COMMITTENTE

PROGETTAZIONE

INFRASTRUTTURE FERROVIARIE STRATEGICHE DEFINITE DALLA LEGGE OBIETTIVO N. 443/01e s.m.i.

CUP: J14D20000010001

U.O. COORDINAMENTO TERRITORIALE NORD

PROGETTO DEFINITIVO

LINEA AV/AC MILANO - VENEZIA LOTTO FUNZIONALE TRATTA AV/AC VERONA-PADOVA

NODO AV/AC DI VERONA: INGRESSO EST

STAZIONE DI VERONA PORTA NUOVA

FV05 - Prolungamento sottopasso Viaggiatori Lato Venezia

Relazione di calcolo vano ascesnsore e Scala Fissa						
	SCALA:					
	-					
COMMESSA LOTTO FASE ENTE TIPO DOC. OPERA/DISCIPLINA PROGR. REV.						
N 1 A 2 0 D 2 6 C L F V 0 5 0 0 0 0 3 A						
Rev. Descrizione Redatto Data Verificato Data Approvato Data	Autorizzato Data					

Rev.	Descrizione	Redatto	Data	Verificato	Data	Approvato	Data	Autorizzato Data
Α	Emissione esecutiva	V. Reale	Gen 2022	M. Rigo	Gen 2022	C.Mazzocchi	Feb 2022	A.Perego Gen 2022
				Vassimo Vija		Chaell		

File:IN1A20D26CLFV0500003A.docx n. Elab.:

LINEA AV/AC MILANO – VENEZIA LOTTO FUNZIONALE TRATTA AV/AC VERONA-PADOVA NODO AV/AC DI VERONA: INGRESSO EST

Relazione di calcolo vano ascesnsore e Scala Fissa

COMMESSA IN1A

LOTTO 20

D26CL

CODIFICA DOCUMENTO FV 05 00 003

REV.

Α

FOGLIO 2 di 148

INDICE

1	PR	EMESSA	4
2		ESCRIZIONE DELLA STRUTTURA	
3		DRMATIVA DI RIFERIMENTO	
4	M	ATERIALI	7
	4.1	CALCESTRUZZO MAGRONE	7
	4.2	CALCESTRUZZO	7
	4.3	ACCIAIO B450C	7
5	IN	QUADRAMENTO GEOTECNICO	8
	5.1	TERRENO DI RICOPRIMENTO/RINTERRO	8
	5.2	Interazione terreno-struttura	8
	1.1	Modello strutturale	9
2	AN	NALISI DEI CARICHI	11
	2.1	PESO PROPRIO STRUTTURE (DEAD)	11
	2.2	CARICHI PERMANENTI NON STRUTTURALI (G2K)	11
	2.3	Carichi Accidentali (Qhk)	12
	2.4	AZIONE TERMICA (DT)	14
	2.1	AZIONI TERMICHE UNIFORMI (TU)	14
	2.2	AZIONI TERMICHE DIFFERENZIALI (TF)	15
	2.3	RITIRO	17
	2.4	PERMANENTI PORTATI: SPINTA DEL TERRENO (SPINTA SINISTRO / SOLETTO)	19
	2.5	SOVRASPINTA ACCIDENTALE (CARICO FERROVIAIO QSQ.DX-QSQ.SX)	20

LINEA AV/AC MILANO – VENEZIA LOTTO FUNZIONALE TRATTA AV/AC VERONA-PADOVA NODO AV/AC DI VERONA: INGRESSO EST

FOGLIO

3 di 148

Relazione di calcolo vano ascesnsore e Scala
Fissa

COMMESSA
LOTTO CODIFICA DOCUMENTO REV.

REV.

1N1A
20
D26CL
FV 05 00 003
A

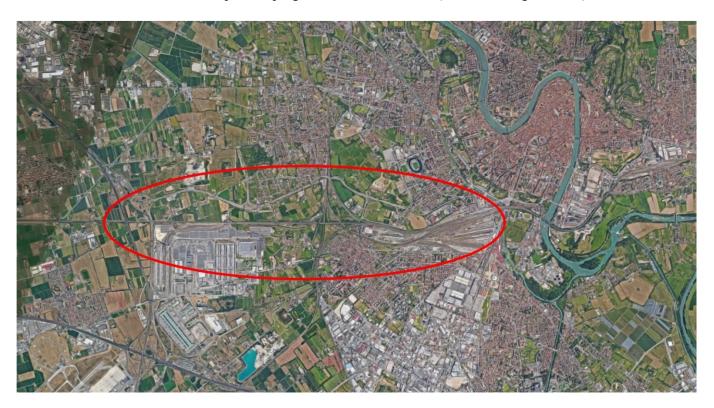
	2.6	AZIONE SISMICA (SISMA ORIZZONTALE E SISMA VERTICALE)	. 22
	2.6.1	l Parametri sismici	. 23
	2.7	Combinazioni delle azioni	. 38
3	RISI	ULTATI DELLE ANALISI	107

LINEA AV/AC MILANO – VENEZIA
LOTTO FUNZIONALE TRATTA AV/AC VERONA-PADOVA
NODO AV/AC DI VERONA: INGRESSO EST

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
IN1A	20	D26CL	FV 05 00 003	Α	4 di 148

Relazione di calcolo vano ascesnsore e Scala Fissa

1 PREMESSA


La presente relazione ha per oggetto la progettazione definitiva di opere strutturali relative all'Ingresso Ovest al Nodo AV/AC di Verona Porta Nuova della Tratta AV/AC Brescia-Verona.

L'intervento prevede la realizzazione delle nuove linee, prevalentemente in affiancamento al sedime della attuale Linea Storica Milano-Venezia, nel tratto compreso tra l'intersezione con l'Autostrada del Brennero A22 e la radice est della Stazione Ferroviaria di Verona Porta Nuova, per una estensione di circa 10km. Tali interventi sono funzionali al progetto di linea della Tratta Brescia Est – Verona.

Il progetto prevede la rilocazione della Linea Storica leggermente più a nord al fine di lasciare spazio all'inserimento dei binari della Linea AV/AC. Viene anche prevista la realizzazione di una ulteriore linea denominata "indipendente merci" per il collegameno con la Linea Brennero.

Sono previsti interventi di potenziamento e riconfigurazione della stazione di Verona Porta Nuova e realizzazione di una nuova Sottostazione Elettrica con conseguenti interventi tecnologici per la gestione delle modifiche.

Il progetto comprende tutte le opere atte a consentire l'allaccio e l'interfaccia con le linee storiche esistenti e la risoluzione delle interferenze tra la parte di progetto stesso e l'esistente (viabilità, idrografia, ecc).

2 DESCRIZIONE DELLA STRUTTURA

La struttra oggetto della seguente relazione è il prolungamento di un sottopasso esistente composta da uno scatolare in c.a. a cui sono giuntate una rampa di scale in c.a. e il vano di un ascensore (spessori e dimensioni nelle figure di seguito). Il prolungamento interessa due marciapiedi, di conseguenza con due scale e due ascensori.

Il primo gruppo scatolare più vano scale ed ascensore, si ripete per servire il secondo marciapide, èper questo motivo sarà sufficiente modellare solo il preimo trattto essendo il seguente identico.

Si attribuisce all struttura una vita nominale VN = 75 anni e la classe d'uso II con coefficiente d'uso Cu=1, in conformità ai riferimenti normativi. Il periodo di riferimento da considerare per il calcolo dell'azione sismica sarà quindi $VR = Cu \times VN = 75$ anni

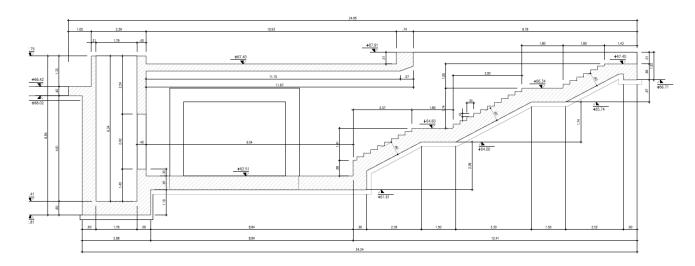
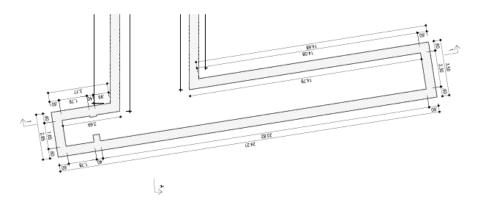



Fig. 1 – Sezione longitudinale dell'opera

3 NORMATIVA DI RIFERIMENTO

La progettazione è conforme alle normative vigenti nonché alle istruzioni dell'Ente FF.SS.

La normativa cui viene fatto riferimento nelle fasi di calcolo e progettazione è la seguente:

- Norme Tecniche per le Costruzioni, DM del 17/01/2018;
- Legge 05/01/1971 n°1086: Norme per la disciplina delle opere di conglomerato cementizio armato, normale e precompresso, ed a struttura metallica;
- Legge 02/02/1974 n°64: Provvedimenti per le costruzioni con particolari prescrizioni per le zone sismiche;
- C.M. 21/01/2019 n.7: Istruzioni per l'applicazione delle "Norme tecniche per le costruzioni;
- RFI DTC SI PS MA IFS 001 E Manuale di progettazione delle opere civili Parte II Sezione 2 Ponti e Strutture;
- RFI DTC SI PS SP IFS 001 E: Capitolato generale tecnico di appalto delle opere civili Parte II Sezione 6 Opere in conglomerato cementizio e in acciaio;
- UNI EN 1991-1-4:2005: Eurocodice 1 Azioni sulle strutture Parte 1-4: Azioni in generale Azioni del vento;
- UNI EN 1992-1-1:2005: Eurocodice 2 Progettazione delle strutture di calcestruzzo Parte 1-1: Regole generali e regole per gli edifici;
- UNI EN 1992-2:2006: Eurocodice 2 Progettazione delle strutture di calcestruzzo Parte 2: Ponti;
- UNI EN 1993-1-1:2005: Eurocodice 3 Progettazione delle strutture di acciaio Parte 1-1: Regole generali e regole per gli edifici;
- UNI EN 1993-2:2007: Eurocodice 3 Progettazione delle strutture di acciaio Parte 2: Ponti;
- UNI EN 1998-1:2005: Eurocodice 8 Progettazione delle struttura per la resistenza sismica Parte 1: Regole generali, azioni sismiche e regole per gli edifici;
- UNI EN 1998-2:2006: Eurocodice 8 Progettazione delle struttura per la resistenza sismica Parte 2: Ponti;
- STI 2014 –Regolamento (UE) N. 1299/2014 della Commissione del 18 novembre 2014 relativo alle specifiche tecniche di interoperabilità per il sottosistema «infrastruttura» del sistema ferroviario dell'Unione europea, modificato dal Regolamento di esecuzione (UE) N° 2019/776 della Commissione del 16 maggio 2019;

GRUPPO FERROVIE DELLO STATO ITALIANE	LINEA AV/AC MILANO – VENEZIA LOTTO FUNZIONALE TRATTA AV/AC VERONA-PADOVA NODO AV/AC DI VERONA: INGRESSO EST						
Relazione di calcolo vano ascesnsore e Scala	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO	
Fissa	IN1A	20	D26CL	FV 05 00 003	Α	7 di 148	

4 MATERIALI

Il calcestruzzo adottato corrisponde alla Classe C30/37, mentre l'acciaio in barre ad aderenza migliorata corrisponde alla classe B450C. Di seguito vengono elencate le specifiche.

4.1 Calcestruzzo magrone

Conglomerato classe di resistenza C12/15 – Rck 15MPa

Resistenza caratteristica cubica: Rck = 15 N/mm2

Resistenza caratteristica cilindrica: fck = 12 N/mm2

Classe di esposizione: X0

Classe di consistenza slump: S3

4.2 Calcestruzzo

Conglomerato classe di resistenza C30/37 – Rck 37MPa

Conforme alla UNI EN 206-1

Classe di esposizione XC2

Rck (UNI 11104) >= 37 MPa

Classe di resistenza (UNI 11104) C30/37

Tipo cemento CEM III-V

Dimensione max aggregati 32 mm

Classe di consistenza S4

Copriferro minimo (FS N°I/SC/PS-OM/2298) 50 mm

4.3 Acciaio B450C

Tensione caratteristica di snervamento: $f_{yk} = 450 \text{ MPa};$

Tensione di progetto: $f_{yd} = f_{yk} / \gamma_m$

in cui $\gamma_m=1.15$ $f_{yd}=450 \: / \: 1.15=391.3 \: MPa;$

Modulo Elastico $E_s = 210'000 \text{ MPa}.$

5 INQUADRAMENTO GEOTECNICO

5.1 Terreno di ricoprimento/rinterro

Per il terreno di ricoprimento dell'opera sono state assunte le seguenti caratteristiche geotecniche :

 $\gamma = 20 \text{ kN/m}^3$ peso di volume naturale

 $\varphi' = 38^{\circ}$ angolo di resistenza al taglio

c' = 0 kPa coesione drenata

5.2 Interazione terreno-struttura

Dalla scheda stratigrafica si desume la stratigrafia di progetto con i relativi parametri caratteristici:

Strato	Profondità da (m da p.c.)	Profondità a (m da p.c.)	Descrizione	Peso di volume V [kN/m3]	Tipo di terreno	Angolo di resistenza al taglio φ' (°)	C' (kPa)	Modulo elastico Eop (MPa)
1	0.00	10.00	Materiali rimaneggiato	19.00	GP	41.00	0.00	33.00
2	10.00	20.00	Ghiaia poligenica	19.00	GP	39.00	0.00	84.00
3	>20	>20.00 Sabbia eterometric		20.00	GP	38.00	24.00	87.00

La falda idrica è considerata a fondo scavo.

Di seguito sono trattati gli aspetti di natura geotecnica riguardanti l'interazione terreno-struttura relativamente all'opera in esame.

Per la determinazione della costante di sottofondo si può fare riferimento alle seguenti formulazioni assimilando il comportamento del terreno a quello di un mezzo elastico omogeneo (formula di Vesic)

$$k = \frac{0.65 \, E}{1 - v^2} * \sqrt[12]{\frac{E b^4}{(E_c J)_{fond}}}$$

dove:

h = altezza della trave;

- b = dimensione trasversale della trave;

J = inierzia della trave;

E_c = modulo di elasticità del calcestruzzo

GRUPPO FERROVIE DELLO STATO ITALIANE	LINEA AV/AC MILANO – VENEZIA LOTTO FUNZIONALE TRATTA AV/AC VERONA-PADOVA NODO AV/AC DI VERONA: INGRESSO EST						
Relazione di calcolo vano ascesnsore e Scala	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO	
Fissa	IN1A	20	D26CL	FV 05 00 003	Α	9 di 148	

- v = coefficiente di Poisson del terreno;
- E = modulo elastico medio del terreno sottostante.

$\mathbf{E} =$	33000	kN/m ²
n =	0.3	
$\mathbf{B} =$	9.5	m
L =	7.0	m
L/B =	0.74	
$c_t =$	0.69	
$K_{\rm w} =$	5534	kN/m^3

Cautelativamente si limita, ai fini del calcolo, il valore della costante di sottofondo a circa 5000 kN/m³.

1.1 Modello strutturale

L'analisi della struttura in esame è stata effettuata mediante una modellazione agli elementi finiti tramite l'utilizzo del software SAP2000. La struttura è stata modellata con un modello numerico tridimensionale il cui sistema di riferimento globale prevede una terna destrorsa il cui l'asse X è orientato in direzione longitudinale e l'asse Z verticale positivo verso l'alto.

Travi, colonne e controventi sono stati modellati con elementi frame, mentre i pannelli di rivestimento mediante elementi shell none

Dove necessario, le azioni risultanti agenti sui pannelli di rivestimento sono state invece assegnate direttamente alle travi portanti principali anziché mediante gli elementi shell none.

Le pareti in cemento armato sono modellate e progettate come elementi a guscio.

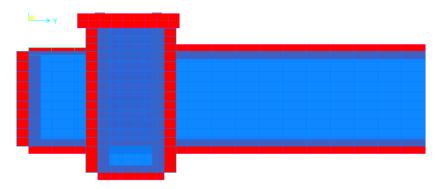
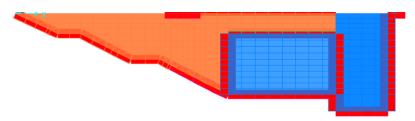
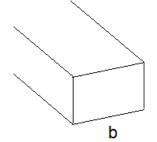


Figure 1 Modello SAP2000 struttura – Sezioni trasversali

SITALFERR GRUPPO FERROVIE DELLO STATO ITALIANE	LINEA AV/AC MILANO – VENEZIA LOTTO FUNZIONALE TRATTA AV/AC VERONA-PADOVA NODO AV/AC DI VERONA: INGRESSO EST						
Relazione di calcolo vano ascesnsore e Scala	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO	
Fissa	IN1A	20	D26CL	FV 05 00 003	Α	10 di 148	




Figure 2 Modello SAP2000 struttura – Sezione longitudinale

Per la modellazione del terreno si considera la trave su suolo elastico, modellata con l'utilizzo di molle alla Winkler, aventi la seguente rigidezza (Vesic, 1965):

Per cui risulta:		$K = \frac{0.65E}{1 - v^2} \sqrt[12]{\frac{Eb^4}{(EJ)_{fond}}}$
E=	33000 kN/mq	modulo elastico del terreno

0.3

coeff. di Poisson

trav	/e	dı	п	o	٦d	az	ıor	ıe

b=	1.00 m	dimensione trasversale trave
h=	0.60 m	altezza trave
J=	0.018000 m ⁴	inerzia trave
Rck=	37 Mpa	
Ec=	34671746 kN/mq	modulo di elasticità cls
Kv=	18450 kN/mc	modulo di reazione lineare sulla trave
Kh=	9225 kN/mc	

Tabella 1 – Calcolo della rigidezza di fondazione

GRUPPO FERROVIE DELLO STATO ITALIANE	LINEA AV/AC MILANO – VENEZIA LOTTO FUNZIONALE TRATTA AV/AC VERONA-PADOVA NODO AV/AC DI VERONA: INGRESSO EST			VA		
Relazione di calcolo vano ascesnsore e Scala	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
Fissa	IN1A	20	D26CL	FV 05 00 003	Α	11 di 148

2 ANALISI DEI CARICHI

Come prescritto dalle NTC 2018, sono state considerate agenti sulla struttura le seguenti condizioni di carico elementari, combinate tra loro in modo da determinare gli effetti più sfavorevoli ai fini delle verifiche dei singoli elementi strutturali:

- peso proprio strutture;
- carichi permanenti non strutturali dovuti ai pannelli di copertura;
- sovraccarico accidentale;
- azione del vento;
- azione della neve;
- azione termica;
- azione sismica.

2.1 Peso proprio strutture (Dead)

Il peso proprio degli elementi strutturali viene calcolato automaticamente dal Sap2000 considerando il peso specifico dell'acciaio:

 $\gamma = 78.50 \text{ kN/m3}.$

Il peso proprio è stato considerato ponendo il peso per unità di volume del calcestruzzo armato pari a:

 $\gamma = 25.0 \text{ kN/m3}.$

2.2 Carichi permanenti non strutturali (G2k)

Il carico permanente non strutturale per le parti di finitura della copertura è pari a:

• carico associato ai pannelli di rivestimento:

massetto volume in calcestruzzo $\gamma = 24$ kN/mc; spessore: 40cm

$$g_{2k} = 24 \text{ kN/m}^3 \text{ x } 0.4\text{m} = 9.6 \text{ kN/m}^2$$

carico di zavorra $\gamma = 24$ kN/mc; spessore: 40cm

• I carattersitici del riempimento usato sono:

peso di volume $\gamma = 19 \text{ kN/mc}$;

$$g_{2k} = h * \gamma = 1.50m * 19kN/m3 = 28.5 kN/m^2$$

$$g_{2k} = h * \gamma = 0.40m * 19kN/m3 = 7.6 kN/m^2$$

Sul solettone inferiore si considera uno spessore di ballast e armamento de linea ferroviaria pari a 0.80 m con peso di unità di volume $\gamma_{pav_str} = 18.00 kN/m^3$ distributo su tutta larghezza dela soletta fondazone .

Gbalast= $0.8 \text{m x } 18.00 \text{kN/m}^3 \text{ x } 1.0 \text{m} = 14.4 \text{kN/m}$

SITALFERR GRUPPO FERROVIE DELLO STATO ITALIANE	LINEA AV/AC MILANO – VENEZIA LOTTO FUNZIONALE TRATTA AV/AC VERONA-PAE NODO AV/AC DI VERONA: INGRESSO EST			OOVA		
Relazione di calcolo vano ascesnsore e Scala Fissa	COMMESSA IN1A	LOTTO 20	CODIFICA D26CL	DOCUMENTO FV 05 00 003	REV.	FOGLIO 12 di 148

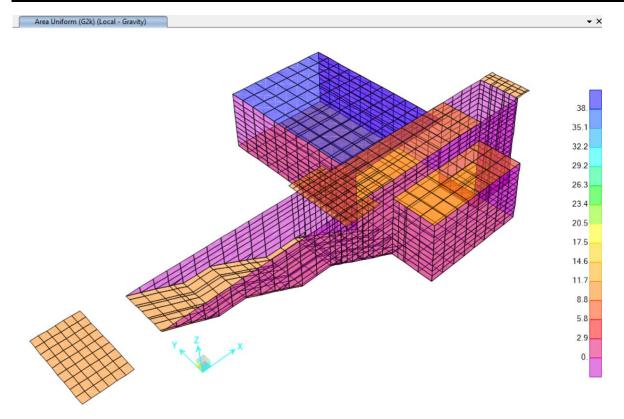


Figure 3 Vista - Carichi permanenti (G2k)

2.3 Carichi Accidentali (Qhk)

• Coperture accessibili per sola manutenzione e riparazione:

 $q_{Hk2}=0.50\;kN/m^2$

Cat.	Ambienti	q _k [kN/m²]	Q _k [kN]	H _k [kN/m]
	Coperture			
	Cat. H Coperture accessibili per sola manutenzione e riparazione	0,50	1,20	1,00
H-I-K	Cat. I Coperture praticabili di ambienti di categoria d'uso compresa fra A e D	secondo categorie di appartenenza		
	Cat. K Coperture per usi speciali, quali impianti, eliporti.	da va	alutarsi caso per	caso

• Carico pedonale:

 $q_{Hk2}=5.00\;kN/m^2$

SITALFERR GRUPPO FERROVIE DELLO STATO ITALIANE	LINEA AV/AC MILANO – VENEZIA LOTTO FUNZIONALE TRATTA AV/AC VERONA-PADOVA NODO AV/AC DI VERONA: INGRESSO EST		OVA			
Relazione di calcolo vano ascesnsore e Scala Fissa	COMMESSA IN1A	LOTTO 20	CODIFICA D26CL	DOCUMENTO FV 05 00 003	REV.	FOGLIO 13 di 148

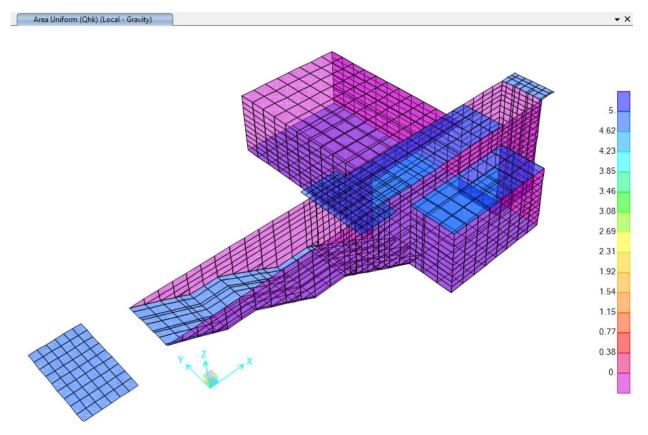
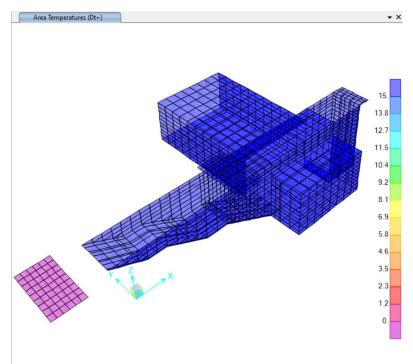


Figure 4 Vista - Carici Accidentali (Qhk2)

GRUPPO FERROVIE DELLO STATO ITALIANE	LINEA AV/AC I LOTTO FUNZIO NODO AV/AC I	ONALE TRAT	TA AV/AC V		VA	
Relazione di calcolo vano ascesnsore e Scala	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
Fissa	IN1A	20	D26CL	FV 05 00 003	Α	14 di 148


2.4 Azione termica (DT)

In accordo con il paragrafo 3.5.5 delle NTC 2018, relativamente al caso di strutture in acciaio esposte, è stata considerata un'azione termica uniforme pari a:

$$\Delta = \pm 25^{\circ}$$

2.1 Azioni termiche uniformi (TU)

Si considera una variazione termica uniforme $\Delta T = 15.0^{\circ} C$ sugli elementi della struttura in elevazione, adottando per il coefficiente di dilatazione termica un valore $\alpha = 10x10$ -6.

GRUPPO FERROVIE DELLO STATO ITALIANE	LINEA AV/AC I LOTTO FUNZIO NODO AV/AC I	ONALE TRAT	TA AV/AC V		VA	
Relazione di calcolo vano ascesnsore e Scala	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
Fissa	IN1A	20	D26CL	FV 05 00 003	Α	15 di 148

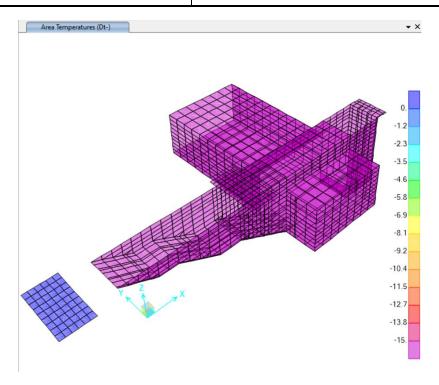
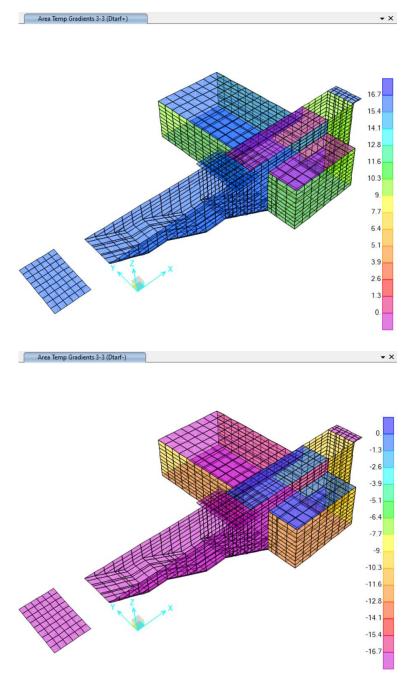


Figura - 1 Q_Temp_Uni +/-: Forza termiche uniformi


2.2 Azioni termiche differenziali (TF)

Si considera una variazione termica differenziale $\Delta T = 5.0^{\circ} C$ su tutti gli elementi della struttura in elevazione, adottando per il coefficiente di dilatazione termica un valore $\alpha = 10x10$ -6.

Q_Temp_Farfalla:

Piedritti : $(\pm \Delta t \times 2) / h = 5.0^{\circ}C \times 2 / 0.6m = \pm 16.7^{\circ}C$

 $Figura - 2\ Q_Temp_Farfalla + / - :\ Forza\ termiche\ differenziali$

SITALFERR GRUPPO FERROVIE DELLO STATO ITALIANE	LINEA AV/AC MILANO – VENEZIA LOTTO FUNZIONALE TRATTA AV/AC VERONA-PADOVA NODO AV/AC DI VERONA: INGRESSO EST		OVA	1		
Relazione di calcolo vano ascesnsore e Scala Fissa	COMMESSA IN1A	LOTTO 20	CODIFICA D26CL	DOCUMENTO FV 05 00 003	REV.	FOGLIO 17 di 148

2.3 **Ritiro**

Si considera una variazione termica uniforme equivalente $\Delta T = -9.79^{\circ}C$ sulla soletta superiore. Il calcolo viene condotto secondo le indicazioni nell'EUROCODICE 2-UNI EN1992-1-1 Novembre 2005 e D.M.17-01-2018.

		Coefficiente di	viscosità	
	$j(t,t_0)=j_0*\beta_c(t,t_0)$	2.6685		creep coefficient
	$j_0 \!\!=\!\! j_{RH} \!\!\!\!\! * \!\!\!\! \beta(f_{cm}) \!\!\!\! * \!\!\!\!\! \beta(t_0) \!\!\!=\!\!\!\!\!\! $	2.7134		nominal creep coefficient
jrн	1.2268		per fcm>35 Mpa	
jrн			per fcm≤35 Mpa	
RH	75	[%]		
$\beta(\text{fcm})$	2.7619			
$\beta(t0)$	0.8008			
h0	1000	[mm]		
Ac	10000	[cm2]		
u	200	[cm]		
$\beta c(t,t0)$	0.9835			
t	25550	[days]		
t_0	2	[days]		
t-tO	25548	[days]		
β_{H}	1968.29		per fcm>35 Mpa	
β_{H}			per fcm≤35 Mpa	
a_1	0.9618			
a_2	0.9889			
a ₃	0.9726			
f_{cm}	37.00	[MPa]		
f_{ck}	30.00	[MPa]		

	DEFORMAZIONE TOTALE DA RITIRO							
	$e_{cs} = e_{cd} + e_{ca} =$	0.000347583	deformazione totale da ritiro					
	$e_{cd}=$	0.000297583	deformazione da ritiro per essiccamento					
	$e_{ca}=$	5E-05	deformazione da ritiro autogeno					
		DEFORMAZIONE DA RIT	TIRO PER ESSICCAMENTO					
	$e_{cd\infty}\!\!=\!\!k_h*e_{cd0}$	0.000312317						
	$e_{cd0}=$	0.000446167	appendix B for e _{cd0}					
	$a_{ds1}=$	6	CLS class R					
	$a_{ds2}=$	0.11	CLS class R					
	b _{RH} =	0.8961						
	RH ₀ =	100	[%]					
	$f_{cm0}=$	10	[MPa]					
	$b_{ds}(t,ts)=$	0.952824553						
t	25550							
ts	2							

		DEFORMAZIONE DA RITII	RO AUTOGENO
bas(t)=	1		
t	25550		
$e_{ca}(\infty)=$		0.00005	coefficiente di dilatazione termica
ΔTrit=	9.47		

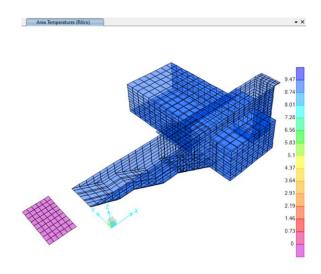


Figura - 3 Q_Ritiro

2.4 Permanenti portati: spinta del terreno (Spinta Sinistro / Soletto)

Le spinte del terreno di rinfianco vengono calcolate assumendo alternativamente uno scenario di spinta non equilibrata sui due piedritti con spinta a riposo sul piedritto destro e spinta a riposo ridotta a 0.80 sul piedritto sinistro. Il caso opposto non viene considerato a causa della natura simmetrica della struttura.

I carattersitici del riempimento usato sono:

- peso di volume $\gamma = 19 \text{ kN/mc}$;
- angolo di attrito φ ' = 38°;
- coesione efficace c' = 0

$$K0 = 1 - \text{sen } \phi = 1 - \text{sen}(38^{\circ}) = 0.384$$

Spinta sinistra in asse a soletta sup. P1= $H1*K0*\gamma = 1.5m*0.384*19kN/m3 = 11.0 kN/m^2$

Spinta sinistra in asse a soletta inf. $P2=H2*K0*\gamma=7.2m*0.384*19kN/m3=52.5 kN/m^2$

SITALFERR GRUPPO FERROVIE DELLO STATO ITALIANE	LINEA AV/AC MILANO – VENEZIA LOTTO FUNZIONALE TRATTA AV/AC VERONA-PADOVA NODO AV/AC DI VERONA: INGRESSO EST					
Relazione di calcolo vano ascesnsore e Scala Fissa	COMMESSA IN1A	LOTTO 20	CODIFICA D26CL	DOCUMENTO	REV.	FOGLIO 20 di 148

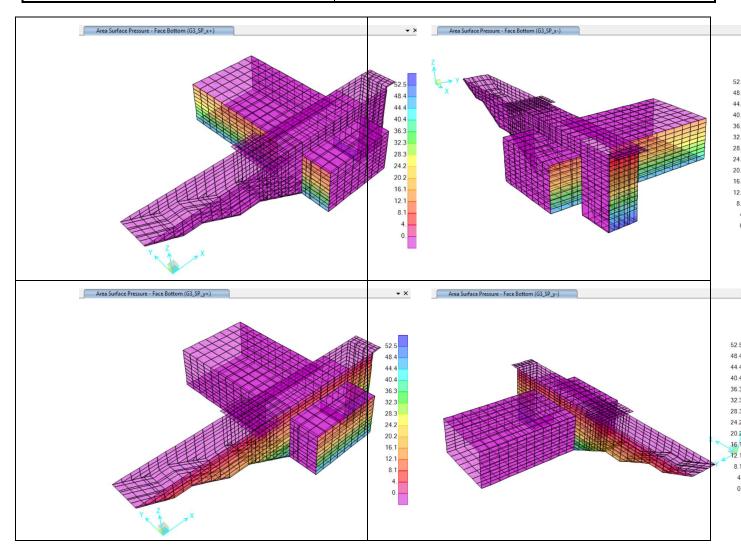


Figura - 4 Spinta Sinistro e – Spinta Destra (permanenti)

2.5 Sovraspinta accidentale (carico ferroviaio QSQ.dx-QSQ.sx)

La sovraspinta dovuta al passaggio ferroviario in superficie è stata presa in considerazione sul piedritto.

Wtrn(diffondere-sovraccarico) = $65 \text{ x } (1-\sin \Theta') = 20 \text{ kN/m}$

 $QSQ.dx = QSQ.sx = 20 \ kN/m$

SITALFERR GRUPPO FERROVIE DELLO STATO ITALIANE	LINEA AV/AC MILANO – VENEZIA LOTTO FUNZIONALE TRATTA AV/AC VERONA-PADOVA NODO AV/AC DI VERONA: INGRESSO EST					
Relazione di calcolo vano ascesnsore e Scala Fissa	COMMESSA IN1A	LOTTO 20	CODIFICA D26CL	DOCUMENTO FV 05 00 003	REV.	FOGLIO 21 di 148

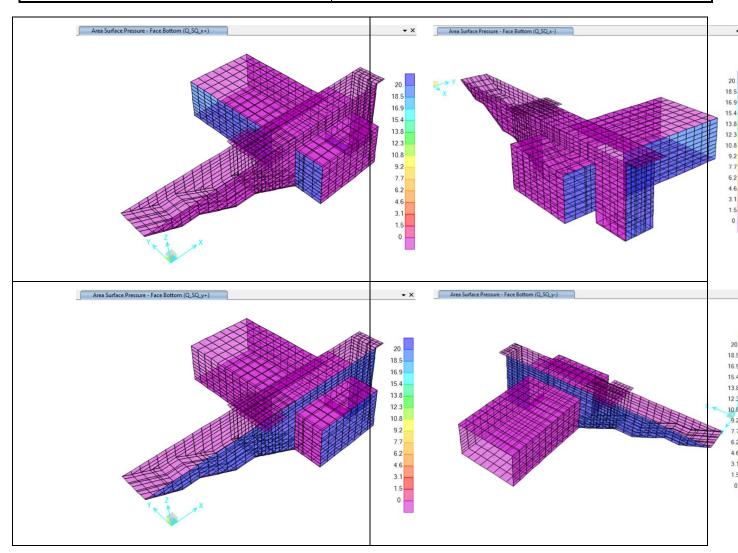


Figura - 5 Spinta Sinistro e – Spinta Destra (accidentale)

2.6 Azione sismica (Sisma orizzontale e Sisma verticale)

Per la definizione dell'azione sismica sono necessarie delle valutazioni preliminari relative alle seguenti caratteristiche proprie della costruzione (2.4 – NTC2018):

Vita Nominale (VN);

Classe d'uso (Cu);

Periodo di Riferimento (VR).

Le azioni sismiche di progetto, in base alle quali valutare il rispetto dei diversi stati limite considerati, si definiscono a partire dalla "pericolosità sismica di base" del sito di costruzione, ai sensi dell'Ordinanza del Presidente del Consiglio dei Ministri n. 3274 del 20 marzo 2003. La pericolosità sismica è definita in termini di accelerazione orizzontale massima attesa ag, nonché di ordinate dello spettro di risposta elastico in accelerazione ad essa corrispondente, con riferimento a prefissata probabilità di eccedenza PVR nel periodo di riferimento VR (3.2 – NTC2018).

La normativa NTC2018 definisce le forme spettrali, per ciascuna delle probabilità di superamento nel periodo di riferimento PVR, a partire dai valori dei seguenti parametri su sito di riferimento rigido orizzontale:

ag – Accelerazione orizzontale massima al sito;

F0 – Valore massimo del fattore di amplificazione dello spettro in accelerazione orizzontale;

TC* - Periodo d'inizio del tratto a velocità costante dello spettro in accelerazione orizzontale.

Nei confronti delle azioni sismiche si definiscono due stati limite di esercizio e due ultimi, che sono individuati riferendosi alle prestazioni della costruzione nel suo complesso (3.2.1 – NTC2018), ai quali corrispondono i seguenti valori dei parametri precedentemente definiti:

Ai fini della definizione dell'azione sismica di progetto, si rende necessario valutare l'effetto della risposta sismica locale mediante specifiche analisi. In assenza di tali analisi, per la definizione dell'azione sismica si può far riferimento a un approccio semplificato, che si basa sull'individuazione di categorie di sottosuolo di riferimento (Tab. 3.2.II e 3.2.III – NTC2018).

Il terreno su cui insiste la costruzione è stato assimilato ad un sottosuolo di categoria B.

Nel caso in esame si può assumere una categoria topografica T1 (Superficie pianeggiante, pendii e rilievi isolati con inclinazione media $i \le 15^{\circ}$).

Lo spettro di risposta elastico in accelerazione è espresso da una forma spettrale (spettro normalizzato) riferita ad uno smorzamento convenzionale del 5%, moltiplicata per il valore dell'accelerazione orizzontale massima ag su sito di riferimento rigido orizzontale. Sia la forma spettrale che il valore di ag variano al variare della probabilità di superamento nel periodo di riferimento PVR.

Lo spettro di risposta elastico orizzontale è descritto dalle seguenti espressioni, riportate al punto 3.2.3.2.1 – NTC2018:

$$0 \le T \le T_B \qquad S_e(T) = a_g \cdot S \cdot \eta \cdot F_0 \cdot \left[\frac{T}{T_B} + \frac{1}{\eta \cdot F_0} \cdot \left(1 - \frac{T}{T_B} \right) \right]$$

LINEA AV/AC MILANO – VENEZIA

LOTTO FUNZIONALE TRATTA AV/AC VERONA-PADOVA

NODO AV/AC DI VERONA: INGRESSO EST

Relazione di calcolo vano ascesnsore e Scala Fissa

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 IN1A
 20
 D26CL
 FV 05 00 003
 A
 23 di 148

$$T_R \leq T < T_C$$

$$S_e(T) = a_g \cdot S \cdot \eta \cdot F_0$$

$$T_C \le T < T_D$$

$$S_e(T) = a_g \cdot S \cdot \eta \cdot F_0 \cdot \left(\frac{T_c}{T}\right)$$

$$T_D \leq T$$

$$S_e(T) = a_g \cdot S \cdot \eta \cdot F_0 \cdot \left(\frac{T_c \cdot T_D}{T^2}\right)$$

2.6.1 Parametri sismici

L'opera ricade nel comune di Nodo AV/AC di Verona. I corrispondenti valori delle coordinate geografiche sono i seguenti:

latitudine = 45.428270 longitudine = 10.981733

Il sottosuolo su cui insiste l'opera ricade in categoria sismica "B" e categoria topografica "T1

Si attribuisce alla struttura una vita nominale VN = 75 anni e la classe d'uso II con coefficiente d'uso Cu=1, in conformità ai riferimenti normativi di cui al $\S 3.1$.

Il periodo di riferimento da considerare per il calcolo dell'azione sismica sarà quindi VR=CuxVN=75 anni.

Nelle figure seguenti sono riportati gli spettri elastici utilizzati per la definizione dell'azione sismica di progetto. I valori di progetto caratteristici (probabilità di superamento PVR e periodo di ritorno TR) sono i seguenti:

Stato Limite di salvaguardia della Vita: PVR = 10% TR = 712 anni;

Stato limite di Danno:

PVR = 63% TR = 75 anni;

Stato limite di Operatività:

PVR = 81% TR = 45 anni.

Si riporta di seguito la definizione degli spettri per i vari stati limite utilizzati assumendo un fattore di struttura unitario (q=1).

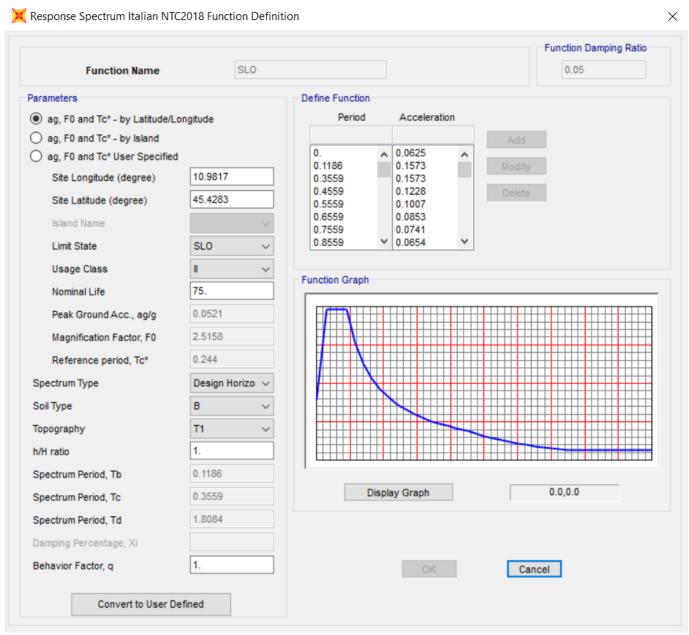


Figure 5 Parametri sismici SLO (horizontale)

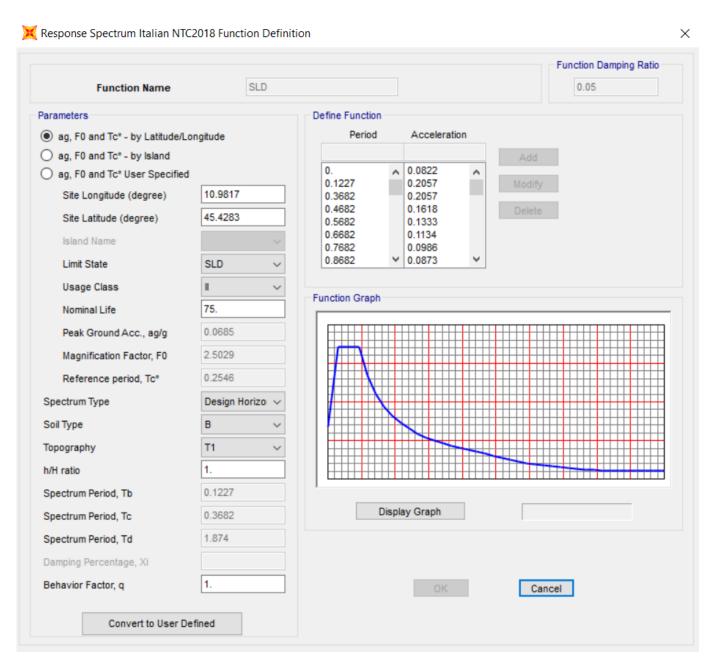


Figure 6 Parametri sismici SLD (horizontale)

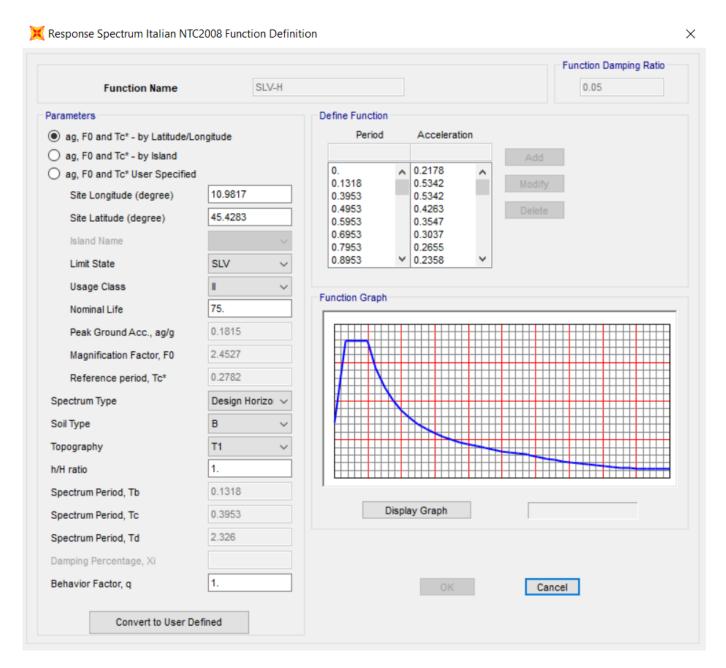


Figure 7 Parametri sismici SLV-H (horizontale)

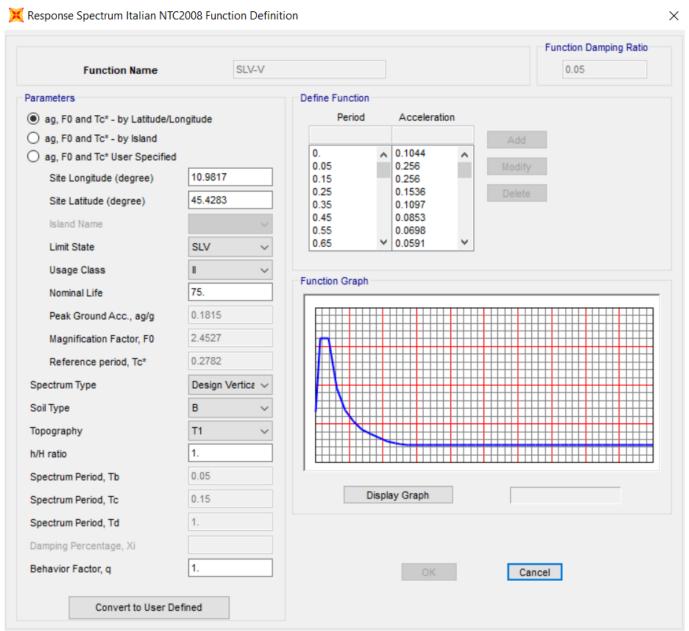


Figure 8 Parametri sismici SLV-V (verticale)

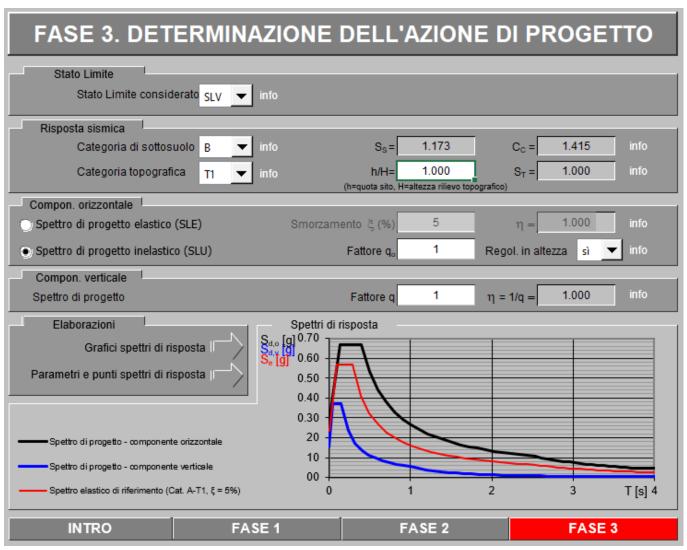
Lo scatolare oggetto della presente relazione di calcolo è classificabile come struttura interrata rigida, pertanto l'accelerazione di progetto allo SLV per il calcolo della spinta sismica delle terre è riferita all'ordinata dello spettro calcolata per T=0 [s]:

SITALFERR GRUPPO FERROVIE DELLO STATO ITALIANE	LINEA AV/AC MILANO – VENEZIA LOTTO FUNZIONALE TRATTA AV/AC VERONA-PADOVA NODO AV/AC DI VERONA: INGRESSO EST					
Relazione di calcolo vano ascesnsore e Scala	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
Fissa	IN1A	20	D26CL	FV 05 00 003	Α	28 di 148

Individuazione della pericolosità sismica del sito

SITALFERR GRUPPO FERROVIE DELLO STATO ITALIANE	LINEA AV/AC MILANO – VENEZIA LOTTO FUNZIONALE TRATTA AV/AC VERONA-PADOVA NODO AV/AC DI VERONA: INGRESSO EST					
Relazione di calcolo vano ascesnsore e Scala	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
Fissa	IN1A	20	D26CL	FV 05 00 003	Α	29 di 148

Scelta della strategia di progettazione



SITALFERR GRUPPO FERROVIE DELLO STATO ITALIANE	LINEA AV/AC MILANO – VENEZIA LOTTO FUNZIONALE TRATTA AV/AC VERONA-PADOVA NODO AV/AC DI VERONA: INGRESSO EST					
Relazione di calcolo vano ascesnsore e Scala	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
Fissa	IN1A	20	D26CL	FV 05 00 003	Α	31 di 148

Determinazione dell'azione di progetto SLV

SITALFERR GRUPPO FERROVIE DELLO STATO ITALIANE	LINEA AV/AC MILANO – VENEZIA LOTTO FUNZIONALE TRATTA AV/AC VERONA-PADOVA NODO AV/AC DI VERONA: INGRESSO EST					
Relazione di calcolo vano ascesnsore e Scala Fissa	COMMESSA IN1A	LOTTO 20	CODIFICA D26CL	DOCUMENTO FV 05 00 003	REV.	FOGLIO 33 di 148

Parametri e punti dello spettro di risposta orizzontale e verticale per lo stato SLV

LINEA AV/AC MILANO – VENEZIA LOTTO FUNZIONALE TRATTA AV/AC VERONA-PADOVA NODO AV/AC DI VERONA: INGRESSO EST

LOTTO COMMESSA CODIFICA DOCUMENTO REV. FOGLIO Relazione di calcolo vano ascesnsore e Scala IN1A 20 D26CL FV 05 00 003 Α 34 di 148

SLV-Orizzontale	
Parametri indipendenti	

Fissa

Parametri indipendenti				
STATO LIMITE	SLV			
ag	0,234	g		
Fo	2,434			
T _c *	0,284	5		
S _s	1,173			
C _c	1,415			
S_T	1,000			
q	1,000			

Parametri dinendenti

raiaiii	eur uipenuei	ICI
S	1,173	
η	1,000	
T _c	0,402	S
T _B	0,134	S
Tn	2,535	S

Espressioni dei parametri dipendenti

$S = S_S \cdot S_T$	(**************************************
$\eta = \sqrt{10/(5+\xi)} \ge 0.55; \ \eta = 1/q$	(NTC-08 Eq. 3.2.6; §. 3.2.3.
$T_B = T_C/3$	(NTC-07 Eq. 3.2.8)
$T_{\mathbb{C}} = C_{\mathbb{C}} \cdot T_{\mathbb{C}}^*$	(NTC-07 Eq. 3.2.7)
$T_D = 4.0 \cdot a_g / g + 1.6$	(NTC-07 Eq. 3.2.9)

(NTC-08 Eq. 3.2.5)

Espressioni dello spettro di risposta (NTC-08 Eq. 3.2.4)

$$\begin{split} 0 \! \leq \! T \! < \! T_B & \quad S_e(T) \! = \! a_g \cdot S \cdot \eta \cdot F_o \cdot \! \left[\frac{T}{T_B} \! + \! \frac{1}{\eta \cdot F_o} \! \left(1 \! - \! \frac{T}{T_B} \right) \right] \\ T_B \! \leq \! T \! < \! T_C & \quad S_e(T) \! = \! a_g \cdot S \cdot \eta \cdot F_o \cdot \\ T_C \! \leq \! T \! < \! T_D & \quad S_e(T) \! = \! a_g \cdot S \cdot \eta \cdot F_o \cdot \! \left(\frac{T_C}{T} \right) \\ T_D \! \leq \! T & \quad S_e(T) \! = \! a_g \cdot S \cdot \eta \cdot F_o \cdot \! \left(\frac{T_C T_D}{T^2} \right) \end{split}$$

Lo spettro di progetto $S_{\sigma}(T)$ per le verifiche agli Stati Limite Ultimi è ottenuto dalle espressioni dello spettro elastico $S_{\varphi}(T)$ sostituendo η con 1/q, dove q è il fattore di struttura. (NTC-08 § 3.2.3.5)

Pur

	0,000	0,274
-	0,134	0,667
-	0,402	0,667
	0,503	0,532
	0,605	0,443
	0,706	0,379
	0,808	0,331
	0,909	0,294
	1,011	0,265
	1,113	0,241
	1,214	0,221
	1,316	0,204
	1,417	0,189
	1,519	0,176
-	1,621	0,165
\vdash	1,722	0,156 0,147
\vdash		
\vdash	1,925	0,139
\vdash	2,027	0,132
	2,128	0,126
\vdash	2,230	0,120 0,115
-	2,332	
•	2,535	0,110
	2,605	0,100
\vdash	2,674	0,095
	2,744	0,090
	2,814	0,086
	2,884	0,082
	2,953	0,078
\vdash	3,023	0,074
	3,093	0,071
	3,163	0,068
	3,233	0,065
	3,302	0,062
	3,372	0,060
	3,442	0,057
	3,512	0,055
	3,581	0,053
	3,651	0,051
	3,721	0,049
	3,791	0,047
	3,860	0,047
	3,930	0,047
	4,000	0,047

SLV-Verticale

Parametri indipendenti						
STATO LIMITE	SLV					
a _{gv}	0,153	g				
S _s	1,000					
S_T	1,000					
q	1,000					
T _B	0,050	S				
T _C	0,150	5				
TA	1,000	S				

Parametri dipendenti		
F _v	1,588	
S	1,000	
η	1,000	

1,407 1,000

Espressioni dei parametri dipendenti

$S = S_3 \cdot S_T$	(NTC-08 Eq. 3.2.5)
$\eta = 1/q$	(NTC-08 §. 3.2.3.5)
$F_v = 1.35 \cdot F_o \cdot \left(\frac{a_g}{g}\right)^{0.5}$	(NTC-08 Eq. 3.2.11)

Espressioni dello spettro di risposta (NTC-08 Eq. 3.2.10)

$$\begin{split} 0 &\leq T < T_B \quad S_c(T) = a_g \cdot S \cdot \eta \cdot F_v \cdot \left[\frac{T}{T_g} + \frac{1}{\eta \cdot F_c} \left(1 - \frac{T}{T_g} \right) \right] \\ T_B &\leq T < T_C \quad S_g(T) = a_g \cdot S \cdot \eta \cdot F_v \\ T_C &\leq T < T_D \quad S_g(T) = a_g \cdot S \cdot \eta \cdot F_v \cdot \left(\frac{T_C}{T} \right) \\ T_D &\leq T \quad S_g(T) = a_g \cdot S \cdot \eta \cdot F_v \cdot \left(\frac{T_C \cdot T_D}{T^2} \right) \end{split}$$

Punti dello spettro di risposta

L	0,000	0,153
T _B	0,050	0,371
T _c —	0,150	0,371
Γ	0,235	0,237
F	0,320	0,174
F		
H	0,405	0,137
H	0,490	0,114
F	0,575	0,097
L	0,660	0,084
F	0,745	0,075
F	0,830	0,067
L	0,915	0,061
T _D -	1,000	0,056
L	1,094	0,047
	1,188	0,039
Γ	1,281	0,034
	1,375	0,029
	1,469	0,026
	1,563	0,023
	1,656	0,020
	1,750	0,018
L	1,844	0,016
L	1,938	0,015
L	2,031	0,013
L	2,125	0,012
L	2,219	0,011
L	2,313	0,010
L	2,406	0,010
F	2,500	0,009
F	2,594	0,008
H	2,688	0,008
F	2,781	0,007
H	2,875 2,969	0,007
F	3,063	0,006
H	3,156	0,006
F	3,250	0,005
ı	3,344	0,005
	3,438	0,005
	3,531	0,004
	3,625	0,004
	3,719	0,004
	3,813	0,004
	3,906	0,004
L	4,000	0,003

Parametri e punti dello spettro di risposta orizzontale e verticale per lo stato SLD

SLD-Orizzontale

Parametri indipendenti		
STATO LIMITE	SLD	
ag	0.097	g
Fo	2.418	
T,*	0.266	s
Ss	1.200	
Cc	1.434	
S _T	1.000	
q	1.000	

Parametri dipendenti		
S 1.200		
η	1.000	
Tc	0.381	s
T _B	0.127	s
T _D	1.988	S

Espressioni dei parametri dipendenti

$S = S_S \cdot S_T$	(NTC-08 Eq. 3.2.5)
$\eta = \sqrt{10/(5+\xi)} \ge 0.55; \; \eta = 1/q$	(NTC-08 Eq. 3.2.6; §. 3.2.3.5)
$T_B = T_C / 3$	(NTC-07 Eq. 3.2.8)
$T_C = C_C \cdot T_C^{\star}$	(NTC-07 Eq. 3.2.7)
$T_D = 4, 0 \cdot a_g / g + 1, 6$	(NTC-07 Eq. 3.2.9)

Espressioni dello spettro di risposta (NTC-08 Eq. 3.2.4)

$$\begin{split} 0 \leq T < T_B & \qquad S_s(T) = a_g \cdot S \cdot \eta \cdot F_o \cdot \left[\frac{T}{T_B} + \frac{1}{\eta \cdot F_o} \left(1 - \frac{T}{T_B} \right) \right] \\ T_B \leq T < T_C & \qquad S_c(T) = a_g \cdot S \cdot \eta \cdot F_o \\ T_C \leq T < T_D & \qquad S_s(T) = a_g \cdot S \cdot \eta \cdot F_o \cdot \left(\frac{T_C}{T} \right) \\ T_D \leq T & \qquad S_s(T) = a_g \cdot S \cdot \eta \cdot F_o \cdot \left(\frac{T_C T_D}{T^2} \right) \end{split}$$

Lo spettro di progetto $S_q(T)$ per le verifiche agli Stati Limite Ultimi è ottenuto dalle espressioni dello spettro elastico $S_q(T)$ sostituendo η con 1/q, dove q è il fattore di struttura. (NTC-08 § 3.2.3.5)

Punti dello spettro di risposta

	0.000	0.116
T _B →	0.127	0.281
T _c →	0.381	0.281
	0.458	0.234
	0.534	0.201
	0.611	0.176
\vdash	0.687	0.156
	0.764	0.140
\vdash	0.840	0.128
\vdash	0.917	0.117
-	0.993	0.108
\vdash	1.070	0.100
	1.148	0.093
	1.223	0.088
	1.299	0.082
T _D →	1.376	0.078
	1.452	0.074
	1.529	0.070
	1.605	0.067
	1.682	0.064
	1.758	0.061
\vdash	1.835	0.058
<u> </u>	1.911	0.056
\vdash	1.988	0.054
\vdash	2.083	0.049
\vdash	2.179	0.045
\vdash	2.275	0.041
	2.467	0.035
	2.563	0.032
	2.658	0.030
	2.754	0.028
	2.850	0.026
	2.946	0.025
	3.042	0.023
	3.138	0.022
	3.233	0.020
\vdash	3.329	0.019
	3.425	0.018
\vdash	3.521	0.017
\vdash	3.617	0.016
\vdash	3.713	0.015
\vdash	3.808	0.015
	4.000	0.014
	4.000	0.013

SLD-Verticale

Parametri indipendenti		
STATO LIMITE	SLD	
a_gv	0.041	g
Ss	1.000	
S _T	1.000	
р	1.000	
Тв	0.050	s
Tc	0.150	s
T _A	1.000	s

Parametri dipendenti		
F _v	1.016	
S	1.000	
η	1.000	

Espressioni dei parametri dipendenti

$S = S_s - S_{\overline{s}}$	(NTC-08 Eq. 3.2.5)
$\eta = 1/q$	(NTC-08 §. 3.2.3.5)
$F_v = 1.35 \cdot F_o \cdot \left(\frac{a_g}{g}\right)^{0.5}$	(NTC-08 Eq. 3.2.11)

Espressioni dello spettro di risposta (NTC-08 Eq. 3.2.10)

$$\begin{split} 0 \leq T < T_B & \quad S_v(T) = a_g \cdot S \cdot \eta \cdot F_v \cdot \left[\frac{T}{T_s} + \frac{1}{\eta \cdot F_s} \left[1 - \frac{T}{T_a} \right] \right] \\ T_B \leq T < T_C & \quad S_g(T) = a_g \cdot S \cdot \eta \cdot F_v \\ T_C \leq T < T_D & \quad S_g(T) = a_g \cdot S \cdot \eta \cdot F_v \cdot \left(\frac{T_C}{T} \right) \\ & \quad T_D \leq T & \quad S_g(T) = a_g \cdot S \cdot \eta \cdot F_v \cdot \left(\frac{T_C T_D}{T^2} \right) \end{split}$$

Punti dello spettro di risposta

	0.000	0.041
в —	▶ 0.050	0.098
c —	▶ 0.150	0.098
	0.235	0.063
	0.320	0.046
	0.405	0.036
	0.490	0.030
	0.575	0.026
	0.660	0.022
	0.745	0.020
	0.830	0.018
	0.915	0.016
D —	→ 1.000	0.015
	1.094	0.012
	1.188	0.010
	1.281	0.009
	1.375	800.0
	1.409	0.007
	1.656	0.005
	1.750	0.005
	1.844	0.004
	1.938	0.004
	2.031	0.004
	2.125	0.003
	2.219	0.003
	2.313	0.003
	2.406	0.003
	2.500	0.002
	2.594	0.002
	2.688	0.002
	2.781	0.002
	2.875	0.002
	2.969	0.002
	3.063 3.156	0.002
	3.250	0.001
	3.344	0.001
	3.438	0.001
	3.531	0.001
	3.625	0.001
	3.719	0.001
	3.813	0.001
	3.906	0.001
	4.000	0.001

Per il calcolo in condizioni sismiche si utilizza il metodo dell'analisi pseudostatica in cui l'azione sismica è rappresentata da una forza statica equivalente pari al prodotto delle forze di gravità per un opportuno coefficiente sismico k. Le forze sismiche sono pertanto:

Forza sismica orizzontale

 $F_h = k_h W$

Forza sismica verticale

 $F_v = k_v W$

I valori dei coefficienti sismici orizzontali kh e verticale kv sono posti pari all'accelerazione massima degli spettri di progetto relativi allo stato limite considerato (SLV, SLD).

 $a_{max} = S \cdot a_g = (S_S \cdot S_T) \cdot a_g$

Tab. 7.11.I – Coefficienti di riduzione dell'accelerazione massima attesa al sito			
	Categoria di sottosuolo		
	A	B, C, D, E	
	β_s	β_{s}	
$0.2 \le a_g(g) \le 0.4$	0,30	0,28	
$0.1 < a_g(g) \le 0.2$	0,27	0,24	
a (g) < 0.1	0.20	0.20	

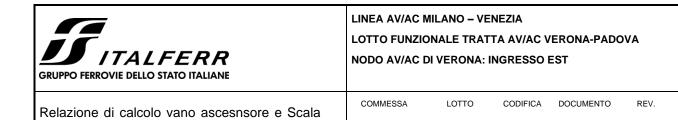
 $K_h = \beta_S \cdot \frac{g}{g}$

Muri di sostegno che non sono in grado di subire spostamenti:

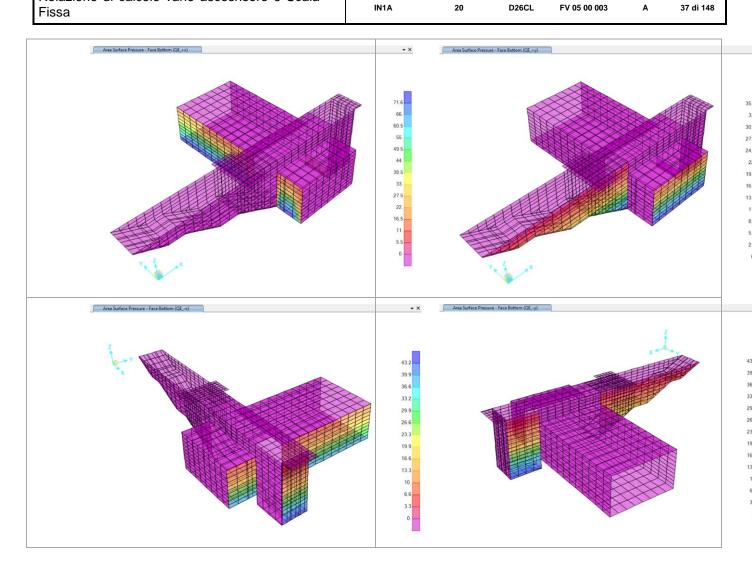
ßs=1.0

 $a_{max} = 0.233 \ x \ 1.174 \\ g = 0.274 \\ g \ ; \ k_h = 1.0 \ x \ 0.274 \\ g \ = 0.274 \\ ; \ k_v = \pm 0.5 \ x \ 0.273 \\ = 0.138 \\ equation (a) \\ equation (b) \\ equation (c) \\ equation (c$

Stato limite	kh	kv
SLD	0.117	0.059
SLV	0.274	0.138
sld / slv	0.429	0.429


Tabella 1 – Coefficienti sismici

Gli effetti dell'azione sismica sono valutati tenendo conto delle masse associate ai seguenti carichi gravitazionali:


Nel caso specifico per i carichi dovuti al transito dei veicoli stradali si assume $\Box 2i = 0$.

I carichi gravitazionali coinvolti dall'azione sismica sono quelli illustrati nel seguente capitolo.

 $(7.24 \times 7.24 / 6.4m) \times 19 \times 0.274 = 43 \text{ kN/m2}$

FOGLIO

2.7 Combinazioni delle azioni

Le azioni caratteristiche (carichi, distorsioni, variazioni termiche, ecc.), definite nei paragrafi precedenti, dovranno essere combinate tra loro in accordo con quanto indicato nel capitolo 2 delle NTC 2018. Per costruzioni civili o industriali di tipo corrente e per le quali non esistano regolamentazioni specifiche, le azioni di calcolo si ottengono combinando le azioni caratteristiche secondo le seguenti formule di correlazione.

• Combinazione fondamentale, utilizzata per gli stati limite ultimi (SLU):

$$\gamma_{G1}\cdot G_1+\gamma_{G2}\cdot G_2+\gamma_{P}\cdot P+\gamma_{Q1}\cdot Q_{k1}+\gamma_{Q2}\cdot \psi_{02}\cdot Q_{k2}+\gamma_{Q3}\cdot \psi_{03}\cdot Q_{k3}+\dots$$

 Combinazione caratteristica, impiegata per gli stati limite di esercizio irreversibili (SLE Rara):

$$G_1 + G_2 + P + Q_{k1} + \psi_{02} \cdot Q_{k2} + \psi_{03} \cdot Q_{k3} + \dots$$

• Combinazione quasi permanente, impiegata per gli effetti a lungo termine (SLE Quasi permanente):

$$G_1 + G_2 + P + \psi_{21} \cdot Q_{k1} + \psi_{22} \cdot Q_{k2} + \psi_{23} \cdot Q_{k3} + \dots$$

• Combinazione sismica, impiegata per gli stati limite ultimi di salvaguardia per la vita (SLV) e di esercizio (SLO) connessi con l'azione sismica E:

$$E + G_1 + G_2 + P + \psi_{21} \cdot Q_{k1} + \psi_{22} \cdot Q_{k2} + \dots$$

• Combinazione eccezionale, impiegata per gli stati limite ultimi connessi alle azioni eccezionali di progetto Ad:

$$G_1 + G_2 + P + A_d + \psi_{21} \cdot Q_{k1} + \psi_{22} \cdot Q_{k2} + ...$$

Con l'obiettivo di controllare che le forze di reazione sugli appoggi siano sempre di compressione, è stata inserita una combinazione che minimizza i permanenti e massimizza gli accidentali sulla rampa. Tale combinazione è la SLU09.

TABLE: Load Pattern Definitions						
LoadPat	DesignType	SelfWtMult				
Text	Text	Unitless				
G1k	Dead	1				
G2k	Dead	0				
Qhk	Live	0				
Qnk	Snow	0				
Qwk1	Wind	0				
Qwk2	Wind	0				
Qwk3	Wind	0				
Dt+	Temperature	0				
Qhk2	Live	0				
Dt-	Temperature	0				
Dtfarf+	Temperature	0				
Dtfarf-	Temperature	0				
Ritiro	Temperature	0				
G3_SP_x+	Dead	0				
G3_SP_y+	Dead	0				
Q_SQ_x+	Live	0				
Q_SQ_y+	Live	0				
G3_SP_x-	Dead	0				
G3_SP_y-	Dead	0				
Q_SQ_y-	Live	0				

Q_SQ_x-	Live	0
Qtrn1	Live	0
Qlak	Live	0
Qlbk	Live	0
QE_+x	Quake	0
QE_+y	Quake	0
QEx	Quake	0
QEy	Quake	0

	TABLE: Combination Definitions						
ComboName	ComboType	AutoDesign	CaseType	CaseName	ScaleFactor		
Text	Text	Yes/No	Text	Text	Unitless		
SLU_01	Linear Add	No	Linear Static	G1k	1.35		
SLU_01			Linear Static	G2k	1.5		
SLU_01			Linear Static	G3_SP_x+	1.5		
SLU_01			Linear Static	G3_SP_y+	1.5		
SLU_01			Linear Static	G3_SP_x-	1.5		
SLU_01			Linear Static	G3_SP_y-	1.5		
SLU_01			Linear Static	Qhk	1.5		
SLU_01			Linear Static	Qhk2	1.5		
SLU_01			Linear Static	Qnk	1.5		
SLU_01			Linear Static	Qwk1	1.5		
SLU_01			Linear Static	Qwk2	0		

SLU_01			Linear Static	Qwk3	0
SLU_01			Linear Static	Q_SQ_x+	1.5
SLU_01			Linear Static	Q_SQ_y+	1.5
SLU_01			Linear Static	Q_SQ_x-	1.5
SLU_01			Linear Static	Q_SQ_y-	1.5
SLU_01			Linear Static	Qtrn1	0
SLU_01			Linear Static	Qlak	0
SLU_01			Linear Static	Qlbk	0
SLU_01			Linear Static	Dt+	1
SLU_01			Linear Static	Dt-	0
SLU_01			Linear Static	Dtfarf+	1
SLU_01			Linear Static	Dtfarf-	0
SLU_01			Linear Static	Ritiro	1
SLU_01			Response Spectrum	SISMA_SLV_X	0
SLU_01			Response Spectrum	SISMA_SLV_Y	0
SLU_01			Response Spectrum	SISMA_SLV_Z	0
SLU_02	Linear Add	No	Linear Static	G1k	1.35
SLU_02			Linear Static	G2k	1.5
SLU_02			Linear Static	G3_SP_x+	1.5
SLU_02			Linear Static	G3_SP_y+	1.5
SLU_02			Linear Static	G3_SP_x-	1.5

1	l I	İ			l I
SLU_02			Linear Static	G3_SP_y-	1.5
SLU_02			Linear Static	Qhk	1.5
SLU_02			Linear Static	Qhk2	1.5
SLU_02			Linear Static	Qnk	1.5
SLU_02			Linear Static	Qwk1	1.5
SLU_02			Linear Static	Qwk2	0
SLU_02			Linear Static	Qwk3	0
SLU_02			Linear Static	Q_SQ_x+	1.5
SLU_02			Linear Static	Q_SQ_y+	1.5
SLU_02			Linear Static	Q_SQ_x-	1.5
SLU_02			Linear Static	Q_SQ_y-	1.5
SLU_02			Linear Static	Qtrn1	0
SLU_02			Linear Static	Qlak	0
SLU_02			Linear Static	Qlbk	0
SLU_02			Linear Static	Dt+	0
SLU_02			Linear Static	Dt-	1
SLU_02			Linear Static	Dtfarf+	0
SLU_02			Linear Static	Dtfarf-	1
SLU_02			Linear Static	Ritiro	1
SLU_02			Response Spectrum	SISMA_SLV_X	0
SLU_02			Response Spectrum	SISMA_SLV_Y	0
SLU_02			Response	SISMA_SLV_Z	0

LINEA AV/AC MILANO – VENEZIA LOTTO FUNZIONALE TRATTA AV/AC VERONA-PADOVA NODO AV/AC DI VERONA: INGRESSO EST

Relazione di calcolo vano ascesnsore e Scala Fissa

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 IN1A
 20
 D26CL
 FV 05 00 003
 A
 43 di 148

			Spectrum		
SLU_03	Linear Add	No	Linear Static	G1k	1.35
SLU_03			Linear Static	G2k	1.5
SLU_03			Linear Static	G3_SP_x+	1.5
SLU_03			Linear Static	G3_SP_y+	1.5
SLU_03			Linear Static	G3_SP_x-	1.5
SLU_03			Linear Static	G3_SP_y-	1.5
SLU_03			Linear Static	Qhk	1.5
SLU_03			Linear Static	Qhk2	1.5
SLU_03			Linear Static	Qnk	1.5
SLU_03			Linear Static	Qwk1	1.5
SLU_03			Linear Static	Qwk2	0
SLU_03			Linear Static	Qwk3	0
SLU_03			Linear Static	Q_SQ_x+	1.5
SLU_03			Linear Static	Q_SQ_y+	1.5
SLU_03			Linear Static	Q_SQ_x-	1.5
SLU_03			Linear Static	Q_SQ_y-	1.5
SLU_03			Linear Static	Qtrn1	1.5
SLU_03			Linear Static	Qlak	1.5
SLU_03			Linear Static	Qlbk	0
SLU_03			Linear Static	Dt+	1
SLU_03			Linear Static	Dt-	0
SLU_03			Linear Static	Dtfarf+	1

SLU_03			Linear Static	Dtfarf-	0
SLU_03			Linear Static	Ritiro	1
SLU_03			Response Spectrum	SISMA_SLV_X	0
SLU_03			Response Spectrum	SISMA_SLV_Y	0
SLU_03			Response Spectrum	SISMA_SLV_Z	0
SLU_04	Linear Add	No	Linear Static	G1k	1.35
SLU_04			Linear Static	G2k	1.5
SLU_04			Linear Static	G3_SP_x+	1.5
SLU_04			Linear Static	G3_SP_y+	1.5
SLU_04			Linear Static	G3_SP_x-	1.5
SLU_04			Linear Static	G3_SP_y-	1.5
SLU_04			Linear Static	Qhk	1.5
SLU_04			Linear Static	Qhk2	1.5
SLU_04			Linear Static	Qnk	1.5
SLU_04			Linear Static	Qwk1	1.5
SLU_04			Linear Static	Qwk2	0
SLU_04			Linear Static	Qwk3	0
SLU_04			Linear Static	Q_SQ_x+	1.5
SLU_04			Linear Static	Q_SQ_y+	1.5
SLU_04			Linear Static	Q_SQ_x-	1.5
SLU_04			Linear Static	Q_SQ_y-	1.5

SLU_04			Linear Static	Qtrn1	1.5
SLU_04			Linear Static	Qlak	0
SLU_04			Linear Static	Qlbk	1.5
SLU_04			Linear Static	Dt+	1
SLU_04			Linear Static	Dt-	0
SLU_04			Linear Static	Dtfarf+	1
SLU_04			Linear Static	Dtfarf-	0
SLU_04			Linear Static	Ritiro	0
SLU_04			Response Spectrum	SISMA_SLV_X	0
SLU_04			Response Spectrum	SISMA_SLV_Y	0
SLU_04			Response Spectrum	SISMA_SLV_Z	0
SLU_05	Linear Add	No	Linear Static	G1k	1.35
SLU_05			Linear Static	G2k	1.5
SLU_05			Linear Static	G3_SP_x+	1.5
SLU_05			Linear Static	G3_SP_y+	1.5
SLU_05			Linear Static	G3_SP_x-	1.5
SLU_05			Linear Static	G3_SP_y-	1.5
SLU_05			Linear Static	Qhk	1.5
SLU_05			Linear Static	Qhk2	1.5
SLU_05			Linear Static	Qnk	1.5
SLU_05			Linear Static	Qwk1	1.5

SLU_05			Linear Static	Qwk2	0
SLU_05			Linear Static	Qwk3	0
SLU_05			Linear Static	Q_SQ_x+	1.5
SLU_05			Linear Static	Q_SQ_y+	1.5
SLU_05			Linear Static	Q_SQ_x-	1.5
SLU_05			Linear Static	Q_SQ_y-	1.5
SLU_05			Linear Static	Qtrn1	1.5
SLU_05			Linear Static	Qlak	1.5
SLU_05			Linear Static	Qlbk	0
SLU_05			Linear Static	Dt+	0
SLU_05			Linear Static	Dt-	1
SLU_05			Linear Static	Dtfarf+	0
SLU_05			Linear Static	Dtfarf-	1
SLU_05			Linear Static	Ritiro	1
SLU_05			Response Spectrum	SISMA_SLV_X	0
SLU_05			Response Spectrum	SISMA_SLV_Y	0
SLU_05			Response Spectrum	SISMA_SLV_Z	0
SLU_06	Linear Add	No	Linear Static	G1k	1.35
SLU_06			Linear Static	G2k	1.5
SLU_06			Linear Static	G3_SP_x+	1.5
SLU_06			Linear Static	G3_SP_y+	1.5

CI II OC			
SLU_06	Linear Static	G3_SP_x-	1.5
SLU_06	Linear Static	G3_SP_y-	1.5
SLU_06	Linear Static	Qhk	1.5
SLU_06	Linear Static	Qhk2	1.5
SLU_06	Linear Static	Qnk	1.5
SLU_06	Linear Static	Qwk1	1.5
SLU_06	Linear Static	Qwk2	0
SLU_06	Linear Static	Qwk3	0
SLU_06	Linear Static	Q_SQ_x+	1.5
SLU_06	Linear Static	Q_SQ_y+	1.5
SLU_06	Linear Static	Q_SQ_x-	1.5
SLU_06	Linear Static	Q_SQ_y-	1.5
SLU_06	Linear Static	Qtrn1	1.5
SLU_06	Linear Static	Qlak	0
SLU_06	Linear Static	Qlbk	1.5
SLU_06	Linear Static	Dt+	0
SLU_06	Linear Static	Dt-	1
SLU_06	Linear Static	Dtfarf+	0
SLU_06	Linear Static	Dtfarf-	1
SLU_06	Linear Static	Ritiro	0
SLU_06	Response Spectrum	SISMA_SLV_X	0
SLU_06	Response Spectrum	SISMA_SLV_Y	0

			Response		
SLU_06			Spectrum	SISMA_SLV_Z	0
SLU_07	Linear Add	No	Linear Static	G1k	1.35
SLU_07			Linear Static	G2k	1.5
SLU_07			Linear Static	G3_SP_x+	1.5
SLU_07			Linear Static	G3_SP_y+	1.5
SLU_07			Linear Static	G3_SP_x-	1.5
SLU_07			Linear Static	G3_SP_y-	1.5
SLU_07			Linear Static	Qhk	1.5
SLU_07			Linear Static	Qhk2	1.5
SLU_07			Linear Static	Qnk	1.5
SLU_07			Linear Static	Qwk1	1.5
SLU_07			Linear Static	Qwk2	0
SLU_07			Linear Static	Qwk3	0
SLU_07			Linear Static	Q_SQ_x+	1.5
SLU_07			Linear Static	Q_SQ_y+	1.5
SLU_07			Linear Static	Q_SQ_x-	0
SLU_07			Linear Static	Q_SQ_y-	0
SLU_07			Linear Static	Qtrn1	1.5
SLU_07			Linear Static	Qlak	1.5
SLU_07			Linear Static	Qlbk	0
SLU_07			Linear Static	Dt+	0
SLU_07			Linear Static	Dt-	1

CLU 07			Lincon Statio	Defore	
SLU_07			Linear Static	Dtfarf+	0
SLU_07			Linear Static	Dtfarf-	1
SLU_07			Linear Static	Ritiro	0
SLU_07			Response Spectrum	SISMA_SLV_X	0
SLU_07			Response Spectrum	SISMA_SLV_Y	0
SLU_07			Response Spectrum	SISMA_SLV_Z	0
SLU_08	Linear Add	No	Linear Static	G1k	1.35
SLU_08			Linear Static	G2k	1.5
SLU_08			Linear Static	G3_SP_x+	1.5
SLU_08			Linear Static	G3_SP_y+	1.5
SLU_08			Linear Static	G3_SP_x-	1.5
SLU_08			Linear Static	G3_SP_y-	1.5
SLU_08			Linear Static	Qhk	1.5
SLU_08			Linear Static	Qhk2	1.5
SLU_08			Linear Static	Qnk	1.5
SLU_08			Linear Static	Qwk1	1.5
SLU_08			Linear Static	Qwk2	0
SLU_08			Linear Static	Qwk3	0
SLU_08			Linear Static	Q_SQ_x+	0
SLU_08			Linear Static	Q_SQ_y+	0
SLU_08			Linear Static	Q_SQ_x-	1.5

SLU_08			Linear Static	Q_SQ_y-	1.5
SLU_08			Linear Static	Qtrn1	1.5
SLU_08			Linear Static	Qlak	0
SLU_08			Linear Static	Qlbk	1.5
SLU_08			Linear Static	Dt+	0
SLU_08			Linear Static	Dt-	1
SLU_08			Linear Static	Dtfarf+	0
SLU_08			Linear Static	Dtfarf-	1
SLU_08			Linear Static	Ritiro	0
			Response		
SLU_08			Spectrum	SISMA_SLV_X	0
SLU_08			Response Spectrum	SISMA_SLV_Y	0
			Response		
SLU_08			Spectrum	SISMA_SLV_Z	0
SLU_09	Linear Add	No	Linear Static	Glk	1.35
SLU_09			Linear Static	G2k	1.5
SLU_09			Linear Static	G3_SP_x+	1.5
SLU_09			Linear Static	G3_SP_y+	1.5
SLU_09			Linear Static	G3_SP_x-	1.5
SLU_09			Linear Static	G3_SP_y-	1.5
SLU_09			Linear Static	Qhk	1.5
SLU_09			Linear Static	Qhk2	1.5
SLU_09			Linear Static	Qnk	1.5

I	1	I	1	I	i i
SLU_09			Linear Static	Qwk1	1.5
SLU_09			Linear Static	Qwk2	0
SLU_09			Linear Static	Qwk3	0
SLU_09			Linear Static	Q_SQ_x+	1.5
SLU_09			Linear Static	Q_SQ_y+	1.5
SLU_09			Linear Static	Q_SQ_x-	1.5
SLU_09			Linear Static	Q_SQ_y-	1.5
SLU_09			Linear Static	Qtrn1	1.5
SLU_09			Linear Static	Qlak	1.5
SLU_09			Linear Static	Qlbk	0
SLU_09			Linear Static	Dt+	1
SLU_09			Linear Static	Dt-	0
SLU_09			Linear Static	Dtfarf+	1
SLU_09			Linear Static	Dtfarf-	0
SLU_09			Linear Static	Ritiro	1
SLU_09			Response Spectrum	SISMA_SLV_X	0
SLU_09			Response Spectrum	SISMA_SLV_Y	0
SLU_09			Response Spectrum	SISMA_SLV_Z	0
SLC_01	Linear Add	No	Linear Static	G1k	1
SLC_01			Linear Static	G2k	1
SLC_01			Linear Static	G3_SP_x+	1
· · · · · · · · · · · · · · · · · · ·					

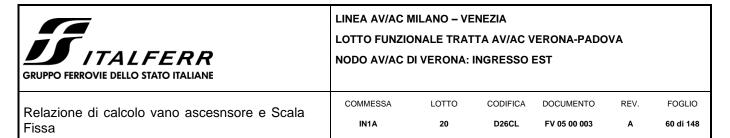
SLC_01	Linear Static	G3_SP_y+	1
SLC_01	Linear Static	G3_SP_x-	1
SLC_01	Linear Static	G3_SP_y-	1
SLC_01	Linear Static	Qhk	1
SLC_01	Linear Static	Qhk2	1
SLC_01	Linear Static	Qnk	1
SLC_01	Linear Static	Qwk1	1
SLC_01	Linear Static	Qwk2	0
SLC_01	Linear Static	Qwk3	0
SLC_01	Linear Static	Q_SQ_x+	1
SLC_01	Linear Static	Q_SQ_y+	1
SLC_01	Linear Static	Q_SQ_x-	1
SLC_01	Linear Static	Q_SQ_y-	1
SLC_01	Linear Static	Qtrn1	0
SLC_01	Linear Static	Qlak	0
SLC_01	Linear Static	Qlbk	0
SLC_01	Linear Static	Dt+	1
SLC_01	Linear Static	Dt-	0
SLC_01	Linear Static	Dtfarf+	1
SLC_01	Linear Static	Dtfarf-	0
SLC_01	Linear Static	Ritiro	1
SLC_01	Response Spectrum	SISMA_SLV_X	0

SLC_01			Response Spectrum	SISMA_SLV_Y	0
SLC_01			Response Spectrum	SISMA_SLV_Z	0
SLC_02	Linear Add	No	Linear Static	G1k	1
SLC_02			Linear Static	G2k	1
SLC_02			Linear Static	G3_SP_x+	1
SLC_02			Linear Static	G3_SP_y+	1
SLC_02			Linear Static	G3_SP_x-	1
SLC_02			Linear Static	G3_SP_y-	1
SLC_02			Linear Static	Qhk	1
SLC_02			Linear Static	Qhk2	1
SLC_02			Linear Static	Qnk	1
SLC_02			Linear Static	Qwk1	1
SLC_02			Linear Static	Qwk2	0
SLC_02			Linear Static	Qwk3	0
SLC_02			Linear Static	Q_SQ_x+	1
SLC_02			Linear Static	Q_SQ_y+	1
SLC_02			Linear Static	Q_SQ_x-	1
SLC_02			Linear Static	Q_SQ_y-	1
SLC_02			Linear Static	Qtrn1	0
SLC_02			Linear Static	Qlak	0
SLC_02			Linear Static	Qlbk	0
SLC_02			Linear Static	Dt+	0

SLC_02			Linear Static	Dt-	1
SLC_02			Linear Static	Dtfarf+	0
SLC_02			Linear Static	Dtfarf-	1
SLC_02			Linear Static	Ritiro	1
SLC_02			Response Spectrum	SISMA_SLV_X	0
SLC_02			Response Spectrum	SISMA_SLV_Y	0
SLC_02			Response Spectrum	SISMA_SLV_Z	0
SLC_03	Linear Add	No	Linear Static	G1k	1
SLC_03			Linear Static	G2k	1
SLC_03			Linear Static	G3_SP_x+	1
SLC_03			Linear Static	G3_SP_y+	1
SLC_03			Linear Static	G3_SP_x-	1
SLC_03			Linear Static	G3_SP_y-	1
SLC_03			Linear Static	Qhk	1
SLC_03			Linear Static	Qhk2	1
SLC_03			Linear Static	Qnk	1
SLC_03			Linear Static	Qwk1	1
SLC_03			Linear Static	Qwk2	0
SLC_03			Linear Static	Qwk3	0
SLC_03			Linear Static	Q_SQ_x+	1
SLC_03			Linear Static	Q_SQ_y+	1

SLC_03			Linear Static	Q_SQ_x-	1
SLC_03			Linear Static	Q_SQ_y-	1
SLC_03			Linear Static	Qtrn1	1
SLC_03			Linear Static	Qlak	1
SLC_03			Linear Static	Qlbk	0
SLC_03			Linear Static	Dt+	1
SLC_03			Linear Static	Dt-	0
SLC_03			Linear Static	Dtfarf+	1
SLC_03			Linear Static	Dtfarf-	0
SLC_03			Linear Static	Ritiro	1
SLC_03			Response Spectrum	SISMA_SLV_X	0
SLC_03			Response Spectrum	SISMA_SLV_Y	0
SLC_03			Response Spectrum	SISMA_SLV_Z	0
SLC_04	Linear Add	No	Linear Static	G1k	1
SLC_04			Linear Static	G2k	1
SLC_04			Linear Static	G3_SP_x+	1
SLC_04			Linear Static	G3_SP_y+	1
SLC_04			Linear Static	G3_SP_x-	1
SLC_04			Linear Static	G3_SP_y-	1
SLC_04			Linear Static	Qhk	1
SLC_04			Linear Static	Qhk2	1

SLC_04			Linear Static	Qnk	1
SLC_04			Linear Static	Qwk1	1
SLC_04			Linear Static	Qwk2	0
SLC_04			Linear Static	Qwk3	0
SLC_04			Linear Static	Q_SQ_x+	1
SLC_04			Linear Static	Q_SQ_y+	1
SLC_04			Linear Static	Q_SQ_x-	1
SLC_04			Linear Static	Q_SQ_y-	1
SLC_04			Linear Static	Qtrn1	1
SLC_04			Linear Static	Qlak	0
SLC_04			Linear Static	Qlbk	1
SLC_04			Linear Static	Dt+	1
SLC_04			Linear Static	Dt-	0
SLC_04			Linear Static	Dtfarf+	1
SLC_04			Linear Static	Dtfarf-	0
SLC_04			Linear Static	Ritiro	0
SLC_04			Response Spectrum	SISMA_SLV_X	0
SLC_04			Response Spectrum	SISMA_SLV_Y	0
SLC_04			Response Spectrum	SISMA_SLV_Z	0
SLC_05	Linear Add	No	Linear Static	G1k	1
SLC_05			Linear Static	G2k	1


i	l I		Ì	i i
SLC_05		Linear Static	G3_SP_x+	1
SLC_05		Linear Static	G3_SP_y+	1
SLC_05		Linear Static	G3_SP_x-	1
SLC_05		Linear Static	G3_SP_y-	1
SLC_05		Linear Static	Qhk	1
SLC_05		Linear Static	Qhk2	1
SLC_05		Linear Static	Qnk	1
SLC_05		Linear Static	Qwk1	1
SLC_05		Linear Static	Qwk2	0
SLC_05		Linear Static	Qwk3	0
SLC_05		Linear Static	Q_SQ_x+	1
SLC_05		Linear Static	Q_SQ_y+	1
SLC_05		Linear Static	Q_SQ_x-	1
SLC_05		Linear Static	Q_SQ_y-	1
SLC_05		Linear Static	Qtrn1	1
SLC_05		Linear Static	Qlak	1
SLC_05		Linear Static	Qlbk	0
SLC_05		Linear Static	Dt+	0
SLC_05		Linear Static	Dt-	1
SLC_05		Linear Static	Dtfarf+	0
SLC_05		Linear Static	Dtfarf-	1
SLC_05		Linear Static	Ritiro	1
SLC_05		Response	SISMA_SLV_X	0

			Spectrum		
SLC_05			Response Spectrum	SISMA_SLV_Y	0
SLC_05			Response Spectrum	SISMA_SLV_Z	0
SLC_06	Linear Add	No	Linear Static	G1k	1
SLC_06			Linear Static	G2k	1
SLC_06			Linear Static	G3_SP_x+	1
SLC_06			Linear Static	G3_SP_y+	1
SLC_06			Linear Static	G3_SP_x-	1
SLC_06			Linear Static	G3_SP_y-	1
SLC_06			Linear Static	Qhk	1
SLC_06			Linear Static	Qhk2	1
SLC_06			Linear Static	Qnk	1
SLC_06			Linear Static	Qwk1	1
SLC_06			Linear Static	Qwk2	0
SLC_06			Linear Static	Qwk3	0
SLC_06			Linear Static	Q_SQ_x+	1
SLC_06			Linear Static	Q_SQ_y+	1
SLC_06			Linear Static	Q_SQ_x-	1
SLC_06			Linear Static	Q_SQ_y-	1
SLC_06			Linear Static	Qtrn1	1
SLC_06			Linear Static	Qlak	0
SLC_06			Linear Static	Qlbk	1

SLC_06			Linear Static	Dt+	0
SLC_06			Linear Static	Dt-	1
SLC_06			Linear Static	Dtfarf+	0
SLC_06			Linear Static	Dtfarf-	1
SLC_06			Linear Static	Ritiro	0
SLC_06			Response Spectrum	SISMA_SLV_X	0
SLC_06			Response Spectrum	SISMA_SLV_Y	0
SLC_06			Response Spectrum	SISMA_SLV_Z	0
SLC_07	Linear Add	No	Linear Static	G1k	1
SLC_07			Linear Static	G2k	1
SLC_07			Linear Static	G3_SP_x+	1
SLC_07			Linear Static	G3_SP_y+	1
SLC_07			Linear Static	G3_SP_x-	1
SLC_07			Linear Static	G3_SP_y-	1
SLC_07			Linear Static	Qhk	1
SLC_07			Linear Static	Qhk2	1
SLC_07			Linear Static	Qnk	1
SLC_07			Linear Static	Qwk1	1
SLC_07			Linear Static	Qwk2	0
SLC_07			Linear Static	Qwk3	0
SLC_07			Linear Static	Q_SQ_x+	1

SLC_07			Linear Static	Q_SQ_y+	1
SLC_07			Linear Static	Q_SQ_x-	0
SLC_07			Linear Static	Q_SQ_y-	0
SLC_07			Linear Static	Qtrn1	1
SLC_07			Linear Static	Qlak	1
SLC_07			Linear Static	Qlbk	0
SLC_07			Linear Static	Dt+	0
SLC_07			Linear Static	Dt-	1
SLC_07			Linear Static	Dtfarf+	0
SLC_07			Linear Static	Dtfarf-	1
SLC_07			Linear Static	Ritiro	0
SLC_07			Response Spectrum	SISMA_SLV_X	0
SLC_07			Response Spectrum	SISMA_SLV_Y	0
SLC_07			Response Spectrum	SISMA_SLV_Z	0
SLC_08	Linear Add	No	Linear Static	G1k	1
SLC_08			Linear Static	G2k	1
SLC_08			Linear Static	G3_SP_x+	1
SLC_08			Linear Static	G3_SP_y+	1
SLC_08			Linear Static	G3_SP_x-	1
SLC_08			Linear Static	G3_SP_y-	1
SLC_08			Linear Static	Qhk	1

SLC_08			Linear Static	Qhk2	1
SLC_08			Linear Static	Qnk	1
SLC_08			Linear Static	Qwk1	1
SLC_08			Linear Static	Qwk2	0
SLC_08			Linear Static	Qwk3	0
SLC_08			Linear Static	Q_SQ_x+	0
SLC_08			Linear Static	Q_SQ_y+	0
SLC_08			Linear Static	Q_SQ_x-	1
SLC_08			Linear Static	Q_SQ_y-	1
SLC_08			Linear Static	Qtrn1	1
SLC_08			Linear Static	Qlak	0
SLC_08			Linear Static	Qlbk	1
SLC_08			Linear Static	Dt+	0
SLC_08			Linear Static	Dt-	1
SLC_08			Linear Static	Dtfarf+	0
SLC_08			Linear Static	Dtfarf-	1
SLC_08			Linear Static	Ritiro	0
SLC_08			Response Spectrum	SISMA_SLV_X	0
SLC_08			Response Spectrum	SISMA_SLV_Y	0
SLC_08			Response Spectrum	SISMA_SLV_Z	0
SLC_09	Linear Add	No	Linear Static	G1k	1

1	i i	İ	1	1
SLC_09		Linear Static	G2k	1
SLC_09		Linear Static	G3_SP_x+	1
SLC_09		Linear Static	G3_SP_y+	1
SLC_09		Linear Static	G3_SP_x-	1
SLC_09		Linear Static	G3_SP_y-	1
SLC_09		Linear Static	Qhk	1
SLC_09		Linear Static	Qhk2	1
SLC_09		Linear Static	Qnk	1
SLC_09		Linear Static	Qwk1	1
SLC_09		Linear Static	Qwk2	0
SLC_09		Linear Static	Qwk3	0
SLC_09		Linear Static	Q_SQ_x+	1
SLC_09		Linear Static	Q_SQ_y+	1
SLC_09		Linear Static	Q_SQ_x-	1
SLC_09		Linear Static	Q_SQ_y-	1
SLC_09		Linear Static	Qtrn1	1
SLC_09		Linear Static	Qlak	1
SLC_09		Linear Static	Qlbk	0
SLC_09		Linear Static	Dt+	1
SLC_09		Linear Static	Dt-	0
SLC_09		Linear Static	Dtfarf+	1
SLC_09		Linear Static	Dtfarf-	0
SLC_09		Linear Static	Ritiro	1

SLC_09			Response Spectrum	SISMA_SLV_X	
SLC_09			Response Spectrum	SISMA_SLV_Y	
SLC_09			Response Spectrum	SISMA_SLV_Z	0
SLF_01	Linear Add	No	Linear Static	G1k	1
SLF_01			Linear Static	G2k	1
SLF_01			Linear Static	G3_SP_x+	1
SLF_01			Linear Static	G3_SP_y+	1
SLF_01			Linear Static	G3_SP_x-	1
SLF_01			Linear Static	G3_SP_y-	1
SLF_01			Linear Static	Qhk	0.8
SLF_01			Linear Static	Qhk2	0.8
SLF_01			Linear Static	Qnk	0.8
SLF_01			Linear Static	Qwk1	0.8
SLF_01			Linear Static	Qwk2	0
SLF_01			Linear Static	Qwk3	0
SLF_01			Linear Static	Q_SQ_x+	0.8
SLF_01			Linear Static	Q_SQ_y+	0.8
SLF_01			Linear Static	Q_SQ_x-	0.8
SLF_01			Linear Static	Q_SQ_y-	0.8
SLF_01			Linear Static	Qtrn1	0
SLF_01			Linear Static	Qlak	0

SLF_01			Linear Static	Qlbk	0
SLF_01			Linear Static	Dt+	0.8
SLF_01			Linear Static	Dt-	0
SLF_01			Linear Static	Dtfarf+	0.8
SLF_01			Linear Static	Dtfarf-	0
SLF_01			Linear Static	Ritiro	0.8
SLF_01			Response Spectrum	SISMA_SLV_X	0
SLF_01			Response Spectrum	SISMA_SLV_Y	0
SLF_01			Response Spectrum	SISMA_SLV_Z	0
SLF_02	Linear Add	No	Linear Static	G1k	1
SLF_02			Linear Static	G2k	1
SLF_02			Linear Static	G3_SP_x+	1
SLF_02			Linear Static	G3_SP_y+	1
SLF_02			Linear Static	G3_SP_x-	1
SLF_02			Linear Static	G3_SP_y-	1
SLF_02			Linear Static	Qhk	0.8
SLF_02			Linear Static	Qhk2	0.8
SLF_02			Linear Static	Qnk	0.8
SLF_02			Linear Static	Qwk1	0.8
SLF_02			Linear Static	Qwk2	0
SLF_02			Linear Static	Qwk3	0

SLF_02			Linear Static	Q_SQ_x+	0.8
SLF_02			Linear Static	Q_SQ_y+	0.8
SLF_02			Linear Static	Q_SQ_x-	0.8
SLF_02			Linear Static	Q_SQ_y-	0.8
SLF_02			Linear Static	Qtrn1	0
SLF_02			Linear Static	Qlak	0
SLF_02			Linear Static	Qlbk	0
SLF_02			Linear Static	Dt+	0
SLF_02			Linear Static	Dt-	0.8
SLF_02			Linear Static	Dtfarf+	0
SLF_02			Linear Static	Dtfarf-	0.8
SLF_02			Linear Static	Ritiro	0.8
SLF_02			Response Spectrum	SISMA_SLV_X	0
SLF_02			Response Spectrum	SISMA_SLV_Y	0
SLF_02			Response Spectrum	SISMA_SLV_Z	0
SLF_03	Linear Add	No	Linear Static	G1k	1
SLF_03			Linear Static	G2k	1
SLF_03			Linear Static	G3_SP_x+	1
SLF_03			Linear Static	G3_SP_y+	1
SLF_03			Linear Static	G3_SP_x-	1
SLF_03			Linear Static	G3_SP_y-	1

	1 1	I		l I
SLF_03		Linear Static	Qhk	0.8
SLF_03		Linear Static	Qhk2	0.8
SLF_03		Linear Static	Qnk	0.8
SLF_03		Linear Static	Qwk1	0.8
SLF_03		Linear Static	Qwk2	0
SLF_03		Linear Static	Qwk3	0
SLF_03		Linear Static	Q_SQ_x+	0.8
SLF_03		Linear Static	Q_SQ_y+	0.8
SLF_03		Linear Static	Q_SQ_x-	0.8
SLF_03		Linear Static	Q_SQ_y-	0.8
SLF_03		Linear Static	Qtrn1	0.8
SLF_03		Linear Static	Qlak	0.8
SLF_03		Linear Static	Qlbk	0
SLF_03		Linear Static	Dt+	0.8
SLF_03		Linear Static	Dt-	0
SLF_03		Linear Static	Dtfarf+	0.8
SLF_03		Linear Static	Dtfarf-	0
SLF_03		Linear Static	Ritiro	0.8
SLF_03		Response Spectrum	SISMA_SLV_X	0
SLF_03		Response Spectrum	SISMA_SLV_Y	0
SLF_03		Response Spectrum	SISMA_SLV_Z	0

SLF_04	Linear Add	No	Linear Static	G1k	1
SLF_04			Linear Static	G2k	1
SLF_04			Linear Static	G3_SP_x+	1
SLF_04			Linear Static	G3_SP_y+	1
SLF_04			Linear Static	G3_SP_x-	1
SLF_04			Linear Static	G3_SP_y-	1
SLF_04			Linear Static	Qhk	0.8
SLF_04			Linear Static	Qhk2	0.8
SLF_04			Linear Static	Qnk	0.8
SLF_04			Linear Static	Qwk1	0.8
SLF_04			Linear Static	Qwk2	0
SLF_04			Linear Static	Qwk3	0
SLF_04			Linear Static	Q_SQ_x+	0.8
SLF_04			Linear Static	Q_SQ_y+	0.8
SLF_04			Linear Static	Q_SQ_x-	0.8
SLF_04			Linear Static	Q_SQ_y-	0.8
SLF_04			Linear Static	Qtrn1	0.8
SLF_04			Linear Static	Qlak	0
SLF_04			Linear Static	Qlbk	0.8
SLF_04			Linear Static	Dt+	0.8
SLF_04			Linear Static	Dt-	0
SLF_04			Linear Static	Dtfarf+	0.8
SLF_04			Linear Static	Dtfarf-	0

SLF_04			Linear Static	Ritiro	0
SLF_04			Response Spectrum	SISMA_SLV_X	0
SLF_04			Response Spectrum	SISMA_SLV_Y	0
SLF_04			Response Spectrum	SISMA_SLV_Z	0
SLF_05	Linear Add	No	Linear Static	G1k	1
SLF_05			Linear Static	G2k	1
SLF_05			Linear Static	G3_SP_x+	1
SLF_05			Linear Static	G3_SP_y+	1
SLF_05			Linear Static	G3_SP_x-	1
SLF_05			Linear Static	G3_SP_y-	1
SLF_05			Linear Static	Qhk	0.8
SLF_05			Linear Static	Qhk2	0.8
SLF_05			Linear Static	Qnk	0.8
SLF_05			Linear Static	Qwk1	0.8
SLF_05			Linear Static	Qwk2	0
SLF_05			Linear Static	Qwk3	0
SLF_05			Linear Static	Q_SQ_x+	0.8
SLF_05			Linear Static	Q_SQ_y+	0.8
SLF_05			Linear Static	Q_SQ_x-	0.8
SLF_05			Linear Static	Q_SQ_y-	0.8
SLF_05			Linear Static	Qtrn1	0.8

SLF_05			Linear Static	Qlak	0.8
SLI'_05			Linear Static	Qiak	0.6
SLF_05			Linear Static	Qlbk	0
SLF_05			Linear Static	Dt+	0
SLF_05			Linear Static	Dt-	0.8
SLF_05			Linear Static	Dtfarf+	0
SLF_05			Linear Static	Dtfarf-	0.8
SLF_05			Linear Static	Ritiro	0.8
SLF_05			Response Spectrum	SISMA_SLV_X	0
SLF_05			Response Spectrum	SISMA_SLV_Y	0
SLF_05			Response Spectrum	SISMA_SLV_Z	0
SLF_06	Linear Add	No	Linear Static	G1k	1
SLF_06			Linear Static	G2k	1
SLF_06			Linear Static	G3_SP_x+	1
SLF_06			Linear Static	G3_SP_y+	1
SLF_06			Linear Static	G3_SP_x-	1
SLF_06			Linear Static	G3_SP_y-	1
SLF_06			Linear Static	Qhk	0.8
SLF_06			Linear Static	Qhk2	0.8
SLF_06			Linear Static	Qnk	0.8
SLF_06			Linear Static	Qwk1	0.8
SLF_06			Linear Static	Qwk2	0

SLF_06			Linear Static	Qwk3	0
SLF_06			Linear Static	Q_SQ_x+	0.8
SLF_06			Linear Static	Q_SQ_y+	0.8
SLF_06			Linear Static	Q_SQ_x-	0.8
SLF_06			Linear Static	Q_SQ_y-	0.8
SLF_06			Linear Static	Qtrn1	0.8
SLF_06			Linear Static	Qlak	0
SLF_06			Linear Static	Qlbk	0.8
SLF_06			Linear Static	Dt+	0
SLF_06			Linear Static	Dt-	0.8
SLF_06			Linear Static	Dtfarf+	0
SLF_06			Linear Static	Dtfarf-	0.8
SLF_06			Linear Static	Ritiro	0
SLF_06			Response Spectrum	SISMA_SLV_X	0
SLF_06			Response Spectrum	SISMA_SLV_Y	0
SLF_06			Response Spectrum	SISMA_SLV_Z	0
SLF_07	Linear Add	No	Linear Static	G1k	1
SLF_07			Linear Static	G2k	1
SLF_07			Linear Static	G3_SP_x+	1
SLF_07			Linear Static	G3_SP_y+	1
SLF_07			Linear Static	G3_SP_x-	1

SLF_07		Linear Static	G3_SP_y-	1
SLF_07		Linear Static	Qhk	0.8
SLF_07		Linear Static	Qhk2	0.8
SLF_07		Linear Static	Qnk	0.8
SLF_07		Linear Static	Qwk1	0.8
SLF_07		Linear Static	Qwk2	0
SLF_07		Linear Static	Qwk3	0
SLF_07		Linear Static	Q_SQ_x+	0.8
SLF_07		Linear Static	Q_SQ_y+	0.8
SLF_07		Linear Static	Q_SQ_x-	0
SLF_07		Linear Static	Q_SQ_y-	0
SLF_07		Linear Static	Qtrn1	0.8
SLF_07		Linear Static	Qlak	0.8
SLF_07		Linear Static	Qlbk	0
SLF_07		Linear Static	Dt+	0
SLF_07		Linear Static	Dt-	0.8
SLF_07		Linear Static	Dtfarf+	0
SLF_07		Linear Static	Dtfarf-	0.8
SLF_07		Linear Static	Ritiro	0
SLF_07		Response Spectrum	SISMA_SLV_X	0
SLF_07		Response Spectrum	SISMA_SLV_Y	0
SLF_07		Response	SISMA_SLV_Z	0

LINEA AV/AC MILANO – VENEZIA LOTTO FUNZIONALE TRATTA AV/AC VERONA-PADOVA NODO AV/AC DI VERONA: INGRESSO EST

FOGLIO

72 di 148

Relazione di calcolo vano ascesnsore e Scala
Fissa

COMMESSA

LOTTO

CODIFICA

DOCUMENTO

REV.

REV.

PI 05 00 003

A

			Spectrum		
SLF_08	Linear Add	No	Linear Static	G1k	1
SLF_08			Linear Static	G2k	1
SLF_08			Linear Static	G3_SP_x+	1
SLF_08			Linear Static	G3_SP_y+	1
SLF_08			Linear Static	G3_SP_x-	1
SLF_08			Linear Static	G3_SP_y-	1
SLF_08			Linear Static	Qhk	0.8
SLF_08			Linear Static	Qhk2	0.8
SLF_08			Linear Static	Qnk	0.8
SLF_08			Linear Static	Qwk1	0.8
SLF_08			Linear Static	Qwk2	0
SLF_08			Linear Static	Qwk3	0
SLF_08			Linear Static	Q_SQ_x+	0
SLF_08			Linear Static	Q_SQ_y+	0
SLF_08			Linear Static	Q_SQ_x-	0.8
SLF_08			Linear Static	Q_SQ_y-	0.8
SLF_08			Linear Static	Qtrn1	0.8
SLF_08			Linear Static	Qlak	0
SLF_08			Linear Static	Qlbk	0.8
SLF_08			Linear Static	Dt+	0
SLF_08			Linear Static	Dt-	0.8
SLF_08			Linear Static	Dtfarf+	0

SLF_08			Linear Static	Dtfarf-	0.8
SLF_08			Linear Static	Ritiro	0
SLF_08			Response Spectrum	SISMA_SLV_X	0
SLF_08			Response Spectrum	SISMA_SLV_Y	0
SLF_08			Response Spectrum	SISMA_SLV_Z	0
SLF_09	Linear Add	No	Linear Static	G1k	1
SLF_09			Linear Static	G2k	1
SLF_09			Linear Static	G3_SP_x+	1
SLF_09			Linear Static	G3_SP_y+	1
SLF_09			Linear Static	G3_SP_x-	1
SLF_09			Linear Static	G3_SP_y-	1
SLF_09			Linear Static	Qhk	0.8
SLF_09			Linear Static	Qhk2	0.8
SLF_09			Linear Static	Qnk	0.8
SLF_09			Linear Static	Qwk1	0.8
SLF_09			Linear Static	Qwk2	0
SLF_09			Linear Static	Qwk3	0
SLF_09			Linear Static	Q_SQ_x+	0.8
SLF_09			Linear Static	Q_SQ_y+	0.8
SLF_09			Linear Static	Q_SQ_x-	0.8
SLF_09			Linear Static	Q_SQ_y-	0.8

GIE 00			Lincon Statio	Ot 1	0.0
SLF_09			Linear Static	Qtrn1	0.8
SLF_09			Linear Static	Qlak	0.8
SLF_09			Linear Static	Qlbk	0
SLF_09			Linear Static	Dt+	0.8
SLF_09			Linear Static	Dt-	0
SLF_09			Linear Static	Dtfarf+	0.8
SLF_09			Linear Static	Dtfarf-	0
SLF_09			Linear Static	Ritiro	0.8
SLF_09			Response Spectrum	SISMA_SLV_X	0
SLF_09			Response Spectrum	SISMA_SLV_Y	0
SLF_09			Response Spectrum	SISMA_SLV_Z	0
SLQP_01	Linear Add	No	Linear Static	Glk	1
SLQP_01			Linear Static	G2k	1
SLQP_01			Linear Static	G3_SP_x+	1
SLQP_01			Linear Static	G3_SP_y+	1
SLQP_01			Linear Static	G3_SP_x-	1
SLQP_01			Linear Static	G3_SP_y-	1
SLQP_01			Linear Static	Qhk	0
SLQP_01			Linear Static	Qhk2	0
SLQP_01			Linear Static	Qnk	0
SLQP_01			Linear Static	Qwk1	0

SLQP_01			Linear Static	Qwk2	0
SLQP_01			Linear Static	Qwk3	0
SLQP_01			Linear Static	Q_SQ_x+	0
SLQP_01			Linear Static	Q_SQ_y+	0
SLQP_01			Linear Static	Q_SQ_x-	0
SLQP_01			Linear Static	Q_SQ_y-	0
SLQP_01			Linear Static	Qtrn1	0
SLQP_01			Linear Static	Qlak	0
SLQP_01			Linear Static	Qlbk	0
SLQP_01			Linear Static	Dt+	0
SLQP_01			Linear Static	Dt-	0
SLQP_01			Linear Static	Dtfarf+	0
SLQP_01			Linear Static	Dtfarf-	0
SLQP_01			Linear Static	Ritiro	0
SLQP_01			Response Spectrum	SISMA_SLV_X	0
SLQP_01			Response Spectrum	SISMA_SLV_Y	0
SLQP_01			Response Spectrum	SISMA_SLV_Z	0
SLQP_02	Linear Add	No	Linear Static	G1k	1
SLQP_02			Linear Static	G2k	1
SLQP_02			Linear Static	G3_SP_x+	1
SLQP_02			Linear Static	G3_SP_y+	1

SLQP_02	Response Spectrum	SISMA_SLV_Y	
SLQP_02	Response Spectrum	SISMA_SLV_X	0
SLQP_02	Linear Static	Ritiro	0.8
SLQP_02	Linear Static	Dtfarf-	0
SLQP_02	Linear Static	Dtfarf+	0
SLQP_02	Linear Static	Dt-	0
SLQP_02	Linear Static	Dt+	0
SLQP_02	Linear Static	Qlbk	0
SLQP_02	Linear Static	Qlak	0
SLQP_02	Linear Static	Qtrn1	0
SLQP_02	Linear Static	Q_SQ_y-	0
SLQP_02	Linear Static	Q_SQ_x-	0
SLQP_02	Linear Static	Q_SQ_y+	0
SLQP_02	Linear Static	Q_SQ_x+	0
SLQP_02	Linear Static	Qwk3	0
SLQP_02	Linear Static	Qwk2	0
SLQP_02	Linear Static	Qwk1	0
SLQP_02	Linear Static	Qnk	0
SLQP_02	Linear Static	Qhk2	0
SLQP_02	Linear Static	Qhk	0
SLQP_02	Linear Static	G3_SP_y-	1
SLQP_02	Linear Static	G3_SP_x-	1

SLQP_02			Response Spectrum	SISMA_SLV_Z	0
SLQP_03	Linear Add	No	Linear Static	G1k	1
SLQP_03			Linear Static	G2k	1
SLQP_03			Linear Static	G3_SP_x+	1
SLQP_03			Linear Static	G3_SP_y+	1
SLQP_03			Linear Static	G3_SP_x-	1
SLQP_03			Linear Static	G3_SP_y-	1
SLQP_03			Linear Static	Qhk	0
SLQP_03			Linear Static	Qhk2	0
SLQP_03			Linear Static	Qnk	0
SLQP_03			Linear Static	Qwk1	0
SLQP_03			Linear Static	Qwk2	0
SLQP_03			Linear Static	Qwk3	0
SLQP_03			Linear Static	Q_SQ_x+	0
SLQP_03			Linear Static	Q_SQ_y+	0
SLQP_03			Linear Static	Q_SQ_x-	0
SLQP_03			Linear Static	Q_SQ_y-	0
SLQP_03			Linear Static	Qtrn1	0
SLQP_03			Linear Static	Qlak	0
SLQP_03			Linear Static	Qlbk	0
SLQP_03			Linear Static	Dt+	0.8
SLQP_03			Linear Static	Dt-	0

SLQP_03			Linear Static	Dtfarf+	0
SLQP_03			Linear Static	Dtfarf-	0
SLQP_03			Linear Static	Ritiro	0.8
SLQP_03			Response Spectrum	SISMA_SLV_X	0
SLQP_03			Response Spectrum	SISMA_SLV_Y	0
SLQP_03			Response Spectrum	SISMA_SLV_Z	0
SLQP_04	Linear Add	No	Linear Static	G1k	1
SLQP_04			Linear Static	G2k	1
SLQP_04			Linear Static	G3_SP_x+	1
SLQP_04			Linear Static	G3_SP_y+	1
SLQP_04			Linear Static	G3_SP_x-	1
SLQP_04			Linear Static	G3_SP_y-	1
SLQP_04			Linear Static	Qhk	0
SLQP_04			Linear Static	Qhk2	0
SLQP_04			Linear Static	Qnk	0
SLQP_04			Linear Static	Qwk1	0
SLQP_04			Linear Static	Qwk2	0
SLQP_04			Linear Static	Qwk3	0
SLQP_04			Linear Static	Q_SQ_x+	0
SLQP_04			Linear Static	Q_SQ_y+	0
SLQP_04			Linear Static	Q_SQ_x-	0

SLQP_04			Linear Static	Q_SQ_y-	0
SLQP_04			Linear Static	Qtrn1	0
SLQP_04			Linear Static	Qlak	0
SLQP_04			Linear Static	Qlbk	0
SLQP_04			Linear Static	Dt+	0
SLQP_04			Linear Static	Dt-	0.8
SLQP_04			Linear Static	Dtfarf+	0
SLQP_04			Linear Static	Dtfarf-	0.8
SLQP_04			Linear Static	Ritiro	0.8
SLQP_04			Response Spectrum	SISMA_SLV_X	0
SLQP_04			Response Spectrum	SISMA_SLV_Y	0
SLQP_04			Response Spectrum	SISMA_SLV_Z	0
SLV_01	Linear Add	No	Linear Static	G1k	1
SLV_01			Linear Static	G2k	1
SLV_01			Linear Static	G3_SP_x+	1
SLV_01			Linear Static	G3_SP_y+	1
SLV_01			Linear Static	G3_SP_x-	1
SLV_01			Linear Static	G3_SP_y-	1
SLV_01			Linear Static	Qhk	0.2
SLV_01			Linear Static	Qhk2	0.2
SLV_01			Linear Static	Qnk	0.2

SLV_01			Linear Static	Qwk1	0.2
SLV_01			Linear Static	Qwk2	0
SLV_01			Linear Static	Qwk3	0
SLV_01			Linear Static	Q_SQ_x+	0.2
SLV_01			Linear Static	Q_SQ_y+	0.2
SLV_01			Linear Static	Q_SQ_x-	0.2
SLV_01			Linear Static	Q_SQ_y-	0.2
SLV_01			Linear Static	Qtrn1	0
SLV_01			Linear Static	Qlak	0
SLV_01			Linear Static	Qlbk	0
SLV_01			Linear Static	Dt+	0
SLV_01			Linear Static	Dt-	0
SLV_01			Linear Static	Dtfarf+	0
SLV_01			Linear Static	Dtfarf-	0
SLV_01			Linear Static	Ritiro	0
SLV_01			Response Spectrum	SISMA_SLV_X	1
SLV_01			Response Spectrum	SISMA_SLV_Y	0.3
SLV_01			Response Spectrum	SISMA_SLV_Z	0.5
SLV_01			Linear Static	QE_+x	1
SLV_01			Linear Static	QE_+y	0.3
SLV_02	Linear Add	No	Linear Static	G1k	1

1	ı	ĺ	1	İ	1
SLV_02			Linear Static	G2k	1
SLV_02			Linear Static	G3_SP_x+	1
SLV_02			Linear Static	G3_SP_y+	1
SLV_02			Linear Static	G3_SP_x-	1
SLV_02			Linear Static	G3_SP_y-	1
SLV_02			Linear Static	Qhk	0.2
SLV_02			Linear Static	Qhk2	0.2
SLV_02			Linear Static	Qnk	0.2
SLV_02			Linear Static	Qwk1	0.2
SLV_02			Linear Static	Qwk2	0
SLV_02			Linear Static	Qwk3	0
SLV_02			Linear Static	Q_SQ_x+	0.2
SLV_02			Linear Static	Q_SQ_y+	0.2
SLV_02			Linear Static	Q_SQ_x-	0.2
SLV_02			Linear Static	Q_SQ_y-	0.2
SLV_02			Linear Static	Qtrn1	0
SLV_02			Linear Static	Qlak	0
SLV_02			Linear Static	Qlbk	0
SLV_02			Linear Static	Dt+	0
SLV_02			Linear Static	Dt-	0
SLV_02			Linear Static	Dtfarf+	0
SLV_02			Linear Static	Dtfarf-	0
SLV_02			Linear Static	Ritiro	0

			Response		
SLV_02			Spectrum	SISMA_SLV_X	0.3
SLV_02			Response Spectrum	SISMA_SLV_Y	1
SLV_02			Response Spectrum	SISMA_SLV_Z	0.5
SLV_02			Linear Static	QE_+x	0.3
SLV_02			Linear Static	QE_+y	1
SLV_03	Linear Add	No	Linear Static	G1k	1
SLV_03			Linear Static	G2k	1
SLV_03			Linear Static	G3_SP_x+	1
SLV_03			Linear Static	G3_SP_y+	1
SLV_03			Linear Static	G3_SP_x-	1
SLV_03			Linear Static	G3_SP_y-	1
SLV_03			Linear Static	Qhk	0.2
SLV_03			Linear Static	Qhk2	0.2
SLV_03			Linear Static	Qnk	0.2
SLV_03			Linear Static	Qwk1	0.2
SLV_03			Linear Static	Qwk2	0
SLV_03			Linear Static	Qwk3	0
SLV_03			Linear Static	Q_SQ_x+	0.2
SLV_03			Linear Static	Q_SQ_y+	0.2
SLV_03			Linear Static	Q_SQ_x-	0.2
SLV_03			Linear Static	Q_SQ_y-	0.2

SLV_03			Linear Static	Qtrn1	0.2
SLV_03			Linear Static	Qlak	0.2
SLV_03			Linear Static	Qlbk	0
SLV_03			Linear Static	Dt+	0
SLV_03			Linear Static	Dt-	0
SLV_03			Linear Static	Dtfarf+	0
SLV_03			Linear Static	Dtfarf-	0
SLV_03			Linear Static	Ritiro	0
SLV_03			Response Spectrum	SISMA_SLV_X	1
SLV_03			Response Spectrum	SISMA_SLV_Y	0.3
SLV_03			Response Spectrum	SISMA_SLV_Z	0.5
SLV_03			Linear Static	QE_+x	1
SLV_03			Linear Static	QE_+y	0.3
SLV_04	Linear Add	No	Linear Static	G1k	1
SLV_04			Linear Static	G2k	1
SLV_04			Linear Static	G3_SP_x+	1
SLV_04			Linear Static	G3_SP_y+	1
SLV_04			Linear Static	G3_SP_x-	1
SLV_04			Linear Static	G3_SP_y-	1
SLV_04			Linear Static	Qhk	0.2
SLV_04			Linear Static	Qhk2	0.2

	Ī			
SLV_04		Linear Static	Qnk	0.2
SLV_04		Linear Static	Qwk1	0.2
SLV_04		Linear Static	Qwk2	0
SLV_04		Linear Static	Qwk3	0
SLV_04		Linear Static	Q_SQ_x+	0.2
SLV_04		Linear Static	Q_SQ_y+	0.2
SLV_04		Linear Static	Q_SQ_x-	0.2
SLV_04		Linear Static	Q_SQ_y-	0.2
SLV_04		Linear Static	Qtrn1	0.2
SLV_04		Linear Static	Qlak	0
SLV_04		Linear Static	Qlbk	0.2
SLV_04		Linear Static	Dt+	0
SLV_04		Linear Static	Dt-	0
SLV_04		Linear Static	Dtfarf+	0
SLV_04		Linear Static	Dtfarf-	0
SLV_04		Linear Static	Ritiro	0
SLV_04		Response Spectrum	SISMA_SLV_X	0.3
SLV_04		Response Spectrum	SISMA_SLV_Y	1
SLV_04		Response Spectrum	SISMA_SLV_Z	0.5
SLV_04		Linear Static	QE_+y	1
SLV_04		Linear Static	QE_+x	0.3

SLV_05	Linear Add	No	Linear Static	G1k	1
SLV_05			Linear Static	G2k	1
SLV_05			Linear Static	G3_SP_x+	1
SLV_05			Linear Static	G3_SP_y+	1
SLV_05			Linear Static	G3_SP_x-	1
SLV_05			Linear Static	G3_SP_y-	1
SLV_05			Linear Static	Qhk	0.2
SLV_05			Linear Static	Qhk2	0.2
SLV_05			Linear Static	Qnk	0.2
SLV_05			Linear Static	Qwk1	0.2
SLV_05			Linear Static	Qwk2	0
SLV_05			Linear Static	Qwk3	0
SLV_05			Linear Static	Q_SQ_x+	0.2
SLV_05			Linear Static	Q_SQ_y+	0.2
SLV_05			Linear Static	Q_SQ_x-	0.2
SLV_05			Linear Static	Q_SQ_y-	0.2
SLV_05			Linear Static	Qtrn1	0.2
SLV_05			Linear Static	Qlak	0.2
SLV_05			Linear Static	Qlbk	0
SLV_05			Linear Static	Dt+	0
SLV_05			Linear Static	Dt-	0
SLV_05			Linear Static	Dtfarf+	0
SLV_05			Linear Static	Dtfarf-	0

SLV_05			Linear Static	Ritiro	0
SLV_05			Response Spectrum	SISMA_SLV_X	1
SLV_05			Response Spectrum	SISMA_SLV_Y	0.3
SLV_05			Response Spectrum	SISMA_SLV_Z	0.5
SLV_05			Linear Static	QE_+x	1
SLV_05			Linear Static	QE_+y	0.3
SLV_06	Linear Add	No	Linear Static	G1k	1
SLV_06			Linear Static	G2k	1
SLV_06			Linear Static	G3_SP_x+	1
SLV_06			Linear Static	G3_SP_y+	1
SLV_06			Linear Static	G3_SP_x-	1
SLV_06			Linear Static	G3_SP_y-	1
SLV_06			Linear Static	Qhk	0.2
SLV_06			Linear Static	Qhk2	0.2
SLV_06			Linear Static	Qnk	0.2
SLV_06			Linear Static	Qwk1	0.2
SLV_06			Linear Static	Qwk2	0
SLV_06			Linear Static	Qwk3	0
SLV_06			Linear Static	Q_SQ_x+	0.2
SLV_06			Linear Static	Q_SQ_y+	0.2
SLV_06			Linear Static	Q_SQ_x-	0.2

SLV_06			Linear Static	Q_SQ_y-	0.2
SLV_06			Linear Static	Qtrn1	0.2
SLV_06			Linear Static	Qlak	0
SLV_06			Linear Static	Qlbk	0.2
SLV_06			Linear Static	Dt+	0
SLV_06			Linear Static	Dt-	0
SLV_06			Linear Static	Dtfarf+	0
SLV_06			Linear Static	Dtfarf-	0
SLV_06			Linear Static	Ritiro	0
SLV_06			Response Spectrum	SISMA_SLV_X	0.3
SLV_06			Response Spectrum	SISMA_SLV_Y	1
SLV_06			Response Spectrum	SISMA_SLV_Z	0.5
SLV_06			Linear Static	QE_+x	0.3
SLV_06			Linear Static	QE_+y	1
SLV_07	Linear Add	No	Linear Static	G1k	1
SLV_07			Linear Static	G2k	1
SLV_07			Linear Static	G3_SP_x+	1
SLV_07			Linear Static	G3_SP_y+	1
SLV_07			Linear Static	G3_SP_x-	1
SLV_07			Linear Static	G3_SP_y-	1
SLV_07			Linear Static	Qhk	0.2

SLV_07	Linear Static	Qhk2	0.2
SLV_07	Linear Static	Qnk	0.2
SLV_07	Linear Static	Qwk1	0.2
SLV_07	Linear Static	Qwk2	0
SLV_07	Linear Static	Qwk3	0
SLV_07	Linear Static	Q_SQ_x+	0.2
SLV_07	Linear Static	Q_SQ_y+	0.2
SLV_07	Linear Static	Q_SQ_x-	0
SLV_07	Linear Static	Q_SQ_y-	0
SLV_07	Linear Static	Qtrn1	0.2
SLV_07	Linear Static	Qlak	0.2
SLV_07	Linear Static	Qlbk	0
SLV_07	Linear Static	Dt+	0
SLV_07	Linear Static	Dt-	0
SLV_07	Linear Static	Dtfarf+	0
SLV_07	Linear Static	Dtfarf-	0
SLV_07	Linear Static	Ritiro	0
SLV_07	Response Spectrum	SISMA_SLV_X	1
SLV_07	Response Spectrum	SISMA_SLV_Y	0.3
SLV_07	Response Spectrum	SISMA_SLV_Z	0.5
SLV_07	Linear Static	QE_+x	1

SLV_07			Linear Static	QE_+y	0.3
SLV_08	Linear Add	No	Linear Static	G1k	1
SLV_08			Linear Static	G2k	1
SLV_08			Linear Static	G3_SP_x+	1
SLV_08			Linear Static	G3_SP_y+	1
SLV_08			Linear Static	G3_SP_x-	1
SLV_08			Linear Static	G3_SP_y-	1
SLV_08			Linear Static	Qhk	0.2
SLV_08			Linear Static	Qhk2	0.2
SLV_08			Linear Static	Qnk	0.2
SLV_08			Linear Static	Qwk1	0.2
SLV_08			Linear Static	Qwk2	0
SLV_08			Linear Static	Qwk3	0
SLV_08			Linear Static	Q_SQ_x+	0
SLV_08			Linear Static	Q_SQ_y+	0
SLV_08			Linear Static	Q_SQ_x-	0.2
SLV_08			Linear Static	Q_SQ_y-	0.2
SLV_08			Linear Static	Qtrn1	0.2
SLV_08			Linear Static	Qlak	0
SLV_08			Linear Static	Qlbk	0.2
SLV_08			Linear Static	Dt+	0
SLV_08			Linear Static	Dt-	0
SLV_08			Linear Static	Dtfarf+	0

SLV_08			Linear Static	Dtfarf-	0
SLV_08			Linear Static	Ritiro	0
SLV_08			Response Spectrum	SISMA_SLV_X	0.3
SLV_08			Response Spectrum	SISMA_SLV_Y	1
SLV_08			Response Spectrum	SISMA_SLV_Z	0.5
SLV_08			Linear Static	QE_+x	0.3
SLV_08			Linear Static	QE_+y	1
SLV_09	Linear Add	No	Linear Static	G1k	1
SLV_09			Linear Static	G2k	1
SLV_09			Linear Static	G3_SP_x+	1
SLV_09			Linear Static	G3_SP_y+	1
SLV_09			Linear Static	G3_SP_x-	1
SLV_09			Linear Static	G3_SP_y-	1
SLV_09			Linear Static	Qhk	0.2
SLV_09			Linear Static	Qhk2	0.2
SLV_09			Linear Static	Qnk	0.2
SLV_09			Linear Static	Qwk1	0.2
SLV_09			Linear Static	Qwk2	0
SLV_09			Linear Static	Qwk3	0
SLV_09			Linear Static	Q_SQ_x+	0.2
SLV_09			Linear Static	Q_SQ_y+	0.2

SLV_09			Linear Static	Q_SQ_x-	0.2
SLV_09			Linear Static	Q_SQ_y-	0.2
SLV_09			Linear Static	Qtrn1	0.2
SLV_09			Linear Static	Qlak	0.2
SLV_09			Linear Static	Qlbk	0
SLV_09			Linear Static	Dt+	0
			Linear Static	Dt-	
SLV_09					0
SLV_09			Linear Static	Dtfarf+	0
SLV_09			Linear Static	Dtfarf-	0
SLV_09			Linear Static	Ritiro	0
SLV_09			Response Spectrum	SISMA_SLV_X	1
SLV_09			Response Spectrum	SISMA_SLV_Y	0.3
SLV_09			Response Spectrum	SISMA_SLV_Z	0.5
SLV_09			Linear Static	QEx	1
SLV_09			Linear Static	QEy	0.3
SLV_10	Linear Add	No	Linear Static	G1k	1
SLV_10			Linear Static	G2k	1
SLV_10			Linear Static	G3_SP_x+	1
SLV_10			Linear Static	G3_SP_y+	1
SLV_10			Linear Static	G3_SP_x-	1
SLV_10			Linear Static	G3_SP_y-	1

SLV_10	Linear Static	Qhk	0.2
SLV_10	Linear Static	Qhk2	0.2
SLV_10	Linear Static	Qnk	0.2
SLV_10	Linear Static	Qwk1	0.2
SLV_10	Linear Static	Qwk2	0
SLV_10	Linear Static	Qwk3	0
SLV_10	Linear Static	Q_SQ_x+	0.2
SLV_10	Linear Static	Q_SQ_y+	0.2
SLV_10	Linear Static	Q_SQ_x-	0.2
SLV_10	Linear Static	Q_SQ_y-	0.2
SLV_10	Linear Static	Qtrn1	0
SLV_10	Linear Static	Qlak	0
SLV_10	Linear Static	Qlbk	0
SLV_10	Linear Static	Dt+	0
SLV_10	Linear Static	Dt-	0
SLV_10	Linear Static	Dtfarf+	0
SLV_10	Linear Static	Dtfarf-	0
SLV_10	Linear Static	Ritiro	0
SLV_10	Response Spectrum	SISMA_SLV_X	0.3
SLV_10	Response Spectrum	SISMA_SLV_Y	1
SLV_10	Response Spectrum	SISMA_SLV_Z	0.5

CLV 10			Linear Static	OE "	0.3
SLV_10			Linear Static	QEx	0.3
SLV_10			Linear Static	QEy	1
SLV_11	Linear Add	No	Linear Static	G1k	1
SLV_11			Linear Static	G2k	1
SLV_11			Linear Static	G3_SP_x+	1
SLV_11			Linear Static	G3_SP_y+	1
SLV_11			Linear Static	G3_SP_x-	1
SLV_11			Linear Static	G3_SP_y-	1
SLV_11			Linear Static	Qhk	0.2
SLV_11			Linear Static	Qhk2	0.2
SLV_11			Linear Static	Qnk	0.2
SLV_11			Linear Static	Qwk1	0.2
SLV_11			Linear Static	Qwk2	0
SLV_11			Linear Static	Qwk3	0
SLV_11			Linear Static	Q_SQ_x+	0.2
SLV_11			Linear Static	Q_SQ_y+	0.2
SLV_11			Linear Static	Q_SQ_x-	0.2
SLV_11			Linear Static	Q_SQ_y-	0.2
SLV_11			Linear Static	Qtrn1	0
SLV_11			Linear Static	Qlak	0
SLV_11			Linear Static	Qlbk	0
SLV_11			Linear Static	Dt+	0
SLV_11			Linear Static	Dt-	0

SLV_11			Linear Static	Dtfarf+	0
SLV_11			Linear Static	Dtfarf-	0
SLV_11			Linear Static	Ritiro	0
SLV_11			Response Spectrum	SISMA_SLV_X	1
SLV_11			Response Spectrum	SISMA_SLV_Y	0.3
SLV_11			Response Spectrum	SISMA_SLV_Z	0.5
SLV_11			Linear Static	QEx	1
SLV_11			Linear Static	QEy	0.3
SLV_12	Linear Add	No	Linear Static	G1k	1
SLV_12			Linear Static	G2k	1
SLV_12			Linear Static	G3_SP_x+	1
SLV_12			Linear Static	G3_SP_y+	1
SLV_12			Linear Static	G3_SP_x-	1
SLV_12			Linear Static	G3_SP_y-	1
SLV_12			Linear Static	Qhk	0.2
SLV_12			Linear Static	Qhk2	0.2
SLV_12			Linear Static	Qnk	0.2
SLV_12			Linear Static	Qwk1	0.2
SLV_12			Linear Static	Qwk2	0
SLV_12			Linear Static	Qwk3	0
SLV_12			Linear Static	Q_SQ_x+	0.2

SLV_12			Linear Static	Q_SQ_y+	0.2
SLV_12			Linear Static	Q_SQ_x-	0.2
SLV_12			Linear Static	Q_SQ_y-	0.2
SLV_12			Linear Static	Qtrn1	0.2
SLV_12			Linear Static	Qlak	0.2
SLV_12			Linear Static	Qlbk	0
SLV_12			Linear Static	Dt+	0
SLV_12			Linear Static	Dt-	0
SLV_12			Linear Static	Dtfarf+	0
SLV_12			Linear Static	Dtfarf-	0
SLV_12			Linear Static	Ritiro	0
SLV_12			Response Spectrum	SISMA_SLV_X	0.3
SLV_12			Response Spectrum	SISMA_SLV_Y	1
SLV_12			Response Spectrum	SISMA_SLV_Z	0.5
SLV_12			Linear Static	QEx	0.3
SLV_12			Linear Static	QEy	1
SLV_13	Linear Add	No	Linear Static	G1k	1
SLV_13			Linear Static	G2k	1
SLV_13			Linear Static	G3_SP_x+	1
SLV_13			Linear Static	G3_SP_y+	1
SLV_13			Linear Static	G3_SP_x-	1

SLV_13	Linear Static	G3_SP_y-	1
SLV_13	Linear Static	Qhk	0.2
SLV_13	Linear Static	Qhk2	0.2
SLV_13	Linear Static	Qnk	0.2
SLV_13	Linear Static	Qwk1	0.2
SLV_13	Linear Static	Qwk2	0
SLV_13	Linear Static	Qwk3	0
SLV_13	Linear Static	Q_SQ_x+	0.2
SLV_13	Linear Static	Q_SQ_y+	0.2
SLV_13	Linear Static	Q_SQ_x-	0.2
SLV_13	Linear Static	Q_SQ_y-	0.2
SLV_13	Linear Static	Qtrn1	0.2
SLV_13	Linear Static	Qlak	0
SLV_13	Linear Static	Qlbk	0.2
SLV_13	Linear Static	Dt+	0
SLV_13	Linear Static	Dt-	0
SLV_13	Linear Static	Dtfarf+	0
SLV_13	Linear Static	Dtfarf-	0
SLV_13	Linear Static	Ritiro	0
SLV_13	Response Spectrum	SISMA_SLV_X	1
SLV_13	Response Spectrum	SISMA_SLV_Y	0.3
SLV_13	Response	SISMA_SLV_Z	0.5

			Spectrum		
SLV_13			Linear Static	QEx	1
SLV_13			Linear Static	QEy	0.3
SLV_14	Linear Add	No	Linear Static	G1k	1
SLV_14			Linear Static	G2k	1
SLV_14			Linear Static	G3_SP_x+	1
SLV_14			Linear Static	G3_SP_y+	1
SLV_14			Linear Static	G3_SP_x-	1
SLV_14			Linear Static	G3_SP_y-	1
SLV_14			Linear Static	Qhk	0.2
SLV_14			Linear Static	Qhk2	0.2
SLV_14			Linear Static	Qnk	0.2
SLV_14			Linear Static	Qwk1	0.2
SLV_14			Linear Static	Qwk2	0
SLV_14			Linear Static	Qwk3	0
SLV_14			Linear Static	Q_SQ_x+	0.2
SLV_14			Linear Static	Q_SQ_y+	0.2
SLV_14			Linear Static	Q_SQ_x-	0.2
SLV_14			Linear Static	Q_SQ_y-	0.2
SLV_14			Linear Static	Qtrn1	0.2
SLV_14			Linear Static	Qlak	0.2
SLV_14			Linear Static	Qlbk	0
SLV_14			Linear Static	Dt+	0

SLV_14			Linear Static	Dt-	0
SLV_14			Linear Static	Dtfarf+	0
SLV_14			Linear Static	Dtfarf-	0
SLV_14			Linear Static	Ritiro	0
SLV_14			Response Spectrum	SISMA_SLV_X	0.3
SLV_14			Response Spectrum	SISMA_SLV_Y	1
SLV_14			Response Spectrum	SISMA_SLV_Z	0.5
SLV_14			Linear Static	QEx	0.3
SLV_14			Linear Static	QEy	1
SLV_15	Linear Add	No	Linear Static	G1k	1
SLV_15			Linear Static	G2k	1
SLV_15			Linear Static	G3_SP_x+	1
SLV_15			Linear Static	G3_SP_y+	1
SLV_15			Linear Static	G3_SP_x-	1
SLV_15			Linear Static	G3_SP_y-	1
SLV_15			Linear Static	Qhk	0.2
SLV_15			Linear Static	Qhk2	0.2
SLV_15			Linear Static	Qnk	0.2
SLV_15			Linear Static	Qwk1	0.2
SLV_15			Linear Static	Qwk2	0
SLV_15			Linear Static	Qwk3	0

SLV_15			Linear Static	Q_SQ_x+	0.2
SLV_15			Linear Static	Q_SQ_y+	0.2
SLV_15			Linear Static	Q_SQ_x-	0.2
SLV_15			Linear Static	Q_SQ_y-	0.2
SLV_15			Linear Static	Qtrn1	0.2
SLV_15			Linear Static	Qlak	0
SLV_15			Linear Static	Qlbk	0.2
SLV_15			Linear Static	Dt+	0
SLV_15			Linear Static	Dt-	0
SLV_15			Linear Static	Dtfarf+	0
SLV_15			Linear Static	Dtfarf-	0
SLV_15			Linear Static	Ritiro	0
SLV_15			Response Spectrum	SISMA_SLV_X	1
SLV_15			Response Spectrum	SISMA_SLV_Y	0.3
SLV_15			Response Spectrum	SISMA_SLV_Z	0.5
SLV_15			Linear Static	QE_+x	1
SLV_15			Linear Static	QE_+y	0.3
SLV_16	Linear Add	No	Linear Static	G1k	1
SLV_16			Linear Static	G2k	1
SLV_16			Linear Static	G3_SP_x+	1
SLV_16			Linear Static	G3_SP_y+	1

1	1	Ī	Ī	1
SLV_16		Linear Static	G3_SP_x-	1
SLV_16		Linear Static	G3_SP_y-	1
SLV_16		Linear Static	Qhk	0.2
SLV_16		Linear Static	Qhk2	0.2
SLV_16		Linear Static	Qnk	0.2
SLV_16		Linear Static	Qwk1	0.2
SLV_16		Linear Static	Qwk2	0
SLV_16		Linear Static	Qwk3	0
SLV_16		Linear Static	Q_SQ_x+	0.2
SLV_16		Linear Static	Q_SQ_y+	0.2
SLV_16		Linear Static	Q_SQ_x-	0
SLV_16		Linear Static	Q_SQ_y-	0
SLV_16		Linear Static	Qtrn1	0.2
SLV_16		Linear Static	Qlak	0.2
SLV_16		Linear Static	Qlbk	0
SLV_16		Linear Static	Dt+	0
SLV_16		Linear Static	Dt-	0
SLV_16		Linear Static	Dtfarf+	0
SLV_16		Linear Static	Dtfarf-	0
SLV_16		Linear Static	Ritiro	0
SLV_16		Response Spectrum	SISMA_SLV_X	0.3
SLV_16		Response Spectrum	SISMA_SLV_Y	1

			Response		
SLV_16			Spectrum	SISMA_SLV_Z	0.5
SLV_16			Linear Static	QE_+x	0.3
SLV_16			Linear Static	QE_+y	1
SLV_17	Linear Add	No	Linear Static	G1k	1
SLV_17			Linear Static	G2k	1
SLV_17			Linear Static	G3_SP_x+	1
SLV_17			Linear Static	G3_SP_y+	1
SLV_17			Linear Static	G3_SP_x-	1
SLV_17			Linear Static	G3_SP_y-	1
SLV_17			Linear Static	Qhk	0.2
SLV_17			Linear Static	Qhk2	0.2
SLV_17			Linear Static	Qnk	0.2
SLV_17			Linear Static	Qwk1	0.2
SLV_17			Linear Static	Qwk2	0
SLV_17			Linear Static	Qwk3	0
SLV_17			Linear Static	Q_SQ_x+	0
SLV_17			Linear Static	Q_SQ_y+	0
SLV_17			Linear Static	Q_SQ_x-	0.2
SLV_17			Linear Static	Q_SQ_y-	0.2
SLV_17			Linear Static	Qtrn1	0.2
SLV_17			Linear Static	Qlak	0
SLV_17			Linear Static	Qlbk	0.2

SLV_17			Linear Static	Dt+	0
SLV_17			Linear Static	Dt-	0
SLV_17			Linear Static	Dtfarf+	0
SLV_17			Linear Static	Dtfarf-	0
SLV_17			Linear Static	Ritiro	0
SLV_17			Response Spectrum	SISMA_SLV_X	1
SLV_17			Response Spectrum	SISMA_SLV_Y	0.3
SLV_17			Response Spectrum	SISMA_SLV_Z	0.5
SLV_17			Linear Static	QE_+x	1
SLV_17			Linear Static	QE_+y	0.3
SLV_18	Linear Add	No	Linear Static	Glk	1
SLV_18			Linear Static	G2k	1
SLV_18			Linear Static	G3_SP_x+	1
SLV_18			Linear Static	G3_SP_y+	1
SLV_18			Linear Static	G3_SP_x-	1
SLV_18			Linear Static	G3_SP_y-	1
SLV_18			Linear Static	Qhk	0.2
SLV_18			Linear Static	Qhk2	0.2
SLV_18			Linear Static	Qnk	0.2
SLV_18			Linear Static	Qwk1	0.2
SLV_18			Linear Static	Qwk2	0

SLV_18			Linear Static	Qwk3	0
SLV_18			Linear Static	Q_SQ_x+	0.2
SLV_18			Linear Static	Q_SQ_y+	0.2
SLV_18			Linear Static	Q_SQ_x-	0.2
SLV_18			Linear Static	Q_SQ_y-	0.2
SLV_18			Linear Static	Qtrn1	0.2
SLV_18			Linear Static	Qlak	0.2
SLV_18			Linear Static	Qlbk	0
SLV_18			Linear Static	Dt+	0
SLV_18			Linear Static	Dt-	0
SLV_18			Linear Static	Dtfarf+	0
SLV_18			Linear Static	Dtfarf-	0
SLV_18			Linear Static	Ritiro	0
SLV_18			Response Spectrum	SISMA_SLV_X	0.3
SLV_18			Response Spectrum	SISMA_SLV_Y	1
SLV_18			Response Spectrum	SISMA_SLV_Z	0.5
SLV_18			Linear Static	QE_+x	0.3
SLV_18			Linear Static	QE_+y	1
INV_SLU	Envelope	No	Response Combo	SLU_01	1
INV_SLU			Response Combo	SLU_02	1
INV_SLU			Response Combo	SLU_03	1

1					
INV_SLU			Response Combo	SLU_04	1
INV_SLU			Response Combo	SLU_05	1
INV_SLU			Response Combo	SLU_06	1
INV_SLU			Response Combo	SLU_07	1
INV_SLU			Response Combo	SLU_08	1
INV_SLU			Response Combo	SLU_09	1
INV_SLV	Envelope	No	Response Combo	SLV_01	1
INV_SLV			Response Combo	SLV_02	1
INV_SLV			Response Combo	SLV_03	1
INV_SLV			Response Combo	SLV_04	1
INV_SLV			Response Combo	SLV_05	1
INV_SLV			Response Combo	SLV_06	1
INV_SLV			Response Combo	SLV_07	1
INV_SLV			Response Combo	SLV_08	1
INV_SLV			Response Combo	SLV_09	1
INV_SLV			Response Combo	SLV_10	1
INV_SLV			Response Combo	SLV_11	1
INV_SLV			Response Combo	SLV_12	1
INV_SLV			Response Combo	SLV_13	1
INV_SLV			Response Combo	SLV_14	1
INV_SLV			Response Combo	SLV_15	1
INV_SLV			Response Combo	SLV_16	1
INV_SLV			Response Combo	SLV_17	1

INV_SLV			Response Combo	SLV_18	1
				_	1
INV_SLE	Envelope	No	Response Combo	SLC_01	1
INV_SLE			Response Combo	SLC_02	1
INV_SLE			Response Combo	SLC_03	1
INV_SLE			Response Combo	SLC_04	1
INV_SLE			Response Combo	SLC_05	1
INV_SLE			Response Combo	SLC_06	1
INV_SLE			Response Combo	SLC_07	1
INV_SLE			Response Combo	SLC_08	1
INV_SLE			Response Combo	SLC_09	1
INV_SLE			Response Combo	SLF_01	1
INV_SLE			Response Combo	SLF_02	1
INV_SLE			Response Combo	SLF_03	1
INV_SLE			Response Combo	SLF_04	1
INV_SLE			Response Combo	SLF_05	1
INV_SLE			Response Combo	SLF_06	1
INV_SLE			Response Combo	SLF_07	1
INV_SLE			Response Combo	SLF_08	1
INV_SLE			Response Combo	SLF_09	1
INV_SLE			Response Combo	SLQP_01	1
INV_SLE			Response Combo	SLQP_02	1
INV_SLE			Response Combo	SLQP_03	1
INV_SLE			Response Combo	SLQP_04	1

INV_SLC	Envelope	No	Response Combo SLC_01		1
INV_SLC			Response Combo	SLC_02	1
INV_SLC			Response Combo	SLC_03	1
INV_SLC			Response Combo	SLC_04	1
INV_SLC			Response Combo	SLC_05	1
INV_SLC			Response Combo	SLC_06	1
INV_SLC			Response Combo	SLC_07	1
INV_SLC			Response Combo	SLC_08	1
INV_SLC			Response Combo	SLC_09	1
INV_SLF	Envelope	No	Response Combo	SLF_01	1
INV_SLF			Response Combo	SLF_02	1
INV_SLF			Response Combo	SLF_03	1
INV_SLF			Response Combo	SLF_04	1
INV_SLF			Response Combo	SLF_05	1
INV_SLF			Response Combo	SLF_06	1
INV_SLF			Response Combo	SLF_07	1
INV_SLF			Response Combo	SLF_08	1
INV_SLF			Response Combo	SLF_09	1
INV_SLQP	Envelope	No	Response Combo	SLQP_01	1
INV_SLQP			Response Combo	SLQP_02	1
INV_SLQP			Response Combo SLQP_03		1
INV_SLQP			Response Combo	SLQP_04	1

GRUPPO FERROVIE DELLO STATO ITALIANE	LINEA AV/AC MILANO – VENEZIA LOTTO FUNZIONALE TRATTA AV/AC VERONA-PADOVA NODO AV/AC DI VERONA: INGRESSO EST						
Relazione di calcolo vano ascesnsore e Scala	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO	
Fissa	IN1A	20	D26CL	FV 05 00 003	Α	107 di 148	

3 RISULTATI DELLE ANALISI

Le verifiche sono state condotte con riferimento alle seguenti sezioni significative.

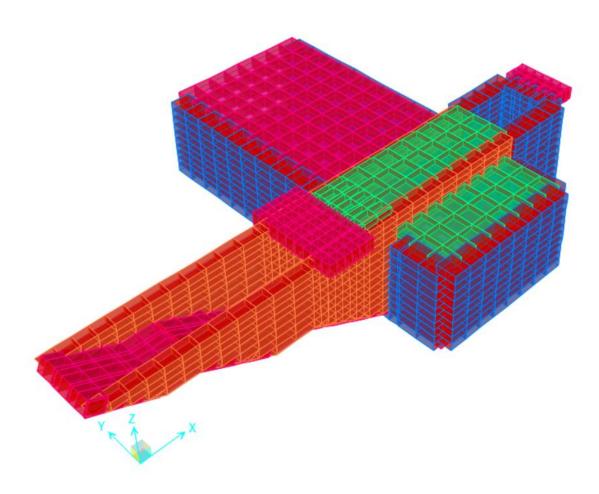
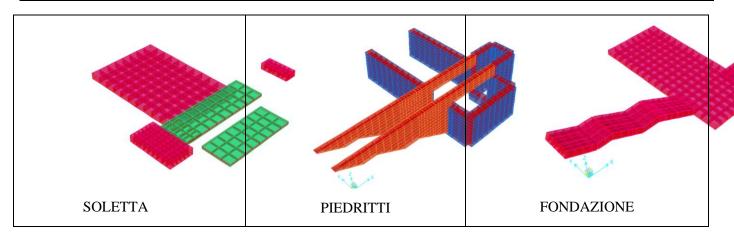



Fig. 44 – Sezioni di verifica

STALFERR GRUPPO FERROVIE DELLO STATO ITALIANE	LINEA AV/AC MILANO – VENEZIA LOTTO FUNZIONALE TRATTA AV/AC VERONA-PADOVA NODO AV/AC DI VERONA: INGRESSO EST					
Relazione di calcolo vano ascesnsore e Scala	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
Fissa	IN1A	20	D26CL	FV 05 00 003	Α	108 di 148

Si riportano di seguito una sintesi dei risultati delle analisi espressi in forma tabellare delle sollecitazioni lungo gli elementi.

La convenzione adottata per i segni delle sollecitazioni prevede che

N < 0 compressione

M > 0 fibre tese sul lato interno allo scatolare

Le unità di misura adottate sono

Momenti kNm

Forze kN

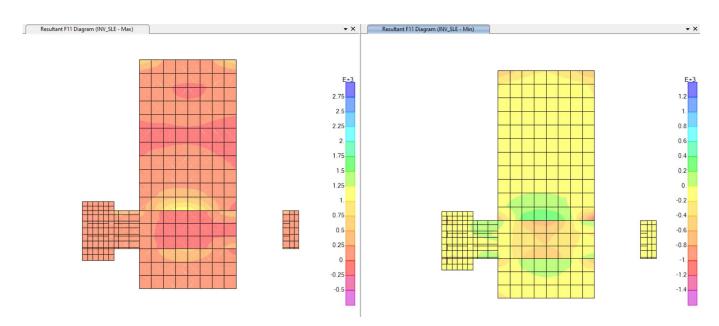


Figura - 1 SOLETTA SLE - F11 max./min.

SITALFERR GRUPPO FERROVIE DELLO STATO ITALIANE	LINEA AV/AC MILANO – VENEZIA LOTTO FUNZIONALE TRATTA AV/AC VERONA-PADO NODO AV/AC DI VERONA: INGRESSO EST		DOVA			
Relazione di calcolo vano ascesnsore e Scala	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
Fissa	IN1A	20	D26CL	FV 05 00 003	Α	109 di 148

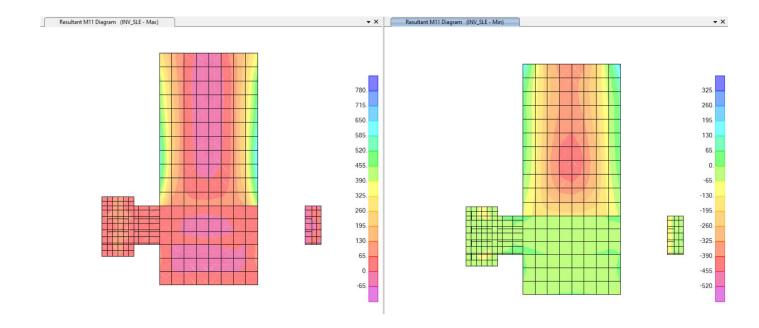


Figura - 2 SOLETTA SLE – M11 max./min.

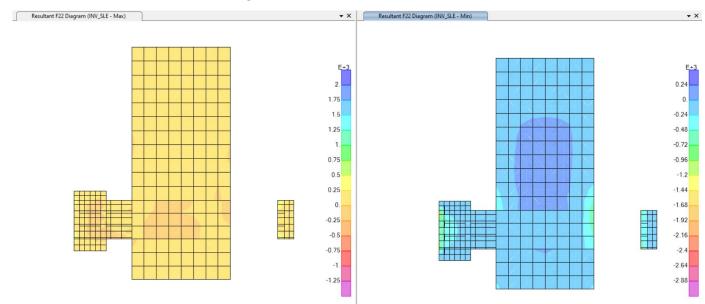


Figura - 3 SOLETTA SLE - F22 max./min.

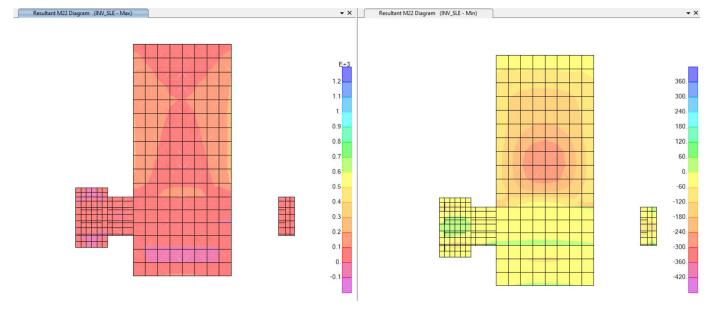


Figura - 4 SOLETTA SLE - M22 max./min.

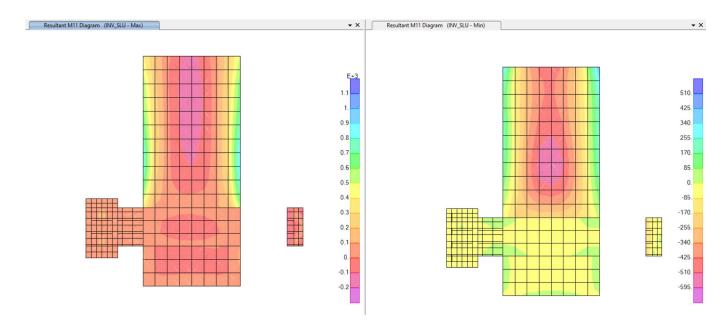


Figura - 5 SOLETTA SLU – M11 max./min.

GRUPPO FERROVIE DELLO STATO ITALIANE	LINEA AV/AC MILANO – VENEZIA LOTTO FUNZIONALE TRATTA AV/AC VERONA-PADOVA NODO AV/AC DI VERONA: INGRESSO EST			VA		
Relazione di calcolo vano ascesnsore e Scala	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
Fissa	IN1A	20	D26CL	FV 05 00 003	Α	111 di 148

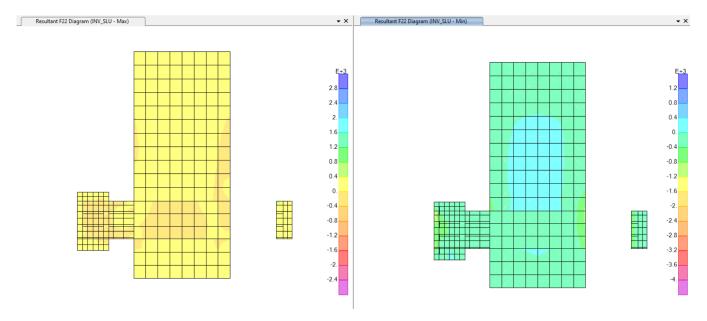


Figura - 6 SOLETTA SLU – F22 max./min.

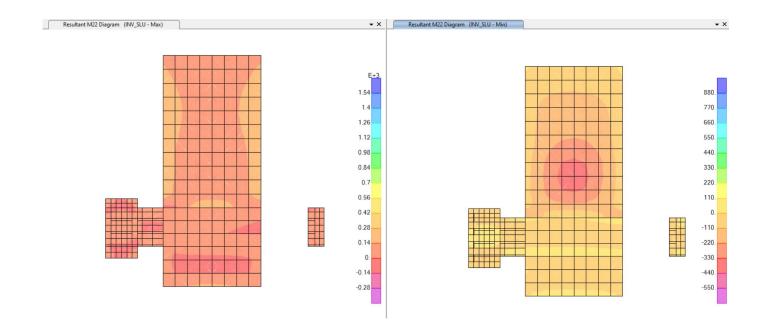


Figura - 7 SOLETTA SLU -M22 max./min.

SITALFERR GRUPPO FERROVIE DELLO STATO ITALIANE	LINEA AV/AC MILANO – VENEZIA LOTTO FUNZIONALE TRATTA AV/AC VERONA-PAD NODO AV/AC DI VERONA: INGRESSO EST			DOVA		
Relazione di calcolo vano ascesnsore e Scala	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
Fissa	IN1A	20	D26CL	FV 05 00 003	Α	112 di 148

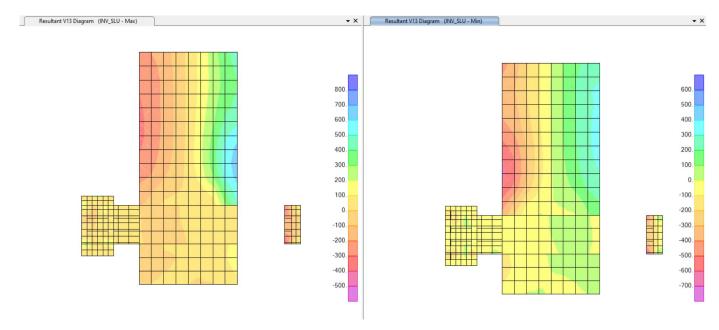


Figura - 8 SOLETTA SLU -V13 max./min.

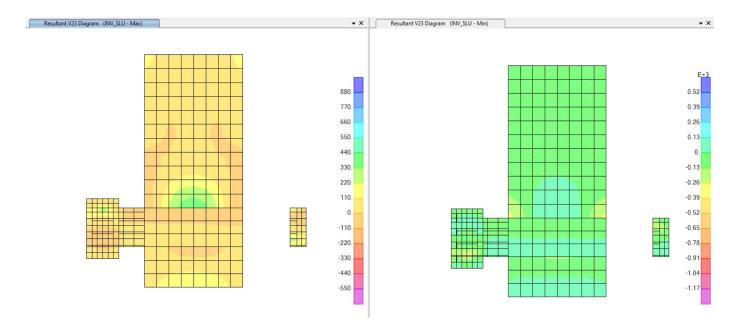


Figura - 9 SOLETTA SLU -V23 max./min.

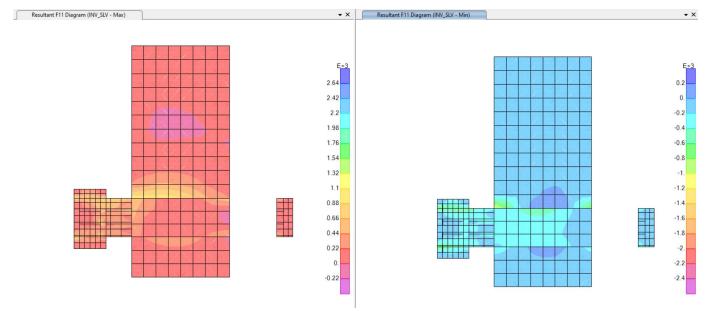


Figura - 10 SOLETTA SLV - F11 max./min.

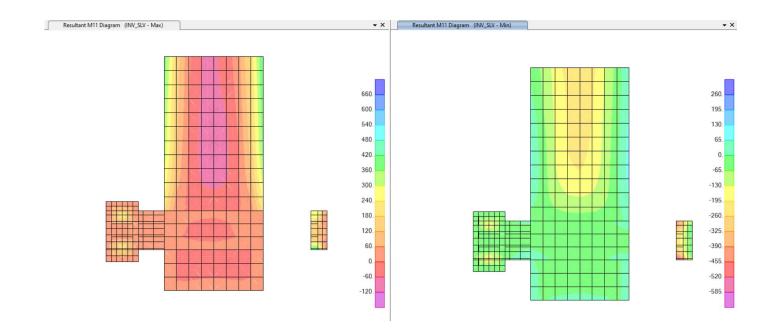


Figura - 11 SOLETTA SLV - M11 max./min.

SITALFERR GRUPPO FERROVIE DELLO STATO ITALIANE	LINEA AV/AC MILANO – VENEZIA LOTTO FUNZIONALE TRATTA AV/AC VERONA-PADO NODO AV/AC DI VERONA: INGRESSO EST		DOVA			
Relazione di calcolo vano ascesnsore e Scala	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
Fissa	IN1A	20	D26CL	FV 05 00 003	Α	114 di 148

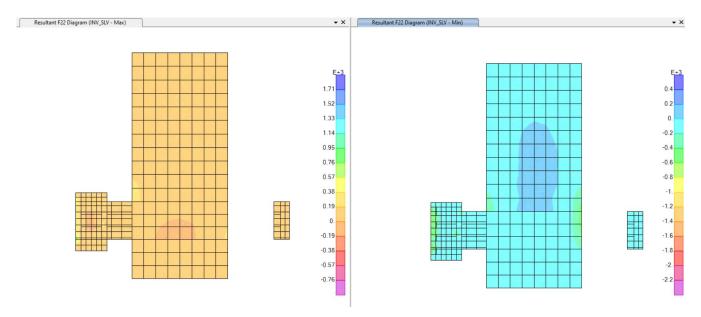


Figura - 12 SOLETTA SLV – F22 max./min.

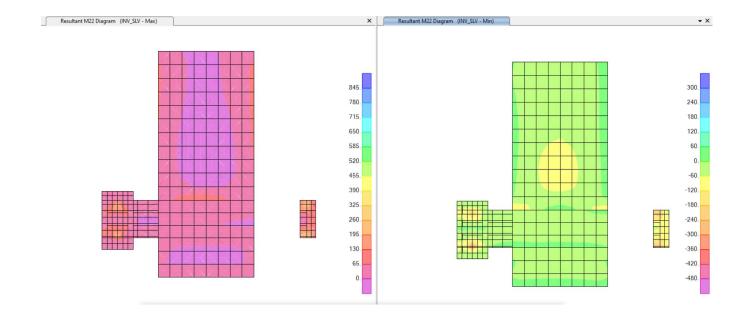


Figura - 13 SOLETTA SLV - M22 max./min.

SITALFERR GRUPPO FERROVIE DELLO STATO ITALIANE	LINEA AV/AC MILANO – VENEZIA LOTTO FUNZIONALE TRATTA AV/AC VERONA-PADOVA NODO AV/AC DI VERONA: INGRESSO EST					
Relazione di calcolo vano ascesnsore e Scala Fissa	COMMESSA IN1A	LOTTO 20	CODIFICA D26CL	DOCUMENTO FV 05 00 003	REV.	FOGLIO 115 di 148

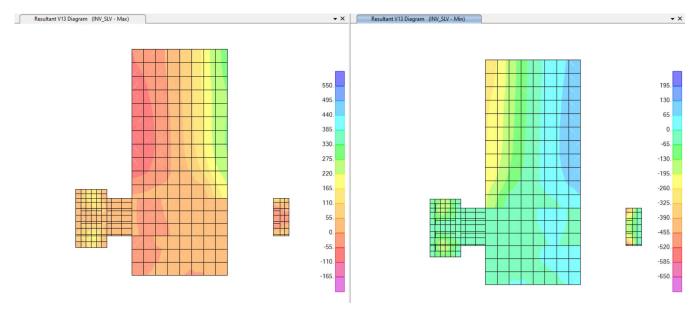


Figura - 14 SOLETTA SLV –V13 max./min.

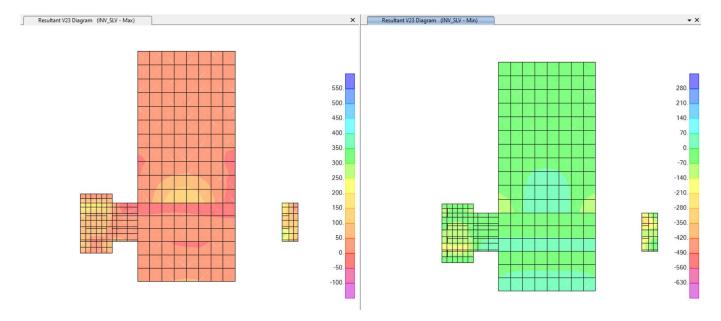
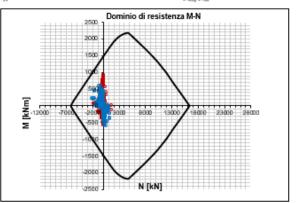


Figura - 15 SOLETTA SLV -V23 max./min.

SOLETTA_60cm (F1-M1)

SOLLECITAZIONI DI VERIFICA					
Combinazione		N _{sd} [kN]	M _{Sd} [kNm]	V _{sd} [kN]	
	SLE Quasi Permanente	533.0	285.0	338	
	SLE Frequente	1089.0	579.0	510	
	SLE Rara	1242.0	676.0	579	
	SLU	44.0	915.0	771.0	
	SLV	2163.0	609.0	679.0	

INPUT


CARATTERISTICHE GEO	METRICHE D	ELLA SEZ	IONE IN C.A	١.
Geometria della sezione			D. (***
Base (ortogonale al Taglio)			B [cm]	100
Altezza (parallela al Taglio)			H [cm]	60
Altezza utile della sezione			d [cm]	53
Area di calcestruzzo			A _c [cm ²]	6000
Armatura longitudinale tesa		1° STRATO	2° STRATO	3° STRATO
Numero Barre	n	10.00	0.00	0
Diametro	φ [mr	32	0	0
Posizione dal lembo esterno	e [en	6.6	11.3	0.0
Area strato	As [cn	80.42	0.00	0.00
Rapporto di armatura	P [9		1.506%	
Armatura longitudinale compressa		1° STRATO	2° STRATO	3° STRATO
Numero Barre	n	10.0	0	0
Diametro	φ [mr	32	0	0
Posizione dal lembo esterno	c' [cɪ	6.6	11.3	0.0
Area strato	As' [cr	80.42	0.00	0.00
Rapporto di armatura	P, [d	6]	1.506%	
Armatura trasversale		1° TIPO	2° TIPO	3° TIPO
Diametro	ф [m:	12	0	0
Numero bracci	n	2	0	0
Passo	s _w [ci	10	0	0
Inclinazione	α [de	90	90	90

Resistenza cubica a compressione	RCK	37
Resistenza cilindrica caratteristica a compressione	f _{ck} [Mpa]	30.00
Resistenza cilindrica media a compressione	f _{cm} [Mpa]	38.00
Resistenza media a trazione per flessione	f _{ctm} [Mpa]	2.90
Resistenza caratteristica a trazione per flessione	f _{ctic} [Mpa]	2.03
Resistenza di progetto a compressione	f _{cd} [Mpa]	17.00
Resistenza di progetto delle bielle compresse	f _{cd} [Mpa]	8.98
Acciaio		
Resistenza di progetto a snervamento	f _{yd} [Mpa]	382.61

VERIFICHE IN ESERCIZIO					
Verifica Tensionale			σlimit		
Calcestruzzo SLE Quasi Permanente	σ _c [Mpa] =	2.53	13.500		
Calcestruzzo SLE Rara	σ _c [Mpa] =	6.03	18.000		
Acciaio SLE Rara	$\sigma_{\kappa}[Mpa] =$	254.65	352.000		
Verifica di fessurazione			wlimit		
Combinazione SLE Quasi permanente	w_d [mm] =	0.094	0.200		
Combinazione SLE Frequente	$w_d [mm] =$	0.241	0.300		

Sollecitazioni di progetto Taglio sollecitante = max Taglio(SLU,SLV)	V _{sd} [kN]	771.0
Sforzo Normale concomitante al massimo taglio	N _{Sd} [kN]	0.0
Verifica di resistenza in assenza di armatura specifica		
Resistenza di progetto senza armatura specifica	V _{Rd1} [KN]	662.96
Coefficiente di sicurezza	V_{Rd1}/V_{Sd}	0.86
Verifica di resistenza dell'armatura specifica		
CoTan(θ) di progetto	cotan(θ)	2.5
Resistenza a taglio delle bielle compresse in cls	$V_{Rd2}(\theta)$ [KN]	1488
Resistenza a taglio dell'armatura	$V_{REE}(\theta)$ [KN]	1040
Resistenza a taglio di progetto	V _{Rd} [KN]	1040
Coefficiente di sicurezza	$V_{\rm Bd}/V_{\rm Sd}$	1.35

Sollecitazioni di progetto		SLU	SLV
Momento sollecitante	M _{Sd} [kNm]	915.0	609.0
Sforzo Normale concomitante	$N_{\rm id}[kN]$	1785.0	2163.0
Verifica di resistenza in termini di momento		SLU	SLV
Momento resistente	M _{Rd} [kNm]	1057.8	968.9
Coefficiente di sicurezza	$M_{\rm Rd}/M_{\rm Sd}$	1.16	1.59
Verifica di resistenza in termini di sforzo normale		SLU	SLV
Sforzo normale resistente	N _{Rd} [kN]	2390.4	3687.8
Coefficiente di sicurezza	Nud/Nod	1.34	1.70

LINEA AV/AC MILANO – VENEZIA LOTTO FUNZIONALE TRATTA AV/AC VERONA-PADOVA NODO AV/AC DI VERONA: INGRESSO EST

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 IN1A
 20
 D26CL
 FV 05 00 003
 A
 117 di 148

Relazione di calcolo vano ascesnsore e Scala Fissa

SOLETTA_60cm (F2-M2)

INPUT

SOLLECITAZIONI DI VERIFICA					
Combinazione		N _{tid} [kN]	M _{Sd} [kNm]	V _{sd} [kN]	
	SLE Quasi Permanente	337.0	157.0	338	
	SLE Frequente	596.0	260.0	510	
	SLE Rara	745.0	311.0	579	
	SLU	44.0	400.0	771.0	
	SLV	1665.0	477.0	679.0	

CARATTERISTICHE GEOMETRICHE DELLA SEZIONE IN C.A.

Geometria della sezione		
Base (ortogonale al Taglio)	B [cm]	100
Altezza (parallela al Taglio)	H [cm]	60
Altezza utile della sezione	d [cm]	50
Area di calcestruzzo	A_c [cm ²]	6000

Armatura longitudinale tesa		1° STRATO	2° STRATO	3°STRATO
Numero Barre	n	10.00	0.00	0
Diametro	φ [mr	26	0	0
Posizione dal lembo esterno	c [cn	9.8	11.3	0.0
Area strato	As [cn	53.09	0.00	0.00
Rapporto di armatura	9 19		1.058%	

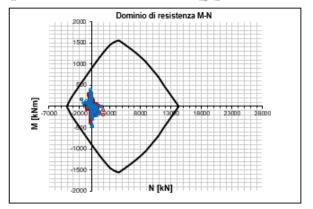
Armatura longitudinale compressa		1° STRATO	2° STRATO	3° STRATO
Numero Barre	n	10.0	0	0
Diametro	φ [mr	26	0	0
Posizione dal lembo esterno	c' [cı	9.8	11.3	0.0
Area strato	As' [cr	53.09	0.00	0.00
Rapporto di armatura	ρ' [9	6]	1.058%	

Armatura trasversale		1° TIPO	2° TIPO	3° TIPO
Diametro	ф [mi	12	0	0
Numero bracci	n	2	0	0
Passo	s _w [ca	10	0	0
Inclinazione	α [de	90	90	90
Area armatura a metro	A_{nw}/s_{w} [cm ²]	22.62	0.00	0.00

CARATTERISTICHE	REOLOGICHE DEI MATERIALI

Resistenza cubica a compressione	RCK	37
Resistenza cilindrica caratteristica a compressione	f _{ck} [Mpa]	30.00
Resistenza cilindrica media a compressione	f _{cm} [Mpa]	38.00
Resistenza media a trazione per flessione	f _{ctm} [Mpa]	2.90
Resistenza caratteristica a trazione per flessione	f _{ctic} [Mpa]	2.03
Resistenza di progetto a compressione	f _{cd} [Mpa]	17.00
Resistenza di progetto delle bielle compresse	f _{cd} [Mpa]	8.98
Acciaio		
Resistenza di progetto a snervamento	f _{yd} [Mpa]	382.61

OUTPUT


VERIFICHE IN ESERCIZIO			
Verifica Tensionale			σlimit
Calcestruzzo SLE Quasi Permanente	σ _c [Mpa] =	2.36	13.500
Calcestruzzo SLE Rara	σ_c [Mpa] =	4.54	18.000
Acciaio SLE Rara	$\sigma_{\kappa}[Mpa] =$	207.71	352.000
Verifica di fessurazione			wlimit
Combinazione SLE Quasi permanente	W _d [mm] =	0.000	0.200
Combinazione SLE Frequente	w_d [mm] =	0.219	0.300

VERIFICA DI RESISTENZA A TAGLIO

Sollecitazioni di progetto		
Taglio sollecitante = max Taglio(SLU,SLV)	V _{Sd} [kN]	771.0
Sforzo Normale concomitante al massimo taglio	N _{Sd} [kN]	0.0
Verifica di resistenza in assenza di armatura specifica		
Resistenza di progetto senza armatura specifica	V _{Rd1} [KN]	623.24

CoTan(θ) di progetto	cotan(0)	2.5
Resistenza a taglio delle bielle compresse in cls	$V_{Rd2}(\theta)$ [KN]	1398
Resistenza a taglio dell'armatura	$V_{RAS}(\theta)$ [KN]	978
Resistenza a taglio di progetto	V _{Rd} [KN]	978
Coefficiente di sicurezza	V _{PM} /V _{CI}	1.27

VERIFICA DI RESISTENZA A PRESSO-FLESSIONE			
Sollecitazioni di progetto		SLU	SLV
Momento sollecitante	M _{Sd} [kNm]	400.0	477.0
Sforzo Normale concomitante	$N_{\rm 5d}[kN]$	752.0	1665.0
Verifica di resistenza in termini di momento		SLU	SLV
Momento resistente	M _{Rd} [kNm]	745.6	556.2
Coefficiente di sicurezza	$M_{\rm Rd}/M_{\rm Sd}$	1.86	1.17
Verifica di resistenza in termini di sforzo normale		SLU	SLV
Sforzo normale resistente	N _{Rd} [kN]	2411.7	2045.4
Coefficiente di sicurezza	$N_{\rm Ed}/N_{\rm Sd}$	3.21	1.23

SOLETTA_30cm (F1-M1)

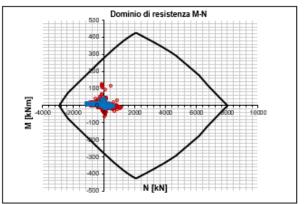
INPUT

SOLLECITAZIONI DI VERIFICA				
Combinazione		N _{Sd} [kN]	M _{Sd} [kNm]	V _{Sd} [kN]
	SLE Quasi Permanente	322.0	28.0	60
	SLE Frequente	559.0	74.0	124
	SLE Rara	632.0	89.0	149
	SLU	44.0	127.0	220.0
	SLV	1138.0	39.0	81.0

CARATTERISTICHE GEO	METRICHE D	ELLA SEZ	IONE IN C.A	1.
Geometria della sezione				
Base (ortogonale al Taglio)			B [cm]	100
Altezza (parallela al Taglio)			H [cm]	30
Altezza utile della sezione			d [cm]	23
Area di calcestruzzo			A_c [cm ²]	3000
Armatura longitudinale tesa		1° STRATO	2° STRATO	3° STRATO
Numero Barre	n	10.00	0.00	0
Diametro	φ [mr	22	0	0
Posizione dal lembo esterno	e [en	6.6	11.3	0.0
Area strato	As [en	38.01	0.00	0.00
Rapporto di armatura	Р [9		1.624%	
Armatura longitudinale compressa		1° STRATO	2° STRATO	3° STRATO
Armatura longitudinale compressa Numero Barre	n	1° STRATO 10.0	2° STRATO 0	3° STRATO 0
	п ф [mr			
Numero Barre		10.0	0	0
Numero Barre Diametro	φ [mr	10.0 22	0	0
Numero Barre Diametro Posizione dal lembo esterno	φ [mr	10.0 22 6.6 38.01	0 0 11.3	0 0 0.0
Numero Barre Diametro Posizione dal lembo esterno Area strato	ф [mr c' [cr As' [cr	10.0 22 6.6 38.01	0 0 11.3 0.00	0 0 0.0
Numero Barre Diametro Posizione dal lembo esterno Area strato Rapporto di armatura	ф [mr c' [cr As' [cr	10.0 22 6.6 38.01	0 0 11.3 0.00 1.624%	0 0 0.0 0.00
Numero Barre Diametro Posizione dal lembo esterno Area strato Rapporto di armatura Armatura trasversale	φ [mr c' [cι As' [cr ρ' [^q	10.0 22 6.6 38.01 6]	0 0 11.3 0.00 1.624%	0 0.0 0.00 0.00
Numero Barre Diametro Posizione dal lembo esterno Area strato Rapporto di armatura Armatura trasversale Diametro	φ [mr c' [cr As' [cr ρ' [9]	10.0 22 6.6 38.01 6] 1° TIPO 0	0 0 11.3 0.00 1.624% 2° TIPO 0	0 0 0.0 0.00 0.00
Numero Barre Diametro Posizione dal lembo esterno Area strato Rapporto di armatura Armatura trasversale Diametro Numero bracci	φ [mr c' [cr As' [cr ρ' [9] φ [mr n	10.0 22 6.6 38.01 6] 1° TIPO 0	0 0 11.3 0.00 1.624% 2° TIPO 0	0 0 0.0 0.00 0.00

CARATTERISTICHE	REOLOGICHE DEI MATERIALI	

Resistenza cubica a compressione	RCK	37
Resistenza cilindrica caratteristica a compressione	f _{ck} [Mpa]	30.00
Resistenza cilindrica media a compressione	f _{cm} [Mpa]	38.00
Resistenza media a trazione per flessione	f _{ctm} [Mpa]	2.90
Resistenza caratteristica a trazione per flessione	f _{etic} [Mpa]	2.03
Resistenza di progetto a compressione	f _{cd} [Mpa]	17.00
Resistenza di progetto delle bielle compresse	$f_{\rm cd}$ [Mpa]	8.98
Acciaio		
Resistenza di progetto a snervamento	f _{vd} [Mpa]	382.61


OUTPUT

VERIFICHE IN ESERCIZIO				
Verifica Tensionale			σlimit	
Calcestruzzo SLE Quasi Permanente	σ _c [Mpa] =	1.35	13.500	
Calcestruzzo SLE Rara	σ_c [Mpa] =	5.37	18.000	
Acciaio SLE Rara	$\sigma_{\kappa}[Mpa] =$	210.41	352.000	
Verifica di fessurazione			wlimit	
Combinazione SLE Quasi permanente	w_d [mm] =	0.000	0.200	
Combinazione SLE Frequente	w_d [mm] =	0.171	0.300	

VERIFICA DI RESISTENZA A TAGLIO

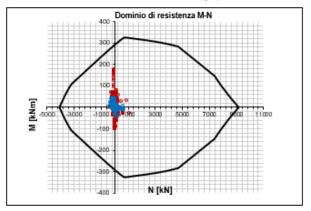
Taglio sollecitante = max Taglio(SLU,SLV)	V _{Sd} [kN]	220.0
Sforzo Normale concomitante al massimo taglio	N_{sd} [kN]	0.0
Verifica di resistenza in assenza di armatura specifica		
Resistenza di progetto senza armatura specifica	V _{Rd1} [KN]	290.51
Coefficiente di sicurezza	V_{Rd1}/V_{Sd}	1.32
Verifica di resistenza dell'armatura specifica		
vermen ur resistental uen armatura specimen	cotan(0)	2.5
	cotan(0)	
CoTan(θ) di progetto Resistenza a taglio delle bielle compresse in cls	V _{Rd2} (θ) [KN]	-
CoTan(θ) di progetto Resistenza a taglio delle bielle compresse in cls		
CoTan(θ) di progetto	V _{Rd2} (θ) [KN]	

VERIFICA DI RESISTENZA A PRESSO-FLESSIONE			
Sollecitazioni di progetto		SLU	SLV
Momento sollecitante	M _{Sd} [kNm]	127.0	39.0
Sforzo Normale concomitante	$N_{\rm sd}[kN]$	908.0	1138.0
Verifica di resistenza in termini di momento		SLU	SLV
Momento resistente	M _{Rd} [kNm]	201.9	181.7
Coefficiente di sicurezza	$M_{\rm Rd}/M_{\rm Sd}$	1.59	4.66
Verifica di resistenza in termini di sforzo normale		SLU	SLV
Sforzo normale resistente	N _{Rd} [kN]	1759.4	2215.5
Coefficiente di sicurezza	$N_{\rm Rd}/N_{\rm Sd}$	1.94	1.95

SOLETTA_30cm (F2-M2)

_	•	_	
	ч		
	w	_	

SOLLECITAZIONI DI VERIFICA				
Combinazione		N _{Sd} [kN]	M _{Sd} [kNm]	V _{Sd} [kN]
	SLE Quasi Permanente	56.0	20.0	60
	SLE Frequente	172.0	101.0	124
	SLE Rara	217.0	121.0	149
	SLU	44.0	175.0	220.0
	SLV	337.0	46.0	81.0


CAD ATTERICTIONS CO.	METRICHER	CIIA CC7	IONE IN C	
CARATTERISTICHE GEO	METRICHED	ELLA SEZ	IONE IN C.A	ı.
Geometria della sezione				
Base (ortogonale al Taglio)			B [cm]	100
Altezza (parallela al Taglio)			H [cm]	30
Altezza utile della sezione			d [cm]	20
Area di calcestruzzo			A_c [cm ²]	3000
Armatura longitudinale tesa		1° STRATO	2° STRATO	3° STRAT
Numero Barre	n	10.00	0.00	0
Diametro	φ[mr	26	0	0
Posizione dal lembo esterno	e [en	9.8	11.3	0.0
Area strato	As [cn	53.09	0.00	0.00
Rapporto di armatura	P [9		2.628%	
Armatura longitudinale compressa		1° STRATO	2° STRATO	3° STRAT
Numero Barre	n	10.0	0	0
Diametro	φ [mr	26	0	0
Posizione dal lembo esterno	c' [cɪ	9.8	11.3	0.0
Area strato	As' [cr	53.09	0.00	0.00
Rapporto di armatura	ρ'[9	6]	2.628%	
Armatura trasversale		1° TIPO	2° TIPO	3° TIPO
Diametro	ф [m:	12	0	0
Numero bracci	n	2	0	0
Passo	s _w [cı	10	0	0
Inclinazione	a [de	90	90	90
Area armatura a metro	A_{ne}/s_w [cm ²]	22.62	0.00	0.00

$f_{\rm ck}[Mpa]$	30.00
f _{cm} [Mpa]	38.00
f _{ctm} [Mpa]	2.90
f _{ctic} [Mpa]	2.03
f _{cd} [Mpa]	17.00
f _{cd} [Mpa]	8.98
	f _{etk} [Mpa] f _{ed} [Mpa]

VERIFICHE IN ESERCIZIO			
Verifica Tensionale			σlimit
Calcestruzzo SLE Quasi Permanente	σ _c [Mpa] =	1.97	13.500
Calcestruzzo SLE Rara	σ _c [Mpa] =	11.93	18.000
Acciaio SLE Rara	σ_{κ} [Mpa] =	168.36	352.000
Verifica di fessurazione			wlimit
Combinazione SLE Quasi permanente	W_d [mm] =	0.000	0.200
Combinazione SLE Frequente	W_d [mm] =	0.158	0.300
VERIFICA DI RESI	TENZA A TAGLIO		

V _{Sd} [kN]	220.0
N_{Sd} [kN]	0.0
V _{Rd1} [KN]	250.78
$V_{\rm Rd1}/V_{\rm Sd}$	1.14
cotan(θ)	2.5
$V_{Rd2}(\theta)$ [KN]	563
$V_{Rd2}(\theta)$ [KN]	393
V _{Rd} [KN]	393
V_{Rd}/V_{Sd}	1.79
•	N _{Sd} [kN] V _{Rd1} [KN] V _{Rd1} /V _{Sd} cotan(θ) V _{Rd2} (θ) [KN] V _{Rd2} (θ) [KN]

VERIFICA DI RESISTENZA A PRESSO-FLESSIONE				
Sollecitazioni di progetto		SLU	SLV	
Momento sollecitante	M _{Sd} [kNm]	175.0	46.0	
Sforzo Normale concomitante	$N_{\rm Sd}$ [kN]	241.0	337.0	
Verifica di resistenza in termini di momento		SLU	SLV	
Momento resistente	M _{Rd} [kNm]	277.5	272.2	
Coefficiente di sicurezza	$M_{\rm Ed}/M_{\rm Sd}$	1.59	5.92	
Verifica di resistenza in termini di sforzo normale		SLU	SLV	
Sforzo normale resistente	N _{Rd} [kN]	2002.0	2057.1	
Coefficiente di sicurezza	$N_{\rm Ed}/N_{\rm Sd}$	8.31	6.10	

SITALFERR GRUPPO FERROVIE DELLO STATO ITALIANE	LINEA AV/AC N LOTTO FUNZIO NODO AV/AC I	ONALE TRAT	TA AV/AC V		VA	
Relazione di calcolo vano ascesnsore e Scala	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
Fissa	IN1A	20	D26CL	FV 05 00 003	Α	120 di 148

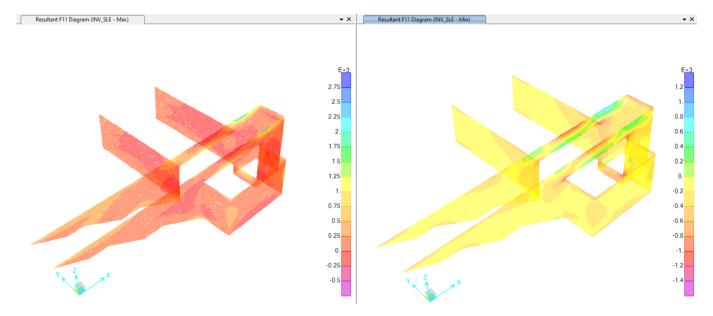


Figura - 16 PIEDRITTI SLE - F11 max./min.

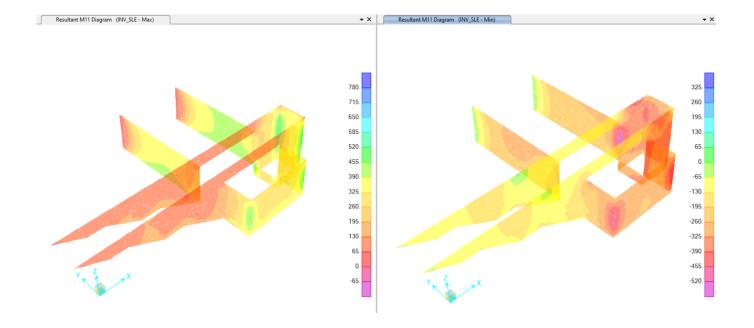


Figura - 17 PIEDRITTI SLE – M11 max./min.

SITALFERR GRUPPO FERROVIE DELLO STATO ITALIANE	LINEA AV/AC N LOTTO FUNZIO NODO AV/AC I	ONALE TRAT	TA AV/AC V		VA	
Relazione di calcolo vano ascesnsore e Scala	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
Fissa	IN1A	20	D26CL	FV 05 00 003	Α	121 di 148

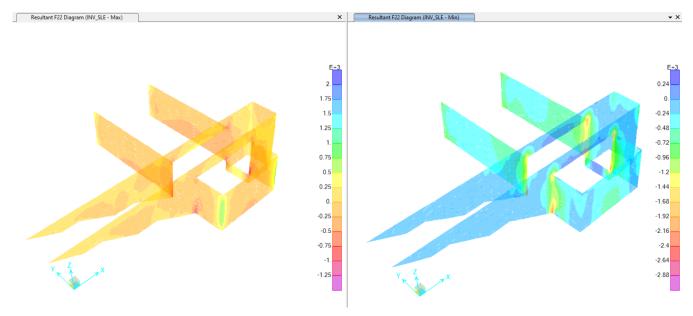


Figura - 18 PIEDRITTI SLE – F22 max./min.

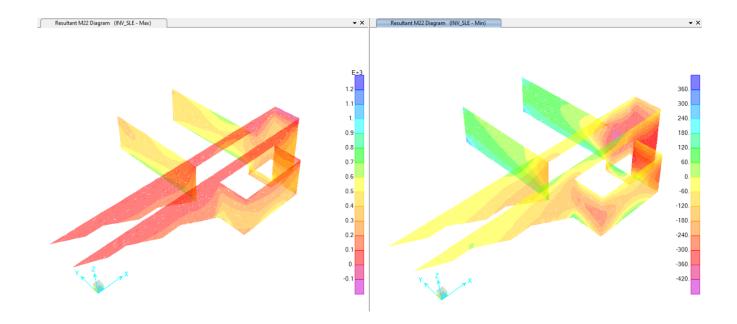


Figura - 19 PIEDRITTI SLE – M22 max./min.

SITALFERR GRUPPO FERROVIE DELLO STATO ITALIANE	LINEA AV/AC N LOTTO FUNZIO NODO AV/AC D	ONALE TRAT	TA AV/AC \		OVA	
Relazione di calcolo vano ascesnsore e Scala Fissa	COMMESSA IN1A	LOTTO 20	CODIFICA D26CL	DOCUMENTO FV 05 00 003	REV.	FOGLIO 122 di 148

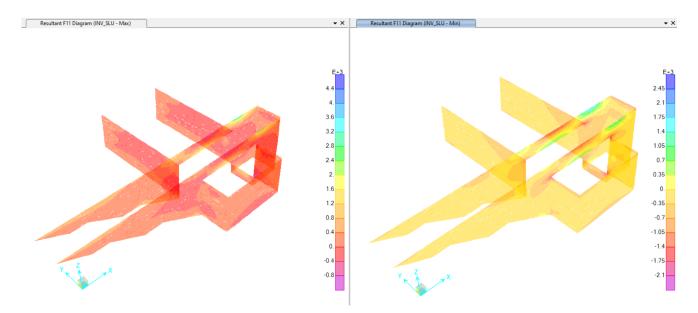


Figura - 20 PIEDRITTI SLU – F11 max./min.

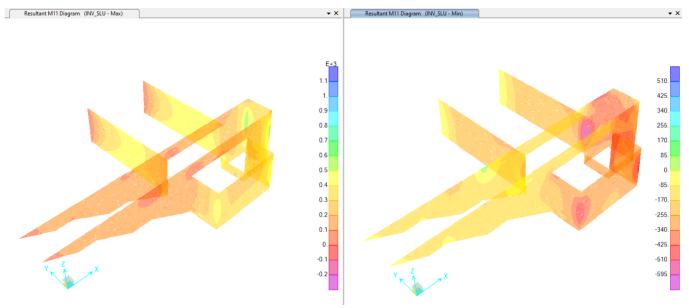


Figura - 21 PIEDRITTI SLU - M11 max./min.

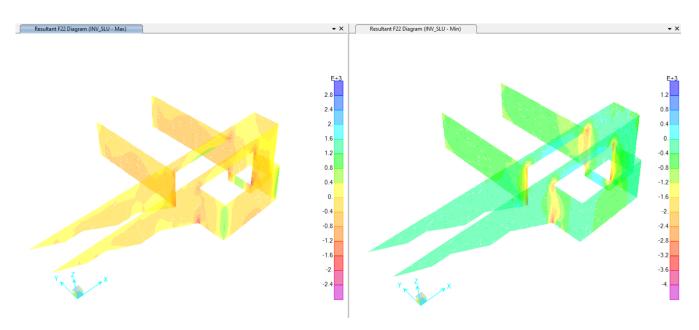


Figura - 22 PIEDRITTI SLU - F22 max./min.

SITALFERR GRUPPO FERROVIE DELLO STATO ITALIANE	LINEA AV/AC N LOTTO FUNZIO NODO AV/AC I	ONALE TRAT	TA AV/AC V		VA	
Relazione di calcolo vano ascesnsore e Scala	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
Fissa	IN1A	20	D26CL	FV 05 00 003	Α	124 di 148

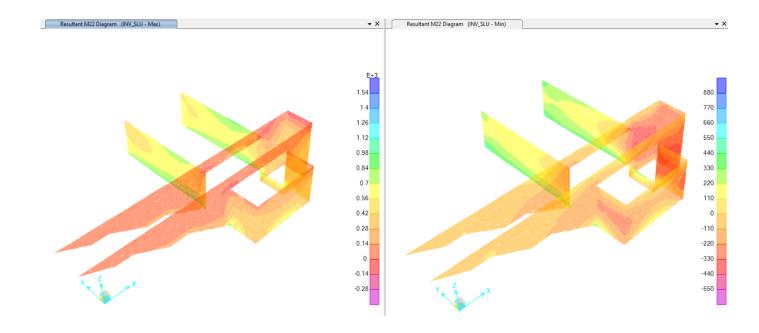


Figura - 23 PIEDRITTI SLU -M22 max./min.

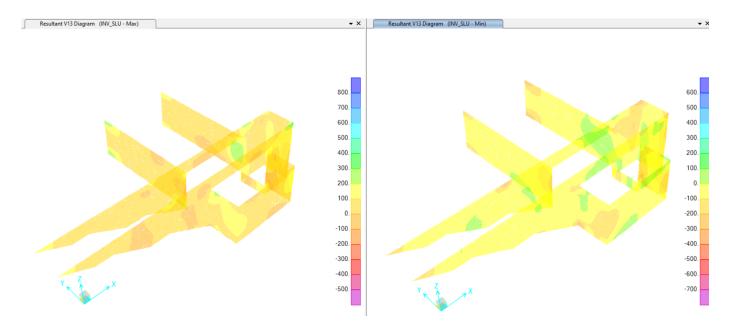


Figura - 24 PIEDRITTI SLU -V13 max./min.

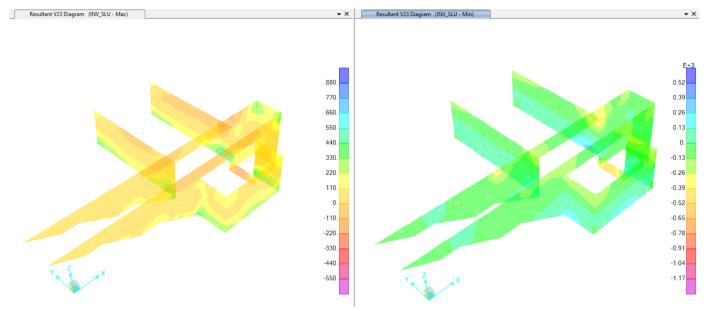


Figura - 25 PIEDRITTI SLU -V23 max./min.

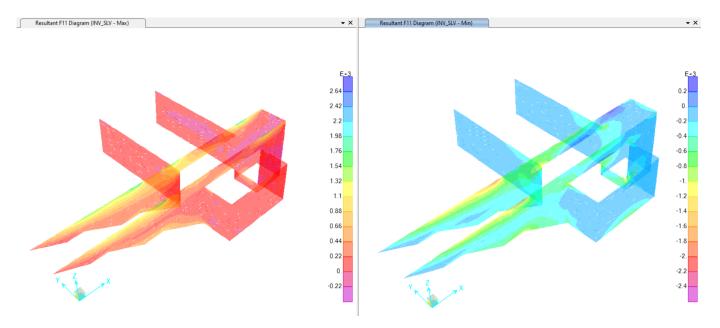


Figura - 26 PIEDRITTI SLV - F11 max./min.

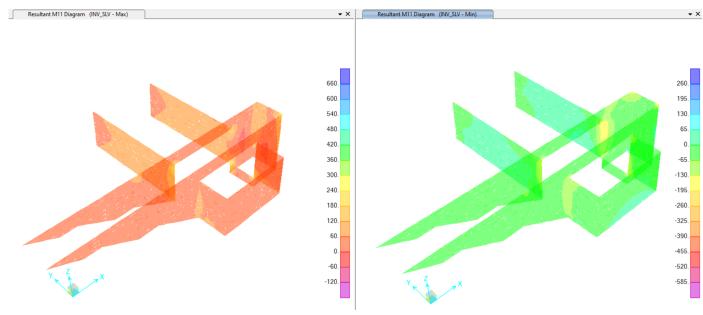


Figura - 27 PIEDRITTI SLV - M11 max./min.

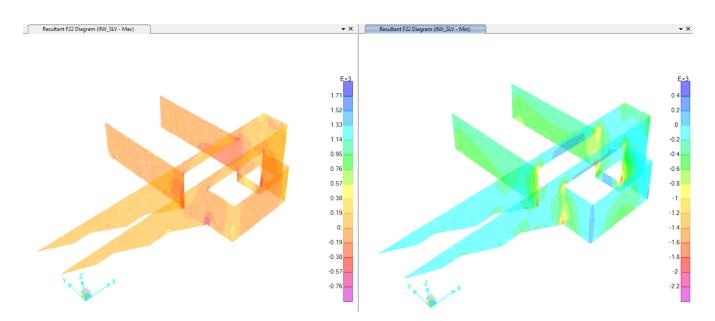


Figura - 28 PIEDRITTI SLV - F22 max./min.

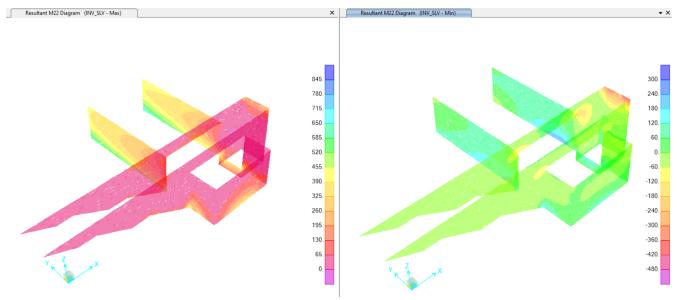


Figura - 29 PIEDRITTI SLV - M22 max./min.

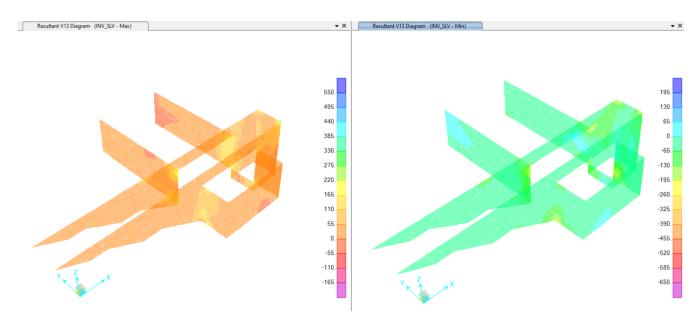


Figura - 30 PIEDRITTI SLV -V13 max./min.

SITALFERR GRUPPO FERROVIE DELLO STATO ITALIANE	LINEA AV/AC I LOTTO FUNZIO NODO AV/AC I	ONALE TRAT	TA AV/AC V		VA	
Relazione di calcolo vano ascesnsore e Scala	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
Fissa	IN1A	20	D26CL	FV 05 00 003	Α	128 di 148

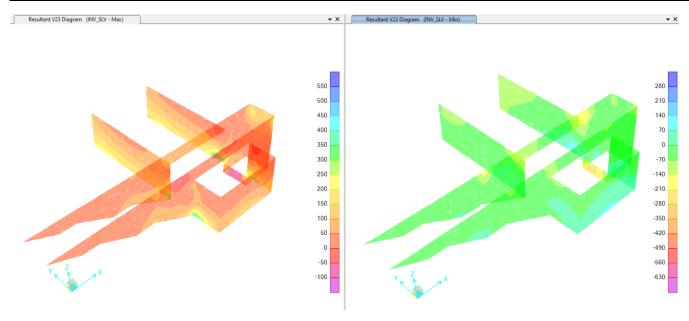


Figura - 31 PIEDRITTI SLV -V23 max./min.

PIEDRITTI_100cm (F1-M1)

INPUT

SOLLECITAZIONI DI VERIFICA							
$\label{eq:NSd} \textbf{Combinazione} \qquad \qquad N_{Sd}\left[kN\right] M_{Sd}\left[kNm\right] V_{Sd}\left[kN\right]$							
	SLE Quasi Permanente	19.0	365.0	501			
	SLE Frequente	130.0	528.0	652			
	SLE Rara	2964.0	622.0	717			
	SLU	44.0	721.0	966.0			
	SLV	2861.0	446.0	590.0			

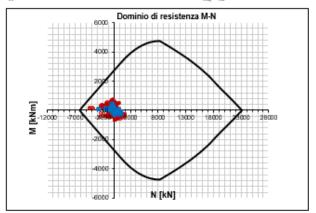
CARATTERISTICHE	GEOMETRICHE DELL	A SEZIONE IN C A

Geometria della sezione		
Base (ortogonale al Taglio)	B [cm]	100
Altezza (parallela al Taglio)	H [cm]	100
Altezza utile della sezione	d [cm]	93
Area di calcestruzzo	A_c [cm ²]	10000

Armatura longitudinale tesa		1° STRATO	2° STRATO	3° STRATO
Numero Barre	n	10.00	0.00	0
Diametro	φ [mr	32	0	0
Posizione dal lembo esterno	e [en	6.6	11.3	0.0
Area strato	As [cn	80.42	0.00	0.00
Rapporto di armatura	P [9		0.861%	

Armatura longitudinale compressa		1° STRATO	2° STRATO	3° STRATO
Numero Barre	n	10.0	0	0
Diametro	φ [mr	32	0	0
Posizione dal lembo esterno	c' [cı	6.6	11.3	0.0
Area strato	As' [cr	80.42	0.00	0.00
Rannorto di armatura	0,10	61	0.861%	

Armatura trasversale		1° TIPO	2° TIPO	3° TIPO
Diametro	ф [m:	0	0	0
Numero bracci	n	0	0	0
Passo	S _w [CI	10	0	0
Inclinazione	α [de	90	90	90
Area armatura a metro	A /s [cm ²	0.00	0.00	0.00


CARATTERISTICHE REOLOGICHE DEI MATERIALI

Resistenza cubica a compressione	RCK	37
Resistenza cilindrica caratteristica a compressione	f _{ck} [Mpa]	30.00
Resistenza cilindrica media a compressione	f _{cm} [Mpa]	38.00
Resistenza media a trazione per flessione	f _{ctm} [Mpa]	2.90
Resistenza caratteristica a trazione per flessione	f _{ctic} [Mpa]	2.03
Resistenza di progetto a compressione	f _{cd} [Mpa]	17.00
Resistenza di progetto delle bielle compresse	f _{cd} [Mpa]	8.98
Acciaio		
Resistenza di progetto a snervamento	f _{yd} [Mpa]	382.61

VERIFICHE IN ESERCIZIO			
Verifica Tensionale			σlimit
Calcestruzzo SLE Quasi Permanente	σ _c [Mpa] =	1.73	13.500
Calcestruzzo SLE Rara	σ_c [Mpa] =	0.00	18.000
Acciaio SLE Rara	$\sigma_{\kappa}[Mpa] =$	273.37	352.000
Verifica di fessurazione			wlimit
Combinazione SLE Quasi permanente	w_d [mm] =	0.000	0.200
Combinazione SLE Frequente	w_d [mm] =	0.000	0.300

VERIFICA DI RESISTENZA A TAGLIO				
Sollecitazioni di progetto				
Taglio sollecitante = max Taglio(SLU,SLV)	V _{Sd} [kN]	966.0		
Sforzo Normale concomitante al massimo taglio	$N_{\rm Sd}$ [kN]	0.0		
Verifica di resistenza in assenza di armatura specifica				
Resistenza di progetto senza armatura specifica	V _{Rd1} [KN]	1159.57		
Coefficiente di sicurezza	V_{Rd1}/V_{Sd}	1.20		
Verifica di resistenza dell'armatura specifica				
CoTan(θ) di progetto	cotan(θ)	2.5		
Resistenza a taglio delle bielle compresse in cls	$V_{Rd2}(\theta)$ [KN]	-		
Resistenza a taglio dell'armatura	$V_{RAD}(\theta)$ [KN]	-		
Resistenza a taglio di progetto	V _{Rd} [KN]	-		
Coefficiente di sicurezza	$V_{\text{Rd}}/V_{\text{Sd}}$	-		

VERIFICA DI RESISTENZA A PRESSO-FLESSIONE				
Sollecitazioni di progetto		SLU	SLV	
Momento sollecitante	M _{Sd} [kNm]	721.0	446.0	
Sforzo Normale concomitante	$N_{\rm Sd}$ [kN]	260.0	2861.0	
Verifica di resistenza in termini di momento		SLU	SLV	
Momento resistente	M _{Rd} [kNm]	2593.1	1462.9	
Coefficiente di sicurezza	$M_{\rm Rd}/M_{\rm Sd}$	3.60	3.28	
Verifica di resistenza in termini di sforzo normale		SLU	SLV	
Sforzo normale resistente	N _{Rd} [kN]	4544.1	5188.0	
Coefficiente di sicurezza	$N_{\rm Hd}/N_{\rm Sd}$	17.48	1.81	

PIEDRITTI_100cm (F2-M2)

INPUT

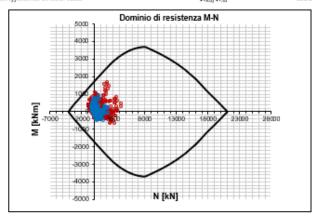
SOLLECITAZIONI DI VERIFICA				
Combinazione		N _{Sd} [kN]	M _{Sd} [kNm]	V _{sd} [kN]
	SLE Quasi Permanente	-224.0	566.0	501
	SLE Frequente	-1362.0	1106.0	652
	SLE Rara	-1413.0	1242.0	717
	SLU	44.0	1678.0	966.0
	SLV	382.0	934.0	590.0

CARATTERISTICHE GEOMETRICHE DELLA SEZIONE IN C.A.				
Geometria della sezione				
Base (ortogonale al Taglio)	B [cm]	100		
Altezza (parallela al Taglio)	H [cm]	100		
Altezza utile della sezione	d [cm]	90		
Area di calcestruzzo	A_c [cm ²]	10000		

Armatura longitudinale tesa		1° STRATO	2° STRATO	3° STRATO
Numero Barre	n	10.00	0.00	0
Diametro	φ [mr	26	0	0
Posizione dal lembo esterno	c [cn	9.8	11.3	0.0
Area strato	As [cn	53.09	0.00	0.00
Rapporto di armatura	P [9		0.589%	

Armatura longitudinale compressa		1° STRATO	2° STRATO	3° STRATO
Numero Barre	n	10.0	0	0
Diametro	φ [mr	26	0	0
Posizione dal lembo esterno	c' [cı	9.8	11.3	0.0
Area strato	As' [cr	53.09	0.00	0.00
Rannarta di armatura	0,16	61	0.589%	

Armatura trasversale		1° TIPO	2° TIPO	3° TIPO
Diametro	ф [m:	14	0	0
Numero bracci	n	2	0	0
Passo	s _w [ca	20	0	0
Inclinazione	α [de	90	90	90
Area armatura a metro	A_{nw}/s_w [cm ²]	15.39	0.00	0.00


CARATTERISTICHE REOLOGICHE DEI MATERIALI

Resistenza cubica a compressione	RCK	37
Resistenza cilindrica caratteristica a compressione	f _{ck} [Mpa]	30.00
Resistenza cilindrica media a compressione	f _{cm} [Mpa]	38.00
Resistenza media a trazione per flessione	f _{ctm} [Mpa]	2.90
Resistenza caratteristica a trazione per flessione	f _{etic} [Mpa]	2.03
Resistenza di progetto a compressione	f _{cd} [Mpa]	17.00
Resistenza di progetto delle bielle compresse	$f_{\rm cd}$ [Mpa]	8.98
Acciaio		
Resistenza di progetto a snervamento	f _{vd} [Mpa]	382.61

VERIFICHE IN ESERCIZIO			
Verifica Tensionale			σlimit
Calcestruzzo SLE Quasi Permanente	σ _c [Mpa] =	3.92	13.500
Calcestruzzo SLE Rara	σ_c [Mpa] =	9.01	18.000
Acciaio SLE Rara	$\sigma_{\kappa}[Mpa] =$	172.21	352.000
Verifica di fessurazione			wlimit
Combinazione SLE Quasi permanente	w_d [mm] =	0.000	0.200
Combinazione SLE Frequente	w_d [mm] =	0.192	0.300

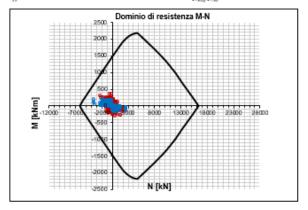
VERIFICA DI RESISTENZA A TA	GLIO	
Sollecitazioni di progetto		
Taglio sollecitante = max Taglio(SLU,SLV)	V _{sd} [kN]	966.0
Sforzo Normale concomitante al massimo taglio	N _{Sd} [kN]	-187.0
Verifica di resistenza in assenza di armatura specifica		
Resistenza di progetto senza armatura specifica	V _{Rd1} [KN]	1145,14
Coefficiente di sicurezza	V_{Rd1}/V_{Sd}	1.19
Verifica di resistenza dell'armatura specifica		
CoTan(θ) di progetto	cotan(θ)	2.5
Resistenza a taglio delle bielle compresse in cls	$V_{RM2}(\theta)$ [KN]	2540
Resistenza a taglio dell'armatura	$V_{RASS}(\theta)$ [KN]	1195
Resistenza a taglio di progetto	V _{Rd} [KN]	1195
Coefficiente di sicurezza	$V_{\text{Rd}}/V_{\text{Sd}}$	1.24

VERIFICA DI RESISTENZA A PRESSO-FLESSIONE				
Sollecitazioni di progetto		SLU	SLV	
Momento sollecitante	M _{Sd} [kNm]	1678.0	934.0	
Sforzo Normale concomitante	$N_{\rm 5d}$ [kN]	-187.0	382.0	
Verifica di resistenza in termini di momento		SLU	SLV	
Momento resistente	M _{Rd} [kNm]	1787.4	1557.8	
Coefficiente di sicurezza	$M_{\rm Rd}/M_{\rm Sd}$	1.07	1.67	
Verifica di resistenza in termini di sforzo normale		SLU	SLV	
Sforzo normale resistente	N _{Rd} [kN]	-	1910.8	
Coefficiente di sicurezza	Nust/Nest	-	5.00	

PIEDRITTI_60cm (F1-M1)

	SOLLECITAZIONI DI VE	RIFICA		
Combinazione		N _{Sd} [kN]	M _{Sd} [kNm]	V _{sd} [kN]
	SLE Quasi Permanente	716.0	208.0	252
	SLE Frequente	1409.0	275.0	347
	SLE Rara	1656.0	339.0	419
	SLU	44.0	360.0	511.0
	SLV	3454.0	204.0	352.0

INPUT


CARATTERISTICHE GEO	METRICUE D	ELLA CET	ONE IN C	
CARATTERISTICHE GEO	METRICHED	ELLA SEZ	IONE IN CA	1.
Geometria della sezione				
Base (ortogonale al Taglio)			B [cm]	100
Altezza (parallela al Taglio)			H [cm]	60
Altezza utile della sezione			d [cm]	53
Area di calcestruzzo			A_c [cm ²]	6000
Armatura longitudinale tesa		1° STRATO	2° STRATO	3° STRATO
Numero Barre	n	10.00	0.00	0
Diametro	φ [mr	32	0	0
Posizione dal lembo esterno	c [cn	6.6	11.3	0.0
Area strato	As [cn	80.42	0.00	0.00
Rapporto di armatura	₽ [q		1.506%	
Armatura longitudinale compressa		1° STRATO	2° STRATO	3° STRATO
	n	1° STRATO 10.0	2° STRATO 0	3° STRATO
Armatura longitudinale compressa Numero Barre Diametro	n • [mr			
Numero Barre Diametro	•	10.0	0	0
Numero Barre Diametro Posizione dal lembo esterno	φ [mr	10.0 32	0	0
Numero Barre	¢ [mr	10.0 32 6.6 80.42	0 0 11.3	0 0 0.0
Numero Barre Diametro Posizione dal lembo esterno Area strato Rapporto di armatura	φ [mr c' [cı As' [cɪ	10.0 32 6.6 80.42	0 0 11.3 0.00	0 0 0.0
Numero Barre Diametro Posizione dal lembo esterno Area strato	φ [mr c' [cı As' [cɪ	10.0 32 6.6 80.42 6]	0 0 11.3 0.00 1.506%	0 0.0 0.00
Numero Barre Diametro Posizione dal lembo esterno Area strato Rapporto di armatura Armatura trasversale	φ [mr c' [cι As' [cr ρ' [9	10.0 32 6.6 80.42 6]	0 0 11.3 0.00 1.506%	0 0.0 0.00 0.00
Numero Barre Diametro Posizione dal lembo esterno Area strato Rapporto di armatura Armatura trasversale Diametro	φ [mr c' [cr As' [cr ρ' [9	10.0 32 6.6 80.42 6] 1° TIPO 0	0 0 11.3 0.00 1.506% 2° TIPO 0	0 0.0 0.00 0.00
Numero Barre Diametro Posizione dal lembo esterno Area strato Rapporto di armatura Armatura trasversale Diametro Numero bracci	φ [mr c' [cr As' [cr ρ' [9 φ [mr	10.0 32 6.6 80.42 6] 1° TIPO 0	0 0 11.3 0.00 1.506% 2° TIPO 0	0 0.0 0.00 0.00

Resistenza cubica a compressione	RCK	37
Resistenza cilindrica caratteristica a compressione	f _{ck} [Mpa]	30.00
Resistenza cilindrica media a compressione	f _{cm} [Mpa]	38.00
Resistenza media a trazione per flessione	f _{ctm} [Mpa]	2.90
Resistenza caratteristica a trazione per flessione	f _{ctic} [Mpa]	2.03
Resistenza di progetto a compressione	f _{cd} [Mpa]	17.00
Resistenza di progetto delle bielle compresse	f _{cd} [Mpa]	8.98
Acciaio		
Resistenza di progetto a snervamento	f _{vd} [Mpa]	382.6

N ESERCIZIO		
		σlimit
σ _c [Mpa] =	1.23	13.500
$\sigma_c [Mpa] =$	0.72	18.000
$\sigma_{\kappa}[Mpa] =$	192.87	352.000
		wlimit
W _d [mm] =	0.084	0.200
w_d [mm] =	0.161	0.300
	$\sigma_c [Mpa] = \sigma_c [Mpa] = \sigma_c [Mpa] = \sigma_x [Mpa] = $ $W_d [mm] = $	$\sigma_{c}[Mpa] = 1.23$ $\sigma_{c}[Mpa] = 0.72$ $\sigma_{\pi}[Mpa] = 192.87$ $W_{d}[mm] = 0.084$

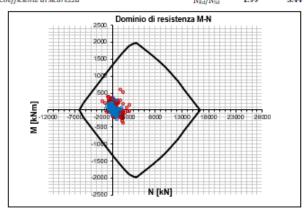
Sollecitazioni di progetto	W D.M.	511.0
Taglio sollecitante = max Taglio(SLU,SLV)	V _{Sd} [kN]	511.0
Sforzo Normale concomitante al massimo taglio	N _{Sd} [kN]	0.0
Verifica di resistenza in assenza di armatura specifica		
Resistenza di progetto senza armatura specifica	V _{Rd1} [KN]	662.96
Coefficiente di sicurezza	V_{Rd1}/V_{Sd}	1.30
Verifica di resistenza dell'armatura specifica		
CoTan(θ) di progetto	cotan(θ)	2.5
Resistenza a taglio delle bielle compresse in cls	$V_{Rd2}(\theta)$ [KN]	-
Resistenza a taglio dell'armatura	$V_{RAS}(\theta)$ [KN]	-
Resistenza a taglio di progetto	V _{Rd} [KN]	-
Coefficiente di sicurezza	V_{Rd}/V_{Sd}	-

Sollecitazioni di progetto		SLU	SLV
Momento sollecitante	M _{Sd} [kNm]	360.0	204.0
Sforzo Normale concomitante	N _{sd} [kN]	2215.0	3454.0
Verifica di resistenza in termini di momento		SLU	SLV
Momento resistente	M _{Rd} [kNm]	956.7	664.5
Coefficiente di sicurezza	$M_{\rm Rd}/M_{\rm Sd}$	2.66	3.26
Verifica di resistenza in termini di sforzo normale		SLU	SLV
Sforzo normale resistente	N _{Rd} [kN]	4743.0	5404.8
Coefficiente di sicurezza	$N_{\rm Ed}/N_{\rm Sd}$	2.14	1.56

PIEDRITTI_60cm (F2-M2)

т		_	т	-
	M			
			,	

	SOLLECITAZIONI DI VE	RIFICA		
Combinazione		N _{Sd} [kN]	M _{Sd} [kNm]	V _{Sd} [kN]
	SLE Quasi Permanente	587.0	163.0	252
	SLE Frequente	1115.0	394.0	347
	SLE Rara	1250.0	462.0	419
	SLU	44.0	595.0	511.0
	SLV	872.0	340.0	352.0


CARATTERISTICHE GEO	METRICHE D	ELLA SEZ	IONE IN C.A	L
Geometria della sezione				
Base (ortogonale al Taglio)			B [cm]	100
Altezza (parallela al Taglio)			H [cm]	60
Altezza utile della sezione			d [cm]	50
Area di calcestruzzo			A_c [cm ²]	6000
Armatura longitudinale tesa		1° STRATO	2° STRATO	3° STRATO
Numero Barre	n	10.00	0.00	0
Diametro	φ [mr	32	0	0
Posizione dal lembo esterno	c [cn	9.8	11.3	0.0
Area strato	As [cn	80.42	0.00	0.00
Rapporto di armatura	₽ [q		1.602%	
Armatura longitudinale compressa		1° STRATO	2° STRATO	3° STRATO
Numero Barre	n	10.0	0	0
Diametro	φ [mr	32	0	0
Posizione dal lembo esterno	c' [cɪ	9.8	11.3	0.0
Area strato	As' [cr	80.42	0.00	0.00
Rapporto di armatura	ρ'[9	6]	1.602%	
Armatura trasversale		1° TIPO	2° TIPO	3° TIPO
Diametro	ф [m:	12	0	0
Numero bracci	п	2	0	0
Passo	s _w [cı	10	0	0
Inclinazione	α [de	90	90	90
Area armatura a metro	A_{ne}/s_{ne} [cm ²)	22.62	0.00	0.00

Resistenza cilindrica caratteristica a compressione Resistenza cilindrica media a compressione	f _{ck} [Mpa]	
Desistance effectuies media a somenessione		30.00
Resistenza cilinarica media a compressione	f _{cm} [Mpa]	38.00
Resistenza media a trazione per flessione	f _{ctm} [Mpa]	2.90
Resistenza caratteristica a trazione per flessione	f _{ctic} [Mpa]	2.03
Resistenza di progetto a compressione	f _{cd} [Mpa]	17.00
Resistenza di progetto delle bielle compresse	f _{cd} [Mpa]	8.98

VERIFICHE IN E	SERCIZIO		
Verifica Tensionale			σlimit
Calcestruzzo SLE Quasi Permanente	σ _c [Mpa] =	1.53	13.500
Calcestruzzo SLE Rara	σ_c [Mpa] =	5.00	18.000
Acciaio SLE Rara	σ_{κ} [Mpa] =	214.43	352.000
Verifica di fessurazione			wlimit
Combinazione SLE Quasi permanente	W_d [mm] =	0.100	0.200
Combinazione SLE Frequente	w_d [mm] =	0.268	0.300
VERIFICA DI RESISTE	NZA A TAGLIO		
Sollecitazioni di progetto			
Taglio sollecitante = max Taglio(SLU,SLV)		V _{sd} [kN]	511.0
Sforzo Normale concomitante al massimo taglio		N _{Sd} [kN]	0.0

Taglio sollecitante = max Taglio(SLU,SLV)	V _{sd} [kN]	511.0
Sforzo Normale concomitante al massimo taglio	N_{Sd} [kN]	0.0
Verifica di resistenza in assenza di armatura specifica		
Resistenza di progetto senza armatura specifica	V _{Rd1} [KN]	623,24
Coefficiente di sicurezza	$V_{\rm Rd1}/V_{\rm Sd}$	1.22
V18 411-4 4-W		
•	cotan(B)	2.5
CoTan(θ) di progetto	cotan(θ) V ₈₄₂ (θ) [KN]	2.5 1398
Verifica di resistenza dell'armatura specifica CoTan(θ) di progetto Resistenza a taglio delle bielle compresse in cls Resistenza a taglio dell'armatura	cotan(θ) $V_{Rd2}(θ) [KN]$ $V_{Rd2}(θ) [KN]$	
CoTan(θ) di progetto Resistenza a taglio delle bielle compresse in cls	$V_{Rd2}(\theta)$ [KN]	1398

Sollecitazioni di progetto		SLU	SLV
Momento sollecitante	M _{Sd} [kNm]	595.0	340.0
Sforzo Normale concomitante	N_{sd} [kN]	1787.0	872.0
Verifica di resistenza in termini di momento		SLU	SLV
Momento resistente	M _{Rd} [kNm]	959.1	1146.2
Coefficiente di sicurezza	$M_{\rm Rd}/M_{\rm Sd}$	1.61	3.37
Verifica di resistenza in termini di sforzo normale		SLU	SLV
Sforzo normale resistente	N _{Rd} [kN]	3551.4	4746.5
Coefficiente di sicurezza	No. /No.	1.99	5.44

SITALFERR GRUPPO FERROVIE DELLO STATO ITALIANE	LINEA AV/AC I LOTTO FUNZIO NODO AV/AC I	ONALE TRAT	TTA AV/AC \		OVA	
Relazione di calcolo vano ascesnsore e Scala	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
Fissa	IN1A	20	D26CL	FV 05 00 003	A	133 di 148

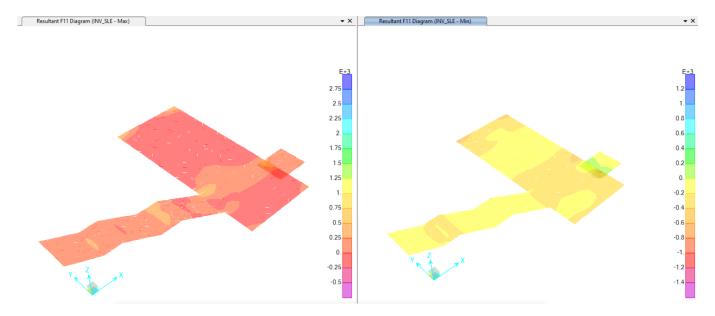


Figura - 32 FONDAZIONE SLE - F11 max./min.

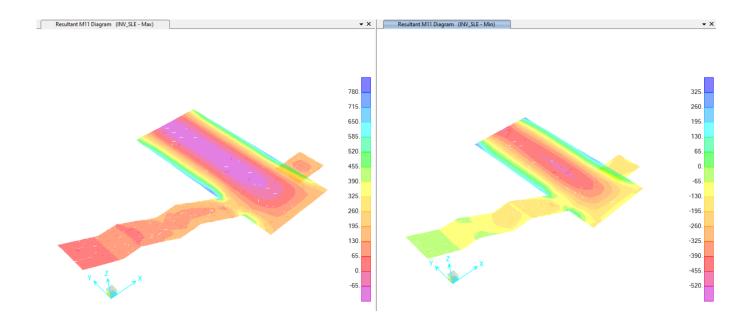


Figura - 33 FONDAZIONE SLE – M11 max./min.

SITALFERR GRUPPO FERROVIE DELLO STATO ITALIANE	LINEA AV/AC I LOTTO FUNZIO NODO AV/AC I	ONALE TRAT	TA AV/AC V		VA	
Relazione di calcolo vano ascesnsore e Scala Fissa	COMMESSA IN1A	LOTTO 20	CODIFICA D26CL	DOCUMENTO FV 05 00 003	REV.	FOGLIO 134 di 148

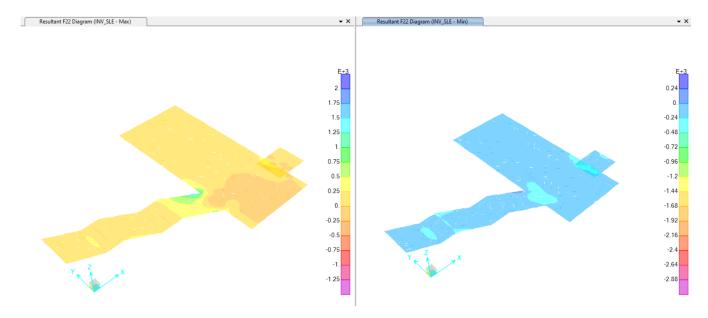


Figura - 34 FONDAZIONE SLE – F22 max./min.

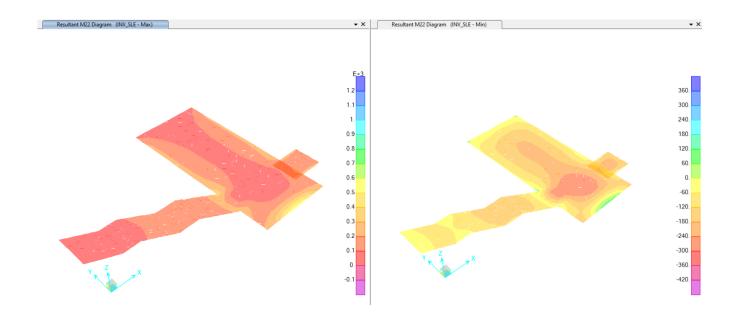


Figura - 35 FONDAZIONE SLE – M22 max./min.

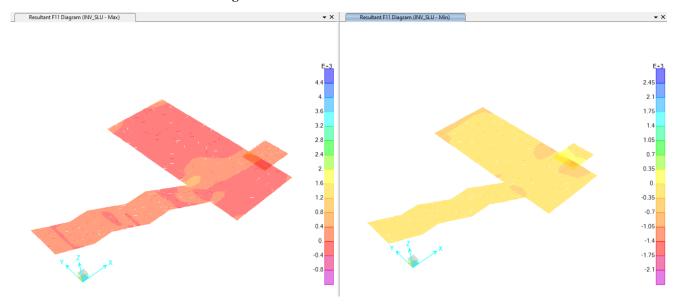


Figura - 36 FONDAZIONE SLU - F11 max./min.

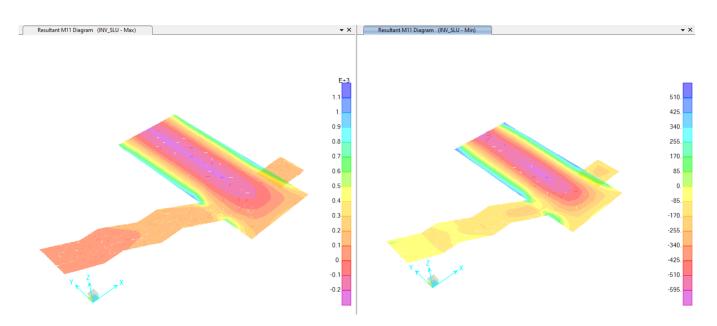


Figura - 37 FONDAZIONE SLU – M11 max./min.

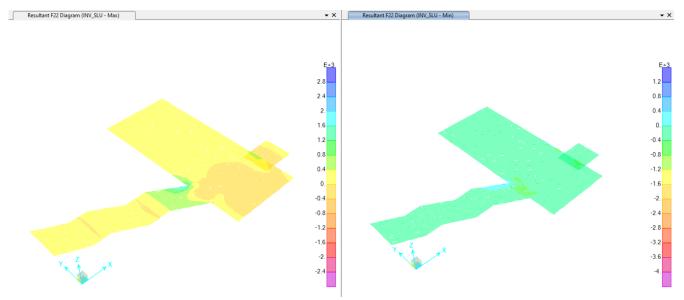


Figura - 38 FONDAZIONE SLU - F22 max./min.

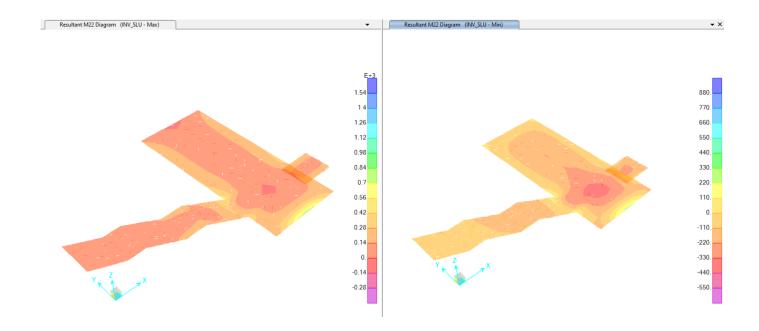


Figura - 39 FONDAZIONE SLU -M22 max./min.

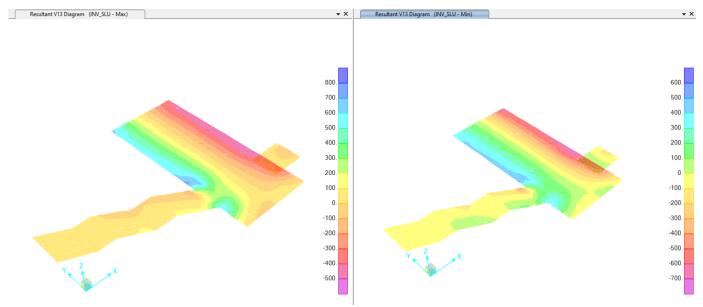


Figura - 40 FONDAZIONE SLU -V13 max./min.

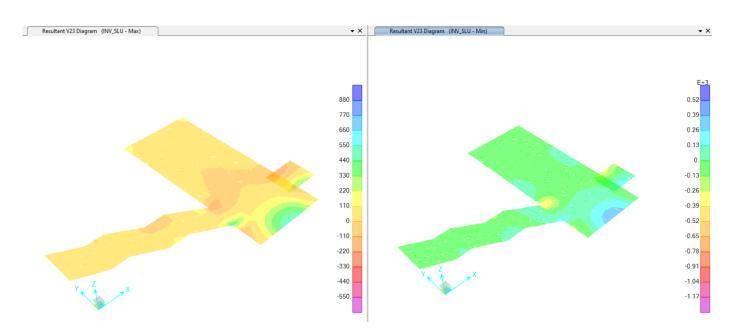


Figura - 41 FONDAZIONE SLU -V23 max./min.

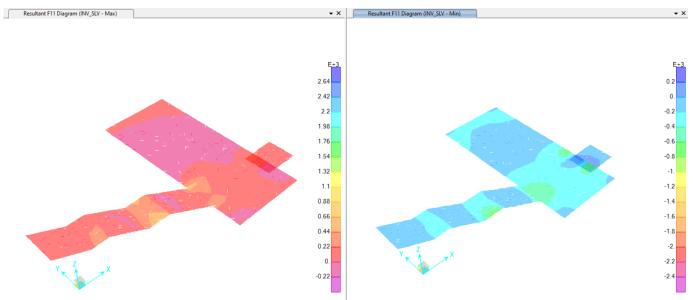


Figura - 42 FONDAZIONE SLV - F11 max./min.

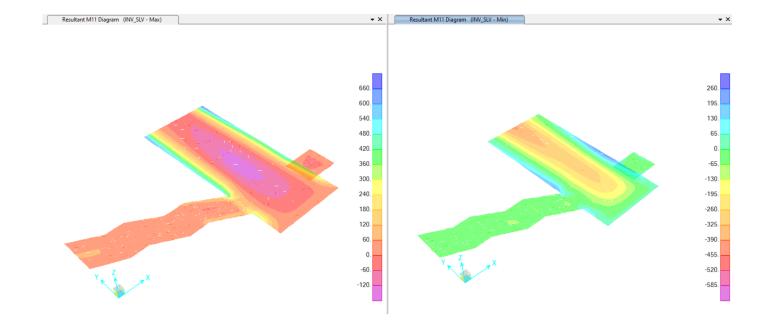


Figura - 43 FONDAZIONE SLV - M11 max./min.

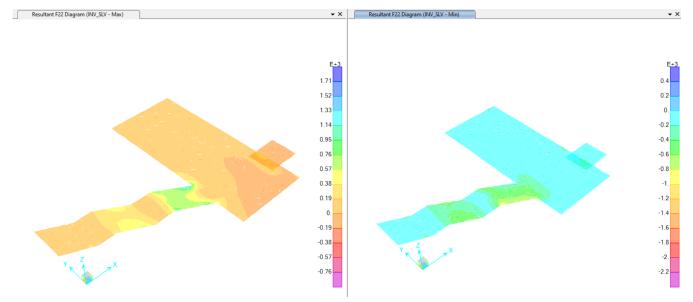


Figura - 44 FONDAZIONE SLV - F22 max./min.

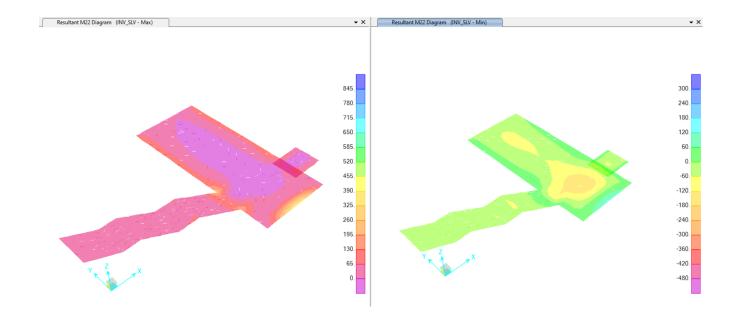


Figura - 45 FONDAZIONE SLV - M22 max./min.

SITALFERR GRUPPO FERROVIE DELLO STATO ITALIANE	LINEA AV/AC I LOTTO FUNZIO NODO AV/AC I	ONALE TRAT	TA AV/AC V		VA	
Relazione di calcolo vano ascesnsore e Scala	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
Fissa	IN1A	20	D26CL	FV 05 00 003	Α	140 di 148

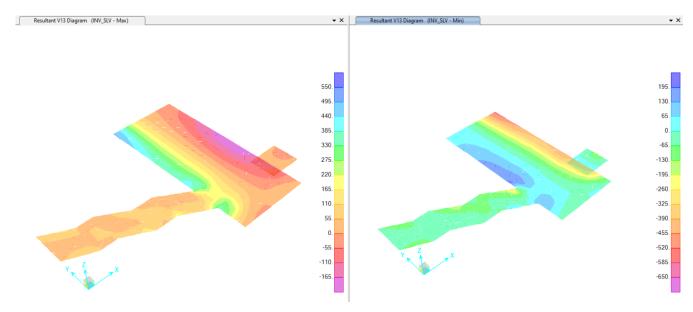


Figura - 46 FONDAZIONE SLV -V13 max./min.

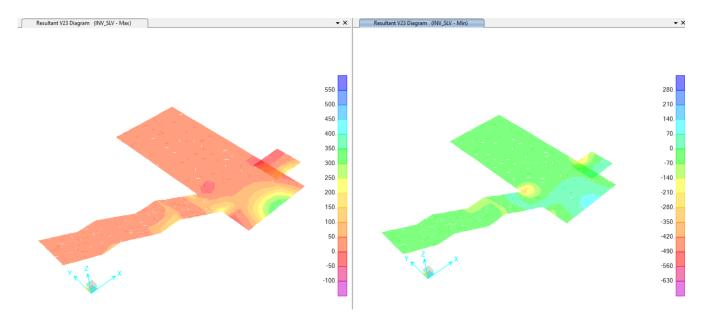


Figura - 47 FONDAZIONE SLV -V23 max./min.

FONDAZIONE (F2-M2)

INPUT

SOLLECITAZIONI DI VERIFICA					
Combinazione		N _{Sd} [kN]	M _{Sd} [kNm]	V _{Sd} [kN]	
	SLE Quasi Permanente	890.0	243.0	399	
	SLE Frequente	1865.0	142.0	753	
	SLE Rara	2173.0	596.0	851	
	SLU	44.0	782.0	1210.0	
	SLV	1555.0	369.0	699.0	

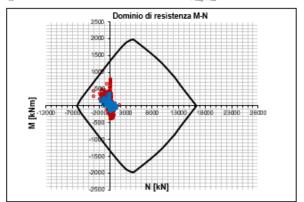
CARATTERISTICHE GEOMETRICHE DELLA SEZIONE IN C.A.

Geometria della sezione		
Base (ortogonale al Taglio)	B [cm]	100
Altezza (parallela al Taglio)	H [cm]	60
Altezza utile della sezione	d [cm]	50
Area di calcestruzzo	A_c [cm ²]	6000

Armatura longitudinale tesa		1° STRATO	2° STRATO	3° STRATO
Numero Barre	n	10.00	0.00	0
Diametro	φ [mr	32	0	0
Posizione dal lembo esterno	c [cn	9.8	11.3	0.0
Area strato	As [cn	80.42	0.00	0.00
Rapporto di armatura	9 19		1.602%	

Armatura longitudinale compressa		1° STRATO	2° STRATO	3° STRATO
Numero Barre	n	10.0	0	0
Diametro	φ [mr	32	0	0
Posizione dal lembo esterno	c' [cı	9.8	11.3	0.0
Area strato	As' [cr	80.42	0.00	0.00
Rannorto di armatura	0,10	61	1.602%	

Armatura trasversale		1° TIPO	2° TIPO	3° TIPO
Diametro	ф [mi	14	0	0
Numero bracci	n	2	0	0
Passo	s _w [ca	10	0	0
Inclinazione	α [de	90	90	90
Area armatura a metro	A_{re}/s_{re} [cm ²]	30.79	0.00	0.00


CARATTERISTICHE REOLOGICHE DEI MATERIALI

Resistenza cubica a compressione	RCK	37
Resistenza cilindrica caratteristica a compressione	f _{ck} [Mpa]	30.00
Resistenza cilindrica media a compressione	f _{cm} [Mpa]	38.00
Resistenza media a trazione per flessione	f _{ctm} [Mpa]	2.90
Resistenza caratteristica a trazione per flessione	f _{etic} [Mpa]	2.03
Resistenza di progetto a compressione	f _{cd} [Mpa]	17.00
Resistenza di progetto delle bielle compresse	f _{cd} [Mpa]	8.98
Acciaio		
Resistenza di progetto a snervamento	f _{vd} [Mpa]	382.61

VERIFICHE IN ESERCIZIO				
Verifica Tensionale			σlimit	
Calcestruzzo SLE Quasi Permanente	σ _c [Mpa] =	2.26	13.500	
Calcestruzzo SLE Rara	σ _c [Mpa] =	5.56	18.000	
Acciaio SLE Rara	$\sigma_{\kappa}[Mpa] =$	312.85	352.000	
Verifica di fessurazione			wlimit	
Combinazione SLE Quasi permanente	W_d [mm] =	0.169	0.200	
Combinazione SLE Frequente	W_d [mm] =	0.229	0.300	

VERIFICA DI RESISTENZA A TAGLIO				
Sollecitazioni di progetto				
Taglio sollecitante = max Taglio(SLU,SLV)	V _{8d} [kN]	1210.0		
Sforzo Normale concomitante al massimo taglio	N _{Sd} [kN]	-252.0		
Verifica di resistenza in assenza di armatura specifica				
Resistenza di progetto senza armatura specifica	V _{Rd1} [KN]	654.86		
Coefficiente di sicurezza	$V_{\rm Rd1}/V_{\rm Sd}$	0.54		
Verifica di resistenza dell'armatura specifica				
CoTan(θ) di progetto	cotan(θ)	2.5		
Resistenza a taglio delle bielle compresse in cls	$V_{Rd2}(\theta)$ [KN]	1433		
Resistenza a taglio dell'armatura	$V_{Rd3}(\theta)$ [KN]	1331		
Resistenza a taglio di progetto	V _{Rd} [KN]	1331		
Coefficiente di sicurezza	V_{Rd}/V_{Sd}	1.10		

Sollecitazioni di progetto		SLU	SLV	
Momento sollecitante	M _{8d} [kNm]	782.0	369.0	
Sforzo Normale concomitante	$N_{\rm Sd}$ [kN]	-252.0	1555.0	
Verifica di resistenza in termini di momento		SLU	SLV	
Momento resistente	M _{Rd} [kNm]	1372.1	1006.8	
Coefficiente di sicurezza	$M_{\rm Rd}/M_{\rm Sd}$	1.75	2.73	
Verifica di resistenza in termini di sforzo normale		SLU	SLV	
Sforzo normale resistente	N _{Rd} [kN]	-	4620.1	
Coefficiente di sicurezza	$N_{\rm Hd}/N_{\rm Sd}$	-	2.97	

Fondazioni Dirette

Verifica in tensioni efficaci

qlim = c'*Nc* sc*dc*ic*bc*gc + q*Nq*sq*dq*iq*bq*gq + 0,5*g*B*Ng*sg*dg*ig*bg*gg*lig*b

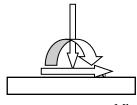
D = Profondità del piano di appoggio

 $e_B = Eccentricità in direzione B (e_B = Mb/N)$

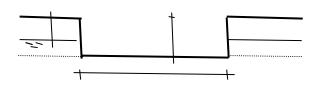
 e_L = Eccentricità in direzione L (e_L = Ml/N)

(per fondazione nastriforme $e_L = 0$; $L^* = L$)

 $B^* = Larghezza$ fittizia della fondazione ($B^* = B - 2^*e_B$)


 $L^* = Lunghezza$ fittizia della fondazione ($L^* = L - 2^*e_L$)

(per fondazione nastriforme le sollecitazioni agenti sono riferite all'unità di lunghezza)


coefficienti parziali

		azioni	proprietà del terreno		
Metodo di calcolo	permanenti	temporanee variabili	tan j' c'		
Stato limite ultimo	1.00	1.30	1.25	1.60	
Tensioni ammissibili	1.00	1.00	1.00	1.00	
definiti dall'utente	1.00	1.00	1.00	1.00	

valori suggeriti dall'EC7

GRUPPO FERROVIE DELLO STATO ITALIANE	LINEA AV/AC MILANO – VENEZIA LOTTO FUNZIONALE TRATTA AV/AC VERONA-PADOVA NODO AV/AC DI VERONA: INGRESSO EST					
Relazione di calcolo vano ascesnsore e Scala Fissa	COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
	IN1A	20	D26CL	FV 05 00 003	Α	143 di 148


 $Z_{w} \qquad D \qquad g_{1} \qquad \qquad Tb$ $B \qquad \qquad B$ $g, c', j' \qquad \qquad MI$ $T_{1} \qquad \qquad L$ $L \qquad \qquad L$

(Per fondazione nastriforme L = 100 m)

B = 10.00 (m)

L = 20.00 (m)

D = 0.60 (m) 15.5

bf = 0.00 (°) bp = 0.00 (°)

AZIONI

	valori di input		****
	permanenti	temporanee	Valori di calcolo
N [kN]	39946.00	0.00	39946.00
Mb [kNm]	0.00	0.00	0.00
Ml [kNm]	0.00	0.00	0.00
Tb [kN]	0.00	0.00	0.00
Tl [kN]	0.00	0.00	0.00
H [kN]	0.00	0.00	0.00

Peso unità di volume del terreno

 $g_1 = 19.00 (kN/mc)$

g = 19.00 (kN/mc)

Valori caratteristici di resistenza del terreno

c' = 0.00 (kN/mq) c' = 0.00 (kN/mq)

Valori di progetto

j' = 38.00 (°) $j\phi = 38.00$ (°)

Profondità della falda

Zw = 2.10 (m)

 $e_B = 0.00$ (m) $B^* = 10.00$ (m)

 $e_L = 0.00$ (m) $L^* = 20.00$ (m)

q : sovraccarico alla profondità D

q = 11.40 (kN/mq)

20

IN1A

D26CL

FOGLIO

145 di 148

Α

FV 05 00 003

Relazione di calcolo vano ascesnsore e Scala

Fissa

$\boldsymbol{g}:$ peso di volume del terreno di fondazione

$$g = 10.50$$
 (kN/mc)

Nc, Nq, Ng: coefficienti di capacità portante

$$Nq = tan^2(45 + j'/2)*e^{(p*tgj')}$$

$$Nq = 48.93$$

$$Nc = (Nq - 1)/tanj'$$

$$Nc = 61.35$$

$$Ng = 2*(Nq + 1)*tanj'$$

$$Ng = 78.02$$

s_c, s_q, s_g : fattori di forma

$$s_c = 1 + B*Nq / (L*Nc)$$

$$s_c = 1.40$$

$$s_q = 1 + B*tanj' \, / \, L*$$

$$s_q = 1.39$$

$$s_g = 1 - 0.4*B* / L*$$

$$s_g = 0.80\,$$

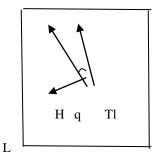
LINEA AV/AC MILANO - VENEZIA LOTTO FUNZIONALE TRATTA AV/AC VERONA-PADOVA NODO AV/AC DI VERONA: INGRESSO EST

LOTTO COMMESSA CODIFICA DOCUMENTO REV. **FOGLIO** IN1A 20 D26CL FV 05 00 003 Α 146 di 148

Relazione di calcolo vano ascesnsore e Scala Fissa

$i_c,\,i_q,\,i_g:$ fattori di inclinazione del carico

$$m_b = (2 + B^* / L^*) / (1 + B^* / L^*)$$
 =


$$q = arctg(Tb/Tl) =$$

$$m_l = (2 + L^* / B^*) / (1 + L^* / B^*)$$

$$m =$$

$$i_q = (1 - H/(N + B*L*c'cotgj'))^m$$

(m=2 nel caso di fondazione nastriforme e $m=(m_b sin^2 q + m_l cos^2 q)$ in tutti gli altri casi)

Tb

$$i_q = 1.00$$

$$i_c = i_q - (1 - i_q)/(Nq - 1)$$

$$i_c = 1.00$$

$$i_g = (1 - H/(N + B*L*c'cotgj'))^{(m+1)}$$

В

$$i_g = 1.00$$

dc, dq, dg: fattori di profondità del piano di appoggio

per D/B*
$$\leq$$
 1; $d_q = 1 + 2 D tanj' (1 - senj')^2 / B*$

per D/B*> 1;
$$d_q = 1 + (2 tanj' (1 - senj')^2) * arctan (D / B*)$$

$$d_q = 1.01$$

$$d_c = d_q - (1 - d_q) / (N_c tanj')$$

$$d_c = 1.01$$

LINEA AV/AC MILANO – VENEZIA LOTTO FUNZIONALE TRATTA AV/AC VERONA-PADOVA NODO AV/AC DI VERONA: INGRESSO EST

Relazione di calcolo vano ascesnsore e Scala Fissa

COMMESSA IN1A

20

CODIFICA

D26CL

DOCUMENTO **FV 05 00 003**

FOGLIO

147 di 148

REV.

Α

 $d_g = 1$

 $d_g = 1.00$

bc, bq, bg: fattori di inclinazione base della fondazione

$$b_q = (1 - b_f tanj')^2$$

$$b_f\!+b_p=$$

$$b_f + b_p < 45^{\circ}$$

 $b_q =$

1.00

$$b_c = b_q - (1 - b_q) / (N_c tanj')$$

$$b_c =$$

1.00

 $b_g = b_q\,$

 $b_g = 1.00$

gc, gq, gg: fattori di inclinazione piano di campagna

$$g_q = (1 - tanb_p)^2$$

$$b_f + b_p =$$

$$b_f + b_p < 45^\circ$$

 $g_q =$

1.00

$$g_c = g_q - (1 - g_q) / (N_c tanj')$$

$$g_c =$$

1.00

$$g_{g}=g_{q} \\$$

$$g_g =$$

1.00

LINEA AV/AC MILANO – VENEZIA LOTTO FUNZIONALE TRATTA AV/AC VERONA-PADOVA NODO AV/AC DI VERONA: INGRESSO EST

LOTTO

CODIFICA DOCUMENTO

REV.

Relazione di calcolo vano ascesnsore e Scala Fissa

COMMESSA IN1A

20

D26CL

FV 05 00 003

148 di 148 Α

FOGLIO

Carico limite unitario

R3

2.30

 $q_{lim} =$

4063.52

 (kN/m^2)

qrd

1767

 (kN/m^2)

Pressione massima agente

$$q=N\,/\,B^*\,L^*$$

$$q = 199.73$$

 (kN/m^2)

Coefficiente di sicurezza

$$Fs = q_{lim} / \ q \ =$$

20.35 OK

VERIFICA A SCORRIMENTO

$$Hd =$$

0.00

(kN)

$$Sd = N * tan(j') + c' B* L*$$

$$Sd =$$

31209.24

(kN)

Coefficiente di sicurezza allo scorrimento

OK