APPENDICE B

Appendice "B" - Caratteristiche componenti per elettrodotti aerei Componenti elettrodotti aerei a 132 kV ST

Nuovo collegamento RTN a 132 kV in entra-esce alla CP di Nembia

						37682
					T Book	settle /
_					9	
ISION						
EVIS						
22	00	30/06/2022	Prima Emissione	Amadio A. GPI-SVP-PRA-NE	Caneva M. GPI-SVP-PRA NE	Simeone L. GPI-SVP-PRA
	N.	DATA	DESCRIZIONE	ELABORATO	VERIFICATO	APPROVATO

CODIFICA ELABORATO

EUCR20022B2455332

Questo documento contiene informazioni di proprietà Terna Rete Italia S.p.A. e deve essere utilizzato esclusivamente dal destinatario in relazione alle finalità per le quali è stato ricevuto. È vietata qualsiasi forma di riproduzione o di divulgazione senza l'esplicito consenso di Terna Rete Italia S.p.A.

This document contains information proprietary to Terna Rete Italia S.p.A. and it will have to be used exclusively for the purposes for which it has been furnished. Whichever shape of spreading or reproduction without the written permission of Terna Rete Italia S.p.A. is prohibit.

Componenti elettrodotti aerei a 132 kV ST

Nuovo collegamento RTN a 132 kV in entra – esce alla CP di Nembia

Codifica Elaborato:

EUCR20022B2455332

Rev. **00** Data **30/06/2022**

CONDUTTORI ED ARMAMENTI

Codice Documento	Descrizione	Data
LIN_00000C2	Conduttore a corda di Alluminio - Acciaio diametro 31,5	LUG. 2012
LIN_00000C59	Fune di guardia con 48 fibre ottiche Ø11,5 mm	GIU. 2012
LIN_00000C50	Fune di guardia con 24 fibre ottiche Ø17,9 mm	GIU. 2012
LIN 00000C60	Fune di guardia con 48 fibre ottiche Ø17,9 mm	GIU. 2012
LIN 000000J1	Isolatori cappa e perno di tipo antisale in vetro temprato	MAR. 2012
LIN 000000J2	Isolatori cappa e perno di tipo antisale in vetro temprato	MAR. 2012
LM21	Linee a 132-150 kV conduttore alluminio-acciaio Ø31,5 – tiro pieno armamento per sospensione semplice	GIU. 2007
LM22	Linee a 132-150 kV conduttori alluminio-acciaio Ø31,5 – tiro pieno armamento per sospensione doppia	GIU. 2007
LM23	Linee a 132-150 kV conduttori alluminio-acciaio Ø31,5 – tiro pieno armamento per sospensione doppia con doppio morsetto	GIU. 2007
LM24	Linee a 132-150 kV conduttori alluminio-acciaio Ø31,5 – tiro pieno armamento per sospensione con contrappeso	GIU. 2007
LM121	Linee a 132-150 kV conduttori alluminio-acciaio Ø31,5 – tiro pieno armamento per amarro semplice	GIU. 2007
LM122	Linee a 132-150 kV conduttori alluminio-acciaio Ø31,5 – tiro pieno armamento per amarro doppio	GIU. 2007
LM133	Dispositivo per amarro bilaterale singolo per equipaggiamenti di sospensione a "I" del conduttore AllAcc. Ø31,5	LUG. 1994
LIN_0000M205	Linee 132-150 e 220 kV con attacco corpo palo foro Ø50 mm Armamento di sospensione della fune di guardia con fibre ottiche Ø 11,5	NOV. 2017
LIN_0000M206	Linee 132-150 e 220 kV con attacco corpo palo foro Ø50 mm - Armamento di sospensione della fune di guardia con fibre ottiche Ø 17,9	NOV. 2017
LIN_0000M270	Linee 132-150 e 220 kV con attacco corpo palo foro Ø50 mm - Armamento di amarro capolinea della fune di guardia con fibre ottiche ø 11,5 mm	NOV. 2017
LIN_0000M271	Linee 132-150 e 220 kV con attacco corpo palo foro Ø50 mm - Armamento di amarro in corrispondenza di giunto ottico della fune di guardia con fibre ottiche Ø 11,5 mm	NOV. 2017
LIN_0000M272	Linee 132-150 e 220 kV con attacco corpo palo foro Ø50 mm - Armamento di amarro con isolamento della fune di guardia con fibre ottiche Ø 11,5 mm	NOV. 2017
LIN_0000M273	Linee 132-150 e 220 kV con attacco corpo palo foro Ø50 mm - Armamento di amarro passante per fune di guardia con fibre ottiche Ø 11,5 mm	LUG. 2018
LIN_0000M274	Linee 132-150 e 220 kV con attacco corpo palo foro Ø50 mm - Armamento di amarro in sospensione per fune di guardia con fibre ottiche Ø 11,5 mm	NOV. 2017
LIN_0000M275	Linee 132-150 e 220 kV con attacco corpo palo foro Ø50 mm - Armamento di amarro capolinea della fune di guardia con fibre ottiche Ø 17,9 mm	NOV. 2017
LIN_0000M276	Linee 132-150 e 220 kV con attacco corpo palo foro Ø50 mm - Armamento di amarro in corrispondenza di giunto ottico della fune di guardia con fibre ottiche Ø 17,9 mm	NOV. 2017
LIN_0000M277	Linee 132-150 e 220 kV con attacco corpo palo foro Ø50 mm - Armamento di amarro con isolamento della	NOV. 2017

Componenti elettrodotti aerei a 132 kV ST

Nuovo collegamento RTN a 132 kV in entra – esce alla CP di Nembia

Codifica Elaborato:

EUCR20022B2455332

Rev. 00 Data 30/06/2022

Codice Documento	Descrizione	Data
	fune di guardia con fibre ottiche Ø 17,9 mm	
LIN_0000M278	Linee 132-150 e 220 kV con attacco corpo palo foro Ø50 mm - Armamento di amarro passante per fune di guardia con fibre ottiche Ø 17,9 m	LUG. 2018
LIN_0000M279	Linee 132-150 e 220 kV con attacco corpo palo foro Ø50 mm - Armamento di amarro in sospensione per fune di guardia con fibre ottiche Ø 17,9 mm	NOV. 2017
LIN_0000M805	Sfere di segnalazione per linee elettriche aeree A.T.	MAG. 2012

Componenti elettrodotti aerei a 132 kV ST

Nuovo collegamento RTN a 132 kV in entra – esce alla CP di Nembia

Codifica Elaborato:

EUCR20022B2455332

Rev. **00** Data **30/06/2022**

SOSTEGNI ST

Codice Documento	Descrizione	Data
P007SN0001	Linee 132/150 kV semplice terna – Testa a delta – Sostegni tipo "N"	FEB. 2019
P007UN002	132-150 kV Semplice terna a delta, conduttore singolo ø 31,5 mm – Tiro pieno – Utilizzazione del sostegno N - Calcolo delle azioni esterne sul sostegno	OTT. 2018
P007SM0001	Linee 132/150 kV semplice terna – Testa a delta – Sostegni tipo "M"	SET. 2021
P007UM002	132-150 kV Semplice terna a delta, conduttore singolo ø 31,5 mm – Tiro pieno – Utilizzazione del sostegno M - Calcolo delle azioni esterne sul sostegno	OTT. 2018
P007SP0001	Linee 132/150 kV semplice terna – Testa a delta – Sostegni tipo "P"	SET. 2021
P007UP002	132-150 kV Semplice terna a delta, conduttore singolo ø 31,5 mm – Tiro pieno – Utilizzazione del sostegno P - Calcolo delle azioni esterne sul sostegno	OTT. 2018
P007SV0001	Linee 132/150 kV semplice terna – Testa a delta – Sostegni tipo "V"	SET. 2021
P007UV002	132-150 kV Semplice terna a delta, conduttore singolo ø 31,5 mm – Tiro pieno – Utilizzazione del sostegno V - Calcolo delle azioni esterne sul sostegno	OTT. 2018
P007SC0001	Linee 132/150 kV semplice terna – Testa a delta – Sostegni tipo "C"	SET. 2021
P007UC002	132-150 kV Semplice terna a delta, conduttore singolo ø 31,5 mm – Tiro pieno – Utilizzazione del sostegno C - Calcolo delle azioni esterne sul sostegno	OTT. 2018
P007SE0001	Linee 132/150 kV semplice terna – Testa a delta – Sostegni tipo "E"	SET. 2021
P007UE0002	132-150 kV Semplice terna a delta, conduttore singolo ø 31,5 mm – Tiro pieno – Utilizzazione del sostegno E - Calcolo delle azioni esterne sul sostegno	OTT. 2018
P505DS001	Linee 132/150 kV Unificate – sostegno di stazione (Tipo Gatto) tiro pieno - schema generale	APR. 2006
P505UP002	132-150 kV semplice terna, utilizzazione del sostegno Palo Gatto - calcolo delle azioni esterne sul sostegno	MAR. 2009
P005SEY001_1	Linee 132/150 kV Unificate Semplice terna- Tiro pieno - Sostegno EY Trave - Mensole - Parte comune Tronchi	APR. 2007
P005SEY001_2	Linee 132/150 kV Unificate Semplice Terna – Tiro pieno – Sostegno EY Trave – Mensole – Parte comune - Tronchi	APR. 2007
P005SEY001_3	Linee 132/150 kV Unificate Semplice Terna – Tiro pieno – Sostegno EY Trave – Mensole – Parte comune - Tronchi	APR. 2007

Componenti elettrodotti aerei a 132 kV ST

Nuovo collegamento RTN a 132 kV in entra – esce alla CP di Nembia

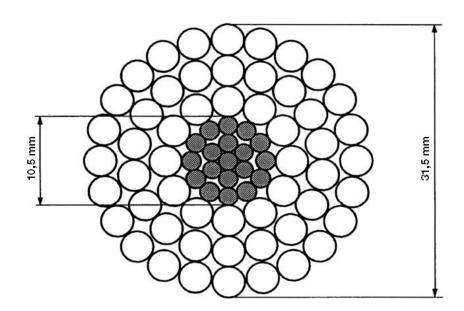
Codifica Elaborato:

EUCR20022B2455332

Rev. **00** Data **30/06/2022**

FONDAZIONI ST

Codice Documento	Descrizione	Data
150STDINFON	150 kV Semplice terna a delta - Fondazioni CR (σ _{tamm} = 2.0 – 3.9 daN/cmq) – Tabella delle corrispondenze sostegni - monconi – fondazioni	FEB. 2019
P005DF002	Linee 132 - 150 kV tiro pieno unificate – Fondazione L103	GIU. 2008
P005DF003	Linee 132 - 150 kV tiro pieno unificate – Fondazione L104	GEN. 2012
P005DF004	Linee 132 - 150 kV tiro pieno unificate – Fondazione L105	DIC. 2007
P005DF005	Linee 132 - 150 kV tiro pieno unificate – Fondazione L107	DIC. 2007
P005DF009	Linee 132 - 150 kV tiro pieno unificate – Fondazione L110	GIU. 2008
P005DF010	Linee 132 - 150 kV tiro pieno unificate – Fondazione L111	GIU. 2008
150PGTPFON	Linee a 132 - 150 kV - Palo Gatto con e senza piattaforma per transizione aereo – cavo – Fondazioni CR – Tabella delle corrispondenze sostegni - monconi – fondazioni	FEB. 2020
P005DX001	Linee 132 - 150 kV tiro pieno unificate – Moncone F43	GIU. 2008
P005DX002	Linee 132 - 150 kV tiro pieno unificate – Moncone F44	GIU. 2008
P005DX003	Linee 132 - 150 kV tiro pieno unificate – Moncone F45	GIU. 2008
FECR19001B2262479	Riassetto della RTN in Val d'Isarco Linee 132 kV e 220 kV – Tipologico fondazione speciale su pali trivellati	OTT. 2021
FECR19001B2263359	Riassetto della RTN in Val d'Isarco Linee 132 kV e 220 kV – Tipologico fondazione speciale su micropali	OTT. 2021
FECR19001B2263465	Riassetto della RTN in Val d'Isarco Linee 132 kV e 220 kV – Tipologico fondazione speciale su micropali tubfix	OTT. 2021
FECR19001B2263801	Riassetto della RTN in Val d'Isarco Linee 132 kV e 220 kV – Tipologico fondazione speciale ancoraggio con tiranti in roccia	OTT. 2021



CONDUTTORE A CORDA DI ALLUMINIO-ACCIAIO Ø 31,5 mm

Codifica
LIN_000000C2

Rev. 00
del 02/07/2012

Pag. 1 di 2

TIPO CONDUTTORE	2/1	2/2 (*)		
THE CONSTRUCT	NORMALE	INGRASSATO		
FORMAZIONE		Alluminio	54 x 3,50	54 x 3,50
PORMAZIONE		Acciaio	19 x 2,10	19 x 2,10
		Alluminio	519,5	519,5
SEZIONI TEORICHE	(mm²)	Acciaio	65,80	65,80
		Totale	585,30	585,30
TIPO DI ZINCATURA DELL'ACCIAIO			Normale	Maggiorata
MASSA TEORICA	(Kg/m)		1,953	2,071(**)
RESISTENZA ELETTR. TEORICA A 20°C	(Ω/km)		0,05564	0,05564
CARICO DI ROTTURA	(daN)		16852	16516
MODULO ELASTICO FINALE	(daN/mm	2)	6800	6800
COEFFICIENTE DI DILATAZIONE	(K ⁻¹)		19,4 x 10 ⁻⁶	19,4 x 10 ⁻⁶

^(*) Per zone ad alto inquinamento salino

Storia delle revisioni						
Rev. 00	del 02/07/2012	Il documento, redatto in prima emissione, aggiorna e sostituisce il documento Terna RQUT0000C2 rev. 01 del 25/07/2002 (C.D'Ambrosa, A.Posati, R.Rendina)				

Elaborato			Verificato			Approvato
ITI s.r.l.			A. Piccinin SRI-SVT-LAE	A. Guarneri SRI-SVT-LAE		A. Posati SRI-SVT-LAE

^(**) Compresa massa grasso pari a 103,39 gr/m.

CONDUTTORE A CORDA DI ALLUMINIO – ACCIAIO Ø 31,5 mm

Codifica LIN_00000C2

Rev. 00 Pag. **2** di 2

NOTE

1. Materiale

Mantello esterno in Alluminio ALP E 99,5 UNI 3950:1957.

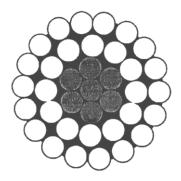
Anima in acciaio a zincatura normale tipo 170 (CEI 7-2:1997), zincato a caldo.

Anima in acciaio a zincatura maggiorata tipo 3 secondo prescrizioni LIN_000C3905 Appendice A.

2. Prescrizioni

Per la costruzione, il collaudo e la fornitura: LIN_000C3905.

Per le caratteristiche dei prodotti di protezione: CEI EN 50326:2003.


Per le modalità di ingrassaggio: CEI EN 50182:2002.

- 3. Imballo e pezzature: bobine da 2.000 m (salvo diversa prescrizione in sede di ordinazione).
- 4. Unità di misura: l'unità di misura con la quale deve essere espressa la quantità del materiale è la massa in chilogrammi (Kg).
- 5. Modalità di applicazione dei prodotti di protezione

Il conduttore tipo 2/2 dovrà essere completamente ingrassato, ad eccezione della superficie esterna dei fili elementari del mantello esterno.

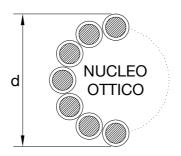
Le modalità di ingrassaggio devono essere rispondenti alla Norma CEI EN 50182:2002 Caso 4 Figura B.1, annesso B.

La massa teorica di grasso espressa in gr/m, con una densità di 0,87 gr/cm³, calcolata secondo la Norma CEI EN 50182:2002 dovrà essere pari a 103,39 gr/m.

Cfr. Norma CEI EN 50182:2002 Caso 4 Figura B.1, annesso B

6. Caratteristiche dei prodotti di protezione

Il grasso deve essere conforme alla Norma CEI EN 50326:2003 tipo 20A180 ovvero 20B180.


Il Fornitore del conduttore, dovrà consegnare la documentazione di conformità del grasso utilizzato.

FUNE DI GUARDIA CON 48 FIBRE OTTICHE Ø 11,5 mm

Codifica LIN_00000C59

Rev. 00 Pag. **1** di 1

DIAMETRO NOMINALE ES	STERNO	(mm)	≤ 11,5	
MASSA UNITARIA TEORIO	CA (Eventuale grasso	compreso)	(kg/m)	≤ 0,6
RESISTENZA ELETTRICA	TEORICA A 20 ℃		(ohm/km)	≤ 0,9
CARICO DI ROTTURA			(daN)	≥ 7450
MODULO ELASTICO FINA	LE	(daN/mm²)	≥ 10000	
COEFFICIENTE DI DILATA	ZIONE TERMICA		(1/℃)	≤ 16,0E-6
MAX CORRENTE C.TO C.	TO DURATA 0,5 s		(kA)	≥ 10
	NUMERO		(n°)	48
FIRRE OTTIONE ON B	ATTENUAZIONE	a 1310 nm	(dB/km)	≤ 0,36
FIBRE OTTICHE SM-R (Single Mode Reduced)	ATTENOALIONE	a 1550 nm	(dB/km)	≤ 0,22
(Ciligio illedo reduced)	DISPERSIONE	a 1310 nm	(ps/nm · km)	≤ 3,5
	CROMATICA	a 1550 nm	(ps/nm · km)	≤ 20

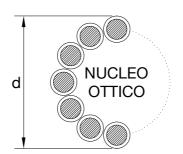
NOTE

- 1. Prescrizioni per la costruzione ed il collaudo: LIN_000C3907
- 2. Imballo e pezzature: bobine da 4000 m (salvo diversa prescrizione in sede di ordinazione).
- 3. Unità di misura: la quantità del materiale deve essere espressa in m.
- 4. Sigillatura: eseguita mediante materiale termoresistente e autovulcanizzante.

Storia del	le revisioni	
Rev. 00	del 01/06/2012	Il documento, redatto in prima emissione, aggiorna e sostituisce il documento Terna UXLC59 rev. 00 del 08/10/2007 (S.Tricoli-A.Posati-R.Rendina)

Elaborato		Verificato			Approvato
ITI s.r.l.		A. Guarneri SRI-SVT-LAE	A. Posati SRI-SVT-LAE		A. Posati SRI-SVT-LAE

FUNE DI GUARDIA CON 24 FIBRE OTTICHE Ø 17,9 mm


Codifica

LIN_00000C50

Rev. 00

del 01/06/2012

Pag. **1** di 1

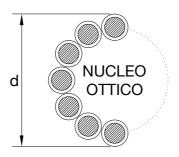
DIAMETRO NOMINALE ES	STERNO	(mm)	≤ 17,9	
MASSA UNITARIA TEORIO	CA (Eventuale grasso	compreso)	(kg/m)	≤ 0,82
RESISTENZA ELETTRICA	•	, ,	(ohm/km)	≤ 0,28
CARICO DI ROTTURA			(daN)	≥ 10600
MODULO ELASTICO FINA	LE		(daN/mm²)	≥ 8800
COEFFICIENTE DI DILATA	ZIONE TERMICA		(1/℃)	≤ 17,0E-6
MAX CORRENTE C.TO C.TO DURATA 0,5 s			(kA)	≥ 20
	NUMERO		(n°)	24
	ATTENUAZIONE	a 1310 nm	(dB/km)	≤ 0,36
FIBRE OTTICHE SM-R (Single Mode Reduced)	ATTENUAZIONE	a 1550 nm	(dB/km)	≤ 0,22
(Cirigio Wodo reddood)	DISPERSIONE	a 1310 nm	(ps/nm · km)	≤ 3,5
	CROMATICA	a 1550 nm	(ps/nm · km)	≤ 20

NOTE

- 1. Prescrizioni per la costruzione ed il collaudo: LIN_000C3907
- 2. Imballo e pezzature: bobine da 4000 m (salvo diversa prescrizione in sede di ordinazione).
- 3. Unità di misura: la quantità del materiale deve essere espressa in m.
- 4. Sigillatura: eseguita mediante materiale termoresistente e autovulcanizzante.

Storia del	le revisioni	
Rev. 00	del 01/06/2012	Il documento, redatto in prima emissione, aggiorna e sostituisce il documento Terna UX LC50 rev. 00 del 11/01/2008 (S.Tricoli-A.Posati-R.Rendina)

Elaborato	Verificato A		Approvato	
ITI s.r.l.	A. Guarneri SRI-SVT-LAE	A. Posati SRI-SVT-LAE		A. Posati SRI-SVT-LAE



FUNE DI GUARDIA CON 48 FIBRE OTTICHE Ø 17,9 mm

Codifica
LIN_00000C60

Rev. 00 del 01/06/2012

Pag. **1** di 1

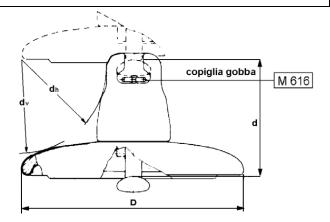
DIAMETRO NOMINALE ES	STERNO	(mm)	≤ 17,9	
MASSA UNITARIA TEORIO	CA (Eventuale grasso	compreso)	(kg/m)	≤ 0,82
RESISTENZA ELETTRICA	TEORICA A 20 ℃		(ohm/km)	≤ 0,28
CARICO DI ROTTURA			(daN)	≥ 10600
MODULO ELASTICO FINA	LE	(daN/mm²)	≥ 8800	
COEFFICIENTE DI DILATA	ZIONE TERMICA	(1/℃)	≤ 17,0E-6	
MAX CORRENTE C.TO C.TO DURATA 0,5 s			(kA)	≥ 20
	NUMERO		(n°)	48
FIRRE OTTIONE ON B	ATTENUAZIONE	a 1310 nm	(dB/km)	≤ 0,36
FIBRE OTTICHE SM-R Single Mode Reduced)		a 1550 nm	(dB/km)	≤ 0,22
Single Mede Roddod)	DISPERSIONE	a 1310 nm	(ps/nm · km)	≤ 3,5
	CROMATICA	a 1550 nm	(ps/nm · km)	≤ 20

NOTE

- 1. Prescrizioni per la costruzione ed il collaudo: LIN_000C3907
- 2. Imballo e pezzature: bobine da 4000 m (salvo diversa prescrizione in sede di ordinazione).
- 3. Unità di misura: la quantità del materiale deve essere espressa in m.
- 4. Sigillatura: eseguita mediante materiale termoresistente e autovulcanizzante.

Storia del	le revisioni	
Rev. 00	del 01/06/2012	Il documento, redatto in prima emissione, aggiorna e sostituisce il documento Terna UXLC60 rev. 00 del 08/10/2007 (S.Tricoli-A.Posati-R.Rendina)

Elaborato	Verificato A		Approvato	
ITI s.r.l.	A. Guarneri SRI-SVT-LAE	A. Posati SRI-SVT-LAE		A. Posati SRI-SVT-LAE



ISOLATORI CAPPA E PERNO DI TIPO NORMALE IN VETRO TEMPRATO

LIN_00000J1

Rev. 01
del 10/11/2015

Pag. 1 di 1

TIPO			1/2	1/3	1/4	1/5	1/6
Carico di Rottura (kN)	Carico di Rottura (kN)			160	210	400	300
Diametro Nominale Part	te Isolante (mm)	255	255	280	280	360	320
Passo (mm)		146	146	146	170	205	195
Accoppiamento CEI 36-10 (grandezza)		16 A	16 A	20	20	28	24
Linea di Fuga Nominale Minima (mm)		295	295	315	370	525	425
dh Nominale Minimo (mm)		85	85	85	95	115	100
dv Nominale Minimo (m	m)	102	102	102	114	150	140
Condizioni di Prova in	Numero di Isolatori Costituenti la Catena	9	13	21	18	15	16
Nebbia Salina	Tensione (kV)	98	142	243	243	243	243
Salinità di Tenuta (*) (kg/ m³)		14	14	14	14	14	14

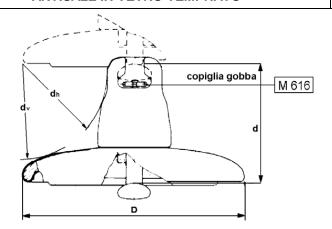
(*) La salinità di tenuta, verificata su una catena, viene convenzionalmente assunta come caratteristica propria del tipo di elemento isolante.

NOTE

- Materiali: parte isolante in vetro sodocalcico temprato; cappa in ghisa malleabile (UNI EN 1562:2007) zincata a caldo oppure ghisa sferoidale di caratteristiche meccaniche equivalenti (UNI EN 1563:2009) e per basse temperature (LT); perno in acciaio al carbonio (UNI EN 10083-1:2006) zincato a caldo; copiglia in acciaio inossidabile austenitico UNI EN 10088-1:2005; cemento di tipo alluminoso.
- 2. Tolleranze:
 - a) sul valore nominale del passo: secondo la pubblicazione IEC 305 (1974) par. 3.
 - b) sugli altri valori nominali: secondo la Norma CEI 36-20 (1998) par. 17.
- 3. Su ciascun esemplare deve essere marcata la sigla U seguita dal carico di rottura dell'isolatore, il marchio di fabbrica del costruttore e l'anno di fabbricazione.
- 4. Prescrizioni: per la costruzione, il collaudo e la fornitura LIN_000J3900.
- 5. Tensione di tenuta alla perforazione elettrica ad impulso in aria: 2,8 p.u. (per unità della tensione di scarica 50% a impulso atmosferico standard di polarità negativa).
- 6. L'unità di misura con la quale deve essere espressa la quantità di materiale è il numero di esemplari (n).

Storia delle revisioni					
Rev. 00	del 30/03/2012	Il documento, redatto in prima emissione, aggiorna e sostituisce il documento Terna UX LJ1 rev. 00 del 03/04/2009 (M. Meloni – A. Posati – R. Rendina)			
Rev. 01	del 10/11/2015	Aggiornate le note relative a materiali e tensione di tenuta alla perforazione elettrica ad impulso in aria. Eliminata la nota relativa alla tenuta alla perforazione elettrica f.i. in olio			

Elaborato		Verificato			Approvato
S. Memeo ING-TSS-STL-LAE		P. Berardi ING-TSS-STL-LAE	M. Marzinotto ING-TSS-CSI		A. Posati ING-TSS-STL



ISOLATORI CAPPA E PERNO DI TIPO ANTISALE IN VETRO TEMPRATO

LIN_00000J2

Rev. 01
del 10/11/2015

Pag. 1 di 1

	2/1	2/2	2/3	2/4	
Carico di Rottura (kN)	70	120	160	210	
Diametro Nominale Parte	s Isolante (mm)	280	280	320	320
Passo (mm)		146	146	170	170
Accoppiamento CEI 36-10 (grandezza)		16A	16A	20	20
Linea di Fuga Nominale I	430	425	525	520	
dh Nominale Minimo (mm	n)	75	75	90	90
dv Nominale Minimo (mm)		85	85	100	100
Condizioni di Prova in	Numero di Isolatori Costituenti la Catena	9	13	18	18
Nebbia Salina	Tensione (kV)	98	142	243	243
Salinità di Tenuta (*) (kg/ m³)		56	56	56	56

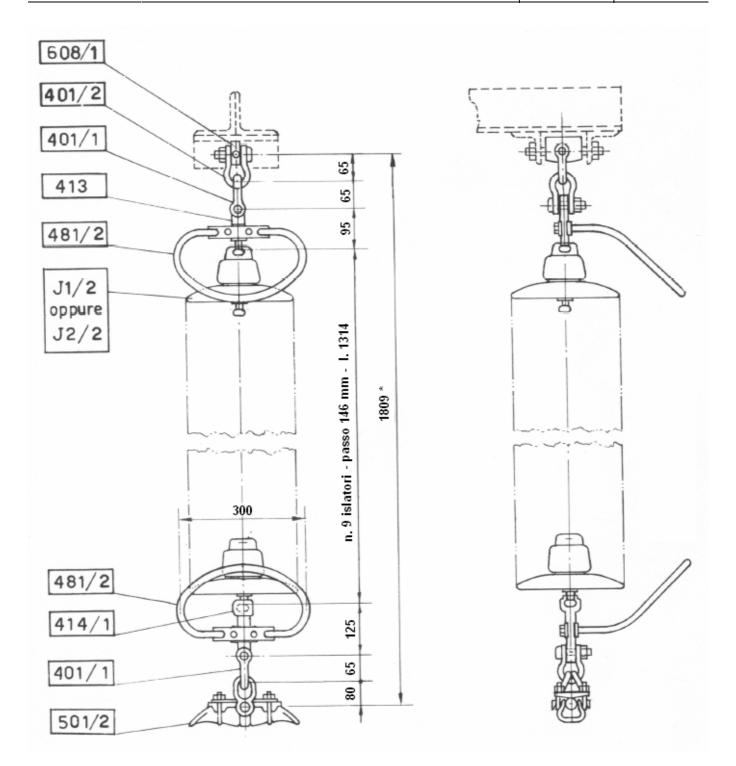
(*) La salinità di tenuta, verificata su una catena, viene convenzionalmente assunta come caratteristica propria del tipo di elemento isolante.

NOTE

- Materiali: parte isolante in vetro sodocalcico temprato; cappa in ghisa malleabile (UNI EN 1562:2007) zincata a caldo oppure ghisa sferoidale di caratteristiche meccaniche equivalenti (UNI EN 1563:2009) e per basse temperature (LT); perno in acciaio al carbonio (UNI EN 10083-1:2006) zincato a caldo; copiglia in acciaio inossidabile austenitico UNI EN 10088-1:2005; cemento di tipo alluminoso.
- 2. Tolleranze:
 - a) sul valore nominale del passo: secondo la pubblicazione IEC 305 (1974) par. 3.
 - b) sugli altri valori nominali: secondo la Norma CEI 36-20 (1998) par. 17.
- 3. Su ciascun esemplare deve essere marcata la sigla U seguita dal carico di rottura dell'isolatore, il marchio di fabbrica del costruttore e l'anno di fabbricazione.
- 4. Prescrizioni: per la costruzione, il collaudo e la fornitura LIN_000J3900.
- 5. Tensione di tenuta alla perforazione elettrica ad impulso in aria: 2,8 p.u. (per unità della tensione di scarica 50% a impulso atmosferico standard di polarità negativa).
- 6. L'unità di misura con la quale deve essere espressa la quantità di materiale è il numero di esemplari (n).

Storia delle revisioni				
Rev. 00	del 30/03/2012	Il documento, redatto in prima emissione, aggiorna e sostituisce il documento ENEL LJ2 Ed. 6 del Luglio 1989		
Rev. 01	del 10/11/2015	Aggiornate le note relative a materiali e tensione di tenuta alla perforazione elettrica ad impulso in aria. Eliminata la nota relativa alla tenuta alla perforazione elettrica f.i. in olio		

ISC – Uso INTERNO


Elaborato	Verificato	Verificato		
S. Memeo	P. Berardi	M. Marzinotto		A. Posati
ING-TSS-STL-LAE	ING-TSS-STL-LAE	ING-TSS-CSI		ING-TSS-STL

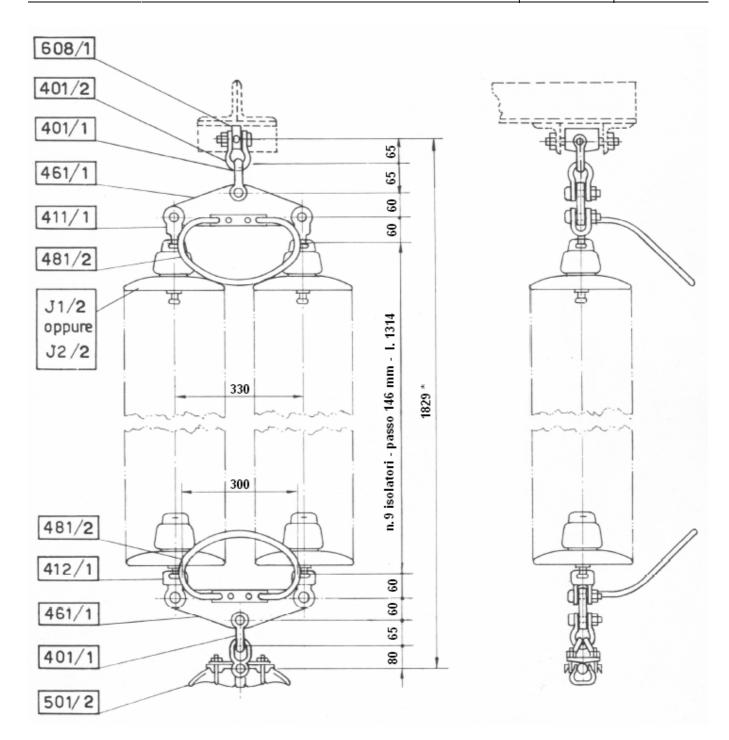
LINEE A 132 – 150 kV CONDUTTORI ALL.-ACC. Ø31,5 - TIRO PIENO ARMAMENTO PER SOSPENSIONE SEMPLICE

Codifica: **LM21**Rev. 00
del 29/06/2007

Rev. 1 di 1

^{*} La quota aumentata di 584 mm nel caso di impiego di n°13 isolatori J2/2 (vedi J121)

Storia delle revisioni		
Rev. 00	del 29/06/2007	Prima emissione.


Elaborato		Verificato			Approvato	l	
	G. Lavecchia		A. Posati	S. Tricoli		R. Rendina	
	ING-ILC-COL		ING-ILC-COL	ING-ILC-COL		ING-ILC	

LINEE A 132 – 150 kV CONDUTTORI ALL.-ACC. Ø31,5 - TIRO PIENO ARMAMENTO PER SOSPENSIONE DOPPIA

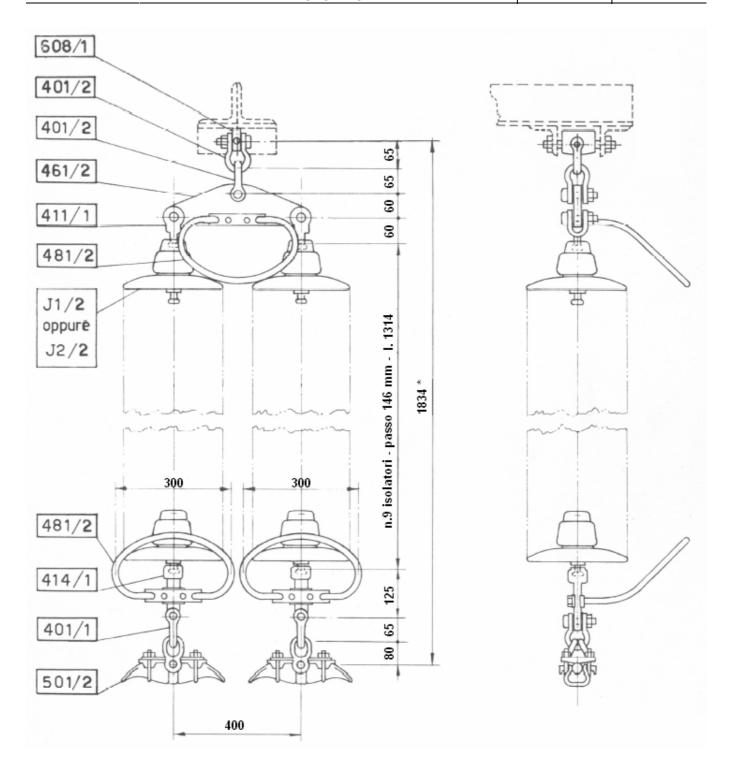
Codifica: **LM22**Rev. 00
del 29/06/2007

Rev. 1 di 1

^{*} La quota aumenta di 584 mm nel caso di impiego di n°13 isolatori J2/2 (vedi J121)

Storia delle revisioni			
Rev. 00	del 29/06/2007	Prima emissione.	

Elaborato		Verificato			Approvato	
G. Lavecchia		A. Posati	S. Tricoli		R. Rendina	Ī
ING-ILC-COL		ING-ILC-COL	ING-ILC-COL		ING-ILC	



LINEE A 132 – 150 kV CONDUTTORI ALL.-ACC. Ø31,5 - TIRO PIENO ARMAMENTO PER SOSPENSIONE DOPPIA CON DOPPIO MORSETTO

Codifica: LM23

Rev. 00
del 29/06/2007

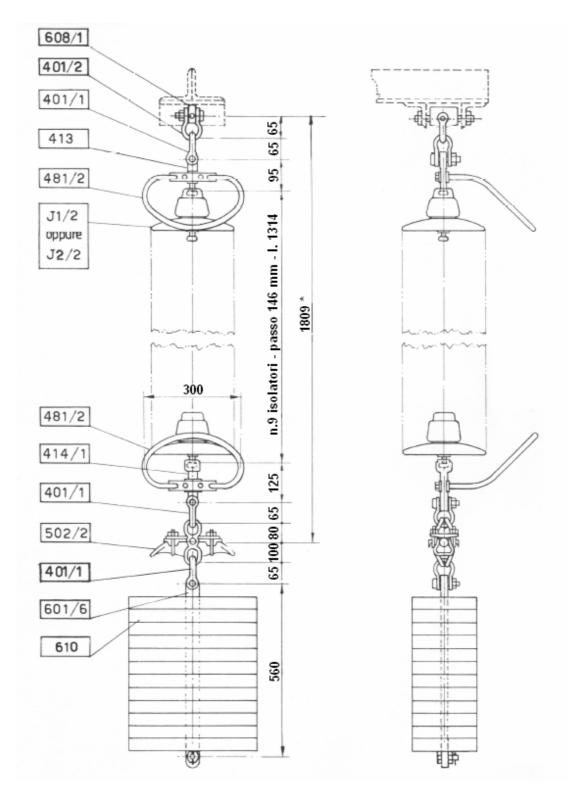
Pag. 1 di 1

* La quota aumentata di 584 mm nel caso di impiego di n°13 isolatori J2/2 (vedi J121)

Storia de	Storia delle revisioni		
Rev. 00	del 29/06/2007	Prima emissione.	

Elaborato		Verificato			Approvato	l	
	G. Lavecchia		A. Posati	S. Tricoli		R. Rendina	
	ING-ILC-COL		ING-ILC-COL	ING-ILC-COL		ING-ILC	

LINEE A 132 – 150 kV CONDUTTORI ALL.-ACC. Ø31,5 - TIRO PIENO ARMAMENTO PER SOSPENSIONE CON CONTRAPPESO


Codifica: LM24

Rev. 00
del 29/06/2007

Rev. 01

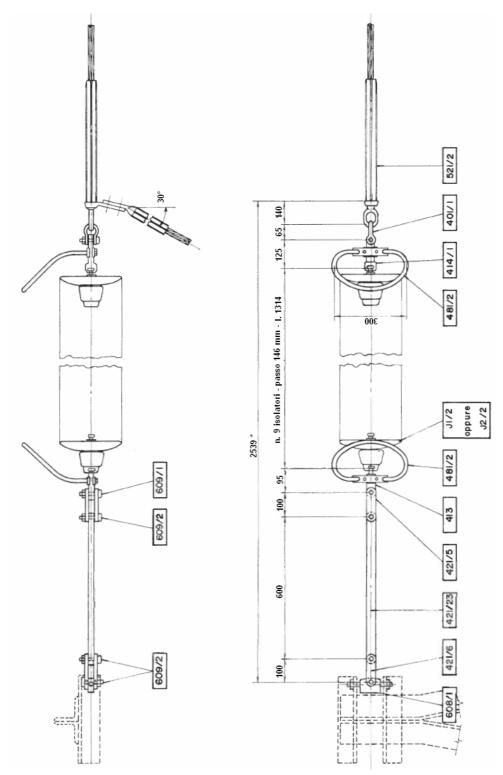
Rev. 01

Rev. 01

^{*} La quota aumenta di 584 mm nel caso di impiego di n°13 isolatori J2/2 (vedi J121)

Storia de	Storia delle revisioni		
Rev. 00	del 29/06/2007	Prima emissione.	

Elaborato		Verificato		Approvato
	A. Posati ING-ILC-COL	S. Tricoli ING-ILC-COL		R. Rendina ING-ILC
			A. Posati S. Tricoli	A. Posati S. Tricoli



LINEE A 132 – 150 kV CONDUTTORI ALL.-ACC. Ø31,5 - TIRO PIENO ARMAMENTO PER AMARRO SEMPLICE

Codifica: LM121

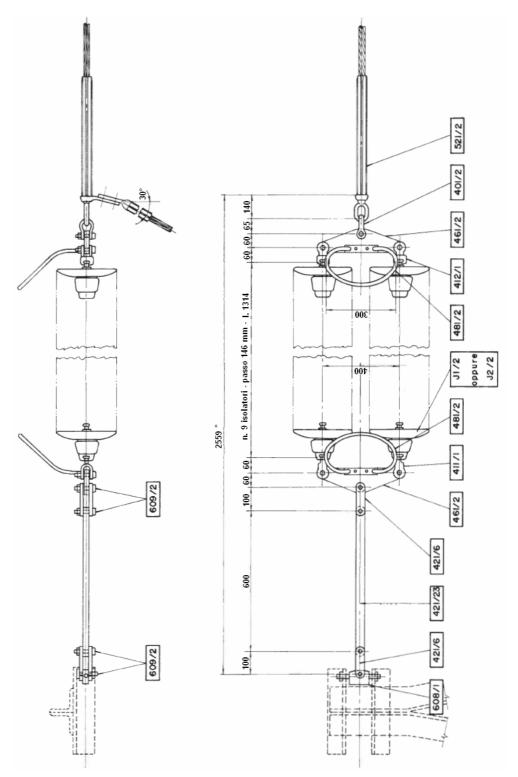
Rev. 00
del 29/06/2007

Rev. 00 Pag. 1 di 1

^{*} La quota aumenta di 584 mm nel caso di impiego di n°13 isolatori J2/2 (vedi J121)

Storia delle revisioni		
Rev. 00	del 29/06/2007	Prima emissione.

Elaborato		Verificato		Approvato		
G. Lavecchia ING-ILC-COL		A. Posati ING-ILC-COL	S. Tricoli ING-ILC-COL		R. Rendina ING-ILC	



LINEE A 132 – 150 kV CONDUTTORI ALL.-ACC. Ø31,5 - TIRO PIENO ARMAMENTO PER AMARRO DOPPIO

Codifica: LM122

Rev. 00
del 29/06/2007

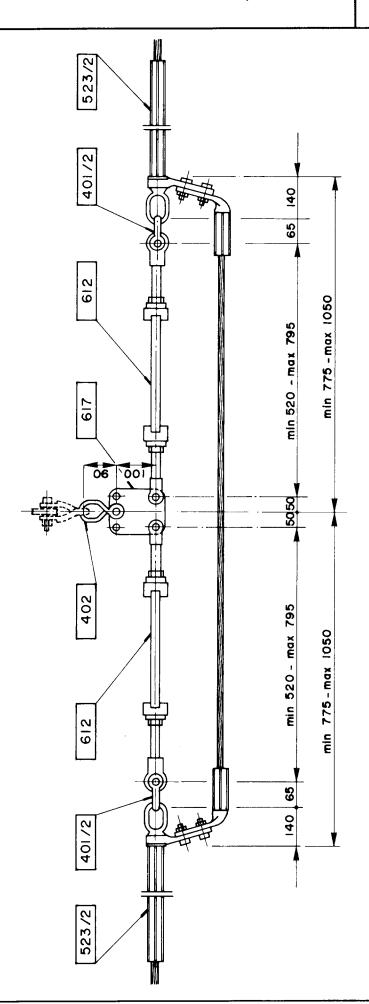
Pag. 1 di 1

* La quota aumenta di 584 mm nel caso di impiego di n°13 isolatori J2/2 (vedi J121) Riferimento C2

Storia de	Storia delle revisioni		
Rev. 00	del 29/06/2007	Prima emissione.	

Elaborato	Verificato		Approvato	
G. Lavecchia ING-ILC-COL	A. Posati ING-ILC-COL	S. Tricoli ING-ILC-COL	R. Rendina ING-ILC	

UNIFICAZIONE

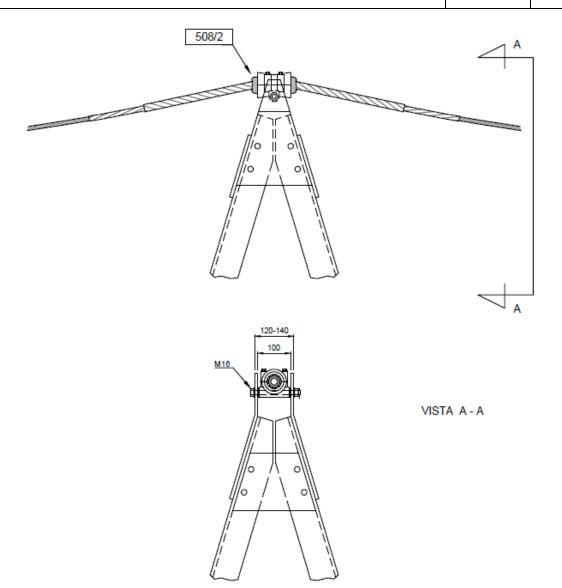

ENEL

DISPOSITIVO PER AMARRO BILATERALE SINGOLO PER EQUIPAGGIAMENTI DI SOSPENSIONE A "I" CONDUTTORE IN ALL. - ACC. Ø 31,5

25 XX AQ

LM 133

Luglio 1994 Ed.3 - 1/1


DCO - AITC - UNITA' INGEGNERIA IMPIANTISTICA 2 - DDI - VICE DIREZIONE TECNICA

LINEE 132-150 e 220 kV CON ATTACCO CORPO PALO FORO Ø 50 mm ARMAMENTO DI SOSPENSIONE DELLA FUNE DI GUARDIA CON FIBRE OTTICHE Ø 11,5 mm

Codifica LIN_0000M205

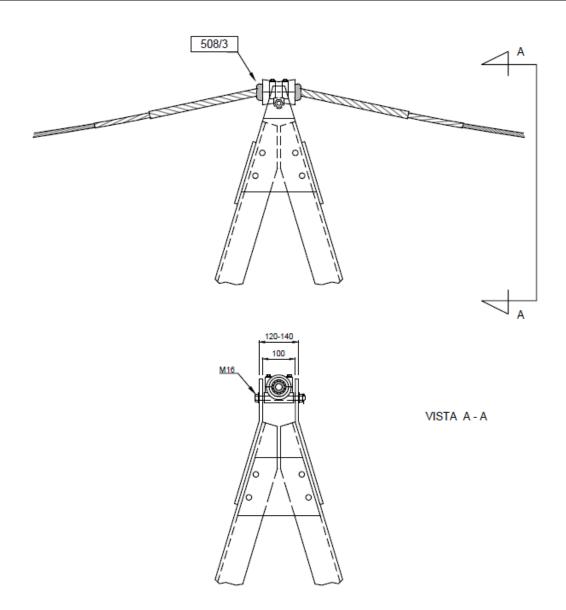
Rev. 01 del 20/11/2017 Pag. 1 di 1

DOCUMENTI DI RIFERIMENTO

LIN_00000C25, LIN_00000C59

Storia de	lle revisioni	
Rev. 00	del 01/06/2012	Il documento, redatto in prima emissione, aggiorna e sostituisce il documento ENEL DM205 ed. 1 del Luglio 1996.
Rev. 01	del 20/11/2017	Sostituzione del morsetto di sospensione metacentrico con il morsetto di sospensione a barrette preformate.

Elaborato		Verificato		Approvato	j
R. Costagliola ING-TAM-ILI	A. Piccinin ING-TAM-ILI	P. Berardi ING-TAM-ILI		E. Di Vito ING-TAM-ILI	


LINEE 132-150 E 220 kV

CON ATTACCO CORPO PALO FORO Ø 50 mm ARMAMENTO DI SOSPENSIONE DELLA FUNE DI GUARDIA CON FIBRE OTTICHE Ø 17,9 mm

LIN_0000M206

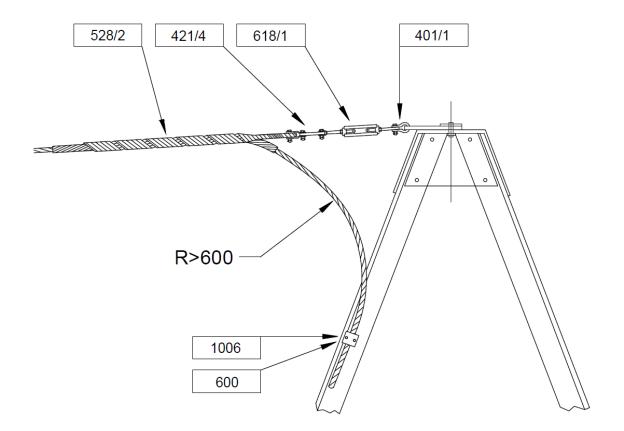
Rev. 01
del 20/11/2017

Pag. **1** di 1

DOCUMENTI DI RIFERIMENTO

Storia de	lle revisioni	
Rev. 00	del 01/06/2012	Il documento, redatto in prima emissione, aggiorna e sostituisce il documento ENEL DM206 ed. 1 del Luglio 1996.
Rev. 01	del 20/11/2017	Sostituzione del morsetto di sospensione metacentrico con il morsetto di sospensione a barrette preformate.

ISC – Uso INTERNO	


Elaborato		Verificato		Approvato	
R. Costagliola ING-TAM-ILI	A. Piccinin ING-TAM-ILI	P. Berardi ING-TAM-ILI		E. Di Vito ING-TAM-ILI	

LINEE 132-150 E 220 kV

CON ATTACCO CORPO PALO FORO Ø 50 mm ARMAMENTO DI AMARRO CAPOLINEA DELLA FUNE DI GUARDIA CON FIBRE OTTICHE Ø 11,5 mm

Rev. 01 del 20/11/2017 Pag. **1** di 1

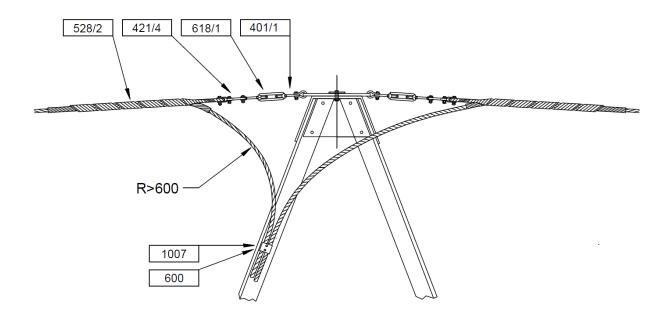
NOTE

 La quantità dei morsetti unifilari 1006 e delle staffe di fissaggio 600 per la discesa della fune di guardia alla scatola di giunzione devono essere specificate in funzione del tipo e dell'altezza del sostegno sul quale viene realizzata la discesa, in accordo con il documento LIN_000C3906.

DOCUMENTI DI RIFERIMENTO

Storia de	lle revisioni	
Rev. 00	del 01/06/2012	Il documento, redatto in prima emissione, aggiorna e sostituisce il documento ENEL DM270 ed. 1 del Luglio 1996.
Rev. 01	del 20/11/2017	Sostituzione della morsa di amarro a bulloni con la morsa di amarro preformata.

Elaborato		Verificato		Approvato
R. Costagliola	A. Piccinin	P. Berardi		E. Di Vito
ING-TAM-ILI	ING-TAM-ILI	ING-TAM-ILI		ING-TAM-ILI


LINEE 132-150 E 220 kV

CON ATTACCO CORPO PALO FORO Ø 50 mm ARMAMENTO DI AMARRO IN CORRISPONDENZA DI GIUNTO OTTICO DELLA FUNE DI GUARDIA CON FIBRE OTTICHE Ø 11,5 mm

Codifica
LIN_0000M271

Rev. 01
del 20/11/2017

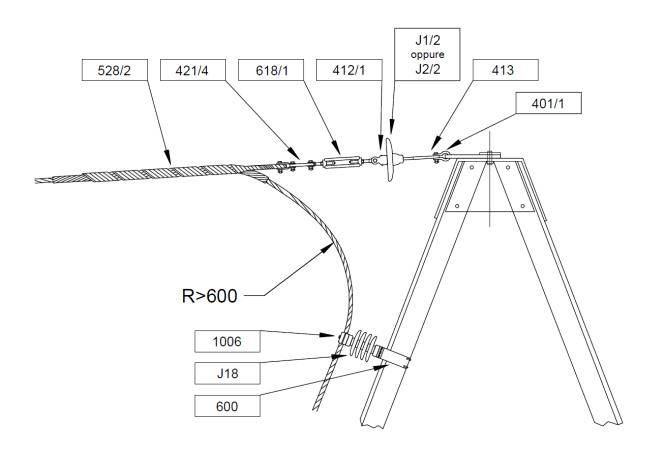
Pag. 1 di 1

NOTE

1. La quantità dei morsetti bifilari 1007 e delle staffe di fissaggio 600 per la discesa della fune di guardia alla scatola di giunzione deve essere definita in accordo al documento C3906.

DOCUMENTI DI RIFERIMENTO

Storia de	elle revisioni	
Rev. 00	del 01/06/2012	Il documento, redatto in prima emissione, aggiorna e sostituisce il documento ENEL DM271 ed. 1 del Luglio 1996.
Rev. 01	del 20/11/2017	Sostituzione della morsa di amarro a bulloni con la morsa di amarro preformata.


Elaborato		Verificato		Approvato	
R. Costagliola ING-TAM-ILI	A. Piccinin ING-TAM-ILI	P. Berardi ING-TAM-ILI		E. Di Vito ING-TAM-ILI	

LINEE 132-150 E 220 kV

CON ATTACCO CORPO PALO FORO Ø 50 mm ARMAMENTO DI AMARRO CON ISOLAMENTO DELLA FUNE DI GUARDIA CON FIBRE OTTICHE Ø 11,5 mm

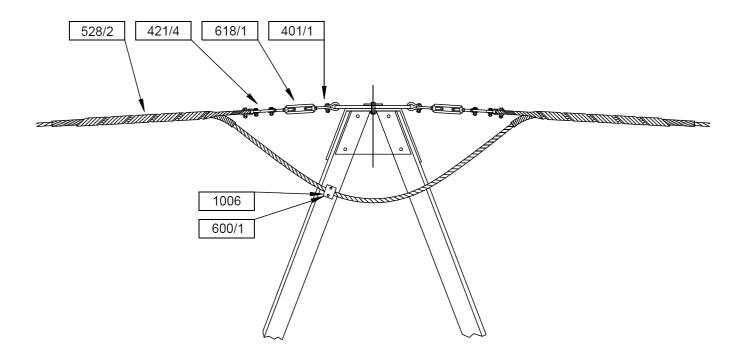
NOTE

1. La quantità dei morsetti unifilari 1006, degli isolatori J18 e delle staffe di fissaggio 600 per la discesa della fune di guardia alla scatola di giunzione devono essere specificate in funzione del tipo e dell'altezza del sostegno sul quale viene realizzata la discesa, in accordo con il documento LIN_000C3906.

DOCUMENTI DI RIFERIMENTO

Storia de	Storia delle revisioni				
Rev. 00 del 01/06/2012 II documento, redatto in prima emissione, aggiorna e sostituisce il documento ENEL DM272 ed. 1 del Lu 1996.		Il documento, redatto in prima emissione, aggiorna e sostituisce il documento ENEL DM272 ed. 1 del Luglio 1996.			
Rev. 01	del 20/11/2017	Sostituzione della morsa di amarro a bulloni con la morsa di amarro preformata.			

Elaborato		Verificato		Approvato
R. Costagliola ING-TAM-ILI				E. Di Vito ING-TAM-ILI



LINEE 132-150 E 220 kV

CON ATTACCO CORPO PALO FORO Ø 50 mm ARMAMENTO DI AMARRO PASSANTE PER FUNE DI GUARDIA CON FIBRE OTTICHE Ø 11,5 mm

LIN_0000M273

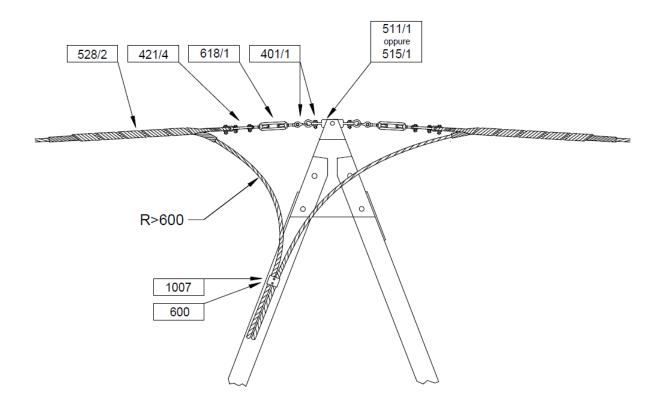
Rev. 02
del 31/07/2018 Pag. **1** di 1

NOTE

1. Per cimini con profilati angolari di dimensioni comprese tra L 85x85mm e L 120x120mm si deve utilizzare la staffa di fissaggio tipo M600/2.

DOCUMENTI DI RIFERIMENTO

Storia de	Storia delle revisioni					
Rev. 00 del 01/06/2012 II documento, redatto in prima emissione, aggiorna e sostituisce il documento ENEL DM273 ed. 1996.						
Rev. 01	del 20/11/2017	Sostituzione della morsa di amarro a bulloni con la morsa di amarro preformata.				
Rev. 02	del 31/07/2018	Inserita nota n.1.				


Elaborato		Verificato		Approvato		
	R. Costagliola ING-TAM-ILI	A. Piccinin ING-TAM-ILI	P. Berardi ING-TAM-ILI		E. Di Vito ING-TAM-ILI	

LINEE 132-150 E 220 kV

CON ATTACCO CORPO PALO FORO Ø 50 mm ARMAMENTO DI AMARRO IN SOSPENSIONE PER FUNE DI GUARDIA CON FIBRE OTTICHE Ø 11,5 mm

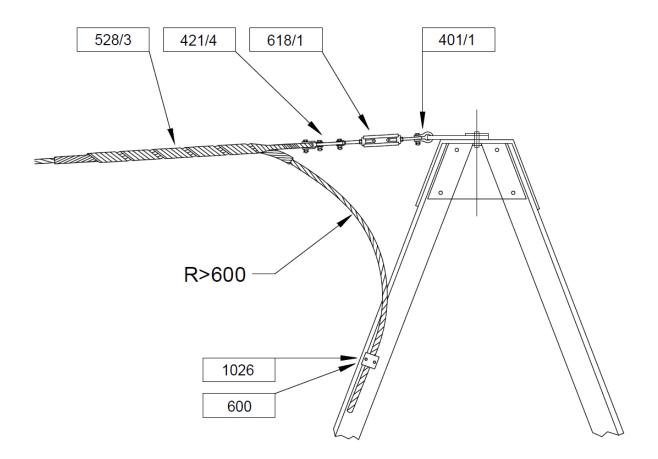
Rev. 01 del 20/11/2017 Pag. **1** di 1

NOTE

- 1. Particolari precauzioni devono essere prese durante i lavori in quanto nei sostegni di sospensione non è prevista a verifica dei cimini per il tiro pieno unilaterale con coefficiente di sicurezza 2.
- La quantità dei morsetti bifilari 1007 e delle staffe di fissaggio 600 per la discesa della fune di guardia alla scatola di giunzione devono essere specificate in funzione del tipo e dell'altezza del sostegno sul quale viene realizzata la discesa, in accordo con il documento LIN_000C3906.
- 3. Il supporto per amarro bilaterale 515/1 viene montato sui cimini con passo 78 mm. Il supporto per amarro bilaterale 511/1 viene montato sui cimini con passo 100 mm.

DOCUMENTI DI RIFERIMENTO


Storia de	Storia delle revisioni				
Rev. 00 del 01/06/2012 II documento, redatto in prima emissione, aggiorna e sostituisce il documento ENEL DM274 ed. 1 del Li 1996.		Il documento, redatto in prima emissione, aggiorna e sostituisce il documento ENEL DM274 ed. 1 del Luglio 1996.			
Rev. 01	del 20/11/2017	Sostituzione della morsa di amarro a bulloni con la morsa di amarro preformata.			


Elaborato		Verificato		Approvato
R. Costagliola	A. Piccinin	P. Berardi		E. Di Vito
ING-TAM-ILI	ING-TAM-ILI	ING-TAM-ILI		ING-TAM-ILI

LINEE 132-150 E 220 kV

CON ATTACCO CORPO PALO FORO Ø 50 mm ARMAMENTO DI AMARRO CAPOLINEA DELLA FUNE DI GUARDIA CON FIBRE OTTICHE Ø 17,9 mm

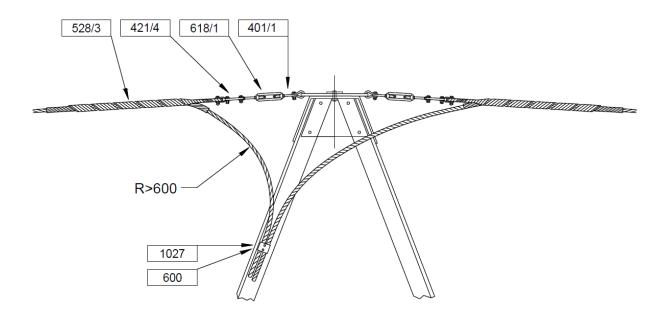
NOTE

1. La quantità dei morsetti unifilari 1026 e delle staffe di fissaggio 600 per la discesa della fune di guardia alla scatola di giunzione devono essere specificate in funzione del tipo e dell'altezza del sostegno sul quale viene realizzata la discesa, in accordo con il documento LIN_000C3906.

DOCUMENTI DI RIFERIMENTO

Storia de	Storia delle revisioni					
Rev. 00 del 01/06/2012 II documento, redatto in prima emissione, aggi 1996.		Il documento, redatto in prima emissione, aggiorna e sostituisce il documento ENEL DM275 ed. 1 del Luglio 1996.				
Rev. 01	del 20/11/2017	Sostituzione della morsa di amarro a bulloni con la morsa di amarro preformata.				

Elaborato		Verificato		Approvato
R. Costagliola ING-TAM-ILI				E. Di Vito ING-TAM-ILI


LINEE 132-150 E 220 kV

CON ATTACCO CORPO PALO FORO Ø 50 mm ARMAMENTO DI AMARRO IN CORRISPONDENZA DI GIUNTO OTTICODELLA FUNE DI GUARDIA CON FIBRE OTTICHE Ø 17,9 mm

Codifica
LIN_0000M276

Rev. 01
del 20/11/2017

Pag. 1 di 1

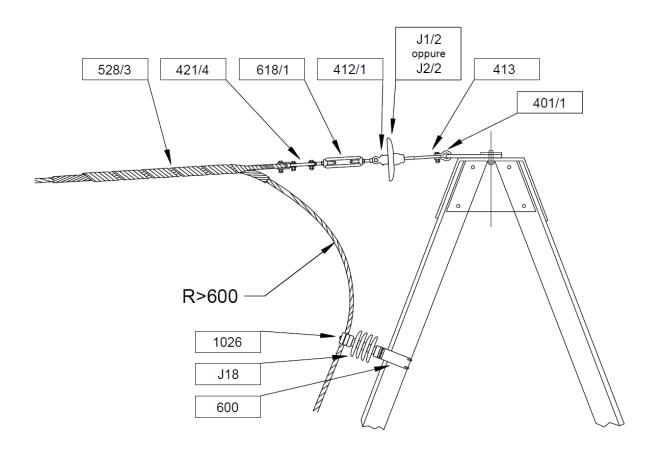
NOTE

1. La quantità dei morsetti bifilari 1027 e delle staffe di fissaggio 600 per la discesa della fune di guardia alla scatola di giunzione devono essere specificate in funzione del tipo e dell'altezza del sostegno sul quale viene realizzata la discesa, in accordo con il documento LIN_000C3906.

DOCUMENTI DI RIFERIMENTO

Storia de	Storia delle revisioni				
Rev. 00 del 01/06/2012 II documento, redatto in prima emissione, 1996.		Il documento, redatto in prima emissione, aggiorna e sostituisce il documento ENEL DM276 ed. 1 del Luglio 1996.			
Rev. 01	del 20/11/2017	Sostituzione della morsa di amarro a bulloni con la morsa di amarro preformata.			

ISC – Uso INTERNO	
ISC – Uso INTERNO	


Elaborato		Verificato		Approvato
R. Costagliola A. Piccinin ING-TAM-ILI		P. Berardi ING-TAM-ILI		E. Di Vito ING-TAM-ILI

LINEE 132-150 E 220 kV

CON ATTACCO CORPO PALO FORO Ø 50 mm ARMAMENTO DI AMARRO CON ISOLAMENTO DELLA FUNE DI GUARDIA CON FIBRE OTTICHE Ø 17,9 mm

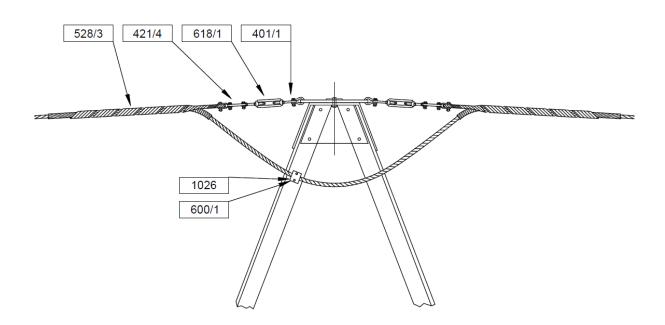
NOTE

1. La quantità dei morsetti unifilari 1026, degli isolatori J18 e delle staffe di fissaggio 600 per la discesa della fune di guardia alla scatola di giunzione devono essere specificate in funzione del tipo e dell'altezza del sostegno sul quale viene realizzata la discesa, in accordo con il documento LIN_000C3906.

DOCUMENTI DI RIFERIMENTO

Storia delle revisioni					
Rev. 00 del 01/06/2012 II documento, redatto in prima emissi 1996.		Il documento, redatto in prima emissione, aggiorna e sostituisce il documento ENEL DM277 ed. 1 del Luglio 1996.			
Rev. 01	del 20/11/2017	Sostituzione della morsa di amarro a bulloni con la morsa di amarro preformata.			

Elaborato		Verificato		Approvato		
	R. Costagliola ING-TAM-ILI	A. Piccinin ING-TAM-ILI	P. Berardi ING-TAM-ILI		E. Di Vito ING-TAM-ILI	


LINEE 132-150 E 220 kV

CON ATTACCO CORPO PALO FORO Ø 50 mm ARMAMENTO DI AMARRO PASSANTE PER FUNE DI GUARDIA CON FIBRE OTTICHE Ø 17,9 mm

LIN_0000M278

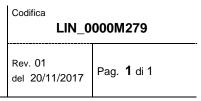
Rev. 02
del 31/07/2018

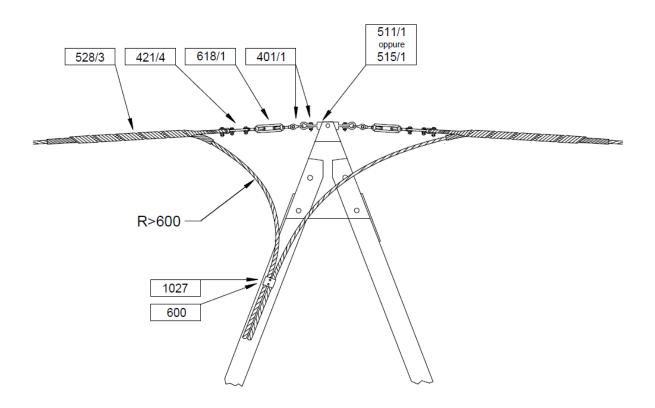
Pag. **1** di 1

NOTE

1. Per cimini con profilati angolari di dimensioni comprese tra L 85x85mm e L 120x120mm si deve utilizzare la staffa di fissaggio tipo M600/2.

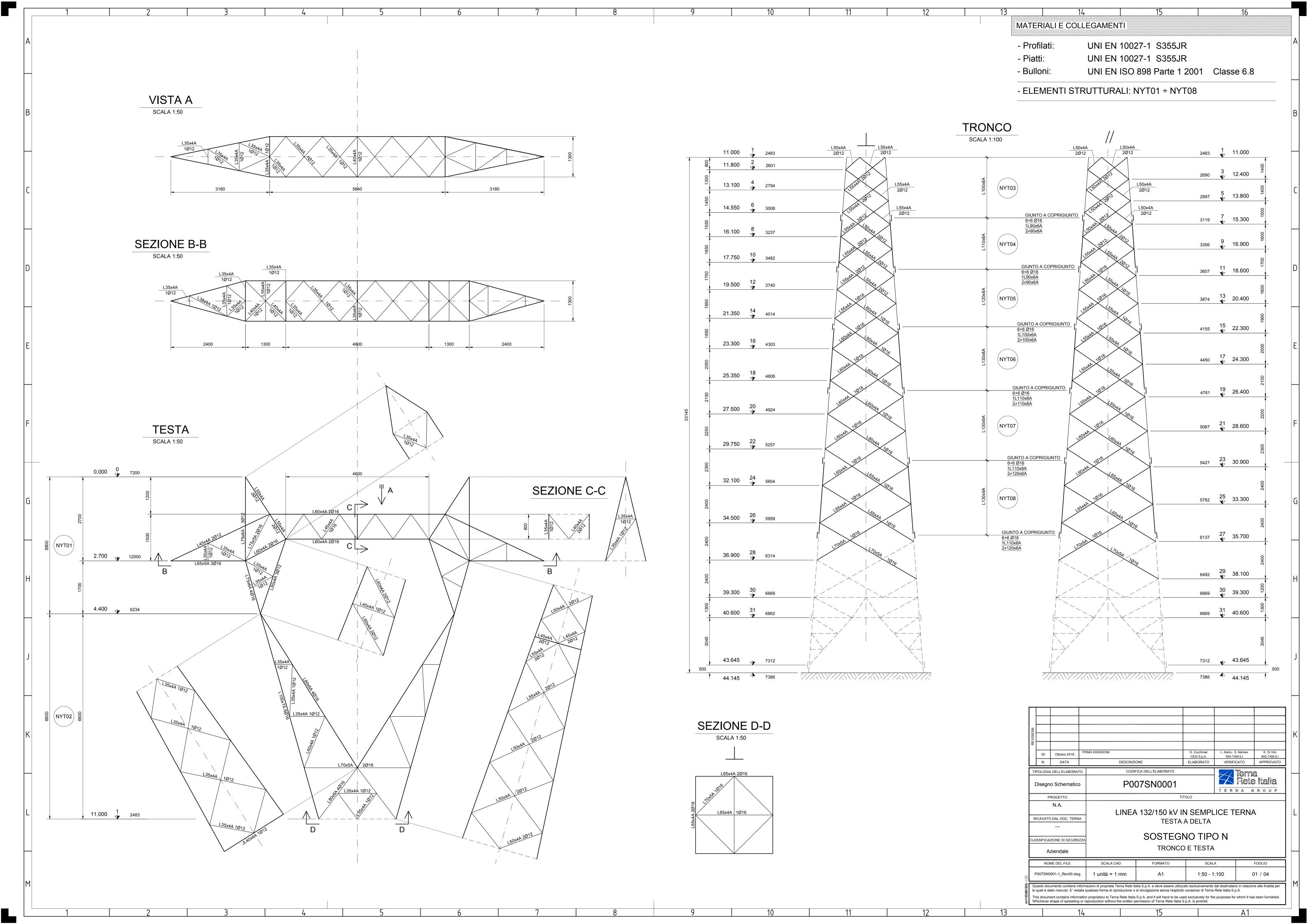
DOCUMENTI DI RIFERIMENTO

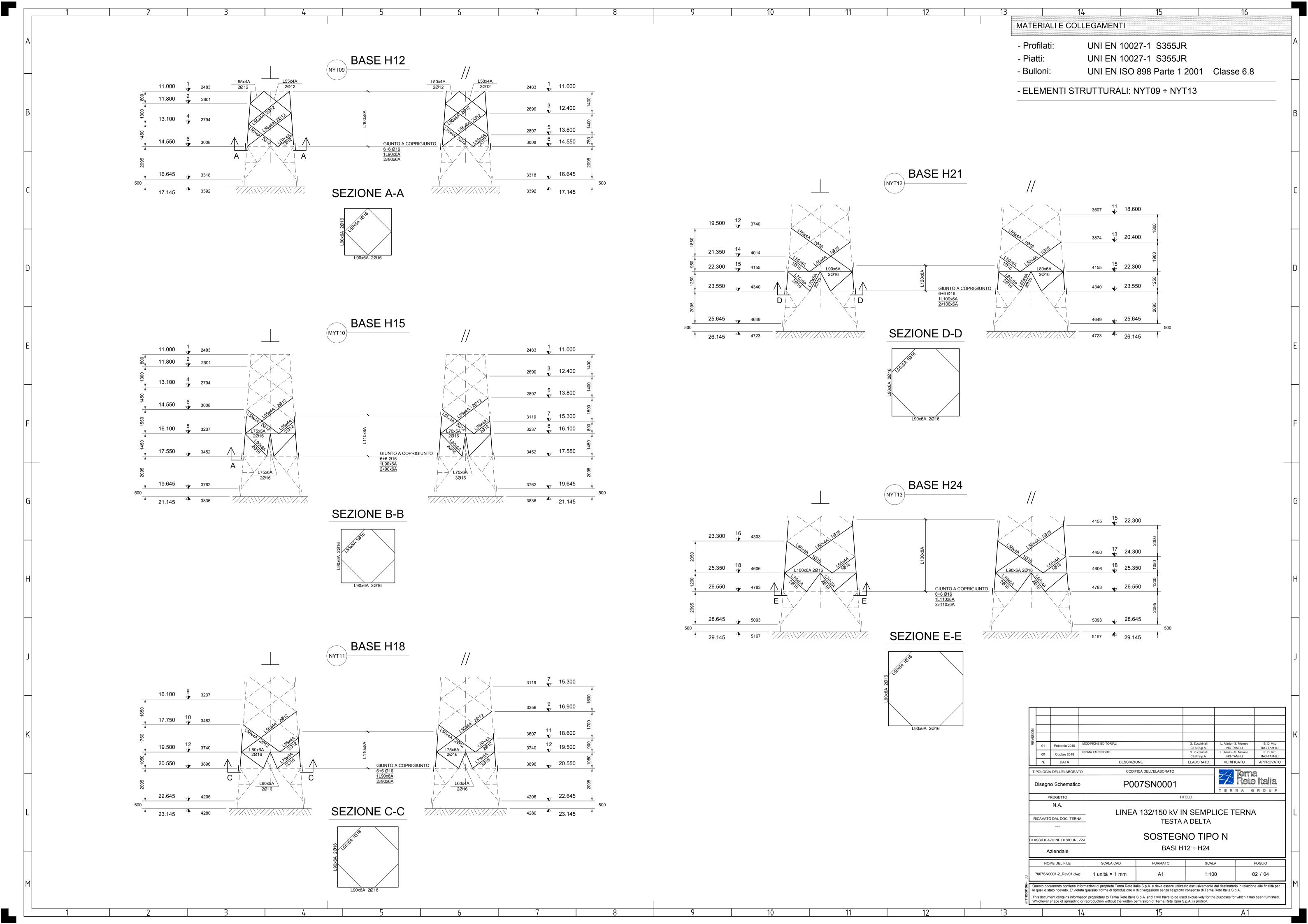

Storia delle revisioni				
Rev. 00 del 01/06/2012 II documento, redatto in prima emissione, aggiorna e sostituisce il document 1996.		Il documento, redatto in prima emissione, aggiorna e sostituisce il documento ENEL DM278 ed. 1 del Luglio 1996.		
Rev. 01 del 20/11/2017 Sostituzione della morsa di amarro a bulloni con la morsa di amarro preformata.		Sostituzione della morsa di amarro a bulloni con la morsa di amarro preformata.		
Rev. 02 del 31/07/2018 Inserita nota n.1.		Inserita nota n.1.		

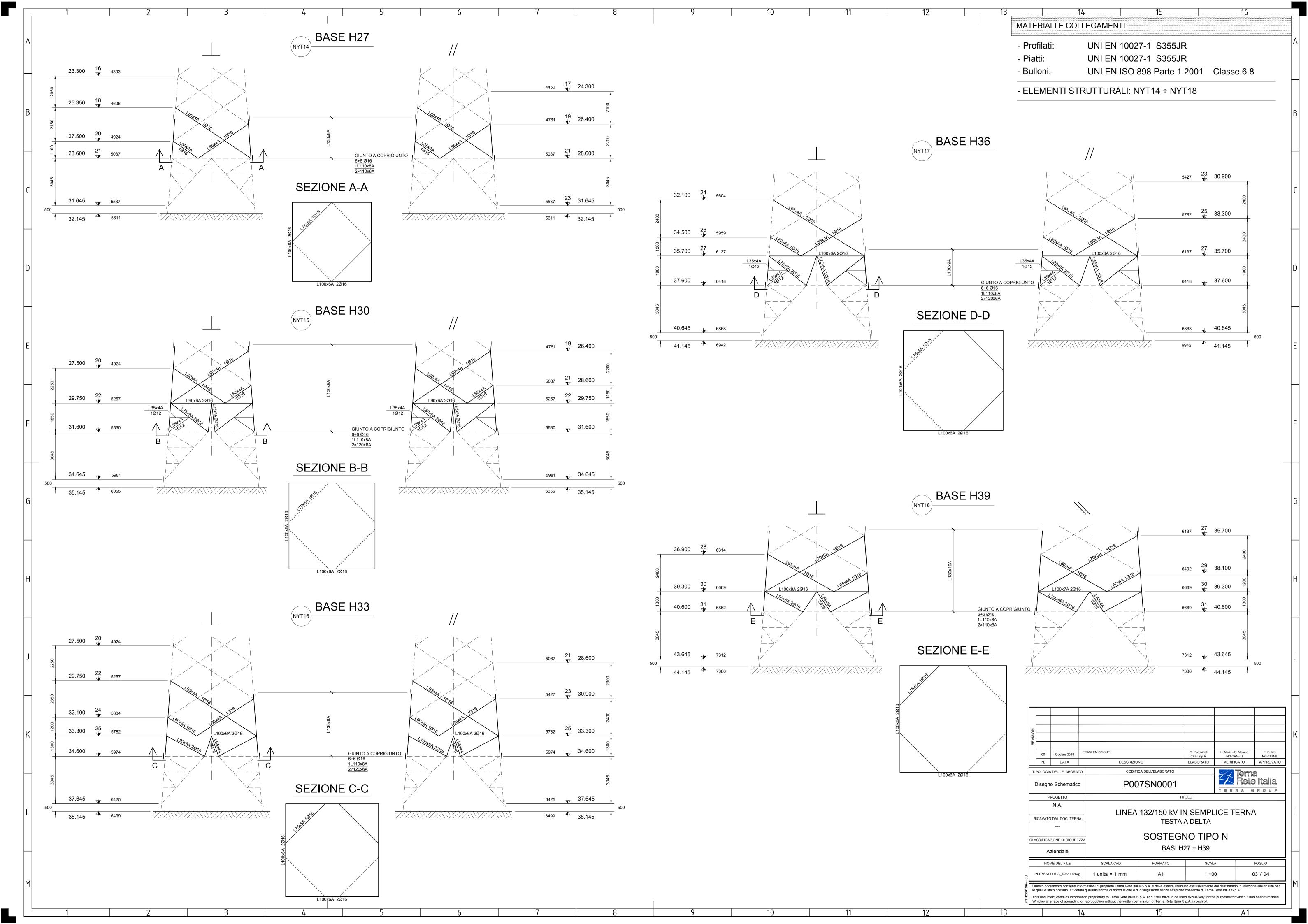

Elaborato		Verificato		Approvato		
	R. Costagliola ING-TAM-ILI	A. Piccinin ING-TAM-ILI	P. Berardi ING-TAM-ILI		E. Di Vito ING-TAM-ILI	

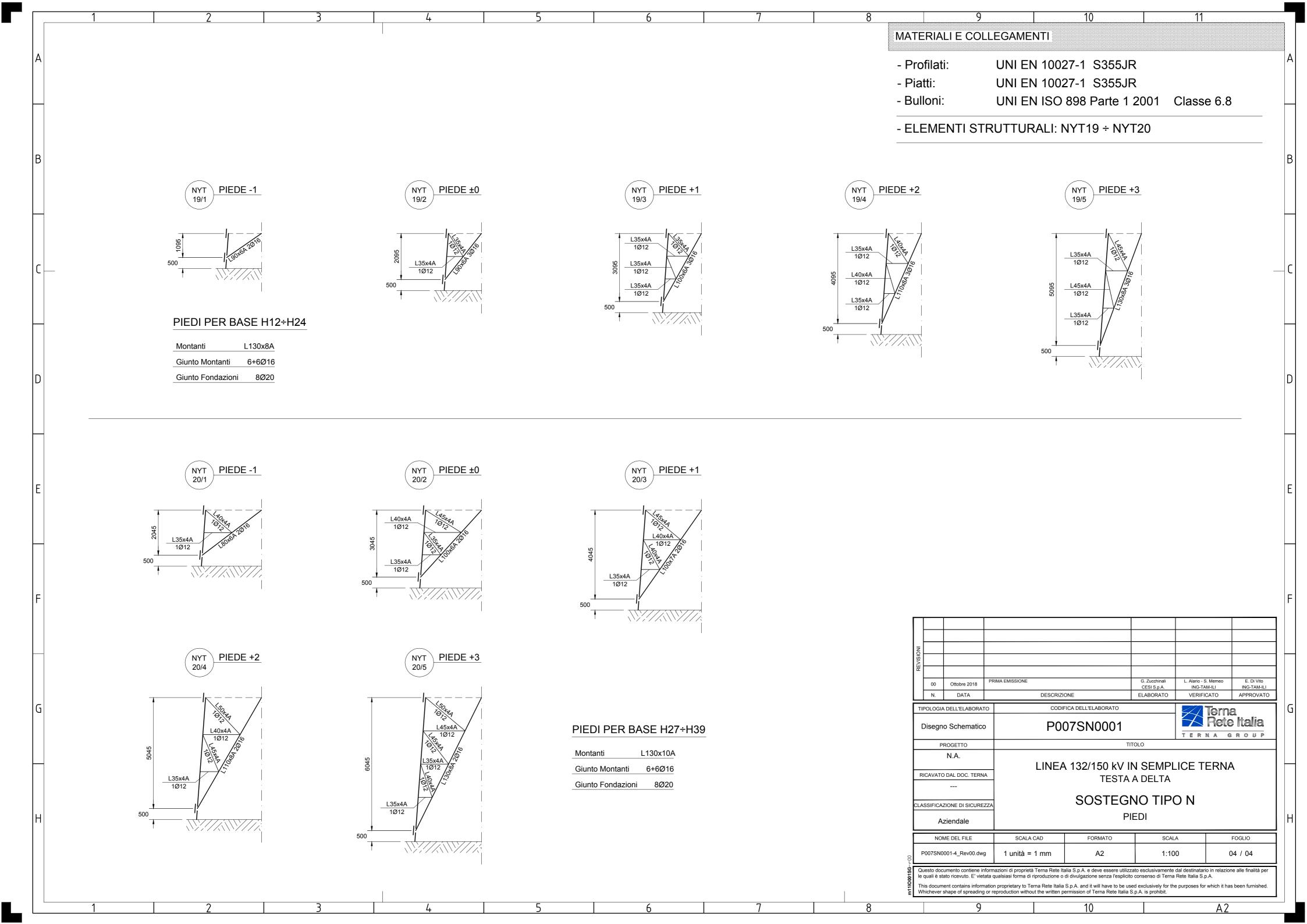
LINEE 132-150 E 220 kV

CON ATTACCO CORPO PALO FORO Ø 50 mm ARMAMENTO DI AMARRO IN SOSPENSIONE PER FUNE DI GUARDIA CON FIBRE OTTICHE Ø 17,9 mm


NOTE


- 1. Particolari precauzioni devono essere prese durante i lavori in quanto nei sostegni di sospensione non è prevista a verifica dei cimini per il tiro pieno unilaterale con coefficiente di sicurezza 2.
- 2. La quantità dei morsetti bifilari 2017 e delle staffe di fissaggio 600 per la discesa della fune di guardia alla scatola di giunzione devono essere specificate in funzione del tipo e dell'altezza del sostegno sul quale viene realizzata la discesa, in accordo con il documento LIN 000C3906.
- Il supporto per amarro bilaterale 515/1 viene montato sui cimini con passo 78 mm.
 Il supporto per amarro bilaterale 511/1 viene montato sui cimini con passo 100 mm.


DOCUMENTI DI RIFERIMENTO


Storia de	Storia delle revisioni				
Rev. 00 del 01/06/2012 II documento, redatto in prima emissione, aggiorna e sostituisce il documento ENEL DM279 ed. 1 d 1996.		Il documento, redatto in prima emissione, aggiorna e sostituisce il documento ENEL DM279 ed. 1 del Luglio 1996.			
Rev. 01	del 20/11/2017	Sostituzione della morsa di amarro a bulloni con la morsa di amarro preformata.			

Elaborato		Verificato		Approvato
R. Costagliola A. Piccinin ING-TAM-ILI		P. Berardi ING-TAM-ILI		E. Di Vito ING-TAM-ILI

Codifica LIN_0000M805 Rev. 00 Pag. **1** di 7

del 16/05/2012

SFERE DI SEGNALAZIONE PER LINEE ELETTRICHE AEREE A.T.

Storia de	elle revisioni						
Rev. 00	del 16/05/2012	Il documento, redatto in prima emissione, aggiorna e sostituisce il documento ENEL RQUT00M805 ed. 1 del 30/01/2002					

Elaborato		Verificato			Approvato
A. Guarneri SRI-SVT-LAE		A. Guarneri SRI-SVT-LAE	A. Posati SRI-SVT-LAE		A. Posati SRI-SVT-LAE

Specifica di componente

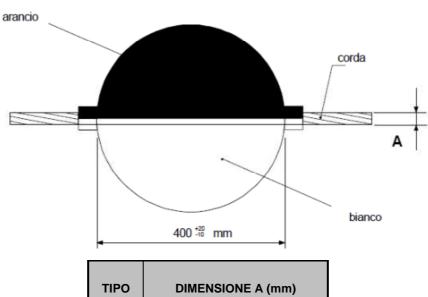
SFERE DI SEGNALAZIONE PER LINEE ELETTRICHE AEREE A.T.

Codifica LIN_0000M805 Pag. **2** di **7**

Rev. 00

SOMMARIO

1.	SFERE	DI	SEGNALAZIONE	DIAMETRO	40	cm	CON	
	DISPOS	ITIVO	DI MONTAGGIO	ROBOTIZZATO	0 0	/ANU	ALE A	
	MEZZO	ELIC	OTTERO					3
2.	SFERE	DI	SEGNALAZIONE	DIAMETRO	40	cm	CON	
	DISPOS	ITIVO	DI MONTAGGIO	MANUALE				4
3.	SFERE	DI	SEGNALAZIONE	DIAMETRO	60	cm	CON	
	DISPOS	ITIVO	DI MONTAGGIO	ROBOTIZZATO	0 0	/IANU	ALE A	
	MEZZO	ELIC	OTTERO					5
4.	SFERE	DI	SEGNALAZIONE	DIAMETRO	60	cm	CON	
	DISPOS	ITIVO	DI MONTAGGIO	MANUALE				6
5	CADATT	EDIG	TICHE COSTRIIT	TIVE				7


Specifica di componente

SFERE DI SEGNALAZIONE PER LINEE ELETTRICHE AEREE A.T.

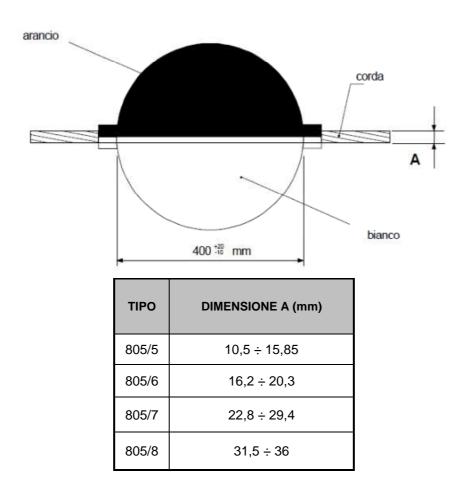
Codifica LIN_0000M805

Rev. 00 Pag. **3** di 7

1. SFERE DI SEGNALAZIONE DIAMETRO 40 cm CON DISPOSITIVO DI MONTAGGIO ROBOTIZZATO O MANUALE A MEZZO ELICOTTERO

TIPO	DIMENSIONE A (mm)
805/1	10,5 ÷ 15,85
805/2	16,2 ÷ 20,3
805/3	22,8 ÷ 29,4
805/4	31,5 ÷ 36

- La sfera deve essere costituita da due semigusci, uno di colore bianco, l'altro di colore arancio scuro per costituire assemblati sfere Arancio/Bianco. I colori di riferimento sono riportati in tabella 1 della prescrizione LIN_0000M830.
- 2) Massa complessiva della sfera ≤ 2,5 kg.
- 3) Forza di tenuta allo scorrimento:
 - Forza di tenuta al primo scorrimento F_i ≥ 70 daN;
 - Forza di tenuta all'ultimo scorrimento F_u ≥ 100 daN.
- 4) Il serraggio della sfera sulla corda deve essere assicurato mediante due morsetti posti in corrispondenza delle due sezioni di uscita della corda stessa, i morsetti devono avere una lunghezza di appoggio sulla corda non inferiore a 20 mm.
- 5) La sfera, con i relativi morsetti deve essere tale da permettere un suo agevole e rapido montaggio e smontaggio da parte di un operatore situato su un elicottero, o da parte di sistemi robotizzati portati o no da elicottero.


Specifica di componente

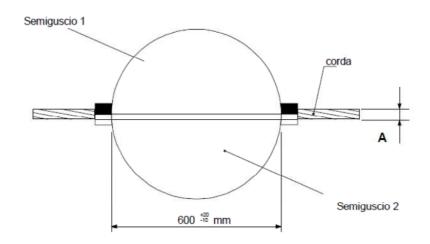
SFERE DI SEGNALAZIONE PER LINEE ELETTRICHE AEREE A.T.

LIN_0000M805

Rev. 00 Pag. 4 di 7

2. SFERE DI SEGNALAZIONE DIAMETRO 40 cm CON DISPOSITIVO DI MONTAGGIO MANUALE

- La sfera deve essere costituita da due semigusci, uno di colore bianco, l'altro di colore arancio scuro per costituire assemblati sfere Arancio/Bianco. I colori di riferimento sono riportati in tabella 1 della prescrizione LIN_0000M830.
- 2) Massa complessiva della sfera ≤ 2,5 kg.
- 3) Forza di tenuta allo scorrimento:
 - Forza di tenuta al primo scorrimento F_i ≥ 70 daN;
 - Forza di tenuta all'ultimo scorrimento F_u ≥ 100 daN.
- 4) Il serraggio della sfera sulla corda deve essere assicurato mediante due morsetti posti in corrispondenza delle due sezioni di uscita della corda stessa, i morsetti devono avere una lunghezza di appoggio sulla corda non inferiore a 20 mm.


Specifica di componente

SFERE DI SEGNALAZIONE PER LINEE ELETTRICHE AEREE A.T.

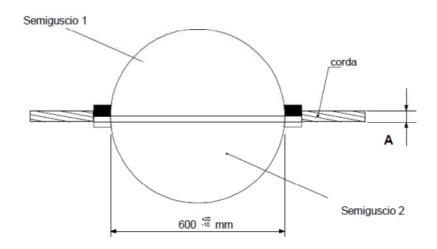
Codifica LIN_0000M805

Rev. 00 Pag. **5** di 7

3. SFERE DI SEGNALAZIONE DIAMETRO 60 cm CON DISPOSITIVO DI MONTAGGIO ROBOTIZZATO O MANUALE A MEZZO ELICOTTERO

TIPO	COLORE SEMIGUSCI 1 e 2	DIMENSIONE A (mm)
805/11	Arancio/Arancio	11,5 ÷ 15,85
805/12	Arancio/Arancio	16,2 ÷ 20,3
805/13	Arancio/Arancio	22,8 ÷ 29,4
805/14	Bianco/Bianco	11,5 ÷ 15,85
805/15	Bianco/Bianco	16,2 ÷ 20,3
805/16	Bianco/Bianco	22,8 ÷ 29,4

- La sfera deve essere costituita da due semigusci, di colore bianco o di colore arancio scuro, per costituire assemblati sfere Arancio/Arancio (Tipi 805/11÷13) o sfere totalmente Bianche (Tipi 805/14÷16). I colori di riferimento sono riportati in tabella 1 della prescrizione LIN_0000M830.
- 2) Massa complessiva della sfera ≤ 5,5 kg.
- 3) Forza di tenuta allo scorrimento:
 - Forza di tenuta al primo scorrimento F_i ≥ 70 daN;
 - Forza di tenuta all'ultimo scorrimento F_u ≥ 120 daN.
- 4) Il serraggio della sfera sulla corda deve essere assicurato mediante due morsetti posti in corrispondenza delle due sezioni di uscita della corda stessa, i morsetti devono avere una lunghezza di appoggio sulla corda non inferiore a 30 mm.
- 5) La sfera, con i relativi morsetti deve essere tale da permettere un suo agevole e rapido montaggio e smontaggio da parte di un operatore situato su un elicottero, o da parte di sistemi robotizzati portati o no da elicottero.


Specifica di componente

SFERE DI SEGNALAZIONE PER LINEE ELETTRICHE AEREE A.T.

Codifica
LIN_0000M805

Rev. 00 Pag. 6 di 7

4. SFERE DI SEGNALAZIONE DIAMETRO 60 cm CON DISPOSITIVO DI MONTAGGIO MANUALE

TIPO	COLORE SEMIGUSCI 1 e 2	DIMENSIONE A (mm)
805/21	Arancio/Arancio	11,5 ÷ 15,85
805/22	Arancio/Arancio	16,2 ÷ 20,3
805/23	Arancio/Arancio	22,8 ÷ 29,4
805/24	Bianco/Bianco	11,5 ÷ 15,85
805/25	Bianco/Bianco	16,2 ÷ 20,3
805/26	Bianco/Bianco	22,8 ÷ 29,4

- La sfera deve essere costituita da due semigusci, di colore bianco o di colore arancio scuro, per costituire assemblati sfere Arancio/Arancio (Tipi 805/21÷23) o sfere totalmente Bianche (Tipi 805/24÷26). I colori di riferimento sono riportati in tabella 1 della prescrizione LIN_0000M830.
- 2) Massa complessiva della sfera ≤ 5,5 kg.
- 3) Forza di tenuta allo scorrimento:
 - Forza di tenuta al primo scorrimento F_i ≥ 70 daN;
 - Forza di tenuta all'ultimo scorrimento F_u ≥ 120 daN.
- 4) Il serraggio della sfera sulla corda deve essere assicurato mediante due morsetti posti in corrispondenza delle due sezioni di uscita della corda stessa, i morsetti devono avere una lunghezza di appoggio sulla corda non inferiore a 30 mm.

Specifica di componente

SFERE DI SEGNALAZIONE PER LINEE ELETTRICHE AEREE A.T.

Codifica LIN_0000M805

Rev. 00 Pag. **7** di 7

5. CARATTERISTICHE COSTRUTTIVE

1. Materiale:

- a) gusci della sfera: in materiale plastico rinforzato o no con fibra di vetro;
- eventuali elementi elastici: in gomma naturale o sintetica, oppure in acciaio inox o zincato a caldo;
- materiali dei morsetti a contatto con la corda: in alluminio o sua lega, in gomma naturale o sintetica, in materiale plastico non rinforzato con elementi abrasivi;
- d) eventuali bulloni: in acciaio inox o lega di alluminio, rosette piane ed elastiche in acciaio inox.
- 2. Prescrizioni per la costruzione ed il collaudo: LIN_0000M830.
- 3. Criteri per l'installazione delle sfere di segnalazione per linee elettriche aeree: LIN_0000M806
- 4. Su ciascun esemplare dovranno essere marcati in rilievo o in incavo i seguenti dati:
 - sigla di identificazione della sfera scelta dal Costruttore;
 - sigla o marchio del Costruttore;
 - anno di costruzione;
 - coppia di serraggio degli eventuali bulloni seguita dalle lettere Nm o forza di serraggio seguita dalla lettera N per morsetti senza bullone.
- 5. L'unità di misura con la quale deve essere espressa la quantità del materiale è il numero di esemplari (n).

Codifica					
P007	7UN002				
Rev. 00	Pagina 1 di 8				
del 29/10/2018	•				

LINEA ELETTRICA AEREA A 150 kV SEMPLICE TERNA A DELTA – TIRO PIENO
CONDUTTORI Ø 31,5 mm – EDS 18% - ZONA "B"

UTILIZZAZIONE DEL SOSTEGNO "N"

CALCOLO DELLE AZIONI ESTERNE SUL SOSTEGNO

Storia delle revisioni					
Rev. 00	del 29/10/2018	Prima emissione			

Elaborato		Verificato			Approvato	╝
L. Alario ING-TAM-ILI	S. Memeo ING-TAM-ILI	P. Berardi ING-TAM-ILI			E. Di Vito ING-TAM-ILI	

P007UN002

Rev. 00
del 29/10/2018

Pagina 2 di 8

CALCOLO ESEGUITO IN CONFORMITA' AL D.M. DEL 21/03/1988 DI CUI ALLA LEGGE N. 339 DEL 28/06/1986

PER IL CALCOLO DI VERIFICA DEL SOSTEGNO VEDERE ELABORATO: **CESI prot. B8021158** – **Rev.0 – del 29/10/2018**

Codifica P007UN002 Rev. 00 Pagina 3 di 8 del 29/10/2018

1) CARATTERISTICHE GENERALI

Conduttore	All. Acc. Ø 31,5 mm (LC2)
Corda di guardia	Acciaio Ø 11,5 mm (LC23) - Acciaio rivestito di alluminio Ø 11,5 mm (LC51) Corda di guardia con fibre ottiche Ø 17,9 mm (LC50) (*)
Isolatori	Vetro temprato a cappa e perno in catene di 9 elementi nelle sospensioni semplici e di 9 elementi nelle sospensioni doppie e amarri.
Tipo fondazione	In calcestruzzo a piedini separati
Tipo sfera di segnalazione aerea	Diametro 60 cm; peso 5,5 Kg; passo di installazione ≤ 30 m.
Messa a terra	Secondo le norme citate
Larghezza linea	Larghezza 12 m tra i conduttori esterni. Conduttori posti su piano orizzontale.

2) CONDUTTORI E CORDA DI GUARDIA

2.1 CARATTERISTICHE PRINCIPALI			CONDUTTORE	CORDA DI GUARDIA		
			LC2	LC 23	LC 51	LC 50
	MA	TERIALE	All. Acc.	Acciaio	Acc.rivestito di All.	AI + Lega AI + Acciaio
DIAMETRO CIRCOSCRITTO (mm)			31,5	11,5	11,5	17,9
	ALLUMINIO	(mm²)	519,50	0	0	118,90 (Al + Lega Al)
SEZIONI TEORICHE	ACCIAIO	(mm²)	65,80	78,94	80,65	57,70
	TOTALE	(mm²)	583,30	78,94	80,65	176,60
MASSA UNITARIA (Kg/m)			1,953	0,621	0,537	0,820
MODULO DI ELASTICITA' (N/mm²)		68000	175000	155000	88000	
COEFFICIENTE DI DILATAZIONE (1/°C)			19,4 X 10 ⁻⁶	11,5 X 10 ⁻⁶	13 X 10 ⁻⁶	17 X 10 ⁻⁶
CARICO DI ROTTURA (daN)			16852	12231	9000	10600

2.2 CONDIZIONE BASE E CONDIZIONE DERIVATA

- CONDIZIONE BASE

EDS: (Every Day Stress) 15°C, conduttore scarico

In detta condizione il tiro orizzontale è stato assunto costante al variare della campata equivalente della tratta (ovvero della campata reale per la corda di guardia). I valori di tiro per conduttore e corda di guardia sono:

	CONDUTTORE	CORDA DI GUARDIA		
	LC2	LC 23	LC 51	LC 50
TIRO ORIZZONTALE T _O (daN)	3034	1113	1008	1537

- CONDIZIONE DERIVATA

MSA: -5°C, vento alla velocità di 130 km/h

-20°C, vento alla velocità di 65 km/h, manicotto di ghiaccio di 12 mm MSB:

Corde di guardia di altra tipologia potranno essere utilizzate purchè vengano rispettati i valori massimi delle azioni trasmesse dalla corda indicata.

Codifica P0	07UN002
Rev. 00	Daning 4 di 0
401 20/10/2019	Pagina 4 di 8

In detta condizione i tiri vengono ottenuti risolvendo la equazione del cambiamento di stato:

$$\alpha \left(\Theta_{d} - \Theta_{b}\right) + \frac{1}{SE} \left(T_{d} - T_{b}\right) = \frac{p'_{d}^{2}L^{2}}{24 T_{d}^{2}} - \frac{p'_{b}^{2}L^{2}}{24 T_{b}^{2}}$$
(1)

Ove:

Θ_d = Temperatura della condizione derivata

 Θ_b = Temperatura della condizione base

S = Sezione totale del conduttore

E = Modulo di elasticità

T_d = Tiro orizzontale della condizione derivata

T_b = Tiro orizzontale della condizione base

P'd = Carico risultante per metro di conduttore nella condizione derivata

P'b = Carico risultante per metro di conduttore nella condizione base

L = Campata equivalente (*) della tratta nel caso di conduttore ovvero campata reale nel caso di corda di guardia

I valori di spinta del vento per metro di conduttore, di peso per metro di conduttore e di carico risultante per metro di conduttore sono riportati nella seguente tabella:

		CONDUTTORE	С	ORDA DI GUARDIA (**)		
		LC2	LC 23	LC 51	LC 50	
	V (daN/m)	0	0	0	0	
CONDIZIONE EDS	P (daN/m)	1,9159	0,6090	0,5270	0,8044	
	P' (daN/m)	1,9159	0,6090	0,5270	0,8044	
	V (daN/m)	2,2249	0,8122 (1,0896)	0,8122 (1,0896)	1,2643 (1,5417)	
CONDIZIONE MSA	P (daN/m)	1,9159	0,6090 (0,7889)	0,5270 (0,7069)	0,8044 (0,9842)	
	P' (daN/m)	2,9361	1,0152 (1,3452)	0,9682 (1,2988)	1,4985 (1,8291)	
	V (daN/m)	0,9800	0,6268 (0,6962)	0,6268 (0,6962)	0,7399 (0,8092)	
CONDIZIONE MSB	P (daN/m)	3,3959	1,4086 (1,5884)	1,3266 (1,5064)	1,8217 (2,0015)	
	P' (daN/m)	3,5345	1,5418 (1,7343)	1,4672 (1,6595)	1,9663 (2,1589)	

(**) I valori tra parentesi si riferiscono alle condizioni derivate con sfere di segnalazione per il volo a bassa quota con diametro di 60 cm installate sull'intera campata.

V = spinta del vento per metro di conduttore (daN/m)

P = peso per metro di conduttore (daN/m)

$$P' = \sqrt{v^2 + p^2}$$
 = carico risultante per metro di conduttore (daN/m)

(*) L =
$$\sqrt{\frac{\sum Li^3}{\sum Li}}$$
 ove le Li sono le campate reali comprese fra due successiviama ri

Codifica P00	7UN002
Rev. 00 del 29/10/2018	Pagina 5 di 8

3) UTILIZZAZIONE MECCANICA DEL SOSTEGNO

3.1 FORMULE PER IL CALCOLO DELLE AZIONI ESTERNE

Il calcolo del sostegno è stato eseguito tenendo conto delle azioni esterne dei conduttori e delle corde di guardia nelle due ipotesi MSA e MSB.

Le formule per il calcolo di tali azioni, sia per conduttori che per corde di guardia (supposti integri), sono le seguenti:

Conduttori $\begin{cases} \text{Azione trasversale} & T = v \text{ Cm} + 2 \text{ sen } \delta/2 \text{ T}_0 + t^* \\ \text{Azione verticale} & P = p \text{ Cm} + K \text{ T}_0 + p^* \end{cases}$ (3)

Ove:

v = spinta del vento per metro di conduttore

p = peso per metro di conduttore i valori di v e di p sono riportati in 2.2

t* = spinta del vento su isolatori e morsetteria

p* = peso di isolatori e morsetteria
 T_o = tiro orizzontale nel conduttore

I valori di t*e p* e To sono riportati nella seguente tabella:

	CONDUTTORE			CORDA DI GUARDIA (**)					
	LC2	ISOLATORI E MORSETTERIA		1677 1678 1678 16780		ISOLATORI E MORSETTERIA			
	To (daN)	t* (daN)	p* (daN)	To (daN)	To (daN)	To (daN)	t* (daN)	p* (daN)	
MSA	4650	100	150	1835 (2393)	1821 (2397)	2807 (3380)	0	0	
MSB	5670	25	150	2735 (3050)	2702 (3025)	3640 (3970)	0	0	

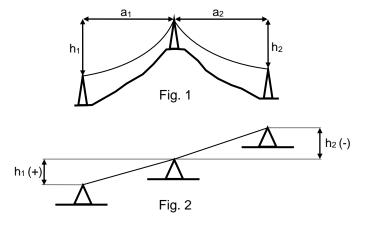
(**) I valori tra parentesi si riferiscono alle condizioni derivate con sfere di segnalazione per il volo a bassa quota con diametro di 60 cm installate sull'intera campata.

I suddetti tiri sono stati ottenuti mediante la equazione del cambiamento di stato e rappresentano i massimi valori che il tiro assume nella suddetta ipotesi:

per i conduttori in un intervallo di campate equivalenti pari a 200 \div 800 m

per le corde di guardia in un intervallo di campate reali pari a 100 ÷ 1000 m

Dal confronto dei tiri orizzontali, delle spinte vento e dei pesi delle corde di guardia nelle diverse ipotesi si evince che la corda di guardia LC50 è quella che induce sul sostegno in esame le maggiori azioni esterne.

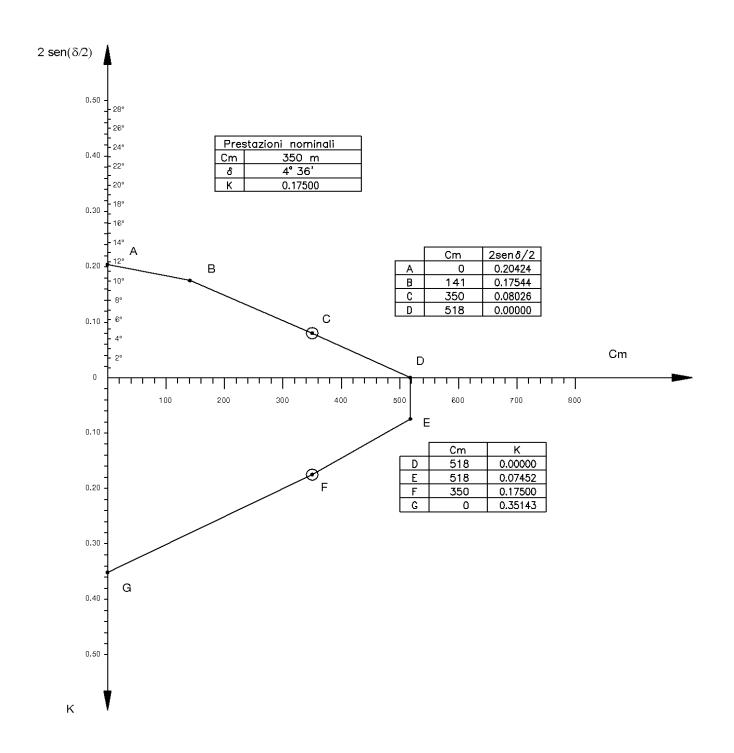

Pertanto il diagramma di utilizzazione (punto 3.2) e le azioni esterne (punto 3.3) sono state determinati con la corda di guardia LC50. L'utilizzo di altre corde di guardia diverse da LC50 obbligano il Progettista a realizzare le necessarie verifiche strutturali e a descriverne il diagramma di impiego (fig.3).

caratteristiche geometriche del picchetto:

 $\begin{array}{ll} \mathsf{Cm} & = \mathsf{campata} \; \mathsf{media} \\ \delta & = \mathsf{angolo} \; \mathsf{di} \; \mathsf{deviazione} \\ \mathsf{K} & = \mathsf{costante} \; \mathsf{altimetrica} \; (^*) \end{array}$

$$k = \frac{h_1}{a_1} + \frac{h_2}{a_2}$$
 (vedi fig.1)

(*) L'espressione di K è la seguente: ove le campate "a" hanno sempre segno positivo ed i dislivelli "h" segno positivo o negativo secondo lo schema di fig. 2



P007UN002

Rev. 00
del 29/10/2018

Pagina 6 di 8

3.2 DIAGRAMMA DI UTILIZZAZIONE DEL SOSTEGNO

P007UN002

Rev. 00
Pagina 7 di 8

del 29/10/2018

IL DIAGRAMMA DELIMITA

- a) Nel piano (Cm, δ) un insieme di punti ai quali corrisponde un'azione trasversale complessiva non superiore a quella di calcolo del sostegno (campo di utilizzazione trasversale)
- b) Nel piano (Cm, K) un insieme di punti ai quali corrisponde un'azione verticale complessiva non superiore a quella di calcolo del sostegno (campo di utilizzazione verticale)

Pertanto, affinchè il sostegno possa essere impiegato in un picchetto di caratteristiche geometriche (Cm_i, $\delta_i \Box \Box$, K_i) è necessario che i punti (Cm_i, $\delta_i \Box$) e (Cm_i, K_i) siano compresi rispettivamente nei campi di utilizzazione trasversale e verticale.

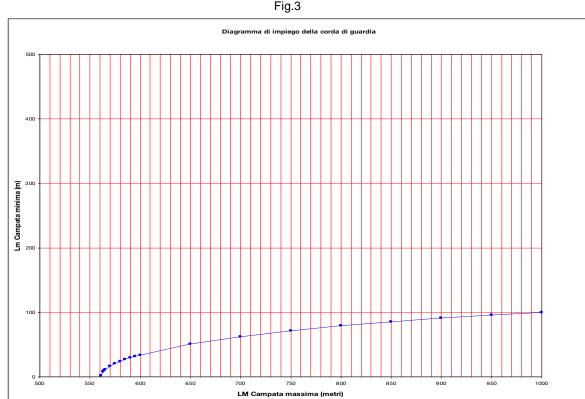
3.3 AZIONI PER IL CALCOLO DEL SOSTEGNO

Sono state determinate le azioni esterne per il calcolo del sostegno in condizioni MSA e MSB, sia nell'ipotesi di conduttori e corda di guardia integri (ipotesi normale), sia nell'ipotesi di rottura di un conduttore o della corda di guardia secondo quanto prescritto dalle norme (ipotesi eccezionale).

IPOTESI NORMALE

-Azioni trasversali e verticali:

Sono stati considerati i massimi valori che si verificano nelle più gravose condizioni d'impiego del sostegno (vedi diagramma di utilizzazione)


-Azioni longitudinali:

per la corda di guardia (amarrata ad ogni sostegno) è stato considerato uno squilibrio di tiro per tenere conto della diversa lunghezza delle campate adiacenti al sostegno.

Per ogni picchetto si dovrà perciò verificare mediante (1) che la effettiva differenza di tiro in condizioni MSA e MSB, per la corda di guardia che si intende impiegare sia minore o eguale dei valori di squilibrio considerati per il calcolo del sostegno.

Per un' indagine rapida è stato costruito il diagramma di fig. 3, che tiene conto dei massimi squilibri, relativi alla corda di guardia, calcolato con l'impiego delle sfere di segnalazione sia sulla campata minima che sulla campata massima.

Riportando in ascisse la campata maggiore (L_M) tra le due adiacenti al sostegno e in ordinata la minore (L_m), se il punto di coordinata (L_M, L_m) sta al disopra del diagramma la verifica è positiva poiché, lo squilibrio di tiro è minore di quello di calcolo.

P007UN002

Rev. 00
del 29/10/2018

Pagina 8 di 8

IPOTESI ECCEZIONALE:

Azioni trasversali e verticali:

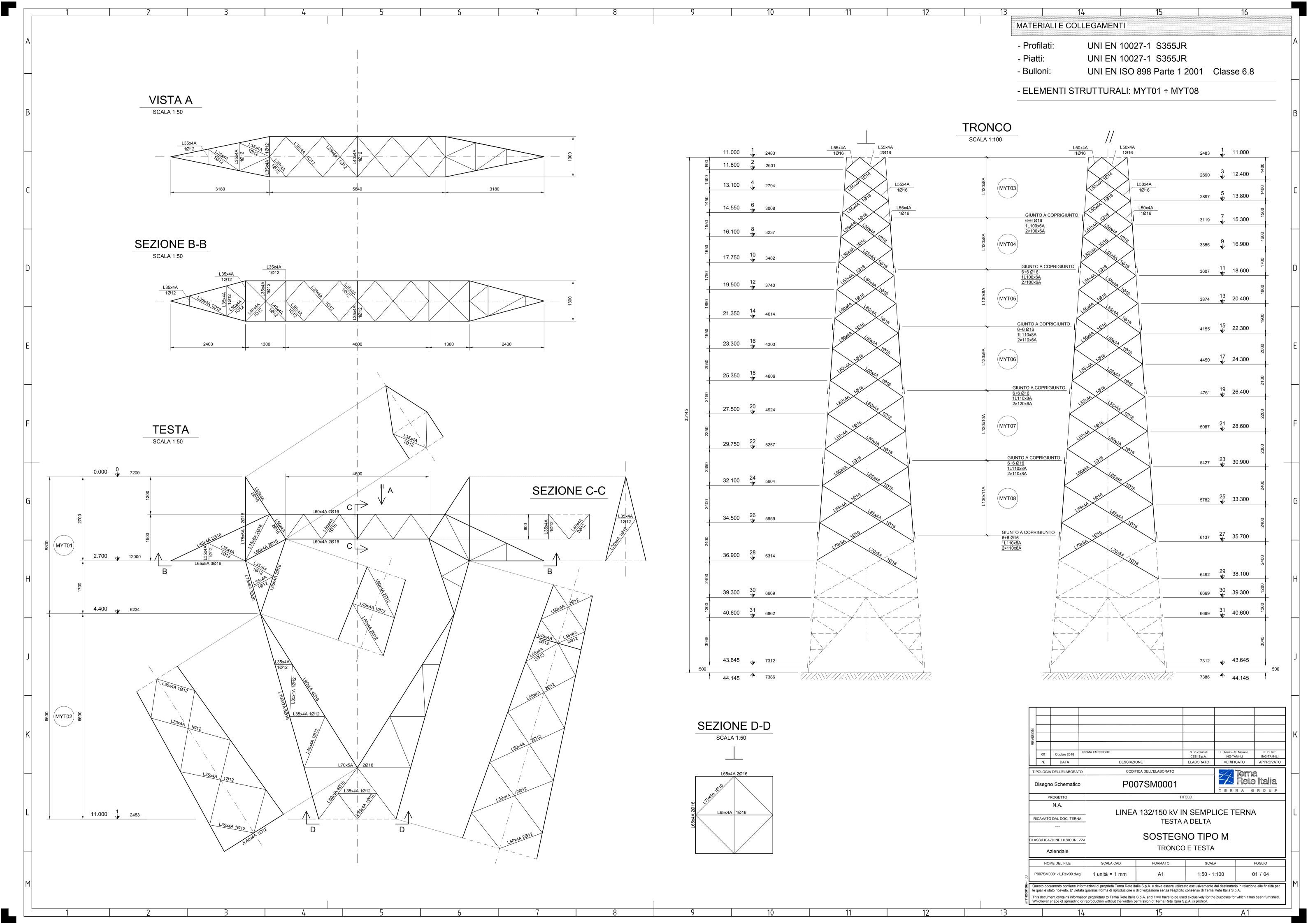
per i conduttori i valori sono stati ottenuti dimezzando le corrispondenti azioni in ipotesi normale (tali valori non risultano esattamente la metà in quanto nelle due ipotesi sono state mantenute costanti la spinta del vento su isolatori e morsetteria (t*) ed il loro peso (p*)).

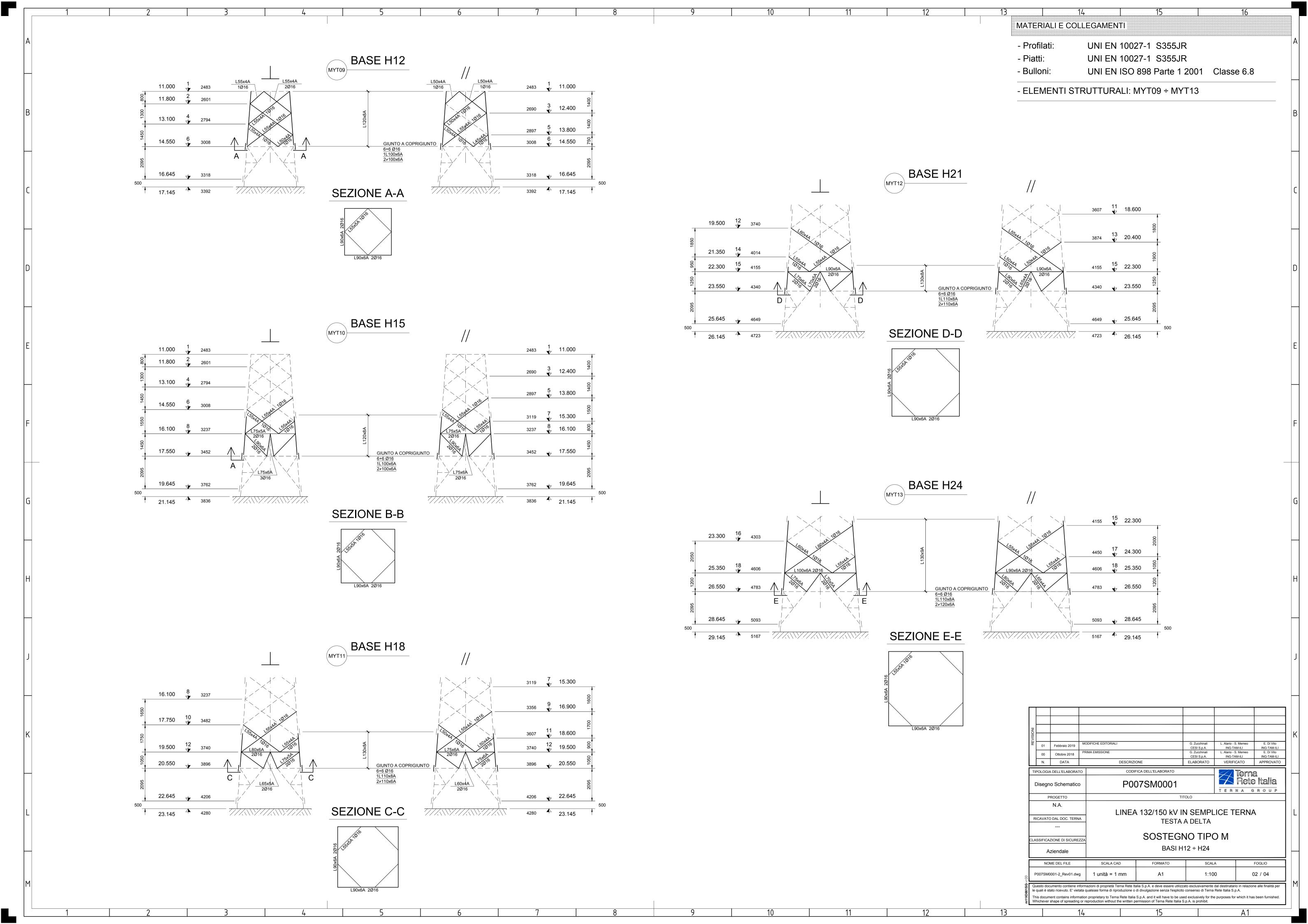
Per la corda di guardia i valori sono stati ottenuti invece dimezzando le corrispondenti azioni in ipotesi normale.

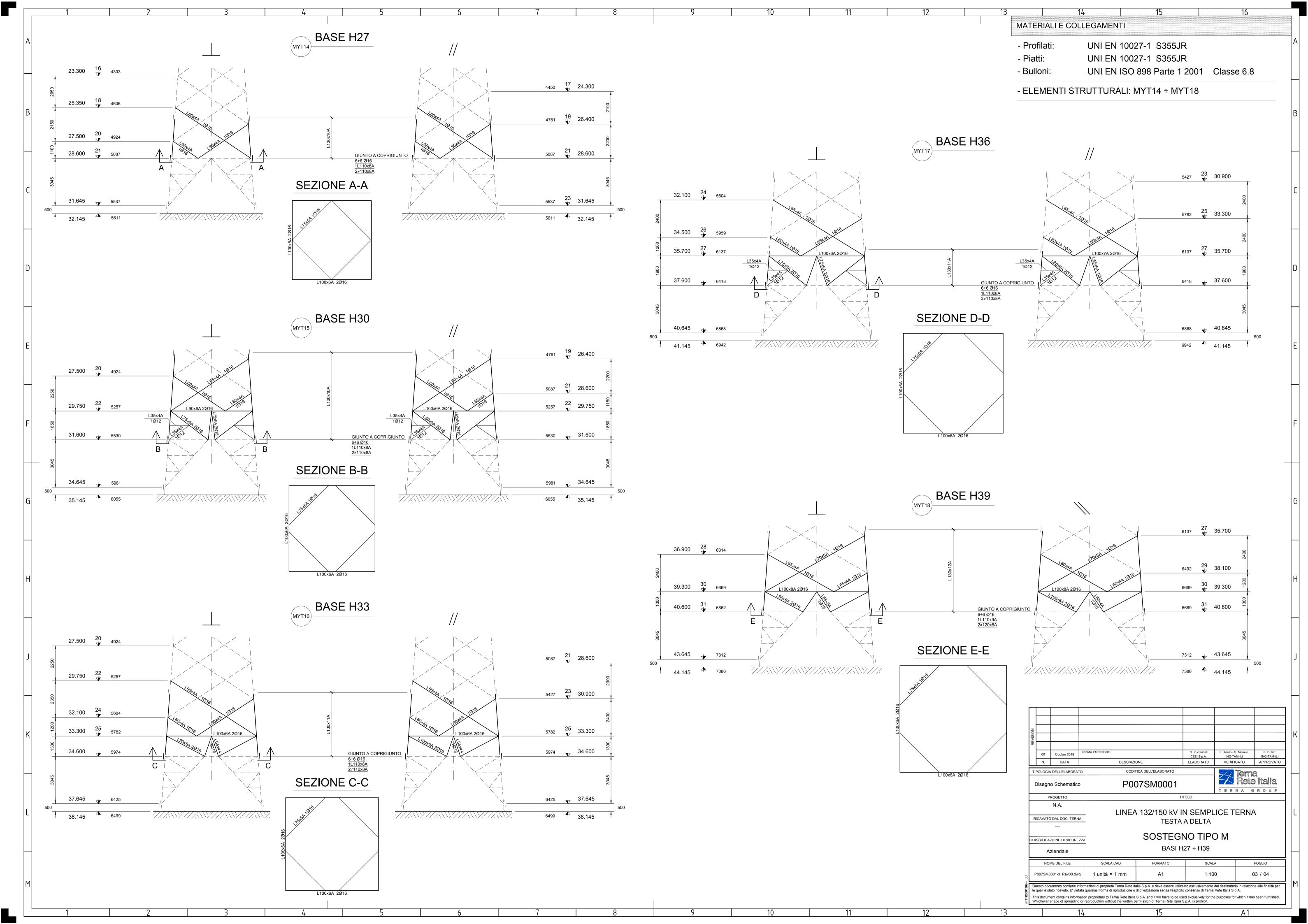
Azioni longitudinali:

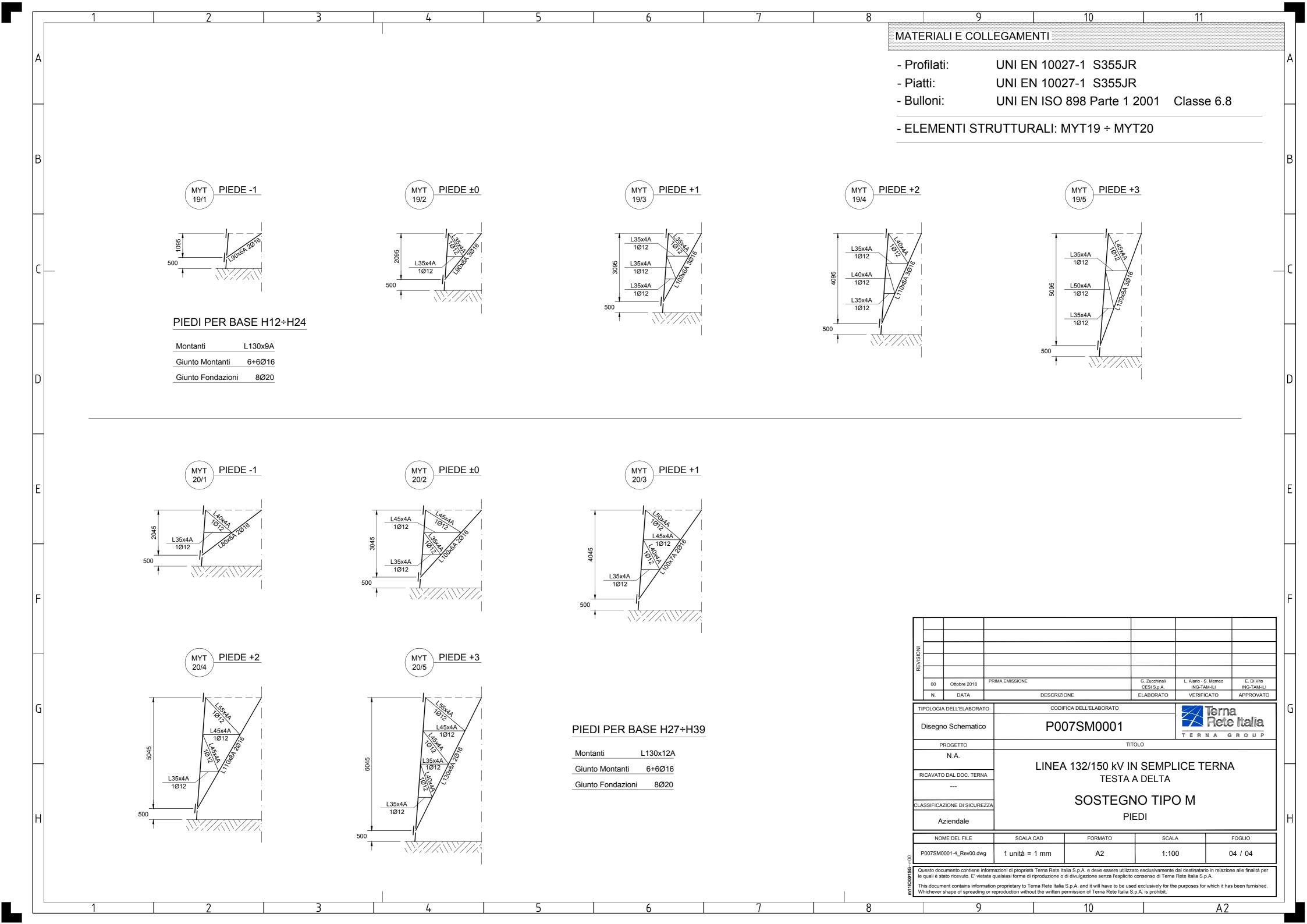
sono state assunte pari al tiro To

VALORI DELLE AZIONI ESTERNE PER IL CALCOLO DEL SOSTEGNO


Sono riportati nella seguente tabella:


		C	ONDUTTOR	E	CORDA DI GUARDIA (*)			
STATO DEI CONDUTTORI	IPOTESI		LC2		LC50 (***)			
		T(daN)	P(daN)	L(daN)	T(daN)	P(daN)	L(daN)	
	NODMAL E	1252	1785	0	(811)	(1188)	(1100)	
MCA	NORMALE	1252	0	0	(811)	(0)	(1100)	
MSA	ECCEZIONALE (**)	676	968	4650	(406)	(594)	(3380)	
		676	0	4650	(406)	(0)	(3380)	
	NODMAL E	1184	2331	0	(811)	(1396)	(1300)	
MSB	NORMALE	1184	0	0	(811)	(0)	(1300)	
	ECCEZIONALE (**)	605	1241	5670	(406)	(698)	(3970)	
		605	0	5670	(406)	(0)	(3970)	


- (*) I valori tra parentesi si riferiscono alle condizioni derivate con sfere di segnalazione per il volo a bassa quota con diametro di 60 cm installate sull'intera campata.
- (**) La norma CEI 11.4 al punto 2.04.05 prevede per la serie in oggetto formata da n° 3 conduttori di energia la rottura di uno dei conduttori o di una delle ventuali corde di guardia. I valori indicati si riferiscono, ovviamente, al solo conduttore (o corda di guardia) rotto.


Mediante le relazioni (2) e (3) si può verificare che per tutte le terne di prestazioni geometriche (Cm, δ , K) tali che il punto (Cm, δ) sia compreso nel "campo di utilizzazione trasversale" e il punto (Cm, \square K) sia compreso nel "campo di utilizzazione verticale", le azioni trasversali e verticali (sia per i conduttori che per corde di guardia) nelle condizioni MSA e MSB risultino inferiori od eguali a quelle considerate per il calcolo del sostegno e riportate nella tabella precedente.

(***) Nel caso di utilizzo di corde di guardia di altra tipologia dovrà essere verificato il non superamento dei valori T , P , L, indicati.

Codifica P007	7UM002
Rev. 00 del 29/10/2018	Pagina 1 di 8

LINEA ELETTRICA AEREA A 132-150 kV SEMPLICE TERNA A DELTA – TIRO PIENO CONDUTTORI \varnothing 31,5 mm – EDS 18% - ZONA "B"

UTILIZZAZIONE DEL SOSTEGNO "M"

CALCOLO DELLE AZIONI ESTERNE SUL SOSTEGNO

Storia delle revisioni					
Rev. 00	del 29/10/2018	Prima emissione			

Elaborato		Verificato	Approvato				
	L. Alario ING-TAM-ILI	S. Memeo ING-TAM-ILI	P. Berardi ING-TAM-ILI			E. Di Vito ING-TAM-ILI	

P007UM002

Rev. 00
del 29/10/2018

Rev. 00 Pagina 2 di 8

CALCOLO ESEGUITO IN CONFORMITA' AL D.M. DEL 21/03/1988 DI CUI ALLA LEGGE N. 339 DEL 28/06/1986

PER IL CALCOLO DI VERIFICA DEL SOSTEGNO VEDERE ELABORATO: **CESI prot. B8021798** – **Rev.0 – del 29/10/2018**

Codifica P007UM002 Rev. 00 Pagina 3 di 8 del 29/10/2018

1) CARATTERISTICHE GENERALI

Conduttore	All. Acc. Ø 31,5 mm (LC2)
Corda di guardia	Acciaio Ø 11,5 mm (LC23) - Acciaio rivestito di alluminio Ø 11,5 mm (LC51) Corda di guardia con fibre ottiche Ø 17,9 mm (LC50) (*)
Isolatori	Vetro temprato a cappa e perno in catene di 9 elementi nelle sospensioni semplici e di 9 elementi nelle sospensioni doppie e amarri.
Tipo fondazione	In calcestruzzo a piedini separati
Tipo sfera di segnalazione aerea	Diametro 60 cm; peso 5,5 Kg; passo di installazione ≤ 30 m.
Messa a terra	Secondo le norme citate
Larghezza linea	Larghezza 12 m tra i conduttori esterni. Conduttori posti su piano orizzontale.

2) CONDUTTORI E CORDA DI GUARDIA

0.4.04047750			CONDUTTORE		CORDA DI GUAR	DIA
2.1 CARATTERISTICHE PRINCIPALI			LC2	LC 23	LC 51	LC 50
MATERIALE			All. Acc.	Acciaio	Acc.rivestito di All.	AI + Lega AI + Acciaio
DIAMETRO CIRCOSCRITTO (mm)			31,5	11,5	11,5	17,9
	ALLUMINIO	(mm²)	519,50	0	0	118,90 (Al + Lega Al)
SEZIONI TEORICHE	ACCIAIO	(mm²)	65,80	78,94	80,65	57,70
	TOTALE	(mm²)	583,30	78,94	80,65	176,60
MASS	MASSA UNITARIA (Kg/m)		1,953	0,621	0,537	0,820
MODULO DI ELASTICITA' (N/mm²)		68000	175000	155000	88000	
COEFFICIENTE DI DILATAZIONE (1/°C)		19,4 X 10 ⁻⁶	11,5 X 10 ⁻⁶	13 X 10 ⁻⁶	17 X 10 ⁻⁶	
CARICO DI ROTTURA (daN)		16852	12231	9000	10600	

2.2 CONDIZIONE BASE E CONDIZIONE DERIVATA

- CONDIZIONE BASE

EDS: (Every Day Stress) 15°C, conduttore scarico

In detta condizione il tiro orizzontale è stato assunto costante al variare della campata equivalente della tratta (ovvero della campata reale per la corda di guardia). I valori di tiro per conduttore e corda di guardia sono:

	CONDUTTORE CORDA DI GUARDIA			
	LC2	LC 23	LC 51	LC 50
TIRO ORIZZONTALE T _O (daN)	3034	1113	1008	1537

- CONDIZIONE DERIVATA

MSA: -5°C, vento alla velocità di 130 km/h

-20°C, vento alla velocità di 65 km/h, manicotto di ghiaccio di 12 mm MSB:

Corde di guardia di altra tipologia potranno essere utilizzate purchè vengano rispettati i valori massimi delle azioni trasmesse dalla corda indicata.

P007UM002

Rev. 00
del 29/10/2018

Pagina 4 di 8

In detta condizione i tiri vengono ottenuti risolvendo la equazione del cambiamento di stato:

$$\alpha \left(\Theta_{d} - \Theta_{b}\right) + \frac{1}{SE} \left(T_{d} - T_{b}\right) = \frac{p'_{d}^{2}L^{2}}{24 T_{d}^{2}} - \frac{p'_{b}^{2}L^{2}}{24 T_{b}^{2}}$$
(1)

Ove:

Θ_d = Temperatura della condizione derivata

 Θ_b = Temperatura della condizione base

S = Sezione totale del conduttore

E = Modulo di elasticità

T_d = Tiro orizzontale della condizione derivata

T_b = Tiro orizzontale della condizione base

P'd = Carico risultante per metro di conduttore nella condizione derivata

P'_b = Carico risultante per metro di conduttore nella condizione base

 Exampata equivalente (*) della tratta nel caso di conduttore ovvero campata reale nel caso di corda di guardia

I valori di spinta del vento per metro di conduttore, di peso per metro di conduttore e di carico risultante per metro di conduttore sono riportati nella seguente tabella:

		CONDUTTORE	CORDA DI GUARDIA (**)			
		LC2	LC 23	LC 51	LC 50	
	V (daN/m)	0	0	0	0	
CONDIZIONE EDS	P (daN/m)	1,9159	0,6090	0,5270	0,8044	
	P' (daN/m)	1,9159	0,6090	0,5270	0,8044	
	V (daN/m)	2,2249	0,8122 (1,0896)	0,8122 (1,0896)	1,2643 (1,5417)	
CONDIZIONE MSA	P (daN/m)	1,9159	0,6090 (0,7889)	0,5270 (0,7069)	0,8044 (0,9842)	
	P' (daN/m)	2,9361	1,0152 (1,3452)	0,9682 (1,2988)	1,4985 (1,8291)	
	V (daN/m)	0,9800	0,6268 (0,6962)	0,6268 (0,6962)	0,7399 (0,8092)	
CONDIZIONE MSB	P (daN/m)	3,3959	1,4086 (1,5884)	1,3266 (1,5064)	1,8217 (2,0015)	
	P' (daN/m)	3,5345	1,5418 (1,7343)	1,4672 (1,6595)	1,9663 (2,1589)	

(**) I valori tra parentesi si riferiscono alle condizioni derivate con sfere di segnalazione per il volo a bassa quota con diametro di 60 cm installate sull'intera campata.

V = spinta del vento per metro di conduttore (daN/m)

P = peso per metro di conduttore (daN/m)

$$P' = \sqrt{v^2 + p^2}$$
 = carico risultante per metro di conduttore (daN/m)

(*) L =
$$\sqrt{\frac{\sum Li^3}{\sum Li}}$$
 ove le Li sono le campate reali comprese fra due successiviama ri

P007UM002

Rev. 00
del 29/10/2018

Pagina 5 di 8

3) UTILIZZAZIONE MECCANICA DEL SOSTEGNO

3.1 FORMULE PER IL CALCOLO DELLE AZIONI ESTERNE

Il calcolo del sostegno è stato eseguito tenendo conto delle azioni esterne dei conduttori e delle corde di guardia nelle due ipotesi MSA e MSB.

Le formule per il calcolo di tali azioni, sia per conduttori che per corde di guardia (supposti integri), sono le seguenti:

Conduttori $\begin{cases}
Azione trasversale & T = v Cm + 2 sen \delta/2 T_0 + t^* \\
Azione verticale & P = p Cm + K T_0 + p^*
\end{cases}$ (2)

Ove:

v = spinta del vento per metro di conduttore

p = peso per metro di conduttore i valori di v e di p sono riportati in 2.2

t* = spinta del vento su isolatori e morsetteria

 p^* = peso di isolatori e morsetteria T_0 = tiro orizzontale nel conduttore

I valori di t*e p* e To sono riportati nella seguente tabella:

	CONDUTTORE			CORDA DI GUARDIA (**)					
	LC2	ISOLATORI E MORSETTERIA		LC 23	LC 51	LC 50	ISOLATORI E MORSETTERIA		
	To (daN)	t* (daN)	p* (daN)	To (daN)	To (daN)	To (daN)	t* (daN)	p* (daN)	
MSA	4650	100	150	1835 (2393)	1821 (2397)	2807 (3380)	0	0	
MSB	5670	25	150	2735 (3050)	2702 (3025)	3640 (3970)	0	0	

(**) I valori tra parentesi si riferiscono alle condizioni derivate con sfere di segnalazione per il volo a bassa quota con diametro di 60 cm installate sull'intera campata.

I suddetti tiri sono stati ottenuti mediante la equazione del cambiamento di stato e rappresentano i massimi valori che il tiro assume nella suddetta ipotesi:

per i conduttori in un intervallo di campate equivalenti pari a 200 \div 800 m

per le corde di guardia in un intervallo di campate reali pari a 100 ÷ 1000 m

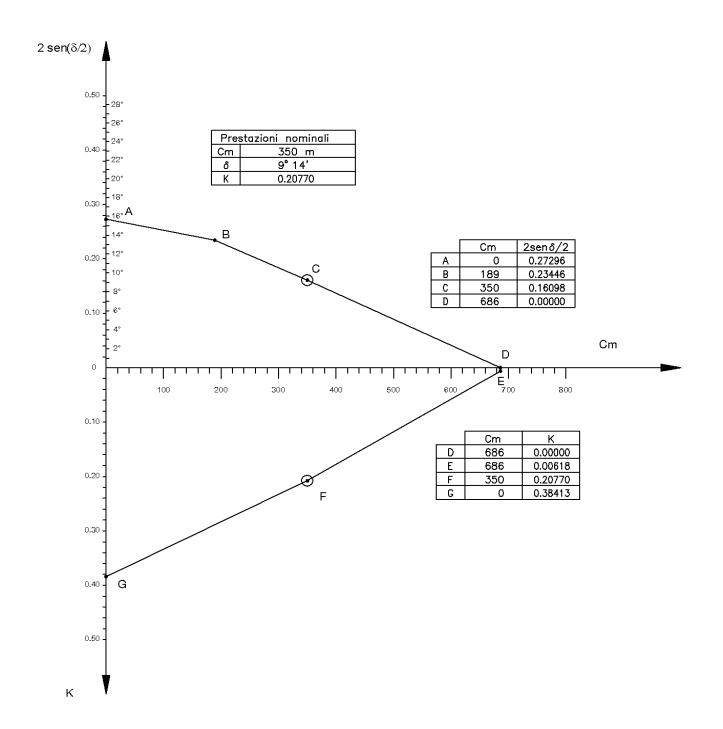
Dal confronto dei tiri orizzontali, delle spinte vento e dei pesi delle corde di guardia nelle diverse ipotesi si evince che la corda di guardia LC50 è quella che induce sul sostegno in esame le maggiori azioni esterne.

Pertanto il diagramma di utilizzazione (punto 3.2) e le azioni esterne (punto 3.3) sono state determinati con la corda di guardia LC50. L'utilizzo di altre corde di guardia diverse da LC50 obbligano il Progettista a realizzare le necessarie verifiche strutturali e a descriverne il diagramma di impiego (fig.3).

caratteristiche geometriche del picchetto:

$$k = \frac{h_1}{a_1} + \frac{h_2}{a_2}$$
 (vedi fig.1)

(*) L'espressione di K è la seguente: ove le campate "a" hanno sempre segno positivo ed i dislivelli "h" segno positivo o negativo secondo lo schema di fig. 2



P007UM002

Rev. 00
del 29/10/2018

Pagina 6 di 8

3.2 DIAGRAMMA DI UTILIZZAZIONE DEL SOSTEGNO

Codifica P007UM002

Rev. 00 del 29/10/2018

Pagina 7 di 8

IL DIAGRAMMA DELIMITA

- a) Nel piano (Cm, δ) un insieme di punti ai quali corrisponde un'azione trasversale complessiva non superiore a quella di calcolo del sostegno (campo di utilizzazione trasversale)
- b) Nel piano (Cm, K) un insieme di punti ai quali corrisponde un'azione verticale complessiva non superiore a quella di calcolo del sostegno (campo di utilizzazione verticale)

Pertanto, affinchè il sostegno possa essere impiegato in un picchetto di caratteristiche geometriche (Cm_i, $\delta_i \square \square$, K_i) è necessario che i punti (Cm_i, $\delta_i \square$) e (Cm_i, K_i) siano compresi rispettivamente nei campi di utilizzazione trasversale e verticale.

3.3 AZIONI PER IL CALCOLO DEL SOSTEGNO

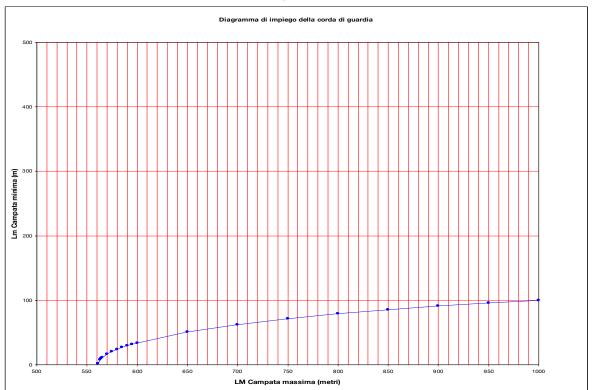
Sono state determinate le azioni esterne per il calcolo del sostegno in condizioni MSA e MSB, sia nell'ipotesi di conduttori e corda di guardia integri (ipotesi normale), sia nell'ipotesi di rottura di un conduttore o della corda di guardia secondo quanto prescritto dalle norme (ipotesi eccezionale).

IPOTESI NORMALE

- Azioni trasversali e verticali:

Sono stati considerati i massimi valori che si verificano nelle più gravose condizioni d'impiego del sostegno (vedi diagramma di utilizzazione)

-Azioni longitudinali:


per la corda di guardia (amarrata ad ogni sostegno) è stato considerato uno squilibrio di tiro per tenere conto della diversa lunghezza delle campate adiacenti al sostegno.

Per ogni picchetto si dovrà perciò verificare mediante (1) che la effettiva differenza di tiro in condizioni MSA e MSB, per la corda di guardia che si intende impiegare sia minore o eguale dei valori di squilibrio considerati per il calcolo del sostegno.

Per un' indagine rapida è stato costruito il diagramma di fig. 3, che tiene conto dei massimi squilibri, relativi alla corda di guardia, calcolato con l'impiego delle sfere di segnalazione sia sulla campata minima che sulla campata massima.

Riportando in ascisse la campata maggiore (L_M) tra le due adiacenti al sostegno e in ordinata la minore (L_m), se il punto di coordinata (L_M, L_m) sta al disopra del diagramma la verifica è positiva poiché, lo squilibrio di tiro è minore di quello di calcolo.

Fig.3

P007UM002

Rev. 00
del 29/10/2018

Pagina 8 di 8

IPOTESI ECCEZIONALE:

Azioni trasversali e verticali:

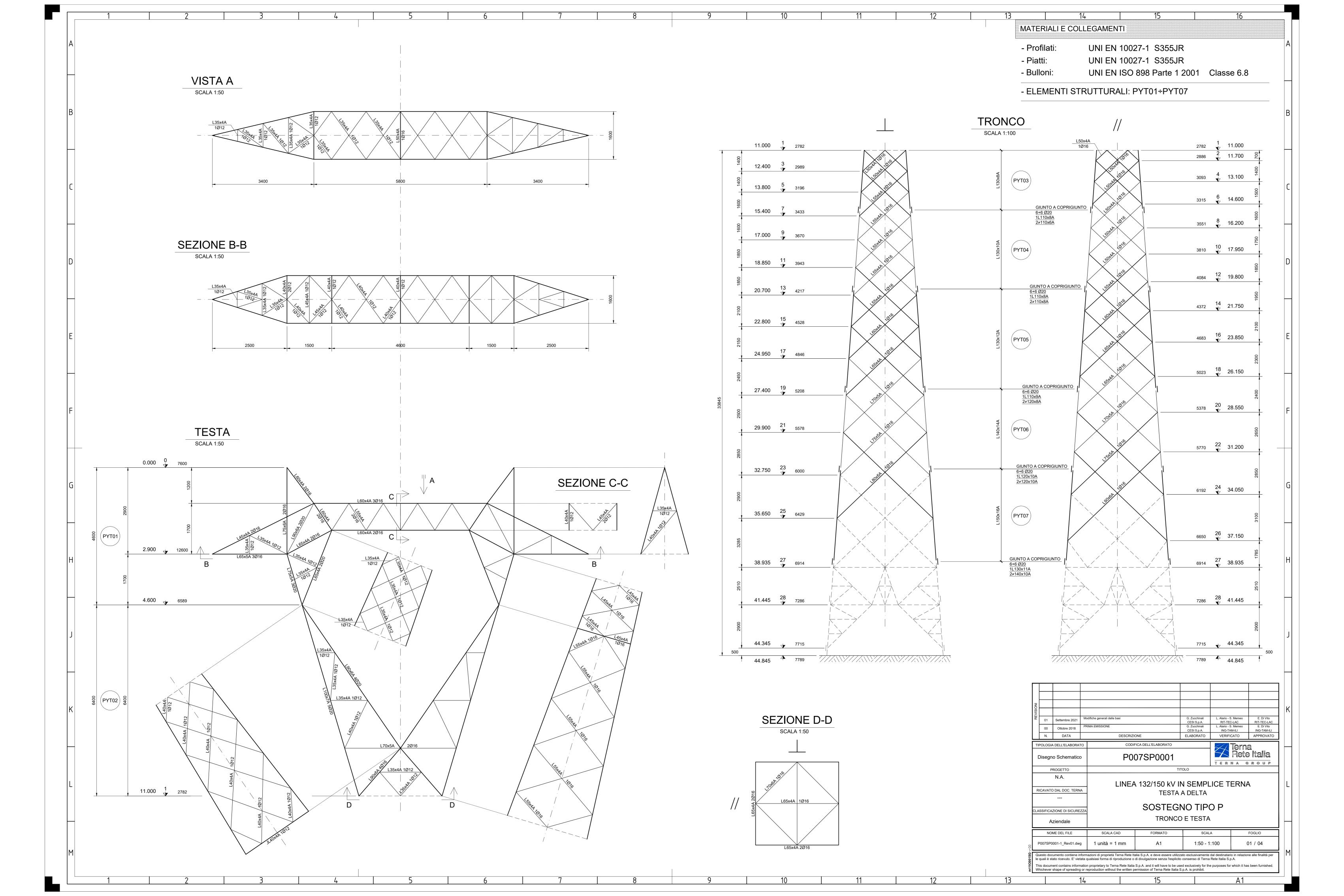
per i conduttori i valori sono stati ottenuti dimezzando le corrispondenti azioni in ipotesi normale (tali valori non risultano esattamente la metà in quanto nelle due ipotesi sono state mantenute costanti la spinta del vento su isolatori e morsetteria (t*) ed il loro peso (p*)).

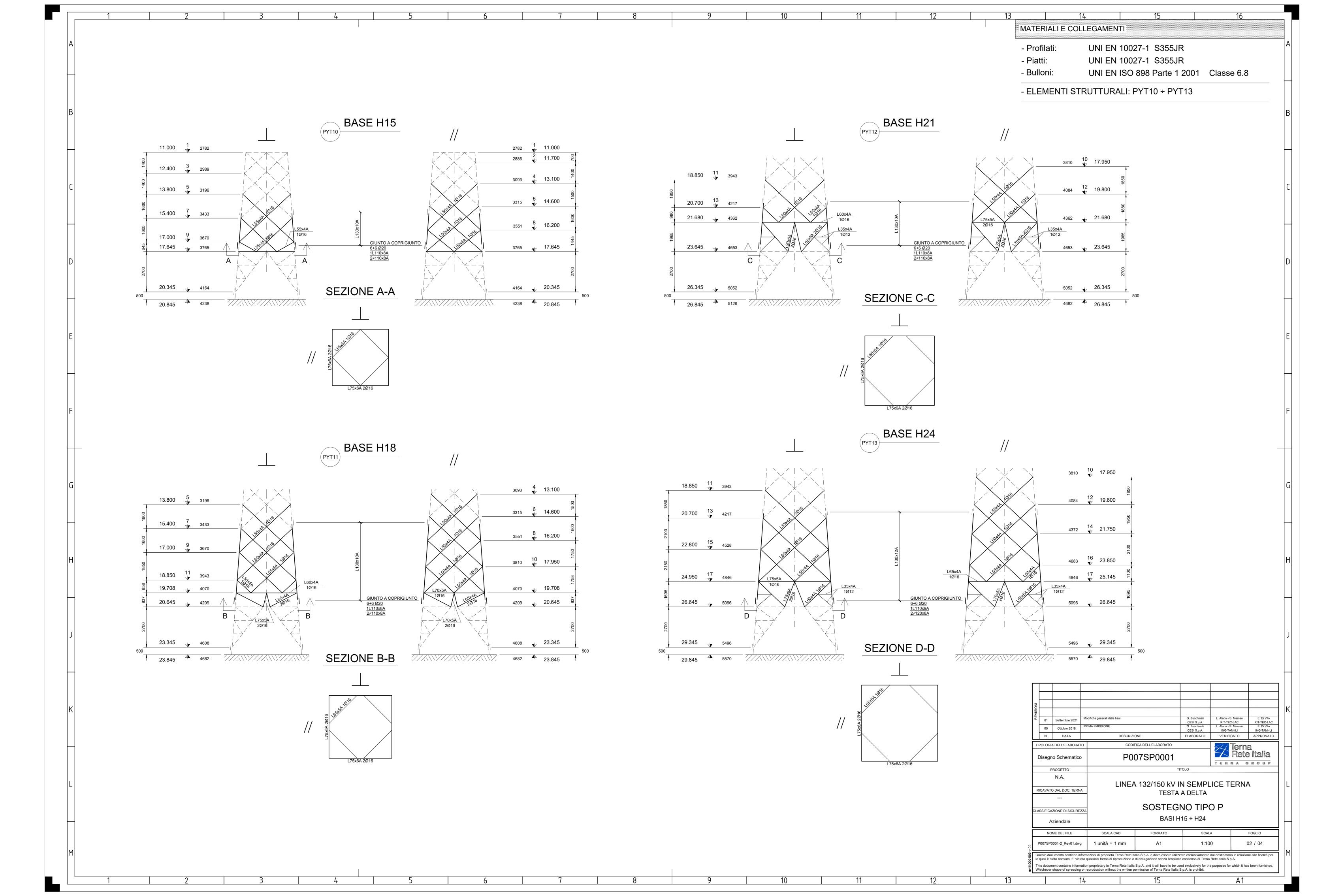
Per la corda di guardia i valori sono stati ottenuti invece dimezzando le corrispondenti azioni in ipotesi normale.

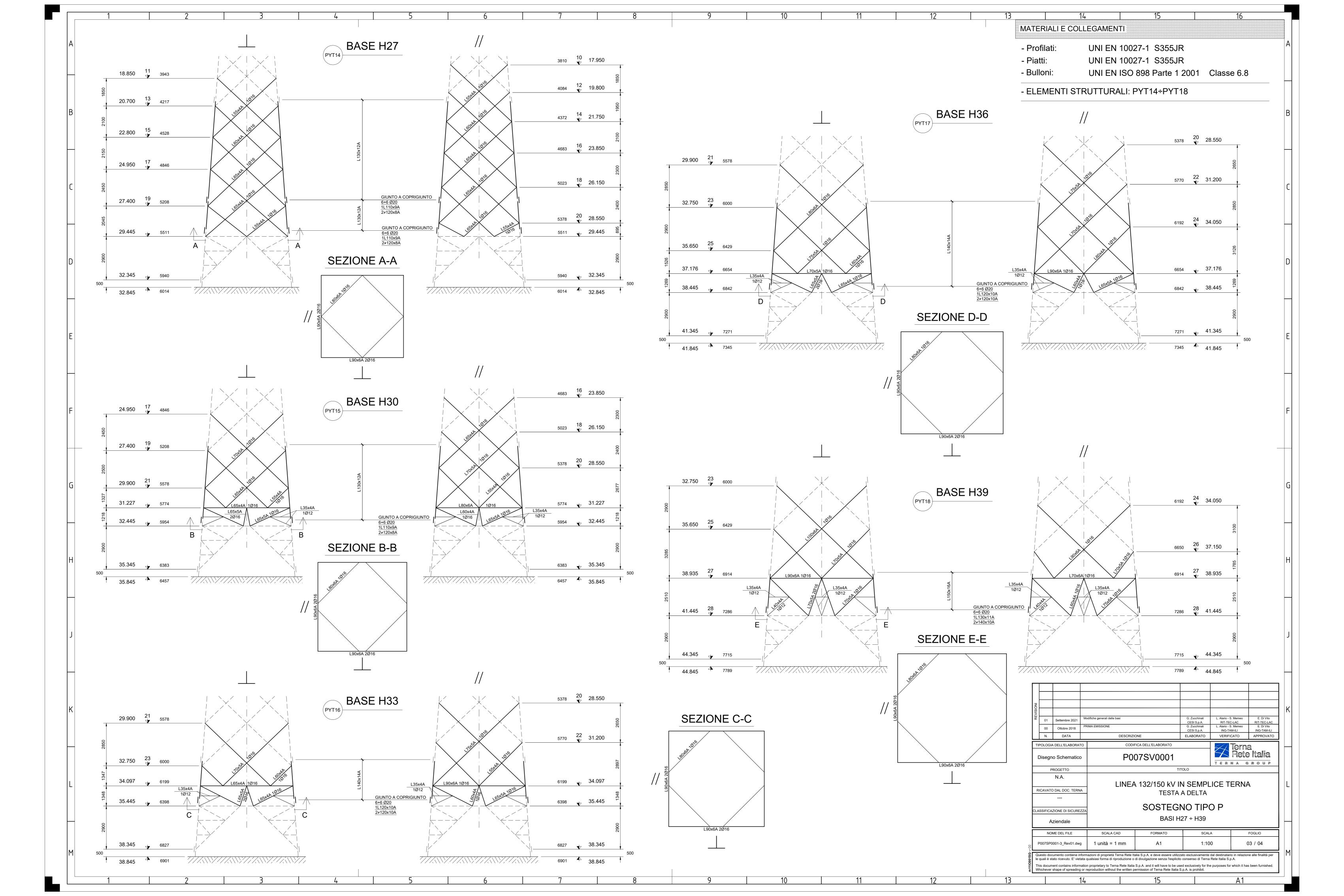
- Azioni longitudinali:

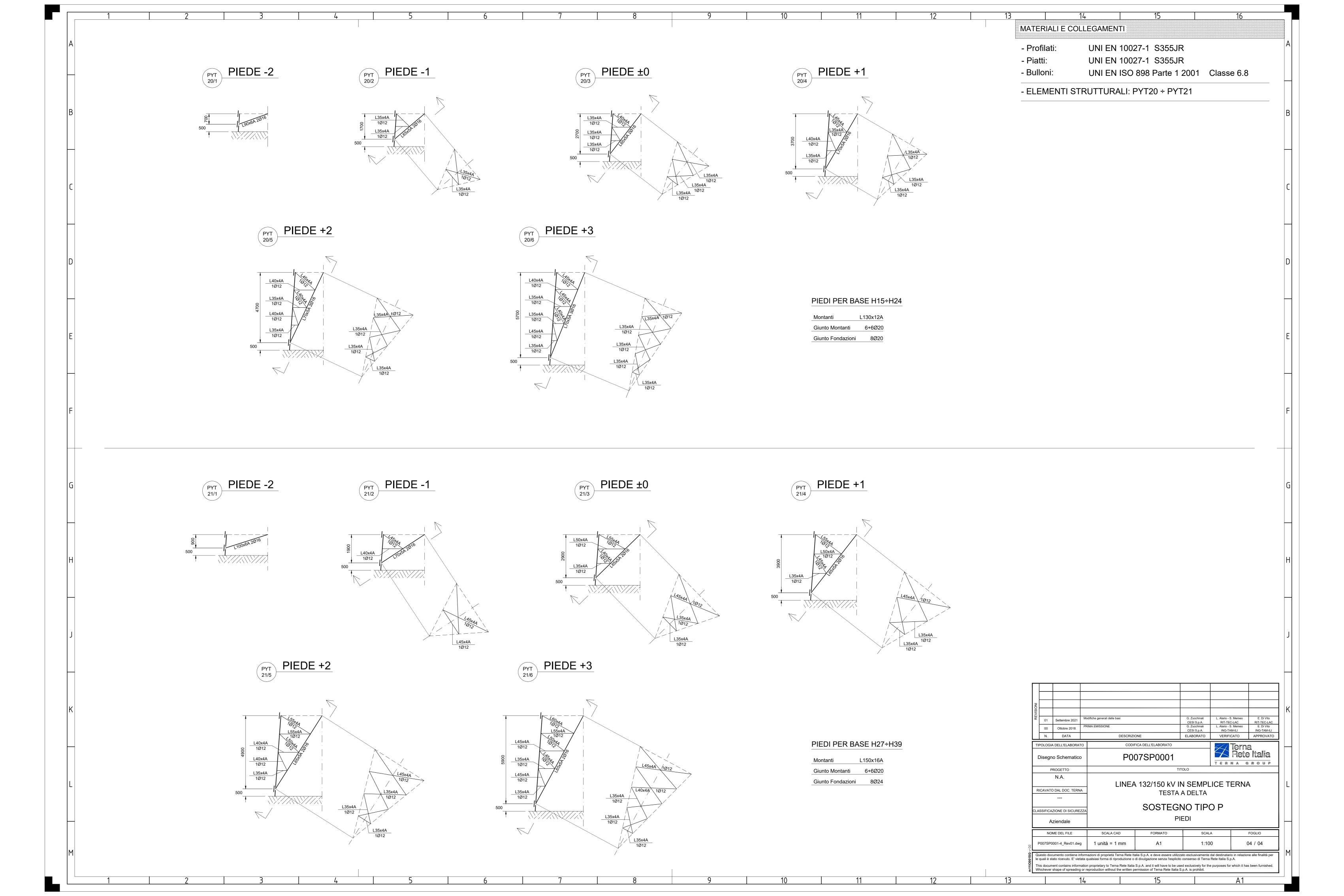
sono state assunte pari al tiro To

VALORI DELLE AZIONI ESTERNE PER IL CALCOLO DEL SOSTEGNO


Sono riportati nella seguente tabella:


		CONDUTTORE			CORDA DI GUARDIA (*)		
STATO DEI CONDUTTORI	IPOTESI		LC2		LC50 (***)		
		T(daN)	P(daN)	L(daN)	T(daN)	P(daN)	L(daN)
	NODMAL E	1628	1937	0	(1084)	(1299)	(1100)
MCA	NORMALE	1628	0	0	(1084)	(0)	(1100)
MSA	ECCEZIONALE (**)	864	1044	4650	(542)	(650)	(3380)
		864	0	4650	(542)	(0)	(3380)
	NODMAL 5	1573	2517	0	(1084)	(1525)	(1300)
MSB	NORMALE	1573	0	0	(1084)	(0)	(1300)
		799	1334	5670	(542)	(763)	(3970)
	ECCEZIONALE (**)	799	0	5670	(542)	(0)	(3970)


- (*) I valori tra parentesi si riferiscono alle condizioni derivate con sfere di segnalazione per il volo a bassa quota con diametro di 60 cm installate sull'intera campata.
- (**) La norma CEI 11.4 al punto 2.04.05 prevede per la serie in oggetto formata da n° 3 conduttori di energia la rottura di uno dei conduttori o di una delle ventuali corde di guardia. I valori indicati si riferiscono, ovviamente, al solo conduttore (o corda di guardia) rotto.


Mediante le relazioni (2) e (3) si può verificare che per tutte le terne di prestazioni geometriche (Cm, δ , K) tali che il punto (Cm, δ) sia compreso nel "campo di utilizzazione trasversale" e il punto (Cm, \square K) sia compreso nel "campo di utilizzazione verticale", le azioni trasversali e verticali (sia per i conduttori che per corde di guardia) nelle condizioni MSA e MSB risultino inferiori od eguali a quelle considerate per il calcolo del sostegno e riportate nella tabella precedente.

(***) Nel caso di utilizzo di corde di guardia di altra tipologia dovrà essere verificato il non superamento dei valori T , P , L, indicati.

Codifica	
P007	7UP002
Rev. 00	Pagina 1 di 8
del 29/10/2018	rayına ı uı o

LINEA ELETTRICA AEREA A 132-150 kV SEMPLICE TERNA A DELTA – TIRO PIENO CONDUTTORI \varnothing 31,5 mm – EDS 18% - ZONA "B"

UTILIZZAZIONE DEL SOSTEGNO "P"

CALCOLO DELLE AZIONI ESTERNE SUL SOSTEGNO

Storia delle revisioni					
Rev. 00	del 29/10/2018	Prima emissione			

Elaborato		Verificato			Approvato		
	L. Alario ING-TAM-ILI	S. Memeo ING-TAM-ILI	P. Berardi ING-TAM-ILI			E. Di Vito ING-TAM-ILI	

P007UP002

Rev. 00
del 29/10/2018

Pagina 2 di 8

CALCOLO ESEGUITO IN CONFORMITA' AL D.M. DEL 21/03/1988 DI CUI ALLA LEGGE N. 339 DEL 28/06/1986

PER IL CALCOLO DI VERIFICA DEL SOSTEGNO VEDERE ELABORATO: **CESI prot. B8021799** – **Rev.0 – del 29/10/2018**

P007UP002

Rev. 00
del 29/10/2018

Pagina 3 di 8

1) CARATTERISTICHE GENERALI

Conduttore	All. Acc. Ø 31,5 mm (LC2)
Corda di guardia	Acciaio Ø 11,5 mm (LC23) - Acciaio rivestito di alluminio Ø 11,5 mm (LC51) Corda di guardia con fibre ottiche Ø 17,9 mm (LC50) (*)
Isolatori	Vetro temprato a cappa e perno in catene di 9 elementi nelle sospensioni semplici e di 9 elementi nelle sospensioni doppie e amarri.
Tipo fondazione	In calcestruzzo a piedini separati
Tipo sfera di segnalazione aerea	Diametro 60 cm; peso 5,5 Kg; passo di installazione ≤ 30 m.
Messa a terra	Secondo le norme citate
Larghezza linea	Larghezza 12,60 m tra i conduttori esterni. Conduttori posti su piano orizzontale.

2) CONDUTTORI E CORDA DI GUARDIA

2.1 CARATTERISTICHE PRINCIPALI			CONDUTTORE	CORDA DI GUARDIA				
			LC2	LC 23	LC 51	LC 50		
MATERIALE			All. Acc.	Acciaio	Acc.rivestito di All.	AI + Lega AI + Acciaio		
DIAMETRO CIRCOSCRITTO (mm)			31,5	11,5	11,5	17,9		
	ALLUMINIO	(mm²)	519,50	0	0	118,90 (Al + Lega Al)		
SEZIONI TEORICHE	ACCIAIO	(mm²)	65,80	78,94	80,65	57,70		
	TOTALE	(mm²)	583,30	78,94	80,65	176,60		
MASSA UNITARIA (Kg/m)		1,953	0,621	0,537	0,820			
MODULO DI ELASTICITA' (N/mm²)		68000	175000	155000	88000			
COEFFICIENTE DI DILATAZIONE (1/°C)		19,4 X 10 ⁻⁶	11,5 X 10 ⁻⁶	13 X 10 ⁻⁶	17 X 10 ⁻⁶			
CARICO DI ROTTURA (daN)		16852	12231	9000	10600			

2.2 CONDIZIONE BASE E CONDIZIONE DERIVATA

- CONDIZIONE BASE

EDS: (Every Day Stress) 15°C, conduttore scarico

In detta condizione il tiro orizzontale è stato assunto costante al variare della campata equivalente della tratta (ovvero della campata reale per la corda di guardia). I valori di tiro per conduttore e corda di guardia sono:

	CONDUTTORE	CORDA DI GUARDIA			
	LC2	LC 23	LC 51	LC 50	
TIRO ORIZZONTALE T _O (daN)	3034	1113	1008	1537	

- CONDIZIONE DERIVATA

MSA: -5°C, vento alla velocità di 130 km/h

MSB: -20°C, vento alla velocità di 65 km/h, manicotto di ghiaccio di 12 mm

(*) Corde di guardia di altra tipologia potranno essere utilizzate purchè vengano rispettati i valori massimi delle azioni trasmesse dalla corda indicata.

Codifica	P007UP002
Rev. 00	Dogina 4 di 9
del 29/10/201	Pagina 4 di 8

In detta condizione i tiri vengono ottenuti risolvendo la equazione del cambiamento di stato:

$$\alpha \left(\Theta_{d} - \Theta_{b}\right) + \frac{1}{SE} \left(T_{d} - T_{b}\right) = \frac{p'_{d}^{2}L^{2}}{24 T_{d}^{2}} - \frac{p'_{b}^{2}L^{2}}{24 T_{b}^{2}}$$
(1)

Ove:

Θ_d = Temperatura della condizione derivata

 Θ_b = Temperatura della condizione base

S = Sezione totale del conduttore

E = Modulo di elasticità

T_d = Tiro orizzontale della condizione derivata

T_b = Tiro orizzontale della condizione base

P'd = Carico risultante per metro di conduttore nella condizione derivata

P'_b = Carico risultante per metro di conduttore nella condizione base

L = Campata equivalente (*) della tratta nel caso di conduttore ovvero campata reale nel caso di corda di guardia

I valori di spinta del vento per metro di conduttore, di peso per metro di conduttore e di carico risultante per metro di conduttore sono riportati nella seguente tabella:

		CONDUTTORE		CORDA DI GUARDIA (**)		
		LC2	LC 23	LC 51	LC 50	
	V (daN/m)	0	0	0	0	
CONDIZIONE EDS	P (daN/m)	1,9159	0,6090	0,5270	0,8044	
	P' (daN/m)	1,9159	0,6090	0,5270	0,8044	
	V (daN/m)	2,2249	0,8122 (1,0896)	0,8122 (1,0896)	1,2643 (1,5417)	
CONDIZIONE MSA	P (daN/m)	1,9159	0,6090 (0,7889)	0,5270 (0,7069)	0,8044 (0,9842)	
	P' (daN/m)	2,9361	1,0152 (1,3452)	0,9682 (1,2988)	1,4985 (1,8291)	
	V (daN/m)	0,9800	0,6268 (0,6962)	0,6268 (0,6962)	0,7399 (0,8092)	
CONDIZIONE MSB	P (daN/m)	3,3959	1,4086 (1,5884)	1,3266 (1,5064)	1,8217 (2,0015)	
	P' (daN/m)	3,5345	1,5418 (1,7343)	1,4672 (1,6595)	1,9663 (2,1589)	

(**) I valori tra parentesi si riferiscono alle condizioni derivate con sfere di segnalazione per il volo a bassa quota con diametro di 60 cm installate sull'intera campata.

V = spinta del vento per metro di conduttore (daN/m)

P = peso per metro di conduttore (daN/m)

$$P' = \sqrt{v^2 + p^2}$$
 = carico risultante per metro di conduttore (daN/m)

(*) L =
$$\sqrt{\frac{\sum Li^3}{\sum Li}}$$
 ove le Li sono le campate reali comprese fra due successiviama ri

P007UP002

Rev. 00
del 29/10/2018

Pagina 5 di 8

3) UTILIZZAZIONE MECCANICA DEL SOSTEGNO

3.1 FORMULE PER IL CALCOLO DELLE AZIONI ESTERNE

Il calcolo del sostegno è stato eseguito tenendo conto delle azioni esterne dei conduttori e delle corde di guardia nelle due ipotesi MSA e MSB.

Le formule per il calcolo di tali azioni, sia per conduttori che per corde di guardia (supposti integri), sono le seguenti:

Conduttori $\begin{cases} Azione \ trasversale & T = v \ Cm + 2 \ sen \ \delta/2 \ T_0 + t^* & (2) \\ Azione \ verticale & P = p \ Cm + K \ T_0 + p^* & (3) \end{cases}$

Ove:

v = spinta del vento per metro di conduttore

p = peso per metro di conduttore i valori di v e di p sono riportati in 2.2

t* = spinta del vento su isolatori e morsetteria

p* = peso di isolatori e morsetteria
 T_o = tiro orizzontale nel conduttore

I valori di t*e p* e To sono riportati nella seguente tabella:

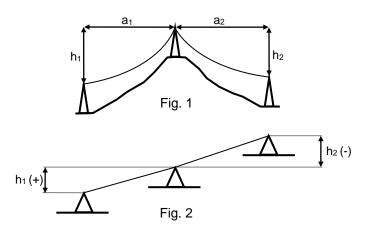
	CONDUTTORE			CORDA DI GUARDIA (**)					
	LC2	ISOLATORI E MORSETTERIA		LC 23	LC 51	LC 50	ISOLA ⁻ MORSE	TORI E TTERIA	
	To (daN)	t* (daN)	p* (daN)	To (daN)	To (daN)	To (daN)	t* (daN)	p* (daN)	
MSA	4650	100	150	1835 (2393)	1821 (2397)	2807 (3380)	0	0	
MSB	5670	25	150	2735 (3050)	2702 (3025)	3640 (3970)	0	0	

(**) I valori tra parentesi si riferiscono alle condizioni derivate con sfere di segnalazione per il volo a bassa quota con diametro di 60 cm installate sull'intera campata.

I suddetti tiri sono stati ottenuti mediante la equazione del cambiamento di stato e rappresentano i massimi valori che il tiro assume nella suddetta ipotesi:

per i conduttori in un intervallo di campate equivalenti pari a 200 \div 800 m

per le corde di guardia in un intervallo di campate reali pari a 100 ÷ 1000 m

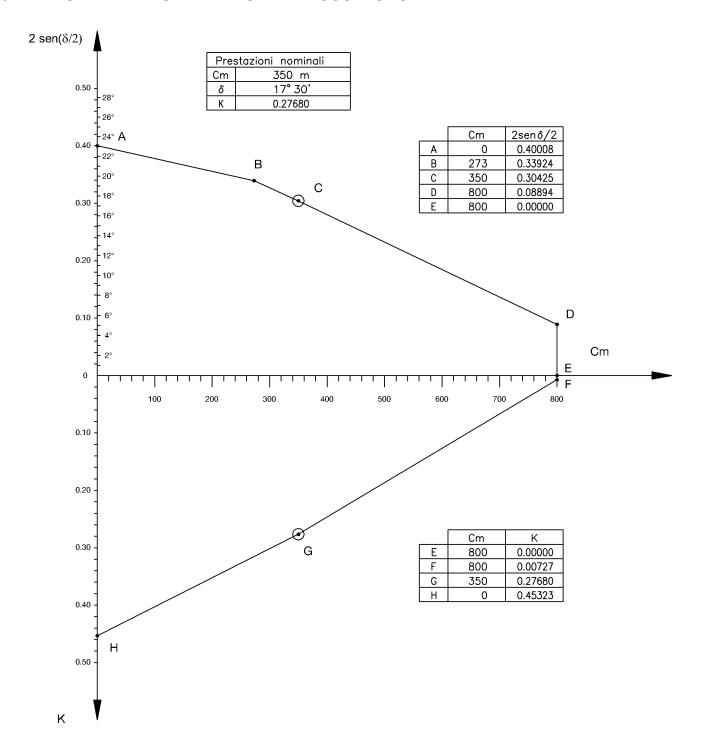

Dal confronto dei tiri orizzontali, delle spinte vento e dei pesi delle corde di guardia nelle diverse ipotesi si evince che la corda di guardia LC50 è quella che induce sul sostegno in esame le maggiori azioni esterne.

Pertanto il diagramma di utilizzazione (punto 3.2) e le azioni esterne (punto 3.3) sono state determinati con la corda di guardia LC50. L'utilizzo di altre corde di guardia diverse da LC50 obbligano il Progettista a realizzare le necessarie verifiche strutturali e a descriverne il diagramma di impiego (fig.3).

caratteristiche geometriche del picchetto:

$$k = \frac{h_1}{a_1} + \frac{h_2}{a_2}$$
 (vedi fig.1)

(*) L'espressione di K è la seguente: ove le campate "a" hanno sempre segno positivo ed i dislivelli "h" segno positivo o negativo secondo lo schema di fig. 2



P007UP002

Rev. 00
del 29/10/2018

Rev. 00
del 29/10/2018

3.2 DIAGRAMMA DI UTILIZZAZIONE DEL SOSTEGNO

Codifica P007UP002

Rev. 00 del 29/10/2018

Pagina 7 di 8

IL DIAGRAMMA DELIMITA

- a) Nel piano (Cm, δ) un insieme di punti ai quali corrisponde un'azione trasversale complessiva non superiore a quella di calcolo del sostegno (campo di utilizzazione trasversale)
- b) Nel piano (Cm, K) un insieme di punti ai quali corrisponde un'azione verticale complessiva non superiore a quella di calcolo del sostegno (campo di utilizzazione verticale)

Pertanto, affinchè il sostegno possa essere impiegato in un picchetto di caratteristiche geometriche (Cm_i, $\delta_i \square \square$, K_i) è necessario che i punti (Cm_i, $\delta_i \square$) e (Cm_i, K_i) siano compresi rispettivamente nei campi di utilizzazione trasversale e verticale.

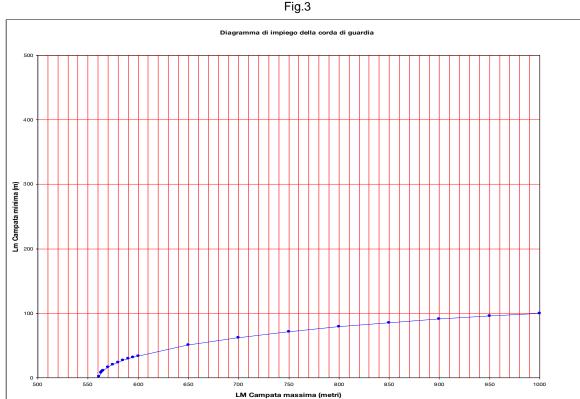
3.3 AZIONI PER IL CALCOLO DEL SOSTEGNO

Sono state determinate le azioni esterne per il calcolo del sostegno in condizioni MSA e MSB, sia nell'ipotesi di conduttori e corda di guardia integri (ipotesi normale), sia nell'ipotesi di rottura di un conduttore o della corda di guardia secondo quanto prescritto dalle norme (ipotesi eccezionale).

IPOTESI NORMALE

- Azioni trasversali e verticali:

Sono stati considerati i massimi valori che si verificano nelle più gravose condizioni d'impiego del sostegno (vedi diagramma di utilizzazione)


-Azioni longitudinali:

per la corda di guardia (amarrata ad ogni sostegno) è stato considerato uno squilibrio di tiro per tenere conto della diversa lunghezza delle campate adiacenti al sostegno.

Per ogni picchetto si dovrà perciò verificare mediante (1) che la effettiva differenza di tiro in condizioni MSA e MSB, per la corda di guardia che si intende impiegare sia minore o eguale dei valori di squilibrio considerati per il calcolo del sostegno.

Per un' indagine rapida è stato costruito il diagramma di fig. 3, che tiene conto dei massimi squilibri, relativi alla corda di guardia, calcolato con l'impiego delle sfere di segnalazione sia sulla campata minima che sulla campata massima.

Riportando in ascisse la campata maggiore (L_M) tra le due adiacenti al sostegno e in ordinata la minore (L_m), se il punto di coordinata (L_M, L_m) sta al disopra del diagramma la verifica è positiva poiché, lo squilibrio di tiro è minore di quello di calcolo.

Rev. 00 del 29/10/2018 Pagina 8 di 8

IPOTESI ECCEZIONALE:

Azioni trasversali e verticali:

per i conduttori i valori sono stati ottenuti dimezzando le corrispondenti azioni in ipotesi normale (tali valori non risultano esattamente la metà in quanto nelle due ipotesi sono state mantenute costanti la spinta del vento su isolatori e morsetteria (t*) ed il loro peso (p*)).

Per la corda di guardia i valori sono stati ottenuti invece dimezzando le corrispondenti azioni in ipotesi normale.

Azioni longitudinali:

sono state assunte pari al tiro To

VALORI DELLE AZIONI ESTERNE PER IL CALCOLO DEL SOSTEGNO

Sono riportati nella seguente tabella:

		C	ONDUTTOR	E	CORDA DI GUARDIA (*)			
STATO DEI CONDUTTORI	IPOTESI		LC2		LC50 (***)			
		T(daN)	P(daN)	L(daN)	T(daN)	P(daN)	L(daN)	
	NODMAL E	2294	2258	0	(1568)	(1532)	(1100)	
MCA	NORMALE ECCEZIONALE (**)	2294	0	0	(1568)	(0)	(1100)	
MSA		1197	1204	4650	(784)	(766)	(3380)	
		1197	0	4650	(784)	(0)	(3380)	
	NODMAL E	2294	2909	0	(1589)	(1800)	(1300)	
MCD	NORMALE	2294	0	0	(1589)	(0)	(1300)	
MSB		1160	1530	5670	(795)	(900)	(3970)	
	ECCEZIONALE (**)	1160	0	5670	(795)	(0)	(3970)	

- (*) I valori tra parentesi si riferiscono alle condizioni derivate con sfere di segnalazione per il volo a bassa quota con diametro di 60 cm installate sull'intera campata.
- (**) La norma CEI 11.4 al punto 2.04.05 prevede per la serie in oggetto formata da n° 3 conduttori di energia la rottura di uno dei conduttori o di una delle ventuali corde di guardia. I valori indicati si riferiscono, ovviamente, al solo conduttore (o corda di guardia) rotto.

Mediante le relazioni (2) e (3) si può verificare che per tutte le terne di prestazioni geometriche (Cm, δ , K) tali che il punto (Cm, δ) sia compreso nel "campo di utilizzazione trasversale" e il punto (Cm, \square K) sia compreso nel "campo di utilizzazione verticale", le azioni trasversali e verticali (sia per i conduttori che per corde di guardia) nelle condizioni MSA e MSB risultino inferiori od eguali a quelle considerate per il calcolo del sostegno e riportate nella tabella precedente.

(***) Nel caso di utilizzo di corde di guardia di altra tipologia dovrà essere verificato il non superamento dei valori T , P , L, indicati.

Tavola per montaggio meccanico

LINEE 132-150 kV SEMPLICE TERNA A DELTA CONDUTTORE Ø 31,5 mm – TIRO PIENO SOSTEGNI TIPO "V"

Codifica						
LIN_0000\$603						
Rev. 00 del 07/01/2019	Pag. 1 di 2					

ELEMENTI STRUTTURALI COMPONENTI LA PARTE COMUNE IL TRONCO E LE BASI

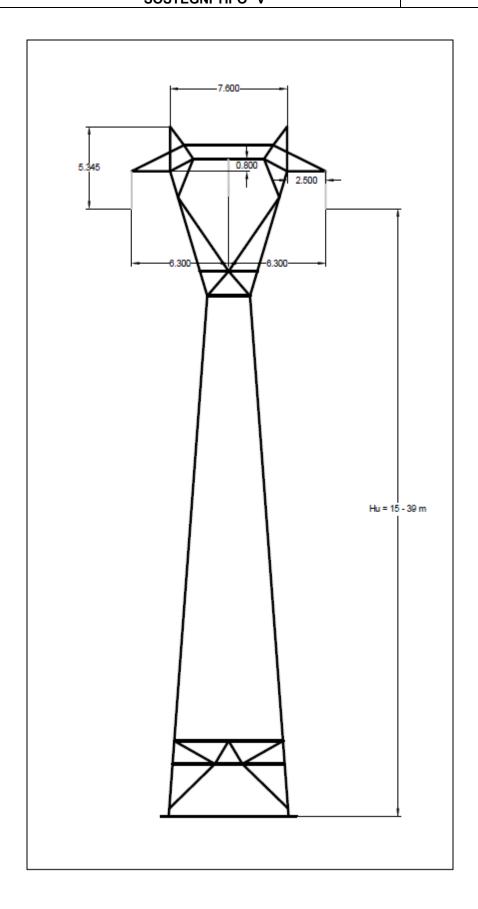
SOST (*	EGNI **)			TRONCHI					Piedi	Fondazione Manage (**)						
TIPO	215	- Mensola	Parte comune	ı	II	III	IV	V	VI	VII	VIII	- Base	(n.4 pezzi)	normale (**) Moncone (**)		Peso (kg) (*)
TIPO	RIF.				ELEMENTI STRUTTURALI (*)									RIF.		
V15	603/1	VYT 01 ()	VYT 02 ()	VTY 03 ()	-	-	-	-	-	-	-	VYT 10 ()	VYT 20 ()	F 105 /325	F 45/2	()
V18	603/2	VYT 01 ()	VYT 02 ()	VTY 03 ()	-	-	-	-	-	-	-	VYT 11 ()	VYT 20 ()	F 105 /325	F 45/2	()
V21	603/3	VYT 01 ()	VYT 02 ()	VTY 03 ()	VYT 04 ()	-	-	-	-	-	-	VYT 12 ()	VYT 20 ()	F 105 /325	F 45/2	0
V24	603/4	VYT 01 ()	VYT 02 ()	VTY 03 ()	VYT 04 ()	-	-	-	-	-	-	VYT 13 ()	VYT 20 ()	F 105 /325	F 45/2	()
V27	603/5	VYT 01 ()	VYT 02 ()	VTY 03 ()	VYT 04 ()	VYT 05 ()	-	-	-	-	-	VYT 14 ()	VYT 21 ()	F 105 /325	F 57/N IN PRERPARAZIONE	()
V30	603/6	VYT 01 ()	VYT 02 ()	VTY 03 ()	VYT 04 ()	VYT 05 ()	-	-	-	-	-	VYT 15 ()	VYT 21 ()	F 105 /325	F 57/N IN PRERPARAZIONE	()
V33	603/7	VYT 01 ()	VYT 02 ()	VTY 03 ()	VYT 04 ()	VYT 05 ()	VYT 06 ()	-	-	-	-	VYT 16 ()	VYT 21 ()	F 105 /325	F 57/N IN PRERPARAZIONE	()
V36	603/8	VYT 01 ()	VYT 02 ()	VTY 03 ()	VYT 04 ()	VYT 05 ()	VYT 06 ()	-	-	-	-	VYT 17 ()	VYT 21 ()	F 105 /325	F 57/N IN PRERPARAZIONE	()
V39	603/9	VYT 01 ()	VYT 02 ()	VTY 03 ()	VYT 04 ()	VYT 05 ()	VYT 06 ()	VYT 07 ()	-	-	-	VYT 18 ()	VYT 21 ()	F 105 /325	F 57/N IN PRERPARAZIONE	()

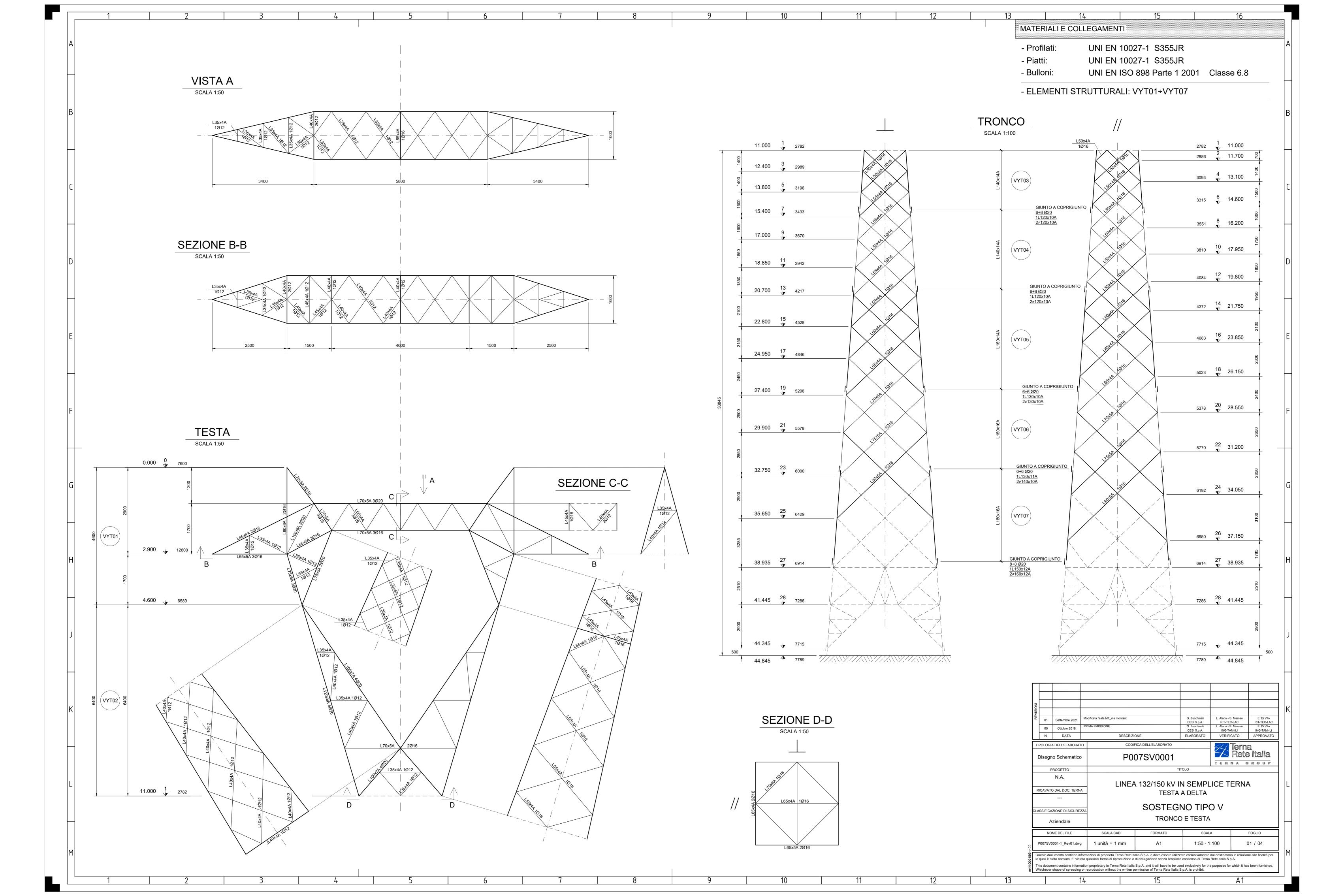
^{(*) –} Il peso totale dell'allungato (esclusi i monconi) e dei singoli elementi strutturali, indicati tra parentesi, è comprensivo della zincatura e dei dispositivi anticaduta. I pesi sono espressi in kg. IN PREPARAZIONE

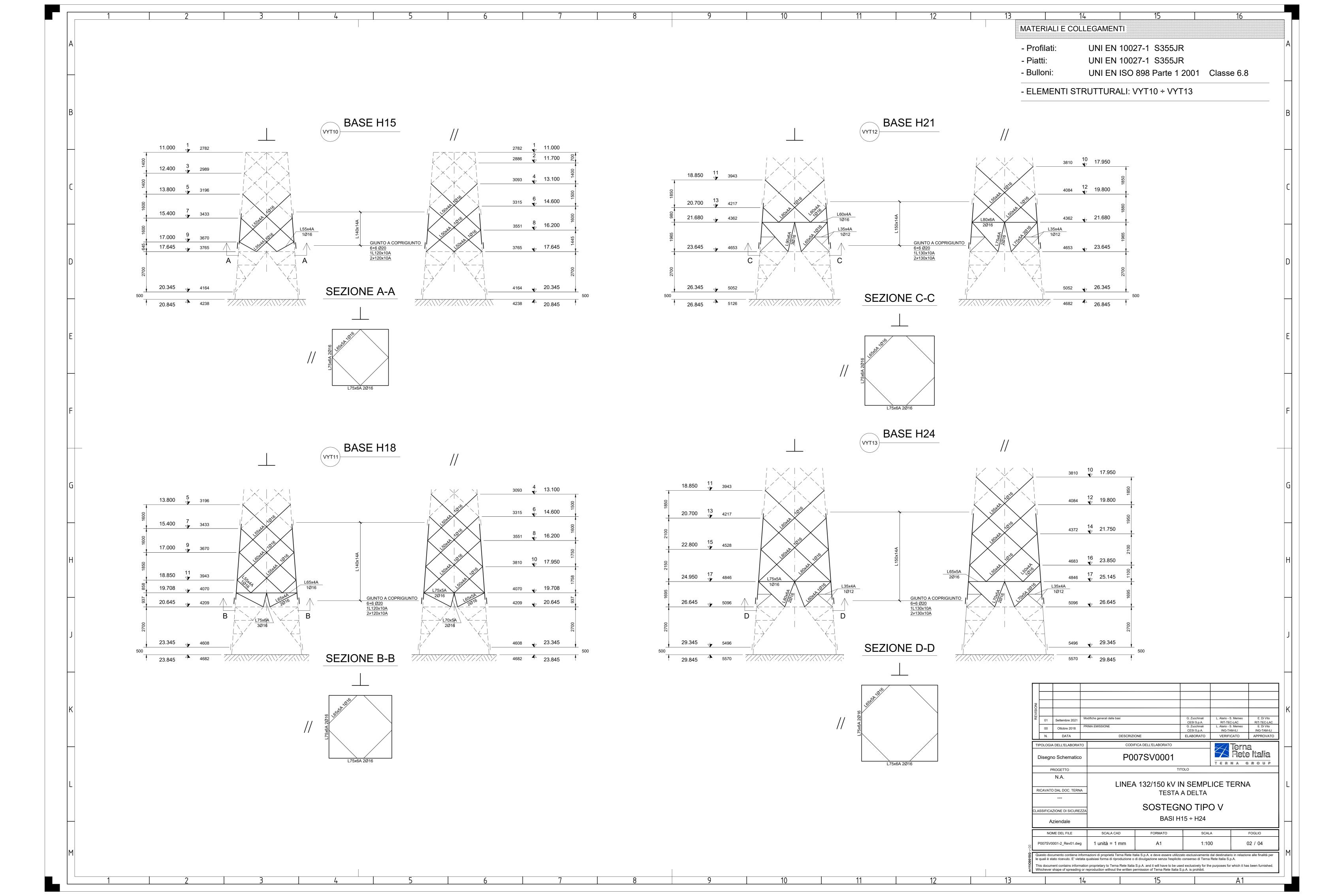
Storia del	le revisioni						
Rev. 00	Del 07/01/20	19 Prima emission	e				
			ISC -U	so INTERNO			
Elaborato			Verificato			Approvato	
L. Alario ING-TAM-	ILI	S. Memeo ING-TAM-ILI	P. Berardi ING-TAM-ILI			E. Di Vito ING-TAM-ILI	
Ouesto do	Questo decumente contiene informazioni di proprietà di Torna Pete Italia Gruppa Torna S. n. A. e deve occare utilizzata esclusivamente del dectinatario in relazione alle						

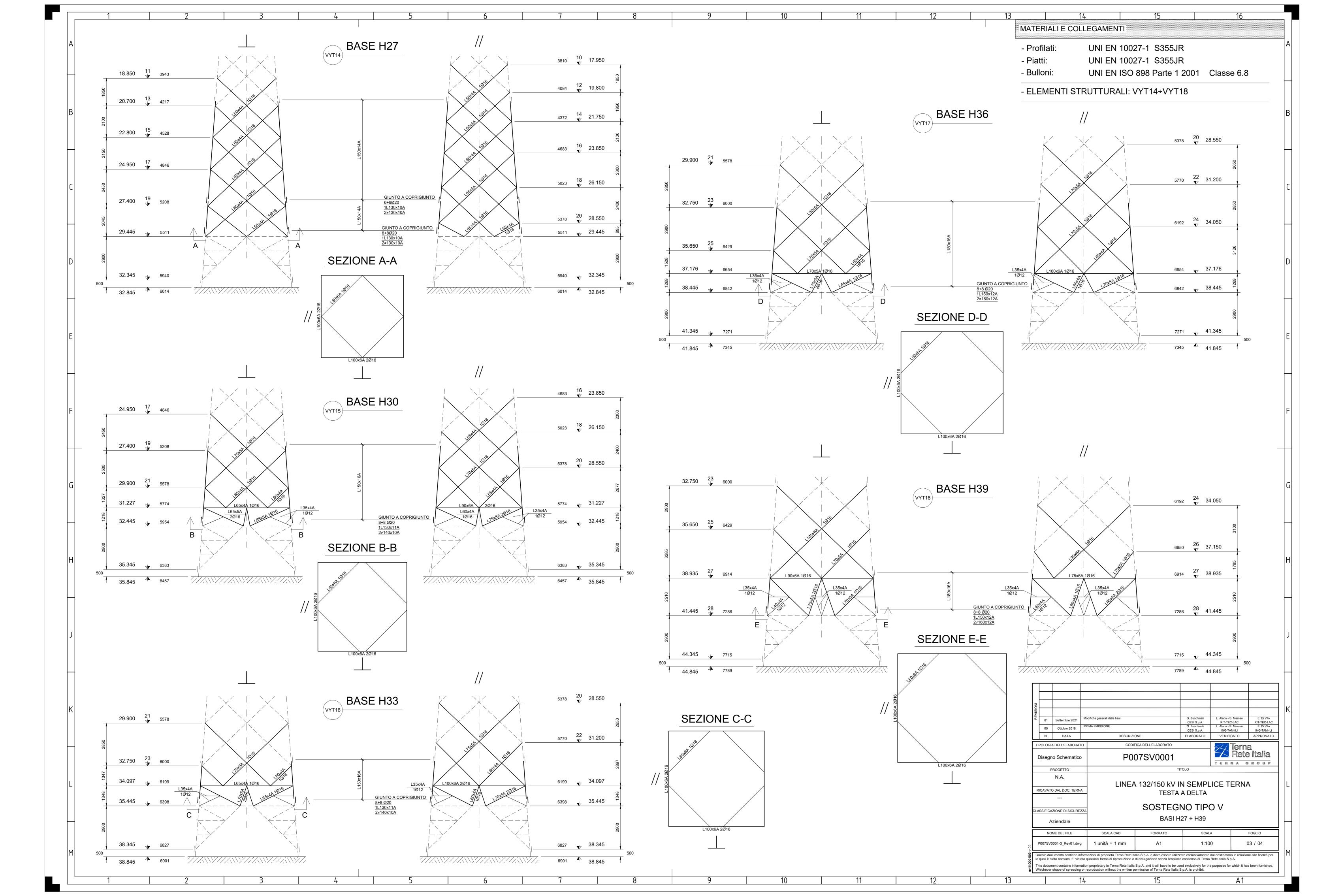
^{(**) –} Fondazioni e monconi relativi ai vari sostegni sono riportati nei documenti 150STDINFDN, 150STDINFON, 150STDINMNC.

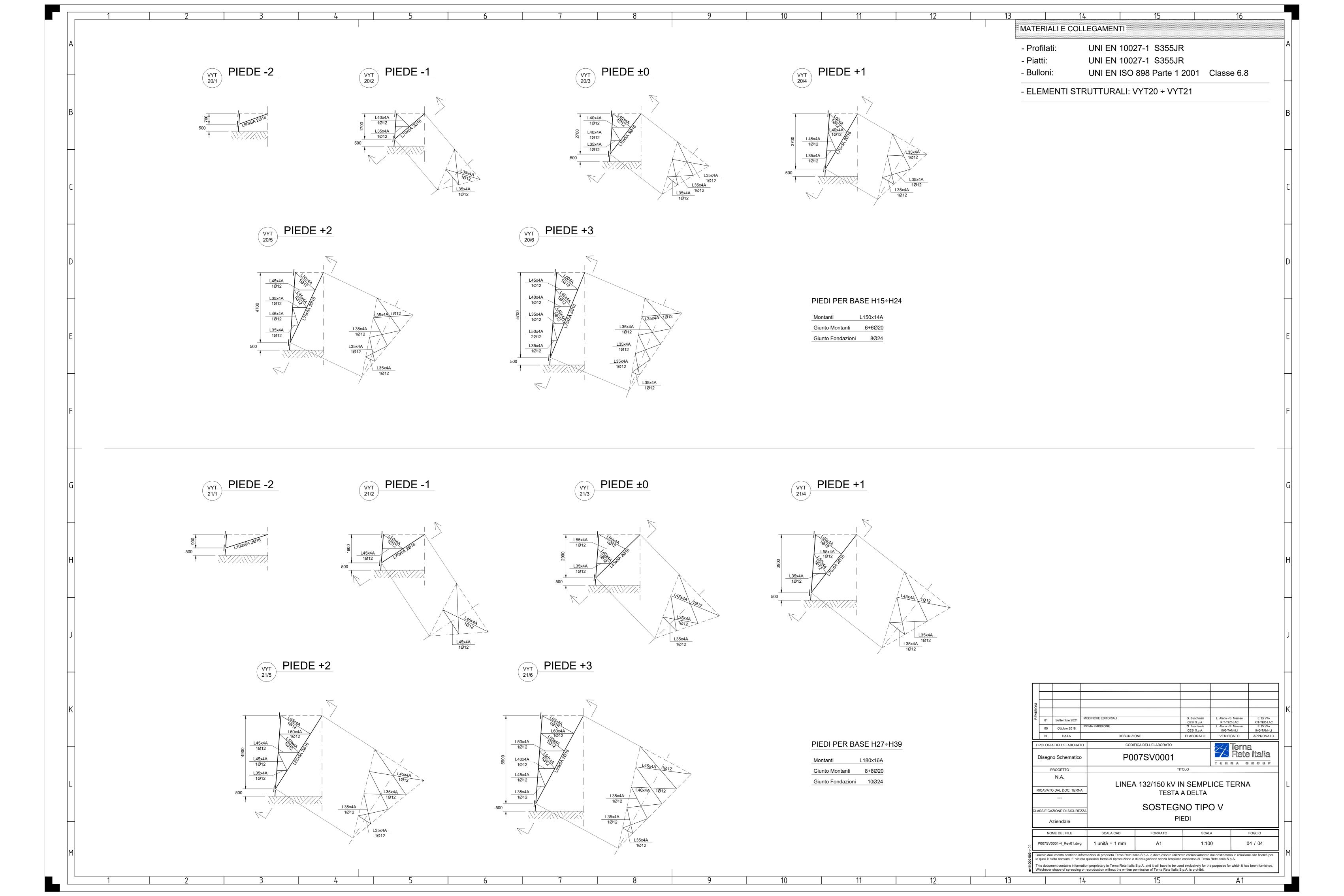
^{(***) –} Ogni sostegno viene indicato con TIPO (con la lettera corrispondente al tipo di sostegno, seguita dall'altezza utile) e con RIF. (con riferimento al nome del documento, seguito da un progressivo, come da LIN_000000000) che contraddistingue la sua composizione.




Tavola per montaggio meccanico


LINEE 132-150 kV SEMPLICE TERNA A DELTA CONDUTTORE Ø 31,5 mm – TIRO PIENO SOSTEGNI TIPO "V"


LIN_0000\$603


Rev. 00 Pag. **2** di 2

P007UV002					
Rev. 00 del 29/10/2018	Pagina 1 di 10				

LINEA ELETTRICA AEREA A 132-150 kV SEMPLICE TERNA A DELTA – TIRO PIEN	0
CONDUTTORI Ø 31,5 mm – EDS 18% - ZONA "B"	

UTILIZZAZIONE DEL SOSTEGNO "V"

CALCOLO DELLE AZIONI ESTERNE SUL SOSTEGNO

Storia de	elle revisioni	
Rev. 00	del 29/10/2018	Prima emissione

Elaborato		Verificato	Approvato				
	L. Alario ING-TAM-ILI	S. Memeo ING-TAM-ILI	P. Berardi ING-TAM-ILI			E. Di Vito ING-TAM-ILI	

P007UV002

Rev. 00
del 29/10/2018

Pagina 2 di 10

CALCOLO ESEGUITO IN CONFORMITA' AL D.M. DEL 21/03/1988 DI CUI ALLA LEGGE N. 339 DEL 28/06/1986

PER IL CALCOLO DI VERIFICA DEL SOSTEGNO VEDERE ELABORATO: **CESI prot. B8021801** – **Rev.0 – del 29/10/2018**

Codifica P007UV002 Rev. 00 Pagina 3 di 10 del 29/10/2018

1) CARATTERISTICHE GENERALI

Conduttore	All. Acc. Ø 31,5 mm (LC2)
Corda di guardia	Acciaio Ø 11,5 mm (LC23) - Acciaio rivestito di alluminio Ø 11,5 mm (LC51) Corda di guardia con fibre ottiche Ø 17,9 mm (LC50) (*)
Isolatori	Vetro temprato a cappa e perno in catene di 9 elementi nelle sospensioni semplici e di 9 elementi nelle sospensioni doppie e amarri.
Tipo fondazione	In calcestruzzo a piedini separati
Tipo sfera di segnalazione aerea	Diametro 60 cm; peso 5,5 Kg; passo di installazione ≤ 30 m.
Messa a terra	Secondo le norme citate
Larghezza linea	Larghezza 12,60 m tra i conduttori esterni. Conduttori posti su piano orizzontale.

2) CONDUTTORI E CORDA DI GUARDIA

0.4. 0.4.0.4.	NOTIONE BRINGI	D 4 1 1	CONDUTTORE		CORDA DI GUAR	DIA
2.1 CARATTER	RISTICHE PRINCI	PALI	LC2	LC 23	LC 51	LC 50
MATERIALE			All. Acc.	Acciaio	Acc.rivestito di All.	AI + Lega AI + Acciaio
DIAM	ETRO CIRCOSCRITT	O (mm)	31,5	11,5	11,5	17,9
	ALLUMINIO	(mm²)	519,50	0	0	118,90 (Al + Lega Al)
SEZIONI TEORICHE	ACCIAIO	(mm²)	65,80	78,94	80,65	57,70
	TOTALE	(mm²)	583,30	78,94	80,65	176,60
MASS	SA UNITARIA	(Kg/m)	1,953	0,621	0,537	0,820
MODU	JLO DI ELASTICITA'	(N/mm ²)	68000	175000	155000	88000
COEFFICIENT	E DI DILATAZIONE	(1/°C)	19,4 X 10 ⁻⁶	11,5 X 10 ⁻⁶	13 X 10 ⁻⁶	17 X 10 ⁻⁶
CARICO DI ROTTURA (daN)			16852	12231	9000	10600

2.2 CONDIZIONE BASE E CONDIZIONE DERIVATA

- CONDIZIONE BASE

EDS: (Every Day Stress) 15°C, conduttore scarico

In detta condizione il tiro orizzontale è stato assunto costante al variare della campata equivalente della tratta (ovvero della campata reale per la corda di guardia). I valori di tiro per conduttore e corda di guardia sono:

	CONDUTTORE	CORDA DI GUARDIA				
	LC2	LC 23	LC 51	LC 50		
TIRO ORIZZONTALE T _O (daN)	3034	1113	1008	1537		

- CONDIZIONE DERIVATA

MSA: -5°C, vento alla velocità di 130 km/h

-20°C, vento alla velocità di 65 km/h, manicotto di ghiaccio di 12 mm MSB:

Corde di guardia di altra tipologia potranno essere utilizzate purchè vengano rispettati i valori massimi delle azioni trasmesse dalla corda indicata.

Codifica P00	7UV002
Rev. 00	Pagina 4 di 10
del 29/10/2018	i agilia 4 ul 10

In detta condizione i tiri vengono ottenuti risolvendo la equazione del cambiamento di stato:

$$\alpha \left(\Theta_{d} - \Theta_{b}\right) + \frac{1}{SE} \left(T_{d} - T_{b}\right) = \frac{p'_{d}^{2}L^{2}}{24 T_{d}^{2}} - \frac{p'_{b}^{2}L^{2}}{24 T_{b}^{2}}$$
(1)

Ove:

Θ_d = Temperatura della condizione derivata

 Θ_b = Temperatura della condizione base

S = Sezione totale del conduttore

E = Modulo di elasticità

T_d = Tiro orizzontale della condizione derivata

T_b = Tiro orizzontale della condizione base

P'd = Carico risultante per metro di conduttore nella condizione derivata

P'_b = Carico risultante per metro di conduttore nella condizione base

L = Campata equivalente (*) della tratta nel caso di conduttore ovvero campata reale nel caso di corda di guardia

I valori di spinta del vento per metro di conduttore, di peso per metro di conduttore e di carico risultante per metro di conduttore sono riportati nella seguente tabella:

		CONDUTTORE	С	CORDA DI GUARDIA (**)		
		LC2	LC 23	LC 51	LC 50	
	V (daN/m)	0	0	0	0	
CONDIZIONE EDS	P (daN/m)	1,9159	0,6090	0,5270	0,8044	
	P' (daN/m)	1,9159	0,6090	0,5270	0,8044	
	V (daN/m)	2,2249	0,8122 (1,0896)	0,8122 (1,0896)	1,2643 (1,5417)	
CONDIZIONE MSA	P (daN/m)	1,9159	0,6090 (0,7889)	0,5270 (0,7069)	0,8044 (0,9842)	
	P' (daN/m)	2,9361	1,0152 (1,3452)	0,9682 (1,2988)	1,4985 (1,8291)	
	V (daN/m)	0,9800	0,6268 (0,6962)	0,6268 (0,6962)	0,7399 (0,8092)	
CONDIZIONE MSB	P (daN/m)	3,3959	1,4086 (1,5884)	1,3266 (1,5064)	1,8217 (2,0015)	
	P' (daN/m)	3,5345	1,5418 (1,7343)	1,4672 (1,6595)	1,9663 (2,1589)	

(**) I valori tra parentesi si riferiscono alle condizioni derivate con sfere di segnalazione per il volo a bassa quota con diametro di 60 cm installate sull'intera campata.

V = spinta del vento per metro di conduttore (daN/m)

P = peso per metro di conduttore (daN/m)

$$P' = \sqrt{v^2 + p^2}$$
 = carico risultante per metro di conduttore (daN/m)

(*) L =
$$\sqrt{\frac{\sum Li^3}{\sum Li}}$$
 ove le Li sono le campate reali comprese fra due successiviama ri

Codifica P00	7UV002
Rev. 00	Pagina 5 di 10

3) UTILIZZAZIONE MECCANICA DEL SOSTEGNO

3.1 FORMULE PER IL CALCOLO DELLE AZIONI ESTERNE

Il calcolo del sostegno è stato eseguito tenendo conto delle azioni esterne dei conduttori e delle corde di guardia nelle due ipotesi MSA e MSB.

Le formule per il calcolo di tali azioni, sia per conduttori che per corde di guardia (supposti integri), sono le seguenti:

Conduttori $\begin{cases} Azione \ trasversale & T = v \ Cm + 2 \ sen \ \delta/2 \ T_0 + t^* & (2) \\ Azione \ verticale & P = p \ Cm + K \ T_0 + p^* & (3) \end{cases}$

Ove:

v = spinta del vento per metro di conduttore

p = peso per metro di conduttore i valori di v e di p sono riportati in 2.2

t* = spinta del vento su isolatori e morsetteria

 p^* = peso di isolatori e morsetteria T_0 = tiro orizzontale nel conduttore

I valori di t*e p* e To sono riportati nella seguente tabella:

	CONDUTTORE			CORDA DI GUARDIA (**)					
	LC2	ISOLATORI E MORSETTERIA		LC 23	LC 51	LC 50	ISOLA ⁻ MORSE	TORI E TTERIA	
	To (daN)	t* (daN)	p* (daN)	To (daN)	To (daN)	To (daN)	t* (daN)	p* (daN)	
MSA	4650	100	150	1835 (2393)	1821 (2397)	2807 (3380)	0	0	
MSB	5670	25	150	2735 (3050)	2702 (3025)	3640 (3970)	0	0	

(**) I valori tra parentesi si riferiscono alle condizioni derivate con sfere di segnalazione per il volo a bassa quota con diametro di 60 cm installate sull'intera campata.

I suddetti tiri sono stati ottenuti mediante la equazione del cambiamento di stato e rappresentano i massimi valori che il tiro assume nella suddetta ipotesi:

per i conduttori in un intervallo di campate equivalenti pari a 200 \div 800 m

per le corde di guardia in un intervallo di campate reali pari a 100 ÷ 1000 m

Dal confronto dei tiri orizzontali, delle spinte vento e dei pesi delle corde di guardia nelle diverse ipotesi si evince che la corda di guardia LC50 è quella che induce sul sostegno in esame le maggiori azioni esterne.

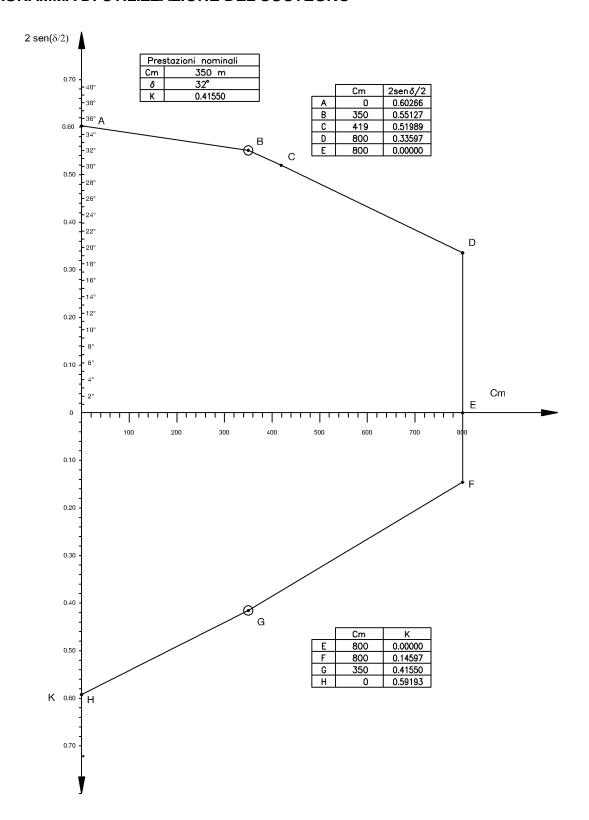
Pertanto il diagramma di utilizzazione (punto 3.2) e le azioni esterne (punto 3.3) sono state determinati con la corda di guardia LC50. L'utilizzo di altre corde di guardia diverse da LC50 obbligano il Progettista a realizzare le necessarie verifiche strutturali e a descriverne il diagramma di impiego (fig.3).

caratteristiche geometriche del picchetto:

Cm = campata media δ = angolo di deviazione K = costante altimetrica (*)

$$k = \frac{h_1}{a_1} + \frac{h_2}{a_2}$$
 (vedi fig.1)

(*) L'espressione di K è la seguente: ove le campate "a" hanno sempre segno positivo ed i dislivelli "h" segno positivo o negativo secondo lo schema di fig. 2



P007UV002

Rev. 00
del 29/10/2018

Rev. 00
Pagina 6 di 10

3.2 DIAGRAMMA DI UTILIZZAZIONE DEL SOSTEGNO

Codifica P007UV002

Rev. 00 del 29/10/2018

Pagina 7 di 10

IL DIAGRAMMA DELIMITA

- a) Nel piano (Cm, δ) un insieme di punti ai quali corrisponde un'azione trasversale complessiva non superiore a quella di calcolo del sostegno (campo di utilizzazione trasversale)
- b) Nel piano (Cm, K) un insieme di punti ai quali corrisponde un'azione verticale complessiva non superiore a quella di calcolo del sostegno (campo di utilizzazione verticale)

Pertanto, affinchè il sostegno possa essere impiegato in un picchetto di caratteristiche geometriche (Cm_i, $\delta_i \square \square$, K_i) è necessario che i punti (Cm_i, $\delta_i \square$) e (Cm_i, K_i) siano compresi rispettivamente nei campi di utilizzazione trasversale e verticale.

3.3 AZIONI PER IL CALCOLO DEL SOSTEGNO

Sono state determinate le azioni esterne per il calcolo del sostegno in condizioni MSA e MSB, sia nell'ipotesi di conduttori e corda di guardia integri (ipotesi normale), sia nell'ipotesi di rottura di un conduttore o della corda di guardia secondo quanto prescritto dalle norme (ipotesi eccezionale).

IPOTESI NORMALE

-Azioni trasversali e verticali:

Sono stati considerati i massimi valori che si verificano nelle più gravose condizioni d'impiego del sostegno (vedi diagramma di utilizzazione)

-Azioni longitudinali:

per la corda di guardia (amarrata ad ogni sostegno) è stato considerato uno squilibrio di tiro per tenere conto della diversa lunghezza delle campate adiacenti al sostegno.

Per ogni picchetto si dovrà perciò verificare mediante (1) che la effettiva differenza di tiro in condizioni MSA e MSB, per la corda di guardia che si intende impiegare sia minore o eguale dei valori di squilibrio considerati per il calcolo del sostegno.

Per un' indagine rapida è stato costruito il diagramma di fig. 3, che tiene conto dei massimi squilibri, relativi alla corda di guardia, calcolato con l'impiego delle sfere di segnalazione sia sulla campata minima che sulla campata massima.

Riportando in ascisse la campata maggiore (L_M) tra le due adiacenti al sostegno e in ordinata la minore (L_m), se il punto di coordinata (L_M, L_m) sta al disopra del diagramma la verifica è positiva poiché, lo squilibrio di tiro è minore di quello di calcolo.

Diagramma di impiego della corda di guardia

P007UV002

Rev. 00
del 29/10/2018

Pagina 8 di 10

IPOTESI ECCEZIONALE:

Azioni trasversali e verticali:

per i conduttori i valori sono stati ottenuti dimezzando le corrispondenti azioni in ipotesi normale (tali valori non risultano esattamente la metà in quanto nelle due ipotesi sono state mantenute costanti la spinta del vento su isolatori e morsetteria (t*) ed il loro peso (p*)).

Per la corda di guardia i valori sono stati ottenuti invece dimezzando le corrispondenti azioni in ipotesi normale.

- Azioni longitudinali:

sono state assunte pari al tiro To

VALORI DELLE AZIONI ESTERNE PER IL CALCOLO DEL SOSTEGNO

Sono riportati nella seguente tabella:

		C	ONDUTTOR	E	CORDA DI GUARDIA (*)		
STATO DEI CONDUTTORI	IPOTESI		LC2		LC50 (***)		
		T(daN)	P(daN)	L(daN)	T(daN)	P(daN)	L(daN)
	NODMAL E	3450	2903	0	(2403)	(2001)	(1100)
MCA	NORMALE	3450	0	0	(2403)	(0)	(1100)
MSA	ECCEZIONALE (**)	1775	1527	4650	(1202)	(1001)	(3380)
		1775	0	4650	(1202)	(0)	(3380)
	NORMALE	3494	3695	0	(2472)	(2350)	(1300)
MSB	NORMALE	3494	0	0	(2472)	(0)	(1300)
	ECCEZIONALE (**)	1760	1923	5670	(1236)	(1175)	(3970)
	ECCEZIONALE (**)	1760	0	5670	(1236)	(0)	(3970)

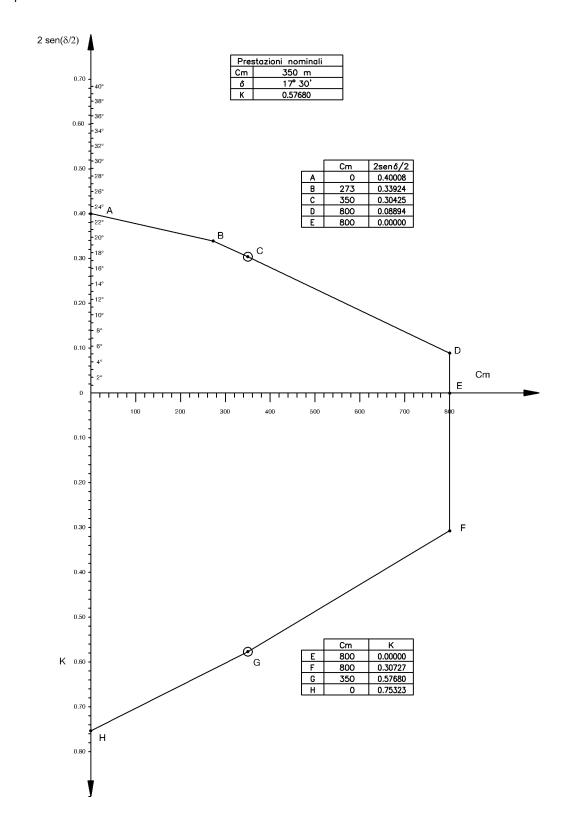
- (*) I valori tra parentesi si riferiscono alle condizioni derivate con sfere di segnalazione per il volo a bassa quota con diametro di 60 cm installate sull'intera campata.
- (**) La norma CEI 11.4 al punto 2.04.05 prevede per la serie in oggetto formata da n° 3 conduttori di energia la rottura di uno dei conduttori o di una delle ventuali corde di guardia. I valori indicati si riferiscono, ovviamente, al solo conduttore (o corda di guardia) rotto.

Mediante le relazioni (2) e (3) si può verificare che per tutte le terne di prestazioni geometriche (Cm, δ , K) tali che il punto (Cm, δ) sia compreso nel "campo di utilizzazione trasversale" e il punto (Cm, \square K) sia compreso nel "campo di utilizzazione verticale", le azioni trasversali e verticali (sia per i conduttori che per corde di guardia) nelle condizioni MSA e MSB risultino inferiori od eguali a quelle considerate per il calcolo del sostegno e riportate nella tabella precedente.

(***) Nel caso di utilizzo di corde di guardia di altra tipologia dovrà essere verificato il non superamento dei valori T , P , L, indicati.

P007UV002

Rev. 00
del 29/10/2018


Pagina 9 di 10

3.4 UTILIZZAZIONE DEL SOSTEGNO IN CORRISPONDENZA DI PRESTAZIONI VERTICALI PARTICOLARMENTE ELEVATE

Al sostegno V è affidato anche il compito di raccogliere i casi nei quali il carico verticale risulta particolarmente elevato, cioè si hanno valori di Cm e K esterni ai limiti del diagramma riportato al punto 3.2.

Al tal fine il sostegno è stato verificato anche con azioni verticali maggiorate, concomitanti però con azioni trasversali ridotte.

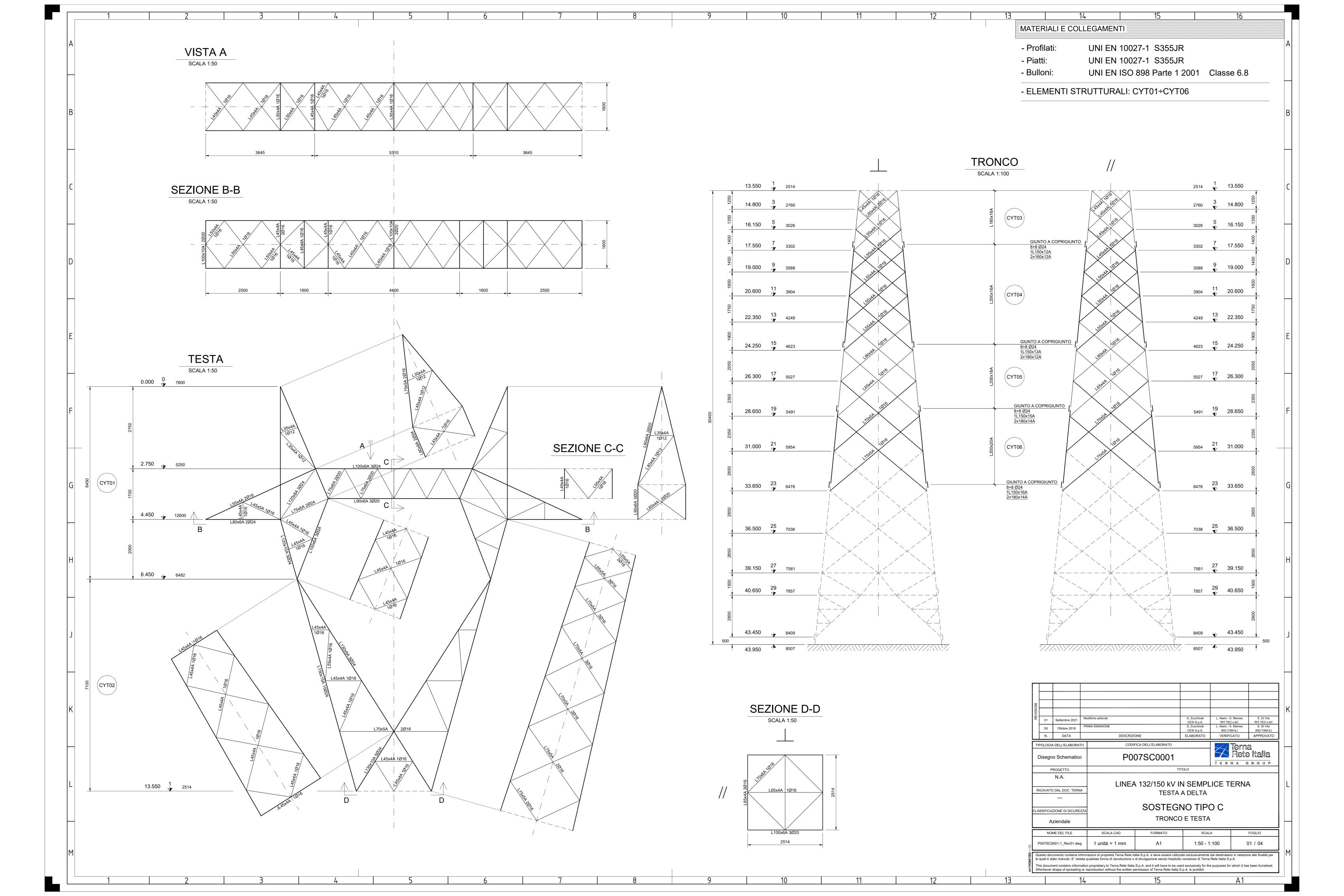
Si è ottenuto in tal modo il diagramma riportato nella pagina seguente, da adoperarsi in alternativa con il precedente

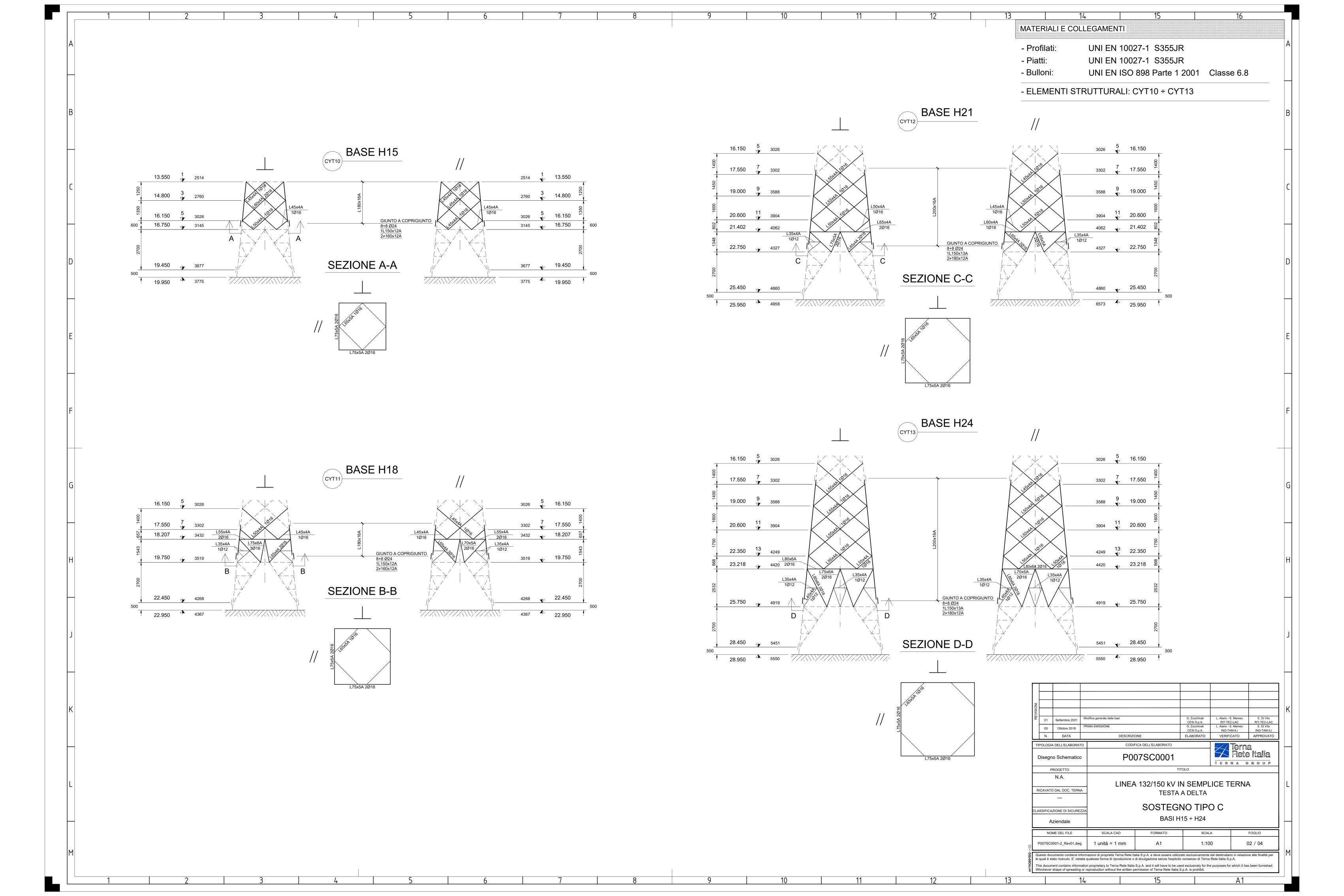
P007UV002

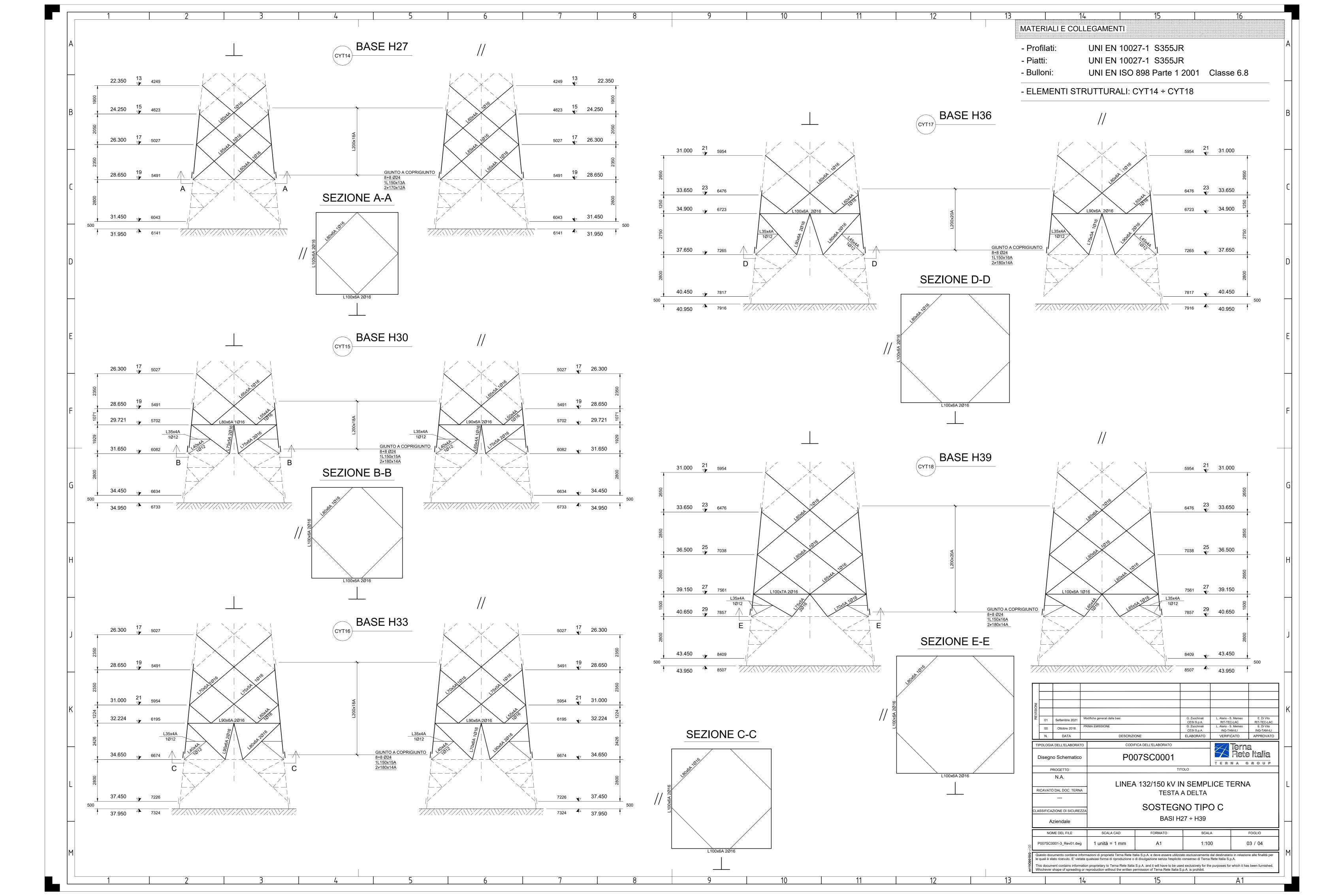
Rev. 00
del 29/10/2018

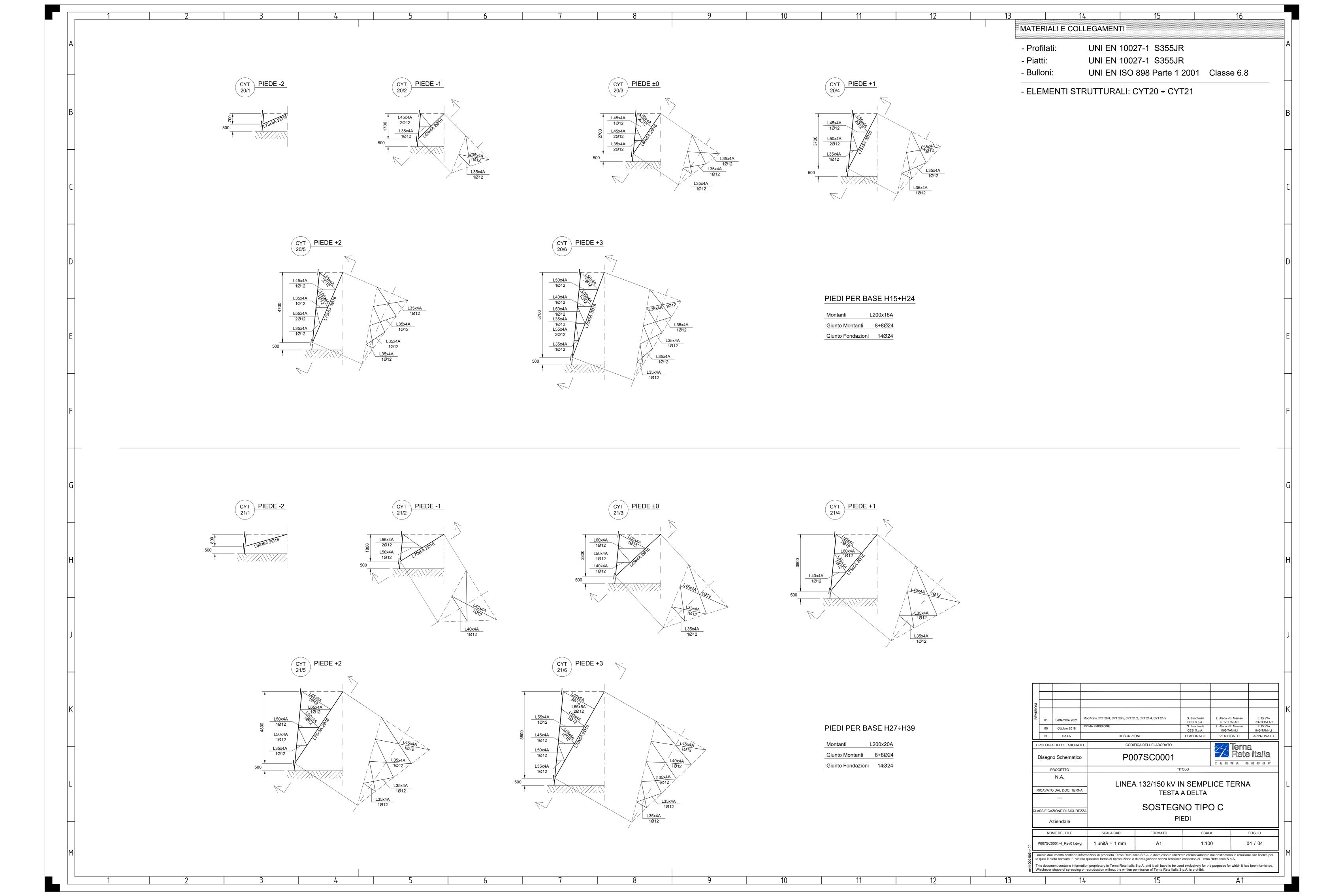
Rev. 00
Pagina 10 di 10

VALORI DELLE AZIONI ESTERNE PER IL CALCOLO DEL SOSTEGNO


I valori delle azioni esterne per il calcolo del sostegno sono riportati nella seguente tabella:


		C	ONDUTTOR	E	CORDA DI GUARDIA (*)		
STATO DEI CONDUTTORI	IPOTESI		LC2		LC50 (***)		
		T(daN)	P(daN)	L(daN)	T(daN)	P(daN)	L(daN)
	NORMALE	2294	3653	0	(1568)	(2546)	(1100)
	NORMALE	2294	0	0	(1568)	(0)	(1100)
MSA	ECCEZIONALE (**)	1197	1902	4650	(784)	(1273)	(3380)
		1197	0	4650	(784)	(0)	(3380)
	NORMALE	2294	4610	0	(1589)	(2991)	(1300)
MSB	NORMALE	2294	0	0	(1589)	(0)	(1300)
	5005710MM 5 /++\	1160	2380	5670	(795)	(1496)	(3970)
	ECCEZIONALE (**)	1160	0	5670	(795)	(0)	(3970)


- (*) I valori tra parentesi si riferiscono alle condizioni derivate con sfere di segnalazione per il volo a bassa quota con diametro di 60 cm installate sull'intera campata.
- (**) La norma CEI 11.4 al punto 2.04.05 prevede per la serie in oggetto formata da n° 3 conduttori di energia la rottura di uno dei conduttori o di una delle ventuali corde di guardia. I valori indicati si riferiscono, ovviamente, al solo conduttore (o corda di guardia) rotto.


Mediante le relazioni (2) e (3) si può verificare che per tutte le terne di prestazioni geometriche (Cm, δ , K) tali che il punto (Cm, δ) sia compreso nel "campo di utilizzazione trasversale" e il punto (Cm, \square K) sia compreso nel "campo di utilizzazione verticale", le azioni trasversali e verticali (sia per i conduttori che per corde di guardia) nelle condizioni MSA e MSB risultino inferiori od eguali a quelle considerate per il calcolo del sostegno e riportate nella tabella precedente.

(***) Nel caso di utilizzo di corde di guardia di altra tipologia dovrà essere verificato il non superamento dei valori T , P , L, indicati.

Codifica	
P007	7UC002
Rev. 00	Pagina 1 di 12
del 29/10/2018	9

LINEA ELETTRICA AEREA A 132-150 kV SEMPLICE TERNA A DELTA – TIRO PIEN	0
CONDUTTORI Ø 31,5 mm – EDS 18% - ZONA "B"	

UTILIZZAZIONE DEL SOSTEGNO "C"

CALCOLO DELLE AZIONI ESTERNE SUL SOSTEGNO

Storia delle revisioni					
Rev. 00	del 29/10/2018	Prima emissione			

١	Elaborato		Verificato	Approvato	_]		
	L. Alario ING-TAM-ILI	S.Memeo ING-TAM-ILI	P. Berardi ING-TAM-ILI			E. Di Vito ING-TAM-ILI	

P007UC002

Rev. 00
del 29/10/2018

Pagina 2 di 12

CALCOLO ESEGUITO IN CONFORMITA' AL D.M. DEL 21/03/1988 DI CUI ALLA LEGGE N. 339 DEL 28/06/1986

PER IL CALCOLO DI VERIFICA DEL SOSTEGNO VEDERE ELABORATO: **CESI prot. B8021802 – Rev.0 – del 29/10/2018**

Codifica P007UC002 Rev. 00 Pagina 3 di 12 del 29/10/2018

1) CARATTERISTICHE GENERALI

Conduttore	All. Acc. Ø 31,5 mm (LC2)
Corda di guardia	Acciaio Ø 11,5 mm (LC23) - Acciaio rivestito di alluminio Ø 11,5 mm (LC51) Corda di guardia con fibre ottiche Ø 17,9 mm (LC50) (*)
Isolatori	Vetro temprato a cappa e perno in catene di 9 elementi nelle sospensioni semplici e di 9 elementi nelle sospensioni doppie e amarri.
Tipo fondazione	In calcestruzzo a piedini separati
Tipo sfera di segnalazione aerea	Diametro 60 cm; peso 5,5 Kg; passo di installazione ≤ 30 m.
Messa a terra	Secondo le norme citate
Larghezza linea	12,60 m tra i conduttori esterni. Conduttori posti sul piano orizzontale.

2) CONDUTTORI E CORDA DI GUARDIA

			CONDUTTORE		CORDA DI GUARDIA			
2.1 CARATTERISTICHE PRINCIPALI			LC2	LC 23	LC 51	LC 50		
MATERIALE			All. Acc.	Acciaio	Acc.rivestito di All.	AI + Lega AI + Acciaio		
DIAMETRO CIRCOSCRITTO (mm)			31,5	11,5	11,5	17,9		
	ALLUMINIO	(mm²)	519,50	0	0	118,90 (Al + Lega Al)		
SEZIONI TEORICHE	ACCIAIO	(mm²)	65,80	78,94	80,65	57,70		
	TOTALE	(mm²)	583,30	78,94	80,65	176,60		
MASSA UNITARIA (Kg/m)		1,953	0,621	0,537	0,820			
MODULO DI ELASTICITA' (N/mm²)		68000	175000	155000	88000			
COEFFICIENTE DI DILATAZIONE (1/°C)		19,4 X 10 ⁻⁶	11,5 X 10 ⁻⁶	13 X 10 ⁻⁶	17 X 10 ⁻⁶			
CARICO DI ROTTURA (daN)		16852	12231	9000	10600			

2.2 CONDIZIONE BASE E CONDIZIONE DERIVATA

- CONDIZIONE BASE

EDS: (Every Day Stress) 15°C, conduttore scarico

In detta condizione il tiro orizzontale è stato assunto costante al variare della campata equivalente della tratta (ovvero della campata reale per la corda di guardia). I valori di tiro per conduttore e corda di guardia sono:

	CONDUTTORE	CORDA DI GUARDIA		
	LC2	LC 23	LC 51	LC 50
TIRO ORIZZONTALE T _O (daN)	3034	1113	1008	1537

- CONDIZIONE DERIVATA

MSA: -5°C, vento alla velocità di 130 km/h

-20°C, vento alla velocità di 65 km/h, manicotto di ghiaccio di 12 mm MSB:

Corde di guardia di altra tipologia potranno essere utilizzate purchè vengano rispettati i valori massimi delle azioni trasmesse dalla corda indicata.

Codifica					
P007UC002					
Rev. 00	Denine 4 di 40				
401 20/10/2019	Pagina 4 di 12				

In detta condizione i tiri vengono ottenuti risolvendo la equazione del cambiamento di stato:

$$\alpha \left(\Theta_{d} - \Theta_{b}\right) + \frac{1}{SE} \left(T_{d} - T_{b}\right) = \frac{p'_{d}^{2}L^{2}}{24 T_{d}^{2}} - \frac{p'_{b}^{2}L^{2}}{24 T_{b}^{2}}$$
(1)

Ove:

Θ_d = Temperatura della condizione derivata

 Θ_b = Temperatura della condizione base

S = Sezione totale del conduttore

E = Modulo di elasticità

T_d = Tiro orizzontale della condizione derivata

T_b = Tiro orizzontale della condizione base

P'd = Carico risultante per metro di conduttore nella condizione derivata

P'_b = Carico risultante per metro di conduttore nella condizione base

L = Campata equivalente (*) della tratta nel caso di conduttore ovvero campata reale nel caso di corda di guardia

I valori di spinta del vento per metro di conduttore, di peso per metro di conduttore e di carico risultante per metro di conduttore sono riportati nella seguente tabella:

		CONDUTTORE	CORDA DI GUARDIA (**)		
		LC2	LC 23	LC 51	LC 50
	V (daN/m)	0	0	0	0
CONDIZIONE EDS	P (daN/m)	1,9159	0,6090	0,5270	0,8044
	P' (daN/m)	1,9159	0,6090	0,5270	0,8044
	V (daN/m)	2,2249	0,8122 (1,0896)	0,8122 (1,0896)	1,2643 (1,5417)
CONDIZIONE MSA	P (daN/m)	1,9159	0,6090 (0,7889)	0,5270 (0,7069)	0,8044 (0,9842)
	P' (daN/m)	2,9361	1,0152 (1,3452)	0,9682 (1,2988)	1,4985 (1,8291)
	V (daN/m)	0,9800	0,6268 (0,6962)	0,6268 (0,6962)	0,7399 (0,8092)
CONDIZIONE MSB	P (daN/m)	3,3959	1,4086 (1,5884)	1,3266 (1,5064)	1,8217 (2,0015)
	P' (daN/m)	3,5345	1,5418 (1,7343)	1,4672 (1,6595)	1,9663 (2,1589)

(**) I valori tra parentesi si riferiscono alle condizioni derivate con sfere di segnalazione per il volo a bassa quota con diametro di 60 cm installate sull'intera campata.

V = spinta del vento per metro di conduttore (daN/m)

P = peso per metro di conduttore (daN/m)

$$P' = \sqrt{v^2 + p^2}$$
 = carico risultante per metro di conduttore (daN/m)

(*) L =
$$\sqrt{\frac{\sum \text{Li}^3}{\sum \text{Li}}}$$
 ove le Li sono le campate reali comprese fra due successiviama ri

Codifica	
P(007UC002
Rev. 00	Danina E di 10
401 20/10/2018	Pagina 5 di 12

3) UTILIZZAZIONE MECCANICA DEL SOSTEGNO

3.1 FORMULE PER IL CALCOLO DELLE AZIONI ESTERNE

Il calcolo del sostegno è stato eseguito tenendo conto delle azioni esterne dei conduttori e delle corde di guardia nelle due ipotesi MSA e MSB.

Le formule per il calcolo di tali azioni, sia per conduttori che per corde di guardia (supposti integri), sono le seguenti:

Conduttori $\begin{cases} Azione \ trasversale & T = v \ Cm + 2 \ sen \ \delta/2 \ T_0 + t^* & (2) \\ Azione \ verticale & P = p \ Cm + K \ T_0 + p^* & (3) \end{cases}$

Ove:

v = spinta del vento per metro di conduttore

p = peso per metro di conduttore i valori di v e di p sono riportati in 2.2

t* = spinta del vento su isolatori e morsetteria

 p^* = peso di isolatori e morsetteria T_0 = tiro orizzontale nel conduttore

I valori di t*e p* e To sono riportati nella seguente tabella:

	CC	CORDA DI GUARDIA (**)						
	LC2	ISOLATORI E MORSETTERIA		LC 23	LC 51	LC 50	ISOLATORI E MORSETTERIA	
	To (daN)	t* (daN)	p* (daN)	To (daN)	To (daN)	To (daN)	t* (daN)	p* (daN)
MSA	4650	120	170	1835 (2393)	1821 (2397)	2807 (3380)	0	0
MSB	5670	30	170	2735 (3050)	2702 (3025)	3640 (3970)	0	0

(**) I valori tra parentesi si riferiscono alle condizioni derivate con sfere di segnalazione per il volo a bassa quota con diametro di 60 cm installate sull'intera campata.

I suddetti tiri sono stati ottenuti mediante la equazione del cambiamento di stato e rappresentano i massimi valori che il tiro assume nella suddetta ipotesi:

per i conduttori in un intervallo di campate equivalenti pari a 200 \div 800 m

per le corde di guardia in un intervallo di campate reali pari a 100 ÷ 1000 m

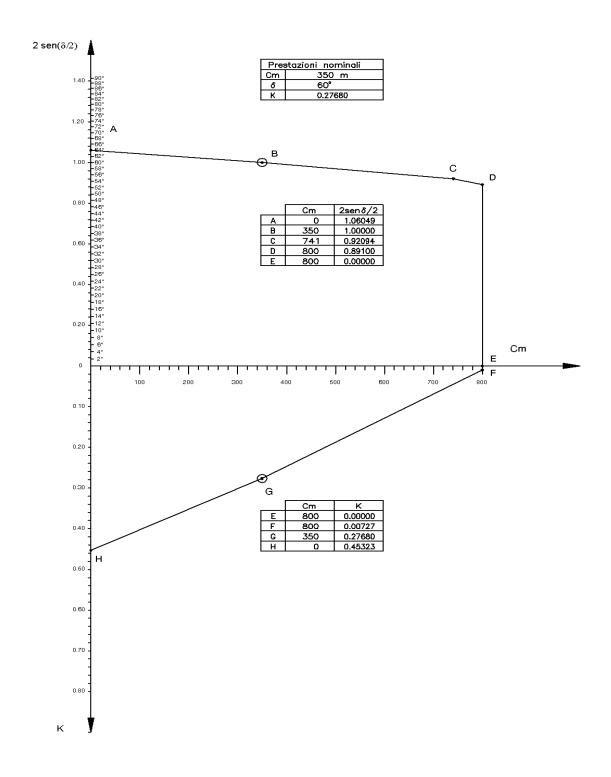
Dal confronto dei tiri orizzontali, delle spinte vento e dei pesi delle corde di guardia nelle diverse ipotesi si evince che la corda di guardia LC50 è quella che induce sul sostegno in esame le maggiori azioni esterne.

Pertanto il diagramma di utilizzazione (punto 3.2) e le azioni esterne (punto 3.3) sono state determinati con la corda di guardia LC50. L'utilizzo di altre corde di guardia diverse da LC50 obbligano il Progettista a realizzare le necessarie verifiche strutturali e a descriverne il diagramma di impiego (fig.3).

caratteristiche geometriche del picchetto:

$$k = \frac{h_1}{a_1} + \frac{h_2}{a_2}$$
 (vedi fig.1)

(*) L'espressione di K è la seguente: ove le campate "a" hanno sempre segno positivo ed i dislivelli "h" segno positivo o negativo secondo lo schema di fig. 2



P007UC002

Rev. 00
del 29/10/2018

Rev. 00
Pagina 6 di 12

3.2 DIAGRAMMA DI UTILIZZAZIONE DEL SOSTEGNO

Codifica P007UC002

Rev. 00 del 29/10/2018

Pagina 7 di 12

IL DIAGRAMMA DELIMITA

- a) Nel piano (Cm, δ) un insieme di punti ai quali corrisponde un'azione trasversale complessiva non superiore a quella di calcolo del sostegno (campo di utilizzazione trasversale)
- b) Nel piano (Cm, K) un insieme di punti ai quali corrisponde un'azione verticale complessiva non superiore a quella di calcolo del sostegno (campo di utilizzazione verticale)

Pertanto, affinchè il sostegno possa essere impiegato in un picchetto di caratteristiche geometriche (Cm_i, $\delta_i \square \square$, K_i) è necessario che i punti (Cm_i, $\delta_i \square$) e (Cm_i, K_i) siano compresi rispettivamente nei campi di utilizzazione trasversale e verticale.

3.3 AZIONI PER IL CALCOLO DEL SOSTEGNO

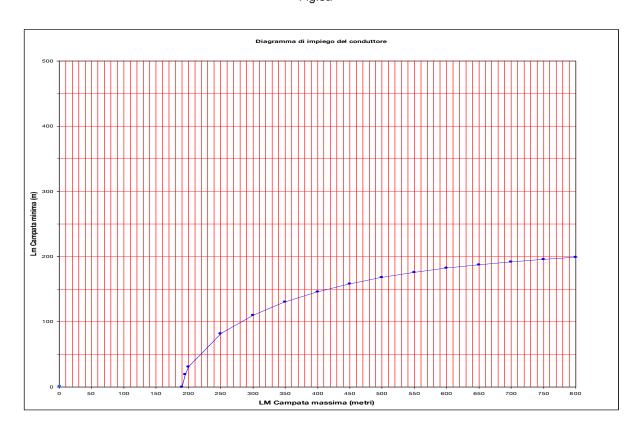
Sono state determinate le azioni esterne per il calcolo del sostegno in condizioni MSA e MSB, sia nell'ipotesi di conduttori e corda di guardia integri (ipotesi normale), sia nell'ipotesi di rottura di un conduttore o della corda di guardia secondo quanto prescritto dalle norme (ipotesi eccezionale).

IPOTESI NORMALE

-Azioni trasversali e verticali:

Sono stati considerati i massimi valori che si verificano nelle più gravose condizioni d'impiego del sostegno (vedi diagramma di utilizzazione)

-Azioni longitudinali:

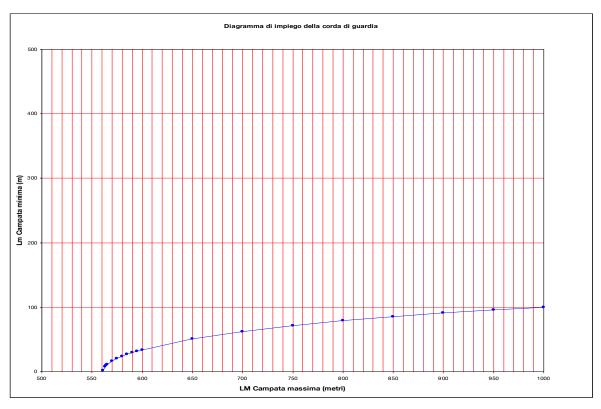

Sia per i conduttori che per le corde di guardia è stato considerato uno squilibrio di tiro per tener conto rispettivamente della diversa lunghezza delle campate equivalenti delle due tratte adiacenti al sostegno (conduttori) e della diversa lunghezza delle campate reali adiacenti al sostegno (corda di guardia).

Per ogni picchetto si dovrà perciò verificare mediante (1) che la effettive differenza di tiro nelle condizioni MSA e MSB, sia minore o eguale dei valori di squilibrio considerati per il calcolo del sostegno.

Per un' indagine rapida sono stati costruiti i diagrammi riportati in fig. 3, che tiene conto dei massimi squilibri relativi al conduttore fig. 3a e alla corda di guardia calcolato con l'impiego delle sfere di segnalazione fig 3b.

Riportando in ascisse la campata maggiore (L_M) [campata equivalente per i conduttori fig.3a – campata reale per la corda di guardia fig.3b] tra le due adiacenti al sostegno e in ordinata la minore (L_m), se il punto di coordinata (L_M , L_m) sta al disopra del diagramma la verifica è positiva poiché, lo squilibrio di tiro è minore di quello di calcolo.

Fig.3a



P007UC002

Rev. 00
Pagina 8 di 12

del 29/10/2018

Fig. 3b

IPOTESI ECCEZIONALE:

Azioni trasversali e verticali:

per i conduttori i valori sono stati ottenuti dimezzando le corrispondenti azioni in ipotesi normale (tali valori non risultano esattamente la metà in quanto nelle due ipotesi sono state mantenute costanti la spinta del vento su isolatori e morsetteria (t^*) ed il loro peso (p^*)).

Per la corda di guardia i valori sono stati ottenuti invece dimezzando le corrispondenti azioni in ipotesi normale.

- Azioni longitudinali:

sono state assunte pari al tiro T_0

P007UC002

Rev. 00
del 29/10/2018

Pagina 9 di 12

VALORI DELLE AZIONI ESTERNE PER IL CALCOLO DEL SOSTEGNO

Sono riportati nella seguente tabella:

		CONDUTTORE			CORDA DI GUARDIA (*)		
STATO DEI CONDUTTORI	IPOTESI	LC2			LC50 (***)		
		T(daN)	P(daN)	L(daN)	T(daN)	P(daN)	L(daN)
	NORMALE ECCEZIONALE (**)	6049	2278	220	(4254)	(1532)	(1100)
		6049	0	220	(4254)	(0)	(1100)
MSA		3085	1224	4650	(2127)	(766)	(3380)
		3085	0	4650	(2127)	(0)	(3380)
	NORMALE ECCEZIONALE (**)	6043	2929	100	(4254)	(1800)	(1300)
MCD		6043	0	100	(4254)	(0)	(1300)
MSB		3037	1550	5670	(2127)	(900)	(3970)
		3037	0	5670	(2127)	(0)	(3970)

- (*) I valori tra parentesi si riferiscono alle condizioni derivate con sfere di segnalazione per il volo a bassa quota con diametro di 60 cm installate sull'intera campata.
- (**) La norma CEI 11.4 al punto 2.04.05 prevede per la serie in oggetto formata da n° 3 conduttori di energia la rottura di uno dei conduttori o di una delle ventuali corde di guardia. I valori indicati si riferiscono, ovviamente, al solo conduttore (o corda di guardia) rotto.

Mediante le relazioni (2) e (3) si può verificare che per tutte le terne di prestazioni geometriche (Cm, δ , K) tali che il punto (Cm, δ) sia compreso nel "campo di utilizzazione trasversale" e il punto (Cm, \square K) sia compreso nel "campo di utilizzazione verticale", le azioni trasversali e verticali (sia per i conduttori che per corde di guardia) nelle condizioni MSA e MSB risultino inferiori od eguali a quelle considerate per il calcolo del sostegno e riportate nella tabella precedente.

(***) Nel caso di utilizzo di corde di guardia di altra tipologia dovrà essere verificato il non superamento dei valori T , P , L, indicati.

4) UTILIZZAZIONE MECCANICA DEL SOSTEGNO IMPIEGATO COME CAPOLINEA

Il sostegno C viene impiegato anche come capolinea, qui di seguito viene riportato il diagramma di utilizzazione relativo a tale impiego.

In esso si è indicato con α l'angolo di deviazione della linea rispetto al piano di simmetria longitudinale del sostegno (vedi Fig.4)

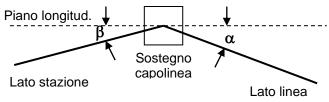
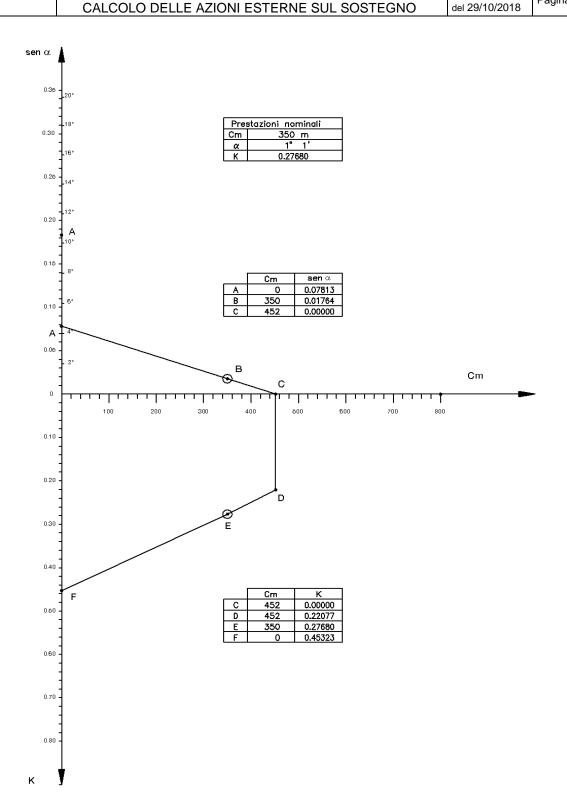



Fig. 4

P007UC002

Rev. 00
Pagina 10 di 12

P007UC002

Rev. 00
del 29/10/2018

Pagina 11 di 12

VALORI DELLE AZIONI ESTERNE PER IL CALCOLO DEL SOSTEGNO

I valori delle azioni esterne per il calcolo del sostegno sono riportati nella seguente tabella:

STATO DEI IPOTESI		CONDUTTORE			CORDA DI GUARDIA (*)		
			LC2		LC50 (***)		
		T(daN)	P(daN)	L(daN)	T(daN)	P(daN)	L(daN)
	NORMALE ECCEZIONALE (**)	1619	2278	4650	(1974)	(1532)	(3380)
		1619	0	4650	(1974)	(0)	(3380)
MSA		0	0	0	(0)	(0)	(0)
		0	0	0	(0)	(0)	(0)
	NORMALE ECCEZIONALE (**)	473	2929	5670	(1584)	(1800)	(3970)
MOD		473	0	5670	(1584)	(0)	(3970)
MSB		0	0	0	(0)	(0)	(0)
		0	0	0	(0)	(0)	(0)

Per quanto riguarda le prestazioni orizzontali i valori di T e di L sono stati determinati in base alla condizione di uguaglianza della loro somma T + L nelle condizioni di amarro e di capolinea, ed assunto per L il valore massimo di To

In una generica condizione di impiego del sostegno capolinea le azioni trasversali e longitudinali sono espresse dalle sequenti relazioni:

Conduttori
$$\begin{cases} & \text{Azione trasversale} & T = v \text{ Cm} + T_0 \text{ sen } \alpha + t^* \text{ (2')} \\ & \text{Azione longitudinale} & L = T_0 \cos \alpha + t^* \text{ (3')} \end{cases}$$

Si può verificare che per tutte le prestazioni geometriche (Cm, α) comprese nel "campo di utilizzazione trasversale" la somma dei valori T ed L ricavati mediante la (2') e (3') (sia per i conduttori che per la corda di guardia in entrambe le condizioni MSA e MSB) risulti inferiore od eguale alla somma dei valori T ed L riportati in tabella e relativi alla condizione di impiego α = 0 cui corrisponde il massimo valore della azione longitudinale.

Per quanto riguarda le prestazioni verticali, esse sono rimaste invariate rispetto a quelle stabilite per il sostegno impiegato come amarro.

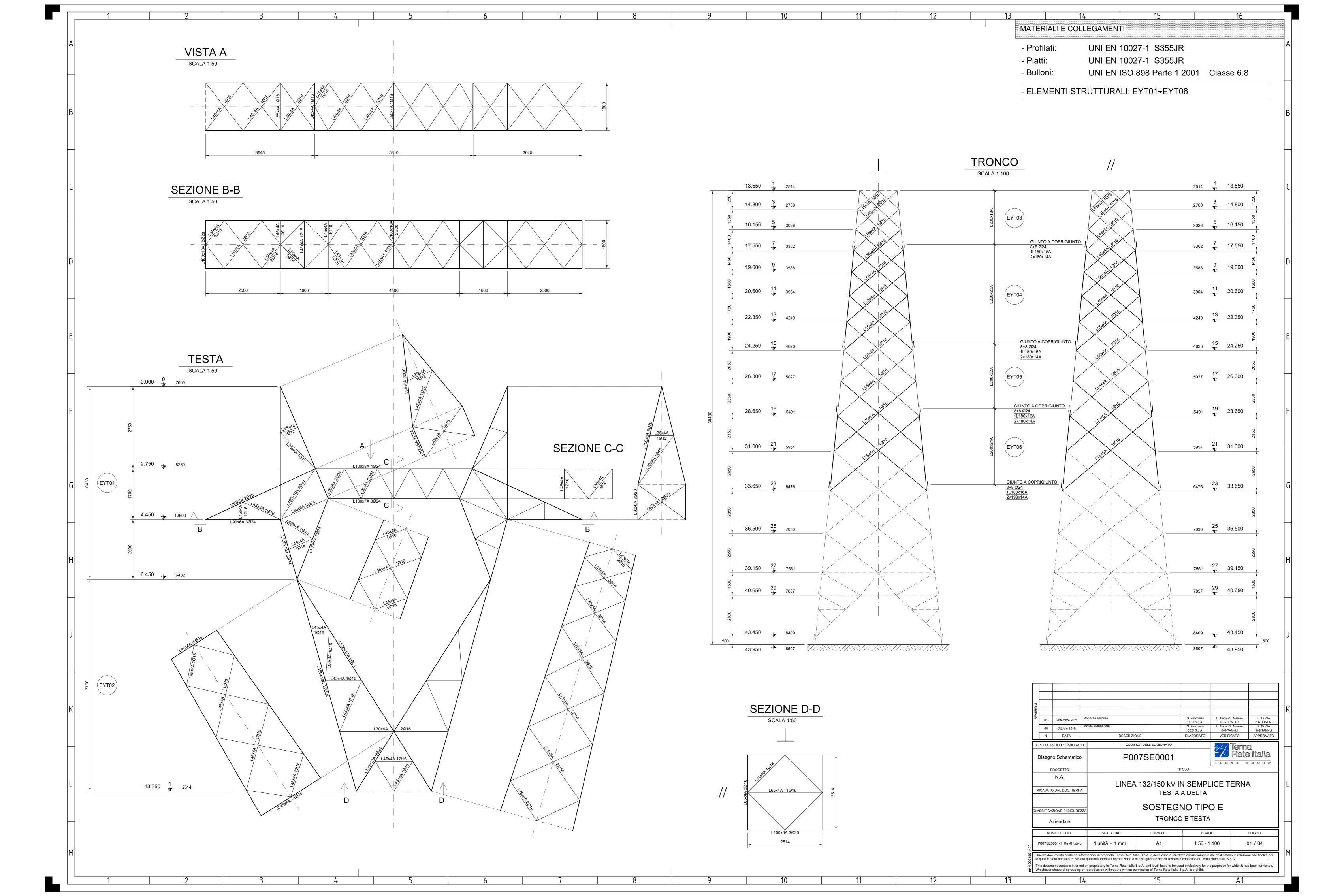
Si noti ancora che il sostegno è stato calcolato considerato nullo il tiro della campata di collegamento al portale di stazione.

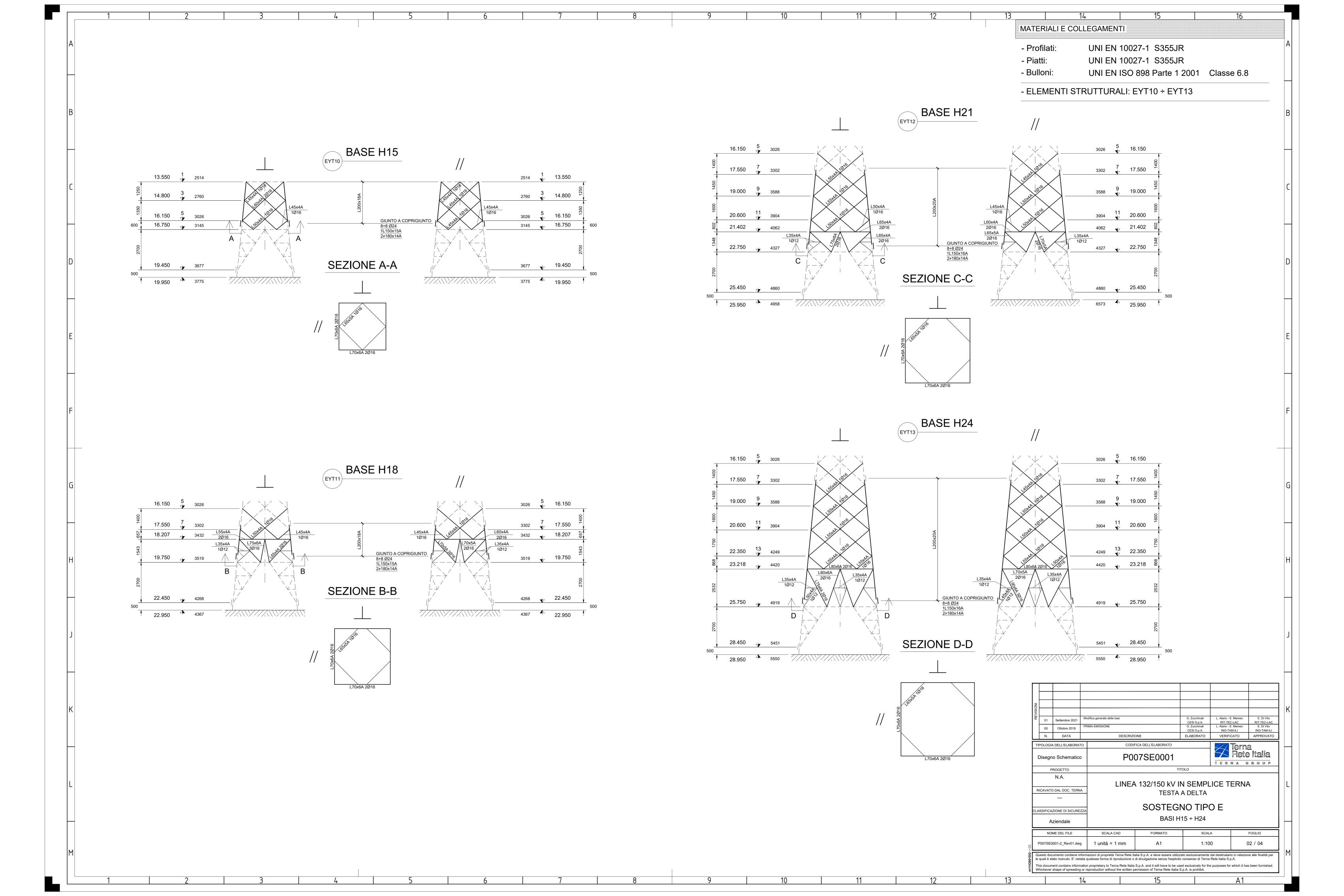
N.B. Nella realtà tale tiro avrà un valore non nullo, benché modesto, ma ciò è a favore della sicurezza, purche l'angolo β (vedi Fig.4) non superi il valore di 45°.
 Infatti se T'o ≠ 0 è il tiro ridotto, le espressioni 2' e 3' diventano:

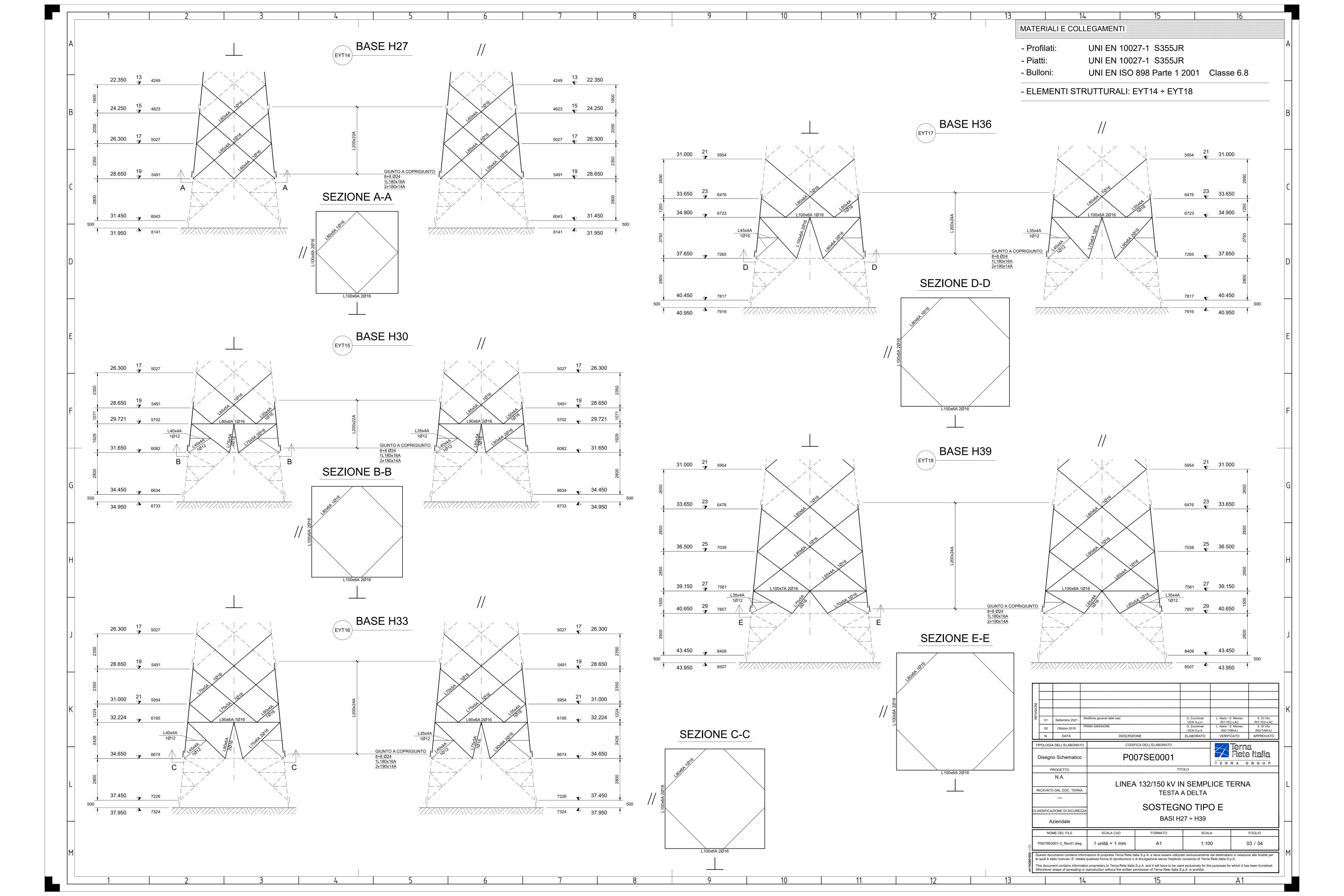
E quindi la somma T + L non supera il valore del calcolo finche rimanga:

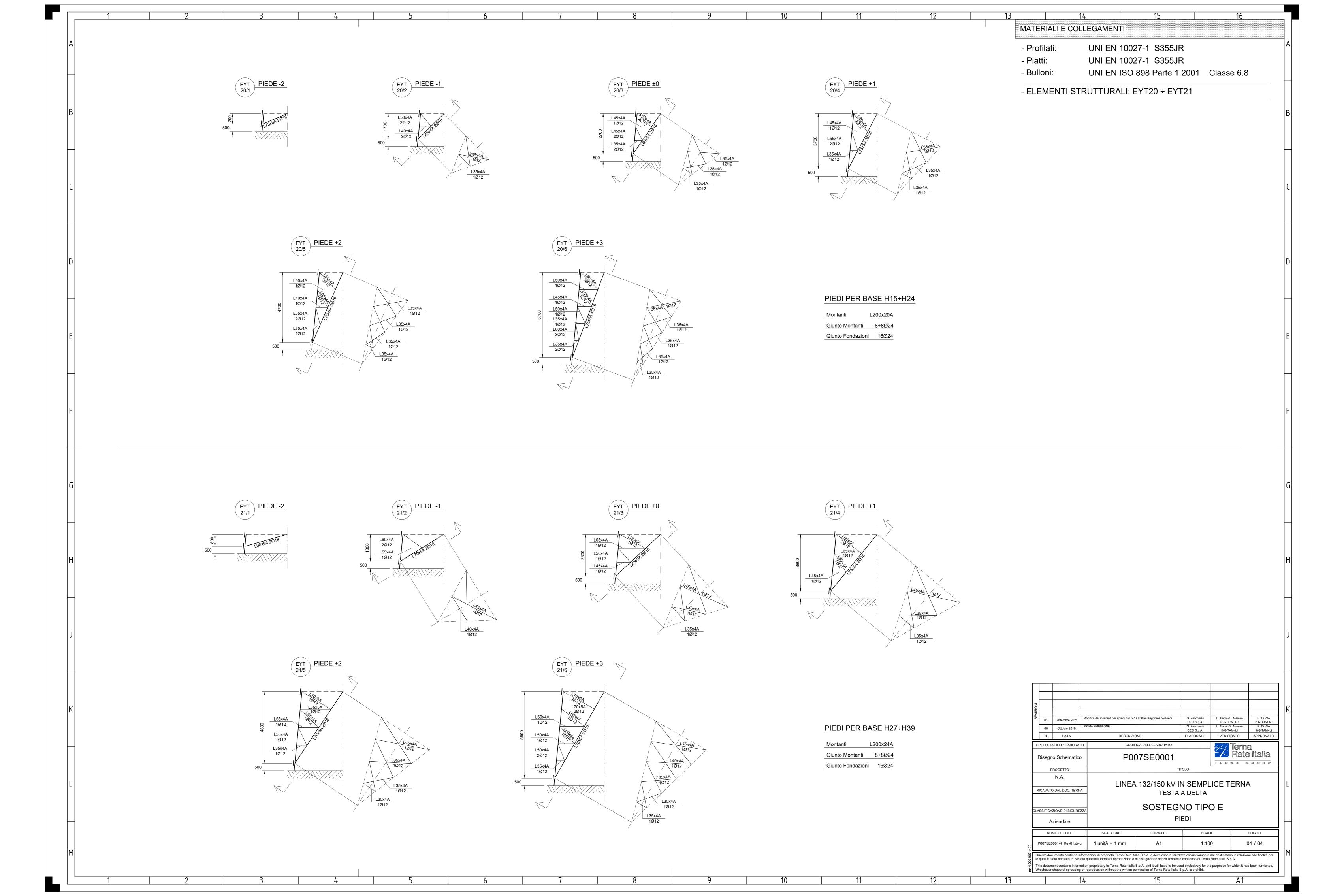
sen $\beta \le \cos \beta$ ossia $\beta \le 45^{\circ}$

P007UC002


Rev. 00
del 29/10/2018


Pagina 12 di 12


- (*) I valori tra parentesi si riferiscono alle condizioni derivate con sfere di segnalazione per il volo a bassa quota con diametro di 60 cm installate sull'intera campata.
- (**) La norma CEI 11.4 al punto 2.04.05 prevede per la serie in oggetto formata da n° 3 conduttori di energia la rottura di uno dei conduttori o di una delle ventuali corde di guardia. I valori indicati si riferiscono, ovviamente, al solo conduttore (o corda di guardia) rotto.


Mediante le relazioni (2) e (3) si può verificare che per tutte le terne di prestazioni geometriche (Cm, δ , K) tali che il punto (Cm, δ) sia compreso nel "campo di utilizzazione trasversale" e il punto (Cm, \square K) sia compreso nel "campo di utilizzazione verticale", le azioni trasversali e verticali (sia per i conduttori che per corde di guardia) nelle condizioni MSA e MSB risultino inferiori od eguali a quelle considerate per il calcolo del sostegno e riportate nella tabella precedente.

(***) Nel caso di utilizzo di corde di guardia di altra tipologia dovrà essere verificato il non superamento dei valori T , P , L, indicati.

Codifica	
P00	7UE002
Rev. 00	Pagina 1 di 12
del 29/10/2018	ragina i ui iz

LINEA ELETTRICA AEREA A 132-150 kV SEMPLICE TERNA A DELTA – TIRO PIENO CONDUTTORI \varnothing 31,5 mm – EDS 18% - ZONA "B"

UTILIZZAZIONE DEL SOSTEGNO "E"

CALCOLO DELLE AZIONI ESTERNE SUL SOSTEGNO

Storia de	elle revisioni	
Rev. 00	del 29/10/2018	Prima emissione

Elaborato		Verificato F		Approvato	╛	
L. Alario ING-TAM-ILI	S.Memeo ING-TAM-ILI	P. Berardi ING-TAM-ILI			E. Di Vito ING-TAM-ILI	

P007UE002

Rev. 00
del 29/10/2018

Pagina 2 di 12

CALCOLO ESEGUITO IN CONFORMITA' AL D.M. DEL 21/03/1988 DI CUI ALLA LEGGE N. 339 DEL 28/06/1986

PER IL CALCOLO DI VERIFICA DEL SOSTEGNO VEDERE ELABORATO: **CESI prot. B8021803** – **Rev.0 – del 29/10/2018**

Codifica P007UE002 Rev. 00 Pagina 3 di 12 del 29/10/2018

1) CARATTERISTICHE GENERALI

Conduttore	All. Acc. Ø 31,5 mm (LC2)
Corda di guardia	Acciaio Ø 11,5 mm (LC23) - Acciaio rivestito di alluminio Ø 11,5 mm (LC51) Corda di guardia con fibre ottiche Ø 17,9 mm (LC50) (*)
Isolatori	Vetro temprato a cappa e perno in catene di 9 elementi nelle sospensioni semplici e di 9 elementi nelle sospensioni doppie e amarri.
Tipo fondazione	In calcestruzzo a piedini separati
Tipo sfera di segnalazione aerea	Diametro 60 cm; peso 5,5 Kg; passo di installazione ≤ 30 m.
Messa a terra	Secondo le norme citate
Larghezza linea	12,60 m tra i conduttori esterni. Conduttori posti sul piano orizzontale.

2) CONDUTTORI E CORDA DI GUARDIA

2.1 CARATTERISTICHE PRINCIPALI			CONDUTTORE		CORDA DI GUAR	DIA
2.1 CARATTER	RISTICHE PRINCI	PALI	LC2	LC 23	LC 51	LC 50
	MA	TERIALE	All. Acc.	Acciaio	Acc.rivestito di All.	AI + Lega AI + Acciaio
DIAM	ETRO CIRCOSCRITT	O (mm)	31,5	11,5	11,5	17,9
	ALLUMINIO	(mm²)	519,50	0	0	118,90 (Al + Lega Al)
SEZIONI TEORICHE	ACCIAIO	(mm²)	65,80	78,94	80,65	57,70
	TOTALE	(mm²)	583,30	78,94	80,65	176,60
MASS	SA UNITARIA	(Kg/m)	1,953	0,621	0,537	0,820
MODULO DI ELASTICITA' (N/mm²)		68000	175000	155000	88000	
COEFFICIENTE	E DI DILATAZIONE	(1/°C)	19,4 X 10 ⁻⁶	11,5 X 10 ⁻⁶	13 X 10 ⁻⁶	17 X 10 ⁻⁶
CARICO DI RO	OTTURA	(daN)	16852	12231	9000	10600

2.2 CONDIZIONE BASE E CONDIZIONE DERIVATA

- CONDIZIONE BASE

EDS: (Every Day Stress) 15°C, conduttore scarico

In detta condizione il tiro orizzontale è stato assunto costante al variare della campata equivalente della tratta (ovvero della campata reale per la corda di guardia). I valori di tiro per conduttore e corda di guardia sono:

	CONDUTTORE CORDA DI GUARDIA			
	LC2	LC 23	LC 51	LC 50
TIRO ORIZZONTALE T _O (daN)	3034	1113	1008	1537

- CONDIZIONE DERIVATA

MSA: -5°C, vento alla velocità di 130 km/h

-20°C, vento alla velocità di 65 km/h, manicotto di ghiaccio di 12 mm MSB:

Corde di guardia di altra tipologia potranno essere utilizzate purchè vengano rispettati i valori massimi delle azioni trasmesse dalla corda indicata.

Codifica						
P007UE002						
Rev. 00	Pagina 4 di 12					
del 29/10/2018	Pagina 4 di 12					

In detta condizione i tiri vengono ottenuti risolvendo la equazione del cambiamento di stato:

$$\alpha \left(\Theta_{d} - \Theta_{b}\right) + \frac{1}{SE} \left(T_{d} - T_{b}\right) = \frac{p'_{d}^{2}L^{2}}{24 T_{d}^{2}} - \frac{p'_{b}^{2}L^{2}}{24 T_{b}^{2}}$$
(1)

Ove:

Θ_d = Temperatura della condizione derivata

 Θ_b = Temperatura della condizione base

S = Sezione totale del conduttore

E = Modulo di elasticità

T_d = Tiro orizzontale della condizione derivata

T_b = Tiro orizzontale della condizione base

P'd = Carico risultante per metro di conduttore nella condizione derivata

P'_b = Carico risultante per metro di conduttore nella condizione base

L = Campata equivalente (*) della tratta nel caso di conduttore ovvero campata reale nel caso di corda di guardia

I valori di spinta del vento per metro di conduttore, di peso per metro di conduttore e di carico risultante per metro di conduttore sono riportati nella seguente tabella:

			CONDUTTORE CO		*)
		LC2	LC 23	LC 51	LC 50
	V (daN/m)	0	0	0	0
CONDIZIONE EDS	P (daN/m)	1,9159	0,6090	0,5270	0,8044
	P' (daN/m)	1,9159	0,6090	0,5270	0,8044
	V (daN/m)	2,2249	0,8122 (1,0896)	0,8122 (1,0896)	1,2643 (1,5417)
CONDIZIONE MSA	P (daN/m)	1,9159	0,6090 (0,7889)	0,5270 (0,7069)	0,8044 (0,9842)
	P' (daN/m)	2,9361	1,0152 (1,3452)	0,9682 (1,2988)	1,4985 (1,8291)
	V (daN/m)	0,9800	0,6268 (0,6962)	0,6268 (0,6962)	0,7399 (0,8092)
CONDIZIONE MSB	P (daN/m)	3,3959	1,4086 (1,5884)	1,3266 (1,5064)	1,8217 (2,0015)
	P' (daN/m)	3,5345	1,5418 (1,7343)	1,4672 (1,6595)	1,9663 (2,1589)

(**) I valori tra parentesi si riferiscono alle condizioni derivate con sfere di segnalazione per il volo a bassa quota con diametro di 60 cm installate sull'intera campata.

V = spinta del vento per metro di conduttore (daN/m)

P = peso per metro di conduttore (daN/m)

$$P' = \sqrt{v^2 + p^2}$$
 = carico risultante per metro di conduttore (daN/m)

(*) L =
$$\sqrt{\frac{\sum \text{Li}^3}{\sum \text{Li}}}$$
 ove le Li sono le campate reali comprese fra due successiviama ri

Codifica P0	07UE002
Rev. 00	Pagina 5 di 12

3) UTILIZZAZIONE MECCANICA DEL SOSTEGNO

3.1 FORMULE PER IL CALCOLO DELLE AZIONI ESTERNE

Il calcolo del sostegno è stato eseguito tenendo conto delle azioni esterne dei conduttori e delle corde di guardia nelle due ipotesi MSA e MSB.

Le formule per il calcolo di tali azioni, sia per conduttori che per corde di guardia (supposti integri), sono le seguenti:

Conduttori $\begin{cases} \text{Azione trasversale} & T = v \text{ Cm} + 2 \text{ sen } \delta/2 \text{ T}_0 + t^* \\ \text{Azione verticale} & P = p \text{ Cm} + K \text{ T}_0 + p^* \end{cases}$ (2)

Ove:

v = spinta del vento per metro di conduttore

p = peso per metro di conduttore i valori di v e di p sono riportati in 2.2

t* = spinta del vento su isolatori e morsetteria

 p^* = peso di isolatori e morsetteria T_o = tiro orizzontale nel conduttore

I valori di t*e p* e To sono riportati nella seguente tabella:

	CC	NDUTTORE		CORDA DI GUARDIA (**)						
	LC2	ISOLATORI E MORSETTERIA		LC 23	LC 51	LC 50	ISOLA ⁻ MORSE	TORI E TTERIA		
	To (daN)	t* (daN)	p* (daN)	To (daN)	To (daN)	To (daN)	t* (daN)	p* (daN)		
MSA	4650	120	170	1835 (2393)	1821 (2397)	2807 (3380)	0	0		
MSB	5670	30	170	2735 (3050)	2702 (3025)	3640 (3970)	0	0		

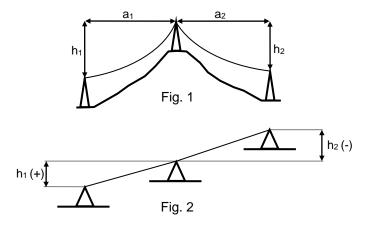
(**) I valori tra parentesi si riferiscono alle condizioni derivate con sfere di segnalazione per il volo a bassa quota con diametro di 60 cm installate sull'intera campata.

I suddetti tiri sono stati ottenuti mediante la equazione del cambiamento di stato e rappresentano i massimi valori che il tiro assume nella suddetta ipotesi:

per i conduttori in un intervallo di campate equivalenti pari a 200 \div 800 m

per le corde di guardia in un intervallo di campate reali pari a 100 ÷ 1000 m

Dal confronto dei tiri orizzontali, delle spinte vento e dei pesi delle corde di guardia nelle diverse ipotesi si evince che la corda di guardia LC50 è quella che induce sul sostegno in esame le maggiori azioni esterne.

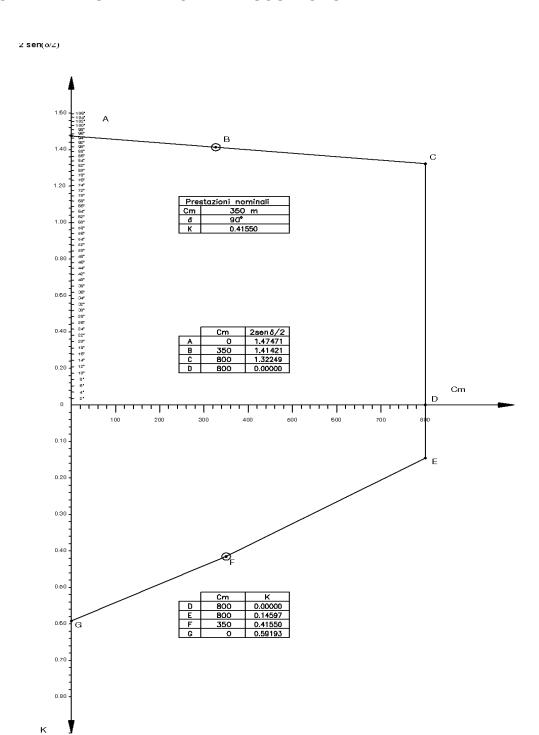

Pertanto il diagramma di utilizzazione (punto 3.2) e le azioni esterne (punto 3.3) sono state determinati con la corda di guardia LC50. L'utilizzo di altre corde di guardia diverse da LC50 obbligano il Progettista a realizzare le necessarie verifiche strutturali e a descriverne il diagramma di impiego (fig.3).

caratteristiche geometriche del picchetto:

 $\begin{array}{lll} \mathsf{Cm} &= \mathsf{campata} \; \mathsf{media} \\ \delta &= \mathsf{angolo} \; \mathsf{di} \; \mathsf{deviazione} \\ \mathsf{K} &= \mathsf{costante} \; \mathsf{altimetrica} \; (*) \end{array}$

$$k = \frac{h_1}{a_1} + \frac{h_2}{a_2}$$
 (vedi fig.1)

(*) L'espressione di K è la seguente: ove le campate "a" hanno sempre segno positivo ed i dislivelli "h" segno positivo o negativo secondo lo schema di fig. 2



P007UE002

Rev. 00
del 29/10/2018

Rev. 00
Pagina 6 di 12

3.2 DIAGRAMMA DI UTILIZZAZIONE DEL SOSTEGNO

Codifica P007UE002

Rev. 00 del 29/10/2018 Pagina 7 di 12

IL DIAGRAMMA DELIMITA

- a) Nel piano (Cm, δ) un insieme di punti ai quali corrisponde un'azione trasversale complessiva non superiore a quella di calcolo del sostegno (campo di utilizzazione trasversale)
- b) Nel piano (Cm, K) un insieme di punti ai quali corrisponde un'azione verticale complessiva non superiore a quella di calcolo del sostegno (campo di utilizzazione verticale)

Pertanto, affinchè il sostegno possa essere impiegato in un picchetto di caratteristiche geometriche (Cm_i, $\delta_i \square \square$, K_i) è necessario che i punti (Cm_i, $\delta_i \square$) e (Cm_i, K_i) siano compresi rispettivamente nei campi di utilizzazione trasversale e verticale.

3.3 AZIONI PER IL CALCOLO DEL SOSTEGNO

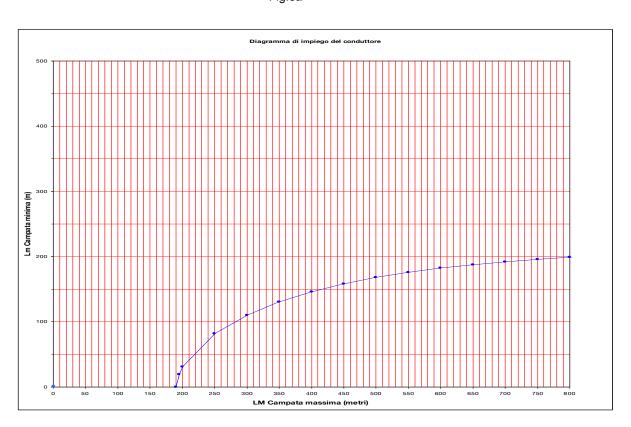
Sono state determinate le azioni esterne per il calcolo del sostegno in condizioni MSA e MSB, sia nell'ipotesi di conduttori e corda di guardia integri (ipotesi normale), sia nell'ipotesi di rottura di un conduttore o della corda di guardia secondo quanto prescritto dalle norme (ipotesi eccezionale).

IPOTESI NORMALE

- Azioni trasversali e verticali:

Sono stati considerati i massimi valori che si verificano nelle più gravose condizioni d'impiego del sostegno (vedi diagramma di utilizzazione)

-Azioni longitudinali:

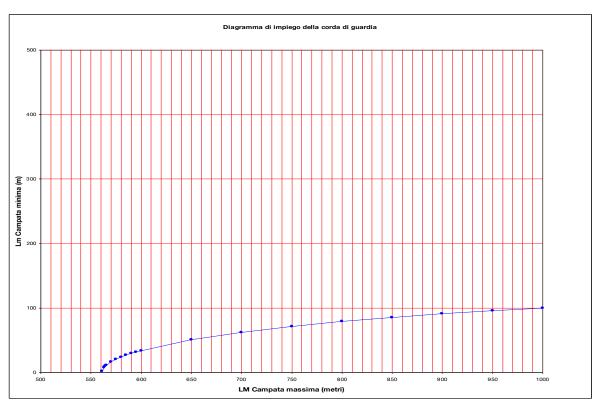

Sia per i conduttori che per le corde di guardia è stato considerato uno squilibrio di tiro per tener conto rispettivamente della diversa lunghezza delle campate equivalenti delle due tratte adiacenti al sostegno (conduttori) e della diversa lunghezza delle campate reali adiacenti al sostegno (corda di guardia).

Per ogni picchetto si dovrà perciò verificare mediante (1) che la effettive differenza di tiro nelle condizioni MSA e MSB, sia minore o eguale dei valori di squilibrio considerati per il calcolo del sostegno.

Per un' indagine rapida sono stati costruiti i diagrammi riportati in fig. 3, che tiene conto dei massimi squilibri relativi al conduttore fig. 3a e alla corda di guardia calcolato con l'impiego delle sfere di segnalazione fig 3b.

Riportando in ascisse la campata maggiore (L_M) [campata equivalente per i conduttori fig.3a – campata reale per la corda di guardia fig.3b] tra le due adiacenti al sostegno e in ordinata la minore (L_m), se il punto di coordinata (L_M , L_m) sta al disopra del diagramma la verifica è positiva poiché, lo squilibrio di tiro è minore di quello di calcolo.

Fig.3a



P007UE002

Rev. 00
del 29/10/2018

Pagina 8 di 12

Fig. 3b

IPOTESI ECCEZIONALE:

Azioni trasversali e verticali:

per i conduttori i valori sono stati ottenuti dimezzando le corrispondenti azioni in ipotesi normale (tali valori non risultano esattamente la metà in quanto nelle due ipotesi sono state mantenute costanti la spinta del vento su isolatori e morsetteria (t*) ed il loro peso (p*)).

Per la corda di guardia i valori sono stati ottenuti invece dimezzando le corrispondenti azioni in ipotesi normale.

- Azioni longitudinali:

sono state assunte pari al tiro T_0

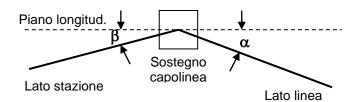
Rev. 00 del 29/10/2018 Pagina 9 di 12

VALORI DELLE AZIONI ESTERNE PER IL CALCOLO DEL SOSTEGNO

Sono riportati nella seguente tabella:

		CONDUTTORE			CORDA DI GUARDIA (*)			
STATO DEI CONDUTTORI	IPOTESI		LC2			LC50 (***)		
		T(daN)	P(daN)	L(daN)	T(daN)	P(daN)	L(daN)	
	NORMALE	8050	2923	220	(5704)	(2001)	(1100)	
MSA		8050	0	220	(5704)	(0)	(1100)	
	ECCEZIONALE (**)	4085	1547	4650	(2852)	(1001)	(3380)	
		4085	0	4650	(2852)	(0)	(3380)	
	NORMALE	8392	3715	100	(5898)	(2350)	(1300)	
MSB	NORMALE	8392	0	100	(5898)	(0)	(1300)	
	ECCEZIONALE (**)	4211	1943	5670	(2949)	(1175)	(3970)	
	ECCEZIONALE (**)	4211	0	5670	(2949)	(0)	(3970)	

- (*) I valori tra parentesi si riferiscono alle condizioni derivate con sfere di segnalazione per il volo a bassa quota con diametro di 60 cm installate sull'intera campata.
- (**) La norma CEI 11.4 al punto 2.04.05 prevede per la serie in oggetto formata da n° 3 conduttori di energia la rottura di uno dei conduttori o di una delle ventuali corde di guardia. I valori indicati si riferiscono, ovviamente, al solo conduttore (o corda di guardia) rotto.

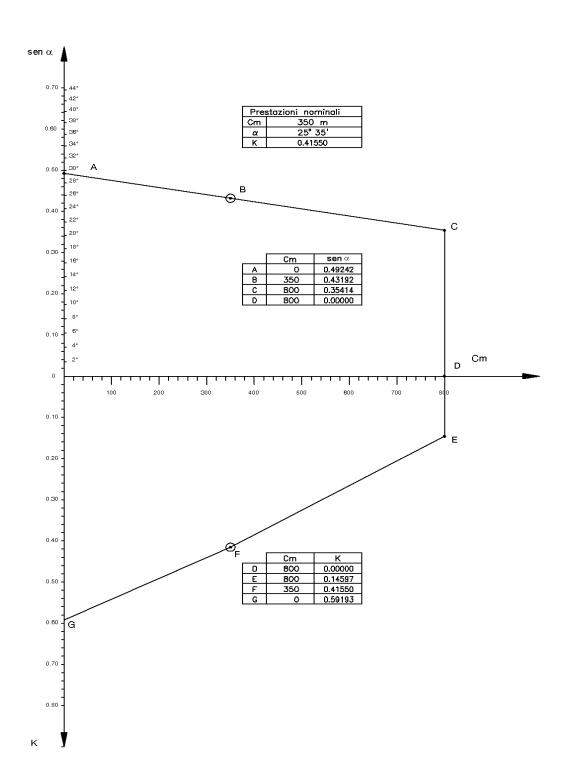

Mediante le relazioni (2) e (3) si può verificare che per tutte le terne di prestazioni geometriche (Cm, δ , K) tali che il punto (Cm, δ) sia compreso nel "campo di utilizzazione trasversale" e il punto (Cm, \square K) sia compreso nel "campo di utilizzazione verticale", le azioni trasversali e verticali (sia per i conduttori che per corde di guardia) nelle condizioni MSA e MSB risultino inferiori od eguali a quelle considerate per il calcolo del sostegno e riportate nella tabella precedente.

(***) Nel caso di utilizzo di corde di guardia di altra tipologia dovrà essere verificato il non superamento dei valori T , P , L, indicati.

4) UTILIZZAZIONE MECCANICA DEL SOSTEGNO IMPIEGATO COME CAPOLINEA

Il sostegno E viene impiegato anche come capolinea, qui di seguito viene riportato il diagramma di utilizzazione relativo a tale impiego.

In esso si è indicato con α l'angolo di deviazione della linea rispetto al piano di simmetria longitudinale del sostegno (vedi Fig.4)



P007UE002

Rev. 00
del 29/10/2018

Pagina 10 di 12

P007UE002

Rev. 00
del 29/10/2018

Pagina 11 di 12

VALORI DELLE AZIONI ESTERNE PER IL CALCOLO DEL SOSTEGNO

I valori delle azioni esterne per il calcolo del sostegno sono riportati nella seguente tabella:

		CONDUTTORE			CORDA DI GUARDIA (*)			
STATO DEI CONDUTTORI	IPOTESI		LC2			LC50 (***)		
		T(daN)	P(daN)	L(daN)	T(daN)	P(daN)	L(daN)	
MSA	NORMALE	3620	2923	4650	(3424)	(2001)	(3380)	
	NORMALE	3620	0	4650	(3424)	(0)	(3380)	
	ECCEZIONALE (**)	0	0	0	(0)	(0)	(0)	
		0	0	0	(0)	(0)	(0)	
		2822	3715	5670	(3228)	(2350)	(3970)	
MSB	NORMALE	2822	0	5670	(3228)	(0)	(3970)	
		0	0	0	(0)	(0)	(0)	
	ECCEZIONALE (**)	0	0	0	(0)	(0)	(0)	

Per quanto riguarda le prestazioni orizzontali i valori di T e di L sono stati determinati in base alla condizione di uguaglianza della loro somma T + L nelle condizioni di amarro e di capolinea, ed assunto per L il valore massimo di To

In una generica condizione di impiego del sostegno capolinea le azioni trasversali e longitudinali sono espresse dalle sequenti relazioni:

Conduttori
$$\begin{cases} & \text{Azione trasversale} & T = v \text{ Cm} + T_0 \text{ sen } \alpha + t^* \text{ (2')} \\ & \text{Azione longitudinale} & L = T_0 \cos \alpha + t^* \text{ (3')} \end{cases}$$

Si può verificare che per tutte le prestazioni geometriche (Cm, α) comprese nel "campo di utilizzazione trasversale" la somma dei valori T ed L ricavati mediante la (2') e (3') (sia per i conduttori che per la corda di guardia in entrambe le condizioni MSA e MSB) risulti inferiore od eguale alla somma dei valori T ed L riportati in tabella e relativi alla condizione di impiego α = 0 cui corrisponde il massimo valore della azione longitudinale.

Per quanto riguarda le prestazioni verticali, esse sono rimaste invariate rispetto a quelle stabilite per il sostegno impiegato come amarro.

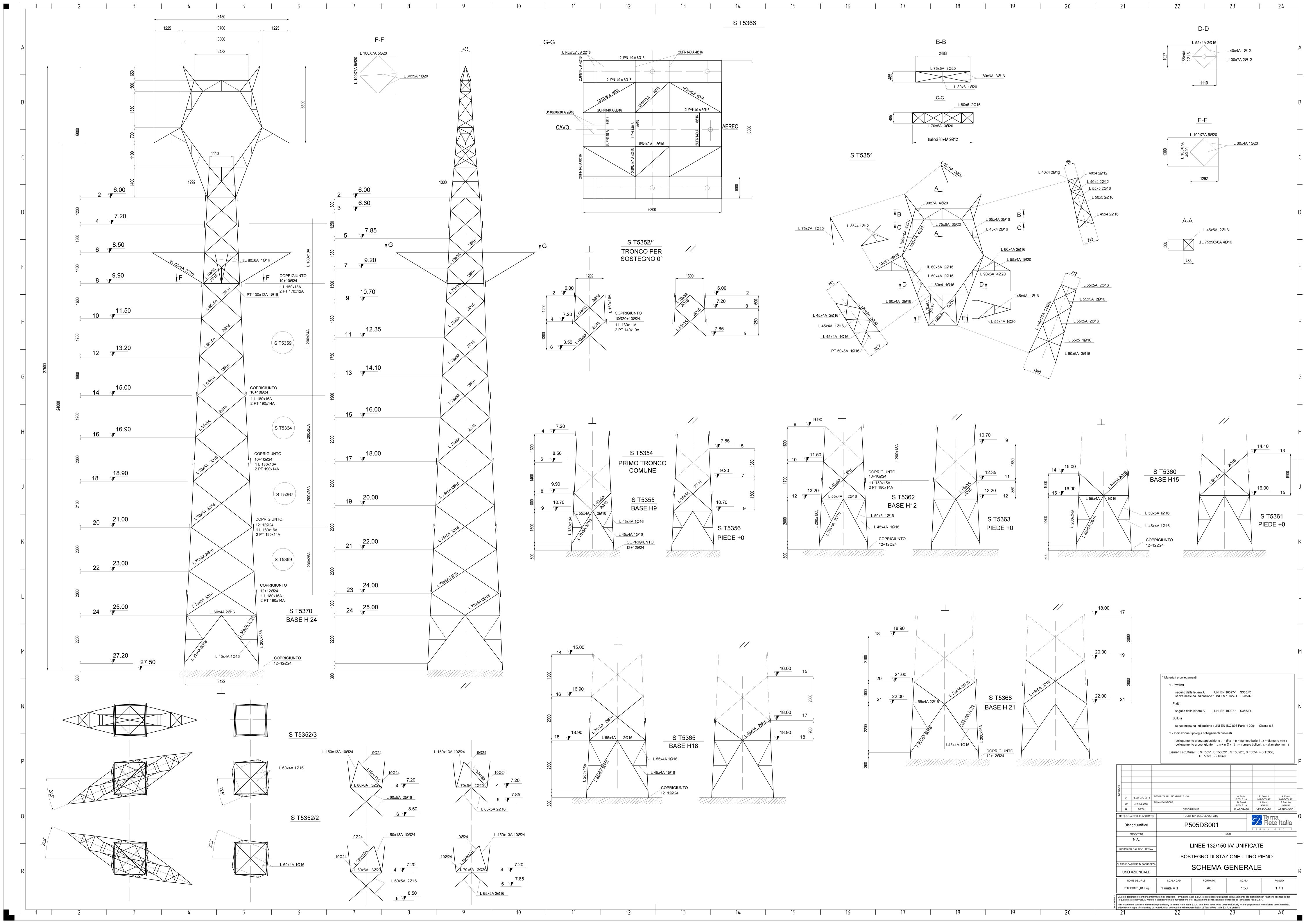
Si noti ancora che il sostegno è stato calcolato considerato nullo il tiro della campata di collegamento al portale di stazione.

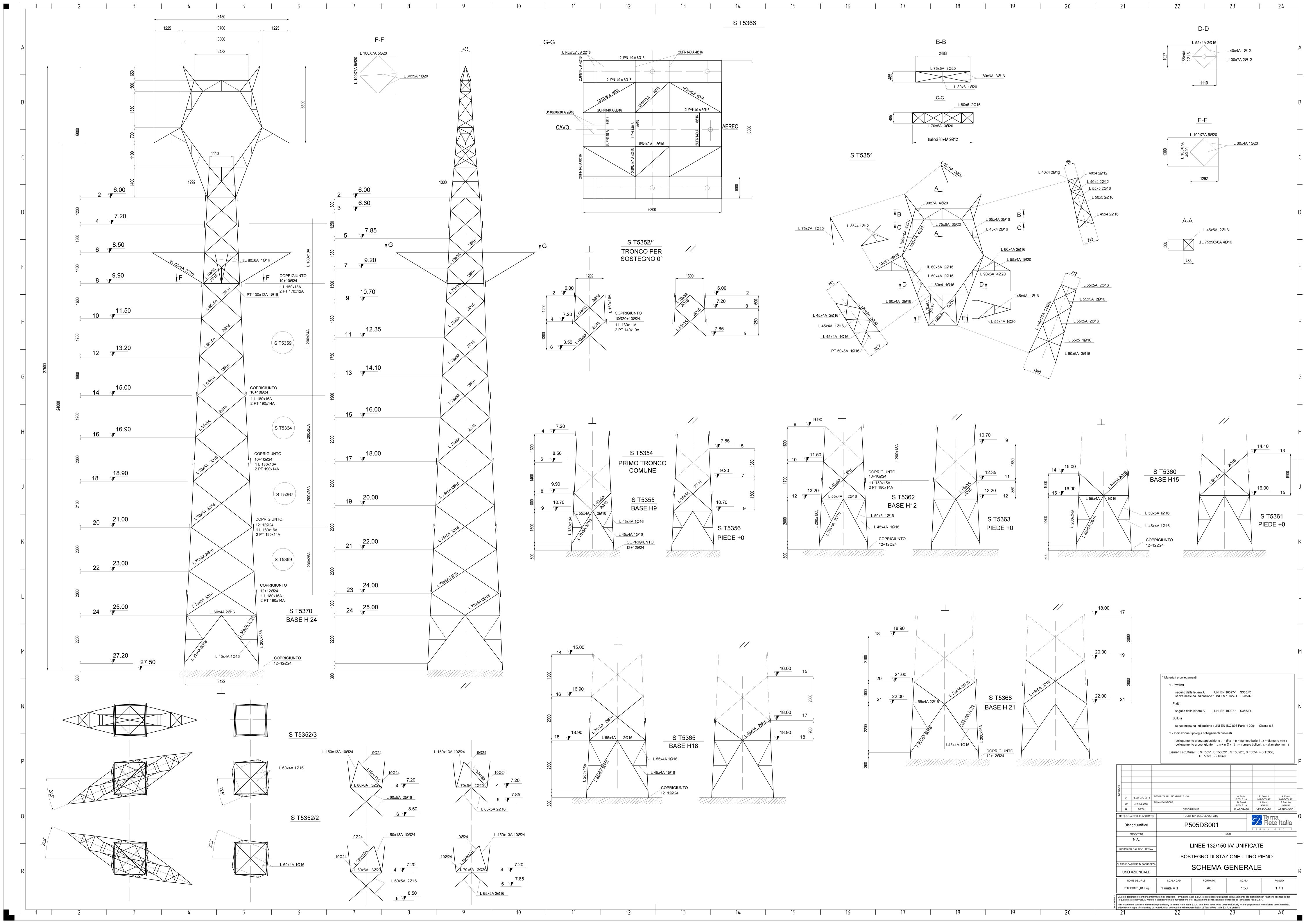
N.B. Nella realtà tale tiro avrà un valore non nullo, benché modesto, ma ciò è a favore della sicurezza, purche l'angolo β (vedi Fig.4) non superi il valore di 45°.
 Infatti se T'o ≠ 0 è il tiro ridotto, le espressioni 2' e 3' diventano:

E quindi la somma T + L non supera il valore del calcolo finche rimanga:

sen $\beta \le \cos \beta$ ossia $\beta \le 45^{\circ}$

P007UE002


Rev. 00
del 29/10/2018


Pagina 12 di 12

- (*) I valori tra parentesi si riferiscono alle condizioni derivate con sfere di segnalazione per il volo a bassa quota con diametro di 60 cm installate sull'intera campata.
- (**) La norma CEI 11.4 al punto 2.04.05 prevede per la serie in oggetto formata da n° 3 conduttori di energia la rottura di uno dei conduttori o di una delle ventuali corde di guardia. I valori indicati si riferiscono, ovviamente, al solo conduttore (o corda di guardia) rotto.

Mediante le relazioni (2) e (3) si può verificare che per tutte le terne di prestazioni geometriche (Cm, δ , K) tali che il punto (Cm, δ) sia compreso nel "campo di utilizzazione trasversale" e il punto (Cm, \square K) sia compreso nel "campo di utilizzazione verticale", le azioni trasversali e verticali (sia per i conduttori che per corde di guardia) nelle condizioni MSA e MSB risultino inferiori od eguali a quelle considerate per il calcolo del sostegno e riportate nella tabella precedente.

(***) Nel caso di utilizzo di corde di guardia di altra tipologia dovrà essere verificato il non superamento dei valori T , P , L, indicati.

Linee elettriche 132 – 150 kV Conduttore singolo Ø 31,5 – Tiro pieno UTILIZZAZIONE DEL "PALO GATTO" CALCOLO DELLE AZIONI ESTERNE SUL SOSTEGNO

Codifica	
P50	5UP002
Rev. 00	Pagina 1 di 14
del 30/03/2009	

LINEE ELETTRICHE AEREE A 132-150 kV - TIRO PIENO CONDUTTORI ALLUMINIO - ACCIAIO Ø 31,5 mm - EDS 18% - ZONA "B"

UTILIZZAZIONE DEL "PALO GATTO"

CALCOLO DELLE AZIONI ESTERNE SUL SOSTEGNO

Storia d	elle revisioni	
Rev. 00	del 30/03/2009	Prima emissione

Elaborato		Verificato		Approvato
P. Berardi	L. Alario	A. Posati		R. Rendina
ING-ILC-COL	ING-ILC-COL	ING-ILC-COL		ING-ILC

P505UP002

Rev. 00

Rev. 00

del 30/03/2009

Pagina 2 di 14

CALCOLO ESEGUITO IN CONFORMITA' AL D.M. DEL 21/03/1988 DI CUI ALLA LEGGE N. 339 DEL 28/06/1986

PER IL CALCOLO DI VERIFICA DEL SOSTEGNO VEDERE ELABORATO: **CESI prot. A8014758** – **Rev.00 – 21/05/2008**

Codifica P505UP002 Rev. 00 Pagina 3 di 14

del 30/03/2009

1. CARATTERISTICHE GENERALI

Conduttore	All. Acc. Ø 31,5 mm (C2/1)
Corda di guardia	Corda di guardia con fibre ottiche (C50) (*)
Isolatori	A bastone in porcellana ovvero catene rigide di isolatori in vetro disposti in amarro doppio
Tipo fondazione	In calcestruzzo a blocco unico
Tipo di sfera di segnalazione	Diametro 60 cm; peso 5,5 kg; passo di installazione ≤ 30 m
Messa a terra	Secondo le norme citate
Larghezza linea	6 m tra i conduttori esterni

2. CONDUTTORI E CORDE DI GUARDIA

2.1 CARATTERISTICHE PRINCIPALI

			CONDUTTORE	CORDA DI GUARDIA
			C2/1	C50
MATER	IALE		All. Acc.	Al + Lega di Al + Acciaio
DIAMETRO CIRCOSCRITT	ГО	(mm)	31,5	17,9
OFZIONI	ALLUMINIO	(mm ²)	519,5	118,90 (Al + Lega Al)
SEZIONI TEORICHE	ACCIAIO	(mm ²)	65,80	57,70
TEORIOTIE	TOTALE	(mm ²)	585,30	176,60
MASSA UNITARIA		(Kg/m)	1,953	0,820
MODULO DI ELASTICITA' ((N/mm ²)	68000	88000
COEFFICIENTE DI DILATAZIONE ((1/°C)	19,4 x 10 ⁻⁶	17 x 10 ⁻⁶
CARICO DI ROTTURA		(daN)	16852	10600

2.2 CONDIZIONE BASE E CONDIZIONE DERIVATA

CONDIZIONE BASE

EDS: (Every Day Stress) 15°C, conduttore scarico In detta condizione il tiro orizzontale è stato assunto costante al variare della campata equivalente della tratta (ovvero della campata reale per la corda di guardia). I valori di tiro per conduttore e corda di guardia sono:

	CONDUTTORE	CORDA DI GUARDIA
	C2/1	C50
TIRO ORIZZONTALE T _O (daN)	3034	1537

CONDIZIONE DERIVATA

MSA: -5°C, vento alla velocità di 130 Km/h

MSB: -20°C, vento alla velocità di 65 km/h, manicotto di ghiaccio di 12 mm

Codifica

P505UP002

Rev. 00 del 30/03/2009

Pagina 4 di 14

In detta condizione i tiri vengono ottenuti risolvendo la equazione del cambiamento di stato:

$$\alpha \left(\Theta_d - \Theta_b\right) + \frac{1}{SE} (T_d - T_b) = \frac{{p'_d}^2 L^2}{24 T_d^2} - \frac{{p'_b}^2 L^2}{24 T_b^2}$$

Ove:

Θ_d = Temperatura della condizione derivata

 Θ_b = Temperatura della condizione base

S = Sezione totale del conduttore

E = Modulo di elasticità

T_d = Tiro orizzontale della condizione derivata

T_b = Tiro orizzontale della condizione base

P'_d = Carico risultante per metro di conduttore nella condizione derivata

P'_b = Carico risultante per metro di conduttore nella condizione base

L = Campata equivalente (*) della tratta nel caso di conduttore ovvero campata reale nel caso di corda di guardia

I valori di spinta del vento per metro di conduttore, di peso per metro di conduttore e di carico risultante per metro di conduttore sono riportati nella seguente tabella:

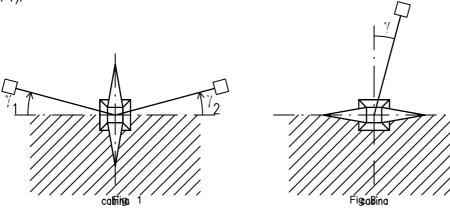
		CONDUTTORE	CORDA DI GUARDIA
		C2/1	C50
	V	0	0
CONDIZIONE EDS	Р	1,9159	0,8044
	P'	1,9159	0,8044
	V	2,2249	1,2643 (1,5417)
CONDIZIONE MSA	Р	1,9159	0,8044 (0,9842)
	P'	2,9361	1,4958 (1,8291)
2011212121	V	0,9800	0,7399 (0,8092)
CONDIZIONE MSB	Р	3,3959	1,8217 (2,0015)
	P'	3,5345	1,9663 (2,1589)

V = spinta del vento per metro di conduttore (daN/m)

P = peso per metro di conduttore (daN/m)

 $P' = \sqrt{v^2 + p^2}$ = carico risultante per metro di conduttore (daN/m)

(*) L =
$$\sqrt{\frac{\sum Li^3}{\sum Li}}$$
 ove le Li sono le campate reali comprese fra due successivi amarri


Codifica P505UP002

Rev. 00 del 30/03/2009

Pagina 5 di 14

3. UTILIZZAZIONE MECCANICA DEL SOSTEGNO

Il sostegno-portale può essere impiegato sia per amarro una sola linea (Fig. 2) sia per amarro di due linee (Fig. 1).

3.1 CASO DI IMPIEGO PER AMARRO DI UNA LINEA

3.1.1 FORMULE PER IL CALCOLO DELLE AZIONI ESTERNE

Il calcolo del sostegno è stato eseguito tenendo conto delle azioni esterne dei conduttori e delle corde di guardia nella ipotesi **MSA.**

Le formule per il calcolo di tali azioni, sia per conduttori che per corde di guardia (supposti integri), sono le seguenti:

Conduttori e corde di guardia
$$\begin{cases} Azione trasversale & T = v Cm + sen \gamma T_o + t^* \\ Azione verticale & P = p Cm + K T_o + p^* \end{cases}$$
 (3)

Ove:

v = spinta del vento per metro di conduttore

p = peso per metro di conduttore i valori di v e di p sono riportati al punto 2.2

T_o = tiro orizzontale nel conduttore

t* = spinta del vento su isolatori e morsetteria

p* = peso di isolatori e morsetteria

I valori di t* e p* sono riportati nella seguente tabella:

	CONDU	TTORE	CORDA DI	GUARDIA
	C2	2/1	C5	50
	t* p*		t*	p*
MSA (daN)	120	170	0	0
MSB (daN)	30 170		0	0

I valori di T₀ sono riportati nella seguente tabella:

	CONDUTTORE	CORDA DI GUARDIA
	C2/1	C50
TIRO ORIZZONTALE T _O in MSA (daN)	4650	2807 (3380)
TIRO ORIZZONTALE T _O in MSB (daN)	5670	3640 (3970)

I suddetti tiri sono stati ottenuti mediante la equazione del cambiamento di stato e rappresentano i massimi valori che il tiro assume nella suddetta ipotesi:

- per i conduttori: in un intervallo di campate equivalenti pari a 200 ÷ 800 m

- per le corde di guardia: in un intervallo di campate reali pari a 100 ÷ 1000 m

Codifica

P505UP002

Rev. 00 del 30/03/2009

Pagina 6 di 14

Caratteristiche geometriche del picchetto:

Cm = campata media (*) δ = angolo di deviazione K = costante altimetrica (**)

(*) L'espressione di Cm (vedi Fig.3) è la seguente:

$$Cm = \frac{I + a}{2}$$
 potendo senz' altro trascurare il termine I si può considerare $Cm = \frac{a}{2}$

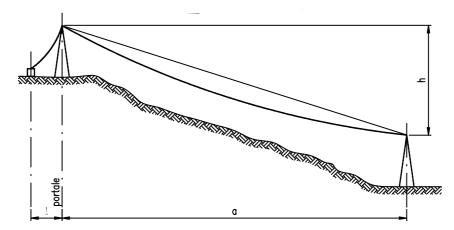


Fig. 3

(**) L'espressione di K (vedi Fig.4) è la seguente:

$$k = \frac{h}{a} \text{ (vedi Fig. 4)}$$

$$Fig. 4$$

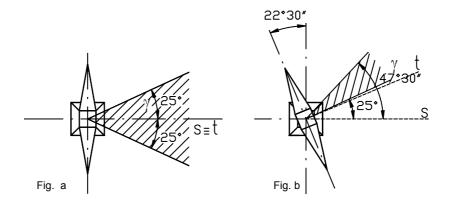
$$sostegno portale$$

$$primo sostegno di linea$$

ove le campate "a" hanno sempre segno positivo ed i dislivelli "h" segno positivo o negativo secondo lo schema di Fig.4.

Codifica

P505UP002


Rev. 00 del 30/03/2009

Pagina 7 di 14

3.1.2 PRESCRIZIONI DI IMPIEGO

Il sostegno può essere impiegato sia con testa montata in posizione "normale" sul fusto, sia con testa montata in posizione ruotata rispetto al fusto di 22°30' in senso antiorario ovvero in senso orario. Precisamente:

- a) per angoli di deviazione γ compresi fra -25° e $+25^{\circ}$, il sostegno viene impiegato con la testa montata in posizione "normale" sul fusto (vedi Fig. a sulla quale è riportato in tratteggio il settore di impiego).
- b) per angoli di deviazione γ compresi fra +25° e +47°30' (ovvero fra -25° e -47° 30'), il sostegno viene impiegato con la testa montata in posizione ruotata rispetto al fusto di 22°30' in senso antiorario (ovvero in senso orario) (vedi Fig. b).

NOTA: In ogni caso non si supera mai un angolo di deviazione di 25° rispetto all'asse "t" normale al piano della finestra del sostegno.

P505UP002

Rev. 00
Pagina 8 di 14

del 30/03/2009

3.1.3 DIAGRAMMI DI UTILIZZAZIONE DEL SOSTEGNO - PORTALE

Diagramma di utilizzazione del sostegno-portale impiegato con testa montata in posizione normale sul fusto.

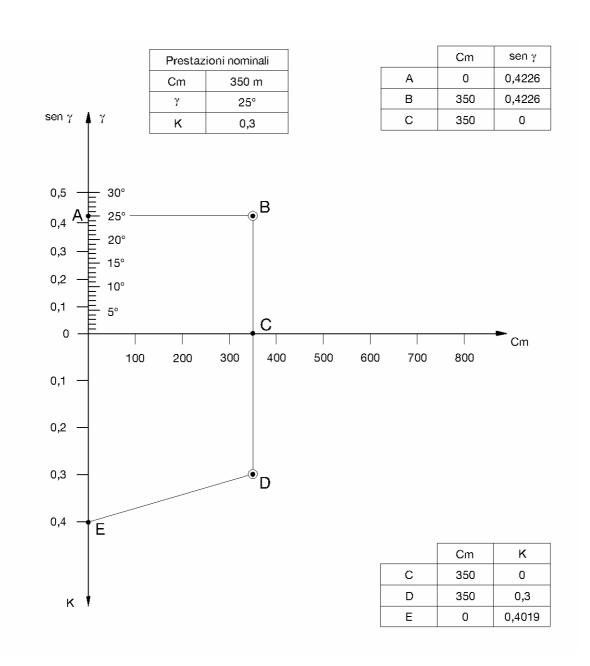


Fig. 5

Codifica P505UP002 Rev. 00 Pagina 9 di 14

del 30/03/2009

Diagramma di utilizzazione del sostegno-portale impiegato con testa montata in posizione ruotata sul fusto di 22°30'.

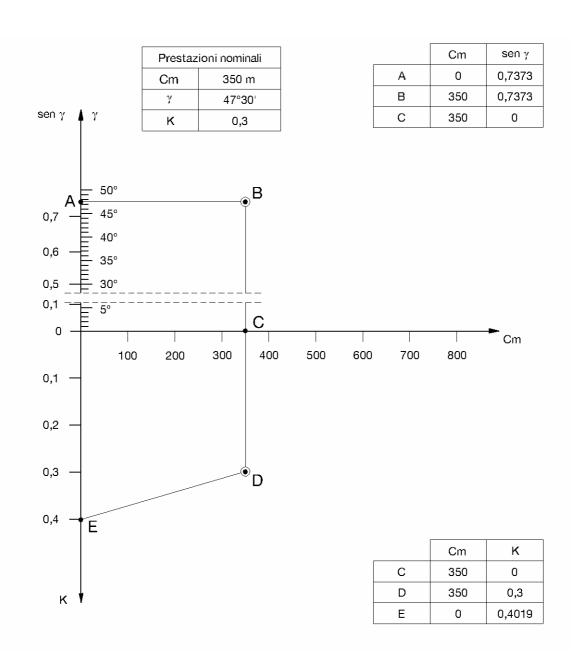


Fig. 6

Codifica P505UP002

Rev. 00 del 30/03/2009

Pagina 10 di 14

- Prestazioni verticali del sostegno

Mediante la relazione (3) si può verificare che in entrambi i casi, per tutti i punti compresi nel campo di utilizzazione verticale, l'azione complessiva è inferiore o uguale a quella di calcolo del sostegno riportata in tabella.

- Prestazioni trasversali del sostegno

Mediante la relazione (2) si può verificare che le azioni trasversali di tabella assicurano un angolo di impiego di 25°. Tale valore per il caso a) (testa montata in posizione "normale" sul fusto) rappresenta la prestazione massima del sostegno (vedi diagramma di utilizzazione di Fig. 5).

Per il caso b) (testa montata in posizione ruotata sul fusto) rappresenta la massima prestazione rispetto alla testa del sostegno (vedi nota punto 3.1.2); tenendo conto della rotazione di 22°30' della testa rispetto al fusto, ciò corrisponde ad una prestazione di 47°30' rispetto al fusto stesso (vedi diagramma di utilizzazione di Fig. 6).

3.1.4 AZIONI PER IL CALCOLO DEL SOSTEGNO

Sono state determinate le azioni esterne per il calcolo del sostegno nelle condizioni MSA e MSB, sia nell'ipotesi di conduttori e corde di guardia integri (ipotesi normale), sia nell'ipotesi di rottura di un conduttore o di una corda di guardia.

I valori delle azioni esterne per il calcolo del sostegno in questa condizione di impiego sono riportati nella seguente tabella:

STATO DEI	IPOTESI	CONDUTTORE C2/1			CORDA DI GUARDIA C50 (**)		
CONDUTTORI	11 01201	T(daN)	P(daN)	L(daN)	T(daN)	P(daN)	L(daN)
MSA	NORMALE	2864	2236	4650	1968	1358	3380
IVIOA	ECCEZIONALE (*)	0	0	0	0	0	0
MSB	NORMALE	2769	3060	5670	1961	1892	3970
	ECCEZIONALE (*)	0	0	0	0	0	0

- (*) Rottura di uno dei tre conduttori o di una delle due corde di guardia. I valori indicati si riferiscono, ovviamente, al solo conduttore (o corda di guardia) rotto.
- (**) Nel caso di utilizzo di corde di guardia di altra tipologia dovrà essere verificato il non superamento dei valori T , P , L, indicati.

Il progetto del sostegno è stato effettuato applicando le azioni di tabella alla testa del sostegno, sia nel caso di impiego del sostegno con testa montata in posizione normale sul fusto, che nel caso di impiego con testa montata in posizione ruotata rispetto al fusto di 22° 30'.

Codifica

P505UP002

Rev. 00 del 30/03/2009

Pagina 11 di 14

3.2 CASO DI IMPIEGO PER AMARRO DI DUE LINEE

3.2.1 FORMULE PER IL CALCOLO DELLE AZIONI ESTERNE

Il calcolo del sostegno è stato eseguito tenendo conto delle azioni esterne dei conduttori e delle corde di guardia nella ipotesi **MSA** e **MSB**.

Le formule per il calcolo di tali azioni, sia per conduttori che per corde di guardia (supposti integri), sono le seguenti:

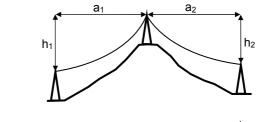
Conduttori e corde di guardia
$$\begin{cases} \text{Azione trasversale} & T = v \text{ Cm} + 2 \text{ sen } \gamma / 2 \text{ T}_0 + t^* \quad \text{(2')} \\ \text{Azione verticale} & P = p \text{ Cm} + \text{ K} \text{ T}_0 + p^* \quad \text{(3')} \end{cases}$$

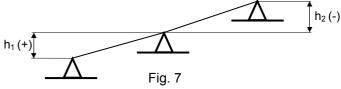
Ove:

Cm = campata mediaγ = angolo di deviazioneK = costante altimetrica

Le caratteristiche geometriche del picchetto:

L'espressione di Cm è la seguente:


$$Cm = \frac{a_1 + a_2}{2} \qquad \text{(vedi Fig. 7)}$$


L'espressione di γ è la seguente:

$$\gamma = \gamma_1 + \gamma_2$$
 (vedi Fig.1)

L'espressione di K è la seguente:

$$k = \frac{h_1}{a_1} + \frac{h_2}{a_2}$$
 (vedi Fig. 7)

ove le campate "a" hanno sempre segno positivo ed i dislivelli "h" segno positivo o negativo secondo lo schema di Fig. 7

3.2.2 PRESCRIZIONI DI IMPIEGO

In questo caso il sostegno verrà sempre impiegato con la testa montata in posizione "normale" sul fusto.

Ciascuno dei due angoli γ_1 e γ_2 (non necessariamente uguali tra loro) non dovrà superare i 25° e potrà essere orientato solamente dal lato esterno della cabina.

P505UP002

Rev. 00
del 30/03/2009

Rev. 00
Pagina 12 di 14

3.2.3 DIAGRAMMA DI UTILIZZAZIONE DEL SOSTEGNO - PORTALE

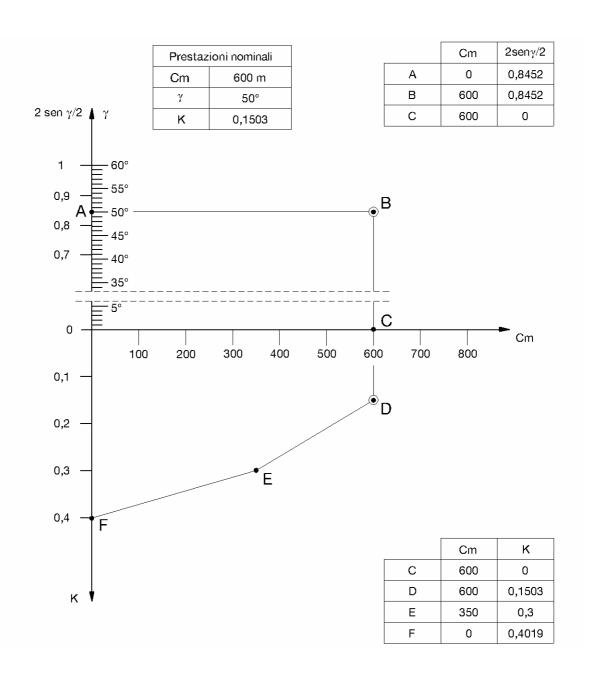


Fig. 8

Codifica **P505UP002**

Rev. 00 del 30/03/2009

Pagina 13 di 14

Mediante le relazioni (2') e (3') si può verificare che per tutte le terne di prestazioni geometriche (C_m, γ, K) , tali che il punto (C_m, γ) sia compreso "nel campo di utilizzazione trasversale" ed il punto (C_m, K) sia compreso nel "campo di utilizzazione verticale" le azioni trasversali e verticali (sia per conduttori che per corde di guardia) nelle condizioni MSA e MSB risultano inferiori od uguali a quelle considerate per il calcolo del sostegno in questo caso di impiego e riportate nella tabella al punto 3.2.4.

3.2.4 AZIONI PER IL CALCOLO DEL SOSTEGNO

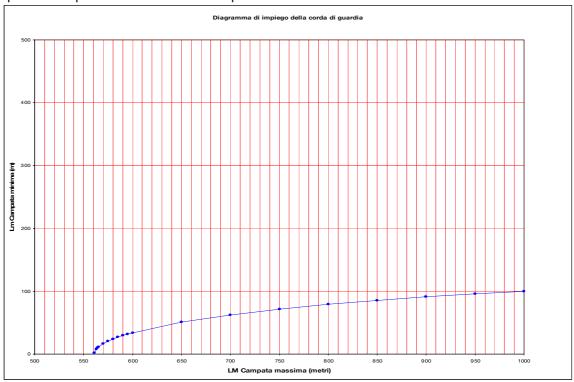
Sono state determinate le azioni esterne per il calcolo del sostegno nelle condizioni MSA e MSB, sia nell'ipotesi di conduttori e corda di guardia integri (ipotesi normale) sia nell'ipotesi di rottura di un conduttore o di una corda di guardia (ipotesi eccezionale).

- Ipotesi normale

Azioni trasversali:

sono stati considerati i massimi valori che si verificano nelle più gravose condizioni di impiego del sostegno (v. diagramma di utilizzazione)

Azioni longitudinali:


sia per i conduttori che per le corde di guardia è stato considerato uno squilibrio di tiro per tenere conto rispettivamente della diversa lunghezza delle campate equivalenti delle due tratte adiacenti al sostegno (conduttori) e della diversa lunghezza delle campate reali adiacenti al sostegno (corda di guardia).

Per i conduttori, d'altra parte, lo squilibrio considerato è largamente cautelativo, nel senso che è sicuramente superiore a quello corrispondente ad una differenza tra le campate equivalenti comunque grande.

Per la corda di guardia invece si dovra' invece verificare mediante la (1) in corrispondenza di ciascun picchetto che l'effettiva differenza di tiro (nelle condizioni MSA e MSB) sia minore o uguale del valore dello squilibrio considerato per il calcolo.

Per un'indagine rapida sono stati costruiti i diagrammi di Fig. 9.

Riportando in ascisse la campata maggiore L_M tra le due adiacenti al sostegno e in ordinata la minore L_m , se il punto di coordinate (L_M, L_m) sta al disopra del diagramma la verifica è positiva, poiché lo squilibrio di tiro è minore di quello di calcolo.

Codifica

P505UP002

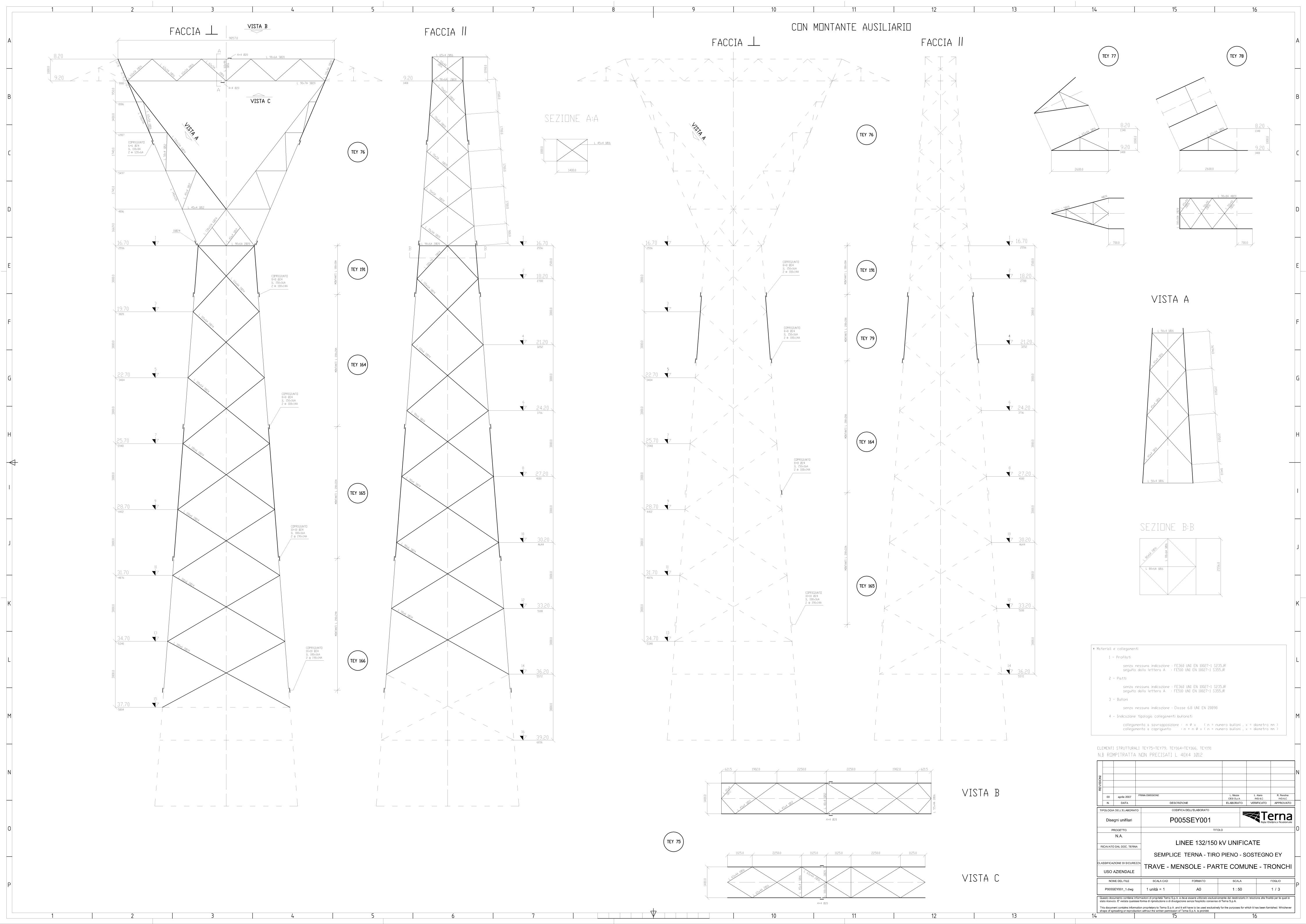
Rev. 00 del 30/03/2009

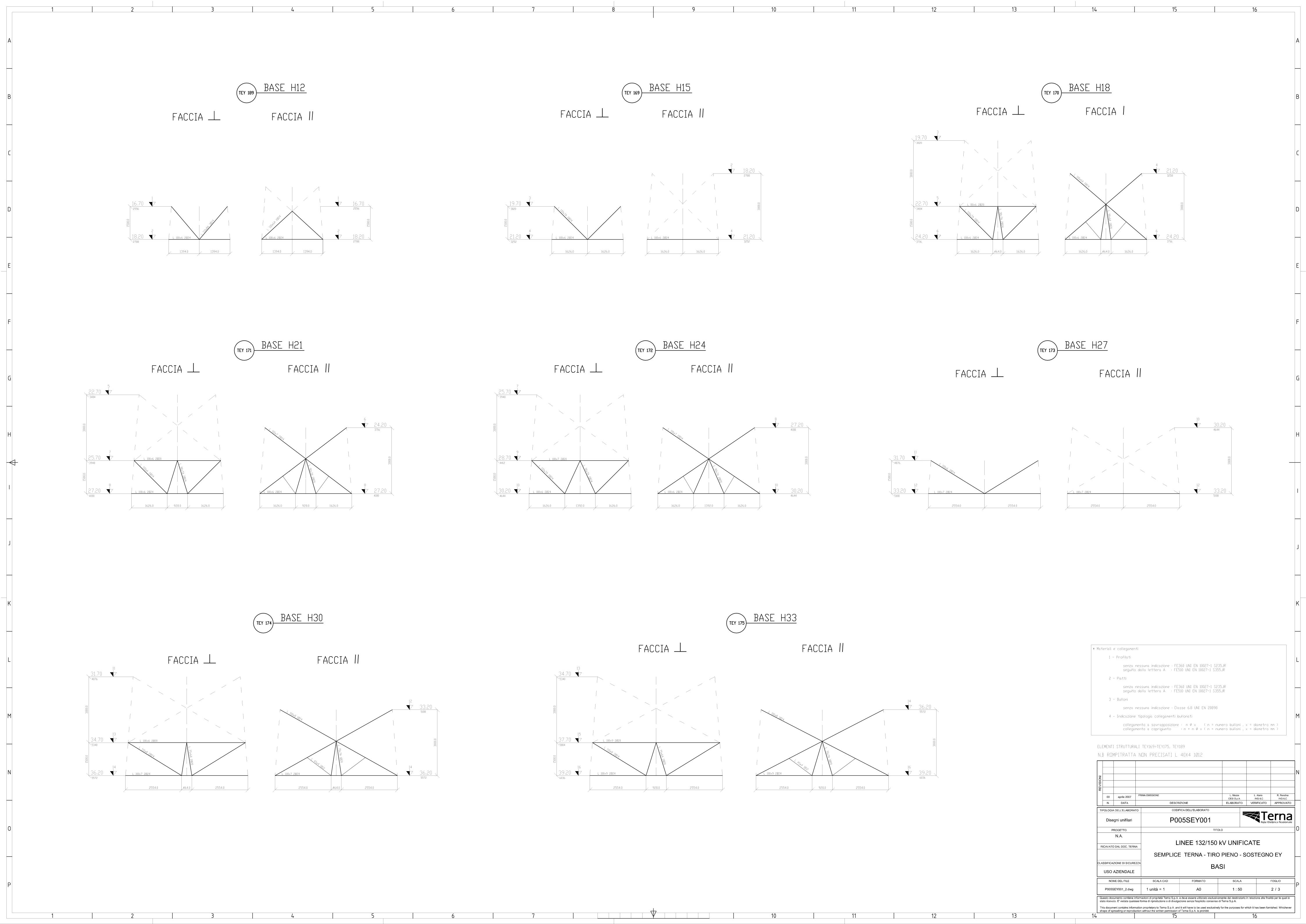
Pagina 14 di 14

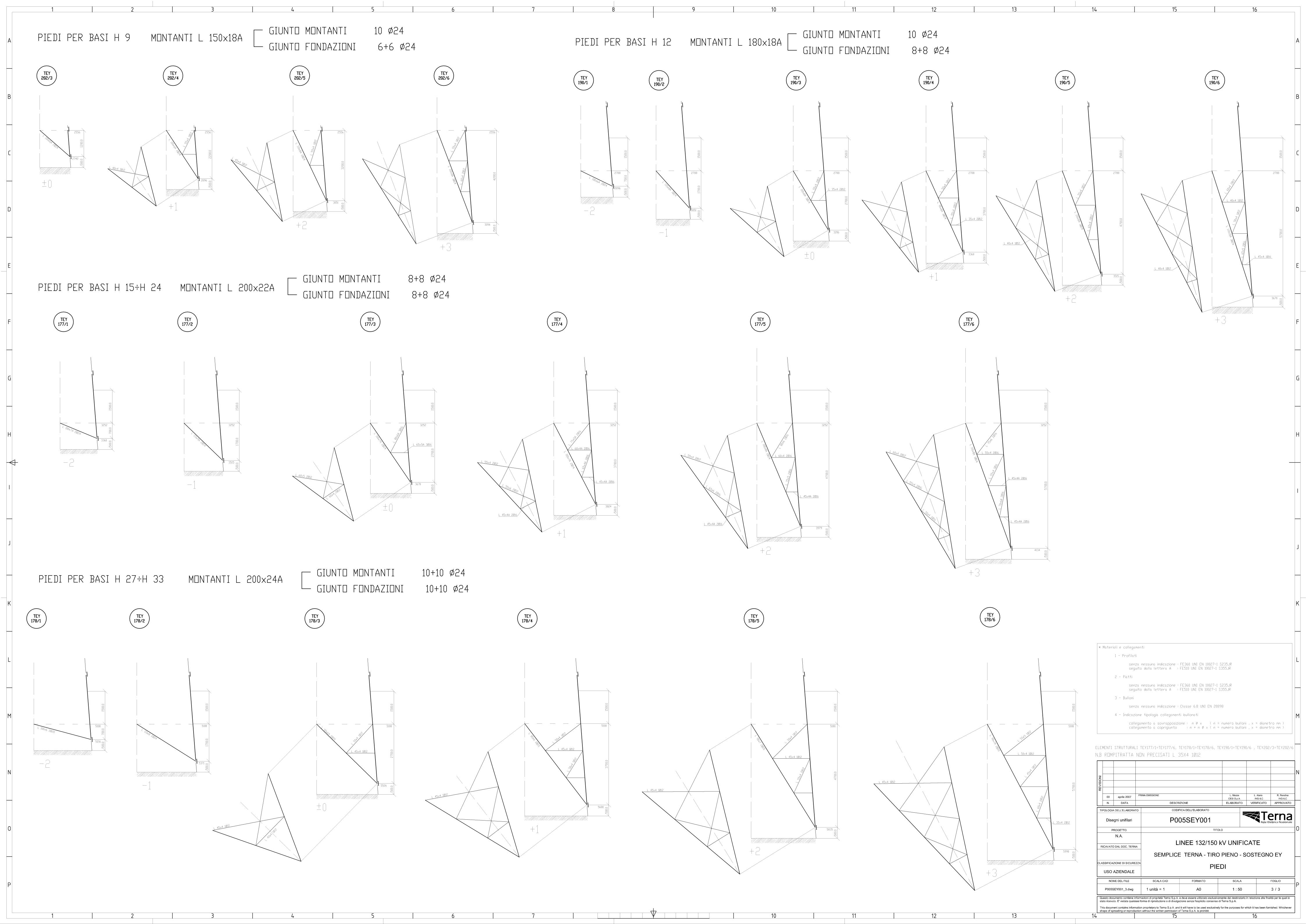
- Ipotesi eccezionale

Azioni trasversali e verticali:

i valori sono stati ottenuti dimezzando le corrispondenti azioni in ipotesi normale, per i conduttori tali valori non risultano essere la metà in quanto nelle due ipotesi sono state mantenute costanti la spinta del vento su isolatori e morsetteria (t*) e il loro peso (p*).


Azioni longitudinali:


sono state assunte pari al tiro T₀.


I valori delle azioni esterne per il calcolo del sostegno in questa condizione di impiego sono riportati nella seguente tabella:

STATO DEI	IPOTESI	CONDUTTORE C2/1			CORDA DI GUARDIA C50 (**)		
CONDUTTORI			P(daN)	L(daN)	T(daN)	P(daN)	L(daN)
MSA	NORMALE	5385	2236	220	3782	1358	1100
IVISA	ECCEZIONALE (*)	2753	1203	4650	1891	679	3380
MSB	NORMALE	5410	3060	100	3841	1892	1300
	ECCEZIONALE (*)	2720	1615	5670	1921	946	3970

- (*) Rottura di uno dei tre conduttori o di una delle due corde di guardia. I valori indicati si riferiscono, ovviamente, al solo conduttore (o corda di guardia) rotto.
- (**) Nel caso di utilizzo di corde di guardia di altra tipologia dovrà essere verificato il non superamento dei valori T , P , L, indicati.

Codifica	
P005	SUES02
	Pagina 1 di 12

LINEA ELETTRICA AEREA A 132-150 kV	SEMPLICE TERNA	A TRIANGOLO –	TIRO PIENO
CONDUTTORI Ø 31	,5 mm – EDS 18% - 2	ZONA "B"	

UTILIZZAZIONE DEL SOSTEGNO "E*"

CALCOLO DELLE AZIONI ESTERNE SUL SOSTEGNO

Storia o	lelle revisioni	
Rev. 00	del 14/09/2007	Prima emissione

Elaborato		Verificato			Approvato
L. Alario		L. Alario			R. Rendina
ING-ILC-COL		ING-ILC-COL			ING-ILC

P005UES02

Rev. 00

del 14/09/2007

Pagina 2 di 12

CALCOLO ESEGUITO IN CONFORMITA' AL D.M. DEL 21/03/1988 DI CUI ALLA LEGGE N. 339 DEL 28/06/1986

PER IL CALCOLO DI VERIFICA DEL SOSTEGNO VEDERE ELABORATO: **CESI prot. A7014922 – Rev.0 – Settembre 2007**

Codifica P005UES02 Rev. 00 Pagina 3 di 12 del 14/09/2007

1) CARATTERISTICHE GENERALI

Conduttore	All. Acc. Ø 31,5 mm (RQUT0000C2)
Corda di guardia	Acciaio Ø 11,5 mm (LC23) - Acciaio rivestito di alluminio Ø 11,5 mm (LC51) Corda di guardia con fibre ottiche Ø 17,9 mm (LC50) (*)
Isolatori	Vetro temprato a cappa e perno in catene di 9 elementi nelle sospensioni semplici e di 9 elementi nelle sospensioni doppie e amarri.
Tipo fondazione	In calcestruzzo a piedini separati
Tipo sfera di segnalazione aerea	Diametro 60 cm; peso 5,5 Kg; passo di installazione ≤ 30 m.
Messa a terra	Secondo le norme citate
Larghezza linea	7 m tra i conduttori esterni

2) CONDUTTORI E CORDA DI GUARDIA

2.1 CARATTERISTICHE PRINCIPALI		CONDUTTORE	CORDA DI GUARDIA			
		RQUT0000C2	LC 23	LC 51	LC 50	
MATERIALE			All. Acc.	Acciaio	Acc.rivestito di All.	Al + Lega Al + Acciaio
DIAMETRO CIRCOSCRITTO (mm)		31,5	11,5	11,5	17,9	
SEZIONI TEORICHE	ALLUMINIO	(mm ²)	519,50	0	0	118,90 (Al + Lega Al)
	ACCIAIO	(mm²)	65,80	78,94	80,65	57,70
	TOTALE	(mm²)	583,30	78,94	80,65	176,60
MASSA UNITARIA (Kg/m)		1,953	0,621	0,537	0,820	
MODU	ILO DI ELASTICITA'	(N/mm ²)	68000	175000	155000	88000
COEFFICIENTE	DI DILATAZIONE	(1/°C)	19,4 X 10 ⁻⁶	11,5 X 10 ⁻⁶	13 X 10 ⁻⁶	17 X 10 ⁻⁶
CARICO DI RO	TTURA	(daN)	16852	12231	9000	10600

2.2 CONDIZIONE BASE E CONDIZIONE DERIVATA

- CONDIZIONE BASE

(Every Day Stress) 15°C, conduttore scarico

In detta condizione il tiro orizzontale è stato assunto costante al variare della campata equivalente della tratta (ovvero della campata reale per la corda di guardia). I valori di tiro per conduttore e corda di guardia sono:

	CONDUTTORE	CORDA DI GUARDIA		
	RQUT0000C2	LC 23	LC 51	LC 50
TIRO ORIZZONTALE T _O (daN)	3034	1113	1008	1537

- CONDIZIONE DERIVATA

MSA: -5°C, vento alla velocità di 130 km/h

MSB: -20°C, vento alla velocità di 65 km/h, manicotto di ghiaccio di 12 mm

Corde di guardia di altra tipologia potranno essere utilizzate purchè vengano rispettati i valori massimi delle azioni trasmesse dalla corda indicata.

P005UES02

Rev. 00
del 14/09/2007

Pagina 4 di 12

In detta condizione i tiri vengono ottenuti risolvendo la equazione del cambiamento di stato:

$$\alpha \left(\Theta_{d} - \Theta_{b}\right) + \frac{1}{SE} \left(T_{d} - T_{b}\right) = \frac{p'_{d}^{2}L^{2}}{24 T_{d}^{2}} - \frac{p'_{b}^{2}L^{2}}{24 T_{b}^{2}}$$
(1)

Ove:

Θ_d = Temperatura della condizione derivata

 Θ_b = Temperatura della condizione base

S = Sezione totale del conduttore

E = Modulo di elasticità

T_d = Tiro orizzontale della condizione derivata

T_b = Tiro orizzontale della condizione base

P'_d = Carico risultante per metro di conduttore nella condizione derivata

P'_b = Carico risultante per metro di conduttore nella condizione base

L = Campata equivalente (*) della tratta nel caso di conduttore ovvero campata reale nel caso di corda di guardia

I valori di spinta del vento per metro di conduttore, di peso per metro di conduttore e di carico risultante per metro di conduttore sono riportati nella seguente tabella:

		CONDUTTORE	CORDA DI GUARDIA (**)		*)
		RQUT0000C2	LC 23	LC 51	LC 50
	V (daN/m)	0	0	0	0
CONDIZIONE EDS	P (daN/m)	1,9159	0,6090	0,5270	0,8044
	P' (daN/m)	1,9159	0,6090	0,5270	0,8044
	V (daN/m)	2,2249	0,8122 (1,0896)	0,8122 (1,0896)	1,2643 (1,5417)
CONDIZIONE MSA	P (daN/m)	1,9159	0,6090 (0,7889)	0,5270 (0,7069)	0,8044 (0,9842)
	P' (daN/m)	2,9361	1,0152 (1,3452)	0,9682 (1,2988)	1,4985 (1,8291)
	V (daN/m)	0,9800	0,6268 (0,6962)	0,6268 (0,6962)	0,7399 (0,8092)
CONDIZIONE MSB	P (daN/m)	3,3959	1,4086 (1,5884)	1,3266 (1,5064)	1,8217 (2,0015)
	P' (daN/m)	3,5345	1,5418 (1,7343)	1,4672 (1,6595)	1,9663 (2,1589)

(**) I valori tra parentesi si riferiscono alle condizioni derivate con sfere di segnalazione per il volo a bassa quota con diametro di 60 cm installate sull'intera campata.

V = spinta del vento per metro di conduttore (daN/m)

P = peso per metro di conduttore (daN/m)

$$P' = \sqrt{v^2 + p^2}$$
 = carico risultante per metro di conduttore (daN/m)

(*) L =
$$\sqrt{\frac{\sum \text{Li}^3}{\sum \text{Li}}}$$
 ove le Li sono le campate reali comprese fra due successivi amarr $\hat{\textbf{I}}$

Codifica	5UES02
Rev. 00	Pagina 5 di 12

3) UTILIZZAZIONE MECCANICA DEL SOSTEGNO

3.1 FORMULE PER IL CALCOLO DELLE AZIONI ESTERNE

Il calcolo del sostegno è stato eseguito tenendo conto delle azioni esterne dei conduttori e delle corde di guardia nelle due ipotesi MSA e MSB.

Le formule per il calcolo di tali azioni, sia per conduttori che per corde di guardia (supposti integri), sono le seguenti:

Conduttori $\begin{cases}
Azione trasversale & T = v Cm + 2 sen \delta/2 T_0 + t^* \\
Azione verticale & P = p Cm + K T_0 + p^*
\end{cases}$ (2)

Ove:

v = spinta del vento per metro di conduttore

p = peso per metro di conduttore i valori di v e di p sono riportati in 2.2

t* = spinta del vento su isolatori e morsetteria

 p^* = peso di isolatori e morsetteria T_o = tiro orizzontale nel conduttore

I valori di t*e p* e To sono riportati nella seguente tabella:

	CONDUTTORE			CORDA DI GUARDIA (**)				
	RQUT0000C2 ISOLATORI E MORSETTERIA			LC 23	LC 51	LC 50	ISOLATORI E MORSETTERIA	
	To (daN)	t* (daN)	p* (daN)	To (daN)	To (daN)	To (daN)	t* (daN)	p* (daN)
MSA	4650	120	170	1835 (2393)	1821 (2397)	2807 (3380)	0	0
MSB	5670	30	170	2735 (3050)	2702 (3025)	3640 (3970)	0	0

(**) I valori tra parentesi si riferiscono alle condizioni derivate con sfere di segnalazione per il volo a bassa quota con diametro di 60 cm installate sull'intera campata.

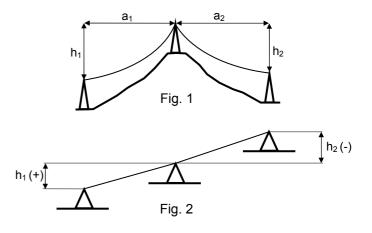
I suddetti tiri sono stati ottenuti mediante la equazione del cambiamento di stato e rappresentano i massimi valori che il tiro assume nella suddetta ipotesi:

per i conduttori in un intervallo di campate equivalenti pari a 200 \div 800 m

per le corde di guardia in un intervallo di campate reali pari a 100 ÷ 1000 m

Dal confronto dei tiri orizzontali, delle spinte vento e dei pesi delle corde di guardia nelle diverse ipotesi si evince che la corda di guardia LC50 è quella che induce sul sostegno in esame le maggiori azioni esterne.

Pertanto il diagramma di utilizzazione (punto 3.2) e le azioni esterne (punto 3.3) sono state determinati con la corda di guardia LC50. L'utilizzo di altre corde di guardia diverse da LC50 obbligano il Progettista a realizzare le necessarie verifiche strutturali e a descriverne il diagramma di impiego (fig.3).

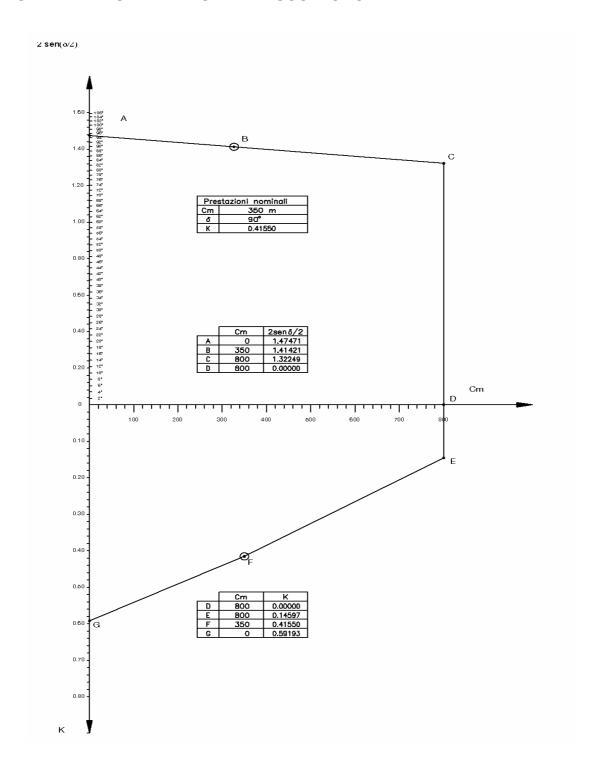

caratteristiche geometriche del picchetto:

Cm = campata media δ = angolo di deviazione

K = costante altimetrica (*)

$$k = \frac{h_1}{a_1} + \frac{h_2}{a_2}$$
 (vedi fig.1)

(*) L'espressione di K è la seguente: ove le campate "a" hanno sempre segno positivo ed i dislivelli "h" segno positivo o negativo secondo lo schema di fig. 2



P005UES02

Rev. 00
del 14/09/2007

Rev. 00
Pagina 6 di 12

3.2 DIAGRAMMA DI UTILIZZAZIONE DEL SOSTEGNO

Codifica

P005UES02

Rev. 00 del 14/09/2007

Pagina 7 di 12

IL DIAGRAMMA DELIMITA

- a) Nel piano (Cm, δ) un insieme di punti ai quali corrisponde un'azione trasversale complessiva non superiore a quella di calcolo del sostegno (campo di utilizzazione trasversale)
- b) Nel piano (Cm, K) un insieme di punti ai quali corrisponde un'azione verticale complessiva non superiore a quella di calcolo del sostegno (campo di utilizzazione verticale)

Pertanto, affinchè il sostegno possa essere impiegato in un picchetto di caratteristiche geometriche (Cm_i, δ_i) è necessario che i punti (Cm_i, δ_i) e (Cm_i, K_i) siano compresi rispettivamente nei campi di utilizzazione trasversale e verticale.

3.3 AZIONI PER IL CALCOLO DEL SOSTEGNO

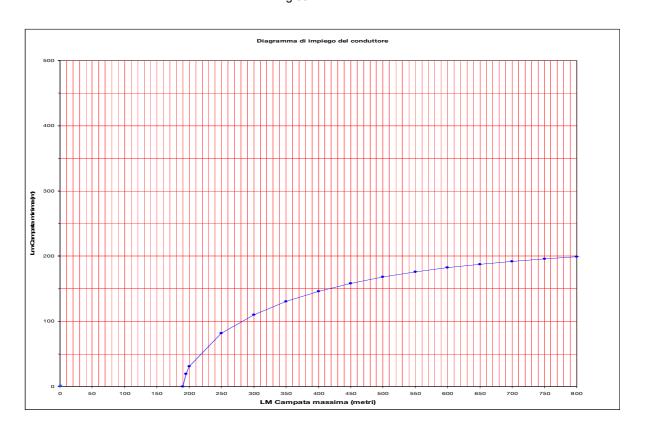
Sono state determinate le azioni esterne per il calcolo del sostegno in condizioni MSA e MSB, sia nell'ipotesi di conduttori e corda di guardia integri (ipotesi normale), sia nell'ipotesi di rottura di un conduttore o della corda di guardia secondo quanto prescritto dalle norme (ipotesi eccezionale).

IPOTESI NORMALE

-Azioni trasversali e verticali:

Sono stati considerati i massimi valori che si verificano nelle più gravose condizioni d'impiego del sostegno (vedi diagramma di utilizzazione)

-Azioni longitudinali:

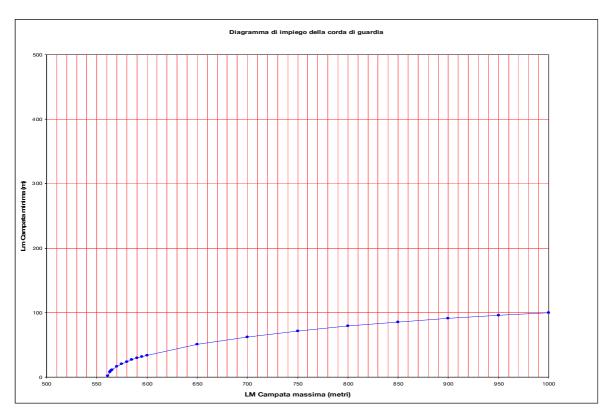

Sia per i conduttori che per le corde di guardia è stato considerato uno squilibrio di tiro per tener conto rispettivamente della diversa lunghezza delle campate equivalenti delle due tratte adiacenti al sostegno (conduttori) e della diversa lunghezza delle campate reali adiacenti al sostegno (corda di guardia).

Per ogni picchetto si dovrà perciò verificare mediante (1) che la effettive differenza di tiro nelle condizioni MSA e MSB, sia minore o eguale dei valori di squilibrio considerati per il calcolo del sostegno.

Per un' indagine rapida sono stati costruiti i diagrammi riportati in fig. 3, che tiene conto dei massimi squilibri relativi al conduttore fig. 3a e alla corda di guardia calcolato con l'impiego delle sfere di segnalazione fig 3b.

Riportando in ascisse la campata maggiore (L_M) [campata equivalente per i conduttori fig.3a – campata reale per la corda di guardia fig.3b] tra le due adiacenti al sostegno e in ordinata la minore (L_m) , se il punto di coordinata (L_M, L_m) sta al disopra del diagramma la verifica è positiva poiché, lo squilibrio di tiro è minore di quello di calcolo.

Fig.3a


Codifica

P005UES02

Rev. 00 del 14/09/2007

Pagina 8 di 12

IPOTESI ECCEZIONALE:

Azioni trasversali e verticali:

per i conduttori i valori sono stati ottenuti dimezzando le corrispondenti azioni in ipotesi normale (tali valori non risultano esattamente la metà in quanto nelle due ipotesi sono state mantenute costanti la spinta del vento su isolatori e morsetteria (t^*) ed il loro peso (p^*)).

Per la corda di guardia i valori sono stati ottenuti invece dimezzando le corrispondenti azioni in ipotesi normale.

- Azioni longitudinali:

sono state assunte pari al tiro T₀

P005UES02

Rev. 00

Pagina 9 di 12

del 14/09/2007

VALORI DELLE AZIONI ESTERNE PER IL CALCOLO DEL SOSTEGNO

Sono riportati nella sequente tabella:

		C	CONDUTTORE			CORDA DI GUARDIA (*)		
STATO DEI CONDUTTORI	IPOTESI	R	QUT0000C	2		LC50 (***)		
		T(daN)	P(daN)	L(daN)	T(daN)	P(daN)	L(daN)	
	NORMALE	8050	2923	220	(5704)	(2001)	(1100)	
MSA	NORMALE	8050	0	220	(5704)	(0)	(1100)	
	ECCEZIONALE (**)	4085	1547	4650	(2852)	(1001)	(3380)	
		4085	0	4650	(2852)	(0)	(3380)	
		8392	3715	100	(5898)	(2350)	(1300)	
MCD	NORMALE	8392	0	100	(5898)	(0)	(1300)	
MSB	ECCEZIONALE (**)	4211	1943	5670	(2949)	(1175)	(3970)	
		4211	0	5670	(2949)	(0)	(3970)	

- (*) I valori tra parentesi si riferiscono alle condizioni derivate con sfere di segnalazione per il volo a bassa quota con diametro di 60 cm installate sull'intera campata.
- (**) La norma CEI 11.4 al punto 2.04.05 prevede per la serie in oggetto formata da n° 3 conduttori di energia la rottura di uno dei conduttori o di una delle ventuali corde di guardia. I valori indicati si riferiscono, ovviamente, al solo conduttore (o corda di guardia) rotto.

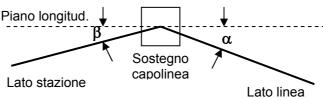
Mediante le relazioni (2) e (3) si può verificare che per tutte le terne di prestazioni geometriche (Cm, δ , K) tali che il punto (Cm, δ) sia compreso nel "campo di utilizzazione trasversale" e il punto (Cm,K) sia compreso nel "campo di utilizzazione verticale", le azioni trasversali e verticali (sia per i conduttori che per corde di guardia) nelle condizioni MSA e MSB risultino inferiori od eguali a quelle considerate per il calcolo del sostegno e riportate nella tabella precedente.

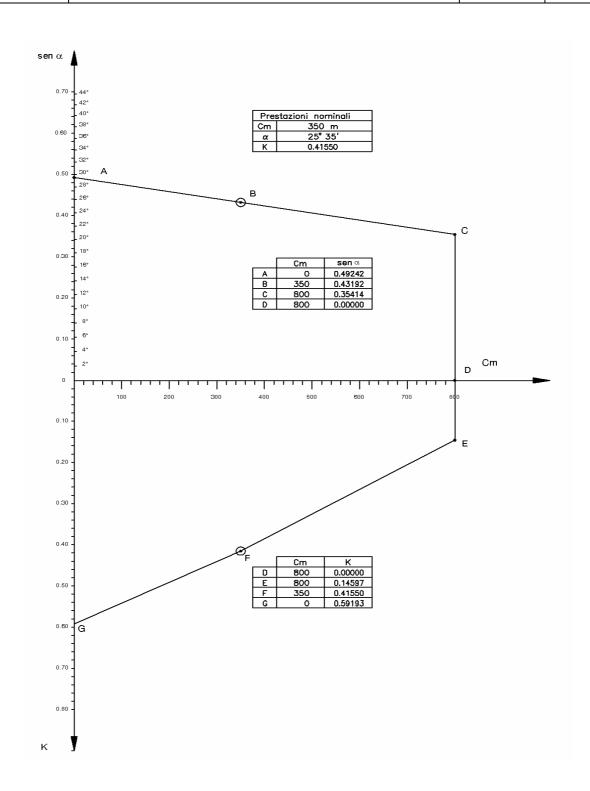
(***) Nel caso di utilizzo di corde di guardia di altra tipologia dovrà essere verificato il non superamento dei valori T , P , L, indicati.

4) UTILIZZAZIONE MECCANICA DEL SOSTEGNO IMPIEGATO COME CAPOLINEA

Il sostegno E* viene impiegato anche come capolinea, qui di seguito viene riportato il diagramma di utilizzazione relativo a tale impiego.

In esso si è indicato con α l'angolo di deviazione della linea rispetto al piano di simmetria longitudinale del sostegno (vedi Fig.4)




Fig. 4

P005UES02

Rev. 00
Pagina 10 di 12

del 14/09/2007

P005UES02

Rev. 00

Pagina 11 di 12

del 14/09/2007

VALORI DELLE AZIONI ESTERNE PER IL CALCOLO DEL SOSTEGNO

I valori delle azioni esterne per il calcolo del sostegno sono riportati nella seguente tabella:

		CONDUTTORE			CORDA DI GUARDIA (*)		
STATO DEI CONDUTTORI	IPOTESI	R	QUT0000C	2		LC50 (***)	
		T(daN)	P(daN)	L(daN)	T(daN)	P(daN)	L(daN)
			2923	4650	(3424)	(2001)	(3380)
	NORMALE	3620	0	4650	(3424)	(0)	(3380)
MSA	ECCEZIONALE (**)	0	0	0	(0)	(0)	(0)
		0	0	0	(0)	(0)	(0)
	NORMALE	2822	3715	5670	(3228)	(2350)	(3970)
MCD		2822	0	5670	(3228)	(0)	(3970)
MSB	ECCEZIONALE (**)	0	0	0	(0)	(0)	(0)
		0	0	0	(0)	(0)	(0)

Per quanto riguarda le prestazioni orizzontali i valori di T e di L sono stati determinati in base alla condizione di uguaglianza della loro somma T + L nelle condizioni di amarro e di capolinea, ed assunto per L il valore massimo di To

In una generica condizione di impiego del sostegno capolinea le azioni trasversali e longitudinali sono espresse dalle seguenti relazioni:

Conduttori
$$\begin{cases} & \text{Azione trasversale} & \text{T = v Cm + T}_0 \text{ sen } \alpha \text{ + t* (2')} \\ & \text{Azione longitudinale} & \text{L = T}_0 \cos \alpha \text{ + t* (3')} \end{cases}$$

Si può verificare che per tutte le prestazioni geometriche (Cm, α) comprese nel "campo di utilizzazione trasversale" la somma dei valori T ed L ricavati mediante la (2') e (3') (sia per i conduttori che per la corda di guardia in entrambe le condizioni MSA e MSB) risulti inferiore od eguale alla somma dei valori T ed L riportati in tabella e relativi alla condizione di impiego α = 0 cui corrisponde il massimo valore della azione longitudinale.

Per quanto riguarda le prestazioni verticali, esse sono rimaste invariate rispetto a quelle stabilite per il sostegno impiegato come amarro.

Si noti ancora che il sostegno è stato calcolato considerato nullo il tiro della campata di collegamento al portale di stazione.

N.B. Nella realtà tale tiro avrà un valore non nullo, benché modesto, ma ciò è a favore della sicurezza, purche l'angolo β (vedi Fig.4) non superi il valore di 45°.
 Infatti se T'o ≠ 0 è il tiro ridotto, le espressioni 2' e 3' diventano:

Conduttori
$$\begin{cases} &\text{Azione trasversale} &\text{T = v Cm} + T_0 sen α + T'_0 sen β + t^* \\ &\text{Azione longitudinale} &\text{L = T}_0 cos α - T_0 cos β \end{cases}$$

E quindi la somma T + L non supera il valore del calcolo finche rimanga:

sen $\beta \le \cos \beta$ ossia $\beta \le 45^{\circ}$

P005UES02

Rev. 00

del 14/09/2007

Pagina 12 di 12

- (*) I valori tra parentesi si riferiscono alle condizioni derivate con sfere di segnalazione per il volo a bassa quota con diametro di 60 cm installate sull'intera campata.
- (**) La norma CEI 11.4 al punto 2.04.05 prevede per la serie in oggetto formata da n° 3 conduttori di energia la rottura di uno dei conduttori o di una delle ventuali corde di guardia. I valori indicati si riferiscono, ovviamente, al solo conduttore (o corda di guardia) rotto.

Mediante le relazioni (2) e (3) si può verificare che per tutte le terne di prestazioni geometriche (Cm, δ , K) tali che il punto (Cm, δ) sia compreso nel "campo di utilizzazione trasversale" e il punto (Cm,K) sia compreso nel "campo di utilizzazione verticale", le azioni trasversali e verticali (sia per i conduttori che per corde di guardia) nelle condizioni MSA e MSB risultino inferiori od eguali a quelle considerate per il calcolo del sostegno e riportate nella tabella precedente.

(***) Nel caso di utilizzo di corde di guardia di altra tipologia dovrà essere verificato il non superamento dei valori T , P , L, indicati.

150 kV Semplice terna a delta

FONDAZIONI CR (σt_{amm}= 2.0 – 3.9 daN/cmq)
TABELLA DELLE CORRISPONDENZE
SOSTEGNI – MONCONI - FONDAZIONI

Codifica:		
1508	TDINFON	
Rev. 01	Pag. 1 di 3	
del 12/02/2019	r ag. I ar o	

150 kV Semplice terna a delta

Conduttore singolo Ø 31,5 – Zona A EDS 21% - Zona B EDS 18%

Fondazioni CR ($\sigma t_{amm} = 2.0 - 3.9 \, daN/cmq$)

Tabelle delle corrispondenze sostegni – monconi - fondazioni

Storia delle revisioni						
Rev. 01	del 12/02/2019	Aggiornata tabella di corrispondenza fondazione LF104				
Rev. 00	del 07/01/2019	Prima Emissione.				

Elaborato		Verificato			Approvato
L.Alario ING-TAM-ILI	S.Memeo ING-TAM-ILI	P. Berardi ING-TAM-ILI			E. Di Vito ING-TAM-ILI

150 kV Semplice terna a delta

FONDAZIONI CR (σt_{amm} = 2.0 – 3.9 daN/cmq) TABELLA DELLE CORRISPONDENZE SOSTEGNI – MONCONI - FONDAZIONI

Codifica: 150ST	DINFON
Rev. 01	Pag. 2 di 3

• Fondazioni CR (2.0 daN/cmq ≤ σt_{amm} < 3.9 daN/cmq)

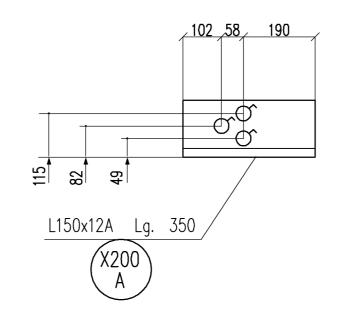
SOSTEGNO		MO	NCONE	FONDAZIONE		
TIPO	ALTEZZA (PIEDI)	TIPO	ALTEZZA (MM)	TIPO	ALTEZZA (CM)	
N	12 (-1/+3) ÷ 24 (-1/+3)	LF 43	3500	LF 104	315	
IN	27 (-1/+3) ÷ 39 (-1/+3)	LF 44	3500	LF 104	315	
М	12 (-1/+3) ÷ 24 (-1/+3)	LF 44	3500	LF 104	315	
IVI	27 (-1/+3) ÷ 39 (-1/+3)	LF 44	3500	LF 104	315	
Р	15 (-2/+3) ÷ 24 (-2/+3)	LF 44	3500	LF 104	315	
P	27 (-2/+3) ÷ 39 (-2/+3)	LF 45	3900	LF 104	355	
V	15 (-2/+3) ÷ 24 (-2/+3)	LF 45	4200	LF 110	385	
V	27 (-2/+3) ÷ 39 (-2/+3)	LF 57	4200	LF 110	385	
С	15 (-2/+3) ÷ 24 (-2/+3)	LF 58	3800	LF 111	245	
	27 (-2/+3) ÷ 39 (-2/+3)	LF 50	3600		345	
E	15 (-2/+3) ÷ 24 (-2/+3)	LF 59	2000	LF 111	245	
<u> </u>	27 (-2/+3) ÷ 39 (-2/+3)	LF 59	3800		345	

150 kV Semplice terna a delta

FONDAZIONI CR (σt_{amm}= 2.0 – 3.9 daN/cmq) TABELLA DELLE CORRISPONDENZE SOSTEGNI – MONCONI - FONDAZIONI

Codifica:	150STE	DINFON
Rev. 01		Pag. 3 di 3

• Fondazioni CR (σt_{amm} ≥ 3.9 daN/cmq)

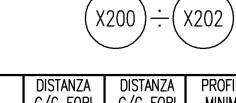

SOSTEGNO		MON	CONE	FONDAZIONE		
TIPO	ALTEZZA (PIEDI)	TIPO	ALTEZZA (MM)	TIPO	ALTEZZA (CM)	
N	12 (-1/+3) ÷ 24 (-1/+3)	LF 43	3100	LF 103	275	
IN	27 (-1/+3) ÷ 39 (-1/+3)	LF 44	3200	LF 103	285	
М	12 (-1/+3) ÷ 24 (-1/+3)	LF 44	3100	LF 103	275	
IVI	27 (-1/+3) ÷ 39 (-1/+3)	LF 44	3300	LF 103	295	
Р	15 (-2/+3) ÷ 24 (-2/+3)	LF 44	3600	LF 105	325	
	27 (-2/+3) ÷ 39 (-2/+3)	LF 45	3600	LF 105	325	
V	15 (-2/+3) ÷ 24 (-2/+3)	LF 45	3600	LF 105	325	
V	27 (-2/+3) ÷ 39 (-2/+3)	LF 57	3600	LF 105	325	
	15 (-2/+3) ÷ 24 (-2/+3)	1.5.0	2400	LF 107		
С	27 (-2/+3) ÷ 39 (-2/+3)	LF 58	3400		305	
E	15 (-2/+3) ÷ 24 (-2/+3)	LF 59	2400	LF 107	305	
	27 (-2/+3) ÷ 39 (-2/+3)	LF 39	3400			

POS. LUNGH. F43/1 3100 (X200) 3427 2431 F43/2 3300 (X201) 3628 2632 2467 F43/3 3700 (X202) 4029 3033 2868 PER PALI "L" s.t. DA BASI H9 a H33 PER PALI "N" s.t. DA BASI H9 a H12

LINEA DI TERRA 4 L130x10A

<u>F43</u>

BULLONI PER UN MONCONE M24x60 = 6

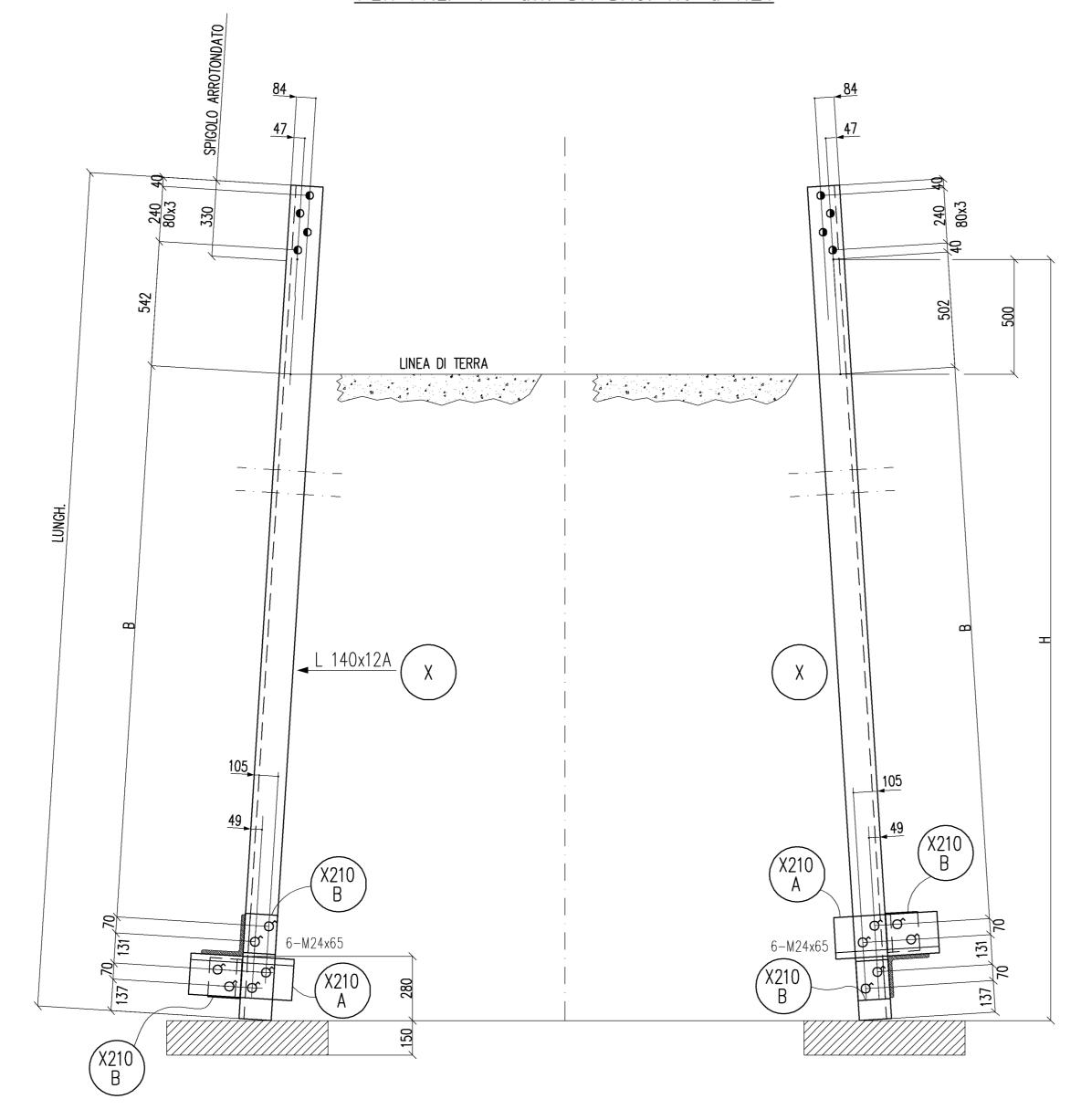


NOTE GENERALI:

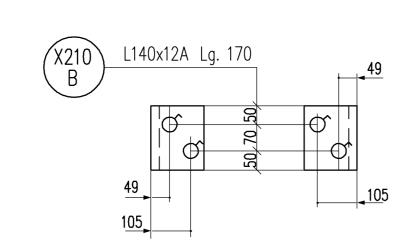
- Profilati indicati con lettera A UNI EN 10027-1 S355JR

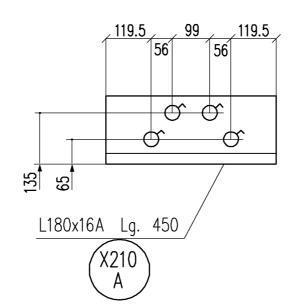
- Profilati indicati con lettera A UNI EN 10027-1 S355JR
 Profilati senza indicazione UNI EN 10027-1 S235JR
 Piatti indicati con lettera A UNI EN 10027-1 S355JR
 Piatti senza indicazione UNI EN 10027-1 S275JR
 Bulloni UNI EN 20898 Cl. 6.8
 Per le prescrizioni per l'ordinazione la costruzione ed il collaudo vedere le tabelle RQUPS10001, S10002, S10003 - Per le prescrizioni ed il collaudo delle saldature vedere la tabella \$10004
- Per i tipi di saldature vedere la tabella S10014
- Le saldature devono essere conformi a quanto prescritto nelle LS10004
 Le caratteristiche ed il tipo di cordone di saldatura sono riportati
 nelle LS10014 salvo quando diversamente specificato nei disegni costruttivi
 I materiali costituenti i complessi da saldare debbono essere in
 acciaio UNI EN 10027-1 S355JO
 Tutti i materiali vanno zincati dopo la lavorazione

- Le pedarole, posizioni da L700 a L725, sono in alternativa al dispositivo di scalata a disegno TERNA P003DS001 e 002 e devono essere fornite a sola espressa richiesta.



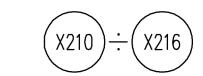
5	ø	ø		PINZE (DI TAGLIO		DISTANZA	DISTANZA	PROFILO	Н
BULLONI	BULLONE	FORO	NORMALE	Piastre.Mont. e Giunti	ASTE TESE	LAMINATO	C/C FORI MINIMA	C/C FORI NORMALE	MINIMO AMMESSO	
•	12	13.5	20	25	30	17	35	40	L 35	
#	14	15.5	25	30	35	20	40	45	L 40	
	16	17.5	25	30	35	22	45	50	L 45	
+	20	21.5	35	40	45	27	55	60	L 55	F
•	22	24	40	45	50	30	60	65	L 60	
Φ	24	26	45	50	55	32	65	72	L 70	
\Phi	27	29	50	55	60	37	70	81	L 75	


REVISIONI							
逼	01	Giugno 2008	Aggiunto configurazione F43/3 con H = 3	700 mm	G.Maffioletti CESI S.p.A.	L. Alario ING-ILC	R. Rendina ING-ILC
	00	Dicembre 2007	PRIMA EMISSIONE		L. Mazza CESI S.p.A.	L. Alario ING-ILC	R. Rendin
	N.	DATA	DESCR	IZIONE	ELABORATO	VERIFICATO	APPROVAT
	TIPOLOG	DIA DELL'ELABORATO	CC	DDIFICA DELL'ELABORATO			
	Dise	egni unifilari	PC	005DX001		2Te	rn
		PROCETTO		пт	OLO		
		N.A.					
	RICAVA	TO DAL DOC. TERNA	L	LINEE 132/150 kV UNIFICATE			
			SEMPLIC	E TERNA A TRI	ANGOLO - T	TRO PIE	NO
(CLASSIFIC	AZIONE DI SICUREZZA		MONCONE - F43			
	USO	AZIENDALE		MONCO	NE - F43		
	NOME DEL FILE		SCALA CAD	FORMATO	SCALA		FOGLI0
	P005I	DX001_01.dwg	1 unità=1	A1 1 : 15			1/1
			nazioni di proprietà Terna S.p.A. e deve zione o di divulgazione senza l'esplicito c		destinatario in relazione alle	finalità per le quali	è stato ricevuto.
This	s docume	nt contains informati	on proprietary to Terna S.p.A. and it will	have to be used exclusively for the	numases for which it has b	een furnished Which	ever shane of


<u>F44</u>

PER PALI "N" s.t. DA BASI H15 a H42 PER PALI "M" s.t. DA BASI H9 a H33 PER PALI "P" s.t. DA BASI H9 a H24 PER PALI "L" d.t. DA BASI H9 a H33 PER PALI "N" d.t. DA BASI H9 a H21

BULLONI PER UN MONCONE M24x65 = 12


TIPO LUNGH. (X210) 3100 3427 F44/2 (X211) 3200 3527 2297 F44/3 3300 3628 2398 F44/4 (X213) 3400 3728 F44/5 3500 (X214) 3829 F44/6 3700 4029 F44/7 3900 (X216) 4230

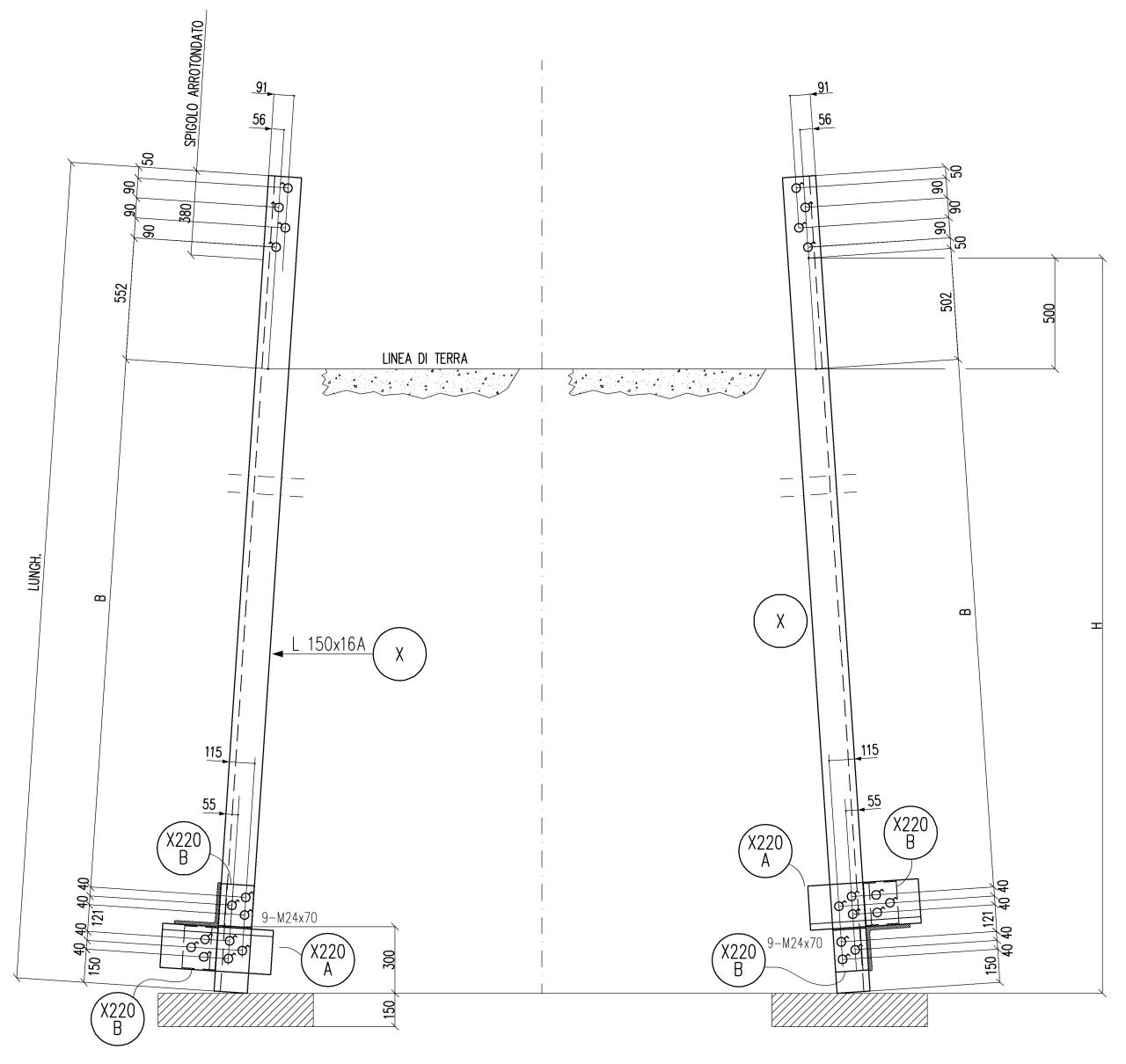
NOTE GENERALI:

- Profilati senza indicazione
 Piatti indicati con lettera A
 Piatti senza indicazione

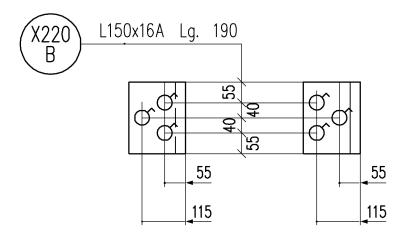
- Profilati senza indicazione
 Piatti indicati con lettera A
 UNI EN 10027-1 S235JR
 Piatti senza indicazione
 UNI EN 10027-1 S275JR
 Bulloni
 UNI EN 20898 Cl. 6.8
 Per le prescrizioni per l'ordinazione la costruzione ed il collaudo vedere le tabelle RQUPS10001, S10002, S10003
 Per le prescrizioni ed il collaudo delle saldature vedere la tabella S10004
- Per i tipi di saldature vedere la tabella S10014
- Le saldature devono essere conformi a quanto prescritto nelle LS10004 Le caratteristiche ed il tipo di cordone di saldatura sono riportati
 nelle LS10014 salvo quando diversamente specificato nei disegni costruttivi
 I materiali costituenti i complessi da saldare debbono essere in
 acciaio UNI EN 10027-1 S355J0

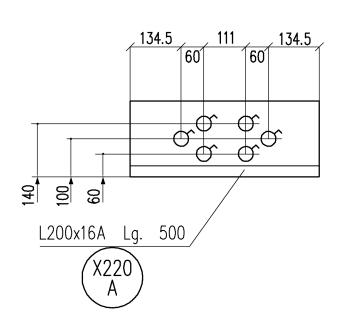
 - Tutti i materiali vanno zincati dopo la lavorazione
- Le pedarole, posizioni da L700 a L725, sono in alternativa al dispositivo di scalata a disegno TERNA P003DS001 e 002 e devono essere fornite a sola espressa richiesta.

BULLONI	ø BULLONE	ø FORO	NORMALE	PINZE (Piastre.Mont. e Giunti	DI TAGLIO ASTE TESE	LAMINATO	DISTANZA C/C FORI MINIMA	DISTANZA C/C FORI NORMALE	PROFILO MINIMO AMMESSO	
•	12	13.5	20	25	30	17	35	40	L 35	
#	14	15.5	25	30	35	20	40	45	L 40	
+	16	17.5	25	30	35	22	45	50	L 45	
•	20	21.5	35	40	45	27	55	60	L 55	F
•	22	24	40	45	50	30	60	65	L 60	
#	24	26	45	50	55	32	65	72	L 70	
•	27	29	50	55	60	37	70	81	L 75	


REVISION	01	Giugno 2008	Aggiunto configurazioni F44/5 con H = 35 e F44/7 con H = 3900 mm PRIMA EMISSIONE	00 mm, F44/6 con H = 3700 mm,	G. Maffioletti CESI S.p.A. L. Mazza	L. Alario ING-ILC L. Alario	R. Rendina ING-ILC R. Rendina	
	00 N.	Dicembre 2007	DESCRI	ZIONE	CESI S.p.A. ELABORATO	ING-ILC VERIFICATO	ING-ILC APPROVAT	
=	TIPOLOG	GIA DELL'ELABORATO	co	DIFICA DELL'ELABORATO				
	Dise	egni unifilari	PO	05DX002	7	Te	rna	
		PROGETTO		TITOLO				
		N.A.						
	RICAVA	TO DAL DOC. TERNA	_ L	INEE 132/150 I	kV UNIFICA	ATE		
			SEMPLICE TERM	NA A TRIANGOLO	E DOPPIA TE	RNA - TIR	O PIEN	
				MONOON				
	CLASSIFIC	CAZIONE DI SICUREZZA			MONCONE - F44			
		AZIENDALE		MONCO	NL - 1 1 1			
	USO		SCALA CAD	FORMATO	SCALA		FOGLIO	

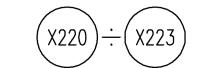
This document contains information proprietary to Terna S.p.A. and it will have to be used exclusively for the purposes for which it has been furnished. Whichever shape of spreading or reproduction without the written permission of Terna S.p.A. is prohibit.


F45


PER PALI "V" s.t. DA BASI H9 a H24

PER PALI "M" d.t. DA BASI H9 a H21

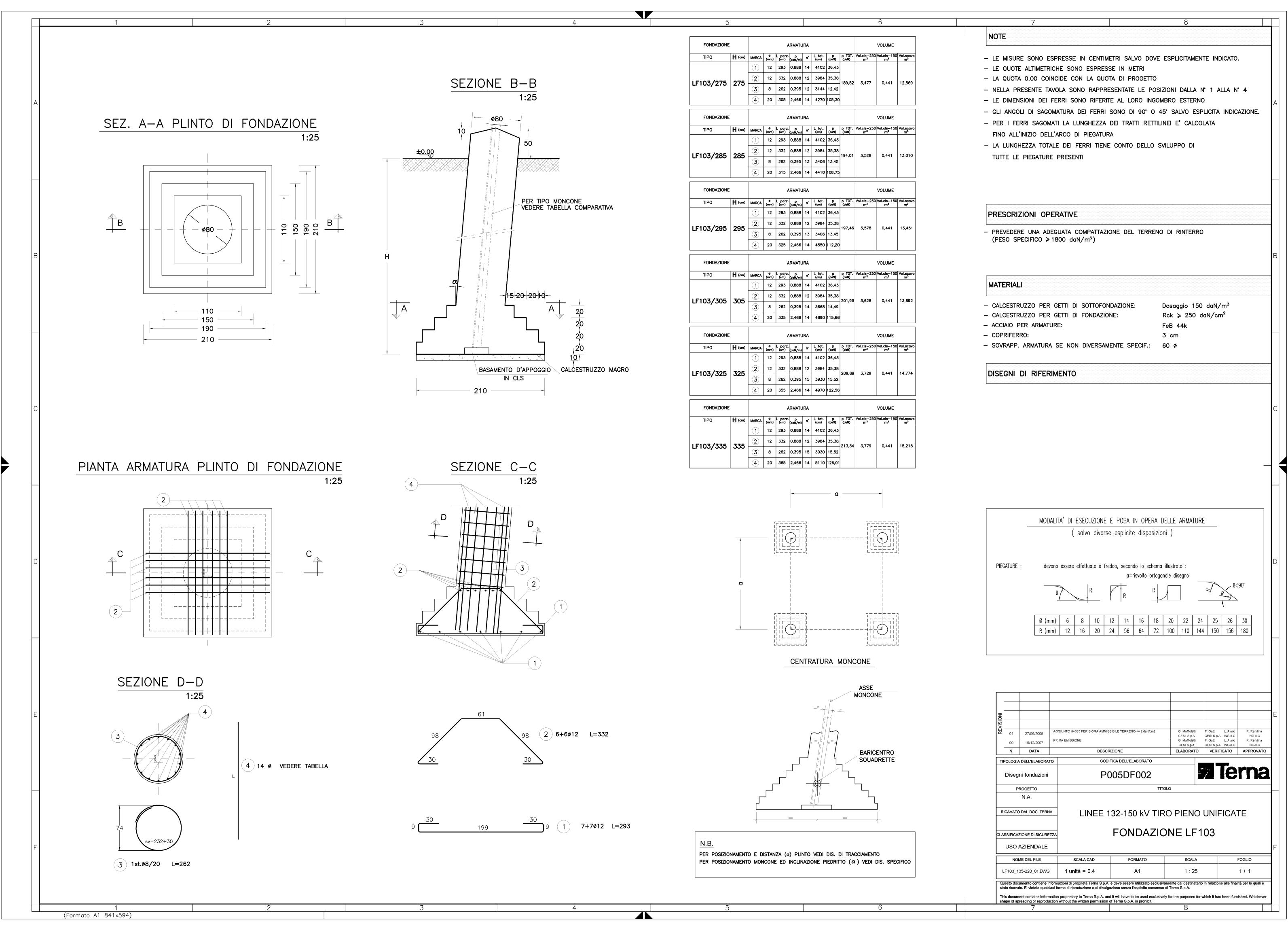
BULLONI PER UN MONCONE M24x70 = 18

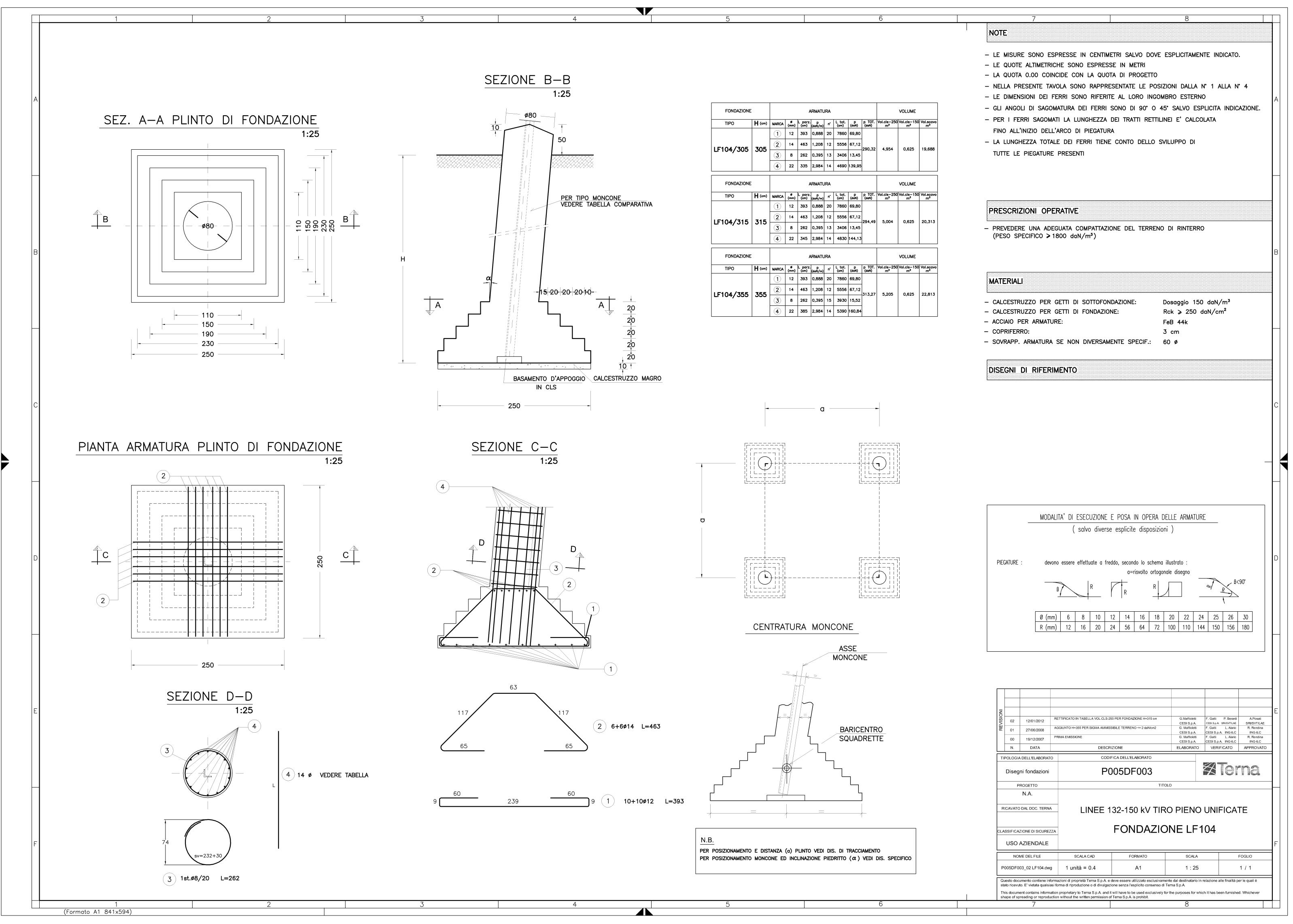


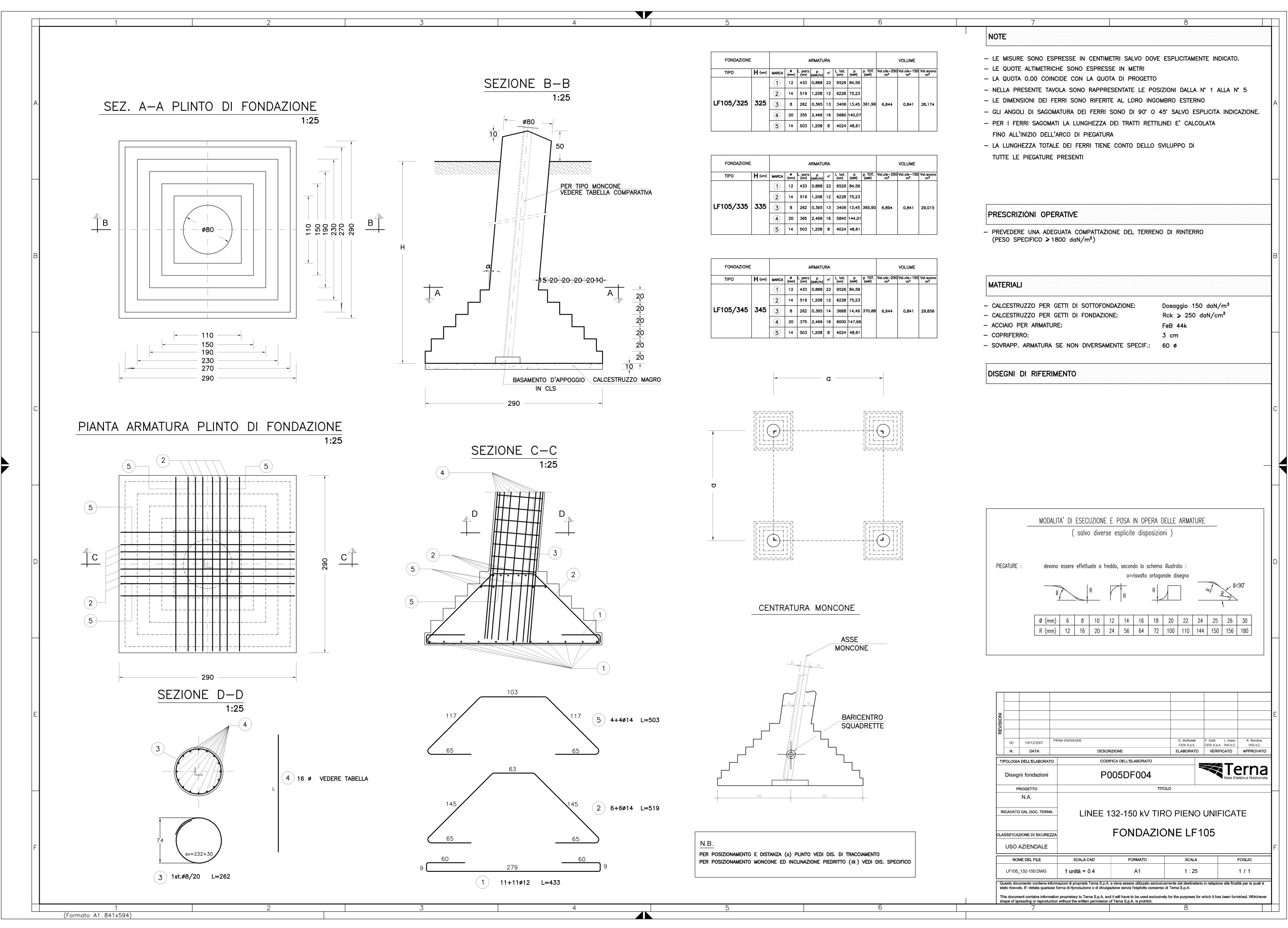
TIPO POS. LUNGH. F45/1 3400 (X220) 3779 F45/2 3600 (X221) 3980 2677 F45/3 3900 (X222) 4281 2978 F45/4 4200 (X223) 4582 3279

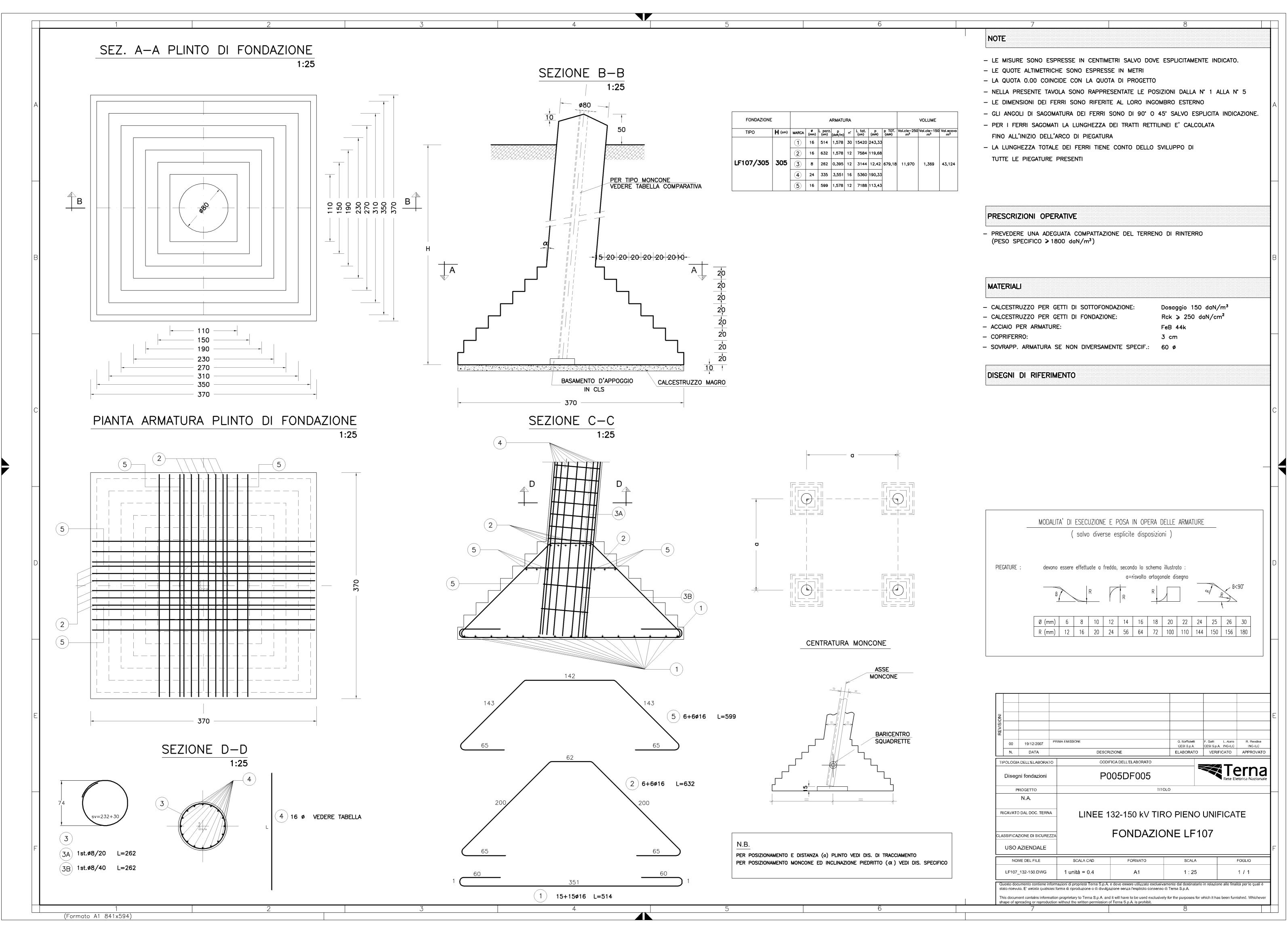
NOTE GENERALI:

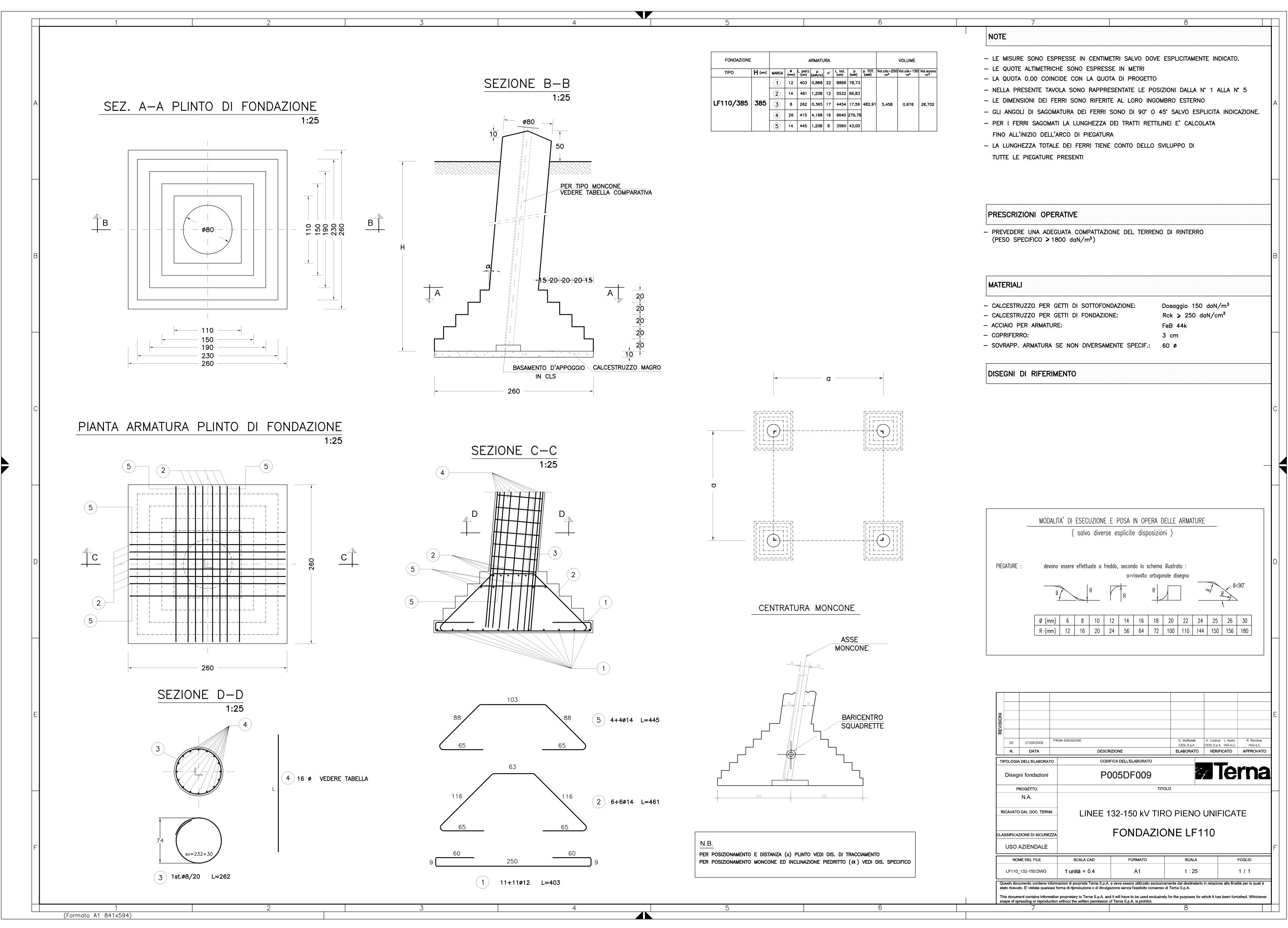
- Profilati indicati con lettera. A. UNI EN 10027-1 S353JR
 Profilati senza indicazione. UNI EN 10027-1 S235JR
 Piatti indicati con lettera. A. UNI EN 10027-1 S355JR
 Piatti senza indicazione. UNI EN 10027-1 S275JR
 Bulloni. UNI EN 20898 CI. 6.8
 Per le prescrizioni per l'ordinazione la costruzione ed il collaudo vedere le tabelle RQUPS10001, S10002, S10003
 Per le prescrizioni ed il collaudo delle saldature vedere la tabella S10004
 Per i tipi di saldature vedere la tabella S10014
- Le saldature devono essere conformi a quanto prescritto nelle LS10004 Le caratteristiche ed il tipo di cordone di saldatura sono riportati
 nelle LS10014 salvo quando diversamente specificato nei disegni costruttivi
 I materiali costituenti i complessi da saldare debbono essere in
 acciaio UNI EN 10027-1 S355J0

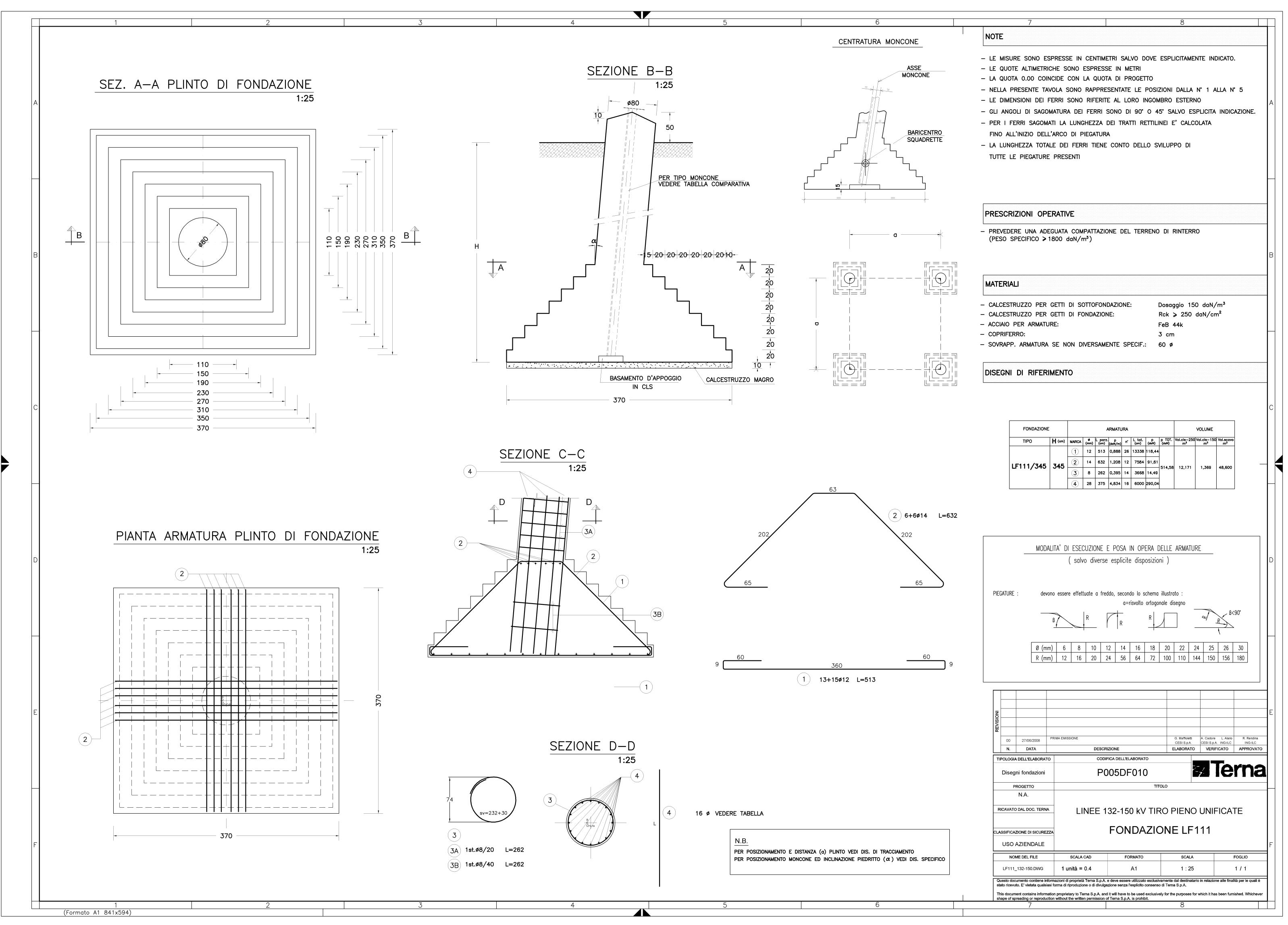

 - Tutti i materiali vanno zincati dopo la lavorazione
- Le pedarole, posizioni da L700 a L725, sono in alternativa al dispositivo di scalata a disegno TERNA P003DS001 e 002 e devono essere fornite a sola espressa richiesta.




										ı
BULLONI	ø BULLONE	ø FORO	NORMALE	PINZE (Piastre.Mont. e Giunti	OI TAGLIO ASTE TESE	LAMINATO	DISTANZA C/C FORI MINIMA	DISTANZA C/C FORI NORMALE	PROFILO MINIMO AMMESSO	
•	12	13.5	20	25	30	17	35	40	L 35	
#	14	15.5	25	30	35	20	40	45	L 40	
+	16	17.5	25	30	35	22	45	50	L 45	
+	20	21.5	35	40	45	27	55	60	L 55	F
•	22	24	40	45	50	30	60	65	L 60	
4	24	26	45	50	55	32	65	72	L 70	
•	27	29	50	55	60	37	70	81	L 75	


₹ -							
KE VISION	01	Giugno 2008	Aggiunta configurazione F45/3 con H = 39	00 mm e F45/4 con H = 4200 mm	G. Maffioletti CESI S.p.A.	L. Alario ING-ILC	R. Rendina ING-ILC
	00	Dicembre 2007	PRIMA EMISSIONE		L. Mazza CESI S.p.A.	L. Mazza L. Alario R. Rendina	
	N.	DATA	DESCRIZ	ZIONE	ELABORATO	VERIFICATO	APPROVATO
	TIPOLO	GIA DELL'ELABORATO	co	DIFICA DELL'ELABORATO			
	Dise	egni unifilari	P0	05DX003	Tern		rna
		PROCETTO		птосо			
				IIIO			
		N.A.		IIIO			
		N.A.				ATF	
	RICAVA	N.A.	LI	NEE 132/150 I		ATE	
	RICAVA		_		kV UNIFIC		RO PIENO
			SEMPLICE TERN	NEE 132/150 I	kV UNIFIC E DOPPIA T		RO PIENO
	CLASSIFIC	TO DAL DOC. TERNA	SEMPLICE TERN	NEE 132/150	kV UNIFIC E DOPPIA T		RO PIENO
	CLASSIFIC USO	to dal doc. Terna Cazione di Sicurezza	SEMPLICE TERN	NEE 132/150 I	kV UNIFIC E DOPPIA T		RO PIENO


This document contains information proprietary to Tema S.p.A. and it will have to be used exclusively for the purposes for which it has been furnished. Whichever shape of spreading or reproduction without the written permission of Tema S.p.A. is prohibit.



Linee a 132 - 150 kV

Palo Gatto con e senza piattaforma per transizione aereo - cavo **FONDAZIONI CR**

CORRISPONDENZE SOSTEGNI – MONCONI – FONDAZIONI

Codifica: 150PGTPFON Rev. 01 Pag. **1** di 2 del 06/02/2020

Linee a 132 - 150 kV

Palo Gatto con e senza piattaforma per transizione aereo cavo Conduttore in alluminio – acciaio Ø 31,5 mm Tiro orizzontale in EDS 21% Zona A – EDS 18% Zona B **FONDAZIONI CR**

CORRISPONDENZE SOSTEGNI - MONCONI - FONDAZIONI

Storia de	lle revisioni	
Rev. 01	del 06/02/2020	Eseguite modifiche redazionali. Inseriti allungati H21 e H24 ed aggiornata tabella di corrispondenza.
Rev. 00	del 05/06/2009	Prima Emissione

Elaborato		Verificato		Approvato Approvato	
S. Memeo ING-TEC-LAC	L. Alario ING-TEC-LAC	P. Berardi ING-TEC-LAC			E. Di Vito ING-TEC-LAC

Linee a 132 - 150 kV

Palo Gatto con e senza piattaforma per transizione aereo – cavo FONDAZIONI CR

CORRISPONDENZE SOSTEGNI – MONCONI – FONDAZIONI

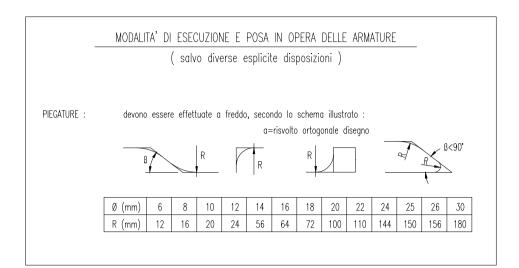
Codifica: 150PGTPFON


Rev. 01 Pag. **2** di 2

Fondazioni CR (σt_{amm} = 3.9 daN/cmq)

	SOSTEGNO	MONCONE		FONDA	AZIONE
TIPO	ALTEZZA	TIPO	ALTEZZA (MM)	TIPO	ALTEZZA (CM)
	H 9	5350/1	2250	G1014/2A	240
	H 12	5350/2	2250	G1014/2B	240
Dala Catta	H 15	5350/2	2250	G1014/2C	240
Palo Gatto	H 18	5350/2	2250	G1014/2D	240
	H 21	5350/2	2250	G1014/2E	240
	H 24	5350/2	2250	G1014/2F	240

• Fondazioni CR ($\sigma t_{amm} = 2.0 \text{ daN/cmq}$)


	SOSTEGNO	MONCONE		FONDA	AZIONE
TIPO	ALTEZZA	TIPO	ALTEZZA (MM)	TIPO	ALTEZZA (CM)
	H 9	5350/1	2250	G1014/1A	240
	H 12	5350/2	2250	G1014/1B	240
Palo Gatto	H 15	5350/2	2250	G1014/1C	240
Paio Gallo	H 18	5350/2	2250	G1014/1D	240
	H 21	5350/2	2250	G1014/1E	240
	H 24	5350/2	2250	G1014/1F	240

NOTE

- LE MISURE SONO ESPRESSE IN METRI SALVO DOVE DIVERSAMENTE INDICATO. - NELLA PRESENTE TAVOLA SONO RAPPRESENTATE LE POSIZIONI DALLA N° 1 ALLA N° 9
- LE DIMENSIONI DEI FERRI SONO RIFERITE AL LORO INGOMBRO ESTERNO
- GLI ANGOLI DI SAGOMATURA DEI FERRI SONO DI 90° SALVO DIVERSA INDICAZIONE.
- LE LUNGHEZZE L1, L2, L3 DEI FERRI SONO CALCOLATE FINO ALL'INIZIO DELL'ARCO DI PIEGATURA

- SEGUIRE SCRUPOLOSAMENTE LE INDICAZIONI RIPORTATE NELLA RELAZIONE ILLUSTRATIVA DEI MATERIALI (IN PARTICOLARE VIBRARE ACCURATAMENTE IL GETTO E CURARE LA COIBENTAZIONE DELLO STESSO)

MATERIALI

 350 Kg/m^3

0,50

3 cm

- Dosaggio 150 daN/m³ - CALCESTRUZZO PER GETTI DI SOTTOFONDAZIONE:
- $Rck \geqslant 250 \text{ daN/cm}^2 \quad (C 20/25)$ - CALCESTRUZZO PER GETTI DI FONDAZIONE:
- CEMENTO A BASSO CALORE DI IDRATAZIONE "LH"
- (vedi relazione illustrativa dei materiali)
- RAPPORTO A/C MASSIMO
- CLASSE DI CONSISTENZA S4
- Dmax AGGREGATO - COPRIFERRO:
- SOVRAPP. ARMATURA SE NON DIVERSAMENTE SPECIF .:
- ACCIAIO PER ARMATURE:
 - FeB 38k

DISEGNI DI RIFERIMENTO

- IL PRESENTE DISEGNO ANNULLA E SOSTITUISCE I DISEGNI ENEL DA FO04/D28 A F004/D44

04 Febbraio 2020 ING-TAM-ILI Febbraio 2020 F.Gatti P.Berardi 20/02/2015 Revisione generale (PROT.CESI B5003 CESI S.p.A. CESI S.p.A. ING-SVT-LAE Marzo 2011 V.Rebecchi L.Alario CESI ING-ILC 00 27/08/2008 CESI S.p.A. N. DATA DESCRIZIONE ELABORATO VERIFICATO APPROVATO

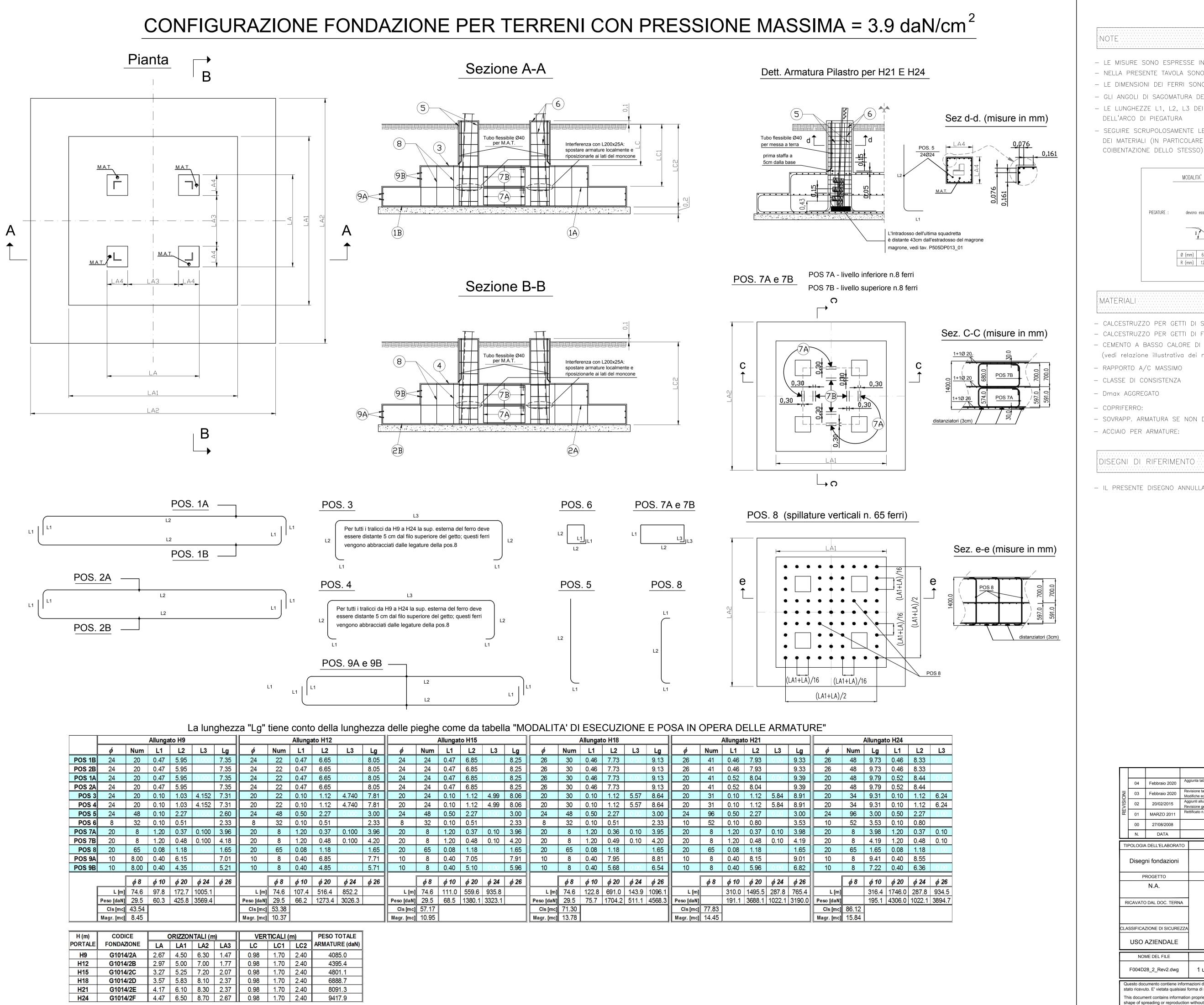
CODIFICA DELL'ELABORATO

F004/D28 Disegni fondazioni PROGETTO N.A.

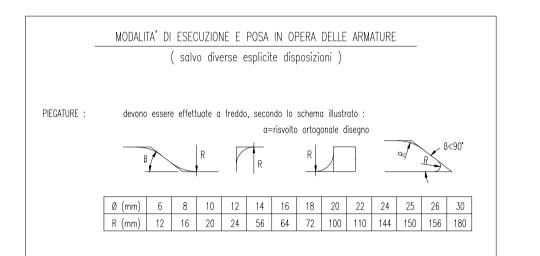
TIPOLOGIA DELL'ELABORATO

STAZIONI ELETTRICHE A 132-150 kV RICAVATO DAL DOC. TERNA FONDAZIONI PER PORTALI DI LINEA

TITOLO


Rete Italia

TERNA GROUP


LASSIFICAZIONE DI SICUREZZA H9,H12,H15,H18,H21,H24 TIRO PIENO **USO AZIENDALE**

SCALA CAD NOME DEL FILE FORMATO SCALA FOGLIO 1 / 2 1 unità = 1 mm F004D28_1_Rev4.dwg

Questo documento contiene informazioni di proprietà Terna Rete Italia S.p.A. e deve essere utilizzato esclusivamente dal destinatario in relazione alle finalità per his document contains information proprietary to Terna Rete Italia S.p.A. and it will have to be used exclusively for the purposes for which it has been furnished /hichever shape of spreading or reproduction without the written permission of Terna Rete Italia S.p.A. is prohibit.

- LE MISURE SONO ESPRESSE IN METRI SALVO DOVE DIVERSAMENTE INDICATO.
- NELLA PRESENTE TAVOLA SONO RAPPRESENTATE LE POSIZIONI DALLA N° 1 ALLA N° 9
- LE DIMENSIONI DEI FERRI SONO RIFERITE AL LORO INGOMBRO ESTERNO
- GLI ANGOLI DI SAGOMATURA DEI FERRI SONO DI 90° SALVO DIVERSA INDICAZIONE.
- LE LUNGHEZZE L1, L2, L3 DEI FERRI SONO CALCOLATE FINO ALL'INIZIO DELL'ARCO DI PIEGATURA
- SEGUIRE SCRUPOLOSAMENTE LE INDICAZIONI RIPORTATE NELLA RELAZIONE ILLUSTRATIVA DEI MATERIALI (IN PARTICOLARE VIBRARE ACCURATAMENTE IL GETTO E CURARE LA

MATERIALI

350 Kg/m³

0,50

S4

- CALCESTRUZZO PER GETTI DI SOTTOFONDAZIONE: Dosaggio 150 daN/m³ $Rck \geqslant 250 \text{ daN/cm}^2 \quad (C 20/25)$
- CALCESTRUZZO PER GETTI DI FONDAZIONE:
- CEMENTO A BASSO CALORE DI IDRATAZIONE "LH"
- (vedi relazione illustrativa dei materiali)
- RAPPORTO A/C MASSIMO
- CLASSE DI CONSISTENZA
- Dmax AGGREGATO
- SOVRAPP. ARMATURA SE NON DIVERSAMENTE SPECIF.:
- ACCIAIO PER ARMATURE:

DISEGNI DI RIFERIMENTO

- IL PRESENTE DISEGNO ANNULLA E SOSTITUISCE I DISEGNI ENEL DA FO04/D28 A F004/D44

04 Febbraio 2020 CESI S.p.A. ING-TAM-ILI Febbraio 2020 F.Gatti P.Berardi 20/02/2015 Revisione generale (PROT. CESI B50031 CESI S.p.A. ING-SVT-LAE ING-SVT-LAE CESI S.p.A. 01 MARZO 2011 G.Maffioletti CESI S.p.A. V.Rebecchi L.Alario CESI ING-ILC 00 27/08/2008 N. DATA ELABORATO VERIFICATO APPROVATO DESCRIZIONE

CODIFICA DELL'ELABORATO

F004/D28 Disegni fondazioni PROGETTO N.A.

STAZIONI ELETTRICHE A 132-150 kV RICAVATO DAL DOC. TERNA

CLASSIFICAZIONE DI SICUREZZA **USO AZIENDALE**

TIPOLOGIA DELL'ELABORATO

FONDAZIONI PER PORTALI DI LINEA H9,H12,H15,H18,H21,H24 TIRO PIENO

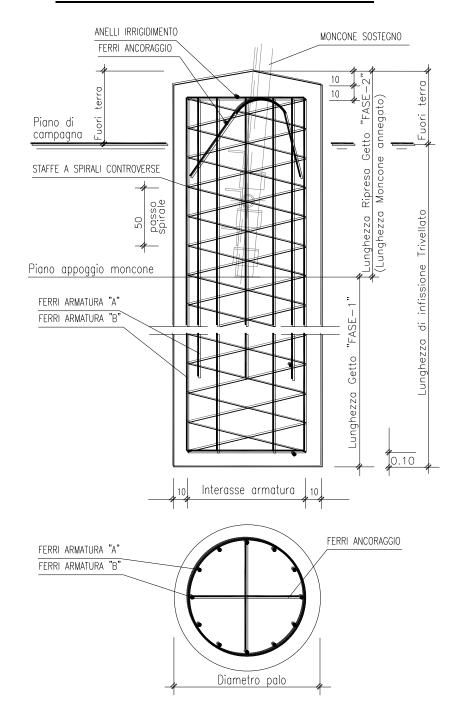
TITOLO

Terna Rete Italia

TERNA GROUP

NOME DEL FILE SCALA CAD FOGLIO FORMATO SCALA 2/2 F004D28_2_Rev2.dwg 1 unità = 1 mm

Questo documento contiene informazioni di proprietà Terna S.p.A. e deve essere utilizzato esclusivamente dal destinatario in relazione alle finalità per le quali è stato ricevuto. E' vietata qualsiasi forma di riproduzione o di divulgazione senza l'esplicito consenso di Terna S.p.A. This document contains information proprietary to Terna S.p.A. and it will have to be used exclusively for the purposes for which it has been furnished. Whicheve shape of spreading or reproduction without the written permission of Terna S.p.A. is prohibit.


NUOVO COLLEGAMENTO RTN a 132 kV IN ENTRA – ESCE ALLA CP DI NEMBIA

TIPOLOGICO FONDAZIONE SPECIALE SU PALI TRIVELLATI

Codifica FECR19001B2262479

Rev. 00 del 15/10/2021 Pag. **1** di 1

Fondazione su PALI TRIVELLATI

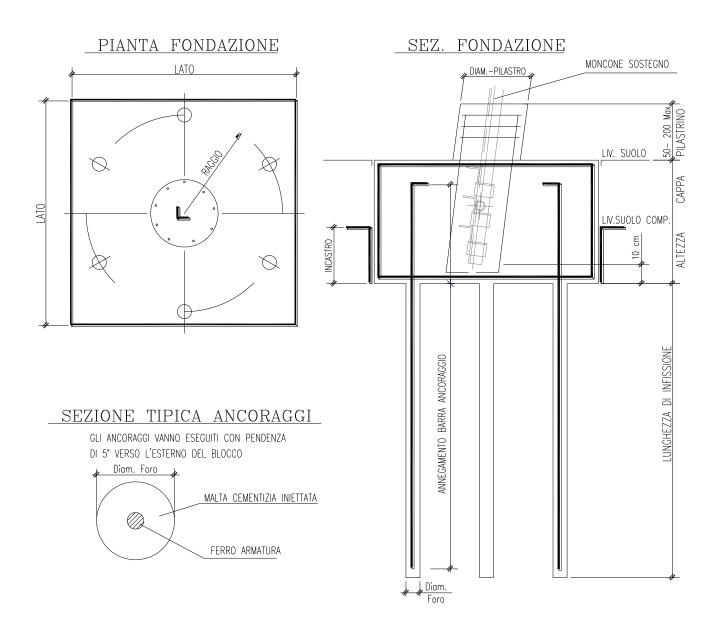
Storia de	lle revisioni	
Rev. 00	del 15/10/2021	Prima emissione

ISC – Uso INTERNO		TEDNO	_ Hea	ISC.	

Elaborato		Verificato		Approvato
E. Ceccon	L.Carradore	D. Sperti		L. Simeone
GPI-SVP-PRA-NE	GPI-SVP-PRA-NE	GPI-SVP-PRA		GPI-SVP-PRA

NUOVO COLLEGAMENTO RTN a 132 kV IN ENTRA – ESCE ALLA CP DI NEMBIA

TIPOLOGICO FONDAZIONE SPECIALE SU MICROPALI


Codifica FECR19001B2263359

Pag. 1 di 1

Rev. 00

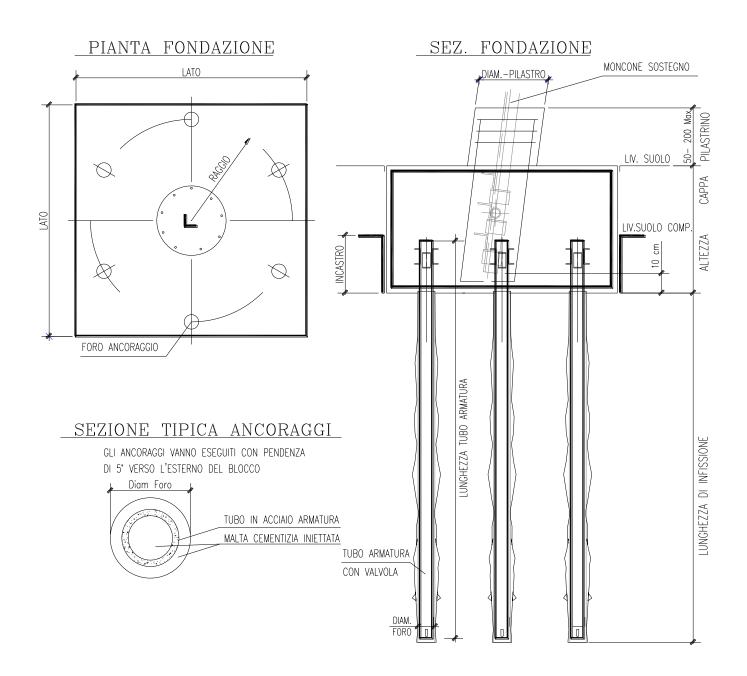
del 15/10/2021

Fondazione su MICROPALI

Storia delle revisioni			
	Rev. 00	del 15/10/2021	Prima emissione

ISC - Uso INTERNO

Elaborato		Verificato		Approvato	
E. Ceccon	L. Carradore	D. Sperti		L. Simeone	
GPI-SVP-PRA-NE	GPI-SVP-PRA-NE	GPI-SVP-PRA		GPI-SVP-PRA	


NUOVO COLLEGAMENTO RTN a 132 kV IN ENTRA – ESCE ALLA CP DI NEMBIA

TIPOLOGICO FONDAZIONE SPECIALE SU MICROPALI TUBFIX

Codifica FECR19001B2263465

Rev. 00 del 15/10/2021 Pag. **1** di 1

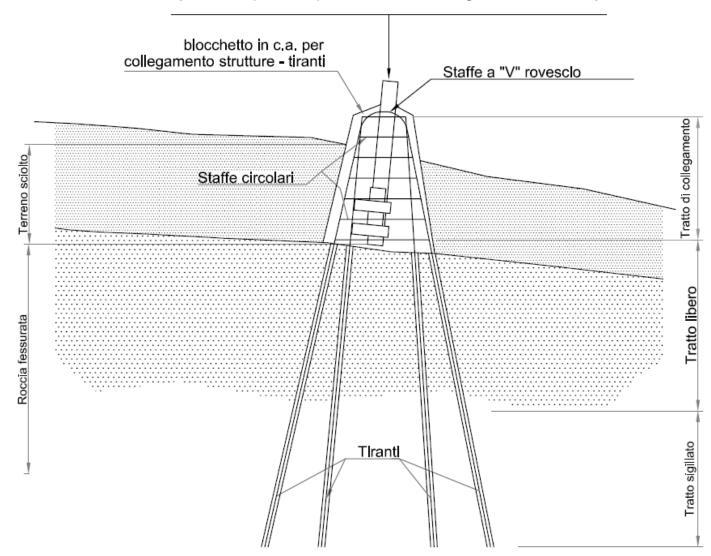
Fondazione su Micropali TUBFIX

Storia delle revisioni		
Rev. 00	del 15/10/2021	Prima emissione

ISC - Uso INTERNO

Elaborato		Verificato	Approvato	l
E. Ceccon GPI-SVP-PRA-NE	L. Carradore GPI-SVP-PRA-NE	D. Sperti GPI-SVP-PRA	L. Simeone GPI-SVP-PRA	l

NUOVO COLLEGAMENTO RTN a 132 kV IN ENTRA – ESCE ALLA CP DI NEMBIA


TIPOLOGICO FONDAZIONE SPECIALE ANCORAGGIO CON TIRANTI IN ROCCIA

Codifica FECR19001B2263801

Rev. 00 del 15/10/2021 Pag. **1** di 1

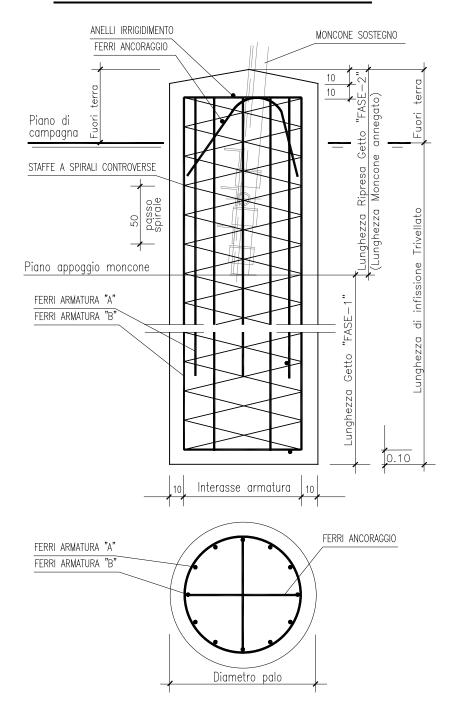
Fondazione con TIRANTI IN ROCCIA

montante in angolare d'acciaio per collegamento con la struttura sovrastante (munito di quadrette per la trasmissione degli sforzi di trazione)

Storia delle revisioni				
	Rev. 00	del 15/10/2021	Prima emissione	

ISC -	Uso	INTFR	NO	

Elaborato		Verificato		Approvato	
E. Ceccon	L. Carradore	D. Sperti		L. Simeone	
GPI-SVP-PRA-NE	GPI-SVP-PRA-NE	GPI-SVP-PRA		GPI-SVP-PRA	


NUOVO COLLEGAMENTO RTN a 132 kV IN ENTRA – ESCE ALLA CP DI NEMBIA

TIPOLOGICO FONDAZIONE SPECIALE SU PALI TRIVELLATI

FECR19001B2262479

Rev. 00 Pag. **1** di 1

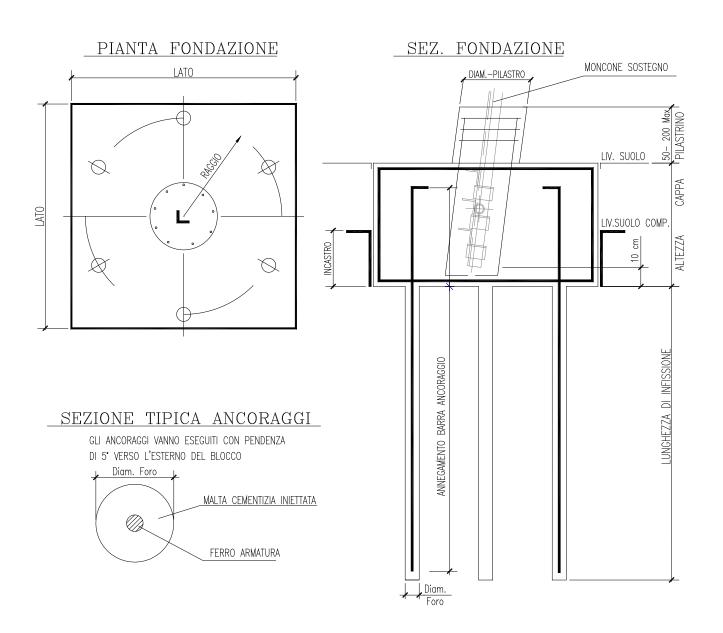
Fondazione su PALI TRIVELLATI

Storia delle revisioni			
	Rev. 00	del 15/10/2021	Prima emissione

ופר וו	so INTER	NO

Elaborato		Verificato		Approvato	
	E. Ceccon GPI-SVP-PRA-NE	L.Carradore GPI-SVP-PRA-NE	D. Sperti GPI-SVP-PRA		L. Simeone GPI-SVP-PRA

NUOVO COLLEGAMENTO RTN a 132 kV IN ENTRA – ESCE ALLA CP DI NEMBIA


TIPOLOGICO FONDAZIONE SPECIALE SU MICROPALI

FECR19001B2263359

Rev. 00 del 15/10/2021

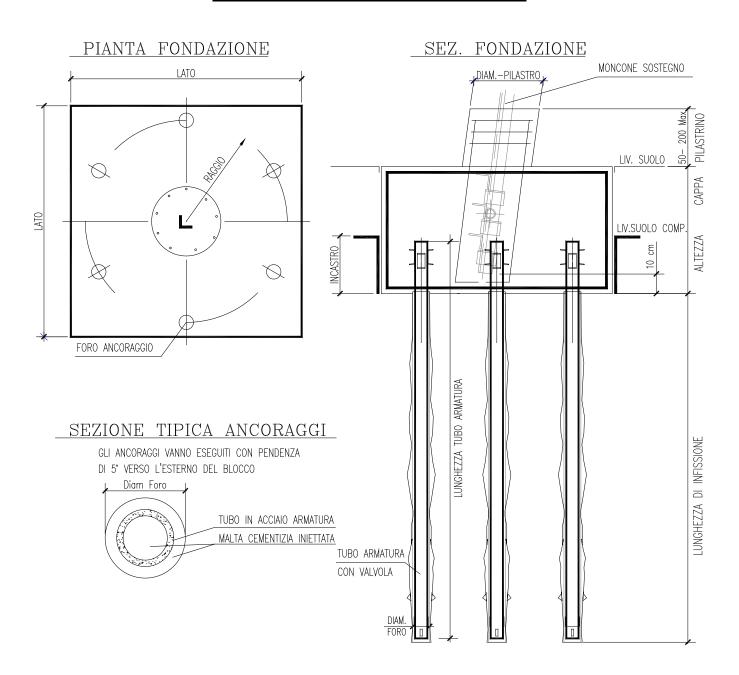
Pag. **1** di 1

Fondazione su MICROPALI

Storia de	lle revisioni	
Rev. 00	del 15/10/2021	Prima emissione

ISC - Uso INTERNO

Elaborato		Verificato		Approvato
E. Ceccon	L. Carradore	D. Sperti		L. Simeone
GPI-SVP-PRA-NE	GPI-SVP-PRA-NE	GPI-SVP-PRA		GPI-SVP-PRA


NUOVO COLLEGAMENTO RTN a 132 kV IN ENTRA – ESCE ALLA CP DI NEMBIA

TIPOLOGICO FONDAZIONE SPECIALE SU MICROPALI TUBFIX

FECR19001B2263465

Rev. 00 del 15/10/2021 Pag. **1** di 1

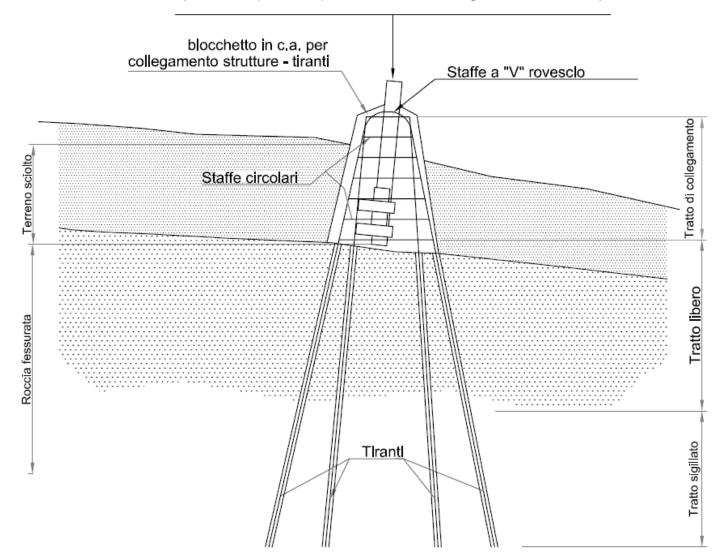
Fondazione su Micropali TUBFIX

Storia de	lle revisioni	
Rev. 00	del 15/10/2021	Prima emissione

ISC - Uso INTERNO

Elaborato		Verificato		Approvato		
	E. Ceccon GPI-SVP-PRA-NE	L. Carradore GPI-SVP-PRA-NE	D. Sperti GPI-SVP-PRA		L. Simeone GPI-SVP-PRA	

NUOVO COLLEGAMENTO RTN a 132 kV IN ENTRA – ESCE ALLA CP DI NEMBIA


TIPOLOGICO FONDAZIONE SPECIALE ANCORAGGIO CON TIRANTI IN ROCCIA

Codifica FECR19001B2263801

Rev. 00 del 15/10/2021 Pag. **1** di 1

Fondazione con TIRANTI IN ROCCIA

montante in angolare d'acciaio per collegamento con la struttura sovrastante (munito di quadrette per la trasmissione degli sforzi di trazione)

Storia de	lle revisioni	
Rev. 00	del 15/10/2021	Prima emissione

ISC –	Uso INTERNO

Elaborato		Verificato		Approvato	l	
	E. Ceccon GPI-SVP-PRA-NE	L. Carradore GPI-SVP-PRA-NE	D. Sperti GPI-SVP-PRA		L. Simeone GPI-SVP-PRA	l