

REGIONE MOLISE

Provincia di Campobasso

MONTENERO DI BISACCIA E GUGLIONESI (CB)

PROGETTO PER LA REALIZZAZIONE DI UN IMPIANTO EOLICO NEI COMUNI DI MONTENERO DI BISACCIA E GUGLIONESI IN LOCALITA' PONTONE - MACCHIOZZE

COMMITTENTE

PROGETTAZIONE

WIND ENERGY MONTENERO S.r.l.

Via Caravaggio, 125 - 65125 Pescara (PE) P.IVA: 02330290681

Codice Commessa PHEEDRA: 21_26_EO_MTN

PHEEDRA

PHEEDRA S.r.I. Via Lago di Nemi, 90

Informazione

74121 - Taranto Tel. 099.7722302 - Fax 099.9870285 e-mail: info@pheedra.it - web: www.pheedra.it

Dott. Ing. Angelo Micolucci

ORDINE INGEGNERI PROVINCIA TARANTO Sezione A Dott. Ing. Settore. Angelo MICOLUCCI Civile Ambienta Industriale n° 1851

1	Dicembre 2021	PRIMA EMISSIONE	MS	АМ	vs
REV.	DATA	ATTIVITA'	REDATTO	VERIFICATO	APPROVATO

OGGETTO DELL'ELABORATO

RELAZIONE DI IMPATTO ELETTROMAGNETICO

FORMATO	SCALA	CODICE DOCUMENTO		CODICE DOCUMENTO NOME FILE		FOGLI		
Λ.4		SOC.	DISC.	TIPO DOC.	PROG.	REV.	MTN-AMB-REL-041 01	
A4	-	MTN	AMB	REL	041	01	MIN-AMB-REL-041_01	

Wind Energy Montenero Srl

Via Caravaggio, 125 65125 Pescara (PE) PROGETTO PER LA REALIZZAZIONE DI UN IMPIANTO EOLICO NEI COMUNI DI MONTENERO DI BISACCIA E GUGLIONESI IN LOCALITA' PONTONE - MACCHIOZZE Nome del file:

MTN-AMB-REL-041_01

Sommario

1.	PREMESSA	
2.	UNITÀ DI MISURA E GLOSSARIO	
3.	RADIAZIONI IONIZZANTI E NON IONIZZANTI	
4.	NORME DI RIFERIMENTO	
5.	LIMITI DI LEGGE E LIMITI DI QUALITÀ	
6.	DESCRIZIONE IMPIANTO	
7.	METODOLOGIA DI CALCOLO DEI CAMPI ELETTRICO ED INDUZIONE MAGNETICA	
7.1.	aerogeneratore	
7.2.	Cavidotti	10
7.3.	cabina di raccolta	18
7.4.	Sottostazione Elettrica (SSE) di Trasformazione MT/AT	19
7.5.	Linea elettrica interrata AT	21
7.6.	Stazione elettrica 150/380 kV Montecilfone	23
7.7.	Linea elettrica aerea AAT	26
8	CONCLUSIONI	28

Wind Energy Montenero Srl

Via Caravaggio, 125

PROGETTO PER LA REALIZZAZIONE DI UN IMPIANTO EOLICO NEI COMUNI DI MONTENERO DI BISACCIA E GUGLIONESI IN LOCALITA' PONTONE - MACCHIOZZE

Nome del file:

MTN-AMB-REL-041 01

1. PREMESSA

65125 Pescara (PE)

La presente relazione tecnica specialistica si occupa di determinare i valori di campo elettrico e campo magnetico attesi (calcolo previsionale) e di valutare gli effetti ambientali conseguenti ai sensi della legge 36/01 e DPCM 08/07/2003, in riferimento al progetto di realizzazione di un "Parco Eolico" per la produzione di energia elettrica da fonte rinnovabile di tipo eolica, e la consequente immissione dell'energia elettrica prodotta, attraverso la Rete di Trasmissione Nazionale.

Il progetto riguarda la realizzazione di un impianto eolico composto da 8 aerogeneratori ognuno da 5,0 MW da installare nel territorio della provincia di Campobasso (CB), nei comuni di Montenero di Bisaccia e Guglionesi, in località "Pontone - Macchiozze" con opere di connessione ricadenti oltre che nel medesimo comune anche nei Comuni di Guglionesi e Montecilfone, commissionato dalla società Wind Energy Montenero Srl.

Gli aerogeneratori saranno collegati tra di loro mediante un cavidotto in media tensione interrato che collegherà l'impianto alla SSE di trasformazione e consegna 30/150 KV nelle immediate vicinanze della nuova SE di Terna SpA di Montecilfone (CB).

Più in dettaglio l'impianto eolico in progetto presenta:

L'impianto eolico è caratterizzato dagli elementi di seguito elencati:

- n° 8 aerogeneratori Modello GE 5.8 158 con altezza Mozzo 120,9 m e diametro 158 m e relative fondazioni
- potenza totale dell'impianto: 40,0 MW
- n° 8 piazzole temporanee di montaggio
- n° 8 piazzole definitive per l'esercizio e la manutenzione degli aerogeneratori
- Cavidotto di Media tensione e fibra ottica di collegamento alla stazione Utente 150/30kV
- n° 1 Cabina di Raccolta ubicata in agro di Guglionesi (CB)
- Stazione utente di trasformazione 150/30 kV ubicata in agro di Montecilfone (CB).
- Cavidotto di Alta Tensione per il collegamento alla nuova Stazione Elettrica 380/150 kV di Terna SpA, ubicata in agro di Montecilfone (CB).

2. UNITÀ DI MISURA E GLOSSARIO

Un campo elettrico è una regione di spazio dove si manifestano forze sulle cariche elettriche, dando possibilmente origine, se le cariche sono libere di muoversi, a correnti elettriche; analogamente, un campo magnetico è una regione di spazio dove si manifestano forze sui dipoli magnetici e correnti elettriche sui conduttori; anche il campo magnetico è in grado di generare correnti nei materiali conduttori, poiché determina in essi un campo elettrico indotto, così come un campo elettrico può generare un campo magnetico indotto.

Numerosi parametri permettono di descrivere le caratteristiche fisiche dei campi; qui ci interessano in particolare l'ampiezza (che è una misura della intensità delle forze prodotte dai campi) e la frequenza (che indica quanto rapidamente l'ampiezza varia nel tempo); quest'ultima si misura in "hertz" (simbolo Hz),

65125 Pescara (PE)

Wind Energy Montenero Srl Via Caravaggio, 125

PROGETTO PER LA REALIZZAZIONE DI UN IMPIANTO EOLICO NEI COMUNI DI MONTENERO DI BISACCIA E GUGLIONESI IN LOCALITA' PONTONE - MACCHIOZZE

Nome del file:

MTN-AMB-REL-041 01

l'intensità del campo elettrico si misura in "volt/metro" (V/m), l'intensità del campo magnetico in "tesla" (T); essendo questa un'unità di misura molto grande, si utilizzano spesso i sottomultipli "millitesla" (mT) e "microtesla" (µT).

Gli elementi dell'ambiente e del progetto utili per l'identificazione e per la valutazione dell'impatto elettromagnetico sull'ambito territoriale in cui ricade il parco eolico sono riferibili alle caratteristiche:

- delle linee di trasporto della energia elettrica prodotta dal parco eolico
- del parco eolico stesso

L'inquinamento elettromagnetico che un parco eolico può determinare sull'ambiente può essere esclusivamente di tipo diretto, ossia generati dall'inserimento dell'opera nel contesto.

I campi elettromagnetici generati in un parco eolico possono essere attribuiti principalmente a due fonti:

- parti metalliche in rotazione
- linee di trasporto dell'energia elettrica.

In merito alla prima fonte, si può subito affermare che il campo elettromagnetico delle macchine di riferimento è nullo in quanto le loro pale sono realizzate in materiale composito (GRP o simile), materiale dielettrico e pertanto non metallico e ruotano ad una velocità massima per cui è da escludere la creazione di campi elettromagnetici.

In merito alla seconda fonte, il trasporto dell'energia elettrica dall'impianto eolico alla cabina di trasformazione (MT/AT) e versamento nella rete di trasmissione nazionale avverrà mediante un cavidotto interrato.

I campi elettrici e magnetici associati alla linea interrata sono trascurabili in considerazione della tensione di esercizio, della disposizione ravvicinata dei conduttori ed all'effetto schermante del rivestimento del cavo e del terreno.

3. RADIAZIONI IONIZZANTI E NON IONIZZANTI

Gli impianti per la produzione e la distribuzione dell'energia elettrica alla frequenza industriale di 50 Hz, costituiscono una sorgente di campi elettromagnetici nell'intervallo 30-300 Hz. Tali frequenze sono "estremamente basse" (rispetto alle radiofrequenze), e sono anche denominate con l'acronimo ELF. I campi ELF ovviamente non sono ionizzanti, tuttavia vi sono vari indizi della nocività per campi di elevata intensità.

Alla frequenza di 50 Hz, come nel caso del campo vicino in radiofrequenza, le componenti del campo magnetico ed elettrico devono essere considerate separatamente.

L'intensità del campo elettrico in un punto dello spazio circostante un singolo conduttore è correlata alla tensione ed inversamente proporzionale al quadrato della distanza dal conduttore. L'intensità del campo induzione magnetica è invece proporzionale alla corrente nel conduttore ed inversamente proporzionale alla distanza dal conduttore stesso.

Nel caso di macchine elettriche i campi generati vanno in funzione della tipologia di macchina (alternatore, trasformatore, ecc.) ed anche del singolo modello di macchina. In generale si può affermare che il campo generato dalle macchine elettriche decade nello spazio più velocemente che con il quadrato della distanza (vedi Figura 1).

Nome del file:

MTN-AMB-REL-041 01

Wind Energy Montenero Srl Via Caravaggio, 125 65125 Pescara (PE)

MONTENERO DI BISACCIA E GUGLIONESI
IN LOCALITA' PONTONE - MACCHIOZZE

In ogni caso per l'abbattimento del campo elettromagnetico generato dai trasformatori saranno posti degli schermi all'interno delle cabine costituiti da lastre di alluminio. Per lo studio dell'effetto dei campi generati dal nuovo elettrodotto è quindi possibile fare riferimento ai campi indotti dalla sola linea, trascurando i campi generati dai trasformatori e dalle macchine elettriche. Per quanto riguarda il campo elettromagnetico generato dalle singole apparecchiature installate in sottostazione, non esistendo un modello matematico che ne permetta il calcolo preliminare, si sottolinea comunque che tutte le apparecchiature installate rispetteranno i requisiti di legge e tutte le normative tecniche di prodotto riguardo la compatibilità e le emissioni elettromagnetiche.

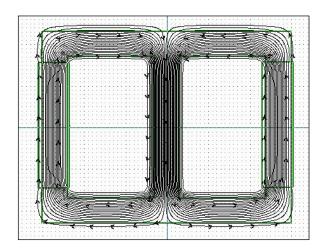


Figura 1 - Armatura di un trasformatore linee di isoinduzione, rappresentazione qualitativa

I campi magnetici sono prodotti dal moto delle cariche elettriche, cioè dalla corrente. La loro intensità si misura in ampere al metro (A/m), ma è spesso espressa in termini di una grandezza corrispondente, l'induzione magnetica, che si misura in Tesla (T), milliTesla (mT) o microTesla (μT). I campi magnetici sono massimi vicino alla sorgente e diminuiscono con la distanza e non vengono schermati dalla maggior parte dei materiali di uso comune che ne vengono facilmente attraversati.

4. NORME DI RIFERIMENTO

- Legge 22 febbraio 2001, n. 36 "Legge quadro sulla protezione dalle esposizioni a campi elettrici, magnetici ed elettromagnetici".
- DPCM 8 luglio 2003 "Fissazione dei limiti di esposizione, valori di attenzione ed obiettivi di qualità per la protezione della popolazione dalle esposizioni ai campi elettrici e magnetici alla frequenza di rete (50 Hz) generati dagli elettrodotti".
- DM 29 maggio 2008, GU n. 156 del 5 luglio 2008, "Approvazione della metodologia di calcolo per la determinazione delle fasce di rispetto degli elettrodotti".

Committente: Wind Energy Montenero Srl Via Caravaggio, 125

65125 Pescara (PE)

PROGETTO PER LA REALIZZAZIONE DI UN IMPIANTO EOLICO NEI COMUNI DI MONTENERO DI BISACCIA E GUGLIONESI IN LOCALITA' PONTONE - MACCHIOZZE Nome del file:

MTN-AMB-REL-041_01

- DM 21 marzo 1988, n. 449 "Approvazione delle norme tecniche per la progettazione, l'esecuzione e l'esercizio delle linee aeree esterne" e s.m.i.".
- CEI 11-60 "Portata al limite termico delle linee elettriche esterne con tensione maggiore di 100 kV".
- CEI 11-17 "Impianti di produzione, trasmissione, distribuzione pubblica di energia elettrica Linee in cavo".
- CEI 106-11 "Guida per la determinazione delle fasce di rispetto per gli elettrodotti secondo le disposizioni del DPCM 8 luglio 2003 (Art. 6). Parte I".
- - CEI 211-4 "Guida ai metodi di calcolo dei campi elettrici e magnetici generati dalle linee e da stazioni elettriche".
- Rapporto CESI-ISMES A7034603 "Linee Guida per l'uso della piattaforma di calcolo EMF Tools v. 3.0".
- Rapporto CESI-ISMES A8021317 "Valutazione teorica e sperimentale della fascia di rispetto per cabine primarie".

5. LIMITI DI LEGGE E LIMITI DI QUALITÀ

Prima di definire i limiti di esposizione ai campi elettromagnetici è necessario introdurre alcune definizioni: esposizione, la condizione di una persona soggetta a campi elettrici, magnetici ed elettromagnetici di origine artificiale;

- <u>limite di esposizione</u>, il valore di campo elettrico, magnetico ed elettromagnetico, considerato come valore definito ai fini della tutela della salute da effetti acuti;
- <u>valore di attenzione</u>, valore di campo elettrico, magnetico ed elettromagnetico, che non deve essere superato negli ambienti abitativi, scolastici, e nei luoghi adibiti a permanenze prolungate;
- <u>obiettivi di qualità</u>, valori di campo elettrico, magnetico ed elettromagnetico, definito ai fini della progressiva minimizzazione dell'esposizione ai campi medesimi.

Il panorama normativo italiano in fatto di protezione contro l'esposizione dei campi elettromagnetici si riferisce alla legge 22/2/01 n°36 che è la legge quadro sulla protezione dalle esposizioni ai campi elettrici, magnetici ed elettromagnetici completata a regime con l'emanazione del D.P.C.M. 8.7.2003. "Fissazione dei limiti di esposizione, dei valori di attenzione e degli obiettivi di qualità per la protezione della popolazione dalla esposizione ai campi elettrici e magnetici alla frequenza di rete (50Hz) generati dagli elettrodotti".

Nel caso di campo elettrico il limite di esposizione deve risultare inferiore al valore fissato di 5 kV/m.

Nel caso di campo magnetico i limiti di esposizione sono:

- 100 µT: limite di esposizione ai fini della tutela da effetti acuti;
- 10 μT: valore di attenzione da intendersi applicato ai fini della protezione da effetti a lungo termine, come mediana dei valori lungo l'arco di 24 ore nelle normali condizioni di esercizio;

Committente: Wind Energy Montenero Srl Via Caravaggio, 125

65125 Pescara (PE)

PROGETTO PER LA REALIZZAZIONE DI UN IMPIANTO EOLICO NEI COMUNI DI MONTENERO DI BISACCIA E GUGLIONESI IN LOCALITA' PONTONE - MACCHIOZZE Nome del file:

MTN-AMB-REL-041 01

• 3 μT: obiettivo di qualità da intendersi applicato ai fini della protezione da effetti a lungo termine come mediana dei valori lungo l'arco di 24 ore nelle normali condizioni di esercizio.

I livelli di riferimento della Raccomandazione 1999/512CE fissano a **100 μT**: limite di esposizione da induzione magnetica e **5 kV/m** il limite di esposizione al campo elettrico

Il valore di attenzione di 10 μ T si applica nelle aree di gioco per l'infanzia, negli ambienti abitativi, negli ambienti scolastici e in tutti i luoghi in cui possono essere presenti persone per almeno 4 ore al giorno. Tale valore è da intendersi come mediana dei valori nell'arco delle 24 ore nelle normali condizioni di esercizio.

L'obiettivo di qualità di 3 µT si applica ai nuovi elettrodotti nelle vicinanze dei sopraccitati ambienti e luoghi, nonché ai nuovi insediamenti ed edifici in fase di realizzazione in prossimità di linee e di installazioni elettriche già esistenti (valore inteso come mediana dei valori nell'arco delle 24 ore nelle normali condizioni di esercizio). È opportuno definire il concetto di mediana: "data una successione di valori disposti in ordine non decrescente di grandezza, è quel valore preceduto e seguito da uno stesso numero di valori. Se il numero delle grandezze è dispari, la mediana è quel valore che occupa il posto centrale della successione; se è pari, essendo due i valori centrali, la mediana è qualunque valore compreso fra di essi (in genere si considera la semisomma dei due valori centrali)". Poiché in sede preliminare è difficile stabilire quale possa essere la variazione del carico (corrente) lungo gli elettrodotti e conseguentemente è altresì impossibile determinare la mediana dei valori del campo magnetico nell'arco di 24 ore in condizioni di normale esercizio, ai fini cautelativi si è proceduto al calcolo del campo magnetico nella condizione più sfavorevole di massimo carico transitante lungo l'elettrodotto in esame: sicuramente la mediana dei valori nelle 24 ore non potrà essere superiore al valore così calcolato.

Per quanto riguarda la determinazione delle fasce di rispetto degli elettrodotti, il Ministero dell'ambiente e della tutela del territorio e del mare, sentite le ARPA, ha approvato, con Decreto 29 Maggio 2008, "La metodologia di calcolo per la determinazione delle fasce di rispetto degli elettrodotti".

Tale metodologia, ai sensi dell'art. 6 comma 2 del D.P.C.M. 8 luglio 2003, ha lo scopo di fornire la procedura da adottarsi per la determinazione delle fasce di rispetto pertinenti alle linee elettriche aeree e interrate, esistenti e in progetto. I riferimenti contenuti in tale articolo implicano che le fasce di rispetto debbano attribuirsi ove sia applicabile l'obiettivo di qualità: "Nella progettazione di nuovi elettrodotti in corrispondenza di aree di gioco per l'infanzia, di ambienti abitativi, di ambienti scolastici e di luoghi adibiti a permanenze non inferiori a quattro ore e nella progettazione di nuovi insediamenti e delle nuove aree di cui sopra in prossimità di linee ed installazioni elettriche già presenti nel territorio" (Art. 4).

Al fine di semplificare la gestione territoriale e il calcolo delle fasce di rispetto è stato introdotto nella metodologia di calcolo un procedimento semplificato che trasforma la fascia di rispetto (volume) in una distanza di prima approssimazione (distanza).

PROGETTO PER LA REALIZZAZIONE DI UN IMPIANTO EOLICO NEI COMUNI DI MONTENERO DI BISACCIA E GUGLIONESI IN LOCALITA' PONTONE - MACCHIOZZE

MTN-AMB-REL-041_01

6. **DESCRIZIONE IMPIANTO**

Linee di distribuzione in MT

Per la trasmissione di energia elettrica saranno utilizzati cavi per media tensione tripolari ad elica visibile con conduttori di alluminio isolati con polietilene reticolato sotto guaina di polietilene e fune portante di acciaio rivestito di alluminio:

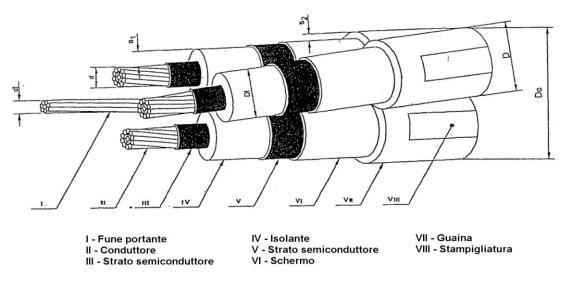


Figura 2 - Esempio di cavo

Essi avranno sezioni dei conduttori pari a 185 mm², 400 mm², 630 mm² e presenteranno le seguenti caratteristiche:

Tabella 1 - Caratteristiche dei cavi MT

Conduttore di alluminio / Aluminium conductor - ARE4H5EX

sezione	diametro	diametro	diametro	massa	raggio	sezione	portata di corrente	posa interra	ata a trifoglio
nominale	conduttore	sull'isolante	esterno nominale	indicativa del cavo	minimo di curvatura	nominale	in aria	p=1 °C m/W	p=2 °C m/W
conductor ross-section	conductor diameter	diameter over insulation	nominal outer diameter	approximate weight	minimum bending radius	conductor cross-section	open air installation	underground p=1°C m/W	i installation trefoil p=2°C m/W
(mm²)	(mm)	(mm)	(mm)	(kg/km)	(mm)	(mm²)	(A)	(A)	(A)
50	8,2	25,5	34	2480	680	50	190	175	134
70	9,7	25,6	34	2600	680	70	235	213	164
95	11,4	26,5	35	2860	700	95	285	255	196
120	12,9	27,4	36	3120	720	120	328	291	
150	14,0	28,1	37	3390	740	150	370	324	223
185	15.8		31	5550	740	150	510		223 249
		29,5	38	3790	760	185	425	368	
240	18,2	29,5 31,5							249

PHEEDRA Sr	PH	IEE	DR	Α	Sr
------------	----	-----	----	---	----

Wind Energy Montenero Srl

Via Caravaggio, 125 65125 Pescara (PE) PROGETTO PER LA REALIZZAZIONE DI UN IMPIANTO EOLICO NEI COMUNI DI MONTENERO DI BISACCIA E GUGLIONESI IN LOCALITA' PONTONE - MACCHIOZZE

Nome del file:

MTN-AMB-REL-041 01

Conduttore di alluminio / Aluminium conductor - ARE4H5E

sezione nominale	diametro conduttore	diametro sull'isolante	diametro esterno nominale	massa indicativa del cavo	raggio minimo di curvatura
conductor cross-section	conductor diameter	diameter over insulation	nominal outer diameter	approximate weight	minimum bending radius
(mm²)	(mm)	(mm)	(mm)	(kg/km)	(mm)
ati cost	ruttivi / (Construct	ion cha	ract 18/	30 kV
Oati cost	ruttivi / (Construct 37,9	ion cha	ract 18/ 2130	30 kV

nominale			ata a trifoglio
Homman	in aria	p=1°C m/W	p=2 °C m/W
conductor	open air installation	underground	i installation trefoil
ross-section		p=1°C m/W	p=2 °C m/W
(mm²)	(A)	(A)	(A)

400	680	549	422
500	789	624	479
630	918	709	545

Sottostazione elettrica 30/150 kV

All'interno della Sottostazione Elettrica vi sarà una cabina MT ove saranno ubicati i quadri MT di protezione e controllo delle linee elettriche MT in arrivo dall'impianto eolico e in uscita verso il trasformatore di potenza AT/MT. Vi sarà una sezione di trasformazione MT/AT ed una sezione di partenza in cavo interrato AT a 150 kV per la connessione allo stallo AT della nuova stazione elettrica Terna di Montecilfone (CB). Così come riportato nella soluzione tecnica di connessione, codice pratica n. 202100832 la connessione in AT avverrà in modalità antenna a 150 kV.

7. METODOLOGIA DI CALCOLO DEI CAMPI ELETTRICO ED INDUZIONE MAGNETICA

Il Ministero dell'Ambiente e della tutela del territorio e del mare, con Decreto 29 maggio 2008 ha approvato la metodologia di calcolo per la determinazione delle fasce di rispetto per gli elettrodotti, elaborata dall'APAT. In tale documento si evidenzia che la metodologia di calcolo si applica per le DPA (distanze di prima approssimazione) delle cabine elettriche, mentre non si applica alle linee in media tensione in cavo cordato a elica (interrate o aeree), come nel caso delle linee MT in oggetto.

Il metodo di calcolo adottato dal progettista dell'opera per la stima dei campi elettromagnetici è conforme alla norma CEI 211-4 "Guida ai Metodi di Calcolo dei Campi Elettrici e Magnetici Generati da Linee Elettriche".

Il campo elettrico E generato da un conduttore interrato risente molto dello smorzamento dovuto alla presenza del terreno ed è dato dalla formula seguente

$$E = \rho \frac{I}{2\pi r^2}$$

Dove ρ è la densità di carica volumica del terreno, che nel caso in esame vale $10^2~\Omega m$, I è la corrente circolante nel cavo, r è la distanza a cui si calcola il valore del campo elettrico.

Il campo induzione magnetica B in ogni punto P dello spazio è calcolato integrando numericamente per ogni singolo conduttore l'equazione seguente:

$$B = \mu_0 \mu_r \oint \frac{i}{r^3} (r \times s) ds$$

PHEEDRA Srl Servizi di Ingegneria Integrata Via Lago di Nemi, 90 74121 – Taranto (Italy) Tel. +39.099.7722302 – Fax: +39.099.9870285 Email: info@pheedra.it – web: www.pheedra.it

RELAZIONE DI IMPATTO **ELETTROMAGNETICO**

Wind Energy Montenero Srl

Via Caravaggio, 125 65125 Pescara (PE) PROGETTO PER LA REALIZZAZIONE DI UN IMPIANTO EOLICO NEI COMUNI DI MONTENERO DI BISACCIA E GUGLIONESI IN LOCALITA' PONTONE - MACCHIOZZE Nome del file:

MTN-AMB-REL-041 01

in cui i è la corrente, r il vettore distanza tra il generico tratto elementare ds di conduttore ed il punto P, e μ_0 la permeabilità magnetica del vuoto. Nel calcolo si è assunto il valore di 1,25*10⁻⁶ N/A² per la permeabilità magnetica μ_0 dell'aria ed un valore unitario per la permeabilità magnetica relativa μ_r del terreno ¹. L'intensità del campo generato da ogni conduttore è stata successivamente sommata vettorialmente, tenendo conto sia degli sfasamenti di corrente che della diversa posizione di ogni conduttore.

Lo studio dell'impatto elettromagnetico nel caso di linee elettriche aeree e non, si traduce nella determinazione di una fascia di rispetto. Per l'individuazione di tale fascia si deve effettuare il calcolo dell'induzione magnetica basato sulle caratteristiche geometriche, meccaniche ed elettriche della linea presa in esame. Esso deve essere eseguito secondo modelli tridimensionali o bidimensionali con l'applicazione delle condizioni espresse al paragrafo 6.1 della norma CEI 106-11.

Al fine di semplificare la gestione territoriale e il calcolo delle fasce di rispetto, in prima approssimazione è possibile:

- Calcolare la fascia di rispetto combinando la configurazione dei conduttori, geometrica e di fase, e la portata in corrente in servizio normale che forniscono il risultato più cautelativo sull'intero tronco:
- Proiettare al suolo verticalmente tale fascia;
- Individuare l'estensione rispetto alla proiezione del centro linea (DPA).

In generale, per il calcolo del campo elettrico si ricorre al principio delle immagini in base al quale il terreno, considerato come piano equipotenziale a potenziale nullo, può essere simulato con una configurazione di cariche immagini. In altre parole per ogni conduttore reale, sia attivo che di guardia, andrà considerato un analogo conduttore immagine la cui posizione è speculare, rispetto al piano di terra, a quella del conduttore reale e la cui carica è opposta rispetto a quella del medesimo conduttore reale.

In particolare il campo elettrico di un conduttore rettilineo di lunghezza infinita con densità lineare di carica costante può essere espresso come:

$$\vec{E} = \frac{\lambda}{2\pi\varepsilon_0 d} \, \vec{u_r}$$

Dove: λ = densità lineare di carica sul conduttore

 ε_0 = permettività del vuoto

d = distanza del conduttore rettilineo dal punto di calcolo

u_r = versore unitario con direzione radiale al conduttore

Si precisa che per quanto riguarda il valore del campo elettrico, trattandosi di linee interrate, esso è da ritenersi insignificante grazie anche all'effetto schermante del rivestimento del cavo e del terreno. Nel seguito verranno

PHEEDRA SrI
Servizi di Ingegneria Integrata
Via Lago di Nemi, 90
74121 – Taranto (Italy)
Tel. +39.099.7722302 – Fax: +39.099.9870285
Email: info@pheedra.it – web: www.pheedra.it

¹ Valore adottato alla luce dell'analisi geomorfologica del sito.

Nome del file:

MTN-AMB-REL-041 01

Wind Energy Montenero Srl Via Caravaggio, 125 65125 Pescara (PE)

MONTENERO DI BISACCIA E GUGLIONESI IN LOCALITA' PONTONE - MACCHIOZZE

pertanto esposti i risultati del solo calcolo del campo magnetico sulla verticale dei cavidotti e sulle immediate vicinanze.

7.1. AEROGENERATORE

Gli aerogeneratori producono energia elettrica in bassa tensione. Dalla navicella l'energia viene trasferita al trasformatore MT/BT mediante dei cavi BT installati all'interno della struttura. Per i cavi in BT non è applicabile la metodologia di calcolo per la determinazione delle fasce di rispetto degli elettrodotti (art. 3.2 DM 29/05/2008).

Riguardo i trasformatori MT/BT il valore dell'induzione magnetica decresce rapidamente al crescere della distanza da esso.

La tabella seguente mostra i valori dell'induzione magnetica [μT] al variare della distanza dal trasformatore stesso.

Tabella 2 - Campo magnetico [μΤ] generato da un trasformatore

Potenza TRAFO	DISTANZA DAL TRASFORMATORE				
(kVA)	1 m	2 m	3 m	5 m	7 m
3900	269,63	38,72	12,44	2,98	1,16

Il trasformatore MT/BT è posto all'interno della navicella dell'aerogeneratore pertanto, a quota terreno si garantisce certamente un valore di campo magnetico compatibile perfino con gli obbiettivi di qualità.

7.2. CAVIDOTTI

I cavidotti saranno installati adottando tutti gli accorgimenti per minimizzare gli effetti elettromagnetici sull'ambiente e sulle persone. La scelta di installare linee MT interrate permette di eliminare la componente elettrica del campo, grazie all'effetto schermante del terreno; inoltre la limitata distanza tra i cavi (ulteriormente ridotta grazie all'impiego di terne cosiddette "a trifoglio") fa sì che l'induzione magnetica risulti significativa solo in prossimità dei cavi.

Per le simulazioni si sono presi in esame i tratti dei cavidotti più significativi e rappresentativi della totalità dei casi. In particolare saranno simulati i seguenti tratti di cavidotto:


Via Caravaggio, 125

Wind Energy Montenero Srl

PROGETTO PER LA REALIZZAZIONE DI UN IMPIANTO EOLICO NEI COMUNI DI

MONTENERO DI BISACCIA E GUGLIONESI IN LOCALITA' PONTONE - MACCHIOZZE Nome del file:

MTN-AMB-REL-041 01

 Tratto di cavidotto interrato tra l'aerogeneratore WTG05 e il punto A: (Le valutazioni coincidono con i tratti compresi tra WTG04 e il punto D, WTG07 e il punto F, WTG06 e la Cabina di Raccolta) ARE4H5EX 18/30kV Sezione 3x185 m² Corrente di linea 96,3 A

Tratto di cavidotto interrato tra l'aerogeneratore WTG02 e il punto A:
 (Le valutazioni coincidono con il tratto compreso tra WTG03 e il punto D)

ARE4H5E(X) 18/30kV Sezione 3x1x400 mm² Corrente di linea 192,7 A Sezione 3x185 mm² Corrente di linea 96,3 A

Tratto di cavidotto interrato tra il punto A ed il punto B:
 (Le valutazioni coincidono con il tratto compreso tra i punti D ed E)

ARE4H5E 18/30kV Sezione 3x1x400 mm² Corrente di linea 192,7 A

 Tratto di cavidotto interrato tra l'aerogeneratore WTG01 e il punto B: (Le valutazioni coincidono con il tratto compreso tra WTG08 e il punto E) ARE4H5E 18/30kV Sezione 3x1x400 mm² Corrente di linea 192,7 A Sezione 2x(3x1x400 mm²) Corrente di linea 289,0 A

Tratto di cavidotto interrato tra il punto B ed il punto C:
 (Le valutazioni coincidono con il tratto compreso tra i punti C ed E)

ARE4H5E 18/30kV Sezione 2x(3x1x400 mm²) Corrente di linea 289,0 A

Committente:	DDOCETTO DED LA DEALIZZAZIONE DI UNI	Name del Clar
	PROGETTO PER LA REALIZZAZIONE DI UN	Nome del file:
Wind Energy Montenero Srl	IMPIANTO EOLICO NEI COMUNI DI	
Via Caravaggio, 125	MONTENERO DI BISACCIA E GUGLIONESI	MTN-AMB-REL-041_01
65125 Pescara (PF)	IN LOCALITA' PONTONE - MACCHIO77E	

• Tratto di cavidotto interrato tra il punto **C** ed il punto **G**: ARE4H5E 18/30kV

Sezione 2x(3x1x400 mm²) Corrente di linea 289,0 A Sezione 2x(3x1x400 mm²) Corrente di linea 289,0 A

Tratto di cavidotto interrato tra il punto F e la Cabina di Raccolta:
 ARE4H5E(X) 18/30kV

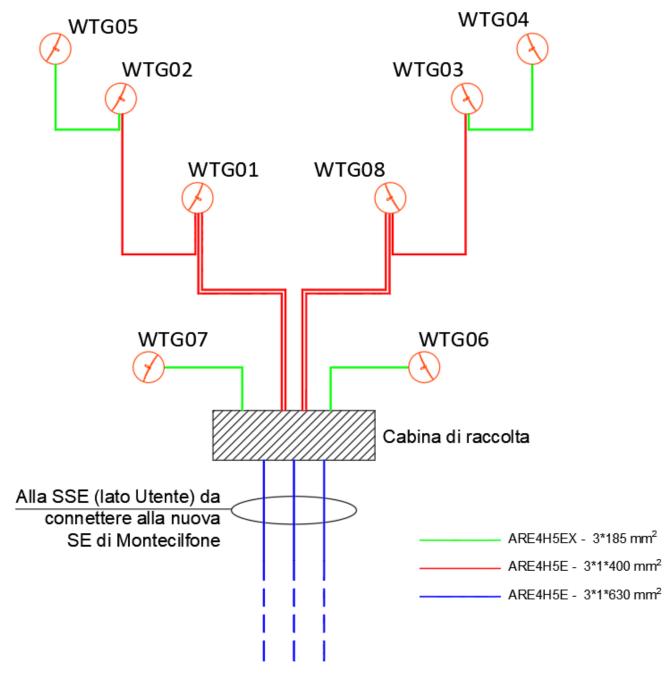
Sezione 3x(3x1x630 mm²) Corrente di linea 770,7 A Sezione 3x185 mm² Corrente di linea 96,3 A

Tratto di cavidotto interrato tra la Cabina di Raccolta e la SSE:
 ARE4H5E 18/30kV

Sezione 3x(3x1x630 mm²) Corrente di linea 770,7 A IN LOCALITA' PONTONE - MACCHIOZZE

MTN-AMB-REL-041_01

Wind Energy Montenero Srl Via Caravaggio, 125 65125 Pescara (PE)



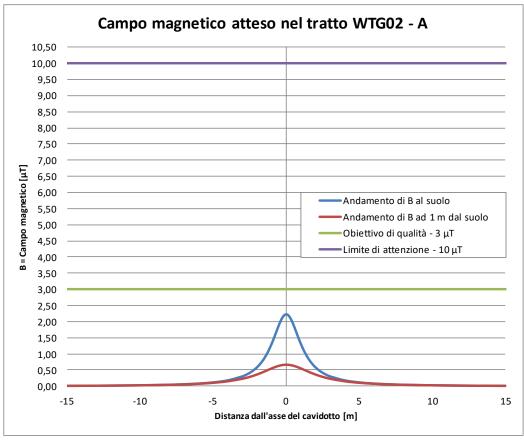
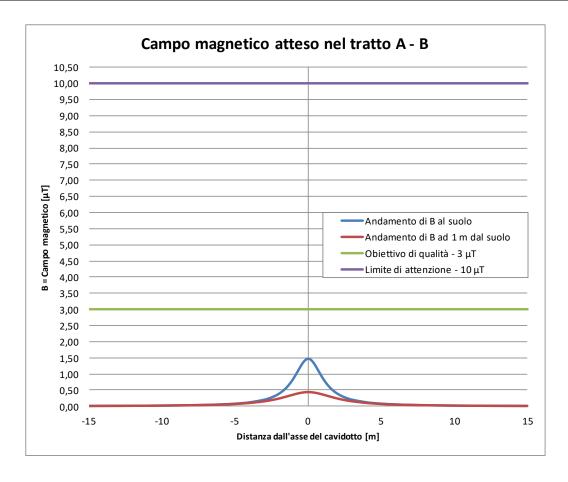
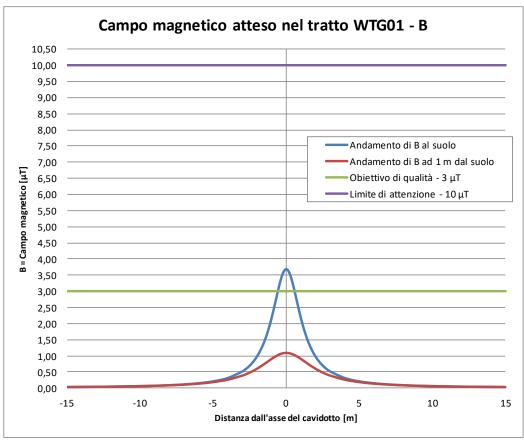
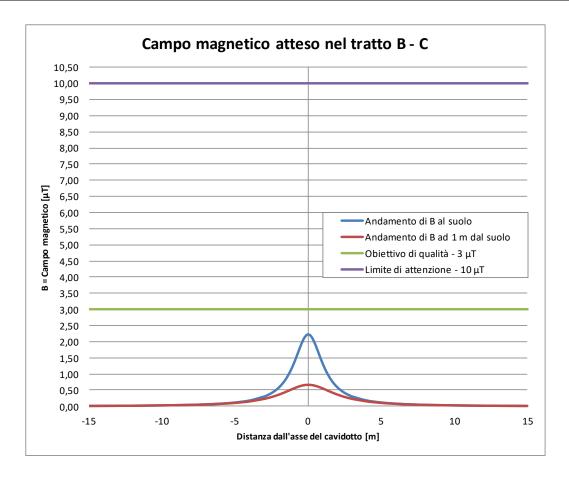


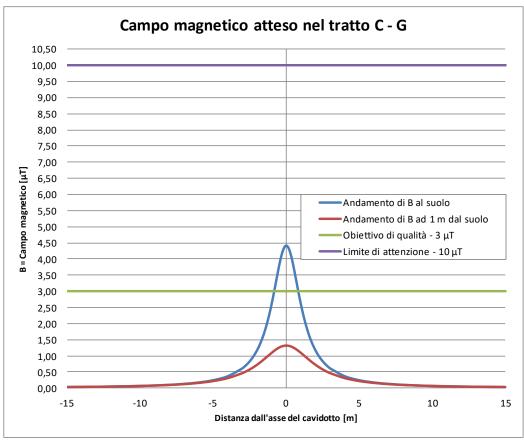
Figura 3 - Schema di connessione elettrica dell'impianto eolico in progetto

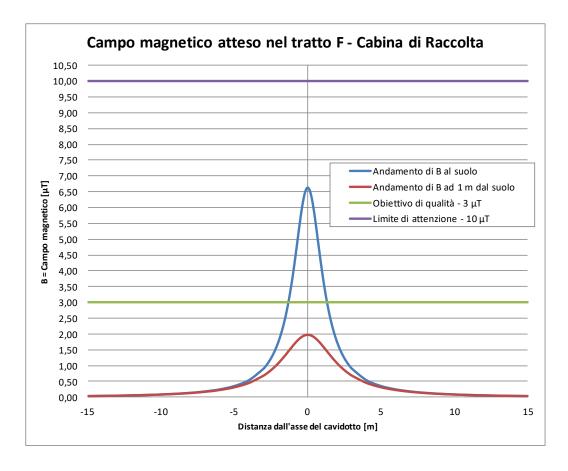
65125 Pescara (PE)

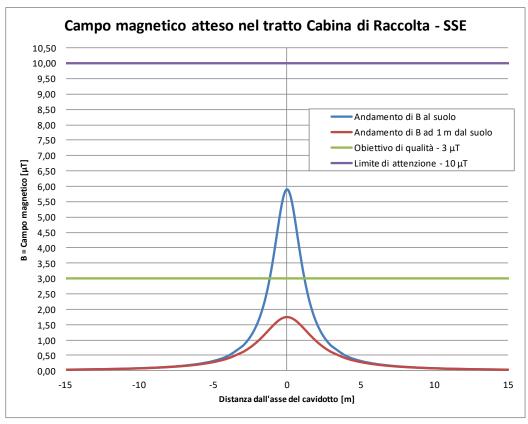

PROGETTO PER LA REALIZZAZIONE DI UN IMPIANTO EOLICO NEI COMUNI DI MONTENERO DI BISACCIA E GUGLIONESI IN LOCALITA' PONTONE - MACCHIOZZE




65125 Pescara (PE)


Wind Energy Montenero Srl Via Caravaggio, 125 PROGETTO PER LA REALIZZAZIONE DI UN IMPIANTO EOLICO NEI COMUNI DI MONTENERO DI BISACCIA E GUGLIONESI IN LOCALITA' PONTONE - MACCHIOZZE




Wind Energy Montenero Srl Via Caravaggio, 125 65125 Pescara (PE) IMPIANTO EOLICO NEI COMUNI DI MONTENERO DI BISACCIA E GUGLIONESI IN LOCALITA' PONTONE - MACCHIOZZE

65125 Pescara (PE)

Wind Energy Montenero Srl Via Caravaggio, 125 65125 Pescara (PE) IMPIANTO EOLICO NEI COMUNI DI MONTENERO DI BISACCIA E GUGLIONESI IN LOCALITA' PONTONE - MACCHIOZZE

MTN-AMB-REL-041 01

Le simulazioni del campo magnetico atteso in prossimità dei cavidotti MT in progetto si traduce nell'individuazione delle DPA; in sostanza si individua la distanza che ha origine dal punto di proiezione dall'asse del cavidotto al suolo e ha termine in un punto individuato sul suolo il cui valore del campo magnetico risulta essere uguale o inferiore al limite di 3 µT che si ricorda essere l'obbiettivo di qualità (mentre 10 µT rappresenta il valore di attenzione da intendersi applicato ai fini della protezione da effetti a lungo termine, come mediana dei valori lungo l'arco di 24 ore, e tra l'altro si applica in tutti i luoghi in cui possono essere presenti persone per almeno 4 ore al giorno). Come si evince dai grafici di studio, il campo magnetico sull'asse dei cavi, non supera in nessun caso i 10 μT. In alcuni rami si supera il valore di 3 μT, che comunque si riduce al disotto di tale valore a circa 1,30 m dall'asse del cavidotto. Si consideri che il cavidotto in progetto seguirà per quanto possibile strade esistenti, in un contesto esclusivamente agricolo, pertanto, nell'ambito del percorso del cavidotto non si prevede la permanenza di persone per tempi considerati critici dai limiti citati. Inoltre si ricorda che i valori considerati nei calcoli rappresentano le condizioni peggiori, cioè di funzionamento a piena potenza di ogni macchina. Siccome i limiti di esposizione fanno riferimento alla mediana delle condizioni di esercizio valutata nell'arco di 24 ore, si può certamente desumere che in condizioni reali di esercizio la probabilità del verificarsi delle condizioni di studio sia pressoché bassa, pertanto la valutazione si considera estremamente cautelativa.

Di seguito si riportano i valori delle DPA dall'asse dei cavidotti oggetto di studio che risultano rappresentativi della totalità dei cavidotti dell'impianto in progetto.

Tabella 3 - Riepilogo DPA cavidotti MT

TRATTO DI STUDIO	DPA Rispetto alla valutazione di B al suolo [m]
WTG05 e A	0
WTG05 e A	0
AeB	0
WTG01 e B	0,6
BeC	0
CeG	0,8
F e Cabina di Raccolta	1,30
Cabina di Raccolta e SSE	1,20

7.3. CABINA DI RACCOLTA

La stima delle DPA per la cabina di raccolta dell'impianto eolico in progetto è fatta ai sensi del § 5.2 dell'allegato al Decreto 29 maggio 2008 (GU n. 156 del 5 luglio 2008), secondo il quale per Cabine Secondarie di tipo box o similari, la DPA è intesa come distanza da ciascuna delle pareti (tetto, pavimento e pareti laterali). In particolare, si fa riferimento al caso studio di una cabina di sola consegna MT (ove vi sono presenti

Nome del file:

MTN-AMB-REL-041 01

esclusivamente apparecchiature MT, com'è il caso in progetto), secondo il quale la DPA da considerare è la stessa della linea MT entrante/uscente. Pertanto, considerando lo studio delle DPA condotto per i cavidotti e illustrato nel precedente paragrafo si avrebbe una DPA dalla cabina di raccolta pari a 1,30 m da ciascuna dalle pareti, affinché si raggiungano i valori di campo magnetico e campo elettrico attesi (B< 3 µT - E<5 kV/m).

A favore di sicurezza, si vuole tenere conto anche di ciò che riportano le "Linee Guida per l'applicazione dell'Allegato al DM 29.05.08" di Enel Distribuzione SpA. Queste considerano una DPA massima per una cabina secondaria tipo BOX o similare pari a 2 m.

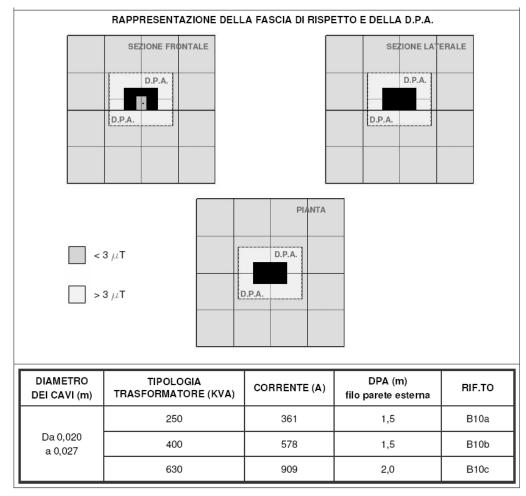


Figura 4 - Scheda B10 delle Linee Guida per l'applicazione dell'Allegato al DM 29.05.08 di Enel Distribuzione SpA

Pertanto si può sicuramente dire che oltre i 2 m dal perimetro della cabina si avranno valori di campo elettromagnetico compatibili con quanto atteso dalla normativa vigente.

7.4. SOTTOSTAZIONE ELETTRICA (SSE) DI TRASFORMAZIONE MT/AT

L'energia proveniente dalle torri eoliche raggiungerà la Sottostazione di Trasformazione (Lato utente), ubicata in prossimità della nuova SE Terna di Montecilfone (CB). Qui è previsto:

- un ulteriore innalzamento della tensione con una trasformazione 30/150 kV;
- la misura dell'energia prodotta;

Committente:	PROGETTO PER LA REALIZZAZIONE DI UN	Nome del file:
Wind Energy Montenero Srl	IMPIANTO EOLICO NEI COMUNI DI	
Via Caravaggio, 125	MONTENERO DI BISACCIA E GUGLIONESI	MTN-AMB-REL-041 01
65125 Descara (DE)	IN LOCALITA' DONTONE - MACCHIO77E	_

la consegna a TERNA S.p.A.

La sottostazione sarà realizzata su una superficie di circa 6.000 mq. Al suo interno sarà presente un edificio adibito a locali tecnici, in cui saranno allocati gli scomparti MT, i quadri BT, il locale comando controllo. La sottostazione elettrica sarà realizzata nei pressi della SE Terna di Montecilfone (CB).

In dettaglio le opere di connessione dell'impianto eolico consistono nella realizzazione di:

- Una sottostazione elettrica di trasformazione 30/150 kV, da realizzare nel comune di Montecilfone (CB), foglio catastale n. 8 particelle n. 50 e 46.
- Un cavidotto AT interrato per il collegamento della sottostazione elettrica (lato utente) allo stallo di consegna AT che sarà predisposto nella nuova Stazione Elettrica 150/380 kV Terna S.p.A di Montecilfone (CB).

Per quanto concerne la determinazione della fascia di rispetto, la SSE è del tutto assimilabile ad una Cabina Primaria. In conformità a quanto riportato al paragrafo 5.2.2 dell'Allegato al Decreto 29 maggio 2008, per questa tipologia di impianti la DPA e, quindi, la fascia di rispetto, rientrano generalmente nei confini dell'aerea di pertinenza dell'impianto stesso (area recintata).

L'impatto elettromagnetico nella SSE è essenzialmente prodotto:

- dall'utilizzo dei trasformatori BT/MT e MT/AT;
- dalla realizzazione delle linee/sbarre aeree di connessione tra il trafo e le apparecchiature elettromeccaniche
- dalla linea interrata AT

L'impatto generato dalle linee/sbarre AT è di gran lunga quello più significativo e pertanto si procederà al calcolo della fascia di rispetto dalle linee/sbarre AT.

Le linee/sbarre AT sono assimilabili ad una linea aerea trifase 150 kV, con conduttori posti in piano ad una distanza reciproca di 2,2 m, ad un'altezza di circa 4,6 m dal suolo, percorsi da correnti simmetriche ed equilibrate.

Nel caso in esame si ha:

- S (distanza tra i conduttori) = 2,2 m;
- P_n = Potenza massima dell'impianto in progetto (40,0 MW);
- - V_n = Tensione nominale delle linee/sbarre AT (150 kV).

si avrà:

$$I = \frac{P_n}{(V_n \ x \ 1.73 \ x \ cos\phi)}$$

• I=154,1 A

ed utilizzando la formula di approssimazione proposta al paragrafo 6.2.1 della norma CEI 106-11, si avrà:

PHEEDRA SrI Servizi di Ingegneria Integrata Via Lago di Nemi, 90 74121 – Taranto (Italy) Tel. +39.099.7722302 – Fax: +39.099.9870285 Email: info@pheedra.it – web: www.pheedra.it	RELAZIONE DI IMPATTO ELETTROMAGNETICO	Pagina 20 di 29
---	--	-----------------

Nome del file:

MTN-AMB-REL-041 01

$$R' = 0.34 \times \sqrt{(2.2 \times 154.1)} = 6.3 \text{ m}$$

La distanza minima, misurata in pianta, delle linee/sbarre dal perimetro della SSE è di circa 10 m, superiore alla distanza R' = 6,30 m.

In conclusione:

- in conformità a quanto previsto dal Decreto 29 maggio 2008 la Distanza di Prima Approssimazione (DPA) e, quindi, la fascia di rispetto rientra nei confini dell'area di pertinenza della cabina di trasformazione in progetto;
- la sottostazione di trasformazione è comunque realizzata in un'area agricola, con totale assenza di edifici abitati per un raggio di almeno 500 m.
- all'interno dell'area della sottostazione non è prevista la permanenza di persone per periodi continuativi superiori a 4 ore con l'impianto in tensione.

Pertanto, si può affermare che l'impatto elettromagnetico su persone, prodotto dalla realizzazione della SSE, sarà trascurabile.

7.5. LINEA ELETTRICA INTERRATA AT

La linea elettrica interrata AT (della lunghezza di circa 50 m) permette di collegare la Sottostazione Elettrica alla nuova SE Terna di Montecilfone (CB), per la consegna alla RTN dell'energia prodotta dal parco eolico.

Tale linea sarà realizzata con cavo in conduttore di alluminio, 3x1x1600 mm². I tre cavi saranno posati in piano all'interno di una trincea di profondità 1,8 m e larghezza 1 m.

Con riferimento alla "Linea guida ENEL per l'applicazione del § 5.1.3 dell'allegato al DM 29.05.08" nella scheda A14 (semplice terna di cavi disposti in piano – serie 132/150 kV) per sezione dei cavi di 1600 mmq, si riporta una DPA (ovvero una distanza dalla linea oltre la quale l'induzione magnetica è <3 µT) pari a **5,10 m**.

MTN-AMB-REL-041_01

PROGETTO PER LA REALIZZAZIONE DI UN IMPIANTO EOLICO NEI COMUNI DI MONTENERO DI BISACCIA E GUGLIONESI IN LOCALITA' PONTONE - MACCHIOZZE

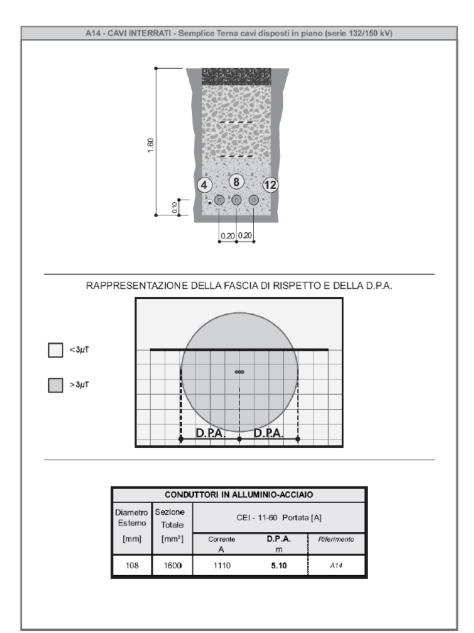


Figura 5 - Scheda A14 delle Linee Guida per l'applicazione dell'Allegato al DM 29.05.08 di Enel Distribuzione SpA

Si fa presente, però, che tale valore è calcolato considerando una corrente che attraversa i cavi pari a 1.110 A, nel caso del presente impianto eolico, come già calcolato nel paragrafo precedente, la corrente che attraverserà il cavo AT (pari a quella che attraversa le sbarre AT) avrà un valore di circa 154,1 A, pertanto la DPA sarà sicuramente inferiore a quella calcolata nella scheda presa come riferimento.

65125 Pescara (PE)

Wind Energy Montenero Srl Via Caravaggio, 125

MONTENERO DI BISACCIA E GUGLIONESI IN LOCALITA' PONTONE - MACCHIOZZE Nome del file:

MTN-AMB-REL-041 01

7.6. STAZIONE ELETTRICA 150/380 KV MONTECILFONE

La nuova stazione elettrica di trasformazione 380/150 kV sarà ubicata nel Comune di Montecilfone (CB) nei pressi del confine comunale e della località Masseria Liberatore, ad una quota di circa 300 m s.l.m.m.

La nuova stazione elettrica di trasformazione 380/150 kV di Montecilfone sarà, collegata in entra-esce mediante raccordi in semplice terna a 380 kV sull'esistente elettrodotto "Larino - Gissi".

Al fine di contenere al minimo le opere da realizzare e il loro impatto sul territorio, la stazione elettrica è stata prevista in un'area contraddistinta da adeguate caratteristiche orografiche e prossima all'esistente elettrodotto. I raccordi tra la nuova stazione e l'esistente elettrodotto avranno una lunghezza complessiva pari a circa 3000 m e saranno realizzati in semplice terna.

La nuova stazione di Montecilfone sarà composta da una sezione a 380 kV e da una sezione a 150 kV.

La sezione a 380 kV sarà del tipo unificato TERNA con isolamento in aria e sarà costituita da:

- n° 1 sistema a doppia sbarra;
- n° 2 stalli linea (Larino e Gissi);
- n° 2 stalli primario trasformatore (ATR);
- n° 1 stallo linea futuro;
- n° 1 parallelo sbarre;

La sezione a 150 kV sarà del tipo unificato TERNA con isolamento in aria e sarà costituita da:

- n° 1 sistema a doppia sbarra;
- n° 2 stalli secondario trasformatore (ATR);
- n° 11 stalli linea;
- n° 1 parallelo sbarre

I macchinari previsti consistono in:

• n° 2 ATR 400/155 kV con potenza di 250 MVA (1 futuro).

Ogni montante (stallo) "linea" sarà equipaggiato con sezionatori di sbarra verticali, interruttore SF6, sezionatore di linea orizzontale con lame di terra, TV e TA per protezioni e misure.

Ogni montante (stallo) "autotrasformatore" sarà equipaggiato con sezionatori di sbarra verticali, interruttore in SF6, scaricatori di sovratensione ad ossido di zinco e TA per protezioni e misure.

I montanti "parallelo sbarre" saranno equipaggiati con sezionatori di sbarra verticali, interruttore in SF6 e TA per protezione e misure.

Le linee afferenti si attesteranno su sostegni portale di altezza massima pari a 23 m mentre l'altezza massima degli altri parti d'impianto (sbarre di smistamento a 380 kV) sarà di 12 m.

Per quanto concerne la determinazione della fascia di rispetto, la SE in progetto è del tutto assimilabile ad una Cabina Primaria. In conformità a quanto riportato al paragrafo 5.1.3 dell'Allegato al Decreto 29 maggio 2008, per questa tipologia di impianti la DPA e, quindi, la fascia di rispetto, rientrano generalmente nei confini dell'aerea di pertinenza dell'impianto stesso (area recintata).

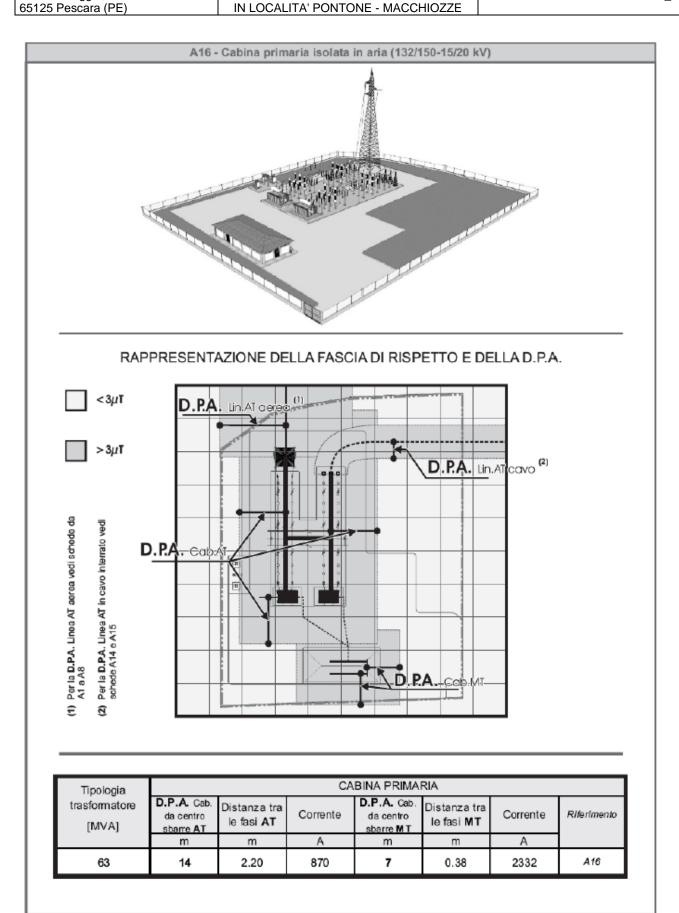


Figura 6 - Scheda A16 delle Linee Guida per l'applicazione dell'Allegato al DM 29.05.08 di Enel Distribuzione SpA

PHEEDRA SrI		
Servizi di Ingegneria Integrata Via Lago di Nemi, 90	RELAZIONE DI IMPATTO	Pagina 24 di 29
74121 – Taranto (Italy) Tel. +39.099.7722302 – Fax: +39.099.9870285	ELETTROMAGNETICO	r agilla 24 di 29
Email: info@pheedra.it – web: www.pheedra.it		

65125 Pescara (PE)

MTN-AMB-REL-041_01

Applicando quanto stabilito dalla scheda A.16 delle "Linee guida per l'applicazione del paragrafo 5.1.3 dell'Allegato al DM 29.05.08" redatte da Enel Distribuzione SpA (elaborata secondo quanto stabilito dal rapporto CESI-ISMES A8021317 "Valutazione teorica e sperimentale della fascia di rispetto per cabine primarie"), si avranno le distanze di prima approssimazione riportate nell'elaborato "MTN-CIV-TAV-014 - Particolare di connessione alla SE" di cui si riporta uno stralcio qui di seguito.

Figura 7 - Stralcio MTN-CIV-TAV-014 - Particolare di connessione alla SE

Pertanto, considerando che le DPA della SE Montecilfone si estendono al più nelle immediate vicinanze della recinzione e che in tali aree non è prevista la permanenza di persone per periodi continuativi superiori a 4 ore con l'impianto in tensione, si ritiene che l'impatto elettromagnetico su persone, prodotto dalla realizzazione della SE, sarà trascurabile.

PHEEDRA SrI
Servizi di Ingegneria Integrata
Via Lago di Nemi, 90
74121 - Taranto (Italy)
74121 – Taranto (Italy) Tel. +39.099.7722302 – Fax: +39.099.9870285
Email: info@pheedra.it - web: www.pheedra.it

Wind Energy Montenero Srl

Via Caravaggio, 125 65125 Pescara (PE)

PROGETTO PER LA REALIZZAZIONE DI UN IMPIANTO EOLICO NEI COMUNI DI MONTENERO DI BISACCIA E GUGLIONESI IN LOCALITA' PONTONE - MACCHIOZZE

Nome del file:

MTN-AMB-REL-041 01

7.7. LINEA ELETTRICA AEREA AAT

Il progetto prevede che la nuova stazione elettrica di trasformazione 380/150 kV di Montecilfone sarà, collegata in entra-esce mediante raccordi in semplice terna a 380 kV sull'esistente elettrodotto "Larino - Gissi".

Saranno quindi installati n. 8 nuovi sostegni del tipo a delta rovesciato a semplice terna, di varie altezze secondo le caratteristiche altimetriche del terreno.

Ciascuna fase elettrica sarà costituita da un fascio di 3 conduttori (trinato) collegati fra loro da distanziatori. Ciascun conduttore di energia sarà costituito da una corda di alluminio-acciaio della sezione complessiva di 585,3 mmq composta da n. 19 fili di acciaio del diametro 2,10 mm e da n. 54 fili di alluminio del diametro di 3,50 mm, con un diametro complessivo di 31,50 mm.

La linea elettrica durante il suo normale funzionamento genera un campo elettrico ed un campo magnetico. Il primo è proporzionale alla tensione della linea stessa, mentre il secondo è proporzionale alla corrente che vi circola. Entrambi decrescono molto rapidamente con la distanza.

Le condizioni di carico prese in considerazione sono quelle della norma CEI 11-60, per la zona A e la zona B nel periodo freddo e nel periodo caldo, come indicato nella seguente tabella

TENSIONE	PORTATA IN CORRENTE (A) DEL CONDUTTORE SECONDO CEI 11-60			
NOMINALE	ZONA A		ZONA B	
	PERIODO C	PERIODO F	PERIODO C	PERIODO F
380 kV	740	985	680	770

Come si nota le condizioni utilizzate per i calcoli sono ben più gravose delle reali condizioni di esercizio della SE. Per il calcolo è stato utilizzato un programma apposito sviluppato in conformità alla norma CEI 211-4; i calcoli dei campi elettrico e magnetico sono stati eseguiti secondo quanto disposto dal D.P.C.M. 08/07/2003. I valori esposti si intendono calcolati ad una distanza di 1 metro dal suolo. Per il calcolo delle intensità dei campi elettrico e magnetico si è considerata un'altezza minima dei conduttori dal suolo pari a 11.5 m, corrispondente cioè all'approssimazione per eccesso del valore indicato dal D.M. 1991 per le aree ove è prevista la presenza prolungata di persone sotto la linea. Tale ipotesi è da considerarsi a favore di sicurezza, in quanto la loro altezza è, per scelta progettuale, sempre maggiore di tale valore.

Via Caravaggio, 125

65125 Pescara (PE)

MTN-AMB-REL-041 01

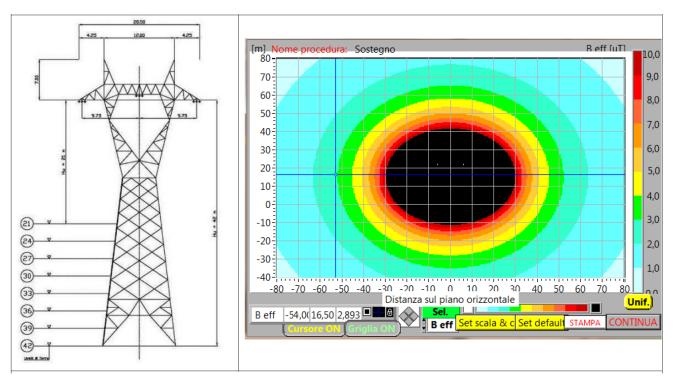


Figura 8 - Risultanze del calcolo delle DPA per un sostegno in singola terna a delta rovesciato

Al fine di semplificare la gestione territoriale e il calcolo delle fasce di rispetto, il Decreto 29 Maggio 2008 prevede che si debba calcolare la distanza di prima approssimazione, definita come "la distanza in pianta sul livello del suolo, dalla proiezione del centro linea, che garantisce che ogni punto la cui proiezione al suolo disti dalla proiezione del centro linea più di DPA si trovi all'esterno delle fasce di rispetto". Ai fini del calcolo della DPA per le linee in oggetto si è applicata l'ipotesi più cautelativa considerando per il calcolo sostegni di tipo C; per il calcolo è stato utilizzato un programma sviluppato in aderenza alla norma CEI 211-4, inoltre i calcoli sono stati eseguiti in conformità a quanto disposto dal D.P.C.M. 08/07/2003. I valori di DPA ottenuti nel caso del sostegno in singola terna a delta rovesciato sono pari a circa 54 m rispetto all'asse linea. Come si evince dagli elaborati grafici di progetto (in particolare "MTN-CIV-TAV-014 - Particolare di connessione alla SE"), le fasce di rispetto sono state maggiorate per tener conto delle variazioni di tracciato previste ai sensi del Testo Unico 327/01 e dell'articolo 1 comma 6, del Decreto Legislativo 27 dicembre 2004, n. 330. In fase di progetto esecutivo dell'opera si procederà ad una definizione più esatta della distanza di prima approssimazione che rispecchi la situazione post-realizzazione, in conformità col par. 5.1.3 dell'allegato al Decreto 29 Maggio 2008, con conseguente eventuale riduzione delle aree interessate.

Di seguito è riportato il calcolo del campo elettrico generato dalla linea 380 kV semplice terna presa in considerazione:

Email: info@pheedra.it - web: www.pheedra.i

MTN-AMB-REL-041 01

Wind Energy Montenero SrlIMPIANTO EOLICO NEI COMUNI DIVia Caravaggio, 125MONTENERO DI BISACCIA E GUGLIONESI65125 Pescara (PE)IN LOCALITA' PONTONE - MACCHIOZZE

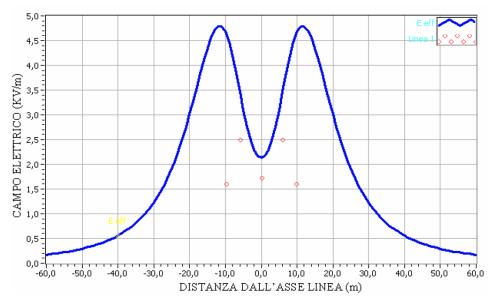


Figura 9 - Risultanze del calcolo di campo elettrico per un sostegno in singola terna a delta rovesciato

Come si vede i valori di campo elettrico sono sempre inferiori al limite di 5 kV/m imposto dalla normativa.

8. Conclusioni

La determinazione delle DPA è stata effettuata in accordo al D.M. del 29/05/2008 riportando per ogni opera elettrica la suddetta distanza. Dalle analisi effettuate si può desumere quanto segue:

- Per i cavidotti in MT le DPA sono state determinate al più nell'intorno di 1,30 m dall'asse del cavidotto al livello del suolo.
- Per la cabina di raccolta la distanza di prima approssimazione sarà pari a non più di 2 m dal perimetro della stessa.
- Per la sottostazione elettrica 150/30 kV, la distanza di prima approssimazione è stata valutata a circa
 6,30 m dalle sbarre AT. Tale distanza ricade all'interno della recinzione della stazione.
- Per il cavidotto in alta tensione la distanza di prima approssimazione non sarà più di 5 m rispetto all'asse del cavidotto.
- Per la stazione elettrica 150/380 kV Montecilfone sono state valutate le DPA in funzione di quanto disposto dalla scheda A.16 delle Linee guida redatte da Enel Distribuzione SpA; si ritiene che l'impatto elettromagnetico su persone, prodotto dalla realizzazione della SE, sarà trascurabile.
- Per la linea elettrica aerea AAT la distanza di prima approssimazione è stata valutata a circa 54 m rispetto all'asse linea; ad ogni modo è stato considerato un margine di sicurezza che tenga conto delle eventuali modeste varianti al tracciato dell'elettrodotto in fase esecutiva.

Ad ogni modo si può escludere la presenza di rischi di natura sanitaria per la popolazione, sia per i bassi valori del campo sia per assenza di possibili recettori sensibili (ovvero aree di gioco per l'infanzia, ambienti abitativi,

PHEEDRA Sri		
Servizi di Ingegneria Integrata	RELAZIONE DI IMPATTO	
Via Lago di Nemi, 90	KLLAZIONE DI IIVIFATIO	Pagina 28 di 29
74121 - Taranto (Italy)	ELETTROMAGNETICO	r agina 20 ai 20
Tel. +39.099.7722302 - Fax: +39.099.9870285	LLL I INCIMACINE 1100	
Email: info@pheedra.it - web: www.pheedra.it		

Committente: **Wind Energy Montenero Srl** Via Caravaggio, 125 65125 Pescara (PE) PROGETTO PER LA REALIZZAZIONE DI UN IMPIANTO EOLICO NEI COMUNI DI MONTENERO DI BISACCIA E GUGLIONESI IN LOCALITA' PONTONE - MACCHIOZZE Nome del file:

MTN-AMB-REL-041_01

ambienti scolastici, luoghi adibiti a permanenza di persone per più di quattro ore giornaliere) nelle zone interessate.

A conforto di ciò che è stato fin qui detto, a lavori ultimati si potranno eseguire prove sul campo che dimostrino l'esattezza dei calcoli e delle assunzioni fatte.

Si può quindi concludere che le opere elettriche relative alla realizzazione dell'impianto eolico in progetto e delle relativo opere accessorie, rispettano la normativa vigente.