

INDICE

1.	INTF	RODUZIONE	1
2.	NOF	RMATIVA DI RIFERIMENTO	2
3.	COE	DICI DI CALCOLO UTILIZZATI	3
4.	CAR	RATTERIZZAZIONE GEOLOGICA, GEOTECNICA E SISMICA	4
4	.1	Caratterizzazione geologica	4
4	.2	Caratterizzazione geotecnica	4
	4.2.1	1 Caratterizzazione geotecnica per le opere di superficie	5
4	.3	Caratterizzazione sismica	6
	4.3.1	1 Caratterizzazione sismica per le opere di superficie	8
5.	DES	SCRIZIONE DEGLI INTERVENTI PREVISTI	9
5	.1	Galleria idraulica	9
	5.1.1	1 Sezione tipo SGI1	10
	5.1.2	2 Sezione tipo SGI2	11
	5.1.3	3 Sezione tipo SGI3	12
	5.1.4	4 Sezione tipo SGI4	13
	5.1.5	5 Sezione tipo SGI5	14
5	.2	Galleria di accesso al pozzo piezometrico	16
	5.2.1	1 Sezione tipo SGPz1	16
	5.2.2	2 Sezione tipo SGPz2	17
	5.2.3	3 Sezione tipo SGPz3	18
5	.3	Galleria di accesso alla centrale	19
	5.3.1	1 Sezione tipo SGC1	20
	5.3.2	2 Sezione tipo SGC2	21
	5.3.3	3 Sezione tipo SGC3	22
	5.3.4	4 Sezione tipo SGC-Imb	23
5	.4	Paratia di imbocco della galleria di accesso	24
5	.5	Materiali	25
6.	ANA	ALISI NUMERICHE	28
6	.1	Generalità	
	6.1.1	1 Modellazione gallerie	
	6.1.2	2 Modellazione paratia di imbocco della galleria di accesso	32
6	.2	Sezione tipo SGI1	
6	.3	Sezione tipo SGI2	
6	.4	Sezione tipo SGI3	

6.5	Sezione tipo SGI4	40
6.6	Sezione tipo SGPz1	42
6.7	Sezione tipo SGPz2	44
6.8	Sezione tipo SGPz3	46
6.9	Sezione tipo SGC1	48
6.10	Sezione tipo SGC2	51
6.11	Sezione tipo SGC3	53
6.12	Paratia di imbocco della galleria di accesso	55
7. VE	RIFICHE STRUTTURALI DEI SOSTEGNI	58
7.1	Approcci di calcolo	58
7.1	I.1 Verifiche dei rivestimenti delle gallerie	58
7.1	I.2 Verifiche della paratia	60
7.2	Sezione tipo SGI1	62
7.2	2.1 Verifica del rivestimento di prima fase	62
7.2	2.2 Verifica del rivestimento definitivo	63
7.3	Sezione tipo SGI2	65
7.3	3.1 Verifica del rivestimento di prima fase	65
7.3	3.2 Verifica del rivestimento definitivo	66
7.4	Sezione tipo SGI3	69
7.4	Image: 1.1 Verifica del rivestimento di prima fase	69
7.4	I.2 Verifica del rivestimento definitivo	69
7.5	Sezione tipo SGI4	72
7.5	5.1 Verifica del rivestimento di prima fase	72
7.5	5.2 Verifica del rivestimento definitivo	72
7.6	Sezione tipo SGPz1	75
7.6	6.1 Verifica del rivestimento di prima fase	75
7.7	Sezione tipo SGPz2	76
7.7	7.1 Verifica del rivestimento di prima fase	76
7.7	7.2 Verifica del rivestimento definitivo	77
7.8	Sezione tipo SGPz3	79
7.8	3.1 Verifica del rivestimento di prima fase	79
7.8	3.2 Verifica del rivestimento definitivo	79
7.9	Sezione tipo SGC1	82
7.9	O.1 Verifica del rivestimento di prima fase	82
7.10	Sezione tipo SGC2	83
7.1	10.1 Verifica del rivestimento di prima fase	83
7.1	10.2 Verifica del rivestimento definitivo	84
7.11	Sezione tipo SGC3	86
7.1	11.1 Verifica del rivestimento di prima fase	86
7.1	11.2 Verifica del rivestimento definitivo	87

GE•DES

7.12 Pa	ratie di imbocco della galleria di accesso	90
7.12.1	Verifica di stabilità globale - Analisi con il Metodo dell'Equilibrio Limite	90
7.12.2	Stabilità dell'opera (resistenza del terreno a valle)	92
7.12.3	Sfilamento di uno o più ancoraggi	92
7.12.4	Verifica della resistenza strutturale della paratia	95
7.12.5	Verifica della resistenza strutturale degli ancoraggi	99
7.12.6	Verifica della resistenza strutturale della trave di ripartizione	100
7.12.7	Controllo degli spostamenti della paratia	101

TABELLE

Tabella 4.1 - Parametri geotecnici Unità Geotecniche Tabella 4.2 - Parametri criterio di Mohr-Coulomb Tabella 4.3 - Riassunto dei dati di inputi sismico impiegati nei modelli di calcolo Tabella 6.1 - Caratteristiche geomeccaniche arenarie S. Vito poco fratturate Tabella 6.2 - Caratteristiche geomeccaniche arenarie S. Vito intensamente fratturate Tabella 6.3 - Caratteristiche geomeccaniche arenarie S. Vito intensamente fratturate Tabella 6.4 - Caratteristiche geomeccaniche arenarie S. Vito in zona di faglia Tabella 6.5 - Caratteristiche geomeccaniche arenarie S. Vito poco fratturate Tabella 6.6 - Caratteristiche geomeccaniche arenarie S. Vito intensamente fratturate Tabella 6.7 - Caratteristiche geomeccaniche arenarie S. Vito in zona di faglia Tabella 6.8 - Caratteristiche geomeccaniche arenarie S. Vito poco fratturate Tabella 6.9 - Caratteristiche geomeccaniche arenarie S. Vito intensamente fratturate Tabella 6.10 - Caratteristiche geomeccaniche arenarie S. Vito intensamente fratturate Tabella 7.1 - Coefficienti parziali delle azioni (Tabella 6.2.I NTC2018) Tabella 7.2 - Coefficienti parziali per i parametri geotecnici (Tabella 6.2.II NTC2018) Tabella 7.3 - Coefficienti parziali per le verifiche di stabilità globale (Tabella 6.8.1 NTC2018) Tabella 7.4 - Coefficienti parziali sulle resistenze (Tabella 6.5.I NTC2018) Tabella 7.5 - Analisi con il Metodo dell'Equilibrio Limite - Valori del FS minimo secondo Bishop Tabella 7.6 - Riepilogo delle spinte agenti e delle resistenze del terreno a valle Tabella 7.7 - Tabella proposta da Bustamante e Doix per la scelta del coefficiente α Tabella 7.8 - Resistenze e azioni di sfilamento dei tiranti Tabella 7.9 - Massime sollecitazioni di progetto agenti sulle paratie Tabella 7.10 - Resistenze e azioni di trazione dei tiranti Tabella 7.11 - Travi di ripartizione in acciaio della paratia - Verifiche strutturali Tabella 7.12 - Verifiche di esercizio in condizioni pre e post frana

FIGURE

Figura 1.1 - Lago Flumendosa visto dall'altopiano Sa Pruna

Figura 4.1 - Applicazione delle deformazioni di taglio sui bordi del modello per l'applicazione del Metodo delle deformazioni di taglio puro in campo libero

Figura 4.2 - Parametri adottati per la definizione dell'azione sismica

Figura 5.1 - Profilo in asse galleria (riquadro fucsia)

Figura 5.2 - Sezione tipo SGI1: geometria del cavo e interventi di sostegno

Figura 5.3 - Sezione tipo SGI2: geometria del cavo e interventi di sostegno

Figura 5.4 - Sezione tipo SGI3: geometria del cavo e interventi di sostegno

Figura 5.5 - Sezione tipo SGI4: geometria del cavo e interventi di sostegno

Figura 5.6 - Sezione tipo SGI5: geometria del cavo e interventi di sostegno, sezione trasversale

Figura 5.7 - Sezione tipo SGI5: geometria del cavo e interventi di sostegno, sezione longitudinale

Figura 5.8 - Profilo galleria (riquadro fucsia)

Figura 5.9 - Sezione tipo SGPz1: geometria del cavo e interventi di sostegno

Figura 5.10 - Sezione tipo SGPz2: geometria del cavo e interventi di sostegno

Figura 5.11 - Sezione tipo SGPz3: geometria del cavo e interventi di sostegno

Figura 5.12 - Profilo galleria (riquadro fucsia)

Figura 5.13 - Sezione tipo SGC1: geometria del cavo e interventi di sostegno

Figura 5.14 - Sezione tipo SGC2: geometria del cavo e interventi di sostegno

Figura 5.15 - Sezione tipo SGC3: geometria del cavo e interventi di sostegno

Figura 5.16 - Sezione tipo SGC-Imb: geometria del cavo e interventi di sostegno, sezione trasversale

Figura 5.17 - Sezione tipo SGC-Imb: geometria del cavo e interventi di sostegno, sezione longitudinale

Figura 5.18 - Sezione tipo della galleria di imbocco della galleria di accesso

Figura 6.1 - Sezione tipo SGI1: Geometria del modello numerico per le analisi statiche relativa lo step della fase di esercizio e particolare dell'intorno del cavo

Figura 6.2 - Sezione tipo SGI1: raggio plastico e spostamenti nella fase di esercizio (a) copertura massima, 490 m (b) copertura medio-bassa, 78 m

Figura 6.3 - Sezione tipo SGI1: spostamenti e deformata aggiuntivi relativi al solo step "sismico" (scatola di taglio) (a) copertura massima, 490 m (b) copertura medio-bassa, 78 m

Figura 6.4 - Sezione tipo SGI2: Geometria del modello numerico per le analisi statiche relativa lo step della fase di esercizio e particolare dell'intorno del cavo

Figura 6.5 - Sezione tipo SGI2: raggio plastico e spostamenti nella fase di esercizio

Figura 6.6 - Sezione tipo SGI2: spostamenti e deformata aggiuntivi relativi al solo step "sismico" (scatola di taglio)

GEODES

Figura 6.7 - Sezione tipo SGI3: Geometria del modello numerico per le analisi statiche relativa lo step della fase di esercizio e particolare dell'intorno del cavo

Figura 6.8 - Sezione tipo SGI3: raggio plastico e spostamenti nella fase di esercizio

Figura 6.9 - Sezione tipo SGI3: spostamenti e deformata aggiuntivi relativi al solo step "sismico" (scatola di taglio)

Figura 6.10 - Sezione tipo SGI4: Geometria del modello numerico per le analisi statiche relativa lo step della fase di esercizio e particolare dell'intorno del cavo

Figura 6.11 - Sezione tipo SGI4: raggio plastico e spostamenti nella fase di esercizio

Figura 6.12 - Sezione tipo SGI4: spostamenti e deformata aggiuntivi relativi al solo step "sismico" (scatola di taglio)

Figura 6.13 - Sezione tipo SGPz1: Geometria del modello numerico per le analisi statiche relativa lo step della fase di esercizio e particolare dell'intorno del cavo

Figura 6.14 - Sezione tipo SGPz1: raggio plastico e spostamenti nella fase di esercizio

Figura 6.15 - Sezione tipo SGPz1: spostamenti e deformata aggiuntivi relativi al solo step "sismico" (scatola di taglio)

Figura 6.16 - Sezione tipo SGPz2: Geometria del modello numerico per le analisi statiche relativa lo step della fase di esercizio e particolare dell'intorno del cavo

Figura 6.17 - Sezione tipo SGPz2: raggio plastico e spostamenti nella fase di esercizio

Figura 6.18 - Sezione tipo SGPz2: spostamenti e deformata aggiuntivi relativi al solo step "sismico" (scatola di taglio)

Figura 6.19 - Sezione tipo SGPz3: Geometria del modello numerico per le analisi statiche relativa lo step della fase di esercizio e particolare dell'intorno del cavo

Figura 6.20 - Sezione tipo SGPz3: raggio plastico e spostamenti nella fase di esercizio Figura 6.21 - Sezione tipo SGPz3: spostamenti e deformata aggiuntivi relativi al solo step "sismico" (scatola di taglio)

Figura 6.22 - Sezione tipo SGC1: Geometria del modello numerico per le analisi statiche relativa lo step della fase di esercizio e particolare dell'intorno del cavo

Figura 6.23 - Sezione tipo SGC1: raggio plastico e spostamenti nella fase di esercizio

Figura 6.24 - Sezione tipo SGC1: spostamenti e deformata aggiuntivi relativi al solo step "sismico" (scatola di taglio)

Figura 6.25 - Sezione tipo SGC2: Geometria del modello numerico per le analisi statiche relativa lo step della fase di esercizio e particolare dell'intorno del cavo

Figura 6.26 - Sezione tipo SGC2: raggio plastico e spostamenti nella fase di esercizio

Figura 6.27 - Sezione tipo SGC2: spostamenti e deformata aggiuntivi relativi al solo step "sismico" (scatola di taglio)

Figura 6.28 - Sezione tipo SGC3: Geometria del modello numerico per le analisi statiche relativa lo step della fase di esercizio e particolare dell'intorno del cavo

Figura 6.29 - Sezione tipo SGC3: raggio plastico e spostamenti nella fase di esercizio

Figura 6.30 - Sezione tipo SGC3: spostamenti e deformata aggiuntivi relativi al solo step "sismico" (scatola di taglio)

Figura 6.31 - Stage di calcolo del modello ParatiePlus

GE DES

Figura 7.1 - Sezione tipo SGI1: Verifiche di pressoflessione per il rivestimento di prima fase (a) sezione con copertura massima (b) sezione con copertura medio-bassa

Figura 7.2 - Sezione tipo SGI1: verifica a trazione per la chiodatura (a) sezione con copertura massima (b) sezione con copertura medio-bassa

Figura 7.3 - Sezione tipo SGI1: Verifiche di pressoflessione per il rivestimento definitivo (a) sezione con copertura massima (b) sezione con copertura medio-bassa

Figura 7.4 - Sezione tipo SGI1: Sollecitazione di taglio fase di rilascio totale per la copertura massima

Figura 7.5 - Sezione tipo SGI2: Verifiche di pressoflessione per il rivestimento di prima fase (a) sezione in ammasso intensamente fratturato (b) sezione in zona di faglia

Figura 7.6 - Sezione tipo SGI2: Verifiche di pressoflessione per il rivestimento definitivo (a) sezione in ammasso intensamente fratturato (b) sezione in zona di faglia

Figura 7.7 - Sezione tipo SGI2: Sollecitazione di taglio fase di rilascio totale delle tensioni geostatiche per la zona di faglia

Figura 7.8 - Sezione tipo SGI3: Verifiche di pressoflessione per il rivestimento di prima fase

Figura 7.9 - Sezione tipo SGI3: Verifiche di pressoflessione per il rivestimento definitivo

Figura 7.10 - Sezione tipo SGI3: Sollecitazione di taglio fase di rilascio totale delle tensioni geostatiche per l'ammasso intensamente fratturato

Figura 7.11 - Sezione tipo SGI4: Verifiche di pressoflessione per il rivestimento di prima fase

Figura 7.12 - Sezione tipo SGI4: Verifiche di pressoflessione per il rivestimento definitivo (riquadro rosso: elementi arco rovescio)

Figura 7.13 - Sezione tipo SGI4: Sollecitazione di taglio fase di scarico totale delle tensioni geostatiche per l'ammasso intensamente fratturato

Figura 7.14 - Sezione tipo SGPz1: Verifiche di pressoflessione per il rivestimento di prima fase

Figura 7.15 - Sezione tipo SGPz1: verifica a trazione per la chiodatura

Figura 7.16 - Sezione tipo SGPz2: Verifiche di pressoflessione per il rivestimento di prima fase

Figura 7.17 - Sezione tipo SGPz2: Verifiche di pressoflessione per il rivestimento definitivo

Figura 7.18 - Sezione tipo SGPz2: Sollecitazione di taglio fase di esercizio

Figura 7.19 - Sezione tipo SGPz3: Verifiche di pressoflessione per il rivestimento di prima fase

Figura 7.20 - Sezione tipo SGPz3: Verifiche di pressoflessione per il rivestimento definitivo (riquadro rosso: elementi arco rovescio)

Figura 7.21 - Sezione tipo SGPz3: Sollecitazione di taglio fase di esercizio

Figura 7.22 - Sezione tipo SGC1: Verifiche di pressoflessione per il rivestimento di prima fase

Figura 7.23 - Sezione tipo SGC1: verifica a trazione per la chiodatura

GE•DES

Figura 7.24 - Sezione tipo SGC2: Verifiche di pressoflessione per il rivestimento di prima fase

Figura 7.25 - Sezione tipo SGC2: Verifiche di pressoflessione per il rivestimento definitivo Figura 7.26 - Sezione tipo SGC2: Sollecitazione di taglio fase di esercizio

Figura 7.27 - Sezione tipo SGC3: Verifiche di pressoflessione per il rivestimento di prima fase (a) sezione in ammasso intensamente fratturato (b) sezione in zona di faglia

Figura 7.28 - Sezione tipo SGC2: Verifiche di pressoflessione per il rivestimento definitivo (a) sezione in ammasso intensamente fratturato (b) sezione in zona di faglia

Figura 7.29 - Sezione tipo SGC3: Sollecitazione di taglio fase di esercizio (a) sezione in ammasso intensamente fratturato (b) sezione in zona di faglia

Figura 7.30 - Verifica di stabilità globale in campo statico

Figura 7.31 - Verifica di stabilità globale in campo pseudo-statico (k_v-)

Figura 7.32 - Verifica di stabilità globale in campo pseudo-statico (k_v +)

Figura 7.33 - Abaco proposto da Bustamante e Doix per la scelta di q_s in ammassi rocciosi fratturati

Figura 7.34 - Inviluppo del momento flettente (condizioni STAT-STR - A1+M1+R1)

Figura 7.35 - Inviluppo del momento flettente (condizioni STAT-GEO - A2+M2+R1)

Figura 7.36 - Inviluppo del taglio (condizioni STAT-STR - A1+M1+R1)

Figura 7.37 - Inviluppo del taglio (condizioni STAT-GEO - A2+M2+R1)

Figura 7.38 - Diagramma del momento flettente (condizioni SISM-STR)

Figura 7.39 - Diagramma di taglio (condizioni SISM-STR)

Figura 7.40 - Trave di ripartizione - Schema statico adottato dal software Paratie Plus

Figura 7.41 - Formulazioni per il calcolo dei momenti sollecitanti sulla trave con Paratie Plus

Figura 7.42 - Diagramma degli spostamenti in campo statico (SLE)

Figura 7.43 - Diagramma degli spostamenti in campo pseudo-statico (SLD)

1. INTRODUZIONE

La presente relazione di calcolo è stata redatta per conto di FROSIO NEXT S.r.l. nell'ambito del progetto di autorizzazione dell'impianto di accumulo idroelettrico mediante pompaggio ad alta flessibilità denominato "Taccu Sa Pruna", nel comune di Esterzili (SU) (Figura 1.1).

Figura 1.1 - Lago Flumendosa visto dall'altopiano Sa Pruna

La presente relazione ha lo scopo di illustrare la metodologia di dimensionamento e verifica, in riferimento alle condizioni sismiche, dei rivestimenti dei cavi in progetto e della paratia di imbocco della galleria di accesso. Data l'importanza dell'opera, infatti, la presenza del carico sismico è stata esplicitamente considerata, in modo semplificato, nelle simulazioni numeriche effettuate volte al predimensionamento delle opere in progetto.

Per la verifica sismica ci si riferirà a riferimenti specifici di letteratura e alle raccomandazioni AGI in quanto ad oggi la verifica sismica di manufatti sotterranei non è normata in modo specifico né a livello nazionale (il D.M. 17 gennaio 2018 contiene solo indicazioni di indirizzo generale), né internazionale.

2. NORMATIVA DI RIFERIMENTO

La normativa di riferimento per i calcoli e le verifiche è costituita da:

- D.M. 17 gennaio 2018 "Norme tecniche per le costruzioni" NTC 2018
- Circolare 11 febbraio 2019, n. 617/C.S.LL.PP.

3. CODICI DI CALCOLO UTILIZZATI

I programmi di calcolo utilizzati per le analisi e le verifiche delle sezioni tipo sono:

- Rocscience Inc. Phase2 Versione 8.024
- Midas Information Technology MidasGen 2020
- Harpaceas ParatiePlus 22.0.8

Tutti i software sono largamente impiegati a livello globale e di comprovata validità nella progettazione geotecnica e strutturale.

4. CARATTERIZZAZIONE GEOLOGICA, GEOTECNICA E SISMICA

Il presente capitolo riporta un breve inquadramento dal punto di vista geologico, geotecnico e sismico relativo alle zone in cui risultano ubicate le diverse opere in sotterraneo. Per una trattazione più esaustiva si rimanda ai seguenti elaborati:

- 1351-A-OP-R-01 Relazione geologica generale;
- 1351-A-GD-R-01 Relazione geotecnica generale.

4.1 Caratterizzazione geologica

Dalla planimetria geologica e dalle sezioni geologiche interpretative, riportate negli allegati 1 e 2 della *Relazione geologica generale,* è possibile osservare che:

- lo scavo della galleria idraulica, della galleria d'accesso, del pozzo paratoie e del pozzo piezometrico interesserà unicamente l'unità geologica delle Arenarie di San Vito;
- il pozzo all'opera di presa attraverserà, in successione dal piano campagna fino alla quota di piede della caverna idroelettrica:
 - la Formazione di Dorgali
 - la Formazione di Genna Seleole
 - la Formazione di Monte Santa Vittoria
 - o le Arenarie di San Vito per i restanti;
- le caverne che ospiteranno la centrale e la sottostazione elettrica sono interamente ricavate all'interno delle Arenarie di San Vito.

4.2 Caratterizzazione geotecnica

Le diverse unità geologiche illustrate al paragrafo precedente sono state caratterizzate da un punto di vista geotecnico al fine di determinare le caratteristiche fisiche e le proprietà meccaniche di resistenza e deformabilità utili per lo svolgimento dei calcoli di progetto.

La caratterizzazione delle diverse unità geotecniche è stata effettuata basandosi sui dati finora raccolti durante le campagne di indagini preliminari. Tali dati hanno consentito di effettuare una prima caratterizzazione dell'unità geotecnica in oggetto. La caratterizzazione è stata effettuata basandosi sui sondaggi esplorativi, sulle prove effettuate in situ e sulle prove di laboratorio effettuate sui campioni prelevati in situ. Per maggiori approfondimenti circa i dati raccolti durante la campagna prove e la determinazione dei parametri geotecnici si rimanda alla Relazione Geotecnica Generale.

Le proprietà geotecniche assunte in sede di progetto, per ciascuna unità, sono riassunte nel seguito, ovviamente tali parametri dovranno essere confermati nelle succes-

GEODES

sive fasi di progettazione da ulteriori indagini volte a caratterizzare in maniera più rigorosa i litotipi presenti in sito:

Litotipo			Dolomia	Siltiti	Metacon glomerati	Arenarie S.Vito	Arenarie S.Vito (in- tensa frattu- razione)	Arenarie S.Vito (faglia)
peso di γ kN/m ³		kN/m ³	27.5	25.6	.6 25 26		26 26	
	σ_{ci}	MPa	64	43.0	11.3 70		26	26
	GSI		65	65	60	55	40	30
	mi		9	7	5.006	13	12	12
	D		0	0	0	0	0	0
Criterio	m _b		2.579	2.006	1.2	2.606	1.408	0.985
Hoek-	S		0.0205	0.0205	0.0117	0.0067	0.0013	0.0004
Brown	а		0.502	0.502	0.503	0.504	0.511	0.522
	ν		0.25	0.25	0.3	0.25	0.3	0.35
	E _i MPa		35310	26670	5050	-	-	-
	MR		-	-	-	275	675	675
	Erm	MPa	22310	16850	2630	7860	2800	1430

Tabella 4.1 - Parametri geotecnici Unità Geotecniche

4.2.1 Caratterizzazione geotecnica per le opere di superficie

La paratia di imbocco della galleria di accesso è stata progettata utilizzando il software ParatiePlus che richiede, come parametri di resistenza del terreno, la coesione e l'angolo di attrito secondo il criterio lineare di Mohr-Coulomb. Tali parametri sono stati ottenuti linearizzando il criterio non lineare di Hoek-Brown, relativo alle Arenarie di San Vito molto fratturate, nell'intorno di uno stato tensionale compatibile con l'opera in esame.

In superficie, entro il primo metro dal piano campagna, è stata ipotizzata la presenza di detrito derivante dalle Arenarie di San Vito e avente caratteristiche più scarse.

I parametri caratteristici delle Arenarie di San Vito molto fratturate e del detrito di superficie utilizzati per le analisi sono riepilogati nella Tabella 4.2 seguente:

	γ	φ'	c'	E				
	kN/m ³	0	kPa	MPa				
Arenarie di S. Vito fratturate	26	50	200	2800				
Detrito superficiale	20	35	50	500				

Tabella 4.2 - Parametri criterio di Mohr-Coulomb

4.3 Caratterizzazione sismica

Considerata l'importanza dell'opera in progetto si è ritenuto di considerare l'azione sismica agente sulle gallerie già dalle primissime fasi del progetto. In particolare, per quanto si riferisce ai rivestimenti delle gallerie, la presenza del carico sismico è stata esplicitamente considerata nelle simulazioni numeriche effettuate.

Come illustrato nella *Relazione sulla sismica dei manufatti in sotterraneo*, cui rimanda per ulteriori dettagli, gli effetti tensionali e deformativi dovuti all'evento sismico sono stati considerati mediante una analisi semplificata di tipo pseudo-statico in cui si è applicato il *Metodo delle deformazioni di taglio puro in campo libero*. Tale metodo consente di simulare gli effetti di ovalizzazione del cavo in direzione trasversale mediante l'applicazione di uno spostamento a farfalla sui bordi del modello, come indicato in Figura 4.1.

L'entità degli spostamenti applicati è stata definita in funzione delle caratteristiche meccaniche del terreno e dello studio di pericolosità sismica effettuato per il sito in cui si intende realizzare l'opera.

Figura 4.1 - Applicazione delle deformazioni di taglio sui bordi del modello per l'applicazione del Metodo delle deformazioni di taglio puro in campo libero

Si riportano di seguito i principali parametri impiegati per la caratterizzazione sismica delle diverse opere, mentre per un approfondimento circa la loro definizione si rimanda alla *Relazione sulla sismica dei manufatti in sotterraneo*. Parametri comuni

- metodo di calcolo dell'azione pseudo-statica: Free-field shear deformation method
- vita nominale: V_N = 100 anni
- classe d'uso: classe IV $C_U=2.0$

GE DES

- periodo di riferimento per l'azione sismica: $V_R = V_N * C_U = 100*2.0 = 200$ anni
- Magnitudo prevista: <5.5
- Distanza dalla sorgente prevista: > 10 km

Le formule applicate sono di seguito riepilogate:

$$a_{max,s} = S \cdot a_{g}$$

$$a_{z,max} = C \cdot a_{max,s}$$

$$V_{s} = k \cdot a_{z,max}$$

$$\gamma_{max} = \frac{V_{s}}{C_{s}}$$

$$\Delta x_{max} = \gamma_{max} \frac{h_{modello}}{2}$$

In Tabella 4.3 sono stati riassunti i dati utilizzati per il calcolo della deformazione ed i valori dello spostamento Δx applicati ad ogni scatola di taglio.

Opera	Sez. tipo	Litotipo	cat suolo	S	a max,s	copertura (m)	С	a z,max	k	V _s (m/s)	C _s (m/s)	γmax	h/2 (m)	Δx _{max} (m)
	SGI1	Arenarie di S. Vito (medie)	A	1.0	0.0716	78 / 490	0.7	0.0501	66	0.033	2500	0.000013	20	0.000232
Galleria	SGI2	Arenarie di S. Vito (fratturate / faglia)	A	1.0	0.0716	78	0.7	0.0501	66	0.033	2500 / 1000	0.000013 / 0.000033	20	0.000232 / 0.000579
Idraulica	SGI3	Arenarie di S. Vito (fratturate)	А	1.0	0.0716	490	0.7	0.0501	66	0.033	2500	0.000013	20	0.000232
	SGI4	Arenarie di S. Vito (faglia)	A	1.0	0.0716	490	0.7	0.0501	66	0.033	1000	0.000033	20	0.000579
	SGC1	Arenarie di S. Vito (medie)	А	1.0	0.0716	78 / 490	0.7	0.0501	66	0.033	2500	0.000013	30	0.000364
Galleria ac- cesso alla	SGC2	Arenarie di S. Vito (fratturate)	A	1.0	0.0716	78	0.7	0.0501	66	0.033	2500	0.000013	30	0.000364
Centrale	SGC3	Arenarie di S. Vito (fratturate / faglia)	A	1.0	0.0716	490 / 78	0.7	0.0501	66	0.033	2500 / 1000	0.000013 / 0.000033	30	0.000364 / 0.000910
Calloria ac	SGPz1	Arenarie di S. Vito (medie)	A	1.0	0.0716	300	0.7	0.0501	66	0.033	2500	0.000013	20	0.000232
cesso al Pozzo	SGPz2	Arenarie di S. Vito (fratturate)	А	1.0	0.0716	300	0.7	0.0501	66	0.033	2500	0.000013	20	0.000232
	SGPz3	Arenarie di S. Vito (faglia)	А	1.0	0.0716	300	0.7	0.0501	66	0.033	1000	0.000033	20	0.000579

Tabella 4.3 - Riassunto dei dati di inputi sismico impiegati nei modelli di calcolo

4.3.1 Caratterizzazione sismica per le opere di superficie

Le caratteristiche adottate per la definizione dell'azione sismica, secondo la NTC 2018, per le opere di superficie come la paratia di imbocco della galleria di accesso, sono riportate nella *Relazione sulla sismica dei manufatti in sotterraneo* e riassunti nell'immagine seguente (Figura 4.2).

tudine 39.782 Longitudine 9.2	87 Esterzili (CA) Sardegna		
39° 46' 55.2'' N 9° 1	7' 13.2" E Maps		
a nominale (anni) 100 Classe d'uso IV	Cu 2 Comune		
	Cheremule	SS	
<u></u>	Chiaramonti	SS	
to Limite SLV 🔹 Cat. Sottosuolo 🗛 🔹 Cat	. topografica T1 🔹 Codrongianos	SS	
	Collinas	VS	
	Cossoine	SS	
(a) 0.0703	Cuglieri	OR	
	0.000 - 0.000 Curcuris	OR	
	Decimomannu	CA	
3.0582	Decimoputzu	CA	
	0225-0250 Desulo	NU	
	Dolianova	CA	
0.3925	Domus de Maria	CA	
	Domusnovas	CI	
	Donori	CA	
i Calcola	Dorgali	NU	
4.7	Dualchi	NU	
1	Elini	OG	
	Elmas	CA	
- with	Erula	SS	
1 La persona and a second and a second	Escalaplano	CA	
Dationante anté 200	Escolca	CA	
posizione indicat	iva (mappa INGV) Esporlatu	SS	
ax 0.0703	Esterzili	CA	

Figura 4.2 - Parametri adottati per la definizione dell'azione sismica

L'accelerazione massima attesa in sito, espressa in termini di a_g/g , è pari a 0.0703 e viene utilizzata dal software ParatiePlus per l'applicazione dell'azione sismica secondo il metodo pseudo-statico di Mononobe-Okabe.

5. DESCRIZIONE DEGLI INTERVENTI PREVISTI

Nel presente capitolo si riporta una breve descrizione delle sezioni tipologiche previste per garantire un adeguato sostegno del cavo sia in fase di esecuzione che in fase di utilizzo. Ulteriori dettagli sono riportati sugli elaborati grafici di progetto.

5.1 Galleria idraulica

La galleria idraulica, come mostrato nell'immagine seguente, ha origine al di sotto del bacino di monte ed è collegata con quest'ultimo per mezzo di un pozzo verticale che costituisce l'opera di presa dell'impianto, prosegue quindi orizzontalmente per circa 75 m prima delle caverne contenenti la centrale idroelettrica e successivamente per circa 80 m fino a giungere al pozzo piezometrico; in questo tratto è prevista una blindatura interna della condotta idraulica da realizzarsi con virole metalliche.

Dal pozzo piezometrico la galleria idraulica prosegue per un tratto di circa 960 m con pendenza intorno all'8.0% ed un secondo tratto di circa 785 m fino al raggiungimento del lago di valle con pendenza attorno all'1%. Superato il pozzo piezometrico la via d'acqua prosegue fino all'opera di presa di valle senza la blindatura metallica, pertanto la pressione esercitata dal battente idraulico durante la fase di utilizzo dovrà essere interamente assorbita dal rivestimento della galleria stessa, il quale dovrà garantire la stabilità del cavo nei confronti delle forze esterne ed interne, sia durante la fase di scavo sia durante la fase di esercizio. Nei due tratti tra il pozzo piezometrico e l'opera di presa di valle sul lago Flumendosa si prevede l'alternanza delle diverse sezioni tipo a dipendenza delle condizioni geotecniche delle arenarie di S. Vito.

Figura 5.1 - Profilo in asse galleria (riquadro fucsia)

5.1.1 Sezione tipo SGI1

La sezione tipo SGI1 (Figura 5.2) è prevista per il 35.1 % di tutta la lunghezza della galleria idraulica per tutte le coperture dove l'ammasso roccioso presenta caratteristiche mediamente buone.

Il rivestimento di prima fase sarà dunque costituito da uno strato di 20 cm di calcestruzzo proiettato fibrorinforzato di classe C30/37 con una corona di chiodi tipo GEWI B500B con interasse 1.5 m e passo 1 m lungo l'asse galleria

A completamento della galleria si procederà con il getto del rivestimento definitivo dello spessore di 50 cm da realizzarsi con calcestruzzo armato di classe C30/37.

Figura 5.2 - Sezione tipo SGI1: geometria del cavo e interventi di sostegno

5.1.2 Sezione tipo SGI2

La sezione tipo SGI2 (Figura 5.3) è prevista per 15.2% della lunghezza della galleria idraulica dove la copertura risulta medio-bassa (< 300 m) e l'ammasso roccioso si presenta più fratturato o in zona di faglia.

Il rivestimento di prima fase sarà dunque costituito da uno strato di 20 cm di calcestruzzo proiettato fibrorinforzato di classe C30/37 e centine accoppiate HEB120 con passo 1.5 m.

A completamento della galleria si procederà con il getto del rivestimento definitivo dello spessore di 50 cm da realizzarsi con calcestruzzo armato di classe C30/37.

SEZIONE TIPO GI-2 SCALA 1:50 SEZIONE TRASVERSALE

Figura 5.3 - Sezione tipo SGI2: geometria del cavo e interventi di sostegno

5.1.3 Sezione tipo SGI3

La sezione tipo SGI3 (Figura 5.4) è prevista per circa il 39.8% della lunghezza della galleria, dove si ha copertura alta (>300 m) e l'ammasso si presenta più fratturato.

Il rivestimento di prima fase sarà dunque costituito da uno strato di 20 cm di calcestruzzo proiettato fibrorinforzato di classe C30/37 e centine accoppiate HEB180 con passo 1.0 m.

A completamento della galleria si procederà con il getto del rivestimento definitivo dello spessore di 60 cm da realizzarsi con calcestruzzo armato di classe C30/37.

Figura 5.4 - Sezione tipo SGI3: geometria del cavo e interventi di sostegno

5.1.4 Sezione tipo SGI4

La sezione tipo SGI4 (Figura 5.5) è prevista per circa il 4.6% della lunghezza della galleria, dove si ha copertura alta (>300 m) e si attraversa una zona di faglia.

Sul fronte in caso di particolari venute d'acqua possono essere posti in opera alcuni drenaggi a gravità con lunghezza 15 m ed in caso di particolare instabilità possono essere previsti dei consolidamenti in VTR di lunghezza 9 m.

Il rivestimento di prima fase sarà dunque costituito da uno strato di 30 cm di calcestruzzo proiettato fibrorinforzato di classe C30/37 e centine accoppiate HEB180 con passo 1.0 m.

A completamento della galleria si procederà con il getto del rivestimento definitivo dello spessore di 60 cm in calotta e piedritti e spessore 70 cm in arco rovescio da realizzarsi con calcestruzzo armato di classe C30/37.

Figura 5.5 - Sezione tipo SGI4: geometria del cavo e interventi di sostegno

GEODES

5.1.5 Sezione tipo SGI5

Per la realizzazione dell'imbocco della galleria si prevede di impiegare la sezione tipologica SGI5 (Figura 5.6). Per garantire la stabilità del cavo in condizioni di bassissima copertura, si prevede di rinforzare il contorno di scavo, sulle reni e sulla calotta, mediante un ombrello di infilaggi, per un totale di 25, in tubi metallici iniettati con malta cementizia ed inclinati di 9°. La sezione di avanzamento avrà dunque una forma tronco-conica per quindici campi di avanzamento della lunghezza di 6 m ciascuno, per un totale di 90 m, collocati immediatamente prima dell'opera di presa di valle (Figura 5.7).

Si prevede, in caso di instabilità del fronte di scavo, la realizzazione di un preconsolidamento mediante 16 elementi in VTR iniettati con miscela cementizia. Per garantire l'impermeabilizzazione del contorno del cavo e limitare le possibili venute d'acqua in prossimità del lago si prevede l'installazione di 44 elementi in VTR iniettati con miscela cementizia su tutto il contorno di scavo.

Figura 5.6 - Sezione tipo SGI5: geometria del cavo e interventi di sostegno, sezione trasversale

GEODES

Il rivestimento di prima fase sarà dunque costituito da uno strato di 30 cm di calcestruzzo proiettato fibrorinforzato di classe C30/37 e centine accoppiate HEB180 con passo di 1.00 m.

A completamento della galleria si procederà con il getto del rivestimento definitivo dello spessore variabile, minimo 60 cm, da realizzarsi con calcestruzzo armato di classe C30/37.

Figura 5.7 - Sezione tipo SGI5: geometria del cavo e interventi di sostegno, sezione longitudinale

5.2 Galleria di accesso al pozzo piezometrico

La galleria di accesso al pozzo piezometrico si dirama con pendenza dell'8.4%, per una lunghezza di circa 850 m, dalla galleria di accesso alla caverna della centrale dopo circa 650 m dall'imbocco fino a giungere in sommità alla camera del pozzo piezometrico (Figura 5.8). Si prevede l'alternanza delle diverse sezioni a dipendenza delle condizioni geotecniche delle arenarie di S. Vito

Figura 5.8 - Profilo galleria (riquadro fucsia)

5.2.1 Sezione tipo SGPz1

La sezione tipo SGPz1 (Figura 5.9) è prevista per la maggior parte del tracciato dove le condizioni geotecniche delle Arenarie di S. Vito risultano medio-buone.

Il rivestimento sarà dunque costituito da uno strato di 30 cm di calcestruzzo proiettato fibrorinforzato di classe C30/37 con una corona di chiodi tipo GEWI B500B con interasse 1 m e passo 1 m lungo l'asse galleria.

A completamento della galleria si procederà con il getto di una platea di fondazione dello spessore di 50 cm da realizzarsi con calcestruzzo armato di classe C30/37.

Figura 5.9 - Sezione tipo SGPz1: geometria del cavo e interventi di sostegno

5.2.2 Sezione tipo SGPz2

La sezione tipo SGPz2 (Figura 5.10) è prevista dove le Arenarie di S. Vito risultano essere intensamente fratturate.

Il rivestimento di prima fase sarà dunque costituito da uno strato di 20 cm di calcestruzzo proiettato fibrorinforzato di classe C30/37 e centine accoppiate HEB180 con passo 1 m.

A completamento della galleria si procederà con il getto del rivestimento definitivo dello spessore di 60 cm da realizzarsi con calcestruzzo armato di classe C30/37.

Figura 5.10 - Sezione tipo SGPz2: geometria del cavo e interventi di sostegno

5.2.3 Sezione tipo SGPz3

La sezione tipo SGPz3 (Figura 5.11) è prevista per l'attraversamento delle zone di faglia.

In caso di particolare instabilità del fronte possono essere previsti dei consolidamenti in VTR di lunghezza 9.0 m.

Il rivestimento di prima fase sarà dunque costituito da uno strato di 30 cm di calcestruzzo proiettato fibrorinforzato di classe C30/37 e centine accoppiate HEB180 con passo 1 m.

A completamento della galleria si procederà con il getto del rivestimento definitivo dello spessore di 60 cm in calotta e piedritti e spessore 70 cm in arco rovescio da realizzarsi con calcestruzzo armato di classe C30/37.

SEZIONE TIPO GPz 2 SEZIONE TRASVERSALE

GE•DES

SEZIONE TIPO GPz 3 SEZIONE TRASVERSALE

Figura 5.11 - Sezione tipo SGPz3: geometria del cavo e interventi di sostegno

5.3 Galleria di accesso alla centrale

La galleria di accesso alla centrale ha l'imbocco al piazzale di cantiere e andamento altimetrico discendente con pendenza attorno l'8%, per una lunghezza totale di 1500 m circa (Figura 5.12).

Figura 5.12 - Profilo galleria (riquadro fucsia)

GE DES

5.3.1 Sezione tipo SGC1

La sezione tipo SGC1 (Figura 5.13) è prevista per la maggior parte del tracciato dove le condizioni geotecniche delle Arenarie di S. Vito risultano medio-buone e con qualunque copertura.

Il rivestimento sarà dunque costituito da uno strato di 30 cm di calcestruzzo proiettato fibrorinforzato di classe C30/37 con una corona di chiodi tipo GEWI B500B con interasse 1 m e passo 1 m lungo l'asse galleria.

A completamento della galleria si procederà con il getto del rivestimento definitivo su piedritti e calotta e di una platea di fondazione dello spessore di 50 cm da realizzarsi con calcestruzzo armato di classe C30/37.

Figura 5.13 - Sezione tipo SGC1: geometria del cavo e interventi di sostegno

GE DES

5.3.2 Sezione tipo SGC2

La sezione tipo SGC2 (Figura 5.14) è prevista per coperture medio-basse (<300 m) dove le Arenarie di S. Vito risultano essere intensamente fratturate.

Il rivestimento di prima fase sarà dunque costituito da uno strato di 20 cm di calcestruzzo proiettato fibrorinforzato di classe C30/37 e centine accoppiate HEB180 con passo 1 m.

A completamento della galleria si procederà con il getto del rivestimento definitivo dello spessore di 60 cm da realizzarsi con calcestruzzo armato di classe C30/37.

Figura 5.14 - Sezione tipo SGC2: geometria del cavo e interventi di sostegno

5.3.3 Sezione tipo SGC3

La sezione tipo SGC3 (Figura 5.15) è prevista per l'attraversamento delle zone di faglia per tutte le coperture e per le alte coperture dove l'ammasso si presenta intensamente fratturato.

In caso di particolare instabilità del fronte possono essere previsti dei consolidamenti in VTR di lunghezza 9 m.

Il rivestimento di prima fase sarà dunque costituito da uno strato di 30 cm di calcestruzzo proiettato fibrorinforzato di classe C30/37 e centine accoppiate HEB180 con passo 1 m.

A completamento della galleria si procederà con il getto del rivestimento definitivo dello spessore di 60 cm in calotta e piedritti e spessore 70 cm in arco rovescio, da realizzarsi con calcestruzzo armato di classe C30/37.

Figura 5.15 - Sezione tipo SGC3: geometria del cavo e interventi di sostegno

GEODES

5.3.4 Sezione tipo SGC-Imb

Per la realizzazione dell'imbocco della galleria di accesso alla centrale si prevede di impiegare la sezione tipologica SGC-Imb (Figura 5.16). Per garantire la stabilità del cavo in condizioni di bassissima copertura, si prevede di rinforzare il contorno di scavo, mediante un ombrello di tubi metallici in calotta ed una serie di chiodature sull'altezza dei piedritti.

Il rivestimento di prima fase sarà dunque costituito da uno strato di 30 cm di calcestruzzo proiettato fibrorinforzato di classe C30/37.

A completamento della galleria si procederà con il getto del rivestimento definitivo dello spessore di 50 cm, da realizzarsi con calcestruzzo armato di classe C30/37.

Figura 5.16 - Sezione tipo SGC-Imb: geometria del cavo e interventi di sostegno, sezione trasversale

GEODES

Figura 5.17 - Sezione tipo SGC-Imb: geometria del cavo e interventi di sostegno, sezione longitudinale

5.4 Paratia di imbocco della galleria di accesso

Gli scavi necessari al raggiungimento della quota del piazzale antistante l'imbocco della galleria di accesso saranno sorretti da una paratia di micropali. L'opera di sostegno avrà uno sviluppo in pianta di 37.25 m ed un'altezza, in corrispondenza dell'asse della galleria, di 14 m.

La paratia sarà costituita da micropali aventi diametro 30 cm e spaziatura 50 cm, di lunghezza 20 m. Saranno realizzati con calcestruzzo classe C 25/30 e armati con tubi in acciaio S355 di diametro 193.7 mm e spessore 12 mm. La paratia sarà sostenuta da due ordini di tiranti a barre in acciaio S670/800 aventi diametro pari a 28 mm (diametro di perforazione pari a 120 mm), inclinati di 20°. Il primo ordine sarà posto a 4.5 m dalla testa della paratia, il secondo a 9.5 m. Le caratteristiche dei tiranti saranno le medesime per entrambi gli ordini: la lunghezza libera sarà pari a 3 m, la lunghezza del bulbo sarà di 5 m, il passo sarà di 3 m ed il precarico sarà pari a 100 kN. Le due file di tiranti saranno collegate a travi di ripartizione in acciaio S275 con profilo HEB140.

La sezione della paratia in corrispondenza dell'asse della galleria è riportata in Figura 5.18.

Figura 5.18 - Sezione tipo della galleria di imbocco della galleria di accesso

5.5 Materiali

I materiali che costituiscono le opere di sostegno sono	definititi di seguito:
Calcestruzzo proiettato fibrorinforzato	
classe di resistenza	C 30/37
$f_{cd} = \alpha_{cc} f_{ck} / \gamma_c$	$f_{cd} \ge 17 \ N/mm^2$
modulo elastico	E =28500 MPa
dosaggio fibre	\geq 3 kg/m ³
Acciaio per centine galleria	
tipo di acciaio	S275
tensione di snervamento	f _{yk} = 275 N/mm ²
tensione di calcolo	f _{yd} = 261.9 N/mm ²
tensione di rottura	$f_{tk} = 430 \text{ N/mm}^2$
modulo elastico	E = 210 GPa
Calcestruzzo per getti in opera in sotterraneo	
classe di resistenza	C 30/37
$f_{cd} = \alpha_{cc} f_{ck} / \gamma_c$	$f_{cd} \!\geq \! 17.00 \; N/mm^2$
modulo elastico	E =32800 MPa

Acciaio in barre per armature	
tipo di acciaio	B450C
modulo elastico	E = 210 GPa
Acciaio per chiodi da roccia	
tipo di acciaio	B500B
tensione di snervamento	f _{yk} = 500 N/mm ²
tensione di calcolo	$f_{yd} = 476.2 \text{ N/mm}^2$
tensione di rottura	$f_{tk} = 550 \text{ N/mm}^2$
modulo elastico	E = 210 GPa
Elementi strutturali in VTR al fronte	
densità	\geq 1.7 t/ m ³
resistenza a trazione	≥ 400 MPa (UNI 5819)
allungamento a rottura	≥ 2%
resistenza a flessione	≥ 350 MPa (UNI 4219)
resistenza a taglio	≥ 85 MPa (ASTM D732)
modulo elastico	E ≥ 15000 MPa
contenuto in vetro in peso	≥ 55%
Infilaggi in tubi in acciaio	
tipo di acciaio	S355JRH o S355J0H
secondo UNI EN 10210 - 1 o UNI EN 10219	
Malta di iniezione per micropali	
classe	C25/30
Malta di iniezione dei bulbo di ancoraggio (tiranti)	005/00
Classe	625/30
Acciaio per armatura micropali	
tipologia del materiale	S355
tensione di snervamento	$f_{vk} = 355 \text{ N/mm}^2$
modulo elastico	E = 210 GPa
Acciaio per travi di ripartizione	
tipologia del materiale	S275
sezione	HEB 140
tensione di snervamento	$f_{yk} = 275 \text{ N/mm}^2$
modulo elastico	E = 210 GPa

Acciaio per tiranti a barre tipologia del materiale tensione di snervamento modulo elastico

 $f_{yk} = 670 \text{ N/mm}^2$ E = 210 GPa

6. ANALISI NUMERICHE

Nel presente capitolo vengono dapprima descritte le strategie di analisi impiegate per le simulazioni numeriche e le caratteristiche dei modelli realizzati, successivamente vengono illustrati i principali risultati ottenuti dalle simulazioni condotte.

6.1 Generalità

6.1.1 Modellazione gallerie

Per la valutazione del comportamento tensio-deformativo dell'ammasso roccioso e delle strutture di sostegno delle opere in sotterraneo sono state condotte delle analisi numeriche di simulazione dello scavo con il metodo degli elementi finiti, in condizioni di deformazione piana, utilizzando il codice di calcolo Phase 2 v. 8.024.

Il metodo degli elementi finiti in campo piano permette una valutazione, in termini quantitativi, dello stato tensionale e degli spostamenti nel terreno e nelle strutture, tenendo conto di uno stato di tensione iniziale anisotropo, dell'effettiva situazione geometrica in esame e della sequenza degli interventi previsti.

Lo stato tensionale iniziale è stato supposto di tipo geostatico; le tensioni principali massime e minime sono state assegnate mediante una prima fase di inizializzazione (Step 0), in cui agli elementi del modello, a partire da uno stato tensionale nullo, vengono applicate le forze di volume costituite dal peso proprio attribuito ai diversi materiali.

Il livello della falda considerato nei modelli di calcolo è stato dedotto dalle indicazioni fornite sulla *Relazione geologica generale*, in assenza di informazioni più precise circa l'andamento della piezometria lungo tutto il tracciato della galleria sono state svolte delle ipotesi conservative, le quali dovranno essere confermate nelle successive fasi di studio.

La simulazione delle diverse fasi di scavo e costruzione è stata condotta "attivando", nel corso della sequenza delle analisi, le caratteristiche degli elementi che nel modello rappresentano le strutture di sostegno e di rivestimento. Al tempo stesso, in accordo alle modalità esecutive seguite, lo scavo è stato riprodotto mediante l'usuale procedimento che consiste nel "disattivare elementi scavati" ed applicare sul contorno dello scavo delle forze nodali che portino su di esso, in modo graduale, a componenti di sollecitazione (normale e di taglio) nulle.

Per simulare gli effetti tensionali indotti dagli scavi, considerando la tridimensionalità del problema, si è adottata una tecnica di simulazione comunemente utilizzata nel calcolo

GE DES
di gallerie: questa consiste nell'applicazione di un sistema di forze equivalenti, con le quali la superficie lungo cui si opera lo scavo viene liberata dalle tensioni inizialmente presenti nel terreno (Barla e Jarre, 1986).

L'effetto di contenimento del cavo, dovuto al fronte di avanzamento, è introdotto nelle analisi graduando il sistema di forze equivalenti applicate sulla superficie dello scavo, in accordo con i procedimenti costruttivi previsti. La percentuale delle forze di scavo da applicare è valutabile, in funzione della distanza del fronte di avanzamento dalla sezione di calcolo, del comportamento del terreno (elastico; elasto-plastico) e della eventuale presenza di interventi di contenimento sul nucleo di scavo.

In relazione a quanto sopra, il metodo comporta:

- definizione del modello (dimensione fisica e geometrica della regione da rappresentare, sia per il terreno che per le strutture di sostegno, numerazione dei nodi e degli elementi, condizioni di contorno)
- definizione delle leggi sforzo-deformazione e di resistenza dei materiali interessati
- definizione dello stato tensionale preesistente nel terreno, prima dello scavo della galleria
- simulazione delle fasi esecutive previste.

I modelli numerici sono stati sufficientemente estesi in profondità e lateralmente per permettere di ritenere trascurabili le condizioni di vincolo introdotte sui bordi dei modelli stessi. Nei casi di elevata copertura il modello non viene esteso fino al piano campagna, ma si tiene conto del reale carico geostatico definendo nel software la copertura voluta.

Le strutture costituenti il rivestimento di prima fase, in calcestruzzo proiettato armato con centine, e le strutture costituenti il rivestimento definitivo in calcestruzzo armato sono state discretizzate con elementi monodimensionali di tipo "liner" con comportamento elastico e caratteristiche meccaniche ed inerziali equivalenti a quelle delle strutture simulate.

Come descritto nella *Relazione sulla sismica dei manufatti in sotterraneo*, cui si rimanda per ulteriori approfondimenti, per la simulazione del comportamento tensiodeformativo di ciascuna opera in sotterraneo sono stati realizzati due differenti modelli numerici:

- <u>Modello in condizioni statiche:</u> sufficientemente esteso in profondità e lateralmente per permettere di ritenere trascurabili le condizioni di vincolo introdotte sui bordi dei modelli stessi. Nei casi di elevata copertura il modello non viene esteso fino al piano campagna, ma si tiene conto del reale carico geostatico definendo nel software la copertura voluta.
- <u>Modello in condizioni sismiche:</u> questo secondo modello numerico, specifico per la simulazione delle condizioni sismiche, simula con più efficacia la "scatola di taglio" tipica

GE•DES

del *Metodo delle deformazioni di taglio puro in campo libero*. In questo caso la dimensione del modello è stata ridotta ad un quadrato di lato pari a circa 4 volte il diametro equivalente della galleria. Per verificare la coerenza tensionale e deformativa tra il modello in condizioni statiche e quello in condizioni sismiche si è verificato che su quest'ultimo i principali parametri tensionali e deformativi avessero, nell'ultimo step immediatamente precedente l'applicazione del carico sismico, una variazione non superiore al 5% rispetto al primo modello.

Le diverse fasi considerate nelle analisi sono riepilogate di seguito per le diverse sezioni tipo. I valori del rilascio tensionale parziale impiegati durante le diverse fasi realizzative sono stati definiti, per ciascuna sezione di calcolo secondo la formula sottostante in base alla distanza di installazione dei rivestimenti.

$$\lambda(x) = 0.28 + 0.72 \left\{ 1 - \left[\frac{0.84 \cdot a}{(0.84 \cdot a + x)} \right]^2 \right\}$$

dove:

- λ è lo scarico parziale delle tensioni
- x è la distanza dal fronte
- a è il raggio equivalente della sezione di scavo

Sezione tipo SGI1

- STEP1 Imposizione dello stato tensionale iniziale al modello (inizializzazione elastica)
- STEP2 Imposizione dello stato tensionale iniziale al modello (inizializzazione plastica)
- STEP3 Scavo a piena sezione della galleria con rilascio tensionale parziale pari al 80% delle forze agenti
- STEP4 Posa del rivestimento di prima fase con ulteriore rilascio tensionale parziale fino all'85% delle forze agenti
- STEP5 Posa del rivestimento definitivo con ulteriore rilascio tensionale parziale fino all'95% delle forze agenti
- STEP6 Allontanamento del fronte di scavo dal rivestimento definitivo gettato in opera con rilascio tensionale completo delle forze agenti
- STEP7 Fase di esercizio: applicazione del carico idrostatico interno alla galleria
- STEP8 Per il modello statico si è valutato il deterioramento completo del rivestimento di prima fase con il rilascio delle tensioni sul rivestimento definitivo; per il modello impiegato per le analisi sismiche si è applicata la scatola di taglio che simula gli effetti di spostamento dovuti al sisma.

Sezioni tipo SGI2, SGI3 e SGI4

- STEP1 Imposizione dello stato tensionale iniziale al modello (inizializzazione elastica)
- STEP2 Imposizione dello stato tensionale iniziale al modello (inizializzazione plastica)
- STEP3 Scavo a piena sezione della galleria con rilascio tensionale parziale fino al 70% delle forze agenti

GEODES

- STEP4 Posa del rivestimento di prima fase con parametri di resistenza dello spritz ridotti (spritz fresco) con ulteriore rilascio tensionale parziale fino al 75% delle forze agenti
- STEP5 Maturazione dello spritz con ulteriore rilascio tensionale parziale fino all'80%
- STEP6 Posa del rivestimento definitivo con ulteriore rilascio tensionale parziale fino all'90% delle forze agenti
- STEP7 Allontanamento del fronte di scavo dal rivestimento definitivo gettato in opera con rilascio tensionale completo delle forze agenti
- STEP8 Fase di esercizio: applicazione del carico idrostatico interno alla galleria
- STEP9 Per il modello statico si è valutato il deterioramento completo del rivestimento di prima fase con il rilascio delle tensioni sul rivestimento definitivo; per il modello impiegato per le analisi sismiche si è applicata la scatola di taglio che simula gli effetti di spostamento dovuti al sisma.

Sezioni tipo SGPz1 ed SGC1

- STEP1 Imposizione dello stato tensionale iniziale al modello (inizializzazione elastica)
- STEP2 Imposizione dello stato tensionale iniziale al modello (inizializzazione plastica)
- STEP3 Scavo a piena sezione della galleria con rilascio tensionale parziale fino al 80% delle forze agenti
- STEP4 Installazione dei chiodi da roccia con ulteriore rilascio tensionale parziale fino all'85% delle forze agenti
- STEP5 Posa del rivestimento di prima fase (spritz) con ulteriore rilascio tensionale parziale fino all'90%
- STEP6 Posa della platea di fondazione con ulteriore rilascio tensionale parziale fino all'95% delle forze agenti
- STEP7 Allontanamento del fronte di scavo dal rivestimento definitivo gettato in opera con rilascio tensionale completo delle forze agenti
- STEP8 Per il modello impiegato per le analisi sismiche si è applicata la scatola di taglio che simula gli effetti di spostamento dovuti al sisma.

Sezioni tipo SGPz2 e SGPz3

- STEP1 Imposizione dello stato tensionale iniziale al modello (inizializzazione elastica)
- STEP2 Imposizione dello stato tensionale iniziale al modello (inizializzazione plastica)
- STEP3 Scavo a piena sezione della galleria con rilascio tensionale parziale fino al 80% delle forze agenti
- STEP4 Posa del rivestimento di prima fase con parametri di resistenza dello spritz ridotti (spritz fresco) con ulteriore rilascio tensionale parziale fino al 85% delle forze agenti
- STEP5 Maturazione dello spritz con ulteriore rilascio tensionale parziale fino all'90%
- STEP6 Posa del rivestimento definitivo con ulteriore rilascio tensionale parziale fino all'95% delle forze agenti

- STEP7 Allontanamento del fronte di scavo dal rivestimento definitivo gettato in opera con rilascio tensionale completo delle forze agenti
- STEP8 Per il modello impiegato per le analisi sismiche si è applicata la scatola di taglio che simula gli effetti di spostamento dovuti al sisma.

Sezioni tipo SGC2 e SGC3

- STEP1 Imposizione dello stato tensionale iniziale al modello (inizializzazione elastica)
- STEP2 Imposizione dello stato tensionale iniziale al modello (inizializzazione plastica)
- STEP3 Scavo a piena sezione della galleria con rilascio tensionale parziale fino al 90% delle forze agenti
- STEP4 Posa del rivestimento di prima fase con parametri di resistenza dello spritz ridotti (spritz fresco) con ulteriore rilascio tensionale parziale fino al 92.5% delle forze agenti
- STEP5 Maturazione dello spritz con ulteriore rilascio tensionale parziale fino all'95%
- STEP6 Posa del rivestimento definitivo con ulteriore rilascio tensionale parziale fino all'97.5% delle forze agenti
- STEP7 Allontanamento del fronte di scavo dal rivestimento definitivo gettato in opera con rilascio tensionale completo delle forze agenti
- STEP8 Per il modello impiegato per le analisi sismiche si è applicata la scatola di taglio che simula gli effetti di spostamento dovuti al sisma.

Nei paragrafi successivi si riporta una breve sintesi dei principali risultati ottenuti dalle simulazioni delle sezioni tipo più significative.

6.1.2 Modellazione paratia di imbocco della galleria di accesso

Le verifiche riguardanti la paratia sono state effettuate mediante l'utilizzo del software ParatiePlus, codice agli elementi finiti.

Il modello è stato realizzato suddividendolo in 7 fasi, denominate stages, descritte del seguito:

- Stage 1 Infissione dei micropali nel terreno
- Stage 2 Scavo a valle della paratia fino a 5 m dalla testa
- Stage 3 Installazione del primo ordine di tiranti a 4.5 m dalla testa della paratia
- Stage 4 Scavo a valle della paratia fino a 10 m dalla testa
- Stage 5 Installazione del secondo ordine di tiranti a 9.5 m dalla testa della paratia
- Stage 6 Scavo a valle della paratia fino al raggiungimento del fondo scavo situato a 14 m dalla testa

GE•DES

 Stage 7 - Applicazione dell'azione sismica secondo il metodo pseudostatico di Mononobe-Okabe.

Nell'ultima fase di analisi, in cui è stata introdotta l'azione sismica, sono stati considerati i due scenari sismici: SISM-STR (SLV strutturale) e SISM-GEO (SLV geotecnico) entrambi valutati inserendo la spinta sismica rivolta sia verso il basso ($+k_v$), sia verso l'alto ($-k_v$).

6.2 Sezione tipo SGI1

La sezione tipo SGI1 è stata verificata per due condizioni: copertura massima, pari a 490 m, e copertura medio-bassa, pari a 78 m, con caratteristiche geomeccaniche delle arenarie di S. Vito poco fratturate (Tabella 6.1).

In considerazione dell'elevata copertura il modello non è stato esteso fino al piano campagna, pertanto la stratigrafia di analisi vede la presenza di un unico litotipo costituito dalle Arenarie di S. Vito (Figura 6.1). La quota piezometrica per l'applicazione della pressione interna è stata considerata, rispetto l'asse galleria, a +140 m per il modello con copertura massima e a +66.5 m per il modello a copertura medio-bassa, superiore alla quota di massimo invaso così da tenere conto di eventuali colpi di pressione durante la fase di esercizio dell'impianto.

Figura 6.1 - Sezione tipo SGI1: Geometria del modello numerico per le analisi statiche relativa lo step della fase di esercizio e particolare dell'intorno del cavo

γ	$\sigma_{\sf ci}$	GSI	mi	D	m _b	S	а	ν	MR	Ed
kN/m ³	MPa									MPa
26	70	55	13	0	2.606	0.0067	0.504	0.25	275	7860

Tabella 6.1 - Caratteristiche geomeccaniche arenarie S. Vito poco fratturate

I risultati delle analisi sono illustrati nelle figure seguenti in cui sono riportati il diagramma con l'estensione della fascia plastica ed il campo di spostamento dell'ammasso nell'intorno della galleria, relativi allo step di esercizio dell'analisi statica ed allo step di analisi sismica (Figure 6.2 e 6.3)

Figura 6.2 - Sezione tipo SGI1: raggio plastico e spostamenti nella fase di esercizio (a) copertura massima, 490 m (b) copertura medio-bassa, 78 m

Figura 6.3 - Sezione tipo SGI1: spostamenti e deformata aggiuntivi relativi al solo step "sismico" (scatola di taglio) (a) copertura massima, 490 m (b) copertura medio-bassa, 78 m

- si ha una porzione di ammasso plasticizzata limitata in corrispondenza dei piedritti per il solo modello con copertura massima
- gli spostamenti massimi cumulati durante la fase di esercizio risultano inferiori al centimetro, con un massimo di circa 8 mm in corrispondenza dell'arco rovescio per il modello con copertura massima
- durante lo step sismico la plasticizzazione nell'intorno del cavo non subisce variazioni
- le sollecitazioni agenti sul rivestimento mostrano valori inferiori ai limiti di resistenza delle strutture previste.

GEODES

6.3 Sezione tipo SGI2

La sezione tipo SGI2 è stata verificata per due condizioni: copertura medio-bassa pari a circa 78 m con caratteristiche geomeccaniche per le arenarie di S. Vito intensamente fratturate e in zona di faglia (Tabella 6.2).

condi	γ	σ_{ci}	GSI	mi	D	m _b	S	а	ν	MR	E_{d}
zione	kN/m ³	MPa	-			-		-	-	•	MPa
fratt.	26	26	40	12	0	1.408	0.0013	0.511	0.3	675	2800
faglia	26	26	30	12	0	0.985	0.0004	0.522	0.35	675	1430

Tabella 6.2 - Caratteristiche geomeccaniche arenarie S. Vito intensamente fratturate

In considerazione dell'elevata copertura il modello non è stato esteso fino al piano campagna, pertanto la stratigrafia di analisi vede la presenza di un unico litotipo costituito dalle Arenarie di S. Vito (Figura 6.4). La quota piezometrica per l'applicazione della pressione interna è stata considerata a +66.5 m, superiore alla quota di massimo invaso così da tenere conto di eventuali colpi di pressione durante la fase di esercizio dell'impianto.

Figura 6.4 - Sezione tipo SGI2: Geometria del modello numerico per le analisi statiche relativa lo step della fase di esercizio e particolare dell'intorno del cavo

I risultati delle analisi sono illustrati nelle figure seguenti in cui sono riportati il diagramma con l'estensione della fascia plastica ed il campo di spostamento dell'ammasso nell'intorno della galleria relativi allo step di esercizio dell'analisi statica ed allo step di analisi sismica (Figure 6.5 e 6.6).

GE•DES

Figura 6.5 - Sezione tipo SGI2: raggio plastico e spostamenti nella fase di esercizio

Figura 6.6 - Sezione tipo SGI2: spostamenti e deformata aggiuntivi relativi al solo step "sismico" (scatola di taglio)

- si ha una porzione di ammasso plasticizzata limitata in corrispondenza dei piedritti
- gli spostamenti massimi cumulati durante la fase di esercizio risultano inferiori al centimetro, con un massimo di circa 3 mm in corrispondenza dell'arco rovescio
- durante lo step sismico la plasticizzazione nell'intorno del cavo non subisce variazioni
- le sollecitazioni agenti sul rivestimento mostrano valori inferiori ai limiti di resistenza delle strutture previste.

6.4 Sezione tipo SGI3

La sezione tipo SGI3 è stata verificata per la condizione di copertura massima, pari a circa 490 m, e le caratteristiche geomeccaniche per le arenarie di S. Vito intensamente fratturate (Tabella 6.3).

				0						
γ	σ_{ci}	GSI	mi	D	m _b	S	а	ν	MR	Ed
kN/m ³	MPa		-		•		•	•		MPa
26	26	40	12	0	1.408	0.0013	0.511	0.3	675	2800

Tabella 6.3 - Caratteristiche geomeccaniche arenarie S. Vito intensamente fratturate

In considerazione dell'elevata copertura il modello non è stato esteso fino al piano campagna, pertanto la stratigrafia di analisi vede la presenza di un unico litotipo costituito dalle Arenarie di S. Vito (Figura 6.7). La quota piezometrica per l'applicazione della pressione interna è stata considerata a +140 m, superiore alla quota di massimo invaso così da tenere conto di eventuali colpi di pressione durante la fase di esercizio dell'impianto.

Figura 6.7 - Sezione tipo SGI3: Geometria del modello numerico per le analisi statiche relativa lo step della fase di esercizio e particolare dell'intorno del cavo

I risultati delle analisi sono illustrati nelle figure seguenti in cui sono riportati il diagramma con l'estensione della fascia plastica ed il campo di spostamento dell'ammasso nell'intorno della galleria, relativi allo step di esercizio dell'analisi statica ed allo step di analisi sismica (Figure 6.8 e 6.9).

Figura 6.9 - Sezione tipo SGI3: spostamenti e deformata aggiuntivi relativi al solo step "sismico" (scatola di taglio)

- si ha una fascia di ammasso plasticizzata, con spessore variabile tra i 35 cm in calotta e i 200 cm in corrispondenza dei piedritti
- gli spostamenti massimi cumulati durante la fase di esercizio risultano di ordine centimetrico, con un massimo di circa 2.5 cm in arco rovescio ed un minimo di 1.7 sui piedritti
- durante lo step sismico la plasticizzazione nell'intorno del cavo non subisce variazioni
- le sollecitazioni agenti sul rivestimento mostrano valori inferiori ai limiti di resistenza delle strutture previste.

6.5 Sezione tipo SGI4

La sezione tipo SGI4 è stata verificata per la condizione di copertura massima, pari a circa 490 m con caratteristiche geomeccaniche per le arenarie di S. Vito in zona di faglia (Tabella 6.4).

γ	σ_{ci}	GSI	mi	D	m _b	S	а	ν	MR	Ed
kN/m³	MPa									MPa
26	26	30	12	0	0.985	0.0004	0.522	0.35	675	1430

Tabella 6.4 - Caratteristiche geomeccaniche arenarie S. Vito in zona di faglia

In considerazione dell'elevata copertura il modello non è stato esteso fino al piano campagna, pertanto la stratigrafia di analisi vede la presenza di un unico litotipo costituito dalle Arenarie di S. Vito (Figura 6.10). La quota piezometrica per l'applicazione della pressione interna è stata considerata a +140 m, superiore alla quota di massimo invaso così da tenere conto di eventuali colpi di pressione durante la fase di esercizio dell'impianto.

Figura 6.10 - Sezione tipo SGI4: Geometria del modello numerico per le analisi statiche relativa lo step della fase di esercizio e particolare dell'intorno del cavo

I risultati delle analisi sono illustrati nelle figure seguenti in cui sono riportati il diagramma con l'estensione della fascia plastica ed il campo di spostamento dell'ammasso nell'intorno della galleria, relativi allo step di esercizio dell'analisi statica ed allo step di analisi sismica (Figure 6.11 e 6.12).

Figura 6.12 - Sezione tipo SGI4: spostamenti e deformata aggiuntivi relativi al solo step "sismico" (scatola di taglio)

- si ha una fascia di ammasso plasticizzata, con spessore variabile tra i 50 cm in calotta e i 250 cm in corrispondenza dei piedritti
- gli spostamenti massimi cumulati durante la fase di esercizio risultano di ordine centimetrico, con un massimo di circa 5.1 cm in arco rovescio ed un minimo di 3.8 sui piedritti
- durante lo step sismico la plasticizzazione nell'intorno del cavo non subisce variazioni
- le sollecitazioni agenti sul rivestimento mostrano valori inferiori ai limiti di resistenza delle strutture previste.

6.6 Sezione tipo SGPz1

La sezione tipo SGPz1, visto l'andamento altimetrico in ascesa, come il profilo del terreno, è stata verificata utilizzando la copertura media, pari a circa 300 m, e le caratteristiche geomeccaniche per le arenarie di S. Vito poco fratturate (Tabella 6.5).

La sezione SGPz1 prevede il solo rivestimento di prima fase così da ridurre i costi ed il tempo per la realizzazione dello scavo nei tratti con buone caratteristiche geomeccaniche.

γ	σ_{ci}	GSI	mi	D	m _b	S	а	ν	MR	Ed
kN/m ³	MPa			-						MPa
26	70	55	13	0	2.606	0.0067	0.504	0.25	275	7860

Tabella 6.5 - Caratteristiche geomeccaniche arenarie S. Vito poco fratturate

In considerazione dell'elevata copertura il modello non è stato esteso fino al piano campagna, pertanto la stratigrafia di analisi vede la presenza di un unico litotipo costituito dalle Arenarie di S. Vito (Figura 6.13).

I risultati delle analisi sono illustrati nelle figure seguenti in cui sono riportati il diagramma con l'estensione della fascia plastica ed il campo di spostamento dell'ammasso nell'intorno della galleria, relativi allo step di esercizio dell'analisi statica ed allo step di analisi sismica (Figure 6.14 e 6.15).

Figura 6.13 - Sezione tipo SGPz1: Geometria del modello numerico per le analisi statiche relativa lo step della fase di esercizio e particolare dell'intorno del cavo

Figura 6.14 - Sezione tipo SGPz1: raggio plastico e spostamenti nella fase di esercizio

Figura 6.15 - Sezione tipo SGPz1: spostamenti e deformata aggiuntivi relativi al solo step "sismico" (scatola di taglio)

- si ha una fascia di ammasso plasticizzata, con spessore variabile tra i 15 cm in calotta e i 90 cm in corrispondenza dei piedritti
- gli spostamenti massimi cumulati durante la fase di esercizio risultano di ordine millimetrico con un massimo di circa 10 mm in arco rovescio ed un minimo di 4 mm in corrispondenza dei piedritti
- durante lo step sismico la plasticizzazione nell'intorno del cavo non subisce variazioni
- le sollecitazioni agenti sul rivestimento mostrano valori inferiori ai limiti di resistenza delle strutture previste.

6.7 Sezione tipo SGPz2

La sezione tipo SGPz2, visto l'andamento altimetrico in ascesa, come il profilo del terreno, è stata verificata utilizzando la copertura media, pari a circa 300 m, e le caratteristiche geomeccaniche per le arenarie di S. Vito intensamente fratturate (Tabella 6.6).

				•						
γ	$\sigma_{\sf ci}$	GSI	m _i	D	m _b	S	а	ν	MR	Ed
kN/m ³	MPa									MPa
26	26	40	12	0	1.408	0.0013	0.511	0.3	675	2800

Tabella 6.6 - Caratteristiche geomeccaniche arenarie S. Vito intensamente fratturate

In considerazione dell'elevata copertura il modello non è stato esteso fino al piano campagna, pertanto la stratigrafia di analisi vede la presenza di un unico litotipo costituito dalle Arenarie di S. Vito (Figura 6.16)

Figura 6.16 - Sezione tipo SGPz2: Geometria del modello numerico per le analisi statiche relativa lo step della fase di esercizio e particolare dell'intorno del cavo

I risultati delle analisi sono illustrati nelle figure seguenti in cui sono riportati il diagramma con l'estensione della fascia plastica ed il campo di spostamento dell'ammasso nell'intorno della galleria, relativi allo step di esercizio dell'analisi statica ed allo step di analisi sismica (Figure 6.17 e 6.18).

Figura 6.17 - Sezione tipo SGPz2: raggio plastico e spostamenti nella fase di esercizio

Figura 6.18 - Sezione tipo SGPz2: spostamenti e deformata aggiuntivi relativi al solo step "sismico" (scatola di taglio)

- si ha una fascia di ammasso plasticizzata, con spessore variabile tra i 40 cm in calotta e i 240 cm in corrispondenza dei piedritti
- gli spostamenti massimi cumulati durante la fase di esercizio risultano di ordine centimetrico con un massimo di circa 3 cm in arco rovescio ed un minimo di 1.2 cm in corrispondenza dei piedritti
- durante lo step sismico la plasticizzazione nell'intorno del cavo non subisce variazioni
- le sollecitazioni agenti sul rivestimento mostrano valori inferiori ai limiti di resistenza delle strutture previste.

6.8 Sezione tipo SGPz3

La sezione tipo SGPz3, visto l'andamento altimetrico in ascesa, come il profilo del terreno, è stata verificata utilizzando la copertura media, pari a circa 300 m, e le caratteristiche geomeccaniche per le arenarie di S. Vito in zona di faglia (Tabella 6.7).

				0					0	
γ	σ_{ci}	GSI	mi	D	m _b	S	а	ν	MR	Ed
kN/m ³	MPa									MPa
26	26	30	12	0	0.985	0.0004	0.522	0.35	675	1430

Tabella 6.7 - Caratteristiche geomeccaniche arenarie S. Vito in zona di faglia

In considerazione dell'elevata copertura il modello non è stato esteso fino al piano campagna, pertanto la stratigrafia di analisi vede la presenza di un unico litotipo costituito dalle Arenarie di S. Vito (Figura 6.19)

Figura 6.19 - Sezione tipo SGPz3: Geometria del modello numerico per le analisi statiche relativa lo step della fase di esercizio e particolare dell'intorno del cavo

I risultati delle analisi sono illustrati nelle figure seguenti in cui sono riportati il diagramma con l'estensione della fascia plastica ed il campo di spostamento dell'ammasso nell'intorno della galleria, relativi allo step di esercizio dell'analisi statica ed allo step di analisi sismica (Figure 6.20 e 6.21).

Figura 6.20 - Sezione tipo SGPz3: raggio plastico e spostamenti nella fase di esercizio

Figura 6.21 - Sezione tipo SGPz3: spostamenti e deformata aggiuntivi relativi al solo step "sismico" (scatola di taglio)

- si ha una fascia di ammasso plasticizzata, con spessore variabile tra i 70 cm in calotta e i 250 cm in corrispondenza dei piedritti
- gli spostamenti massimi cumulati durante la fase di esercizio risultano di ordine centimetrico con un massimo di circa 6 cm in arco rovescio ed un minimo di 3.2 cm in corrispondenza dei piedritti
- durante lo step sismico la plasticizzazione nell'intorno del cavo non subisce variazioni
- le sollecitazioni agenti sul rivestimento mostrano valori inferiori ai limiti di resistenza delle strutture previste.

6.9 Sezione tipo SGC1

La sezione tipo SGC1, è stata verificata per la copertura massima pari a 490 m, ma è previsto essere utilizzata anche per le coperture medio-basse (<300 m). Date le caratteristiche geomeccaniche favorevoli (arenarie di S. Vito poco fratturate) (Tabella 6.8) si è valutata la stabilità del cavo con il solo uso del rivestimento di prima fase così da permettere un più veloce avanzamento degli scavi.

In considerazione dell'elevata copertura il modello non è stato esteso fino al piano campagna, pertanto la stratigrafia di analisi vede la presenza di un unico litotipo costituito dalle Arenarie di S. Vito (Figura 6.22)

γ	σ_{ci}	GSI	mi	D	m _b	S	а	ν	MR	Ed
kN/m ³	MPa	-	-	•				-		MPa
26	70	55	13	0	2.606	0.0067	0.504	0.25	275	7860

Tabella 6.8 - Caratteristiche geomeccaniche arenarie S. Vito poco fratturate

Figura 6.22 - Sezione tipo SGC1: Geometria del modello numerico per le analisi statiche relativa lo step della fase di esercizio e particolare dell'intorno del cavo

I risultati delle analisi sono illustrati nelle figure seguenti in cui sono riportati il diagramma con l'estensione della fascia plastica ed il campo di spostamento dell'ammasso nell'intorno della galleria, relativi allo step di esercizio dell'analisi statica ed allo step di analisi sismica (Figure 6.23 e 6.24).

I modelli numerici evidenziano che:

- si ha una fascia di ammasso plasticizzata, con spessore variabile tra i 5 cm in calotta e i 120 cm in corrispondenza dei piedritti
- gli spostamenti massimi cumulati durante la fase di esercizio risultano di ordine millimetrico con un massimo di circa 10 mm in arco rovescio ed un minimo di 5 mm in corrispondenza dei piedritti
- durante lo step sismico la plasticizzazione nell'intorno del cavo non subisce variazioni
- le sollecitazioni agenti sul rivestimento mostrano valori inferiori ai limiti di resistenza delle strutture previste.

Figura 6.23 - Sezione tipo SGC1: raggio plastico e spostamenti nella fase di esercizio

Figura 6.24 - Sezione tipo SGC1: spostamenti e deformata aggiuntivi relativi al solo step "sismico" (scatola di taglio)

6.10 Sezione tipo SGC2

La sezione tipo SGC2, è prevista per le coperture medio-basse (<300 m) quando le arenarie di S. Vito si presentano intensamente fratturate (Tabella 6.9).

				J						
γ	σ_{ci}	GSI	mi	D	m _b	s	а	ν	MR	Ed
kN/m ³	MPa	•	•				•	•	•	MPa
26	26	40	12	0	1.408	0.0013	0.511	0.3	675	2800

Tabella 6.9 - Caratteristiche geomeccaniche arenarie S. Vito intensamente fratturate

In considerazione dell'elevata copertura il modello non è stato esteso fino al piano campagna, pertanto la stratigrafia di analisi vede la presenza di un unico litotipo costituito dalle Arenarie di S. Vito (Figura 6.25)

Figura 6.25 - Sezione tipo SGC2: Geometria del modello numerico per le analisi statiche relativa lo step della fase di esercizio e particolare dell'intorno del cavo

I risultati delle analisi sono illustrati nelle figure seguenti in cui sono riportati il diagramma con l'estensione della fascia plastica ed il campo di spostamento dell'ammasso nell'intorno della galleria, relativi allo step di esercizio dell'analisi statica ed allo step di analisi sismica (Figure 6.26 e 6.27).

Figura 6.26 - Sezione tipo SGC2: raggio plastico e spostamenti nella fase di esercizio

Figura 6.27 - Sezione tipo SGC2: spostamenti e deformata aggiuntivi relativi al solo step "sismico" (scatola di taglio)

- si ha una fascia di ammasso plasticizzata, con spessore variabile tra i 5 cm in arco rovescio e i 160 cm in corrispondenza dei piedritti
- gli spostamenti massimi cumulati durante la fase di esercizio risultano di ordine millimetrico con un massimo di circa 8.5 mm in arco rovescio ed un minimo di 4 mm in corrispondenza dei piedritti
- durante lo step sismico la plasticizzazione nell'intorno del cavo non subisce variazioni
- le sollecitazioni agenti sul rivestimento mostrano valori inferiori ai limiti di resistenza delle strutture previste.

6.11 Sezione tipo SGC3

La sezione tipo SGC3 è prevista nei tratti in alta copertura (>300 m) nelle arenarie di S. Vito intensamente fratturate e per tutte le coperture nei tratti in faglia, i parametri geotecnici utilizzati sono riassunti nella Tabella 6.10.

In considerazione dell'elevata copertura il modello non è stato esteso fino al piano campagna, pertanto la stratigrafia di analisi vede la presenza di un unico litotipo costituito dalle Arenarie di S. Vito (Figura 6.28)

condi	γ	σ_{ci}	GSI	mi	D	m _b	s	а	ν	MR	Ed
zione	kN/m ³	MPa									MPa
fratt.	26	26	40	12	0	1.408	0.0013	0.511	0.3	675	2800
faglia	26	26	30	12	0	0.985	0.0004	0.522	0.35	675	1430

Tabella 6.10 - Caratteristiche geomeccaniche arenarie S. Vito intensamente fratturate

Figura 6.28 - Sezione tipo SGC3: Geometria del modello numerico per le analisi statiche relativa lo step della fase di esercizio e particolare dell'intorno del cavo

I risultati delle analisi sono illustrati nelle figure seguenti in cui sono riportati il diagramma con l'estensione della fascia plastica ed il campo di spostamento dell'ammasso nell'intorno della galleria, relativi allo step di esercizio dell'analisi statica ed allo step di analisi sismica (Figure 6.29 e 6.30).

I modelli numerici evidenziano che:

- si ha una fascia di ammasso plasticizzata, con spessore variabile tra i 200 cm in calotta e i 600 cm in corrispondenza dei piedritti
- gli spostamenti massimi cumulati durante la fase di esercizio risultano di ordine centimetrico con un massimo di circa 14 cm in arco rovescio ed un minimo di 10 cm in corrispondenza della calotta
- durante lo step sismico la plasticizzazione nell'intorno del cavo non subisce variazioni
- le sollecitazioni agenti sul rivestimento mostrano valori inferiori ai limiti di resistenza delle strutture previste.

Figura 6.29 - Sezione tipo SGC3: raggio plastico e spostamenti nella fase di esercizio

Figura 6.30 - Sezione tipo SGC3: spostamenti e deformata aggiuntivi relativi al solo step "sismico" (scatola di taglio)

6.12 Paratia di imbocco della galleria di accesso

La paratia è stata modellata e verificata in corrispondenza della massima altezza fuori terra, pari a 14 m, in corrispondenza dell'asse della galleria di accesso.

Le caratteristiche dei terreni, arenaria e detrito, sono state definite secondo quanto riportato al Paragrafo 4.2.1. Il carico sismico, applicato nello stage di calcolo 7, è stato impostato secondo quanto definito al Paragrafo 4.3.1. Le caratteristiche dei materiali sono riportati al Paragrafo 5.5.

In questo paragrafo si riportano graficamente gli stages di calcolo (Figura 6.31). Le verifiche e i risultati ottenuti si rimandano al Paragrafo 7.12 successivo.

Figura 6.31 - Stage di calcolo del modello ParatiePlus

7. VERIFICHE STRUTTURALI DEI SOSTEGNI

Per il predimensionamento delle strutture di rivestimento delle gallerie si è effettuato il calcolo delle sollecitazioni nelle strutture tramite una serie di analisi numeriche di interazione tra le strutture di rivestimento stesse ed l'ammasso roccioso circostante che hanno consentito di valutare lo stato tensio-deformativo nelle strutture e nell'ammasso stesso. I risultati ottenuti dalle suddette analisi sono descritti e commentati nel Capitolo precedente della presente relazione.

Le verifiche di predimensionamento delle strutture previste dal progetto sono state condotte relativamente sia alle strutture costituenti il rivestimento di prima fase sia alle strutture costituenti il rivestimento definitivo.

7.1 Approcci di calcolo

7.1.1 Verifiche dei rivestimenti delle gallerie

Con riferimento ai valori delle caratteristiche di sollecitazione derivati dall'analisi numerica, sono state condotte le verifiche del rivestimento in ottemperanza alle norme vigenti per i materiali impiegati. Le verifiche della sicurezza e delle prestazioni sono state condotte adottando il metodo semi-probabilistico agli Stati Limite Ultimi proposto dalle NTC 2018.

Per ciascuna fase dell'analisi sono state individuate le sezioni di massima sollecitazione, in relazione ai valori massimi calcolati di sforzo normale, momento flettente e sforzo di taglio e ne è stato verificato il dimensionamento e la compatibilità con la resistenza dei materiali adottati.

Le caratteristiche dei materiali adottati per le strutture di rivestimento sono richiamate al Paragrafo 5.5 della presente relazione.

Le verifiche sono state effettuate in riferimento alla seguente combinazione di coefficienti:

approccio 1 - combinazione 1: A1+M1+R1

in quanto è la combinazione più severa nei confronti del dimensionamento strutturale delle opere a contatto con il terreno. I coefficienti parziali per le azioni γ_F utilizzati nelle analisi sono quelli indicati nella Tabella 6.2.I delle NTC 2018, qui riportata (Tabella 7.1).

I coefficienti parziali per i parametri geotecnici del terreno γ_M utilizzati nelle analisi sono quelli indicati nella Tabella 6.2.II delle NTC 2018, qui riportata (Tabella 7.2).

				Δ1	Δ2
Carichi	Effetto	Coefficiente	EQU	стр	
				31 K	GEO
Barmananti C	Favorevoli		0,9	1,0	1,0
	Sfavorevoli	γG1	1,1	1,3	1,0
Permanenti non strutturali G ₂	Favorevoli		0,8	0,8	0,8
(1)	Sfavorevoli	γG2	1,5	1,5	1,3
) /oriohili	Favorevoli		0,0	0,0	0,0
vanabili	Sfavorevoli	γQi	1,5	1,5	1,3
Per i carichi permanenti G2 si	applica quanto	indicato alla Tal	bella 2.6.I.	Per la spi	nta delle
terre	e si fa riferimen	to ai coefficienti	γG1		

Tabella 7.1 - Coefficienti parziali delle azioni (Tabella 6.2.I NTC2018)

Tabella 7.2 - Coefficienti parziali per i parametri geotecnici (Tabella 6.2.II NTC2018)

	Deremetre gesteonice	Coefficiente	parziale γ_M
	Parametro geotecnico	M1	M2
tanø' _k	Tangente dell'angolo di attrito	1,00	1,25
C' _k	Coesione efficace	1,00	1,25
C _{u,k}	Resistenza al taglio non drenata	1,00	1,40
γ	Peso di volume	1,00	1,00

Le verifiche di resistenza dei rivestimenti sono state condotte nei confronti della pressoflessione e del taglio considerando, per ciascuna fase di analisi, le caratteristiche di sollecitazione derivanti dalle simulazioni numeriche.

La verifica a pressoflessione dei rivestimenti di prima fase costituiti da calcestruzzo proiettato e centine metalliche viene effettuata considerando il diagramma di resistenza¹ della sezione composta acciaio-calcestruzzo. Nella verifica viene cautelativamente trascurato il contributo delle fibre presenti nel calcestruzzo proiettato.

La verifica allo Stato Limite Ultimo per taglio dei rivestimenti di prima fase costituiti da calcestruzzo proiettato e centine metalliche viene effettuata considerando solamente la resistenza delle centine e trascurando cautelativamente il contributo del calcestruzzo proiettato. La verifica a taglio viene considerata soddisfatta quando:

$$V_{Sd} \le V_{pl,Rd} = \frac{A_v \cdot f_y}{\sqrt{3} \cdot \gamma_{M0}}$$

con
$$A_v = A - 2bt_f + (t_w + 2r)t_f$$

¹ Il diagramma di resistenza della sezione composta acciaio-calcestruzzo è stato ottenuto mediante l'ausilio del software MidasGen 2020.

Nei seguenti paragrafi sono illustrati i risultati di calcolo relativi alle verifiche condotte.

7.1.2 Verifiche della paratia

Per le paratie tirantate la normativa (par. 6.5.3.1.2 delle NTC-18) prevede che debbano essere prese in considerazione almeno le seguenti verifiche agli stati limite ultimi:

- SLU di tipo Geotecnico (GEO), relative a condizioni di:
 - Stabilità globale dell'insieme terreno-opera;
 - Collasso per rotazione intorno ad un punto dell'opera (moto rigido);
 - Collasso per carico limite verticale;
 - Sfilamento di uno o più ancoraggi;
 - Stabilità del fondo scavo in terreni a grana fine in condizioni non drenate.
- SLU di tipo idraulico (UPL e HYD), relative a condizioni di:
 - Stabilità del fondo scavo per sollevamento;
 - Sifonamento del fondo scavo.
- SLU di tipo strutturale (STR), relative a condizioni di:
 - Raggiungimento della resistenza in uno o più ancoraggi;
 - Raggiungimento della resistenza in uno o più puntoni o di sistemi di contrasto;
 - Raggiungimento della resistenza strutturale della paratia.

Le NTC-18 indicano due approcci progettuali distinti e alternativi, che vengono utilizzati a seconda del tipo di opera esaminato e della situazione che si intende verificare.

La <u>verifica di stabilità globale</u> dell'insieme opera-terreno deve essere svolta secondo l'Approccio 1 - Combinazione 2:

A2 + M2 + R2

tenendo conto dei coefficienti parziali riportati nelle Tabelle 7.1÷7.4. Tale verifica si ritiene soddisfatta verificando che non si raggiunga una condizione di stato limite ultimo con i valori di progetto delle azioni E_d e delle resistenze R_d .

Ciò viene svolto determinando la condizione di minimo per il rapporto R_d/E_d, applicando rispettivamente i coefficienti parziali A2 sulle azioni caratteristiche, ed i coefficienti M2 sui parametri geotecnici caratteristici. Il coefficiente riduttivo R2, definito in Tabella 7.3 va applicato sulla resistenza globale del sistema.

<u>Tutte le rimanenti verifiche</u> di cui sopra devono essere svolte considerando entrambe le combinazioni dell'Approccio 1:

<u>Combinazione 1</u>: A1 + M1 + R1 Combinazione 2 : A2 + M2 + R1

GE•DES

tenendo conto dei coefficienti parziali riportati nelle Tabelle 7.1÷7.4.

Tabella 7.3 - Coefficient	i parziali per le	verifiche di stabilità	globale	(Tabella 6.8.I NTC2018)
---------------------------	-------------------	------------------------	---------	-------------------------

Coefficiente parziale	R2
γr	1.1

Verifica	Coefficiente parziale	R1	R2	R3
Capacità portante della fondazione	γr	1.0	1.0	1.4
Scorrimento	ŶR	1.0	1.0	1.1
Resistenza del terreno a valle	γ̈́R	1.0	1.0	1.4

Tabella 7.4 - Coefficienti parziali sulle resistenze (Tabella 6.5.I NTC2018)

Secondo la NTC 2018 (par. 7.11.4), in campo sismico occorre verificare che la resistenza del sistema sia maggiore delle azioni impiegando gli stessi approcci descritti in precedenza, ponendo pari all'unità i coefficienti parziali sulle azioni e sui parametri geotecnici e impiegando le resistenze di progetto calcolate con un coefficiente parziale pari a $\gamma_R = 1.2$.

7.2 Sezione tipo SGI1

7.2.1 Verifica del rivestimento di prima fase

La sezione tipo SGI1 presenta un rivestimento di prima fase costituito da:

- corona di chiodi tipo GEWI B500B di lunghezza 3 m, interasse 1.5 m e passo 1 m lungo l'asse galleria
- calcestruzzo proiettato fibrorinforzato classe C30/37 con spessore 20 cm armato con rete elettrosaldata

Come si può osservare dalla figura seguente (Figura 7.1), tutte le coppie di sollecitazione ricadono internamente al dominio di interazione.

Figura 7.1 - Sezione tipo SGI1: Verifiche di pressoflessione per il rivestimento di prima fase (a) sezione con copertura massima (b) sezione con copertura medio-bassa

Per la verifica a taglio della sezione di solo spritz non si è tenuto conto delle fibre e né si è valutata la resistenza come sezione non armata a taglio. A favore di sicurezza non si è considerato l'apporto di resistenza dato dalla compressione della sezione. Il rivestimento presenta resistenza a taglio pari a 108 kN/m, mentre la sollecitazione massima nei due casi vale 51.4 kN/m per la massima copertura e 6.3 kN/m per la copertura mediobassa; la verifica risulta quindi soddisfatta.

Come si può osservare dai grafici nella seguente Figura 7.2 i chiodi da roccia risultano pressoché scarichi, pertanto la verifica risulta soddisfatta.

Figura 7.2 - Sezione tipo SGI1: verifica a trazione per la chiodatura (a) sezione con copertura massima (b) sezione con copertura medio-bassa

7.2.2 Verifica del rivestimento definitivo

La sezione tipo SGI1 presenta un rivestimento definitivo dello spessore di 50 cm, realizzato in calcestruzzo di classe C30/37 ed armato con 5+5 \emptyset 24 / m.

Come si può osservare dalla figura seguente (Figura 7.3), tutte le coppie di sollecitazione ricadono internamente al dominio di interazione e pertanto la verifica risulta soddisfatta per tutte le fasi di analisi.

Figura 7.3 - Sezione tipo SGI1: Verifiche di pressoflessione per il rivestimento definitivo (a) sezione con copertura massima (b) sezione con copertura medio-bassa

La massima sollecitazione di taglio la si registra durante la fase di rilascio totale, quando non si hanno forze interne la galleria a contrastare le spinte geostatiche per la copertura massima; i valori maggiori li si ottiene negli spigoli tra piedritti ed arco rovescio dove si ha un punto singolare per cui la modellazione aumenta sensibilmente il valore reale (Figura 7.4). Considerando la presenza di un'armatura a taglio costituita da staffe \emptyset 12 con maglia 20 x 40 cm si ottiene un taglio resistente pari a 560 kN/m, nell'intorno della
giunzione tra piedritti ed arco rovescio è comunque consigliato infittire le staffe con passo 20 x 20 per un tratto di 1 m dall'intersezione, ottenendo così un taglio resistente di 1120 kN/m.

Figura 7.4 - Sezione tipo SGI1: Sollecitazione di taglio fase di rilascio totale per la copertura massima

Così armata la sezione tipo SGI1 risulta verificata per le azioni ottenute dalle due modellazioni (copertura massima e medio-bassa in ammasso roccioso poco fratturato)

7.3 Sezione tipo SGI2

7.3.1 Verifica del rivestimento di prima fase

La sezione tipo SGI2 presenta un rivestimento di prima fase costituito da:

- centine accoppiate HEB120 passo 1.5 m in acciaio S275
- calcestruzzo proiettato fibrorinforzato classe C30/37 con spessore 20 cm

Come si può osservare dalla figura seguente (Figura 7.5), tutte le coppie di sollecitazione ricadono internamente al dominio di interazione.

Per la verifica a taglio della sezione non si è tenuto conto dell'apporto di resistenza fornito delle fibre. Il rivestimento presenta resistenza a taglio pari a 221 kN/m, mentre la sollecitazione massima nei due casi vale 27.9 kN/m per l'ammasso intensamente fratturato e 49.4 kN/m in zona di faglia; la verifica risulta quindi soddisfatta.

7.3.2 Verifica del rivestimento definitivo

La sezione tipo SGI2 presenta un rivestimento definitivo dello spessore di 50 cm, realizzato in calcestruzzo di classe C30/37 ed armato con 5+5 \oslash 24 / m.

Come si può osservare dalla figura seguente (Figura 7.6), tutte le coppie di sollecitazione ricadono internamente al dominio di interazione e pertanto la verifica risulta soddisfatta per tutte le fasi di analisi.

Figura 7.6 - Sezione tipo SGI2: Verifiche di pressoflessione per il rivestimento definitivo (a) sezione in ammasso intensamente fratturato (b) sezione in zona di faglia

La massima sollecitazione di taglio la si registra durante la fase di rilascio totale, quando non si hanno forze interne la galleria a contrastare le spinte geostatiche; i valori maggiori li si ottiene negli spigoli tra piedritti ed arco rovescio dove si ha un punto singolare per cui la modellazione aumenta sensibilmente il valore reale (Figura 7.7). Considerando la presenza di un'armatura a taglio costituita da staffe \emptyset 12 con maglia 20 x 40 cm si ottiene un taglio resistente pari a 560 kN/m, nell'intorno della giunzione tra piedritti ed arco rovescio è comunque consigliato infittire le staffe con passo 20 x 20 per un tratto di 1 m dall'intersezione, ottenendo così un taglio resistente di 1120 kN/m.

Figura 7.7 - Sezione tipo SGI2: Sollecitazione di taglio fase di rilascio totale delle tensioni geostatiche per la zona di faglia

Così armata la sezione tipo SGI2 risulta verificata per le azioni ottenute dalle due modellazioni (copertura medio-bassa in ammasso roccioso intensamente fratturato o in zona di faglia).

GEODES

7.4 Sezione tipo SGI3

7.4.1 Verifica del rivestimento di prima fase

La sezione tipo SGI3 presenta un rivestimento di prima fase costituito da:

- centine accoppiate HEB180 passo 1 m in acciaio S275
- calcestruzzo proiettato fibrorinforzato classe C30/37 con spessore 20 cm

Come si può osservare dalla figura seguente (Figura 7.8), tutte le coppie di sollecitazione ricadono internamente al dominio di interazione.

Figura 7.8 - Sezione tipo SGI3: Verifiche di pressoflessione per il rivestimento di prima fase

Per la verifica a taglio della sezione non si è tenuto conto dell'apporto di resistenza fornito delle fibre. Il rivestimento presenta resistenza a taglio pari a 612 kN/m, mentre la sollecitazione massima vale 336.7 kN/m, la verifica risulta quindi soddisfatta.

7.4.2 Verifica del rivestimento definitivo

La sezione tipo SGI3 presenta un rivestimento definitivo dello spessore di 60 cm, realizzato in calcestruzzo di classe C30/37 ed armato con 5+5 \oslash 24 / m.

Come si può osservare dalla figura seguente (Figura 7.9), tutte le coppie di sollecitazione ricadono internamente al dominio di interazione e pertanto la verifica risulta soddisfatta per tutte le fasi di analisi.

Figura 7.9 - Sezione tipo SGI3: Verifiche di pressoflessione per il rivestimento definitivo

La massima sollecitazione di taglio la si registra durante la fase di rilascio totale, quando non si hanno forze interne la galleria a contrastare le spinte geostatiche; i valori maggiori li si ottiene negli spigoli tra piedritti ed arco rovescio dove si ha un punto singolare per cui la modellazione aumenta sensibilmente il valore reale (Figura 7.10). Considerando la presenza di un'armatura a taglio costituita da staffe Ø12 con maglia 20 x 40 cm si ottiene un taglio resistente pari a 684 kN/m, nell'intorno della giunzione tra piedritti ed arco rovescio è comunque consigliato infittire le staffe con passo 20 x 20 per un tratto di 1 m dall'intersezione, ottenendo così un taglio resistente di 1369 kN/m.

Per questa sezione i valori di taglio ottenuti negli spigoli risultano particolarmente elevati, per decrescere di valore repentinamente allontanandosi dagli spigoli tra piedritti ed arco rovescio, in quello che è il solo spessore del rivestimento definitivo (60 cm) il valore di taglio ottenuto dalla modellazione si dimezza. Si può quindi escludere questi valori di spigolo dalle verifiche.

Figura 7.10 - Sezione tipo SGI3: Sollecitazione di taglio fase di rilascio totale delle tensioni geostatiche per l'ammasso intensamente fratturato

Così armata la sezione tipo SGI3 risulta verificata per le azioni ottenute dalla modellazione (copertura alta in ammasso roccioso intensamente fratturato).

GE•DES

7.5 Sezione tipo SGI4

7.5.1 Verifica del rivestimento di prima fase

La sezione tipo SGI4 presenta un rivestimento di prima fase costituito da:

- centine accoppiate HEB 180 passo 1 m in acciaio S275
- calcestruzzo proiettato fibrorinforzato classe C30/37 con spessore 30 cm

Come si può osservare dalla figura seguente (Figura 7.11), tutte le coppie di sollecitazione ricadono internamente al dominio di interazione.

Figura 7.11 - Sezione tipo SGI4: Verifiche di pressoflessione per il rivestimento di prima fase

Per la verifica a taglio della sezione non si è tenuto conto dell'apporto di resistenza fornito delle fibre. Il rivestimento presenta resistenza a taglio pari a 612 kN/m, mentre la sollecitazione massima vale 360.2 kN/m, la verifica risulta quindi soddisfatta.

7.5.2 Verifica del rivestimento definitivo

La sezione tipo SGI4 presenta un rivestimento definitivo dello spessore di 60 cm su calotta e piedritti e di 70 cm in arco rovescio, realizzato in calcestruzzo di classe C30/37 ed armato con 5+5 \emptyset 24 / m.

Come si può osservare dalla figura seguente (Figura 7.12), tutte le coppie di sollecitazione ricadono internamente al dominio di interazione e pertanto la verifica risulta soddisfatta per tutte le fasi di analisi. Lo spessore maggiorato in arco rovescio è risultato necessario a causa delle elevate forze che si sviluppano sul rivestimento durante la fase di scarico totale delle tensioni geostatiche sul contorno di scavo.

Figura 7.12 - Sezione tipo SGI4: Verifiche di pressoflessione per il rivestimento definitivo (riquadro rosso: elementi arco rovescio)

La massima sollecitazione di taglio la si registra durante la fase di rilascio totale, quando non si hanno forze interne la galleria a contrastare le spinte geostatiche; i valori maggiori li si ottiene negli spigoli tra piedritti ed arco rovescio dove si ha un punto singolare per cui la modellazione aumenta sensibilmente il valore reale. Considerando la presenza di un'armatura a taglio costituita da staffe \emptyset 12 con maglia 20 x 40 cm si ottiene un taglio resistente pari a 684 kN/m per calotta e piedritti e pari a 809 kN/m per l'arco rovescio. Nell'intorno della giunzione tra piedritti ed arco rovescio è comunque consigliato infittire le staffe con passo 20 x 20 per un tratto di 1.5 m dall'intersezione, ottenendo così un taglio resistente di 1369 kN/m per calotta e piedritti e pari a 1618 kN/m per l'arco rovescio.

Per questa sezione i valori di taglio ottenuti negli spigoli risultano particolarmente elevati (Figura 7.13), per decrescere di valore repentinamente allontanandosi dagli spigoli tra piedritti ed arco rovescio, in quello che è il solo spessore del rivestimento definitivo (70 cm) il valore di taglio ottenuto dalla modellazione è quasi dimezzato. Si può quindi escludere questi valori di spigolo dalle verifiche.

GEODES

Figura 7.13 - Sezione tipo SGI4: Sollecitazione di taglio fase di scarico totale delle tensioni geostatiche per l'ammasso intensamente fratturato

Così armata la sezione tipo SGI4 risulta verificata per le azioni ottenute dalla modellazione (copertura alta in ammasso roccioso intensamente fratturato).

GE•DES

7.6 Sezione tipo SGPz1

7.6.1 Verifica del rivestimento di prima fase

La sezione tipo SGPz1 presenta un rivestimento di prima fase costituito da:

- corona di chiodi di lunghezza 3 m, interasse 1 m e passo 1 m lungo l'asse galleria
- calcestruzzo proiettato fibrorinforzato classe C30/37 armato con rete elettrosaldata, spessore 30 cm

per questa sezione tipo il rivestimento di prima fase ha anche funzione di definitivo, lo si è quindi verificato per tutti gli step di calcolo.

Come si può osservare dalla figura seguente (Figura 7.14), tutte le coppie di sollecitazione ricadono internamente al dominio di interazione.

Figura 7.14 - Sezione tipo SGPz1: Verifiche di pressoflessione per il rivestimento di prima fase

Per la verifica a taglio della sezione di solo spritz non si è tenuto conto dell'armatura e delle fibre, né si è valutata la resistenza come sezione non armata a taglio. A favore di sicurezza non si è considerato l'apporto di resistenza dato dalla compressione della sezione. Il rivestimento presenta resistenza a taglio pari a 140 kN/m, mentre la sollecitazione massima -131.5 kN/m, la verifica risulta quindi soddisfatta.

Come si può osservare dai grafici nella seguente Figura 7.15 i chiodi risultano pressoché scarichi, pertanto la verifica risulta soddisfatta.

Figura 7.15 - Sezione tipo SGPz1: verifica a trazione per la chiodatura

Il rivestimento di prima fase così costituito risulta verificato per le azioni ottenute dalla modellazione.

7.7 Sezione tipo SGPz2

7.7.1 Verifica del rivestimento di prima fase

La sezione tipo SGPz2 presenta un rivestimento di prima fase costituito da:

- centine accoppiate HEB180 passo 1 m in acciaio S275
- calcestruzzo proiettato fibrorinforzato classe C30/37 di spessore 20 cm

Come si può osservare dalla figura seguente (Figura 7.16), tutte le coppie di sollecitazione ricadono internamente al dominio di interazione.

Figura 7.16 - Sezione tipo SGPz2: Verifiche di pressoflessione per il rivestimento di prima fase

GE•DES

Per la verifica a taglio della sezione non si è tenuto conto dell'apporto di resistenza fornito delle fibre. Il rivestimento presenta resistenza a taglio pari a 612 kN/m, mentre la sollecitazione massima è di 261.1 kN/m, la verifica risulta quindi soddisfatta.

7.7.2 Verifica del rivestimento definitivo

La sezione tipo SGPz2 presenta un rivestimento definitivo dello spessore di 60 cm, realizzato in calcestruzzo di classe C30/37 ed armato con 5+5 \emptyset 24 / m.

Come si può osservare dalla figura seguente (Figura 7.17), tutte le coppie di sollecitazione ricadono internamente al dominio di interazione e pertanto la verifica risulta soddisfatta per tutte le fasi di analisi.

Figura 7.17 - Sezione tipo SGPz2: Verifiche di pressoflessione per il rivestimento definitivo

La massima sollecitazione di taglio la si registra durante la fase esercizio; i valori maggiori li si ottiene negli spigoli tra piedritti ed arco rovescio dove si ha un punto singolare per cui la modellazione aumenta sensibilmente il valore reale. Considerando la presenza di un'armatura a taglio costituita da staffe \emptyset 12 con maglia 20 x 40 cm si ottiene un taglio resistente pari a 684 kN/m, nell'intorno della giunzione tra piedritti ed arco rovescio è comunque consigliato infittire le staffe con passo 20 x 20 per un tratto di 1 m dall'intersezione, ottenendo così un taglio resistente di 1369 kN/m.

Per questa sezione i valori di taglio ottenuti negli spigoli risultano particolarmente elevati (Figura 7.18), per decrescere di valore repentinamente allontanandosi dagli spigoli tra piedritti ed arco rovescio, si può quindi escludere questi valori di spigolo dalle verifiche.

Così armata la sezione tipo SGPz2 risulta verificata per le azioni ottenute dalla modellazione.

Figura 7.18 - Sezione tipo SGPz2: Sollecitazione di taglio fase di esercizio

7.8 Sezione tipo SGPz3

7.8.1 Verifica del rivestimento di prima fase

La sezione tipo SGPz3 presenta un rivestimento di prima fase costituito da:

- centine accoppiate HEB180 passo 1 m in acciaio S275
- calcestruzzo proiettato fibrorinforzato classe C30/37 di spessore 30 cm

Come si può osservare dalla figura seguente (Figura 7.19), tutte le coppie di sollecitazione ricadono internamente al dominio di interazione.

Per la verifica a taglio della sezione non si è tenuto conto dell'apporto di resistenza fornito delle fibre. Il rivestimento presenta resistenza a taglio pari a 612 kN/m, mentre la sollecitazione -530.2 kN/m, la verifica risulta quindi soddisfatta.

Figura 7.19 - Sezione tipo SGPz3: Verifiche di pressoflessione per il rivestimento di prima fase

7.8.2 Verifica del rivestimento definitivo

La sezione tipo SGPz3 presenta un rivestimento definitivo dello spessore di 60 cm su calotta e piedritti e di 70 cm in arco rovescio, realizzato in calcestruzzo di classe C30/37 ed armato con 5+5 \emptyset 24 / m.

Come si può osservare dalla figura seguente (Figura 7.20), tutte le coppie di sollecitazione ricadono internamente al dominio di interazione e pertanto la verifica risulta soddisfatta per tutte le fasi di analisi.

Figura 7.20 - Sezione tipo SGPz3: Verifiche di pressoflessione per il rivestimento definitivo (riquadro rosso: elementi arco rovescio)

La massima sollecitazione di taglio la si registra durante la fase esercizio; i valori maggiori li si ottiene negli spigoli tra piedritti ed arco rovescio dove si ha un punto singolare per cui la modellazione aumenta sensibilmente il valore reale. Considerando la presenza di un'armatura a taglio costituita da staffe \emptyset 12 con maglia 20 x 40 cm si ottiene un taglio resistente pari a 684 kN/m per calotta e piedritti e pari a 809 kN/m per l'arco rovescio, nell'intorno della giunzione tra piedritti ed arco rovescio è comunque consigliato infittire le staffe con passo 20 x 20 per un tratto di 1 m dall'intersezione, ottenendo così un taglio resistente di 1369 kN/m per i piedritti e 1618 kN/m per l'arco rovescio.

Per questa sezione i valori di taglio ottenuti negli spigoli risultano particolarmente elevati, per decrescere di valore repentinamente allontanandosi dagli spigoli tra piedritti ed arco rovescio, si può quindi escludere questi valori di spigolo dalle verifiche (Figura 7.21).

Così armata la sezione tipo SGPz3 risulta verificata per le azioni ottenute dalla modellazione.

GEODES

Figura 7.21 - Sezione tipo SGPz3: Sollecitazione di taglio fase di esercizio

7.9 Sezione tipo SGC1

7.9.1 Verifica del rivestimento di prima fase

La sezione tipo SGC1 presenta un rivestimento di prima fase costituito da:

- corona di chiodi di lunghezza 3 m, interasse 1 m e passo 1 m lungo l'asse galleria
- calcestruzzo proiettato fibrorinforzato classe C30/37 armato con rete elettrosaldata, spessore 30 cm

Per questa sezione tipo il rivestimento di prima fase è stato verificato per tutti gli step di calcolo così da permettere la posa del rivestimento definitivo, necessario per i sottoservizi anche a notevole distanza dal fronte.

Come si può osservare dalla figura seguente (Figura 7.22), tutte le coppie di sollecitazione ricadono internamente al dominio di interazione per tutte le fasi di analisi.

Per la verifica a taglio della sezione di solo spritz non si è tenuto conto dell'armatura e delle fibre, si è valutata la resistenza come sezione non armata a taglio. A favore di sicurezza non si è considerato l'apporto di resistenza dato dalla compressione della sezione. Il rivestimento presenta resistenza a taglio pari a 140 kN/m, mentre la sollecitazione massima -76.3 kN/m, la verifica risulta quindi soddisfatta.

Come si può osservare dai grafici nella seguente Figura 7.23 i chiodi tipo GEWI B500B risultano pressoché scarichi, pertanto la verifica risulta soddisfatta.

Figura 7.23 - Sezione tipo SGC1: verifica a trazione per la chiodatura

Il rivestimento di prima fase così costituito risulta verificato per le azioni ottenute dalla modellazione.

7.10 Sezione tipo SGC2

7.10.1 Verifica del rivestimento di prima fase

La sezione tipo SGC2 presenta un rivestimento di prima fase costituito da:

- centine accoppiate HEB180 passo 1 m in acciaio S275
- calcestruzzo proiettato fibrorinforzato classe C30/37 di spessore 20 cm

Come si può osservare dalla figura seguente (Figura 7.24), tutte le coppie di sollecitazione ricadono internamente al dominio di interazione.

Per la verifica a taglio della sezione non si è tenuto conto dell'apporto di resistenza fornito delle fibre. Il rivestimento presenta resistenza a taglio pari a 612 kN/m, mentre la sollecitazione massima è di -238.5 kN/m, la verifica risulta quindi soddisfatta.

Figura 7.24 - Sezione tipo SGC2: Verifiche di pressoflessione per il rivestimento di prima fase

7.10.2 Verifica del rivestimento definitivo

La sezione tipo SGC2 presenta un rivestimento definitivo dello spessore di 60 cm, realizzato in calcestruzzo di classe C30/37 ed armato con 5+5 \varnothing 24 / m.

Figura 7.25 - Sezione tipo SGC2: Verifiche di pressoflessione per il rivestimento definitivo

Come si può osservare dalla Figura 7.25, tutte le coppie di sollecitazione ricadono internamente al dominio di interazione e pertanto la verifica risulta soddisfatta per tutte le fasi di analisi.

La massima sollecitazione di taglio la si registra durante la fase di esercizio (Figura 7.26); i valori maggiori li si ottiene negli spigoli tra piedritti ed arco rovescio dove si ha un punto singolare per cui la modellazione aumenta sensibilmente il valore reale. Considerando la presenza di un'armatura a taglio costituita da staffe \emptyset 12 con maglia 20 x 40 cm si ottiene un taglio resistente pari a 684 kN/m, nell'intorno della giunzione tra piedritti ed arco rovescio è comunque consigliato infittire le staffe con passo 20 x 20 per un tratto di 1 m dall'intersezione, ottenendo così un taglio resistente di 1369 kN/m.

Così armata la sezione tipo SGc2 risulta verificata per le azioni ottenute dalla modellazione.

Figura 7.26 - Sezione tipo SGC2: Sollecitazione di taglio fase di esercizio

7.11 Sezione tipo SGC3

7.11.1 Verifica del rivestimento di prima fase

La sezione tipo SGC3 presenta un rivestimento di prima fase costituito da:

- centine accoppiate HEB200 passo 1 m in acciaio S275
- calcestruzzo proiettato fibrorinforzato classe C30/37 di spessore 30 cm

Come si può osservare dalla Figura 7.27 seguente, tutte le coppie di sollecitazione ricadono internamente al dominio di interazione.

Per la verifica a taglio della sezione non si è tenuto conto dell'apporto di resistenza fornito delle fibre. Il rivestimento presenta resistenza a taglio pari a 612 kN/m, mentre la sollecitazione massima è di -379.2 kN/m, la verifica risulta quindi soddisfatta.

Figura 7.27 - Sezione tipo SGC3: Verifiche di pressoflessione per il rivestimento di prima fase (a) sezione in ammasso intensamente fratturato (b) sezione in zona di faglia

7.11.2 Verifica del rivestimento definitivo

La sezione tipo SGC3 presenta un rivestimento definitivo dello spessore di 60 cm, realizzato in calcestruzzo di classe C30/37 ed armato con 5+5 \emptyset 24 / m.

Come si può osservare dalla Figura 7.28 seguente, tutte le coppie di sollecitazione ricadono internamente al dominio di interazione e pertanto la verifica risulta soddisfatta per tutte le fasi di analisi.

Figura 7.28 - Sezione tipo SGC2: Verifiche di pressoflessione per il rivestimento definitivo (a) sezione in ammasso intensamente fratturato (b) sezione in zona di faglia

La massima sollecitazione di taglio la si registra durante la fase esercizio; i valori maggiori li si ottiene negli spigoli tra piedritti ed arco rovescio dove si ha un punto singola-re per cui la modellazione aumenta sensibilmente il valore reale. Considerando la presenza di un'armatura a taglio costituita da staffe \emptyset 12 con maglia 20 x 40 cm si ottiene un taglio resistente pari a 684 kN/m, nell'intorno della giunzione tra piedritti ed arco rovescio è

comunque consigliato infittire le staffe con passo 20 x 20 per un tratto di 1 m dall'intersezione, ottenendo così un taglio resistente di 1369 kN/m.

Figura 7.29 - Sezione tipo SGC3: Sollecitazione di taglio fase di esercizio (a) sezione in ammasso intensamente fratturato (b) sezione in zona di faglia

Per questa sezione i valori di taglio ottenuti negli spigoli risultano particolarmente elevati, per decrescere di valore repentinamente allontanandosi dagli spigoli tra piedritti ed arco rovescio, si può quindi escludere questi valori di spigolo dalle verifiche (Figura 7.29).

Così armata la sezione tipo SGC3 risulta verificata per le azioni ottenute dalla modellazione.

7.12 Paratie di imbocco della galleria di accesso

In questo paragrafo si riportano le verifiche effettuate sulla paratia di imbocco della galleria di accesso tramite il software ParatiePlus 2022.

7.12.1 Verifica di stabilità globale - Analisi con il Metodo dell'Equilibrio Limite

Sulla sezione di calcolo sono state eseguite analisi in campo statico e pseudostatico, allo scopo di verificare la stabilità globale dell'opera di sostegno.

La stabilità globale dell'insieme opera-terreno deve essere verificata, con riferimento alla normativa italiana, secondo l'Approccio 1 - Combinazione 2 (A2 + M2 + R2) e secondo la combinazione SISM-GEO tenendo conto dei coefficienti parziali riportati nelle Tabelle 7.1÷7.4.

Tale verifica è svolta mediante un calcolo all'equilibrio limite per mezzo del software Paratie; tra i metodi di calcolo possibili si è scelto di utilizzare il metodo di Bishop.

L'analisi è stata eseguita nella fase relativa al raggiungimento del fondo scavo (14 m dalla testa dei micropali) al fine di indagare la stabilità del versante dopo la realizzazione degli interventi di stabilizzazione. Tali analisi sono state eseguite sia in campo statico sia in campo pseudo-statico. I risultati ottenuti dalle analisi sono riportati nelle Figure 7.30÷7.32 in termini di Fattore di Sicurezza (FS) minimo secondo Bishop.

Figura 7.30 - Verifica di stabilità globale in campo statico

Figura 7.31 - Verifica di stabilità globale in campo pseudo-statico (k_v-)

Figura 7.32 - Verifica di stabilità globale in campo pseudo-statico (kv+)

Come si può osservare dalle immagini riportate sopra, le superfici di scivolamento critiche (ossia quelle a cui è associato il minor fattore di sicurezza calcolato) presentano fattori di sicurezza maggiori di quelli richiesti dalle NTC2018.

In Tabella 7.5 sono riassunti i risultati ottenuti.

Tabella 7.5 - Analisi con il Metodo dell'Equilibrio Limite - Valori del FS minimo secondo Bishop

Condizioni di analisi	FS min	FS richiesto
Condizioni statiche	3.231	≥1.1
Condizioni pseudo-statiche - kv-	3.932	≥1.2
Condizioni pseudo-statiche - kv+	3.908	≥1.2

7.12.2 Stabilità dell'opera (resistenza del terreno a valle)

La stabilità dell'opera deve essere verificata, con riferimento alla normativa italiana, secondo l'Approccio 1 - Combinazione 2 (A2 + M2 + R2) e secondo la combinazione SISM-GEO tenendo conto dei coefficienti parziali riportati nelle Tabelle 7.1÷7.4.

In Tabella 7.6 si riporta il riepilogo delle spinte, calcolate dal software Paratie, relative all'ultimo stage di calcolo, al quale corrisponde la massima altezza libera. Come si può osservare la percentuale di spinta passiva di progetto massima mobilitata a valle dell'opera è pari al 5% e pertanto la verifica risulta soddisfatta positivamente.

	STAT-GEO	SISM-GEO
Spinta totale (kN/m)	993.52	984.22
Massima spinta ammissibile (kN/m)	76921	19466
Rapporto di sfruttamento	0.013	0.05

Tabella 7.6 - Riepilogo delle spinte agenti e delle resistenze del terreno a valle

7.12.3 Sfilamento di uno o più ancoraggi

Per tutti i tiranti di ancoraggio previsti è stata eseguita la verifica a sfilamento del bulbo di fondazione seguendo le indicazioni delle NTC 2018, con riferimento alla combinazione dei coefficienti parziali di tipo A1+M1+R3 e A2+M2+R1.

Il valore di resistenza caratteristica allo sfilamento R_{ak} deriva dal calcolo di $R_{ac,min}$, valutata con il metodo proposto da Bustamante e Doix:

$$R_{ac,min} = \pi \cdot D_s \cdot L_b \cdot q_s$$
$$D_s = \alpha \cdot D_f$$

dove:

- D_s è il diametro del bulbo di fondazione
- D_f è il diametro di perforazione per la realizzazione del tirante
- α è il coefficiente di sbulbamento del foro ed è dipendente dal tipo di iniezione e dal tipo di terreno (Tabella 7.7)
- L_b è la lunghezza del bulbo di fondazione
- q_s è la tensione limite di aderenza all'interfaccia tra roccia e bulbo di fondazione e/o barra, assunta cautelativamente pari a 600 kPa, corrispondente a una pressione limite di 5.5 MPa (Figura 7.33).

La verifica è positiva con R_{ad} (valore di progetto della resistenza) $\ge E_d$ (valore di progetto dell'azione sul tirante). R_{ad} si calcola come segue:

$$R_{ak} = \frac{R_{ac,min}}{\xi_{a4}} \qquad \qquad R_{ad} = \frac{R_{ak}}{\gamma_{Ra,p}}$$

dove:

- ξ_{a4} è il fattore di correlazione relativo il numero di prove o dati, posto pari a 1.80
- $\gamma_{Ra,p}$ è il coefficiente parziale per tiranti permanenti (R3), posto pari a 1.2

Tabella 7.7 - Tabella proposta da Bustamante e Doix per la scelta del coefficiente α Valeurs des coefficients α pour le calcul du diamètre moyen du scellement d'un tirant ou micropieu injecté

5015	Coeffi	cientα,	Quantité minimale de coulis	
5015	IRS"	IGU**	Vi	
Grave Grave sableuse Sable graveleux Sable grossier Sable moyen Sable fin Sable limoneux	1,8 1.6 à 1.8 1,5 a 1,6 7,4 à 1,5 1,4 à 1,5 1,4 à 1,5 1,4 à 1,5	1.3 à 1.4 1.2 à 1.4 1.2 à 1.4 1.2 à 1.3 1.1 à 1.2 1.1 à 1.2 1.1 à 1.2 1.1 à 1.2	1.5 V. 1.5 V	
Limon Argile	1,4 à 1,6 1,8 à 2	1.1 å 1.2 1.2	{2 V, pour IRS {1.5 V, pour IGU {2.5 à 3 V, pour IGU {1.5 à 2 V, pour IGU	
Marne Marno-calcaire Craie altérée ou fragmentée	1,8 1,8 1,8	1,1 à 1,2 1,1 à 1,2 1,1 à 1,2	1.5 à 2 V, pour couche compacte 2 à 6 V, ou plus, si couche fracturée	
Rocher altéré ou fragmenté	1,2	1,1	 1.1 à 1.5 V, si couche finement fissurée 2 ou plus si couche fracturée 	
V ₄ : volume du bulbe di IRS : injection répétitive IGU : injection globale d	e scellement. et sélective. en presse unifiée.	: a : a	we $Q_i \ge p_i$ we $Q_i p_j < p_j < p_j$	

AMMASSO ROCCIOSO FRATTURATO E ALTERATO

Figura 7.33 - Abaco proposto da Bustamante e Doix per la scelta di qs in ammassi rocciosi fratturati

La verifica è stata svolta per mezzo del software Paratie Plus il quale utilizza il criterio di verifica illustrato al paragrafo precedente.

Si richiamano di seguito le principali caratteristiche dei tiranti di ancoraggio della paratia:

- Primo e secondo ordine, tiranti a barre:
 - o interasse 3 m
 - inclinazione 20°
 - o lunghezza totale 8 m (bulbo di ancoraggio 5 m lunghezza libera 3 m)
 - o diametro di perforazione 120 mm
 - o pretiro 100 kN.

Nella seguente Tabella 7.8 si riportano, sia per lo scenario STAT-GEO sia per lo scenario SISM-GEO, la sollecitazione di progetto E_d , la resistenza di progetto allo sfilamento R_{ad_s} , lo sfruttamento dell'elemento (inteso come rapporto tra azione sollecitante e resistenza di calcolo, un valore inferiore ad 1 indica il superamento della verifica) ed infine l'esito della verifica condotta, la quale, come si può osservare, risulta sempre soddisfatta.

	Scenario	E₄ [kN]	R _{ad_s} [kN]	Sfruttamento GEO	Verifica
Drimo	STAT-GEO (A1+M1+R3)	130.05		0.207	SI
Plillo	STAT-GEO (A2+M2+R1)	100.04		0.159	SI
oraine	SISM-GEO	381.94	600.00	0.608	SI
Secondo	STAT-GEO (A1+M1+R3)	130.2	020.33	0.207	SI
Secondo	STAT-GEO (A2+M2+R1)	100.16		0.159	SI
ordine	SISM-GEO	142.11		0.226	SI

Tabella 7.8 - Resistenze e azioni di sfilamento dei tiranti

7.12.4 Verifica della resistenza strutturale della paratia

La verifica della sezione degli elementi strutturali è stata condotta in accordo alle NTC18 con riferimento alla combinazione dei coefficienti parziali di tipo A1+M1+R1 e A2+M2+R1. L'acciaio utilizzato per i tubi della paratia è del tipo S355. La sezione resistente deve avere un momento plastico resistente $M_{pl,Rd}$ tale che sia soddisfatta la seguente disuguaglianza:

$$M_{Ed} < M_{pl,Rd}$$

 $M_{pl,Rd} = W_{pl} \cdot f_d$

dove:

- M_{Ed} è il momento flettente di calcolo agente
- M_{pl,Rd} è il momento flettente resistente plastico di calcolo
- W_{pl} è il modulo resistente plastico della sezione, pari a 406 cm³
- f_d è la resistenza a trazione di calcolo dell'acciaio.

Analogamente, per la verifica a taglio si deve disporre di uno sforzo di taglio resistente tale per cui:

$$V_{Ed} < V_{c,Rd}$$
$$V_{c,Rd} = A_V \cdot \frac{f_d}{\sqrt{3}}$$

dove:

- V_{Ed} è lo sforzo di taglio di calcolo agente.
- V_{c,Rd} è lo sforzo di taglio plastico resistente di calcolo
- A_v è la sezione resistente a taglio
- f_d è la resistenza a trazione di calcolo dell'acciaio.

I valori del momento resistente di calcolo $M_{pl,Rd}$ e dello sforzo di taglio resistente di calcolo $V_{c,Rd}$ risultano pari a:

Nelle Figure 7.34 ÷ 7.39 si riportano gli andamenti degli inviluppi delle sollecitazioni di progetto di momento flettente e taglio lungo la paratia per le verifiche STAT-STR e i diagrammi di momento flettente e taglio lungo la paratia, relativi all'ultimo stage di calcolo, per le verifiche SISM-STR. I diagrammi riportano inoltre la resistenza di progetto (linea azzurra) della paratia.

Figura 7.34 - Inviluppo del momento flettente (condizioni STAT-STR - A1+M1+R1)

Figura 7.35 - Inviluppo del momento flettente (condizioni STAT-GEO - A2+M2+R1)

Figura 7.36 - Inviluppo del taglio (condizioni STAT-STR - A1+M1+R1)

Figura 7.37 - Inviluppo del taglio (condizioni STAT-GEO - A2+M2+R1)

Figura 7.38 - Diagramma del momento flettente (condizioni SISM-STR)

Figura 7.39 - Diagramma di taglio (condizioni SISM-STR)

La Tabella 7.9 riportata nel seguito mostra una sintesi delle verifiche strutturali effettuate per la paratia e riporta nell'ordine: le azioni sollecitanti di progetto, la resistenza strutturale di progetto e l'esito della verifica.

Le verifiche risultano essere sempre soddisfatte, essendo le sollecitazioni di progetto sempre inferiori alle resistenze di progetto.

Scenario	Combinazione	M _{Ed} [kN m/m]	V _{Ed} [kN/m]	M _{Rd} [kN m/m]	V _{Rd} [kN/m]	Verifica
οτλτ ότρ	A1+M1+R1	6.77	21.22			SI
51A1-51K	A2+M2+R1	5.21	16.32	298.09	1891.6	SI
SISM-STR	preudo-statica	141.87	68.48]		SI

7.12.5 Verifica della resistenza strutturale degli ancoraggi

La normativa richiede che per i tiranti di ancoraggio sia verificato che la resistenza allo snervamento sia sempre maggiore dell'azione sollecitante calcolata.

Per i tiranti a barre impiegati la tensione di snervamento caratteristica vale $f_{p(0.2)k}$ =670 N/mm².

Il valore della resistenza a snervamento caratteristica $R_{p(1)k}$ si ottiene mediante la seguente formula:

$$\mathsf{R}_{\mathsf{p},\mathsf{k}} = \mathsf{A}_{\mathsf{tirante}} \cdot \mathsf{f}_{\mathsf{p},\mathsf{k}}$$

mentre il valore di progetto si ottiene dividendo il valore caratteristico per il fattore di sicurezza previsto dalla normativa per l'acciaio ($\gamma_s = 1.15$), sostituendo nelle formule si ha:

$$R_{p,d-barre} = R_{p,k} / 1.15 = 3588.9 \text{ kN}$$

Con riferimento al criterio della gerarchia delle resistenze, la normativa NTC18 impone inoltre la verifica della seguente condizione:

 $R_{\text{p,d}} > R_{\text{ac}}$

ossia che la resistenza a snervamento caratteristica $R_{p,d}$ sia sempre maggiore della resistenza a sfilamento della fondazione dell'ancoraggio R_{ac} .

In questo caso, come mostra la Tabella 7.10 la verifica risulta sempre soddisfatta.

	Scenario	E _d [kN]	R _{ac_s} [kN]	R _{p(1)d} [kN]	Verifica strutturale	Gerar- chia resi- stenze
	STAT-STR (A1+M1+R3)	130.05			SI	SI
Primo ordine	Primo ordine STAT-STR (A2+M2+R1) 100.04			SI	SI	
	SISM-STR	381.94	1	3588.9	SI	SI
	STAT-STR (A1+M1+R3)	130.2	628.33		SI	SI
Secondo ordine	STAT-STR (A2+M2+R1)	100.16			SI	SI
	SISM-STR	142.11			SI	SI

Tabella 7.10 - Resistenze e azior	ni di trazione dei tiranti
-----------------------------------	----------------------------

7.12.6 Verifica della resistenza strutturale della trave di ripartizione

La verifica delle travi di ripartizione è stata eseguita tramite il software Paratie Plus, il quale utilizza lo schema di trave continua su infiniti appoggi, soggetta ad un carico uniforme pari al valore dell'azione del singolo tirante distribuito sulla sua zona di competenza, corrispondente all'interasse orizzontale tra i tiranti stessi (Figura 7.40).

Figura 7.40 - Trave di ripartizione - Schema statico adottato dal software Paratie Plus

Per soddisfare le verifiche, dovranno essere verificate le disuguaglianze riportate di seguito.

Verifica a flessione:

$$\frac{M_{Ed}}{M_{c,Rd}} \le 1$$

Verifica a taglio:

$$\frac{V_{Ed}}{V_{c,Rd}} \leq 1$$

Il valore del momento sollecitante per la trave di ripartizione viene calcolato dal software Paratie secondo le formulazioni illustrate nello schema seguente (Figura 7.41):

Figura 7.41 - Formulazioni per il calcolo dei momenti sollecitanti sulla trave con Paratie Plus

I valori dei coefficienti α_1 e α_2 dipendono dallo schema statico impiegato ed in questo caso assumono entrambi il valore di 0.083 (pari a 1/12).

Nella verifica a taglio il valore della forza sollecitante V_{Ed} viene assunta uguale alla metà della sollecitazione del tirante nella relativa combinazione di carico.

Le travi per la ripartizione sulla paratia dello sforzo assiale agente nei tiranti d'ancoraggio sono costituite da profilati HEB140 accoppiati in acciaio S275.

Nella Tabella 7.11 si riportano le verifiche a flessione e taglio della trave di ripartizione riferite alle condizioni statiche e sismiche. In tabella sono riportati i coefficienti di sfruttamento a momento e taglio della sezione (intesi come rapporto tra l'azione sollecitante e la resistenza di progetto), un valore inferiore all'unità di tali coefficienti indica il superamento della verifica. Come si può osservare le verifiche risultano sempre soddisfatte.

	Scenario	Combinazione	Carico di- stribuito [kN/m]	Sfruttamento momento	Sfruttamento taglio
Trave di ripartizione del primo ordine	STAT-STR	A1+M1+R1	48.223	0.250	0.207
		A2+M2+R1	37.051	0.192	0.160
	SISM-STR	SISMICA	141.46	0.739	0.609
Trave di ripartizione del secondo ordine	STAT-STR	A1+M1+R1	48.167	0.250	0.208
		A2+M2+R1	37.051	0.192	0.160
	SISM-STR	pseudo-statica	52.634	0.273	0.227

Tabella 7.11 - Travi di ripartizione in acciaio della paratia - Verifiche strutturali

7.12.7 Controllo degli spostamenti della paratia

Al fine di valutare la compatibilità degli spostamenti dell'opera di sostegno e del terreno circostante è stata condotta l'analisi secondo gli Stati Limite d'Esercizio, in cui sono

GE DES

stati posti pari all'unità tutti i coefficienti parziali. In campo sismico si sono analizzati gli spostamenti allo Stato Limite di Danno secondo quanto richiesto dalle NTC18.

Sono stati considerati ammissibili spostamenti a 50 mm per paratie di altezza libera superiore a 10 m.

Nella Tabella 7.12 si riportano i valori degli spostamenti ammissibili e degli spostamenti massimi calcolati negli stage di calcolo relativi all'opera conclusa, i cui valori massimi sono stati derivati dai diagrammi riportati nelle Figure 7.42 e 7.43.

Scenario	Spostamenti ammissibili (mm)	Spostamenti calcolati (mm)				
STAT - SLE	50	11.38				
SISM - SLD	50	0.18				

Tabella 7.12 - Verifiche di esercizio in condizioni pre e post frana

Figura 7.42 - Diagramma degli spostamenti in campo statico (SLE)

Figura 7.43 - Diagramma degli spostamenti in campo pseudo-statico (SLD)