REGIONE PUGLIA

Provincia di Foggia (FG)

COMUNE DI CERIGNOLA

1	EMISSIONE PER ENTI ESTERNI	19/07/21	FURNARI G.	FURNO C.	NASTASI A.
0	EMISSIONE PER COMMENTI	10/07/21	FURNARI G.	FURNO C.	NASTASI A.
REV.	DESCRIZIONE	DATA	REDATTO	CONTROL.	APPROV.

Committente:

HERGO SOLARE ITALIA S.r.I.

Società di Progettazione:

Ingegneria & Innovazione

Via Jonica, 16 Loc. Belvedere – 96100 Siracusa (SR) Tel. 0931.1663409 Web: www.antexgroup.it e-mail: info@antexgroup.it

PROGETTO DI UN IMPIANTO AGRO-FOTOVOLTAICO AVENTE POTENZA PARI A 40,0752 MWp E RELATIVE OPERE DI CONNESSIONE, INTEGRATO CON LA COLTIVAZIONE DI FORAGGIO, DA REALIZZARSI NEL COMUNE DI CERIGNOLA (Loc. "TAVOLETTA")

DEFINITIVO

Progettista/Resp. Tecnico

Elaborato:

Scala:

Progetto:

RELAZIONE DI CALCOLO - TABULATI - FONDAZIONE TG2074-2

Dott. Ing. Giuseppe Basso

C21025S05-PD-RT-18-01 ll presente documento è di proprietà della ANTEX GROUP srl.

Nome DIS/FILE:

1/1

F.to:

Α4

Allegato:

È Vietato la comunicazione a terzi o la riproduzione senza il permesso scritto della suddetta. La società tutela i propri diritti a rigore di Legge.

Sommario

PREMESSA	2
1 - DESCRIZIONE GENERALE DELL'OPERA	3
2 - NORMATIVA DI RIFERIMENTO	4
3 - MATERIALI IMPIEGATI E RESISTENZE DI CALCOLO	4
4 - TERRENO DI FONDAZIONE	7
5 - ANALISI DEI CARICHI	8
6 - VALUTAZIONE DELL'AZIONE SISMICA	8
7 - AZIONI SULLA STRUTTURA	14
8 - CODICE DI CALCOLO IMPIEGATO	17
9 - PROGETTO E VERIFICA DEGLI ELEMENTI STRUTTURALI	22
10 - TABULATI DI CALCOLO	28

PREMESSA

Su incarico di **Hergo Solare Italia S.r.l.**, la società ANTEX GROUP Srl ha redatto il progetto definitivo per la realizzazione di un impianto di produzione di energia elettrica da fonte solare, denominato *Impianto Fotovoltaico* "*TAVOLETTA*", da realizzarsi nei territori del Comune di Cerignola (FG) – Regione Puglia.

L'impianto fotovoltaico di tipo agrovoltaico, prevede di installare 66.240 moduli fotovoltaici monofacciali in silicio monocristallino da 605 Wp ciascuno, su strutture ad inseguimento monoassiale, realizzate in acciaio zincato a caldo. Tutta l'energia elettrica prodotta verrà ceduta alla rete.

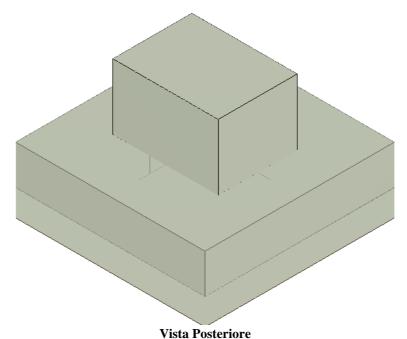
Le attività di progettazione definitiva sono state sviluppate dalla società di ingegneria ANTEX Group Srl.

ANTEX Group Srl è una società che fornisce servizi globali di consulenza e management ad Aziende private ed Enti pubblici che intendono realizzare opere ed investimenti su scala nazionale ed internazionale.

È costituita da selezionati e qualificati professionisti uniti dalla comune esperienza professionale nell'ambito delle consulenze ingegneristiche, tecniche, ambientali, gestionali, legali e di finanza agevolata.

Sia ANTEX che HERGO SOLARE ITALIA pongono a fondamento delle attività e delle proprie iniziative, i principi della qualità, dell'ambiente e della sicurezza come espressi dalle norme ISO 9001, ISO 14001 e ISO 18001 nelle loro ultime edizioni.

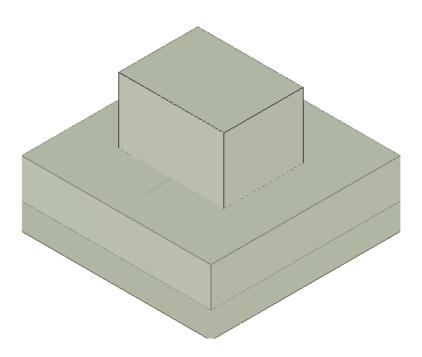
Difatti, le Aziende citate, in un'ottica di sviluppo sostenibile proprio e per i propri clienti e fornitori, posseggono un proprio Sistema di Gestione Integrato Qualità-Sicurezza-Ambiente.


1 - DESCRIZIONE GENERALE DELL'OPERA

La fondazione di supporto per Isolatori è illustrata nel disegno di riferimento. Trattasi di una piastra di base a contatto con il terreno sulla quale è impostato un batolo, che costituisce il plinto di appoggio di un isolatore. La piastra ha dimensioni di $1,44 \times 1,44 \times 0,3$ m; il batolo ha dimensioni $0,6 \times 0,8 \times 0,5$ m, sporge dal terreno per 0,1 m, ed è provvisto di quattro tirafondi Ø 20 mm disposti a maglia quadrata con interasse di 400 mm, per l'installazione delle apparecchiature. Il batolo è posizionato sulla mezzeria della piastra. Le dimensioni della piastra di fondazione rimangono le stesse per tutti i livelli di tensione di rottura del terreno considerati in quanto le verifiche effettuate evidenziano come, nella condizione di combinazione di carico e di parametri Mi ed Ri più gravosa considerata, il valore di tensione massima scaricata sul terreno si mantenga entro il valore di srott / Ri,= 2.4 / Ri daN/cm2. La verifica che definisce le dimensioni minime attribuite alla fondazione nel caso in esame risulta essere quella della limitazione della parzializzazione della stessa.

Vengono riportate di seguito due viste assonometriche contrapposte, allo scopo di consentire una migliore comprensione della struttura oggetto della presente relazione:

Vista Anteriore


La direzione di visualizzazione (bisettrice del cono ottico), relativamente al sistema di riferimento globale 0,X,Y, Z, ha versore (1;1;-1)

La direzione di visualizzazione (bisettrice del cono ottico), relativamente al sistema di riferimento globale 0,X,Y, Z, ha versore (-1;-1;-1)

2 - NORMATIVA DI RIFERIMENTO

Le fasi di analisi e verifica della struttura sono state condotte in accordo alle seguenti disposizioni normative, per quanto applicabili in relazione al criterio di calcolo adottato dal progettista, evidenziato nel prosieguo della presente relazione:

Legge 5 novembre 1971 n. 1086 (G.U. 21 dicembre 1971 n. 321)

"Norme per la disciplina delle opere di conglomerato cementizio armato, normale e precompresso ed a struttura metallica".

Legge 2 febbraio 1974 n. 64 (G.U. 21 marzo 1974 n. 76)

"Provvedimenti per le costruzioni con particolari prescrizioni per le zone sismiche".

Indicazioni progettive per le nuove costruzioni in zone sismiche a cura del Ministero per la Ricerca scientifica - Roma 1981.

D. M. Infrastrutture Trasporti 17/01/2018 (G.U. 20/02/2018 n. 42 - Suppl. Ord. n. 8)

"Aggiornamento delle Norme tecniche per le Costruzioni".

Inoltre, in mancanza di specifiche indicazioni, ad integrazione della norma precedente e per quanto con esse non in contrasto, sono state utilizzate le indicazioni contenute nelle seguenti norme:

Circolare 21 gennaio 2019, n. 7 C.S.LL.PP. (G.U. Serie Generale n. 35 del 11/02/2019 - Suppl. Ord. n. 5)

Istruzioni per l'applicazione dell'«Aggiornamento delle "Norme tecniche per le costruzioni"» di cui al decreto ministeriale 17 gennaio 2018.

3 - MATERIALI IMPIEGATI E RESISTENZE DI CALCOLO

Tutti i materiali strutturali impiegati devono essere muniti di marcatura "CE", ed essere conformi alle prescrizioni del "REGOLAMENTO (UE) N. 305/2011 DEL PARLAMENTO EUROPEO E DEL CONSIGLIO del 9 marzo 2011", in merito ai prodotti da costruzione.

Per la realizzazione dell'opera in oggetto saranno impiegati i seguenti materiali:

Il presente documento è di proprietà della ANTEX GROUP srl. È Vietato la comunicazione a terzi o la riproduzione senza il permesso scritto della suddetta. La società tutela i propri diritti a rigore di Legge.

MATERIALI CALCESTRUZZO ARMATO

											(Caratteristi	che calcest	ruzzo	armato
Nid	$\gamma_{\rm k}$	$\alpha_{\mathrm{T,i}}$	E	G	C_{Erid}	Stz	$\mathbf{R}_{\mathbf{ck}}$	\mathbf{R}_{cm}	%R _{ck}	γ _c	$\mathbf{f}_{\mathbf{cd}}$	$\mathbf{f}_{\mathrm{ctd}}$	$\mathbf{f}_{\mathrm{cfm}}$	N	n Ac
	[N/m ³]	[1/°C]	[N/mm ²]	[N/mm ²]	[%]		[N/mm ²]	[N/mm ²]			[N/mm ²]	[N/mm ²]	[N/mm ²]		
Cls C3	2/40_B4500	C - (C32/40)													
001	25.000	0,000010	33.643	14.018	60	P	40,00	-	0,85	1,50	18,81	1,45	3,72	15	002
TEC															

LEGENDA:

Numero identificativo del materiale, nella relativa tabella dei materiali.

Peso specifico. γ_k

Coefficiente di dilatazione termica. $\alpha_{T, i}$

Modulo elastico normale. E

 \mathbf{G} Modulo elastico tangenziale.

Coefficiente di riduzione del Modulo elastico normale per Analisi Sismica [$E_{sisma} = E \cdot c_{Erid}$]. C_{Erid}

Stz Tipo di situazione: [F] = di Fatto (Esistente); [P] = di Progetto (Nuovo).

Resistenza caratteristica cubica. \mathbf{R}_{ck}

Resistenza media cubica. Rem

Percentuale di riduzione della R_{ck} %Rck

Coefficiente parziale di sicurezza del materiale. γ_{c}

Resistenza di calcolo a compressione. \mathbf{f}_{cd}

 \mathbf{f}_{ctd} Resistenza di calcolo a trazione.

 \mathbf{f}_{cfm} Resistenza media a trazione per flessione.

Identificativo, nella relativa tabella materiali, dell'acciaio utilizzato: [-] = parametro NON significativo per il materiale. n Ac

MATERIALI ACCIAIO

														Carat	teristich	e acciaio
N _{id}	06-	α	E	G	Stz	$f_{vk,1}/$	$f_{yd,1}/f_{yd,2}$ f_{td}	£.	\mathbf{f}_{td} $\mathbf{\gamma}_{s}$	06	0/	0.	06	γ _{M7}		
¹ ₹id	$\gamma_{\rm k}$	α _{T, i}	L	G	SIZ	$f_{yk,2}$	$\mathbf{I}_{\text{tk},1}/\mathbf{I}_{\text{tk},2}$ $\mathbf{I}_{\text{yd},1}/$	1 yd,1/ 1 yd,2	td Ltd	/s	γм1	γм2	γM3,SLV	γM3,SLE	NCnt	Cnt
	[N/m ³]	[1/°C]	[N/mm ²]	[N/mm ²]		[N/mm ²]	[N/mm ²]	[N/mm ²]	[N/mm ²]							
Accia	Acciaio B450C - (B450C)															
002	79.500	0.000010	210,000	90.760	D	450,00		391,30		1 15						
002	78.500 0,000	0,000010	210.000	80.769	P	-	-	-	-	1,15	-	-	-	-	-	-

LEGENDA:

Numero identificativo del materiale, nella relativa tabella dei materiali. N_{id}

Peso specifico. γ_k

Coefficiente di dilatazione termica. α_{T, i}

Modulo elastico normale. E

G Modulo elastico tangenziale.

Stz Tipo di situazione: [F] = di Fatto (Esistente); [P] = di Progetto (Nuovo).

Resistenza caratteristica a Rottura (per profili con $t \le 40$ mm). $f_{tk,1}$

Resistenza caratteristica a Rottura (per profili con 40 mm < t \le 80 mm). $f_{tk,2}$

Resistenza di calcolo a Rottura (Bulloni). \mathbf{f}_{td} Coefficiente parziale di sicurezza allo SLV del materiale. $\gamma_{\rm s}$

Coefficiente parziale di sicurezza per instabilità.

γ_{M1}

Coefficiente parziale di sicurezza per sezioni tese indebolite. γ_{M2} Coefficiente parziale di sicurezza per scorrimento allo SLV (Bulloni).

γ_{M3,SLV} Coefficiente parziale di sicurezza per scorrimento allo SLE (Bulloni). YM3.SLE

Coefficiente parziale di sicurezza precarico di bulloni ad alta resistenza (Bulloni - NCnt = con serraggio NON controllato; Cnt = con serraggio controllato). **Y**_{M7}

[-] = parametro NON significativo per il materiale.

Resistenza caratteristica allo snervamento (per profili con t <= 40 mm). $f_{yk,1}$

 $f_{vk.2}$ Resistenza caratteristica allo snervamento (per profili con 40 mm < t \le 80 mm).

Resistenza di calcolo (per profili con $t \le 40$ mm). $f_{vd,1}$

Resistenza di calcolo (per profili con 40 mm \leq t \leq 80 mm).

NOTE [-] = Parametro non significativo per il materiale.

TENSIONI AMMISSIBILI ALLO SLE DEI VARI MATERIALI

Tensioni ammissibili allo SLE dei vari materiali Materiale SLTensione di verifica $\sigma_{d,am}$ Cls C32/40_B450C Caratteristica(RARA) Compressione Calcestruzzo 19,92

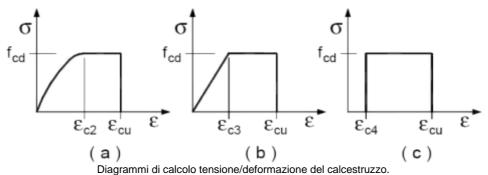
presente documento è di proprietà della ANTEX GROUP srl.

Vietato la comunicazione a terzi o la riproduzione senza il permesso scritto della suddetta.

La società tutela i propri diritti a rigore di Legge.

Tensioni ammissibili allo SLE dei vari n							
Materiale	SL	Tensione di verifica	$\sigma_{ m d,amm}$				
			[N/mm ²]				
	Quasi permanente	Compressione Calcestruzzo	14,94				
Acciaio B450C	Caratteristica(RARA)	Trazione Acciaio	360,00				

LEGENDA:

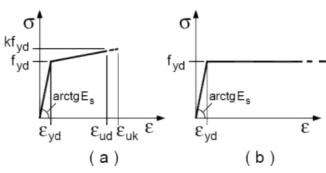

SL Stato limite di esercizio per cui si esegue la verifica.

 $\sigma_{d,amm}$ Tensione ammissibile per la verifica.

I valori dei parametri caratteristici dei suddetti materiali sono riportati anche nei "Tabulati di calcolo", nella relativa sezione.

Tutti i materiali impiegati dovranno essere comunque verificati con opportune prove di laboratorio secondo le prescrizioni della vigente Normativa.

I diagrammi costitutivi degli elementi in calcestruzzo sono stati adottati in conformità alle indicazioni riportate al §4.1.2.1.2.1 del D.M. 2018; in particolare per le verifiche effettuate a pressoflessione retta e pressoflessione deviata è adottato il modello (a) riportato nella seguente figura.


I valori di deformazione assunti sono:

$$\varepsilon_{c2} = 0,0020;$$

I diagrammi costitutivi dell'acciaio sono stati adottati in conformità alle indicazioni riportate

al §4.1.2.1.2.2 del D.M. 2018; in particolare è adottato il modello elastico perfettamente plastico tipo (b) rappresentato nella figura sulla destre

La resistenza di calcolo è data da f_{yk}/γ_s . Il coefficiente di sicurezza γ_s si assume pari a 1,15.

 $\varepsilon_{cu2} = 0.0035$.

4 - TERRENO DI FONDAZIONE

Le proprietà meccaniche dei terreni sono state investigate mediante specifiche prove mirate alla misurazione della velocità delle onde di taglio negli strati del sottosuolo. In particolare, è stata calcolata una velocità di propagazione equivalente delle onde di taglio con la seguente relazione (eq. [3.2.1] D.M. 2018):

$$V_{S,eq} = \frac{H}{\sum_{i=1}^{N} \frac{h_i}{V_{S,i}}}$$

dove:

- h_i è lo spessore dell'i-simo strato;
- V_{S,i} è la velocità delle onde di taglio nell'i-simo strato;
- N è il numero totale di strati investigati;
- H è la profondità del substrato con $V_S \ge 800$ m/s.

Le proprietà dei terreni sono, quindi, state ricondotte a quelle individuate nella seguente tabella, ponendo H = 30 m nella relazione precedente ed ottenendo il parametro $V_{S,30}$.

Categorie di sottosuolo che permettono l'utilizzo dell'approccio semplificato (Tab. 3.2.II D.M. 2018)

Categoria	Caratteristiche della superficie topografica
A	Ammassi rocciosi affioranti o terreni molto rigidi caratterizzati da valori di velocità delle onde di taglio superiori a 800 m/s, eventualmente comprendenti in superficie terreni di caratteristiche meccaniche più scadenti con spessore massimo pari a 3 m.
В	Rocce tenere e depositi di terreni a grana grossa molto addensati o terreni a grana fina molto consistenti, caratterizzati da un miglioramento delle proprietà meccaniche con la profondità e da valori di velocità equivalente compresi tra 360 m/s e 800 m/s.
С	Depositi di terreni a grana grossa mediamente addensati o terreni a grana fina mediamente consistenti con profondità del substrato superiori a 30 m, caratterizzati da un miglioramento delle proprietà meccaniche con la profondità e da valori di velocità equivalente compresi tra 180 m/s e 360 m/s.
D	Depositi di terreni a grana grossa scarsamente addensati o di terreni a grana fina scarsamente consistenti, con profondità del substrato superiori a 30 m, caratterizzati da un miglioramento delle proprietà meccaniche con la profondità e da valori di velocità equivalente compresi tra 100 e 180 m/s.
Е	Terreni con caratteristiche e valori di velocità equivalente riconducibili a quelle definite per le categorie C o D, con profondità del substrato non superiore a 30 m.

Le indagini effettuate, mirate alla valutazione della velocità delle onde di taglio ($V_{S,30}$), permettono di classificare il profilo stratigrafico, ai fini della determinazione dell'azione sismica, di categoria C [C - Depositi di terreni a grana grossa mediamente addensati o terreni a grana fina mediamente consistenti].

Le costanti di sottofondo (alla Winkler) del terreno sono state corrette secondo la seguente espressione:

$$K = c \cdot K_1$$
;

dove:

 K_1 = costante di Winkler del terreno riferita alla piastra standard di lato b = 30 cm;

c = coefficiente di correzione, funzione del comportamento del terreno e della particolare geometria degli elementi di fondazione. Nel caso di "*Riduzione Automatica*" è dato dalle successive espressioni (*Rif. Evaluation of coefficients of subgrade reaction K. Terzaghi, 1955 p. 315*):

$$c = \left[\frac{\left(B + b\right)}{2 \cdot B}\right]^{2}$$
 per terreni incoerenti
$$c = \left(\frac{L/B + 0.5}{1.5 \cdot L/B}\right) \cdot \frac{b}{B}$$
 per terreni coerenti

ll presente documento è di proprietà della ANTEX GROUP srl. È Vietato la comunicazione a terzi o la riproduzione senza il permesso scritto della suddetta. La società tutela i propri diritti a rigore di Legge.

Essendo:

b = 0.30 m, dimensione della piastra standard;

L = lato maggiore della fondazione;

B = lato minore della fondazione.

Nel caso di stratigrafia la costante di sottofondo utilizzata nel calcolo delle *sollecitazioni* è quella del terreno a contatto con la fondazione, mentre nel calcolo dei *cedimenti* la costante di sottofondo utilizzata è calcolata come media pesata delle costanti di sottofondo presenti nel volume significativo della fondazione.

Tutti i parametri che caratterizzano i terreni di fondazione sono riportati nei "<u>Tabulati di calcolo</u>", nella relativa sezione. Per ulteriori dettagli si rimanda alle relazioni geologica e geotecnica.

5 - ANALISI DEI CARICHI

Un'accurata valutazione dei carichi è un requisito imprescindibile di una corretta progettazione, in particolare per le costruzioni realizzate in zona sismica. Essa, infatti, è fondamentale ai fini della determinazione delle forze sismiche, in quanto incide sulla valutazione delle masse e dei periodi propri della struttura dai quali dipendono i valori delle accelerazioni (ordinate degli spettri di progetto).

La valutazione dei carichi e dei sovraccarichi è stata effettuata in accordo con le disposizioni del punto 3.1 del **D.M. 2018**. In particolare, è stato fatto utile riferimento alle Tabelle 3.1.I e 3.1.II del D.M. 2018, per i pesi propri dei materiali e per la quantificazione e classificazione dei sovraccarichi, rispettivamente.

La valutazione dei carichi permanenti è effettuata sulle dimensioni definitive.

Le analisi effettuate, corredate da dettagliate descrizioni, oltre che nei "<u>Tabulati di calcolo</u>" nella relativa sezione, sono di seguito riportate:

ANALISI CARICHI

									Analis	i carichi
NT	TC	Descrizione del	Tipologie di	Peso Proprio		Permanente NON Strut	turale	Sovraccarico Acciden	tale	Carico
¹Nid	T. C.	Carico	Carico	Descrizione PP		Descrizione PNS		Descrizione	SA	Neve
										[N/m ²]
001	S	Platea	Autorimessa <= 30kN	*vedi le relative tabelle dei carichi	-	Sottofondo e pavimento di tipo industriale in calcestruzzo	2,000	Rimesse, aree per traffico, parcheggio e sosta di veicoli leggeri (peso a pieno carico fino a 30 kN) (Cat. F – Tab. 3.1.II - DM 17.01.2018)	2.500	0

LEGENDA:

N_{id} Numero identificativo dell'analisi di carico.

T. C. Identificativo del tipo di carico: [S] = Superficiale - [L] = Lineare - [C] = Concentrato.

PP, PNS, Valori, rispettivamente, del Peso Proprio, del Sovraccarico Permanente NON strutturale, del Sovraccarico Accidentale. Secondo il tipo di carico indicato SA nella colonna "T.C." ("S" - "L" - "C"), i valori riportati nelle colonne "PP", "PNS" e "SA", sono espressi in [N/m²] per carichi Superficiali, [N/m] per

carichi Lineari, [N] per carichi Concentrati.

6 - VALUTAZIONE DELL'AZIONE SISMICA

L'azione sismica è stata valutata in conformità alle indicazioni riportate al §3.2 del D.M. 2018.particolare il procedimento per la definizione degli spettri di progetto per i vari Stati Limite per cui sono state effettuate le verifiche è stato il seguente:

ISO 9001
BUREAU VERITAS
Certification

- definizione della Vita Nominale e della Classe d'Uso della struttura, il cui uso combinato ha portato alla definizione del Periodo di Riferimento dell'azione sismica;
- individuazione, tramite latitudine e longitudine, dei parametri sismici di base a_g, F₀ e T*_c per tutti e quattro gli Stati Limite previsti (SLO, SLD, SLV e SLC); l'individuazione è stata effettuata interpolando tra i 4 punti più vicini al punto di riferimento dell'edificio;
- determinazione dei coefficienti di amplificazione stratigrafica e topografica;
- calcolo del periodo T_c corrispondente all'inizio del tratto a velocità costante dello Spettro.

I dati così calcolati sono stati utilizzati per determinare gli Spettri di Progetto nelle verifiche agli Stati Limite considerate. Si riportano di seguito le coordinate geografiche del sito rispetto al Datum **ED50**:

Latitudine	Longitudine	Altitudine
[°]	[°]	[m]
41.197327	15.916092	115

6.1 Verifiche di regolarità

Sia per la scelta del metodo di calcolo, sia per la valutazione del fattore di comportamento adottato, deve essere effettuato il controllo della regolarità della struttura. tabella seguente riepiloga, per la struttura in esame, le condizioni di regolarità in pianta ed in altezza soddisfatte.

REGOLARITÀ DELLA STRUTTURA IN PIANTA	
La distribuzione di masse e rigidezze è approssimativamente simmetrica rispetto a due direzioni ortogonali e la forma in pianta è compatta, ossia il contorno di ogni orizzontamento è convesso; il requisito può ritenersi soddisfatto, anche in presenza di rientranze in pianta, quando esse non influenzano significativamente la rigidezza nel piano dell'orizzontamento e, per ogni rientranza, l'area compresa tra il perimetro dell'orizzontamento e la linea convessa circoscritta all'orizzontamento non supera il 5% dell'area dell'orizzontamento	NO
Il rapporto tra i lati di un rettangolo in cui la costruzione risulta inscritta è inferiore a 4	NO
Ciascun orizzontamento ha una rigidezza nel proprio piano tanto maggiore della corrispondente rigidezza degli elementi strutturali verticali da potersi assumere che la sua deformazione in pianta influenzi in modo trascurabile la distribuzione delle azioni sismiche tra questi ultimi e ha resistenza sufficiente a garantire l'efficacia di tale distribuzione	SI

REGOLARITÀ DELLA STRUTTURA IN ALTEZZA	
Tutti i sistemi resistenti alle azioni orizzontali si estendono per tutta l'altezza della costruzione o, se sono presenti parti aventi differenti altezze, fino alla sommità della rispettiva parte dell'edificio	SI
Massa e rigidezza rimangono costanti o variano gradualmente, senza bruschi cambiamenti, dalla base alla sommità della costruzione (le variazioni di massa da un orizzontamento all'altro non superano il 25 %, la rigidezza non si riduce da un orizzontamento a quello sovrastante più del 30% e non aumenta più del 10%); ai fini della rigidezza si possono considerare regolari in altezza strutture dotate di pareti o nuclei in c.a. o pareti e nuclei in muratura di sezione costante sull'altezza o di telai controventati in acciaio, ai quali sia affidato almeno il 50% dell'azione sismica alla base	NO
Il rapporto tra la capacità e la domanda allo SLV non è significativamente diverso, in termini di resistenza, per orizzontamenti successivi (tale rapporto, calcolato per un generico orizzontamento, non deve differire più del 30% dall'analogo rapporto calcolato per l'orizzontamento adiacente); può fare eccezione l'ultimo orizzontamento di strutture intelaiate di almeno tre orizzontamenti	NO
Eventuali restringimenti della sezione orizzontale della costruzione avvengano con continuità da un orizzontamento al successivo; oppure avvengano in modo che il rientro di un orizzontamento non superi il 10% della dimensione corrispondente all'orizzontamento immediatamente sottostante, né il 30% della dimensione corrispondente al primo orizzontamento. Fa eccezione l'ultimo orizzontamento di costruzioni di almeno quattro orizzontamenti, per il quale non sono previste limitazioni di restringimento	SI

La rigidezza è calcolata come rapporto fra il taglio complessivamente agente al piano e δ , spostamento relativo di piano (il taglio di piano è la sommatoria delle azioni orizzontali agenti al di sopra del piano considerato). i valori calcolati ed utilizzati per le verifiche sono riportati nei "*Tabulati di calcolo*" nella relativa sezione. La struttura è pertanto:

in pianta	in altezza
NON REGOLARE	REGOLARE

6.2 Classe di duttilità

Comm.: C21-025-S05

ISO 9001
BUREAU VERITAS
Certification

La classe di duttilità è rappresentativa della capacità dell'edificio di dissipare energia in campo anelastico per azioni cicliche ripetute. deformazioni anelastiche devono essere distribuite nel maggior numero di elementi duttili, in particolare le travi, salvaguardando in tal modo i pilastri e soprattutto i nodi travi pilastro che sono gli elementi più fragili. D.M. 2018 definisce due tipi di comportamento strutturale:

- a) comportamento strutturale non-dissipativo;
- b) comportamento strutturale dissipativo.

Per strutture con comportamento strutturale dissipativo si distinguono due livelli di Capacità Dissipativa o Classi di Duttilità (CD).

- CD "A" (Alta);
- CD "B" (Media).

La differenza tra le due classi risiede nell'entità delle plasticizzazioni cui ci si riconduce in fase di progettazione; per ambedue le classi, onde assicurare alla struttura un comportamento dissipativo e duttile evitando rotture fragili e la formazione di meccanismi instabili imprevisti, si fa ricorso ai procedimenti tipici della gerarchia delle resistenze.

La struttura in esame è stata progettata in classe di duttilità "MEDIA" (CD"B").

6.3 Spettri di Progetto per S.L.U. e S.L.D.

L'edificio è stato progettato per una Vita Nominale pari a 50 e per Classe d'Uso pari a 1.

In base alle indagini geognostiche effettuate si è classificato il **suolo** di fondazione di **categoria** C, cui corrispondono i seguenti valori per i parametri necessari alla costruzione degli spettri di risposta orizzontale e verticale:

			Parametri di pericolosità sismica						
Stato Limite a _g /g		Fo	T*c	Cc	C _C T _B		T _D	Ss	
			[s]		[s]	[s]	[s]		
SLO	0.0437	2.537	0.280	1.60	0.149	0.447	1.775	1.50	
SLD	0.0478	2.528	0.283	1.59	0.150	0.451	1.791	1.50	
SLV	0.1582	2.480	0.361	1.47	0.177	0.531	2.233	1.46	
SLC	0.2251	2.430	0.384	1.44	0.184	0.553	2.500	1.37	

Per la definizione degli spettri di risposta, oltre all'accelerazione (a_g) al suolo (dipendente dalla classificazione sismica del Comune) occorre determinare il Fattore di Comportamento (q).

Il Fattore di comportamento q è un fattore riduttivo delle forze elastiche introdotto per tenere conto delle capacità dissipative della struttura che dipende dal sistema costruttivo adottato, dalla Classe di Duttilità e dalla regolarità in altezza.

Si è inoltre assunto il Coefficiente di Amplificazione Topografica (S_T) pari a 1.00.

Tali succitate caratteristiche sono riportate negli allegati "Tabulati di calcolo" al punto "DATI GENERALI ANALISI SISMICA".

Per la struttura in esame sono stati utilizzati i seguenti valori:

1. Stato Limite di Danno

Fattore di Comportamento (q_X) per sisma orizzontale in direzione X: 1.00; Fattore di Comportamento (q_Y) per sisma orizzontale in direzione Y: 1.00;

Fattore di Comportamento (qz) per sisma verticale: 1.00 (se richiesto).

2. Stato Limite di salvaguardia della Vita

ISO 9001
BUREAU VERITAS
Certification

Fattore di Comportamento (q_X) per sisma orizzontale in direzione X: 1.500 ; Fattore di Comportamento (q_Y) per sisma orizzontale in direzione Y: 1.500 ;

Fattore di Comportamento (q_z) per sisma verticale: 1.50 (se richiesto).

Di seguito si esplicita il calcolo del fattore di comportamento per il sisma orizzontale:

	Dir. X	Dir. Y
Tipologia (§7.4.3.2 D.M. 2018)	A pendolo inverso	A pendolo inverso
Tipologia strutturale	-	-
$\alpha_{\rm u}/\alpha_{\rm l}$	1	1
$k_{\rm w}$	-	-
q_o	1.500	1.500
k_R		1.00

Il fattore di comportamento è calcolato secondo la relazione (7.3.1) del §7.3.1 del D.M. 2018:

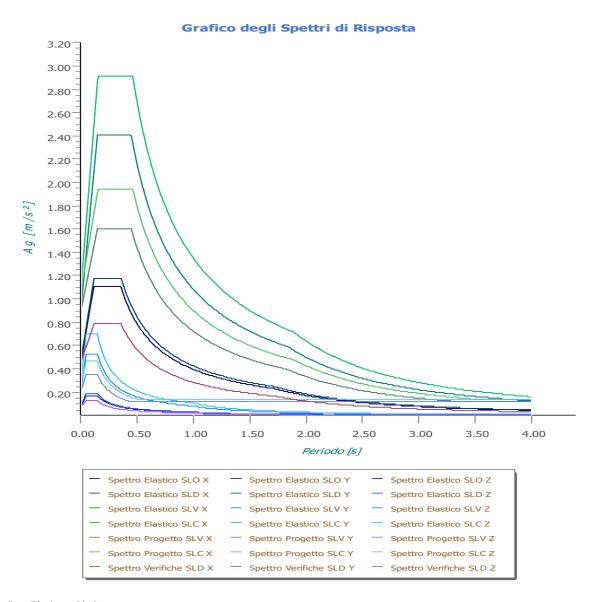
 $a = a_0 \cdot k_R$

dove:

k_w è il coefficiente che riflette la modalità di collasso prevalente in sistemi strutturali con pareti.

- q_0 è il valore massimo del fattore di comportamento che dipende dal livello di duttilità attesa, dalla tipologia strutturale e dal rapporto α_u/α_1 tra il valore dell'azione sismica per il quale si verifica la formazione di un numero di cerniere plastiche tali da rendere la struttura labile e quello per il quale il primo elemento strutturale raggiunge la plasticizzazione a flessione. **NOTA:** il valore proposto di q_0 è già ridotto dell'eventuale coefficiente k_w ;
- k_R è un fattore riduttivo che dipende dalle caratteristiche di regolarità in altezza della costruzione, con valore pari ad 1 per costruzioni regolari in altezza e pari a 0,8 per costruzioni non regolari in altezza.
- **N.B.1:** Per le costruzioni *regolari in pianta*, qualora non si proceda ad un'analisi non lineare finalizzata alla valutazione del rapporto α_u/α_1 , per esso possono essere adottati i valori indicati nel §7.4.3.2 del D.M. 2018 per le diverse tipologie costruttive. Per le costruzioni *non regolari in pianta*, si possono adottare valori di α_u/α_1 pari alla media tra 1,0 ed i valori di volta in volta forniti per le diverse tipologie costruttive.

Valori massimi del valore di base q₀ del fattore di comportamento allo SLV per costruzioni di calcestruzzo (§ 7.4.3.2 D.M. 2018)(cfr. Tabella 7.3.II D.M. 2018)


Tinologio strutturolo	\mathbf{q}_0			
Tipologia strutturale	CD"A"	CD"B"		
Strutture a telaio, a pareti accoppiate, miste (v. §7.4.3.1)	$4,5 \alpha_u/\alpha_1$	$3,0 \alpha_u/\alpha_1$		
Strutture a pareti non accoppiate (v. §7.4.3.1)	$4.0 \ \alpha_u/\alpha_1$	3,0		
Strutture deformabili torsionalmente (v. §7.4.3.1)	3,0	2,0		
Strutture a pendolo inverso (v. §7.4.3.1)	2,0	1,5		
Strutture a pendolo inverso intelaiate monopiano (v. §7.4.3.1)	3,5	2,5		

Gli spettri utilizzati sono riportati nella successiva figura.

6.4 Metodo di Analisi

Gli effetti del sisma sono stati valutati convenzionalmente mediante analisi statica della struttura soggetta a:

- un sistema di forze orizzontali parallele alle direzioni ipotizzate per il sisma, distribuite (sia planimetricamente che altimetricamente) in modo da simulare gli effetti dinamici del sisma.
- un sistema di forze verticali, distribuite sulla struttura proporzionalmente alle masse presenti.

Le sollecitazioni derivanti da tali azioni sono state composte poi con quelle derivanti da carichi verticali, orizzontali non sismici secondo le varie combinazioni di carico probabilistiche. Il calcolo è stato effettuato mediante un programma agli elementi finiti le cui caratteristiche verranno descritte nel seguito.

Il calcolo degli effetti dell'azione sismica è stato eseguito con riferimento alla struttura spaziale, tenendo cioè conto degli elementi interagenti fra loro secondo l'effettiva realizzazione escludendo i tamponamenti. Non ci sono approssimazioni su tetti inclinati, piani sfalsati o scale, solette, pareti irrigidenti e nuclei.

Si è tenuto conto delle deformabilità taglianti e flessionali degli elementi monodimensionali; muri, pareti, setti, solette sono stati correttamente schematizzati tramite elementi finiti a tre/quattro nodi con comportamento a guscio (sia a piastra che a lastra).

Sono stati considerati sei gradi di libertà per nodo; in ogni nodo della struttura sono state applicate le forze sismiche derivanti dalle masse circostanti.

Le sollecitazioni derivanti da tali forze sono state poi combinate con quelle derivanti dagli altri carichi come prima specificato.

6.5 Valutazione degli spostamenti

Gli spostamenti d_E della struttura sotto l'azione sismica di progetto allo SLV sono stati ottenuti moltiplicando per il fattore μ_d i valori d_{Ee} ottenuti dall'analisi lineare, dinamica o statica, secondo l'espressione seguente:

 $d_E = \pm \ \mu_d \cdot d_{Ee}$

dove

$$\begin{split} \mu_d &= q & \text{se } T_1 \geq T_C; \\ \mu_d &= 1 + (q\text{-}1) \cdot T_C / T_1 & \text{se } T_1 < T_C. \end{split}$$

In ogni caso $\mu_d \le 5q - 4$.

6.6 Combinazione delle componenti dell'azione sismica

Le azioni orizzontali dovute al sisma sulla struttura vengono convenzionalmente determinate come agenti separatamente in due direzioni tra loro ortogonali prefissate. In generale, però, le componenti orizzontali del sisma devono essere considerate come agenti simultaneamente. A tale scopo, la combinazione delle componenti orizzontali dell'azione sismica è stata tenuta in conto come segue:

• gli effetti delle azioni dovuti alla combinazione delle componenti orizzontali dell'azione sismica sono stati valutati mediante le seguenti combinazioni:

 $E_{EdX} \pm 0.30 E_{EdY}$ $E_{EdY} \pm 0.30 E_{EdX}$

dove:

E_{EdX} rappresenta gli effetti dell'azione dovuti all'applicazione dell'azione sismica lungo l'asse orizzontale X scelto della struttura;

E_{EdY} rappresenta gli effetti dell'azione dovuti all'applicazione dell'azione sismica lungo l'asse orizzontale Y scelto della struttura.

L'azione sismica verticale deve essere considerata in presenza di: elementi pressoché orizzontali con luce superiore a 20 m, elementi pressoché orizzontali precompressi, elementi a sbalzo pressoché orizzontali con luce maggiore di 5 m, travi che sostengono colonne, strutture isolate.

La combinazione della componente verticale del sisma, qualora portata in conto, con quelle orizzontali è stata tenuta in conto come segue:

• gli effetti delle azioni dovuti alla combinazione delle componenti orizzontali e verticali del sisma sono stati valutati mediante le seguenti combinazioni:

 $E_{\rm EdX} \pm 0.30 E_{\rm EdY} \pm 0.30 E_{\rm EdX} \\ E_{\rm EdX} \pm 0.30 E_{\rm EdX}$

dove:

E_{EdX} e E_{EdY} sono gli effetti dell'azione sismica nelle direzioni orizzontali prima definite;

 E_{EdZ} rappresenta gli effetti dell'azione dovuti all'applicazione della componente verticale dell'azione sismica di progetto.

6.7 Eccentricità accidentali

Per valutare le eccentricità accidentali, previste in aggiunta all'eccentricità effettiva Inoltre, sono state amplificate le forze agenti tramite il fattore δ =1+0,6·x/L_e, dove (cfr. § 4.3.3.2.4 UNI EN 1998-1:2005):

Comm.: C21-025-S05

ISO 9001
BUREAU VERITAS
Cerdification

- x è la distanza dell'elemento resistente verticale dal baricentro geometrico dell'edificio, misurata perpendicolarmente alla direzione dell'azione sismica considerata;
- Le è la distanza tra i due elementi resistenti più lontani, misurata allo stesso modo.

7 - AZIONI SULLA STRUTTURA

I calcoli e le verifiche sono condotti con il metodo semiprobabilistico degli stati limite secondo le indicazioni del D.M. 2018. I carichi agenti sui solai, derivanti dall'analisi dei carichi, vengono ripartiti dal programma di calcolo in modo automatico sulle membrature (travi, pilastri, pareti, solette, platee, ecc.).

I carichi dovuti ai tamponamenti, sia sulle travi di fondazione che su quelle di piano, sono schematizzati come carichi lineari agenti esclusivamente sulle aste.

Su tutti gli elementi strutturali è inoltre possibile applicare direttamente ulteriori azioni concentrate e/o distribuite (variabili con legge lineare ed agenti lungo tutta l'asta o su tratti limitati di essa).

Le azioni introdotte direttamente sono combinate con le altre (carichi permanenti, accidentali e sisma) mediante le combinazioni di carico di seguito descritte; da esse si ottengono i valori probabilistici da impiegare successivamente nelle verifiche.

7.1 Stato Limite di Salvaguardia della Vita

Le azioni sulla costruzione sono state cumulate in modo da determinare condizioni di carico tali da risultare più sfavorevoli ai fini delle singole verifiche, tenendo conto della probabilità ridotta di intervento simultaneo di tutte le azioni con i rispettivi valori più sfavorevoli, come consentito dalle norme vigenti.

Per gli stati limite ultimi sono state adottate le combinazioni del tipo:

 $\gamma_{GI} \cdot G_I + \gamma_{G2} \cdot G_2 + \gamma_p \cdot P + \gamma_{OI} \cdot Q_{KI} + \gamma_{O2} \cdot \psi_{O2} \cdot Q_{K2} + \gamma_{O3} \cdot \psi_{O3} \cdot Q_{K3} + \dots$ (1)

dove:

G₁ rappresenta il peso proprio di tutti gli elementi strutturali; peso proprio del terreno, quando pertinente; forze indotte dal terreno (esclusi gli effetti di carichi variabili applicati al terreno); forze risultanti dalla pressione dell'acqua (quando si configurino costanti nel tempo);

G₂ rappresenta il peso proprio di tutti gli elementi non strutturali;

P rappresenta l'azione di pretensione e/o precompressione;

Q azioni sulla struttura o sull'elemento strutturale con valori istantanei che possono risultare sensibilmente diversi fra loro nel tempo:

- di lunga durata: agiscono con un'intensità significativa, anche non continuativamente, per un tempo non trascurabile rispetto alla vita nominale della struttura;
- di breve durata: azioni che agiscono per un periodo di tempo breve rispetto alla vita nominale della struttura;

 Q_{ki} rappresenta il valore caratteristico della i-esima azione variabile;

γg, γq, γp coefficienti parziali come definiti nella Tab. 2.6.I del D.M. 2018;

sono i coefficienti di combinazione per tenere conto della ridotta probabilità di concomitanza delle azioni variabili con i rispettivi valori caratteristici.

Le **34 combinazioni** risultanti sono state costruite a partire dalle sollecitazioni caratteristiche calcolate per ogni condizione di carico elementare: ciascuna condizione di carico accidentale, a rotazione, è stata considerata sollecitazione di base (Q_{k1} nella formula precedente).

I coefficienti relativi a tali combinazioni di carico sono riportati negli allegati "Tabulati di calcolo".

Il presente documento è di proprietà della ANTEX GROUP srl. È Vietato la comunicazione a terzi o la riproduzione senza il permesso scritto della suddetta. La società tutela i propri diritti a rigore di Legge.

In zona sismica, oltre alle sollecitazioni derivanti dalle generiche condizioni di carico statiche, devono essere considerate anche le sollecitazioni derivanti dal sisma. L'azione sismica è stata combinata con le altre azioni secondo la seguente relazione:

$$G_1+G_2+P+E+\Sigma_i\psi_{2i}\cdot Q_{ki}$$
;

dove:

E rappresenta l'azione sismica per lo stato limite in esame; G_1 rappresenta peso proprio di tutti gli elementi strutturali; G_2 rappresenta il peso proprio di tutti gli elementi non strutturali; rappresenta l'azione di pretensione e/o precompressione; W_{2i} coefficiente di combinazione delle azioni variabili Q_i ;

 Q_{ki} valore caratteristico dell'azione variabile Q_i .

Gli effetti dell'azione sismica sono valutati tenendo conto delle masse associate ai seguenti carichi gravitazionali:

$$G_K+\Sigma_i(\psi_{2i}\cdot Q_{ki}).$$

I valori dei coefficienti ψ_{2i} sono riportati nella seguente tabella:

Categoria/Azione	ψ_{2i}
Categoria A - Ambienti ad uso residenziale	0,3
Categoria B - Uffici	0,3
Categoria C - Ambienti suscettibili di affollamento	0,6
Categoria D - Ambienti ad uso commerciale	0,6
Categoria E - Biblioteche, archivi, magazzini e ambienti ad uso industriale	0,8
Categoria F - Rimesse e parcheggi (per autoveicoli di peso ≤ 30 kN)	0,6
Categoria G - Rimesse e parcheggi (per autoveicoli di peso > 30 kN)	0,3
Categoria H - Coperture	0,0
Categoria I - Coperture praticabili	*
Categoria K - Coperture per usi speciali (impianti, eliporti,)	*
Vento	0,0
Neve (a quota ≤ 1000 m s.l.m.)	0,0
Neve (a quota > 1000 m s.l.m.)	0,2
Variazioni termiche	0,0
* "Da valutarsi caso per caso"	

Le verifiche strutturali e geotecniche delle fondazioni, sono state effettuate con l'**Approccio 2** come definito al §2.6.1 del D.M. 2018, attraverso la combinazione **A1+M1+R3**. Le azioni sono state amplificate tramite i coefficienti della colonna A1 definiti nella Tab. 6.2.I del D.M. 2018.

I valori di resistenza del terreno sono stati ridotti tramite i coefficienti della colonna M1 definiti nella Tab. 6.2.II del D.M. 2018. I valori calcolati delle resistenze totali dell'elemento strutturale sono stati divisi per i coefficienti R3 della Tab. 6.4.I del D.M. 2018 per le fondazioni superficiali.

Si è quindi provveduto a progettare le armature di ogni elemento strutturale per ciascuno dei valori ottenuti secondo le modalità precedentemente illustrate. Nella sezione relativa alle verifiche dei "<u>Tabulati di calcolo</u>" in allegato sono riportati, per brevità, i valori della sollecitazione relativi alla combinazione cui corrisponde il minimo valore del coefficiente di sicurezza.

7.2 Stato Limite di Danno

L'azione sismica, ottenuta dallo spettro di progetto per lo Stato Limite di Danno, è stata combinata con le altre azioni mediante una relazione del tutto analoga alla precedente:

$$G_1+G_2+P+E+\Sigma_i\psi_{2i}\cdot Q_{ki}$$
;

dove:

E rappresenta l'azione sismica per lo stato limite in esame;

Il presente documento è di proprietà della ANTEX GROUP srl. È Vietato la comunicazione a terzi o la riproduzione senza il permesso scritto della suddetta. La società tutela i propri diritti a rigore di Legge.

G₁ rappresenta peso proprio di tutti gli elementi strutturali;

G₂ rappresenta il peso proprio di tutti gli elementi non strutturali;

P rappresenta l'azione di pretensione e/o precompressione;

 ψ_{2i} coefficiente di combinazione delle azioni variabili Q_i ;

Qki valore caratteristico dell'azione variabile Qi.

Gli effetti dell'azione sismica sono valutati tenendo conto delle masse associate ai seguenti carichi gravitazionali:

$$G_K + \Sigma_i(\psi_{2i} \cdot Q_{ki}).$$

I valori dei coefficienti ψ_{2i} sono riportati nella tabella di cui allo SLV.

7.3 Stati Limite di Esercizio

Allo Stato Limite di Esercizio le sollecitazioni con cui sono state semiprogettate le aste in c.a. sono state ricavate applicando le formule riportate nel D.M. 2018 al §2.5.3. Per le verifiche agli stati limite di esercizio, a seconda dei casi, si fa riferimento alle seguenti combinazioni di carico:

rara	frequente	quasi permanente
$\sum_{j\geq 1} G_{kj}^{} + P + Q_{k1}^{} + \sum_{i>1} \psi_{0i}^{} \cdot Q_{ki}^{}$	$\sum_{j\geq 1} G_{kj} + P + \psi_{11} \cdot Q_{k1} + \sum_{i>1} \psi_{2i} \cdot Q_{ki}$	$\sum_{j\geq 1} G_{kj} + P + \sum_{i>1} \psi_{2i} \cdot Q_{ki}$

dove:

Gki: valore caratteristico della j-esima azione permanente;

Pkh: valore caratteristico della h-esima deformazione impressa;

Qkl: valore caratteristico dell'azione variabile di base di ogni combinazione;

Qki: valore caratteristico della i-esima azione variabile;

ψοί: coefficiente atto a definire i valori delle azioni ammissibili di durata breve ma ancora significativi nei riguardi

della possibile concomitanza con altre azioni variabili;

ψ_{1i}: coefficiente atto a definire i valori delle azioni ammissibili ai frattili di ordine 0,95 delle distribuzioni dei valori

ıstantaneı;

ψ2i: coefficiente atto a definire i valori quasi permanenti delle azioni ammissibili ai valori medi delle distribuzioni

dei valori istantanei.

Ai coefficienti ψ_{0i} , ψ_{1i} , ψ_{2i} sono attribuiti i seguenti valori:

Azione	Ψ0i	ψ 1i	ψ 2i
Categoria A – Ambienti ad uso residenziale	0,7	0,5	0,3
Categoria B – Uffici	0,7	0,5	0,3
Categoria C – Ambienti suscettibili di affollamento	0,7	0,7	0,6
Categoria D – Ambienti ad uso commerciale	0,7	0,7	0,6
Categoria E – Biblioteche, archivi, magazzini e ambienti ad uso industriale	1,0	0,9	0,8
Categoria F – Rimesse e parcheggi (per autoveicoli di peso ≤ 30 kN)	0,7	0,7	0,6
Categoria G – Rimesse e parcheggi (per autoveicoli di peso > 30 kN)	0,7	0,5	0,3
Categoria H – Coperture	0,0	0,0	0,0
Vento	0,6	0,2	0,0
Neve (a quota ≤ 1000 m s.l.m.)	0,5	0,2	0,0
Neve (a quota > 1000 m s.l.m.)	0,7	0,5	0,2
Variazioni termiche	0,6	0,5	0,0

In maniera analoga a quanto illustrato nel caso dello SLU le combinazioni risultanti sono state costruite a partire dalle sollecitazioni caratteristiche calcolate per ogni condizione di carico; a turno ogni condizione di carico accidentale è stata considerata sollecitazione di

base $[Q_{k1}]$ nella formula (1)], con ciò dando origine a tanti valori combinati. Per ognuna delle combinazioni ottenute, in funzione dell'elemento (trave, pilastro, etc...) sono state effettuate le verifiche allo SLE (tensioni, deformazioni e fessurazione).

Negli allegati "<u>Tabulati Di Calcolo</u>" sono riportanti i coefficienti relativi alle combinazioni di calcolo generate relativamente alle combinazioni di azioni "Quasi Permanente" (1), "Frequente" (3) e "Rara" (3).

Nelle sezioni relative alle verifiche allo SLE dei citati tabulati, inoltre, sono riportati i valori delle sollecitazioni relativi alle combinazioni che hanno originato i risultati più gravosi.

8 - CODICE DI CALCOLO IMPIEGATO

8.1 Denominazione

Nome del Software	3. EdiLus
Versione	BIM ONE(c)
Caratteristiche del Software	Software per il calcolo di strutture agli elementi finiti per Windows
Numero di serie	ACCA EDILUS CA-AC V.32
Intestatario Licenza	licenza 16100990
Produzione e Distribuzione	ACCA software S.p.A.
	Contrada Rosole 13 83043 BAGNOLI IRPINO (AV) - Italy Tel. 0827/69504 r.a Fax 0827/601235 e-mail: info@acca.it - Internet: www.acca.it

8.2 Sintesi delle funzionalità generali

Il pacchetto consente di modellare la struttura, di effettuare il dimensionamento e le verifiche di tutti gli elementi strutturali e di generare gli elaborati grafici esecutivi.

È una procedura integrata dotata di tutte le funzionalità necessarie per consentire il calcolo completo di una struttura mediante il metodo degli elementi finiti (FEM); la modellazione della struttura è realizzata tramite elementi Beam (travi e pilastri) e Shell (platee, pareti, solette, setti, travi-parete).

L'input della struttura avviene per oggetti (travi, pilastri, solai, solette, pareti, etc.) in un ambiente grafico integrato; il modello di calcolo agli elementi finiti, che può essere visualizzato in qualsiasi momento in una apposita finestra, viene generato dinamicamente dal software.

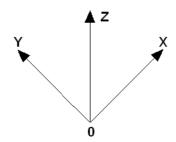
Apposite funzioni consentono la creazione e la manutenzione di archivi Sezioni, Materiali e Carichi; tali archivi sono generali, nel senso che sono creati una tantum e sono pronti per ogni calcolo, potendoli comunque integrare/modificare in ogni momento.

L'utente non può modificare il codice ma soltanto eseguire delle scelte come:

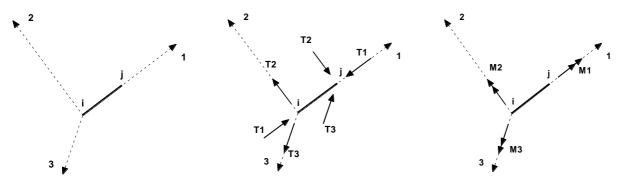
- definire i vincoli di estremità per ciascuna asta (vincoli interni) e gli eventuali vincoli nei nodi (vincoli esterni);
- modificare i parametri necessari alla definizione dell'azione sismica;
- definire condizioni di carico;
- · definire gli impalcati come rigidi o meno.

Il programma è dotato di un manuale tecnico ed operativo. L'assistenza è effettuata direttamente dalla casa produttrice, mediante linea telefonica o e-mail.

Il calcolo si basa sul solutore agli elementi finiti **MICROSAP** prodotto dalla società **TESYS srl**. La scelta di tale codice è motivata dall'elevata affidabilità dimostrata e dall'ampia documentazione a disposizione, dalla quale risulta la sostanziale uniformità dei risultati ottenuti su strutture standard con i risultati internazionalmente accettati ed utilizzati come riferimento.


Tutti i risultati del calcolo sono forniti, oltre che in formato numerico, anche in formato grafico permettendo così di evidenziare agevolmente eventuali incongruenze.

Il programma consente la stampa di tutti i dati di input, dei dati del modello strutturale utilizzato, dei risultati del calcolo e delle verifiche dei diagrammi delle sollecitazioni e delle deformate.


8.3 Sistemi di Riferimento

8.3.1 Riferimento globale

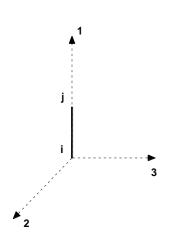
Il sistema di riferimento globale, rispetto al quale va riferita l'intera struttura, è costituito da una terna di assi cartesiani sinistrorsa O, X, Y, Z (X, Y, e Z sono disposti e orientati rispettivamente secondo il pollice, l'indice ed il medio della mano destra, una volta posizionati questi ultimi a 90° tra loro).

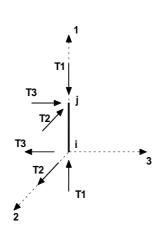
8.3.2 Riferimento locale per travi

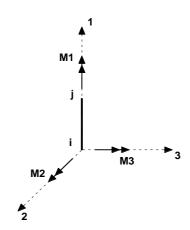
L'elemento Trave è un classico elemento strutturale in grado di ricevere Carichi distribuiti e Carichi Nodali applicati ai due nodi di estremità; per effetto di tali carichi nascono, negli estremi, sollecitazioni di taglio, sforzo normale, momenti flettenti e torcenti. Definiti i e j (nodi iniziale e finale della Trave) viene individuato un sistema di assi cartesiani 1-2-3 locale all'elemento, con origine nel Nodo i così composto:

- asse 1 orientato dal nodo i al nodo j;
- assi 2 e 3 appartenenti alla sezione dell'elemento e coincidenti con gli assi principali d'inerzia della sezione stessa.

Le sollecitazioni verranno fornite in riferimento a tale sistema di riferimento:


- 1. Sollecitazione di Trazione o Compressione T₁ (agente nella direzione i-j);
- 2. Sollecitazioni taglianti T₂ e T₃, agenti nei due piani 1-2 e 1-3, rispettivamente secondo l'asse 2 e l'asse 3;
- 3. Sollecitazioni che inducono flessione nei piani 1-3 e 1-2 (M₂ e M₃);
- 4. Sollecitazione torcente M₁.


8.3.3 Riferimento locale per pilastri

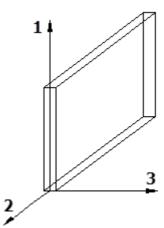


Definiti i e j come i due nodi iniziale e finale del pilastro, viene individuato un sistema di assi cartesiani 1-2-3 locale all'elemento, con origine nel Nodo i così composto:

- asse 1 orientato dal nodo i al nodo j;
- asse 2 perpendicolare all' asse 1, parallelo e discorde all'asse globale Y;
- asse 3 che completa la terna destrorsa, parallelo e concorde all'asse globale X.

Tale sistema di riferimento è valido per Pilastri con angolo di rotazione pari a '0' gradi; una rotazione del pilastro nel piano XY ha l'effetto di ruotare anche tale sistema (ad es. una rotazione di '90' gradi porterebbe l'asse 2 a essere parallelo e concorde all'asse X, mentre l'asse 3 sarebbe parallelo e concorde all'asse globale Y). La rotazione non ha alcun effetto sull'asse 1 che coinciderà sempre e comunque con l'asse globale Z.

Per quanto riguarda le sollecitazioni si ha:


- una forza di trazione o compressione T₁, agente lungo l'asse locale 1;
- due forze taglianti T_2 e T_3 agenti lungo i due assi locali 2 e 3;
- due vettori momento (flettente) M₂ e M₃ agenti lungo i due assi locali 2 e 3;
- un vettore momento (torcente) M₁ agente lungo l'asse locale nel piano 1.

8.3.4 Riferimento locale per pareti

Una parete è costituita da una sequenza di setti; ciascun setto è caratterizzato da un sistema di riferimento locale 1-2-3 così individuato:

- asse 1, coincidente con l'asse globale Z;
- asse 2, parallelo e discorde alla linea d'asse della traccia del setto in pianta;
- asse 3, ortogonale al piano della parete, che completa la terna levogira.

Su ciascun setto l'utente ha la possibilità di applicare uno o più carichi uniformemente distribuiti comunque orientati nello spazio; le componenti di tali carichi possono essere fornite, a discrezione dell'utente, rispetto al riferimento globale X,Y,Z oppure rispetto al riferimento locale 1,2,3 appena definito.

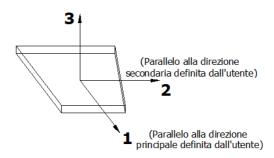
Si rende necessario, a questo punto, meglio precisare le modalità con cui EdiLus restituisce i risultati di calcolo. Nel modello di calcolo agli elementi finiti ciascun setto è discretizzato in una serie di elementi tipo "shell" interconnessi; il solutore agli elementi finiti integrato nel programma EdiLus, definisce un riferimento locale per ciascun elemento shell e restituisce i valori delle tensioni esclusivamente rispetto a tali riferimenti.

Comm.: C21-025-S05

Il software EdiLus provvede ad omogeneizzare tutti i valori riferendoli alla terna 1-2-3. Tale operazione consente, in fase di input, di ridurre al mimino gli errori dovuti alla complessità d'immissione dei dati stessi ed allo stesso tempo di restituire all'utente dei risultati facilmente interpretabili.

Tutti i dati cioè, sia in fase di input che in fase di output, sono organizzati secondo un criterio razionale vicino al modo di operare del tecnico e svincolato dal procedimento seguito dall'elaboratore elettronico.

In tal modo ad esempio, il significato dei valori delle tensioni può essere compreso con immediatezza non solo dal progettista che ha operato con il programma ma anche da un tecnico terzo non coinvolto nell'elaborazione; entrambi, così, potranno controllare con facilità dal tabulato di calcolo, la congruità dei valori riportati.


Un'ultima notazione deve essere riservata alla modalità con cui il programma fornisce le armature delle pareti, con riferimento alla faccia anteriore e posteriore.

La faccia anteriore è quella di normale uscente concorde all'asse 3 come prima definito o, identicamente, quella posta alla destra dell'osservatore che percorresse il bordo superiore della parete concordemente al verso di tracciamento.

8.3.5 Riferimento locale per solette e platee

Ciascuna soletta e platea è caratterizzata da un sistema di riferimento locale 1,2,3 così definito:

- asse 1, coincidente con la direzione principale di armatura;
- asse 2, coincidente con la direzione secondaria di armatura;
- asse 3, ortogonale al piano della parete, che completa la terna levogira.

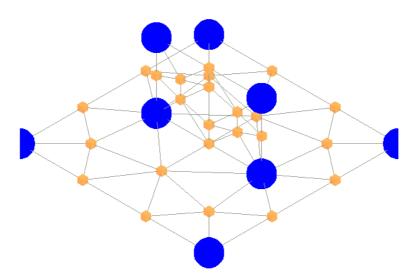
8.4 Modello di Calcolo

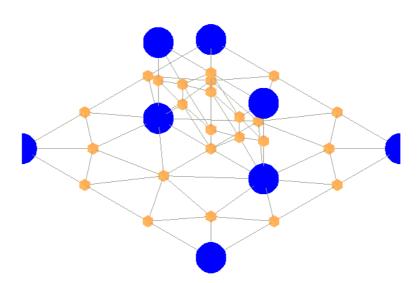
Il modello della struttura viene creato automaticamente dal codice di calcolo, individuando i vari elementi strutturali e fornendo le loro caratteristiche geometriche e meccaniche.

Viene definita un'opportuna numerazione degli elementi (nodi, aste, shell) costituenti il modello, al fine di individuare celermente ed univocamente ciascun elemento nei "*Tabulati di calcolo*".

Qui di seguito è fornita una rappresentazione grafica dettagliata della discretizzazione operata con evidenziazione dei nodi e degli elementi.

Vista Anteriore





19/07/2021

REV: 1 Pag. 21

Vista Posteriore

Le aste in **c.a.**, sia travi che pilastri, sono schematizzate con un tratto flessibile centrale e da due tratti (braccetti) rigidi alle estremità. I nodi vengono posizionati sull'asse verticale dei pilastri, in corrispondenza dell'estradosso della trave più alta che in esso si collega. Tramite i braccetti i tratti flessibili sono quindi collegati ad esso. In questa maniera il nodo risulta perfettamente aderente alla realtà

poiché vengono presi in conto tutti gli eventuali disassamenti degli elementi con gli effetti che si possono determinare, quali momenti flettenti/torcenti aggiuntivi.

Le sollecitazioni vengono determinate solo per il tratto flessibile. Sui tratti rigidi, infatti, essendo (teoricamente) nulle le deformazioni, le sollecitazioni risultano indeterminate.

Questa schematizzazione dei nodi viene automaticamente realizzata dal programma anche quando il nodo sia determinato dall'incontro di più travi senza il pilastro, o all'attacco di travi/pilastri con elementi shell.

La modellazione del materiale degli elementi in c.a., acciaio e legno segue la classica teoria dell'elasticità lineare; per cui il materiale è caratterizzato oltre che dal peso specifico, da un modulo elastico (E) e un modulo tagliante (G).

La possibile fessurazione degli elementi in c.a. è stata tenuta in conto nel modello considerando un opportuno decremento del modulo di elasticità e del modulo di taglio, nei limiti di quanto previsto dalla normativa vigente per ciascuno stato limite.

Gli eventuali elementi di **fondazione** (travi, platee, plinti, plinti su pali e pali) sono modellati assumendo un comportamento elasticolineare sia a trazione che a compressione.

9 - PROGETTO E VERIFICA DEGLI ELEMENTI STRUTTURALI

La verifica degli elementi allo SLU avviene col seguente procedimento:

- si costruiscono le combinazioni non sismiche in base al D.M. 2018, ottenendo un insieme di sollecitazioni;
- si combinano tali sollecitazioni con quelle dovute all'azione del sisma secondo quanto indicato nel §2.5.3, relazione (2.5.5) del D.M. 2018:
- per sollecitazioni semplici (flessione retta, taglio, etc.) si individuano i valori minimo e massimo con cui progettare o verificare l'elemento considerato; per sollecitazioni composte (pressoflessione retta/deviata) vengono eseguite le verifiche per tutte le possibili combinazioni e solo a seguito di ciò si individua quella che ha originato il minimo coefficiente di sicurezza.

9.1 Verifiche di Resistenza

9.1.1 Elementi in C.A.

Illustriamo, in dettaglio, il procedimento seguito in presenza di pressoflessione deviata (pilastri e trave di sezione generica):

• per tutte le terne Mx, My, N, individuate secondo la modalità precedentemente illustrata, si calcola il coefficiente di sicurezza in base alla formula 4.1.19 del D.M. 2018, effettuando due verifiche a pressoflessione retta con la seguente formula:

$$\left(\frac{M_{Ex}}{M_{Rx}}\right)^{\alpha} + \left(\frac{M_{Ey}}{M_{Ry}}\right)^{\alpha} \leq 1$$

dove:

M_{Ex}, M_{Ey} sono i valori di calcolo delle due componenti di flessione retta dell'azione attorno agli assi di flessione X ed Y del sistema di riferimento locale;

 M_{Rx} , M_{Ry} sono i valori di calcolo dei momenti resistenti di pressoflessione retta corrispondenti allo sforzo assiale N_{Ed} valutati separatamente attorno agli assi di flessione.

L'esponente α può dedursi in funzione della geometria della sezione, della percentuale meccanica dell'armatura e della sollecitazione di sforzo normale agente.

• se per almeno una di queste terne la relazione 4.1.19 non è rispettata, si incrementa l'armatura variando il diametro delle barre

utilizzate e/o il numero delle stesse in maniera iterativa fino a quando la suddetta relazione è rispettata per tutte le terne considerate.

Sempre quanto concerne il progetto degli elementi in c.a. illustriamo in dettaglio il procedimento seguito per le travi verificate/semiprogettate a pressoflessione retta:

- per tutte le coppie M_x , N, individuate secondo la modalità precedentemente illustrata, si calcola il coefficiente di sicurezza in base all'armatura adottata;
- se per almeno una di queste coppie esso è inferiore all'unità, si incrementa l'armatura variando il diametro delle barre utilizzate e/o il numero delle stesse in maniera iterativa fino a quando il coefficiente di sicurezza risulta maggiore o al più uguale all'unità per tutte le coppie considerate.

Nei "<u>Tabulati di calcolo</u>", per brevità, non potendo riportare una così grossa mole di dati, si riporta la terna Mx, My, N, o la coppia Mx, N che ha dato luogo al minimo coefficiente di sicurezza.

Una volta semiprogettate le armature allo SLU, si procede alla verifica delle sezioni allo Stato Limite di Esercizio con le sollecitazioni derivanti dalle combinazioni rare, frequenti e quasi permanenti; se necessario, le armature vengono integrate per far rientrare le tensioni entro i massimi valori previsti.si procede alle verifiche alla deformazione, quando richiesto, ed alla fessurazione che, come è noto, sono tese ad assicurare la durabilità dell'opera nel tempo.

9.1.1.1 Fondazioni superficiali

Le metodologie, i modelli usati ed i risultati del calcolo del *carico limite* sono esposti nella relazione GEOTECNICA.

9.2 Gerarchia delle Resistenze

9.2.1 Elementi in C.A.

Relativamente agli elementi in c.a., sono state applicate le disposizioni contenute al §7.4.4 del D.M. 2018. Più in particolare:

- per le travi, al fine di escludere la formazione di meccanismi inelastici dovuti al taglio, le sollecitazioni di calcolo si ottengono sommando il contributo dovuto ai carichi gravitazionali agenti sulla trave, considerata incernierata agli estremi, alle sollecitazioni di taglio corrispondenti alla formazione delle cerniere plastiche nella trave e prodotte dai momenti resistenti delle due sezioni di estremità, amplificati del fattore di sovraresistenza γ_{Rd} assunto pari, rispettivamente, ad 1,20 per strutture in CD"A", ad 1,10 per strutture in CD"B". La verifica di resistenza è eseguita secondo le indicazioni del par. 7.4.4.1.1 D.M. 2018.
- per i **pilastri**, al fine di scongiurare l'attivazione di meccanismi fragili globali, come il meccanismo di "piano debole" che comporta la plasticizzazione, anticipata rispetto alle travi, di gran parte dei pilastri di un piano, il progetto a *flessione* delle zone dissipative dei pilastri è effettuato considerando le sollecitazioni corrispondenti alla resistenza delle zone dissipative delle travi amplificata mediante il coefficiente γ_{Rd} che vale 1,3 in CD"A" e 1,3 per CD"B". In tali casi, generalmente, il meccanismo dissipativo prevede la localizzazione delle cerniere alle estremità delle travi e le sollecitazioni di progetto dei pilastri possono essere ottenute a partire dalle resistenze d'estremità delle travi che su di essi convergono, facendo in modo che, per ogni nodo trave-pilastro ed ogni direzione

Comm.: C21-025-S05

ISO 9001
BUREAU VERITAS
Certification

e verso dell'azione sismica, la resistenza complessiva dei pilastri sia maggiore della resistenza complessiva delle travi amplificata del coefficiente γ_{Rd} , in accordo con la formula (7.4.4) del D.M. 2018. Le verifiche di resistenza sono eseguite secondo le indicazioni del par. 7.4.4.2.1 D.M. 2018.

Al fine di escludere la formazione di meccanismi inelastici dovuti al *taglio*, le sollecitazioni di calcolo da utilizzare per le verifiche ed il dimensionamento delle armature si ottengono dalla condizione di equilibrio del pilastro soggetto all'azione dei momenti resistenti nelle sezioni di estremità superiore ed inferiore secondo l'espressione (7.4.5). Le verifiche di resistenza sono eseguite secondo le indicazioni del par. 7.4.4.2.1.

- per i **nodi trave-pilastro**, si deve verificare che la resistenza del nodo sia tale da assicurare che non pervenga a rottura prima delle zone della trave e del pilastro ad esso adiacente. L'azione di taglio, agente in direzione orizzontale per le varie direzioni del sisma, nel nucleo di calcestruzzo del nodo è calcolata secondo l'espressione (7.4.6) per i nodi interni e (7.4.7) per quelli esterni. Le verifiche di resistenza sono eseguite invece secondo le indicazioni del §7.4.4.3.1 D.M. 2018.
- per i **setti** sismo resistenti, le sollecitazioni di calcolo sono determinate secondo quanto indicato nel par. 7.4.4.5 D.M. 2018 Le verifiche di resistenza sono eseguite invece secondo le indicazioni del par. 7.4.4.5.1 D.M. 2018.

9.2.2 Fondazioni

Per quanto riguarda la struttura di fondazione sono applicate le disposizioni contenute al §7.2.5 del D.M. 2018. Più in particolare:

- le azioni trasmesse in fondazione derivano dall'analisi del comportamento dell'intera struttura, condotta esaminando la sola struttura in elevazione alla quale sono applicate le azioni statiche e sismiche;
- il dimensionamento della struttura di fondazione e la verifica di sicurezza del complesso fondazione-terreno sono eseguite, nell'ipotesi di comportamento strutturale dissipativo, assumendo come azioni in fondazione quelle trasferite dagli elementi soprastanti amplificate di un coefficiente γ_{Rd} pari a 1,1 in CD"B" e 1,3 in CD"A".

I risultati delle suddette verifiche sono riportate nei "Tabulati di calcolo".

9.3 DETTAGLI STRUTTURALI

Il progetto delle strutture è stato condotto rispettando i dettagli strutturali previsti dal D.M. 2018, nel seguito illustrati. Il rispetto dei dettagli può essere evinto, oltreché dagli elaborati grafici, anche dalle verifiche riportate nei tabulati allegati alla presente relazione.

9.3.1 Travi in c.a.

Le armature degli elementi trave sono state dimensionati seguendo i dettagli strutturali previsti al punto 4.1.6.1.1 del D.M. 2018:

$$A_{s} \ge A_{s,\min} = \max \left\{ 0.26 \frac{f_{ctm}}{f_{yk}} b_{t} d; 0.0013 b_{t} d \right\}$$

$$\max \left\{ A_{s}; A'_{s} \right\} \le A_{s,\max} = 0.04 A_{c}$$
[TR-C4-B]

$$A_{st} \ge A_{st, \min} = 1.5b \, mm^2 / m \qquad [TR-C4-C]$$

$$p_{st} \ge p_{st,\min} = \min\{33,3cm;0,8d\}$$
 [TR-C4-D]

$$A_{st} \ge 0.5A_{sw}$$
 [TR-C4-E]

$$p_{st} \ge 15\Phi$$
 [TR-C4-F]

dove:

- A_s e A'_s sono le aree di armature tese e compresse;
- f_{ctm} è la resistenza a trazione media del cls;
- f_{vk} è la resistenza caratteristica allo snervamento;

Comm.: C21-025-S05

ISO 9001
BUREAU VERITAS
Certification

- bt è la larghezza media della zona tesa della trave (pari alla larghezza della trave o dell'anima nel caso di sezioni a T);
- d è l'altezza utile della trave;
- b è lo spessore minimo dell'anima in mm;
- p_{st} è il passo delle staffe;
- A_c è l'area della sezione di cls;
- A_{st} è l'area delle staffe;
- A_{sw} è l'area totale delle armature a taglio (area delle staffe più area dei ferri piegati);
- dove Φ è il diametro delle armature longitudinali compresse.

Ai fini di un buon comportamento sismico, sono rispettate le seguenti limitazioni geometriche, ai sensi del § 7.4.6.1.1 del D.M. 2018:

$b_t \ge b_{t,min} = 20 \text{ cm}$	[TR-LG-A]
$b_t \le b_{t,max} = \min\{b_c + h_t; b_c\}$	[TR-LG-B]
$b_t/h_t \ge (b_t/h_t)_{\min} = 0.25$	[TR-LG-C]
$L_{zc} = 1.5 h_t (CD-A); L_{zc} = 1.0 h_t (CD-B)$	[TR-LG-D]

dove:

- b_t e h_t sono la base e l'altezza delle travi, rispettivamente;
- b_c è la larghezza della colonna;
- L_{zc} è la larghezza della zona dissipativa.

Inoltre, per il dimensionamento delle armature, vengono rispettate le prescrizioni del § 7.4.6.2.1 del D.M. 2018, illustrate nel seguito.

Armature longitudinali

$$n_{\phi l} > n_{\phi l, \min} = 2$$

$$\rho_{\min} = \frac{1,4}{f_{yk}} < \rho = \frac{A_s}{bh} < \rho_{\max} = \rho_{cmp} + \frac{3,5}{f_{yk}}$$

$$\rho_{\text{cmp}} \ge \rho_{\text{cmp,min}}$$
[TR-AL-B]
[TR-AL-C]

dove:

- $n_{\phi l}$ è il numero di barre al lembo inferiore o superiore, di diametro almeno pari a 14 mm;
- nφ_{1,min} è il minimo numero possibile di barre al lembo inferiore o superiore, di diametro almeno pari a 14 mm;
- ρ è il rapporto geometrico relativo all'armatura tesa (rapporto tra le aree delle armature, A_s, e l'area della sezione rettangolare, b x h);
- ρ_{cmp} è il rapporto geometrico relativo all'armatura compressa;
- $\rho_{cmp,min} = 0.25 \rho$ per zone non dissipative, oppure ½ ρ per zone dissipative.
- f_{vk} è la resistenza di snervamento caratteristica dell'acciaio in MPa.

Armature trasversali

$$p_{st} \le p_{st,\text{max}} = \min \begin{cases} \left[\frac{d}{4}; & 175 \, mm; & 6\Phi_l; & 24\Phi_{st} \right] & (CD - A) \\ \left[\frac{d}{4}; & 225 \, mm; & 8\Phi_l; & 24\Phi_{st} \right] & (CD - B) \end{cases}$$

$$\Phi_{st} \ge \Phi_{\text{st,min}} = 6 \, \text{mm}$$
[TR-AT-B]

dove:

- d è l'altezza utile della sezione;
- Φ_1 è il diametro più piccolo delle barre longitudinali utilizzate;
- Φ_{st} è il diametro più piccolo delle armature trasversali utilizzate;
- $\Phi_{\text{st,min}}$ è il minimo diametro delle staffe da normativa.

Comm.: C21-025-S05

ISO 900
BUREAU VERITAS
Certification

9.3.2 Pilastri in c.a.

Le armature degli elementi pilastri sono state dimensionati seguendo i dettagli strutturali previsti al punto 4.1.6.1.2 del D.M. 2018, nel seguito indicati:

$$\begin{split} \Phi_{1} &\geq \Phi_{l, \min} = 12 \text{ mm} & [\text{PL-C4-A}] \\ &\text{i} \leq \text{i}_{\max} = 300 \text{ mm} & [\text{PL-C4-B}] \\ A_{sl} &\geq A_{sl, \min} = \max \left\{ 0.10 \frac{N_{Ed}}{f_{yd}}; 0.003 A_{c} \right\} & [\text{PL-C4-C}] \\ p_{st} &\leq p_{st, \max} = \min \left\{ 12 \Phi_{l}, 250 \text{ mm} \right\} & [\text{PL-C4-D}] \\ \Phi_{st} &\geq \Phi_{st, \min} = \max \left\{ 6 \text{ mm}; \frac{\Phi_{l, \max}}{4} \right\} & [\text{PL-C4-E}] \\ A_{sl} &\leq A_{sl, \max} = 0.04 A_{c} & [\text{PL-C4-F}] \end{split}$$

dove:

- Φ_1 e $\Phi_{1,min}$ sono, rispettivamente, il diametro più piccolo utilizzato ed il diametro minimo da norma delle barre longitudinali;
- i e i_{max} sono, rispettivamente, l'interasse massimo utilizzato e l'interasse massimo consentito da norma delle barre longitudinali;
- A_{sl} è l'area totale delle armature longitudinali;
- N_{Ed} è la forza di compressione di progetto;
- f_{yd} è la tensione di calcolo dell'acciaio;
- A_c è l'area di cls;
- p_{st} e p_{st,max} sono, rispettivamente, il passo massimo utilizzato ed il passo massimo consentito da norma per le staffe;
- Φ_{st} e $\Phi_{st,min}$ sono, rispettivamente, il diametro minimo utilizzato ed il diametro minimo consentito da norma delle staffe;
- $\Phi_{l,max}$ è il diametro massimo delle armature longitudinali utilizzate;
- A_{sl,max} è l'area massima da norma dei ferri longitudinali;
- A_c è l'area di cls.

Ai fini di un buon comportamento sismico, sono rispettate le seguenti limitazioni geometriche, ai sensi del § 7.4.6.1.2 del D.M. 2018:

$$\begin{array}{ll} b_c \geq b_{c,min} &= 25 \text{ cm} \\ L_{zc} \geq L_{zc,min} = \max\{h_c, \, 1/6 \, L_l, \, 45 \, \text{ cm}\} \text{ se } L_l \geq 3 \, h_{czc} \geq L_{zc,min} = \\ \max\{h_c, \, L_l, \, 45 \, \text{ cm}\} \text{ se } L_l < 3 \, h_c \end{array} \qquad \begin{array}{l} \text{[PL-LG-A]} \\ \text{[PL-LG-B]} \end{array}$$

dove:

- b_c è la dimensione minima della sezione trasversale del pilastro;
- b_{c,min} è la dimensione minima consentita della sezione trasversale del pilastro;
- L_{zc} è la lunghezza della zona critica;
- L_{zc,min} è la lunghezza minima consentita della zona critica;
- h_c è l'altezza del pilastro;
- L_l è la luce libera del pilastro.

Inoltre, per il dimensionamento delle armature, vengono rispettate le prescrizioni del § 7.4.6.2.2 del D.M. 2018:

Armature longitudinali

$$\begin{split} i \leq i_{max} = 25 \text{ cm} \\ \rho_{min} = 1\% \leq \rho \leq \rho_{max} = 4\% \end{split} \tag{PL-AL-A}$$

$$[PL-AL-B]$$

dove:

• i e i_{max} sono, rispettivamente, l'interasse massimo utilizzato e l'interasse massimo consentito da norma delle barre longitudinali;

ρ è il rapporto tra l'area totale di armatura longitudinale e l'area della sezione retta.

Armature trasversali

$$\Phi_{st} > \Phi_{st,\min} = \begin{cases} \max \left[6mm; \left(0, 4\Phi_{l,\max} \sqrt{\frac{f_{yd,l}}{f_{yd,st}}} \right) \right] & \text{CD-A} \\ 6mm & \text{CD-B} \end{cases}$$

$$p_{st} \leq p_{st,\max} = \min \begin{cases} \left[\frac{1}{3}b_{c,\min}; 12,5 cm; 6d_{bl,\min} \right] & \text{CD-A} \\ \left[\frac{1}{2}b_{c,\min}; 17,5 cm; 8d_{bl,\min} \right] & \text{CD-B} \end{cases}$$
[PL-AT-B]

dove:

- Φ_{st} è il più piccolo diametro delle staffe utilizzato;
- $\Phi_{\text{st,min}}$ è il minimo diametro delle staffe utilizzabile;
- $\Phi_{l,max}$ è il diametro massimo delle barre longitudinali utilizzate;
- f_{vd.1} e f_{vd.st} sono le tensioni di snervamento di progetto delle barre longitudinali e delle staffe.
- p_{st} e p_{st,max} sono, rispettivamente, il passo massimo utilizzato ed il passo massimo consentito da norma per le staffe;
- b_{c.min} è la dimensione minore del pilastro;
- d_{bl,min} è il diametro minimo delle armature longitudinali.

Inoltre, è stato effettuato il seguente controllo sulla duttilità minima dei pilastri:

$$\omega_{wd} = \frac{V_{st}}{V_{nc}} \frac{f_{yd}}{f_{cd}} \ge \omega_{wd, \min} = 0.08$$
 [PL-AT-C]

dove:

- $V_{st} = A_{st} L_{st}$ è il volume delle staffe di contenimento;
- V_{nc} è il volume del nucleo confinato (= b_0 h_0 s per sezioni rettangolari; = $\pi(D_0/2)^2$ nel caso di sezioni circolari);
- A_{st} è l'area delle staffe;
- L_{st} è il perimetro delle staffe;
- b₀ e h₀ sono le dimensioni del nucleo confinato, misurate con riferimento agli assi delle staffe;
- D₀ è il diametro del nucleo confinato misurato rispetto all'asse delle staffe;
- s è il passo delle staffe;
- f_{yd} è la tensione di snervamento di progetto delle staffe;
- f_{cd} è la tensione di progetto a compressione del cls.

9.3.3 Nodi in c.a.

Il dimensionamento degli elementi trave e pilastro confluenti nel nodo è stato effettuato assicurando che le eccentricità delle travi rispetto ai pilastri siano inferiori ad 1/4 della larghezza del pilastro, per la direzione considerata (§ 7.4.6.1.3 D.M. 2018).staffe progettate nel nodo sono almeno pari alle staffe presenti nelle zone adiacenti al nodo del pilastro inferiore e superiore. Nel caso di nodi interamente confinati il passo minimo delle staffe nel nodo è pari al doppio di quello nelle zone adiacenti al nodo del pilastro inferiore e superiore, fino ad un massimo di 15 cm.

Comm.: C21-025-S05

10 - TABULATI DI CALCOLO

Per quanto non espressamente sopra riportato, ed in particolar modo per ciò che concerne i dati numerici di calcolo, si riportano i "Tabulati di calcolo" costituente parte integrante della presente relazione.

INFORMAZIONI GENERALI

Edificio Cemento Armato Costruzione Nuova Situazione Intervento Caerignola Comune Provincia Faggia Oggetto Parte d'opera Normativa di riferimento D.M. 17/01/2018 Calcolo semplificato per siti a bassa sismicità (§ 7.0) Analisi sismica Statica equivalente

MATERIALI CALCESTRUZZO ARMATO

											Ci	aratteristic	ne caicestri	uzzo a	armato
Nid	γk	αт, і	E	G	CErid	Stz	Rck	R _{cm}	%R _{ck}	γc	f _{cd}	f _{ctd}	f _{cfm}	N	n Ac
	[N/m ³]	[1/°C]	[N/mm ²]	[N/mm ²]	[%]		[N/mm ²]	[N/mm ²]			[N/mm ²]	[N/mm ²]	[N/mm ²]		
Cls C32	2/40_B4500	C - (C32/40)													
001	25.000	0,000010	33.643	14.018	60	Р	40,00	-	0,85	1,50	18,81	1,45	3,72	15	002

LEGENDA:

Numero identificativo del materiale, nella relativa tabella dei materiali. N_{id}

Peso specifico. γk

Coefficiente di dilatazione termica. αт. і Modulo elastico normale. Ε G Modulo elastico tangenziale.

Coefficiente di riduzione del Modulo elastico normale per Analisi Sismica [Esisma = E·CErid]. Cerid

Stz Tipo di situazione: [F] = di Fatto (Esistente); [P] = di Progetto (Nuovo).

Resistenza caratteristica cubica. R_{ck} Resistenza media cubica. R_{cm} %Rck Percentuale di riduzione della Rck

Coefficiente parziale di sicurezza del materiale.

Resistenza di calcolo a compressione. fcd Resistenza di calcolo a trazione. fctd Resistenza media a trazione per flessione. f_{cfm}

Identificativo, nella relativa tabella materiali, dell'acciaio utilizzato: [-] = parametro NON significativo per il materiale. n Ac

MATERIALI ACCIAIO

														Caratt	eristich	e acciaio
N _{id}		a	_	G	Stz	f yk,1/	f _{tk,1} /	fulfin	€	γs	γм1	γм2		γмз,sle	Ум 7	
INid	γk	αт, і	-	G	312	f _{yk,2}	f _{tk,2}	T _{yd,1} / T _{yd,2}	Ttd				γM3,SLV		NCnt	Cnt
	[N/m³]	[1/°C]	[N/mm ²]	[N/mm ²]		[N/mm ²]	[N/mm ²]	[N/mm ²]	[N/mm ²]							
Accia	Acciaio B450C - (B450C)															
000	70 500	0.000010	210.000	00.760	D	450,00		391,30								
002	78.500	0,000010	210.000	80.769	Р	-	-		-	1,15	-	-	-	-	-	-

LEGENDA:

Numero identificativo del materiale, nella relativa tabella dei materiali. Nid

Peso specifico. γk

Coefficiente di dilatazione termica. αт, і Modulo elastico normale. Ε G Modulo elastico tangenziale.

Tipo di situazione: [F] = di Fatto (Esistente); [P] = di Progetto (Nuovo). Stz Resistenza caratteristica a Rottura (per profili con $t \le 40$ mm). ftk,1

Resistenza caratteristica a Rottura (per profili con 40 mm $< t \le 80$ mm). ftk,2

Resistenza di calcolo a Rottura (Bulloni). ftd

presente documento è di proprietà della ANTEX GROUP srl. Vietato la comunicazione a terzi o la riproduzione senza il permesso scritto della suddetta.

La società tutela i propri diritti a rigore di Legge.

O-----

														Caratt	eristiche	e acciaio
N.			_	6	C+-	f _{yk,1} / f _{tk,}		f _{tk,1} / , , ,							γ	M7
N _{id}	γk	αт, і	_	G	SLZ	f _{yk,2}	f _{tk,2}	Tyd,1/ Tyd,2	Ttd	γs	γм1	γм2	γM3,SLV	γM3,SLE	NCnt	Cnt
	[N/m³]	[1/°C]	[N/mm ²]	[N/mm ²]		[N/mm ²]	[N/mm ²]	[N/mm ²]	[N/mm ²]							

Coefficiente parziale di sicurezza allo SLV del materiale. γs Coefficiente parziale di sicurezza per instabilità. **YM1**

Coefficiente parziale di sicurezza per sezioni tese indebolite. **YM2** Coefficiente parziale di sicurezza per scorrimento allo SLV (Bulloni). γm3,SLV Coefficiente parziale di sicurezza per scorrimento allo SLE (Bulloni). γM3,SLE

Coefficiente parziale di sicurezza precarico di bulloni ad alta resistenza (Bulloni - NCnt = con serraggio NON controllato; Cnt = con serraggio controllato). [-] = γм7

parametro NON significativo per il materiale.

Resistenza caratteristica allo snervamento (per profili con t \leq 40 mm). fyk,1 Resistenza caratteristica allo snervamento (per profili con 40 mm < t ≤ 80 mm). fyk,2

Resistenza di calcolo (per profili con $t \le 40$ mm). f_{yd,1}

Resistenza di calcolo (per profili con 40 mm $< t \le 80$ mm). NOTE

[-] = Parametro non significativo per il materiale.

TENSIONI AMMISSIBILI ALLO SLE DEI VARI MATERIALI

Tensioni ammissibili allo SLE dei vari materiali Tensione di verifica 19,92

Materiale Cls C32/40_B450C Caratteristica(RARA) Compressione Calcestruzzo Compressione Calcestruzzo Quasi permanente 14,94 Acciaio B450C Caratteristica(RARA) Trazione Acciaio 360,00

LEGENDA:

SL Stato limite di esercizio per cui si esegue la verifica.

Tensione ammissibile per la verifica. σd,amn

TERRENI

										Terreni					
N	γт		K1			_	- 1	_	_						
N _{TRN}		K _{1X}	K _{1Y}	K _{1Z}	φ	Cu	C	⊏d	⊏cu	A _{S-B}					
	[N/m³]	[N/cm ³]	[N/cm ³]	[N/cm ³]	[°]	[N/mm ²]	[N/mm ²]	[N/mm ²]	[N/mm ²]						
Terreno Limos	Terreno Limoso-Argilloso														
T001	18.600	60	60	300	22	0,17	0,000	53	0	0,000					

LEGENDA:

NTRN Numero identificativo del terreno.

Peso specifico del terreno.

K1 Valori della costante di Winkler riferita alla piastra Standard di lato b = 30 cm nelle direzioni degli assi del riferimento globale X (K_{1X}), Y (K_{1Y}), e Z (K_{1Z}).

Angolo di attrito del terreno. Cu Coesione non drenata.

c' Coesione efficace. E_d Modulo edometrico.

 \mathbf{E}_{cu} Modulo elastico in condizione non drenate.

Parametro "A" di Skempton-Bjerrum per pressioni interstiziali.

ANALISI CARICHI

									Analis	i carichi	
	T 6	Descrizione del	Descrizione del	Tipologie di	Peso Proprio		Permanente NON Strut	turale	Sovraccarico Acciden	tale	Carico
Nid	T. C.	Carico	Carico	Descrizione		Descrizione	PNS	Descrizione	SA	Neve	
										[N/m ²]	
001	S	Platea	Autorimessa <= 30kN	*vedi le relative tabelle dei carichi	-	Sottofondo e pavimento di tipo industriale in calcestruzzo	2.000	Rimesse, aree per traffico, parcheggio e sosta di veicoli leggeri (peso a pieno carico fino a 30 kN) (Cat. F – Tab. 3.1.II - DM 17.01.2018)	2.500	0	

LEGENDA:

Numero identificativo dell'analisi di carico. Nid

T. C. $Identificativo\ del\ tipo\ di\ carico:\ [S]\ =\ Superficiale\ -\ [L]\ =\ Lineare\ -\ [C]\ =\ Concentrato.$

PP, PNS, SA Valori, rispettivamente, del Peso Proprio, del Sovraccarico Permanente NON strutturale, del Sovraccarico Accidentale. Secondo il tipo di carico indicato nella colonna "T.C." ("S" - "L" - "C"), i valori riportati nelle colonne "PP", "PNS" e "SA", sono espressi in [N/m²] per carichi Superficiali, [N/m] per carichi Lineari, [N] per carichi Concentrati.

presente documento è di proprietà della ANTEX GROUP srl.

Vietato la comunicazione a terzi o la riproduzione senza il permesso scritto della suddetta.

La società tutela i propri diritti a rigore di Legge.

Pag. 30

TIPOLOGIE DI CARICO

						Tij	pologie di carico
Nid	Descrizione	F+E	+/- F	CDC	ψο	Ψ1	Ψ2
0001	Carico Permanente	SI	NO	Permanente	1,00	1,00	1,00
0002	Permanenti NON Strutturali	SI	NO	Permanente	1,00	1,00	1,00
0003 0004	Abitazioni Autorimessa <= 30kN	SI SI	NO NO	Media Media	0,70 0,70	0,50 0,70	0,30 0,60
0005	Sisma X	-	-	-	-	-	·-
0006	Sisma Y	-	-	-	-	-	-
0007	Sisma Z	-	-	-	-	-	-
0008	Sisma Ecc.X Sisma Ecc.Y	-	-	-	-	-	-

LEGENDA:

Numero identificativo della Tipologia di Carico. N_{id}

F+E Indica se la tipologia di carico considerata è AGENTE con il sisma.

+/- F Indica se la tipologia di carico è ALTERNATA (cioè considerata due volte con segno opposto) o meno.

CDC Indica la classe di durata del carico.

NOTA: dato significativo solo per elementi in materiale legnoso. Coefficiente riduttivo dei carichi allo SLU e SLE (carichi rari).

Coefficiente riduttivo dei carichi allo SLE (carichi frequenti). ψ1

Coefficiente riduttivo dei carichi allo SLE (carichi frequenti e quasi permanenti).

SLU: Non Sismica - Strutturale senza azioni geotecniche

		SLU: Non Sismica - Strutturale senza azioni geotecnich						
	CC 01	CC 02	CC 03	CC 04				
Id Comb	Carico Permanente	Permanenti NON	Abitazioni	Autorimessa <= 30kN				
		Strutturali						
01	1,00	0,00	0,00	0,00				
02	1,00	0,80	0,00	0,00				
03	1,00	0,80	0,00	1,05				
04	1,00	0,80	1,05	0,00				
05	1,00	0,80	1,05	1,05				
06	1,00	1,50	0,00	0,00				
07	1,00	1,50	0,00	1,05				
08	1,00	1,50	1,05	0,00				
09	1,00	1,50	1,05	1,05				
10	1,00	0,80	1,50	0,00				
11	1,00	0,80	1,50	1,05				
12	1,00	1,50	1,50	0,00				
13	1,00	1,50	1,50	1,05				
14	1,00	0,80	0,00	1,50				
15	1,00	0,80	1,05	1,50				
16	1,00	1,50	0,00	1,50				
17	1,00	1,50	1,05	1,50				
18	1,30	0,00	0,00	0,00				
19	1,30	0,80	0,00	0,00				
20	1,30	0,80	0,00	1,05				
21	1,30	0,80	1,05	0,00				
22	1,30	0,80	1,05	1,05				
23	1,30	1,50	0,00	0,00				
24	1,30	1,50	0,00	1,05				
25	1,30	1,50	1,05	0,00				
26	1,30	1,50	1,05	1,05				
27	1,30	0,80	1,50	0,00				
28	1,30	0,80	1,50	1,05				
29	1,30	1,50	1,50	0,00				
30	1,30	1,50	1,50	1,05				
31	1,30	0,80	0,00	1,50				
32	1,30	0,80	1,05	1,50				
33	1,30	1,50	0,00	1,50				
34	1,30	1,50	1,05	1,50				
LEGENIE								

LEGENDA:

Il presente documento è di proprietà della ANTEX GROUP srl. È Vietato la comunicazione a terzi o la riproduzione senza il permesso scritto della suddetta. La società tutela i propri diritti a rigore di Legge.

SLU: Non Sismica - Strutturale senza azioni geotecniche

CC 03 CC 01 CC 02 CC 04 Permanenti NON **Ahitazioni** Autorimessa <= 30kN Idcomb Carico Permanente Strutturali

Numero identificativo della Combinazione di Carico. **Id**Comb CC Identificativo della tipologia di carico nella relativa tabella.

CC 01= Carico Permanente CC 02= Permanenti NON Strutturali CC 03= Abitazioni

CC 04= Autorimessa <= 30kN

SLU: Sismica - Strutturale senza azioni geotecniche

SLU: Sismica - Strutturale senza azioni geotecniche

Id _{Comb}	CC 01 Carico Permanente	CC 02 Permanenti NON Strutturali	CC 03 Abitazioni	CC 04 Autorimessa <= 30kN
01	1,00	1,00	0,30	0,60

LEGENDA:

IdComb Numero identificativo della Combinazione di Carico. Identificativo della tipologia di carico nella relativa tabella.

CC 01= Carico Permanente CC 02= Permanenti NON Strutturali CC 03= Abitazioni

CC 04= Autorimessa <= 30kN

COMBINAZIONI SISMICHE

Alle combinazioni riportate nella precedente tabella è stato aggiunto l'effetto del sisma. L'azione sismica è stata considerata come caratterizzata da tre componenti traslazionali lungo i tre assi globali X, Y e Z; la risposta della struttura è stata calcolata separatamente per i tre effetti e quindi combinata secondo la seguente espressione simbolica:

 $\alpha = \alpha_i + 0,3 \bullet \alpha_{ii} + 0,3 \bullet \alpha_{iii}$

con α effetto totale dell'azione sismica, α i, α i e α iii azioni sismiche nelle tre direzioni. E' stata effettuata una rotazione degli indici e dei segni, per cui le combinazioni totali generate sono le:

(con α'p sollecitazione dovuta alla combinazione delle condizioni statiche e α sollecitazione dovuta al sisma; in particolare αx, αγ, αε, αε, αες sono rispettivamente le sollecitazioni dovute al sisma agente in direzione x, in direzioni y, in direzione z, per eccentricità accidentale positiva in direzione x e per eccentricità accidentale positiva in direzione y)

3) $\alpha'_p + (\alpha_x + \alpha_{ex}) + 0,3 \bullet (\alpha_y + \alpha_{ey}) - 0,3 \bullet \alpha_z;$ **4)** $\alpha'_p + (\alpha_x + \alpha_{ex}) - 0,3 \bullet (\alpha_y + \alpha_{ey}) - 0,3 \bullet \alpha_z;$

5) $\alpha'_p + (\alpha_x + \alpha_{ex}) + 0.3 \bullet (\alpha_y - \alpha_{ey}) + 0.3 \bullet \alpha_z$; **6)** $\alpha'_p + (\alpha_x + \alpha_{ex}) - 0.3 \bullet (\alpha_y - \alpha_{ey}) + 0.3 \bullet \alpha_z$;

7) $\alpha'_p + (\alpha_x + \alpha_{ex}) + 0.3 \bullet (\alpha_y - \alpha_{ey}) - 0.3 \bullet \alpha_z$; **8)** $\alpha'_p + (\alpha_x + \alpha_{ex}) - 0.3 \bullet (\alpha_y - \alpha_{ey}) - 0.3 \bullet \alpha_z$;

9) $\alpha'_p + (\alpha_x - \alpha_{ex}) + 0.3 \bullet (\alpha_y + \alpha_{ey}) + 0.3 \bullet \alpha_z$; **10)** $\alpha'_p + (\alpha_x - \alpha_{ex}) - 0.3 \bullet (\alpha_y + \alpha_{ey}) + 0.3 \bullet \alpha_z$;

11) $\alpha'_p + (\alpha_x - \alpha_{ex}) + 0.3 \cdot (\alpha_y + \alpha_{ey}) - 0.3 \cdot \alpha_z$; **12)** $\alpha'_p + (\alpha_x - \alpha_{ex}) - 0.3 \cdot (\alpha_y + \alpha_{ey}) - 0.3 \cdot \alpha_z$;

13) $\alpha'_p + (\alpha_x - \alpha_{ex}) + 0, 3 \bullet (\alpha_y - \alpha_{ey}) + 0, 3 \bullet \alpha_z$; **14)** $\alpha'_p + (\alpha_x - \alpha_{ex}) - 0, 3 \bullet (\alpha_y - \alpha_{ey}) + 0, 3 \bullet \alpha_z$; **15)** $\alpha'_p + (\alpha_x - \alpha_{ex}) + 0, 3 \bullet (\alpha_y - \alpha_{ey}) - 0, 3 \bullet \alpha_z;$ **16)** $\alpha'_p + (\alpha_x - \alpha_{ex}) - 0, 3 \bullet (\alpha_y - \alpha_{ey}) - 0, 3 \bullet \alpha_z;$

17) $\alpha'_p + (\alpha_y + \alpha_{ey}) + 0,3 \bullet (\alpha_x + \alpha_{ex} + 0,3 \bullet \alpha_z; 18) \alpha'_p + (\alpha_y + \alpha_{ey}) - 0,3 \bullet (\alpha_x + \alpha_{ex}) + 0,3 \bullet \alpha_z;$ **19)** $\alpha'_p + (\alpha_y + \alpha_{ey}) + 0.3 \bullet (\alpha_x + \alpha_{ex}) - 0.3 \bullet \alpha_z$; **20)** $\alpha'_p + (\alpha_y + \alpha_{ey}) - 0.3 \bullet (\alpha_x + \alpha_{ex}) - 0.3 \bullet \alpha_z$;

21) $\alpha'_p + (\alpha_y + \alpha_{ey}) + 0,3 \bullet (\alpha_x - \alpha_{ex}) + 0,3 \bullet \alpha_z;$ **22)** $\alpha'_p + (\alpha_y + \alpha_{ey}) - 0,3 \bullet (\alpha_x - \alpha_{ex}) + 0,3 \bullet \alpha_z;$

23) $\alpha'_p + (\alpha_y + \alpha_{ey}) + 0, 3 \bullet (\alpha_x - \alpha_{ex}) - 0, 3 \bullet \alpha_z;$ **24)** $\alpha'_p + (\alpha_y + \alpha_{ey}) - 0, 3 \bullet (\alpha_x - \alpha_{ex}) - 0, 3 \bullet \alpha_z;$

25) $\alpha'_p + (\alpha_y - \alpha_{ey}) + 0, 3 \bullet (\alpha_x + \alpha_{ex}) + 0, 3 \bullet \alpha_z;$ **26)** $\alpha'_p + (\alpha_y - \alpha_{ey}) - 0, 3 \bullet (\alpha_x + \alpha_{ex}) + 0, 3 \bullet \alpha_z;$

27) $\alpha'_p + (\alpha_y - \alpha_{ey}) + 0.3 \cdot (\alpha_x + \alpha_{ex}) - 0.3 \cdot \alpha_z$; **28)** $\alpha'_p + (\alpha_y - \alpha_{ey}) - 0.3 \cdot (\alpha_x + \alpha_{ex}) - 0.3 \cdot \alpha_z$;

29) $\alpha'_p + (\alpha_y - \alpha_{ey}) + 0.3 \bullet (\alpha_x - \alpha_{ex}) + 0.3 \bullet \alpha_z$; **30)** $\alpha'_p + (\alpha_y - \alpha_{ey}) - 0.3 \bullet (\alpha_x - \alpha_{ex}) + 0.3 \bullet \alpha_z$;

31) $\alpha'_p + (\alpha_y - \alpha_{ey}) + 0,3 \bullet (\alpha_x - \alpha_{ex}) - 0,3 \bullet \alpha_z;$ **32)** $\alpha'_p + (\alpha_y - \alpha_{ey}) - 0,3 \bullet (\alpha_x - \alpha_{ex}) - 0,3 \bullet \alpha_z;$

33) $\alpha'_p + \alpha_z + 0, 3 \bullet (\alpha_x + \alpha_{ex}) + 0, 3 \bullet (\alpha_y + \alpha_{ey});$ **34)** $\alpha'_p + \alpha_z - 0, 3 \bullet (\alpha_x + \alpha_{ex}) + 0, 3 \bullet (\alpha_y + \alpha_{ey});$ **35)** $\alpha'_p + \alpha_z + 0,3 \bullet (\alpha_x + \alpha_{ex}) - 0,3 \bullet (\alpha_y + \alpha_{ey});$ **36)** $\alpha'_p + \alpha_z - 0,3 \bullet (\alpha_x + \alpha_{ex}) - 0,3 \bullet (\alpha_y + \alpha_{ey});$

37) $\alpha'_p + \alpha_z + 0,3 \bullet (\alpha_x + \alpha_{ex}) + 0,3 \bullet (\alpha_y - \alpha_{ey});$ **38)** $\alpha'_p + \alpha_z - 0,3 \bullet (\alpha_x + \alpha_{ex}) + 0,3 \bullet (\alpha_y - \alpha_{ey});$

39) $\alpha'_p + \alpha_z + 0,3 \bullet (\alpha_x + \alpha_{ex}) - 0,3 \bullet (\alpha_y - \alpha_{ey});$ **40)** $\alpha'_p + \alpha_z - 0,3 \bullet (\alpha_x + \alpha_{ex}) - 0,3 \bullet (\alpha_y - \alpha_{ey});$

41) $\alpha'_p + \alpha_z + 0,3 \bullet (\alpha_x - \alpha_{ex}) + 0,3 \bullet (\alpha_y + \alpha_{ey});$ **42)** $\alpha'_p + \alpha_z - 0,3 \bullet (\alpha_x - \alpha_{ex}) + 0,3 \bullet (\alpha_y + \alpha_{ey});$

43) $\alpha'_p + \alpha_z + 0.3 \bullet (\alpha_x - \alpha_{ex}) - 0.3 \bullet (\alpha_y + \alpha_{ey});$ **44)** $\alpha'_p + \alpha_z - 0.3 \bullet (\alpha_x - \alpha_{ex}) - 0.3 \bullet (\alpha_y + \alpha_{ey});$

45) $\alpha'_p + \alpha_z + 0, 3 \bullet (\alpha_x - \alpha_{ex}) + 0, 3 \bullet (\alpha_y - \alpha_{ey});$ **46)** $\alpha'_p + \alpha_z - 0, 3 \bullet (\alpha_x - \alpha_{ex}) + 0, 3 \bullet (\alpha_y - \alpha_{ey});$ **47)** $\alpha'_p + \alpha_z + 0, 3 \bullet (\alpha_x - \alpha_{ex}) - 0, 3 \bullet (\alpha_y - \alpha_{ey});$ **48)** $\alpha'_p + \alpha_z - 0, 3 \bullet (\alpha_x - \alpha_{ex}) - 0, 3 \bullet (\alpha_y - \alpha_{ey}).$

Nel caso di verifiche effettuate con sollecitazioni composte, per tenere conto del fatto che le sollecitazioni sismiche sono state ricavate come

CQC delle sollecitazioni derivanti dai modi di vibrazione, dette N, Mx, My, Tx e Ty le sollecitazioni dovute al sisma, per ognuna delle

presente documento è di proprietà della ANTEX GROUP srl.

Vietato la comunicazione a terzi o la riproduzione senza il permesso scritto della suddetta.

La società tutela i propri diritti a rigore di Legge.

combinazioni precedenti, sono state ricavate 32 combinazioni di carico permutando nel seguente modo i segni delle sollecitazioni derivanti dal

1) N, Mx, My, Tx e Ty; 2) N, Mx, -My, Tx e Ty; 3) N, -Mx, My, Tx e Ty; 4) N, -Mx, -My, Tx e Ty; 5) -N, Mx, My, Tx e Ty; 6) -N, Mx, -My, Tx e Ty; 7) -N, -Mx, My, Tx e Ty; 8) -N, -Mx, -My, Tx e Ty; 9) N, Mx, My, Tx e -Ty; 10) N, Mx, -My, Tx e -Ty; 11) N, -Mx, My, Tx e -Ty; 12) N, -Mx, -My, Tx e -Ty; 13) -N, Mx, My, Tx e -Ty; 14) -N, Mx, -My, Tx e -Ty; 15) -N, -Mx, My, Tx e -Ty; 16) -N, -Mx, -My, Tx e -Ty; Mx, -My, -Tx e -Ty.

SERVIZIO(SLE): Caratteristica(RARA)

SERVIZIO(SLE): Caratteristica(RARA)

			SERVILIO(SE	E): Caratteristica(ItAItA)
Id _{Comb}	CC 01 Carico Permanente	CC 02 Permanenti NON Strutturali	CC 03 Abitazioni	CC 04 Autorimessa <= 30kN
01	1,00	1,00	0,70	0,70
02	1,00	1,00	1,00	0,70
03	1,00	1,00	0,70	1,00

LEGENDA:

Numero identificativo della Combinazione di Carico. **Id**_{Comb} Identificativo della tipologia di carico nella relativa tabella.

CC 01= Carico Permanente

CC 02= Permanenti NON Strutturali

CC 03= Abitazioni

CC 04= Autorimessa <= 30kN

SERVIZIO(SLE): Frequente

			SE	RVIZIO(SLE): Frequente
	CC 01	CC 02	CC 03	CC 04
Id _{Comb}	Carico Permanente	Permanenti NON Strutturali	Abitazioni	Autorimessa <= 30kN
01	1,00	1,00	0,30	0,60
02	1,00	1,00	0,50	0,60
03	1,00	1,00	0,30	0,70

LEGENDA:

 $\textbf{Id}_{\mathsf{Comb}}$ Numero identificativo della Combinazione di Carico. Identificativo della tipologia di carico nella relativa tabella.

CC 01= Carico Permanente

CC 02= Permanenti NON Strutturali

CC 03= Abitazioni

CC 04= Autorimessa <= 30kN

SERVIZIO(SLE): Quasi permanente

			SERVIZIO((SLE): Quasi permanente
	CC 01	CC 02	CC 03	CC 04
Id _{Comb}	Carico Permanente	Permanenti NON Strutturali	Abitazioni	Autorimessa <= 30kN
01	1,00	1,00	0,30	0,60

LEGENDA:

IdComb Numero identificativo della Combinazione di Carico. CC Identificativo della tipologia di carico nella relativa tabella.

CC 01= Carico Permanente

CC 02= Permanenti NON Strutturali

CC 03= Abitazioni

CC 04= Autorimessa <= 30kN

DATI GENERALI ANALISI SISMICA

presente documento è di proprietà della ANTEX GROUP srl. Vietato la comunicazione a terzi o la riproduzione senza il permesso scritto della suddetta. La società tutela i propri diritti a rigore di Legge.

									Dati	generali ana	alisi sismica
Ang	NV	CD	MP	Dir	TS	EcA	Ir _{Tmp}	C.S.T.	RP	RH	ξ
[°]											[%]
0		D	63	X	[PI]	N	N	_	NO	СТ	
U		ь	Ca	Υ	[PI]	IN	IN	C	INO	31	3

LEGENDA:

Direzione di una componente dell'azione sismica rispetto all'asse X (sistema di riferimento globale); la seconda componente dell'azione sismica e' assunta con direzione ruotata di 90 gradi rispetto alla prima.

ΝV Nel caso di analisi dinamica, indica il numero di modi di vibrazione considerati.

Classe di duttilità: [A] = Alta - [B] = Media - [ND] = Non Dissipativa - [-] = Nessuna.

Tipo di struttura sismo-resistente prevalente: [ca] = calcestruzzo armato - [caOld] = calcestruzzo armato esistente - [muOld] = muratura esistente - [muNew] = ΜP muratura nuova - [muArm] = muratura armata - [ac] = acciaio.

Dir Direzione del sisma.

Tipologia della struttura:

Cemento armato: [T 1C] = Telai ad una sola campata - [T+C] = Telai a più campate - [P] = Pareti accoppiate o miste equivalenti a pareti- [2P NC] = Due pareti per direzione non accoppiate - [P NC] = Pareti non accoppiate - [DT] = Deformabili torsionalmente - [PI] = Pendolo inverso - [PM] = Pendolo inverso intelaiate

Muratura: [P] = un solo piano - [PP] = più di un piano - [C-P/MP] = muratura in pietra e/o mattoni pieni - [C-BAS] = muratura in blocchi artificiali con percentuale di foratura > 15%;

Acciaio: [T 1C] = Telai ad una sola campata - [T+C] = Telai a più campate - [CT] = controventi concentrici diagonale tesa - [CV] = controventi concentrici a V -[M] = mensola o pendolo inverso - [TT] = telaio con tamponature.

Eccentricità accidentale: [S] = considerata come condizione di carico statica aggiuntiva - [N] = Considerata come incremento delle sollecitazioni. **EcA**

Per piani con distribuzione dei tamponamenti in pianta fortemente irregolare, l'eccentricità accidentale è stata incrementata di un fattore pari a 2: [SI] = Ir_{Tmp} Distribuzione tamponamenti irregolare fortemente - [NO] = Distribuzione tamponamenti regolare.

Categoria di sottosuolo: [A] = Ammassi rocciosi affioranti o terreni molto rigidi - [B] = Rocce tenere e depositi di terreni a grana grossa molto addensati o terreni C.S.T. a grana fina molto consistenti - [C] = Depositi di terreni a grana grossa mediamente addensati o terreni a grana fina mediamente consistenti - [D] = Depositi di terreni a grana grossa scarsamente addensati o di terreni a grana fina scarsamente consistenti - [E] = Terreni con caratteristiche e valori di velocità equivalente riconducibili a quelle definite per le categorie C o D.

RP Regolarità in pianta: [SI] = Struttura regolare - [NO] = Struttura non regolare.

Regolarità in altezza: [SI] = Struttura regolare - [NO] = Struttura non regolare. RH

ξ NOTE Coefficiente viscoso equivalente.

[-] = Parametro non significativo per il tipo di calcolo effettuato.

DATI GENERALI ANALISI SISMICA - FATTORI DI COMPORTAMENTO

					Fattori	di comportamento
Dir	q'	q	q 0	k _R	αu/α1	Kw
X	-	1,500	1,50	1,00	1,00	-
Υ	-	1,500	1,50	1,00	1,00	-
Z	-	1,500	-	-	-	-

LEGENDA:

- Fattore di riduzione dello spettro di risposta sismico allo SLU ridotto (Fattore di comportamento ridotto relazione C7.3.1 circolare NTC)
- Fattore di riduzione dello spettro di risposta sismico allo SLU (Fattore di comportamento).
- Valore di base (comprensivo di Kw). q٥

Fattore riduttivo funzione della regolarità in altezza: pari ad 1 per costruzioni regolari in altezza, 0,8 per costruzioni non regolari in altezza, e 0,75 per costruzioni in muratura esistenti non regolari in altezza (§ C8.5.5.1).

Rapporto di sovraresistenza. **α**u/**α**1

Fattore di riduzione di qo.

Stato Limite T _r	-	T - /-	Amplif. Stratigrafica		E.	T*_	-	-	To	
Stato Limite	te I _r a _g / y	a _g /g	S s	Cc	Γ0	I C	IB	IC	I D	
	[t]					[s]	[s]	[s]	[s]	
SLO	30	0,0289	1,500	1,792	2,609	0,198	0,118	0,355	1,716	
SLD	35	0,0305	1,500	1,780	2,621	0,202	0,120	0,360	1,722	
SLV	332	0,0592	1,500	1,595	2,759	0,281	0,150	0,449	1,837	
SLC	682	0,0707	1,500	1,572	2,799	0,294	0,154	0,463	1,883	

LEGENDA:

Periodo di ritorno dell'azione sismica. [t] = anni. T_r

Coefficiente di accelerazione al suolo. a_g/g

 $Coefficienti\ di\ Amplificazione\ Stratigrafica\ allo\ SLO/SLD/SLV/SLC.$

Cc Coefficienti di Amplificazione di Tc allo SLO/SLD/SLV/SLC.

Valore massimo del fattore di amplificazione dello spettro in accelerazione orizzontale.

 T^*c Periodo di inizio del tratto a velocità costante dello spettro in accelerazione orizzontale.

ΤB Periodo di inizio del tratto accelerazione costante dello spettro di progetto.

 T_{C} Periodo di inizio del tratto a velocità costante dello spettro di progetto.

presente documento è di proprietà della ANTEX GROUP srl.

Vietato la comunicazione a terzi o la riproduzione senza il permesso scritto della suddetta.

La società tutela i propri diritti a rigore di Legge.

Stato Limite	Tr	a _g /g	Amplif. Stratigrafica		E	т*_	-	т.	-
			Ss	Cc	Γ0	I C	I B	1C	I D
	[t]					[s]	[s]	[s]	[s]

Periodo di inizio del tratto a spostamento costante dello spettro di progetto. T_D

CI Ed	V _N	V_R	Lat.	Long.	Q g	СТор	S _T
	[t]	[t]	[°ssdc]	[°ssdc]	[m]		
1	50	35	42.747574	11.114240	8	T1	1,00

LEGENDA:

CI Ed Classe dell'edificio

Latitudine geografica del sito. Lat. Longitudine geografica del sito. Long. Q_g CTop Altitudine geografica del sito. Categoria topografica (Vedi NOTE). Coefficiente di amplificazione topografica.

NOTE [-] = Parametro non significativo per il tipo di calcolo effettuato.

Categoria topografica.

T1: Superficie pianeggiante, pendii e rilievi isolati con inclinazione media i <= 15°.

T2: Pendii con inclinazione media $i > 15^{\circ}$.

T3: Rilievi con larghezza in cresta molto minore che alla base e inclinazione media $15^{\circ} <= i <= 30^{\circ}$.

T4: Rilievi con larghezza in cresta molto minore che alla base e inclinazione media $i > 30^{\circ}$.

PRINCIPALI ELEMENTI ANALISI SISMICA

Dir	M _{Str}	M _{SLU}	M _{Ecc,SLU}	M _{SLD}	M _{Ecc,SLD}	%T.M _{Ecc}	$\Sigma V_{Ed,SLU}$
	[N·s²/m]	[N·s²/m]	[N·s²/m]	[N·s²/m]	[N·s²/m]	[%]	[N]
X	3.146	501	0	501	0	0,00	509
Υ	3.146	501	0	501	0	0,00	509
Z	3.146	0	0	0	0	0.00	0

LEGENDA:

Dir Direzione del sisma.

Mstr Massa complessiva della struttura. M_{SLU} Massa eccitabile allo SLU. $M_{\text{Ecc,SLU}}$ Massa Eccitata dal sisma allo SLU.

 M_{SLD} Massa eccitabile della struttura allo SLD, nelle direzioni X, Y, Z.

Massa Eccitata dal sisma allo SLD. M_{Ecc,SLD}

Percentuale Totale di Masse Eccitate dal sisma. %T.M_{Ecc} Tagliante totale, alla base, per sisma allo SLU. $\Sigma V_{\text{Ed,SLU}}$

LIVELLI O PIANI

												Livei	lı o pıanı
Id _{Lv} Descrizione	7.	u.	•	DD.	Dal	Massa del piano			Dir	G.	G	G	R _{SLU}
	Z-Lv	ΠLV	Q ex,lv	PK	KuTmp	M _{L,Str}	M _{L,SLU}	M _{L,SLD}	DII	Gst	GSLU	GSLD	KSLU
	[m]	[m]	[m]			[N·s²/m]	[N·s²/m]	[N·s²/m]		[m]	[m]	[m]	[m]
Diano Torra	0.00	0.50	0.50	NO	NO	225	225	225	Χ	44,10	44,10	44,10	44,04
Platio Terra	0,00	0,50	0,50	INO	INO	333	333	333	Υ	11,11	11,11	11,11	11,09
Fondaziono	0.00		0.00	NO	NO	2 000	2 507	2 507	Χ	44,04	44,04	44,04	-
rondazione	0,00		0,00	INO	INO	2.000	2.597	2.597	Υ	11,09	11,09	11,09	-
	Descrizione Piano Terra Fondazione	[m] Piano Terra 0,00	[m] [m] Piano Terra 0,00 0,50	[m] [m] [m] Piano Terra 0,00 0,50 0,50	[m] [m] [m] Piano Terra 0,00 0,50 0,50 NO	[m] [m] [m] Piano Terra 0,00 0,50 0,50 NO NO	Descrizione	Descrizione	Descrizione	Descrizione	Milestration Mile	ML,Str ML,SLU M	Descrizione Z _{Lv} H _{Lv} Q _{ex,lv} PR Rd _{Tmp} Massa del piano ML,str ML,str

LEGENDA:

Numero identificativo del livello o piano. Idiv

Quota di calpestio del livello o piano, relativa al sistema di riferimento globale X, Y, Z. \mathbf{Z}_{Lv}

 H_{Lv} Altezza del livello o piano.

Q_{ex,lv} Quota dell'estradosso dell'impalcato del livello o piano.

Indica se l'impalcato (orizzontale) è considerato rigido nel calcolo: [SI] = Piano Rigido - [NO] = Piano non Rigido.

In alternativa vedere tabella "Solai e Balconi" in quanto il comportamento rigido potrebbe essere stato assegnato ai singoli solai del livello. PR

Per i piani con riduzione dei tamponamenti, sono state incrementate le azioni di calcolo per gli elementi verticali (pilastri e pareti) di un fattore 1,4: [SI] = Piano RdTmp

con riduzione dei tamponamenti - [NO] = Piano senza riduzione dei tamponamenti.

Massa del piano valutata in condizioni statiche. $M_{L,Str}$

M_{L,SLU} Massa del piano valutata allo SLU. $M_{L,SLD}$ Massa del piano valutata allo SLD.

 G_{st} Coordinate del baricentro delle masse, valutate in condizioni statiche.

GSLU Coordinate del baricentro delle masse, valutate per SLU. GSLD Coordinate del baricentro delle masse, valutate per SLD.

presente documento è di proprietà della ANTEX GROUP srl. Vietato la comunicazione a terzi o la riproduzione senza il permesso scritto della suddetta.

La società tutela i propri diritti a rigore di Legge.

.

													Livel	li o piani
Td	Doceriziono	7	ш	0	PR	Dd	Mas	ssa del pi	ano	Dir	c	G	C D	
Id _{Lv}	Descrizione	Z _{Lv}	ПLV	Q ex,lv	PK	Rd _{Tmp}	M _{L,Str}	M _{L,SLU}	M _{L,SLD}	DIF	G _{st}	G _{SLU}	G _{SLD}	R _{SLU}
		[m]	[m]	[m]			[N·s²/m]	[N·s²/m]	[N·s²/m]		[m]	[m]	[m]	[m]

R_{SLU} Coordinate del baricentro delle rigidezze, valutate per SLU.

PARETI

										Paret		
Q _m			H _m	6			Mtrl	AA	Clc Fnd	Stz		
Iniz.	Fin.	Iniz.	Fin.	Sp	Lm	Am	Muli	AA	CIC FIIU	312		
[m]	[m]	[m]	[m]	[cm]	[m]	[m²]						
Piano Terra Parete P1-P2												
Parete P1-P2												
0,00	0,00	0,50	0,50	0,60	0,80	0,40	001	PCA	NO	Р		
					SHELL							
[00006-00018-	00027]	[00006-00027-0	0017]	[00030-00029-0002	201 [000	07-00019-000281	[00030-0	0020-000051	[00017-0003	80-000051		
				[00018-00028-000		19-00029-00032]	-	0008-000291	[00032-0002			
[00031-00032-	000301	[00031-00030-0	0017	[00027-00031-000	17] [000]	28-00032-00031	[00028-0	0019-000321	00027-0002	8-00031		

LEGENDA:

Qm Quota dell'elemento nel punto iniziale e finale, valutata, rispetto al piano di appartenenza, negli estremi inferiori della parete.

H_m Altezza dell'elemento nel punto iniziale e finale, valutata rispetto alla base inferiore.

 Sp
 Spessore dell'elemento.

 Lm
 Lunghezza dell'elemento.

 Am
 Area dell'elemento.

 Mtrl
 Identificativo del materiale.

Mtri Identificativo dei materiale.

AA Identificativo dell'aggressività dell'ambiente: [PCA] = "Ordinario"; [MDA] = "Aggressivo"; [MLA] = "Molto aggressivo".

Clc Fnd [Si] = elemento progettato attraverso una modalità di rispetto della Gerarchia delle Resistenze per le Fondazioni. [No] = elemento progettato con le sollecitazioni ottenute dall'analisi (senza nessuna modalità di rispetto della Gerarchia delle Resistenze per le Fondazioni).

Stz Tipo di situazione: [F] = di Fatto (Esistente); [P] = di Progetto (Nuovo).

Shell Shell in cui risulta suddiviso l'elemento.

PLATEE

								Platee					
Lv	Nid	Sp	A EI	Mtrl	Id _{Ter}	Clc Fnd	C _{rid,v}	Crid,h					
		[m]	[m²]										
Fondazione	1	0,30	2,07	001	T001	SI	0,338	1,000					
	SHELL												
[00012-00002-0002	2] [00023-00	0001-00015]	[00012-00026-0001	1] [00012-0	0022-00026]	[00014-00001-000	23] [00011	-00026-00021]					
[00024-00016-0000	4] [00002-00	013-00022	[00010-00005-0000	91 [00025-0	0023-00015]	00025-00015-000	16] [00025	-00016-00024					
[00009-00024-0000	4] [00021-00	0026-00005]	[00021-00005-0001	0-20000	0023-00025	[00006-00014-000	23] [00022	-00006-00026]					
[00017-00006-0002	5] [00005-00	0024-000091	[00005-00025-0002	4] [00005-0	0017-00025]	00003-00021-000	10] [00013	-00014-000067					
[00003-00011-0002	1] [00026-00	0006-00017]	[00026-00017-0000	5] [00022-0	0013-00006]		- -						

LEGENDA:

Lv Identificativo del livello, nella relativa tabella.

Numero identificativo della platea.

SpSpessore elemento.AEISuperficie elemento.MtrlIdentificativo del materiale.

Identificativo del terreno, nella relativa tabella.

Clc Fnd [Si] = elemento progettato attraverso una modalità di rispetto della Gerarchia delle Resistenze per le Fondazioni. [No] = elemento progettato con le sollecitazioni

ottenute dall'analisi (senza nessuna modalità di rispetto della Gerarchia delle Resistenze per le Fondazioni).

 $\begin{array}{ll} \textbf{C}_{\text{rid,v}} & \text{Coefficiente di riduzione della costante di sottofondo verticale} \\ \textbf{C}_{\text{rid,h}} & \text{Coefficiente di riduzione della costante di sottofondo orizzontale} \end{array}$

Shell Shell in cui risulta suddiviso l'elemento.

CARICHI SULLE PARETI

														Carichi s	ulle pareti
TC	Shell	С	CC	SR	Br	Disi	Q _{X/1,i}	Q Y/2,i	Q z/3,i	$M_{T,i}$	Disf	Q _{X/1,f}	Q Y/2,f	Q z/3,f	$M_{T,f}$
						[m]	[N/m;N/m ²]	[N/m;N/m ²]	[N/m;N/m ²]	[N·m/m;N]	[m]	[N/m;N/m ²]	[N/m;N/m ²]	[N/m;N/m ²]	[N·m/m;N]
Piano	Terra			Paret	e P1 -	P2	Parete P1	-P2					Peso prop	rio	-15.000

LEGENDA:

TC Descrizione del tipo di carico: [L] = Lineare - [C] = Concentrato - [S] = Superficiale - [T] = Termico.

Descrizione del carico:

CC Identificativo della tipologia di carico nella relativa tabella.

SR Identificativo del sistema di riferimento considerato: [G] = Sistema di riferimento Globale X, Y, Z - [L] = Sistema di riferimento Locale 1, 2, 3.

Il presente documento è di proprietà della ANTEX GROUP srl.

È Vietato la comunicazione a terzi o la riproduzione senza il permesso scritto della suddetta.

La società tutela i propri diritti a rigore di Legge.

														Carichi s	ulle pareti
TC	Shell	С	CC	SR	Br	Disi	Q x/1,i	Q Y/2,i	Q z/3,i	$M_{T,i}$	Disf	Q x/1,f	Q Y/2,f	Q z/3,f	M _{T,f}
						[m]	[N/m;N/m ²]	[N/m;N/m ²]	[N/m;N/m ²]	[N·m/m;N]	[m]	[N/m;N/m ²]	[N/m;N/m ²]	[N/m;N/m ²]	[N·m/m;N]
Br	Se la colonna "TC	" riporta	il valore	e "Linea	are", in	idica la	posizione de	el carico dist	ribuito: [Sup]] = carico ap	plicato s	ul bordo sup	periore - [In	f] = Carico a	pplicato sul
	bordo inferiore.														
Disi	Distanza del punt	o "i" dall'	estremo	o inizial	e dell'e	element	o. Il punto "	i" indica il p	unto iniziale (del tratto inte	eressato	dal carico d	istribuito sul	bordo.	
$M_{T,i}$	Valore nel punto	"i", del ve	ettore n	noment	o (torc	ente) d	listribuito, se	empre riferit	o all'asse 1 (a	asse della pa	rete) del	sistema di	riferimento l	ocale 1, 2, 3	B, quale che
	sia il sistema di ri	ferimento	indicat	to nella	colonr	na "S.R'	' .								
Disf	Distanza del punt	o "f" dall'	estrem	o finale	dell'el	emento	. Il punto "f	" indica il pu	into finale de	l tratto intere	essato da	al carico dist	ribuito sul b	ordo.	
$M_{T,f}$	Valore nel punto '	"f", del ve	ettore n	noment	o (toro	ente) d	listribuito, se	empre riferit	o all'asse 1 (a	asse della pa	rete) del	sistema di	riferimento	locale 1, 2, 3	3, quale che
	sia il sistema di ri	ferimento	indicat	to nella	colonr	na "S.R'	' .	-	•	•	-				
$\mathbf{Q}_{\mathbf{X}/1,\mathbf{i}}$	Valore (nel punto	iniziale d	ella par	ete, "i"	') della	forza d	listribuita rife	erita agli ass	i del sistema	di riferiment	o indicat	o nella colo	nna "S.R".		
$\mathbf{Q}_{Y/2,i}$			-		-			_							
Q z/3,i															
Qx/1,f,	Valore (nel punto	finale de	lla pare	te, "f")	della f	orza di	stribuita rife	rita agli assi	del sistema d	di riferimento	indicato	nella colon	na "S.R".		
Q _{Y/2,f} ,	` .		·					-							
Qz/3,f															
ΔT	Differenza di temp	peratura 1	fra le fa	icce del	ll'eleme	ento sh	ell.								

CARICHI SULLE PLATEE

							Carichi sulle platee
TC	Shell	С	CC	SR	Qx	Q _Y	Qz
					[N/m²]	[N/m²]	[N/m²]
Fondazio	one Platea 1			Peso propr	io	-7.500	
S	-	CR001	002	G	0	0	-2.000
S	-	CR002	004	G	0	0	-2.500

LEGENDA:

TC Descrizione del tipo di carico: [L] = Lineare - [C] = Concentrato - [S] = Superficiale - [T] = Termico.

Descrizione del carico:

CR001= PLATEA: Platea (sovraccarico permanente) CR002= PLATEA: Platea (sovraccarico accidentale)

CC

Identificativo della tipologia di carico nella relativa tabella.

Identificativo del sistema di riferimento considerato: [G] = Sistema di riferimento Globale X, Y, Z - [L] = Sistema di riferimento Locale 1, 2, 3. SR

Valore della forza distribuita superficiale uniforme riferita agli assi del sistema di riferimento indicato nella colonna "S.R".

Qx, Qγ, Qz ΔT Differenza di temperatura fra le facce dell'elemento shell.

NODI - SPOSTAMENTI PER CONDIZIONI DI CARICO NON SISMICHE

					Nodi - Spost	amenti per condizioni di d	carico non sismiche
Nodo	CC	Sx	Sy	Sz	Θx	Θ _Y	Θz
		[cm]	[cm]	[cm]	[rad]	[rad]	[rad]
00001	001	0,0000	0,0000	-0,0101	1,2762 E-06	3,0485 E-06	2,0836 E-15
	002	0,0000	0,0000	-0,0020	1,6298 E-07	2,0592 E-07	-1,4719 E-15
	003	0,0000	0,0000	0,0010	-2,4 E-07	-8,2097 E-07	-2,5054 E-15
	004	0,0000	0,0000	-0,0025	2,0373 E-07	2,574 E-07	-1,8399 E-15
00002	001	0,0000	0,0000	-0,0101	1,2755 E-06	-3,1394 E-06	2,0637 E-15
	002	0,0000	0,0000	-0,0020	1,6305 E-07	-2,06 E-07	-1,4579 E-15
	003	0,0000	0,0000	0,0010	-2,3968 E-07	8,5366 E-07	-2,4814 E-15
	004	0,0000	0,0000	-0,0025	2,0381 E-07	-2,575 E-07	-1,8224 E-15
00003	001	0,0000	0,0000	-0,0101	-1,2751 E-06	-3,1394 E-06	-2,108 E-15
	002	0,0000	0,0000	-0,0020	-1,6302 E-07	-2,06 E-07	1,4799 E-15
	003	0,0000	0,0000	0,0010	2,3926 E-07	8,5361 E-07	2,5385 E-15
	004	0,0000	0,0000	-0,0025	-2,0377 E-07	-2,575 E-07	1,8499 E-15
00004	001	0,0000	0,0000	-0,0101	-1,2757 E-06	3,0485 E-06	-2,1278 E-15
	002	0,0000	0,0000	-0,0020	-1,6295 E-07	2,0592 E-07	1,4938 E-15
	003	0,0000	0,0000	0,0010	2,3957 E-07	-8,2093 E-07	2,5624 E-15
	004	0,0000	0,0000	-0,0025	-2,0369 E-07	2,5739 E-07	1,8673 E-15
00005	001	0,0000	0,0000	-0,0103	-1,1425 E-06	-4,3614 E-08	-1,2066 E-12
	002	0,0000	0,0000	-0,0020	-6,6085 E-08	2,4268 E-10	8,4753 E-13
	003	0,0000	0,0000	0,0010	3,3681 E-07	1,6061 E-08	1,4528 E-12
	004	0,0000	0,0000	-0,0025	-8,2607 E-08	3,0335 E-10	1,0594 E-12
00006	001	0,0000	0,0000	-0,0103	1,144 E-06	-4,3614 E-08	1,2019 E-12
	002	0,0000	0,0000	-0,0020	6,6192 E-08	2,4264 E-10	-8,4855 E-13
	003	0,0000	0,0000	0,0010	-3,3835 E-07	1,6061 E-08	-1,4454 E-12
	004	0,0000	0,0000	-0,0025	8,274 E-08	3,033 E-10	-1,0607 E-12
00007	001	0,0000	0,0000	-0,0103	-2,9889 E-07	-4,3599 E-08	5,0375 E-12
	002	0,0000	0,0000	-0,0020	1,4938 E-09	2,3253 E-10	-3,5664 E-12
	003	0,0000	0,0000	0,0011	1,3909 E-06	1,6043 E-08	-6,0541 E-12
	004	0,0000	0,0000	-0,0025	1,8673 E-09	2,9067 E-10	-4,458 E-12

Il presente documento è di proprietà della ANTEX GROUP srl. È Vietato la comunicazione a terzi o la riproduzione senza il permesso scritto della suddetta. La società tutela i propri diritti a rigore di Legge.

REV: 1

19/07/2021

Pag. 37

					Nodi - Sposta	menti per condizioni di c	arico non sismiche
Nodo	CC	Sx	S _Y	Sz	Θχ	Θ _Y	Θz
00008	001	[cm]	[cm]	[cm] -0,0103	[rad] 2,9373 E-07	[rad] -4,3599 E-08	[rad] -5,1132 E-12
00000	001	0,000	0,0000	-0,0103	-1,9006 E-09	2,3239 E-10	3,5821 E-12
	002	0,000	0,0000	0,0011	-1,4071 E-06	1,6043 E-08	6,1605 E-12
	004	0,000	0,0000	-0,0025	-2,3758 E-09	2,9049 E-10	4,4776 E-12
00009	001	0,0000	0,0000	-0,0102	-1,2383 E-06	1,8214 E-06	1,0202 E-13
	002	0,0000	0,000	-0,0020	-1,2094 E-07	8,5885 E-08	-7,1664 E-14
	003	0,000	0,000	0,0010	2,8391 E-07	-5,4356 E-07	-1,2284 E-13
	004	0,0000	0,0000	-0,0025	-1,5118 E-07	1,0736 E-07	-8,958 E-14
00010	001	0,0000	0,0000	-0,0102	-1,2378 E-06	-1,9137 E-06	1,0252 E-13
	002	0,0000	0,0000	-0,0020	-1,21 E-07	-8,5932 E-08	-7,2018 E-14
	003	0,0000	0,0000	0,0010	2,8364 E-07	5,7681 E-07	-1,2345 E-13
	004	0,0000	0,0000	-0,0025	-1,5125 E-07	-1,0741 E-07	-9,0022 E-14
00011	001	0,0000	0,0000	-0,0102	-5,534 E-07	-3,1009 E-06	-1,2046 E-15
	002	0,0000	0,0000	-0,0020	-6,0947 E-08	-1,6801 E-07	8,5853 E-16
	003 004	0,0000	0,0000	0,0010 -0,0025	1,1406 E-07	8,911 E-07	1,4454 E-15
00012		0,0000	0,0000	-0,0025	-7,6184 E-08	-2,1001 E-07	1,0732 E-15
00012	001 002	0,0000	0,0000	-0,0102	5,535 E-07	-3,1009 E-06	1,7279 E-15
	002	0,0000 0,0000	0,0000	0,0010	6,0954 E-08 -1,1416 E-07	-1,6801 E-07 8,9119 E-07	-1,2065 E-15 -2,0833 E-15
	003	0,0000	0,0000	-0,0025	7,6192 E-08	-2,1002 E-07	-2,0633 E-13 -1,5082 E-15
00013	001	0,000	0,0000	-0,0102	1,2384 E-06	-1,9138 E-06	-1,0214 E-13
00013	001	0,000	0,0000	-0,0102	1,2104 E-07	-8,5935 E-08	7,2115 E-14
	002	0,000	0,0000	0,0010	-2,8425 E-07	5,7687 E-07	1,2284 E-13
	003	0,000	0,0000	-0,0025	1,513 E-07	-1,0742 E-07	9,0143 E-14
00014	001	0,0000	0,0000	-0,0102	1,2389 E-06	1,8214 E-06	-1,0164 E-13
00011	002	0,000	0,0000	-0,0020	1,2098 E-07	8,5888 E-08	7,1761 E-14
	003	0,000	0,0000	0,0010	-2,8452 E-07	-5,4362 E-07	1,2224 E-13
	004	0,0000	0,0000	-0,0025	1,5123 E-07	1,0736 E-07	8,9701 E-1
00015	001	0,0000	0,0000	-0,0102	5,5386 E-07	3,0098 E-06	1,7259 E-1
00010	002	0,0000	0,0000	-0,0020	6,094 E-08	1,6791 E-07	-1,2052 E-1
	003	0,0000	0,0000	0,0010	-1,143 E-07	-8,5846 E-07	-2,081 E-15
	004	0,000	0,0000	-0,0025	7,6176 E-08	2,0989 E-07	-1,5066 E-15
00016	001	0,0000	0,0000	-0,0102	-5,5377 E-07	3,0098 E-06	-1,2062 E-15
	002	0,000	0,000	-0,0020	-6,0934 E-08	1,6791 E-07	8,5961 E-16
	003	0,000	0,0000	0,0010	1,1419 E-07	-8,5838 E-07	1,4473 E-15
	004	0,0000	0,0000	-0,0025	-7,6167 E-08	2,0988 E-07	1,0745 E-1
00017	001	0,0000	0,0000	-0,0103	-1,1981 E-09	-4,3588 E-08	7,5409 E-1
	002	0,0000	0,0000	-0,0020	-1,237 E-10	2,2473 E-10	-5,1614 E-1
	003	0,0000	0,0000	0,0011	2,3483 E-09	1,603 E-08	-9,1344 E-1
	004	0,0000	0,0000	-0,0025	-1,5462 E-10	2,8092 E-10	-6,4517 E-1
00018	001	0,0000	0,0000	-0,0103	-1,4075 E-07	-4,36 E-08	6,7504 E-12
	002	0,0000	0,0000	-0,0020	-5,4282 E-09	2,332 E-10	-4,7704 E-12
	003	0,0000	0,0000	0,0011	1,2471 E-07	1,6045 E-08	-8,1163 E-12
	004	0,0000	0,0000	-0,0025	-6,7852 E-09	2,915 E-10	-5,9629 E-12
00019	001	0,0000	0,0000	-0,0103	-6,9561 E-09	-4,36 E-08	-7,898 E-14
	002	0,0000	0,0000	-0,0020	-1,1325 E-11	2,3318 E-10	3,5647 E-1
	003 004	0,0000	0,0000	0,0011	4,2189 E-09	1,6045 E-08	1,0309 E-13
00000		0,0000	0,0000	-0,0025	-1,4156 E-11	2,9147 E-10	4,4559 E-14
00020	001	0,0000	0,0000	-0,0103	1,3181 E-07	-4,36 E-08	-6,9235 E-12
	002 003	0,0000 0,0000	0,0000 0,0000	-0,0020 0,0011	5,1729 E-09	2,3325 E-10 1,6045 E-08	4,8595 E-13 8,3378 E-13
	003	0,0000	0,0000	-0,0025	-1,2004 E-07 6,4662 E-09	2,9156 E-10	6,0744 E-1
00021	004	0,0000	0,0000	-0,0023	-9.6915 E-07	-2,7766 E-06	2,8683 E-1
00021	001	0,000	0,0000	-0,0102	-9,6981 E-08	-2,7700 E-00 -1,3574 E-07	-2,0142 E-1
	002	0,000	0,0000	0,0010	2,1233 E-07	8,2354 E-07	-3,4539 E-1
	003	0,000	0,0000	-0,0025	-1,2123 E-07	-1,6968 E-07	-2,5178 E-1
00022	001	0,0000	0,0000	-0,0102	9,6934 E-07	-2,7768 E-06	-2,8319 E-1
	001	0,000	0,0000	-0,0102	9,6994 E-08	-2,7708 E-00 -1,3576 E-07	2 E-1
	002	0,000	0,0000	0,0010	-2,125 E-07	8,2383 E-07	3,4054 E-1
	004	0,000	0,0000	-0,0025	1,2124 E-07	-1,697 E-07	2,5 E-1
00023	001	0,0000	0,0000	-0,0102	9,6992 E-07	2,6854 E-06	-2,8307 E-1
	002	0,0000	0,0000	-0,0020	9,6931 E-08	1,3566 E-07	1,9991 E-1
	003	0,0000	0,0000	0,0010	-2,1278 E-07	-7,9103 E-07	3,4039 E-1
	004	0,0000	0,0000	-0,0025	1,2116 E-07	1,6957 E-07	2,4989 E-1
00024	001	0,0000	0,0000	-0,0102	-9,6973 E-07	2,6852 E-06	2,867 E-14
	002	0,0000	0,0000	-0,0020	-9,6918 E-08	1,3564 E-07	-2,0133 E-14
			0,0000	0,0010			

19/07/2021

REV: 1

Pag. 38

arico non sismich	menti per condizioni di c	Nodi - Sposta					
Θz	Θγ	Θx	Sz	Sy	Sx	CC	Nodo
[rad]	[rad]	[rad]	[cm]	[cm]	[cm]		
-2,5166 E-1	1,6955 E-07	-1,2115 E-07	-0,0025	0,0000	0,0000	004	
-3,7066 E-1	2,5743 E-06	-2,8683 E-10	-0,0103	0,0000	0,0000	001	00025
2,4306 E-1	9,511 E-08	-1,959 E-11	-0,0020	0,0000	0,0000	002	
4,5328 E-1	-7,863 E-07	2,5026 E-10	0,0010	0,0000	0,0000	003	
3,0382 E-1	1,1889 E-07	-2,4488 E-11	-0,0025	0,0000	0,0000	004	
-3,7314 E-1	-2,6666 E-06	-2,8627 E-10	-0,0103	0,0000	0,0000	001	00026
2,4473 E-1	-9,5244 E-08	-1,9514 E-11	-0,0020	0,0000	0,0000	002	
4,563 E-1	8,1944 E-07	2,4953 E-10	0,0010	0,0000	0,0000	003	
3,0591 E-1	-1,1905 E-07	-2,4392 E-11	-0,0025	0,0000	0,0000	004	
3,6132 E-1	-4,36 E-08	1,0089 E-07	-0,0103	0,0000	0,0000	001	00027
-2,5555 E-1	2,3325 E-10	4,7296 E-09	-0,0020	0,0000	0,0000	002	
-4,3434 E-1	1,6045 E-08	2,9476 E-08	0,0011	0,0000	0,0000	003	
-3,1944 E-1	2,9156 E-10	5,912 E-09	-0,0025	0,0000	0,0000	004	
4,7032 E-1	-4,36 E-08	-6,1896 E-08	-0,0103	0,0000	0,0000	001	00028
-3,3279 E-1	2,3314 E-10	-1,5458 E-09	-0,0020	0,0000	0,0000	002	
-5,6531 E-1	1,6044 E-08	2,3737 E-07	0,0011	0,0000	0,0000	003	
-4,1599 E-1	2,9142 E-10	-1,9322 E-09	-0,0025	0,0000	0,0000	004	
-4,6312 E-1	-4,36 E-08	4,4423 E-08	-0,0103	0,0000	0,0000	001	00029
3,2455 E-1	2,3292 E-10	8,8596 E-10	-0,0020	0,0000	0,0000	002	
5,5793 E-1	1,6044 E-08	-2,6411 E-07	0,0011	0,0000	0,0000	003	
4,0569 E-1	2,9115 E-10	1,1075 E-09	-0,0025	0,0000	0,0000	004	
-3,9596 E-1	-4,3601 E-08	-7,3332 E-08	-0,0103	0,0000	0,0000	001	00030
2,7777 E-1	2,3342 E-10	-3,4921 E-09	-0,0020	0,0000	0,0000	002	
4,7691 E-1	1,6045 E-08	-3,7375 E-08	0,0011	0,0000	0,0000	003	
3,4722 E-1	2,9178 E-10	-4,3651 E-09	-0,0025	0,0000	0,0000	004	
-1,8508 E-1	-4,3598 E-08	-9.0899 E-10	-0,0103	0,0000	0,0000	001	00031
-7,9574 E-1	2,3198 E-10	-1,7478 E-10	-0,0020	0,0000	0,0000	002	
5,9623 E-1	1,6042 E-08	3,0898 E-09	0,0011	0,0000	0,0000	003	
-9,9468 E-1	2,8998 E-10	-2,1848 E-10	-0,0025	0,0000	0,0000	004	
-1,5468 E-1	-4,3601 E-08	-6,0612 E-09	-0,0103	0,0000	0,0000	001	00032
9,1035 E-1	2,3361 E-10	5,7785 E-12	-0,0020	0,0000	0,0000	002	
1,9335 E-1	1,6045 E-08	6,7665 E-09	0,0011	0,0000	0,0000	003	
1,1379 E-1	2,9201 E-10	7,2231 E-12	-0,0025	0,0000	0,0000	004	

LEGENDA:

CC Identificativo della tipologia di carico nella relativa tabella.

Sx, Sy, Le componenti dello spostamento sono relative al sistema di riferimento globale X, Y, Z.

Sz, ⊕x,

Θγ, Θz

NODI - SPOSTAMENTI PER EFFETTO DEL SISMA

Nodi - Spostamenti per effetto del sisma **Stato Limite Ultimo** Stato Limite di Danno Nodo Sx SY $\mathbf{S}_{\mathbf{Z}}$ Θz Sx $\mathbf{S}_{\mathbf{Y}}$ S_{z} Θχ [rad] [rad] [rad] [rad] [rad] [rad] 0,002 0,000 0,000 0,000 0,000 0,000 00001 Χ -6,5492 E-07 3,6681 E-05 1,6922 E-10 -4,7408 E-08 2,6552 E-06 1,2249 E-11 0 0 0 0 2 0,000 0,000 0,000 0,000 00001 Υ 0,001 -1,5156 E-05 5,4229 E-07 1,4552 E-14 0,000 -2,681 E-06 9,5926 E-08 2,5741 E-15 0 0 0 0,000 0,000 0,000 0,000 0,000 0,000 00001 Ζ 0 E+00 0 E+00 0 E+00 0 E+00 0 E+00 0 E+00 0 0 0 n 0 0 0,000 0,000 0,000 0,000 00002 Х 0,002 6.5313 E-07 3,6673 E-05 1.6762 E-10 0,000 4,7278 E-08 2,6547 E-06 1,2133 E-11 0,000 0,000 0,000 0,000 -2,6807 E-06 Υ 0,001 -1,5155 E-05 1.4446 E-14 0,000 -9,6086 E-08 2,5554 E-15 00002 -5,432 E-07 0 0 0 0 0,000 0,000 0,000 0,000 0,000 0,000 00002 Ζ 0 E+00 0 E+00 0 E+00 0 E+00 0 E+00 0 E+00 0 0 0 0 0 0 0,000 0,000 0,000 0,000 00003 Χ 0,002 -6,5678 E-07 3,6671 E-05 -1,6996 E-10 0,000 -4,7542 E-08 2,6545 E-06 -1,2303 E-11 0 0 0 0 0,000 0,000 0,001 0,000 0,000 0,000 00003 -1,5155 E-05 5,4309 E-07 1,4959 E-14 -2,6807 E-06 9,6067 E-08 Υ 2.6462 E-15 0 0 0,000 0,000 0,000 0,000 0,000 0,000 Z 0 E+00 0 E+00 00003 0 E+00 0 E+00 0 E+00 0 E+00 0 0 0 0 0 0

Il presente documento è di proprietà della ANTEX GROUP srl.

È Vietato la comunicazione a terzi o la riproduzione senza il permesso scritto della suddetta.

19/07/2021 REV: 1 Pag. 39

Nodi - Spostamenti	per effetto del sism
--------------------	----------------------

	Di				Stato Limite U	Iltimo					Nodi - Spos Stato Limite di	tamenti per eff Danno	etto del sisma
Nodo	r	S _X	S _Y	Sz	Θx	Θγ	Θz	S _X	Sy	Sz	Θχ	Θγ	Θz
00004	X	0,000	[cm] 0,000	[cm] 0,002	[rad] 6,5857 E-07	[rad] 3,6678 E-05	[rad] -1,7158 E-10	0,000	[cm]	0,000	[rad] 4,7672 E-08	[rad] 2,655 E-06	[rad] -1,242 E-11
00004	Y	0,000	0,000	7 0,001	-1,5156 E-05	-5,4218 E-07	1,507 E-14	0,000	0,000	0,000	-2,6809 E-06	-9,5906 E-08	2,6657 E-15
00004	Z	0,000	0,000	0,000	0 E+00	0 E+00	0 E+00	0,000	0,000	0,000	0 E+00	0 E+00	0 E+00
00005	X	0,000	0,000	0,000	1,9899 E-10	4,0458 E-05	-9,7818 E-08	0,000	0,000	0,000	1,4405 E-11	2,9286 E-06	-7,0808 E-09
00005	Y	0,000 0,000	0 0,000 0	0,000 6	-1,5563 E-05	1,329 E-10	7,0254 E-12	0,000 0,000	0,000	0,000 1	-2,7529 E-06	2,3508 E-11	1,2427 E-12
00005	Z	0,000	0,000	0,000	0 E+00	0 E+00	0 E+00	0,000	0,000	0,000	0 E+00	0 E+00	0 E+00
00006	Х	0,000	0,000	0,000	-1,9875 E-10	4,0467 E-05	9,7078 E-08	0,000	0,000	0,000	-1,4387 E-11	2,9293 E-06	7,0272 E-09
00006	Υ	0,000	0,000	0,000	-1,5563 E-05	-1,3208 E-10	6,7291 E-12	0,000	0,000	0,000	-2,753 E-06	-2,3364 E-11	1,1903 E-12
00006	Z	0,000	0,000	0,000 0	0 E+00	0 E+00	0 E+00	0,000	0,000	0,000 0	0 E+00	0 E+00	0 E+00
00007	Х	0,002	0,000	0,000	2,8092 E-12	4,1831 E-05	1,0228 E-07	0,000	0,000	0,000	2,0336 E-13	3,028 E-06	7,4037 E-09
00007	Y	0,000 0	0,000 8	0,000 7	-1,6532 E-05	-1,9909 E-11	5,9823 E-11	0,000 0	0,000 1	0,000	-2,9244 E-06	-3,5217 E-12	1,0582 E-11
00007	Z	0,000 0	0,000 0	0,000	0 E+00	0 E+00	0 E+00	0,000	0,000	0,000	0 E+00	0 E+00	0 E+00
00008	Х	0,002 1	0,000 0	0,000	-1,7267 E-12	4,1812 E-05	-1,2037 E-07	0,000 2	0,000	0,000	-1,2498 E-13	3,0266 E-06	-8,713 E-09
00008	Y	0,000	0,000 8	0,000 7	-1,6534 E-05	2,1196 E-11	6,0554 E-11	0,000 0	0,000 1	0,000	-2,9246 E-06	3,7493 E-12	1,0711 E-11
00008	Z	0,000 0	0,000 0	0,000	0 E+00	0 E+00	0 E+00	0,000 0	0,000 0	0,000 0	0 E+00	0 E+00	0 E+00
00009	Х	0,000	0,000 0	0,000 9	1,6599 E-07	3,7494 E-05	8,2715 E-09	0,000	0,000	0,000 1	1,2015 E-08	2,7141 E-06	5,9875 E-10
00009	Υ	0,000	0,000 0	0,001 1	-1,5294 E-05	-4,3805 E-07	-5,9285 E-13	0,000	0,000	0,000	-2,7054 E-06	-7,7487 E-08	-1,0487 E-13
00009	Z	0,000	0,000	0,000	0 E+00	0 E+00	0 E+00	0,000	0,000	0,000	0 E+00	0 E+00	0 E+00
00010	X	0,000	0,000 0	0,000	-1,6493 E-07	3,7488 E-05	8,3123 E-09	0,000 0	0,000 0	0,000	-1,1939 E-08	2,7137 E-06	6,0171 E-10
00010	Υ	0,000	0,000	0,001	-1,5294 E-05	4,399 E-07	-5,9578 E-13	0,000	0,000	0,000	-2,7053 E-06	7,7814 E-08	-1,0539 E-13
00010	Z	0,000	0,000	0,000	0 E+00	0 E+00	0 E+00	0,000	0,000	0,000	0 E+00	0 E+00	0 E+00
00011	X	0,000	0,000 0	0,002 7	-2,4182 E-07	3,6757 E-05	-1,113 E-10	0,000	0,000	0,000 2	-1,7505 E-08	2,6608 E-06	-8,0566 E-12
00011	Υ	0,000	0,000	0,000 4	-1,5204 E-05	2,3976 E-07	-3,2609 E-14	0,000	0,000	0,000	-2,6894 E-06	4,241 E-08	-5,7681 E-15
00011	Z	0,000 0	0,000 0	0,000	0 E+00	0 E+00	0 E+00	0,000	0,000	0,000	0 E+00	0 E+00	0 E+00
00012	х	0,000	0,000 0	0,002 7	2,361 E-07	3,6759 E-05	1,26 E-10	0,000	0,000 0	0,000 2	1,7091 E-08	2,6608 E-06	9,1207 E-12
00012	Υ	0,000	0,000 0	0,000 4	-1,5204 E-05	-2,3981 E-07	-3,2969 E-14	0,000	0,000	0,000	-2,6894 E-06	-4,242 E-08	-5,832 E-15
00012	Z	0,000 0	0,000 0	0,000	0 E+00	0 E+00	0 E+00	0,000 0	0,000 0	0,000	0 E+00	0 E+00	0 E+00
00013	х	0,000	0,000	0,000 9	1,6303 E-07	3,7494 E-05	-8,2499 E-09	0,000	0,000 0	0,000 1	1,1801 E-08	2,7141 E-06	-5,9719 E-10
00013	Y	0,000 0	0,000 0	0,001 1	-1,5294 E-05	-4,4003 E-07	-5,706 E-13	0,000 0	0,000 0	0,000 2	-2,7054 E-06	-7,7836 E-08	-1,0093 E-13

19/07/2021

REV: 1

Pag. 40

	Di				Stato Limite U	Itimo					Nodi - Spos Stato Limite di	stamenti per eff	etto del sisma
Nodo	r	S _X	Sy	Sz	Θ _X	Θ _Y	Θz	S _X	Sy	Sz	Θ _X	Θ _Y	Θz
		[cm] 0,000	[cm] 0,000	[cm] 0,000	[rad]	[rad]	[rad]	[cm] 0,000	[cm] 0,000	[cm] 0,000	[rad]	[rad]	[rad]
00013	Z	0,000	0,000	0,000	0 E+00	0 E+00	0 E+00	0,000	0,000	0,000	0 E+00	0 E+00	0 E+00
00014	Х	0,000	0,000 0	0,000 9	-1,641 E-07	3,75 E-05	-8,2094 E-09	0,000	0,000	0,000 1	-1,1878 E-08	2,7145 E-06	-5,9426 E-10
00014	Υ	0,000 0	0,000 0	0,001	-1,5295 E-05	4,3818 E-07	-5,678 E-13	0,000 0	0,000 0	0,000	-2,7055 E-06	7,751 E-08	-1,0044 E-13
00014	Z	0,000 0	0,000 0	0,000	0 E+00	0 E+00	0 E+00	0,000	0,000 0	0,000 0	0 E+00	0 E+00	0 E+00
00015	Х	0,000	0,000 0	0,002 7	-2,3685 E-07	3,6767 E-05	1,2594 E-10	0,000	0,000	0,000	-1,7145 E-08	2,6614 E-06	9,1164 E-12
00015	Υ	0,000	0,000 0	0,000	-1,5206 E-05	2,3946 E-07	-3,2797 E-14	0,000	0,000 0	0,000	-2,6897 E-06	4,2358 E-08	-5,8015 E-15
00015	Z	0,000 0	0,000 0	0,000	0 E+00	0 E+00	0 E+00	0,000 0	0,000	0,000 0	0 E+00	0 E+00	0 E+00
00016	X	0,000	0,000	0,002 7	2,4258 E-07	3,6766 E-05	-1,1133 E-10	0,000	0,000	0,000 2	1,7559 E-08	2,6614 E-06	-8,0591 E-12
00016	Υ	0,000	0,000	0,000	-1,5206 E-05	-2,394 E-07	-3,2436 E-14	0,000	0,000	0,000	-2,6897 E-06	-4,2348 E-08	-5,7377 E-15
00016	Z	0,000	0,000	0,000	0 E+00	0 E+00	0 E+00	0,000	0,000	0,000 0	0 E+00	0 E+00	0 E+00
00017	Х	0,000	0,000	0,000	2,2527 E-13	4,1009 E-05	1,9022 E-09	0,000	0,000	0,000	1,6313 E-14	2,9685 E-06	1,3769 E-10
00017	Υ	0,000	0,000	0,000	-1,6142 E-05	1,1495 E-13	-4,7742 E-12	0,000	0,000	0,000 0	-2,8554 E-06	2,0335 E-14	-8,4451 E-13
00017	Z	0,000	0,000 0	0,000	0 E+00	0 E+00	0 E+00	0,000 0	0,000	0,000 0	0 E+00	0 E+00	0 E+00
00018	Х	0,001 0	0,000 0	0,000	2,2422 E-11	4,1606 E-05	2,175 E-07	0,000 1	0,000	0,000 0	1,623 E-12	3,0118 E-06	1,5744 E-08
00018	Υ	0,000 0	0,000 4	0,000	-1,6512 E-05	-3,9011 E-11	5,208 E-11	0,000 0	0,000 1	0,000	-2,9208 E-06	-6,9006 E-12	9,2123 E-12
00018	Z	0,000 0	0,000 0	0,000	0 E+00	0 E+00	0 E+00	0,000	0,000	0,000 0	0 E+00	0 E+00	0 E+00
00019	Х	0,002 1	0,000	0,000	2,9606 E-13	4,179 E-05	-1,0293 E-08	0,000 2	0,000	0,000	2,144 E-14	3,025 E-06	-7,4518 E-10
00019	Υ	0,000 0	0,000	0,000	-1,6208 E-05	-2,5149 E-13	6,383 E-11	0,000 0	0,000	0,000	-2,867 E-06	-4,4485 E-14	1,1291 E-11
00019	Z	0,000	0,000	0,000	0 E+00	0 E+00	0 E+00	0,000	0,000	0,000	0 E+00	0 E+00	0 E+00
00020	Х	0,001	0,000	0,000	-2,1745 E-11	4,1586 E-05	-2,2694 E-07	0,000	0,000	0,000	-1,574 E-12	3,0103 E-06	-1,6427 E-08
00020	Υ	0,000	0,000	0,000	-1,6504 E-05	4,1086 E-11	5,2624 E-11	0,000	0,000	0,000	-2,9193 E-06	7,2676 E-12	9,3086 E-12
00020	Z	0,000	0,000	0,000	0 E+00	0 E+00	0 E+00	0,000	0,000	0,000	0 E+00	0 E+00	0 E+00
00021	х	0,000	0,000	0,001	-4,8403 E-07	3,7038 E-05	2,3189 E-09	0,000	0,000	0,000	-3,5038 E-08	2,6811 E-06	1,6786 E-10
00021	Υ	0,000	0,000	0,000 7	-1,5353 E-05	4,5735 E-07	-1,8593 E-13	0,000	0,000	0,000	-2,7158 E-06	8,0901 E-08	-3,2889 E-14
00021	Z	0,000	0,000	0,000	0 E+00	0 E+00	0 E+00	0,000	0,000	0,000	0 E+00	0 E+00	0 E+00
00022	Х	0,000 0	0,000	0,001 7	4,8059 E-07	3,704 E-05	-2,2939 E-09	0,000	0,000	0,000 1	3,4789 E-08	2,6812 E-06	-1,6605 E-10
00022	Υ	0,000 0	0,000 0	0,000	-1,5353 E-05	-4,575 E-07	-1,7892 E-13	0,000	0,000 0	0,000	-2,7158 E-06	-8,0927 E-08	-3,1649 E-14
00022	Z	0,000 0	0,000 0	0,000	0 E+00	0 E+00	0 E+00	0,000 0	0,000	0,000	0 E+00	0 E+00	0 E+00
00023	Х	0,000	0,000	0,001 7	-4,8178 E-07	3,7047 E-05	-2,2928 E-09	0,000	0,000	0,000	-3,4875 E-08	2,6818 E-06	-1,6597 E-10
00023	Υ	0,000 0	0,000 0	0,000 7	-1,5354 E-05	4,568 E-07	-1,7879 E-13	0,000 0	0,000 0	0,000 1	-2,716 E-06	8,0804 E-08	-3,1627 E-14

19/07/2021

REV: 1 Pag. 41

	D :				Chaha Limita II	IA:						tamenti per eff	etto del sisma
Nodo	Di r	S _X	S _Y	Sz	Stato Limite U Θ_X	itimo O _Y	Θz	S _X	S _Y	Sz	Stato Limite di Θ_X	⊅аппо Θ _Υ	Θz
		[cm]	[cm]	[cm]	[rad]	[rad]	[rad]	[cm]	[cm]	[cm]	[rad]	[rad]	[rad]
00023	Z	0,000	0,000	0,000	0 E+00	0 E+00	0 E+00	0,000	0,000	0,000	0 E+00	0 E+00	0 E+00
00024	Х	0,000	0,000	0,001 7	4,8522 E-07	3,7045 E-05	2,3178 E-09	0,000	0,000	0,000 1	3,5124 E-08	2,6816 E-06	1,6778 E-10
00024	Υ	0,000 0	0,000 0	0,000 7	-1,5354 E-05	-4,5666 E-07	-1,858 E-13	0,000	0,000 0	0,000 1	-2,7159 E-06	-8,0778 E-08	-3,2866 E-14
00024	Z	0,000	0,000	0,000	0 E+00	0 E+00	0 E+00	0,000	0,000	0,000	0 E+00	0 E+00	0 E+00
00025	х	0,000	0,000	0,001 4	1,9595 E-09	3,7239 E-05	-1,0923 E-10	0,000	0,000	0,000 1	1,4186 E-10	2,6956 E-06	-7,9063 E-12
00025	Y	0,000 0	0,000 0	0,000 0	-1,5616 E-05	-1,0652 E-10	5,7478 E-13	0,000	0,000 0	0,000 0	-2,7623 E-06	-1,8845 E-11	1,0167 E-13
00025	Z	0,000 0	0,000 0	0,000 0	0 E+00	0 E+00	0 E+00	0,000	0,000 0	0,000 0	0 E+00	0 E+00	0 E+00
00026	х	0,000 0	0,000	0,001 4	-1,9606 E-09	3,723 E-05	-1,099 E-10	0,000	0,000 0	0,000 1	-1,4194 E-10	2,695 E-06	-7,9544 E-12
00026	Y	0,000 0	0,000 0	0,000	-1,5614 E-05	1,0699 E-10	5,7721 E-13	0,000	0,000 0	0,000 0	-2,762 E-06	1,8928 E-11	1,021 E-13
00026	Z	0,000 0	0,000 0	0,000 0	0 E+00	0 E+00	0 E+00	0,000 0	0,000 0	0,000 0	0 E+00	0 E+00	0 E+00
00027	х	0,000 8	0,000 0	0,000	-1,9084 E-12	4,1459 E-05	6,302 E-08	0,000	0,000 0	0,000 0	-1,3814 E-13	3,0011 E-06	4,5618 E-09
00027	Υ	0,000 0	0,000	0,000	-1,6314 E-05	-2,9997 E-11	3,4895 E-11	0,000 0	0,000 1	0,000 1	-2,8858 E-06	-5,3061 E-12	6,1725 E-12
00027	z	0,000	0,000	0,000	0 E+00	0 E+00	0 E+00	0,000	0,000	0,000	0 E+00	0 E+00	0 E+00
00028	Х	0,001	0,000	0,000	9,3691 E-12	4,1714 E-05	1,1546 E-07	0,000	0,000	0,000	6,7821 E-13	3,0196 E-06	8,3578 E-09
00028	Υ	0,000 0	0,000 5	0,000	-1,6351 E-05	-1,6011 E-11	5,0067 E-11	0,000 0	0,000 1	0,000 1	-2,8924 E-06	-2,8323 E-12	8,8563 E-12
00028	Z	0,000 0	0,000 0	0,000	0 E+00	0 E+00	0 E+00	0,000	0,000 0	0,000	0 E+00	0 E+00	0 E+00
00029	х	0,001 3	0,000	0,000	-7,6914 E-12	4,1696 E-05	-1,3305 E-07	0,000	0,000 0	0,000 0	-5,5675 E-13	3,0183 E-06	-9,6314 E-09
00029	Y	0,000 0	0,000 5	0,000	-1,6351 E-05	1,6992 E-11	5,1372 E-11	0,000	0,000 1	0,000 1	-2,8923 E-06	3,0057 E-12	9,0872 E-12
00029	Z	0,000	0,000	0,000	0 E+00	0 E+00	0 E+00	0,000	0,000	0,000	0 E+00	0 E+00	0 E+00
00030	Х	0,000	0,000	0,000	-4,3689 E-13	4,1455 E-05	-7,6385 E-08	0,000	0,000	0,000	-3,1616 E-14	3,0008 E-06	-5,5293 E-09
00030	Y	0,000	0,000	0,000	-1,6312 E-05	3,0914 E-11	3,48 E-11	0,000	0,000	0,000	-2,8855 E-06	5,4684 E-12	6,1558 E-12
00030	Z	0,000	0,000	0,000	0 E+00	0 E+00	0 E+00	0,000	0,000	0,000	0 E+00	0 E+00	0 E+00
00031	х	0,000	0,000	0,000	1,222 E-12	4,1346 E-05	-6,9185 E-09	0,000	0,000	0,000	8,8466 E-14	2,993 E-06	-5,0084 E-10
00031	Y	0,000	0,000	0,000	-1,6219 E-05	-2,8319 E-13	2,9593 E-11	0,000	0,000	0,000	-2,8689 E-06	-5,0092 E-14	5,2346 E-12
00031	Z	0,000	0,000	0,000	0 E+00	0 E+00	0 E+00	0,000	0,000	0,000	0 E+00	0 E+00	0 E+00
00032	Х	0,001	0,000	0,000	4,0469 E-13	4,1753 E-05	-1,3158 E-08	0,000	0,000	0,000	2,9303 E-14	3,0224 E-06	-9,5253 E-10
00032	Y	0,000	0,000	0,000	-1,6247 E-05	-5,7721 E-13	5,7192 E-11	0,000	0,000	0,000	-2,874 E-06	-1,021 E-13	1,0117 E-11
00032	Z	0,000	0,000	0,000	0 E+00	0 E+00	0 E+00	0,000	0,000	0,000	0 E+00	0 E+00	0 E+00

LEGENDA:

Dir Direzione del sisma.

Le componenti dello spostamento sono relative al sistema di riferimento globale X, Y, Z.

Sx, Sγ, Sz, Θx, Θγ, Θz

Comm.: C21-025-S05

NODI - SPOSTAMENTI PER ECCENTRICITÀ ACCIDENTALE

							Nodi - Spostamenti pe	er eccentricità accidentale
Nodo	Dir	е	Sx	S _Y	Sz	Θx	Θγ	Θz
			[cm]	[cm]	[cm]	[rad]	[rad]	[rad]
20224	X	+	0,0000	0,0000	0,0000	0 E+00	0 E+00	0 E+00
00001	X	-	0,0000	0,0000	0,0000	0 E+00	0 E+00	0 E+00
	Y	+	0,0000	0,0000	0,0000	0 E+00	0 E+00	0 E+00
	Y	-	0,0000	0,0000	0,0000	0 E+00	0 E+00	0 E+00
	X	+	0,0000	0,0000	0,0000	0 E+00	0 E+00	0 E+00
00002	X	-	0,0000	0,0000	0,0000	0 E+00	0 E+00	0 E+00
	Y	+	0,0000	0,0000	0,0000	0 E+00	0 E+00	0 E+00
	Y	-	0,0000	0,0000	0,0000	0 E+00	0 E+00	0 E+00
	X	+	0,0000	0,0000	0,0000	0 E+00	0 E+00	0 E+00
00003	X	-	0,0000	0,0000	0,0000	0 E+00	0 E+00	0 E+00
	Y	+	0,0000	0,0000	0,0000	0 E+00	0 E+00	0 E+00
	Y	-	0,0000	0,0000	0,0000	0 E+00	0 E+00	0 E+00
	X	+	0,0000	0,0000	0,0000	0 E+00	0 E+00	0 E+00
00004	X	-	0,0000	0,0000	0,0000	0 E+00	0 E+00	0 E+00
	Y	+	0,0000	0,0000	0,0000	0 E+00	0 E+00	0 E+00
	Υ	-	0,0000	0,0000	0,0000	0 E+00	0 E+00	0 E+00
	X	+	0,0000	0,0000	0,0000	0 E+00	0 E+00	0 E+00
00005	X	-	0,0000	0,0000	0,0000	0 E+00	0 E+00	0 E+00
	Y	+	0,0000	0,0000	0,0000	0 E+00	0 E+00	0 E+00
	Y	-	0,0000	0,0000	0,0000	0 E+00	0 E+00	0 E+00
	X	+	0,0000	0,0000	0,0000	0 E+00	0 E+00	0 E+00
00006	X	_	0,0000	0,0000	0,0000	0 E+00	0 E+00	0 E+00
00000	Y	+	0,0000	0,000	0,0000	0 E+00	0 E+00	0 E+00
	Y	_	0,0000	0,0000	0,0000	0 E+00	0 E+00	0 E+00
	X	+	0,0000	0,0000	0,0000	0 E+00	0 E+00	0 E+00
00007	X	<u>-</u>	0,000	0,0000	0,0000	0 E+00	0 E+00	0 E+00
00007	Y	+	0,0000	0,0000	0,0000	0 E+00	0 E+00	0 E+00
	Ý	<u>-</u>	0,0000	0,0000	0,0000	0 E+00	0 E+00	0 E+00
	X	+	0,0000	0,0000	0,0000	0 E+00	0 E+00	0 E+00
80000	X	_	0,0000	0,0000	0,0000	0 E+00	0 E+00	0 E+00
00000	Ŷ	+	0,0000	0,0000	0,0000	0 E+00	0 E+00	0 E+00
	Ϋ́		0,0000	0,0000	0,0000	0 E+00	0 E+00	0 E+00
	X	+	0,0000	0,0000	0,0000	0 E+00	0 E+00	0 E+00
00009	X	_	0,0000	0,0000	0,0000	0 E+00	0 E+00	0 E+00
00009	Ŷ	+	0,0000	0,0000	0,0000	0 E+00	0 E+00	0 E+00
	Ϋ́	_	0,0000	0,0000	0,0000	0 E+00	0 E+00	0 E+00
	X	+	0,0000	0,0000	0,0000	0 E+00	0 E+00	0 E+00
00010	X	_						0 E+00
00010	Ŷ	+	0,0000 0,0000	0,0000 0,0000	0,0000 0,0000	0 E+00 0 E+00	0 E+00 0 E+00	0 E+00
	Y	_	0,0000	0,0000	0,0000	0 E+00	0 E+00	0 E+00
		_					0 E+00	
00011	X	+	0,0000	0,0000	0,0000	0 E+00	0 E+00	0 E+00
00011	X		0,0000	0,0000	0,0000	0 E+00		0 E+00
	Y	+	0,0000	0,0000	0,0000	0 E+00	0 E+00	0 E+00
			0,0000	0,0000	0,0000	0 E+00	0 E+00	0 E+00
00013	X	+	0,0000	0,0000	0,0000	0 E+00	0 E+00	0 E+00
00012	X	-	0,0000	0,0000	0,0000	0 E+00	0 E+00	0 E+00
	Y	+	0,0000	0,0000	0,0000	0 E+00	0 E+00	0 E+00
	Y	-	0,0000	0,0000	0,0000	0 E+00	0 E+00	0 E+00
	X	+	0,0000	0,0000	0,0000	0 E+00	0 E+00	0 E+00
00013	X	-	0,0000	0,0000	0,0000	0 E+00	0 E+00	0 E+00
	Y	+	0,0000	0,0000	0,0000	0 E+00	0 E+00	0 E+00
	Y	-	0,0000	0,0000	0,0000	0 E+00	0 E+00	0 E+00
	X	+	0,0000	0,0000	0,0000	0 E+00	0 E+00	0 E+00
00014	X	-	0,0000	0,0000	0,0000	0 E+00	0 E+00	0 E+00
	Y	+	0,0000	0,0000	0,0000	0 E+00	0 E+00	0 E+00
	Y	-	0,0000	0,0000	0,0000	0 E+00	0 E+00	0 E+00
	X	+	0,0000	0,0000	0,0000	0 E+00	0 E+00	0 E+00
00015	X	-	0,0000	0,0000	0,0000	0 E+00	0 E+00	0 E+00
	Y	+	0,0000	0,0000	0,0000	0 E+00	0 E+00	0 E+00
	Y	-	0,0000	0,0000	0,0000	0 E+00	0 E+00	0 E+00
	X	+	0,0000	0,0000	0,0000	0 E+00	0 E+00	0 E+00
00016	X	-	0,0000	0,0000	0,0000	0 E+00	0 E+00	0 E+00
	Y	+	0,0000	0,0000	0,0000	0 E+00	0 E+00	0 E+00
	Y	-	0,0000	0,0000	0,0000	0 E+00	0 E+00	0 E+00
	X	+	0,0000	0,0000	0,0000	0 E+00	0 E+00	0 E+00
00017	X	-	0,0000	0,0000	0,0000	0 E+00	0 E+00	0 E+00

19/07/2021

REV: 1

Pag. 43

							Nodi - Spostamenti per	eccentricità accidenta
Nodo	Dir	е	Sx	Sy	Sz	Θx	Θy	Θz
	Y	+	[cm] 0,0000	[cm]	[cm]	[rad] 0 E+00	[rad] 0 E+00	[rad] 0 E+
	Ϋ́	_	0,0000	0,0000	0,0000	0 E+00	0 E+00	0 E+
	X	+	0,0000	0,0000	0,0000	0 E+00	0 E+00	0 E+
00018	X	_	0,000	0,000	0,0000	0 E+00	0 E+00	0 E+
00010	Ϋ́	+	0,000	0,0000	0,0000	0 E+00	0 E+00	0 E+
	Ý	_	0,000	0,0000	0,0000	0 E+00	0 E+00	0 E+
	Х	+	0,0000	0,0000	0,0000	0 E+00	0 E+00	0 E+
00019	Х	-	0,0000	0,0000	0,0000	0 E+00	0 E+00	0 E+
	Υ	+	0,0000	0,0000	0,0000	0 E+00	0 E+00	0 E+
	Υ	-	0,0000	0,0000	0,0000	0 E+00	0 E+00	0 E+
	X	+	0,0000	0,0000	0,0000	0 E+00	0 E+00	0 E+
00020	X	-	0,0000	0,0000	0,0000	0 E+00	0 E+00	0 E+
	Y	+	0,0000	0,0000	0,0000	0 E+00	0 E+00	0 E+
	Y	-	0,0000	0,0000	0,0000	0 E+00	0 E+00	0 E+
	X	+	0,0000	0,0000	0,0000	0 E+00	0 E+00	0 E+
00021	X	-	0,0000	0,0000	0,0000	0 E+00	0 E+00	0 E+
	Y	+	0,0000	0,0000	0,0000	0 E+00	0 E+00	0 E+
	Y	-	0,0000	0,0000	0,0000	0 E+00	0 E+00	0 E+
00022	X	+	0,0000	0,0000	0,0000	0 E+00	0 E+00	0 E-
00022	X	-	0,000 0,000	0,0000	0,0000	0 E+00 0 E+00	0 E+00 0 E+00	0 E- 0 E-
	Y	+	0,0000	0,0000	0,0000 0,000	0 E+00	0 E+00	0 E-
	X	+	0,0000	0,0000	0,0000	0 E+00	0 E+00	0 E-
00023	X	_	0,0000	0,0000	0,0000	0 E+00	0 E+00	0 E-
00023	Ŷ	+	0,0000	0,000	0,0000	0 E+00	0 E+00	0 E-
	Ϋ́	-	0,000	0,0000	0,0000	0 E+00	0 E+00	0 E-
	X	+	0,0000	0,0000	0,0000	0 E+00	0 E+00	0 E-
00024	X	_	0,000	0,0000	0,0000	0 E+00	0 E+00	0 E-
	Ŷ	+	0,000	0,0000	0,000	0 E+00	0 E+00	0 E-
	Ϋ́	_	0,0000	0,0000	0,0000	0 E+00	0 E+00	0 E-
	Х	+	0,0000	0,0000	0,0000	0 E+00	0 E+00	0 E-
00025	Х	-	0,0000	0,0000	0,0000	0 E+00	0 E+00	0 E-
	Y	+	0,0000	0,0000	0,0000	0 E+00	0 E+00	0 E-
	Υ	-	0,0000	0,0000	0,0000	0 E+00	0 E+00	0 E-
	X	+	0,0000	0,0000	0,0000	0 E+00	0 E+00	0 E-
00026	X	-	0,0000	0,0000	0,0000	0 E+00	0 E+00	0 E-
	Y	+	0,0000	0,0000	0,0000	0 E+00	0 E+00	0 E-
	Y	-	0,0000	0,0000	0,0000	0 E+00	0 E+00	0 E-
	X	+	0,0000	0,0000	0,0000	0 E+00	0 E+00	0 E-
00027	X	-	0,0000	0,0000	0,0000	0 E+00	0 E+00	0 E-
	Y	+	0,0000	0,0000	0,0000	0 E+00	0 E+00	0 E-
	Y	-	0,0000	0,0000	0,0000	0 E+00	0 E+00	0 E-
00020	X	+	0,0000	0,0000	0,0000	0 E+00	0 E+00	0 E-
00028	X	+	0,0000 0,0000	0,0000 0,0000	0,0000 0,000	0 E+00 0 E+00	0 E+00 0 E+00	0 E- 0 E-
	Y	-	0,0000	0,0000	0,0000	0 E+00	0 E+00	0 E-
	X	+	0,0000	0,0000	0,0000	0 E+00	0 E+00	0 E-
00029	X	_	0,0000	0,000	0,0000	0 E+00	0 E+00	0 E-
00023	Ϋ́	+	0,0000	0,0000	0,0000	0 E+00	0 E+00	0 E-
	Ϋ́	_	0,0000	0,000	0,0000	0 E+00	0 E+00	0 E-
	X	+	0,0000	0,0000	0,0000	0 E+00	0 E+00	0 E-
00030	X	_	0,000	0,0000	0,000	0 E+00	0 E+00	0 E-
· · · · ·	Y	+	0,000	0,0000	0,0000	0 E+00	0 E+00	0 E-
	Ϋ́	-	0,0000	0,0000	0,0000	0 E+00	0 E+00	0 E-
	X	+	0,0000	0,0000	0,0000	0 E+00	0 E+00	0 E-
00031	X	-	0,0000	0,0000	0,0000	0 E+00	0 E+00	0 E-
	Υ	+	0,0000	0,0000	0,0000	0 E+00	0 E+00	0 E-
	Υ	-	0,0000	0,0000	0,0000	0 E+00	0 E+00	0 E-
	Χ	+	0,0000	0,0000	0,0000	0 E+00	0 E+00	0 E-
00032	Χ	-	0,0000	0,0000	0,0000	0 E+00	0 E+00	0 E-
	Υ	+	0,0000	0,0000	0,0000	0 E+00	0 E+00	0 E-
	Υ	-	0,0000	0,0000	0,0000	0 E+00	0 E+00	0 E-

LEGENDA:

Dir Direzione del sisma.

Le componenti dello spostamento sono relative al sistema di riferimento globale X, Y, Z.

S_X, S_Y, S_Z, Θ_X, Θ_Y, Θ_Z

Pareti - TENSIONI PER CONDIZIONI DI CARICO NON SISMICHE

			···	ieu -	1 -14	71011	TLFL		1012	COLAT		41.71.C	0 110	11 51	21-11C				
												l	Pareti -	tensioni	i per cor	ndizioni	di caric	o non si	smiche
Nodo	σ _{L1}	σ _{L2}	τL	ТР13	Nodo	σ _{L1}	σ _{L2}	τι	ТР13	Nodo	σ _{L1}	σ _{L2}	τL	ТР13	Nodo	σ _{L1}	σ _{L2}	τL	TP13
Nouo	σ _{P1}	σ _{P2}	τp	₹Р23	Nouo	σ _{P1}	σ _{P2}	τp	ТР23	Nouo	σ _{P1}	σ _{P2}	τp	ТР23	NOUU	σ _{P1}	σ _{P2}	τp	₹Р23
	[N/mm ²]	[N/mm ²]	[N/mm ²]	[N/mm ²]		[N/mm ²]	[N/mm ²]	[N/mm ²]	[N/mm ²]		[N/mm ²]	[N/mm ²]	[N/mm ²]	[N/mm ²]		[N/mm ²]	[N/mm ²]	[N/mm ²]	[N/mm ²]
Piano 1	Гегга					Parete	P1-P2					Parete	P1-P2						
Condiz	ione car	rico (Cai	rico Peri	manent	e)														
00006	-0,015	-0,010	-0,006	0,000	00018	-0,018	-0,002	-0,005	0,000	00027	-0,009	-0,007	-0,003	0,000	00017	0,001	-0,001	0,000	0,000
	0,000	0,000	0,000	0,000		0,000	0,000	0,000	0,000		0,000	0,000	0,000	0,000		0,000	0,000	0,000	0,000
00030	-0,007	-0,006	0,003	0,000	00029	-0,005	-0,002	0,002	0,000	00020	-0,018	-0,002	0,005	0,000	00007	-0,002	-0,001	0,000	0,000
	0,000	0,000	0,000	0,000		0,000	0,000	0,000	0,000		0,000	0,000	0,000	0,000		0,000	0,000	0,000	0,000
00019	-0,002	-0,001	0,000	0,000	00028	-0,004	-0,003	-0,003	0,000	00005	-0,015	-0,009	0,006	0,000	00008	-0,002	-0,001	0,000	0,000
	0,000	0,000	0,000	0,000		0,000	0,000	0,000	0,000		0,000	0,000	0,000	0,000		0,000	0,000	0,000	0,000
00032	-0,002	-0,004	0,000	0,000	00031	-0,004	-0,005	0,000	0,000			-,		-,		-,	.,	-,	-,
00032	0,000	0,000	0,000	0,000	00031	0,000	0,000	0,000	0,000										
Condiz	.,				Struttura	.,	0,000	0,000	0,000										
00006	0,000	0,000	0,000	0,000	00018	-0,001	0.000	0,000	0,000	00027	0,000	0.000	0,000	0.000	00017	0,000	0.000	0,000	0,000
00000	0,000	0,000	0,000	0,000	00010	0,000	0,000	0,000	0,000	00027	0,000	0,000	0,000	0,000	00017	0,000	0,000	0,000	0,000
00030	0,000	0,000	0,000	0,000	00029	0,000	0,000	0,000	0,000	00020	0,000	0,000	0,000	0,000	00007	0,000	0,000	0,000	0,000
00030	0,000	0,000	0,000	0,000	00029	0,000	0,000	0,000	0,000	00020	0,000	0,000	0,000	0,000	00007	0,000	0,000	0,000	0,000
00019	-,			0,000	00028		-,			00005	-,		-,	-,	00008			-,	
00019	0,000	0,000	0,000		00026	0,000	0,000	0,000	0,000	00005	0,000	0,000	0,000	0,000	00006	0,000	0,000	0,000	0,000
00000	0,000	0,000	0,000	0,000	00001	0,000	0,000	0,000	0,000		0,000	0,000	0,000	0,000		0,000	0,000	0,000	0,000
00032	0,000	0,000	0,000	0,000	00031	0,000	0,000	0,000	0,000										
C1'-	0,000	0,000	0,000	0,000		0,000	0,000	0,000	0,000										
		rico (Abi)															
00006	0,009	0,004	0,001	0,000	00018	0,018	0,002	-0,003	0,000	00027	0,005	0,002	-0,001	0,000	00017	0,000	0,002	0,000	0,000
	0,000	0,000	0,000	0,000		0,000	0,000	0,000	0,000		0,000	0,000	0,000	0,000		0,000	0,000	0,000	0,000
00030	0,004	0,003	0,002	0,000	00029	0,005	0,000	0,001	0,000	00020	0,018	0,002	0,002	0,000	00007	0,010	-0,001	-0,003	0,000
	0,000	0,000	0,000	0,000		0,000	0,000	0,000	0,000		0,000	0,000	0,000	0,000		0,000	0,000	0,000	0,000
00019	-0,006	-0,008	0,000	0,000	00028	0,003	0,001	-0,001	0,000	00005	0,009	0,004	-0,001	0,000	80000	0,010	-0,001	0,003	0,000
	0,000	0,000	0,000	0,000		0,000	0,000	0,000	0,000		0,000	0,000	0,000	0,000		0,000	0,000	0,000	0,000
00032	-0,001	0,000	0,000	0,000	00031	0,000	0,003	0,000	0,000										
	0,000	0,000	0,000	0,000		0,000	0,000	0,000	0,000										
Condiz	ione car	rico (Aut	torimes	sa <= 3	0kN)														
00006	0,000	-0,001	0,000	0,000	00018	-0,001	0,000	0,000	0,000	00027	0,000	0,000	0,000	0,000	00017	0,001	0,000	0,000	0,000
	0,000	0,000	0,000	0,000		0,000	0,000	0,000	0,000		0,000	0,000	0,000	0,000		0,000	0,000	0,000	0,000
00030	0,000	0,000	0,000	0,000	00029	0,000	0,000	0,000	0,000	00020	-0,001	0,000	0,000	0,000	00007	0,000	0,000	0,000	0,000
	0,000	0,000	0,000	0,000		0,000	0,000	0,000	0,000		0,000	0,000	0,000	0,000		0,000	0,000	0,000	0,000
00019	0,000	0,000	0,000	0,000	00028	0,000	0,000	0,000	0,000	00005	0,000	-0,001	0,000	0,000	00008	0,000	0,000	0,000	0,000
	0,000	0,000	0,000	0,000		0,000	0,000	0,000	0,000		0,000	0,000	0,000	0,000		0,000	0,000	0,000	0,000
	0,000	0,000	0,000	0,000	00031	0,000	0,000	0,000	0,000		.,	.,	.,	.,		.,	.,	.,	.,
00032	0,000																		

LEGENDA:

σΡ1 Tensione normale in direzione 1 per comportamento a piastra. Tensione normale in direzione 2 per comportamento a piastra. σР2 Tensione tangenziale 1-2 per comportamento a piastra. τР

Tensione (Piastra) tangenziale in direzione 2-3 τр23

Tensione normale in direzione 1 per comportamento a lastra. σL1 Tensione normale in direzione 2 per comportamento a lastra. σ_{L2} Tensione tangenziale 1-2 per comportamento a lastra. τı Tensione (Piastra) tangenziale in direzione 1-3 **TP13**

Pareti - TENSIONI PER EFFETTO DEL SISMA

															Pareti -	tension	i per eff	fetto de	l sisma
Nodo	σ _{L1}	σ _{L2}	τL	TP13	Nodo	σ _{L1}	σ _{L2}	τL	ΤΡ13	Nodo	σ _{L1}	σ _{L2}	τL	TP13	Nodo	σ _{L1}	σ _{L2}	τL	TP13
Nouo	σ _{P1}	σ _{P2}	τp	TP23	Nouo	σ _{P1}	σ _{P2}	τp	TP23	Nouo	σ P1	σ _{P2}	τp	TP23	Nouo	σ _{P1}	σ _{P2}	TΡ	TP23
	[N/mm ²]	[N/mm ²]	[N/mm ²]	[N/mm ²]		[N/mm ²]	[N/mm ²]	[N/mm ²]	[N/mm ²]		[N/mm ²]	[N/mm ²]	[N/mm ²]	[N/mm ²]		[N/mm ²]	[N/mm ²]	[N/mm ²]	[N/mm ²]
Piano 1	Piano Terra Parete P1-P2											Parete	P1-P2						
Sisma i	in direzi	one X																	
00006	0,000	0,000	0,000	0,000	00018	0,000	0,000	0,000	0,000	00027	0,000	0,000	0,000	0,000	00017	0,000	0,000	0,000	0,000
	-0,005	-0,001	-0,001	0,000		-0,001	0,000	0,000	0,000		-0,002	0,000	0,000	0,000		-0,003	-0,001	0,000	0,000
00030	0,000	0,000	0,000	0,000	00029	0,000	0,000	0,000	0,000	00020	0,000	0,000	0,000	0,000	00007	0,000	0,000	0,000	0,000
	-0,002	0,000	0,000	0,000		-0,001	0,000	0,000	0,000		-0,001	0,000	0,000	0,000		0,000	0,000	0,000	0,000
00019	0,000	0,000	0,000	0,000	00028	0,000	0,000	0,000	0,000	00005	0,000	0,000	0,000	0,000	00008	0,000	0,000	0,000	0,000
	0,000	0,001	0,000	0,000		-0,001	0,000	0,000	0,000		-0,005	-0,001	0,001	0,000		0,000	0,000	0,000	0,000
00032	0,000	0,000	0,000	0,000	00031	0,000	0,000	0,000	0,000										

															Pareti -	tension	i per ef	fetto de	l sisma
Nodo	σ _{L1}	σ _{L2}	τL	τ _{P13}	Nodo	σ _{L1}	σ _{L2}	τL	τ _{P13}	Nodo	σ _{L1}	σ _{L2}	τL	τ _{P13}	Nodo	σ _{L1}	σ _{L2}	τL	ТР13
Nouo	σ _{P1}	σ _{P2}	τp	TP23	Houo	σ _{P1}	σ _{P2}	τp	TP23	Houo	σ _{P1}	σ _{P2}	τp	TP23	14000	σ _{P1}	σ _{P2}	τp	TP23
	[N/mm ²]	[N/mm ²]	[N/mm ²]	[N/mm ²]		[N/mm ²]	[N/mm ²]	[N/mm ²]	[N/mm ²]		[N/mm ²]	[N/mm ²]	[N/mm ²]	[N/mm ²]		[N/mm ²]	[N/mm ²]	[N/mm ²]	[N/mm ²]
	0,000	0,000	0,000	0,000		-0,002	0,000	0,000	0,000										
Sisma	in direzi	one Y																	
00006	-0,001	-0,001	-0,001	0,000	00018	-0,002	0,000	-0,001	0,000	00027	-0,001	-0,001	-0,001	0,000	00017	0,000	0,000	0,000	0,000
	0,000	0,000	0,000	0,000		0,000	0,000	0,000	0,000		0,000	0,000	0,000	0,000		0,000	0,000	0,000	0,000
00030	0,001	0,000	-0,001	0,000	00029	0,000	0,000	-0,001	0,000	00020	0,002	0,000	-0,001	0,000	00007	0,000	0,000	0,000	0,000
	0,000	0,000	0,000	0,000		0,000	0,000	0,000	0,000		0,000	0,000	0,000	0,000		0,000	0,000	0,000	0,000
00019	0,000	0,000	0,000	0,000	00028	0,000	0,000	-0,001	0,000	00005	0,001	0,001	-0,001	0,000	80000	0,000	0,000	0,000	0,000
	0,000	0,000	0,000	0,000		0,000	0,000	0,000	0,000		0,000	0,000	0,000	0,000		0,000	0,000	0,000	0,000
00032	0,000	0,000	-0,001	0,000	00031	0,000	0,000	-0,001	0,000										
	0,000	0,000	0,000	0,000		0,000	0,000	0,000	0,000										

LEGENDA:

Tensione normale in direzione 1 per comportamento a piastra. **σ**_{Р1} Tensione normale in direzione 2 per comportamento a piastra. σр2 Tensione tangenziale 1-2 per comportamento a piastra. τР

τр23 Tensione (Piastra) tangenziale in direzione 2-3

Tensione normale in direzione 1 per comportamento a lastra. σL1 Tensione normale in direzione 2 per comportamento a lastra. σL2 Tensione tangenziale 1-2 per comportamento a lastra. τL Tensione (Piastra) tangenziale in direzione 1-3 **TP13**

Pareti - TENSIONI PER ECCENTRICITÀ ACCIDENTALE

														Pareti ·	- tensio	ni per e	ccentric	ità accio	lentale
Nodo	σ _{L1}	σ _{L2}	τL	TP13	Nodo	σ _{L1}	σ _{L2}	τL	TP13	Nodo	σ _{L1}	σ _{L2}	τL	TP13	Nodo	σ _{L1}	σ _{L2}	τL	ТР13
NOGO	σ _{P1}	σ _{P2}	τp	ТР23	Nouo	σ _{P1}	σ _{P2}	τp	₹Р23	Nouo	σ _{P1}	σ _{P2}	τp	ТР23	Nodo	σ _{P1}	σ _{P2}	τp	ТР23
	[N/mm²]	[N/mm ²]	[N/mm ²]	[N/mm ²]		[N/mm²]	[N/mm ²]	[N/mm ²]	[N/mm ²]		[N/mm ²]	[N/mm²]	[N/mm ²]	[N/mm ²]		[N/mm ²]	[N/mm ²]	[N/mm ²]	[N/mm ²]
Piano					- V	Parete	P1-P2					Parete	P1-P2						
	ricità ac					0.000	0.000	0.000	0.000	00007	0.000	0.000	0.000	0.000	00047	0.000	0.000	0.000	0.000
00006	0,000	0,000	0,000	0,000	00018	0,000	0,000	0,000	0,000	00027	0,000	0,000	0,000	0,000	00017	0,000	0,000	0,000	0,000
00000	0,002	0,000	0,000	0,000	00000	0,000	0,000	0,000	0,000	00000	0,001	0,000	0,000	0,000	00007	0,001	0,000	0,000	0,000
00030	0,000	0,000	0,000	0,000	00029	0,000	0,000	0,000	0,000	00020	0,000	0,000	0,000	0,000	00007	0,000	0,000	0,000	0,000
00010	0,001	0,000	0,000	0,000	00000	0,000	0,000	0,000	0,000	00005	0,000	0,000	0,000	0,000	00000	0,000	0,000	0,000	0,000
00019	0,000	0,000	0,000	0,000	00028	0,000	0,000	0,000	0,000	00005	0,000	0,000	0,000	0,000	80000	0,000	0,000	0,000	0,000
00000	0,000	0,000	0,000	0,000	00001	0,000	0,000	0,000	0,000		0,002	0,000	0,000	0,000		0,000	0,000	0,000	0,000
00032	0,000	0,000	0,000	0,000	00031	0,000	0,000	0,000	0,000										
Facous	0,000 ricità ac	.,	0,000	.,	v	0,001	0,000	0,000	0,000										
00006	0,000	0,000	0,000	0,000	00018	0,000	0,000	0,000	0,000	00027	0,000	0,000	0,000	0,000	00017	0,000	0,000	0,000	0,000
00000	-0,000	0,000	0,000	0,000	00010	0,000	0,000	0,000	0,000	00027	-0,000	0,000	0,000	0,000	00017	-0,000	0,000	0,000	0,000
00030	0,000	0,000	0,000	0,000	00029	0,000	0,000	0,000	0,000	00020	0,000	0,000	0,000	0,000	00007	0,000	0,000	0,000	0,000
00030	-0,000	0,000	0,000	0,000	00029	0,000	0,000	0,000	0,000	00020	0,000	0,000	0,000	0,000	00007	0,000	0,000	0,000	0,000
00019	0.000	0,000	0,000	0,000	00028	0,000	0,000	0,000	0,000	00005	0,000	0,000	0,000	0,000	00008	0,000	0,000	0,000	0,000
00019	0,000	0,000	0,000	0,000	00020	0,000	0,000	0,000	0,000	00003	-0,000	0,000	0,000	0,000	00000	0,000	0,000	0,000	0,000
00032	0,000	0,000	0,000	0,000	00031	0,000	0,000	0,000	0,000		0,002	0,000	0,000	0,000		0,000	0,000	0,000	0,000
00032	0,000	0,000	0,000	0,000	00031	-0,000	0,000	0,000	0,000										
Fccent	ricità ac				e V	0,001	0,000	0,000	0,000										
00006	0,000	0,000	0,000	0,000	00018	0,000	0,000	0,000	0,000	00027	0,000	0,000	0,000	0,000	00017	0,000	0,000	0,000	0,000
00000	0,000	0,000	0,000	0,000	00010	0,000	0,000	0,000	0,000	00027	0,000	0,000	0,000	0,000	00017	0,000	0,000	0,000	0,000
00030	0,000	0,000	0,000	0,000	00029	0,000	0,000	0,000	0,000	00020	0,000	0,000	0,000	0,000	00007	0,000	0,000	0,000	0,000
00050	0,000	0,000	0,000	0,000	00023	0,000	0,000	0,000	0,000	00020	0,000	0,000	0,000	0,000	00007	0,000	0,000	0,000	0,000
00019	0,000	0,000	0,000	0,000	00028	0,000	0,000	0,000	0,000	00005	0,000	0,000	0,000	0,000	00008	0,000	0,000	0,000	0,000
00013	0,000	0,000	0,000	0,000	00020	0,000	0,000	0,000	0,000	00003	0,000	0,000	0,000	0,000	00000	0,000	0,000	0,000	0,000
00032	0,000	0,000	0,000	0,000	00031	0,000	0,000	0,000	0,000		-,	-,	-,	-,		-,	-,	-,	-,
00002	0,000	0,000	0,000	0,000	00001	0,000	0,000	0,000	0,000										
Eccent	ricità ac				Υ	-,	-,	-,	,										
00006	0,000	0,000	0,000	0,000	00018	0,000	0,000	0,000	0,000	00027	0,000	0,000	0,000	0,000	00017	0,000	0,000	0,000	0,000
	0,000	0,000	0,000	0,000		0,000	0,000	0,000	0,000		0,000	0,000	0,000	0,000		0,000	0,000	0,000	0,000
00030	0,000	0,000	0,000	0,000	00029	0,000	0,000	0,000	0,000	00020	0,000	0,000	0,000	0,000	00007	0,000	0,000	0,000	0,000
	0,000	0,000	0,000	0,000		0,000	0,000	0,000	0,000		0,000	0,000	0,000	0,000		0,000	0,000	0,000	0,000
00019	0,000	0,000	0,000	0,000	00028	0,000	0,000	0,000	0,000	00005	0,000	0,000	0,000	0,000	00008	0,000	0,000	0,000	0,000
	0,000	0,000	0,000	0,000		0,000	0,000	0,000	0,000		0,000	0,000	0,000	0,000		0,000	0,000	0,000	0,000
00032	0,000	0,000	0,000	0,000	00031	0,000	0,000	0,000	0,000							·			
	0,000	0,000	0,000	0,000		0,000	0,000	0,000	0,000										

LEGENDA:

														Pareti	- tensio	ni per e	ccentric	ità accio	dentale
Nodo	σ _{L1}	σ _{L2}	τL	τ _{P13}	Nodo	σ _{L1}	σ _{L2}	τL	τ _{P13}	Nodo	σ _{L1}	σ _{L2}	τL	τ _{P13}	Nodo	σ _{L1}	σ _{L2}	τL	TP13
11000	σ _{P1}	σ _{P2}	τp	TP23	Houo	σ _{P1}	σ _{P2}	τp	TP23	Nouo	σ _{P1}	σ _{P2}	τp	ΤΡ23	11000	σ _{P1}	σ _{P2}	τp	TP23
	[N/mm ²]	[N/mm ²]	[N/mm ²]	[N/mm ²]		[N/mm ²]	[N/mm ²]	[N/mm ²]	[N/mm ²]		[N/mm ²]	[N/mm ²]	[N/mm ²]	[N/mm ²]		[N/mm ²]	[N/mm ²]	[N/mm ²]	[N/mm ²]
σ P1	Tensione normale in direzione 1 per comportamento a piastra. Tensione normale in direzione 2 per comportamento a piastra.																		
σ _{P2}	Tensione normale in direzione 2 per comportamento a piastra.																		
TΡ	Tensione normale in direzione 2 per comportamento a piastra. Tensione tangenziale 1-2 per comportamento a piastra.																		
TP23	Tens	sione (Pia	astra) tar	ngenziale	in direzio	one 2-3													
σL1	Tens	sione nor	male in o	direzione	1 per co	mportam	ento a la	stra.											
σ _{L2}	Tens	sione nor	male in o	direzione	2 per co	mportam	ento a la	stra.											
τL	Tens	sione tan	genziale	1-2 per 6	comporta	mento a	lastra.												
TP13	Tens	sione (Pia	istra) tar	ngenziale	in direzio	one 1-3													

Platee - TENSIONI PER CONDIZIONI DI CARICO NON SISMICHE

													Platee -	tension	i per cor	ndizioni	di caric	o non si	smiche
Nodo	σ _{L1}	σ _{L2}	τL	ТР13	Nodo	σ _{L1}	σ _{L2}	τL	ΤΡ13	Nodo	σ _{L1}	σ _{L2}	τL	ΤΡ13	Nodo	σ _{L1}	σ _{L2}	τL	TP13
Nouo	σ P1	σ _{P2}	τр	ТР23	Nouo	σ P1	σ Р2	τp	TP23	Nouo	σ P1	ОР2	τp	ΤΡ23	Nouo	σ _{P1}	σ _{P2}	τр	TP23
	[N/mm ²]	[N/mm ²]	[N/mm ²]	[N/mm ²]			[N/mm ²]	[N/mm ²]	[N/mm ²]		[N/mm ²]	[N/mm ²]	[N/mm ²]	[N/mm ²]		[N/mm ²]	[N/mm ²]	[N/mm ²]	[N/mm ²]
Fondaz					- \	Platea	1												
		rico (Car				0.000	0.000	0.000	0.000	00000	0.000	0.000	0.000	0.000	00000	0.000	0.000	0.000	0.000
00012	0,000 -0,003	0,000	0,000	0,000	00002	0,000 -0,006	0,000 -0,007	0,000	0,000	00022	0,000 -0,012	0,000	0,000	0,000	00023	0,000	0,000	0,000	0,000
00001	0,000	-0,010 0,000	0,000	0,000	00015	0,000	0,007	-0,001 0,000	0,000	00026	0,000	-0,010 0,000	0,004	0,000	00011	0,000	-0,010 0,000	-0,004 0,000	0,000
00001	-0,006	-0,000	0,000 0,001	0,000	00015	-0,000	-0,000	0,000	0,000	00026	-0,000	-0,014	0,000	0,000	00011	-0,000	-0,010	0,000	0,000
00014	0,000	0,000	0,001	0,000	00021	0,000	0,000	0,000	0,000	00024	0,000	0,000	0,000	0,000	00016	0,000	0,000	0,000	0,000
00014	-0,029	-0,000	-0,000	0,000	00021	-0,012	-0,010	-0,004	0,000	00024	-0,012	-0,010	0,000	0,000	00010	-0,000	-0,010	0,000	0,000
00004	0,000	0,002	0,000	0,000	00013	0,000	0,010	0,000	0,000	00010	0,000	0,000	0,000	0,000	00005	0,000	0,000	0,000	0,000
UUUU4	-0,006	-0,007	-0,000	0,000	00013	-0.029	-0,000	0,000	0,000	00010	-0.029	-0,000	-0,000	0,000	00003	-0,058	-0,000	0,000	0,000
00009	0,000	0,000	0,000	0,000	00025	0,000	0,002	0,000	0,000	00006	0,000	0,002	0,000	0,000	00017	0,000	0,000	0,000	0,000
00003	-0,029	-0,002	0,000	0,000	00023	-0,018	-0,014	0,000	0,000	00000	-0,058	-0,028	0,000	0,000	00017	-0,065	-0,026	0,000	0,000
00003	0,000	0,000	0,000	0,000		0,010	0,011	0,000	0,000		0,030	0,020	0,000	0,000		0,003	0,020	0,000	0,000
00005	-0,006	-0,007	0,001	0,000															
Condiz		rico (Per			Struttura	ali)													
00012	0,000	0,000	0,000	0,000	00002	0,000	0,000	0,000	0,000	00022	0,000	0.000	0,000	0,000	00023	0,000	0,000	0.000	0,000
	-0,001	-0,001	0,000	0,000		-0,002	-0,002	-0,001	0,000		-0,001	-0,001	0,000	0,000		-0,001	-0,001	0,000	0,000
00001	0,000	0,000	0,000	0,000	00015	0,000	0,000	0,000	0,000	00026	0,000	0,000	0,000	0,000	00011	0,000	0,000	0,000	0,000
	-0,002	-0,002	0,001	0,000		-0,001	-0,001	0,000	0,000		-0,002	-0,001	0,000	0,000		-0,001	-0,001	0,000	0,000
00014	0,000	0,000	0,000	0,000	00021	0,000	0,000	0,000	0,000	00024	0,000	0,000	0,000	0,000	00016	0,000	0,000	0,000	0,000
	-0,002	-0,001	0,000	0,000		-0,001	-0,001	0,000	0,000		-0,001	-0,001	0,000	0,000		-0,001	-0,001	0,000	0,000
00004	0,000	0,000	0,000	0,000	00013	0,000	0,000	0,000	0,000	00010	0,000	0,000	0,000	0,000	00005	0,000	0,000	0,000	0,000
	-0,002	-0,002	-0,001	0,000		-0,002	-0,001	0,000	0,000		-0,002	-0,001	0,000	0,000		-0,002	-0,002	0,000	0,000
00009	0,000	0,000	0,000	0,000	00025	0,000	0,000	0,000	0,000	00006	0,000	0,000	0,000	0,000	00017	0,000	0,000	0,000	0,000
	-0,002	-0,001	0,000	0,000		-0,002	-0,001	0,000	0,000		-0,002	-0,002	0,000	0,000		-0,001	0,000	0,000	0,000
00003	0,000	0,000	0,000	0,000															
	-0,002	-0,002	0,001	0,000															
Condiz	ione car	rico (Abi)															
00012	0,000	0,000	0,000	0,000	00002	0,000	0,000	0,000	0,000	00022	0,000	0,000	0,000	0,000	00023	0,000	0,000	0,000	0,000
	0,000	0,002	0,000	0,000		0,000	0,000	0,000	0,000		0,002	0,002	-0,001	0,000		0,002	0,002	0,001	0,000
00001	0,000	0,000	0,000	0,000	00015	0,000	0,000	0,000	0,000	00026	0,000	0,000	0,000	0,000	00011	0,000	0,000	0,000	0,000
	0,000	0,000	0,000	0,000		0,000	0,002	0,000	0,000		0,004	0,003	0,000	0,000		0,000	0,002	0,000	0,000
00014	0,000	0,000	0,000	0,000	00021	0,000	0,000	0,000	0,000	00024	0,000	0,000	0,000	0,000	00016	0,000	0,000	0,000	0,000
	0,008	-0,001	0,000	0,000		0,002	0,002	0,001	0,000		0,002	0,002	-0,001	0,000		0,000	0,002	0,000	0,000
00004	0,000	0,000	0,000	0,000	00013	0,000	0,000	0,000	0,000	00010	0,000	0,000	0,000	0,000	00005	0,000	0,000	0,000	0,000
	0,000	0,000	0,000	0,000		0,008	-0,001	0,000	0,000		0,008	-0,001	0,000	0,000		0,019	0,009	0,000	0,000
00009	0,000	0,000	0,000	0,000	00025	0,000	0,000	0,000	0,000	00006	0,000	0,000	0,000	0,000	00017	0,000	0,000	0,000	0,000
00000	0,008	0,000	0,000	0,000		0,004	0,003	0,000	0,000		0,019	0,009	0,000	0,000		0,021	0,006	0,000	0,000
00003	0,000	0,000	0,000	0,000															
Candi-	0,000	0,000	0,000	0,000	OPW)														
00012		rico (Aut				0.000	0.000	0.000	0,000	00022	0,000	0.000	0.000	0.000	00023	0,000	0,000	0.000	0,000
00012	0,000 -0,001	0,000	0,000	0,000	00002	0,000 -0,002	0,000 -0,002	0,000	0,000	00022	-0,000	0,000	0,000	0,000	00023	-0,000	-0,000	0,000	0,000
00001	0,000	-0,002 0,000	0,000	0,000	00015	0,000	0,000	0,000	0,000	00026	0,002	0,000	0,000	0,000	00011	0,000	0,000	0,000	0,000
00001	-0,000	-0,000	0,000	0,000	00013	-0,000	-0,000	0,000	0,000	00020	-0,000	-0,000	0,000	0,000	00011	-0,000	-0,000	0,000	0,000
00014	0,002	0,002	0,001	0,000	00021	0,000	0,002	0,000	0,000	00024	0,002	0,000	0,000	0,000	00016	0,001	0,002	0,000	0,000
00014	-0,000	-0,000	0,000	0,000	00021	-0,000	-0,000	0,000	0,000	00024	-0,000	-0,000	0,000	0,000	00010	-0,000	-0,000	0,000	0,000
00004	0,002	0,000	0,000	0,000	00013	0,000	0,002	0,000	0,000	00010	0,002	0,002	0,000	0,000	00005	0,000	0,002	0,000	0,000
JUUUT	-0,000	-0,000	-0,000	0,000	00013	-0,000	-0,000	0,000	0,000	00010	-0,000	-0,000	0,000	0,000	00003	-0,000	-0,000	0,000	0,000
00009	0,000	0,000	0,000	0,000	00025	0,000	0,000	0,000	0,000	00006	0,000	0,000	0,000	0,000	00017	0,000	0,000	0,000	0,000
00003	0,000	0,000	0,000	0,000	00023	0,000	0,000	0,000	0,000	30000	0,000	0,000	0,000	0,000	30017	0,000	0,000	0,000	0,000

												F	Platee - 1	tensioni	per cor	ndizioni	di carico	o non si	smiche
Nodo	σ L1	σ _{L2}	τL	τ _{P13}	Nodo	σ _{L1}	σ _{L2}	τL	τ _{P13}	Nodo	σ _{L1}	σ _{L2}	τL	τ _{P13}	Nodo	σ _{L1}	σ _{L2}	τL	TP13
Nouo	σ _{P1}	σ _{P2}	τp	ТР23	Nouo	σ _{P1}	ОР2	τp	TP23	Nouo	σ _{P1}	ОР2	τp	ΤΡ23	Nouo	σ _{P1}	σ _{P2}	τp	₹Р23
	[N/mm ²]	[N/mm ²]	[N/mm ²]	[N/mm ²]		[N/mm ²]	[N/mm ²]	[N/mm ²]	[N/mm ²]		[N/mm ²]	[N/mm ²]	[N/mm ²]	[N/mm ²]		[N/mm ²]	[N/mm ²]	[N/mm ²]	[N/mm ²]
	-0,002	-0,001	0,000	0,000		-0,002	-0,001	0,000	0,000		-0,002	-0,002	0,000	0,000		-0,001	-0,001	0,000	0,000
00003	0,000	0,000	0,000	0,000															
	-0,002	-0,002	0,001	0,000															

LEGENDA:

Tensione normale in direzione 1 per comportamento a piastra. ŒP1 Tensione normale in direzione 2 per comportamento a piastra. σр2

Tensione tangenziale 1-2 per comportamento a piastra. τр

Tensione (Piastra) tangenziale in direzione 2-3 **ΤΡ23**

Tensione normale in direzione 1 per comportamento a lastra. σ_{L1} Tensione normale in direzione 2 per comportamento a lastra. σL2 Tensione tangenziale 1-2 per comportamento a lastra. τL τ_{P13} Tensione (Piastra) tangenziale in direzione 1-3

Platee - TENSIONI PER EFFETTO DEL SISMA

															Platee -	tension	i per ef	fetto de	l sisma
Nodo	σ _{L1}	σ _{L2}	τL	TP13	Nodo	σ _{L1}	σ _{L2}	τL	TP13	Nodo	σ _{L1}	σ _{L2}	τL	TP13	Nodo	σ _{L1}	σ _{L2}	τL	TP13
Nouo	σ _{P1}	σ _{P2}	τp	₹Р23	Nouo	σ _{P1}	σ _{P2}	τp	ТР23	Nouo	σ _{P1}	σ _{P2}	τp	ТР23	Nouo	σ _{P1}	σ _{P2}	τp	ТР23
	[N/mm ²]	[N/mm ²]	[N/mm ²]	[N/mm ²]		[N/mm ²]	[N/mm ²]	[N/mm ²]	[N/mm ²]		[N/mm ²]	[N/mm ²]	[N/mm ²]	[N/mm ²]		[N/mm ²]	[N/mm ²]	[N/mm ²]	[N/mm ²]
Fondaz	zione					Platea	1												
Sisma	in direzi	one X																	
00012	0,000	0,000	0,000	0,000	00002	0,000	0,000	0,000	0,000	00022	0,000	0,000	0,000	0,000	00023	0,000	0,000	0,000	0,000
	0,000	0,000	0,000	0,000		0,000	0,000	0,000	0,000		-0,001	-0,001	0,000	0,000		0,001	0,001	0,000	0,000
00001	0,000	0,000	0,000	0,000	00015	0,000	0,000	0,000	0,000	00026	0,000	0,000	0,000	0,000	00011	0,000	0,000	0,000	0,000
	0,000	0,000	0,000	0,000		0,000	0,000	0,000	0,000		-0,002	-0,001	0,000	0,000		0,000	0,000	0,000	0,000
00014	0,000	0,000	0,000	0,000	00021	0,000	0,000	0,000	0,000	00024	0,000	0,000	0,000	0,000	00016	0,000	0,000	0,000	0,000
	0,002	-0,001	0,000	0,000		-0,001	-0,001	0,000	0,000		0,001	0,001	0,000	0,000		0,000	0,000	0,000	0,000
00004	0,000	0,000	0,000	0,000	00013	0,000	0,000	0,000	0,000	00010	0,000	0,000	0,000	0,000	00005	0,000	0,000	0,000	0,000
	0,000	0,000	0,000	0,000		-0,002	0,001	0,000	0,000		-0,002	0,001	0,000	0,000		0,000	0,000	0,001	0,000
00009	0,000	0,000	0,000	0,000	00025	0,000	0,000	0,000	0,000	00006	0,000	0,000	0,000	0,000	00017	0,000	0,000	0,000	0,000
	0,002	-0,001	0,000	0,000		0,002	0,001	0,000	0,000		0,000	0,000	-0,001	0,000		0,000	0,000	0,000	0,000
00003	0,000	0,000	0,000	0,000				.,	,		.,	,				.,	,	,	.,
	0,000	0,000	0,000	0,000															
Sisma	in direzi		, .,	, .,															
00012	0,000	0,000	0,000	0,000	00002	0,000	0,000	0,000	0,000	00022	0,000	0,000	0,000	0,000	00023	0,000	0,000	0,000	0,000
	0,000	0,000	-0,001	0,000		0,000	0,000	0,000	0,000		0,000	0,000	0,000	0,000		0,000	0,000	0,000	0,000
00001	0,000	0,000	0,000	0,000	00015	0,000	0,000	0,000	0,000	00026	0,000	0,000	0,000	0,000	00011	0,000	0,000	0,000	0,000
	0,000	0,000	0,000	0,000		0,000	0,000	0,001	0,000		0,000	0,000	-0,001	0,000		0,000	0,000	-0,001	0,000
00014	0,000	0,000	0,000	0,000	00021	0,000	0,000	0,000	0,000	00024	0,000	0,000	0,000	0,000	00016	0,000	0,000	0,000	0,000
	-0,001	0,000	0,000	0,000	00021	0,000	0,000	0,000	0,000		0,000	0,000	0,000	0,000	00010	0,000	0,000	0,001	0,000
00004	0,000	0,000	0,000	0,000	00013	0,000	0,000	0,000	0,000	00010	0,000	0,000	0,000	0,000	00005	0,000	0,000	0,000	0,000
55501	0,000	0,000	0,000	0,000	00010	-0,001	0,000	0,000	0,000	00010	0,001	0,000	0,000	0,000	00000	0,003	0,002	0,000	0,000
00009	0,000	0,000	0,000	0,000	00025	0,000	0,000	0,000	0,000	00006	0,000	0,000	0,000	0,000	00017	0,000	0,000	0,000	0,000
30003	0,000	0,000	0,000	0,000	30023	0,000	0,000	0,001	0,000	30000	-0,003	-0,002	0,000	0,000	30017	0,000	0,000	0,000	0,000
00003	0,000	0,000	0,000	0,000		3,000	3,000	3,001	3,000		0,003	0,002	3,000	3,000		3,000	3,000	3,000	3,000
30003	0,000	0,000	0,000	0,000															
	0,000	0,000	0,000	0,000	1				1			1							

LEGENDA:

Tensione normale in direzione 1 per comportamento a piastra. Tensione normale in direzione 2 per comportamento a piastra. σр2 Tensione tangenziale 1-2 per comportamento a piastra.

Tensione (Piastra) tangenziale in direzione 2-3 τр23

Tensione normale in direzione 1 per comportamento a lastra. σL1 Tensione normale in direzione 2 per comportamento a lastra. σ_{L2} Tensione tangenziale 1-2 per comportamento a lastra. τL Tensione (Piastra) tangenziale in direzione 1-3 **TP13**

Platee - TENSIONI PER ECCENTRICITÀ ACCIDENTALE

														Platee	- tensio	ni per ed	ccentric	ità accio	dentale
Nodo	σ _{L1}	σ _{L2}	τL	TP13	Nodo	σ _{L1}	σ _{L2}	τL	TP13	Nodo	σ _{L1}	σ _{L2}	τL	TP13	Nodo	σ _{L1}	σ _{L2}	τL	TP13
Nodo	σ _{P1}	ОР2	τp	ТР23	Nodo	σ P1	ОР2	τp	ТР23	NOUO	σ P1	σ Р2	τp	ТР23	Nodo	σ _{P1}	σ _{P2}	τp	τр23
	[N/mm ²]	[N/mm ²]	[N/mm ²]	[N/mm ²]		[N/mm ²]	[N/mm ²]	[N/mm ²]	[N/mm ²]		[N/mm ²]	[N/mm ²]	[N/mm ²]	[N/mm ²]		[N/mm ²]	[N/mm ²]	[N/mm ²]	[N/mm ²]
Fondaz	zione					Platea	1												
Eccent	ricità ac	cidenta	le + in d	lirezion	e X														

19/07/2021

REV: 1

Pag. 48

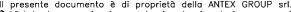
Note																				
Mary															Platee	- tensio	ni per e	ccentric	ità accio	lentale
Column C	Nodo	σ _{L1}	σ _{L2}	τL	TP13	Nodo	σ _{L1}	σ _{L2}	τL	TP13	Nodo	σ _{L1}	σ _{L2}	τL	TP13	Nodo	σ _{L1}	σ _{L2}	τL	TP13
	11000					11000					Houo					Houo				
	00013					00000					00022					00022				
0.000 0.00	00012		'	,		00002	'	'	,		00022			'		00023			,	
	00001					00015					00026					00011				
0.001 0.000 0.00	00001					00015					00026					00011				
0,000 0,00	00014	· ·				00021	.,		-	-	00024			-		00016	-			-
0.000 0.00	00014	.,				00021					00024					00016				
1,000 0,00	00004	· ·				00012			-		00010			-		00005				-
0.000	00004		'			00013	'	'	,	,	00010		,	'	,	00005		,	,	,
	00000					00025			-	-	00000			-		00017				-
	00009					00025					00006					00017				
Note	00003						0,000	0,000	0,000	0,000		0,000	0,000	0,000	0,000		0,000	0,000	0,000	0,000
	00003																			
0.000	Eccont		.,			\ \ V														1
1.000							0.000	0.000	0.000	0.000	00022	0.000	0.000	0.000	0.000	00022	0.000	0.000	0.000	0.000
0,000 0,00	00012	.,	'	,		00002	'	'	,	,	00022		,	'		00023	.,		,	,
1,000 0,00	00001					00015					00026					00011				
	00001					00015					00026					00011			,	
	00014					00021					00024			-		00016	-			
0.000	00014					00021					00024					00016				
	00004					00012					00010					00005				
	00004	.,	'	,		00013	.,	'	,	,	00010			'		00005	.,	,	,	,
	00000	· ·			-	00025			-	-	00006			-		00017	-			-
	00009					00025	'	'	,	'	00006	'	,	'	,	00017	,	,	,	'
Color Colo	00003						0,000	0,000	0,000	0,000		0,000	0,000	0,000	0,000		0,000	0,000	0,000	0,000
Company Comp	00003		'	,																
00112 0,000 0,00	Eccent					_ V														
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $							0.000	0.000	0.000	0.000	00022	0.000	0.000	0.000	0.000	00023	0.000	0.000	0.000	0.000
00001 0,0000 </td <td>00012</td> <td></td> <td></td> <td></td> <td></td> <td>00002</td> <td></td> <td></td> <td></td> <td></td> <td>00022</td> <td></td> <td></td> <td></td> <td></td> <td>00023</td> <td></td> <td></td> <td></td> <td></td>	00012					00002					00022					00023				
0,000 0,00	00001					00015					00026					00011				
00014	00001		.,	.,		00013		.,	.,		00020		.,	.,		00011	.,		.,	.,
0,000	00014	· ·				00021			-		00024			-		00016				-
00004	00011		'	,		00021	'	'	,	,	00021		,	'		00010	,	,	,	'
0,000 0,00	00004					00013	.,				00010					00005				
00009	00004					00013					00010					00003				
0,000 0,00	00009					00025					00006					00017				
00003	00003					00023					00000					00017				
Color	00003						0,000	0,000	0,000	0,000		0,000	0,000	0,000	0,000		0,000	0,000	0,000	0,000
Company Comp	00003			,																
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Eccent		.,	.,		Y														
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$							0.000	0.000	0.000	0.000	00022	0.000	0.000	0.000	0.000	00023	0.000	0.000	0.000	0.000
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	55512		'	,		55502		'	,	,	55522	'	,	'	,	55525		,	,	'
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	00001	· ·				00015			-		00026			-		00011	-			-
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	30001					30013					30020					30011				
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	00014					00021					00024					00016				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	30011			,		30021					30021			'		30010				'
0,000 0,000 <th< td=""><td>00004</td><td></td><td></td><td></td><td></td><td>00013</td><td></td><td></td><td></td><td></td><td>00010</td><td></td><td></td><td></td><td></td><td>00005</td><td></td><td></td><td></td><td></td></th<>	00004					00013					00010					00005				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	30004		.,			30013			.,		30010					30003				
0,000 0,000 <td< td=""><td>00000</td><td>· ·</td><td></td><td></td><td></td><td>00025</td><td></td><td></td><td>-</td><td>-</td><td>00006</td><td></td><td></td><td>-</td><td></td><td>00017</td><td>-</td><td></td><td></td><td>-</td></td<>	00000	· ·				00025			-	-	00006			-		00017	-			-
00003 0,000 0,000 0,000 0,000	00000			,		00025					00000					00017				
	00003	· ·					3,000	3,000	5,000	3,000		3,000	5,555	5,550	2,000		5,000	5,000	2,000	3,000
	30003																			

LEGENDA:

Tensione normale in direzione 1 per comportamento a piastra. σр1 Tensione normale in direzione 2 per comportamento a piastra. σР2 Tensione tangenziale 1-2 per comportamento a piastra. τр Tensione (Piastra) tangenziale in direzione 2-3 **τ**P23

Tensione normale in direzione 1 per comportamento a lastra. σ_{L1} Tensione normale in direzione 2 per comportamento a lastra. σ_{L2} Tensione tangenziale 1-2 per comportamento a lastra. τL Tensione (Piastra) tangenziale in direzione 1-3 **ΤΡ13**

NODI - REAZIONI VINCOLARI ESTERNE PER TIPOLOGIE DI CARICO NON SISMICHE



19/07/2021

REV: 1

Pag. 49

				Nodi - Da	azioni vincolari est	erne per tipologie di	carico non sismi
Id _{Nd}	СС	F _X	F _Y	F _z	M _X	My	Mz
		[N]	[N]	[N]	[N·m]	[N·m]	[N·m]
00001	001	0	0	0	0	0	0
00001	002	0	0	0	0	0	0
00001	003	0	0	0	0	0	0
00001	004	0	0	0	0	0	0
00002	001	0	0	0	0	0	0
00002	002	0	0	0	0	0	0
00002	003	0	0	0	0	0	0
00002	004	0	Ö	Ö	Ö	0	Ö
00003	001	0	0	0	0	0	0
00003	001	0	0	0	0	0	0
00003	003	0	0	0	0	0	0
00003	004	0	0	0	0	0	0
00004	001	0	0	0	0	0	0
00004	002	0	0	0	0	0	0
00004	003	0	0	0	0	0	0
00004	004	0	0	0	0	0	0
00005	001	0	1.155	2.234	18	0	0
00005	002	0	54	26	-7	0	0
00005	002	0	-153	-863	-34	0	0
00005	004	0	68	33	-8	0	0
00006	001	0	-1.158	2.235	-19	0	0
00006	002	0	-54	26	7	0	0
00006	003	0	155	-862	35	0	0
00006	004	0	-68	33	8	0	0
00009	001	0	0	0	0	0	0
00009	002	0	0	0	0	0	0
00009	003	o l	Ö	0	0	0	o o
00009	003	0	0	0	0	0	0
00010	001	0	0	0	0	0	0
00010	002	0	0	0	0	0	0
00010	003	0	0	0	0	0	0
00010	004	0	0	0	0	0	0
00011	001	0	0	0	0	0	0
00011	002	0	0	0	0	0	0
00011	003	0	0	0	0	0	o o
00011	004	o l	Ö	0	0	0	o o
00011	001	0	0	0	0	0	0
00012	002	0	0	0	0	0	0
00012	003	0	0	0	0	0	0
00012	004	0	0	0	0	0	0
00013	001	0	0	0	0	0	0
00013	002	0	0	0	0	0	0
00013	003	0	0	0	0	0	0
00013	004	0	0	0	0	0	0
00014	001	0	0	0	0	0	0
00014	002	0	0	0	0	0	0
00014	002	0	0	0	0	0	0
			0	0	0	0	0
00014	004	0	-	-		-	-
00015	001	0	0	0	0	0	0
00015	002	0	0	0	0	0	0
00015	003	0	0	0	0	0	0
00015	004	0	0	0	0	0	0
00016	001	0	0	0	0	0	0
00016	002	0	0	0	0	0	0
00016	003	0	0	0	0	0	0
00016	004	o l	Ö	0	0	0	o o
00017	001	0	3	1.519	0	0	0
							0
00017	002	0	0	-52	0	0	
00017	003	0	-2	-436	-1	0	0
00017	004	0	0	-65	0	0	0
00021	001	0	0	0	0	0	0
00021	002	0	0	0	0	0	0
00021	003	Ö	Ö	Ö	Ö	0	Ö
00021	004	ő	0	0	0	0	ő
			0	0	0	0	0
00022	001	0					
00022	002	0	0	0	0	0	0
00022	003	0	0	0	0	0	0

19/07/2021

REV: 1

Pag. 50

				Nodi - R	eazioni vincolari este	erne per tipologie di	carico non sismiche
Id _{Nd}	CC	Fx	Fy	Fz	Mx	M _Y	Mz
		[N]	[N]	[N]	[N·m]	[N·m]	[N·m]
00022	004	0	0	0	0	0	0
00023	001	0	0	0	0	0	0
00023	002	0	0	0	0	0	0
00023	003	0	0	0	0	0	0
00023	004	0	0	0	0	0	0
00024	001	0	0	0	0	0	0
00024	002	0	0	0	0	0	0
00024	003	0	0	0	0	0	0
00024	004	0	0	0	0	0	0
00025	001	0	0	0	0	0	0
00025	002	0	0	0	0	0	0
00025	003	0	0	0	0	0	0
00025	004	0	0	0	0	0	0
00026	001	0	0	0	0	0	0
00026	002	0	0	0	0	0	0
00026	003	0	0	0	0	0	0
00026	004	Λ	0	0	0	0	0

LEGENDA:

 $\textbf{Id}_{\textbf{Nd}}$ Identificativo del nodo.

Identificativo della tipologia di carico nella relativa tabella. Reazioni vincolari relative al sistema di riferimento globale X, Y, Z. CC Fx, Fy,

Fz, Mx, M_Y, M_Z

NODI - REAZIONI VINCOLARI ESTERNE PER EFFETTO DEL SISMA

	.,,,,		II VIIICOLA	TE ESTEINITE		DEL GIGI IA	
					Nodi - Reazio	ni vincolari esterne p	er effetto del sisma
Id _{Nd}	Dir	Fx	Fy	Fz	Mx	M _Y	Mz
		[N]	[N]	[N]	[N·m]	[N·m]	[N·m]
00001	X	0	0	0	0	0	0
00001	Y	0	0	0	0	0	0
00001	Z	0	0	0	0	0	0
00002	X	0	0	0	0	0	0
00002	Y	0	0	0	0	0	0
00002	Z	0	0	0	0	0	0
00003	X	0	0	0	0	0	0
00003	Y	0	0	0	0	0	0
00003	Z	0	0	0	0	0	0
00004	X	0	0	0	0	0	0
00004	Y	0	0	0	0	0	0
00004	Z	0	0	0	0	0	0
00005	X	-134	0	0	0	-59	8
00005	Y	0	-179	-206	3	0	0
00005	Z	0	0	0	0	0	0
00006	X	-138	0	0	0	-59	-8
00006	Y	0	-178	206	3	0	0
00006	Z	0	0	0	0	0	0
00009	X	2	-3	0	0	0	0
00009	Y	0	0	0	0	0	0
00009	Z	0	0	0	0	0	0
00010	X	2	3	0	0	0	0
00010	Y	0	0	0	0	0	0
00010	Z	0	0	0	0	0	0
00011	X	0	0	0	0	0	0
00011	Y	0	0	0	0	0	0
00011	Z	0	0	0	0	0	0
00012	X	0	0	0	0	0	0
00012	Y	0	0	0	0	0	0
00012	Z	0	0	0	0	0	0
00013	X	2	-3	0	0	0	0
00013	Y	0	0	0	0	0	0
00013	Z	0	0	0	0	0	0
00014	X	2	3	0	0	0	0
00014	Y	0	0	0	0	0	0
00014	Z	0	0	0	0	0	0
00015	X	0	0	0	0	0	0
00015	Y	0	0	0	0	0	0

19/07/2021

REV: 1

Pag. 51

er effetto del si	ni vincolari esterne p	Nodi - Reazior					
Mz	My	Mx	Fz	Fy	Fx	Dir	Id _{Nd}
[N·m]	[N·m]	[N·m]	[N]	[N]	[N]		
0	0	0	0	0	0	Z	00015
0	0	0	0	0	0	X	00016
0	0	0	0	0	0	Y	00016
0	0	0	0	0	0	Z	00016
0	-64	0	0	0	-245	X	00017
0	0	10	0	-153	0	Y	00017
0	0	0	0	0	0	Z	00017
0	0	0	0	3	-2	X	00021
0	0	0	0	0	0	Y	00021
0	0	0	0	0	0	Z	00021
0	0	0	0	-3	-2	X	00022
0	0	0	0	0	0	Y	00022
0	0	0	0	0	0	Z	00022
0	0	0	0	3	-2	X	00023
0	0	0	0	0	0	Y	00023
0	0	0	0	0	0	Z	00023
0	0	0	0	-3	-2	X	00024
0	0	0	0	0	0	Y	00024
0	0	0	0	0	0	Z	00024
0	0	0	0	0	3	Х	00025
0	Ó	0	Ó	0	0	Y	00025
0	Ó	0	Ó	0	0	Z	00025
0	0	0	0	0	3	Х	00026
0	Ó	0	Ó	0	0	Y	00026
0	Ó	Ó	Ó	o l	0	Z	00026

LEGENDA:

Identificativo del nodo. Id_{Nd} Dir Direzione del sisma.

Reazioni vincolari relative al sistema di riferimento globale X, Y, Z.

F_X, F_Y, F_z, M_X, M_Y, M_z

NODI - REAZIONI VINCOLARI ESTERNE PER ECCENTRICITÀ ACCIDENTALE

						Nodi - Reazioni vinco	lari esterne per ecce	ntricità accidentale
Id _{Nd}	Dir	е	Fx	F _Y	Fz	Mx	M _Y	Mz
			[N]	[N]	[N]	[N·m]	[N·m]	[N·m]
00001	X	+	0	0	0	0	0	0
00001	X	-	0	0	0	0	0	0
00001	Y	+	0	0	0	0	0	0
00001	Y	-	0	0	0	0	0	0
00002	X	+	0	0	0	0	0	0
00002	X	-	0	0	0	0	0	0
00002	Y	+	0	0	0	0	0	0
00002	Y	-	0	0	0	0	0	0
00003	X	+	0	0	0	0	0	0
00003	X	-	0	0	0	0	0	0
00003	Y	+	0	0	0	0	0	0
00003	Υ	-	0	0	0	0	0	0
00004	X	+	0	0	0	0	0	0
00004	X	-	0	0	0	0	0	0
00004	Y	+	0	0	0	0	0	0
00004	Y	-	0	0	0	0	0	0
00005	X	+	0	0	0	0	0	0
00005	X	-	0	0	0	0	0	0
00005	Y	+	0	0	0	0	0	0
00005	Υ	-	0	0	0	0	0	0
00006	X	+	0	0	0	0	0	0
00006	X	-	0	0	0	0	0	0
00006	Y	+	0	0	0	0	0	0
00006	Y	-	0	0	0	0	0	0
00009	X	+	0	0	0	0	0	0
00009	X	-	0	0	0	0	0	0
00009	Y	+	0	0	0	0	0	0
00009	Y	-	0	0	0	0	0	0
00010	Х	+	0	0	0	0	0	0
00010	X	-	0	0	0	0	0	0

19/07/2021

Pag. 52

						Nadi Bassiani vinas	lari ostorno nor ossa	utvicità secidentale
Id _{Nd}	Dir			-		Nodi - Reazioni vinco		
IGNd	DIF	е	F x [N]	F _Y [N]	Fz [N]	M _X [N·m]	M _Y [N·m]	M z [N·m]
00010	Y	+	0	0	0	0	0	0
00010	Ϋ́		Ö	Ö	ő	Ö	o o	0 0
00010	X	+	0	0	0	0	0	0
00011	X	T	0	0	0	0	0	0
00011	Y		0	0	0	0	0	0
		+						
00011	Y	-	0	0	0	0	0	0
00012	X	+	0	0	0	0	0	0
00012	X	-	0	0	0	0	0	0
00012	Y	+	0	0	0	0	0	0
00012	Y	-	0	0	0	0	0	0
00013	X	+	0	0	0	0	0	0
00013	X	-	0	0	0	0	0	0
00013	Y	+	0	0	0	0	0	0
00013	Y	-	0	0	0	0	0	0
00014	Х	+	0	0	0	0	0	0
00014	Х	-	0	0	0	0	0	0
00014	Υ	+	0	0	0	0	0	0
00014	Y	_	0	0	0	0	0	0
00015	X	+	0	0	0	0	0	0
00015	X	:	0	0	ő	, o	0	0
00015	Y	+	Ö	Ö	ő	Ö	Ŏ	0 0
00015	Ϋ́	'	0	0	0	0	0	0
00015	X	+	0	0	0	0	0	0
00016	X	-	0	0	0	0	0	0
00016	Ŷ		0	0	0	0	0	0
	Y	+	0	0	0	0	0	0
00016		-						
00017	X	+	0	0	0	0	0	0
00017	X	-	0	0	0	0	0	0
00017	Y	+	0	0	0	0	0	0
00017	Y	-	0	0	0	0	0	0
00021	X	+	0	0	0	0	0	0
00021	X	-	0	0	0	0	0	0
00021	Y	+	0	0	0	0	0	0
00021	Y	-	0	0	0	0	0	0
00022	X	+	0	0	0	0	0	0
00022	X	-	0	0	0	0	0	0
00022	Y	+	0	0	0	0	0	0
00022	Υ	-	0	0	0	0	0	0
00023	Х	+	0	0	0	0	0	0
00023	Х	-	0	0	0	0	0	0
00023	Y	+	0	0	0	0	0	0
00023	Y	-	0	0	0	0	0	0
00024	Х	+	0	0	0	0	0	0
00024	X	-	Ö	Ö	o o	o o	Ö	0
00024	Ŷ	+	0	0	0	0	0	0
00024	Ϋ́	-	0	0	ő	0 0	0	0
00025	X	+	0	0	0	0	0	0
00025	X	'_	0	0	0	0	0	0
00025	Y	+	0	0	0	0	0	0
00025	Ϋ́	-	0	0	0	0	0	0
00025	X	+	0	0	0	0	0	0
00026	X	+	0	0	0	0	0	0
00026	Y	+	0	0	0	0	0	0
	Y	-	0	0	0	0	0	0
00026	Y		U	U	U	U	U	U

LEGENDA:

Identificativo del nodo. $\textbf{Id}_{\textbf{Nd}}$ Dir Direzione del sisma.

Segno dell'eccentricità accidentale. е

F_X, F_Y, Reazioni vincolari relative al sistema di riferimento globale X, Y, Z.

Fz, Mx, M_Y, M_z

EDIFICIO - VERIFICHE DI RIPARTIZIONE DELLE FORZE SISMICHE

Comm.: C21-025-S05

REV: 1 Pag. 53

					Edificio - Verif	iche di ripartizione d	delle forze sismiche
Dir	V _{T,tot}	V _{T,Pil}	% _{T,Pil}	V _{T,Set}	%o⊤,Set	V _{T,atr}	% _{T,atr}
	[N]	[N]	[%]	[N]	[%]	[N]	[%]
X	202	0	0,0	0	0,0	202	100,0
Υ	410	0	0,0	0	0,0	410	100,0

LEGENDA:

V_{T,tot} Taglio totale alla quota Zero Sismico (nella direzione X o Y).

Taglio totale alla quota Zero Sismico assorbito dai pilastri (nella direzione X o Y). $V_{T,Pil}$

%т,ріі Percentuale del Taglio totale alla quota Zero Sismico assorbito dai pilastri (nella direzione X o Y).

 $V_{T,Set}$ Taglio totale alla quota Zero Sismico assorbito dai setti (nella direzione X o Y).

%_{T,Set} Percentuale del Taglio totale alla quota Zero Sismico assorbito dai setti (nella direzione X o Y). $V_{T,atr}$ Taglio totale alla quota Zero Sismico NON assorbito dai pilastri e dai setti (nella direzione X o Y).

%_{T,atr} Percentuale del Taglio totale alla quota Zero Sismico NON assorbito dai pilastri e dai setti (nella direzione X o Y).

EDIFICIO - VERIFICA PER ANALISI STATICA

			Edificio - Verific	a per analisi statica
Id _{sm}	Т	T _{c,cf}	T _{d,confr}	T _{Nrm}
	[s]	[s]	[s]	[s]
Sisma in direzione X	0,01	1,12	1,84	0,03
Sisma in direzione Y	0,01	1,12	1,84	0,03

Pareti - VERIFICHE PRESSOFLESSIONE RETTA ALLO SLU (Elevazione)

LEGENDA:

 Id_{sm} Descrizione del sisma.

Periodo della Struttura calcolato con la formula di Rayleigh.

2.5 · Tc (Periodo di inizio del tratto a velocità costante dello spettro di progetto). $T_{c,cf}$ Td (Periodo di inizio del tratto a spostamento costante dello spettro di progetto). $T_{d,confr}$ Periodo stimato con la (4.6) UNI EN 1998-1:2013 TNrm

										<u> </u>		17171			(= 10 10				
														Pareti	 Verifich 	e press	oflessione	e retta allo	o SLU
Di		Nod						Nod						Nod					
r	Pos	0	N _{Ed}	M _{Ed}	As	Adf	CS	0	N _{Ed}	M _{Ed}	As	Adf	CS	0	NEd	M _{Ed}	As	Adf	CS
			[N]	[N·m]	[cm²/cm]	[cm²/cm]			[N]	[N·m]	[cm²/cm]	[cm²/cm]			[N]	[N·m]	[cm²/cm]	[cm²/cm]	
Pia	no Ter	ra			Par	ete P1-P2									Paret	e P1-P2	2		
Р		0000	7.542	422	0.07054	0.07054	NC	0000	7.054	424	0.07054	0.07054	NS	0000	0	_	0.07054	0.07054	
١ ٢	Α	5	-7.543	422	0,07854	0,07854	NS	6	-7.351	424	0,07854	0,07854	N5	7	0	0	0,07854	0,07854	-
	P		-7.543	422	0,07854	0,07854	NS		-7.352	424	0,07854	0,07854	NS		0	0	0,07854	0,07854	-
S	Α	ĺ	-5.177	109	0,07854	0,07854	NS		-5.325	109	0,07854	0.07854	NS		0	0	0,07854	0.07854	-
	Р		-5.177	58	0,07854	0,07854	NS		-5.325	59	0,07854	0,07854	NS		0	0	0,07854	0,07854	-
		0000	_	_				0001			i			0001					
P	Α	8	0	0	0,07854	0,07854	-	7	1.247	210	0,07854	0,07854	NS	8	-7.977	94	0,07854	0,07854	NS
	P	_	0	0	0.07854	0.07854	-		1.247	113	0.07854	0.07854	NS	•	-7.977	50	0,07854	0.07854	NS
S	Α	1	0	0	0,07854	0,07854	-		0	0	0,07854	0,07854	-		-606	10	0,07854	0,07854	NS
	P		0	0	0,07854	0,07854	_		-254	26	0,07854	0,07854	NS		0	0	0,07854	0,07854	-
	-	0001	-		Ĺ			0002				,		0002			· ·		
P	Α	9	0	0	0,07854	0,07854	-	0	-7.430	91	0,07854	0,07854	NS	7	-4.160	151	0,07854	0,07854	NS
	P		0	0	0.07854	0.07854	_		-7.430	49	0.07854	0.07854	NS	'	-4.160	81	0.07854	0.07854	NS
S	A	1	-2.496	25	0,07854	0,07854	NS		0	0	0,07854	0,07854	-		0	0	0,07854	0,07854	-
	P		0	0	0,07854	0,07854	-		0	0	0,07854	0,07854	_		0	0	0,07854	0,07854	_
		0002	_		1			0002			.,	,		0003					
P	Α	8	0	0	0,07854	0,07854	-	9	0	0	0,07854	0,07854	-	0003	-3.255	142	0,07854	0,07854	NS
	P	"	-2.007	27	0.07854	0.07854	NS		-2.019	26	0.07854	0.07854	NS	0	-3.255	76	0.07854	0.07854	NS
S	A		0	0	0,07854	0,07854	-		0	0	0,07854	0,07854	-		0	0	0,07854	0,07854	-
	P		0	0	0,07854	0,07854	_		0	0	0,07854	0,07854	_		0	0	0,07854	0,07854	_
	- 1	0003	J	_ J	0,07031	0,07031		0003		0	0,07031	0,07031			<u> </u>	_ J	0,07031	0,07037	
P	Α	1	-2.012	139	0,07854	0,07854	NS	2	0	0	0,07854	0,07854	-						
	Р	1	-2.012	75	0,07854	0,07854	NS	2	-1.066	14	0.07854	0.07854	NS						
S	A	1	0	0	0,07854	0,07854	-		-2.465	19	0,07854	0,07854	NS						1
3	D		0	0	0,07854	0,07854	_		-2.403	0	0,07854	0,07854							
	P		U	U	0,07654	0,07654			U	U	0,07654	0,07654							

LEGENDA:

Dir $\label{eq:decomposition} \mbox{Direzione [P] = principale (asse locale 1) - [S] = secondaria (asse locale 2).}$

Pos Posizione [A] = anteriore - [P] = posteriore.

As Area delle armature esecutive per unità di lunghezza.

Armatura disponibile per la flessione Adf

Coefficiente di sicurezza ([NS] = Non Significativo se $CS \ge 100$; [VNR]= Verifica Non Richiesta; Informazioni aggiuntive sulla condizione: [V] = statica; [E] = eccezionale; [S] = sismica; [N] = sismica non lineare). Sollecitazioni di progetto ($N_{Ed} < 0$: compressione). CS

 N_{Ed} , M_{Ed}

presente documento è di proprietà della ANTEX GROUP srl. Vietato la comunicazione a terzi o la riproduzione senza il permesso scritto della suddetta.

Pareti - VERIFICHE A TAGLIO PER PRESSOFLESSIONE RETTA ALLO SLU (Elevazione)

							Pareti - Ve	rifiche a tag	io per press	oflessione re	tta allo SLU
Id _{Nd}	V _{Ed,2}	CS	V _{Rcd}	$V_{Rsd,s}$	N _{Ed}	$V_{Rsd,p}$	V _{R1}	$V_{Rd,f}$	Ctg⊛	Asw	Adw
	[N]		[N]	[N]	[N]	[N]	[N]	[N]		[cm²/cm]	[cm²/cm]
Piano Terra			Parete P1-P2						Parete P1-P2	2	
00005	5.416	39,78	215.461	0	8.141	0	0	0	0,00	0,07854	0,00000
00006	5.381	40,05	215.492	0	8.342	0	0	0	0,00	0,07854	0,00000
00007	2.226	96,36	214.489	0	1.657	0	0	0	0,00	0,07854	0,00000
00008	2.210	97,04	214.465	0	1.496	0	0	0	0,00	0,07854	0,00000
00017	63	NS	214.278	0	254	0	0	0	0,00	0,07854	0,00000
00018	6.384	33,56	214.240	0	-791	0	0	0	0,00	0,07854	0,00000
00019	298	NS	214.613	0	2.486	0	0	0	0,00	0,07854	0,00000
00020	6.363	33,67	214.240	0	-279	0	0	0	0,00	0,07854	0,00000
00027	3.741	57,43	214.843	0	4.018	0	0	0	0,00	0,07854	0,00000
00028	3.593	59,72	214.577	0	2.247	0	0	0	0,00	0,07854	0,00000
00029	2.921	73,41	214.438	0	1.318	0	0	0	0,00	0,07854	0,00000
00030	4.254	50,46	214.636	0	2.638	0	0	0	0,00	0,07854	0,00000
00031	572	NS	214.665	0	2.829	0	0	0	0,00	0,07854	0,00000
00032	557	NS	214.616	0	2.507	0	0	0	0,00	0,07854	0,00000

LEGENDA:

Id_{Nd} Identificativo del nodo.

V_{Ed,2} Taglio di progetto in direzione 2.

CS Coefficienti di sicurezza relativi alle sollecitazioni "V_{Ed,2}" ([NS] = Non Significativo per valori di CS >= 100).

 $\begin{array}{lll} \textbf{V}_{\textbf{Rcd}} & \text{Resistenza a taglio compressione del calcestruzzo.} \\ \textbf{V}_{\textbf{Rsd,s}} & \text{Resistenza a taglio trazione delle staffe.} \\ \textbf{N}_{\textbf{Ed}} & \text{Sforzo Normale utilizzato per il calcolo di α_{C}.} \\ \textbf{V}_{\textbf{Rsd,p}} & \text{Resistenza a taglio trazione dei ferri piegati.} \\ \textbf{V}_{\textbf{R1}} & \text{Resistenza a taglio in assenza di armatura incrociata.} \\ \textbf{V}_{\textbf{Rd,f}} & \text{Resistenza a taglio dovuta al rinforzo FRP.} \\ \textbf{Ctg} & \text{Cotangente dell'angolo } \Theta \text{ utilizzata nella verifica.} \\ \end{array}$

Asw Area delle staffe per unità di lunghezza.
 Adw Armatura disponibile per il taglio

Pareti - VERIFICHE DELLE TENSIONI DI ESERCIZIO (Elevazione)

											Paret	i - verifiche	e delle tens	ioni di	esercizio
Nodo/	Dir		Co	Compress mpressione	sione calces calcestruz		,					zione accia cciaio/FRP			
Tp _{rnf}	DII	Id _{Cmb}	σα	σ _{cd,amm}	N _{Ed}	M _{Ed}	cs	Verific ato	Id _{Cmb}	σ _{at}	Otd,amm	N _{Ed}	M _{Ed}	cs	Verific ato
			[N/mm ²]	[N/mm ²]	[N]	[N·m]				[N/mm ²]	[N/mm ²]	[N]	[N·m]		
Piano Terr	ra			Parete P	1-P2							Parete P1	-P2		
	D	RAR	0,009	19,92	5.523	0	NS	SI	RAR	0,000	360,00	5.523	0	-	SI
00006	Р	QPR	0,012	14,94	7.590	0	NS	SI	-	-	-	-	-	-	-
00006	c	RAR	0,008	19,92	4.807	0	NS	SI	RAR	0,000	360,00	4.807	0	-	SI
	3	QPR	0,009	14,94	5.544	0	NS	SI	-	-	-	-	-	-	-

LEGENDA:

Rinf. Indica la presenza del rinforzo sulla sezione di verifica.

Dir Direzione [P] = principale (asse locale 1) - [S] = secondaria (asse locale 2).

Identificativo della Combinazione di Azione: [QPR] = Quasi Permanente - [FRQ] = Frequente - [RAR] = Rara.

 $\begin{array}{ll} \sigma_{cc} & \text{Tensione massima di compressione nel calcestruzzo della Trave/Rinforzo.} \\ \sigma_{cd,amm} & \text{Tensione ammissibile per la verifica a compressione del calcestruzzo.} \\ \sigma_{at} & \text{Tensione massima di trazione nell'acciaio della Trave/Rinforzo o nel FRP.} \\ \sigma_{td,amm} & \text{Tensione ammissibile per la verifica a trazione dell'acciaio/rinforzo.} \\ \end{array}$

 N_{Ed} , Sollecitazioni di progetto.

MEd

CS Coefficiente di Sicurezza (= $\sigma_{cd, amm}/\sigma_{cc}$; $\sigma_{td, amm}/\sigma_{at}$). [NS] = Non Significativo (CS \geq 100).

Verific [SI] = La verifica è soddisfatta ($\sigma_{cc} \leq \sigma_{cd,amm}$; $\sigma_{at} \leq \sigma_{td,amm}$). [NO] = La verifica NON è soddisfatta ($\sigma_{cc} > \sigma_{cd,amm}$; $\sigma_{at} > \sigma_{td,amm}$).

ato

Nota Nella tabella, per ogni elemento, viene riportato il nodo della shell che ha il coefficiente di sicurezza (CS) più piccolo.

Pareti - VERIFICA ALLO STATO LIMITE DI FESSURAZIONE (Elevazione)

l presente documento è di proprietà della ANTEX GROUP srl.

È Vietato la comunicazione a terzi o la riproduzione senza il permesso scritto della suddetta. La società tutela i propri diritti a rigore di Legge.

0,400

0,300

SI

									Pareti - v	verifica allo	stato limi	te di fes	surazione
Nodo	Dir	Id _{Cmb}	N _{Ed}	M _{Ed}	σ _{ct,f}	σt	Esm	Ae	Δsm	₩d	Wamm	cs	Verificat o
			[N]	[N·m]	[N/mm ²]	[N/mm ²]		[cm²]	[mm]	[mm]	[mm]		
Piano Terra	1		Parete P	1-P2		AA	= PCA			Parete P	1-P2		
NOTA: L'ele	emento NON	è fessurato.	Di seguito	si riporta i	l nodo strui	turale per	la quale si	riscontra la	a massima te	ensione di t	razione(m	ax σ _{ct,f})	
00007		FRQ	-1.985	· -	0,00	2,58	0 E+00	0	0	0,000	0,400		SI
	P	QPR	-765	-	0,00	2,58	0 E+00	0	0	0,000	0,300	-	SI

0 E+00

0 E+00

0

0,000

0,000

LEGENDA:

 σ_t

Esm

Dir

899

Direzione [P] = principale (asse locale 1) - [S] = secondaria (asse locale 2). Identificativo dell'aggressività dell'ambiente: [PCA] = "Ordinario"; [MDA] = "Aggressivo"; [MLA] = "Molto aggressivo". AΑ Id_{Cmb} Identificativo della Combinazione di Azione: [QPR] = Quasi Permanente - [FRQ] = Frequente - [RAR] = Rara.

0,00

0,00

N_{Ed}, M_{Ed} Sollecitazioni di progetto.

S

Tensione massima di trazione nel calcestruzzo per la fessurazione, calcolata nell'ipotesi di calcestruzzo resistente a trazione. Se tale valore è maggiore di σt la σct,f sezione è soggetta a fessurazione.

2,58

2,58

FRQ

N.B. I valori negativi indicano una sezione interamente compressa. In tal caso le sollecitazioni forniscono il minimo valore di compressione.

Tensione massima di trazione nel calcestruzzo relativa allo stato limite di formazione delle fessure [relazione (4.1.13) del § 4.1.2.2.4 del DM 2018].

Deformazione unitaria media delle barre di armatura.

Area efficace del calcestruzzo teso. Ae Distanza media tra le fessure. Δ_{sm}

Wa Valore di calcolo di apertura massima delle fessure.

Wamn Valore ammissibile di apertura delle fessure.

Coefficiente di Sicurezza (= W_d / W_{amm}). [NS] = Non Significativo (CS \geq 100). [-] = Fessurazioni nulle (W_d = 0). CS

 $[SI] = W_d \le W_{amm}$; $[NO] = W_d > W_{amm}$ Verificato

PIANI - VERIFICHE REGOLARITÀ (Elevazione)

RE	GOLARITÁ DELLA STRUTTURA IN PIANTA	
a)	la configurazione in pianta è compatta ossia la distribuzione di masse e rigidezze è approssimativamente simmetrica rispetto a due direzioni ortogonali e il contorno di ogni orizzontamento è convesso; il requisito può ritenersi soddisfatto, anche in presenza di rientranze in pianta, quando esse non influenzano significativamente la rigidezza nel piano dell'orizzontamento e, per ogni rientranza, l'area compresa tra il perimetro dell'orizzontamento e la linea convessa circoscritta all'orizzontamento non supera il 5% dell'area dell'orizzontamento;	NO
b)	il rapporto tra i lati del rettangolo circoscritto alla pianta di ogni orizzontamento è inferiore a 4;	NO
c)	ciascun orizzontamento ha una rigidezza nel proprio piano tanto maggiore della corrispondente rigidezza degli elementi strutturali verticali da potersi assumere che la sua deformazione in pianta influenzi in modo trascurabile la distribuzione delle azioni sismiche tra questi ultimi e ha resistenza sufficiente a garantire l'efficacia di tale distribuzione;	SI
	La struttura non è regolare	in pianta.
RE	GOLARITÁ DELLA STRUTTURA IN ALTEZZA	
d)	tutti i sistemi resistenti alle azioni orizzontali si estendono per tutta l'altezza della costruzione o, se sono presenti parti aventi differenti altezze, fino alla sommità della rispettiva parte dell'edificio;	SI
e)	massa e rigidezza rimangono costanti o variano gradualmente, senza bruschi cambiamenti, dalla base alla sommità della costruzione (le variazioni di massa da un orizzontamento all'altro non superano il 25%, la rigidezza non si riduce da un orizzontamento a quello sovrastante più del 30% e non aumenta più del 10%); ai fini della rigidezza si possono considerare regolari in altezza strutture dotate di pareti o nuclei in c.a. o di pareti e nuclei in muratura di sezione costante sull'altezza o di telai controventati in acciaio, ai quali sia affidato almeno il 50% dell'azione sismica alla base;	NO
f)	nelle strutture intelaiate, il rapporto tra la capacità e la domanda allo SLV non è significativamente diverso, in termini di resistenza, per orizzontamenti diversi (tale rapporto, calcolato per un generico orizzontamento, non deve differire più del 30% dall'analogo rapporto calcolato per l'orizzontamento adiacente); può fare eccezione l'ultimo orizzontamento di strutture intelaiate di almeno tre orizzontamenti;	NO
g)	eventuali restringimenti della sezione orizzontale della costruzione avvengano con continuità da un orizzontamento al successivo; oppure avvengano in modo che il rientro di un orizzontamento non superi il 10% della dimensione corrispondente all'orizzontamento immediatamente sottostante, né il 30% della dimensione corrispondente al primo orizzontamento. Fa eccezione l'ultimo orizzontamento di costruzioni di almeno quattro orizzontamenti, per il quale non sono previste limitazioni di restringimento;	SI

La struttura è regolare in altezza.

Piani - Verifiche Regolarità

Tal.	Q _{Lv}	ш	D.d	T	M	Ks	SLU	R	eff	R	ric
Id _{Piano}	Q _{Lv}	ΠLv	Rd _{Tmp}	Ir _{Tmp}	M _{SLU}	X	Y	X	Y	X	Y
	[m]	[m]			[N·s²/m]	[N/cm]	[N/cm]	[N]	[N]	[N]	[N]
Piano Terra	0,00	0,50	NO	NO	335	245.523	618.445	0	0	0	0

LEGENDA:

Id_{Piano} Identificativo del livello o piano. $\boldsymbol{Q}_{\text{Lv}}$ Quota del livello o piano. Altezza del livello o piano.

 Rd_{Tmp} Per i piani con riduzione dei tamponamenti, sono state incrementate le azioni di calcolo per gli elementi verticali (pilastri e pareti) di un fattore 1,4: [SI] = Piano

con riduzione dei tamponamenti - [NO] = Piano senza riduzione dei tamponamenti.

 Ir_{Tmp} Per piani con distribuzione dei tamponamenti in pianta fortemente irregolare, l'eccentricità accidentale è stata incrementata di un fattore pari a 2: [SI] = Distribuzione tamponamenti irregolare fortemente - [NO] = Distribuzione tamponamenti regolare.

presente documento è di proprietà della ANTEX GROUP srl. Vietato la comunicazione a terzi o la riproduzione senza il permesso scritto della suddetta.

Mslu Massa eccitabile della struttura allo S.L. Ultimo, nelle direzioni X, Y, Z.

Valori delle Rigidezze di Piano, valutate allo SLU, riferite agli assi X ed Y del riferimento globale. Kslu

Valori delle Resistenze Effettive di Piano, valutate allo SLU, relative al sistema di riferimento globale X, Y, Z. $\mathbf{R}_{\mathsf{eff}}$ R_{ric}
(*) Valori delle Resistenze Richieste di Piano, valutate allo SLU, relative al sistema di riferimento globale X, Y, Z.

Vedi tabelle "Livelli o Piani" o "Solai e Balconi".

EFFETTI DELLE NON LINEARITÀ GEOMETRICHE PER SISMA (Elevazione)

							Effet	ti delle non li	nearità geometi	riche per sisma
Id _{Piano}	Q _{Lv}	H _{Lv}	$\delta_{d,X}$	$\delta_{d,Y}$	$P_{\theta,X}$	$P_{\theta,Y}$	T _{0,X}	T _{0,Y}	Θx	Θγ
	[m]	[m]	[cm]	[cm]	[N]	[N]	[N]	[N]	[rad]	[rad]
Piano Terra	0,00	0,50	0,0021	0,0008	4.914	4.914	509	509	4,0029 E-04	1,5891 E-04

LEGENDA:

 Id_{Piano} Identificativo del livello o piano. $\boldsymbol{H_{\text{Lv}}}$ Altezza del livello o piano.

Componenti dello spostamento differenziale rispetto al piano inferiore. $\delta_{d,X},\,\delta_{d,Y}$ $P_{\theta,X}$, $P_{\theta,Z}$ Valori del carico verticale del piano utilizzato per il calcolo di " θ ". $T_{\theta,X},\ T_{\theta,Y}$ Valori del tagliante di piano utilizzati per il calcolo di " θ ".

Coefficienti " θ " del piano. θx , θy

Le forze sismiche orizzontali agenti sui piani caratterizzati da valori di θ compresi tra 0,1 e 0,2, sono state incrementate del fattore "1/(1-θ)", per portare in conto Nota

gli effetti del secondo ordine.

PIANI - VERIFICHE AGLI SPOSTAMENTI

									Piani - Verifiche
Id _{Piano}	Q _{Lv}	H _{Lv}	δ _d ,x	$\delta_{d,Y}$	$C_{lg}T_{mp}$	δlim	δlim- δd,x	δlim= δd,Y	Note
	[m]	[m]	[cm]	[cm]		[cm]	[cm]	[cm]	
Piano Terra	0,00	0,50	0,0002	0,0001	RF	0,2500	0,2498	0,2499	Verificato

LEGENDA:

Identificativo del livello o piano. **Id**Piano Quota del livello o piano. \mathbf{Q}_{Lv} Altezza del livello o piano. HLV

Tipo di collegamento delle tamponature alla struttura: [R] = Rigido - [E] = Elastico - [RF] = Rigidamente fragili - [RD] = Rigidamente Duttili. $C_{lg}T_{mp}$

Valore limite dello spostamento differenziale indicato dalla normativa. δ_{lim} Componenti dello spostamento differenziale rispetto al piano inferiore. $\delta_{d,X}$, $\delta_{d,Y}$

PLATEE - VERIFICHE PRESSOFLESSIONE RETTA ALLO SLU (Fondazione)

														Plat	ee - Vei	rifiche p	ressofle	- ssione r	etta allo SLU
Dir	Pos	Nodo	N _{Ed}	M _{Ed}	As	Adf	CS	Nodo	N _{Ed}	M _{Ed}	As	Adf	CS	Nodo	N _{Ed}	M _{Ed}	As	Adf	CS
	L_		[N]	[N·m]	[cm²/cm]				[N]	[N·m]	[cm ² /cm]	[cm ² /cm]			[N]	[N·m]	[cm²/cm]	[cm ² /cm]	
	azione					tea 1													
P	S	00001	0	0	0,078 54	0,078 54	-	00002	0	0	0,078 54	0,078 54	-	00003	0	0	0,078 54	0,078 54	-
	I		0	199	0,078 54	0,078 54	NS		0	199	0,078 54	0,078 54	NS		0	199	0,078 54	0,078 54	NS
S	S		0	0	0,078 54	0,078 54	-		0	0	0,078 54	0,078 54	-		0	0	0,078 54	0,078 54	-
	I		0	211	0,078 54	0,078 54	NS		0	211	0,078 54	0,078 54	NS		0	211	0,078 54	0,078 54	NS
Р	S	00004	0	0	0,078 54	0,078 54	-	00005	0	0	0,078 54	0,078 54	-	00006	0	0	0,078 54	0,078 54	-
	I		0	199	0,078 54	0,078 54	NS		0	1.129	0,078 54	0,078 54	72,0 6		0	1.129	0,078 54	0,078 54	72,06
S	S		0	0	0,078 54	0,078 54	-		0	0	0,078 54	0,078 54	-		0	0	0,078 54	0,078 54	-
	I		0	211	0,078 54	0,078 54	NS		0	552	0,078 54	0,078 54	NS		0	553	0,078 54	0,078 54	NS
Р	S	00009	0	0	0,078 54	0,078 54	-	00010	0	0	0,078 54	0,078 54	-	00011	0	0	0,078 54	0,078 54	-
	I		0	561	0,078 54	0,078 54	NS		0	561	0,078 54	0,078 54	NS		0	47	0,078 54	0,078 54	NS
S	S		-23	11	0,078 54	0,078 54	NS		-23	12	0,078 54	0,078 54	NS		0	0	0,078 54	0,078 54	-
	I		0	33	0,078 54	0,078 54	NS		0	33	0,078 54	0,078 54	NS		0	252	0,078 54	0,078 54	NS
Р	S	00012	0	0	0,078 54	0,078 54	-	00013	0	0	0,078 54	0,078 54	-	00014	0	0	0,078 54	0,078 54	-

presente documento è di proprietà della ANTEX GROUP srl.

Vietato la comunicazione a terzi o la riproduzione senza il permesso scritto della suddetta.

19/07/2021

REV: 1

Pag. 57

Dir	Pos	Nodo	NEd	Med	As	Adf	CS	Nodo	NEd	M _{Ed}	As	Adf	CS	Nodo	NEd	M _{Ed}	As	Adf	CS
			[N]	[N·m]	[cm ² /cm]	[cm ² /cm]			[N]	[N·m]	[cm ² /cm]	[cm ² /cm]			[N]	[N·m]	[cm ² /cm]	[cm ² /cm]	
	I		0	47	0,078 54	0,078 54	NS		0	561	0,078 54	0,078 54	NS		0	561	0,078 54	0,078 54	NS
S	S		0	0	0,078 54	0,078 54	-		-23	11	0,078 54	0,078 54	NS		-23	11	0,078 54	0,078 54	NS
	I		0	252	0,078 54	0,078 54	NS		0	33	0,078 54	0,078 54	NS		0	33	0,078 54	0,078 54	NS
Р	S	00015	0	0	0,078 54	0,078 54	-	00016	0	0	0,078 54	0,078 54	-	00017	0	0	0,078 54	0,078 54	-
	I		0	47	0,078 54	0,078 54	NS		0	47	0,078 54	0,078 54	NS		0	1.274	0,078 54	0,078 54	63,86
S	S		0	0	0,078 54	0,078 54	-		0	0	0,078 54	0,078 54	-		0	0	0,078 54	0,078 54	-
	I		0	252	0,078 54	0,078 54	NS		0	252	0,078 54	0,078 54	NS		0	501	0,078 54	0,078 54	NS
Р	S	00021	0	0	0,078 54	0,078 54	-	00022	0	0	0,078 54	0,078 54	-	00023	0	0	0,078 54	0,078 54	-
	I		0	288	0,078 54	0,078 54	NS		0	288	0,078 54	0,078 54	NS		0	289	0,078 54	0,078 54	NS
S	S		0	0	0,078 54	0,078 54	-		0	0	0,078 54	0,078 54	-		0	0	0,078 54	0,078 54	-
	I		0	257	0,078 54	0,078 54	NS		0	257	0,078 54	0,078 54	NS		0	257	0,078 54	0,078 54	NS
Р	S	00024	0	0	0,078 54	0,078 54	-	00025	0	0	0,078 54	0,078 54	-	00026	0	0	0,078 54	0,078 54	-
	I		0	289	0,078 54	0,078 54	NS		0	396	0,078 54	0,078 54	NS		0	396	0,078 54	0,078 54	NS
S	S		0	0	0,078 54	0,078 54	-		0	0	0,078 54	0,078 54	-		0	0	0,078 54	0,078 54	-
	I		0	257	0,078 54	0,078 54	NS		0	318	0,078 54	0,078 54	NS		0	318	0,078 54	0,078 54	NS

LEGENDA:

Direzione [P] = principale (asse locale 1) - [S] = secondaria (asse locale 2). Posizione [S] = superiore - [I] = inferiore. Dir

Pos

Area delle armature esecutive per unità di lunghezza. As Armatura disponibile per la flessione \mathbf{A}_{df}

CS Coefficiente di sicurezza ([NS] = Non Significativo se CS ≥ 100; [VNR] = Verifica Non Richiesta; Informazioni aggiuntive sulla condizione: [V] = statica; [E] =

eccezionale; [S] = sismica; [N] = sismica non lineare).

Sollecitazioni di progetto. N_{Ed}, M_{Ed}

Platee - VERIFICHE DELLE TENSIONI DI ESERCIZIO (Fondazione)

					Platee - verifiche delle tensioni di esercizio											
Nodo/ Tp _{rnf}	Dir		Co	Compress mpressione	sione calces calcestruz		D	Trazione acciaio Trazione acciaio/FRP rinforzo								
		Id _{Cmb}	σα	G cd,amm	N _{Ed}	M _{Ed}	cs	Verific ato	Id _{Cmb}	σat	Otd,amm	N _{Ed}	M _{Ed}	cs	Verific ato	
			[N/mm ²]	[N/mm ²]	[N]	[N·m]				[N/mm ²]	[N/mm ²]	[N]	[N·m]			
Fondazio	ne			Platea 1												
	D	RAR	0,005	19,92	0	-86	NS	SI	RAR	0,060	360,00	0	-86	NS	SI	
00013	F	QPR	0,004	14,94	0	-77	NS	SI	-	-	-	-	-	-	-	
00012	c	RAR	0,010	19,92	0	-169	NS	SI	RAR	0,117	360,00	0	-169	NS	SI	
	3	QPR	0,010	14,94	0	-170	NS	SI	-	-	-	-	-	-	-	

LEGENDA:

Rinf. Indica la presenza del rinforzo sulla sezione di verifica.

Direzione [P] = principale (asse locale 1) - [S] = secondaria (asse locale 2). Dir

Identificativo della Combinazione di Azione: [QPR] = Quasi Permanente - [FRQ] = Frequente - [RAR] = Rara. Id_{Cmb}

Tensione massima di compressione nel calcestruzzo della Trave/Rinforzo. σα Tensione ammissibile per la verifica a compressione del calcestruzzo. **Ocd.amm** Tensione massima di trazione nell'acciaio della Trave/Rinforzo o nel FRP. σ_{at} Tensione ammissibile per la verifica a trazione dell'acciaio/rinforzo. **Otd,amm**

Sollecitazioni di progetto. N_{Ed}, M_{Ed}

Coefficiente di Sicurezza (= $\sigma_{cd, amm}/\sigma_{cc}$; $\sigma_{td, amm}/\sigma_{at}$). [NS] = Non Significativo (CS \geq 100). CS

Verific [SI] = La verifica è soddisfatta ($\sigma_{cc} \le \sigma_{cd,amm}$; $\sigma_{at} \le \sigma_{td,amm}$). [NO] = La verifica NON è soddisfatta ($\sigma_{cc} < \sigma_{cd,amm}$; $\sigma_{at} < \sigma_{td,amm}$).

ato

Nota Nella tabella, per ogni elemento, viene riportato il nodo della shell che ha il coefficiente di sicurezza (CS) più piccolo.

presente documento è di proprietà della ANTEX GROUP srl. Vietato la comunicazione a terzi o la riproduzione senza il permesso scritto della suddetta.

Platee - VERIFICA ALLO STATO LIMITE DI FESSURAZIONE (Fondazione)

		erifica allo stato limite di fessurazione													
Nodo	Dir	Id _{Cmb}	N _{Ed}	M _{Ed}	σ _{ct,f}	σt	€ _{sm}	Ae	Δ_{sm}	Wd	W _{amm}	cs	Verificat o		
			[N]	[N·m]	[N/mm ²]	[N/mm ²]		[cm ²]	[mm]	[mm]	[mm]				
Fondazione Platea 1 AA= PCA															
NOTA: L'ele	mento NON	è fessurato.	Di seguito	si riporta il	nodo stru	tturale per	la quale si	riscontra la	massima te	nsione di t	razione(ma	ax σ _{ct,f})			
00017	Р	FRQ	-	-915	0,05	2,58	0 E+00	0	0	0,000	0,400	-	SI		
		QPR	-	-913	0,05	2,58	0 E+00	0	0	0,000	0,300	-	SI		
	_	FRQ	-	-373	0,02	2,58	0 E+00	0	0	0,000	0,400	-	SI		
	3	QPR	-	-372	0,02	2,58	0 E+00	0	0	0,000	0,300	-	SI		

LEGENDA:

Dir

Direzione [P] = principale (asse locale 1) - [S] = secondaria (asse locale 2). Identificativo dell'aggressività dell'ambiente: [PCA] = "Ordinario"; [MDA] = "Aggressivo"; [MLA] = "Molto aggressivo". AΑ **Id**_{Cmb} Identificativo della Combinazione di Azione: [QPR] = Quasi Permanente - [FRQ] = Frequente - [RAR] = Rara.

NEd, MEd Sollecitazioni di progetto.

σct,f Tensione massima di trazione nel calcestruzzo per la fessurazione, calcolata nell'ipotesi di calcestruzzo resistente a trazione. Se tale valore è maggiore di σ₁ la

sezione è soggetta a fessurazione.

N.B. I valori negativi indicano una sezione interamente compressa. In tal caso le sollecitazioni forniscono il minimo valore di compressione.

Tensione massima di trazione nel calcestruzzo relativa allo stato limite di formazione delle fessure [relazione (4.1.13) del § 4.1.2.2.4 del DM 2018].

Deformazione unitaria media delle barre di armatura.

Area efficace del calcestruzzo teso. Distanza media tra le fessure.

Valore di calcolo di apertura massima delle fessure. Valore ammissibile di apertura delle fessure.

Coefficiente di Sicurezza (=W_d / W_{amm}). [NS] = Non Significativo (CS ≥ 100). [-] = Fessurazioni nulle (W_d = 0).

Verificato [SI] = $W_d \le W_{amm}$; [NO] = $W_d > W_{amm}$

VERIFICHE CARICO LIMITE FONDAZIONI DIRETTE ALLO SLU (Fondazione)

Verifiche Carico Limite fondazioni dirette allo SLU													SLU			
Id _{Fnd}	CC	L _X		D4	Z _{P.cmp}	Z _{Fld}	Cmp T			_						
	CS		LY	Rtz				per N _q	per N _c	per N _γ	Nq	N _c	Nγ	Q _{Ed}	\mathbf{Q}_{Rd}	Kf
		[m]	[m]	[°]	[m]	[m]								[N/mm ²]	[N/mm ²]	
Platea 1	5,50	1,44	1,44	90,00	0,50	-	NON Coesivo	1,51	1,62	0,60	6,40	14,83	5,39	0,020	0,111	NO

LEGENDA:

Descrizione dell'oggetto di fondazione al quale è riferita la verifica. Id_{Fnd}

Coefficiente di sicurezza ([NS] = Non Significativo se $CS \ge 100$; [VNR] = Verifica Non Richiesta; Informazioni aggiuntive sulla condizione: [V] = statica; [E] = CS

eccezionale; [S] = sismica; [N] = sismica non lineare).

Lx/y Dimensioni dell'elemento di fondazione.

Angolo compreso tra l'asse X e il lato più lungo del minimo rettangolo che delimita il poligono della platea. Rtz

 $\mathbf{Z}_{\text{P.cmp}}$ Profondità di posa dell'elemento di fondazione dal piano campagna.

 \mathbf{Z}_{Fld} Profondità della falda dal piano campagna.

Cmp T Classificazione del comportamento del terreno ai fini del calcolo.

C. Coefficienti correttivi per la formula di Terzaghi.

Terzaghi

QEd Carico di progetto sul terreno. Resistenza di progetto del terreno. \mathbf{Q}_{Rd}

Rf [SI] = elemento con presenza di rinforzo; [NO] = elemento senza rinforzo.

VERIFICHE CARICO LIMITE FONDAZIONI DIRETTE ALLO SLD (Fondazione)

Verifiche Carico Limite fondazioni dirette allo SLD

Id _{Fnd}	cs	L _x		D+	Z _{P.cmp}	Z _{Fld}	Cmp T		ο.	•	D.					
	CS		LY	Rtz				per N _q	per N _c	per N _γ	Nq	N _c	N _y	Q _{Ed}	\mathbf{Q}_{Rd}	R _f
		[m]	[m]	[°]	[m]	[m]								[N/mm ²]	[N/mm ²]	
Platea 1	10,38	1,44	1,44	90,00	0,50	-	NON Coesivo	1,50	1,61	0,59	6,40	14,83	5,39	0,014	0,141	NO

LEGENDA:

Descrizione dell'oggetto di fondazione al quale è riferita la verifica. **Id**_{Fnd}

CS Coefficiente di sicurezza ([NS] = Non Significativo se CS ≥ 100; [VNR] = Verifica Non Richiesta; Informazioni aggiuntive sulla condizione: [V] = statica; [E] =

eccezionale; [S] = sismica; [N] = sismica non lineare).

Dimensioni dell'elemento di fondazione. Lx/y

Angolo compreso tra l'asse X e il lato più lungo del minimo rettangolo che delimita il poligono della platea. Rtz

Z_{P.cmp} Profondità di posa dell'elemento di fondazione dal piano campagna.

Profondità della falda dal piano campagna. **Z**Fld

presente documento è di proprietà della ANTEX GROUP srl.

Vietato la comunicazione a terzi o la riproduzione senza il permesso scritto della suddetta.

Verifiche Carico Limite fondazioni dirette allo SLD

īd	cs			Rtz	Z _{P.cmp}	Z _{Fid}	Cmp T	C. Terzaghi						•		D.
10 _{Fnd}		LX	LY	RLZ				per N _q	per N _c	per N _γ	Nq	N _c	N _y	QEd	Q Rd	I €f
		[m]	[m]	[°]	[m]	[m]								[N/mm ²]	[N/mm ²]	

Cmp T Classificazione del comportamento del terreno ai fini del calcolo.

Coefficienti correttivi per la formula di Terzaghi.

Terzaghi

Q_{Ed} Q_{Rd} R_f Carico di progetto sul terreno. Resistenza di progetto del terreno.

[SI] = elemento con presenza di rinforzo; [NO] = elemento senza rinforzo.