

AUTOSTRADA REGIONALE CISPADANA DAL CASELLO DI REGGIOLO-ROLO SULLA A22 AL CASELLO DI FERRARA SUD SULLA A13

CODICE C.U.P. E81B08000060009

PROGETTO DEFINITIVO

ASSE AUTOSTRADALE

IMPIANTI TECNICI **PARTE GENERALE** CABINE ELETTRICHE IN ITINERE C3, C4, C7, C8, C9, C11, C12, C13, C15 RELAZIONE DI DIMENSIONAMENTO CAVI ELETTRICI

IL PROGETTISTA

Ing. Antonio De Fazio Albo Ingegneri Prov. BO n° 3696/A

RESPONSABILE INTEGRAZIONE PRESTAZIONI SPECIALISTICHE

Ing. Emilio Salsi Albo Ing. Reggio Emilia n° 945

IL CONCESSIONARIO

Autostrada Regionale Cispedena S.p.A. IL PRESIDENTE

G							
F							
Е							
D							
С							
В							
Α	17.04.2012	EMISSIONE		FRASSINETI	DE F	AZIO	SALSI
REV.	DATA		DESCRIZIONE	REDAZIONE	CON	NTROLLO	APPROVAZIONE
IDENTIF	ICAZIONE ELA	ABORATO				DATA: N A A	CCIO 2042

NUM. PROGR. 4 2 2 7

FASE PD LOTTO 0

A 0 0

CODICE OPERA WBS 1 0 0 TRATTO OPERA 0

AMBITO ΙE TIPO ELABORATO R C

PROGRESSIVO 0 1

Α

MAGGIO 2012

SCALA:

AUTOSTRADA REGIONALE CISPADANAdal casello di Reggiolo-Rolo sulla A22 al casello di Ferrara Sud sulla A13

PROGETTO DEFINITIVO

IMPIANTI TECNICI PARTE GENERALE

CABINE ELETTRICHE IN ITINERE

RELAZIONE DI DIMENSIONAMENTO IMPIANTI ELETTRICI

INDICE

1.	CALCOLI DIMENSIONAMENTO IMPIANTI ELETTRICI	2
1.1	1. CRITERIO DIMENSIONAMENTO CAVI	2
1.2	2. Calcolo della Sezione dei conduttori in funzione della corrente circolante	3
1.3	3. Coefficienti riduzione portata – K1 e K2	3
1.4	4. Calcolo sezione minima in funzione della corrente effettiva di corto circuito	4
1.8	5. Verifica della caduta di tensione	5
1.6	6. CRITERI GENERALI PER IL DIMENSIONAMENTO DELLE PROTEZIONI	5
1.7	7. Protezione contro le correnti di sovraccarico	5
1.8	Protezione contro le correnti di corto circuito	6
1.9	2. CALCOLI DI CORTO CIRCUITO	8
1.	10. DIMENSIONAMENTO IMPIANTO DI TERRA	9
1.	11. RISPONDENZA A NORME TECNICHE	11
1.	12. DATI TECNICI CAVI	11
2.	ALLEGATO CALCOLI DI DIMENSIONAMENTO CONDUTTURE ELE	TTRICHE13

AUTOSTRADA REGIONALE CISPADANAdal casello di Reggiolo-Rolo sulla A22 al casello di Ferrara Sud sulla A13

PROGETTO DEFINITIVO

IMPIANTI TECNICI PARTE GENERALE

CABINE ELETTRICHE IN ITINERE RELAZIONE DI DIMENSIONAMENTO IMPIANTI ELETTRICI

1 CALCOLI DIMENSIONAMENTO IMPIANTI ELETTRICI

1.1 Criterio dimensionamento cavi

Lo scopo della presente relazione è quello di definire i criteri generali e progettuali con cui sono dimensionate le linee e le protezioni elettriche relative agli impianti di illuminazione a servizio dei rami di svincolo dell'Autostazione di San Possidonio nell'ambito dell'autostrada regionale Cispadana.

Tutti i cavi previsti nella progettazione dell'impianto elettrico sono corrispondenti e dimensionati in base a quanto indicato dalle tabelle UNEL ed alle norme costruttive stabilite dal CEI. In particolare, nella realizzazione degli impianti elettrici saranno impiegati i seguenti tipi di cavi:

- Cavi con conduttori flessibili in rame, unipolari e/o multipolari, isolati in gomma butilica G7, tipo non propagante l'incendio (FG7OR/4 e FG7R/4), grado di isolamento 0,6/1 kV per circuiti di energia con tensione fino a 230/400 V.
- Cavi con conduttore flessibile in rame, unipolari, senza guaina tipo non propagante l'incendio N07V-K con grado d'isolamento 450/750V, per circuiti di energia con tensione fino a 230/400V;

Le sezioni dei cavi sono state dimensionate in conformità a:

- corrente in transito nel cavo nelle normali condizioni di esercizio;
- coefficienti di riduzione della portata relativi alle condizioni di posa;
- caduta di tensione che non deve superare il 4% della tensione nominale del circuito (a carico nominale) sia per cavi alimentanti utilizzatori di forza motrice sia luce.

La caduta di tensione considerata è quella misurata fra il quadro elettrico generale e l'utilizzatore più lontano.

AUTOSTRADA REGIONALE CISPADANAdal casello di Reggiolo-Rolo sulla A22 al casello di Ferrara Sud sulla A13

PROGETTO DEFINITIVO

IMPIANTI TECNICI PARTE GENERALE

CABINE ELETTRICHE IN ITINERE

RELAZIONE DI DIMENSIONAMENTO IMPIANTI ELETTRICI

1.2 Calcolo della Sezione dei conduttori in funzione della corrente circolante

La sezione dei conduttori è funzione della corrente d'impiego (In) (circolante) che non deve mai superare la portata massima in regime permanente del cavo che la convoglia (Iz).

La corrente d'impiego (In) è il valore che può fluire in un circuito nel servizio ordinario mentre per portata massima in regime permanente (Iz) si intende la massima corrente che il conduttore è in grado di sopportare senza che, per effetto Joule, la temperatura raggiunga valori tali da compromettere l'integrità e la durata degli isolanti. La temperatura massima sopportabile non ha un valore fisso valido per tutti i cavi ma dipende dal tipo d'isolante usato per il rivestimento del conduttore (da 80 °C per isolanti economici fino o oltre 200 °C per isolanti speciali).

Per il dimensionamento dei conduttori utilizzati nel progetto allegato sono state utilizzate la tabelle CEI UNEL 35024/1 e 35024/2. Le portate massime dei conduttori (Iz) e le relative sezioni ricavate sono state verificate mediante la formula semplificata, sotto indicata:

$$S \ge \frac{I_n}{a}$$

dove

- **S** è la sezione in mm² del conduttore;
- In è la corrente d'impiego che può interessare un circuito nel servizio ordinario;
- **a** è la densità di corrente riferita al conduttore di sezione unitaria pari a:
 - 10 A/mm² per conduttori in tubo sotto intonaco,
 - 12 A/mm² per conduttori a vista,
 - 13 A/mm² per conduttori ben ventilati.

1.3 Coefficienti riduzione portata – K1 e K2

Il valore di Iz (portata del conduttore in condizioni normali di servizio) è stato determinato, inoltre, in base ai declassamenti dovuti ai vari coefficienti di correzione a seconda della temperatura d'impiego, del tipo di posa e del numero di conduttori posati in una unica conduttura.

AUTOSTRADA REGIONALE CISPADANAdal casello di Reggiolo-Rolo sulla A22 al casello di Ferrara Sud sulla A13

PROGETTO DEFINITIVO

IMPIANTI TECNICI PARTE GENERALE

CABINE ELETTRICHE IN ITINERE

RELAZIONE DI DIMENSIONAMENTO IMPIANTI ELETTRICI

I fattori di correzione presi in considerazione, che contribuiscono alla riduzione della portata nominale del cavo, sono sostanzialmente due:

- il fattore K1, che tiene conto della temperatura ambiente nella quale il cavo è posato,
- il fattore K2 che tiene conto della prossimità di altri cavi.

Le tabelle di riferimento contenenti i fattori K₁ e K₂, sono ricavabili dalla letteratura sopra indicata.

Il fattore K_2 si applica nella ipotesi in cui i cavi del fascio o dello strato abbiano sezioni simili, cioè contenute entro le tre sezioni adiacenti unificate; in caso contrario il fattore K_2 diventa:

$$K_2 = \frac{1}{\sqrt{n}}$$

1.4 Calcolo sezione minima in funzione della corrente effettiva di corto circuito

La sezione dei conduttori è stata definita in base alla corrente nominale del conduttore in condizioni normali di servizio (I_z), declassata come accennato al paragrafo precedente.

Occorre verificare che detta sezione non sia mai inferiore a quanto si ricava dalla seguente relazione:

$$S = \frac{I \cdot \sqrt{t}}{k}$$

dove:

S è la sezione in mm²;

t è la durata in secondi del corto circuito;

è la corrente effettiva di corto circuito in Ampere espressa in valore efficace;

k è una costante pari a: 115 per i cavi in rame isolati in PVC (160 °C)

143 per i cavi in rame isolati in gomma G7 (250 °C)

AUTOSTRADA REGIONALE CISPADANAdal casello di Reggiolo-Rolo sulla A22 al casello di Ferrara Sud sulla A13

PROGETTO DEFINITIVO

IMPIANTI TECNICI PARTE GENERALE

CABINE ELETTRICHE IN ITINERE

RELAZIONE DI DIMENSIONAMENTO IMPIANTI ELETTRICI

1.5 Verifica della caduta di tensione

Oltre a quanto sopra indicato, i cavi sono stati verificati anche in funzione della caduta di tensione, in modo che tra l'origine dell'impianto e qualunque apparecchio utilizzatore non superi il 4% della tensione nominale. Le cadute di tensione sono state verificate con adeguato software di calcolo che utilizza la seguente formula:

 $\Delta V = 2 I_b I (R \cos \varphi + X \sin \varphi)$ per i circuiti monofasi e

 $\Delta V = 1,73 I_b I (R \cos \varphi + X \sin \varphi)$ per i circuiti trifase + neutro

dove:

- ΔV è la caduta di tensione in Volt proiettata sul vettore di fase;
- I_b è la corrente d'impiego in Ampere della linea;
- φ è l'angolo di sfasamento tra la corrente lb e la tensione di fase;
- R è la resistenza al metro in Ω/m;
- X è la reattanza al metro in Ω/m;
- I è la lunghezza della conduttura in km.

I valori della resistenza e della reattanza al metro sono stati ricavati dalla tabella UNEL 35023-70.

1.6 Criteri generali per il dimensionamento delle protezioni

Il dimensionamento di tutte le protezioni è stato determinato tenendo conto delle seguenti correnti di riferimento:

- o I_n (Corrente nominale)
 - corrente alla quale si riferiscono tutte le prescrizioni costruttive dell'apparecchio e che rappresenta il valore unitario della caratteristica d'intervento;
- o Inf (Corrente di non funzionamento)
 - massimo valore di sovracorrente che non fa intervenire la protezione entro il tempo convenzionale;
- o I_f (Corrente di funzionamento)
 - minimo valore di sovra corrente che fa intervenire certamente la protezione entro il tempo convenzionale.I.

AUTOSTRADA REGIONALE CISPADANAdal casello di Reggiolo-Rolo sulla A22 al casello di Ferrara Sud sulla A13

PROGETTO DEFINITIVO

IMPIANTI TECNICI PARTE GENERALE

CABINE ELETTRICHE IN ITINERE

RELAZIONE DI DIMENSIONAMENTO IMPIANTI ELETTRICI

1.7 Protezione contro le correnti di sovraccarico

La protezione contro il sovraccarico, come indicato dalla Norma CEI 64-8, è assicurato per le seguenti condutture:

- conduttura principale che alimenta utilizzatori derivati funzionanti con coefficienti di contemporaneità inferiori a 1;
- conduttura che alimenta motori ed utilizzatori che nel loro funzionamento possono determinare condizioni di sovraccarico;
- conduttura che alimenta presa a spina;
- conduttura che alimenta utilizzatori ubicati in luoghi soggetti a pericolo di esplosione o di incendio;

Le caratteristiche dei dispositivi di protezione delle apparecchiature contro i sovraccarichi sono state dimensionate rispettando le seguenti condizioni:

 $I_b \le In \le I_z$

 $I_f \leq 1.45 I_z$

dove:

- I_b è la corrente d'impiego del circuito;
- I_z è la portata in regime permanente della conduttura;
- I_n è la corrente nominale del dispositivo di protezione;
- In è la corrente che assicura l'effettivo funzionamento del dispositivo di protezione entro il tempo convenzionale in condizioni definite.

1.8 Protezione contro le correnti di corto circuito

La corrente presunta di corto circuito in un punto di un impianto utilizzatore è la corrente che si avrebbe nel circuito se nel punto considerato si realizzasse un collegamento con impedenza trascurabile fra i conduttori in tensione. Il potere d'interruzione di un dispositivo di protezione non deve essere inferiore alla corrente di corto circuito presunta nel punto d'installazione. Il valore della corrente di corto circuito, per cui sono state dimensionate le protezioni, può essere calcolato in generale con la seguente relazione:

AUTOSTRADA REGIONALE CISPADANAdal casello di Reggiolo-Rolo sulla A22 al casello di Ferrara Sud sulla A13

PROGETTO DEFINITIVO

IMPIANTI TECNICI

PARTE GENERALE

CABINE ELETTRICHE IN ITINERE RELAZIONE DI DIMENSIONAMENTO IMPIANTI ELETTRICI

$$I_{cc} = \frac{c \cdot V}{k \cdot Z_{cc}}$$

nella quale:

- c fattore di tensione tabulato da Norma
- Z_{cc} impedenza di corto circuito
- **K** = 1 oppure $\sqrt{3}$ a seconda del tipo di guasto considerato
- V valore di tensione

Il valore della corrente di corto circuito minima (a fondo linea) quando il neutro non è distribuito è stato calcolato con la seguente relazione:

$$I_{cc \text{ min}} = \frac{0.8 U_s \cdot S}{1.5 \rho 2 \cdot l}$$

dove:

U è la tensione concatenata in Volt;

S è la sezione in mm²;

è la resistività a 20°C del materiale dei conduttori in Ωmm²/m; ρ

ı è la lunghezza della linea.

Con il conduttore di neutro distribuito la precedente relazione muta in:

$$I_{cc \min} = \frac{0.8 U_s \cdot S}{1.5 \rho (l+m)}$$

dove:

U。 è la tensione in Volt:

è il rapporto tra la resistenza del conduttore di neutro e la resistenza del conduttore di fase. m

Occorre inoltre ovviamente assicurarsi che il dispositivo di protezione dal cortocircuito venga dimensionato con potere di interruzione superiore al valore massimo della corrente di cortocircuito presunta nella sezione di impianto in cui è installato il dispositivo stesso, e che l'energia passante (specifica) lasciata passare dalla apparecchiatura non sia superiore alla energia passante massima sopportabile da parte delle condutture installate a valle.

Il tutto è tradotto normativamente dalle seguenti relazioni:

$$I_{\text{cc max}} \leq P.d.I.$$
$$I^{2}t \leq K^{2}S^{2}$$

dove:

AUTOSTRADA REGIONALE CISPADANAdal casello di Reggiolo-Rolo sulla A22 al casello di Ferrara Sud sulla A13

PROGETTO DEFINITIVO

IMPIANTI TECNICIPARTE GENERALE

CABINE ELETTRICHE IN ITINERE

RELAZIONE DI DIMENSIONAMENTO IMPIANTI ELETTRICI

 $I_{cc max}$ = corrente di corto circuito massima.

P.d.l. = potere di interruzione apparecchiatura di protezione.

l²t = valore dell'energia specifica passante letto sulla curva l²t della apparecchiatura di protezione in corrispondenza delle correnti di corto circuito.

K²**S**² = energia specifica passante sopportata dalla conduttura, dove:

K = coefficiente del tipo di cavo (115,135,143 in accordo alla CEI 64-8/4).

S = sezione della conduttura.

1.9 Calcoli di corto circuito

Il calcolo per la determinazione della corrente di corto circuito è stato realizzato con l'ausilio di un programma di calcolo, i risultati sono stati riportati in allegato . Nel calcolo delle I_{cc} sui vari livelli del sistema è stato previsto un valore di I_{cc} nel punto di consegna ente erogatore (A2A o ENEL o altro ente) in MT (15 kV) pari a 12,5 kA (valore da verificare con ente distributore in fase di cantierizzazione).

I dati di I_{cc} sono poi recepibili sulle tabelle di calcolo linee allegati alla presente relazione. Il calcolo per la determinazione della corrente di corto circuito e del dimensionamento delle linee elettriche è stato realizzato con l'ausilio di un programma automatico di calcolo.

Con l'utilizzo dei dati riguardanti i cavi di collegamento tra il punto di consegna ed i vari livelli del sistema, si definisce la resistenza e la reattanza totale a monte del quadro stesso, al fine di determinare la corrente di corto circuito in ogni punto della distribuzione. Il valore della I_{cc} è stato calcolato con arrotondamento in eccesso avendo trascurato le impedenze interne sugli interruttori di macchina e quella delle sbarre del quadro stesso.

<u>Tabella valori di corrente di corto circuito prevista a valle in base alla l_{cc} prevista a monte ed in base alla sezione e lunghezza del cavo di alimentazione</u>

AUTOSTRADA REGIONALE CISPADANAdal casello di Reggiolo-Rolo sulla A22 al casello di Ferrara Sud sulla A13

PROGETTO DEFINITIVO

IMPIANTI TECNICI

PARTE GENERALE CABINE ELETTRICHE IN ITINERE RELAZIONE DI DIMENSIONAMENTO IMPIANTI ELETTRICI

sezione dei cavi [mm	lungi	iezza del	Cavi [III]						126917								
1,5			-	-				1		1,2	1,7	2,3	3,3	4,6	6,4	8.9	12,4
2,5				-				1	1,4	1,9	2,6	3,9	5,2	6,2	10,4	12,8	15,6
4							1,2	1.6	2,3	3	4,1	6,2	8.2	9,9	16,6	20,4	24,9
6						1,2	1,7	2,4	3,4	4,5	6,1	9,2	12,3	14,8	24,8	30,3	37,3
10				1	1,4	2	2,8	3,9	5,6	7,4	10,1	15,3	20,5	24,7	41,3	49,8	62,1
16			1,1	1,6	2,2	3,1	4,4	6,1	8,8	11,8	16	24,3	32,7	39,3	65,9	70,3	99,1
25		1,2	1,6	2,3	3,3	4.7	6,7	9,4	13,6	18,3	24.8	37.8	50.7	61,1	102,5	123,3	154.2
35	1	1,5	2,1	3,1	4,5	6,4	9,2	12,9	18,8	25,3	34,4	52,4	70,5	84,9	142,6	173,7	214.6
50 esempio	1,3	2	2,8	4,1	6,1	8,8	12,7	17,9	26,2	35,4	48,2	73.8	99,3	119.6	201,1	242,1	303
70	1,6	2,5	3,6	5,4	8	11,6	17	24,2	35,5	48.2	65,8	101	136,1	164,1	276,3	331,6	
95	1,9	2,9	4,3	6,5	10	14,6	21,6	31	45.8	62,4	85,6	131,8	177,9	214,7	362,1	434.5	
120	2,1	3,3	4,9	7,6	11,7	17,3	25,8	37,2	55,3	75.6	103,9	160,4	216,7	261,8			
150	2,3	3,6	5,4	8.4	13,2	19,7	29,7	43,2	64,6	88.7	122,2	189,2	256.1	309.5			
185	2,4	3,9	5,8	9,2	14,6	22	33,5	49	73,7	101,5	140.3	217,7	295,1	357			
240	2,6	4,1	6,3	10	16	24,4	37,4	55,3	83,7	115,8	160,6	250,1	339,5				
300	2,7	4,3	6,6	10.6	17,1	26,3	40.6	60.3	91,7	127,3	176.9	276,1	375.3				
2x120	4.2	6.6	9.7	15.1	23.3	34.5	51.5	74.3	110.5	151,2	207.8	320.7					
2x150	4,5	7,2	10,7	16,8	26,3	39,3	59.3	86.3	129.1	177,3	244.4	378.3					
2x185	4.8	7,7	11,6	18,4	29,1	44	66.9	97.9	147,3	202.9	280.5		377				
3x120	6.2	9.9	14.6	22.6	34.9	51.7	77.2	111.5	165,8	226.7	311.6				-		
3x150	6.7	10.8	16,1	25,2	39.4	59	89	129.5	193.7	265,9	366.6				1		1
3x185	7.2	11.6	17,4	27.6	43.6	65.9		146.9	221	304.4							
Icc a monte [kA]	lcc a	valle [k/	-											Acceptance			Y
100	91	86	80	71	60	49	38	29	21	16	12	8	6	5	3	3	2
90	83	79	74	67	57	47	37	29	21	16	12	8	6	5	3	3	2
80	75	72	68	61	53	45	36	28	21	16	12	8	6	5	3	3	2
70	66	64	61	55	49	42	34	27	20	16	12	8	6	5	3	3	2
60	57	55	53	49	44	38	32	25	19	15	12	8	6	5	3	3	2
50	48	47	45	42	38	34	29	24	18	15,	11	8	6	5	3	3	2
45	44	43	41	39	36	32	27 .	23	18	14	11	8	6	5	3	3	2
40	39	38	37	35	32	29	25	21	17	14	11	8	6	5	3	3	2
35	34	34	33	31	29	27	23	20	16	13	11	8	6	5	3	3	2
30 esempio	30	29	29	27	26	24	21	18	15	13	10	7	6	5	3	3	2
25	25	25	24	23	22	21	19	17	14	12	10	7	6	5	3	3	2
22	22	22	21	21	20	19	17	15	13	11	9	7	6	5	3	3	2
15	15	15	15	15	14	13	13	12	10	9	8	6	5	4	3	3	2
10	10	10	10	10	10	10	9	9	8	7	6	5	4	4	3	3	2
1.0		7	7	7	7	7	7	7	6	6	5	4	4	4	3	3	2
7						1			U	U	0	7		7	0	J	6
7 5	5	5	5	5	5	5	5	5	5	4	4	4	3	3	2	2	2

1.10 Dimensionamento impianto di terra

Il dimensionamento dell'impianto di terra destinato alla protezione di sistemi appartenenti alla I categoria distribuiti con sistema TT, viene svolto in conformità alla norme CEI 64-8 paragrafo 413.1.4.

Ai fini del dimensionamento della rete di terra, si dovrà quindi far riferimento alla seguente relazione:

$$R_e \le \frac{50V}{Id}$$

dove:

- R_e = Massimo valore ammesso della resistenza di terra
- 50 V = Massimo valore ammesso della tensione di contatto
- Id = Corrente che determina l'apertura del dispositivo di protezione dai contatti indiretti

Avendo impiegato esclusivamente apparecchi di protezione del tipo differenziale ad alta sensibilità e con corrente d'intervento non superiore ad 1A, il valore massimo che dovrà assumere l'impianto di terra, non dovrà essere

AUTOSTRADA REGIONALE CISPADANAdal casello di Reggiolo-Rolo sulla A22 al casello di Ferrara Sud sulla A13

PROGETTO DEFINITIVO

IMPIANTI TECNICI PARTE GENERALE

CABINE ELETTRICHE IN ITINERE

RELAZIONE DI DIMENSIONAMENTO IMPIANTI ELETTRICI

superiore a 50Ω . Qualora il valore della corrente d'intervento differenziale dovesse essere inferiore, ovviamente il limite della resistenza dell'impianto di terrà potrà innalzarsi di conseguenza.

Si ipotizza, in modo cautelativo, che le aree in oggetto si trovino su terreni la cui composizione risulta essere di natura argillosa; sulla base delle tabelle contenute nelle norme CEI 11-1 (allegato K) e guida 64-12 (allegato D), si può quindi prudentemente stimare una resistività del terreno pari a $100 \Omega m$.

E' così possibile effettuare una verifica analitica della resistenza presunta dell'impianto in base alla sua configurazione, utilizzando formule approssimate fornite dalle Norme.

Se si considera che un dispersore verticale a croce da 1500x50x50x5 mm garantisce non meno di 20 Ohm di R_e , utilizzando 4 dispersori e circa 80 m di corda nuda di rame da 35 mmq si arriverà sicuramente a realizzare impianti di terra molto a di sotto del valore massimo di 50 Ohm previsti a progetto per rispettare la formula sopra esposta.

Con l'ausilio di 4 dispersori a croce e di 50 m di corda emerge un valore di circa 10-15 Ohm.

L'esito del calcolo preliminare eseguito in fase di progettazione definitiva non esula comunque l'impresa dall'obbligo di effettuare la misura diretta della resistenza di terra al termine dei lavori, in quanto il valore ottenuto è da ritenersi puramente indicativo essendo legato a numerose variabili dipendenti dalla conformazione del terreno ed alle modalità d'installazione, le quali potrebbero condizionare sensibilmente il valore effettivo; l'interconnessione della maglia del dispersore ai ferri di armatura di plinti e/o impalcati e/o di altre strutture armate ed il collegamento equipotenziale di masse metalliche, favoriranno ovviamente di fatto la diminuzione del valore di resistenza complessivo di tutto l'impianto.

Le sezioni dei conduttori di protezione sarà pari alle sezioni dei conduttori di fase; per sezioni superiori a 16 mmq la sezione sarà pari alla metà del conduttore di fase con un minimo di 16 mmq e comunque in grado di soddisfare le condizioni stabilite dalle norme CEI 64-8.

Al fine di migliorare la protezione contro i contatti indiretti, all'impianto di terra saranno collegati tutti i sistemi delle tubazioni metalliche accessibili destinati ad adduzione, nonché tutte le masse metalliche che possono costituire massa estranea.

I conduttori per l'esecuzione dei collegamenti equipotenziali saranno del tipo N07V-K di colore giallo-verde delle seguenti sezioni minime (fatte salve le verifiche per sezioni maggiori):

- mmq 2,5 per collegamenti posti in tubo sotto l'intonaco o protetti meccanicamente (equipotenziali secondari)
- mmq 6 per collegamenti su tubazioni o parti metalliche a vista (equipotenziali principali).

Nella posa dei dispersori si eviterà il contatto diretto fra metalli aventi potenziali elettrochimici diversi (ad esempio la giunzione diretta rame - zinco), interponendo materiali in grado di ridurre lo squilibrio di potenziale al fine di evitare

AUTOSTRADA REGIONALE CISPADANA REGI

REGIONE EMILIA ROMAGNA

AUTOSTRADA REGIONALE CISPADANAdal casello di Reggiolo-Rolo sulla A22 al casello di Ferrara Sud sulla A13

PROGETTO DEFINITIVO

IMPIANTI TECNICI

PARTE GENERALE

CABINE ELETTRICHE IN ITINERE

RELAZIONE DI DIMENSIONAMENTO IMPIANTI ELETTRICI

fenomeni di corrosione; a tal proposito si consiglia l'uso di capicorda o morsetti a pressione meccanica di tipo cadmiato.

Tutte le connessioni saranno realizzate con morsetti a compressione in rame tipo crimpt con superficie di contatto non inferiore a 150 mmq; in corrispondenza dei pozzetti ispezionabili contenenti derivazioni della maglia di terra, dovranno essere apposti cartelli normalizzati di individuazione.

Saranno connesse all'impianto di terra tutte le masse e le masse estranee presenti sull'impianto; si ricorda che viene considerata massa estranea una massa avente una resistenza verso terra minore di 1.000Ω .

Si ricorda che è responsabilità della proprietà dell'insediamento presentare prima della messa in servizio degli impianti la denuncia dell'impianto di terra al dipartimento periferico dell'ISPESL competente nel territorio; l'impresa dovrà compilare il modulo di denuncia impianto di terra (modello D.P.R. 462/01), firmando in calce i documenti ed allegando la dichiarazione di conformità. L'impianto andrà verificato periodicamente (condizioni generali e misura della resistenza di terra) ogni 2-5 anni come previsto dallo stesso D.P.R. 462/01.

1.11 Rispondenza a Norme tecniche

L'appaltatore con l'accettazione della presente specifica si impegna a rispettare:

- tutte le leggi pertinenti in vigore nella Repubblica Italiana alla data di definizione dell'appalto e le Norme e Leggi in materia anti-infortunistica
- Norme applicabili del Comitato Elettrotecnico italiano ed in particolare

Le norme applicabili alla presente installazione sono riepilogate in apposito capitolo della relazione generale impianti tecnici. Le condizioni di impiego delle condutture, essenzialmente, saranno per una posa interrata od entro tubazioni in polietilene e saranno del tipo unipolare o multipolare destinati entro tubi protettivi circolari con le seguenti condizioni ambientali.

Temperatura massima + 35°C

Temperatura minima - 10°C

1.12 Dati tecnici cavi

Identificazione del cavo	FG7(O)R
Tensione nominale	0,6/1kV
Tensione di prova	4kV
Temperatura d'esercizio	max 90°C

AUTOSTRADA REGIONALE CISPADANAdal casello di Reggiolo-Rolo sulla A22 al casello di Ferrara Sud sulla A13

PROGETTO DEFINITIVO

IMPIANTI TECNICI

PARTE GENERALE CABINE ELETTRICHE IN ITINERE

RELAZIONE DI DIMENSIONAMENTO IMPIANTI ELETTRICI

Temperatura di corto-circuito (max)	250°C
Conduttore	a corda flessibile di rame ricotto
Isolamento	gomma HEPR ad alto modulo
Guaina	guaina speciale di qualità R2
Colore	grigio chiaro RAL 7035

I dati caratteristici usati per il calcolo sono riportati sulle tabelle calcoli condutture allegati alla presente relazione.

AUTOSTRADA REGIONALE CISPADANAdal casello di Reggiolo-Rolo sulla A22 al casello di Ferrara Sud sulla A13

PROGETTO DEFINITIVO

IMPIANTI TECNICI
PARTE GENERALE
CABINE ELETTRICHE IN ITINERE

RELAZIONE DI DIMENSIONAMENTO IMPIANTI ELETTRICI

2 ALLEGATO CALCOLI DI DIMENSIONAMENTO CONDUTTURE ELETTRICHE

Qui di seguito vengono allegati il sommario e relativi calcoli di dimensionamento delle linee elettriche comprese a progetto suddivisi per quadro di alimentazione.

AUTOSTRADA REGIONALE CISPADANAdal casello di Reggiolo-Rolo sulla A22 al casello di Ferrara Sud sulla A13

PROGETTO DEFINITIVO

IMPIANTI TECNICI
PARTE GENERALE
CABINE ELETTRICHE IN ITINERE
RELAZIONE DI DIMENSIONAMENTO IMPIANTI ELETTRICI

DATI GENERALI IMPIANTO

AUTOSTRADA REGIONALE CISPADANAdal casello di Reggiolo-Rolo sulla A22 al casello di Ferrara Sud sulla A13

PROGETTO DEFINITIVO

IMPIANTI TECNICI

PARTE GENERALE

CABINE ELETTRICHE ÎN ITINERE RELAZIONE DI DIMENSIONAMENTO IMPIANTI ELETTRICI

RIFERIMENTO PROGETTO

DATI GENERALI DI PROGETTO

Impianto	Riferimento Progetto	Cliente / Utente finale	Allacciamento	Data creazione	Data validità
Cabine in itinere	Autostrada Cispadana	Politecnica	Da distributore	06/03/2012	06/03/2013

FORNITURA MT:

DATI ELETTRICI IMPIANTO

Tensione esercizio (kV)	Frequenza (Hz)	Corrente cortocircuito trifase (kA)	Potenza cortocircuito (MVA)	Esercizio del neutro	Corrente guasto monofase a terra (A)	Tempo eliminazione guasto monofase (s)	Corrente doppio guasto a terra kA)
15	50	12,5	324,76	Neutro compensato	50	10	10,8

CONDIZIONI DI ALLACCIAMENTO

Lunghezze linee aeree (m)	Lunghezza massima linee in cavo (m)	Potenza complessiva installata (kVA)
Inserire valore	8010m	200

NOTE

AUTOSTRADA REGIONALE CISPADANAdal casello di Reggiolo-Rolo sulla A22 al casello di Ferrara Sud sulla A13

PROGETTO DEFINITIVO

IMPIANTI TECNICI PARTE GENERALE

CABINE ELETTRICHE IN ITINERE

RELAZIONE DI DIMENSIONAMENTO IMPIANTI ELETTRICI

SOGLIE DI REGOLAZIONE DEL DISPOSITIVO GENERALE (RICHIESTE DAL DISTRIBUTORE) (1) (2)

Massima	corrente >	di fase	Massima corrente di fase		Massima corrente di fase		Omopolare Io >		Omopolare lo >>	
ls (A)	tint (s)	Tipo curva	ls (A)	tint (s)	ls (A)	tint (s)	lso (A)	tint (s)	lso (A)	tint (s)
0	0	VIT	250	0,5	600	0,12	2	0,45	70	0,17

On	Omopolare direzionale (per neutro isolato) lo > ↑					oolare dire	ezionale (p	er neutro com	pensato)
Iso	tint	Vso (3)	Limite 1	Limite2	Iso	tint	Vso (3)	Limite 1	Limite2
(A)	(s)	(V)	(°)	(°)	(V)	(s)	(V)	(°)	(°)
_	_	_	_	_	_	_	_	_	_

Minima te	nsione 27
Vs (V)	tint (s)

- (1) Le sigle di identificazione delle protezioni sono quelle normalmente utilizzate nel documento informativo che l'Ente Distributore rilascia al cliente.
- (2) I tempi indicati (tint) corrispondono ai tempo di interruzione richiesti dal Distributore comprendenti il ritardo intenzionale della protezione (ts) e il tempo di apertura dell'interruttore (0,07s sia per bobina di apertura a lancio di corrente che per bobina di minima tensione).
- (3) Tensione al primario misurata tramite tre TV di fase con i secondari collegati a triangolo aperto.

NOTE		

AUTOSTRADA REGIONALE CISPADANAdal casello di Reggiolo-Rolo sulla A22 al casello di Ferrara Sud sulla A13

PROGETTO DEFINITIVO

IMPIANTI TECNICI
PARTE GENERALE
CABINE ELETTRICHE IN ITINERE

RELAZIONE DI DIMENSIONAMENTO IMPIANTI ELETTRICI

SCHEMA A BLOCCHI DELLE CABINE MT

CN - CABINA IN ITINERE (C3-C4-C7-C8-C9-C11-C12-C13-C15)

AUTOSTRADA REGIONALE CISPADANAdal casello di Reggiolo-Rolo sulla A22 al casello di Ferrara Sud sulla A13

PROGETTO DEFINITIVO

IMPIANTI TECNICI

PARTE GENERALE

CABINE ELETTRICHE ÎN ÎTÎNERE RELAZIONE DI DIMENSIONAMENTO ÎMPIANTI ELETTRICI

IDENTIFICAZIONE CABINA

IDENTII TOAZIONE GABINA		
Sigla Cabina	Nome	Note
[Cn] Cabina in itinere (C3-C4-C7-C8-C9-C11-C12-C13-C15)	Cn	

AUTOSTRADA REGIONALE CISPADANAdal casello di Reggiolo-Rolo sulla A22 al casello di Ferrara Sud sulla A13

PROGETTO DEFINITIVO

IMPIANTI TECNICI
PARTE GENERALE
CABINE ELETTRICHE IN ITINERE
RELAZIONE DI DIMENSIONAMENTO IMPIANTI ELETTRICI

CABINA

AUTOSTRADA REGIONALE CISPADANAdal casello di Reggiolo-Rolo sulla A22 al casello di Ferrara Sud sulla A13

PROGETTO DEFINITIVO

IMPIANTI TECNICIPARTE GENERALE

CABINE ELETTRICHE IN ITINERE

RELAZIONE DI DIMENSIONAMENTO IMPIANTI ELETTRICI

CABINA: [CN] CABINA IN ITINERE (C3-C4-C7-C8-C9-C11-C12-C13-C15)

DATI GENERALI QUADRO MT CON INVOLUCRO METALLICO

DATI GENERALI			Classe di	Continuità di	
Tipo quadro	Esecuzione	Isolamento	segregazione	servizio	Norme riferimento
SM6	Protetto, compatto	Quadro isolato in aria, apparecchi isolati in gas SF6	PI	LSC 2A	CEI EN 62271-200

Tensione	Tensione	Corrente	Corrente di	Esecuzione ad arco	Grado di	Grado di	Tensione
esercizio	isolamento	nominale	breve durata	interno (1)	protezione	protezione tra	ausiliaria
(kV)	(kV)	(A)	(kA / 1s)	(kA /s)	esterno	celle	(V)
15	24	630	12,5	IAC 12,5kA/1s A-FL	IP2XC	IP2X	

(1)

In opzione soluzione ad arco interno (IAC 16kA/1s AFLR) come riportato su Catalogo "Soluzioni per cabine MT/BT"

N	IOTE				

AUTOSTRADA REGIONALE CISPADANAdal casello di Reggiolo-Rolo sulla A22 al casello di Ferrara Sud sulla A13

PROGETTO DEFINITIVO

IMPIANTI TECNICI PARTE GENERALE

CABINE ELETTRICHE IN ITINERE

RELAZIONE DI DIMENSIONAMENTO IMPIANTI ELETTRICI

CABINA: [CN] CABINA IN ITINERE (C3-C4-C7-C8-C9-C11-C12-C13-C15)

CIRCUITO: ALIMENT. DA

DESCRIZIONE SCOMPARTI MT

Tipo scomparto	
GAM Arrivo o partenza cavo semplice	

AUTOSTRADA REGIONALE CISPADANAdal casello di Reggiolo-Rolo sulla A22 al casello di Ferrara Sud sulla A13

PROGETTO DEFINITIVO

IMPIANTI TECNICI

PARTE GENERALE

CABINE ELETTRICHE IN ITINERE RELAZIONE DI DIMENSIONAMENTO IMPIANTI ELETTRICI

CABINA: [CN] CABINA IN ITINERE (C3-C4-C7-C8-C9-C11-C12-C13-C15)

CIRCUITO: ALIMENT. DA

PROTEZIONE MT

Dispositivo di protezione	Tipo relè

SOGLIE DI REGOLAZIONE

Massima	a corrente >	di fase	fa	corrente di se >>	fa	corrente di se ·>>		oolare >	Omop lo:	
ls (A)			ls (A)	ts (s)	ls (A)	ts (s)	lso (A)	tso (s)	lso (A)	tso (s)
	(3 <i>)</i> 	curva _	(A) —	(3)	_ (A)	- (3)	(^{/4})	- (3)	(A) -	- (3)

SOGLIE DI REGOLAZIONE

Oı	nopolare dir	ezionale (pe	er neutro isol	Omopolare direzionale (per neutro compensato)							
	lo > ↑ (1)						lo > ↑ (1)				
Iso	Iso tso Vso (2) Limite 1 Limite2				Iso	tso	Vso (2)	Limite 1	Limite2		
(A)	(s)	(V)	(°)	(°)	(V)	(s)	(V)	(°)	(°)		
_	_	_	_	_	_	_	_	_	-		

Minima t	ensione				
27					
Vs	ts				
(V)	(s)				
_	_				

(1)

Criterio di regolazione della protezione omopolare direzionale 67N.

- Soglia in tensione Vso. Il valore da inserire si determina nel seguente modo.
 - Vso (%) = $\sqrt{3}$ x 100 x Vso (V) / Ve (V) con

Vso (V) regolazione richiesta dal Distributore

Ve (V) tensione di esercizio.

- Limiti del settore di intervento. I valori da inserire si determinano come segue :
 - Limite 1 SEPAM = 360° Limite 2 Distributore
 - Limite 2 SEPAM = 360° Limite 1 Distributore.

AUTOSTRADA REGIONALE CISPADANAdal casello di Reggiolo-Rolo sulla A22 al casello di Ferrara Sud sulla A13

PROGETTO DEFINITIVO

IMPIANTI TECNICI PARTE GENERALE

CABINE ELETTRICHE IN ITINERE

RELAZIONE DI DIMENSIONAMENTO IMPIANTI ELETTRICI

CABINA: [CN] CABINA IN ITINERE (C3-C4-C7-C8-C9-C11-C12-C13-C15)

CIRCUITO: ALIMENT. DA

CARATTERISTICA DEL CAVO IN MT

Corrente di impiego (A)	Sezione (mm²)	Portata (A)	Lunghezza (m)	Sigla di designazione	Tipo cavo	Tipo isolante	Temperatura ambiente (°C)
7,7	1 x 95	269	4000 (lunghezza non conforme alla norma)	RG7H1R 12/20kV	unipolare	EPR	20

MODALITA' DI POSA: IN CONDOTTI INTERRATI IN PIANO

	Po	sa interrata		Posa in aria				
Temperatura di riferimento (°C)	Profondità di posa (m)	Resistività termica del terreno (°K x m / w)	Numero totale di circuiti	Distanza tra i circuiti (m)	Temperatura di riferimento (°C)	Numero totale di circuiti (°C)	Posa ravvicinata	Numero di passerelle sovrapposte
20	0,8	1,5	1	0	-	-	-	-

NOTE			

AUTOSTRADA REGIONALE CISPADANAdal casello di Reggiolo-Rolo sulla A22 al casello di Ferrara Sud sulla A13

PROGETTO DEFINITIVO

IMPIANTI TECNICI

PARTE GENERALE

CABINE ELETTRICHE IN ITINERE RELAZIONE DI DIMENSIONAMENTO IMPIANTI ELETTRICI

CABINA: [CN] CABINA IN ITINERE (C3-C4-C7-C8-C9-C11-C12-C13-C15)

CIRCUITO: GENER. CABINA

DESCRIZIONE SCOMPARTI MT

Tipo scomparto

DM1-J interruttore generale con protezione indiretta e TV Unità con sezionatore, interruttore, TA, TV, Sepam40 S41 e risalita sbarre

DISPOSITIVI DI PROTEZIONE E SEZIONAMENTO

Sezionatore			Interruttore				Fusibile		
Tipo	Corrente nominale (A)	Corrente di breve durata (kA x 1s)	Tipo	Corrente nominale (A)	Corrente di breve durata (kA x 1s)	Tipo	Tensione nominale (kV)	Corrente nominale (A)	
			Interruttore SF1	630	12,5				

SENSORI DI CORRENTE (TA PER PROTEZIONE A MASSIMA CORRENTE DI FASE)

TA (1) (2)	
ARM3/N1F 50A 2,5VA, 5P30	

Note per TA

- 1) Sono utilizzati sempre n° 3 TA
- 2) Informazioni aggiuntive

TA tipo ARM3/N1F:

- Tenuta alla corrente di cortocircuito : I ter = 16kA x 1s / I din = 2,5 x I ter
- In caso di utilizzo di TA con doppio secondario consultateci.

TA tipo CS300:

- Tenuta alla corrente di cortocircuito : I ter = 16kA x 1s / I din = 2,5 x I ter

TA tipo TLP130:

- Tenuta alla corrente di cortocircuito : I ter = 25kA x 1s / I din = 2,5 x I ter
- Corrente primaria limite di precisione pari a 25kA.
- Classe di precisione 5P
- Le prestazioni sono garantite con protezioni SEPAM e collegamento realizzato con connettore specifico tipo RJ45.

TA tipo Csa 20A e Csb 125A:

- Tenuta alla corrente di cortocircuito : I ter = 20kA x 1s / I din = 2,5 x I ter
- I trasduttori Csa Csb sono parte integrante del dispositivo di interruzione SFset ed hanno caratteristiche specifiche coerenti con il sistema di protezione tipo VIP e con il sistema di apertura dell'interruttore associato.

AUTOSTRADA REGIONALE CISPADANAdal casello di Reggiolo-Rolo sulla A22 al casello di Ferrara Sud sulla A13

PROGETTO DEFINITIVO

IMPIANTI TECNICI PARTE GENERALE

CABINE ELETTRICHE IN ITINERE

RELAZIONE DI DIMENSIONAMENTO IMPIANTI ELETTRICI

CABINA: [CN] CABINA IN ITINERE (C3-C4-C7-C8-C9-C11-C12-C13-C15)

CIRCUITO: GENER. CABINA

SENSORI DI CORRENTE	(TA TOROIDALE PER PROTEZIONE A MASSIMA CORRENTE OMOPOLARE)
	TA TOROIDALE (1)
	CSH 160

(1)

Il toroide CSH30 viene utilizzato come adattatore quando la misura della corrente residua viene effettuata mediante TA con secondario 1A oppure 5A (per i criteri di istallazione vedere documento specifico)

SENSORI DI TENSIONE (TV PER PROTEZIONE A MASSIMA CORRENTE OMOPOLARE)

OLINGORI DI TENGICITE (TVT ERT ROTELIONE AT	MAGGIMA GORRENTE GINGI GEARE)				
TV (2)					
Tipo	Tensione di esercizio (kV)				
VRQ2/S2 30VA cl.05 /50VA cl.3P	15				

(2)

Înformazioni aggiuntive.

- N° 3 TV
- Collegamento avvolgimenti secondari a triangolo aperto
- Rapporto di trasformazione V:√3/100:3 kV/kV dove V è la tensione di esercizio dell'impianto
- Classe di precisione 3%
- Prestazioni 50VA

In caso di TV con due secondari il secondario utilizzato come misura ha le seguenti caratteristiche:

- Rapporto di trasformazione : V:√3/100:√3 dove V è la tensione di esercizio dell'impianto
- Prestazione : 30VA
- Classe di precisione : 0,5

NOTE			

AUTOSTRADA REGIONALE CISPADANAdal casello di Reggiolo-Rolo sulla A22 al casello di Ferrara Sud sulla A13

PROGETTO DEFINITIVO

IMPIANTI TECNICI

PARTE GENERALE

CABINE ELETTRICHE IN ITINERE RELAZIONE DI DIMENSIONAMENTO IMPIANTI ELETTRICI

CABINA: [CN] CABINA IN ITINERE (C3-C4-C7-C8-C9-C11-C12-C13-C15)

CIRCUITO: GENER. CABINA

PROTEZIONE MT

Dispositivo di protezione	Tipo relè		
Interruttore SF1	SEPAM 40 S41		

SOGLIE DI REGOLAZIONE

Massima	a corrente >	di fase	fase Massima corrente di fase fase >> >>		se	Omopolare lo >		Omopolare Io >>		
ls (A)	ts (s)	Tipo curva	Is (A)	ts (s)	Is (A)	ts (s)	Iso (A)	tso (s)	Iso (A)	tso (s)
60	12	VIT	250	0,43	600	0,05	2	0,38	70	0,1

SOGLIE DI REGOLAZIONE

Omopolare direzionale (per neutro isolato)					Omopolare direzionale (per neutro compensato)				
lo > ↑ (1)							lo > ↑	(1)	
Iso	tso	tso Vso (2) Limite 1 Limite2				tso	Vso (2)	Limite 1	Limite2
(A)	(s)	(V)	(°)	(°)	(V)	(s)	(V)	(°)	(°)
2	0,1	2	60	120	2	0,38	5	60	250

Minima tensione					
2	7				
Vs ts					
(V)	(s)				
_	_				

(1)

Criterio di regolazione della protezione omopolare direzionale 67N.

- Soglia in tensione Vso. Il valore da inserire si determina nel seguente modo.
 - Vso (%) = $\sqrt{3}$ x 100 x Vso (V) / Ve (V) con

Vso (V) regolazione richiesta dal Distributore

Ve (V) tensione di esercizio.

- Limiti del settore di intervento. I valori da inserire si determinano come segue :
 - Limite 1 SEPAM = 360° Limite 2 Distributore
 - Limite 2 SEPAM = 360° Limite 1 Distributore.

AUTOSTRADA REGIONALE CISPADANAdal casello di Reggiolo-Rolo sulla A22 al casello di Ferrara Sud sulla A13

PROGETTO DEFINITIVO

IMPIANTI TECNICI PARTE GENERALE

CABINE ELETTRICHE IN ITINERE

RELAZIONE DI DIMENSIONAMENTO IMPIANTI ELETTRICI

CABINA: [CN] CABINA IN ITINERE (C3-C4-C7-C8-C9-C11-C12-C13-C15)

CIRCUITO: ALIMENT CABINA

CARATTERISTICHE ELETTRICHE UTENZA GENERICA

Denominazione cabina a valle	Potenza nominale (kW)	Fattore di potenza	Corrente inserzione (xln)	Costante tempo inserzione (s)
_	90	0,9	10	0,3

AUTOSTRADA REGIONALE CISPADANAdal casello di Reggiolo-Rolo sulla A22 al casello di Ferrara Sud sulla A13

PROGETTO DEFINITIVO

IMPIANTI TECNICI

PARTE GENERALE

CABINE ELETTRICHE IN ITINERE RELAZIONE DI DIMENSIONAMENTO IMPIANTI ELETTRICI

CABINA: [CN] CABINA IN ITINERE (C3-C4-C7-C8-C9-C11-C12-C13-C15)

CIRCUITO: ALIMENT CABINA

DESCRIZIONE SCOMPARTI MT

Tipo scomparto

DM1-A Partenza con protezione diretta cavo con sezionatore, interruttore, TA, VIP37P, VIP37PT

DISPOSITIVI DI PROTEZIONE E SEZIONAMENTO

Sezionatore		Interruttore			Fusibile			
Tipo	Corrente nominale (A)	Corrente di breve durata (kA x 1s)	Tipo	Corrente nominale (A)	Corrente di breve durata (kA x 1s)	Tipo	Tensione nominale (kV)	Corrente nominale (A)
			Interruttore SFset	630	12,5			

SENSORI DI CORRENTE (TA PER PROTEZIONE A MASSIMA CORRENTE DI FASE)

TA (1) (2)	
Csa 20A	

Note per TA

- 3) Sono utilizzati sempre n° 3 TA
- 4) Informazioni aggiuntive

TA tipo ARM3/N1F:

- Tenuta alla corrente di cortocircuito : I ter = 16kA x 1s / I din = 2,5 x I ter
- In caso di utilizzo di TA con doppio secondario consultateci.

TA tipo CS300:

- Tenuta alla corrente di cortocircuito : I ter = 16kA x 1s / I din = 2,5 x I ter

TA tipo TLP130:

- Tenuta alla corrente di cortocircuito : I ter = 25kA x 1s / I din = 2,5 x I ter
- Corrente primaria limite di precisione pari a 25kA.
- Classe di precisione 5P
- Le prestazioni sono garantite con protezioni SEPAM e collegamento realizzato con connettore specifico tipo RJ45.

TA tipo Csa 20A e Csb 125A:

- Tenuta alla corrente di cortocircuito : I ter = 20kA x 1s / I din = 2,5 x I ter
- I trasduttori Csa Csb sono parte integrante del dispositivo di interruzione SFset ed hanno caratteristiche specifiche coerenti con il sistema di protezione tipo VIP e con il sistema di apertura dell'interruttore associato.

AUTOSTRADA REGIONALE CISPADANAdal casello di Reggiolo-Rolo sulla A22 al casello di Ferrara Sud sulla A13

PROGETTO DEFINITIVO

IMPIANTI TECNICI PARTE GENERALE

CABINE ELETTRICHE IN ITINERE

RELAZIONE DI DIMENSIONAMENTO IMPIANTI ELETTRICI

CABINA: [CN] CABINA IN ITINERE (C3-C4-C7-C8-C9-C11-C12-C13-C15)

CIRCUITO: ALIMENT CABINA

SENSORI DI CORRENTE (TA TOROIDALE PER PROTEZIONE A MASSIMA CORRENTE OMOPOLARE)

TA TOROIDALE (1)

<Non Disponibile>

(1)

Il toroide CSH30 viene utilizzato come adattatore quando la misura della corrente residua viene effettuata mediante TA con secondario 1A oppure 5A (per i criteri di istallazione vedere documento specifico)

AUTOSTRADA REGIONALE CISPADANAdal casello di Reggiolo-Rolo sulla A22 al casello di Ferrara Sud sulla A13

PROGETTO DEFINITIVO

IMPIANTI TECNICI

PARTE GENERALE

CABINE ELETTRICHE IN ITINERE RELAZIONE DI DIMENSIONAMENTO IMPIANTI ELETTRICI

CABINA: [CN] CABINA IN ITINERE (C3-C4-C7-C8-C9-C11-C12-C13-C15)

CIRCUITO: ALIMENT CABINA

PROTEZIONE MT

Dispositivo di protezione	Tipo relè			
Interruttore SFset	VIP37P			

SOGLIE DI REGOLAZIONE

Massima corrente di fase		Massima d fa			Massima corrente di fase		Omopolare Io >		Omopolare Io >>	
Is	ts	Tipo	Is	ts	Is	ls ts		tso	Iso	tso
(A)	(s)	curva	(A)	(s)	(A)	(s)	(A)	(s)	(A)	(s)
_	_	_	10	0,05	30	0,03	_	_	_	_

SOGLIE DI REGOLAZIONE

Oı	nopolare dir	ezionale (pe	er neutro isol	Omopolare direzionale (per neutro compensato)					
. lo > ↑ (1)							lo > ↑	(1)	
Iso	Iso					tso	Vso (2)	Limite 1	Limite2
(A)						(s)	(V)	(°)	(°)
_	_ _ _ _						_	_	-

Minima tensione								
2	/							
Vs ts								
(V)	(s)							
_	_							

(1)

Criterio di regolazione della protezione omopolare direzionale 67N.

- Soglia in tensione Vso. Il valore da inserire si determina nel seguente modo.
 - Vso (%) = $\sqrt{3}$ x 100 x Vso (V) / Ve (V) con

Vso (V) regolazione richiesta dal Distributore

Ve (V) tensione di esercizio.

- Limiti del settore di intervento. I valori da inserire si determinano come segue :
 - Limite 1 SEPAM = 360° Limite 2 Distributore
 - Limite 2 SEPAM = 360° Limite 1 Distributore.

AUTOSTRADA REGIONALE CISPADANAdal casello di Reggiolo-Rolo sulla A22 al casello di Ferrara Sud sulla A13

PROGETTO DEFINITIVO

IMPIANTI TECNICI PARTE GENERALE

CABINE ELETTRICHE IN ITINERE

RELAZIONE DI DIMENSIONAMENTO IMPIANTI ELETTRICI

CABINA: [CN] CABINA IN ITINERE (C3-C4-C7-C8-C9-C11-C12-C13-C15)

CIRCUITO: ALIMENT CABINA

CARATTERISTICA DEL CAVO IN MT

Corrente di impiego (A)	Sezione (mm²)	Portata (A)	Lunghezza (m)	Sigla di designazione	Tipo cavo	Tipo isolante	Temperatura ambiente (°C)
3,85	1 x 95	269	4000	RG7H1R 12/20kV	unipolare	EPR	20

MODALITA' DI POSA: IN CONDOTTI INTERRATI IN PIANO

	Po	sa interrata			Pos	a in aria		
Temperatura di posa riferimento (°C)		Resistività termica del terreno (°K x m / w)	Numero totale di circuiti	Distanza tra i circuiti (m)	Temperatura di riferimento (°C)	Numero totale di circuiti (°C)	Posa ravvicinata	Numero di passerelle sovrapposte
20	0,8	1,5	1	0	-	-	-	-

NOTE			

AUTOSTRADA REGIONALE CISPADANAdal casello di Reggiolo-Rolo sulla A22 al casello di Ferrara Sud sulla A13

PROGETTO DEFINITIVO

IMPIANTI TECNICI PARTE GENERALE

CABINE ELETTRICHE IN ITINERE RELAZIONE DI DIMENSIONAMENTO IMPIANTI ELETTRICI

CABINA: [CN] CABINA IN ITINERE (C3-C4-C7-C8-C9-C11-C12-C13-C15)

CIRCUITO: PROTEZIONE TR

DESCRIZIONE SCOMPARTI MT

Tipo scomparto

DM1-A Partenza con protezione diretta cavo con sezionatore, interruttore, TA, VIP37P, VIP37PT

DISPOSITIVI DI PROTEZIONE E SEZIONAMENTO

	Sezionato	re		Fusibile				
Tipo	Corrente nominale (A)	Corrente di breve durata (kA x 1s)	Tipo	Corrente nominale (A)	Corrente di breve durata (kA x 1s)	eve durata Tipo		Corrente nominale (A)
			Interruttore SFset	630	12,5			

SENSORI DI CORRENTE (TA PER PROTEZIONE A MASSIMA CORRENTE DI FASE)

TA (1) (2)	
Csa 20A	

Note per TA

- 5) Sono utilizzati sempre n° 3 TA
- Informazioni aggiuntive

TA tipo ARM3/N1F:

- Tenuta alla corrente di cortocircuito : I ter = 16kA x 1s / I din = 2,5 x I ter
- In caso di utilizzo di TA con doppio secondario consultateci.

TA tipo CS300:

Tenuta alla corrente di cortocircuito : I ter = 16kA x 1s / I din = 2,5 x I ter

TA tipo TLP130:

- Tenuta alla corrente di cortocircuito : I ter = 25kA x 1s / I din = 2,5 x I ter
- Corrente primaria limite di precisione pari a 25kA.
- Classe di precisione 5P
- Le prestazioni sono garantite con protezioni SEPAM e collegamento realizzato con connettore specifico tipo RJ45.

TA tipo Csa 20A e Csb 125A:

- Tenuta alla corrente di cortocircuito : I ter = 20kA x 1s / I din = 2,5 x I ter
- I trasduttori Csa Csb sono parte integrante del dispositivo di interruzione SFset ed hanno caratteristiche specifiche coerenti con il sistema di protezione tipo VIP e con il sistema di apertura dell'interruttore associato.

AUTOSTRADA REGIONALE CISPADANAdal casello di Reggiolo-Rolo sulla A22 al casello di Ferrara Sud sulla A13

PROGETTO DEFINITIVO

IMPIANTI TECNICI PARTE GENERALE

CABINE ELETTRICHE IN ITINERE

RELAZIONE DI DIMENSIONAMENTO IMPIANTI ELETTRICI

CABINA: [CN] CABINA IN ITINERE (C3-C4-C7-C8-C9-C11-C12-C13-C15)

CIRCUITO: PROTEZIONE TR

SENSORI DI CORRENTE (TA TOROIDALE PER PROTEZIONE A MASSIMA CORRENTE OMOPOLARE)

TA TOROIDALE (1)

<Non Disponibile>

(1)

Il toroide CSH30 viene utilizzato come adattatore quando la misura della corrente residua viene effettuata mediante TA con secondario 1A oppure 5A (per i criteri di istallazione vedere documento specifico)

AUTOSTRADA REGIONALE CISPADANAdal casello di Reggiolo-Rolo sulla A22 al casello di Ferrara Sud sulla A13

PROGETTO DEFINITIVO

IMPIANTI TECNICI

PARTE GENERALE

CABINE ELETTRICHE IN ITINERE RELAZIONE DI DIMENSIONAMENTO IMPIANTI ELETTRICI

CABINA: [CN] CABINA IN ITINERE (C3-C4-C7-C8-C9-C11-C12-C13-C15)

CIRCUITO: PROTEZIONE TR

PROTEZIONE MT

Dispositivo di protezione	Tipo relè
Interruttore SFset	VIP37P

SOGLIE DI REGOLAZIONE

COCLIE	SOCIL DI REGULAZIONE										
Massima corrente di fase		fa	corrente di se >>	Massima corrente di fase		Omopolare lo >		Omopolare lo >>			
Is	ts	Tipo	Is	ts	Is	ts	Iso	tso	Iso	tso	
(A)	(A) (s) curva		(A)	(s)	(A)	(s)	(A)	(s)	(A)	(s)	
_	_	_	10	0,05	30	0,03	_	_	_	_	

SOGLIE DI REGOLAZIONE

Omopolare direzionale (per neutro isolato)						Omopolare direzionale (per neutro compensato)				
lo > ↑ (1)					lo > ↑ (1)					
Iso	tso	Vso (2)	Limite 1	Limite2	Iso	tso	Vso (2)	Limite 1	Limite2	
(A)	(s)	(V)	(°)	(°)	(V)	(s)	(V)	(°)	(°)	
_	_	_	_	_	_	_	_	_	-	

Minima tensione						
27						
Vs ts						
(V)	(s)					
_	_					

(1)

Criterio di regolazione della protezione omopolare direzionale 67N.

- Soglia in tensione Vso. Il valore da inserire si determina nel seguente modo.
 - $Vso(\%) = \sqrt{3} \times 100 \times Vso(V) / Ve(V)$ con

Vso (V) regolazione richiesta dal Distributore

Ve (V) tensione di esercizio.

- Limiti del settore di intervento. I valori da inserire si determinano come segue :
 - Limite 1 SEPAM = 360° Limite 2 Distributore
 - Limite 2 SEPAM = 360° Limite 1 Distributore.

CARATTERISTICHE COSTRUTTIVE TRASFORMATORI

Caratteristiche							
Funzione automatica distacco trasformatore	Tipo	Gruppo	Isolamento	Classe isolamento	Classe ambientale	Classe climatica	Classe comportamento al fuoco
No	T-Cast	DY11n	Resina	F	E2	C2	F1

AUTOSTRADA REGIONALE CISPADANAdal casello di Reggiolo-Rolo sulla A22 al casello di Ferrara Sud sulla A13

PROGETTO DEFINITIVO

IMPIANTI TECNICI

PARTE GENERALE

CABINE ELETTRICHE ÎN ÎTÎNERE RELAZIONE DI DIMENSIONAMENTO ÎMPIANTI ELETTRICI

CARATTERISTICHE EL ETTRICHE TRASFORMATORE

Potenza nominale (kVA)	Tensione nominale (kV)	Tensione primaria (kV)	Tensione secondaria (kV)	Tensione cortocircuito (%)	Corrente inserzione (xln)	Costante tempo inserzione (s)	Norma di riferimento
100	17,5	15	400	6	11	0,1	CEI 14-4

CORRENTI PRIMARIE E SECONDARIE

Corrente Nominale (A)		Corrente di cortocircuito 3F BT (A)				li guasto a a BT ^A)		te di inserzione (A)	
Lato MT	a 0,4kV	Lato MT	a 0,4kV	a 0,4kV	Lato MT	a 0,4kV	a 0,43s	a 0,05s	
3,85	144,34	63,82	2393,34	2072,64	36,85	2393,34	0,55	18,16	

NOTE		

AUTOSTRADA REGIONALE CISPADANAdal casello di Reggiolo-Rolo sulla A22 al casello di Ferrara Sud sulla A13

PROGETTO DEFINITIVO

IMPIANTI TECNICI

PARTE GENERALE CABINE ELETTRICHE IN ITINERE

RELAZIONE DI DIMENSIONAMENTO IMPIANTI ELETTRICI

CABINA: [CN] CABINA IN ITINERE (C3-C4-C7-C8-C9-C11-C12-C13-C15)

CIRCUITO: PROTEZIONE TR

PROTEZIONE BT

Quadro	Unità Utenza	Dispositivo di protezione	N° poli	Tipo sganciatore / curva	Corrente nominale (A)
		NSX160 E	4 poli	MicroL2.2	150

SOGLIE DI REGOLAZIONE

	Protezione sovraccarico				Protezione cortocircuito					Protezione guasto a terra				
Lungo ritardo				Corto ritardo			Istantanea		Tipologia		Regolazioni			
lo (xln)	Ir (xlo)	Ir (A)	Tr a 6xlr (s)	Tipo curva	lsd (xlr)	Isd (A)	ts n° gradino	Tsd (s)	li (xln)	li (A)	Tipo	Classe	ldn (A)	Td (s)
0,9	-	135	7.5	EIT	10	1350		0,04	11	1650				istant aneo

NOTE			

AUTOSTRADA REGIONALE CISPADANAdal casello di Reggiolo-Rolo sulla A22 al casello di Ferrara Sud sulla A13

PROGETTO DEFINITIVO

IMPIANTI TECNICI PARTE GENERALE

CABINE ELETTRICHE IN ITINERE

RELAZIONE DI DIMENSIONAMENTO IMPIANTI ELETTRICI

CABINA: [CN] CABINA IN ITINERE (C3-C4-C7-C8-C9-C11-C12-C13-C15)

CIRCUITO: PROTEZIONE TR

CARATTERISTICA DEL CAVO IN MT

Corrente di impiego (A)	Sezione (mm²)	Portata (A)	Lunghezza (m)	Sigla di designazione	Tipo cavo	Tipo isolante	Temperatura ambiente (°C)
3,85	1 x 35	190	10	RG7H1R 12/20kV	unipolare	EPR	30

MODALITA' DI POSA: IN CUNICOLO POSA IN PIANO A CONTATTO

	Po	osa interrata		Posa in aria				
Temperatura di riferimento (°C)	Profondità di posa (m)	Resistività termica del terreno (°K x m / w)	Numero totale di circuiti	Distanza tra i circuiti (m)	Temperatura di riferimento (°C)	Numero totale di circuiti (°C)	Posa ravvicinata	Numero di passerelle sovrapposte
-	-	-	-	-	30	1	-	1

NOTE		

AUTOSTRADA REGIONALE CISPADANAdal casello di Reggiolo-Rolo sulla A22 al casello di Ferrara Sud sulla A13

PROGETTO DEFINITIVO

IMPIANTI TECNICI
PARTE GENERALE
CABINE ELETTRICHE IN ITINERE
RELAZIONE DI DIMENSIONAMENTO IMPIANTI ELETTRICI

QUADRO QGBT

AUTOSTRADA REGIONALE CISPADANAdal casello di Reggiolo-Rolo sulla A22 al casello di Ferrara Sud sulla A13

PROGETTO DEFINITIVO

IMPIANTI TECNICI

PARTE GENERALE CABINE ELETTRICHE IN ITINERE

RELAZIONE DI DIMENSIONAMENTO IMPIANTI ELETTRICI

Alimentazione

DATI GENERALI DI IMPIANTO

	110				
Tensione Nominale [V]	Sistema di Neutro	Distribuzione	P. Contrattuale [kW]	Frequenza[Hz]	
400	TNS	3 Fasi + Neutro	-	50	

ALIMENTAZIONE PRINCIPALE:TRASFORMATORE

n° trafo	n° rami attivi	rami attivi S _{cc} a monte [MVA] S _n [kVA]		I _{n Trafo} [A]	V _{cc} [%]	P _{cu} [kW]
1	1	500	100	144,34	6	2,3

AUTOSTRADA REGIONALE CISPADANAdal casello di Reggiolo-Rolo sulla A22 al casello di Ferrara Sud sulla A13

PROGETTO DEFINITIVO

IMPIANTI TECNICI
PARTE GENERALE
CABINE ELETTRICHE IN ITINERE
RELAZIONE DI DIMENSIONAMENTO IMPIANTI ELETTRICI

STRUTTURA QUADRI

QGBT - Quadro Generale bt cabina in itinere

AUTOSTRADA REGIONALE CISPADANAdal casello di Reggiolo-Rolo sulla A22 al casello di Ferrara Sud sulla A13

PROGETTO DEFINITIVO

IMPIANTI TECNICI PARTE GENERALE

CABINE ELETTRICHE ÎN ÎTÎNERE RELAZIONE DI DIMENSIONAMENTO ÎMPIANTI ELETTRICI

LINEE

Utenza	Siglatura	Ph/N/PE Derivazione	P [kW]	Cos φ	Tensione [V]	Ι _b [A]
Quadro: [QGBT] Quadro Gen	erale bt cabina in itinere					
UPS servizi e TLC		3F+N+PE	21,9	0,95	400	33,3
Illum.ed.tecnol.	U0.1.2	F+N+PE	0,8	0,90	230	3,9
Prese monofase	U0.1.3	F+N+PE	1,5	0,90	230	7,3
Prese trifase	U0.1.4	3F+N+PE	3	0,90	400	4,8
Cdz split TLC	U0.1.5	3F+N+PE	2	0,90	400	3,2
Alim.estrattori	U0.1.6	F+N+PE	0,5	0,90	230	2,4

AUTOSTRADA REGIONALE CISPADANAdal casello di Reggiolo-Rolo sulla A22 al casello di Ferrara Sud sulla A13

PROGETTO DEFINITIVO

IMPIANTI TECNICI PARTE GENERALE

CABINE ELETTRICHE IN ITINERE

RELAZIONE DI DIMENSIONAMENTO IMPIANTI ELETTRICI

REGOLAZIONI

Utenza	Interruttore	Poli	Curva Sganciatore	I _n [A]	I _r [A]	T _r [s]	I _m [kA]	I _{sd} [kA]
Siglatura	T _{sd} [s]	li	Ig [A]	T _g [s]	Differenz.	Classe	I _∆ n [A]	T _∆ n [s]
Quadro: [QGBT] Qu	adro Generale	bt cabina in	itinere					
Generale QGBT	NSX160 E	4	TM-D	50	50 x1	-	0,5	0,5
Q1	-	-	-	-				
UPS servizi e TLC	C40 a	3+N	С	40	40	-	0,4	0,4
Q0.1.1	-	-	-	-	Vigi	AC	0,3	lst.
Illum.ed.tecnol.	C40 a	1+N	С	6	6	-	0,06	0,06
Q0.1.2	-	-	-	-	Vigi	AC	0,03	lst.
Prese monofase	C40 a	1+N	С	10	10	-	0,1	0,1
Q0.1.3	-	-	-	-	Vigi	AC	0,03	lst.
Prese trifase	C40 a	3+N	С	6	6	-	0,06	0,06
Q0.1.4	-	-	-	-	Vigi	AC	0,03	lst.
Cdz split TLC	C40 a	3+N	С	6	6	-	0,06	0,06
Q0.1.5	-	-	-	-	Vigi	AC	0,03	lst.
Alim.estrattori	C40 a	1+N	С	6	6	-	0,06	0,06
Q0.1.6	-	-	-	-	Vigi	AC	0,03	lst.

AUTOSTRADA REGIONALE CISPADANAdal casello di Reggiolo-Rolo sulla A22 al casello di Ferrara Sud sulla A13

PROGETTO DEFINITIVO

IMPIANTI TECNICI PARTE GENERALE

CABINE ELETTRICHE IN ITINERE
RELAZIONE DI DIMENSIONAMENTO IMPIANTI ELETTRICI

UPS

Collocazione	Fasi ingresso	An [kVA]	THDi [%]	η	In rete 1 [A]	Tipo batteria
Descrizione UPS	Fasi uscita	cos φ	Tecnologia		In rete 2 [A]	Autonomia [min]
Quadro: [QGBT] Quadro Generale bt ca	bina in itine	re				
[QGBT] UPS servizi e TLC	3	20	5	0,93	39,11	Piombo
Galaxy 300 20 kVA (400V in 230V out)	1	0,95	on-line	-	-	30

AUTOSTRADA REGIONALE CISPADANAdal casello di Reggiolo-Rolo sulla A22 al casello di Ferrara Sud sulla A13

PROGETTO DEFINITIVO

IMPIANTI TECNICI

PARTE GENERALE

CABINE ELETTRICHE ÎN ITINERE RELAZIONE DI DIMENSIONAMENTO IMPIANTI ELETTRICI

CALCOLI E VERIFICHE

QUADRO: [QGBT] QUADRO GENERALE BT CABINA IN ITINERE

LINEA: GENERALE QGBT

CARATTERISTICHE GENERALI DELLA LINEA

P [kW]	I _b [A]/I _{nm} [A]	I _R [A]	Is [A]	I _T [A]	cos φ b	K _{utilizzo}	K _{contemp} .	η
29,69	48,62	45,26	48,62	43,81	0,94		1,00	

CAVO

Siglatura	Derivazione	tipo cond.	Lungh. [m]	Posa 64-8	T _{emp.}	n° supp.	Resistività [°K m/W]	Prof. di Posa [m]	ravv. dist.	altri circuiti	K sicur.
L1	3F+N+PE	uni	15	43	30			-	ravv.		1,0

Sezion fase	e Condutto	ori [mm²] PE	Designazione	R_{cavo} $[m\Omega]$	X_{cavo} [m Ω]	R_{tot} [m Ω]	X_{tot} [m Ω]	ΔV _{cavo} [%]	ΔV _{tot} [%]	ΔV _{max prog} [%]
1x 95	1x 50	1x 50	H07RN-F	2,8421	1,4625	39,6901	90,4455	0,08	0,08	4,0

I _b [A]	I _z [A]	Icc max inizio linea [kA]	Icc max Fine linea [kA]	I _{ccmin fine linea} [kA]	I _{cc Terra} [kA]
48,6	328	2,4	2,34	1,91	1,91

INTERRUTTORE

Utenza	Interruttore	Poli	Curva Sganciatore	I _n [A]	n [A] Ir [A]		I _m [kA]	I _{sd} [kA]	
Siglatura	T _{sd} [s]	li	I _g [A]	T _g [s]	Differenz.	Classe	l∆n [A]	T∆n [s]	
Generale QGBT	NSX160 E	4	TM-D	50	50	-	0,5	0,5	
Q1	-	-	-	-					

Sovraccarico Corto Circuito massimo		Corto Circuito minimo	Persone
Verificata	-	-	-

AUTOSTRADA REGIONALE CISPADANAdal casello di Reggiolo-Rolo sulla A22 al casello di Ferrara Sud sulla A13

PROGETTO DEFINITIVO

IMPIANTI TECNICI

PARTE GENERALE

CABINE ELETTRICHE ÎN ITINERE RELAZIONE DI DIMENSIONAMENTO IMPIANTI ELETTRICI

CALCOLI E VERIFICHE

QUADRO: [QGBT] QUADRO GENERALE BT CABINA IN ITINERE

LINEA: UPS SERVIZI E TLC

CARATTERISTICHE GENERALI DELLA LINEA

P [kW]	I _b [A]/I _{nm} [A]	I _R [A]	I _S [A]	I _T [A]	cos φ b	K _{utilizzo}	K _{contemp} .	η
21,89	33,26	33,26	33,26	33,26	0,95			

CAVO

Siglatura	Derivazione	tipo cond.	Lungh. [m]	Posa 64-8	T _{emp.}	n° supp.	Resistività [°K m/W]	Prof. di Posa [m]	ravv. dist.	altri circuiti	K sicur.
L0.1.1	3F+N+PE	uni	10	43	30			-	ravv.		1,0

Sezione Conduttori [mm²] fase neutro PE			Designazione	R_{cavo} $[m\Omega]$	X _{cavo} [mΩ]	R_{tot} [m Ω]	X_{tot} [m Ω]	ΔV _{cavo} [%]	ΔV _{tot} [%]	ΔV _{max prog} [%]
1x 25	1x 25	1x 16	FG7R	7,2	1,06	46,8901	91,5055	0,13	0,21	4,0

I _b [A]	I _z [A]	Icc max inizio linea [kA]	Icc max Fine linea [kA]	I _{ccmin fine linea} [kA]	I _{cc Terra} [kA]
33,3	135	2,34	2,25	1,69	1,63

INTERRUTTORE

Utenza	Interruttore	Poli	Curva Sganciatore	I _n [A]	I _r [A]	T _r [s]	I _m [kA]	I _{sd} [kA]
Siglatura	T _{sd} [s]	li	I _g [A]	T _g [s]	Differenz.	Classe	l∆n [A]	T _∆ n [s]
UPS servizi e TLC	C40 a	3+N	С	40	40	-	0,4	0,4
Q0.1.1	-	-	-	-	Vigi	AC	0,3	lst.

Sovraccarico Corto Circuito massimo		Corto Circuito minimo	Persone
Verificata	Verificata	Verificata	Verificata

AUTOSTRADA REGIONALE CISPADANAdal casello di Reggiolo-Rolo sulla A22 al casello di Ferrara Sud sulla A13

PROGETTO DEFINITIVO

IMPIANTI TECNICI

PARTE GENERALE

CABINE ELETTRICHE ÎN ITINERE RELAZIONE DI DIMENSIONAMENTO IMPIANTI ELETTRICI

CALCOLI E VERIFICHE

QUADRO: [QGBT] QUADRO GENERALE BT CABINA IN ITINERE

LINEA: ILLUM.ED.TECNOL.

CARATTERISTICHE GENERALI DELLA LINEA

P [kW]	I _b [A]/I _{nm} [A]	I _R [A]	Is [A]	I _T [A]	cos φ b	Kutilizzo	K _{contemp} .	η
0,8	3,87	3,87	0	0	0,90	1,00		

CAVO

Siglatura	Derivazione	tipo cond.	Lungh. [m]	Posa 64-8	T _{emp.}	n° supp.	Resistività [°K m/W]	Prof. di Posa [m]	ravv. dist.	altri circuiti	K sicur.
L0.1.2	F+N+PE	uni	30	3	30			-	ravv.		1,0

Sezione Conduttori [mm²] fase neutro PE		Designazione	R_{cavo} $[m\Omega]$	X_{cavo} [m Ω]	R_{tot} [m Ω]	X_{tot} [m Ω]	ΔV _{cavo} [%]	ΔV _{tot} [%]	ΔV _{max prog} [%]				
1x	1,5	1x	1,5	1x	1,5	N07G9-K	360,0	5,04	399,6901	95,4855	1,35	1,43	4,0

I _b [A]	I _z [A]	Icc max inizio linea [kA]	Icc max Fine linea [kA]	I _{ccmin fine linea} [kA]	I _{cc Terra} [kA]
3,9	23	2,34	0,56	0,19	0,19

INTERRUTTORE

Utenza	Interruttore	uttore Poli Curva Sganciatore I _n [A]		I _n [A]	I _r [A]	T _r [s]	I _m [kA]	I _{sd} [kA]
Siglatura	T _{sd} [s]	li	I _g [A]	T _g [s]	Differenz.	Classe	l∆n [A]	T∆n [s]
Illum.ed.tecnol.	C40 a	1+N	С	6	6	-	0,06	0,06
Q0.1.2	-	-	-	-	Vigi	AC	0,03	lst.

Sovraccarico	Corto Circuito massimo	Corto Circuito minimo	Persone
Verificata	Verificata	Verificata	Verificata

AUTOSTRADA REGIONALE CISPADANAdal casello di Reggiolo-Rolo sulla A22 al casello di Ferrara Sud sulla A13

PROGETTO DEFINITIVO

IMPIANTI TECNICIPARTE GENERALE

CABINE ELETTRICHE IN ITINERE

RELAZIONE DI DIMENSIONAMENTO IMPIANTI ELETTRICI

CALCOLI E VERIFICHE

QUADRO: [QGBT] QUADRO GENERALE BT CABINA IN ITINERE

LINEA: PRESE MONOFASE

CARATTERISTICHE GENERALI DELLA LINEA

P [kW]	I _b [A]/I _{nm} [A]	I _R [A]	Is [A]	I _T [A]	cos φ b	K _{utilizzo}	K _{contemp} .	η
1,5	7,25	0	7,25	0	0,90	1,00		

CAVO

Siglatura	Derivazione	tipo cond.	Lungh. [m]	Posa 64-8	T _{emp.}	n° supp.	Resistività [°K m/W]	Prof. di Posa [m]	ravv. dist.	altri circuiti	K sicur.
L0.1.3	F+N+PE	uni	30	3	30			-	ravv.		1,0

Sezione Conduttori [mm²] fase neutro PE		Designazione	R_{cavo} $[m\Omega]$	X_{cavo} [m Ω]	R_{tot} [m Ω]	X_{tot} [m Ω]	ΔV _{cavo} [%]	ΔV _{tot} [%]	ΔV _{max prog} [%]				
1x	1,5	1x	1,5	1x	1,5	N07G9-K	360,0	5,04	399,6901	95,4855	2,53	2,61	4,0

I _b [A]	I _z [A]	I _{cc max inizio linea} [kA]	Icc max Fine linea [kA]	I _{ccmin fine linea} [kA]	I _{cc Terra} [kA]
7,3	23	2,34	0,56	0,19	0,19

INTERRUTTORE

Utenza	Interruttore	Poli Curva I _n [A]		I _n [A]	I _r [A]	T _r [s]	I _m [kA]	I _{sd} [kA]
Siglatura	T _{sd} [s]	li	I _g [A]	T _g [s]	Differenz.	Classe	l∆n [A]	T∆n [s]
Prese monofase	C40 a	1+N	С	10	10	-	0,1	0,1
Q0.1.3	-	-	-	-	Vigi	AC	0,03	lst.

Sovraccarico	Corto Circuito massimo	Corto Circuito minimo	Persone
Verificata	Verificata	Verificata	Verificata

AUTOSTRADA REGIONALE CISPADANAdal casello di Reggiolo-Rolo sulla A22 al casello di Ferrara Sud sulla A13

PROGETTO DEFINITIVO

IMPIANTI TECNICI

PARTE GENERALE

CABINE ELETTRICHE ÎN ITINERE RELAZIONE DI DIMENSIONAMENTO IMPIANTI ELETTRICI

CALCOLI E VERIFICHE

QUADRO: [QGBT] QUADRO GENERALE BT CABINA IN ITINERE

LINEA: PRESE TRIFASE

CARATTERISTICHE GENERALI DELLA LINEA

P [kW]	I _b [A]/I _{nm} [A]	I _R [A]	I _S [A]	I _T [A]	cos φ b	K _{utilizzo}	K _{contemp} .	η
3	4,81	4,81	4,81	4,81	0,90	1,00		

CAVO

Siglatura	Derivazione	tipo cond.	Lungh. [m]	Posa 64-8	T _{emp.}	n° supp.	Resistività [°K m/W]	Prof. di Posa [m]	ravv. dist.	altri circuiti	K sicur.
L0.1.4	3F+N+PE	uni	30	3	30			-	ravv.		1,0

Sezione Conduttori [mm²] fase neutro PE		Designazione	R_{cavo} $[m\Omega]$	X_{cavo} [m Ω]	R_{tot} [m Ω]	X_{tot} [m Ω]	ΔV _{cavo} [%]	ΔV _{tot} [%]	ΔV _{max prog} [%]				
1x	2,5	1x	2,5	1x	2,5	N07G9-K	216,0	4,68	255,6901	95,1255	0,51	0,59	4,0

I _b [A]	I _z [A]	I _{cc max inizio linea} [kA]	Icc max Fine linea [kA]	Iccmin fine linea [kA]	I _{cc Terra} [kA]
4,8	28	2,34	0,85	0,3	0,3

INTERRUTTORE

Utenza	Interruttore	Poli	Curva Sganciatore	I _n [A]	I _r [A] T _r [s]		I _m [kA]	I _{sd} [kA]
Siglatura	T _{sd} [s]	li	I _g [A]	T _g [s]	Differenz.	Classe	l∆n [A]	T∆n [s]
Prese trifase	C40 a	3+N	С	6	6	-	0,06	0,06
Q0.1.4	-	-	-	-	Vigi	AC	0,03	lst.

Sovraccarico Corto Circuito massimo		Corto Circuito minimo	Persone
Verificata	Verificata	Verificata	Verificata

AUTOSTRADA REGIONALE CISPADANAdal casello di Reggiolo-Rolo sulla A22 al casello di Ferrara Sud sulla A13

PROGETTO DEFINITIVO

IMPIANTI TECNICIPARTE GENERALE

CABINE ELETTRICHE IN ITINERE

RELAZIONE DI DIMENSIONAMENTO IMPIANTI ELETTRICI

CALCOLI E VERIFICHE

QUADRO: [QGBT] QUADRO GENERALE BT CABINA IN ITINERE

LINEA: CDZ SPLIT TLC

CARATTERISTICHE GENERALI DELLA LINEA

P [kW]	I _b [A]/I _{nm} [A]	I _R [A]	I _S [A]	I _T [A]	cos φ b	K _{utilizzo}	K _{contemp} .	η
2	3,21	3,21	3,21	3,21	0,90	1,00		

CAVO

Siglatura	Derivazione	tipo cond.	Lungh. [m]	Posa 64-8	T _{emp.}	n° supp.	Resistività [°K m/W]	Prof. di Posa [m]	ravv. dist.	altri circuiti	K sicur.
L0.1.5	3F+N+PE	uni	20	3	30			-	ravv.		1,0

Sezione Conduttori [mm²] fase neutro PE		Designazione	R _{cavo} [mΩ]	X _{cavo} [mΩ]	R_{tot} [m Ω]	X _{tot} [mΩ]	ΔV _{cavo} [%]	ΔV _{tot} [%]	ΔV _{max prog} [%]	
1x 2,5	5 1x 2,5	1x 2,5	N07G9-K	144,0	3,12	183,6901	93,5655	0,22	0,3	4,0

I _b [A]	I _z [A]	I _{cc max inizio linea} [kA]	Icc max Fine linea [kA]	Iccmin fine linea [kA]	I _{cc Terra} [kA]
3,2	28	2,34	1,12	0,43	0,43

INTERRUTTORE

Utenza	Utenza Interruttore		Curva Sganciatore	I _n [A]	I _r [A] T _r [s]		I _m [kA]	I _{sd} [kA]
Siglatura	T _{sd} [s]	li	I _g [A]	T _g [s]	Differenz.	Classe	l∆n [A]	T∆n [s]
Cdz split TLC	C40 a	3+N	С	6	6	-	0,06	0,06
Q0.1.5	-	-	-	-	Vigi	AC	0,03	lst.

Sovraccarico Corto Circuito massimo Verificata Verificata		Corto Circuito minimo	Persone
Verificata	Verificata	Verificata	Verificata

AUTOSTRADA REGIONALE CISPADANAdal casello di Reggiolo-Rolo sulla A22 al casello di Ferrara Sud sulla A13

PROGETTO DEFINITIVO

IMPIANTI TECNICI

PARTE GENERALE

CABINE ELETTRICHE ÎN ITINERE RELAZIONE DI DIMENSIONAMENTO IMPIANTI ELETTRICI

CALCOLI E VERIFICHE

QUADRO: [QGBT] QUADRO GENERALE BT CABINA IN ITINERE

LINEA: ALIM.ESTRATTORI

CARATTERISTICHE GENERALI DELLA LINEA

P [kW]	I _b [A]/I _{nm} [A]	I _R [A]	I _S [A]	I _T [A]	cos φ b	K _{utilizzo}	K _{contemp} .	η
0,5	2,41	0	0	2,41	0,90	1,00		

CAVO

Siglatura	Derivazione	tipo cond.	Lungh. [m]	Posa 64-8	T _{emp.}	n° supp.	Resistività [°K m/W]	Prof. di Posa [m]	ravv. dist.	altri circuiti	K sicur.
L0.1.6	F+N+PE	uni	20	3	30			-	ravv.		1,0

Sezione Conduttori [mm² fase neutro PE		-	Designazione	R_{cavo} $[m\Omega]$	X_{cavo} [m Ω]	R_{tot} [m Ω]	X_{tot} [m Ω]	ΔV _{cavo} [%]	ΔV _{tot} [%]	ΔV _{max prog} [%]			
1x	1,5	1x	1,5	1x	1,5	N07G9-K	240,0	3,36	279,6901	93,8055	0,56	0,64	4,0

I _b [A]	I _z [A]	Icc max inizio linea [kA]	Icc max Fine linea [kA]	Iccmin fine linea [kA]	I _{cc Terra} [kA]
2,4	23	2,34	0,78	0,28	0,28

INTERRUTTORE

Utenza	Interruttore	erruttore Poli Curva I _n [A]		I _r [A]	I _r [A] T _r [s]		I _{sd} [kA]	
Siglatura	T _{sd} [s]	li	I _g [A]	T _g [s]	Differenz.	Classe	l∆n [A]	T∆n [s]
Alim.estrattori	C40 a	1+N	С	6	6	-	0,06	0,06
Q0.1.6	-	-	-	-	Vigi	AC	0,03	lst.

Sovraccarico	Sovraccarico Corto Circuito massimo		Persone
Verificata	Verificata	Verificata	Verificata

AUTOSTRADA REGIONALE CISPADANAdal casello di Reggiolo-Rolo sulla A22 al casello di Ferrara Sud sulla A13

PROGETTO DEFINITIVO

IMPIANTI TECNICI
PARTE GENERALE
CABINE ELETTRICHE IN ITINERE

CABINE ELETTRICHE IN ITINERE RELAZIONE DI DIMENSIONAMENTO IMPIANTI ELETTRICI

QUADRO UPS

AUTOSTRADA REGIONALE CISPADANAdal casello di Reggiolo-Rolo sulla A22 al casello di Ferrara Sud sulla A13

PROGETTO DEFINITIVO

IMPIANTI TECNICI PARTE GENERALE

CABINE ELETTRICHE IN ITINERE

RELAZIONE DI DIMENSIONAMENTO IMPIANTI ELETTRICI

ALIMENTAZIONE

DATI GENERALI DI IMPIANTO

Tensione Nominale [V]	Sistema di Neutro	Distribuzione	P. Contrattuale [kW]	Frequenza[Hz]
400	TNS	3 Fasi + Neutro	14,63	50

ALIMENTAZIONE PRINCIPALE:INGRESSO LINEA

I _{cc} [kA]	dV a monte [%]	Cos φ _{cc}	Cos φ carico
10	0,0	0,50	0,90

AUTOSTRADA REGIONALE CISPADANAdal casello di Reggiolo-Rolo sulla A22 al casello di Ferrara Sud sulla A13

PROGETTO DEFINITIVO

IMPIANTI TECNICI
PARTE GENERALE
CABINE ELETTRICHE IN ITINERE

RELAZIONE DI DIMENSIONAMENTO IMPIANTI ELETTRICI

STRUTTURA QUADRI

QUPS - Quadro UPS servizi e TLC

AUTOSTRADA REGIONALE CISPADANAdal casello di Reggiolo-Rolo sulla A22 al casello di Ferrara Sud sulla A13

PROGETTO DEFINITIVO

IMPIANTI TECNICI PARTE GENERALE

CABINE ELETTRICHE IN ITINERE
RELAZIONE DI DIMENSIONAMENTO IMPIANTI ELETTRICI

LINEE

Utenza	Siglatura	Ph/N/PE Derivazione	P [kW]	Cos φ	Tensione [V]	Ι _b [A]
Quadro: [QUPS] Quadro UPS	S servizi e TLC					
PMV tipo 1	U0.1.1	3F+N+PE	4,8	0,90	400	7,7
PMV tipo 3	U0.1.2	3F+N+PE	4,8	0,90	400	7,7
Cannoni laser	U0.1.3	F+N+PE	0,0	0,90	230	0,1
SOS n e (n+1)	U0.1.4	F+N+PE	0,5	0,90	230	2,4
SOS (n+2) e (n+3)	U0.1.5	F+N+PE	0,5	0,90	230	2,4
DAI-TVCC n	U0.1.6	F+N+PE	0,3	0,90	230	1,5
DAI-TVCC (n+1)	U0.1.7	F+N+PE	0,3	0,90	230	1,5
Central. meteo	U0.1.8	F+N+PE	0,1	0,90	230	0,5
Centr. antinebbia	U0.1.9	3F+N+PE	2,3	0,90	400	3,7
Utenze TLC	U0.1.10	F+N+PE	1	0,90	230	4,8

AUTOSTRADA REGIONALE CISPADANAdal casello di Reggiolo-Rolo sulla A22 al casello di Ferrara Sud sulla A13

PROGETTO DEFINITIVO

IMPIANTI TECNICI PARTE GENERALE

CABINE ELETTRICHE IN ITINERE

RELAZIONE DI DIMENSIONAMENTO IMPIANTI ELETTRICI

REGOLAZIONI

Utenza	Interruttore	Poli	Curva Sganciatore	I _n [A]	I _r [A]	T _r [s]	I _m [kA]	I _{sd} [kA]
Siglatura	T _{sd} [s]	li	I _g [A]	T _g [s]	Differenz.	Classe	I∆n [A]	T∆n [s]
Quadro: [QUPS] Qu	adro UPS servi	izi e TLC						
Generale QUPS	C40 N	3+N	С	25	25	-	0,25	0,25
Q1	-	-	-	-				
PMV tipo 1	C40 N	3+N	С	16	16	-	0,16	0,16
Q0.1.1	-	-	-	-	Vigi	AC	0,3	lst.
PMV tipo 3	C40 N	3+N	С	16	16	-	0,16	0,16
Q0.1.2	-	-	-	-	Vigi	AC	0,3	lst.
Cannoni laser	C40 N	1+N	С	6	6	-	0,06	0,06
Q0.1.3	-	-	-	-	Vigi	AC	0,3	lst.
SOS n e (n+1)	C40 N	1+N	С	10	10	-	0,1	0,1
Q0.1.4	-	-	-	-	Vigi	AC	0,3	lst.
SOS (n+2) e (n+3)	C40 N	1+N	С	10	10	-	0,1	0,1
Q0.1.5	-	-	-	-	Vigi	AC	0,3	lst.
DAI-TVCC n	C40 N	1+N	С	10	10	-	0,1	0,1
Q0.1.6	-	-	-	-	Vigi	AC	0,3	lst.
DAI-TVCC (n+1)	C40 N	1+N	С	10	10	-	0,1	0,1
Q0.1.7	-	-	-	-	Vigi	AC	0,3	lst.
Central. meteo	C40 N	1+N	С	10	10	-	0,1	0,1
Q0.1.8	-	-	-	-	Vigi	AC	0,3	lst.
Centr. antinebbia	C40 N	3+N	С	16	16	-	0,16	0,16
Q0.1.9	-	-	-	-	Vigi	AC	0,3	lst.
Utenze TLC	C40 N	1+N	С	16	16	-	0,16	0,16
Q0.1.10	-	-	-	-	Vigi	A si	0,3	s

AUTOSTRADA REGIONALE CISPADANAdal casello di Reggiolo-Rolo sulla A22 al casello di Ferrara Sud sulla A13

PROGETTO DEFINITIVO

IMPIANTI TECNICI

PARTE GENERALE

CABINE ELETTRICHE ÎN ITINERE RELAZIONE DI DIMENSIONAMENTO IMPIANTI ELETTRICI

CALCOLI E VERIFICHE

QUADRO: [QUPS] QUADRO UPS SERVIZI E TLC

LINEA: GENERALE QUPS

CARATTERISTICHE GENERALI DELLA LINEA

P [kW]	I _b [A]/I _{nm} [A]	I _R [A]	Is [A]	I _T [A]	cos φ b	K _{utilizzo}	K _{contemp} .	η
14,63	24,11	24,11	22,56	23,98	0,90		1,00	

CAVO

Siglatura	Derivazione	tipo cond.	Lungh. [m]	Posa 64-8	T _{emp.}	n° supp.	Resistività [°K m/W]	Prof. di Posa [m]	ravv. dist.	altri circuiti	K sicur.
L1	3F+N+PE	uni	10	43	30			-	ravv.		1,0

Sezione Conduttori [mm²] fase neutro PE			Designazione	R_{cavo} $[m\Omega]$	X_{cavo} [m Ω]	R_{tot} [m Ω]	X_{tot} [m Ω]	ΔV _{cavo} [%]	ΔV _{tot} [%]	ΔV _{max prog} [%]
1x 25	1x 25	1x 16	FG7R	7,2	1,06	18,747	21,06	0,09	0,09	4,0

I _b [A]	I _z [A]	I _{cc max inizio linea} [kA]	Icc max Fine linea [kA]	Iccmin fine linea [kA]	I _{cc Terra} [kA]	
24,1	135	10	8,19	4,88	4,36	

INTERRUTTORE

Utenza	Interruttore	Poli	Curva Sganciatore	I _n [A]	I _r [A]	T _r [s]	I _m [kA]	I _{sd} [kA]
Siglatura	T _{sd} [s]	li	Ig [A]	T _g [s]	Differenz.	Classe	l _∆ n [A]	T _∆ n [s]
Generale QUPS	C40 N	3+N	С	25	25	-	0,25	0,25
Q1	-	-	-	-				

Sovraccarico	Corto Circuito massimo	Corto Circuito minimo	Persone
Verificata	-	-	-

AUTOSTRADA REGIONALE CISPADANAdal casello di Reggiolo-Rolo sulla A22 al casello di Ferrara Sud sulla A13

PROGETTO DEFINITIVO

IMPIANTI TECNICI

PARTE GENERALE

CABINE ELETTRICHE ÎN ITINERE RELAZIONE DI DIMENSIONAMENTO IMPIANTI ELETTRICI

CALCOLI E VERIFICHE

QUADRO: [QUPS] QUADRO UPS SERVIZI E TLC

LINEA: PMV TIPO 1

CARATTERISTICHE GENERALI DELLA LINEA

P [kW]	I _b [A]/I _{nm} [A]	I _R [A]	I _S [A]	I _T [A]	cos φ b	Kutilizzo	K _{contemp} .	η
4,8	7,7	7,7	7,7	7,7	0,90	1,00		

CAVO

Siglatura	Derivazione	tipo cond.	Lungh. [m]	Posa 64-8	T _{emp.}	n° supp.	Resistività [°K m/W]	Prof. di Posa [m]	ravv. dist.	altri circuiti	K sicur.
L0.1.1	3F+N+PE	uni	500	61	30		1,08	0,8	ravv.		1,0

Sezion fase	e Condutto neutro	ori [mm²] PE	Designazione	R_{cavo} $[m\Omega]$	X_{cavo} [m Ω]	R_{tot} [m Ω]	X_{tot} [m Ω]	ΔV _{cavo} [%]	ΔV _{tot} [%]	ΔV _{max prog} [%]
1x 10	1x 10	1x 10	FG7R	900,0	59,5	918,747	80,56	3,45	3,54	4,0

I _b [A]	I _z [A]	I _{cc max inizio linea} [kA]	Icc max Fine linea [kA]	Iccmin fine linea [kA]	I _{cc Terra} [kA]
7,7	59	8,19	0,25	0,08	0,08

INTERRUTTORE

Utenza	Interruttore	Poli	Curva Sganciatore	I _n [A]	I _r [A]	T _r [s]	I _m [kA]	I _{sd} [kA]
Siglatura	T _{sd} [s]	l _i	I _g [A]	T _g [s]	Differenz.	Classe	l∆n [A]	T∆n [s]
PMV tipo 1	C40 N	3+N	С	16	16	-	0,16	0,16
Q0.1.1	-	-	-	-	Vigi	AC	0,3	lst.

Sovraccarico	Corto Circuito massimo	Corto Circuito minimo	Persone
Verificata	Verificata	Verificata	Verificata

AUTOSTRADA REGIONALE CISPADANAdal casello di Reggiolo-Rolo sulla A22 al casello di Ferrara Sud sulla A13

PROGETTO DEFINITIVO

IMPIANTI TECNICI

PARTE GENERALE

CABINE ELETTRICHE ÎN ITINERE RELAZIONE DI DIMENSIONAMENTO IMPIANTI ELETTRICI

CALCOLI E VERIFICHE

QUADRO: [QUPS] QUADRO UPS SERVIZI E TLC

LINEA: PMV TIPO 3

CARATTERISTICHE GENERALI DELLA LINEA

P [kW]	I _b [A]/I _{nm} [A]	I _R [A]	Is [A]	I _T [A]	cos φ b	K _{utilizzo}	K _{contemp.}	η
4,8	7,7	7,7	7,7	7,7	0,90	1,00		

CAVO

Siglatura	Derivazione	tipo cond.	Lungh. [m]	Posa 64-8	T _{emp.}	n° supp.	Resistività [°K m/W]	Prof. di Posa [m]	ravv. dist.	altri circuiti	K sicur.
L0.1.2	3F+N+PE	uni	1000	61	30		1,08	0,8	ravv.		1,0

Sezion fase	e Condutto neutro	ori [mm²] PE	Designazione	R_{cavo} [m Ω]	X _{cavo} [mΩ]	R_{tot} [m Ω]	X _{tot} [mΩ]	ΔV _{cavo} [%]	ΔV _{tot} [%]	ΔV _{max prog} [%]
1x 25	1x 25	1x 16	FG7R	720,0	106,0	738,747	127,06	2,82	2,91	4,0

I _b [A]	I _z [A]	Icc max inizio linea [kA]	Icc max Fine linea [kA]	Iccmin fine linea [kA]	I _{cc Terra} [kA]
7,7	100	8,19	0,31	0,1	0,08

INTERRUTTORE

Utenza	Interruttore	Poli	Curva Sganciatore	I _n [A]	I _r [A]	T _r [s]	I _m [kA]	I _{sd} [kA]
Siglatura	T _{sd} [s]	li	I _g [A]	T _g [s]	Differenz.	Classe	l∆n [A]	T _∆ n [s]
PMV tipo 3	C40 N	3+N	С	16	16	-	0,16	0,16
Q0.1.2	-	1	1	-	Vigi	AC	0,3	lst.

Sovraccarico	Sovraccarico Corto Circuito massimo		Persone
Verificata	Verificata	Verificata	Verificata

AUTOSTRADA REGIONALE CISPADANAdal casello di Reggiolo-Rolo sulla A22 al casello di Ferrara Sud sulla A13

PROGETTO DEFINITIVO

IMPIANTI TECNICI

PARTE GENERALE

CABINE ELETTRICHE ÎN ITINERE RELAZIONE DI DIMENSIONAMENTO IMPIANTI ELETTRICI

CALCOLI E VERIFICHE

QUADRO: [QUPS] QUADRO UPS SERVIZI E TLC

LINEA: CANNONI LASER

CARATTERISTICHE GENERALI DELLA LINEA

P [kW]	I _b [A]/I _{nm} [A]	I _R [A]	I _S [A]	I _T [A]	cos φ b	K _{utilizzo}	K _{contemp} .	η
0,03	0,14	0,14	0	0	0,90	1,00		

CAVO

Siglatura	Derivazione	tipo cond.	Lungh. [m]	Posa 64-8	T _{emp.}	n° supp.	Resistività [°K m/W]	Prof. di Posa [m]	ravv. dist.	altri circuiti	K sicur.
L0.1.3	F+N+PE	uni	500	61	30		1,08	0,8	ravv.		1,0

Sezion fase	e Condutto neutro	ori [mm²] PE	Designazione	R_{cavo} $[m\Omega]$	X_{cavo} [m Ω]	R_{tot} [m Ω]	X_{tot} [m Ω]	ΔV _{cavo} [%]	ΔV _{tot} [%]	ΔV _{max prog} [%]
1x 6	1x 6	1x 6	FG7R	1500,0	67,5	1518,747	88,56	0,21	0,3	4,0

I _b [A]	I _z [A]	Icc max inizio linea [kA]	Icc max Fine linea [kA]	Iccmin fine linea [kA]	I _{cc Terra} [kA]
0,1	52	8,19	0,15	0,05	0,05

INTERRUTTORE

Utenza	Interruttore Poli		Interruttore Poli Curva In [A] Ir		I _r [A]	T _r [s]	I _m [kA]	I _{sd} [kA]	
Siglatura	T _{sd} [s]	li	I _g [A]	T _g [s]	Differenz.	Classe	l _∆ n [A]	T _∆ n [s]	
Cannoni laser	C40 N	1+N	С	6	6	-	0,06	0,06	
Q0.1.3	-	-	-	-	Vigi	AC	0,3	lst.	

Sovraccarico	Corto Circuito massimo	Corto Circuito minimo	Persone
Verificata	Verificata	Verificata	Verificata

AUTOSTRADA REGIONALE CISPADANAdal casello di Reggiolo-Rolo sulla A22 al casello di Ferrara Sud sulla A13

PROGETTO DEFINITIVO

IMPIANTI TECNICI

PARTE GENERALE

CABINE ELETTRICHE ÎN ITINERE RELAZIONE DI DIMENSIONAMENTO IMPIANTI ELETTRICI

CALCOLI E VERIFICHE

QUADRO: [QUPS] QUADRO UPS SERVIZI E TLC

LINEA: SOS N E (N+1)

CARATTERISTICHE GENERALI DELLA LINEA

P [kW]	I _b [A]/I _{nm} [A]	I _R [A]	Is [A]	I _T [A]	cos φ b	K _{utilizzo}	K _{contemp} .	η
0,5	2,41	2,41	0	0	0,90	1,00		

CAVO

_	Siglatura	Derivazione	tipo cond.	Lungh. [m]	Posa 64-8	T _{emp.}	n° supp.	Resistività [°K m/W]	Prof. di Posa [m]	ravv. dist.	altri circuiti	K sicur.
	L0.1.4	F+N+PE	uni	600	61	30		1,08	0,8	ravv.		1,0

Sezion fase	e Condutto neutro	ori [mm²] PE	Designazione	R_{cavo} $[m\Omega]$	X_{cavo} [m Ω]	R_{tot} [m Ω]	X_{tot} [m Ω]	ΔV _{cavo} [%]	ΔV _{tot} [%]	ΔV _{max prog} [%]
1x 10	1x 10	1x 10	FG7R	1080,0	71,4	1098,747	92,46	2,6	2,69	4,0

I _b [A]	I _z [A]	Icc max inizio linea [kA]	Icc max Fine linea [kA]	Iccmin fine linea [kA]	I _{cc Terra} [kA]
2,4	70	8,19	0,21	0,07	0,07

INTERRUTTORE

Utenza	Interruttore	nterruttore Poli Curva I _{n [A}		I _n [A]	I _r [A]	T _r [s]	I _m [kA]	I _{sd} [kA]
Siglatura	T _{sd} [s]	li	I _g [A]	T _g [s]	Differenz.	Classe	l _∆ n [A]	T∆n [s]
SOS n e (n+1)	C40 N	1+N	С	10	10	-	0,1	0,1
Q0.1.4	-	-	-	-	Vigi	AC	0,3	lst.

Sovraccarico	Corto Circuito massimo	Corto Circuito minimo	Persone
Verificata	Verificata	Verificata	Verificata

AUTOSTRADA REGIONALE CISPADANAdal casello di Reggiolo-Rolo sulla A22 al casello di Ferrara Sud sulla A13

PROGETTO DEFINITIVO

IMPIANTI TECNICI

PARTE GENERALE

CABINE ELETTRICHE ÎN ITINERE RELAZIONE DI DIMENSIONAMENTO IMPIANTI ELETTRICI

CALCOLI E VERIFICHE

QUADRO: [QUPS] QUADRO UPS SERVIZI E TLC

LINEA: SOS (N+2) E (N+3)

CARATTERISTICHE GENERALI DELLA LINEA

P [kW]	I _b [A]/I _{nm} [A]	I _R [A]	Is [A]	I _T [A]	cos φ b	K _{utilizzo}	K _{contemp} .	η
0,5	2,41	2,41	0	0	0,90	1,00		

CAVO

	Siglatura	Derivazione	tipo cond.	Lungh. [m]	Posa 64-8	T _{emp.}	n° supp.	Resistività [°K m/W]	Prof. di Posa [m]	ravv. dist.	altri circuiti	K sicur.
Ī	L0.1.5	F+N+PE	uni	1200	61	30		1,08	0,8	ravv.		1,0

Sezion fase	e Condutto neutro	ori [mm²] PE	Designazione	R_{cavo} $[m\Omega]$	X_{cavo} [m Ω]	R_{tot} [m Ω]	X_{tot} [m Ω]	ΔV _{cavo} [%]	ΔV _{tot} [%]	ΔV _{max prog} [%]
1x 16	1x 16	1x 16	FG7R	1350,0	134,4	1368,747	155,46	3,31	3,4	4,0

I _b [A]	I _z [A]	Icc max inizio linea [kA]	Icc max Fine linea [kA]	Iccmin fine linea [kA]	I _{cc Terra} [kA]
2,4	91	8,19	0,17	0,05	0,05

INTERRUTTORE

Utenza	Interruttore	Poli Curva I		I _n [A]	I _n [A] I _r [A]		I _m [kA]	I _{sd} [kA]
Siglatura	T _{sd} [s]	li	I _g [A]	T _g [s]	Differenz.	Classe	l∆n [A]	T _∆ n [s]
SOS (n+2) e (n+3)	C40 N	1+N	С	10	10	-	0,1	0,1
Q0.1.5	-	-	-	-	Vigi	AC	0,3	lst.

Sovraccarico	Sovraccarico Corto Circuito massimo		Persone
Verificata	Verificata	Verificata	Verificata

AUTOSTRADA REGIONALE CISPADANAdal casello di Reggiolo-Rolo sulla A22 al casello di Ferrara Sud sulla A13

PROGETTO DEFINITIVO

IMPIANTI TECNICI

PARTE GENERALE

CABINE ELETTRICHE ÎN ITINERE RELAZIONE DI DIMENSIONAMENTO IMPIANTI ELETTRICI

CALCOLI E VERIFICHE

QUADRO: [QUPS] QUADRO UPS SERVIZI E TLC

LINEA: DAI-TVCC N

CARATTERISTICHE GENERALI DELLA LINEA

P [kW]	I _b [A]/I _{nm} [A]	I _R [A]	Is [A]	I _T [A]	cos φ _b	K _{utilizzo}	K _{contemp.}	η
0,3	1,46	0	1,46	0	0,90	1,00		

CAVO

Siglatura	Derivazione	tipo cond.	Lungh. [m]	Posa 64-8	T _{emp.}	n° supp.	Resistività [°K m/W]	Prof. di Posa [m]	ravv. dist.	altri circuiti	K sicur.
L0.1.6	F+N+PE	uni	400	61	30		1,08	0,8	ravv.		1,0

Sezior fase	ne Condutt neutro	ori [mm²] PE	Designazione	R_{cavo} $[m\Omega]$	X _{cavo} [mΩ]	R_{tot} [m Ω]	X_{tot} [m Ω]	ΔV _{cavo} [%]	ΔV _{tot} [%]	ΔV _{max prog} [%]
1x 6	1x 6	1x 6	FG7R	1200,0	54,0	1218,747	75,06	1,73	1,82	4,0

I _b [A]	I _z [A]	I _{cc max inizio linea} [kA]	Icc max Fine linea [kA]	Iccmin fine linea [kA]	I _{cc Terra} [kA]
1,5	52	8,19	0,19	0,06	0,06

INTERRUTTORE

Utenza	Interruttore	Poli	Curva Sganciatore	I _n [A]	I _r [A]	T _r [s]	I _m [kA]	I _{sd} [kA]	
Siglatura	T _{sd} [s]	li	I _g [A]	T _g [s]	Differenz.	Classe	l _∆ n [A]	T _∆ n [s]	
DAI-TVCC n	C40 N	1+N	С	10	10	-	0,1	0,1	
Q0.1.6	-	-	-	-	Vigi	AC	0,3	lst.	

Sovraccarico	Corto Circuito massimo	Corto Circuito minimo	Persone
Verificata	Verificata	Verificata	Verificata

AUTOSTRADA REGIONALE CISPADANAdal casello di Reggiolo-Rolo sulla A22 al casello di Ferrara Sud sulla A13

PROGETTO DEFINITIVO

IMPIANTI TECNICI

PARTE GENERALE

CABINE ELETTRICHE ÎN ITINERE RELAZIONE DI DIMENSIONAMENTO IMPIANTI ELETTRICI

CALCOLI E VERIFICHE

QUADRO: [QUPS] QUADRO UPS SERVIZI E TLC

LINEA: DAI-TVCC (N+1)

CARATTERISTICHE GENERALI DELLA LINEA

	P [kW]	I _b [A]/I _{nm} [A]	I _R [A]	I _S [A]	I _T [A]	cos φ b	K _{utilizzo}	K _{contemp} .	η
Ī	0,3	1,46	0	1,46	0	0,90	1,00		

CAVO

Siglatura	Derivazione	tipo cond.	Lungh. [m]	Posa 64-8	T _{emp.}	n° supp.	Resistività [°K m/W]	Prof. di Posa [m]	ravv. dist.	altri circuiti	K sicur.
L0.1.7	F+N+PE	uni	2400	61	30		1,08	0,8	ravv.		1,0

Sezion fase	e Condutto	ori [mm²] PE	Designazione	R_{cavo} $[m\Omega]$	X_{cavo} [m Ω]	R_{tot} [m Ω]	X_{tot} [m Ω]	ΔV _{cavo} [%]	ΔV _{tot} [%]	ΔV _{max prog} [%]
1x 25	1x 25	1x 16	FG7R	1728,0	254,4	1746,747	275,46	2,58	2,67	4,0

I _b [A]	I _z [A]	Icc max inizio linea [kA]	Icc max Fine linea [kA]	Iccmin fine linea [kA]	I _{cc Terra} [kA]
1,5	118	8,19	0,13	0,04	0,03

INTERRUTTORE

Utenza	Interruttore Po		za Interruttore Poli S		Curva Sganciatore	I _n [A]		T _r [s]	I _m [kA]	I _{sd} [kA]
Siglatura	T _{sd} [s]	li	I _g [A]	T _g [s]	Differenz.	Classe	l _∆ n [A]	T _∆ n [s]		
DAI-TVCC (n+1)	C40 N	1+N	С	10	10	-	0,1	0,1		
Q0.1.7	-	-	-	-	Vigi	AC	0,3	lst.		

Sovraccarico	Sovraccarico Corto Circuito massimo		Persone
Verificata	Verificata	Verificata	Verificata

AUTOSTRADA REGIONALE CISPADANAdal casello di Reggiolo-Rolo sulla A22 al casello di Ferrara Sud sulla A13

PROGETTO DEFINITIVO

IMPIANTI TECNICI

PARTE GENERALE

CABINE ELETTRICHE ÎN ITINERE RELAZIONE DI DIMENSIONAMENTO IMPIANTI ELETTRICI

CALCOLI E VERIFICHE

QUADRO: [QUPS] QUADRO UPS SERVIZI E TLC

LINEA: CENTRAL. METEO

CARATTERISTICHE GENERALI DELLA LINEA

	P [kW]	I _b [A]/I _{nm} [A]	I _R [A]	I _S [A]	I _T [A]	cos φ b	K _{utilizzo}	K _{contemp} .	η
Ī	0,1	0,49	0	0,49	0	0,90	1,00		

CAVO

Siglatura	Derivazione	tipo cond.	Lungh. [m]	Posa 64-8	T _{emp.}	n° supp.	Resistività [°K m/W]	Prof. di Posa [m]	ravv. dist.	altri circuiti	K sicur.
L0.1.8	F+N+PE	uni	600	61	30		1,08	0,8	ravv.		1,0

3	Sezion fase	e Condutto	ori [mm²] PE	Designazione	R_{cavo} $[m\Omega]$	X _{cavo} [mΩ]	R_{tot} [m Ω]	X_{tot} [m Ω]	ΔV _{cavo} [%]	ΔV _{tot} [%]	ΔV _{max prog} [%]
1	x 6	1x 6	1x 6	FG7R	1800,0	81,0	1818,747	102,06	0,87	0,96	4,0

I _b [A]	I _z [A]	I _{cc max inizio linea} [kA]	Icc max Fine linea [kA]	Iccmin fine linea [kA]	I _{cc Terra} [kA]
0,5	52	8,19	0,13	0,04	0,04

INTERRUTTORE

Utenza	Interruttore Poli		Curva Sganciatore		I _r [A]	T _r [s]	I _m [kA]	I _{sd} [kA]	
Siglatura	T _{sd} [s]	li	I _g [A]	T _g [s]	Differenz.	Classe	l _∆ n [A]	T∆n [s]	
Central. meteo	C40 N	1+N	С	10	10	-	0,1	0,1	
Q0.1.8	-	-	-	-	Vigi	AC	0,3	lst.	

Sovraccarico	Corto Circuito massimo	Corto Circuito minimo	Persone
Verificata	Verificata	Verificata	Verificata

AUTOSTRADA REGIONALE CISPADANAdal casello di Reggiolo-Rolo sulla A22 al casello di Ferrara Sud sulla A13

PROGETTO DEFINITIVO

IMPIANTI TECNICI

PARTE GENERALE

CABINE ELETTRICHE ÎN ITINERE RELAZIONE DI DIMENSIONAMENTO IMPIANTI ELETTRICI

CALCOLI E VERIFICHE

QUADRO: [QUPS] QUADRO UPS SERVIZI E TLC

LINEA: CENTR. ANTINEBBIA

CARATTERISTICHE GENERALI DELLA LINEA

P [k	W]	I _b [A]/I _{nm} [A]	I _R [A]	Is [A]	I _T [A]	cos φ b	K _{utilizzo}	K _{contemp} .	η
2,3	3	3,69	3,69	3,69	3,69	0,90	1,00		

CAVO

Siglatura	Derivazione	tipo cond.	Lungh. [m]	Posa 64-8	T _{emp.} [°C]	n° supp.	Resistività [°K m/W]	Prof. di Posa [m]	ravv. dist.	altri circuiti	K sicur.
L0.1.9	3F+N+PE	uni	600	61	30		1,08	0,8	ravv.		1,0

Sezion fase		e Condutto	ori [mm²] PE	Designazione	R_{cavo} $[m\Omega]$	X _{cavo} [mΩ]	R_{tot} [m Ω]	X_{tot} [m Ω]	ΔV _{cavo} [%]	ΔV _{tot} [%]	ΔV _{max prog} [%]
1	x 6	1x 6	1x 6	FG7R	1800,0	81,0	1818,747	102,06	3,26	3,35	4,0

I _b [A]	I _z [A]	I _{cc max inizio linea} [kA]	Icc max Fine linea [kA]	Iccmin fine linea [kA]	I _{cc Terra} [kA]
3,7	44	8,19	0,13	0,04	0,04

INTERRUTTORE

Utenza	Interruttore	re Poli Curva Sganciatore		I _n [A] I _r [A]		T _r [s]	I _m [kA]	I _{sd} [kA]
Siglatura	T _{sd} [s]	li	I _g [A]	T _g [s]	Differenz.	Classe	l _∆ n [A]	T _∆ n [s]
Centr. antinebbia	C40 N	3+N	С	16	16	-	0,16	0,16
Q0.1.9	-	-	-	-	Vigi	AC	0,3	lst.

Sovraccarico	Corto Circuito massimo	Corto Circuito minimo	Persone
Verificata	Verificata	Verificata	Verificata

AUTOSTRADA REGIONALE CISPADANAdal casello di Reggiolo-Rolo sulla A22 al casello di Ferrara Sud sulla A13

PROGETTO DEFINITIVO

IMPIANTI TECNICI

PARTE GENERALE

CABINE ELETTRICHE ÎN ITINERE RELAZIONE DI DIMENSIONAMENTO IMPIANTI ELETTRICI

CALCOLI E VERIFICHE

QUADRO: [QUPS] QUADRO UPS SERVIZI E TLC

LINEA: UTENZE TLC

CARATTERISTICHE GENERALI DELLA LINEA

P [kW]	I _b [A]/I _{nm} [A]	I _R [A]	I _S [A]	I _T [A]	cos φ _b	K _{utilizzo}	K _{contemp.}	η
1	4,82	0	0	4,82	0,90	1,00		

CAVO

Siglatura	Derivazione	tipo cond.	Lungh. [m]	Posa 64-8	T _{emp.}	n° supp.	Resistività [°K m/W]	Prof. di Posa [m]	ravv. dist.	altri circuiti	K sicur.
L0.1.10	F+N+PE	multi	15	43	30			-	ravv.		1,0

Sezione Cor fase neu		e Condutto neutro	ori [mm²] PE	Designazione	R_{cavo} $[m\Omega]$	X_{cavo} [m Ω]	R_{tot} [m Ω]	X_{tot} [m Ω]	ΔV _{cavo} [%]	ΔV _{tot} [%]	ΔV _{max prog} [%]
1x	6	1x 6	1x 6	FG7OM1	45,0	1,4325	63,747	22,4925	0,22	0,31	4,0

I _b [A]	I _z [A]	I _{cc max inizio linea} [kA]	Icc max Fine linea [kA]	Iccmin fine linea [kA]	I _{cc Terra} [kA]
4,8	51	8,19	3,42	1,24	1,2

INTERRUTTORE

Utenza	Interruttore	Poli	Curva Sganciatore	I _n [A]	I _r [A]	T _r [s]	I _m [kA]	I _{sd} [kA]
Siglatura	T _{sd} [s]	li	I _g [A]	T _g [s]	Differenz.	Classe	l∆n [A]	T _∆ n [s]
Utenze TLC	C40 N	1+N	С	16	16	-	0,16	0,16
Q0.1.10	-	-	-	-	Vigi	A si	0,3	S

Sovraccarico	Corto Circuito massimo	Corto Circuito minimo	Persone			
Verificata	Verificata	Verificata	Verificata			

AUTOSTRADA REGIONALE CISPADANA

....dal casello di Reggiolo-Rolo sulla A22 al casello di Ferrara Sud sulla A13

PROGETTO DEFINITIVO

IMPIANTI TECNICI PARTE GENERALE

CABINE ELETTRICHE IN ITINERE
RELAZIONE DI DIMENSIONAMENTO IMPIANTI ELETTRICI

[QGBT] Quadro Generale bt cabina in itinere

Num. DENOMINAZIO	ONE LINEA	P [kW]	Ib [A]	cosFi	FFFN	tipo cond.	Isolante	Designazione	Lungh. [m]	Posa [64- 8]	Sezione Fase	Sezione Neutro	Sezione PE	lz	DVcavo	DVtot	Prot. Dal Sovracc.	Prot. Da CortoCirc.	Prot. Per Persone	Selettività
1 Generale QGBT			48,62		FFFN PE	Unipolare con guaina	EPR	FG7R	15	43	1x95	1x50	1x50	328	0,08	0,08	SI	-	-	NO
2 UPS servizi e TLC			33,26		FFFN PE	Unipolare con guaina	EPR	FG7R	10	43	1x25	1x25	1x16	135	0,13	0,21	SI	SI	SI	NO
3 Illum.ed.tecnol.		0,8	3,87	0,9	FN PE	Unipolare senza guaina	EPR	N07G9-K	30	3	1x1,5	1x1,5	1x1,5	23	1,35	1,43	SI	SI	SI	NO
4 Prese monofase		1,5	7,25	0,9	FN PE	Unipolare senza guaina	EPR	N07G9-K	30	3	1x1,5	1x1,5	1x1,5	23	2,53	2,61	SI	SI	SI	NO
5 Prese trifase		3	4,81	0,9	FFFN PE	Unipolare senza guaina	EPR	N07G9-K	30	3	1x2,5	1x2,5	1x2,5	28	0,51	0,59	SI	SI	SI	NO
6 Cdz split TLC		2	3,21	0,9	FFFN PE	Unipolare senza guaina	EPR	N07G9-K	20	3	1x2,5	1x2,5	1x2,5	28	0,22	0,3	SI	SI	SI	NO
7 Alim.estrattori		0,5	2,41	0,9	FN PE	Unipolare senza guaina	EPR	N07G9-K	20	3	1x1,5	1x1,5	1x1,5	23	0,56	0,64	SI	SI	SI	NO

AUTOSTRADA REGIONALE CISPADANAdal casello di Reggiolo-Rolo sulla A22 al casello di Ferrara Sud sulla A13

PROGETTO DEFINITIVO

IMPIANTI TECNICI
PARTE GENERALE
CABINE ELETTRICHE IN ITINERE
RELAZIONE DI DIMENSIONAMENTO IMPIANTI ELETTRICI

[QUPS] Quadro UPS servizi e TLC

		Р	lb						Lungh.	Posa	Sezione	Sezione	Sezione				Prot.	Prot. Da	Prot.	
Num.	DENOMINAZIONE LINEA	[kW]	[A]	cosFi	FFFN	tipo cond.	Isolante	Designazione	[m]	[64-	Fase	Neutro	PE	lz	DVcavo	DVtot	Dal	CortoCirc. Per		Selettività
		[]	ניין						[]	8] 1436		recutio					Sovracc.	cortocirci	Persone	
1	Generale QUPS		24,11		FFFN PE	Unipolare con guaina	EPR	FG7R	10	43	1x25	1x25	1x16	135	0,09	0,09	SI	-	-	NO
2	PMV tipo 1	4,8	7,7	0,9	FFFN PE	Unipolare con guaina	EPR	FG7R	500	61	1x10	1x10	1x10	59	3,45	3,54	SI	SI	SI	NO
3	PMV tipo 3	4,8	7,7	0,9	FFFN PE	Unipolare con guaina	EPR	FG7R	1000	61	1x25	1x25	1x16	100	2,82	2,91	SI	SI	SI	NO
4	Cannoni laser	0,03	0,14	0,9	FN PE	Unipolare con guaina	EPR	FG7R	500	61	1x6	1x6	1x6	52	0,21	0,3	SI	SI	SI	NO
5	SOS n e (n+1)	0,5	2,41	0,9	FN PE	Unipolare con guaina	EPR	FG7R	600	61	1x10	1x10	1x10	70	2,6	2,69	SI	SI	SI	NO
6	SOS (n+2) e (n+3)	0,5	2,41	0,9	FN PE	Unipolare con guaina	EPR	FG7R	1200	61	1x16	1x16	1x16	91	3,31	3,4	SI	SI	SI	NO
7	DAI-TVCC n	0,3	1,46	0,9	FN PE	Unipolare con guaina	EPR	FG7R	400	61	1x6	1x6	1x6	52	1,73	1,82	SI	SI	SI	NO
8	DAI-TVCC (n+1)	0,3	1,46	0,9	FN PE	Unipolare con guaina	EPR	FG7R	2400	61	1x25	1x25	1x16	118	2,58	2,67	SI	SI	SI	NO
9	Central. meteo	0,1	0,49	0,9	FN PE	Unipolare con guaina	EPR	FG7R	600	61	1x6	1x6	1x6	52	0,87	0,96	SI	SI	SI	NO
10	Centr. antinebbia	2,3	3,69	0,9	FFFN PE	Unipolare con guaina	EPR	FG7R	600	61	1x6	1x6	1x6	44	3,26	3,35	SI	SI	SI	NO
11	Utenze TLC	1	4,82	0,9	FN PE	Multipolare	EPR	FG70M1	15	43	1x6	1x6	1x6	51	0,22	0,31	SI	SI	SI	NO