COMMITTENTE:

PROGETTAZIONE:

INFRASTRUTTURE FERROVIARIE STRATEGICHE DEFINITE DALLA

LEGGE OBIETTIVO N. 443/01e s.m.i.									
	CUP: J14D20000010001								
S.O. OPERE CIVILI									
PROGETTO DEFINITIVO									
LINEA AV/AC MILANO - VENEZIA LOTTO FUNZIONALE TRATTA AV/AC VERONA-PADOVA									
NODO AV/AC DI VERONA: INGRESSO EST PONTE SUL FIUME ADIGE									
Relazione geotecnica di calcolo delle fondazioni 3/5									
	SCALA:								
COMMESSA LOTTO FASE ENTE TIPO DOC. OPERA/DISCIPLINA PROG	R. REV.								

Rev.	Descrizione	Redatto	Data	Verificato	Data	Approvato	Data	Autorizzato Data
Α	Emissione 22.12.21	P.Luciani	22.12.21	A. Ferri	22.12.21	C. Mazzocchi	22.12.21	A. Vittozzi 22.12.21
		Accentation		Allen		Moell		U.O. Open Chile Guttines delle switanti Online dryll inger tipezzi Online dryll ingerizzi Online dryll ingerizzi Online dryll ingerizzi Online dryll ingerizzi

File: 9CLVI0100005A.docx		
	•	

INDICE

LINEA AV/AC MILANO - VENEZIA

LOTTO FUNZIONALE TRATTA AV/AC VERONA-PADOVA

NODO AV/AC DI VERONA: INGRESSO EST

PONTE SUL FIUME ADIGE

Relazione geotecnica di calcolo delle fondazioni 3/5

IN1A

LOTTO 20 CODIFICA D09CL DOCUMENTO VI 01 00 005 REV.

FOGLIO 2 di 37

1	PREMESSA	5	
2	NORMATIVA DI RIFERIMENTO	7	
3	CARATTERISTICHE DEI MATERIALI IMPIEGATI	8	
	3.1 Calcestruzzo		.8
	3.2 Acciaio per armature		.8
	3.3 Copriferri minimi		.9
4	CARATTERIZZAZIONE GEOTECNICA1	10	
5	AZIONE SISMICA DI VERIFICA	11	
6	COMBINAZIONI DI CARICO1	17	
7	CRITERI DI VERIFICA	18	
	7.1 Metodologia di calcolo capacità portante ai carichi verticali		
	7.2 Metodologia di calcolo capacità portante ai carichi trasversali		22
8	SOLLECITAZIONI A ESTRADOSSO PLINTO2	24	
9	SOLLECITAZIONI TESTA PALO2	28	
1(0 VERIFICHE GEOTECNICHE	30	

VERIFICHE DEL PLINTO......34

LOTTO FUNZIONALE TRATTA AV/AC VERONA-PADOVA

NODO AV/AC DI VERONA: INGRESSO EST

PONTE SUL FIUME ADIGE

20

Relazione geotecnica di calcolo delle fondazioni 3/5

COMMESSA LOTTO IN1A

CODIFICA D09CL

DOCUMENTO VI 01 00 005

REV. FOGLIO Α

3 di 37

INDICE TABELLE

Tabella 1- Stratigrafia e parametri geotecnici	10
Tabella 2 - Valutazione dei parametri a_g , F_0 e T^*_C per i periodi di ritorno associati a ciascuno stato limite	
Tabella 3 - Coefficienti parziali di sicurezza – Tabella 5.2.V del DM 17.1.2018	
Tabella 4 - Coefficienti parziali per i parametri geotecnici del terreno – Tabella 6.2.II del DM 17.1.2018	17
Tabella 5 - Valori di qb,lim secondo Gwizdala (1984)	20
Tabella 6 - Sollecitazioni elementi con coefficienti moltiplicativi	
Tabella 7 - Sintesi azioni intradosso plinto	27

LOTTO FUNZIONALE TRATTA AV/AC VERONA-PADOVA

NODO AV/AC DI VERONA: INGRESSO EST

PONTE SUL FIUME ADIGE

Relazione geotecnica di calcolo delle fondazioni 3/5

COMMESSA LOTTO
IN1A 20

CODIFICA D09CL DOCUMENTO VI 01 00 005 REV.

Α

FOGLIO 4 di 37

INDICE FIGURE

Figura 1 - Pianta e prospetto Pila-spalla (Milano)	5
Figura 2 - Prospetto del modello di calcolo globale con individuazione dei nodi di base	
Tabella 3: Coefficienti parziali per le resistenze caratteristiche – Tabella 6.4.II del DM 14.1.2008	17
Tabella 4: Coefficienti parziali per le resistenze caratteristiche di pali soggetti a carichi trasversali – Tabella	6.4.VI
del DM 17.1.2018	17
Figura 5 - Coefficiente Nq* corrispondente all'insorgere delle deformazioni plastiche alla base del palo	21
Figura 6 — Portata limite di base in terreni stratificati.	22
Figura 7 - Schema palificata	28
Figura 8 - Curve di portanza in compressione trazione	31
Figura 9 Schema per la definitinizione del tipo di fondazione	34
Figura 10 sezione plinto pila-spalla Milano	34

1 PREMESSA

Scopo del presente documento è la presentazione dei calcoli e delle verifiche geotecniche delle fondazioni profonde della pila-spalla (Milano) del viadotto ferroviario A.C. sul fiume Adige, previsto nell'ambito del Progetto Definitivo AV/AC NODO VERONA: ENTRATA EST.

Le sottostrutture in esame sono di tipo tradizionale, con fondazioni profonde su pali.

La zattera di fondazione ha dimensioni in pianta 25.00x18.00 m e spessore 3.50 m. I pali sono 24Ø1500, disposti con interasse 4,50 m in entrambe le direzioni e lunghezza L=35,00m.

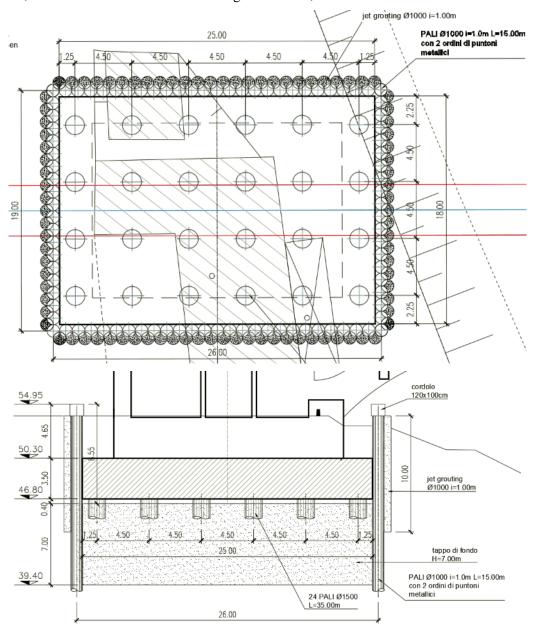


Figura 1 - Pianta e prospetto Pila-spalla (Milano)

In Figura 2 si riporta il prospetto del modello globale FEM realizzato per il ponte in esame, con l'individuazione dei nodi di base delle sottostrutture:

Figura 2 - Prospetto del modello di calcolo globale con individuazione dei nodi di base

Il progetto è stato eseguito coerentemente con quanto previsto dalla normativa vigente, "Norme Tecniche per le Costruzioni"- DM 17.1.2018 e Circolare n .7 "Istruzioni per l'applicazione dell'«Aggiornamento delle "Norme tecniche per le costruzioni"»".

LINEA AV/AC MILANO - VENEZIA
LOTTO FUNZIONALE TRATTA AV/AC VERONA-PADOVA
NODO AV/AC DI VERONA: INGRESSO EST
PONTE SUL FIUME ADIGE

Relazione geotecnica di calcolo delle fondazioni 3/5

COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO

IN1A 20 D09CL VI 01 00 005 A 7 di 37

2 NORMATIVA DI RIFERIMENTO

Le analisi strutturali e le verifiche di sicurezza sono state effettuate in accordo con le seguenti normative.

- Decreto Ministeriale del 17 gennaio 2018: "Aggiornamento delle «Norme Tecniche per le Costruzioni»", G.U. Serie Generale n.42 del 20.02.2008, Supplemento Ordinario n.8.
- Circolare 21 gennaio 2019 n.7" Istruzioni per l'applicazione dell'«Aggiornamento delle "Norme tecniche per le costruzioni"» di cui al decreto ministeriale 17 gennaio 2018";
- RFI DTC SI PS MA IFS 001 E del 31.12.2020 "Manuale di progettazione delle opere civili Sezione 2 Ponti e Strutture".
- RFI DTC SI CS MA IFS 001 E del 22.12.2020 "Capitolato generale tecnico di appalto delle opere civili".
- 1299/2014/UE Specifiche tecniche d'interoperabilità per il sottosistema "Infrastruttura" del sistema ferroviario dell'Unione Europea (18/11/2014);
- UNI EN 1990: Eurocodice: Criteri generali di progettazione strutturale;
- UNI EN 1991-1-1: Eurocodice 1 Parte 1-1: Azioni in generale Pesi per unità di volume, pesi propri e sovraccarichi variabili;
- UNI EN 1991-1-4: Eurocodice 1. Azioni sulle strutture. Parte 1-4: Azioni in generale Azioni del vento;
- UNI EN 1992-2: Eurocodice 2. Progettazione delle strutture di calcestruzzo. Parte 2: Ponti di calcestruzzo Progettazione e dettagli costruttivi;
- UNI EN 1997-1: Eurocodice 7 Progettazione geotecnica Parte 1: Regole generali;
- UNI-EN 1998-1: Eurocodice 8: Progettazione delle strutture per la resistenza sismica. Parte 1: Regole generali, azioni sismiche e regole per gli edifici;
- UNI EN 1998-5: Eurocodice 8 Progettazione delle strutture per la resistenza sismica Parte 5: Fondazioni, strutture di contenimento ed aspetti geotecnici;
- Legge. 2 febbraio 1974, n. 64. Provvedimenti per le costruzioni con particolari prescrizioni per le zone sismiche:
- Regolamento (UE) N. 1299/2014 della Commissione del 18 novembre 2014 relativo alle specifiche tecniche di interoperabilità per il sottosistema «infrastruttura» del sistema ferroviario dell'Unione europea, modificato dal Regolamento di esecuzione (UE) N° 2019/776 della Commissione del 16 maggio 2019.

LINEA AV/AC MILANO - VENEZIA
LOTTO FUNZIONALE TRATTA AV/AC VERONA-PADOVA

NODO AV/AC DI VERONA: INGRESSO EST **PONTE SUL FIUME ADIGE**

COMMESSA

CODIFICA LOTTO

DOCUMENTO

FOGI IO

RFV.

Relazione geotecnica di calcolo delle fondazioni 3/5

IN1A

D09CL

VI 01 00 005

8 di 37

3 CARATTERISTICHE DEI MATERIALI IMPIEGATI

Di seguito si riportano le caratteristiche dei materiali impiegati con le classi di esposizione coerenti con la UNI EN 206.

Calcestruzzo di classe

C12/15 (Rck 15 N/mm²)

per sottofondazioni

20

Calcestruzzo 3.1

FONDAZIONI - PALI

Per le strutture in fondazione si adotta un calcestruzzo con le caratteristiche riportate di seguito:

C25/30: fck \ge 25 MPa Rck \ge 30 MPa

Classe minima di consistenza: S4

In accordo con le norme seguite, risulta per il materiale in esame:

Resistenza caratteristica cubica a 28 giorni	R_{ck}	30	N/mm ²
Resistenza caratteristica cilindrica a 28 giorni	$f_{ck} = 0.83 \; R_{ck}$	24,90	N/mm^2
Valore medio della resistenza cilindrica	$f_{cm} = f_{ck} + 8$	32,90	N/mm^2
Resistenza di calcolo breve durata	$f_{cd\;(Breve\;durata)} = f_{ck} \: / \: 1.5$	16,60	N/mm^2
Resistenza di calcolo lunga durata	$f_{cd\;(Lungo\;durata)} = 0.85\;f_{cd}$	14,11	N/mm^2
Resistenza media a trazione assiale	$f_{ctm} = 0.3 (f_{ck})^{2/3}$ [Rck<50/60]	2,56	N/mm^2
Resistenza caratteristica a trazione	$f_{ctk\;0,05}=0.7\;f_{ctm}$	1,79	N/mm^2
Resistenza media a trazione per flessione	$f_{cfm} = 1.2 \; f_{ctm}$	3,07	N/mm^2
Resistenza di calcolo a trazione	$f_{ctd} = f_{ctk \ 0,05} \ / \ 1.5$	1,19	N/mm^2
Modulo di Young	$E = 22000 \; (f_{cm}/10)^{0.3}$	31447	N/mm^2

3.2 Acciaio per armature

Tipo B450C saldabile, per diametri compresi tra 6 e 40 mm:

Tensione di snervamento caratteristica

 $f_{vnom} = 450 \text{ MPa}$

Tensione caratteristica di rottura

 $f_{tnom} = 540 \text{ MPa}$

 $f_{yk} \ge f_{ynom}$ frattile 5%

 $f_{tk} \geq f_{tnom} \; frattile \; 5\%$

 $1.15 \le (f_t/f_y)k \le 1.35$ frattile 10%

 $(f_y/f_{ynom})k \le 1.25$ frattile 10%

Allungamento $(A_{gt})k \ge 7.5\%$ frattile 10%

LINEA AV/AC MILANO - VENEZIA LOTTO FUNZIONALE TRATTA AV/AC VERONA-PADOVA NODO AV/AC DI VERONA: INGRESSO EST

CODIFICA REV.

COMMESSA LOTTO

IN1A 20 D09CL

PONTE SUL FIUME ADIGE

DOCUMENTO VI 01 00 005

FOGLIO 9 di 37

Α

Copriferri minimi 3.3

Si riportano di seguito i copriferri minimi per le strutture in calcestruzzo armato:

Pali 6.0 cm

Relazione geotecnica di calcolo delle fondazioni 3/5

Plinto 5.0 cm

LINEA AV/AC MILANO - VENEZIA LOTTO FUNZIONALE TRATTA AV/AC VERONA-PADOVA NODO AV/AC DI VERONA: INGRESSO EST PONTE SUL FIUME ADIGE

Relazione geotecnica di calcolo delle fondazioni 3/5

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
IN1A	20	D09CL	VI 01 00 005	Α	10 di 37

4 CARATTERIZZAZIONE GEOTECNICA

Si riportano di seguito i parametri di resistenza e deformabilità dei terreni interessati dalla realizzazione dell'opera:

Tabella 1- Stratigrafia e parametri geotecnici

SUBSTRATO [m da p.c.]	γn [kN/m ³]	D R [%]	φ' [°]	c' [kPa]	G ₀	E ₀ [Mpa]	E'RIL	E'OC [Mpa]	E'25 [Mpa]
0÷5	19	74.8	40.2 (29.7÷49.8)	0	65.7	157.7	15.8	31.5	34.9
5÷15	19	63.1	38.8 (31.1÷49.0)	0	104.1	249.7	25.0	49.9	33.1
>15	19	66.2	41.7 (31.1÷48.4)	0	182.6	438.1	43.8	87.6	48.6

Angolo di resistenza ϕ ': Valore medio e relativa variazione fra le correlazioni utilizzate

 E'_{RIL} : Modulo di deformazione operativo per i rilevati ($E_0/10$) E'_{OC} : Modulo di deformazione operativo per le opere civili ($E_0/5$)

E'25: Modulo di deformazione operativo secondo Jamiolkowski et al. (1988)

Unità limoso-argillosa (analisi di laboratorio)

	Taglio D	iretto		TRX	(cid)
Prof. (m)	Coesione c' (kPa)	.		TRX c' (kPa)	TRX f (°)
22,00			97,00		
18,00				0,00	26,40
22,00				0,00	25,00
17.00	8,60	26,40	70,00		
16.50			127,00	12,00	27,40
media	8,60	26,40	98,00	4,00	26,27
min			70,00		25,00
max			127,00	12,00	27,40

Per maggiori dettagli sulle analisi condotte per la determinazione dei suddetti parametri, si rimanda alla Relazione geotecnica del progetto.

In funzione di quanto sopra riportato, per la progettazione si utilizzeranno i seguenti valori di angolo di attrito:

SUBSTRATO	φ'	c'	cu
[m da p.c.]	[°]	[kPa]	[kPa]
0÷5	35	0	0
5÷15	30	0	0
15÷18	26	5	70
18÷30	35	0	0
30÷45	38	0	0
>45	40		

LOTTO FUNZIONALE TRATTA AV/AC VERONA-PADOVA

NODO AV/AC DI VERONA: INGRESSO EST

PONTE SUL FIUME ADIGE

Relazione geotecnica di calcolo delle fondazioni 3/5

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
IN1A	20	D09CL	VI 01 00 005	Α	11 di 37

5 AZIONE SISMICA DI VERIFICA

Nel presente paragrafo si riportano la descrizione e la valutazione dell'azione sismica secondo le specifiche del DM 17.1.2018.

L'azione sismica è descritta mediante spettri di risposta elastici e di progetto. In particolare nel DM 17.1.2018, vengono presentati gli spettri di risposta in termini di accelerazioni orizzontali e verticali.

L'espressione analitica dello spettro di risposta elastico in termini di accelerazione orizzontale è la seguente:

$$0 \le T \le T_B \longrightarrow S_{\epsilon}(T) = a_{g.} \cdot S \cdot \eta \cdot F_0 \cdot \left[\frac{T}{T_B} + \frac{1}{\eta \cdot F_0} \left(1 - \frac{T}{T_B} \right) \right]$$

$$T_B \le T \le T_C \longrightarrow S_{_e}(T) = a_{g.} \cdot S \cdot \eta \cdot F_0$$

$$T_C \le T \le T_D \longrightarrow S_{e}(T) = a_g \cdot S \cdot \eta \cdot F_0 \cdot \left(\frac{T_C}{T}\right)$$

$$T_D \leq T_D \longrightarrow S_{e}(T) = a_{g.} \cdot S \cdot \eta \cdot F_0 \cdot \left(\frac{T_C \cdot T_D}{T}\right)$$

In cui:

$$S = S_S \cdot S_T$$

 S_s : coefficiente di amplificazione stratigrafico;

 S_T : coefficiente di amplificazione topografica;

η: fattore che tiene conto di un coefficiente di smorzamento viscoso equivalente ξ, espresso in punti percentuali diverso da 5 (η=1 per ξ=5):

$$\eta = \sqrt{\frac{10}{5 + \xi}} \ge 0.55$$

 ${\it F}_{\rm 0}$: valore massimo del fattore di amplificazione dello spettro in accelerazione orizzontale;

ag: accelerazione massima al suolo;

T: periodo di vibrazione dell'oscillatore semplice;

T_B, T_C, T_D: periodi che separano i diversi rami dello spettro, e che sono pari a:

$$T_C = C_C \cdot T *_C$$

$$T_B = \frac{T_C}{3}$$

LOTTO FUNZIONALE TRATTA AV/AC VERONA-PADOVA

NODO AV/AC DI VERONA: INGRESSO EST

PONTE SUL FIUME ADIGE

Relazione geotecnica di calcolo delle fondazioni 3/5

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
IN1A	20	D09CL	VI 01 00 005	Α	12 di 37

$$T_D = 4.0 + \frac{a_g}{g} + 1.6$$

In cui:

 C_{c} : coefficiente che tiene conto della categoria del terreno;

 $T^*_{\mathcal{C}}$: periodo di inizio del tratto a velocità costante dello spettro in accelerazione orizzontale.

L'espressione analitica dello spettro di risposta elastico in termini di accelerazione verticale è la seguente:

$$0 \le T \le T_B \longrightarrow S_{e}(T) = a_{g} \cdot S \cdot \eta \cdot F_{v} \cdot \left[\frac{T}{T_B} + \frac{1}{\eta \cdot F_{v}} \left(1 - \frac{T}{T_B} \right) \right]$$

$$T_B \leq T \leq T_C \longrightarrow S_{\alpha}(T) = a_{g.} \cdot S \cdot \eta \cdot F_{v.}$$

$$T_C \le T \le T_D \longrightarrow S_{e}(T) = a_{g.} \cdot S \cdot \eta \cdot F_{v} \cdot \left(\frac{T_C}{T}\right)$$

$$T_D \leq T_D \longrightarrow S_{_e}(T) = a_{g.} \cdot S \cdot \eta \cdot F_{v} \cdot \left(\frac{T_C \cdot T_D}{T}\right)$$

nelle quali:

 $S = S_S \times S_T$: con S_S pari sempre a 1 per lo spettro verticale;

 η : fattore che tiene conto di un coefficiente di smorzamento viscoso equivalente ξ , espresso in punti percentuali diverso da 5 (η =1 per ξ =5):

$$\eta = \sqrt{\frac{10}{5 + \xi}} \ge 0.55$$

T: periodo di vibrazione dell'oscillatore semplice;

T_B, T_C, T_D: periodi che separano i diversi rami dello spettro, e che sono pari a:

$$T_C = 0.05$$
 $T_B = 0.15$ $T_D = 1.0$

F_V: fattore che quantifica l'amplificazione spettrale massima mediante la relazione:

$$F_V = 1.35 \cdot F_0 \cdot \left(\frac{a_g}{g}\right)^{0.5}$$

LINEA AV/AC MILANO - VENEZIA LOTTO FUNZIONALE TRATTA AV/AC VERONA-PADOVA NODO AV/AC DI VERONA: INGRESSO EST PONTE SUL FIUME ADIGE

Relazione geotecnica di calcolo delle fondazioni 3/5

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
IN1A	20	D09CL	VI 01 00 005	Α	13 di 37

Di seguito si riporta il calcolo dei parametri per la valutazione degli spettri in accelerazione orizzontale e verticale, effettuata mediante l'utilizzo del software "Spettri NTC ver. 1.0.3" reperibile presso il sito del Consiglio Superiore dei Lavori Pubblici.

Vita Nominale

La vita nominale di un'opera strutturale (V_N) , è intesa come il numero di anni nel quale la struttura, purchè soggetta alla manutenzione ordinaria, deve potere essere usata per lo scopo al quale è destinata. La vita nominale delle infrastrutture ferroviarie può, di norma, assumersi come indicato nella seguente tabella.

TIPI DI COSTRUZIONE	Vita Nominale (VN)
Opere nuove su infrastrutture ferroviarie progettate con le norme vigenti prima del DM14/1/2008 a velocità convenzionale V<250 Km/h	50
Altre opere nuove a velocità V<250 Km/h	75
Altre opere nuove a velocità V>250 Km/h	100
Opere di grandi dimensioni: ponti e viadotti con campate di luce maggiore di 150 m	≥100

Per l'opera in oggetto si considera una vita nominale VN = 100 anni.

Classi D'uso

Il Decreto Ministeriale del 17 gennaio 2018 prevede quattro categorie di classi d'uso riportate nel seguito:

Classe I: Costruzioni con presenza solo occasionale di persone, edifici agricoli.

Classe II: Costruzioni il cui uso preveda normali affollamenti, senza contenuti pericolosi per l'ambiente e senza funzioni pubbliche e sociali essenziali. Industrie con attività non pericolose per l'ambiente. Ponti, opere infrastrutturali, reti viarie non ricadenti in Classe III o in Classe IV, reti ferroviarie la cui interruzione non provochi situazioni di emergenza. Dighe il cui collasso non provochi conseguenze rilevanti.

Classe III: Costruzioni il cui uso preveda affollamenti significativi. Industrie con attività pericolose per l'ambiente. Reti viarie extraurbane non ricadenti in Classe IV. Ponti e reti ferroviarie la cui interruzione provochi situazioni di emergenza. Dighe rilevanti per le conseguenze di un loro eventuale collasso.

Classe IV: Costruzioni con funzioni pubbliche o strategiche importanti, anche con riferimento alla gestione della protezione civile in caso di calamità. Industrie particolarmente pericolose per l'ambiente. Reti viarie di tipo A o B, di cui al D.M. 5 novembre 2001, n. 6792, "Norme funzionali e geometriche per la costruzione di strade", e di tipo quando appartenenti ad itinerari di collegamento tra capoluoghi di provincia non altresì serviti da strade di tipo A o B. Ponti o reti ferroviarie di importanza critica per il mantenimento delle vie di comunicazione, particolarmente dopo un evento sismico. Dighe connesse al funzionamento di acquedotti e a impianti di produzione di energia elettrica.

Per l'opera in oggetto si considera una Classe d'uso IV.

Periodo di Riferimento dell'Azione Sismica

Le azioni sismiche su ciascuna costruzione vengono valutate in relazione ad un periodo di riferimento V_R che si ricava per ciascun tipo di costruzione, moltiplicando la vita nominale V_R per il coefficiente d'uso C_R :

LINEA AV/AC MILANO - VENEZIA LOTTO FUNZIONALE TRATTA AV/AC VERONA-PADOVA

NODO AV/AC DI VERONA: INGRESSO EST PONTE SUL FIUME ADIGE

3/5 COMMESSA

LOTTO 20 CODIFICA D09CL

DOCUMENTO VI 01 00 005 REV.

FOGLIO 14 di 37

Relazione geotecnica di calcolo delle fondazioni 3/5

$$V_R = V_N \cdot C_U$$

IN1A

Il valore del coefficiente d'uso Cu è definito, al variare della classe d'uso, come mostrato nella tabella seguente:

CLASSE D'USO	I	II	III	IV
COEFFICIENTE C _U	0.7	1	1.5	2

Pertanto per l'opera in oggetto il periodo di riferimento è pari a 100x2= 200 anni.

Stati limite e relative probabilità di superamento

Nei confronti delle azioni sismiche gli stati limite, sia di esercizio che ultimi, sono individuati riferendosi alle prestazioni della costruzione nel suo complesso, includendo gli elementi strutturali, quelli non strutturali e gli impianti.

La probabilità di superamento nel periodo di riferimento P_{VR} , cui riferirsi per individuare l'azione sismica agente in ciascuno degli stati limite considerati, sono riportati nella tabella successiva.

Stati Limite		P_{VR} : Probabilità di superamento nel periodo di riferimento V_R
Stati limite di esercizio	SLO	81%
	SLD	63%
Stati limite ultimi	SLV	10%
	SLC	5%

Accelerazione (ag), fattore (F₀) e periodo (T*_c)

Ai fini del D.M. 17-01-2018 le forme spettrali, per ciascuna delle probabilità di superamento nel periodo di riferimento P_{VR} , sono definite a partire dai valori dei seguenti parametri su sito di riferimento rigido orizzontale:

ag: accelerazione orizzontale massima sul sito;

F₀: valore massimo del fattore di amplificazione dello spettro in accelerazione orizzontale;

T*c: periodo di inizio del tratto a velocità costante dello spettro in accelerazione orizzontale.

I parametri prima elencati dipendono dalle coordinate geografiche, espresse in termini di latitudine e longitudine, del sito interessato dall'opera, dal periodo di riferimento (V_R) , e quindi dalla vita nominale (VN) e dalla classe d'uso (C_u) e dallo stato limite considerato. Si riporta nel seguito la valutazione di detti parametri per i vari stati limite.

Comune: Verona

Tabella 2 - Valutazione dei parametri a_8 , F_0 e T^*_C per i periodi di ritorno associati a ciascuno stato limite

Valori dei parametri a_a, F_o, T_C* per i periodi di ritorno T_R

SLATO	T _R	ag	F.	T _C *
LIMITE	[anni]	[g]	[-]	[s]
SLO	120	0.087	2.443	0.263
SLD	201	0.111	2.409	0.271
SLV	1898	0.260	2.406	0.287
SLC	2475	0.286	2.381	0.290

I parametri ai quali si è fatto riferimento nella definizione dell'azione sismica di progetto, indicati nella tabella precedente, corrispondono, cautelativamente, a quei parametri che danno luogo al sisma di massima entità, fra tutti quelli individuati lungo le progressive dell'opera in progetto.

Sono stati presi in esame, per la valutazione delle azioni in fondazioni, i seguenti Stati Limite sismici:

• SLV: Stato Limite di Salvaguardia della Vita (Stato Limite Ultimo)

Si riportano al termine dell'analisi, i parametri ed i punti dello spettro di risposta elastici per lo Stato Limite di Salvaguardia della Vita.

Classificazione dei terreni

Per la definizione dell'azione sismica di progetto, la valutazione dell'influenza delle condizioni litologiche e morfologiche locali sulle caratteristiche del moto del suolo in superficie, deve essere basata su studi specifici di risposta sismica locale esistenti nell'area di intervento. In mancanza di tali studi la normativa prevede la classificazione, riportata nella tabella seguente, basata sulla stima dei valori della velocità media delle onde sismiche di taglio $V_{\rm s30}$, ovvero sul numero medio di colpi NSPT ottenuti in una prova penetrometrica dinamica (per terreni prevalentemente granulari), ovvero sulla coesione non drenata media cu (per terreni prevalentemente coesivi).

Categoria di suolo di fondazione	Descrizione
Cat. A	Ammassi rocciosi affioranti o terreni molto rigidi caratterizzati da valori di velocità delle onde di taglio superiori a 800 m/s, eventualmente comprendenti in superficie terreni di caratteri- stiche meccaniche più scadenti con spessore massimo pari a 3 m.
Cat. B	Rocce tenere e depositi di terreni a grana grossa molto addensati o terreni a grana fina molto consistenti, caratterizzati da un miglioramento delle proprietà meccaniche con la profondità e da valori di velocità equivalente compresi tra 360 m/s e 800 m/s.
Cat. C	Depositi di terreni a grana grossa mediamente addensati o terreni a grana fina mediamente consistenti con profondità del substrato superiori a 30 m, caratterizzati da un miglioramento del- le proprietà meccaniche con la profondità e da valori di velocità equivalente compresi tra 180 m/s e 360 m/s.
Cat. D	Depositi di terreni a grana grossa scarsamente addensati o di terreni a grana fina scarsamente consi- stenti, con profondità del substrato superiori a 30 m, caratterizzati da un miglioramento del-

	le proprietà meccaniche con la profondità e da valori di velocità equivalente compresi tra 100 e 180 m/s.
Cat. E	Terreni con caratteristiche e valori di velocità equivalente riconducibili a quelle definite per le categorie C o D, con profondità del substrato non superiore a 30 m.

Si considera una categoria C di suolo di fondazione.

Amplificazione stratigrafica

I due coefficienti prima definiti, Ss e Cc, dipendono dalla categoria del sottosuolo come mostrato nel prospetto seguente.

Per i terreni di categoria A, entrambi i coefficienti sono pari a 1, mentre per le altre categorie i due coefficienti sono pari a:

Categoria sottosuolo	Ss	c_c
A	1,00	1,00
В	$1,00 \le 1,40-0,40 \cdot F_o \cdot \frac{a_g}{g} \le 1,20$	$1,10\cdot(T_C^*)^{-0,20}$
C	$1,00 \le 1,70 - 0,60 \cdot F_o \cdot \frac{a_g}{g} \le 1,50$	$1,05\cdot (T_C^*)^{-0,33}$
D	$0.90 \le 2.40 - 1.50 \cdot F_o \cdot \frac{a_g}{g} \le 1.80 \cdot$	$1,25\cdot(T_{C}^{*})^{-0,50}$
E	$1,00 \le 2,00 - 1,10 \cdot F_o \cdot \frac{a_g}{g} \le 1,60$	$1,15 \cdot (T_C^*)^{-0,40}$

Nel caso in esame (categoria di sottosuolo C) allo SLV risulta:

Ss = 1.325

 $C_{\rm C} = 1.585$

Amplificazione topografica

Per poter tenere conto delle condizioni topografiche e in assenza di specifiche analisi di risposta sismica, si utilizzano i valori del coefficiente topografico S_T riportati nella seguente tabella.

Categoria topografica	Ubicazione dell'opera o dell'intervento	S_{T}
T1	-	1
T2	In corrispondenza della sommità del pendio	1.2
Т3	In corrispondenza della cresta del rilievo con inclinazione media 15°≤i≤30°	1.2
T4	In corrispondenza della cresta del rilievo con inclinazione media i>30°	1.4

Nel caso in esame $S_T = 1$

6 COMBINAZIONI DI CARICO

Le verifiche di tipo geotecnico sono state effettuate, tenendo conto dei valori dei coefficienti parziali riportati nei prospetti di seguito, seguendo l'Approccio normativo 2: A1+M1+R3.

I parametri di resistenza del terreno sono stati dunque ridotti tramite i coefficienti parziali M1, le resistenze tramite i coefficienti R3 e le azioni sono state amplificate tramite i coefficienti parziali A1.

Tabella 3 - Coefficienti parziali di sicurezza – Tabella 5.2.V del DM 17.1.2018

Coefficie	Coefficiente					
Azioni permanenti	favorevoli	YG1	0,90	1,00	1,00	
	sfavorevoli	·	1,10	1,35	1,00	
Azioni permanenti non	favorevoli	γG2	0,00	0,00	0,00	
strutturali ⁽²⁾	sfavorevoli		1,50	1,50	1,30	
Ballast ⁽³⁾	favorevoli	γв	0,90	1,00	1,00	
	sfavorevoli		1,50	1,50	1,30	
Azioni variabili da traffi-	favorevoli	γQ	0,00	0,00	0,00	
CO ⁽⁴⁾	sfavorevoli	~	1,45	1,45	1,25	
Azioni variabili	favorevoli	γQi	0,00	0,00	0,00	
	sfavorevoli		1,50	1,50	1,30	
Precompressione	favorevole	γP	0,90	1,00	1,00	
	sfavorevo-		1,00(5)	1,00(6)	1,00	
	le					
Ritiro, viscosità e cedi-	favorevole	γCe	0,00	0,00	0,00	
menti non imposti appo-	sfavorevo-	d	1,20	1,20	1,00	
sitamente	le					

[🕮] Equilibrio che non coinvolga i parametri di deformabilità e resistenza del terreno; altrimenti si applicano i valori della colonna 🛛 A2.

Tabella 4 - Coefficienti parziali per i parametri geotecnici del terreno – Tabella 6.2.II del DM 17.1.2018

Parametro	Grandezza alla quale applicare il coefficiente parziale	$\begin{array}{c} \text{Coefficiente} \\ \text{parziale} \ \gamma_M \end{array}$	(M1)	(M2)
Tangente dell'angolo di resi- stenza al taglio	$tan{\phi'}_k$	$\gamma_{\phi'}$	1,0	1,25
Coesione efficace	c′ _k	$\gamma_{c'}$	1,0	1,25
Resistenza non drenata	c _{uk}	γ_{cu}	1,0	1,4
Peso dell'unità di volume	γγ	γ_{γ}	1,0	1,0

Tabella 3: Coefficienti parziali per le resistenze caratteristiche – Tabella 6.4.II del DM 14.1.2008

Resistenza	Simbolo	Pali infissi	Pali trivellati	Pali ad elica continua
	γ_{R}	(R3)	(R3)	(R3)
Base	γ _b	1,15	1,35	1,3
Laterale in compressione	$\gamma_{\rm s}$	1,15	1,15	1,15
Totale (*)	γ	1,15	1,30	1,25
Laterale in trazione	$\gamma_{\rm st}$	1,25	1,25	1,25

⁽¹⁾ da applicare alle resistenze caratteristiche dedotte dai risultati di prove di carico di progetto.

Tabella 4: Coefficienti parziali per le resistenze caratteristiche di pali soggetti a carichi trasversali – Tabella 6.4.VI del DM 17.1.2018

Coefficiente parziale (R3)							
$\gamma_T = 1.3$							

LINEA AV/AC MILANO - VENEZIA
LOTTO FUNZIONALE TRATTA AV/AC VERONA-PADOVA

NODO AV/AC DI VERONA: INGRESSO EST PONTE SUL FIUME ADIGE

/5 COMMESSA

LOTTO 20

CODIFICA DOCUMENTO
D09CL VI 01 00 005

REV.

FOGLIO 18 di 37

Relazione geotecnica di calcolo delle fondazioni 3/5

7 CRITERI DI VERIFICA

Conformemente con quanto prescritto nel par. 6.4.3.1 del DM 17.1.2018, le verifiche geotecniche devono essere effettuate con riferimento ai seguenti stati limite:

IN1A

SLU di tipo geotecnico (GEO):

- collasso per carico limite della palificata nei riguardi dei carichi assiali;
- collasso per carico limite della palificata nei riguardi dei carichi trasversali;
- collasso per carico limite di sfilamento nei riguardi dei carichi assiali di trazione.

Le verifiche a carico limite verticale dei pali vengono svolte secondo la metodologia degli stati limite ultimi, in accordo alla normativa vigente.

La verifica della capacità portante dei pali, per carichi verticali, è soddisfatta se:

$$F_{cd} \! < R_{cd}$$

essendo:

$$R_{cd} = R_k / \gamma_R$$

dove:

 F_{cd} = carico assiale di compressione di progetto;

R_{cd} = capacità portante di progetto nei confronti dei carichi assiali;

 R_k = valore caratteristico della capacità portante limite del palo.

In particolare le verifiche di capacità portante dei pali agli stati limite ultimi (SLU) vengono condotte, come anticipato nel capitolo precedente, con riferimento all'Approccio normativo 2, in accordo con il DM 17.1.2018 (cfr. §6.4.3.1) - Combinazione 1: A1 + M1 + R3, mediante il confronto dei massimi valori di sforzo normale sui pali, di compressione e di trazione, con le curve di capacità portante relative alla progressiva in esame. Il soddisfacimento della verifica consente la determinazione della lunghezza dei pali.

Per i criteri di valutazione della capacità portante di progetto R_{cd} nei confronti dei carichi assiali, esibita nelle curve di portanza, si faccia riferimento alla Relazione Geotecnica.

In aggiunta alle verifiche di portanza richieste dal DM 17.1.2018, è stata verificata la seguente relazione, in accordo con il par. 2.5.1.9.3 del 'Manuale di progettazione delle opere civili' - RFI DTC SI MA IFS 001:

$$R_{c,cal,LAT}/1,25 > N_{ag}$$

dove $R_{c,cal,LAT}$ è la resistenza laterale di calcolo e N_{ag} è il carico agente sul palo determinato per la combinazione caratteristica (rara) impiegata per le verifiche agli stati limiti di esercizio (SLE).

7.1 Metodologia di calcolo capacità portante ai carichi verticali

La portata di progetto di un palo trivellato (eseguito con completa asportazione del terreno) " Q_d " può essere espressa dalla seguente relazione:

$$Q_d = \frac{Q_{ll}}{FS_I} + \frac{Q_{bl}}{FS_B} - W'p$$

dove:

LOTTO FUNZIONALE TRATTA AV/AC VERONA-PADOVA

NODO AV/AC DI VERONA: INGRESSO EST

PONTE SUL FIUME ADIGE

Relazione geotecnica di calcolo delle fondazioni 3/5

OMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	
IN1A	20	D09CL	VI 01 00 005	Α	

FOGI IO

19 di 37

 Q_{ll} = portata laterale limite;

 Q_{bl} = portata di base limite;

W'p = peso efficace del palo (al netto del peso del terreno asportato: peso calcestruzzo-peso terreno);

 FS_L = fattore di sicurezza per la portata laterale a compressione (= $\xi_3 \cdot \gamma_s$).

 FS_B = fattore di sicurezza per la portata di base (= $\xi_3 \cdot \gamma_b$).

Portata laterale

La portata laterale limite viene valutata con la seguente relazione:

$$Q_{ll} = \pi D \sum_{i} (\tau_i h_i)$$

dove:

D = diametro palo;

 τ_i = tensione tangenziale limite nello strato i-esimo;

 h_i = spessore dello strato i-esimo.

I valori della tensione tangenziale limite sono di seguito riportati in funzione del tipo di terreno.

Depositi incoerenti

Per i depositi incoerenti, la tensione tangenziale ultima lungo il fusto del palo, in accordo ad esempio a Burland [1973], Reese & O'Neill [1988], Chen & Kulhawy [1994], O'Neill & Hassan [1994], può essere valutata con riferimento alla seguente espressione:

$$\tau i = \beta \cdot \sigma' v \leq \tau_{l,max}$$

dove:

 σ 'v = tensione verticale efficace litostatica,

 $\tau_{l,max}$ = valore massimo dell'adesione laterale limite palo-terreno (pari a 150 kPa per terreni incoerenti).

 β = coefficiente empirico β = k · tan ϕ , essendo

k = coefficiente di pressione laterale = 0.6 a compressione e 0.5 a trazione;

 ϕ = angolo di resistenza al taglio.

Depositi coesivi

Per i terreni coesivi superficiali (alluvionali), nelle condizioni di breve termine, la tensione tangenziale è stata valutata con la seguente espressione:

$$\tau i = \alpha \cdot cu \leq \tau_{l,max}$$

Dove:

cu = resistenza al taglio in condizioni non drenate

LINEA AV/AC MILANO - VENEZIA LOTTO FUNZIONALE TRATTA AV/AC VERONA-PADOVA NODO AV/AC DI VERONA: INGRESSO EST

PONTE SUL FIUME ADIGE

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 IN1A
 20
 D09CL
 VI 01 00 005
 A
 20 di 37

Relazione geotecnica di calcolo delle fondazioni 3/5

 α = parametro empirico assunto come da Indicazione AGI:

 $\alpha = 0.90$ per cu ≤ 25 kPa;

 $\alpha = 0.80$ per $25 \le cu \le 50$ kPa;

 $\alpha = 0.60$ per $50 \le cu \le 75$ kPa;

 $\alpha = 0.40$ per $cu \ge 75$ kPa.

 $\tau_{l,max}$ = valore massimo dell'adesione laterale limite palo-terreno (pari a 100 kPa per terreni coesivi alluvionali).

Portata di base

Per la valutazione della portata di base limite si fa riferimento alla seguente espressione:

$$Q_{bl} = A_p q_{bl}$$

dove:

 A_p = area della base del palo;

 q_{bl} = portata limite unitaria di base.

Depositi incoerenti

Nei terreni incoerenti, la resistenza unitaria limite di base associabile a cedimenti compresi tra 6% - 10% del diametro del palo, viene valutata con la relazione di Berezantzev (1965) :

$$qb = Nq* \cdot \sigma'v \le qb, lim$$

essendo:

 $\sigma'v$ = tensione verticale efficace;

Nq* =coefficiente funzione dell'angolo di resistenza al taglio del terreno e del rapporto tra lunghezza e diametro del palo. L'angolo di attrito viene ridotto secondo le indicazioni di Kishida (1967).

qb,lim = pressione ultima di base massima consigliabile. Ade esempio si può far riferimento a quanto indicato da Gwidzala,1984, vedasi seguente tabella.

Tabella 5 - Valori di qb,lim secondo Gwizdala (1984)

	qb,lim (kPa)
GHIAIE	7300
SABBIE	5800
SABBIE LIMOSE	4300

LOTTO FUNZIONALE TRATTA AV/AC VERONA-PADOVA

NODO AV/AC DI VERONA: INGRESSO EST PONTE SUL FIUME ADIGE

ONTE SUL FIUNE ADIGE

Relazione geotecnica di calcolo delle fondazioni 3/5

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 IN1A
 20
 D09CL
 VI 01 00 005
 A
 21 di 37

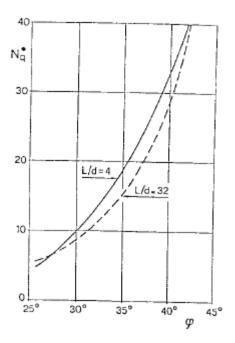


Figura 5 - Coefficiente Nq* corrispondente all'insorgere delle deformazioni plastiche alla base del palo

Depositi coesivi

La portata di base limite nei terreni coesivi viene valutata con la seguente relazione:

$$qb = 9 \cdot cu + \sigma v \le qb, lim$$

dove:

cu = resistenza al taglio non drenata [kPa];

 $\sigma v = tensione totale verticale;$

qb,lim = pressione ultima di base massima consigliabile (3800 kN in accordo a Engling e Reese, 1974).

Nella condizione di terreni stratificati, costituiti da alternanze di strati di ghiaie e argille, i criteri di valutazione delle portate laterali limite rimangono analoghi a quelli descritti precedentemente ma la portata di base negli strati sabbioso-ghiaiosi può risultare penalizzata rispetto a quella caratteristica dello strato supposto omogeneo, in accordo a quanto presentato in Figura 6. In pratica, nel caso di terreno stratificato, la mobilitazione dell'intera resistenza di base disponibile è subordinato alla condizione che il palo penetri nello strato portante per almeno 3 diametri; viceversa man mano che la base del palo si avvicina ad uno strato inferiore di minore resistenza, la resistenza decresce fino ad uguagliare, all'interfaccia, il valore che compete alla portata limite unitaria minore tra le due.

LOTTO FUNZIONALE TRATTA AV/AC VERONA-PADOVA

NODO AV/AC DI VERONA: INGRESSO EST PONTE SUL FIUME ADIGE

Relazione geotecnica di calcolo delle fondazioni 3/5

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
IN1A	20	D09CL	VI 01 00 005	Α	22 di 37

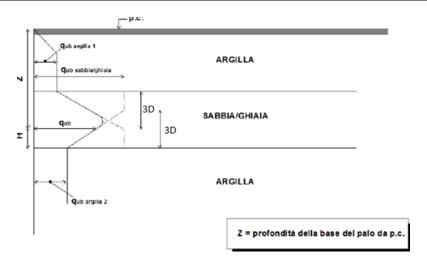


Figura 6 — Portata limite di base in terreni stratificati.

7.2 Metodologia di calcolo capacità portante ai carichi trasversali

Per quanto riguarda la verifica a carico limite orizzontale dei pali, questa è stata condotta tramite il metodo di Broms, 1964, secondo il quale, per pali lunghi (ipotesi che si configura per tutti i pali in esame), in terreni incoerenti sotto falda, non liberi di ruotare in testa, vale la seguente formulazione:

$$H=k_{p}\gamma d^{3}\sqrt{3(3.676\,\frac{M_{\gamma}}{k_{p}\gamma d^{4}})^{2}}$$

In cui:

H = carico limite orizzontale del palo

 K_p = coefficiente di spinta passiva

D = diametro del palo

L = lunghezza del palo

M_y = momenro di plasticizzazione del palo

Il valore di H, ridotto per i coefficienti di normativa come riportato di seguito, dovrà essere confrontato con il massimo valore agente in testa palo dalle combinazioni SLU-SLV (Vpd):

$$H \lim = \frac{H}{\xi \cdot \gamma_T} \ge Vpd$$

Con ξ funzione del numero di verticali indagate per l'opera in esame (1.70 corrispondente a una verticale di indagine) e γ_T secondo l'approccio considerato.

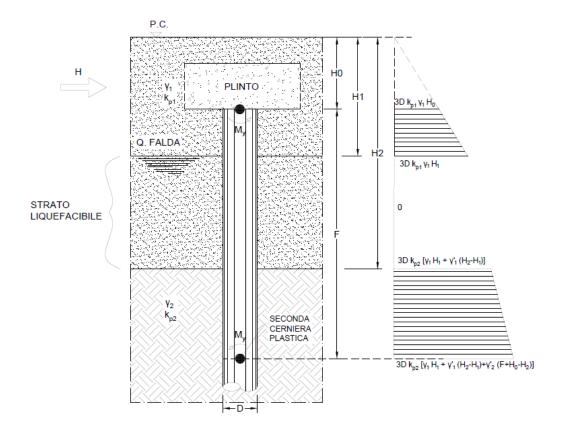
In analogia con il carico limite verticale, per il carico limite orizzontale si considera l'Approccio 2, pertanto il coefficiente γ_T sarà pari a 1.3.

Si è tenuto inoltre in conto di un fattore 0.8 riduttivo del valore limite Hlim, pari all'efficienza della palificata.

A vantaggio di sicurezza si trascura il contributo della resistenza offerta dal terreno intorno al plinto.

L'approccio riportato risulta pertanto cautelativo.

La seguente Figura mostra lo schema di calcolo considerato.


LINEA AV/AC MILANO - VENEZIA LOTTO FUNZIONALE TRATTA AV/AC VERONA-PADOVA

NODO AV/AC DI VERONA: INGRESSO EST PONTE SUL FIUME ADIGE

Relazione geotecnica di calcolo delle fondazioni 3/5

COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO

IN1A 20 D09CL VI 01 00 005 A 23 di 37

Considerando che si crei una prima cerniera plastica in testa al palo ed una seconda alla profondità F (palo lungo non libero di ruotare in testa), si scrivono le equazioni di equilibrio alla traslazione e di equilibrio alla rotazione intorno alla testa del palo. In tal modo si ricavano le due incognite F ed H, ovvero la profondità della seconda cerniera plastica e la forza massima orizzontale del sistema palo-terreno.

LINEA AV/AC MILANO - VENEZIA

LOTTO FUNZIONALE TRATTA AV/AC VERONA-PADOVA

NODO AV/AC DI VERONA: INGRESSO EST

PONTE SUL FIUME ADIGE

Relazione geotecnica di calcolo delle fondazioni 3/5 COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO IN1A 20 D09CL VI 01 00 0005 A 24 di 37

8 SOLLECITAZIONI A ESTRADOSSO PLINTO

Si riportano di seguito le sollecitazioni elementari desunte dal modello globale FEM, relative al nodo 9169.

Si specifica che:

- F1 è la reazione in direzione x;
- F2 è la reazione in direzione y;
- F3 è la reazione in direzione z;
- M1 è il momento intorno all'asse x;
- M2 è il momento intorno all'asse y;
- M3 è il momento intorno all'asse z.

Nodo	Carica	Coso	Comb	F1	F2	F3	M1	M2	M3
Nodo	Carico	Caso	Comb	KN	KN	KN	KN-m	KN-m	KN-m
9169	FASE 1	LinStatic	/	5303	0	53693	0	-19679	0
9169	FASE 2	LinStatic	/	671	0	2783	0	-4004	0
9169	BALLAST	LinStatic	/	1088	0	4626	0	-7291	0
9169	RITIRO	LinStatic	/	3250	0	-531	0	28418	0
9169	CED. PILE PARI	LinStatic	/	-448	0	1441	0	5150	0
9169	CED. PILE DISPARI	LinStatic	/	735	0	-3852	0	-40330	0
9169	BALLAST SU SPALLE	LinStatic	/	-17	0	4	0	-120	0
9169	TERRENO SU SPALLE	LinStatic	/	-64	0	14	0	-442	0

Node	Cavias	Cons	Comb	F1	F2	F3	M1	M2	M3
Nodo	Carico	Caso	Comb	KN	KN	KN	KN-m	KN-m	KN-m
9169	VENTO	Combination	Max F1	4	657	7	-6226	7	890
9169	VENTO	Combination	Min F1	-3	-657	-7	6226	-1	-890
9169	VENTO	Combination	Max F2	0	757	3	-6994	-3	912
9169	VENTO	Combination	Min F2	0	-757	3	6994	-3	-912
9169	VENTO	Combination	Max F3	4	-657	7	6226	7	-890
9169	VENTO	Combination	Min F3	-3	657	-7	-6226	-1	890
9169	VENTO	Combination	Max M1	0	-757	3	6994	-3	-912
9169	VENTO	Combination	Min M1	0	757	3	-6994	-3	912
9169	VENTO	Combination	Max M2	4	657	7	-6226	7	890
9169	VENTO	Combination	Min M2	0	-757	3	6994	-3	-912
9169	VENTO	Combination	Max M3	0	757	3	-6994	-3	912
9169	VENTO	Combination	Min M3	0	-757	3	6994	-3	-912

LOTTO FUNZIONALE TRATTA AV/AC VERONA-PADOVA

NODO AV/AC DI VERONA: INGRESSO EST

PONTE SUL FIUME ADIGE

Relazione geotecnica di calcolo delle fondazioni 3/5

COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO IN1A D09CL VI 01 00 005 25 di 37 20 Α

Nodo	Carica	Coso	Comb	F1	F2	F3	M1	M2	M3
Nodo	Carico	Caso	Comb	KN	KN	KN	KN-m	KN-m	KN-m
9169	TERMICHE	Combination	Max F1	5241	0	-693	0	47319	1
9169	TERMICHE	Combination	Min F1	-5241	0	693	0	-47319	-1
9169	TERMICHE	Combination	Max F2	-5241	0	693	0	-47319	-1
9169	TERMICHE	Combination	Min F2	5241	0	-693	0	47319	1
9169	TERMICHE	Combination	Max F3	-4418	0	733	0	-38634	0
9169	TERMICHE	Combination	Min F3	4418	0	-733	0	38634	0
9169	TERMICHE	Combination	Max M1	5241	0	-693	0	47319	1
9169	TERMICHE	Combination	Min M1	-5241	0	693	0	-47319	-1
9169	TERMICHE	Combination	Max M2	5241	0	-693	0	47319	1
9169	TERMICHE	Combination	Min M2	-5241	0	693	0	-47319	-1
9169	TERMICHE	Combination	Max M3	5241	0	-693	0	47319	1
9169	TERMICHE	Combination	Min M3	-5241	0	693	0	-47319	-1

Nada	Cavias	Cons	Camala	F1	F2	F3	M1	M2	M3
Nodo	Carico	Caso	Comb	KN	KN	KN	KN-m	KN-m	KN-m
9169	CARICHI MOBILI	Combination	Max F1	5036	131	3218	1812	2618	1622
9169	CARICHI MOBILI	Combination	Min F1	2831	218	4881	2772	667	909
9169	CARICHI MOBILI	Combination	Max F2	2569	465	3898	4278	2811	72
9169	CARICHI MOBILI	Combination	Min F2	4136	375	5797	4299	20530	665
9169	CARICHI MOBILI	Combination	Max F3	3794	131	9156	3336	2614	3192
9169	CARICHI MOBILI	Combination	Min F3	1616	40	141	385	9426	591
9169	CARICHI MOBILI	Combination	Max M1	3006	260	4959	13088	11208	2135
9169	CARICHI MOBILI	Combination	Min M1	124	353	4906	14069	9017	4003
9169	CARICHI MOBILI	Combination	Max M2	542	193	3737	3157	25702	1357
9169	CARICHI MOBILI	Combination	Min M2	500	9	7253	1026	42856	3765
9169	CARICHI MOBILI	Combination	Max M3	2284	152	6565	2565	2537	8094
9169	CARICHI MOBILI	Combination	Min M3	212	179	2597	666	14705	7158

Nodo	Carioo	Coso	Comb	F1	F2	F3	M1	M2	M3
Nodo	Carico	Caso	Comb	KN	KN	KN	KN-m	KN-m	KN-m
9169	SISMA SLV LUNGO X	LinRespSpec	Max	11891	8	3377	47	96924	30
9169	SISMA SLV LUNGO Y	LinRespSpec	Max	24	14421	17	155137	117	105101
9169	SISMA SI V LUNGO 7	LinResnSpec	Max	4534	3	6623	16	29345	4

LINEA AV/AC MILANO - VENEZIA LOTTO FUNZIONALE TRATTA AV/AC VERONA-PADOVA NODO AV/AC DI VERONA: INGRESSO EST PONTE SUL FIUME ADIGE

Relazione geotecnica di calcolo delle fondazioni 3/5 COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO IN1A 20 D09CL VI 01 00 0005 A 26 di 37

I suddetti valori, oppurtamente combinati con i coefficienti risportati al cap.6, conducono ai seguenti stati di sollecitazione:

Tabella 6 - Sollecitazioni elementi con coefficienti moltiplicativi

			FX	FY	FZ	MX	MY	MZ
	coeff. A1		KN	KN	KN	KN-m	KN-m	KN-m
1.3		PERMANENTI	7978	0	76262	0	32568	0
	1.35	PNS	1445	0	6250	0	10005	0
SLU	1.35	RITIRO+CEDIM	4387	0	-717	0	38364	1
	1.45	TRAFFICO	180	671	1167	6644	62720	899
	1.5	ACCIDENTALI	7078	681	996	6295	63883	822
	1	PERMANENTI	5910	0	56490	0	24124	0
	1	PNS	1071	0	4629	0	7411	0
SLER	1	RITIRO+CEDIM	3250	0	-531	0	28418	0
	1	TRAFFICO	124	463	805	4582	43255	620
	1	ACCIDENTALI	4719	454	664	4197	42589	548
	1	PERMANENTI	5910	0	56490	0	24124	0
	1	PNS	1071	0	4629	0	7411	0
SLEF	1	RITIRO+CEDIM	3250	0	-531	0	28418	0
	0.8	TRAFFICO	99	370	644	3665	34604	496
	0	ACCIDENTALI	0	0	0	0	0	0
	1	PERMANENTI	5910	0	56490	0	24124	0
	1	PNS	1071	0	4629	0	7411	0
SLEQP	1	RITIRO+CEDIM	3250	0	-531	0	28418	0
	0.2	TRAFFICO	25	93	161	916	8651	124
	0	ACCIDENTALI	0	0	0	0	0	0
	1	PERMANENTI	5910	0	56490	0	24124	0
	1	PNS	1071	0	4629	0	7411	0
	1	RITIRO+CEDIM	3250	0	-531	0	28418	0
SISMAX	0.2	TRAFFICO	25	93	161	916	8651	124
	0	ACCIDENTALI	0	0	0	0	0	0
	1	SISMA X	13259	4335	5369	46593	105763	31561
	0	SISMA Y	0	0	0	0	0	0
		SISMA Z	0	0	0	0	0	0
		PERMANENTI	5910	0	56490	0	24124	0
		PNS	1071	0	4629	0	7411	0
	1		3250	0	-531	0	28418	0
SISMAY		TRAFFICO	25	93	161	916	8651	124
		ACCIDENTALI	0	0	0	0	0	0
		SISMA X	0	0	0	0	0	0
		SISMA Y	4952	14424	3018	155156	37998	105111
		SISMA Z	0	0	0	0	0	0
SISMAZ	1	PERMANENTI	5910	0	56490	0	24124	0

LINEA AV/AC MILANO - VENEZIA LOTTO FUNZIONALE TRATTA AV/AC VERONA-PADOVA NODO AV/AC DI VERONA: INGRESSO EST

PONTE SUL FIUME ADIGE

Relazione geotecnica di calcolo delle fondazioni 3/5

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 IN1A
 20
 D09CL
 VI 01 00 005
 A
 27 di 37

		FX	FY	FZ	MX	MY	MZ
coeff. A1		KN	KN	KN	KN-m	KN-m	KN-m
1	PNS	1071	0	4629	0	7411	0
1	RITIRO+CEDIM	3250	0	-531	0	28418	0
0.2	TRAFFICO	25	93	161	916	8651	124
0	ACCIDENTALI	0	0	0	0	0	0
0	SISMA X	0	0	0	0	0	0
0	SISMA Y	0	0	0	0	0	0
1	SISMA Z	8108	4331	7642	46571	58457	31543

Tabella 7 - Sintesi azioni intradosso plinto

	FX	FY	FZ	MX	MY	MZ
	KN	KN	KN	KN-m	KN-m	KN-m
SLU	21069	1353	83957	12939	207540	1722
SLER	15073	917	62057	8779	145797	1169
SLEF	10329	370	61232	3666	94557	497
SLEQP	10255	93	60749	917	68604	125
SISMAX	23513	4428	66119	47510	174367	31686
SISMAY	15206	14517	63767	156073	106602	105236
SISMAZ	18363	4424	68391	47488	127061	31668

9 SOLLECITAZIONI TESTA PALO

Si riportano di seguito i dati inerenti la geometria e i pesi di pilnto e rinterro considerati sulla fondazione.

GEOMETRIA PLINTO							
В	m	25					
L	m	18					
Н	m	3.5					
A PILA	m²	259.44					
γ TERRENO,rinterro	kN/m³	19					
h rinterro	m	3.5					
N _{PLINTO}	kN	39375.0					
N _{TERRENO}	kN	12672.2					

Le sollecitazioni a intradosso del plinto diventano dunque:

SOLLECITAZIONI AD INTRADOSSO(COMPRESO PESO PLINTO E TERR)									
LC	N	Tx(LONG)	Ty(TRSV)	Mx	Му				
	kN	kN	kN	kNm	kNm				
SLU	151618	21069	1353	17675	281282				
SISMAX	118166	24814	8766	78190	261217				
SISMAY	115814	19544	15818	211437	175005				

Adottando un criterio di ripartizione rigida delle sollecitazioni sulla palificata, si ottiene per la condizione peggiore:

Χ	Υ
-2.25	-6.75
-6.75	-6.75
-11.25	-6.75
2.25	-6.75
6.75	-6.75
11.25	-6.75
-2.25	-2.25
-6.75	-2.25
-11.25	-2.25
2.25	-2.25
6.75	-2.25
11.25	-2.25
-2.25	2.25
-6.75	2.25
-11.25	2.25
2.25	2.25
6.75	2.25
11.25	2.25
-2.25	6.75
-6.75	6.75
-11.25	6.75
2.25	6.75
6.75	6.75
11.25	6.75

Figura 7 - Schema palificata

LINEA AV/AC MILANO - VENEZIA LOTTO FUNZIONALE TRATTA AV/AC VERONA-PADOVA NODO AV/AC DI VERONA: INGRESSO EST

PONTE SUL FIUME ADIGE

Relazione geotecnica di calcolo delle fondazioni 3/5

COMMESSA LOTTO CODIFICA DOCUMENTO REV. FOGLIO

IN1A 20 D09CL VI 01 00 005 A 29 di 37

Le sollecitazioni testa palo per la combinazione dimensionante risultano:

Comb.	N	Тх	Ту	Tris	Mx	My
	kN	kN	kN	kN	kNm	kNm
SISMAY	11890.5	659.1	814.3	1047.6	0.0	0.0

10 VERIFICHE GEOTECNICHE

Si riportano di seguito le verifiche geotecniche relative al sistema di fondazione della pila-spalla (Milano) del viadotto in esame, eseguite secondo i criteri esibiti nei precedenti capitoli, conformemente alla normativa vigente.

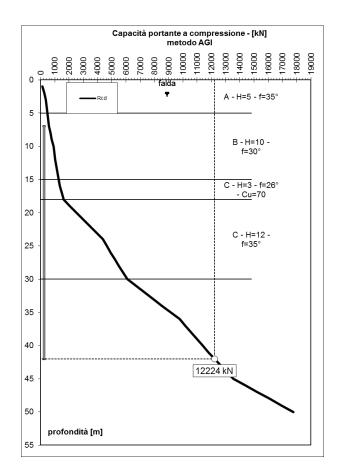
Per ciascuna delle verifiche geotecniche, si riporta la sintesi delle sollecitazioni di controllo desunte dalla combinazione più gravosa per la verifica in esame.

Si riportano di seguito in forma tabellare, le seguenti verifiche. Nell'ordine:

- Verifica a carico limite della palificata nei riguardi dei carichi assiali di compressione e trazione (SLU);
- Verifica del rapporto tra la resistenza laterale del palo e il carico assiale in combinazione caratteristica (SLE);
- Verifica a carico limite della palificata nei riguardi dei carichi trasversali.

	VERIFICHE DI CAPACITA' PORTANTE VERTICALE							
DATI SISTEMA DI FO	NDAZIONE							
D _{pali}	1500	mm	Diametro pali					
n _{pali}	24	-	Numero pali					
L _{pali}	35	m	Lunghezza pali					
SFORZI NEI PALI SLI	J							
N _{min}	11890	kN	Massimo sforzo normale di compressione sui pali					
N _{max}	-	kN	Massimo sforzo normale di trazione sui pali					
Comb. N _{min}	SISY	-	Combinazione associata al massimo sforzo di compressione sui pali					
Comb. N _{max}	SISY	-	Combinazione associata al massimo sforzo di trazione sui pali					
RESISTENZE								
Q _{d,c}	12224	kN	Portata di progetto in compressione (in valore assoluto)					
Q _{d,t}	6055	kN	Portata di progetto in trazione					
VERIFICA DI PORTA	NZA VERTICALE							
$FS,c = Q_{d,c}/N_{min} > 1$	1.03	-	Fattore di sicurezza carico limite a compressione					
$FS,t = Q_{d,t}/N_{max} > 1$	-	-	Fattore di sicurezza carico limite a trazione					

VERIFICHE RESISTENZA LATERALE PALO (par.2.5.1.9.3 - Manuale RFI)								
DATI SISTEMA DI FO	DATI SISTEMA DI FONDAZIONE							
D _{pali}	1500	mm	Diametro pali					
n _{pali}	24	-	Numero pali					
L _{pali}	35	m	Lunghezza pali					
SFORZI NEI PALI SLE	≣							
N _{min}	9086	kN	Massimo sforzo normale di compressione sui pali					
Comb. N _{min}	SLER	-	Combinazione associata al massimo sforzo di compressione sui pali					
RESISTENZE								
Q _{II,k}	11832	kN	Resistenza laterale di calcolo (in valore assoluto)					
VERIFICA RESISTEN	VERIFICA RESISTENZA LATERALE RFI							
$FS = Q_{II,k}/N_{min} > 1,25$	1.30	-	Fattore di sicurezza carico limite a compressione					



LINEA AV/AC MILANO - VENEZIA LOTTO FUNZIONALE TRATTA AV/AC VERONA-PADOVA NODO AV/AC DI VERONA: INGRESSO EST PONTE SUL FIUME ADIGE

Relazione geotecnica di calcolo delle fondazioni 3/5

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
IN1A	20	D09CL	VI 01 00 005	Α	31 di 37

Caratteristiche del palo		
Diametro	1.5	m
Area	1.77	m
Perimetro	4.71	m
Profondità infissione	7	m
Lunghezza palo	35	m
Lunghezza infissione	42	m
L/D	23.3	
N verifica	11890	kN

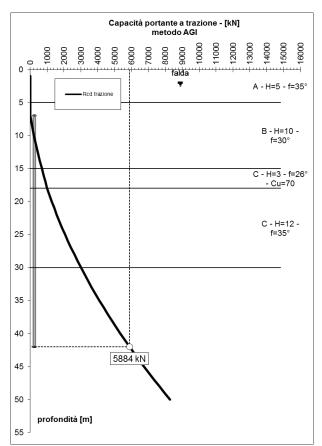


Figura 8 - Curve di portanza in compressione trazione

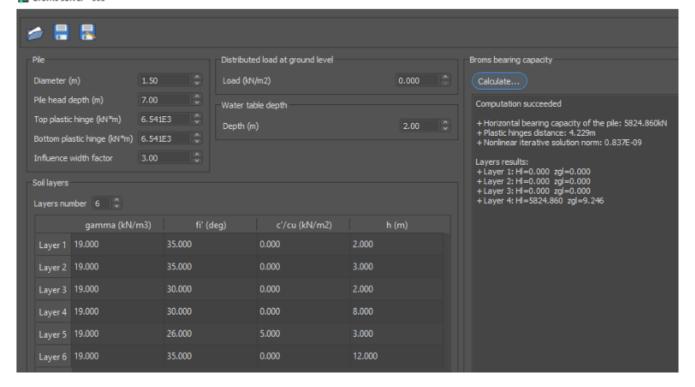
LOTTO FUNZIONALE TRATTA AV/AC VERONA-PADOVA

NODO AV/AC DI VERONA: INGRESSO EST

PONTE SUL FIUME ADIGE

Relazione geotecnica di calcolo delle fondazioni 3/5

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO


 IN1A
 20
 D09CL
 VI 01 00 005
 A
 32 di 37

VERIFICHE DI CAPACITA' PORTANTE ORIZZONTALE DI PALI CON ROTAZIONE IN TESTA IMPEDITA

coefficienti parziali			А		М	R
Metodo di calcolo		permanenti γ _G	variabili γο	γ_{ϕ}	γт	
	A1+M1+R1	0	1.30	1.50	1.00	1.00
SLU	A2+M1+R2	0	1.00	1.30	1.00	1.60
IS	A1+M1+R3	0	1.30	1.50	1.00	1.30
	SISMA	•	1.00	1.00	1.00	1.30
DM88		0	1.00	1.00	1.00	1.00
definiti dal p	orogettista	0	1.30	1.50	1.25	1.00

n	1 •	2	3 (4	5	7	≥10 ○	T.A.	prog.
ξ3	1.70	1.65	1.60	1.55	1.50	1.45	1.40	1.00	1.40
ξ4	1.70	1.55	1.48	1.42	1.34	1.28	1.21	1.00	1.40

Broms solver - 005

Fd 1047.6 kN

 $\begin{array}{lll} Hd_cal & 5825 & kN \\ Hd = Hd_cal/\xi * \gamma_T & 2636 & kN \\ E \ (efficienza \ palificata) & 0.80 & - \\ Hd,E = Hd \ x \ E & 2109 & kN \end{array}$

FS 2.01

LOTTO FUNZIONALE TRATTA AV/AC VERONA-PADOVA

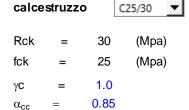
NODO AV/AC DI VERONA: INGRESSO EST

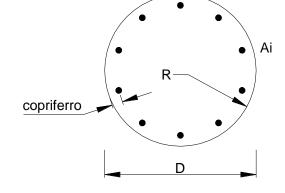
PONTE SUL FIUME ADIGE

Relazione geotecnica di calcolo delle fondazioni 3/5

 COMMESSA
 LOTTO
 CODIFICA
 DOCUMENTO
 REV.
 FOGLIO

 IN1A
 20
 D09CL
 VI 01 00 005
 A
 33 di 37


Calcolo del momento di plasticizzazione di una sezione circolare


Diametro = 1500 (mm)

Raggio = 750 (mm)

Sforzo Normale = 0 (kN)

Caratteristiche dei Materiali

fcd = α_{cc} fck / γ c = 21.25 (Mpa)

Acciaio

fyk = 450 (Mpa)

 $\gamma s = 1$

fyd = fyk / γ s = 450.0 (Mpa)

= 206000 (Mpa)

 $\epsilon_{y \, s} = 0.218\%$ $\epsilon_{u k} = 10.000\%$

Armature

numero		diametro (mm)	area (mm²)	copriferro (mm)
32	<u>ф</u>	32	25736	88
0	φ φ	32	0	80
0	φ φ	0	0	30

Calcolo

Momento di Plasticizzazione

My = 6541.4 (kN m)

Inserisci

11 VERIFICHE DEL PLINTO

Si definisce "alto" un plinto per il quale la distanza tra l'asse del palo più sollecitato e il bordo del muro frontale o della pila sia minore o uguale all'altezza del plinto stesso.

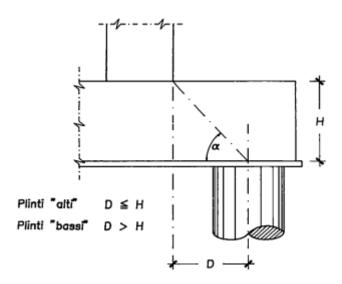


Figura 9 Schema per la definitinizione del tipo di fondazione

Per i plinti alti, il calcolo viene condtto ipotizzando un modello a traliccio spaziale con tiranti disposti secondo le congiungenti più corte tra pali e puntoni tra le teste dei pali e il bordo esterno del muro frontale.

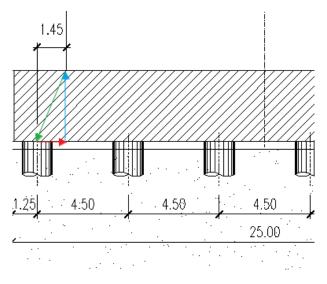


Figura 10 sezione plinto pila-spalla Milano

Si inseriscono Ø26/10 all'intradosso e Ø20/10 all'estradosso del plinto.

La verifica viene effettuata considerando il momento esercitato dall'azione N del palo anteriore più sollecitato rispetto al muro frontale:

N=11891 kN

Tale forza ha una eccentricità rispetto al filo anteriore del muro frontale pari a:

e = 1.45m

LINEA AV/AC MILANO - VENEZIA LOTTO FUNZIONALE TRATTA AV/AC VERONA-PADOVA

NODO AV/AC DI VERONA: INGRESSO EST **PONTE SUL FIUME ADIGE**

Relazione geotecnica di calcolo delle fondazioni 3/5

OMMESSA	LOTTO	CODIFICA
IN1A	20	D09CL

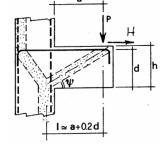
DOCUMENTO VI 01 00 005

FOGLIO RFV. 35 di 37 Α

La larghezza collaborante è stata valutata in corrispondenza del filo anteriore del muro frontale, considerando il valore minore tra la diffusione a 45° a partire dal piano medio del palo e l'interasse dei pali.

$$b_{collab}\!\!=\!4.40$$

Le sollecitazioni di verifica si ottengono sottraendo alle sollecitazioni date dall'azione N del palo anteriore più sollecitato le sollecitazioni indotte dal peso proprio della striscia di larghezza unitaria di platea davanti al muro di fondazione, con Hp spessore dela platea:


$$M_{ed} = N^*e/b_{collab}$$
. - $\gamma_{cls}^*H_p^*Sp2/2$

$$V_{ed} = N/b_{collab}$$
 - $\gamma_{cls} * H_p * S_p$

Si riportano le sollecitazioni di verifica per una fascia di un metro.

 $V_{ed}=2466 \text{ kN/m}$

 $M_{ed}\!\!=\!\!3600\;kNm/m$

Meccanismo resistente costituito da tiranti e puntoni

Valutazione del comportamento a mensola tozza

Distanza di applicazione carico:	1.45	m
Spessore plinto:	3.50	m

Caratteristiche geometriche sezione

curations decontentions serions			
Larghezza mensola	b	1000	mm
Altezza mensola	h	3500	mm
Copriferro tirante principale all'asse	С	79	mm
Altezza utile	d=h-c	3421	mm
Distanza di applicazione carico	a	1450	mm
Materiali			
Resistenza di calcolo snervamento acciaio	f_{ywd}	391.3	MPa
Resistenza caratteristica Cubica Cls	R_{ck}	30.00	MPa
Resistenza di calcolo Cilindrica Cls	f_{cd} =0.85 xf_{ck}/γ_c	14.11	MPa
Sollecitazioni agenti			
Sollecitazione verticale agente di calcolo	P_{Ed}	2466	kN
Armatura tirante principale			
Diametro armatura corrente prinicpale	Øı	26	mm
Numero di barre di armatura	n	10	
Area totale di acciaio tirante principale	A_{sl}	5309	mm^2

LINEA AV/AC MILANO - VENEZIA LOTTO FUNZIONALE TRATTA AV/AC VERONA-PADOVA NODO AV/AC DI VERONA: INGRESSO EST

PONTE SUL FIUME ADIGE

Relazione geotecnica di calcolo delle fondazioni 3/5

COMMESSA LOTTO
IN1A 20

CODIFICA D09CL DOCUMENTO VI 01 00 005 REV.

FOGLIO 36 di 37

Verifiche di resistenza

Lunghezza teorica tirante principale I 2134 mm

Parametro inclinazione I=I/(0.9d)≈ctgy 0.693

Parametro che tiene conto della staffatura c 1

Resistenza del tirante costituito dall'armatura P_{rs} 2997 kN Resistenza del puntone di cls compresso P_{rc} 13042 kN

Verifica gerarchia di resistenza (P_{RS}>P_{RC}) Esito Verifica positiva Fattore di sicurezza tirante teso FS_{acc} 1.22

Fattore di sicurezza puntone compresso FS_{CLS} 5.29

Si riporta la verifica a punzonamento della platea:

DATI PALO

2				_	
D	=	1500	mm		
Hp (piastra)	=	3500	mm		
cx (copriferro asse)	=	79	mm		
cy (copriferro asse)	=	105	mm		
dx	=	Нр-сх	II	3421	mm
dy	=	Нр-су	=	3395	mm
deff (altezza utilie media)	=	(dx+dy)/2	II	3408	mm
r	=		II	7566	mm
d1x (dist. asse colonna-bordo)	=	1500	mm		
d1y (dist. asse colonna-bordo)	=	1500	mm		
u1 (perimetro di verifica)	=	((2π((D/2)+2deff))/4)+d1x+d 1y		14885	mm

TIPOLOGIA COLONNA

UBICAZIONE	
β	

	Α
=	1.5

acciaio

MPa

MATERIALI

				<u>-</u>	
R _{ck}	=	30.00	MPa	cls	
γο	=	1.5			
f_{ck}	=	0.83xR _{ck}	=	24.9	MPa
f_{cd}	=	0.85xf _{ck} /γ _c	=	14.11	MPa
f_{ctm}	=	0.3*(fck)^2/3	=	2.56	MPa
f _{ctk}	=	0.7*fctm	=	1.79	MPa
f_{ctd}	=	f_{ctk}/γ_c	=	1.19	MPa

391.30

ARMATURE LONGITUDINALI PER FLESSIONE PRESENTI NELLA PIASTRA

\emptyset_{lx}	Ш	26	mm	diametr
Numero arm x	II	10	1/m	numero
Asix		5309	mm²/m	area ba

diametro barre X numero barre X a ml area barre X a ml

LINEA AV/AC MILANO - VENEZIA LOTTO FUNZIONALE TRATTA AV/AC VERONA-PADOVA NODO AV/AC DI VERONA: INGRESSO EST

PONTE SUL FIUME ADIGE

Relazione geotecnica di calcolo delle fondazioni 3/5

COMMESSA	LOTTO	CODIFICA	DOCUMENTO	REV.	FOGLIO
IN1A	20	D09CL	VI 01 00 005	Α	37 di 37

leffy	=	21.95	m
A _{slx}	=	116528	mm²
Ø _{ly}	=	26	mm
Numero arm y	=	10	1/m
A _{sly}	=	5309	mm²/m
leffx	=	21.95	m
A _{sly}	=	116528	mm²

larghezza efficace dir Y
acciaio X nella largh. efficace
diametro barre Y
numero barre Y a ml
area barre Ya ml
larghezza efficace dir X
acciaioY nella largh. efficace

SOLLECITAZIONE DI CALCOLO

SFORZO NORMALE PALO	V _{Ed} =	4761	kN
MOMENTO FLETTENTE RISULTANTE	My _{Ed} =	0	kNm
SFORZO NORMALE PIASTRA	N _{ed} =	0	kN

TENSIONE TANGENZIALE DI CALCOLO

	0+14 14 4+ 1		
tensione tangenziale	$v_{Ed} = \beta *Ved/(u1*d)$	0.14	MPa

ELEMENTI SENZA ARMATURA A TAGLIO

Crdc	=	0.12	$0,18/\gamma_{c}$		
k	=	1.24	$0.18/\gamma_{c} 1 + (200/d)^{1/2} \le 2$		
vmin	Ш	0.242	0.035 -	$k^{3/2} \cdot f_{ck}^{1/2}$	
$ ho_{lx}$	=	0.0016	percentuale armatura tesa X		
ριγ	=	0.0016	percentuale armatura tesaY		
ρι	=	0.0016	percentuale media geometrica		
$\sigma_{ m cp}$	=	0.0000	MPa	tensione di compressione cls	

TENSIONE TANGENZIALE LIMITE SENZA ARMATURA

	V _{Rd,c}	II	0.23	MPa	V _{min+0.15*σcp=}	0.24	MPa
					resistenza a tag	glio cls no	on
	$V_{Rd,c}$	=	0.24	MPa	armato		
Esito verifica		II	OK. Verifica a punzonamento soddisfatta				
		$V_{Rd,c}/V_{E}$					
Fattore di sicurezza FS =		d	1.72				