigente nel luogo di costruzione.

AUTOSTRADA REGIONALE CISPADANA dal casello di Reggiolo-Rolo sulla A22 al casello di Ferrara Sud sulla A13

PROGETTO DEFINITIVO

OPERE STRUTTURALI

ARCHITETTONICI CENTRO SICUREZZA AUTOSTRADALE (S.Felice sul Panaro)

RELAZIONE DI CALCOLO STRUTTURE

3. RIFERIMENTI NORMATIVI

Per quanto concerne i riferimenti normativi inerenti la progettazione dell'opera, si fa riferimento all'elaborato di riferimento PD_0_0000_0000_0_GE_KT_01_A "Elenco delle Normative di riferimento".

AUTOSTRADA REGIONALE CISPADANA dal casello di Reggiolo-Rolo sulla A22 al casello di Ferrara Sud sulla A13

PROGETTO DEFINITIVO
OPERE STRUTTURALI

ARCHITETTONICI

CENTRO SICUREZZA AUTOSTRADALE (S.Felice sul Panaro)

RELAZIONE DI CALCOLO STRUTTURE

4. SOFTWARE IN USO

Le calcolazioni relative alle strutture in elevazione degli edifici 1,2,3,4 e delle strutture di fondazione sono effettuate con il codice di calcolo ad elementi finiti SISMICAD Versione 11.12, mentre le calcolazioni relative alla struttura in elevazione dell'edificio 6 sono effettuate con il codice di calcolo ad elementi finiti Autodesk® Robot™ Structural Analysis Professional 2012. Un attento esame preliminare della documentazione a corredo dei software ha consentito di valutarne l'affidabilità e soprattutto l'idoneità al caso specifico. La documentazione, fornita dal produttore e distributore del software, contiene una esauriente descrizione delle basi teoriche e degli algoritmi impiegati, l'individuazione dei campi d'impiego, nonché casi prova interamente risolti e commentati, corredati dei file di input necessari a riprodurre l'elaborazione. In entrambi i software di calcolo la verifica della sicurezza degli elementi strutturali avviene con i metodi della scienza delle costruzioni. L'analisi strutturale è condotta con il metodo degli spostamenti per la valutazione dello stato tensodeformativo indotto da carichi statici. Operativamente essa è effettuata con il metodo degli elementi finiti. Tale metodo si basa sulla schematizzazione della struttura in elementi connessi solo in corrispondenza di un numero prefissato di punti denominati nodi. I nodi sono definiti dalle tre coordinate cartesiane in un sistema di riferimento globale. Le incognite del problema (nell'ambito del metodo degli spostamenti) sono le componenti di spostamento dei nodi riferite al sistema di riferimento globale (traslazioni secondo X, Y, Z, rotazioni attorno X, Y, Z). La soluzione del problema si ottiene con un sistema di equazioni algebriche lineari i cui termini noti sono costituiti dai carichi agenti sulla struttura opportunamente concentrati ai nodi:

Ku=F

K = matrice di rigidezza; u = vettore spostamenti nodali; F = vettore forze nodali.

Dagli spostamenti ottenuti con la risoluzione del sistema vengono quindi dedotte le sollecitazioni e/o le tensioni di ogni elemento, riferite generalmente ad una terna locale all'elemento stesso. Il sistema di riferimento utilizzato è costituito da una terna cartesiana destrorsa XYZ. Si assume l'asse Z verticale ed orientato verso l'alto.

Si precisa che i software prevedono una serie di controlli automatici (check) che consentono l'individuazione di errori di modellazione. Al termine dell'analisi un controllo automatico identifica la presenza di spostamenti o rotazioni anomale. Si può pertanto asserire che l'elaborazione sia corretta e completa.

I risultati delle elaborazioni sono stati sottoposti a controlli che ne comprovano l'attendibilità. Tale valutazione ha compreso il confronto con i risultati di semplici calcoli, eseguiti con metodi tradizionali e adottati, anche in fase di primo proporzionamento della struttura. Inoltre, sulla base di considerazioni riguardanti gli stati tensionali e deformativi determinati, si è valutata la validità delle scelte operate in sede di schematizzazione e di modellazione della struttura e delle azioni.

AUTOSTRADA REGIONALE CISPADANA dal casello di Reggiolo-Rolo sulla A22 al casello di Ferrara Sud sulla A13

PROGETTO DEFINITIVO

OPERE STRUTTURALI

ARCHITETTONICI CENTRO SICUREZZA AUTOSTRADALE (S.Felice sul Panaro)

RELAZIONE DI CALCOLO STRUTTURE

5. CARATTERISTICHE DEI MATERIALI IMPIEGATI

Relativamente alle caratteristiche dei materiali impiegati per la realizzazione della struttura si fa riferimento all'elaborato di riferimento PD_0_0000_0000_0_GE_TB_01_A "Tabella materiali e classi di esposizione calcestruzzo".

AUTOSTRADA REGIONALE CISPADANA dal casello di Reggiolo-Rolo sulla A22 al casello di Ferrara Sud sulla A13

PROGETTO DEFINITIVO

OPERE STRUTTURALI
ARCHITETTONICI

CENTRO SICUREZZA AUTOSTRADALE (S.Felice sul Panaro)

RELAZIONE DI CALCOLO STRUTTURE

6. SICUREZZA E PRESTAZIONI ATTESE

La sicurezza e le prestazioni dell'opera vengono valutate conformemente a quanto prescritto dal D.M. Infrastrutture e Trasporti 14 gennaio 2008 (Suppl. Ord. alla G.U. 4.2.2008, n. 29) e allegate norme tecniche in relazione agli stati limite che possono verificarsi durante la vita nominale dell'opera.

La sicurezza delle strutture deve essere valutata nei confronti degli stati limite ultimi e nei confronti degli stati limite di esercizio.

Il superamento di uno stato limite ultimo ha carattere irreversibile e si definisce collasso.

Il superamento di uno stato limite di esercizio può avere carattere irreversibile o reversibile.

In relazione alla tipologia costruttiva ed al tipo di struttura la norma prescrive le verifiche da effettuarsi sia per gli SLU sia per gli SLE.

Nel caso in esame per le costruzione in calcestruzzo armato si fa riferimento al paragrafo §4.1.2 per verifiche statiche e ai paragrafi §7.3.6, §7.3.7 e 7.4 per le verifiche sismiche, mentre per le costruzioni in acciaio si fa riferimento al paragrafo §4.2.4 per verifiche statiche e ai paragrafi §7.3.6, §7.3.7 e §7.5 per le verifiche sismiche.

6.1. COMBINAZIONI DELLE AZIONI

Le azioni che cimentano le strutture per le verifiche agli stati SLU ed SLE sono indicate ai paragrafi §2.5.3 ed §7.1.

In particolare per lo stato limite ultimo SLU statico con coefficienti parziali γ tipo A1 ed A2:

• Combinazione fondamentale, generalmente impiegata per gli stati limite ultimi (SLU):

$$\gamma_{G1} \cdot G_1 + \gamma_{G2} \cdot G_2 + \gamma_P \cdot P + \gamma_{O1} \cdot Q_{K1} + \gamma_{O2} \cdot \psi_{O2} \cdot Q_{K2} + \gamma_{O3} \cdot \psi_{O3} \cdot Q_{K3} + \dots$$

In particolare per lo stato limite ultimo SLE statico:

• Combinazione caratteristica (rara), generalmente impiegata per gli stati limite di esercizio (SLE) irreversibili, da utilizzarsi nelle verifiche delle tensioni ammissibili (→ § 2.7 – D.M.08):

$$G_1 + G_2 + P + Q_{K1} + \psi_{02}Q_{K2} + \psi_{03}Q_{K3} + \dots$$

Combinazione frequente, generalmente impiegata per gli stati limite di esercizio (SLE) reversibili:

$$G_1 + G_2 + P + \psi_{11} \cdot Q_{K1} + \psi_{22} \cdot Q_{K2} + \psi_{23} \cdot Q_{K3} + \dots$$

AUTOSTRADA REGIONALE CISPADANA dal casello di Reggiolo-Rolo sulla A22 al casello di Ferrara Sud sulla A13

PROGETTO DEFINITIVO

OPERE STRUTTURALI

ARCHITETTONICI

CENTRO SICUREZZA AUTOSTRADALE (S.Felice sul Panaro)
RELAZIONE DI CALCOLO STRUTTURE

Combinazione quasi permanente (SLE), generalmente impiegata per gli effetti a lungo termine:

$$G_1 + G_2 + P + \psi_{21} \cdot Q_{K1} + \psi_{22} \cdot Q_{K2} + \psi_{23} \cdot Q_{K3} + \dots$$

In particolare per lo stato limite ultimo SLU sismico con azione SLV con Pvr 10%

$$E + G_1 + G_2 + P + \psi_{21} \cdot Q_{K1} + \psi_{22} \cdot Q_{K2} + \dots$$

In particolare per lo stato limite esercizio SLE sismico con azione SLD con Pvr 63%

$$E + G_1 + G_2 + P + \psi_{21} \cdot Q_{K1} + \psi_{22} \cdot Q_{K2} + \dots$$

Relativamente alla *progettazione strutturale e geotecnica*, si fa riferimento all'Approccio 1 che prevede due combinazione di coefficienti da adottare:

- Per verifiche strutturali: combinazione 1 (A1+M1+R1)
- Per verifiche geotecniche: combinazione 2 (A2+M2+R2)

6.2. VALORI LIMITE DI APERTURA DELLE FESSURE

Si assumono i seguenti valori di classe di esposizione:

Fondazioni e muri di fondazioni = XC2
 condizioni ambientali ordinarie

Pilastri e muri in elevazione =XC3 condizioni ambientali ordinarie

combinazione frequente: w3 = 0.40 mm;

combinazione quasi permanente: w2 = 0.30 mm.

• Travi e solai =XC4 condizioni ambientali aggressive

combinazione frequente: w2 = 0.30 mm;

combinazione quasi permanente: w1 = 0.20 mm.

AUTOSTRADA REGIONALE CISPADANA dal casello di Reggiolo-Rolo sulla A22 al casello di Ferrara Sud sulla A13

PROGETTO DEFINITIVO

OPERE STRUTTURALI
ARCHITETTONICI

CENTRO SICUREZZA AUTOSTRADALE (S.Felice sul Panaro)

RELAZIONE DI CALCOLO STRUTTURE

7. PARAMETRI DI PROGETTO

Il presente paragrafo mira a definire correttamente i parametri di "Vita Nominale", "Classe d'Uso" e "Periodo di Riferimento" da adottare per lo studio delle opere strutturali inerenti il progetto definitivo dell'Autostrada Cispadana in accordo a quanto riportato nelle Nuove Norme Tecniche per le Costruzioni NTC, approvate con D.M. del 14 Gennaio 2008, alla luce di quanto già stabilito nel Progetto Preliminare dell'Autostrada stessa.

I parametri in oggetto sono indispensabili per una corretta valutazione puntuale della sollecitazione sismica da considerare in fase di progettazione delle opere strutturali; in quanto da essi dipende la definizione del Periodo di Ritorno T_R dell'opera e quindi la valutazione dei parametri a_g , F_0 e T_C^* .

In ambito di NTC08 vi è infatti la possibilità di definire in maniera "locale" le componenti fondamentali della stima di pericolosità sismica.

Si riporta nel seguito quanto riportato in Normativa, al punto §2.4, in merito ai parametri oggetto della trattazione.

7.1. ELABORATO DI RIFERIMENTO

Nello specifico, si fa riferimento all'elaborato PD_0_0000_0000_0_GE_KT_02_A "Vita Utile e Classi d'uso delle opere".

7.2. VITA NOMINALE

La vita nominale di un'opera strutturale V_N è intesa come il numero di anni nel quale la struttura, purché soggetta alla manutenzione ordinaria, deve potere essere usata per lo scopo al quale è destinata. La vita nominale dei diversi tipi di opere è quella riportata nella tabella seguente e deve essere precisata nei documenti di progetto.

	TIPI DI COSTRUZIONE	Vita Nominale V _N (in anni)
1	Opere provvisorie – Opere provvisionali – Strutture in fase costruttiva	≤ 10
2	Opere ordinarie, ponti, opere infrastrutturali e dighe di dimensioni contenute o di importanza normale	≥ 50
3	Grandi opere , ponti, opere infrastrutturali e dighe di grandi dimensioni o di importanza strategica	≥ 100

AUTOSTRADA REGIONALE CISPADANA dal casello di Reggiolo-Rolo sulla A22 al casello di Ferrara Sud sulla A13

PROGETTO DEFINITIVO

OPERE STRUTTURALI
ARCHITETTONICI

CENTRO SICUREZZA AUTOSTRADALE (S.Felice sul Panaro)

RELAZIONE DI CALCOLO STRUTTURE

7.3. CLASSI D'USO

In presenza di azioni sismiche, con riferimento alle conseguenze di una interruzione di operatività o di un eventuale collasso, le costruzioni sono suddivise in classi d'uso così definite:

<u>Classe I</u>: Costruzioni con presenza solo occasionale di persone, edifici agricoli.

Classe II: Costruzioni il cui uso preveda normali affollamenti, senza contenuti pericolosi per l'ambiente e senza funzioni pubbliche e sociali essenziali. Industrie con attività non pericolose per l'ambiente. Ponti, opere infrastrutturali, reti viarie non ricadenti in Classe d'uso III o in Classe d'uso IV, reti ferroviarie la cui interruzione non provochi situazioni di emergenza. Dighe il cui collasso non provochi conseguenze rilevanti.

<u>Classe III</u>: Costruzioni il cui uso preveda affollamenti significativi. Industrie con attività pericolose per l'ambiente. Reti viarie extraurbane non ricadenti in Classe d'uso IV. Ponti e reti ferroviarie la cui interruzione provochi situazioni di emergenza. Dighe rilevanti per le consequenze di un loro eventuale collasso.

Classe IV: Costruzioni con funzioni pubbliche o strategiche importanti, anche con riferimento alla gestione della protezione civile in caso di calamità. Industrie con attività particolarmente pericolose per l'ambiente. Reti viarie di tipo A o B, di cui al D.M. 5 novembre 2001, n. 6792, "Norme funzionali e geometriche per la costruzione delle strade", e di tipo C quando appartenenti ad itinerari di collegamento tra capoluoghi di provincia non altresì serviti da strade di tipo A o B. Ponti e reti ferroviarie di importanza critica per il mantenimento delle vie di comunicazione, particolarmente dopo un evento sismico. Dighe connesse al funzionamento di acquedotti e a impianti di produzione di energia elettrica.

7.4. PERIODO DI RIFERIMENTO PER L'AZIONE SISMICA

Le azioni sismiche su ciascuna costruzione vengono valutate in relazione ad un periodo di riferimento V_R che si ricava, per ciascun tipo di costruzione, moltiplicandone la vita nominale V_N per il coefficiente d'uso $C_U: V_R = V_N \cdot C_U$. Il valore del coefficiente d'uso C_U è definito, al variare della classe d'uso, come mostrato nella tabella seguente:

CLASSE D'USO	1	11	III	IV
COEFFICIENTE C _U	0,7	1,0	1,5	2,0

Alla luce di quanto riportato, ed in relazione alla importanza critica delle opere di progetto, è possibile riassumere nella tabella seguente i parametri da adottare per i manufatti in progetto:

ASSE AUTOSTRADALE				
OPERA	Vita Nominale V_N [anni]	Classe d'uso	Coefficiente d'uso	Periodo di riferimento V _R [anni]
Edifici 1 e 2	50	11	1,0	50
Edifici 3 e 4	50	11	1,0	50
Edificio 6	50	11	1,0	50

AUTOSTRADA REGIONALE CISPADANA dal casello di Reggiolo-Rolo sulla A22 al casello di Ferrara Sud sulla A13

PROGETTO DEFINITIVO

OPERE STRUTTURALI

ARCHITETTONICI CENTRO SICUREZZA AUTOSTRADALE (S.Felice sul Panaro)

RELAZIONE DI CALCOLO STRUTTURE

8. MODELLAZIONE DELLA STRUTTURA E DELLE AZIONI SISMICHE

Per ciascuna delle tre tipologie di corpi oggetto della presente relazione, il modello della struttura è tridimensionale ed è tale da rappresentare in modo adeguato le effettive distribuzioni spaziali di massa, rigidezza e resistenza.

Gli elementi non strutturali quali le pareti interne non portanti (divisori), sono rappresentati unicamente in termini di massa in quanto caratterizzati da rigidezza e resistenza tali da non modificare significativamente il comportamento globale della struttura.

Le murature perimetrali sono schematizzate come carico lineare distribuito applicato alla travi di bordo.

Gli orizzontamenti sono assunti infinitamente rigidi nel loro piano, in quanto nei corpi 1, 2, 3 e 4 sono realizzati da solai in latero-cemento con soletta collaborante di spessore pari a 5 cm, mentre nell'edificio 6 l'infinita rigidezza nel piano di copertura è garantita dalla presenza di controventi di falda.

Per il calcolo delle strutture in elevazione nei modelli dei corpi 1-2, 3-4 e 6 l'intera struttura si considererà, "incastrata" alla base sullo spiccato di fondazione trascurando così gli effetti indotti dall'interazione terreno-struttura al fine di determinare le massime sollecitazioni sugli elementi portanti; si realizzerà poi un modello globale con tutti i corpi in cui il suolo è assunto come un sistema di molle aventi rigidezza equivalente (in accordo con la teoria di Winkler), utile esclusivamente al dimensionamento e verifica delle fondazioni.

Le azioni sismiche sono modellate direttamente con l'ausilio degli spettri di risposta.

Si precisa infine, che per tener conto della variabilità spaziale del moto sismico, nonché delle eventuali incertezze nella localizzazione delle masse, al centro di massa è attribuita un'eccentricità accidentale rispetto alla sua posizione effettiva (di calcolo).

Tale eccentricità, trattandosi di "edificio", è assunta costante, per entità e direzione, su tutti gli orizzontamenti e pari a 0.05 volte la dimensione dell'edificio stesso misurata perpendicolarmente alla direzione di applicazione dell'azione sismica.

8.1. ANALISI SISMICA

Il metodo di analisi assunto per le calcolazioni di tutti i corpi è la dinamica lineare. Con essa si determinano i modi di vibrare (analisi modale) della struttura e gli effetti dell'azione sismica per ciascun modo.

Si considerano tutti i modi con massa partecipante significativa e tali da garantire globalmente un massa eccitata (partecipante) uguale o superiore all'85%.

AUTOSTRADA REGIONALE CISPADANA dal casello di Reggiolo-Rolo sulla A22 al casello di Ferrara Sud sulla A13

PROGETTO DEFINITIVO

OPERE STRUTTURALI
ARCHITETTONICI

CENTRO SICUREZZA AUTOSTRADALE (S.Felice sul Panaro)

RELAZIONE DI CALCOLO STRUTTURE

La combinazione degli effetti avviene utilizzando la combinazione quadratica proposta al §7.3.3.1 del D.M.2008. Si precisa inoltre che gli effetti sulla struttura (sollecitazioni, deformazioni, spostamenti, ecc.) sono combinati successivamente con la sequenti relazioni:

$$\begin{cases} 1.00 E_x + 0.30 E_y \\ 1.00 E_y + 0.30 E_x \end{cases}$$

8.2. CRITERI DI VERIFICA

Le verifiche degli elementi strutturali in c.a. per azione sismica sono condotte con riferimento agli Stati limite ultimi §7.3.6.e di esercizio §7.3.7.Più precisamente ci si riferirà allo SLV e allo SLD.

Relativamente al paragrafo §7.3.7.2 si verificano che gli spostamenti d'interpiano siano inferiori a 0.01h (tamponamenti progettati per non subire danni a seguito degli spostamenti d'interpiano) allo SLD.

8.3. DIMENSIONAMENTO E VERIFICA DEGLI ELEMENTI STRUTTURALI

A seguire si riportano i criteri necessari al dimensionamento e alla verifica degli elementi strutturali degli edificio in oggetto. Si precisa che le verifiche sono condotte in automatico dai programmi di calcolo in accordo con quanto previsto delle NTC2008 e relativa Circolare esplicativa 2 febbraio 2009, n. 617.

Travi in c.a. di fondazione

In merito alle travi di fondazione, le azioni considerante agenti sulle stesse sono le resistenze degli elementi strutturali soprastanti. Più precisamente, le forze assiali negli elementi strutturali verticali vengono associate ai concomitanti valori resistenti di momento flettente e taglio, verificando che essi non siano superiori a quelli trasferiti dagli elementi stessi amplificati di un fattore $\gamma_{Rd} = 1.1$ (CD"B") e comunque non maggiori di quelli derivanti da un'analisi elastica della struttura in elevazione eseguita con fattore di struttura q unitario.

Le fondazioni vengono progettate in modo tale da <u>rimanere in campo elastico</u>.

Non vengono quindi inserite armature specifiche per ottenere un comportamento duttile.

Si precisa che le travi di fondazione, per tutta la lunghezza, presenteranno armature longitudinali in percentuale non inferiore allo 0.2% sia inferiormente che superiormente.

Travi in c.a. in elevazione

I momenti flettenti assunti per il dimensionamento e la verifica delle travi sono quelli da calcolo, ossia quelli massimi ottenuti dall'analisi dinamica elastica lineare.

AUTOSTRADA REGIONALE CISPADANA dal casello di Reggiolo-Rolo sulla A22 al casello di Ferrara Sud sulla A13

PROGETTO DEFINITIVO

OPERE STRUTTURALI
ARCHITETTONICI

CENTRO SICUREZZA AUTOSTRADALE (S.Felice sul Panaro)

RELAZIONE DI CALCOLO STRUTTURE

Al fine di escludere la formazione di meccanismi inelastici dovuti al taglio, le sollecitazioni di taglio sono ottenute come prescritto al *§7.4.4.1* applicando il fattore di sovraresistenza $\gamma_{Bd} = 1.00$ (CD"B").

Pilastri in c.a.

Al fine di proteggere i pilastri dalla plasticizzazione prematura si adottano i momenti flettenti di calcolo in modo tale che:

$$\sum M_{c,Rd} \ge 1.10 \sum M_{b,Rd}$$

ove $M_{c,Rd}$ è il momento resistente del generico pilastro, $M_{b,Rd}$ è il momento resistente della generica trave e $\gamma_{Rd} = 1.1$ è il fattore di sovraresistenza in CD"B".

Al fine di escludere la formazione di meccanismi inelastici dovuti al taglio, le sollecitazioni di taglio sono ottenuti come prescritto al §7.4.4.1 applicando il fattore di sovraresistenza γ_{Rd} = 1.1 (CD"B").

Poiché gli edifici in c.a. in esame sono ad un solo piano si precisa che il suddetto criterio di gerarchia delle resistenze non è applicato alle sezioni di sommità dei pilastri.

Aste e nodi in acciaio

Le struttura in acciaio dell'edificio 6 viene considerata non dissipativa pertanto ai nodi e alle aste in acciaio non vengono applicate le regole di progetto generali di cui al paragrafo §7.5.3.

AUTOSTRADA REGIONALE CISPADANA dal casello di Reggiolo-Rolo sulla A22 al casello di Ferrara Sud sulla A13

PROGETTO DEFINITIVO

OPERE STRUTTURALI
ARCHITETTONICI

CENTRO SICUREZZA AUTOSTRADALE (S.Felice sul Panaro)

RELAZIONE DI CALCOLO STRUTTURE

9. ANALISI DEI CARICHI

9.1. AZIONI STATICHE

I fabbricati oggetto della presente relazione sono ubicati in San Felice sul Panaro.

Azione vento.

Zona vento = 2 (Vb.o = 25 m/s; Ao = 750 m; Ka = 0.015 1/s)

Classe di rugosità del terreno: D

[Aree prive di ostacoli o con al di più rari ostacoli isolati (aperta campagna, aeroporti, aree agricole, zone paludose o sabbiose, superfici innevate o ghiacciate, mare, laghi,...)]

Categoria esposizione: tipo II

(Kr = 0.19; Zo = 0.05 m; Zmin = 4 m)

Velocità di riferimento = 25,00 m/s

Pressione cinetica di riferimento (qb) = 39 daN/mq

Coefficiente di forma (Cp) = 1,00 Coefficiente dinamico (Cd) = 1,00 Coefficiente di esposizione (Ce) = 2,35 Coefficiente di esposizione topografica (Ct) = 1,00 Altezza dell'edificio = 10,00 m

Pressione del vento (p = qb Ce Cp Cd) = 92 daN/mq

(con coefficiente di forma unitario)

TETTOIA CENTRO SERVIZI

Per quanto attiene alla tettoia in acciaio del Centro Servizi, ai fini della valutazione del coefficiente di forma, in ottemperanza a quanto indicato al punto C 3.3.10.3.1 della Circolare 617/2009 nel caso di tettoie per le quali il rapporto tra la totale altezza sul suolo (nel caso in oggetto $H_{tot}=24\,$ m) e la massima dimensione in pianta (nel caso in oggetto pari a circa 57 m) sia inferiore ad uno (nel caso in oggetto si ha infatti 24/57=0.42<1) , sono state considerate le condizioni più sfavorevoli relativamente al caso di tettoie isolate con due spioventi, come da schema normativo di seguito riportato:

Due spioventi piani con displuvio

Direzione >

 $C_p = \pm 0.8 (1 + \sin \alpha)$

 $C_p = -0.6$

Il calcolo è stato effettuato considerando un'azione del vento uniforme sulle falde e determinata considerando una altezza massima pari ad H = 20 m, corrispondente alla altezza dal suolo dela base torrino, ottenendo:

Coefficiente di esposizione (Ce) = 2,81

AUTOSTRADA REGIONALE CISPADANA dal casello di Reggiolo-Rolo sulla A22 al casello di Ferrara Sud sulla A13

PROGETTO DEFINITIVO

OPERE STRUTTURALI

ARCHITETTONICI

CENTRO SICUREZZA AUTOSTRADALE (S.Felice sul Panaro)

RELAZIONE DI CALCOLO STRUTTURE

Sono state considerate le seguenti condizioni elementari dovute al vento: A) Falda sopravento: $c_p = +0.8(1 + \text{sen } 20^\circ) = +1.07$, $p_1 = 39 \times 2.81 \times 1.07 = +117 \text{ daN/m}^2$

Falda sottovento: $c_p = -0.6$, $p_2 = -39*2.81*0.6 = -66 \text{ daN/m}^2$

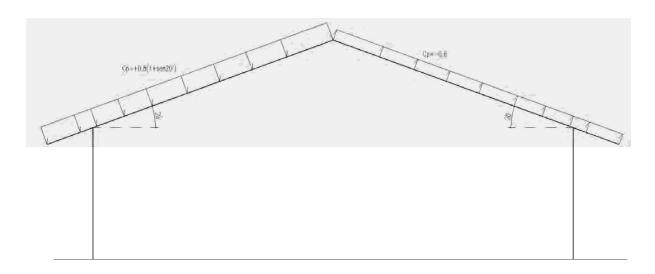


FIGURA 9.1 - 1: CASO A

B)Falda sopravento: $c_p = 0.8(1 + \text{sen } 20^\circ) = +1.07$, $p_1 = 39^*2.81^*1.07 = +117 \text{ daN/m}^2$

Falda sottovento: $c_p = +0.6$, $p_2 = -39*2.81*0.6 = -66 \text{ daN/m}^2$

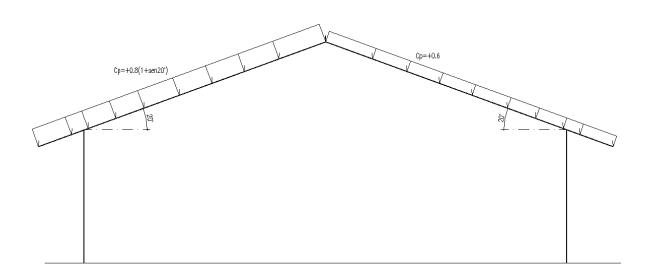


FIGURA 9.1 - 2: CASO B

AUTOSTRADA REGIONALE CISPADANA dal casello di Reggiolo-Rolo sulla A22 al casello di Ferrara Sud sulla A13

PROGETTO DEFINITIVO

OPERE STRUTTURALI

ARCHITETTONICI

CENTRO SICUREZZA AUTOSTRADALE (S.Felice sul Panaro)
RELAZIONE DI CALCOLO STRUTTURE

C) Falda sopravento: $c_p = -0.8(1 + \text{sen } 20^\circ) = -1.07$, $p_1 = -39 \times 2.81 \times 1.07 = -117 \text{ daN/m}^2$

Falda sottovento: $c_p = -0.6$, $p_2 = -39^{\circ}2.81^{\circ}0.6 = -66 \text{ daN/m}^2$

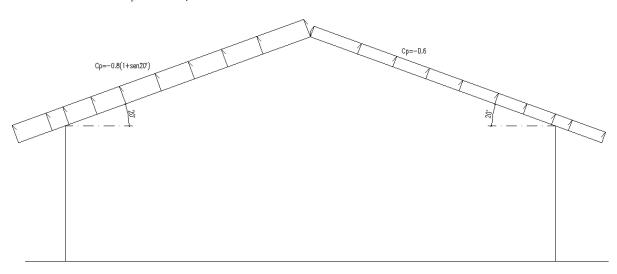


FIGURA 9.1 - 3: CASO C

AZIONE TANGENZIALE DEL VENTO

 $p_{TANGENTE} = q_b^* c_e^* c_f$

E' stato assunto, per il coefficiente di attrito $c_f = 0.01$

Azione neve

Zona Neve = I Mediterranea Ce (coeff. di esposizione al vento) = 1,00 Valore caratteristico del carico al suolo (qsk Ce) = 150 daN/mq Copertura ad una falda: Angolo di inclinazione della falda = 0,0° μ 1 = 0,80 => Q = 120 daN/mq

a) Il peso proprio delle strutture

Computato automaticamente dal programma di calcolo in ragione del peso specifico del c.a. (25 kN/m³) e dell'acciaio da carpenteria (78.5 kN/m³).

b) Impalcato di copertura a quota piano primo (Edifici 1, 2, 3, 4)

Carichi permanenti G1

• Intonaco intradosso =0.01x20 0.20 kN/mq

AUTOSTRADA REGIONALE CISPADANA dal casello di Reggiolo-Rolo sulla A22 al casello di Ferrara Sud sulla A13

PROGETTO DEFINITIVO

OPERE STRUTTURALI
ARCHITETTONICI

CENTRO SICUREZZA AUTOSTRADALE (S.Felice sul Panaro)

RELAZIONE DI CALCOLO STRUTTURE

•	P.P solaio predalles (s	sp. 4+36+5 cm)		5.50	kN/mq
•	Sottofondo in CLS alle	eggerito	=0.15x8.00	1.20	kN/mq
•	Isolante+impermeabili	zzazione		0.10	kN/mq
•	Quadrotti in c.l.s		= 0.04x25	1.00	kN/mq
•	Controsoffitto ed impia	anti		0.50	kN/mq
Tot	ale permanenti portati C	31k		<u>8.50</u>	kN/mq
<u>Ca</u>	richi variabili Qk				
•	Neve <1000m			<u>1.20</u>	kN/mg
	Ψ0 = 0.5	Ψ1 = 0.2	Ψ 2 = 0.0		

c) Murature perimetrali.

Carichi permanenti Gk

•	Peso proprio muratura (poroton sp.30	0cm) 0.30x18x0.55x4.30	= 12.77	kN/ml
•	Intonaco (interno+esterno) 0.03x20x4	.30	= 2.58	kN/ml
Totale	permanenti portati G _{1k}		≈ <u>15.35</u>	kN/ml
•	Muratura parapetto sp=20cm	=0.20x18x0.45x1.00	= 1.62	kN/ml
•	Intonaco 1.5+1.5cm	=0.03x20x1.00	= 0.60	kN/ml
Totale	permanenti portati G _{1k}		≈ <u>2.22</u>	kN/ml

• EFFETTI DELLE AZIONI TERMICHE

E' stata considerata una variazione termica pari a : $\Delta T_U = \pm 25^{\circ}$

• AZIONI ECCEZIONALI: INCENDIO

Ai fini delle verifiche di resistenza al fuoco, è stata considerata la Curva di Incendio di Progetto di tipo Nominale (Standard ISO 834), eseguendo verifiche di tipo convenzionale.

9.2. AZIONI SISMICHE

Le azioni sismiche di progetto, in base alle quali si verifica il rispetto dei diversi stati limite, si definiscono a partire dalla "pericolosità sismica di base" In condizioni ideali di sito di riferimento rigido con superficie 3475_PD_0_S03_SFB03_0_RC_04_A Pagina 21 di 126

AUTOSTRADA REGIONALE CISPADANA dal casello di Reggiolo-Rolo sulla A22 al casello di Ferrara Sud sulla A13

PROGETTO DEFINITIVO
OPERE STRUTTURALI

ARCHITETTONICI

CENTRO SICUREZZA AUTOSTRADALE (S.Felice sul Panaro)
RELAZIONE DI CALCOLO STRUTTURE

topografica orizzontale. Allo stato attuale, la pericolosità sismica su reticolo di riferimento nell'intervallo di riferimento è fornita dai dati pubblicati sul sito http://esse1.mi.inqv.it/.

Per punti non coincidenti con il reticolo di riferimento e periodi di ritorno non contemplati direttamente si opera come indicato nell'allegato alle *NTC* (rispettivamente media pesata e interpolazione).

L'azione sismica viene definita in relazione ad un periodo di riferimento Vr che si ricava, per ciascun tipo di costruzione, moltiplicandone la vita nominale per il coefficiente d'uso. Fissato il periodo di riferimento Vr e la probabilità di superamento Pver associata a ciascuno degli stati limite considerati, si ottiene il periodo di ritorno Tr e i relativi parametri di pericolosità sismica:

- a_g: accelerazione orizzontale massima del terreno;
- F_o: valore massimo del fattore di amplificazione dello spettro in accelerazione orizzontale;
- T*c: periodo di inizio del tratto a velocità costante dello spettro in accelzione orizzontale.

Individuati su reticolo di riferimento i parametri di pericolosità sismica si valutano i parametri spettrali:

S è il coefficiente che tiene conto della categoria di sottosuolo e delle condizioni topografiche mediante la relazione seguente $S = S_s *S_t (\S 3.2.5);$

- F_o è il fattore che quantifica l'amplificazione spettrale massima, su sito di riferimento rigido orizzontale;
- F_v è il fattore che quantifica l'amplificazione spettrale massima verticale, in termini di accelerazione orizzontale massima del terreno ag su sito di riferimento rigido orizzontale;
- T_bè il periodo corrispondente all'inizio del tratto dello spettro ad accelerazione costante;
- T_c è il periodo corrispondente all'inizio del tratto dello spettro a velocità costante;
- T_d è il periodo corrispondente all'inizio del tratto dello spettro a spostamento costante;

L'Opera è ubicata in San Felice sul Panaro, per cui:

- latitudine 44,84194°N longitudine 11,1825°E;
- Categoria di sottosuolo "C" → Depositi di terreni a grana grossa mediamente addensati o terreni a grana fina mediamente consistenti con spessori superiori a 30 m, caratterizzati da un graduale miglioramento delle proprietà meccaniche con la profondità e da valori di Vs,30 compresi tra 180 m/s e 360 m/s (ovvero 15 < NSPT,30 < 50 nei terreni a grana grossa e 70 < cu,30 < 250 kPa nei terreni a grana fina);

AUTOSTRADA REGIONALE CISPADANA dal casello di Reggiolo-Rolo sulla A22 al casello di Ferrara Sud sulla A13

PROGETTO DEFINITIVO

OPERE STRUTTURALI

ARCHITETTONICI

CENTRO SICUREZZA AUTOSTRADALE (S.Felice sul Panaro)
RELAZIONE DI CALCOLO STRUTTURE

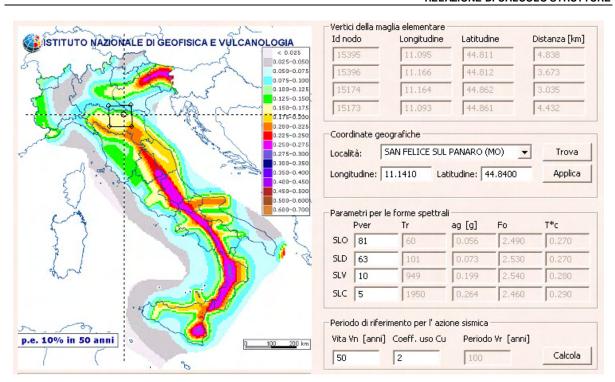


Figura 9.2 - 1 - Località San Felice sul Panaro (Mo)

In particolare si riportano la tabella riassuntiva relativamente alla pericolosità sismica e i parametri di calcolo per l'azione sismica:

Para S.L.	metri e fat ag	tori spett eta	ri S	Fo	Fv	ТВ	TC	TD
SLO	0.056	1.0	1.500	2.490	0.793	0.146	0.437	1.822
SLD	0.073	1.0	1.500	2.530	0.923	0.146	0.437	1.892
SLV	0.199		1.396	2.540	1.531	0.149	0.447	2.398
SLC	0.264		1.311	2.460	1.705	0.153	0.458	2.654
[Vertion	cale per tu	atti	1.000			0.050	0.150	1.000

Figura 9.2 - 2 - Località San Felice sul Panaro (Mo)

Per le strutture oggetto della presente relazione sono stati considerati i seguenti fattori di struttura:

OPERA	TIPOLOGIA STRUTTURALE	REGOLARITA' IN PIANTA	REGOLARITA' IN ELEVAZIONE	COEFF. α_{u}/α_{1}	FATTORE DI STRUTTURA
Edifici 1 e 2	- cls- Struttura a telaio	No	Si	(1.0+1.1)/2=1.05	3, 15
Edifici 3 e 4	- cls- Struttura a telaio	No	Si	(1.0+1.1)/2=1.05	3, 15
Edificio 6	-acciaio- Struttura non dissipat	1,00			

E' stata trascurata la componente verticale dell'azione sismica ricadendo il sito in zona 3.

AUTOSTRADA REGIONALE CISPADANA dal casello di Reggiolo-Rolo sulla A22 al casello di Ferrara Sud sulla A13

PROGETTO DEFINITIVO

OPERE STRUTTURALI ARCHITETTONICI

CENTRO SICUREZZA AUTOSTRADALE (S.Felice sul Panaro)

RELAZIONE DI CALCOLO STRUTTURE

10. MODELLO DI CALCOLO EDIFICI 1 – 2

Gli elementi utilizzati per la modellazione dello schema statico delle strutture sono i seguenti:

• Elemento tipo BEAM

(trave-D2)

• Elemento tipo MEMBRANE

(membrana-D3)

Il programma di calcolo SISMICAD prevedono una serie di controlli automatici (check) che consentono l'individuazione di errori di modellazione. Al termine dell'analisi un controllo automatico identifica la presenza di spostamenti o rotazioni anomale. Si può pertanto asserire che l' elaborazione sia corretta e completa. I risultati delle elaborazioni sono stati sottoposti a controlli che ne comprovano l'attendibilità. Tale valutazione ha compreso il confronto con i risultati di semplici calcoli, eseguiti con metodi tradizionali e adottati, anche in fase di primo proporzionamento della struttura. Inoltre, sulla base di considerazioni riguardanti gli stati tensionali e deformativi determinati, si è valutata la validità delle scelte operate in sede di schematizzazione e di modellazione della struttura e delle azioni.

La struttura viene considerata incastrata alla base delle colonne.

10.1. MATERIALI

A seguire si riportano le caratteristiche meccaniche dei materiali utilizzati nella modellazione. Si precisa che per i pilastri è stato impiegato un *cls C28/35* e per le travi un *cls C32/40*.

Descrizione	Rck	E	Gamma	Poisson	G	Alfa
C28/35	350	325881	0.0025	0.1	148127.76	0.00001
C32/40	400	336428	0.0025	0.1	152921.72	0.00001

Ove:

Rck: Resistenza caratteristica cubica; valore medio nel caso di edificio esistente. [daN/cm2]

E: Modulo di elasticità longitudinale del materiale. [daN/cm2]

Gamma: Peso specifico del materiale. [daN/cm3]

Poisson: Coefficiente di Poisson, viene impiegato nella modellazione di elementi bidimensionali. Il valore è adimensionale.

G: Modulo di elasticità tangenziale del materiale, viene impiegato nella modellazione di aste. [daN/cm2]

Alfa: Coefficiente longitudinale di dilatazione termica. [℃-1]

Descrizione	fyk	Sigma amm.	Tipo	E	Gamma	Poisson	G	Alfa	Livello di
									conoscenza
B450C	4500	2550	Aderenza migliorata	2100000	0.00785	0.3	807692.31	0.000012	Nuovo

Ove:

Descrizione: Descrizione o nome assegnato all'elemento.

fyk: Resistenza caratteristica. [daN/cm2]

Sigma amm.: Tensione ammissibile. [daN/cm2]

Tipo: Tipo di barra.

AUTOSTRADA REGIONALE CISPADANA dal casello di Reggiolo-Rolo sulla A22 al casello di Ferrara Sud sulla A13

PROGETTO DEFINITIVO

OPERE STRUTTURALI

ARCHITETTONICI CENTRO SICUREZZA AUTOSTRADALE (S.Felice sul Panaro)

RELAZIONE DI CALCOLO STRUTTURE

E: Modulo di elasticità longitudinale del materiale. [daN/cm2]

Gamma: Peso specifico del materiale. [daN/cm3]

Poisson: Coefficiente di Poisson, viene impiegato nella modellazione di elementi bidimensionali. Il valore è adimensionale.

G: Modulo di elasticità tangenziale del materiale, viene impiegato nella modellazione di aste. [daN/cm2]

Alfa: Coefficiente longitudinale di dilatazione termica. [℃-1]

Livello di conoscenza: Indica se il materiale è nuovo o esistente, e in tal caso il livello di conoscenza secondo Circ. 02/02/09 n. 617 §C8A. Informazione impiegata solo in analisi D.M. 14-01-08 (N.T.C.).

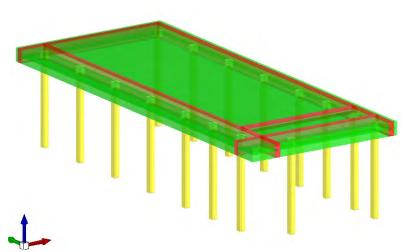
10.2. MODELLAZIONE ELEMENTI STRUTTURALI

Le sezioni utilizzate nella modellazione sono individuate da una sigla identificativa ed un codice numerico (gli elementi strutturali richiamano quest'ultimo nella propria descrizione). Per ogni sezione vengono riportati in tabella i seguenti dati:

Descrizione	Area Tx FEM	Area Ty FEM	JxFEM	JyFEM	JtFEM	Н	В	c.s.	c.i.	c.l.
R 50*50	2083.33	2083.33	520833.33	520833.33	770833.33	50	50	3	3	3
R 80*45	3000	3000	607500	1920000	1.569E06	45	80	3	3	3
R 50*120	5000	5000	7200000	1250000	3687500	120	50	3	3	3

Ove:

Descrizione: Descrizione o nome assegnato all'elemento.


Area Tx FEM: Area di taglio in direzione X per l'analisi FEM. [cm2] Area Ty FEM: Area di taglio in direzione Y per l'analisi FEM. [cm2] JxFEM: Momento di inerzia attorno all'asse X per l'analisi FEM. [cm4] JyFEM: Momento di inerzia attorno all'asse Y per l'analisi FEM. [cm4]

JtFEM: Momento d'inerzia torsionale corretto con il fattore di forma per l'analisi FEM. [cm4]

H: Altezza della sezione. [cm] B: Larghezza della sezione. [cm]

c.s.: Copriferro superiore della sezione. [cm] c.i.: Copriferro inferiore della sezione. [cm] c.l.: Copriferro laterale della sezione. [cm]

Infine si riporta una rappresentazione 3D del modello di calcolo strutturale adottato:

AUTOSTRADA REGIONALE CISPADANA dal casello di Reggiolo-Rolo sulla A22 al casello di Ferrara Sud sulla A13

PROGETTO DEFINITIVO

OPERE STRUTTURALI

ARCHITETTONICI CENTRO SICUREZZA AUTOSTRADALE (S.Felice sul Panaro)

RELAZIONE DI CALCOLO STRUTTURE

Figura 10.2 - 1 – Viste 3D solide: modello di calcolo edifici rettangolari (1 e 2)

10.3. LIVELLI E TRONCHI

Nelle tabelle successive vengono riportate rispettivamente le quote dei livelli assunti all'interno del programma di calcolo Sismicad e i rispettivi tronchi :

Descrizione breve	Descrizione	Quota	Spessore
L1	Fondazione	0	100
L2	COPERTURA	835	120

Ove:

Descrizione breve: Nome sintetico assegnato al livello.

Descrizione: Nome assegnato al livello.

Quota: Quota superiore espressa nel sistema di riferimento assoluto. [cm]

Spessore: Spessore del livello. [cm]

Descrizione breve	Descrizione	Quota 1	Quota 2	
T1	Fondazione - COPERTURA	Fondazione	COPERTURA	

Ove:

Descrizione breve: Nome sintetico assegnato al tronco.

Descrizione: Nome assegnato al tronco.

Quota 1: Riferimento della prima quota di definizione del tronco. esprimibile come livello, falda, piano

orizzontale alla Z specificata. [cm]

Quota 2: Riferimento della seconda quota di definizione del tronco. esprimibile come livello, falda, piano orizzontale alla Z specificata. [cm]

10.4. CONDIZIONI DI CARICO

Nella tabella successiva vengono riportate le condizioni di carico elementari considerate:

Descrizione	Nome breve	I/II	Durata	Psi0	Psi1	Psi2
Pesi strutturali	Pesi		Permanente	0	0	0
Permanenti portati	Port.	I	Permanente	0	0	0
Neve	Neve	I	Media	0.5	0.2	0

Ove:

Descrizione: Nome assegnato alla condizione elementare.

Nome breve: Nome breve assegnato alla condizione elementare.

I/II: Descrive la classificazione della condizione (necessario per strutture in acciaio e in legno).

Durata: Descrive la durata della condizione (necessario per strutture in legno).

Psi0: Coefficiente moltiplicatore Psi0. Il valore è adimensionale. Psi1: Coefficiente moltiplicatore Psi1. Il valore è adimensionale. Psi2: Coefficiente moltiplicatore Psi2. Il valore è adimensionale.

Var.segno: Descrive se la condizione elementare ha la possibilità di variare di segno.

10.5. COMBINAZIONI DI CARICO

Il programma combina le varie condizioni di carico secondo le regole previste dalla normativa vigente.

AUTOSTRADA REGIONALE CISPADANA

REGIONE EMILIA ROMAGNA

AUTOSTRADA REGIONALE CISPADANA dal casello di Reggiolo-Rolo sulla A22 al casello di Ferrara Sud sulla A13

PROGETTO DEFINITIVO

OPERE STRUTTURALI ARCHITETTONICI

CENTRO SICUREZZA AUTOSTRADALE (S.Felice sul Panaro)

RELAZIONE DI CALCOLO STRUTTURE

Le combinazioni previste sono destinate al controllo di sicurezza della struttura ed alla verifica degli spostamenti e delle sollecitazioni.

Tutte le combinazioni di carico vengono raggruppate per famiglia di appartenenza. Le celle di una riga contengono i coefficienti moltiplicatori della i-esima combinazione, dove il valore della prima cella è da intendersi come moltiplicatore associato alla prima condizione elementare, la seconda cella si riferisce alla seconda condizione elementare e così via.

Famiglia SLU

Il nome compatto della famiglia è SLU.

Nome	Nome breve	Pesi	Port.	Neve	Dt
1	SLU 1	1	0	0	0
2	SLU 2	1	0	1.5	0
3	SLU 3	1	1.5	0	0
4	SLU 4	1	1.5	1.5	0
5	SLU 5	1.3	0	0	0
6	SLU 6	1.3	0	1.5	0
7	SLU 7	1.3	1.5	0	0
8	SLU 8	1.3	1.5	1.5	0

Famiglia SLE rara

Il nome compatto della famiglia è SLE RA.

Nome	Nome breve	2.010		Neve	Dt
1	SLE RA 1	1	1	0	0
2	SLE RA 2	1	1	1	0

Famiglia SLE frequente

Il nome compatto della famiglia è SLE FR.

Nome	Nome breve	Pesi	Port.	Neve	Dt
1	SLE FR 1	1	1	0	0
2	SIFFR2	1	1	0.2	0

Famiglia SLE quasi permanente

Il nome compatto della famiglia è SLE QP.

	Nome	Nome breve	Pesi	Port.	Neve	Dt	
Γ	1	SLE QP 1	1	1	0	0	

Famiglia SLD

Il nome compatto della famiglia è SLD.

Nome	Nome breve	Pesi	Port.	Neve	Dt	X SLD	YSLD	ZSLD	EYSLD	EX SLD
1	SLD 1	1	1	0	0	-1	-0.3	0	-1	0.3
2	SLD 2	1	1	0	0	-1	-0.3	0	1	-0.3
3	SLD 3	1	1	0	0	-1	0.3	0	-1	0.3
4	SLD 4	1	1	0	0	-1	0.3	0	1	-0.3
5	SLD 5	1	1	0	0	-0.3	-1	0	-0.3	1
6	SLD 6	1	1	0	0	-0.3	-1	0	0.3	-1
7	SLD 7	1	1	0	0	-0.3	1	0	-0.3	1
8	SLD 8	1	1	0	0	-0.3	1	0	0.3	-1
9	SLD 9	1	1	0	0	0.3	-1	0	-0.3	1
10	SLD 10	1	1	0	0	0.3	-1	0	0.3	-1
11	SLD 11	1	1	0	0	0.3	1	0	-0.3	1
12	SLD 12	1	1	0	0	0.3	1	0	0.3	-1
13	SLD 13	1	1	0	0	1	-0.3	0	-1	0.3
14	SLD 14	1	1	0	0	1	-0.3	0	1	-0.3
15	SLD 15	1	1	0	0	1	0.3	0	-1	0.3
16	SLD 16	1	1	0	0	1	0.3	0	1	-0.3

AUTOSTRADA REGIONALE CISPADANA dal casello di Reggiolo-Rolo sulla A22 al casello di Ferrara Sud sulla A13

PROGETTO DEFINITIVO

OPERE STRUTTURALI

ARCHITETTONICI

CENTRO SICUREZZA AUTOSTRADALE (S.Felice sul Panaro)
RELAZIONE DI CALCOLO STRUTTURE

Famiglia SLV

Il nome compatto della famiglia è SLV.

Nome	Nome breve	Pesi	Port.	Neve	Dt	X SLV	Y SLV	ZSLV	EYSLV	EX SLV
1	SLV 1	1	1	0	0	-1	-0.3	0	-1	0.3
2	SLV 2	1	1	0	0	-1	-0.3	0	1	-0.3
3	SLV 3	1	1	0	0	-1	0.3	0	-1	0.3
4	SLV 4	1	1	0	0	-1	0.3	0	1	-0.3
5	SLV 5	1	1	0	0	-0.3	-1	0	-0.3	1
6	SLV 6	1	1	0	0	-0.3	-1	0	0.3	-1
7	SLV 7	1	1	0	0	-0.3	1	0	-0.3	1
8	SLV 8	1	1	0	0	-0.3	1	0	0.3	-1
9	SLV 9	1	1	0	0	0.3	-1	0	-0.3	1
10	SLV 10	1	1	0	0	0.3	-1	0	0.3	-1
11	SLV 11	1	1	0	0	0.3	1	0	-0.3	1
12	SLV 12	1	1	0	0	0.3	1	0	0.3	-1
13	SLV 13	1	1	0	0	1	-0.3	0	-1	0.3
14	SLV 14	1	1	0	0	1	-0.3	0	1	-0.3
15	SLV 15	1	1	0	0	1	0.3	0	-1	0.3
16	SLV 16	1	1	0	0	1	0.3	0	1	-0.3

Famiglia Calcolo rigidezza torsionale/flessionale di piano

Il nome compatto della famiglia è CRTFP.

Nome	Nome breve	R Ux	R Uy	R Rz
Rig. Ux+	CRTFP Ux+	1	0	0
Rig. Ux-	CRTFP Ux-	-1	0	0
Rig. Uy+	CRTFP Uy+	0	1	0
Rig. Uy-	CRTFP Uy-	0	-1	0
Rig. Rz+	CRTFP Rz+	0	0	1
Rig. Rz-	CRTFP Rz-	0	0	-1

Famiglia P delta

Il nome compatto della famiglia è PTH.

Nome	Nome breve	Pesi	Port.	Neve	Dt
Unica per metodo P-Delta	Pd	1	1	1	0

AUTOSTRADA REGIONALE CISPADANA dal casello di Reggiolo-Rolo sulla A22 al casello di Ferrara Sud sulla A13

PROGETTO DEFINITIVO

OPERE STRUTTURALI

ARCHITETTONICI

SLU non sismici	g G1 max	g G1 min	g G2 max	g G2 min	g P max	g P min	gQ
Fattori di comb. A1 [STR]	1.3	1	1.5	0	1	1	1.5
Fattori di comb. A2 [GEO]	1	1	1.3	0	1	1	1.3
☐ SLU EQU	1.1	0.9	1.5	0	1	1	1.5
gE	g G1 max	g G1 min	g G2 max	g G2 min	g P max	g P min	gQ
Fattori di comb. A1 1	1	1	1	1	1	1	1
Fattori di comb. A2 1	1	1	1	1	1	1	1
ratton di comb. Az ji							

Figura 10.5 – 1 - Parametri combinazioni di carico

AUTOSTRADA REGIONALE CISPADANA dal casello di Reggiolo-Rolo sulla A22 al casello di Ferrara Sud sulla A13

PROGETTO DEFINITIVO

OPERE STRUTTURALI
ARCHITETTONICI

CENTRO SICUREZZA AUTOSTRADALE (S.Felice sul Panaro)

RELAZIONE DI CALCOLO STRUTTURE

11. MODELLO DI CALCOLO EDIFICI 2 – 3

Gli elementi utilizzati per la modellazione dello schema statico delle strutture sono i seguenti:

Elemento tipo BEAM

(trave-D2)

• Elemento tipo MEMBRANE

(membrana-D3)

Il programma di calcolo SISMICAD preve una serie di controlli automatici (check) che consentono l'individuazione di errori di modellazione. Al termine dell'analisi un controllo automatico identifica la presenza di spostamenti o rotazioni anomale. Si può pertanto asserire che l' elaborazione sia corretta e completa. I risultati delle elaborazioni sono stati sottoposti a controlli che ne comprovano l'attendibilità. Tale valutazione ha compreso il confronto con i risultati di semplici calcoli, eseguiti con metodi tradizionali e adottati, anche in fase di primo proporzionamento della struttura. Inoltre, sulla base di considerazioni riguardanti gli stati tensionali e deformativi determinati, si è valutata la validità delle scelte operate in sede di schematizzazione e di modellazione della struttura e delle azioni.

La struttura viene considerata incastrata alla base delle colonne.

11.1. MATERIALI

A seguire si riportano le caratteristiche meccaniche dei materiali utilizzati nella modellazione. Si precisa che per i pilastri è stato impiegato un *cls C28/35* e per le travi un *cls C32/40*.

Descrizione	Rck	E	Gamma	Poisson	G	Alfa
C28/35	350	325881	0.0025	0.1	148127.76	0.00001
C32/40	400	336428	0.0025	0.1	152921.72	0.00001

Ove:

Rck: Resistenza caratteristica cubica; valore medio nel caso di edificio esistente. [daN/cm2]

E: Modulo di elasticità longitudinale del materiale. [daN/cm2]

Gamma: Peso specifico del materiale. [daN/cm3]

Poisson: Coefficiente di Poisson, viene impiegato nella modellazione di elementi bidimensionali. Il valore è adimensionale.

G: Modulo di elasticità tangenziale del materiale, viene impiegato nella modellazione di aste. [daN/cm2]

Alfa: Coefficiente longitudinale di dilatazione termica. [°C-1]

ı	Descrizione	fyk	Sigma amm.	Tipo	E	Gamma	Poisson	G	Alfa	Livello di
										conoscenza
Ī	B450C	4500	2550	Aderenza migliorata	2100000	0.00785	0.3	807692.31	0.000012	Nuovo
L				migitoraca						

Ove:

Descrizione: Descrizione o nome assegnato all'elemento.

fyk: Resistenza caratteristica. [daN/cm2]

Sigma amm.: Tensione ammissibile. [daN/cm2]

Tipo: Tipo di barra.

AUTOSTRADA REGIONALE CISPADANA dal casello di Reggiolo-Rolo sulla A22 al casello di Ferrara Sud sulla A13

PROGETTO DEFINITIVO

OPERE STRUTTURALI

ARCHITETTONICI CENTRO SICUREZZA AUTOSTRADALE (S.Felice sul Panaro)

RELAZIONE DI CALCOLO STRUTTURE

E: Modulo di elasticità longitudinale del materiale. [daN/cm2]

Gamma: Peso specifico del materiale. [daN/cm3]

Poisson: Coefficiente di Poisson, viene impiegato nella modellazione di elementi bidimensionali. Il valore è adimensionale.

G: Modulo di elasticità tangenziale del materiale, viene impiegato nella modellazione di aste. [daN/cm2]

Alfa: Coefficiente longitudinale di dilatazione termica. [°C-1]

Livello di conoscenza: Indica se il materiale è nuovo o esistente, e in tal caso il livello di conoscenza secondo Circ. 02/02/09 n. 617 §C8A. Informazione impiegata solo in analisi D.M. 14-01-08 (N.T.C.).

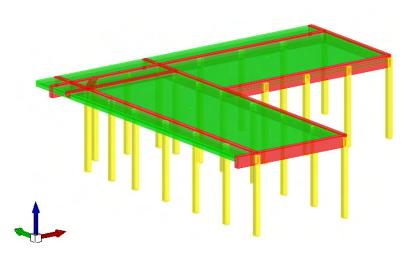
11.2. MODELLAZIONE ELEMENTI STRUTTURALI

Le sezioni utilizzate nella modellazione sono individuate da una sigla identificativa ed un codice numerico (gli elementi strutturali richiamano quest'ultimo nella propria descrizione). Per ogni sezione vengono riportati in tabella i seguenti dati:

1	Descrizione	Area Tx FEM	Area Ty FEM	JxFEM	JyFEM	JtFEM	Н	В	c.s.	c.i.	c.l.
	R 50*50	2083.33	2083.33	520833.33	520833.33	770833.33	50	50	2	2	2
	R 50*120	5000	5000	7200000	1250000	3687500	120	50	3	3	3
	R 70*45	2625	2625	531562.5	1286250	1.265E06	45	70	3	3	3

Ove:

Descrizione: Descrizione o nome assegnato all'elemento.


Area Tx FEM: Area di taglio in direzione X per l'analisi FEM. [cm2] Area Ty FEM: Area di taglio in direzione Y per l'analisi FEM. [cm2] JxFEM: Momento di inerzia attorno all'asse X per l'analisi FEM. [cm4] JyFEM: Momento di inerzia attorno all'asse Y per l'analisi FEM. [cm4]

JtFEM: Momento d'inerzia torsionale corretto con il fattore di forma per l'analisi FEM. [cm4]

H: Altezza della sezione. [cm] B: Larghezza della sezione. [cm]

c.s.: Copriferro superiore della sezione. [cm] c.i.: Copriferro inferiore della sezione. [cm] c.l.: Copriferro laterale della sezione. [cm]

Infine si riporta una rappresentazione 3D del modello di calcolo strutturale adottato:

AUTOSTRADA REGIONALE CISPADANA dal casello di Reggiolo-Rolo sulla A22 al casello di Ferrara Sud sulla A13

PROGETTO DEFINITIVO

OPERE STRUTTURALI

ARCHITETTONICI CENTRO SICUREZZA AUTOSTRADALE (S.Felice sul Panaro)

RELAZIONE DI CALCOLO STRUTTURE

Figura 11.2 - 1 - Viste 3D solide: modello di calcolo edifici ad L (3 e 4).

11.3. LIVELLI E TRONCHI

Nelle tabelle successive vengono riportate rispettivamente le quote dei livelli assunti all'interno del programma di calcolo Sismicad e i rispettivi tronchi :

Descrizione breve	Descrizione	Quota	Spessore
L1	Fondazione	0	100
L2	COPERTURA	835	120

Ove:

Descrizione breve: Nome sintetico assegnato al livello.

Descrizione: Nome assegnato al livello.

Quota: Quota superiore espressa nel sistema di riferimento assoluto. [cm]

Spessore: Spessore del livello. [cm]

Descrizione breve	Descrizione	Quota 1	Quota 2
T1	Fondazione - COPERTURA	Fondazione	COPERTURA

Ove:

Descrizione breve: Nome sintetico assegnato al tronco.

Descrizione: Nome assegnato al tronco.

Quota 1: Riferimento della prima quota di definizione del tronco. esprimibile come livello, falda, piano

orizzontale alla Z specificata. [cm]

Quota 2: Riferimento della seconda quota di definizione del tronco. esprimibile come livello, falda, piano

orizzontale alla Z specificata. [cm]

11.4. CONDIZIONI DI CARICO

Nella tabella successiva vengono riportate le condizioni di carico elementari considerate:

Descrizione	Nome breve	1/11	Durata	Psi0	Psi1	Psi2
Pesi strutturali	Pesi		Permanente	0	0	0
Permanenti portati	Port.	I	Permanente	0	0	0
Neve	Neve	I	Media	0.5	0.2	0

Ove:

Descrizione: Nome assegnato alla condizione elementare.

Nome breve: Nome breve assegnato alla condizione elementare.

I/II: Descrive la classificazione della condizione (necessario per strutture in acciaio e in legno).

Durata: Descrive la durata della condizione (necessario per strutture in legno).

Psi0: Coefficiente moltiplicatore Psi0. Il valore è adimensionale. Psi1: Coefficiente moltiplicatore Psi1. Il valore è adimensionale. Psi2: Coefficiente moltiplicatore Psi2. Il valore è adimensionale.

Var.segno: Descrive se la condizione elementare ha la possibilità di variare di segno.

AUTOSTRADA REGIONALE CISPADANA

REGIONE EMILIA ROMAGNA

AUTOSTRADA REGIONALE CISPADANA dal casello di Reggiolo-Rolo sulla A22 al casello di Ferrara Sud sulla A13

PROGETTO DEFINITIVO

OPERE STRUTTURALI
ARCHITETTONICI

CENTRO SICUREZZA AUTOSTRADALE (S.Felice sul Panaro)

RELAZIONE DI CALCOLO STRUTTURE

11.5. COMBINAZIONI DI CARICO

Il programma combina le varie condizioni di carico secondo le regole previste dalla normativa vigente.

Le combinazioni previste sono destinate al controllo di sicurezza della struttura ed alla verifica degli spostamenti e delle sollecitazioni.

Tutte le combinazioni di carico vengono raggruppate per famiglia di appartenenza. Le celle di una riga contengono i coefficienti moltiplicatori della i-esima combinazione, dove il valore della prima cella è da intendersi come moltiplicatore associato alla prima condizione elementare, la seconda cella si riferisce alla seconda condizione elementare e così via.

Famiglia SLU

Il nome compatto della famiglia è SLU.

Nome	Nome breve	Pesi	Port.	Neve	Dt
1	SLU 1	1	0	0	0
2	SLU 2	1	0	1.5	0
3	SLU 3	1	1.5	0	0
4	SLU 4	1	1.5	1.5	0
5	SLU 5	1.3	0	0	0
6	SLU 6	1.3	0	1.5	0
7	SLU 7	1.3	1.5	0	0
8	SLU 8	1.3	1.5	1.5	0

Famiglia SLE rara

Il nome compatto della famiglia è SLE RA.

Nome	Nome breve	Pesi	Port.	Neve	Dt
1	SLE RA 1	1	1	0	0
2	SLE RA 2	1	1	1	0

Famiglia SLE frequente

Il nome compatto della famiglia è SLE FR.

ſ	Nome	Nome breve	Pesi	Port.	Neve	Dt
ſ	1	SLE FR 1	1	1	0	0
ſ	2	SLE FR 2	1	1	0.2	0

Famiglia SLE quasi permanente

Il nome compatto della famiglia è SLE QP.

Nome	Nome breve	Pesi	Port.	Neve	Dt
1	SLE QP 1	1	1	0	0

Famiglia SLD

Il nome compatto della famiglia è SLD.

Nome	Nome breve	Pesi	Port.	Neve	Dt	X SLD	YSLD	ZSLD	EYSLD	EX SLD
1	SLD 1	1	1	0	0	-1	-0.3	0	-1	0.3
2	SLD 2	1	1	0	0	-1	-0.3	0	1	-0.3
3	SLD 3	1	1	0	0	-1	0.3	0	-1	0.3
4	SLD 4	1	1	0	0	-1	0.3	0	1	-0.3
5	SLD 5	1	1	0	0	-0.3	-1	0	-0.3	1
6	SLD 6	1	1	0	0	-0.3	-1	0	0.3	-1
7	SLD 7	1	1	0	0	-0.3	1	0	-0.3	1

AUTOSTRADA REGIONALE CISPADANA dal casello di Reggiolo-Rolo sulla A22 al casello di Ferrara Sud sulla A13

PROGETTO DEFINITIVO

OPERE STRUTTURALI

ARCHITETTONICI

CENTRO SICUREZZA AUTOSTRADALE (S.Felice sul Panaro)
RELAZIONE DI CALCOLO STRUTTURE

Nome	Nome breve	Pesi	Port.	Neve	Dt	X SLD	YSLD	ZSLD	EYSLD	EX SLD
8	SLD 8	1	1	0	0	-0.3	1	0	0.3	-1
9	SLD 9	1	1	0	0	0.3	-1	0	-0.3	1
10	SLD 10	1	1	0	0	0.3	-1	0	0.3	-1
11	SLD 11	1	1	0	0	0.3	1	0	-0.3	1
12	SLD 12	1	1	0	0	0.3	1	0	0.3	-1
13	SLD 13	1	1	0	0	1	-0.3	0	-1	0.3
14	SLD 14	1	1	0	0	1	-0.3	0	1	-0.3
15	SLD 15	1	1	0	0	1	0.3	0	-1	0.3
16	SLD 16	1	1	0	0	1	0.3	0	1	-0.3

Famiglia SLV

Il nome compatto della famiglia è SLV.

Nome	Nome breve	Pesi	Port.	Neve	Dt	X SLV	YSLV	ZSLV	EY SLV	EX SLV
1	SLV 1	1	1	0	0	-1	-0.3	0	-1	0.3
2	SLV 2	1	1	0	0	-1	-0.3	0	1	-0.3
3	SLV 3	1	1	0	0	-1	0.3	0	-1	0.3
4	SLV 4	1	1	0	0	-1	0.3	0	1	-0.3
5	SLV 5	1	1	0	0	-0.3	-1	0	-0.3	1
6	SLV 6	1	1	0	0	-0.3	-1	0	0.3	-1
7	SLV 7	1	1	0	0	-0.3	1	0	-0.3	1
8	SLV 8	1	1	0	0	-0.3	1	0	0.3	-1
9	SLV 9	1	1	0	0	0.3	-1	0	-0.3	1
10	SLV 10	1	1	0	0	0.3	-1	0	0.3	-1
11	SLV 11	1	1	0	0	0.3	1	0	-0.3	1
12	SLV 12	1	1	0	0	0.3	1	0	0.3	-1
13	SLV 13	1	1	0	0	1	-0.3	0	-1	0.3
14	SLV 14	1	1	0	0	1	-0.3	0	1	-0.3
15	SLV 15	1	1	0	0	1	0.3	0	-1	0.3
16	SLV 16	1	1	0	0	1	0.3	0	1	-0.3

Famiglia Calcolo rigidezza torsionale/flessionale di piano

Il nome compatto della famiglia è CRTFP.

Nome	Nome breve		R Uy	R Rz
Rig. Ux+	CRTFP Ux+		0	0
Rig. Ux-	CRTFP Ux-	-1	0	0
Rig. Uy+	CRTFP Uy+	0	1	0
Rig. Uy-	CRTFP Uy-	0	-1	0
Rig. Rz+	CRTFP Rz+	0	0	1
Rig. Rz-	CRTFP Rz-	0	0	-1

0 1 1 1.8 0 1 1 1.3 0 1 1 1.8	0	1 1.	1.3	Fattori di comb. A1 [STR]
		1 1.	1	Fattori di comb. A2 [GEO]
0 1 1 1.5	0			attori di Comb. AZ [GEO]
	10	0.9 1.	1.1	SLU EQU
gG2min gPmax gPmin gQ	s y uz IIIIri	garılırı ge	guilliax	yc
1 1 1	1	1 1	1	Fattori di comb. A1 1
1 1 1	1	1 1	1	Fattori di comb. A2 1
1	1	1 1	1	g E Fattori di comb. A1 1

AUTOSTRADA REGIONALE CISPADANA dal casello di Reggiolo-Rolo sulla A22 al casello di Ferrara Sud sulla A13

PROGETTO DEFINITIVO

OPERE STRUTTURALI

Figura 11.5 – 1 - Parametri combinazioni di carico

AUTOSTRADA REGIONALE CISPADANA dal casello di Reggiolo-Rolo sulla A22 al casello di Ferrara Sud sulla A13

PROGETTO DEFINITIVO

OPERE STRUTTURALI ARCHITETTONICI

CENTRO SICUREZZA AUTOSTRADALE (S.Felice sul Panaro)

RELAZIONE DI CALCOLO STRUTTURE

12. MODELLO DI CALCOLO EDIFICIO 6

Gli elementi utilizzati per la modellazione dello schema statico delle strutture sono i seguenti:

• Elemento tipo BEAM (trave-D2)

Elemento tipo MEMBRANE (membrana-D3)

Il programma di calcolo ROBOT prevede una serie di controlli automatici (check) che consentono l'individuazione di errori di modellazione. Al termine dell'analisi un controllo automatico identifica la presenza di spostamenti o rotazioni anomale. Si può pertanto asserire che l' elaborazione sia corretta e completa. I risultati delle elaborazioni sono stati sottoposti a controlli che ne comprovano l'attendibilità. Tale valutazione ha compreso il confronto con i risultati di semplici calcoli, eseguiti con metodi tradizionali e adottati, anche in fase di primo proporzionamento della struttura. Inoltre, sulla base di considerazioni riguardanti gli stati tensionali e deformativi determinati, si è valutata la validità delle scelte operate in sede di schematizzazione e di modellazione della struttura e delle azioni.

La struttura viene considerata incastrata alla base delle colonne.

12.1. MATERIALI

La struttura in elevazione è prevista interamente in acciaio, in materiale S355 , con le seguenti caratteristiche meccaniche:

• Tensione di snervamento: $f_v = 355 \cdot MPa$ per spessori fino a 40 mm

• Tensione di snervamento: $f_y = 335 \cdot MPa$ per spessori maggiori di 40 mm

• Resistenza di progetto $f_d = 355/1.05 = 338 \cdot MPa$ per spessori fino a 40 mm

• Resistenza di progetto $f_d = 335/1.05 = 319 \cdot MPa$ per spessori maggiori di 40 mm

• Tensione di rottura a trazione: $f_u = 510 \cdot MPa$ per spessori fino a 40 mm

• Tensione di rottura a trazione: $f_y = 490 \cdot MPa$ per spessori maggiori di 40 mm

• Modulo elastico $E = 210 \cdot GPa$

La struttura metallica è stata progettata con profili idonei per consentire una protezione al fuoco con pellicola intumescente pari ad R60.

AUTOSTRADA REGIONALE CISPADANA dal casello di Reggiolo-Rolo sulla A22 al casello di Ferrara Sud sulla A13

PROGETTO DEFINITIVO

OPERE STRUTTURALI

ARCHITETTONICI

CENTRO SICUREZZA AUTOSTRADALE (S.Felice sul Panaro)
RELAZIONE DI CALCOLO STRUTTURE

12.2. MODELLAZIONE ELEMENTI STRUTTURALI

Si riportano, di seguito, le caratteristiche delle sezioni impiegate nella struttura in oggetto.

Nome della sezione	Lista delle barre	AX (cm2)	AY (cm2)	AZ (cm2)	IX (cm4)	IY (cm4)	IZ (cm4)
2 LU 80x80x12	218a223 225a234P3 239a24	35.80	0.0	0.0	15.31	204.00	561.48
2 UPN 300	337 347a349 498a504 516a	117.60	64.00	60.00	63.64	16056.00	7252.90
H 1200x300x32	17a26P3 291 340a346 357 3	394.40	224.00	170.40	847.27	947407.02	22898.62
HEA 200	31 44a127 137a142 156a16	53.83	38.68	13.28	18.60	3692.15	1335.51
HEA 300	1 2 128a133 143a146 171a1	112.50	84.00	24.65	60.24	18263.00	6310.00
HEA 600	16 19 21 24 25 27a30 32a35	226.50	150.00	76.70	352.05	141208.00	11271.00
HEA 700	589a620	260.48	155.83	100.49	513.89	215301.00	12178.80
TUBO 609.6X25	4a15	458.67	229.34	229.34	391799.22	195899.61	195899.61

Infine si riporta una rappresentazione 3D del modello di calcolo strutturale adottato:

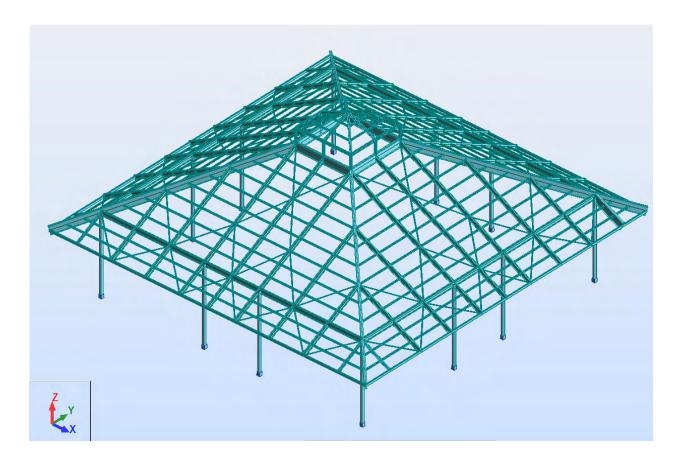


Figura 12.2 - 1 - Viste 3D solide: modello di calcolo

AUTOSTRADA REGIONALE CISPADANA dal casello di Reggiolo-Rolo sulla A22 al casello di Ferrara Sud sulla A13

PROGETTO DEFINITIVO

OPERE STRUTTURALI

ARCHITETTONICI

CENTRO SICUREZZA AUTOSTRADALE (S.Felice sul Panaro)

RELAZIONE DI CALCOLO STRUTTURE

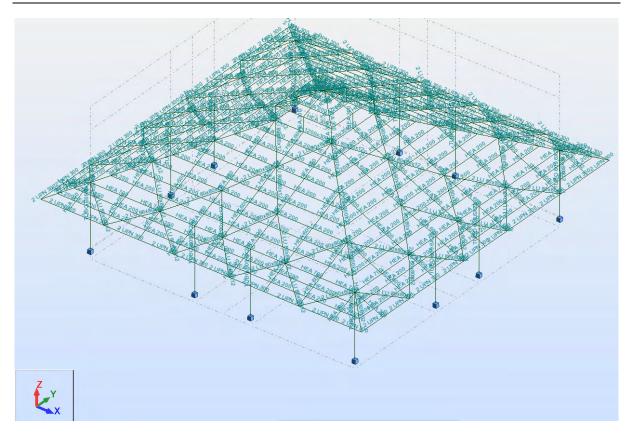


FIGURA 12.2 - 2: SCHEMA UNIFILARE CON TIPOLOGIA ASTE

12.3. LIVELLI E TRONCHI

Come da elaborati esecutivi, la trave di coronamento è stata impostata con intradosso ad 11.00 m dalla quota finita di pavimentazione (quota 0.00), ossia a quota +11.30 dall'estradosso del colletto delle travi rovescie di fondazione.La quota di imposta del torrino è pari a 18.47 m da quota finito.

AUTOSTRADA REGIONALE CISPADANA dal casello di Reggiolo-Rolo sulla A22 al casello di Ferrara Sud sulla A13

PROGETTO DEFINITIVO

OPERE STRUTTURALI

ARCHITETTONICI

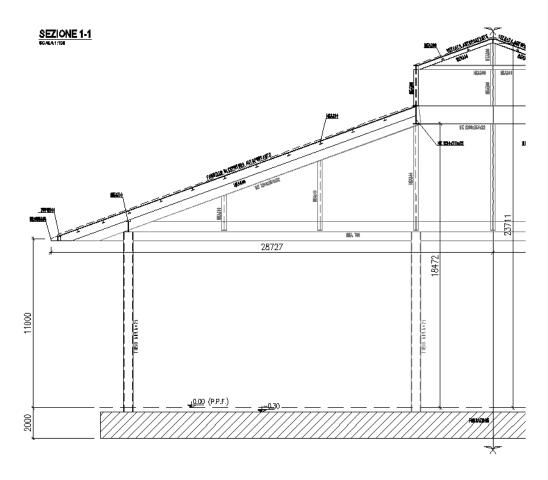


FIGURA 12.3 - 1: SEZIONE VERTICALE CON QUOTE DI PROGETTO

AUTOSTRADA REGIONALE CISPADANA dal casello di Reggiolo-Rolo sulla A22 al casello di Ferrara Sud sulla A13

PROGETTO DEFINITIVO

OPERE STRUTTURALI
ARCHITETTONICI

CENTRO SICUREZZA AUTOSTRADALE (S.Felice sul Panaro)

RELAZIONE DI CALCOLO STRUTTURE

12.4. CONDIZIONI DI CARICO

CONDIZIONI	Ψο	Ψ1	Ψ2
Pesi Porpi - G1			
Permanenti Portati - G2			
Vento X-h - Qk1	0.6	0.2	0
Vento X+v - Qk2	0.6	0.2	0
Vento X-v - Qk2	0.6	0.2	0
Neve - Qk3	0.5	0.2	0
Variazione di Temperatura ΔT - Qk4	0.6	0.5	0
Azione del Fuoco			

Psi0: Coefficiente moltiplicatore Psi0. Il valore è adimensionale. Psi1: Coefficiente moltiplicatore Psi1. Il valore è adimensionale. Psi2: Coefficiente moltiplicatore Psi2. Il valore è adimensionale.

Var.segno: Descrive se la condizione elementare ha la possibilità di variare di segno.

12.5. COMBINAZIONI DI CARICO

Il programma combina le varie condizioni di carico secondo le regole previste dalla normativa vigente.

Le combinazioni previste sono destinate al controllo di sicurezza della struttura ed alla verifica degli spostamenti e delle sollecitazioni.

Tutte le combinazioni di carico vengono raggruppate per famiglia di appartenenza. Le celle di una riga contengono i coefficienti moltiplicatori della i-esima combinazione, dove il valore della prima cella è da intendersi come moltiplicatore associato alla prima condizione elementare, la seconda cella si riferisce alla seconda condizione elementare e così via.

AUTOSTRADA REGIONALE CISPADANA dal casello di Reggiolo-Rolo sulla A22 al casello di Ferrara Sud sulla A13

PROGETTO DEFINITIVO

OPERE STRUTTURALI ARCHITETTONICI

CENTRO SICUREZZA AUTOSTRADALE (S.Felice sul Panaro)
RELAZIONE DI CALCOLO STRUTTURE

Famiglia SLU

Combinazione	Nome	Cond.	Coef.								
78 (C)	SLU1_A1	1	1.3	3	1.5	2	1.5	15	0.9	10	0.6
79 (C)	SLU2_A1	1	1.3	2	1.5	3	0.75	15	1.5	10	0.6
80 (C)	SLU3_A1	15	-1.5	1	1	10	0.6				
81 (C)	SLU4_A1	1	1.3	2	1.5	3	1.5	14	0.9	10	0.6
82 (C)	SLU5_A1	1	1.3	2	1.5	3	0.75	14	1.5	10	0.6
4 (C)	SLU6_A1	1	1.3	2	1.5	3	1.5	15	-0.9	10	0.6
6 (C)	SLU7_A1	1	1.3	2	1.5	3	0.75	15	-1.5	10	0.6
8 (C)	SLU8_A1	1	1.3	2	1.5	3	1.5	14	-0.9	10	0.6
7 (C)	SLU9_A1	1	1.3	2	1.5	3	0.75	14	-1.5	10	0.6
9 (C)	SLU10_A1	1	1	2	1	16	1.5	10	0.6		
110 (C)	SLU1_A2	1	1	3	1	2	1.3	15	0.78	10	0.6
111 (C)	SLU2_A2	1	1	2	1	3	0.65	15	1.3	10	0.6
112 (C)	SLU3_A2	1	1	1	1	10	0.6				
113 (C)	SLU4_A2	1	1	2	1	3	1.3	14	0.78	10	0.6
114 (C)	SLU5_A2	1	1	2	1	3	0.65	14	1.3	10	0.6
115 (C)	SLU6_A2	1	1	2	1	3	1.3	15	-0.78	10	0.6
116 (C)	SLU7_A2	1	1	2	1	3	0.65	15	-1.3	10	0.6
117 (C)	SLU8_A2	1	1	2	1	3	1.3	14	-0.78	10	0.6
118 (C)	SLU9_A2	1	1	2	1	3	0.65	14	-1.3	10	0.6
201 (C)	SLU10_A2	1	1	2	1	16	1.3	10	0.6		·

Combinazione Eccezionale per Verifica al Fuoco

 $F_d = G_1 + G_2 + 0.2 Q_{k,neve}$

Famiglia SLV

AUTOSTRADA REGIONALE CISPADANA

REGIONE EMILIA ROMAGNA

AUTOSTRADA REGIONALE CISPADANA dal casello di Reggiolo-Rolo sulla A22 al casello di Ferrara Sud sulla A13

PROGETTO DEFINITIVO

OPERE STRUTTURALI

ARCHITETTONICI

CENTRO SICUREZZA AUTOSTRADALE (S.Felice sul Panaro)
RELAZIONE DI CALCOLO STRUTTURE

Combinazione	Nome	Cond.	Coef.								
78 (C)	SLU1_A1	1	1.3	3	1.5	2	1.5	15	0.9	10	0.6
79 (C)	SLU2_A1	1	1.3	2	1.5	3	0.75	15	1.5	10	0.6
80 (C)	SLU3_A1	15	-1.5	1	1	10	0.6				
81 (C)	SLU4_A1	1	1.3	2	1.5	3	1.5	14	0.9	10	0.6
82 (C)	SLU5_A1	1	1.3	2	1.5	3	0.75	14	1.5	10	0.6
4 (C)	SLU6_A1	1	1.3	2	1.5	3	1.5	15	-0.9	10	0.6
6 (C)	SLU7_A1	1	1.3	2	1.5	3	0.75	15	-1.5	10	0.6
8 (C)	SLU8_A1	1	1.3	2	1.5	3	1.5	14	-0.9	10	0.6
7 (C)	SLU9_A1	1	1.3	2	1.5	3	0.75	14	-1.5	10	0.6
9 (C)	SLU10_A1	1	1	2	1	16	1.5	10	0.6		
110 (C)	SLU1_A2	1	1	3	1	2	1.3	15	0.78	10	0.6
111 (C)	SLU2_A2	1	1	2	1	3	0.65	15	1.3	10	0.6
112 (C)	SLU3_A2	1	1	1	1	10	0.6				
113 (C)	SLU4_A2	1	1	2	1	3	1.3	14	0.78	10	0.6
114 (C)	SLU5_A2	1	1	2	1	3	0.65	14	1.3	10	0.6
115 (C)	SLU6_A2	1	1	2	1	3	1.3	15	-0.78	10	0.6
116 (C)	SLU7_A2	1	1	2	1	3	0.65	15	-1.3	10	0.6
117 (C)	SLU8_A2	1	1	2	1	3	1.3	14	-0.78	10	0.6
118 (C)	SLU9_A2	1	1	2	1	3	0.65	14	-1.3	10	0.6
201 (C)	SLU10_A2	1	1	2	1	16	1.3	10	0.6		

Famiglia SLD

Combinazione	Nome	Cond.	Coef.	Cond.	Coef.	Cond.	Coef.	Cond.	Coef.
209 (C) (CQC)	SLD 1. * X 0.3 * Y	207	1	208	0.3	1	1	2	1
210 (C) (CQC)	SLD 1. * X -0.3 * Y	207	1	208	-0.3	1	1	2	1
211 (C) (CQC)	SLD 0.3 * X 1. * Y	207	0.3	208	1	1	1	2	1
212 (C) (CQC)	SLD 0.3 * X -1. * Y	207	0.3	208	-1	1	1	2	1
215 (C) (CQC)	SLD 1. * X 0.3 * Y	213	1	214	0.3	1	1	2	1
216 (C) (CQC)	SLD 1. * X -0.3 * Y	213	1	214	-0.3	1	1	2	1
217 (C) (CQC)	SLD 0.3 * X 1. * Y	213	0.3	214	1	1	1	2	1
218 (C) (CQC)	SLD 0.3 * X -1. * Y	213	0.3	214	-1	1	1	2	1
221 (C) (CQC)	SLD 1. * X 0.3 * Y	219	1	220	0.3	1	1	2	1
222 (C) (CQC)	SLD 1. * X -0.3 * Y	219	1	220	-0.3	1	1	2	1
223 (C) (CQC)	SLD 0.3 * X 1. * Y	219	0.3	220	1	1	1	2	1
224 (C) (CQC)	SLD 0.3 * X -1. * Y	219	0.3	220	-1	1	1	2	1
227 (C) (CQC)	SLD 1. * X 0.3 * Y	225	1	226	0.3	1	1	2	1
228 (C) (CQC)	SLD 1. * X -0.3 * Y	225	1	226	-0.3	1	1	2	1
229 (C) (CQC)	SLD 0.3 * X 1. * Y	225	0.3	226	1	1	1	2	1
230 (C) (CQC)	SLD 0.3 * X -1. * Y	225	0.3	226	-1	1	1	2	1

Famiglia SLE

Combinazione	Nome	Cond.	Coef.								
11 (C)	SLE_RARA_02	1	1	2	1	3	1	14	0.6	10	0.6
205 (C)	SLE_RARA_01	1	1	2	1	3	1	15	0.6		
206 (C)	SLE Q.P.	1	1	2	1	3	0.3				

AUTOSTRADA REGIONALE CISPADANA dal casello di Reggiolo-Rolo sulla A22 al casello di Ferrara Sud sulla A13

PROGETTO DEFINITIVO

OPERE STRUTTURALI

	g G1 max	g G1 min	g G2 max	g G2 min	g P max	g P min	gQ			
Fattori di comb. A1 [STR]	1.3	1	1.5	0	1	1	1.5			
Fattori di comb. A2 [GEO]	1	1	1.3	0	1	1	1.3			
□ SLU EQU	1.1	0.9	1.5	0	1	1	1.5			
gE	g G1 max	g G1 min	g G2 max	g G2 min	g P max	g P min	gQ			
Fattori di comb. A1 1	1	1	1	1	1	1	1			
Fattori di comb. A2 1	1	1	1	1	1	1	1			
	Applica EC8 4.4.2.6(8) (in questo caso utilizzare qE maggiore di 1)									

Figura 12.5 - 4 - Parametri combinazioni di carico

AUTOSTRADA REGIONALE CISPADANA dal casello di Reggiolo-Rolo sulla A22 al casello di Ferrara Sud sulla A13

PROGETTO DEFINITIVO

OPERE STRUTTURALI ARCHITETTONICI

CENTRO SICUREZZA AUTOSTRADALE (S.Felice sul Panaro)

RELAZIONE DI CALCOLO STRUTTURE

13. MODELLO DI CALCOLO FONDAZIONI

Gli elementi utilizzati per la modellazione dello schema statico delle strutture sono i seguenti:

• Elemento tipo BEAM (trave-D2)

Elemento tipo PLATE (piastra-guscio-D3)

Elemento tipo MEMBRANE (membrana-D3)

Il programma di calcolo preve una serie di controlli automatici (check) che consentono l'individuazione di errori di modellazione. Al termine dell'analisi un controllo automatico identifica la presenza di spostamenti o rotazioni anomale. Si può pertanto asserire che l' elaborazione sia corretta e completa. I risultati delle elaborazioni sono stati sottoposti a controlli che ne comprovano l'attendibilità. Tale valutazione ha compreso il confronto con i risultati di semplici calcoli, eseguiti con metodi tradizionali e adottati, anche in fase di primo proporzionamento della struttura. Inoltre, sulla base di considerazioni riguardanti gli stati tensionali e deformativi determinati, si è valutata la validità delle scelte operate in sede di schematizzazione e di modellazione della struttura e delle azioni.

Nel modello di calcolo delle fondazioni sono stati modellati tutte e quattro le sovra-strutture dei corpi 1, 2, 3 e 4 mentre il contributo delle sollecitazioni derivanti dalla sovrastruttura dell'edificio 6 è stato preso in conto applicando alle fondazioni i massimi valori dei momenti del taglio e dello sforzo assiale ottenuti dal modello di calcolo della struttura in elevazione del corpo 6 in Robot.

Per quanto concerne il terreno di fondazione, esso può essere schematizzato secondo il modello di Winkler che prevede una relazione lineare fra il cedimento in un punto della superficie e la pressione agente nello stesso punto.

Il valore del parametro "k Winkler" è stato assunto in accordo con quanto specificato nella "Relazione tipologica fabbricati di servizio autostazioni", in funzione della larghezza della base delle travi rovescie di fondazione.

13.1. MATERIALI

A seguire si riportano le caratteristiche meccaniche dei materiali utilizzati nella modellazione. Si precisa che per le fondazioni è stato impiegato un *cls C25/30*; per i pilastri un *cls C28/35* ed infine per le travi un *cls C32/40*.

١	Descrizione	Rck	E	Gamma	Poisson	G	Alfa
	C25/30	300	314471	0.0025	0.1	142941	0.00001
	C28/35	350	325881	0.0025	0.1	148127.76	0.00001
	C32/40	400	336428	0.0025	0.1	152921.72	0.00001

Ove:

AUTOSTRADA REGIONALE CISPADANA dal casello di Reggiolo-Rolo sulla A22 al casello di Ferrara Sud sulla A13

PROGETTO DEFINITIVO

OPERE STRUTTURALI

ARCHITETTONICI CENTRO SICUREZZA AUTOSTRADALE (S.Felice sul Panaro)

RELAZIONE DI CALCOLO STRUTTURE

Rck: Resistenza caratteristica cubica; valore medio nel caso di edificio esistente. [daN/cm2]

E: Modulo di elasticità longitudinale del materiale. [daN/cm2]

Gamma: Peso specifico del materiale. [daN/cm3]

Poisson: Coefficiente di Poisson, viene impiegato nella modellazione di elementi bidimensionali. Il valore è adimensionale.

G: Modulo di elasticità tangenziale del materiale, viene impiegato nella modellazione di aste. [daN/cm2]

Alfa: Coefficiente longitudinale di dilatazione termica. [°C-1]

Descrizione	fyk	Sigma amm.	Tipo	E	Gamma	Poisson	G	Alfa	Livello di
									conoscenza
B450C	4500	2550	Aderenza	2100000	0.00785	0.3	807692.31	0.000012	Nuovo
B450C	4500	2550	Aderenza migliorata	2100000	0.00785	0.3	807692.31		0.000012

Ove:

Descrizione: Descrizione o nome assegnato all'elemento.

fyk: Resistenza caratteristica. [daN/cm2]

Sigma amm.: Tensione ammissibile. [daN/cm2]

Tipo: Tipo di barra.

E: Modulo di elasticità longitudinale del materiale. [daN/cm2]

Gamma: Peso specifico del materiale. [daN/cm3]

Poisson: Coefficiente di Poisson, viene impiegato nella modellazione di elementi bidimensionali. Il valore è adimensionale.

G: Modulo di elasticità tangenziale del materiale, viene impiegato nella modellazione di aste. [daN/cm2]

Alfa: Coefficiente longitudinale di dilatazione termica. [°C-1]

Livello di conoscenza: Indica se il materiale è nuovo o esistente, e in tal caso il livello di conoscenza secondo Circ. 02/02/09 n. 617 §C8A. Informazione impiegata solo in analisi D.M. 14-01-08 (N.T.C.).

13.2. MODELLAZIONE ELEMENTI STRUTTURALI

Le sezioni utilizzate nella modellazione sono individuate da una sigla identificativa ed un codice numerico (gli elementi strutturali richiamano quest'ultimo nella propria descrizione). Per ogni sezione vengono riportati in tabella i seguenti dati:

Descrizione	Area Tx FEM	Area Ty FEM	JxFEM	JyFEM	JtFEM	Н	В	c.s.	c.i.	c.l.
R 50*50	2083.33	2083.33	520833.33	520833.33	770833.33	50	50	3	3	3
R 80*45	3000	3000	607500	1920000	1.569E06	45	80	3	3	3
R 70*45	2625	2625	531562.5	1286250	1.265E06	45	70	3	3	3
R 50*120	5000	5000	7200000	1250000	3687500	120	50	3	3	3
R 90*170	12750	12750	36847500	10327500	27531900	170	90	4	4	4
R 60*100	5000	5000	5000000	1800000	4478400	100	60	4	4	4

Ove:

Descrizione: Descrizione o nome assegnato all'elemento.

Area Tx FEM: Area di taglio in direzione X per l'analisi FEM. [cm2] Area Ty FEM: Area di taglio in direzione Y per l'analisi FEM. [cm2] JxFEM: Momento di inerzia attorno all'asse X per l'analisi FEM. [cm4] JyFEM: Momento di inerzia attorno all'asse Y per l'analisi FEM. [cm4]

JtFEM: Momento d'inerzia torsionale corretto con il fattore di forma per l'analisi FEM. [cm4]

H: Altezza della sezione. [cm] B: Larghezza della sezione. [cm]

c.s.: Copriferro superiore della sezione. [cm] c.i.: Copriferro inferiore della sezione. [cm] c.l.: Copriferro laterale della sezione. [cm]

Infine si riporta una rappresentazione 3D del modello di calcolo strutturale adottato:

AUTOSTRADA REGIONALE CISPADANA dal casello di Reggiolo-Rolo sulla A22 al casello di Ferrara Sud sulla A13

PROGETTO DEFINITIVO

OPERE STRUTTURALI

ARCHITETTONICI CENTRO SICUREZZA AUTOSTRADALE (S.Felice sul Panaro)

RELAZIONE DI CALCOLO STRUTTURE

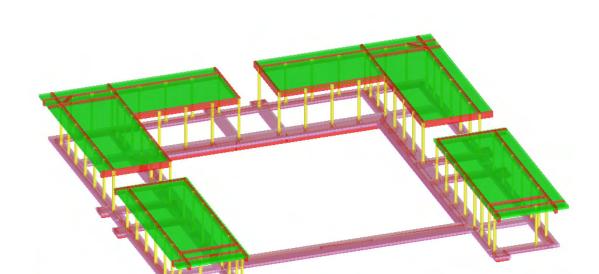


Figura 13.2 - 1 - Viste 3D solide: modello di calcolo fondazioni

13.3. CONDIZIONI DI CARICO

Nella tabella successiva vengono riportate le condizioni di carico elementari considerate:

Descrizione	Nome breve	I/II	Durata	Psi0	Psi1	Psi2
Pesi strutturali	Pesi		Permanente	0	0	0
Permanenti portati	Port.	I	Permanente	0	0	0
Neve	Neve	I	Media	0.5	0.2	0

Ove:

Descrizione: Nome assegnato alla condizione elementare.

Nome breve: Nome breve assegnato alla condizione elementare.

I/II: Descrive la classificazione della condizione (necessario per strutture in acciaio e in legno).

Durata: Descrive la durata della condizione (necessario per strutture in legno).

Psi0: Coefficiente moltiplicatore Psi0. Il valore è adimensionale. Psi1: Coefficiente moltiplicatore Psi1. Il valore è adimensionale. Psi2: Coefficiente moltiplicatore Psi2. Il valore è adimensionale.

Var.segno: Descrive se la condizione elementare ha la possibilità di variare di segno.

13.4. COMBINAZIONI DI CARICO

Il programma combina le varie condizioni di carico secondo le regole previste dalla normativa vigente.

AUTOSTRADA REGIONALE CISPADANA

REGIONE EMILIA ROMAGNA

AUTOSTRADA REGIONALE CISPADANA dal casello di Reggiolo-Rolo sulla A22 al casello di Ferrara Sud sulla A13

PROGETTO DEFINITIVO

OPERE STRUTTURALI ARCHITETTONICI

CENTRO SICUREZZA AUTOSTRADALE (S.Felice sul Panaro)

RELAZIONE DI CALCOLO STRUTTURE

Le combinazioni previste sono destinate al controllo di sicurezza della struttura ed alla verifica degli spostamenti e delle sollecitazioni.

Tutte le combinazioni di carico vengono raggruppate per famiglia di appartenenza. Le celle di una riga contengono i coefficienti moltiplicatori della i-esima combinazione, dove il valore della prima cella è da intendersi come moltiplicatore associato alla prima condizione elementare, la seconda cella si riferisce alla seconda condizione elementare e così via.

Famiglia SLU

Il nome compatto della famiglia è SLU.

Nome	Nome breve	Pesi	Port.	Neve	Dt
1	SLU 1	1	0	0	0
2	SLU 2 (GEO)		0	1.3	0
3	SLU 3 (GEO)		1.3	0	0
4	SLU 4 (GEO)	1	1.3	1.3	0
5	SLU 5 (STR)	1.3	0	1.5	
6	SLU 6 (STR)	1.3	1.5	0	0
7	SLU 7 (STR)	1.3	1.5	1.5	0

Famiglia SLE rara

Il nome compatto della famiglia è SLE RA.

Nome	Nome breve	Pesi	Port.	Neve	Dt
1	SLE RA 1	1	1	0	0
2	SLE RA 2	1	1	1	0

Famiglia SLE frequente

Il nome compatto della famiglia è SLE FR.

Nome	Nome breve	Pesi	Port.	Neve	Dt
1	SLE FR 1	1	1	0	0
2	SLE FR 2	1	1	0.2	0

Famiglia SLE quasi permanente

Il nome compatto della famiglia è SLE QP.

Nome	Nome breve	Pesi	Port.	Neve	Dt
1	SLE QP 1	1	1	0	0

Famiglia SLD

Il nome compatto della famiglia è SLD.

Nome	Nome breve	Pesi	Port.	Neve	Dt	X SLD	YSLD	ZSLD	EYSLD	EX SLD
1	SLD 1	1	1	0	0	-1	-0.3	0	-1	0.3
2	SLD 2	1	1	0	0	-1	-0.3	0	1	-0.3
3	SLD 3	1	1	0	0	-1	0.3	0	-1	0.3
4	SLD 4	1	1	0	0	-1	0.3	0	1	-0.3
5	SLD 5	1	1	0	0	-0.3	-1	0	-0.3	1
6	SLD 6	1	1	0	0	-0.3	-1	0	0.3	-1
7	SLD 7	1	1	0	0	-0.3	1	0	-0.3	1
8	SLD 8	1	1	0	0	-0.3	1	0	0.3	-1
9	SLD 9	1	1	0	0	0.3	-1	0	-0.3	1
10	SLD 10	1	1	0	0	0.3	-1	0	0.3	-1
11	SLD 11	1	1	0	0	0.3	1	0	-0.3	1
12	SLD 12	1	1	0	0	0.3	1	0	0.3	-1
13	SLD 13	1	1	0	0	1	-0.3	0	-1	0.3
14	SLD 14	1	1	0	0	1	-0.3	0	1	-0.3
15	SLD 15	1	1	0	0	1	0.3	0	-1	0.3
16	SLD 16	1	1	0	0	1	0.3	0	1	-0.3

AUTOSTRADA REGIONALE CISPADANA dal casello di Reggiolo-Rolo sulla A22 al casello di Ferrara Sud sulla A13

PROGETTO DEFINITIVO

OPERE STRUTTURALI

ARCHITETTONICI CENTRO SICUREZZA AUTOSTRADALE (S.Felice sul Panaro)

RELAZIONE DI CALCOLO STRUTTURE

Famiglia SLV fondazioni

Il nome compatto della famiglia è SLV FO.

Nome	Nome breve	Pesi	Port.	Neve	Dt	X SLV	Y SLV	ZSLV	EYSLV	EX SLV
1	SLV FO 1	1.1	1.1	0	0	-1.1	-0.33	0	-1.1	0.33
2	SLV FO 2	1.1	1.1	0	0	-1.1	-0.33	0	1.1	-0.33
3	SLV FO 3	1.1	1.1	0	0	-1.1	0.33	0	-1.1	0.33
4	SLV FO 4	1.1	1.1	0	0	-1.1	0.33	0	1.1	-0.33
5	SLV FO 5	1.1	1.1	0	0	-0.33	-1.1	0	-0.33	1.1
6	SLV FO 6	1.1	1.1	0	0	-0.33	-1.1	0	0.33	-1.1
7	SLV FO 7	1.1	1.1	0	0	-0.33	1.1	0	-0.33	1.1
8	SLV FO 8	1.1	1.1	0	0	-0.33	1.1	0	0.33	-1.1
9	SLV FO 9	1.1	1.1	0	0	0.33	-1.1	0	-0.33	1.1
10	SLV FO 10	1.1	1.1	0	0	0.33	-1.1	0	0.33	-1.1
11	SLV FO 11	1.1	1.1	0	0	0.33	1.1	0	-0.33	1.1
12	SLV FO 12	1.1	1.1	0	0	0.33	1.1	0	0.33	-1.1
13	SLV FO 13	1.1	1.1	0	0	1.1	-0.33	0	-1.1	0.33
14	SLV FO 14	1.1	1.1	0	0	1.1	-0.33	0	1.1	-0.33
15	SLV FO 15	1.1	1.1	0	0	1.1	0.33	0	-1.1	0.33
16	SLV FO 16	1.1	1.1	0	0	1.1	0.33	0	1.1	-0.33

Famiglia Calcolo rigidezza torsionale/flessionale di piano

Il nome compatto della famiglia è CRTFP.

Nome	Nome breve	R Ux	R Uy	R Rz
Rig. Ux+	CRTFP Ux+	1	0	0
Rig. Ux-	CRTFP Ux-	-1	0	0
Rig. Uy+	CRTFP Uy+	0	1	0
Rig. Uy-	CRTFP Uy-	0	-1	0
Rig. Rz+	CRTFP Rz+	0	0	1
Rig. Rz-	CRTFP Rz-	0	0	-1

Famiglia P delta

Il nome compatto della famiglia è PTH.

Unica per metodo P-Delta Pd 1 1 1 1 0	Nome	Nome breve	Pesi	Port.	Neve	Dt
	Unica per metodo P-Delta	Pd	1	1	1	0

Figura 13.4 - 1 - Parametri combinazioni di carico

AUTOSTRADA REGIONALE CISPADANA dal casello di Reggiolo-Rolo sulla A22 al casello di Ferrara Sud sulla A13

PROGETTO DEFINITIVO

OPERE STRUTTURALI

ARCHITETTONICI

AUTOSTRADA REGIONALE CISPADANA dal casello di Reggiolo-Rolo sulla A22 al casello di Ferrara Sud sulla A13

PROGETTO DEFINITIVO

OPERE STRUTTURALI

ARCHITETTONICI CENTRO SICUREZZA AUTOSTRADALE (S.Felice sul Panaro)

RELAZIONE DI CALCOLO STRUTTURE

14. ANALISI DELLA SOLLECITAZIONE EDIFICI 1 - 2

Di seguito si riportano i risultati ottenuti relativamente all'analisi sismica, all'inviluppo delle sollecitazioni.

14.1. RISULTATI DELL'ANALISI SISMICA

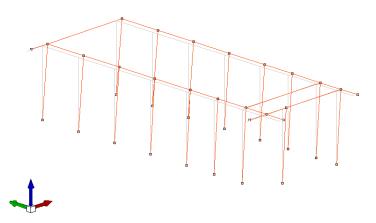
14.1.1. RISULTATI ANALISI MODALE

Nella seguente tabella si riportano i risultati dell'analisi modale:

Modo	Periodo	Massa X	Massa Y	Massa Z	Massa rot X	Massa rot Y	Massa rot Z
1	1.004908529	0.980802785	0.000451339	0	0.000451339	0.980802785	0.513444085
2	0.7938815	0.018687365	0.096636247	0	0.096636247	0.018687365	0.312434506
3	0.685991565	0.00050985	0.902912414	0	0.902912414	0.00050985	0.174121409

Totale masse partecipanti:

Traslazione X: 1 Traslazione Y: 1 Traslazione Z: 0 Rotazione X: 1 Rotazione Y: 1 Rotazione Z: 1


Ove:

Modo: Identificativo del modo di vibrare.

Periodo: Periodo. [s]

Massa X: Massa partecipante in direzione globale X. Il valore è adimensionale. Massa Y: Massa partecipante in direzione globale Y. Il valore è adimensionale. Massa Z: Massa partecipante in direzione globale Z. Il valore è adimensionale.

Massa rot X: Massa rotazionale partecipante attorno la direzione globale X. Il valore è adimensionale. Massa rot Y: Massa rotazionale partecipante attorno la direzione globale Y. Il valore è adimensionale. Massa rot Z: Massa rotazionale partecipante attorno la direzione globale Z. Il valore è adimensionale.

AUTOSTRADA REGIONALE CISPADANA dal casello di Reggiolo-Rolo sulla A22 al casello di Ferrara Sud sulla A13

PROGETTO DEFINITIVO

OPERE STRUTTURALI

ARCHITETTONICI

CENTRO SICUREZZA AUTOSTRADALE (S.Felice sul Panaro)
RELAZIONE DI CALCOLO STRUTTURE

Figura 14.1.1 – 1 – Deformata 1° Modo

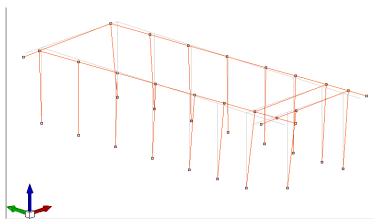


Figura 14.1.1 – 2 – Deformata 2° Modo

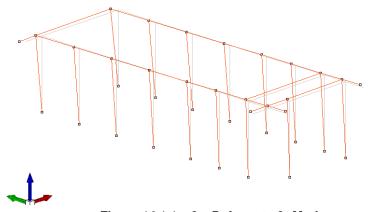


Figura 14.1.1 – 3 – Deformata 3° Modo

14.1.2. TAGLI AI LIVELLI

Nella seguente tabella si riportano i tagli ai livelli nelle condizioni elementari SISMA x e SISMA Y:

Livello	Cont.		Totale			Aste verticali			Pareti		
Nome	n.br.	F				F			F		
		Х	Υ	Z	Х	Υ	Z	Х	Y	Z	
Fondazione	Pesi	0	0	-668536	0	0	-668536	0	0	0	
Fondazione	Port.	0	0	-149077	0	0	-149077	0	0	0	
Fondazione	Neve	0	0	-59631	0	0	-59631	0	0	0	
Fondazione	X SLV	60570	2252	-53	60570	2252	-53	0	0	0	
Fondazione	Y SLV	-2950	84581	40	-2950	84581	40	0	0	0	
Fondazione	EY SLV	0	0	0	0	0	0	0	0	0	
Fondazione	EX SLV	0	0	0	0	0	0	0	0	0	
Fondazione	X SLD	63578	2364	-56	63578	2364	-56	0	0	0	
Fondazione	Y SLD	-3097	88786	42	-3097	88786	42	0	0	0	
Fondazione	EY SLD	0	0	0	0	0	0	0	0	0	
Fondazione	EX SLD	0	0	0	0	0	0	0	0	0	
Fondazione	R Ux	1	0	0	1	0	0	0	0	0	

AUTOSTRADA REGIONALE CISPADANA dal casello di Reggiolo-Rolo sulla A22 al casello di Ferrara Sud sulla A13

PROGETTO DEFINITIVO

OPERE STRUTTURALI

ARCHITETTONICI

CENTRO SICUREZZA AUTOSTRADALE (S.Felice sul Panaro)

RELAZIONE DI CALCOLO STRUTTURE

Livello	Cont.	Totale				Aste verticali			Pareti			
Nome	n.br.		F			F			F			
		Х	Υ	Z	Х	Υ	Z	Х	Υ	Z		
Fondazione	R Uy	0	1	0	0	1	0	0	0	0		
Fondazione	R Rz	0	0	0	0	0	0	0	0	0		

Ove:

Livello: Livello rispetto a cui è calcolato il taglio.

Nome: Nome completo del livello.

Cont.: Contesto nel quale viene valutato il taglio.

n.br.: Nome breve della condizione o combinazione di carico.

AUTOSTRADA REGIONALE CISPADANA

Totale: Totale del taglio al livello.

F: Forza del taglio. [daN]

X: Componente lungo l'asse X globale. [daN]

Y: Componente lungo l'asse Y globale. [daN]

Z: Componente lungo l'asse Z globale. [daN]

Aste verticali: Contributo al taglio totale dato dalle aste verticali.

F: Forza del taglio. [daN]

X: Componente lungo l'asse X globale. [daN]

Y: Componente lungo l'asse Y globale. [daN]

Z: Componente lungo l'asse Z globale. [daN]

Pareti: Contributo al taglio totale dato dalle pareti e piastre generiche verticali.

F: Forza del taglio. [daN]

X: Componente lungo l'asse X globale. [daN]

Y: Componente lungo l'asse Y globale. [daN]

Z: Componente lungo l'asse Z globale. [daN

14.1.3. EQUILIBRIO DELLE FORZE

Bilancio in condizione di carico: Pesi strutturali

Contributo	Fx	Fy	Fz	Mx	Му	Mz
Applicate	0	0	-668536.05	1174287096	357226787	0
Reazioni	0	0	668536.05	-1174299303	-357210021	0
PDelta	0	0	0	-1174299303	-357210021	0
Totale	0	0	0	2	1	0

Bilancio in condizione di carico: Permanenti portati

Contributo	Fx	Fy	Fz	Mx	My	Mz
Applicate	0	0	-149077.5	262749094	76148109	0
Reazioni	0	0	149077.5	-262753260	-76143367	0
PDelta	0	0	0	-262753260	-76143367	0
Totale	0	0	n	1	1	0

Bilancio in condizione di carico: Neve

Contributo	Fx	Fy	Fz	Mx	My	Mz
Applicate	0	0	-59631	105099637	30459244	0
Reazioni	0	0	59631	-105101304	-30457347	0
PDelta	0	0	0	-105101304	-30457347	0
Totale	0	0	0	1	0	0

Bilancio in condizione di carico: Sisma X SLV

Contributo	Fx	Fy	Fz	Mx	My	Mz
Applicate	140588.916	0	0	0	108956410	247031904
Reazioni	-140588.916	0	0	17233	-112727507	-247031904
PDelta	0	0	0	17233	-112727507	-247031904
Totale	0	0	0	151	60	0

Bilancio in condizione di carico: Sisma Y SLV

Contributo	Fx	Fy	Fz	Mx	Му	Mz
Applicate	0	140588.916	0	-108956410	0	73900502
Reazioni	0	-140588.916	0	110785693	-17130	-73900502
PDelta	0	0	0	110785693	-17130	-73900502
Totale	0	0	0	138	55	0

AUTOSTRADA REGIONALE CISPADANA dal casello di Reggiolo-Rolo sulla A22 al casello di Ferrara Sud sulla A13

PROGETTO DEFINITIVO

OPERE STRUTTURALI

ARCHITETTONICI

CENTRO SICUREZZA AUTOSTRADALE (S.Felice sul Panaro)

RELAZIONE DI CALCOLO STRUTTURE

Bilancio in condizione di carico: Eccentricità Y per sisma X SLV

Contributo	Fx	Fy	Fz	Mx	Му	Mz
Applicate	0	0	0	0	0	-24813944
Reazioni	0	0	0	26153	-28314	24813944
PDelta	0	0	0	26153	-28314	24813944
Totale	0	0	0	256	102	0

Bilancio in condizione di carico: Eccentricità X per sisma Y SLV

Contributo	Fx	Fy	Fz	Mx	Му	Mz
Applicate	0	0	0	0	0	10052107
Reazioni	0	0	0	-10594	11470	-10052107
PDelta	0	0	0	-10594	11470	-10052107
Totale	0	0	0	-104	-41	0

Bilancio in condizione di carico: Sisma X SLD

Contributo	Fx	Fy	Fz	Mx	Му	Mz
Applicate	147582.338	0	0	0	114376312	259320200
Reazioni	-147582.338	0	0	18090	-118334997	-259320200
PDelta	0	0	0	18090	-118334997	-259320200
Totale	0	0	0	158	63	0

Bilancio in condizione di carico: Sisma Y SLD

Contributo	Fx	Fy	Fz	Mx	Му	Mz
Applicate	0	147582.338	0	-114376312	0	77576591
Reazioni	0	-147582.338	0	116296591	-17982	-77576591
PDelta	0	0	0	116296591	-17982	-77576591
Totale	0	0	0	145	58	0

Bilancio in condizione di carico: Eccentricità Y per sisma X SLD

Contributo	Fx	Fy	Fz	Mx	Му	Mz
Applicate	0	0	0	0	0	-26048283
Reazioni	0	0	0	27454	-29722	26048283
PDelta	0	0	0	27454	-29722	26048283
Totale	0	0	0	268	107	0

Bilancio in condizione di carico: Eccentricità X per sisma Y SLD

Contributo	Fx	Fy	Fz	Mx	Му	Mz
Applicate	0	0	0	0	0	10552137
Reazioni	0	0	0	-11121	12041	-10552137
PDelta	0	0	0	-11121	12041	-10552137
Totale	0	0	0	-109	-43	0

Bilancio in condizione di carico: Rig. Ux

Contributo	Fx	Fy	Fz	Mx	My	Mz
Applicate	1	0	0	0	775	1757
Reazioni	-1	0	0	0	-802	-1757
PDelta	0	0	0	0	-802	-1757
Totale	0	0	0	0	0	0

Bilancio in condizione di carico: Rig. Uy

Contributo	Fx	Fy	Fz	Mx	My	Mz
Applicate	0	1	0	-775	0	526
Reazioni	0	-1	0	788	0	-526
PDelta	0	0	0	788	0	-526
Totale	0	0	0	0	0	0

Bilancio in condizione di carico: Rig. Rz

Contributo	Fx	Fy	Fz	Mx	My	Mz
Applicate	0	0	0	0	0	1
Reazioni	0	0	0	0	0	-1
PDelta	0	0	0	0	0	-1
Totale	0	0	0	0	0	0

AUTOSTRADA REGIONALE CISPADANA dal casello di Reggiolo-Rolo sulla A22 al casello di Ferrara Sud sulla A13

PROGETTO DEFINITIVO

OPERE STRUTTURALI
ARCHITETTONICI

CENTRO SICUREZZA AUTOSTRADALE (S.Felice sul Panaro)
RELAZIONE DI CALCOLO STRUTTURE

14.1.4. SPOSTAMENTI DI INTERPIANO ESTREMI

La seguente tabella mostraa gli spostamenti estremi per ogni interpiano in ognuna delle combinazioni di carico. Per spostamenti estremi si intendono i primi 5 spostamenti massimi tra tutti gli interpiani che condividono la stessa quota iniziale e la stessa quota finale.

	Nodo	inferiore			superiore	Spost. rel.	Comb.	Spostament		Spostamen		S.V.
I.	X	Pos.	l Z	I.	Pos.		n.b.	Х	Υ	Х	Υ	
17	25	-25	-50	38	775	0.004161	SLD 1	0	0	-3.331	-0.827	si
18	1150	-25		39	775	0.004042	SLD 1	0	0		-0.151	si
15	25	-555	-50	35	775	0.00371	SLD 1	0	0	-2.947	-0.827	si
16	1150 25	-555 -1080	-50 -50	36 33	775 775	0.003577	SLD 1 SLD 1	0	0		-0.151 -0.827	si si
4	1150	-3250	-50	24	775	0.002652	SLD 2	0	0	-2.116	-0.556	si
6	1150	-2950		26	775	0.002622	SLD 2	0	0	-2.09	-0.556	si
3	325	-3250	-50	23	775	0.002615	SLD 2	0	0	-2.116	-0.42	si.
7 5	1150 25	-2537.4 -2950	-50 -50	27 25	775 775	0.002584	SLD 2 SLD 2	0	0	-2.058 -2.09	-0.556 -0.369	si si
18	1150	-25	-50	39	775	0.002575	SLD 3	0	0	-2.92	0.728	si
17	25	-25	-50	38	775	0.00354	SLD 3	0	0		-0.067	si
16	1150	-555	-50	36	775	0.003356	SLD 3	0	0		0.728	si
15 14	25 1150	-555 -1080	-50 -50	35 34	775 775	0.003239	SLD 3 SLD 3	0	0	-2.671 -2.428	-0.067 0.728	si si
3	325	-3250		23	775	0.003072	SLD 3	0	0	-2.534	0.728	si
4	1150	-3250	-50	24	775	0.003096	SLD 4	0	0	-2.534	0.323	si
5	25	-2950	-50	25	775	0.002985	SLD 4	0	0		0.39	si
6	1150	-2950	-50	26	775	0.002973	SLD 4	0	0		0.323	si
17	25 25	-2535	-50 -50	28 38	775 775	0.00282	SLD 4 SLD 5	0	0		0.39	si
18	1150	-25 -25	-50 -50	39	775	0.002894	SLD 5	0	0		-1.487 -1.327	si si
15	25	-555	-50	35	775	0.002545	SLD 5	0	0		-1.487	si
16	1150	-555	-50	36	775	0.002411	SLD 5	0	0		-1.327	si
13	25	-1080		33	775	0.002243	SLD 5	0	0	-1.102	-1.487	si
18	1150 1150	-25 -555	-50 -50	39 36	775 775	0.002257	SLD 6 SLD 6	0	0		-1.582 -1.582	si si
14	1150	-1080	-50	34	775	0.002178	SLD 6	0	0	-0.725	-1.582	si
12	1150	-1605	-50	32	775	0.002066	SLD 6	0	0		-1.582	si
10	1150	-2130		30	775	0.001997	SLD 6	0	0	-0.46	-1.582	si
4	1150	-3250	-50	24	775	0.002241	SLD 7	0	0	-0.922	1.603	si
6	1150 1150	-2950 -2537.4	-50 -50	26 27	775 775	0.002217	SLD 7 SLD 7	0	0	-0.881 -0.826	1.603	si si
10	1150	-2130	-50	30	775	0.002157	SLD 7	0	0		1.603	si
12	1150	-1605	-50	32	775	0.0021	SLD 7	0	0	-0.658	1.603	si
4	1150	-3250	-50	24	775	0.002529	SLD 8	0	0	-1.592	1.348	si
3	325	-3250	-50	23	775 775	0.002507	SLD 8 SLD 8	0	0		1.32	si.
- 6 - 5	1150 25	-2950 -2950	-50 -50	26 25	775	0.002361	SLD 8	0	0		1.348	si si
7	1150	-2537.4	-50	27	775	0.002149	SLD 8	0	0		1.348	si
4	1150	-3250		24	775	0.002506	SLD 9	0	0	1.528	-1.392	si
3	325	-3250	-50	23	775	0.002478	SLD 9	0	0	1.528	-1.358	si
- 6 - 5	1150 25	-2950 -2950	-50 -50	26 25	775 775	0.002346	SLD 9 SLD 9	0	0	1.345	-1.392 -1.367	si si
7	1150	-2537.4	-50	27	775	0.002324	SLD 9	0	0	1.094	-1.392	si
4	1150	-3250		24	775	0.002251	SLD 10	0	0	0.858	-1.647	si
6	1150	-2950		26	775	0.00223	SLD 10	0	0	0.819	-1.647	si
7 10	1150 1150	-2537.4		27	775 775	0.002203	SLD 10 SLD 10	0	0		-1.647	si
12	1150	-2130 -1605	-50 -50	30 32	775	0.002179	SLD 10 SLD 10	0	0	0.719	-1.647 -1.647	si si
18	1150	-25	-50	39	775	0.002123	SLD 11	0	0	0.945	1.538	si
16	1150	-555	-50	36	775	0.002107	SLD 11	0	0	0.811	1.538	si
14	1150	-1080	-50	34	775	0.002038	SLD 11	0	0	0.679	1.538	si
12	1150 1150	-1605 -2130	-50 -50	32 30	775 775	0.001993	SLD 11 SLD 11	0	0	0.583	1.538 1.538	si si
17	25	-2130	-50 -50	38	775	0.001928	SLD 11 SLD 12	0	0	1.831	1.452	si
18	1150	-25	-50	39	775	0.00271	SLD 12	0	0	1.831	1.283	si
15	25	-555	-50	35	775	0.00248	SLD 12	0	0	1.441	1.452	si
16	1150	-555 -1000	-50	36	775	0.002338	SLD 12	0	0	1.441	1.283	si
13	25 325	-1080 -3250	-50 -50	33 23	775 775	0.002177	SLD 12 SLD 13	0	0	1.056 2.47	1.452	si si
4	1150	-3250		24	775	0.003027	SLD 13	0	0		-0.367	si
5	25	-2950	-50	25	775	0.002919	SLD 13	0	0	2.37	-0.425	si
6	1150	-2950		26	775	0.002907	SLD 13	0	0	2.37	-0.367	si
18	25 1150	-2535 -25		28 39	775 775	0.002758	SLD 13 SLD 14	0	0	2.235	-0.425 -0.773	si
17	25	-25		39	775	0.003495	SLD 14 SLD 14	0	0		0.032	si si
16	1150	-555		36	775	0.003323	SLD 14	0	0		-0.773	si
15	25	-555		35	775	0.003188	SLD 14	0	0		0.032	si
14	1150	-1080		34	775	0.003035	SLD 14	0	0	2.382	-0.773	si
6	1150 1150	-3250 -2950		24	775 775	0.002563	SLD 15 SLD 15	0	0	2.052	0.512	si si
3	325	-3250		23	775	0.00253	SLD 15	0	0		0.312	si
7	1150	-2537.4	-50	27	775	0.002502	SLD 15	0	0	2	0.512	si
5	25	-2950	-50	25	775	0.002492	SLD 15	0	0	2.029	0.334	si
	DD 0 C03										Dogina E4	

AUTOSTRADA REGIONALE CISPADANA dal casello di Reggiolo-Rolo sulla A22 al casello di Ferrara Sud sulla A13

PROGETTO DEFINITIVO

OPERE STRUTTURALI
ARCHITETTONICI

CENTRO SICUREZZA AUTOSTRADALE (S.Felice sul Panaro)

RELAZIONE DI CALCOLO STRUTTURE

	Nodo inferiore			Nodo	superiore	Spost. rel.	Spost. rel. Comb.		to inferiore	Spostamento superiore		S.V.
I.		Pos.		I.	Pos.		n.b.	X	Υ	Х	Υ	
	Х	Υ	Z		Z							
17	25	-25	-50	38	775	0.004107	SLD 16	0	0	3.295	0.792	si
18	1150	-25	-50	39	775	0.003996	SLD 16	0	0	3.295	0.106	si
15	25	-555	-50	35	775	0.003651	SLD 16	0	0	2.906	0.792	si
16	1150	-555	-50	36	775	0.003525	SLD 16	0	0	2.906	0.106	si
13	25	-1080	-50	33	775	0.003207	SLD 16	0	0	2.525	0.792	si

Ove:

Nodo inferiore: Nodo inferiore.

I.: Numero dell'elemento nell'insieme che lo contiene.

Pos.: Coordinate del nodo. X: Coordinata X. [cm] Y: Coordinata Y. [cm] Z: Coordinata Z. [cm]

Nodo superiore: Nodo superiore.

I.: Numero dell'elemento nell'insieme che lo contiene.

Pos.: Coordinate del nodo. Z: Coordinata Z. [cm]

Spost. rel.: Spostamento relativo. Il valore è adimensionale.

Comb.: Combinazione.

n.b.: Nome breve o compatto della combinazione di carico. Spostamento inferiore: Spostamento in pianta del nodo inferiore.

X: Coordinata X. [cm] Y: Coordinata Y. [cm]

Spostamento superiore: Spostamento in pianta del nodo superiore.

X: Coordinata X. [cm] Y: Coordinata Y. [cm]

S.V.: Si intende non verificato qualora lo spostamento relativo sia superiore al valore limite espresso nelle preferenze di analisi.

limite SLD = 0.01

14.1.5. VERIFICA EFFETTI SECONDO ORDINE

Come si evince dalla seguente tabella la verifica di cui al paragrafo §7.3.1 delle NTC2008 è soddisfatta, avendo attivato l'analisi P-Delta (0.1<theta massimo =0.11 < 0.2):

Quota inf.	Quota sup.	Comb.	Carico verticale	Spostamento	Forza orizzontale totale	Altezza del piano	Theta
		n.b.					
L1	L2	SLV 1	817572	7.553	65768	825	0.114
L1	L2	SLV 2	817572	7.295	65768	825	0.11
L1	L2	SLV 3	817548	7.578	65661	825	0.114
L1	L2	SLV 4	817548	7.332	65661	825	0.111
L1	L2	SLV 5	817638	5.387	86605	825	0.062
L1	L2	SLV 6	817638	5.302	86605	825	0.061
L1	L2	SLV 7	817557	5.326	86523	825	0.061
L1	L2	SLV 8	817557	5.274	86523	825	0.06
L1	L2	SLV 9	817670	5.325	86523	825	0.061
L1	L2	SLV 10	817670	5.37	86523	825	0.062
L1	L2	SLV 11	817589	5.096	86605	825	0.058
L1	L2	SLV 12	817589	5.178	86605	825	0.059
L1	L2	SLV 13	817679	7.172	65661	825	0.108
L1	L2	SLV 14	817679	7.416	65661	825	0.112
L1	L2	SLV 15	817655	7.077	65768	825	0.107
L1	L2	SLV 16	817655	7.336	65768	825	0.111

Ove:

Quota inf.: Quota inferiore esprimibile come livello, falda, piano orizzontale alla Z specificata, espressa con notazione breve. esprimibile come livello, falda, piano orizzontale alla Z specificata. [cm]

AUTOSTRADA REGIONALE CISPADANA dal casello di Reggiolo-Rolo sulla A22 al casello di Ferrara Sud sulla A13

PROGETTO DEFINITIVO

OPERE STRUTTURALI

ARCHITETTONICI CENTRO SICUREZZA AUTOSTRADALE (S.Felice sul Panaro)

RELAZIONE DI CALCOLO STRUTTURE

Quota sup.: Quota superiore esprimibile come livello, falda, piano orizzontale alla Z specificata, espressa con notazione breve. esprimibile come livello, falda, piano orizzontale alla Z specificata. [cm]

Comb.: Combinazione.

n.b.: Nome breve o compatto della combinazione di carico.

Carico verticale: Carico verticale. [daN]

Spostamento: Spostamento medio di interpiano. [cm] Forza orizzontale totale: Forza orizzontale totale. [daN]

Altezza del piano: Altezza del piano. [cm]

Theta: Coefficiente Theta formula (7.3.2) § 7.3.1 NTC 2008. Il valore è adimensionale.

14.1.6. VERIFICA DEFORMABILITA' TORSIONALE DELLA STRUTTURA

L'edificio non è qualificabile come struttura deformabile torsionalmente essendo r/ls minimo 0.99>0.8 (Valutazione pt. 4 § 7.4.3.1 NTC 2008):

Quota superiore	Quota inferiore	KUx	KUy	KRz	L	В	rx	ry	ls	rx/Is	ry/ls
L2	L1	31166	64252	7.613E010	1430	3530	1562.92	1088.51	1099	1.42	0.99

Ove:

Quota superiore: Quota superiore dell'interpiano per il quale è stata valutata la rigidezza relativa. esprimibile come livello, falda, piano orizzontale alla Z specificata. [cm]

Quota inferiore: Quota inferiore dell'interpiano per il quale è stata valutata la rigidezza relativa. esprimibile come livello, falda, piano orizzontale alla Z specificata. [cm]

KUx: Rigidezza relativa alla traslazione in direzione globale X. [daN/cm]

KUy: Rigidezza relativa alla traslazione in direzione globale Y. [daN/cm]

KRz: Rigidezza relativa alla rotazione attorno l'asse globale Z. [daN*cm/rad]

L: Dimensione in pianta, lungo l'asse globale X, dell'edificio, [cm]

B: Dimensione in pianta, lungo l'asse globale Y, dell'edificio. [cm]

rx: Radice quadrata del rapporto tra rigidezza torsionale e flessionale in X dell'interpiano. [cm]

ry: Radice quadrata del rapporto tra rigidezza torsionale e flessionale in Y dell'interpiano. [cm]

Is: Radice quadrata di (L^2+B^2)/12. [cm]

rx/ls: Rapporto rx/ls. Il valore è adimensionale.

ry/ls: Rapporto ry/ls. Il valore è adimensionale

AUTOSTRADA REGIONALE CISPADANA dal casello di Reggiolo-Rolo sulla A22 al casello di Ferrara Sud sulla A13

PROGETTO DEFINITIVO

OPERE STRUTTURALI

ARCHITETTONICI

CENTRO SICUREZZA AUTOSTRADALE (S.Felice sul Panaro)
RELAZIONE DI CALCOLO STRUTTURE

14.2. INVILUPPO SOLLECITAZIONI - PILASTRI

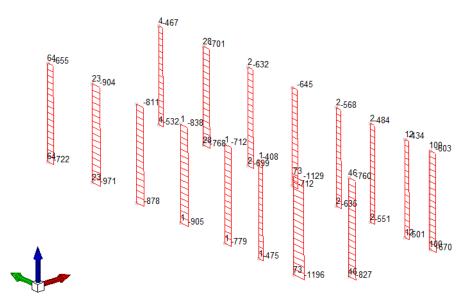


Figura 14.2 – 1 – Pilastri: inviluppo Sforzo normale N [kN]

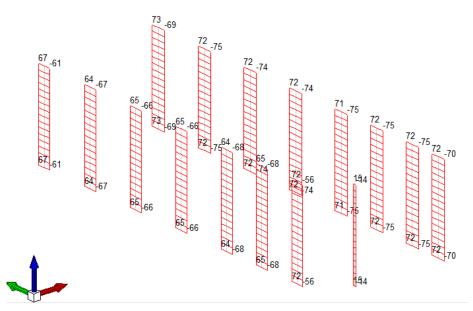


Figura 14.2 – 2 – Pilastri: inviluppo Taglio T 2-2 [kN]

AUTOSTRADA REGIONALE CISPADANA dal casello di Reggiolo-Rolo sulla A22 al casello di Ferrara Sud sulla A13

PROGETTO DEFINITIVO

OPERE STRUTTURALI

ARCHITETTONICI

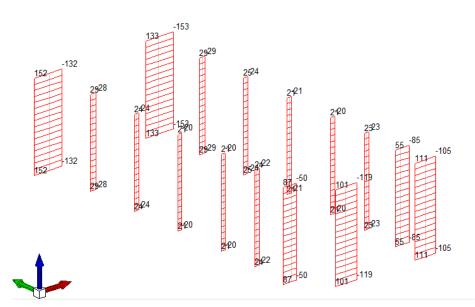
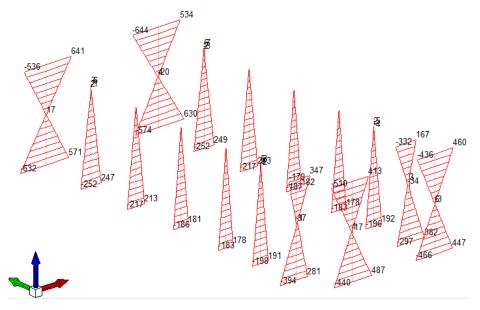



Figura 14.2 - 3 - Pilastri: inviluppo Taglio T 3-3 [kN]

AUTOSTRADA REGIONALE CISPADANA dal casello di Reggiolo-Rolo sulla A22 al casello di Ferrara Sud sulla A13

PROGETTO DEFINITIVO

OPERE STRUTTURALI

ARCHITETTONICI

Figura 14.2 – 4 – Pilastri: inviluppo Momento flettente M 2-2 [kN m]

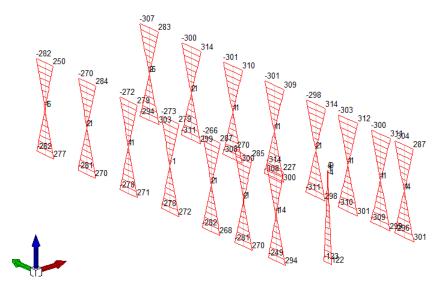


Figura 14.2 – 5 – Pilastri: inviluppo Momento flettente M 3-3 [kN m]

AUTOSTRADA REGIONALE CISPADANA dal casello di Reggiolo-Rolo sulla A22 al casello di Ferrara Sud sulla A13

PROGETTO DEFINITIVO

OPERE STRUTTURALI

ARCHITETTONICI CENTRO SICUREZZA AUTOSTRADALE (S.Felice sul Panaro)

RELAZIONE DI CALCOLO STRUTTURE

14.3. INVILUPPO SOLLECITAZIONI – TRAVI COPERTURA

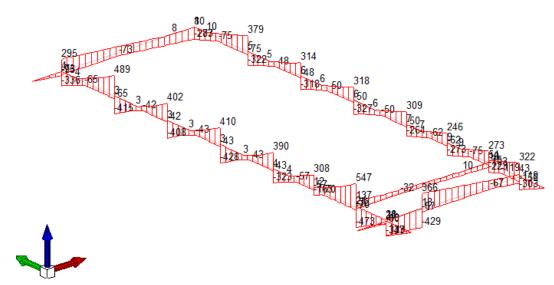


Figura 14.3 – 1 – Travi: inviluppo Taglio T 2-2 [kN]

Figura 14.3 – 2 – Travi: inviluppo Momento flettente M 3-3 [kN m]

AUTOSTRADA REGIONALE CISPADANA dal casello di Reggiolo-Rolo sulla A22 al casello di Ferrara Sud sulla A13

PROGETTO DEFINITIVO

OPERE STRUTTURALI

ARCHITETTONICI

AUTOSTRADA REGIONALE CISPADANA dal casello di Reggiolo-Rolo sulla A22 al casello di Ferrara Sud sulla A13

PROGETTO DEFINITIVO

OPERE STRUTTURALI

ARCHITETTONICI
CENTRO SICUREZZA AUTOSTRADALE (S.Felice sul Panaro)
RELAZIONE DI CALCOLO STRUTTURE

15. ANALISI DELLA SOLLECITAZIONE EDIFICI 2 - 3

Di seguito si riportano i risultati ottenuti relativamente all'analisi sismica, all'inviluppo delle sollecitazioni.

15.1. RISULTATI DELL'ANALISI SISMICA

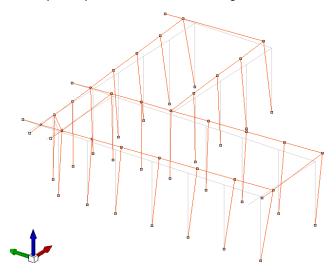
15.1.1. RISULTATI ANALISI MODALE

Nella seguente tabella si riportano i risultati dell'analisi modale:

Modo	Periodo	Massa X	Massa Y	Massa Z	Massa rot X	Massa rot Y	Massa rot Z
1	0.958234278	0.411578577	0.126444138	0	0.126444138	0.411578577	0.217175938
2	0.854588529	0.420487266	0.525275401	0	0.525275401	0.420487266	0.570606742
3	0.775696022	0.167934157	0.348280461	0	0.348280461	0.167934157	0.21221732

Totale masse partecipanti:

Traslazione X: 1 Traslazione Y: 1 Traslazione Z: 0 Rotazione X: 1 Rotazione Y: 1 Rotazione Z: 1


Ove:

Modo: Identificativo del modo di vibrare.

Periodo: Periodo. [s]

Massa X: Massa partecipante in direzione globale X. Il valore è adimensionale. Massa Y: Massa partecipante in direzione globale Y. Il valore è adimensionale. Massa Z: Massa partecipante in direzione globale Z. Il valore è adimensionale.

Massa rot X: Massa rotazionale partecipante attorno la direzione globale X. Il valore è adimensionale. Massa rot Y: Massa rotazionale partecipante attorno la direzione globale Y. Il valore è adimensionale. Massa rot Z: Massa rotazionale partecipante attorno la direzione globale Z. Il valore è adimensionale.

AUTOSTRADA REGIONALE CISPADANA dal casello di Reggiolo-Rolo sulla A22 al casello di Ferrara Sud sulla A13

PROGETTO DEFINITIVO

OPERE STRUTTURALI

ARCHITETTONICI

Figura 15.1.1 – 1 – Deformata 1° Modo

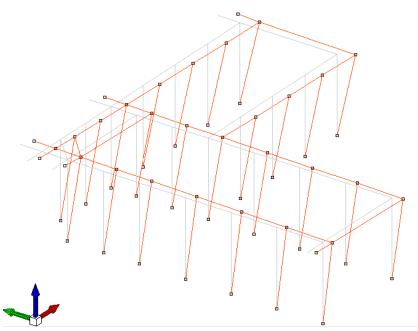


Figura 15.1.1 – 2 – Deformata 2° Modo

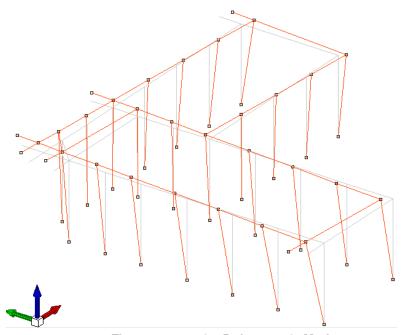


Figura 15.1.1 – 3 – Deformata 3° Modo

AUTOSTRADA REGIONALE CISPADANA dal casello di Reggiolo-Rolo sulla A22 al casello di Ferrara Sud sulla A13

PROGETTO DEFINITIVO

OPERE STRUTTURALI ARCHITETTONICI

CENTRO SICUREZZA AUTOSTRADALE (S.Felice sul Panaro)

RELAZIONE DI CALCOLO STRUTTURE

15.1.2. TAGLI AI LIVELLI

Nella seguente tabella si riportano i tagli ai livelli nelle condizioni elementari SISMA x e SISMA Y:

Livello	Cont.		Totale			Aste verticali			Pareti	
Nome	n.br.		F			F			F	
		X	Υ	Z	Х	Υ	Z	Х	Υ	Z
Fondazione	Pesi	0	0	-7995.32	0	0	-7995.32	0	0	0
Fondazione	Port.	0	0	-5512.37	0	0	-5512.37	0	0	0
Fondazione	Neve	0	0	-922.83	0	0	-922.83	0	0	0
Fondazione	X SLV	985.94	181.36	-53.25	985.94	181.36	-53.25	0	0	0
Fondazione	Y SLV	-0.6	1060.65	37.87	-0.6	1060.65	37.87	0	0	0
Fondazione	EY SLV	0	0	0	0	0	0	0	0	0
Fondazione	EX SLV	0	0	0	0	0	0	0	0	0
Fondazione	X SLD	1034.96	190.39	-55.9	1034.96	190.39	-55.9	0	0	0
Fondazione	Y SLD	-0.62	1113.37	39.75	-0.62	1113.37	39.75	0	0	0
Fondazione	EY SLD	0	0	0	0	0	0	0	0	0
Fondazione	EX SLD	0	0	0	0	0	0	0	0	0
Fondazione	R Ux	0.01	0	0	0.01	0	0	0	0	0
Fondazione	R Uy	0	0.01	0	0	0.01	0	0	0	0
Fondazione	R Rz	0	0	0	0	0	0	0	0	0

Ove:

Livello: Livello rispetto a cui è calcolato il taglio.

Nome: Nome completo del livello.

Cont.: Contesto nel quale viene valutato il taglio.

n.br.: Nome breve della condizione o combinazione di carico.

Totale: Totale del taglio al livello.

F: Forza del taglio. [daN]

X: Componente lungo l'asse X globale. [daN]

Y: Componente lungo l'asse Y globale. [daN]

Z: Componente lungo l'asse Z globale. [daN]

Aste verticali: Contributo al taglio totale dato dalle aste verticali.

F: Forza del taglio. [daN]

X: Componente lungo l'asse X globale. [daN]

Y: Componente lungo l'asse Y globale. [daN]

Z: Componente lungo l'asse Z globale. [daN]

Pareti: Contributo al taglio totale dato dalle pareti e piastre generiche verticali.

F: Forza del taglio. [daN]

X: Componente lungo l'asse X globale. [daN]

Y: Componente lungo l'asse Y globale. [daN]

Z: Componente lungo l'asse Z globale. [daN

15.1.3. EQUILIBRIO DELLE FORZE

Bilancio in condizione di carico: Pesi strutturali

Contributo	Fx	Fy	Fz	Mx	Му	Mz
Applicate	0	0	-7995.31827	-644985.9319	70646.4753	0
Reazioni	0	0	7995.31827	644985.9319	-70646.4753	0
PDelta	0	0	0	0	0	0
Totale	0	0	0	0	0	0

Bilancio in condizione di carico: Permanenti portati

Contributo	Fx	Fy	Fz	Mx	Му	Mz
Applicate	0	0	-5512.36511	-440284.6592	51470.5967	0
Reazioni	0	0	5512.36511	440284.6592	-51470.5967	0
PDelta	0	0	0	0	0	0
Totale	0	0	0	0	0	0

Bilancio in condizione di carico: Neve

Contributo	Fx	Fy	Fz	Mx	Му	Mz
Applicate	0	0	-922.82948	-74515.4592	7878.406	0
Reazioni	0	0	922.82948	74515.4592	-7878.406	0
PDelta	0	0	0	0	0	0

AUTOSTRADA REGIONALE CISPADANA dal casello di Reggiolo-Rolo sulla A22 al casello di Ferrara Sud sulla A13

PROGETTO DEFINITIVO

OPERE STRUTTURALI

ARCHITETTONICI

CENTRO SICUREZZA AUTOSTRADALE (S.Felice sul Panaro)

RELAZIONE DI CALCOLO STRUTTURE

١	Contributo	Fx	Fy	Fz	Mx	Му	Mz
	Totale	0	0	0	0	0	0

Bilancio in condizione di carico: Sisma X SLV

Contributo	Fx	Fy	Fz	Mx	My	Mz
Applicate	2325.09829	0	0	0	18717.0412	-186795.9621
Reazioni	-2325.09829	0	0	0	-18717.0412	186795.9621
PDelta	0	0	0	0	0	0
Totale	0	0	0	0	0	0

Bilancio in condizione di carico: Sisma Y SLV

Contributo	Fx	Fy	Fz	Mx	My	Mz
Applicate	0	2325.09829	0	-18717.0412	0	20998.3672
Reazioni	0	-2325.09829	0	18717.0412	0	-20998.3672
PDelta	0	0	0	0	0	0
Totale	0	0	0	0	0	0

Bilancio in condizione di carico: Eccentricità Y per sisma X SLV

Contributo	Fx	Fy	Fz	Mx	My	Mz
Applicate	0	0	0	0	0	-4039.8583
Reazioni	0	0	0	0	0	4039.8583
PDelta	0	0	0	0	0	0
Totale	0	0	0	0	0	0

Bilancio in condizione di carico: Eccentricità X per sisma Y SLV

Contributo	Fx	Fy	Fz	Mx	Му	Mz
Applicate	0	0	0	0	0	4034.0455
Reazioni	0	0	0	0	0	-4034.0455
PDelta	0	0	0	0	0	0
Totale	0	0	0	0	0	0

Bilancio in condizione di carico: Sisma X SLD

Contributo	Fx	Fy	Fz	Mx	Му	Mz
Applicate	2440.75743	0	0	0	19648.0973	-196087.8961
Reazioni	-2440.75743	0	0	0	-19648.0973	196087.8961
PDelta	0	0	0	0	0	0
Totale	0	0	0	0	0	0

Bilancio in condizione di carico: Sisma Y SLD

Contributo	Fx	Fy	Fz	Mx	My	Mz
Applicate	0	2440.75743	0	-19648.0973	0	22042.905
Reazioni	0	-2440.75743	0	19648.0973	0	-22042.905
PDelta	0	0	0	0	0	0
Totalo	0	0	0	0	0	0

Bilancio in condizione di carico: Eccentricità Y per sisma X SLD

Contributo	Fx	Fy	Fz	Mx	My	Mz
Applicate	0	0	0	0	0	-4240.816
Reazioni	0	0	0	0	0	4240.816
PDelta	0	0	0	0	0	0
Totale	0	0	0	0	0	0

Bilancio in condizione di carico: Eccentricità X per sisma Y SLD

Contributo	Fx	Fy	Fz	Mx	My	Mz
Applicate	0	0	0	0	0	4234.7141
Reazioni	0	0	0	0	0	-4234.7141
PDelta	0	0	0	0	0	0
Totale	0	0	0	0	0	0

Bilancio in condizione di carico: Rig. Ux

Contributo	Fx	Fy	Fz	Mx	Му	Mz
Applicate	0.01	0	0	0	0.0805	-0.8034
Reazioni	-0.01	0	0	0	-0.0805	0.8034
PDelta	0	0	0	0	0	0
Totale	0	0	0	0	0	0

Bilancio in condizione di carico: Rig. Uy

Contributo	Fx	Fy	Fz	Mx	My	Mz
Applicate	0	0.01	0	-0.0805	0	0.0903
Reazioni	0	-0.01	0	0.0805	0	-0.0903
PDelta	0	0	0	0	0	0
Totale	0	0	0	0	0	0

AUTOSTRADA REGIONALE CISPADANA dal casello di Reggiolo-Rolo sulla A22 al casello di Ferrara Sud sulla A13

PROGETTO DEFINITIVO

OPERE STRUTTURALI

ARCHITETTONICI
CENTRO SICUREZZA AUTOSTRADALE (S.Felice sul Panaro)
RELAZIONE DI CALCOLO STRUTTURE

Bilancio in condizione di carico: Rig. Rz

Contributo	Fx	Fy	Fz	Mx	My	Mz
Applicate	0	0	0	0	0	0.0001
Reazioni	0	0	0	0	0	-0.0001
PDelta	0	0	0	0	0	0
Totale	0	0	0	0	0	0

15.1.4. SPOSTAMENTI DI INTERPIANO ESTREMI

La seguente tabella mostraa gli spostamenti estremi per ogni interpiano in ognuna delle combinazioni di carico. Per spostamenti estremi si intendono i primi 5 spostamenti massimi tra tutti gli interpiani che condividono la stessa quota iniziale e la stessa quota finale.

	Nodo	inferiore		Nodo	superiore	Spost. rel.	Comb.	Spostamer	nto inferiore	Spostament		S.V.
I.		Pos.		l.	Pos.		n.b.	Х	Υ	X	Υ	
	Х	γ	Z		Z							
16 27	29.631	91.698	-0.5	42	8.05	0.002416	SLD 1	0	0	-0.01583 -0.01506	-0.01327	si
15	29.631	91.698	-0.5 -0.5	56 41	8.05 8.05	0.002347	SLD 1 SLD 1	0	0	-0.01506	-0.01327	si si
4	8.631	59.498	-0.5	30	8.05	0.002314	SLD 1	0	0	-0.015651	-0.01187	si
26	24.381	91.698	-0.5	55	8.05	0.002243	SLD 1	0	0	-0.01506	-0.01187	si
4	8.631	59.498	-0.5	30	8.05	0.004151	SLD 2	0	0	-0.03364	-0.01132	si
16	29.631	80.548	-0.5	42	8.05	0.004047	SLD 2	0	0	-0.01739	-0.02992	si
3	-2.519	59.498	-0.5	29	8.05	0.004011	SLD 2	0	0	-0.03364	0.00666	si
27	29.631	91.698	-0.5	56	8.05	0.003633	SLD 2	0	0	-0.00837	-0.02992	si
6	8.631	64.798	-0.5	32	8.05	0.003613	SLD 2	0	0	-0.02874	-0.01132	si
22	4.581	91.698	-0.5	51	8.05	0.002675	SLD 3	0	0	-0.02075	0.00961	si
21	0.481	91.698	-0.5	50	8.05	0.002632	SLD 3	0	0	-0.02075	0.00871	si
19 27	-2.519 29.631	88.798 91.698	-0.5 -0.5	46 56	8.05 8.05	0.002449	SLD 3 SLD 3	0	0	-0.01908 -0.02075	0.00862 -0.00251	si
26	24.381	91.698	-0.5	55	8.05	0.002445	SLD 3	0	0	-0.02075	-0.00251	si si
3	-2.519	59.498	-0.5	29	8.05	0.003625	SLD 4	0	0	-0.0267	0.01574	si
5	-2.519	64 798	-0.5	31	8.05	0.003264	SLD 4	0	0	-0.02304	0.01574	si
4	8.631	59.498	-0.5	30	8.05	0.00314	SLD 4	0	0	-0.0267	-0.00281	si
7	-2.519	70.048	-0.5	33	8.05	0.00294	SLD 4	0	0	-0.0196	0.01574	si
27	29.631	91.698	-0.5	56	8.05	0.00278	SLD 4	0	0	-0.01407	-0.01916	si
11	-2.519	80.548	-0.5	37	8.05	0.002267	SLD 5	0	0	-0.01044	-0.01633	si
3	-2.519	59.498	-0.5	29	8.05	0.002213	SLD 5	0	0	-0.00956	-0.01633	si
12	8.631	80.548	-0.5	38	8.05	0.002185	SLD 5	0	0	-0.01044	-0.0155	si
9	-2.519	75.298	-0.5	35	8.05	0.002174	SLD 5	0	0	-0.00888	-0.01633	si
5	-2.519	64.798	-0.5	31	8.05	0.002168	SLD 5	0	0	-0.00877	-0.01633	si
16 27	29.631	80.548 91.698	-0.5 -0.5	42	8.05 8.05	0.003887	SLD 6	0	0	-0.012 0.00832	-0.031 -0.031	si
4	8.631	59.498	-0.5	56 30	8.05	0.003753	SLD 6	0	0	-0.02667	-0.031	si si
15	24.381	80.548	-0.5	41	8.05	0.003425	SLD 6	0	0	-0.02007	-0.01602	si
3	-2.519	59.498	-0.5	29	8.05	0.003423	SLD 6	0	0	-0.02667	-0.00922	si
27	29.631	91.698	-0.5	56	8.05	0.003231	SLD 7	0	0	-0.01734	0.0215	si
26	24.381	91.698	-0.5	55	8.05	0.003002	SLD 7	0	0	-0.01734	0.01893	si
25	19.131	91.698	-0.5	54	8.05	0.00281	SLD 7	0	0	-0.01734	0.01663	si
22	4.581	91.698	-0.5	51	8.05	0.002703	SLD 7	0	0	-0.01734	0.01529	si
24	13.881	91.698	-0.5	53	8.05	0.002653	SLD 7	0	0	-0.01734	0.01462	si
17	-2.519	84.66	-0.5	43	8.05	0.002776	SLD 8	0	0	-0.01102	0.02102	si
19	-2.519	88.798	-0.5	46	8.05	0.002756	SLD 8	0	0	-0.01065	0.02102	si
21	0.481 -2.519	91.698 59.498	-0.5 -0.5	50 29	8.05 8.05	0.002568	SLD 8 SLD 8	0	0	-0.01066 -0.00356	0.0192	si si
5	-2.519	64.798	-0.5	31	8.05	0.002494	SLD 8	0	0	-0.00336	0.02102	si
17	-2.519	84.66	-0.5	43	8.05	0.002741	SLD 9	0	0	0.01066	-0.02087	si
19	-2.519	88.798	-0.5	46	8.05	0.00272	SLD 9	0	0	0.01026	-0.02087	si
21	0.481	91.698	-0.5	50	8.05	0.002528	SLD 9	0	0	0.01026	-0.01903	si
3	-2.519	59.498	-0.5	29	8.05	0.002472	SLD 9	0	0	0.00334	-0.02087	si
5	-2.519	64.798	-0.5	31	8.05	0.002462	SLD 9	0	0	0.00273	-0.02087	si
27	29.631	91.698	-0.5	56	8.05	0.003171	SLD 10	0	0	0.01694	-0.02117	si
26	24.381	91.698	-0.5	55	8.05	0.002944	SLD 10	0	0	0.01694	-0.01862	si
25	19.131	91.698	-0.5	54	8.05	0.002753	SLD 10	0	0	0.01694	-0.01635	si
22	4.581	91.698	-0.5	51	8.05	0.002653	SLD 10	0	0	0.01694	-0.01509	si
24	13.881	91.698	-0.5	53	8.05	0.002598	SLD 10	0	0	0.01694	-0.01438	si
16	29.631	91.698	-0.5	42	8.05	0.00391	SLD 11 SLD 11	0	0	0.01166	0.03133	si
2.7 4	29.631 8.631	91.698 59.498	-0.5 -0.5	56 30	8.05 8.05	0.003804	SLD 11 SLD 11	0	0	-0.00872 0.02645	0.03133	si si
15	24.381	80.548	-0.5	41	8.05	0.003441	SLD 11	0	0	0.02845	0.01884	si
26	24.381	91.698	-0.5	55	8.05	0.00332	SLD 11	0	0	-0.00872	0.02701	si
11	-2.519	80.548	-0.5	37	8.05	0.002261	SLD 12	0	0	0.0101	0.01649	si
3	-2.519	59.498	-0.5	29	8.05	0.002216	SLD 12	0	0	0.00934	0.01649	si
12	8.631	80.548	-0.5	38	8.05	0.002185	SLD 12	0	0	0.0101	0.01571	si
9	-2.519	75.298	-0.5	35	8.05	0.002173	SLD 12	0	0	0.00857	0.01649	si
5	-2.519	64.798	-0.5	31	8.05	0.00217	SLD 12	0	0	0.00852	0.01649	si
3	-2.519	59.498	-0.5	29	8.05	0.003594	SLD 13	0	0	0.02648	-0.01558	si
5	-2.519	64.798	-0.5	31	8.05	0.00323	SLD 13	0	0	0.0228	-0.01558	si
4	8.631	59.498	-0.5	30	8.05	0.003118	SLD 13	0	0	0.02648	0.00303	si
27	-2.519	70.048 91.698	-0.5 -0.5	33 56	8.05 8.05	0.002903	SLD 13 SLD 13	0	0	0.01932 0.01367	-0.01558 0.01949	si
21	29.631	21.038	-0.5	90	0.05	0.002784	2TD 13	1 0	U	0.01367	0.01949	si

AUTOSTRADA REGIONALE CISPADANA dal casello di Reggiolo-Rolo sulla A22 al casello di Ferrara Sud sulla A13

PROGETTO DEFINITIVO

OPERE STRUTTURALI

ARCHITETTONICI

CENTRO SICUREZZA AUTOSTRADALE (S.Felice sul Panaro)

RELAZIONE DI CALCOLO STRUTTURE

	Nodo	inferiore		Nodo	superiore	Spost. rel.	Comb.	Spostamen	to inferiore	Spostamen	to superiore	S.V.
I.		Pos.		I.	Pos.		n.b.	Х	Υ	Х	Υ	
	Х	Υ	Z		Z							
22	4.581	91.698	-0.5	51	8.05	0.002623	SLD 14	0	0	0.02035	-0.00942	si
21	0.481	91.698	-0.5	50	8.05	0.002581	SLD 14	0	0	0.02035	-0.00854	si
27	29.631	91.698	-0.5	56	8.05	0.002403	SLD 14	0	0	0.02035	0.00284	si
19	-2.519	88.798	-0.5	46	8.05	0.0024	SLD 14	0	0	0.01869	-0.00846	si
26	24.381	91.698	-0.5	55	8.05	0.002395	SLD 14	0	0	0.02035	0.00231	si
4	8.631	59.498	-0.5	30	8.05	0.004135	SLD 15	0	0	0.03342	0.01154	si
16	29.631	80.548	-0.5	42	8.05	0.004061	SLD 15	0	0	0.01705	0.03025	si
3	-2.519	59.498	-0.5	29	8.05	0.003982	SLD 15	0	0	0.03342	-0.00651	si
27	29.631	91.698	-0.5	56	8.05	0.003659	SLD 15	0	0	0.00797	0.03025	si
6	8.631	64.798	-0.5	32	8.05	0.003595	SLD 15	0	0	0.02849	0.01154	si
16	29.631	80.548	-0.5	42	8.05	0.002411	SLD 16	0	0	0.01549	0.0136	si
27	29.631	91.698	-0.5	56	8.05	0.002339	SLD 16	0	0	0.01466	0.0136	si
15	24.381	80.548	-0.5	41	8.05	0.002305	SLD 16	0	0	0.01549	0.01218	si
4	8.631	59.498	-0.5	30	8.05	0.002262	SLD 16	0	0	0.0163	0.01042	si
26	24.381	91.698	-0.5	55	8.05	0.002229	SLD 16	0	0	0.01466	0.01218	si

Ove:

Nodo inferiore: Nodo inferiore.

I.: Numero dell'elemento nell'insieme che lo contiene.

Pos.: Coordinate del nodo. X: Coordinata X. [cm] Y: Coordinata Y. [cm] Z: Coordinata Z. [cm]

Nodo superiore: Nodo superiore.

I.: Numero dell'elemento nell'insieme che lo contiene.

Pos.: Coordinate del nodo. Z: Coordinata Z. [cm]

Spost. rel.: Spostamento relativo. Il valore è adimensionale.

Comb.: Combinazione.

n.b.: Nome breve o compatto della combinazione di carico.

Spostamento inferiore: Spostamento in pianta del nodo inferiore.

X: Coordinata X. [cm] Y: Coordinata Y. [cm]

Spostamento superiore: Spostamento in pianta del nodo superiore.

X: Coordinata X. [cm] Y: Coordinata Y. [cm]

S.V.: Si intende non verificato qualora lo spostamento relativo sia superiore al valore limite espresso nelle preferenze di analisi.

limite SLD = 0.01

15.1.5. VERIFICA EFFETTI SECONDO ORDINE

Come si evince dalla seguente tabella la verifica di cui al paragrafo §7.3.1 delle NTC2008 è soddisfatta, (theta massimo < 0.1):

Quota inf.	Quota sup.	Comb.	Carico verticale	Spostamento	Forza orizzontale totale	Altezza del piano	Theta
		n.b.					
L1	L2	SLV 1	12129.86	0.05748	1105.11	8.55	0.074
L1	L2	SLV 2	12129.86	0.06489	1105.11	8.55	0.083
L1	L2	SLV 3	12107.14	0.05149	995.57	8.55	0.073
L1	L2	SLV 4	12107.14	0.05666	995.57	8.55	0.081
L1	L2	SLV 5	12193.64	0.05469	1153.47	8.55	0.068
L1	L2	SLV 6	12193.64	0.06158	1153.47	8.55	0.076
L1	L2	SLV 7	12117.9	0.0529	1048.99	8.55	0.071
L1	L2	SLV 8	12117.9	0.0494	1048.99	8.55	0.067
L1	L2	SLV 9	12225.59	0.04823	1048.99	8.55	0.066
L1	L2	SLV 10	12225.59	0.05185	1048.99	8.55	0.071
L1	L2	SLV 11	12149.85	0.06191	1153.47	8.55	0.076
L1	L2	SLV 12	12149.85	0.05512	1153.47	8.55	0.068
L1	L2	SLV 13	12236.35	0.05542	995.57	8.55	0.08
L1	L2	SLV 14	12236.35	0.05018	995.57	8.55	0.072
L1	L2	SLV 15	12213.63	0.06418	1105.11	8.55	0.083
L1	L2	SLV 16	12213.63	0.05672	1105.11	8.55	0.073

AUTOSTRADA REGIONALE CISPADANA dal casello di Reggiolo-Rolo sulla A22 al casello di Ferrara Sud sulla A13

PROGETTO DEFINITIVO

OPERE STRUTTURALI

ARCHITETTONICI
CENTRO SICUREZZA AUTOSTRADALE (S.Felice sul Panaro)

RELAZIONE DI CALCOLO STRUTTURE

Ove:

Quota inf.: Quota inferiore esprimibile come livello, falda, piano orizzontale alla Z specificata, espressa con notazione breve. esprimibile come livello, falda, piano orizzontale alla Z specificata. [cm]

Quota sup.: Quota superiore esprimibile come livello, falda, piano orizzontale alla Z specificata, espressa con notazione breve. esprimibile come livello, falda, piano orizzontale alla Z specificata. [cm]

Comb.: Combinazione.

n.b.: Nome breve o compatto della combinazione di carico.

Carico verticale: Carico verticale. [daN]

Spostamento: Spostamento medio di interpiano. [cm] Forza orizzontale totale: Forza orizzontale totale. [daN]

Altezza del piano: Altezza del piano. [cm]

Theta: Coefficiente Theta formula (7.3.2) § 7.3.1 NTC 2008. Il valore è adimensionale.

15.1.6. VERIFICA DEFORMABILITA' TORSIONALE DELLA STRUTTURA

L'edificio non è qualificabile come struttura deformabile torsionalmente essendo r/ls minimo 1.01>0.8 (Valutazione pt. 4 § 7.4.3.1 NTC 2008):

Quota superiore	Quota inferiore	KUx	KUy	KRz	L	В	rx	ry	ls	rx/ls	ry/Is
L2	L1	65735	72849	1.491E011	34.7	34.75	15.0603	14.306	14.18	1.06	1.01

Ove:

Quota superiore: Quota superiore dell'interpiano per il quale è stata valutata la rigidezza relativa. esprimibile come livello, falda, piano orizzontale alla Z specificata. [cm]

Quota inferiore: Quota inferiore dell'interpiano per il quale è stata valutata la rigidezza relativa. esprimibile come livello, falda, piano orizzontale alla Z specificata. [cm]

KUx: Rigidezza relativa alla traslazione in direzione globale X. [daN/cm]

KUy: Rigidezza relativa alla traslazione in direzione globale Y. [daN/cm]

KRz: Rigidezza relativa alla rotazione attorno l'asse globale Z. [daN*cm/rad]

L: Dimensione in pianta, lungo l'asse globale X, dell'edificio. [cm]

B: Dimensione in pianta, lungo l'asse globale Y, dell'edificio. [cm]

rx: Radice quadrata del rapporto tra rigidezza torsionale e flessionale in X dell'interpiano. [cm]

ry: Radice quadrata del rapporto tra rigidezza torsionale e flessionale in Y dell'interpiano. [cm]

Is: Radice quadrata di (L^2+B^2)/12. [cm]

rx/ls: Rapporto rx/ls. Il valore è adimensionale.

ry/ls: Rapporto ry/ls. Il valore è adimensionale

AUTOSTRADA REGIONALE CISPADANA dal casello di Reggiolo-Rolo sulla A22 al casello di Ferrara Sud sulla A13

PROGETTO DEFINITIVO

OPERE STRUTTURALI

ARCHITETTONICI

CENTRO SICUREZZA AUTOSTRADALE (S.Felice sul Panaro)
RELAZIONE DI CALCOLO STRUTTURE

15.2. INVILUPPO SOLLECITAZIONI - PILASTRI

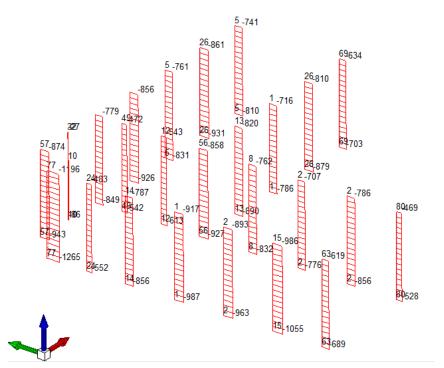


Figura 15.2 – 1 – Pilastri: inviluppo Sforzo normale N [kN]

AUTOSTRADA REGIONALE CISPADANA dal casello di Reggiolo-Rolo sulla A22 al casello di Ferrara Sud sulla A13

PROGETTO DEFINITIVO

OPERE STRUTTURALI

ARCHITETTONICI

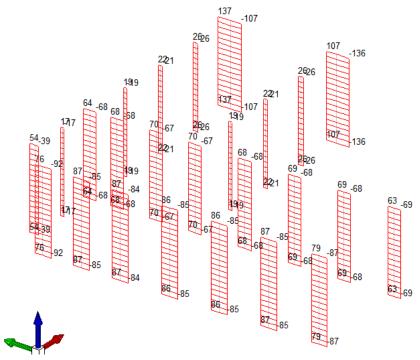


Figura 15.2 – 2 – Pilastri: inviluppo Taglio T 2-2 [kN]

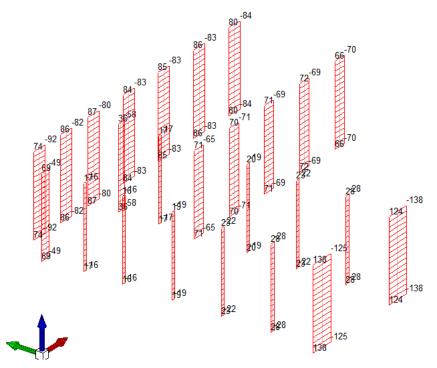


Figura 15.2 - 3 - Pilastri: inviluppo Taglio T 3-3 [kN]

AUTOSTRADA REGIONALE CISPADANA dal casello di Reggiolo-Rolo sulla A22 al casello di Ferrara Sud sulla A13

PROGETTO DEFINITIVO

OPERE STRUTTURALI

ARCHITETTONICI

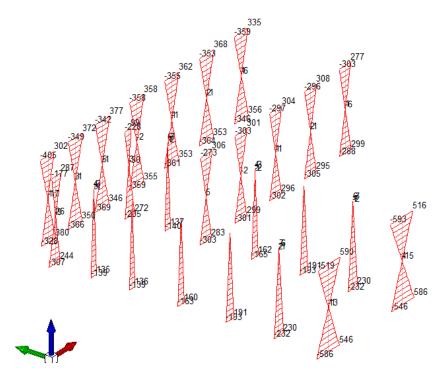


Figura 15.2 – 4 – Pilastri: inviluppo Momento flettente M 2-2 [kN m]

AUTOSTRADA REGIONALE CISPADANA dal casello di Reggiolo-Rolo sulla A22 al casello di Ferrara Sud sulla A13

PROGETTO DEFINITIVO

OPERE STRUTTURALI

ARCHITETTONICI

CENTRO SICUREZZA AUTOSTRADALE (S.Felice sul Panaro)
RELAZIONE DI CALCOLO STRUTTURE

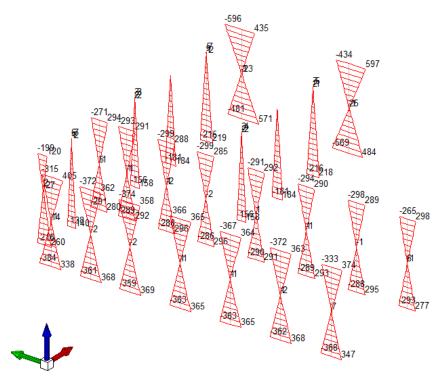


Figura 15.2 – 5 – Pilastri: inviluppo Momento flettente M 3-3 [kN m]

AUTOSTRADA REGIONALE CISPADANA dal casello di Reggiolo-Rolo sulla A22 al casello di Ferrara Sud sulla A13

PROGETTO DEFINITIVO

OPERE STRUTTURALI

ARCHITETTONICI

CENTRO SICUREZZA AUTOSTRADALE (S.Felice sul Panaro)
RELAZIONE DI CALCOLO STRUTTURE

15.3. INVILUPPO SOLLECITAZIONI – TRAVI COPERTURA

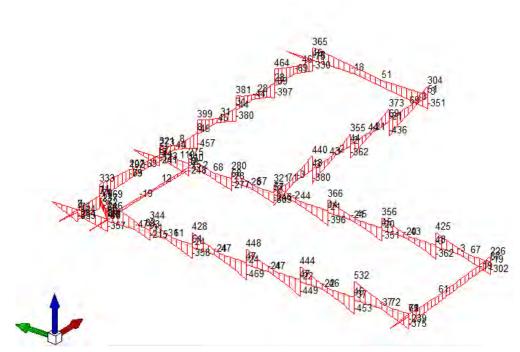
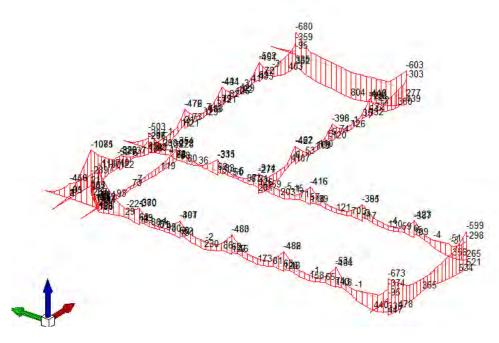



Figura 15.3 – 1 – Travi: inviluppo Taglio T 2-2 [kN]

AUTOSTRADA REGIONALE CISPADANA dal casello di Reggiolo-Rolo sulla A22 al casello di Ferrara Sud sulla A13

PROGETTO DEFINITIVO

OPERE STRUTTURALI

ARCHITETTONICI
CENTRO SICUREZZA AUTOSTRADALE (S.Felice sul Panaro)
RELAZIONE DI CALCOLO STRUTTURE

Figura 15.3 – 2 – Travi: inviluppo Momento flettente M 3-3 [kN m]

AUTOSTRADA REGIONALE CISPADANA dal casello di Reggiolo-Rolo sulla A22 al casello di Ferrara Sud sulla A13

PROGETTO DEFINITIVO

OPERE STRUTTURALI

ARCHITETTONICI

CENTRO SICUREZZA AUTOSTRADALE (S.Felice sul Panaro)
RELAZIONE DI CALCOLO STRUTTURE

16. ANALISI DELLA SOLLECITAZIONE EDIFICIO 6

Di seguito si riportano i risultati ottenuti relativamente all'analisi sismica, all'inviluppo delle sollecitazioni.

16.1. RISULTATI DELL'ANALISI SISMICA

16.1.1. RISULTATI ANALISI MODALE

Nella seguente tabella si riportano i risultati dell'analisi modale:

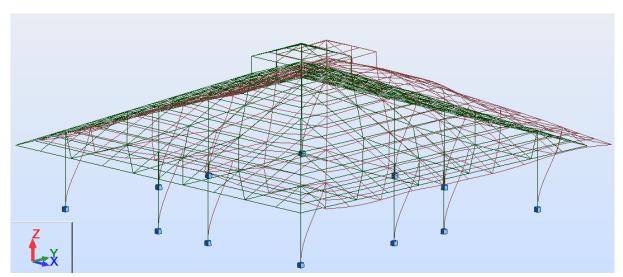


Figura 16.1.1 – 1 – Deformata 1° Modo



Figura 16.1.1 - 2 - Deformata 2° Modo

AUTOSTRADA REGIONALE CISPADANA dal casello di Reggiolo-Rolo sulla A22 al casello di Ferrara Sud sulla A13

PROGETTO DEFINITIVO

OPERE STRUTTURALI

ARCHITETTONICI

CENTRO SICUREZZA AUTOSTRADALE (S.Felice sul Panaro)

RELAZIONE DI CALCOLO STRUTTURE

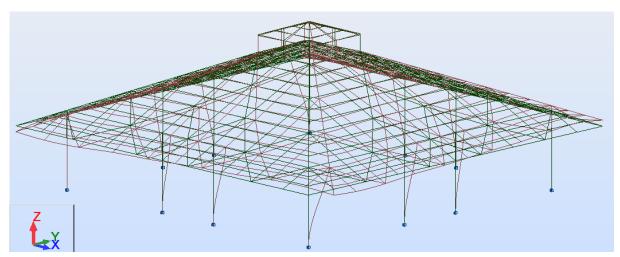


Figura 16.1.1 - 3 - Deformata 3° Modo

16.2. INVILUPPO SOLLECITAZIONI - PILASTRI

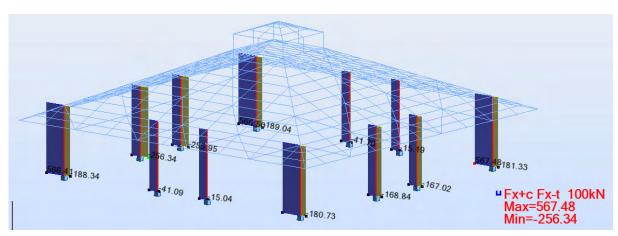


Figura 16.2 – 1 – Pilastri: inviluppo Sforzo normale N [kN]

AUTOSTRADA REGIONALE CISPADANA dal casello di Reggiolo-Rolo sulla A22 al casello di Ferrara Sud sulla A13

PROGETTO DEFINITIVO

OPERE STRUTTURALI

ARCHITETTONICI

CENTRO SICUREZZA AUTOSTRADALE (S.Felice sul Panaro)
RELAZIONE DI CALCOLO STRUTTURE

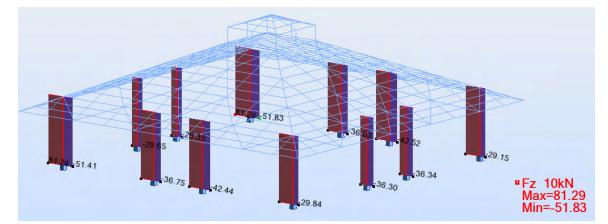


Figura 16.2 – 2 – Pilastri: inviluppo Taglio T 2-2 [kN]

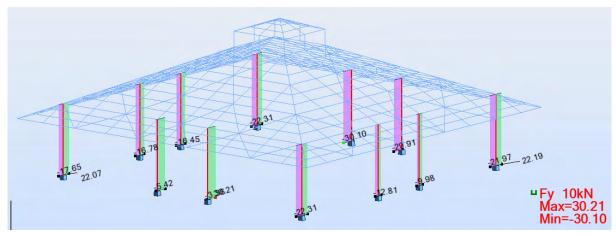


Figura 16.2 - 3 - Pilastri: inviluppo Taglio T 3-3 [kN]

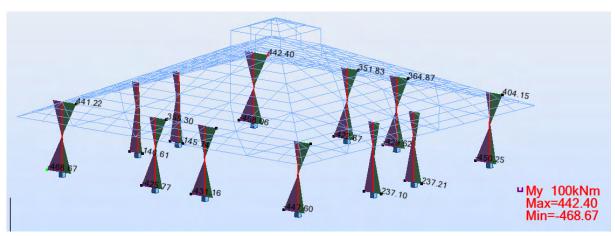


Figura 16.2 – 4 – Pilastri: inviluppo Momento flettente M 2-2 [kN m]

AUTOSTRADA REGIONALE CISPADANA dal casello di Reggiolo-Rolo sulla A22 al casello di Ferrara Sud sulla A13

PROGETTO DEFINITIVO

OPERE STRUTTURALI

ARCHITETTONICI

CENTRO SICUREZZA AUTOSTRADALE (S.Felice sul Panaro)
RELAZIONE DI CALCOLO STRUTTURE

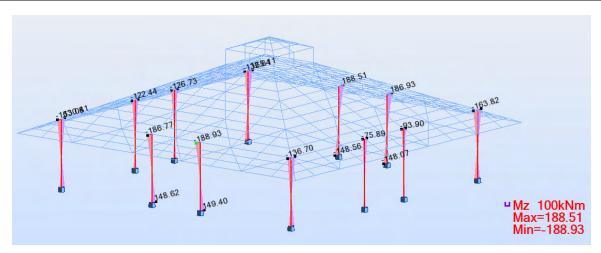


Figura 16.2 – 5 – Pilastri: inviluppo Momento flettente M 3-3 [kN m]

AUTOSTRADA REGIONALE CISPADANA dal casello di Reggiolo-Rolo sulla A22 al casello di Ferrara Sud sulla A13

PROGETTO DEFINITIVO

OPERE STRUTTURALI

ARCHITETTONICI

CENTRO SICUREZZA AUTOSTRADALE (S.Felice sul Panaro)
RELAZIONE DI CALCOLO STRUTTURE

16.3. INVILUPPO SOLLECITAZIONI – TRAVI COPERTURA PRINCIPALI

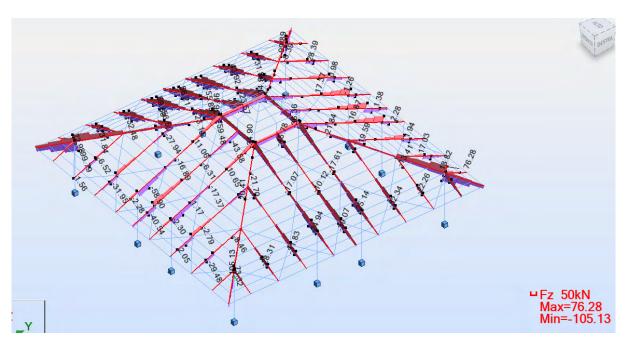


Figura 16.3 – 1 – Travi: inviluppo Taglio T 2-2 [kN]

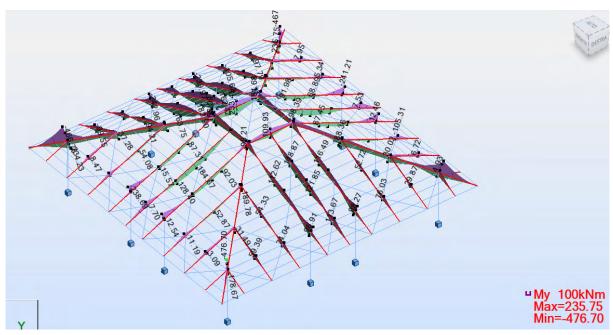


Figura 16.3 – 2 – Travi: inviluppo Momento flettente M 3-3 [kN m]

AUTOSTRADA REGIONALE CISPADANA dal casello di Reggiolo-Rolo sulla A22 al casello di Ferrara Sud sulla A13

PROGETTO DEFINITIVO

OPERE STRUTTURALI

ARCHITETTONICI

CENTRO SICUREZZA AUTOSTRADALE (S.Felice sul Panaro)

RELAZIONE DI CALCOLO STRUTTURE

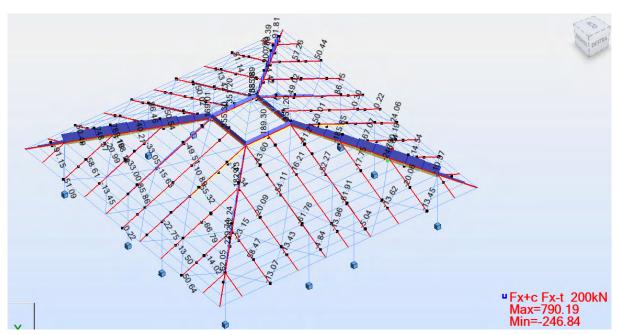


Figura 16.3 – 3 – Travi: inviluppo Sforzo assiale N [kN]

16.4. CALCOLO GIUNTI SISMICI

I fabbricati sono collegati tra loro in fondazione e separati in elevazione.

Si verfica il giunto sismico tra il pilastro di acciaio e gli edifici 1-2-3-4 di larghezza pari a δ =35cm.

Come previsto al punto 7.2.2 del DM 14 gennaio 2008 la distanza minima tra fabbricati contigui è:

$$\delta > \frac{1}{100} \cdot H \cdot \frac{2 \cdot a_g}{g} \cdot S \rightarrow \delta > \frac{1}{100} \cdot 960 \cdot \frac{2 \cdot 0.199 \cdot g}{g} \cdot 1.396 = 5.33cm$$

Verificato

AUTOSTRADA REGIONALE CISPADANA dal casello di Reggiolo-Rolo sulla A22 al casello di Ferrara Sud sulla A13

PROGETTO DEFINITIVO

OPERE STRUTTURALI

ARCHITETTONICI
CENTRO SICUREZZA AUTOSTRADALE (S.Felice sul Panaro)
RELAZIONE DI CALCOLO STRUTTURE

17. VERIFICHE AGLI STATI LIMITE ULTIMI E DI ESERCIZIO EDIFICI 1 - 2

Tutte le verifiche sono soddisfatte, nel seguito si riportano per esteso le verifiche agli stati limite ultimi (SLU) ed di esercizio (SLE) di una trave in altezza 50x120cm, della trave in spessore 80x45cm e di un pilastro 50x50cm.

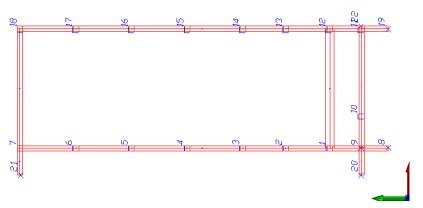


Figura 17 – 1 – Pianta chiave numerazione travi e pilstri.

17.1. VERIFICHE SLU ED SLE TRAVI IN ELEVAZIONE

Trave a "COPERTURA" tra i fili 8 - 7

CARATTERISTICHE DEI MATERIALI
Acciaio B450C fyk= 450000
Calcottyuggo C32/40 fok out (outical) 40

Calcestruzzo C32/40 fck, cub (cubica) = 40000 fck (cilindrica) = 33200

OUTPUT CAMPATE

mensola sinistra tra il filo 8 e tra il filo 9; asta FEM nø $\,$ 25 sezione rettangolare $\,$ H tot. 1.2 B 0.5 Cs 0.03 Ci 0.03

sovraresistenza 0% Verifiche in stato limite ultimo

A C T T	. I I CIIC II	1 0 00	CO TIME	C UIL	11110													
Х	Asup	cs	Ainf	ci	Mela	comb.	MEd	MRd	x/d	Ast	Afp+	Afp-	VEd	comb.	VRcd	VRd	VRsd	teta
0	0	0.042	0	0.042	0	SLU 5	0	0	0	0.000008	0	0	0	SLU 5	1690.28	196.66	-819.94	22
0	0	0.042	0	0.042	0	SLU 4	-115.964	0	0									
								-980.2393									-811.44	
1.67	0.002262	0.054	0.002262	0.054	-190.599	SLU 8	-347.3666	-980.2393	0.061	0.000008	0	0	-228.72	SLU 8	1672.76	229.84	-811.44	22
								-980.2393			0						-811.44	22
2.5	0.002262	0.054	0.002262	0.054	-428.8476	SLU 8	-385.9629	-980.2393	0.061	0	0	0	-343.08	SLU 8	1672.76	229.84	0	22

Valutazione dei tagli secondo gerarchia delle resistenze

x	contr.gravitaz.	VEd negativo	contr.mom.resist.	elastico	VEd positivo	contr.mom.resist.	elastico
0	0	0	0	0	0	0	0
0.83	0	-114.36	0	-114.36	-55.16	0	-55.16
1.67	0	-228.72	0	-228.72	-110.31	0	-110.31
2.25	0	-308.77	0	-308.77	-148.92	0	-148.92
2.5	0	-343.08	0	-343.08	-165.47	0	-165.47

Verifiche in esercizio

X	M.rara	Comb.R	sigma	sigma	M.QP	Comb.QP	sigma	srmi	wki	wki	wki	srms	wks	wks	wks	fg.	ff.	fg.	ff.	ver.
			c. rara	f. rara			c. QP		rara	freq.	QP		rara	freq.	QP	rara	rara	QP	QP	
0	-84.7667	2	0	0	-76.5277	1	0									0	0	0	0	
0.83	-228.2171	2	1703	25541	-206.0352	1	1537									0	0	0	0	
1.67	-253.9161	2	1894	28417	-229.2364	1	1710									0	0	0	0	
2.25	-253.9161	2	1894	28417	-229.2364	1	1710									0	0	0	0	
2.5	-282.1289	2	2105	31574	-254.7071	1	1900									0	0	0	0	

AUTOSTRADA REGIONALE CISPADANA dal casello di Reggiolo-Rolo sulla A22 al casello di Ferrara Sud sulla A13

PROGETTO DEFINITIVO

OPERE STRUTTURALI

ARCHITETTONICI

CENTRO SICUREZZA AUTOSTRADALE (S.Felice sul Panaro)
RELAZIONE DI CALCOLO STRUTTURE

campata n. 1 tra il filo 9 e tra il filo 1; asta FEM nø $\,$ 24 sezione rettangolare $\,$ H tot. 1.2 B 0.5 Cs 0.03 Ci 0.03 sovraresistenza 0%

Verifiche in stato limite ultimo

х	Asup	CS	Ainf	ci	Mela	comb.	MEd	MRd	x/d	Ast	Afp+	Afp-	VEd	comb.	VRcd	VRd	VRsd	teta
0	0.002262	0.054	0.002262	0.054	-426.094	SLU 8	-432.9095	-980.2393	0.061	0	0	0	569.84	ger.	1672.76	229.84	0	22
0	0.002262	0.054	0.002262	0.054						0	0	0	-413.3	ger.	1672.76	229.84	0	22
0.25	0.002445	0.054	0.002262	0.054	-444.185	SLU 8	-444.185	1058.4523		0.000008	0	0	569.84	ger.	1672.98	235.89	811.55	22
0.25	0.002445	0.054	0.002262	0.054						0.000008	0	0	-413.3	ger.	1672.98	235.89	811.55	22
1	0.00289	0.054	0.002262	0.054	-549.2335	SLU 8	-914.2485	1248.7119	0.07	0.000008	0	0	569.84	ger.	1673.4	235.92	811.75	22
1	0.00289	0.054	0.002262	0.054						0.000008	0	0	-413.3	ger.	1673.4	249.46	811.75	22
2	0.00289	0.054	0.002262	0.054	-809.6043	SLU 8	1095.2279	1248.7119		0.000008	0	0	569.84	ger.	1673.4	249.46	811.75	22
2	0.00289	0.054	0.002262	0.054						0.000008	0	0	-413.3	ger.	1673.4	249.46	811.75	22
2.75	0.00289	0.054	0.002262	0.054	1095.2279	SLU 8	1095.2279	1248.7119	0.07	0.000008	0	0	569.84	ger.	1673.4	249.46	811.75	22
2.75	0.00289	0.054	0.002262	0.054						0.000008	0	0	433.77	SLU 8	1673.4	249.46	811.75	22
3	0.00289	0.054	0.002262	0.054	1208.3434	SLU 8	-1149.254	1248.7119	0.07	0	0	0	569.84	ger.	1673.4	249.46	0	22
3	0.00289	0.054	0.002262	0.054						0	0	0	472.72	SLU 8	1673.4	249.46	0	22

Valutazione dei tagli secondo gerarchia delle resistenze

X	contr.gravitaz.	VEd negativo	contr.mom.resist.	elastico	VEd positivo	contr.mom.resist.	elastico
0	0	-413.3	-413.3	-72.73	569.84	569.84	-3.06
0.25	0	-413.3	-413.3	-95.37	569.84	569.84	-25.7
1	0	-413.3	-413.3	-191.76	569.84	569.84	-93.62
2	0	-413.3	-413.3	-328.99	569.84	569.84	-163.7
2.75	0	-433.77	-413.3	-433.77	569.84	569.84	-214.77
3	0	-472.72	-413.3	-472.72	569.84	569.84	-234.88

Verifiche in esercizio

x	M.rara	Comb.R	sigma	sigma	M.QP	Comb.QP	sigma	srmi	wki	wki	wki	srms	wks rara	wks	wks QP	fg.	ff.	fg.	ff.	ver.
			c. rara	f. rara			c. QP		rara	freq.	QP			freq.		rara	rara	QP	QP	
	0 -316.5247				-285.9143		2133									0	0	0	0	
0.2	5 -324.8506	2	2417	36142	-293.5947	1	2185									0	0	0	0	
	1 -669.8285				-607.7263		5272						0.0002				0	0	0	
	2 -802.4262				-728.0349		6316						0.00025				0	0	0	
2.7	5 -802.4262	2	6962	263877	-728.0349	1	6316					0.22	0.00025	0.00023	0.00022	0	0	0	0	
	3 -842.0096	2	7305	276894	-763.9504	1	6628					0.22	0.00026	0.00024	0.00024	0	0	0	0	

campata n. 2 tra il filo 1 e tra il filo 2; asta FEM nø $\,$ 23 sezione rettangolare $\,$ H tot. 1.2 B 0.5 Cs 0.03 Ci 0.03 $\,$

sovraresistenza 0% Verifiche in stato limite ultimo

ACTI			O limit															_
X	Asup	CS	Ainf	ci	Mela	comb.	MEd	MRd	x/d	Ast	Afp+			comb.	VRcd	VRd	VRsd	teta
0	0.00289	0.054	0.002262	0.054	-	SLU	-	-	0.07	0	0	0	1090.77	ger.	1673.4	249.46	0	22
					1148.7817	8	1080.4254	1248.7119										
0	0.00289	0.054	0.002262	0.054						0	0	0	-319.6	ger.	1673.4	249.46	0	22
0.25	0.00289	0.054	0.002262	0.054	-	SLU	-	-	0.07	0.0000118	0	0	1064.56	ger.	1673.4	249.46	1189.08	22
					1017.1698	8	1017.1698	1248.7119										
0.25	0.00289	0.054	0.002262	0.054						0.0000118	0	0	-345.81	ger.	1673.4	249.46	-	22
																	1189.08	
1.38	0.00289	0.054	0.002262	0.054	-541.3714	SLU	-	-	0.07	0.0000118	0	0	945.74	ger.	1673.4	249.46	1189.08	22
						8	1017.1698	1248.7119										
1.38	0.00289	0.054	0.002262	0.054						0.0000118	0	0	-464.63	ger.	1673.4	237.32	-	22
																	1189.08	
2.77	0.002262	0.054	0.002262	0.054	-232.0925	SLU	-514.458	-980.2393	0.061	0.0000084	0	0	800.71	ger.	1672.76	229.84	845.25	22
						8												
2.77	0.002262	0.054	0.002262	0.054						0.0000084	0	0	-609.66	ger.	1672.76	229.84	-845.25	22
3.9	0.002262	0.054	0.004524	0.054	-243.1629	SLV	-243.1629	-980.1642	0.054	0.0000084	0	0	681.89	ger.	1672.76	229.84	845.25	22
						8												
3.9	0.002262	0.054	0.004524	0.054						0.0000084	0	0	-728.48	ger.	1672.76	229.84	-845.25	22
4.15	0.002262	0.054	0.004524	0.054	-275.95	SLV	-259.026	-980.1642	0.054	0	0	0	655.68	ger.	1672.76	229.84	0	22
						8												
4.15	0.002262	0.054	0.004524	0.054						0	0	0	-754.69	ger.	1672.76	229.84	0	22

Valutazione dei tagli secondo gerarchia delle resistenze

Х	contr.gravitaz.	VEd negativo	contr.mom.resist.	elastico	VEd positivo	contr.mom.resist.	elastico
0	217.55	-319.6	-537.15	275.34	1090.77	873.23	546.85
0.25	191.34	-345.81	-537.15	255.22	1064.56	873.23	507.9
1.38	72.52	-464.63	-537.15	142.13	945.74	873.23	331.33
2.77	-72.52	-609.66	-537.15	-2.9	800.71	873.23	153.37
3.9	-191.34	-728.48	-537.15	-121.72	681.89	873.23	34.54
A 1 E	_217 55	754 60	_537 15	147 03	CEE CO	072 22	0 22

Verifiche in esercizio

X	M.rara	Comb.R	sigma	sigma	M.QP	Comb.QP	sigma	srmi	wki	wki	wki	srms	wks rara	wks	wks QP	fg.	ff.	fg.	ff.	ver.
			c. rara	f. rara			c. QP		rara	freq.	QP			freq.		rara	rara	QP	QP	
0	-791.4974	2	6867	260283	-717.9559	1	6229					0.22	0.00025	0.00023	0.00022	0	0	0	0	
0.25	-745.0891	2	6464	245022	-675.7262	1	5862					0.22	0.00023	0.00021	0.0002	0	0	0	0	

AUTOSTRADA REGIONALE CISPADANA dal casello di Reggiolo-Rolo sulla A22 al casello di Ferrara Sud sulla A13

PROGETTO DEFINITIVO

OPERE STRUTTURALI

ARCHITETTONICI

CENTRO SICUREZZA AUTOSTRADALE (S.Felice sul Panaro)

RELAZIONE DI CALCOLO STRUTTURE

х	M.rara	Comb.R	sigma	sigma	M.QP	Comb.QP	sigma	srmi	wki	wki	wki	srms	wks rara	wks	wks QP	fg.	ff.	fg.	ff.	ver.
			c. rara	f. rara			c. QP		rara	freq.	QP			freq.		rara	rara	QP	QP	
1.38	-745.0891	2	6464	245022	-675.7262	1	5862					0.22	0.00023	0.00021	0.0002	0	0	0	0	
2.77	-376.4812	2	2809	42134	-340.7207	1	2542									0	0	0	0	
3.9	-148.316	2	1032	16106	-136.4447	1	949									0	0	0	0	
4.15	-153.8494	2	1070	16707	-141.7372	1	986									0	0	0	0	

campata n. 3 tra il filo 2 e tra il filo 3; asta FEM nø $\,$ 22 sezione rettangolare $\,$ H tot. 1.2 B 0.5 Cs 0.03 Ci 0.03 $\,$

sovraresistenza 0% Verifiche in stato limite ultimo

- v		cs	Ainf	ci	Mela	aamb	MEd	MRd	x/d	A at	Afm.	A fm	VEd	aamb	VRcd	VRd	VRsd	+0+0
Х	Asup					comb.					Afp+			comb.				teta
0	0.002262	0.054	0.004524	0.054	-	SLV 5	-	-980.1642	0.054	0	0	0	764.53	ger.	1672.76	229.84	0	22
					284.2522		250.3653											
0	0.002262	0.054	0.004524	0.054						0	0	0	-609.89	ger.	1672.76	229.84	0	22
0.25	0.002262	0.054	0.004524	0.054	2.1922	SLV 12	2.1922	1938.5596	0.104	0.0000084	0	0	738.32	ger.	1672.76	229.84	845.25	22
0.25	0.002262	0.054	0.004524	0.054	-	SLV 5	-	-980.1642	0.054	0.0000084	0	0	-636.1	ger.	1672.76	229.84	-845.25	22
					219.8761		219.8761							_				
1.35	0.00297	0.054	0.002262	0.054	68.8139	m.i.p.	87.3671	980.2488	0.058	0.0000084	0	0	623	ger.	1672.76	229.84	845.25	22
1.35	0.00297	0.054	0.002262	0.054	-13.8215	SLV 5	-	-	0.072	0.0000084	0	0	-751.43	ger.	1672.76	229.84	-845.25	22
							219.8761	1281.9734										
2.7	0.002262	0.054	0.002262	0.054	65.5757	m.i.p.	87.3671	980.2393	0.061	0.0000103	0	0	481.46	ger.	1672.76	229.84	1035.88	22
2.7	0.002262	0.054	0.002262	0.054	-22.9976	SLV 12	-	-980.2393	0.061	0.0000103	0	0	-892.97	ger.	1672.76	229.84	-	22
							239.1652										1035.88	
3.8	0.002262	0.054	0.002262	0.054	-	SLV 12	-	-980.2393	0.061	0.0000103	0	0	366.13	ger.	1672.76	229.84	1035.88	22
					239.1652		239.1652											
3.8	0.002262	0.054	0.002262	0.054						0.0000103	0	0	-	ger.	1672.76	229.84	-	22
													1008.29				1035.88	
4.05	0.002262	0.054	0.002262	0.054	-	SLV 12	-	-980.2393	0.061	0	0	0	339.92	ger.	1672.76	229.84	0	22
					305.8401		270.8038											
4.05	0.002262	0.054	0.002262	0.054						0	0	0	-1034.5	ger.	1672.76	229.84	0	22

Valutazione dei tagli secondo gerarchia delle resistenze

X	contr.gravitaz.	VEd negativo	contr.mom.resist.	elastico	VEd positivo	contr.mom.resist.	elastico
0	212.31	-609.89	-822.2	144.32	764.53	552.23	308.2
0.25	186.1	-636.1	-822.2	118.11	738.32	552.23	269.25
1.35	70.77	-751.43	-822.2	2.78	623	552.23	129.56
2.7	-70.77	-892.97	-822.2	-138.75	481.46	552.23	-11.98
3.8	-186.1	-1008.29	-822.2	-283.82	366.13	552.23	-127.31
4.05	-212.31	-1034.5	-822.2	-322.77	339.92	552.23	-153.52

Verifiche in esercizio

х	M.rara	Comb.R		sigma f. rara		Comb.QP	sigma c. QP	srmi	wki rara	wki freq.	wki QP	srms	wks rara	wks freq.	wks QP	fg. rara	ff. rara	fg. QP	ff. QP	ver.
0	-142.467	2	991	15471	-131.4086	1	914									0	0	0	0	
0.25	-117.8301	2	820	12796	-108.842	1	757									0	0	0	0	
1.35	53.4965	2	390	5929	48.2771	1	352									0	0	0	0	
1.35	-117.8301	1	871	12894	-108.842	1	352													
2.7	53.4965	2	399	5987	48.2771	1	360									0	0	0	0	
2.7	-136.4784	1	1018	15274	-125.1645	1	360													
3.8	-136.4784	2	1018	15274	-125.1645	1	934							_		0	0	0	0	
4.05	-162.4285	2	1212	18178	-148.8806	1	1111									0	0	0	0	

campata n. 4 tra il filo 3 e tra il filo 4; asta FEM nø 21 sezione rettangolare $\,$ H tot. 1.2 B 0.5 Cs 0.03 Ci 0.03 $\,$

sovraresistenza 0% Verifiche in stato limite ultimo

Х	Asup	CS	Ainf	ci	Mela	comb.	MEd	MRd	x/d	Ast	Afp+	Afp-	VEd	comb.	VRcd	VRd	VRsd	teta
0	0.002262	0.054	0.002262	0.054	-	SLV 5	-	-	0.061	0	0	0	889.7	ger.	1672.76	229.84	0	22
					306.7882		268.0878	980.2393						_				
0	0.002262	0.054	0.002262	0.054						0	0	0	-137.5	ger.	1672.76	229.84	0	22
0.25	0.002262	0.054	0.002262	0.054	-233.058	SLV 5	-233.058			0.0000092	0	0	863.48	ger.	1672.76	229.84	929.77	22
								980.2393										
0.25	0.002262	0.054	0.002262	0.054						0.0000092	0	0	163.72	ger.	1672.76	229.84	929.77	22
1 75	0.002262	0.054	0 002262	0.054	168.5692	SLU 8	212,251	000 2303	0 061	0.0000092	0	0	706.22	ger.	1672.76	220 04		
	0.002262						212.231			0.0000092		0	700.22		1672.76			22
1.75	0.002262	0.034	0.002262	0.034	74.4545	STA A	178.3126			0.0000092	0	U	320.98		10/2./0	223.04	929.77	
3.5	0.002262	0.054	0.002262	0.054	134.6934	SLV 5	212.251	980.2393	0.061	0.0000092	0	0	522.75	ger.	1672.76	229.84	929.77	22
3.5	0.002262	0.054	0.002262	0.054	46.4366	SLV	-	-	0.061	0.0000092	0	0	-	ger.	1672.76	229.84	-	22
						12	240.0253	980.2393					504.45	_			929.77	
5	0.002262	0.054	0.004524	0.054	-	SLV	-	-	0.054	0.0000092	0	0	365.48	ger.	1672.76	229.84	929.77	22
					299.9723	12	299.9723	980.1642										
5	0.002262	0.054	0.004524	0.054						0.0000092	0	0	-	ger.	1672.76	229.84	-	22
													661.72				929.77	
5.25	0.002262	0.054	0.004524	0.054		SLV	_		0.054	0	0	0	339.27	ger.	1672.76	229.84	0	22
					380.1842	12	338.2431	980.1642										
5.25	0.002262	0.054	0.004524	0.054						0	0	0	-	J	1672.76	229.84	0	22
													687.93					

Valutazione dei tagli secondo gerarchia delle resistenze

X	contr.gravitaz.	VEd negativo	contr.mom.resist.	elastico	VEd positivo	contr.mom.resist.	elastico
0	275.21	-137.5	-412.72	201.44	889.7	614.48	389.57
0.25	249	-163.72	-412.72	181.32	863.48	614.48	350.62
1.75	91.74	-320.98	-412.72	31.42	706.22	614.48	126.13
3.5	-91.74	-504.45	-412.72	-155.71	522.75	614.48	-57.35
5	-249	-661.72	-412.72	-389.4	365.48	614.48	-200.9
5.25	-275.21	-687.93	-412.72	-428.35	339.27	614.48	-221.02

AUTOSTRADA REGIONALE CISPADANA dal casello di Reggiolo-Rolo sulla A22 al casello di Ferrara Sud sulla A13

PROGETTO DEFINITIVO

OPERE STRUTTURALI

ARCHITETTONICI CENTRO SICUREZZA AUTOSTRADALE (S.Felice sul Panaro)

RELAZIONE DI CALCOLO STRUTTURE

Verifiche in esercizio

X	M.rara	Comb.R	sigma	sigma	M.QP	Comb.QP	sigma	srmi	wki	wki	wki	srms	wks	wks	wks	fg. rara	ff. rara	fg. QP	ff. QP
			c. rara	f. rara			c. QP		rara	freq.	QP		rara	freq.	QP				
0	-166.2896	2		18610		1	1137									0	0	0	0
0.25	-134.4787	2	1003	15050	-123.2519	1	920									0	0	0	0
1.75	156.0726	2	1164	17467	142.7058	1	1065									0.0001	0.0001	0.0001	0.0001
1.75	-85.0377	1	634	9517	-78.0059	1	1065												
3.5			1164	17467	142.7058		1065									0.0001	0.0001	0.0001	0.0001
3.5				16444	-134.3789	1	1065												
5	-202.0808	2	1406	21945	-184.8263	1	1286									0	0	0	0
5.25	-237.4497	2	1652	25786	-217.1786	1	1511									0	0	0	0

campata n. 5 tra il filo 4 e tra il filo 5; asta FEM nø $\,$ 20 sezione rettangolare $\,$ H tot. 1.2 B 0.5 Cs 0.03 Ci 0.03 $\,$

sovraresistenza 0% Verifiche in stato limite ultimo

	fiche in						145	MD	/-		A	A f	WE I		VD	WD.	VD	
X	Asup	CS	Ainf	ci	Mela	comb.	MEd	MRd	x/d		Afp+	Atp-		comb.	VRcd	VRd	VRsd	teta
0	0.002262	0.054	0.004524	0.054		SLU 8	-		0.054	0	0	0	889.68	ger.	1672.76	229.84	0	22
					380.2215		339.0969	980.1642										
0	0.002262	0.054	0.004524	0.054						0	0	0	-	ger.	1672.76	229.84	0	22
													339.26					
0.25	0.002262	0.054	0.004524	0.054	-	SLV 5	-	_	0.054	0.0000092	0	0	863.47	ger.	1672.76	229.84	929.77	22
					302.3947		302.3947	980.1642						_				
0.25	0.002262	0.054	0.004524	0.054						0.0000092	0	0	-	ger.	1672.76	229.84	_	22
													365.47	_			929.77	
1.75	0.002262	0.054	0.002262	0.054	107.2656	SLV	158.3682	980.2393	0.061	0.0000081	0	0	706.21	ger.	1672.76	229.84	820.07	22
						12												
1.75	0.002262	0.054	0.002262	0.054	25.1939	SLV 5	-	-	0.061	0.0000081	0	0	-	ger.	1672.76	229.84	_	22
							244.9659	980.2393					522.73				820.07	
3.5	0.002262	0.054	0.002262	0.054	108.7811	SLV 5	158.3682	980.2393	0.061	0.0000081	0	0	522.73	ger.	1672.76	229.84	820.07	22
3.5	0.002262	0.054	0.002262	0.054	25.4941	SLV	-	-	0.061	0.0000081	0	0	-	ger.	1672.76	229.84	-	22
						12	243.3176	980.2393					706.21				820.07	
5	0.002262	0.054	0.004524	0.054	-	SLV	-	_	0.054	0.0000092	0	0	365.47	ger.	1672.76	229.84	929.77	22
					300.5383	12	300.5383	980.1642						_				
5	0.002262	0.054	0.004524	0.054						0.0000092	0	0	_	ger.	1672.76	229.84	_	22
													863.47	_			929.77	
5.25	0.002262	0.054	0.004524	0.054	-	SLV	-	-	0.054	0	0	0	339.26	ger.	1672.76	229.84	0	22
					377.3527	12	337.1107	980.1642										
5.25	0.002262	0.054	0.004524	0.054						0	0	0	_	ger.	1672.76	229.84	0	22
													889.68	1				

Valutazione dei tagli secondo gerarchia delle resistenze

X	contr.gravitaz.	VEd negativo	contr.mom.resist.	elastico	VEd positivo	contr.mom.resist.	elastico
0	275.21	-339.26	-614.47	211.72	889.68	614.47	409.66
0.25	249	-365.47	-614.47	191.6	863.47	614.47	370.71
1.75	91.74	-522.73	-614.47	45.01	706.21	614.47	139.5
3.5	-91.74	-706.21	-614.47	-138.46	522.73	614.47	-43.98
5	-249	-863.47	-614.47	-369.32	365.47	614.47	-190.62
5.25	-275.21	-889.68	-614.47	-408.27	339.26	614.47	-210.74

Verifiche in esercizio

Х	M.rara	Comb.R				Comb.QP					srms	wks	wks	wks	fg. rara	ff. rara	fg. QP	ff. QP
			c. rara	f. rara			c. QP	rara	freq.	QP		rara	freq.	QP				
0	-241.9594	2	1683	26275	-221.2921	1	1539								0	0	0	0
0.25	-208.3032	2	1449	22621	-190.4953	1	1325								0	0	0	0
1.75	116.5706	2	870	13046	106.8187	1	797								0.0001	0.0001	0.0001	0.0001
1.75	-155.9008	1	1163	17448	-142.5445	1	797											
3.5	116.5706	2	870	13046	106.8187	1	797								0.0001	0.0001	0.0001	0.0001
3.5	-153.5982	1	1146	17190	-140.2884	1	797											
5	-205.7883	2	1431	22347	-188.031	1	1308								0	0	0	0
5.25	-239.312	2	1665	25988	-218.6981	1	1521								0	0	0	0

campata n. 6 tra il filo 5 e tra il filo 6; asta FEM nø $\,$ 19 sezione rettangolare $\,$ H tot. 1.2 B 0.5 Cs 0.03 Ci 0.03 $\,$ sovraresistenza 0%
Verifiche in stato limite ultimo

Х	Asup	cs	Ainf	ci	Mela	comb.	MEd	MRd	x/d	Ast	Afp+	Afp-	VEd	comb.	VRcd	VRd	VRsd	teta
0	0.002262	0.054	0.004524	0.054	-	SLV 5	-	-	0.054	0	0	0	889.68	ger.	1672.76	229.84	0	22
					382.4349		342.9999	980.1642										
0	0.002262	0.054	0.004524	0.054						0	0	0	-	ger.	1672.76	229.84	0	22
													339.26					
0.25	0.002262	0.054	0.004524	0.054		SLV 5	-			0.0000092	0	0	863.47	ger.	1672.76	229.84	929.77	22
					307.2414		307.2414	980.1642										Ш.
0.25	0.002262	0.054	0.004524	0.054						0.0000092	0	0	-	ger.	1672.76	229.84		- 22
													365.47				929.77	
					103.1946		153.9695			0.0000081		0	706.21		1672.76		820.07	
1.75	0.002262	0.054	0.002262	0.054	9.0173	SLV 5	-			0.0000081	0	0	-		1672.76	229.84		- 22
							251.3224						522.73				820.07	
	0.002262					m.i.p.	153.9695			0.0000081		0	522.73		1672.76		820.07	22
3.5	0.002262	0.054	0.002262	0.054	14.205	SLV 8	-			0.0000081	0	0	-		1672.76	229.84		- 22
							259.0588						706.21				820.07	
5	0.002262	0.054	0.004524	0.054		SLV 8	-			0.0000092	0	0	365.47	ger.	1672.76	229.84	929.77	22
					317.0089		317.0089	980.1642										
5	0.002262	0.054	0.004524	0.054						0.0000092	0	0	-	ger.	1672.76	229.84	-	- 22
													863.47				929.77	
5.25	0.002262	0.054	0.004524	0.054		SLU 8			0.054	0	0	0	339.26	ger.	1672.76	229.84	0	22
					415.1275		363.1984	980.1642										

AUTOSTRADA REGIONALE CISPADANA dal casello di Reggiolo-Rolo sulla A22 al casello di Ferrara Sud sulla A13

PROGETTO DEFINITIVO

OPERE STRUTTURALI

ARCHITETTONICI

CENTRO SICUREZZA AUTOSTRADALE (S.Felice sul Panaro)

RELAZIONE DI CALCOLO STRUTTURE

Х	Asup	cs	Ainf	ci	Mela	comb.	MEd	MRd	x/d	Ast	Afp+	Afp-	VEd	comb.	VRcd	VRd	VRsd	teta
5.25	0.002262	0.054	0.004524	0.054						0	0	0	_	ger.	1672.76	229.84	0	22
													889.68					

Valutazione dei tagli secondo gerarchia delle resistenze

Х	contr.gravitaz.	VEd negativo	contr.mom.resist.	elastico	VEd positivo	contr.mom.resist.	elastico
0	275.21	-339.26	-614.47	205.96	889.68	614.47	402.49
0.25	249	-365.47	-614.47	185.85	863.47	614.47	363.54
1.75	91.74	-522.73	-614.47	41.3	706.21	614.47	132.01
3.5	-91.74	-706.21	-614.47	-142.79	522.73	614.47	-51.47
5	-249	-863.47	-614.47	-376.48	365.47	614.47	-196.37
5.25	-275.21	-889.68	-614.47	-415.43	339.26	614.47	-216.49

Verifiche in esercizio

Х	M.rara	Comb.R	sigma	sigma	M.QP	Comb.QP	sigma	srmi	wki	wki	wki	srms	wks	wks	wks	fg.	ff.	fg.	ff.
			c. rara	f. rara			c. QP		rara	freq.	QP		rara	freq.	QP	rara	rara	QP	QP
0	-243.2308	2	1692	26413	-222.3071	1	1546									0	0	0	0
0.25	-210.2678	2	1463	22834	-192.211	1	1337									0	0	0	0
1.75	101.4368	2	757	11352	91.7902	1	685									0	0	0	0
1.75	-158.9778	1	1186	17792	-145.3848	1	685												
3.5	101.4368	2	757	11352	91.7902	1	685									0	0	0	0
3.5	-180.7888	1	1349	20233	-167.505	1	685												
5	-234.0913	2	1628	25421	-216.3722	1	1505						ĺ		ĺ	0	0	0	0
5.25	-268.3082	2	1866	29137	-247.74	1	1723									0	0	0	0

campata n. 7 tra il filo 6 e tra il filo 7; asta FEM nø $\,$ 18 sezione rettangolare $\,$ H tot. 1.2 B 0.5 Cs 0.03 Ci 0.03 $\,$

sovraresistenza 0%

verı	fiche in	stat	o limit															
x	Asup	cs	Ainf	ci	Mela	comb.	MEd	MRd	x/d	Ast	Afp+	Afp-	VEd	comb.	VRcd	VRd	VRsd	teta
0	0.002262	0.054	0.004524	0.054	-	SLV 5	-	-	0.054	0	0	0	686.25	ger.	1672.76	229.84	0	22
					429.9654		379.7363	980.1642										1
0	0.002262	0.054	0.004524	0.054						0	0	0	-	ger.	1672.76	229.84	0	22
													330.25					l
0.25	0.002262	0.054	0.004524	0.054	-	SLV 5	-	-	0.054	0.0000084	. 0	0	660.04	ger.	1672.76	229.84	845.25	22
					333.1877		333.1877	980.1642										
0.25	0.002262	0.054	0.004524	0.054						0.0000084	0	0	-	ger.	1672.76	229.84	_	22
													356.46				845.25	1
1.77	0.002262	0.054	0.002262	0.054	195.7053	SLU 8	340.9352	980.2393	0.061	0.0000084	0	0	501.02	ger.	1672.76	229.84	845.25	22
1.77	0.002262	0.054	0.002262	0.054	95.1583	SLU 1	-	-	0.061	0.0000084	0	0	-	ger.	1672.76	229.84	-	22
							254.0282	980.2393					515.48				845.25	1
3.53	0.002262	0.054	0.002262	0.054	335.5344	SLV 5	341.7314	980.2393	0.061	0.0000084	. 0	0	315.8	ger.	1672.76	229.84	845.25	22
3.53	0.002262	0.054	0.002262	0.054	106.3987	SLV	-	-	0.061	0.0000084	0	0	-700.7	ger.	1672.76	229.84	_	22
						12	129.2665	980.2393						_			845.25	1
5.05	0.002262	0.054	0.002262	0.054	262.1111	SLV 5	262.1111	980.2393	0.061	0.0000092	0	0	156.79	ger.	1672.76	229.84	929.77	22
5.05	0.002262	0.054	0.002262	0.054	1	SLV	1	1	0.061	0.0000092	0	0	-	ger.	1672.76	229.84	-	22
					185.9162	12	185.9162	980.2393					859.71	_			929.77	1
5.3	0.002262	0.054	0.002262	0.054	227.3408	SLV 5	246.4807	980.2393	0.061	0	0	0	131.3	ger.	1672.76	229.84	0	22
5.3	0.002262	0.054	0.002262	0.054	-	SLV	-	-	0.061	0	0	0	-	ger.	1672.76	229.84	0	22
				1	256.7767	12	219.5882	980.2393					885.21	_				ı

Valutazione dei tagli secondo gerarchia delle resistenze

varacarrone ac	or cagri become	o gerarenta ae.	TO TOOTOCOME				
X	contr.gravitaz.	VEd negativo	contr.mom.resist.	elastico	VEd positivo	contr.mom.resist.	elastico
0	277.83	-330.25	-608.08	254.48	686.25	408.42	488.65
0.25	251.62	-356.46	-608.08	231.23	660.04	408.42	449.71
1.77	92.61	-515.48	-608.08	72.22	501.02	408.42	216.61
3.53	-92.61	-700.7	-608.08	-113	315.8	408.42	31.39
5.05	-251.63	-859.71	-608.08	-298.11	156.79	408.42	-127.62
5.3	-277.12	-885.21	-608.08	-336.13	131.3	408.42	-153.12

Verifiche in esercizio

х	M.rara	Comb.R				Comb.QP					srms				fg. rara	ff. rara	fg. QP	ff. QP
				f. rara			c. QP	rara	freq.	QP		rara	freq.	QP				
0	-268.5219	2	1868	29160	-248.0993	1	1726								0	0	0	0
0.25	-227.5746	2	1583	24713	-210.5681	1	1465								0	0	0	0
1.77	250.3422	2	1868	28017	228.2133	1	1703								0.0002	0.0002	0.0002	0.0002
1.77	-158.3203	1	1181	17718	-147.0884	1	1703											
3.53	250.9597	2	1872	28086	228.84	1	1707								0.0002	0.0002	0.0002	0.0002
5.05	41.3699	2	309	4630	38.0974	1	284								0	0	0	0
5.3	14.3587	1	107	1607	13.4462	1	100								0	0	0	0

Momenti resistenti a filo appoggi (per controllo pilastri)

campata	х	appoggio	Mb,Rd +	Mb,Rd -
mensola sinistra	2.25	9	980.2393	-980.2393
1	0.25	9	980.3123	-1058.4523
1	2.75	1	980.4196	-1248.7119
2	0.25	1	980.4196	-1248.7119
2	3.9	2	1938.5596	-980.1642
3	0.25	2	1938.5596	-980.1642
3	3.8	3	980.2393	-980.2393
4	0.25	3	980.2393	-980.2393
4	5	4	1938.5596	-980.1642
5	0.25	4	1938.5596	-980.1642
5	5	5	1938.5596	-980.1642
6	0.25	5	1938.5596	-980.1642
6	5	6	1938.5596	-980.1642
7	0.25	6	1938.5596	-980.1642
7	5.05	7	980.2393	-980.2393

AUTOSTRADA REGIONALE CISPADANA dal casello di Reggiolo-Rolo sulla A22 al casello di Ferrara Sud sulla A13

PROGETTO DEFINITIVO

OPERE STRUTTURALI ARCHITETTONICI

CENTRO SICUREZZA AUTOSTRADALE (S.Felice sul Panaro)

RELAZIONE DI CALCOLO STRUTTURE

Trave a "COPERTURA" tra i fili 1-12

CARATTERISTICHE DEI MATERIALI Acciaio B450C fyk= 450000

Calcestruzzo C32/40 fck,cub (cubica) = 40000 fck (cilindrica) = 33200

campata n. 1 tra il filo 1 e tra il filo 12; asta FEM nø 17 sezione rettangolare H tot. 0.45 B 0.8 Cs 0.025 Ci 0.025

sovraresistenza 0% Verifiche in stato limite ultimo

verii	iche in			UILLI														
X	Asup	CS	Ainf	ci	Mela	comb.	MEd	MRd	x/d	Ast	Afp+	Afp-	VEd	comb.	VRcd	VRd	VRsd	teta
0	0.002061	0.046	0.001257	0.047	131.5771	SLV	137.0483	190.6988	0.111	0	0	0	143.53	ger.	943.01	182.73	0	22
						13												
0	0.002061	0.046	0.001257	0.047	-	SLV 4	-	-	0.138									
					320.1425		304.6299	304.2983										
0.25	0.002061	0.046	0.001257	0.047	141.5948	SLV	141.5948	190.6988	0.111	0.0000223	0	0	138.42	ger.	943.01	182.73	794.17	22
						13								-				
0.25	0.002061	0.046	0.001257	0.047	-290.042	SLV 4	-290.042	_	0.138									
								304.2983										
3.75	0.001257	0.047	0.001257	0.047	144.5417	SLV	155.4821	190.7233	0.111	0.0000127	0	0	73.72	ger.	941.19	154.81	449.03	22
						13												
3.75	0.001257	0.047	0.001257	0.047	-5.9349	SLV 4	-32.0474	_	0.111	0.0000127	0	0	-33.36	ger.	941.19	154.81	-	22
								190.7233									449.03	
7.5	0.001257	0.047	0.001257	0.047	134.3854	SLV 4	142.7917	190.7233	0.111	0.0000127	0	0	39.97	ger.	941.19	154.81	449.03	22
7.5	0.001257	0.047	0.001257	0.047	-16.381	SLV	-45.0276	-	0.111	0.0000127	0	0	-67.11	ger.	941.19	154.81	-	22
						13		190.7233									449.03	
11	0.002061	0.046	0.002406	0.047	151.0228	SLV 4	151.0228	351.9879	0.14	0.0000223	0	0	8.47	ger.	943.01	182.73	794.17	22
11	0.002061	0.046	0.002406	0.047	-	SLV	-	_	0.13	0.0000223	0	0	-98.61	ger.	943.01	182.73	-	22
					280.9037	13	280.9037	304.1489						-			794.17	
11.25	0.002061	0.046	0.002513	0.047	148.1431	SLV 4	149.7939	366.9484	0.143	0	0	0	6.22	ger.	943.01	182.73	0	22
11.25	0.002061	0.046	0.002513	0.047	-	SLV	-292.174	_	0.129	0	0	0	-	ger.	943.01	182.73	0	22
					303.8663	13		304.1398					100.86	l -				

Valutazione dei tagli secondo gerarchia delle resistenze

Х	contr.gravitaz.	VEd negativo	contr.mom.resist.	elastico	VEd positivo	contr.mom.resist.	elastico
0	82.48	36.44	-46.03	43.77	143.53	61.05	124.1
0.25	77.37	31.34	-46.03	38.43	138.42	61.05	118.76
3.75	12.67	-33.36	-46.03	-26.04	73.72	61.05	54.29
7.5	-21.08	-67.11	-46.03	-59.79	39.97	61.05	20.54
11	-52.58	-98.61	-46.03	-91.29	8.47	61.05	-10.96
11.25	-54.83	-100.86	-46.03	-93.54	6.22	61.05	-13.21

Verifiche in esercizio

Х	M.rara	Comb.R	sigma	sigma	M.QP	Comb.QP	sigma	srmi	wki	wki	wki	srms	wks	wks	wks	fg. rara	ff. rara	fg. QP	ff. QP
				f. rara			c. QP		rara	freq.	QP		rara	freq.	QP				
0	-83.9559			41643			2830									0	0	0	0
0.25	-74.3857	2	2512	36896	-74.2236	1	2507									0	0	0	0
3.75				38387		1	2559												0.0034
7.5	66.9834	2	2293	34398	66.9834	1	2293									0.0035	0.0033	0.0035	0.0033
11	-64.9404	1	2090	31618	-64.9404	1	2090									0	0	0	0
11.25	-71.1901	1	2281	34603	-71.1901	1	2281									0	0	0	0

Momenti resistenti a filo appoggi (per controllo pilastri)

campata	х	appoggio	Mb,Rd +	Mb,Rd -
1	0.25	1	190.6988	-304.2983
1	11	12	351.9879	-304.1489

Ove:

x: distanza da asse appoggio sinistro [m]

Asup: area efficace di armatura longitudinale superiore [m2]

cs: distanza tra bordo superiore e baricentro dell'armatura superiore [m]

Ainf: area efficace di armatura longitudinale inferiore [m2]

ci: distanza tra bordo inferiore e baricentro dell'armatura inferiore [m]

Mela: momento flettente elastico [kN*m] comb.: combinazione che produce Mela MEd: momento flettente di progetto [kN*m]

MRd: momento ultimo [kN*m]

x/d: distanza asse neutro dal bordo compresso / altezza utile

Ast: area delle staffe (cmq/cm) [m2]

Afp+: area di staffe equivalenti da sagomati per taglio positivo [m2] Afp-: area di staffe equivalenti da sagomati per taglio negativo [m2]

AUTOSTRADA REGIONALE CISPADANA dal casello di Reggiolo-Rolo sulla A22 al casello di Ferrara Sud sulla A13

PROGETTO DEFINITIVO

OPERE STRUTTURALI

ARCHITETTONICI CENTRO SICUREZZA AUTOSTRADALE (S.Felice sul Panaro)

RELAZIONE DI CALCOLO STRUTTURE

VEd: taglio di progetto [kN]

VRcd: resistenza a taglio per rottura delle bielle compresse [kN]

VRd: resistenza a taglio in assenza di staffatura [kN] VRsd: resistenza a taglio per la presenza di armatura [kN] teta: angolo di inclinazione delle bielle compresse [deg]

ver.: stato di verifica (vuoto = verificato)

contr.gravitaz.: taglio dovuto ai carichi insistenti sulla trave [kN]

VEd negativo: taglio di progetto negativo [kN]

contr.mom.resist.: taglio dovuto ai momenti resistenti di estremità [kN]

elastico: taglio desunto dalla analisi [kN] VEd positivo: taglio di progetto positivo [kN]

M.rara: momento flettente in combinazione rara [kN*m]

Comb.R: Combinazione rara

sigma c. rara : tensione nel c.a in combinazione rara [kN/m2] sigma f. rara: tensione nell'acciaio in combinazione rara [kN/m2] M.QP: momento flettente in combinazione quasi permanente [kN*m]

Comb.QP: Combinazione quasi permanente

sigma c. QP: tensione nel c.a in combinazione quasi permanente [kN/m2]

srmi: interasse tra le fessure al lembo inferiore [m]

wki rara: apertura caratteristica delle fessure al lembo inferiore in combinazione rara [m]

wki freq.: apertura caratteristica delle fessure al lembo inferiore in combinazione frequente [m]

wki QP: apertura caratteristica delle fessure al lembo inferiore in combinazione quasi permanente [m]

srms: interasse tra le fessure al lembo superiore [m]

wks rara: apertura caratteristica delle fessure al lembo superiore in combinazione rara [m]

wks freq.: apertura caratteristica delle fessure al lembo superiore in combinazione frequente [m]

wks QP: apertura caratteristica delle fessure al lembo superiore in combinazione quasi permanente [m]

fg. rara: freccia a sezione interamente reagente in combinazione rara [m]

ff. rara: freccia a sezione fessurata in combinazione rara [m]

fg. QP: freccia a sezione interamente reagente in combinazione quasi permanente [m]

ff. QP: freccia a sezione fessurata in combinazione quasi permanente [m]

campata: campata

appoggio: nome dell'appoggio

Mb,Rd +: Momento ultimo positivo [kN*m] Mb,Rd -: Momento ultimo negativo [kN*m]

: [kN/m2]

Le unità di misura delle verifiche elencate nel capitolo sono in [m, kN, deg] ove non espressamente specificato.

17.2. VERIFICHE SLU ED SLE PILASTRI

Pilastro al filo 9

```
forze in kN, momenti in kN*m, tensioni in daN/cmg, apertura fessure in mm
Materiali per le armature
B450C, fvk = 4500 (daN/cmq)
asta sap n° 10
calcestruzzo Rck 350 (daN/cmq)
sezione rettangolare H tot. 50.0 B 50.0
                                              rot.
                                                    Ω
Verifiche a pressoflessione
quota Asp copX copY ApX cop ApY cop
                                                           Nsd Co
  0.0 3.1 4.0 4.0 3.1 4.0 3.1 4.0
                                        1.0
                                              -79
                                                    -318
                                                          -873 4 SLV
 126.2 3.1 4.0 4.0 3.1 4.0 3.1 4.0
                                        1.7
                                              -48
                                                    -215
                                                         -865
                                                                4 SLV
                                                         -858
 252.4
      3.1 4.0 4.0
                      3.1 4.0
                              3.1 4.0
                                        3.1
                                               -17
                                                    -111
                                                                4 SLV
       3.1 4.0 4.0 3.1 4.0
                                                      28 -1161
                                               16
```


AUTOSTRADA REGIONALE CISPADANA dal casello di Reggiolo-Rolo sulla A22 al casello di Ferrara Sud sulla A13

PROGETTO DEFINITIVO

OPERE STRUTTURALI

ARCHITETTONICI

CENTRO SICUREZZA AUTOSTRADALE (S.Felice sul Panaro)
RELAZIONE DI CALCOLO STRUTTURE

```
95
                                                       70
 504.7 3.1 4.0 4.0 3.1 4.0 3.1 4.0
                                        2.9
                                                          -750
                                                                8 SLV
 630.9 3.1 4.0 4.0 3.1 4.0 3.1 4.0
                                                          -742
                                                                8 SLV
                                               177
                                                      141
                                        1.4
                                               229
                                                          -736 8 SLV
 715.0 3.1 4.0 4.0 3.1 4.0 3.1 4.0
                                        1.0
                                                      187
Sezione a quota 0 Compressione massima = 908 < 2675
                                                     DM 08 - 7.4.4.2.2.1
combinazione 2 SLV
Verifiche a taglio
SLU
       VEdX Co
quota
                      N AstX
                               VRcdX
                                       VRdX VRsdX cotq
                                                           VEdY Co
                                                                        N AstY
                                                                                  VRcdY
                                                                                         VRdY VRsdY cota
VEdmax Co
  0.0
       22.2 8 -1191.7 0.20
                               1064.9 206.3 318.1 1.00
                                                           10.9 8 -1191.7 0.20
                                                                                 1064.9 206.3 318.1
                                                                                                     1.00
24.8 8
126.2
                               1064.9
                                                           10.9 8 -1182.0 0.10
        22.2 8 -1182.0 0.10
                                      206.3 159.0 1.00
                                                                                 1064.9
                                                                                        206.3 159.0
                                                                                                     1.00
24.8
 252.4
        22.2 8 -1182.0 0.10
                               1064.9
                                     206.3 159.0 1.00
                                                           10.9 8 -1182.0 0.10
                                                                                 1064.9 206.3 159.0 1.00
24.8
     8
378.5
        22.2 8 -1182.0 0.10
                               1064.9 206.3 159.0 1.00
                                                           10.9 8 -1182.0 0.10
                                                                                 1064.9 206.3 159.0 1.00
24.8
     8
 504.7
        22.2 8 -1182.0 0.10
                               1064.9
                                     206.3 159.0 1.00
                                                           10.9
                                                                8 -1182.0 0.10
                                                                                 1064.9
                                                                                        206.3
                                                                                               159.0
                                                                                                      1.00
     8
24.8
630.9
        22.2 8 -1143.3 0.20
                               1064.9
                                     206.3 318.1 1.00
                                                           10.9 8 -1143.3 0.20
                                                                                 1064.9 206.3 318.1
                                                                                                      1.00
24 8 8
715.0
       22.2 8 -1143.3 0.20
                                                           10.9 8 -1143.3 0.20
                              1064.9
                                     206.3 318.1 1.00
                                                                                 1064.9 206.3 318.1 1.00
24.8 8
SLV
       VEdX Co
                               VRcdX
                                       VRdX VRsdX cotg
                                                           VEdY Co
                                                                        N AstY
                                                                                  VRcdY
                                                                                         VRdY VRsdY
 quota
                      N AstX
                                                                                                      cotq
VEdmax Co
  0.0 107.6 2 -907.8 0.20
                               1039.0 206.3 318.1 1.00
                                                         107.6 2 -907.8 0.20
                                                                                 1039.0 206.3 318.1
                                                                                                     1.00
152.1 2
126.2 107.6 2 -900.3 0.10
                               1035.2 206.3 159.0 1.00
                                                         107.6 2
                                                                   -900.3 0.10
                                                                                 1035.2 206.3
                                                                                              159.0 1.00
152.1 2
 252.4
       107.6 2 -900.3 0.10
                               1035.2 206.3 159.0 1.00
                                                          107.6 2
                                                                   -900.3 0.10
                                                                                 1035.2 206.3 159.0 1.00
152.1
378.5 107.6 2 -900.3 0.10
                               1035.2 206.3 159.0 1.00
                                                         107.6 2 -900.3 0.10
                                                                                 1035.2 206.3 159.0 1.00
152.1 2
 504.7
       107.6 2 -900.3 0.10
                               1035.2 206.3 159.0 1.00
                                                         107.6 2
                                                                   -900.3 0.10
                                                                                 1035.2 206.3 159.0 1.00
152.1
 630.9 107.6 2 -870.5 0.20
                               1031.3 206.3 318.1 1.00 107.6 2 -870.5 0.20
                                                                                 1031.3 206.3 318.1 1.00
152.1 2
715.0 107.6 2 -870.5 0.20
                              1031.3 206.3 318.1 1.00 107.6 2 -870.5 0.20
                                                                                 1031.3 206.3 318.1 1.00
152.1 2
Tagli plastici secondo (7.5.4) in combinazione SLV
Luce
    Mxp,i Myp,i Mxp,s
                             Myp,s
                                       Txp
                                               Typ Co
715
      352.0
              352.0
                      347.3
                             347.3
                                     107.6
                                             107.6
Verifiche di esercizio
                                                       N Co sc.q.p.
quota sc.ra
             Mx
                    My
                          N Co sf.ra
                                                Му
                                                                                    N Co Wk ra Wk fr Wk q.p
  0 -54
            -18
                   -43
                       -880 2
                                -760
                                        -18
                                               -43
                                                    -880
                                                         2
                                                            -51.4
                                                                     -17
                                                                            -43
                                                                                 -812
                                                                                      1 0.000 0.000
                                                                                                     0.000
126
     -42
             -8
                   -22
                       -872
                                -601
                                         -8
                                               -22
                                                    -872
                                                            -39 2
                                                                      - 8
                                                                            -21
                                                                                 -804
                                                                                       1 0 000 0 000
                                                                                                     0 000
252
     -31
                     0
                        -864
                                -460
                                          2
                                                 0
                                                    -864
                                                             -28.4
                                                                              0
                                                                                 -796
                                                                                       1 0.000 0.000
                                                                                                     0.000
 379
     -43
             12
                    22
                        -856
                                -609
                                         12
                                                    -856
                                                             -40.0
                                                                                 -789
                                                                                       1 0.000 0.000
                                                                      11
                                                                                                     0.000
 505
     -54
                    42
                       -849
                                -754
                                                    -849
                                                             -51.1
                                                                      20
                                                                                 -781
                                                                                       1 0.000 0.000
                                                                                                     0.000
     -67
                        -841
                              2
                                  65
                                                    -773
                                                             -63.7
                                                                                 -773
                                                                                       1 0.000 0.000
 631
             32
                                         29
                                                                      29
                                                                                                     0.000
 715
     -76
             39
                    79
                        -835
                             2
                                 2.06
                                         35
                                                79
                                                    -768
                                                          1
                                                            -73.2
                                                                      35
                                                                             79
                                                                                 -768
                                                                                       1 0.000 0.000
                                                                                                     0.000
Verifiche di instabilità non necessaria
Dettaglio verifica nodi (daN,cm)
Nodo a quota 775 (Nodo non confinato)
-Travature con direzione inclinata di 0 gradi rispetto all'asse X globale
Nodo trave-colonna esterni
Verificata poichè rispetta i minimi di staffe 7.4.6.2.3
-Travature con direzione inclinata di 90 gradi rispetto all'asse X globale
```

(nst*Ast)/(i*b), min > (0.05*fck)/fyk

Nodo trave-colonna interni

Verifica secondo 7.4.6.2.3

(nst*Ast)/(i*b),x=0.00349 (nst*Ast)/(i*b),y=0.00524 (0.05*fck)/fyk=0.00323

b, x=75 b, y=50

Verificata poichè rispetta i minimi di staffe 7.4.6.2.3

AUTOSTRADA REGIONALE CISPADANA dal casello di Reggiolo-Rolo sulla A22 al casello di Ferrara Sud sulla A13

PROGETTO DEFINITIVO

OPERE STRUTTURALI

ARCHITETTONICI

CENTRO SICUREZZA AUTOSTRADALE (S.Felice sul Panaro)

RELAZIONE DI CALCOLO STRUTTURE

Ove:

Rck: resistenza caratteristica compressione cubica del cls

quota: quota della sezione Asp: area di acciaio di spigolo

copX: copriferro medio lungo X dell'armatura di spigolo copY: copriferro medio lungo Y dell'armatura di spigolo

Cop: copriferro per aree di parete
ApX: area di acciaio di parete lungo X
ApY: area di acciaio di parete lungo Y
Msdx: momento di calcolo attorno all'asse X
Msdy: momento di calcolo attorno all'asse Y

Nsd: sforzo normale di calcolo coef: coefficiente di sicurezza Co: combinazione di carico

SLV: stato limite di salvaguardia della vita

SLU: stato limite ultimo

Ger.: sollecitazioni derivanti da gerarchia delle resistenze

VEdX: taglio di calcolo lungo X

VRdX: resistenza del cls per taglio lungo X VRsdX: resistenza delle staffe per taglio lungo X VRcdX: resistenza delle bielle in cls per taglio lungo X

VRdY: resistenza del cls per taglio lungo Y VRsdY: resistenza delle staffe per taglio lungo Y VRcdY: resistenza delle bielle in cls per taglio lungo Y

VEdmax: taglio risultante massimo di calcolo

cotg: cotangente dell'angolo di inclinazione delle bielle assunto in verifica

AstX: area di staffe lungo X AstY: area di staffe lungo Y

Luce: Luce netta del pilastro (misurata a filo delle travi)

Mxp,i: momento da gerarchia attorno all'asse X della sezione inferiore Mxp,s: momento da gerarchia attorno all'asse X della sezione superiore Myp,i: momento da gerarchia attorno all'asse Y della sezione inferiore Myp,s: momento da gerarchia attorno all'asse Y della sezione superiore Tpx: taglio lungo X in applicazione della gerarchia delle resistenze Tpy: taglio lungo Y in applicazione della gerarchia delle resistenze sc.ra: tensione sul cls in combinazione rara (caratteristica)

sf.ra: tensione sull'acciaio in combinazione rara (caratteristica) sc.q.p.: tensione sul cls in combinazione quasi permanente

Mx: momento attorno all'asse X My: momento attorno all'asse Y

N: sforzo normale

Wk ra: apertura caratteristica delle fessure in combinazione rara Wk fr: apertura caratteristica delle fessure in combinazione frequente

Wk q.p: apertura caratteristica delle fessure in combinazione quasi permanente

MtMax: momento torcente massimo

sc: tensione sul cls sf: tensione sull'acciaio

AminX: area minima di staffe richieste lungo X AminY: area minima di staffe richieste lungo Y

Tmax: taglio massimo

M2: Momento flettente attorno all'asse locale 2 M3: Momento flettente attorno all'asse locale 3

bw,x: Larghezza della sezione assunta per verifica a taglio in direzione x bw,y: Larghezza della sezione assunta per verifica a taglio in direzione y

Tmax: taglio massimo

M2p,i: momento da gerarchia attorno all'asse 2 della sezione inferiore

AUTOSTRADA REGIONALE CISPADANA dal casello di Reggiolo-Rolo sulla A22 al casello di Ferrara Sud sulla A13

PROGETTO DEFINITIVO

OPERE STRUTTURALI

ARCHITETTONICI

CENTRO SICUREZZA AUTOSTRADALE (S.Felice sul Panaro)
RELAZIONE DI CALCOLO STRUTTURE

M2p,s: momento da gerarchia attorno all'asse 2 della sezione superiore

T3p: taglio lungo l'asse locale 3 in applicazione della gerarchia delle resistenze

A.l.: area longitudinale A.st.: area staffe

A.l.r.: area longitudinale richiesta per la torsione A.st.r.: area staffe richiesta per la torsione

A.I.disp.: area longitudinale disponibile per la torsione A.st.Disp.: area staffe disponibile per la torsione

MtMax: momento torcente massimo

lambda, x lambda, y: snellezze per sbandamento in direzione degli assi di definizione della sezione

Max May: momenti dovuti alle imperfezioni costruttive M0ex M0ey: momenti secondo EC2 5.8.8.2 (2)

M2x M2y: momenti dovuti agli effetti del secondo ordine EC2 5.8.8.2 (3)

c.s.x c.s.y: coefficienti di sicurezza a pressoflessione retta (5.38): soddisfacimento sia di EC2 (5.38a) che di EC2 (5.38b)

(5.39): coefficiente risultato dell'applicazione del criterio semplificato EC2 (5.39)

i: interasse verticale delle staffe interne al nodo

bx, by: dimensioni x ed y assunte nella verifica del nodo nst^*Ast, x : area di una staffa per resistenza in direzione x nst^*Ast, y : area di una staffa per resistenza in direzione y

Fi,mm: diametro medio delle barre in mm

h22, h33: altezza della sezione per inflessione attorno agli assi 2 e 3

Lv,plast,22 Lv,plast,33: lunghezza della cerniera plastica per inflessione attorno agli assi 2 e 3

Lv: luce di taglio

Fy: curvatura a snervamento

R SLU: massima rotazione alla corda in combinazione SLU

Theta,y: capacità di rotazione totale rispetto alla corda allo snervamento

Min: capitolo del DM 14-01-08 di cui applicare i minimi di armatura (cap.4 o cap.7)

R_SLV: massima rotazione alla corda in combinazione SLV

Theta,u: 3/4 della capacità di rotazione totale rispetto alla corda in condizioni di collasso

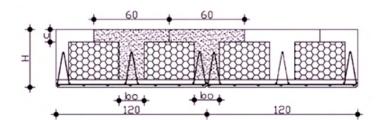
17.3. VERIFICA SOLAI

Si riporta di seguito la verifica dei solai in cls – polistirolo tipo "Predalles" impiegati per l'edificio in esame. Per la verifica è stato considerato il solaio maggiormente sollecitato dai carichi permanenti e variabili ovvero il solaio del piano primo (si veda § 9.1 azioni statiche).

Complessivamente la somma dei carichi permanenti con i variabili risulta essere pari a:

 $Q_{max} = 5.50 \text{kN/mg} + 3.00 \text{kN/mg} + 1.20 \text{kN/mg} = 9.70 \text{kN/mg}$

La luce massima coperta dal solaio risulta essere di 3.90m. La verifica agli S.L.U. del solaio Predalles viene eseguita mediante un foglio di calcolo Excel.


AUTOSTRADA REGIONALE CISPADANA dal casello di Reggiolo-Rolo sulla A22 al casello di Ferrara Sud sulla A13

PROGETTO DEFINITIVO

OPERE STRUTTURALI

ARCHITETTONICI

CENTRO SICUREZZA AUTOSTRADALE (S.Felice sul Panaro)
RELAZIONE DI CALCOLO STRUTTURE

Tipo di solaio scelto		predalle 4+36+5	
Luce solaio [m]	3,85	h solaio [cm]	45
h soletta [cm]	5	l.sol. coll. [cm]	60
$f_{ck}[N/mm^2]$	25	Altezza utile [cm]	41
F _{cd} [N/mm ²]	14,17	F _{cm} [N/mm ²]	28,75
F _{yk} [N/mm ²]	450	F _{yd} [N/mm ²]	391

Analisi Carichi	l [m]	kN/m²	kN/m								
Tramezzi	0,60	3,00	1,80								
Totale Permanenti non	Totale Permanenti non Strutturali G ₂										
Peso proprio solaio	0,60	5,50	3,30								
Totale Permanenti Strut	turali G₁		3,30								
Carichi Accidentali Q	0,60	1,20	0,72								

Combinazioni di d	carico SL	U YG	₁ ·G ₁ +	$\gamma_{G2} \cdot G_2 + \gamma_{P} \cdot I$	$P + \gamma_{Q1} \cdot Q_{k1}$		
Y _{G1}	1,3	γ _{G2}	1,5			γ Q	1,5
		Grado di					
$M^{+}_{ed.max}[KN*m]$	11,96	vincolo:		Semi-incastro		V _{ed} [KN]	15,53
M _{ed.max} [KN*m]							
		VERIFICA	A APPR	OSSIMATA A M	OMENTO		
Area minima ferri	superio	i	0,83	Area minima fe	erri inferiori		0,83
Ferri Superiori			ρ'	0,56%	A. ferri sup [cm ²]		5,03
φ _{1 sup}	8	n. _{1 sup}	2	ф _{2 sup}	16	n. _{2 sup}	2
Ferri Inferiori			ρ	0,61%	A. ferri Inf [cm ²]		5,53
Φ _{1 inf}	16	n. _{1 inf}	2	ф _{2 inf}	8	n. _{2 inf}	3
$M^{+}_{rd}[KN*m^{2}]$		79,84	ОК	M _{rd} [KN*m ²]		-72,58	ОК

VERIFICA A TAGLIO		$f_{ck}[N/mm^2]$	25,00	Larghezza travetto [mm]		150
K	1,70	V _{min}	0,39	$ ho_1$	0,0156	

AUTOSTRADA REGIONALE CISPADANA dal casello di Reggiolo-Rolo sulla A22 al casello di Ferrara Sud sulla A13

PROGETTO DEFINITIVO

OPERE STRUTTURALI

ARCHITETTONICI

CENTRO SICUREZZA AUTOSTRADALE (S.Felice sul Panaro)
RELAZIONE DI CALCOLO STRUTTURE

V_{rd} [KN] 42,54 **OK**

AUTOSTRADA REGIONALE CISPADANA dal casello di Reggiolo-Rolo sulla A22 al casello di Ferrara Sud sulla A13

PROGETTO DEFINITIVO

OPERE STRUTTURALI

ARCHITETTONICI

CENTRO SICUREZZA AUTOSTRADALE (S.Felice sul Panaro)
RELAZIONE DI CALCOLO STRUTTURE

18. VERIFICHE AGLI STATI LIMITE ULTIMI E DI ESERCIZIO EDIFICI 3 - 4

Tutte le verifiche sono soddisfatte, nel seguito si riportano per esteso le verifiche agli stati limite ultimi (SLU) ed di esercizio (SLE) di una trave in altezza 50x120cm, della trave in spessore 70x45cm e di un pilastro 50x50cm.

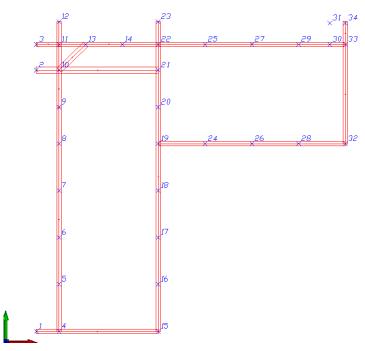


Figura 18 – 1 – Pianta chiave numerazione travi e pilstri.

18.1. VERIFICHE SLU ED SLE TRAVI IN ELEVAZIONE

Trave a "COPERTURA" tra i fili 4-12

CARATTERISTICHE DEI MATERIALI Acciaio B450C fyk= 450000 Calcestruzzo C32/40 fck,cub (cubica)= 40000 fck (cilindrica)= 33200

OUTPUT CAMPATE

campata n. 1 tra il filo 4 e tra il filo 5; asta FEM nø $\,$ 1 sezione rettangolare $\,$ H tot. 1.2 B 0.5 Cs 0.03 Ci 0.03 sovraresistenza 0%

Verifiche in stato limite ultimo

X	Asup	CS	Ainf	ci	Mela	comb.	MEd	MRd	x/d	Ast	Afp+	Afp-	VEd	comb.	VRcd	VRd	VRsd	teta
0	0.001885	0.048	0.001885	0.048	302.4272	SLV 8	321.002	825.1406	0.053	0	0	0	810.57	ger.	2438.21	216.87	0	45
0	0.001885	0.048	0.001885	0.048	-339.955	SLV 9	-297.365	-825.1406	0.053	0	0	0	-	ger.	2438.21	216.87	0	45
													216.11					
								825.1406				0	782.53	ger.	2438.21	216.87	815.69	45
0.25	0.001885	0.048	0.001885	0.048	-258.707	SLV 9	-258.707	-825.1406	0.053	0.0000201	0	0	-	ger.	2438.21	216.87	-	45
													244.15				815.69	
								825.1406	0.053	0.0000159	0	0	612.41	ger.	2438.21	216.87	645.75	45
1.77	0.001885	0.048	0.001885	0.048	86.922	SLV 9	-2.4103	-825.1406	0.053	0.0000159	0	0	-	ger.	2438.21	216.87	-	45
													414.26				645.75	
3.53	0.001885	0.048	0.001885	0.048	224.067	SLU 8	320.5496	825.1406	0.053	0.0000159	0	0	414.26	ger.	2438.21	216.87	645.75	45

AUTOSTRADA REGIONALE CISPADANA dal casello di Reggiolo-Rolo sulla A22 al casello di Ferrara Sud sulla A13

PROGETTO DEFINITIVO

OPERE STRUTTURALI

ARCHITETTONICI

CENTRO SICUREZZA AUTOSTRADALE (S.Felice sul Panaro)

RELAZIONE DI CALCOLO STRUTTURE

X	Asup	cs	Ainf	ci	Mela	comb.	MEd	MRd	x/d	Ast	Afp+	Afp-	VEd	comb.	VRcd	VRd	VRsd	teta
3.53	0.001885	0.048	0.001885	0.048	75.1697	SLU 1	-16.7847	-825.1406	0.053	0.0000159	0	0	-	ger.	2438.21	216.87	-	45
													612.41				645.75	
5.05	0.00377	0.048	0.00377	0.048	-	SLV 8	-	-	0.064	0.0000201	0	0	244.15	ger.	2438.21	216.87	815.69	45
					377.8519		377.8519	1638.8715										
5.05	0.00377	0.048	0.00377	0.048						0.0000201	0	0	-	ger.	2438.21	273.24	-	45
													782.53	Ī -			815.69	
5.3	0.00377	0.048	0.00377	0.048	-	SLV 8	-	-	0.064	0	0	0	216.11	ger.	2438.21	237.09	0	45
					485.3817		429.6489	1638.8715										
5.3	0.00377	0.048	0.00377	0.048						0	0	0	-	ger.	2438.21	273.24	0	45
												l	810.57					

Valutazione dei tagli secondo gerarchia delle resistenze

X	contr.gravitaz.	VEd negativo	contr.mom.resist.	elastico	VEd positivo	contr.mom.resist.	elastico
0	297.23	-216.11	-513.34	129.33	810.57	513.34	373.62
0.25	269.19	-244.15	-513.34	114.41	782.53	513.34	330.89
1.77	99.08	-414.26	-513.34	-49.56	612.41	513.34	142.57
3.53	-99.08	-612.41	-513.34	-247.71	414.26	513.34	-55.59
5.05	-269.19	-782.53	-513.34	-489.58	244.15	513.34	-172.09
5.3	-297.23	-810.57	-513.34	-532.31	216.11	513.34	-187.01

Verifiche in esercizio

х	M.rara	Comb.R		sigma f. rara		Comb.QP	sigma c. QP	srmi	wki freq.	wki QP	srms	wks freq.	fg. rara	ff. rara	fg. QP	ff. QP
0	12.6777	1	96	1441	11.8185	1	90						0	0	0	0
0.25	41.6968	2	316	4740	38.4708	1	292						0	0	0	0
1.77	270.0359	2	2046	30697	247.8616	1	1878						0.0003	0.0002	0.0002	0.0002
3.53	228.293	2	1730	25952	209.1288	1	1585						0.0002	0.0002	0.0002	0.0002
5.05	-230.6644	2	1603	24044	-213.8712	1	1486						0	0	0	0
5.3	-273.8688	2	1903	28548	-253.6663	1	1763						0	0	0	0

campata n. 2 tra il filo 5 e tra il filo 6; asta FEM nø $\,$ 2 sezione rettangolare $\,$ H tot. 1.2 B 0.5 Cs 0.03 Ci 0.03 sovraresistenza 0%

Verifiche in stato limite ultimo

	riche in																	
X	Asup	CS	Ainf	ci	Mela	comb.	MEd	MRd	x/d	Ast	Afp+	Afp-	VEd	comb.	VRcd	VRd	VRsd	
0	0.00377	0.048	0.00377	0.048	-	SLU 8	-	-	0.064	0	0	0	984.48	ger.	2438.21	273.24	0	45
					443.5211		395.0995	1638.8715										
0	0.00377	0.048	0.00377	0.048						0	0	0	-	ger.	2438.21	237.91	0	45
													395.63	_				
0.25	0.00377	0.048	0.00377	0.048	-354.305	SLV 9	-354.305	_	0 064	0.0000243	0	Ω	956.44		2438.21	273 24	985 62	4.5
0.25	0.00377	0.040	0.00377	0.040	334.303	OD V	334.303	1638.8715	0.004	0.0000243	0	0	330.44	gcr.	2430.21	273.24	303.02	45
0.25	0.00377	0 040	0.00377	0 040				1030.0713		0.0000243	_	-			2438.21	216 07		45
0.23	0.00377	0.040	0.00377	0.040						0.0000243	U	U	-	ger.	2430.21	210.07	_	43
													423.67				985.62	
	0.001885					m.i.p.	168.9279			0.0000243	0	0	788.19	ger.	2438.21		985.62	45
1.75	0.001885	0.048	0.001885	0.048	14.4835	SLV 5	-84.6125	-825.1406	0.053	0.0000243	0	0	-	ger.	2438.21	216.87	-	45
													591.91				985.62	
3.5	0.001885	0.048	0.001885	0.048	125.5497	m.i.p.	168.9279	825.1406	0.053	0.0000243	0	0	591.91	ger.	2438.21	216.87	985.62	45
3.5	0.001885	0.048	0.001885	0.048	-0.1651	SLV 8	-95.5774	-825.1406	0.053	0.0000243	0	0	_	ger.	2438.21	216.87	_	45
													788.19	_			985.62	
5	0.00377	0.048	0.00377	0.048	-358.287	SLV 8	-358.287	-	0.064	0.0000243	0	0	423.67	ger.	2438.21	216.87	985.62	45
								1638.8715						-				
5	0.00377	0.048	0.00377	0.048						0.0000243	0	0	-	ger.	2438.21	273.24	_	45
													956.44	J			985.62	
5.25	0.00377	0.048	0.00377	0.048	-	SLV 8	-	-	0.064	0	0	0	395.63	ger.	2438.21	237.91	0	45
					442.0229		398.1908	1638.8715						_				
5.25	0.00377	0.048	0.00377	0.048						0	0	0	-	ger.	2438.21	273.24	0	45
							1						984.48				_	

Valutazione dei tagli secondo gerarchia delle resistenze

Х	contr.gravitaz.	VEd negativo	contr.mom.resist.	elastico	VEd positivo	contr.mom.resist.	elastico
0	294.43	-395.63	-690.05	159.27	984.48	690.05	453.39
0.25	266.39	-423.67	-690.05	144.34	956.44	690.05	410.66
1.75	98.14	-591.91	-690.05	41.91	788.19	690.05	161.51
3.5	-98.14	-788.19	-690.05	-154.37	591.91	690.05	-34.78
5	-266.39	-956.44	-690.05	-401.26	423.67	690.05	-139.17
5.25	-294.43	-984.48	-690.05	-444	395.63	690.05	-154.09

Verifiche in esercizio

X	M.rara	Comb.R	sigma	sigma	M.QP	Comb.QP	sigma	srmi	wki	wki	wki	srms	wks	wks	wks	fg.	ff.		ff. QP
			c. rara	f. rara			c. QP		rara	freq.	QP		rara	freq.	QP	rara	rara	QP	
0	-276.4999	2	1921	28822	-256.0396	1	1779									0	0	0	0
0.25	-240.3298	2	1670	25052	-222.7162	1	1548									0	0	0	0
1.75	103.2334	2	782	11735	94.1137	1	713									0	0	0	0
1.75	-11.6126	1	88	1320	-11.6126	1	713												
3.5	105.7038	2	801	12016	96.648	1	732									0	0	0	0
3.5	-1.6629	1	13	189	-1.6629	1	732												
5	-223.8144	2	1555	23330	-205.7737	1	1430								ĺ	0	0	0	0
5.25	-259.1153	2	1801	27010	-238.2054	1	1655									0	0	0	0

campata n. 3 tra il filo 6 e tra il filo 7; asta FEM nø $\,$ 3 sezione rettangolare $\,$ H tot. 1.2 B 0.5 Cs 0.03 Ci 0.03 sovraresistenza 0%

Verifiche in stato limite ultimo

X	Asup	CS	Ainf	ci	Mela	comb.	MEd	MRd	x/d	Ast	Afp+	Afp-	VEd	comb.	VRcd	VRd	VRsd	teta
	0.003	77 0.048	0.00377	0.048		SLV 9			0.064	0	0	0	984.48	ger.	2438.21	273.24	0	45
					438.0189		393.3521	1638.8715										

AUTOSTRADA REGIONALE CISPADANA dal casello di Reggiolo-Rolo sulla A22 al casello di Ferrara Sud sulla A13

PROGETTO DEFINITIVO

OPERE STRUTTURALI

ARCHITETTONICI

CENTRO SICUREZZA AUTOSTRADALE (S.Felice sul Panaro)

RELAZIONE DI CALCOLO STRUTTURE

х	Asup	CS	Ainf	ci	Mela	comb.	MEd	MRd	x/d	Ast	Afp+	Afp-	VEd	comb.	VRcd	VRd	VRsd	teta
0	0.00377	0.048	0.00377	0.048						0	0	0	-		2438.21	237.91	0	45
													395.63					
0.25	0.00377	0.048	0.00377	0.048		SLV 9	-			0.0000243	0	0	956.44	ger.	2438.21	273.24	985.62	45
					352.6111		352.6111	1638.8715										
0.25	0.00377	0.048	0.00377	0.048						0.0000243	0	0	-	ger.	2438.21	216.87		45
													423.67				985.62	
1.75	0.001885	0.048	0.001885	0.048	125.7768	m.i.p.	168.9279	825.1406	0.053	0.0000243	0	0	788.19	ger.	2438.21	216.87	985.62	45
1.75	0.001885	0.048	0.001885	0.048	15.5659	SLV 9	-83.339	-825.1406	0.053	0.0000243	0	0	-	ger.	2438.21	216.87	-	45
													591.91				985.62	
3.5	0.001885	0.048	0.001885	0.048	125.6568	m.i.p.	168.9279	825.1406	0.053	0.0000243	0	0	591.91	ger.	2438.21	216.87	985.62	45
3.5	0.001885	0.048	0.001885	0.048	16.5155	SLV 8	-82.143	-825.1406	0.053	0.0000243	0	0	-	ger.	2438.21	216.87	-	45
													788.19				985.62	
5	0.00377	0.048	0.00377	0.048	-	SLV 8	-	-	0.064	0.0000243	0	0	423.67	ger.	2438.21	216.87	985.62	45
					350.9505		350.9505	1638.8715										
5	0.00377	0.048	0.00377	0.048						0.0000243	0	0	-	ger.	2438.21	273.24	-	10
													956.44				985.62	
5.25	0.00377	0.048	0.00377	0.048		SLV 8	-		0.064	0	0	0	395.62	ger.	2438.21	237.91	0	45
					436.2397		391.6322	1638.8715										
5.25	0.00377	0.048	0.00377	0.048						0	0	0	-	ger.	2438.21	273.24	0	45
							1						984.48			l		

Valutazione dei tagli secondo gerarchia delle resistenze

X	contr.gravitaz.	VEd negativo	contr.mom.resist.	elastico	VEd positivo	contr.mom.resist.	elastico
0	294.43	-395.63	-690.05	156.67	984.48	690.05	449.1
0.25	266.39	-423.67	-690.05	141.75	956.44	690.05	406.37
1.75	98.14	-591.91	-690.05	35.71	788.19	690.05	161.05
3.5	-98.14	-788.19	-690.05	-160.58	591.91	690.05	-35.23
5	-266.39	-956.44	-690.05	-405.56	423.67	690.05	-141.77
5.25	-294.43	-984.48	-690.05	-448.29	395.62	690.05	-156.69

Verifiche in esercizio

X	M.rara	Comb.R	sigma	sigma	M.QP	Comb.QP	sigma	srmi	wki	wki	wki	srms	wks	wks	wks	fg. rara	ff. rara	fg. QP	ff.
			c. rara	f. rara			c. QP		rara	freq.	QP		rara	freq.	QP	_			QP
0	-257.1069	2	1787	26800	-236.4078	1	1643									0	0	0	0
0.25	-221.3377	2	1538	23072	-203.5005	1	1414									0	0	0	0
1.75	115.7454	2	877	13158	106.6041	1	808									0.0001	0.0001	0.0001	0
3.5	115.9361	2	879	13179	106.7725	1	809									0.0001	0.0001	0.0001	0
5	-220.0627	2	1529	22939	-202.3747	1	1406									0	0	0	0
5.25	-255.7647	2	1777	26660	-235.2227	1	1635									0	0	0	0

campata n. 4 tra il filo 7 e tra il filo 8; asta FEM nø $\,$ 4 sezione rettangolare $\,$ H tot. 1.2 B 0.5 Cs 0.03 Ci 0.03 sovraresistenza 0% Verifiche in stato limite ultimo

			O IIMILE				MEA	MD4	/-1	A - 4	A	A 4	VEJ		VD-d	VD4	VDad	
Х	Asup	CS	Ainf	ci	Mela	comb.	MEd	MRd	x/d	Ast	Afp+			comb.	VRcd	VRd	VRsd	teta
0	0.00377	0.048	0.00377	0.048	-	SLV 9	-	-	0.064	0	0	0	984.48	ger.	2438.21	273.24	0	45
					439.3044		392.9735	1638.8715										i l
0	0.00377	0.048	0.00377	0.048						0	0	0	-	ger.	2438.21	237.91	0	45
													395.62					i i
0.25	0.00377	0.048	0.00377	0.048	-	SLV 9	-	-	0.064	0.0000243	0	0	956.44	ger.	2438.21	273.24	985.62	45
					350.5691		350.5691	1638.8715										i i
0.25	0.00377	0.048	0.00377	0.048						0.0000243	0	0	-	ger.	2438.21	216.87	-	45
													423.67				985.62	i i
1.75	0.001885	0.048	0.001885	0.048	154.3606	SLV 8	211.2206	825.1406	0.053	0.0000243	0	0	788.19	ger.	2438.21	216.87	985.62	45
1.75	0.001885	0.048	0.001885	0.048	37.5654	SLV 9	-68.2518	-825.1406	0.053	0.0000243	0	0	-	ger.	2438.21	216.87	-	45
													591.91				985.62	i i
3.5	0.001885	0.048	0.001885	0.048	181.8848	SLU 8	225.7954	825.1406	0.053	0.0000243	0	0	591.91	ger.	2438.21	216.87	985.62	45
3.5	0.001885	0.048	0.001885	0.048	65.6575	SLU 1	-23.3432	-825.1406	0.053	0.0000243	0	0	-	ger.	2438.21	216.87	-	45
													788.19				985.62	i l
5	0.00377	0.048	0.00377	0.048	11.4974	SLV 9	11.4974	1638.8715	0.064	0.0000243	0	0	423.67	ger.	2438.21	216.87	985.62	45
5	0.00377	0.048	0.00377	0.048	-279.08	SLV 8	-279.08	-	0.064	0.0000243	0	0	_	ger.	2438.21	273.24	_	45
								1638.8715					956.44				985.62	i l
5.25	0.00377	0.048	0.00377	0.048	-	SLV 8	-	_	0.064	0	0	0	395.62	ger.	2438.21	237.91	0	45
					361.0364		318.0949	1638.8715										i i
5.25	0.00377	0.048	0.00377	0.048						0	0	0	-	ger.	2438.21	273.24	0	45
													984.48					i l

Valutazione dei tagli secondo gerarchia delle resistenze

valutazione de	ei tagii secondo	o gerarchia de.	ile resistenze				
X	contr.gravitaz.	VEd negativo	contr.mom.resist.	elastico	VEd positivo	contr.mom.resist.	elastico
0	294.43	-395.62	-690.05	164.49	984.48	690.05	469.21
0.25	266.39	-423.67	-690.05	149.57	956.44	690.05	426.47
1.75	98.14	-591.91	-690.05	49.04	788.19	690.05	174.36
3.5	-98.14	-788.19	-690.05	-147.25	591.91	690.05	-21.92
5	-266.39	-956.44	-690.05	-385.45	423.67	690.05	-133.95
5.25	-294.43	-984.48	-690.05	-428.18	395.62	690.05	-148.87

Verifiche in esercizio

		OCT CTT.																	
Х	M.rara	Comb.R	sigma	sigma	M.QP	Comb.QP	sigma	srmi	wki	wki	wki	srms	wks	wks	wks	fg. rara	ff. rara	fg. QP	ff. QP
			c. rara	f. rara			c. QP		rara	freq.	QP		rara	freq.	QP				
0	-253.0119	2	1758	26374	-232.7623	1	1618									0	0	0	0
0.25	-215.4368	2	1497	22457	-198.19	1	1377									0	0	0	0
1.75	150.8282	2	1143	17146	138.8192	1	1052									0.0001	0.0001	0.0001	0.0001
3.5	161.2843	2	1222	18335	148.4519	1	1125									0.0001	0.0001	0.0001	0.0001
5	-145.5329	2	1011	15170	-133.7913	1	930									0	0	0	0
5.25	-179.4289	2	1247	18703	-164.9742	1	1146									0	0	0	0

campata n. 5 tra il filo 8 e tra il filo 9; asta FEM nø 5

AUTOSTRADA REGIONALE CISPADANA dal casello di Reggiolo-Rolo sulla A22 al casello di Ferrara Sud sulla A13

PROGETTO DEFINITIVO

OPERE STRUTTURALI

ARCHITETTONICI

CENTRO SICUREZZA AUTOSTRADALE (S.Felice sul Panaro)
RELAZIONE DI CALCOLO STRUTTURE

sezione rettangolare $\,$ H tot. 1.2 B 0.5 Cs 0.03 Ci 0.03 sovraresistenza 0%

Verifiche in stato limite ultimo

х	Asup	CS	Ainf	ci	Mela	comb.	MEd	MRd	x/d	Ast	Afp+	Afp-	VEd	comb.	VRcd	VRd	VRsd	teta
0	0.00377	0.048	0.00377	0.048	-	SLV 9	-	-	0.064	0	0	0	1137.97	ger.	2438.21	273.24	0	45
					364.8598		325.4263	1638.8715										
0	0.00377	0.048	0.00377	0.048						0	0	0	-676.7	ger.	2438.21	246.57	0	45
0.25	0.00377	0.048	0.00377	0.048	14.1178	SLV 8	14.1178	1638.8715	0.064	0.0000393	0	0	1109.93	ger.	2438.21	273.24	1593.14	45
0.25	0.00377	0.048	0.00377	0.048	-	SLV 9	-	-	0.064	0.0000393	0	0	-704.74	ger.	2438.21	216.87	-	45
					289.6514		289.6514	1638.8715									1593.14	
								825.1406				0					1593.14	
1.37	0.001885	0.048	0.001885	0.048	-37.7984	SLV 9	-	-825.1406	0.053	0.0000393	0	0	-830.46	ger.	2438.21	216.87	-	45
							137.1684										1593.14	
								825.1406				0	830.46	ger.	2438.21	216.87	1593.14	45
2.74	0.001885	0.048	0.001885	0.048	-20.6627	SLV 8	-	-825.1406	0.053	0.0000393	0	0	-984.21	ger.	2438.21	216.87	-	45
							115.8938										1593.14	
3.86	0.00377	0.048	0.00377	0.048	16.8172	SLV 9	16.8172	1638.8715	0.064	0.0000393	0	0					1593.14	
3.86	0.00377	0.048	0.00377	0.048	-	SLV 8	-	-	0.064	0.0000393	0	0	-	ger.	2438.21	273.24	-	45
					263.5913			1638.8715					1109.93				1593.14	
4.11	0.00377	0.048	0.00377	0.048	-			-		0	0	0	676.7	ger.	2438.21	246.57	0	45
					336.8093		298.3709	1638.8715										
4.11	0.00377	0.048	0.00377	0.048						0	0	0	-	ger.	2438.21	273.24	0	45
													1137.97					

Valutazione dei tagli secondo gerarchia delle resistenze

X	contr.gravitaz.	VEd negativo	contr.mom.resist.	elastico	VEd positivo	contr.mom.resist.	elastico
0	230.63	-676.7	-907.33	123.04	1137.97	907.33	358.49
0.25	202.59	-704.74	-907.33	108.12	1109.93	907.33	315.75
1.37	76.88	-830.46	-907.33	0.01	984.21	907.33	161.71
2.74	-76.88	-984.21	-907.33	-153.75	830.46	907.33	7.96
3.86	-202.59	-1109.93	-907.33	-301.74	704.74	907.33	-107.5
4.11	-230.63	-1137.97	-907.33	-344.47	676.7	907.33	-122.42

Verifiche in esercizio

Х	M.rara	Comb.R	sigma	sigma	M.QP	Comb.QP	sigma	srmi	wki	wki	wki	srms	wks	wks	wks	fg.	ff.		ff. QP
			c. rara	f. rara			c. QP		rara	freq.	QP		rara	freq.	QP	rara	rara	QP	
0	-177.6437	2	1234	18517	-163.4355	1	1136									0	0	0	0
0.25	-149.6953	2	1040	15604	-137.7668	1	957									0	0	0	0
1.37	55.2137	2	418	6277	50.1708	1	380									0	0	0	0
1.37	-36.5473	1	277	4155	-33.8817	1	380												
2.74	56.7754	2	430	6454	51.4897	1	390									0	0	0	0
2.74	-25.1866	1	191	2863	-24.2872	1	390												
3.86	-132.6685	2	922	13829	-123.387	1	857									0	0	0	0
4.11	-159.4385	2	1108	16620	-148.0606	1	1029									0	0	0	0

campata n. 6 tra il filo 9 e tra il filo 10; asta FEM nø 48 sezione rettangolare H tot. 1.2 B 0.5 Cs 0.03 Ci 0.03

sovraresistenza 0% Verifiche in stato limite ultimo

			O TIMIL															
X	Asup	CS	Ainf	ci	Mela	comb.	MEd	MRd	x/d	Ast	Afp+	Afp-	VEd	comb.	VRcd	VRd	VRsd	teta
0	0.00377	0.048	0.00377	0.048	1.9422	SLV	-0.4245	1638.8715	0.064	0	0	0	1052.93	ger.	2438.21	273.24	0	45
						8												
0	0.00377	0.048	0.00377	0.048	-345.237	SLV	-320.8355	-	0.064	0	0	0	-669.09	ger.	2438.21	246.13	0	45
						9		1638.8715										
0.25	0.00377	0.048	0.00377	0.048	-300.812	SLV	-300.812	-	0.064	0.0000393	0	0	1024.89	ger.	2438.21	273.24	1593.14	45
						9		1638.8715										
0.25	0.00377	0.048	0.00377	0.048						0.0000393	0	0	-697.13	ger.	2438.21	216.87		45
																	1593.14	
1.38	0.001885	0.048	0.001885	0.048	-230.4059	SLU	-304.5368	-825.1406	0.053	0.0000393	0	0	898.24	ger.	2438.21	216.87	1593.14	45
						8												
1.38	0.001885	0.048	0.001885	0.048						0.0000393	0	0	-823.78	ger.	2438.21	216.87	-	45
																	1593.14	
2.76	0.002589	0.048	0.001885	0.048	-527.647	SLU	-724.3052	-	0.064	0.0000393	0	0	743.55	ger.	2438.21	216.87	1593.14	45
						8		1128.7316										
2.76	0.002589	0.048	0.001885	0.048						0.0000393	0	0	-978.47	ger.	2438.21	241.07		45
																	1593.14	
3.89	0.00377	0.048	0.003091	0.047		SLU	-			0.0000393	0	0	616.9	ger.	2438.21	241.07	1593.14	45
					1013.3214	8	1013.3214	1638.9807										
3.89	0.00377	0.048	0.003091	0.047						0.0000393	0	0	-	ger.	2438.21	273.24	-	45
													1105.12				1593.14	
4.14	0.00377	0.048	0.003091	0.047		SLU	-		0.069	0	0	0	588.86	ger.	2438.21	258.56	0	45
					1150.0166	8	1078.8746	1638.9807										
4.14	0.00377	0.048	0.003091	0.047						0	0	0	-		2438.21	273.24	0	45
													1133.16					

Valutazione dei tagli secondo gerarchia delle resistenze

X	contr.gravitaz.	VEd negativo	contr.mom.resist.	elastico	VEd positivo	contr.mom.resist.	elastico
0	232.04	-669.09	-901.13	-18.93	1052.93	820.9	195.21
0.25	204	-697.13	-901.13	-46.97	1024.89	820.9	167.17
1.38	77.35	-823.78	-901.13	-173.62	898.24	820.9	40.52
2.76	-77.35	-978.47	-901.13	-333.39	743.55	820.9	-114.17
3.89	-204	-1105.12	-901.13	-526.4	616.9	820.9	-204.11
4.14	-232.04	-1133.16	-901.13	-569.14	588.86	820.9	-219.04

Verifiche in esercizio

Х	M.rara	Comb.R	sigma	sigma f.	M.QP	Comb.QP	sigma	srmi	wki	wki	wki	srms	wks rara	wks freq.	wks QP	fg.	ff.	fg.	ff.
			c. rara	rara			c. QP		rara	freq.	QP					rara	rara	QP	QP
0	-172.8755	2	1201	18020	-160.63	1	1116									0	0	0	0
0.25	-164.8888	2	1146	17188	-153.2801	1	1065									0	0	0	0

AUTOSTRADA REGIONALE CISPADANA dal casello di Reggiolo-Rolo sulla A22 al casello di Ferrara Sud sulla A13

PROGETTO DEFINITIVO

OPERE STRUTTURALI

ARCHITETTONICI

CENTRO SICUREZZA AUTOSTRADALE (S.Felice sul Panaro)

RELAZIONE DI CALCOLO STRUTTURE

х	M.rara	Comb.R	sigma	sigma f.	M.QP	Comb.QP	sigma	srmi	wki	wki	wki	srms	wks rara	wks freq.	wks QP	fg.	ff.	fg.	ff.
			c. rara	rara			c. QP		rara	freq.	QP					rara	rara	QP	QP
1.38			1690	25347	-206.6914	1	1566									0	0	0	0
2.76	-526.0926	2	4823	191681	-485.5505	1	4451					0.208	0.00016	0.00015	0.00015	0	0	0	0
3.89	-733.8758	2	5415	184254	-676.7068	1	4993					0.183	0.00014	0.00013	0.00013	0	0	0	0
4.14	-780.9684	2	5763	196078	-720.0312	1	5313					0.183	0.00015	0.00014	0.00014	0	0	0	0

campata n. 7 tra il filo 10 e tra il filo 11; asta FEM nø $\,$ 37 sezione rettangolare $\,$ H tot. 1.2 B 0.5 Cs 0.03 Ci 0.03 $\,$

sovraresistenza 0% Verifiche in stato limite ultimo

Х	Asup	cs	Ainf	ci	Mela	comb.	MEd	MRd	x/d	Ast	Afp+	Afp-	VEd	comb.	VRcd	VRd	VRsd
0	0.00377	0.048	0.003091	0.047	_	SLU 8	-	-	0.069	0	0	0	595.36	ger.	2438.21	273.24	0
					1186.5254		1141.8857	1638.9807									
0	0.00377	0.048	0.003091	0.047						0	0	0	-	ger.	2438.21	266.78	0
													763.37				
0.25	0.00377	0.048	0.003091	0.047	-		-	-	0.069	0.0000188	0	0	595.36	ger.	2438.21	273.24	764.71
					1099.3238		1099.3238	1638.9807									
0.25	0.00377	0.048	0.003091	0.047						0.0000188	0	0	-	ger.	2438.21	249.57	-
													763.37				764.71
0.97	0.00377	0.048	0.002149	0.053	-872.0474	SLU 8	-	_	0.087	0.0000188	0	0	595.36	ger.	2438.21	273.24	764.71
							1033.4462	1634.2364									
0.97	0.00377	0.048	0.002149	0.053						0.0000188	0	0	-	ger.	2438.21	266.04	-
													763.37				764.71
1.93	0.003055	0.048	0.001206	0.046	-623.2329	SLU 8	-748.5517	_	0.086	0.0000188	0	0	595.36	ger.	2438.21	254.76	764.71
								1327.0754									
1.93	0.003055	0.048	0.001206	0.046						0.0000188	0	0	-	ger.	2438.21	254.76	-
													763.37				764.71
2.65	0.00377	0.048	0.001885	0.045	-484.9547	SLU 8	-484.9547	_	0.087	0.0000188	0	0	595.36	ger.	2438.21	249.57	764.71
								1636.5936									
2.65	0.00377	0.048	0.001885	0.045						0.0000188	0	0	-	ger.	2438.21	273.24	-
													763.37				764.71
2.9	0.00377	0.048	0.001885	0.045	-446.3682	SLU 8	-464.3159	_	0.087	0	0	0	595.36	ger.	2438.21	242.37	0
								1636.5936									
2.9	0.00377	0.048	0.001885	0.045						0	0	0	-	ger.	2438.21	273.24	0
		ĺ											763.37		1		

Valutazione dei tagli secondo gerarchia delle resistenze

Х	contr.gravitaz.	VEd negativo	contr.mom.resist.	elastico	VEd positivo	contr.mom.resist.	elastico
0	0	-763.37	-763.37	162.34	595.36	595.36	357.12
0.25	0	-763.37	-763.37	154.99	595.36	595.36	341.01
0.97	0	-763.37	-763.37	132.95	595.36	595.36	292.44
1.93	0	-763.37	-763.37	100.91	595.36	595.36	221.26
2.65	0	-763.37	-763.37	75.43	595.36	595.36	164.29
2.9	0	-763.37	-763.37	66.2	595.36	595.36	143.58

Verifiche in esercizio

		COCLOIL																	
Х	M.rara	Comb.R	sigma	sigma f.	M.QP	Comb.QP	sigma	srmi	wki	wki	wki	srms	wks rara	wks freq.	wks QP	fg.	ff.	fg.	ff.
			c. rara	rara			c. QP		rara	freq.	QP					rara	rara	QP	QP
0	-829.1558	2	6118	208176	-765.8283	1	5651					0.183	0.00017	0.00015	0.00015	0	0	0	0
0.25	-798.202	2			-736.9008		5437						0.00016				0	0	0
0.97	-750.2916	2	5986	190395	-692.1239	1	5521					0.183	0.00015	0.00014	0.00014	0	0	0	0
1.93	-543.0919	2	5001	170051	-498.3395	1	4589					0.196	0.00014	0.00012	0.00012	0	0	0	0
2.65	-351.3189	2	2591	37573	-318.2867	1	2348									0	0	0	0
2.9	-336.2965	2	2480	35967	-304.1116	1	2243									0	0	0	0

mensola destra tra il filo 11 e tra il filo 12; asta FEM nø 38 sezione rettangolare H tot. 1.2 B 0.5 Cs 0.03 Ci 0.03

sovraresistenza 0% Verifiche in stato limite ultimo

Х	Asup	CS	Ainf	ci	Mela	comb.	MEd	MRd	x/d	Ast	Afp+	Afp-	VEd	comb.	VRcd	VRd	VRsd	teta
0	0.00377	0.048	0.001885	0.045	-	SLU 8	-	-	0.087	0	0	0	353.25	SLU 8	2438.21	273.24	0	45
					450.3998		406.2429	1636.5936										1
0.25	0.00377	0.048	0.001885	0.045	-	SLU 8	-	-	0.087	0.0000084	0	0	318.62	SLU 8	2438.21	273.24	339.87	45
					366.4429		366.4429	1636.5936										1
0.85	0.003311	0.048	0.000679	0.044	-	SLU 8	_	-	0.119	0.0000084	0	0	235.5	SLU 8	2438.21	261.68	339.87	45
					200.1777		341.3426	1424.6027										
1.7	0.001885	0.048	0.000679	0.044	-50.0444	SLU 8	-130.008	-825.3847	0.063	0.0000084	0	0	117.75	SLU 8	2438.21	216.87	339.87	45
2.55	0	0.038	0	0.038	0	SLU 5	0	0	0	0.0000084	0	0	0	SLU 8	2459.37	197.19	342.82	45
2.55	0	0.038	0	0.038	0	SLU 4	-18.7622	0	0									

Valutazione dei tagli secondo gerarchia delle resistenze

X	contr.gravitaz.	VEd negativo	contr.mom.resist.	elastico	VEd positivo	contr.mom.resist.	elastico
0	0	152.2	0	152.2	353.25	0	353.25
0.25	0	137.28	0	137.28	318.62	0	318.62
0.85	0	101.47	0	101.47	235.5	0	235.5
1.7	0	50.73	0	50.73	117.75	0	117.75
2.55	0	0	0	0	0	0	0

Verifiche in esercizio

X	M.rara	Comb.R			M.QP	Comb.QP		srmi	wki	wki	wki	srms	wks	wks	wks	fg.	ff.		ff. QP
			c. rara	f. rara			c. QP		rara	freq.	QP		rara	freq.	QP	rara	rara	QP	
0	-294.1664	2	2170	31461	-265.5745	1	1959									0	0	0	0
0.25	-265.3466	2	1957	28379	-239.5559	1	1767									0	0	0	0
0.85	-247.1712	2	1911	27314	-223.1471	1	1725									0	0	0	0
1.7	-94.1407	2	743	10899	-84.9906	1	671									0	0	0	0
2.55	-13.586	2	0	0	-12.2655	1	0									0	0	0	0

AUTOSTRADA REGIONALE CISPADANA dal casello di Reggiolo-Rolo sulla A22 al casello di Ferrara Sud sulla A13

PROGETTO DEFINITIVO

OPERE STRUTTURALI

ARCHITETTONICI

CENTRO SICUREZZA AUTOSTRADALE (S.Felice sul Panaro)

RELAZIONE DI CALCOLO STRUTTURE

Momenti resistenti a filo appoggi (per controllo pilastri)

campata	X	appoggio	Mb,Rd +	Mb,Rd -
1	0.25	4	825.1406	-825.1406
1	5.05	5	1638.8715	-1638.8715
2	0.25	5	1638.8715	-1638.8715
2	5	6	1638.8715	-1638.8715
3	0.25	6	1638.8715	-1638.8715
3	5	7	1638.8715	-1638.8715
4	0.25	7	1638.8715	-1638.8715
4	5	8	1638.8715	-1638.8715
5	0.25	8	1638.8715	-1638.8715
5	3.86	9	1638.8715	-1638.8715
6	0.25	9	1638.8715	-1638.8715
6	3.89	10	1347.1361	-1638.9807
7	0.25	10	1347.1361	-1638.9807
7	2.65	11	827.057	-1636.5936
mensola destra	0.25	11	827.057	-1636.5936

Trave a "COPERTURA" tra i fili 2-21

CARATTERISTICHE DEI MATERIALI

Acciaio B450C fyk= 450000 Calcestruzzo C32/40 fck,cub (cubica)= 40000 fck (cilindrica)= 33200

OUTPUT CAMPATE

mensola sinistra tra il filo 2 e tra il filo 10; asta FEM nø $\,$ 40 sezione rettangolare $\,$ H tot. 0.45 B 0.7 Cs 0.03 Ci 0.03 sovraresistenza 0%

Verifiche in stato limite ultimo

Х	Asup	cs	Ainf	ci	Mela	comb.	MEd	MRd	x/d	Ast	Afp+	Afp-	VEd	comb.	VRcd	VRd	VRsd	teta
0	. 0	0.038	0	0.038	0	SLV 3	0	0	0	0.0000114	0	0	0	SLV	1220.8	128.54	164.89	45
														14				
0	0	0.038	0	0.038	0	SLV	-0.1746	0	0	0.0000114	0	0	0	SLV 3	1220.8	128.54	-	45
						14											164.89	
0.85	0.001257	0.048	0.000452	0.044	-3.6983	SLU 5	-5.4588			0.0000114	0	0	-8.7	SLU 5	1191.17	141.47		40
								188.4154									160.88	
1.7	0.002208	0.048	0.000975	0.046	_	SLU 5	-	-	0.159	0.0000114	0	0	-17.4	SLU 5	1191.17	170.7	-	45
					14.7932		18.1396	321.2478									160.88	
2.3	0.002513	0.048	0.001709	0.047	-	SLU 5	-	-363.585	0.158	0.0000114	0	0	-	SLU 5	1191.17	178.24	-	45
					27.0802		27.0802						23.55				160.88	
2.55	0.002513	0.048	0.001709	0.047	_	SLU 5	_	-363.585	0.158	0	0	0	-	SLU 5	1191.17	178.24	0	45
					33.2847		30.0215						26.11					

Valutazione dei tagli secondo gerarchia delle resistenze

X	contr.gravitaz.	VEd negativo	contr.mom.resist.	elastico	VEd positivo	contr.mom.resist.	elastico
0	0	0	0	0	0	0	0
0.85	0	-8.7	0	-8.7	-6.69	0	-6.69
1.7	0	-17.4	0	-17.4	-13.39	0	-13.39
2.3	0	-23.55	0	-23.55	-18.11	0	-18.11
2.55	0	-26.11	0	-26.11	-20.08	0	-20.08

Verifiche in esercizio

X	M.rara	Comb.R	sigma	sigma	M.QP	Comb.QP	sigma	srmi	wki	wki	wki	srms	wks	wks	wks	fg.	ff.	fg.	ff. QP
			c. rara	f. rara			c. QP		rara	freq.	QP		rara	freq.	QP	rara	rara	QP	
0	-0.1343	1	0	0	-0.1343	1	0									0	0	0	0
0.85	-4.1991	1	169	2478	-4.1991	1	169									0	0	0	0
1.7	-13.9535	1	538	7791	-13.9535	1	538									0	0	0	0
2.3	-20.831	1	772	11314	-20.831	1	772									0	0	0	0
2.55	-23.0934	1	855	12543	-23.0934	1	855									0	0	0	0

campata n. 1 tra il filo 10 e tra il filo 21; asta FEM nø 39 sezione rettangolare H tot. 0.45 B 0.7 Cs 0.03 Ci 0.03 sovraresistenza 0% Verifiche in stato limite ultimo

Verii	iche in	stato	limite	ultim	10													
Х	Asup	cs	Ainf	ci	Mela	comb.	MEd	MRd	x/d	Ast	Afp+	Afp-	VEd	comb.	VRcd	VRd	VRsd	teta
0	0.002513	0.048	0.001709	0.047	58.4902	SLV	60.997	252.3257	0.128	0	0	0	95.75	ger.	1191.17	178.24	0	45
						14												
0	0.002513	0.048	0.001709	0.047		SLV 3	-185.75	-363.585	0.158									
					194.3766													
0.25	0.002513	0.048	0.001709	0.047	63.1448	SLV	63.1448	252.3257	0.128	0.0000223	0	0	93.78	ger.	1191.17	178.24	316.27	45
						14												
0.25	0.002513	0.048	0.001709	0.047		SLV 3			0.158	0.0000223	0	0	-0.97	ger.	1191.17	174.63		45
					177.4963		177.4963										316.27	
3.72	0.001257	0.048	0.001257	0.048	78.9532	SLV	80.3238	188.5862	0.118	0.0000105	0	0	66.48	ger.	1191.17	141.47	148.89	45
						14												
3.72	0.001257	0.048	0.001257	0.048	7.4098	SLV 3	-0.0582	-	0.118	0.0000105	0	0	-	ger.	1191.17	141.47	-	45
								188.5862					28.27				148.89	
7.43	0.001257	0.048	0.001257	0.048	101.5225	SLV 3	103.1415	188.5862	0.118	0.0000105	0	0	37.21	ger.	1191.17	141.47	148.89	45
7.43	0.001257	0.048	0.001257	0.048	-10.4745	SLV	-17.7314	-	0.118	0.0000105	0	0	-	ger.	1191.17	141.47	-	45
						14		188.5862					57.54				148.89	
10.9	0.00137	0.048	0.001257	0.048	90.1945	SLV 3	90.1945	188.5624	0.118	0.0000223	0	0	9.91	ger.	1192.14	145.64	316.53	45
10.9	0.00137	0.048	0.001257	0.048	_	SLV	-	_	0.122	0.0000223	0	0	-	ger.	1192.14	145.64	-	45
					191.1211	14	191.1211	204.5808					84.84				316.53	
11.15	0.00137	0.048	0.001257	0.048	85.8564	SLV 3	88.2056	188.5624	0.118	0	0	0	7.94	ger.	1192.14	145.64	0	45

AUTOSTRADA REGIONALE CISPADANA dal casello di Reggiolo-Rolo sulla A22 al casello di Ferrara Sud sulla A13

PROGETTO DEFINITIVO

OPERE STRUTTURALI

ARCHITETTONICI

CENTRO SICUREZZA AUTOSTRADALE (S.Felice sul Panaro)

RELAZIONE DI CALCOLO STRUTTURE

X	Asup	cs	Ainf	ci	Mela	comb.	MEd	MRd	x/d	Ast	Afp+	Afp-	VEd	comb.	VRcd	VRd	VRsd	teta
11.15	0.00137	0.048	0.001257	0.048	-	SLV	-	-	0.122	0	0	0	-	ger.	1192.14	145.64	0	45
					207.6878	14	199.2187	204.5808					86.81					

Valutazione dei tagli secondo gerarchia delle resistenze

Х	contr.gravitaz.	VEd negativo	contr.mom.resist.	elastico	VEd positivo	contr.mom.resist.	elastico
0	43.9	1	-42.9	20.05	95.75	51.84	69.01
0.25	41.93	-0.97	-42.9	18.09	93.78	51.84	67.04
3.72	14.63	-28.27	-42.9	-9.21	66.48	51.84	39.74
7.43	-14.63	-57.54	-42.9	-38.48	37.21	51.84	10.48
10.9	-41.93	-84.84	-42.9	-65.78	9.91	51.84	-16.82
11.15	-43.9	-86.81	-42.9	-67.75	7.94	51.84	-18.79

Verifiche in esercizio

Х	M.rara	Comb.R	sigma	sigma	M.QP	Comb.QP	sigma	srmi	wki	wki	wki	srms	wks	wks	wks	fg. rara	ff. rara	fg. QP	ff. QP
			c. rara	f. rara			c. QP		rara	freq.	QP		rara	freq.	QP				
0	-62.3765		2311	33878	-62.3765	1	2311									0	0	0	0
0.25	-57.1757	1	2118	31053	-57.1757	1	2118									0	0	0	0
3.72	46.2423	2	1792	26875	45.6968	1	1771									0.0027	0.0025	0.0027	0.0025
7.43	47.9094	2	1856	27844	47.8096	1	1852									0.0028	0.0025	0.0027	0.0025
10.9	-50.8486	2	1966	29385	-50.4633	1	1951									0	0	0	0
11.15	-55.9084	2	2161	32309	-55.5066	1	2146									0	0	0	0

Momenti resistenti a filo appoggi (per controllo pilastri)

campata	x	appoggio	Mb,Rd +	Mb,Rd -
mensola sinistra	2.3	10	252.3257	-363.585
1	0.25	10	252.3257	-363.585
1	10.9	21	188.5624	-204.5808

Ove:

x: distanza da asse appoggio sinistro [m]

Asup: area efficace di armatura longitudinale superiore [m2]

cs: distanza tra bordo superiore e baricentro dell'armatura superiore [m]

Ainf: area efficace di armatura longitudinale inferiore [m2]

ci: distanza tra bordo inferiore e baricentro dell'armatura inferiore [m]

Mela: momento flettente elastico [kN*m] comb.: combinazione che produce Mela MEd: momento flettente di progetto [kN*m]

MRd: momento ultimo [kN*m]

x/d: distanza asse neutro dal bordo compresso / altezza utile

Ast: area delle staffe (cmq/cm) [m2]

Afp+: area di staffe equivalenti da sagomati per taglio positivo [m2] Afp-: area di staffe equivalenti da sagomati per taglio negativo [m2]

VEd: taglio di progetto [kN]

VRcd: resistenza a taglio per rottura delle bielle compresse [kN]

VRd: resistenza a taglio in assenza di staffatura [kN] VRsd: resistenza a taglio per la presenza di armatura [kN] teta: angolo di inclinazione delle bielle compresse [deg]

ver.: stato di verifica (vuoto = verificato)

contr.gravitaz.: taglio dovuto ai carichi insistenti sulla trave [kN]

VEd negativo: taglio di progetto negativo [kN]

contr.mom.resist.: taglio dovuto ai momenti resistenti di estremità [kN]

elastico: taglio desunto dalla analisi [kN] VEd positivo: taglio di progetto positivo [kN]

M.rara: momento flettente in combinazione rara [kN*m]

Comb.R: Combinazione rara

sigma c. rara : tensione nel c.a in combinazione rara [kN/m2] sigma f. rara: tensione nell'acciaio in combinazione rara [kN/m2] M.QP: momento flettente in combinazione quasi permanente [kN*m]

Comb.QP: Combinazione quasi permanente

sigma c. QP: tensione nel c.a in combinazione quasi permanente [kN/m2]

srmi: interasse tra le fessure al lembo inferiore [m]

wki rara: apertura caratteristica delle fessure al lembo inferiore in combinazione rara [m]

AUTOSTRADA REGIONALE CISPADANA dal casello di Reggiolo-Rolo sulla A22 al casello di Ferrara Sud sulla A13

PROGETTO DEFINITIVO

OPERE STRUTTURALI

ARCHITETTONICI
CENTRO SICUREZZA AUTOSTRADALE (S.Felice sul Panaro)
RELAZIONE DI CALCOLO STRUTTURE

wki freq.: apertura caratteristica delle fessure al lembo inferiore in combinazione frequente [m]

wki QP: apertura caratteristica delle fessure al lembo inferiore in combinazione quasi permanente [m]

srms: interasse tra le fessure al lembo superiore [m]

wks rara: apertura caratteristica delle fessure al lembo superiore in combinazione rara [m]

wks freq.: apertura caratteristica delle fessure al lembo superiore in combinazione frequente [m]

wks QP: apertura caratteristica delle fessure al lembo superiore in combinazione quasi permanente [m]

fg. rara: freccia a sezione interamente reagente in combinazione rara [m]

ff. rara: freccia a sezione fessurata in combinazione rara [m]

fg. QP: freccia a sezione interamente reagente in combinazione quasi permanente [m]

ff. QP: freccia a sezione fessurata in combinazione quasi permanente [m]

campata: campata

appoggio: nome dell'appoggio

Mb,Rd +: Momento ultimo positivo [kN*m] Mb,Rd -: Momento ultimo negativo [kN*m]

: [kN/m2]

Le unità di misura delle verifiche elencate nel capitolo sono in [m, kN, deg] ove non espressamente specificato.

18.2. VERIFICHE SLU ED SLE PILASTRI

Pilastro al filo10

```
forze in kN, momenti in kN*m, tensioni in daN/cmq, apertura fessure in mm
Materiali per le armature
B450C, fyk = 4500 \text{ (daN/cmq)}
asta sap n° 24
                      (daN/cmq)
calcestruzzo Rck 350
                     H tot. 50.0 B 50.0
sezione rettangolare
                                             rot.
                                                     0
Verifiche a pressoflessione
quota Asp copX copY ApX cop
                              АрУ сор
                                                     Msdv
  0.0 3.1 4.0 4.0
                      6.3 4.0
                              6.3 4.0
                                                          -829
                                                                5 SLV
                                        1.2
                                               245
                                                     -202
 122.4 3.1 4.0 4.0
                      6.3 4.0
                              6.3 4.0
                                                          -916
                                        2.0
                                              -188
                                                     -98
                                                                8 SLV
                                                         -908
 244.7 3.1 4.0 4.0
                     6.3 4.0
                              6.3 4.0
                                        3.2
                                              -102
                                                      -52
                                                                8 SLV
                              6.3 4.0
 367.1 3.1 4.0
                4.0
                      6.3 4.0
                                                      14 -1231
                                                                8 SLU
 489.5 3.1 4.0 4.0
                      6.3 4.0
                              6.3 4.0
                                                      40
                                                         -754
 611.8 3.1 4.0 4.0
                      6.3 4.0
                              6.3 4.0
                                              -167
                                                     120 -791
 734.2 3.1 4.0 4.0
                      6.3 4.0
                              6.3 4.0
                                        1.2
                                              -308
                                                     109 -739
                                                                9 SLV
 775.0 3.1 4.0
                4.0
                     6.3 4.0
                              6.3 4.0
                                              -343
                                                     121 -737
                                                                9 SLV
Sezione a quota 0 Compressione massima = 948 < 2675
                                                     DM 08 - 7.4.4.2.2.1
combinazione 3 SLV
Verifiche a taglio
SLU
                                                                                         VRdY VRsdY cotg
quota
        VEdX Co
                                                          VEdY Co
                                                                        N AstY
                                                                                 VRcdY
                     N AstX
                               VRcdX
                                       VRdX VRsdX cotq
VEdmax Co
  0.0
       12.9 8 -1261.0 0.20
                              1064.9 206.3 318.1 1.00
                                                          10.7 8 -1261.0 0.20
                                                                                 1064.9 206.3 318.1 1.00
16 7 8
122.4
        12.9 8 -1261.0 0.20
                              1064.9 206.3 318.1 1.00
                                                          10.7 8 -1261.0 0.20
                                                                                1064.9 206.3 318.1 1.00
16.7 8
 244.7
        12.9 8 -1250.6 0.06
                              1064.9 206.3 101.8 1.00
                                                          10.7 8 -1250.6 0.06
                                                                                1064.9 206.3 101.8 1.00
 367.1
        12.9 8 -1250.6 0.06
                              1064.9 206.3 101.8 1.00
                                                          10.7 8 -1250.6 0.06
                                                                                 1064.9 206.3 101.8 1.00
16.7
    8
489.5
       12 9 8 -1250 6 0 06
                              1064 9 206 3 101 8 1 00
                                                          10 7 8 -1250 6 0 06
                                                                                1064 9 206 3 101 8 1 00
    8
16.7
611.8
        12.9 8 -1213.4 0.20
                              1064.9 206.3 318.1 1.00
                                                          10.7 8 -1213.4 0.20
                                                                                1064.9 206.3 318.1 1.00
 734.2
        12.9 8 -1203.0 0.39
                              1064.9 206.3 636.2 1.00
                                                          10.7 8 -1203.0 0.39
                                                                                1064.9 206.3 636.2 1.00
16.7
     8
                                                          10.7 8 -1203.0 0.39
 775.0
        12.9 8 -1203.0 0.39
                              1064.9 206.3 636.2 1.00
                                                                                1064.9 206.3 636.2 1.00
16.7
SLV
```


AUTOSTRADA REGIONALE CISPADANA dal casello di Reggiolo-Rolo sulla A22 al casello di Ferrara Sud sulla A13

PROGETTO DEFINITIVO

OPERE STRUTTURALI

ARCHITETTONICI

CENTRO SICUREZZA AUTOSTRADALE (S.Felice sul Panaro)

RELAZIONE	DI CALCOLO	STRUTTURE

quota VEdX Co VEdmax Co	N AstX	VRcdX	VRdX	VRsdX	cotg	VEdY Co	N	AstY	VRcdY	VRdY	VRsdY	cotg
0.0 134.2 3 189.8 3	-947.8 0.20	1047.2	206.3	318.1	1.00	134.2 3	-947.8	0.20	1047.2	206.3	318.1	1.00
122.4 134.2 3 189.8 3	-947.8 0.20	1047.2	206.3	318.1	1.00	134.2	-947.8	0.20	1047.2	206.3	318.1	1.00
244.7 134.2 3 189.8 3	-939.8 0.06	1043.5	206.3	101.8	1.00	134.2 3	-939.8	0.06	1043.5	206.3	101.8	1.00
367.1 134.2 3 189.8 3	-939.8 0.06	1043.5	206.3	101.8	1.00	134.2 3	-939.8	0.06	1043.5	206.3	101.8	1.00
489.5 134.2 3 189.8 3	-939.8 0.06	1043.5	206.3	101.8	1.00	134.2	-939.8	0.06	1043.5	206.3	101.8	1.00
611.8 134.2 3 189.8 3	-911.1 0.20	1039.6	206.3	318.1	1.00	134.2	-911.1	0.20	1039.6	206.3	318.1	1.00
734.2 134.2 3 189.8 3	-903.1 0.39	1038.0	206.3	636.2	1.00	134.2	-903.1	0.39	1038.0	206.3	636.2	1.00
775.0 134.2 3 189.8 3	-903.1 0.39	1038.0	206.3	636.2	1.00	134.2	-903.1	0.39	1038.0	206.3	636.2	1.00
Tagli plastici se	econdo (7.5.4)	in combir	nazione	SLV								
	/p,i Mxp,s	Myp,s	Txp	Typ								
715 438.8 43	38.8 433.6	433.6 1	34.2	134.2	3							
Verifiche di eser	ccizio											
quota sc.ra Mx		Co sf.ra	Mx	My		Co sc.q.p		My			Wk fr W	
0 -45 19		2 -642	19	-25		2 -42.6		-24	-854 1			0.000
122 -38 10	-13 -906	2 -545	10	-13		2 -35.3		-13		0.000		0.000
245 -30 0		2 -446	0	-1		2 -27.9		-1		0.000		0.000
367 -36 -10		2 -524	-10	10		2 -33.8		10		0.000		0.000
489 -43 -19	22 -883	2 -616	-19	22	-883	2 -40.8		21		0.000		0.000
612 -51 -29	33 -875	2 -705	-29	33	-875	2 -47.5		33		0.000		0.000
734 -58 -38	45 -868	2 -796	-38	45	-868	2 -54.4		44		0.000		0.000
775 -60 -41	49 -865	2 -826	-41	49	-865	2 -56.8	-38	48	-806 1	0.000	0.000	0.000

Verifiche di instabilità non necessaria

Dettaglio verifica nodi (daN,cm)

Nodo a quota 805 (Nodo non confinato)

-Travature con direzione inclinata di 90 gradi rispetto all'asse X globale Nodo trave-colonna interni

Verificata poichè rispetta i minimi di staffe 7.4.6.2.3

-Travature con direzione inclinata di 0 gradi rispetto all'asse X globale Nodo trave-colonna interni Verificata poichè rispetta i minimi di staffe 7.4.6.2.3

-Travature con direzione inclinata di 44 gradi rispetto all'asse X globale Nodo trave-colonna esterni

Verificata poichè rispetta i minimi di staffe 7.4.6.2.3 Verifica secondo 7.4.6.2.3

b, x = 70

b, y = 70

(nst*Ast)/(i*b), x=0.00561

(nst*Ast)/(i*b), y=0.00561

(0.05*fck)/fvk=0.00323

(nst*Ast)/(i*b), min > (0.05*fck)/fyk

Ove:

Rck: resistenza caratteristica compressione cubica del cls

quota: quota della sezione Asp: area di acciaio di spigolo

copX: copriferro medio lungo X dell'armatura di spigolo copY: copriferro medio lungo Y dell'armatura di spigolo

Cop: copriferro per aree di parete ApX: area di acciaio di parete lungo X ApY: area di acciaio di parete lungo Y

Msdx: momento di calcolo attorno all'asse X Msdy: momento di calcolo attorno all'asse Y

Nsd: sforzo normale di calcolo coef: coefficiente di sicurezza Co: combinazione di carico

SLV: stato limite di salvaguardia della vita

AUTOSTRADA REGIONALE CISPADANA dal casello di Reggiolo-Rolo sulla A22 al casello di Ferrara Sud sulla A13

PROGETTO DEFINITIVO

OPERE STRUTTURALI

ARCHITETTONICI CENTRO SICUREZZA AUTOSTRADALE (S.Felice sul Panaro)

RELAZIONE DI CALCOLO STRUTTURE

SLU: stato limite ultimo

Ger.: sollecitazioni derivanti da gerarchia delle resistenze

VEdX: taglio di calcolo lungo X

VRdX: resistenza del cls per taglio lungo X VRsdX: resistenza delle staffe per taglio lungo X VRcdX: resistenza delle bielle in cls per taglio lungo X

VRdY: resistenza del cls per taglio lungo Y VRsdY: resistenza delle staffe per taglio lungo Y VRcdY: resistenza delle bielle in cls per taglio lungo Y VEdmax: taglio risultante massimo di calcolo

cotg: cotangente dell'angolo di inclinazione delle bielle assunto in verifica

AstX: area di staffe lungo X AstY: area di staffe lungo Y

Luce: Luce netta del pilastro (misurata a filo delle travi)

Mxp,i: momento da gerarchia attorno all'asse X della sezione inferiore Mxp,s: momento da gerarchia attorno all'asse X della sezione superiore Myp,i: momento da gerarchia attorno all'asse Y della sezione inferiore Myp,s: momento da gerarchia attorno all'asse Y della sezione superiore Tpx: taglio lungo X in applicazione della gerarchia delle resistenze Tpy: taglio lungo Y in applicazione della gerarchia delle resistenze

sc.ra: tensione sul cls in combinazione rara (caratteristica) sf.ra: tensione sull'acciaio in combinazione rara (caratteristica) sc.q.p.: tensione sul cls in combinazione quasi permanente

Mx: momento attorno all'asse X My: momento attorno all'asse Y

N: sforzo normale

Wk ra: apertura caratteristica delle fessure in combinazione rara Wk fr: apertura caratteristica delle fessure in combinazione frequente

Wk q.p: apertura caratteristica delle fessure in combinazione quasi permanente

MtMax: momento torcente massimo

sc: tensione sul cls sf: tensione sull'acciaio

AminX: area minima di staffe richieste lungo X AminY: area minima di staffe richieste lungo Y

Tmax: taglio massimo

M2: Momento flettente attorno all'asse locale 2 M3: Momento flettente attorno all'asse locale 3

bw,x: Larghezza della sezione assunta per verifica a taglio in direzione x bw,y: Larghezza della sezione assunta per verifica a taglio in direzione y

Tmax: taglio massimo

M2p,i: momento da gerarchia attorno all'asse 2 della sezione inferiore M2p,s: momento da gerarchia attorno all'asse 2 della sezione superiore T3p: taglio lungo l'asse locale 3 in applicazione della gerarchia delle resistenze

A.l.: area longitudinale A.st.: area staffe

A.l.r.: area longitudinale richiesta per la torsione A.st.r.: area staffe richiesta per la torsione

A.I.disp.: area longitudinale disponibile per la torsione A.st.Disp.: area staffe disponibile per la torsione

MtMax: momento torcente massimo

lambda,x lambda,y: snellezze per sbandamento in direzione degli assi di definizione della sezione

Max May: momenti dovuti alle imperfezioni costruttive

M0ex M0ey: momenti secondo EC2 5.8.8.2 (2)

M2x M2y: momenti dovuti agli effetti del secondo ordine EC2 5.8.8.2 (3)

c.s.x c.s.y: coefficienti di sicurezza a pressoflessione retta (5.38): soddisfacimento sia di EC2 (5.38a) che di EC2 (5.38b)

AUTOSTRADA REGIONALE CISPADANA dal casello di Reggiolo-Rolo sulla A22 al casello di Ferrara Sud sulla A13

PROGETTO DEFINITIVO

OPERE STRUTTURALI

ARCHITETTONICI CENTRO SICUREZZA AUTOSTRADALE (S.Felice sul Panaro)

RELAZIONE DI CALCOLO STRUTTURE

(5.39): coefficiente risultato dell'applicazione del criterio semplificato EC2 (5.39)

i: interasse verticale delle staffe interne al nodo

bx, by: dimensioni x ed y assunte nella verifica del nodo nst*Ast,x: area di una staffa per resistenza in direzione x nst*Ast,y: area di una staffa per resistenza in direzione y

Fi,mm: diametro medio delle barre in mm

h22, h33: altezza della sezione per inflessione attorno agli assi 2 e 3

Lv,plast,22 Lv,plast,33: lunghezza della cerniera plastica per inflessione attorno agli assi 2 e 3

Lv: luce di taglio

Fy: curvatura a snervamento

R SLU: massima rotazione alla corda in combinazione SLU

Theta,y: capacità di rotazione totale rispetto alla corda allo snervamento

Min: capitolo del DM 14-01-08 di cui applicare i minimi di armatura (cap.4 o cap.7)

R_SLV: massima rotazione alla corda in combinazione SLV

Theta,u: 3/4 della capacità di rotazione totale rispetto alla corda in condizioni di collasso

18.3. VERIFICA SOLAI

Si riporta di seguito la verifica dei solai in cls – polistirolo tipo "Predalles" impiegati per l'edificio in esame. Per la verifica è stato considerato il solaio maggiormente sollecitato dai carichi permanenti e variabili ovvero il solaio del piano primo (si veda § 9.1 azioni statiche).

Complessivamente la somma dei carichi permanenti con i variabili risulta essere pari a:

$$Q_{max} = 5.50 \text{kN/mq} + 3.00 \text{kN/mq} + 1.20 \text{kN/mq} = 9.70 \text{kN/mq}$$

La luce massima coperta dal solaio risulta essere di 3.90m. La verifica agli S.L.U. del solaio Predalles viene eseguita mediante un foglio di calcolo Excel.

Tipo di solaio scelto		predalle 4+36+5					
Luce solaio [m]	3,9	h solaio [cm]	45				
h soletta [cm]	5	I.sol. coll. [cm]	60				
$f_{ck}[N/mm^2]$	25	Altezza utile [cm]	41				
F _{cd} [N/mm ²]	14,17	F _{cm} [N/mm ²]	28,75				
F _{yk} [N/mm ²]	450	F _{yd} [N/mm ²]	391				

AUTOSTRADA REGIONALE CISPADANA dal casello di Reggiolo-Rolo sulla A22 al casello di Ferrara Sud sulla A13

PROGETTO DEFINITIVO

OPERE STRUTTURALI

ARCHITETTONICI

CENTRO SICUREZZA AUTOSTRADALE (S.Felice sul Panaro)
RELAZIONE DI CALCOLO STRUTTURE

Analisi Carichi	l [m]	kN/m²	kN/m
Tramezzi	0,60	3,00	1,80
Totale Permanenti non Str	1,80		
Peso proprio solaio	0,60	4,40	3,30
Totale Permanenti Struttu	3,30		
Carichi Accidentali Q	0,60	1,20	0,72

Combinazioni di ca	rico SLU		YGI	$\cdot G_1 + \gamma_{G2} \cdot G_2$	$+\gamma_{P}\cdot P + \gamma_{Q1}\cdot Q_{I}$:1		
Y _{G1}	1,3	Y G2	1,5				Y Q	1,5
M ⁺ _{ed.max} [KN*m]	12,27	Grado di v	vincolo:	Semi-incastro			V _{ed} [KN]	15,74
M _{ed.max} [KN*m]	-12,27							
		VERIFIC	CA APPR	OSSIMATA A MO	MENTO			
Area minima ferri superiori				Area minima ferri inferiori				
Ferri Superiori			ρ'	0,56%	A. ferri sup [cm ²]			5,03
ф _{1 sup}	8	n. _{1 sup}	2	ф _{2 sup}		16	n. _{2 sup}	2
Ferri Inferiori			ρ	0,61%	A. ferri Inf [cm ²]			5,53
φ _{1 inf}	16	n. _{1 inf}	2	ф _{2 inf}		8	n. _{2 inf}	3
$M_{rd}^{+}[KN*m^{2}]$		79,84	ОК	M _{rd} [KN*m ²]			-72,58	ОК

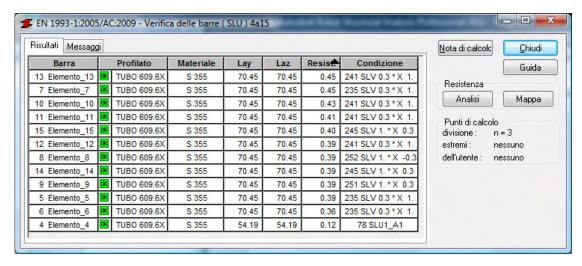
VERIFICA A TAGLIO		f _{ck} [N/mm ²]	25,00	Larghezza travetto [mm]		150
K	1,70	V _{min}	0,39	ρ_1	0,0156	
V _{rd} [KN]	42,54	ОК				

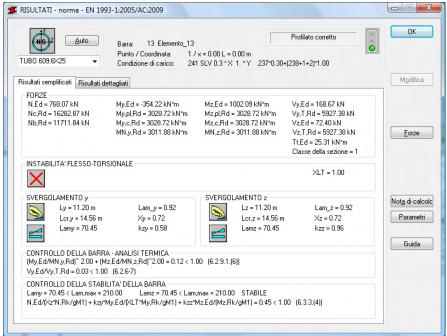
AUTOSTRADA REGIONALE CISPADANA dal casello di Reggiolo-Rolo sulla A22 al casello di Ferrara Sud sulla A13

PROGETTO DEFINITIVO

OPERE STRUTTURALI

ARCHITETTONICI CENTRO SICUREZZA AUTOSTRADALE (S.Felice sul Panaro)


RELAZIONE DI CALCOLO STRUTTURE

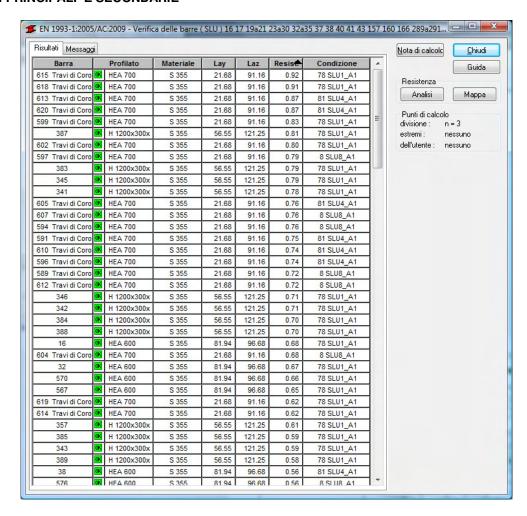

19. VERIFICHE AGLI STATI LIMITE ULTIMI E DI ESERCIZIO EDIFICIO 6

19.1. VERIFICHE SLU-SLV

Si riportano, di seguito, le verifiche di resistenza in termini di rapporti di sfruttamento relativamente alle varie tipologie di aste

COLONNE

AUTOSTRADA REGIONALE CISPADANA dal casello di Reggiolo-Rolo sulla A22 al casello di Ferrara Sud sulla A13

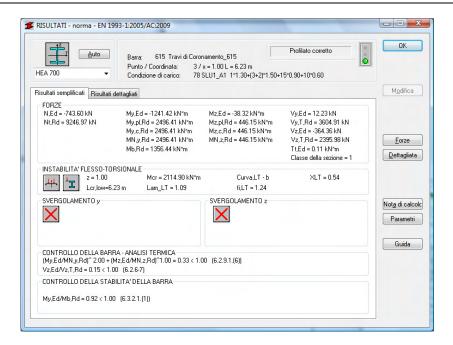

PROGETTO DEFINITIVO

OPERE STRUTTURALI

ARCHITETTONICI CENTRO SICUREZZA AUTOSTRADALE (S.Felice sul Panaro)

RELAZIONE DI CALCOLO STRUTTURE

TRAVI PRINCIPALI E SECONDARIE


AUTOSTRADA REGIONALE CISPADANA dal casello di Reggiolo-Rolo sulla A22 al casello di Ferrara Sud sulla A13

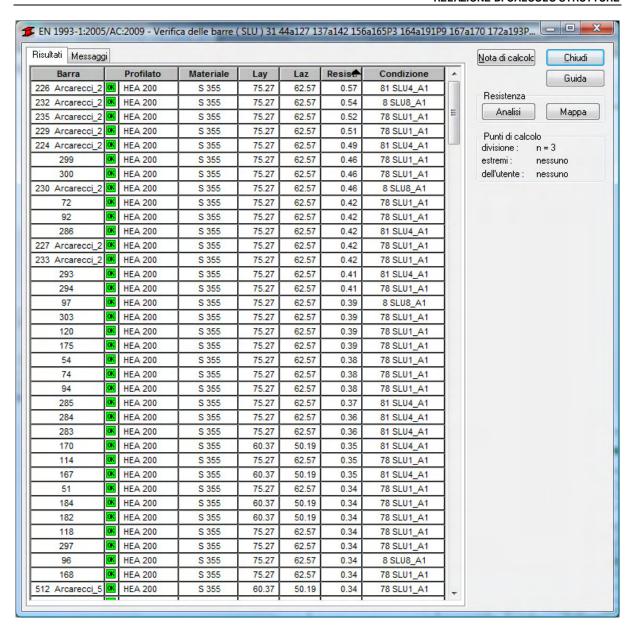
PROGETTO DEFINITIVO

OPERE STRUTTURALI

ARCHITETTONICI

CENTRO SICUREZZA AUTOSTRADALE (S.Felice sul Panaro)
RELAZIONE DI CALCOLO STRUTTURE

ARCARECCI

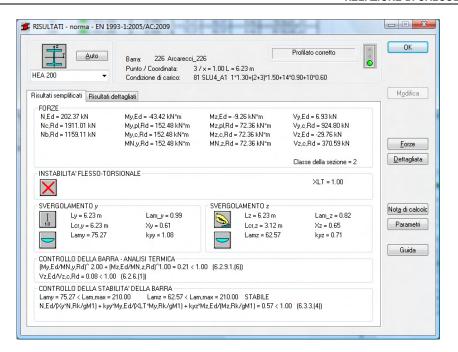

AUTOSTRADA REGIONALE CISPADANA dal casello di Reggiolo-Rolo sulla A22 al casello di Ferrara Sud sulla A13

PROGETTO DEFINITIVO

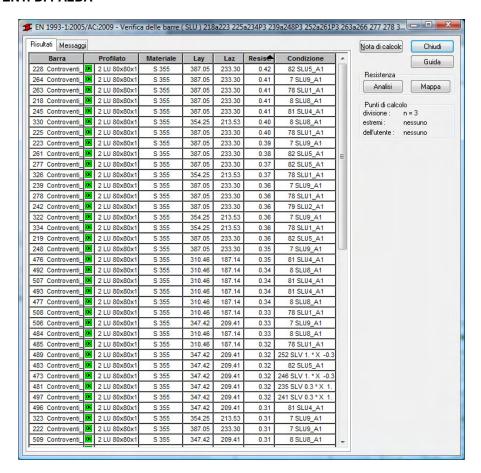
OPERE STRUTTURALI

ARCHITETTONICI

CENTRO SICUREZZA AUTOSTRADALE (S.Felice sul Panaro)
RELAZIONE DI CALCOLO STRUTTURE


AUTOSTRADA REGIONALE CISPADANA dal casello di Reggiolo-Rolo sulla A22 al casello di Ferrara Sud sulla A13

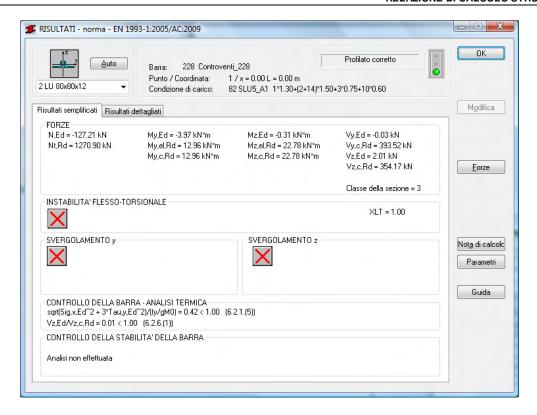
PROGETTO DEFINITIVO


OPERE STRUTTURALI

ARCHITETTONICI

CENTRO SICUREZZA AUTOSTRADALE (S.Felice sul Panaro)
RELAZIONE DI CALCOLO STRUTTURE

CONTROVENTI DI FALDA


AUTOSTRADA REGIONALE CISPADANA dal casello di Reggiolo-Rolo sulla A22 al casello di Ferrara Sud sulla A13

PROGETTO DEFINITIVO

OPERE STRUTTURALI

ARCHITETTONICI

CENTRO SICUREZZA AUTOSTRADALE (S.Felice sul Panaro)
RELAZIONE DI CALCOLO STRUTTURE

PROGETTO DEFINITIVO

OPERE STRUTTURALI

ARCHITETTONICI

CENTRO SICUREZZA AUTOSTRADALE (S.Felice sul Panaro)
RELAZIONE DI CALCOLO STRUTTURE

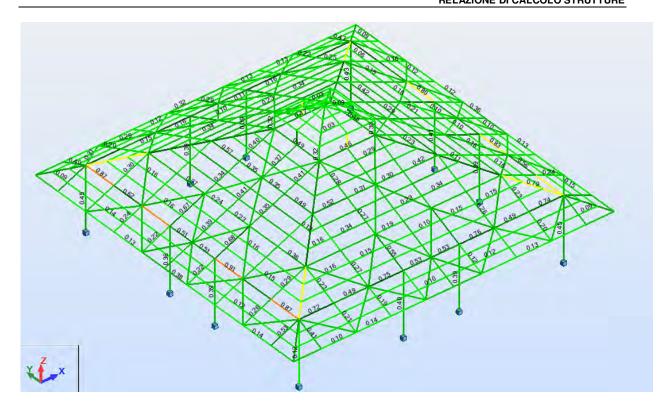


FIGURA 19.1 - 1: MAPPA RAPPORTI DI SFRUTTAEMNTO INVILUPPO COMBINAZIONI SLV+SLU

19.2. VERIFICHE DI RESISTENZA AL FUOCO

Procedimento

Si applica il metodo di verifica definito dall'Analisi Termmica: si determina, per ogni asta, in funzione delle sollecitazioni associate alla combinazione (eccezionale) più gravosa ($F_d = G1 + G2 + 0.2*Q_{neve}$) la **TEMPERATURA CRITICA** (θ_{CR}) che rappresenta la temperatura alla quale si prevede il collasso dell'asta.

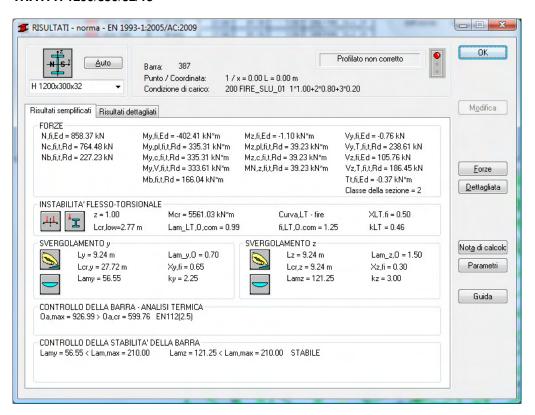
Note, per i singoli profili, le temperature critiche, e definito un prodotto intumescente di caratteristiche conformi alla ENV 13381, si impiega l'abaco normalizzato del prodotto in oggetto entrando con i seguenti parametri di input:

- Temperatura;
- Fattore di massività sezione (S/V);
- R richiesto (nel caso in oggetto R60)

Si riportano pertanto i risultati relativi alle temperature critiche per le singole tipologie di aste ricavate nella combinazione sopra determinata conformemente ad EV 1992-1-2/2005 – EN 1993-1/2005.

Si riporta l'analisi di dettaglio dei profili principali:

AUTOSTRADA REGIONALE CISPADANA dal casello di Reggiolo-Rolo sulla A22 al casello di Ferrara Sud sulla A13


PROGETTO DEFINITIVO

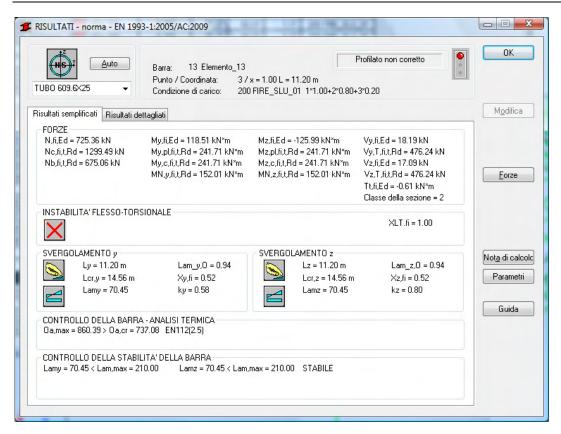
OPERE STRUTTURALI

ARCHITETTONICI

CENTRO SICUREZZA AUTOSTRADALE (S.Felice sul Panaro)
RELAZIONE DI CALCOLO STRUTTURE

TRAVI H 1200/350/32/15

COLONNE Φ 609.6*25 MM


AUTOSTRADA REGIONALE CISPADANA dal casello di Reggiolo-Rolo sulla A22 al casello di Ferrara Sud sulla A13

PROGETTO DEFINITIVO

OPERE STRUTTURALI

ARCHITETTONICI

CENTRO SICUREZZA AUTOSTRADALE (S.Felice sul Panaro) **RELAZIONE DI CALCOLO STRUTTURE**

Si riassumono, di seguito, le minime temperature critiche per le singole tipologie di profili:

Sezione	θ _{CR} (°)
HE1200/350/32/15	599
Ф609.6*25	737
HEA700	614
HEA600	651
HEA300	687
HEA200	672
2L80X12	684

Per i singoli profili, noto il loro fattore di massività e definitto un prodotto intumescente a norma EN 13381-4, è possibile definire gli spessori di pellicola protettiva per raggiungere il requisito R60.

PROGETTO DEFINITIVO

OPERE STRUTTURALI

ARCHITETTONICI

CENTRO SICUREZZA AUTOSTRADALE (S.Felice sul Panaro)
RELAZIONE DI CALCOLO STRUTTURE

19.3. VERIFICHE DI STABILITA' GLOBALE (ANALISI DI BUCKLING)

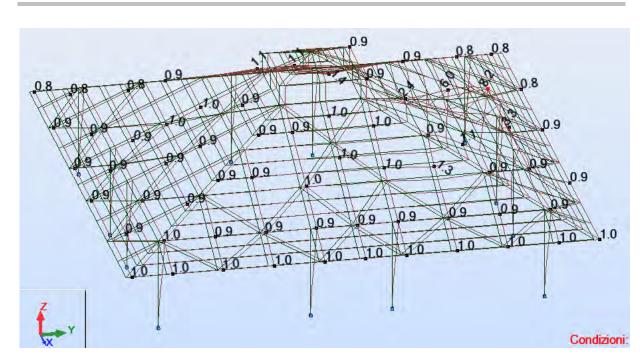


FIGURA 19.3 -1: PRIMA DEFORMATA CRITICA

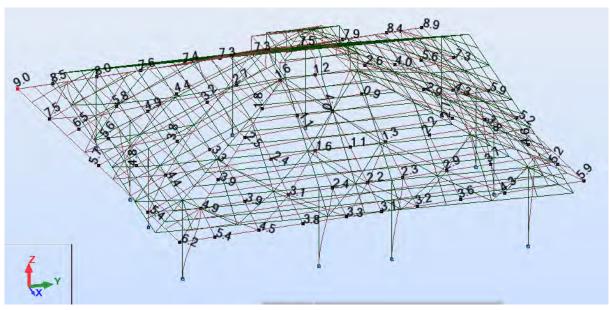


FIGURA 19.3 - 2: SECONDA DEFORMATA CRITICA

AUTOSTRADA REGIONALE CISPADANA dal casello di Reggiolo-Rolo sulla A22 al casello di Ferrara Sud sulla A13

PROGETTO DEFINITIVO

OPERE STRUTTURALI

ARCHITETTONICI

CENTRO SICUREZZA AUTOSTRADALE (S.Felice sul Panaro)
RELAZIONE DI CALCOLO STRUTTURE

RELAZIONE DI CALCOLO STRUTTURE

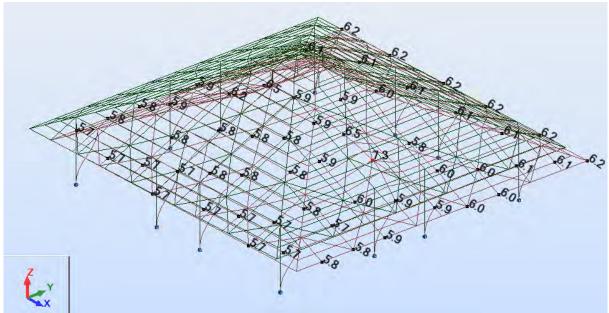


FIGURA 19.3 – 3: TERZA DEFORMATA CRITICA

Il moltiplicatore critico minimo risulta >> 10, per cui la verifica di stabilità globale è soddisfatta; possono essere trascurati nell'analisi gli effetti del second'ordine.

PROGETTO DEFINITIVO

OPERE STRUTTURALI

ARCHITETTONICI CENTRO SICUREZZA AUTOSTRADALE (S.Felice sul Panaro)
RELAZIONE DI CALCOLO STRUTTURE

19.4. VERIFICHE DI DEFORMABILITA'

Si riportano, di seguito, le verifiche significative relative alle deformazioni della struttura nelle combinazioni di esercizio.

Deformazioni in SLE - Rara_01

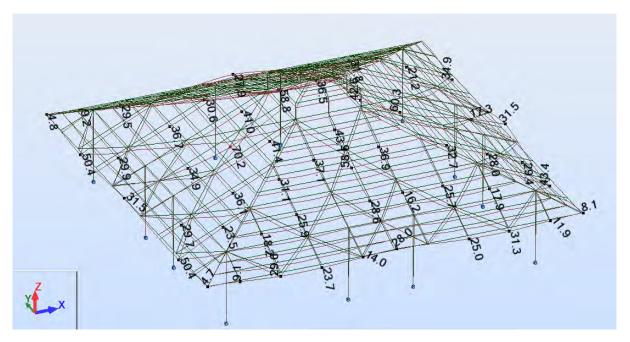


FIGURA 19.4 - 1: INQUADRAMENTO COMPLESSIVO

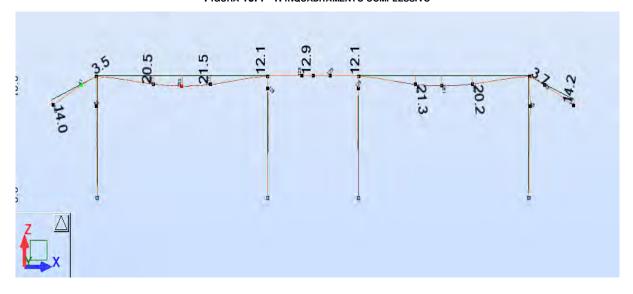


FIGURA 19.4 - 2: DEFORMATA IN CORRISPONDENZA DEL TELAIO DI BORDO: $\eta_{MAX} = 21.5$ MM (21.5/18700 = 1/870)

PROGETTO DEFINITIVO

OPERE STRUTTURALI

ARCHITETTONICI

CENTRO SICUREZZA AUTOSTRADALE (S.Felice sul Panaro)
RELAZIONE DI CALCOLO STRUTTURE

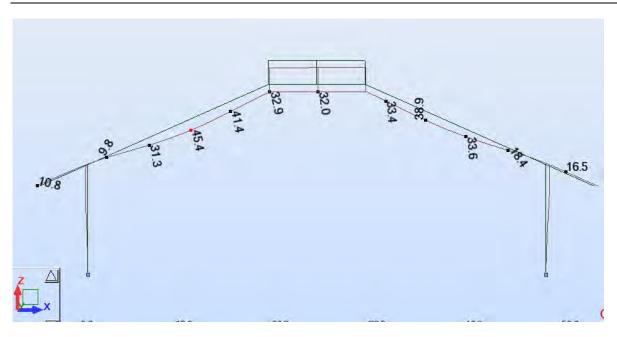


Figura 1: deformata in corrispondenza del telaio a 18.70 m dal bordo $\eta_{\text{MAX.}}$ = 45.4 mm

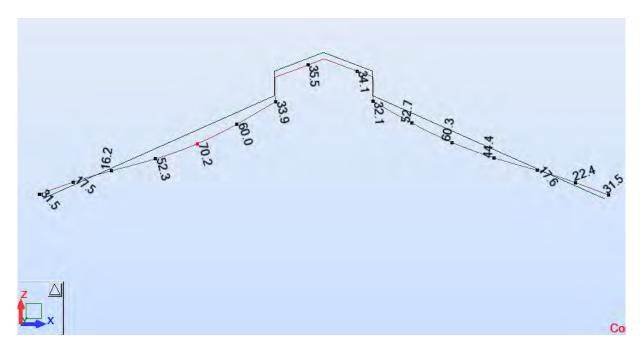


Figura 19.4 - 4: Deformata in Corrispondenza della Mezzeria $\eta_{\text{MAX.}}$ = 70 mm

Si evince una freccia elastica massima pari a :

 $\eta_{max} = (70.2-33.9/2) = 53.2 \text{ mm}$

 $\eta_{max} \, / L = \; 53.2 \, / 18700 = 1/352 < 1/250$

PROGETTO DEFINITIVO

OPERE STRUTTURALI

ARCHITETTONICI

CENTRO SICUREZZA AUTOSTRADALE (S.Felice sul Panaro)
RELAZIONE DI CALCOLO STRUTTURE

Si riportano, di seguito, le frecce elastiche massime dovute al solo carico della neve:

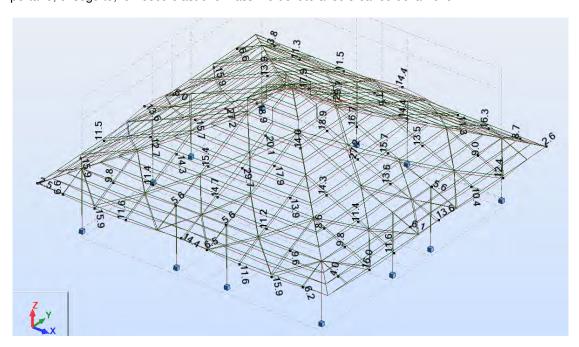


FIGURA 19.4 -5: INQUADRAMENTO COMPLESSIVO

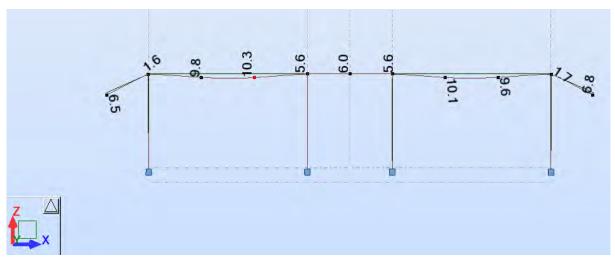


Figura 19.4 - 6: Deformata in Corrispondenza del Telaio di Bordo: $\eta_{\text{MAX.}}$ = 10.3 mm

PROGETTO DEFINITIVO

OPERE STRUTTURALI

ARCHITETTONICI

CENTRO SICUREZZA AUTOSTRADALE (S.Felice sul Panaro)
RELAZIONE DI CALCOLO STRUTTURE

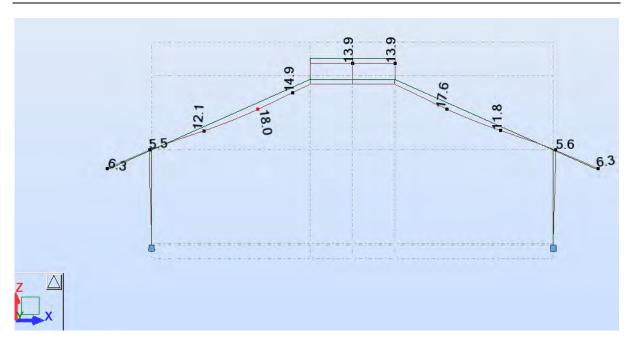


Figura 2: deformata in corrispondenza del telaio a 18.70 m dal bordo $\eta_{\text{MAX.}}$ = 18 mm



Figura 19.4 – 8 : deformata in corrispondenza della mezzeria $\eta_{\text{MAX.}}$ = 27.2 mm

Si evince una freccia massima pari a :

 $\eta_{max} = 27.2 \text{ mm } = 27.2/18700 = 1/687 < 1/300$

Le verifiche di deformabilità sono pertanto soddisfatte.

AUTOSTRADA REGIONALE CISPADANA dal casello di Reggiolo-Rolo sulla A22 al casello di Ferrara Sud sulla A13

PROGETTO DEFINITIVO

OPERE STRUTTURALI

ARCHITETTONICI

CENTRO SICUREZZA AUTOSTRADALE (S.Felice sul Panaro)
RELAZIONE DI CALCOLO STRUTTURE

20. VERIFICHE FONDAZIONI

Tutte le verifiche strutturali degli elementi di fondazione sono soddisfatte, nel seguito si riportano per esteso le verifiche agli stati limite ultimi (SLU) di un colletto di fondazione avente sezione 90x170cm e di un colletto di fondazione avente sezione 60x100cm.

Tutte le verifiche di tipo geotecniche sono soddisfatte, nel seguito si riporta la verifica delle pressioni sul terreno.

20.1. VERIFICHE STRUTTURALI DELLE FONDAZIONE

Le verifiche strutturali devono essere effettuate nei confronti del seguente stato limite ultimo:

- SLU di tipo strutturale (STR),

accertando che la condizione $E_d \le R_d$ sia soddisfatta per ogni stato limite.

La verifica di tale condizione è effettuta con riferimento all'Approccio 1 Combinazione 1 per il quale:

- Approccio 1:
 - Combinazione (STR) 1: (A1+M1+R1);

Il valore di progetto dell'azione E_d è calcolato dal programma di calcolo tenendo conto dei coefficienti parziali in riferimento allo SLU di tipo strutturale (A1).

Colletto di fondazion 90x170cm

CARATTERISTICHE DEI MATERIALI Acciaio B450C fyk= 450000 Calcestruzzo C25/30 fck,cub (cubica)= 30000 fck (cilindrica)= 24900

Verifiche in stato limite ultimo

x	Asup	cs	Ainf	ci	Mela	comb.	MEd	MRd	x/d	Ast	Afp+	Afp-	VEd	comb.	VRcd	VRd	VRsd	teta
0	0.001257	0.048	0.002513	0.048	1434.0368	SLV 4	1325.2432	1591.6409	0.043	0.0000154	0	0	1.96	ger.	4720.22	406.38	895.57	45
0	0.001257	0.048	0.002513	0.048						0.0000154	0	0	-502.87	SLV 3	4720.22	406.38	-895.57	45
						SLU 1	1214.3334	1591.6409	0.043	0.0000154	0	0			4720.22			
			0.002513							0.0000154		0			4720.22			45
			0.002513			SLU 1	1134.3461	1591.6409	0.043	0.0000154	0	0			4720.22			
1.33	0.001257	0.048	0.002513	0.048						0.0000154	0	0	-378.46	SLV 7	4720.22	406.38	-895.57	45
			0.002513			SLV 6	542.7157	1591.6409	0.043	0.0000154	0	0	1.96		4720.22			45
			0.002513							0.0000154	0	0	-218.52	SLU 1	4720.22	406.38	-895.57	45
3.7	0.001257	0.048	0.002513	0.048	159.3126	SLV 2	159.3126	1591.6409	0.043	0.0000154	0	0	1.96	ger.	4720.22	406.38	895.57	45
3.7	0.001257	0.048	0.002513	0.048						0.0000154	0	0	-152.34	SLU 1	4720.22	406.38	-895.57	45
4	0.001257	0.048	0.002513	0.048	120.08	SLV 2	140.4826	1591.6409	0.043	0.0000154	0	0	1.96	ger.	4720.22	406.38	895.57	45
4	0.001257	0.048	0.002513	0.048						0.0000154	0	0	-163.82	SLU 1	4720.22	406.38	-895.57	45

Colletto di fondazion 60x100cm

CARATTERISTICHE DEI MATERIALI Acciaio B450C fyk= 450000 Calcestruzzo C25/30 fck,cub (cubica)= 30000 fck (cilindrica)= 24900

OUTPUT CAMPATE

Verifiche in stato limite ulti	mo
--------------------------------	----

AUTOSTRADA REGIONALE CISPADANA dal casello di Reggiolo-Rolo sulla A22 al casello di Ferrara Sud sulla A13

PROGETTO DEFINITIVO

OPERE STRUTTURALI

ARCHITETTONICI

CENTRO SICUREZZA AUTOSTRADALE (S.Felice sul Panaro)

RELAZIONE DI CALCOLO STRUTTURE

0	0.000804	0.036	0.001885	0.038	21.1899	SLV 10	27.9252	686.9219	0.072	0.0000113	0	0	258.69	ger.	1832.47	202.79	383.15	45
0	0.000804	0.036	0.001885	0.038						0.0000113	0	0	-127.35	ger.	1832.47	202.79	-383.15	45
0.3	0.000804	0.036	0.001885	0.038	33.7464	SLV 10	33.7464	686.9219	0.072	0.0000113	0	0	258.69	ger.	1832.47	202.79	383.15	45
0.3	0.000804	0.036	0.001885	0.038						0.0000113	0	0	-127.35				-383.15	
			0.001885			SLU 4	142.0135	686.9219	0.072	0.0000113	0	0	258.69	ger.	1832.47	202.79	383.15	45
0.97	0.000804	0.036	0.001885	0.038						0.0000113	0	0	-127.35	ger.	1832.47	202.79	-383.15	45
1.93	0.000804	0.036	0.001885	0.038	241.7597	SLV 11	405.4188	686.9219	0.072	0.0000113	0	0	258.69	ger.	1832.47	202.79	383.15	45
1.93	0.000804	0.036	0.001885	0.038						0.0000113	0	0	-127.35	ger.	1832.47	202.79	-383.15	45
						SLV 11	600.4712	686.9219	0.072	0.0000113	0	0	362.54	SLV 11	1832.47	202.79	383.15	45
			0.001885							0.0000113		0	-127.35				-383.15	
2.9	0.000804	0.036	0.001885	0.038	600.4712	SLV 11	600.4712	686.9219	0.072	0.0000113	0	0	362.54	SLV 11	1832.47	202.79	383.15	45
2.9	0.000804	0.036	0.001885	0.038						0.0000113	0	0	-127.35	ger.	1832.47	202.79	-383.15	45

Ove:

x: distanza da asse appoggio sinistro [m]

Asup: area efficace di armatura longitudinale superiore [m2]

cs: distanza tra bordo superiore e baricentro dell'armatura superiore [m]

Ainf: area efficace di armatura longitudinale inferiore [m2]

ci: distanza tra bordo inferiore e baricentro dell'armatura inferiore [m]

Mela: momento flettente elastico [kN*m] comb.: combinazione che produce Mela MEd: momento flettente di progetto [kN*m]

MRd: momento ultimo [kN*m]

x/d: distanza asse neutro dal bordo compresso / altezza utile

Ast: area delle staffe (cmq/cm) [m2]

Afp+: area di staffe equivalenti da sagomati per taglio positivo [m2] Afp-: area di staffe equivalenti da sagomati per taglio negativo [m2]

VEd: taglio di progetto [kN]

VRcd: resistenza a taglio per rottura delle bielle compresse [kN]

VRd: resistenza a taglio in assenza di staffatura [kN] VRsd: resistenza a taglio per la presenza di armatura [kN] teta: angolo di inclinazione delle bielle compresse [deg]

Le unità di misura delle verifiche elencate nel capitolo sono in [m, kN, deg] ove non espressamente specificato.

AUTOSTRADA REGIONALE CISPADANA dal casello di Reggiolo-Rolo sulla A22 al casello di Ferrara Sud sulla A13

PROGETTO DEFINITIVO

OPERE STRUTTURALI
ARCHITETTONICI

CENTRO SICUREZZA AUTOSTRADALE (S.Felice sul Panaro)

RELAZIONE DI CALCOLO STRUTTURE

21. VERIFICA DELLE PRESSIONI SUL TERRENO

Le verifiche delle pressioni sul terreno devono essere effettuate nei confronti del seguente stato limite ultimo:

SLU di tipo geotecnico (GEO),

accertando che la condizione $E_d \le R_d$ sia soddisfatta per ogni stato limite.

La verifica di tale condizione è effettuta con riferimento all'Approccio 1 Combinazione 2 per il quale:

- Approccio 1:
 - Combinazione (GEO) 2: (A2+M2+R2);

Il valore di progetto dell'azione E_d è calcolato dal programma di calcolo tenendo conto dei coefficienti parziali in riferimento allo SLU di tipo geotecnico (A2).

La modellazione delle travi di fondazione su suolo elastico porta alla valutazione delle pressioni scaricate sui terreni dalle strutture in elevazione. Dalla analisi di tali pressioni si ritiene non sostanziale lo stato di pressione che deriva dalla presenza di eventuali eccentricità dei carichi verticali rispetto al baricentro della fondazione stessa.

Per la verifica della portanza del terreno sotto le travi di fondazione dell'edificio in esame, si fa riferimento agli aspetti geotecnici forniti nella *RELAZIONE GEOTECNICA SVINCOLO AUTOSTAZIONI DI SAN FELICE SUL PANARO E FINALE EMILIA*.

Si rende utile effettuare una precisazione relativamente alla realizzazione del piano di posa delle fondazioni superficiali.

Nella realizzazione dei piazzali delle autostazioni è prevista la costruzione di un rilevato messo in opera con le stesse modalità adottate per la costruzione della massicciata stradale.

Lo sviluppo in altezza del suddetto si attesta tra 1:2.5m dal piano campagna.

I valori di portanza del terreno sono stati ricavati ad una profondità pari a -1.00m od anche superiori dal piano di di campagna.

In opera sono però previste fondazioni il cui piano di posa giace sullo strato compattato del rilevato dei caselli, quindi la portanza del del terreno risulta essere sicuramente più elevata di quella in sito pertanto possono essere ancora ritenuti validi i valori di portanza rilevati alle quote di -1.00m od anche superiori.

E' infatti prevista, per la realizzazione dei rilevati una prima fase in cui si esegue uno scotico per uno strato di 20cm per la rimozione dello strato vegetale ed una seconda fase in cui si prevede la realizzazione di una bonifica per una profondità variabile a seconda dei siti.

In generale quindi si prevede che il piano di posa delle opere di fondazione venga impostato al più in strati di terreno compattati e mai direttamente sul terreno vergine sottostante.

AUTOSTRADA REGIONALE CISPADANA dal casello di Reggiolo-Rolo sulla A22 al casello di Ferrara Sud sulla A13

PROGETTO DEFINITIVO

OPERE STRUTTURALI

ARCHITETTONICI CENTRO SICUREZZA AUTOSTRADALE (S.Felice sul Panaro)

RELAZIONE DI CALCOLO STRUTTURE

Per considerare l'inclinazione dei carichi rispetto alla verticale, si stimano i seguenti rapporti tra l'azione orizzontale H in relazione alla massima azione verticale V sia in condizioni statiche che in condizioni sismiche:

Condizione statica
 H/V inferiore al 10%

Condizione sismica H/V inferiore al 30%

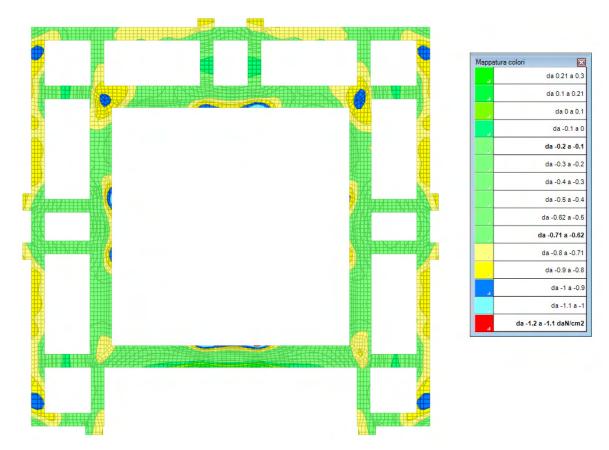


Figura 20.2 – 1 – Inviluppo delle massime pressioni sul terreno in combinazioni SLU(GEO).

I valori delle pressioni di contatto limite di progetto per <u>condizione statica drenata</u> fornite per fondazioni nastriformi di larghezza rispettivamente pari a B=240cm e B=400cm per un approfondimento D=2m sono le seguenti:

Statica drenata							
H/V	Q _{Rd-A1-C1-drenata}	Q Rd-A1-C2-drenata					
[%]	[kPa]	[kPa]					
0	423	146					
10	341	117					
20	272	93					

PROGETTO DEFINITIVO

OPERE STRUTTURALI

ARCHITETTONICI

CENTRO SICUREZZA AUTOSTRADALE (S.Felice sul Panaro)
RELAZIONE DI CALCOLO STRUTTURE

Statica drenata							
H/V	q _{Rd-A1-C1-drenata}	Q Rd-A1-C2-drenata					
[%]	[kPa]	[kPa]					
0	420	142					
10	346	117					
20	283	96					

Per il rapporto H/V = 10%, per entrame le fondazioni assumiamo il valore per $\mathbf{q}_{Rd-A1-C2-drenata}$ pari a 117 kPa = 1.17 Kg/cmq.

La verifica risulterà essere:

per B=240cm →Ed = 1.00 kg/cmq < 1.17 kg/cmq = Rd

Verificato

per B=400cm →Ed = 1.10 kg/cmq < 1.17 kg/cmq = Rd

Verificato

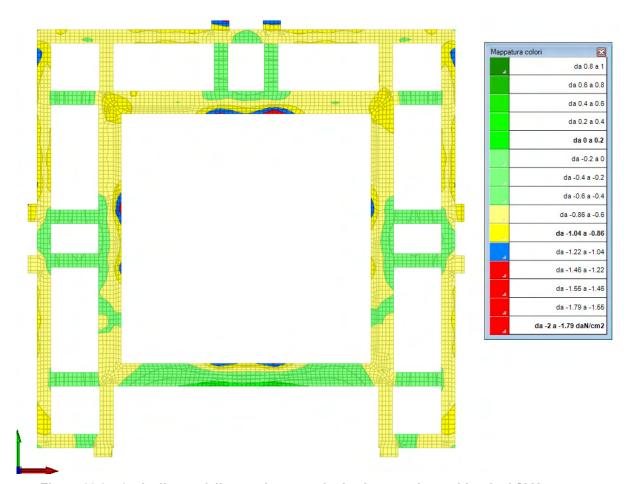


Figura 20.2 – 2 – Inviluppo delle massime pressioni sul terreno in combinazioni SLV_{FONDAZIONE}.

AUTOSTRADA REGIONALE CISPADANA dal casello di Reggiolo-Rolo sulla A22 al casello di Ferrara Sud sulla A13

PROGETTO DEFINITIVO

OPERE STRUTTURALI

ARCHITETTONICI CENTRO SICUREZZA AUTOSTRADALE (S.Felice sul Panaro)

RELAZIONE DI CALCOLO STRUTTURE

Le tabelle di analisi dei valori delle pressioni di contatto limite di progetto per <u>condizione sismica non drenata</u> fornite per fondazioni nastriformi di larghezza rispettivamente pari a B=240cm e B=400cm per un approfondimento D=2m sono le seguenti:

Sismica non drenata								
H/V [%]	q _{Rd-A1-C1-non drenata}	Q _{Rd-A1-C2-non drenata}						
□/ V [70]	[kPa]	[kPa]						
10	375	154						
20	369	151						
30	363	147						

Sismica non drenata							
H/V [%]	Q Rd-A1-C1-non drenata	QRd-A1-C2-non drenata					
	[kPa]	[kPa]					
10	343	142					
20	340	140					
30	336	138					

Per il rapporto H/V = 30%, per la fondazione B = 240 cm assumiamo il valore per $\mathbf{q}_{Rd-A1-C2-drenata}$ pari a 147 $kPa = 1.47 \ Kg/cmq$, per la fondazione B = 440 cm assumiamo il valore per $\mathbf{q}_{Rd-A1-C2-drenata}$ pari a 138 $kPa = 1.38 \ Kg/cmq$.

La verifica risulterà essere:

per B=240cm →Ed = 1.04 kg/cmq < 1.47 kg/cmq = Rd

Verificato

per B=400cm →Ed = 1.25 kg/cmq < 1.38 kg/cmq = Rd

Verificato