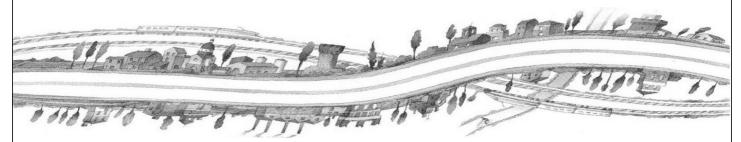


IL CONCESSIONARIO

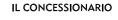

AUTOSTRADA REGIONALE CISPADANA DAL CASELLO DI REGGIOLO-ROLO SULLA A22 AL CASELLO DI FERRARA SUD SULLA A13

CODICE C.U.P. E81B08000060009

PROGETTO DEFINITIVO

ASSE AUTOSTRADALE

IMPIANTI TECNICI OPERE SINGOLARI GALLERIE INTERCONNESSIONE A22 RELAZIONE DI DIMENSIONAMENTO CAVI ELETTRICI


IL PROGETTISTA

Ing. Antonio De Fazio Albo Ingegneri Prov. BO n° 3696/A

RESPONSABILE INTEGRAZIONE PRESTAZIONI SPECIALISTICHE

Ing. Emilio Salsi Albo Ing. Reggio Emilia nº 945

Autostrada Regionale Cispedena S.p.A. IL PRESIDENTE

G					
F					
Е					
D					
С					
В					
Α	17.04.2012	EMISSIONE	FRASSINETI	DE FAZIC	SALSI
REV.	DATA	DESCRIZIONE	REDAZIONE	CONTROLLO	APPROVAZIONE
		·			

IDENTIFICAZIONE ELABORATO

N	UM. I	PROG	₹.	FA	SE	
4	4	3	2	Р	D	

|P|D|

GRUPPO LOTTO 0 0 1 CODICE OPERA WBS 1 0 0 TRATTO OPERA 0

I E

TIPO ELABORATO R C

0 3

REV. Α

PROGRESSIVO

DATA: MAGGIO 2012

SCALA:

AUTOSTRADA REGIONALE CISPADANA dal casello di Reggiolo-Rolo sulla A22 al casello di Ferrara Sud sulla A13

PROGETTO DEFINITIVO

IMPIANTI TECNICI
OPERE SINGOLARI
GALLERIE INTERCONNESSIONE A22
CALCOLI DIMENSIONAMENTO ELETTRICO

INDICE

١.	. (CALCOLI DIMENSIONAMENTO IMPIANTI ELETTRICI	2
	1.1.	CRITERIO DIMENSIONAMENTO CAVI	2
	1.2.	Calcolo della Sezione dei conduttori in funzione della corrente circolante	2
	1.3.	Coefficienti riduzione portata – K1 e K2	3
	1.4.	Calcolo sezione minima in funzione della corrente effettiva di corto circuito	4
	1.5.	Verifica della caduta di tensione	4
	1.6.	CRITERI GENERALI PER IL DIMENSIONAMENTO DELLE PROTEZIONI	4
	1.7.	Protezione contro le correnti di sovraccarico	5
	1.8.	Protezione contro le correnti di corto circuito	5
	1.9.	CALCOLI DI CORTO CIRCUITO	7
	1.10.	DIMENSIONAMENTO IMPIANTO DI TERRA	8
	1.11.	RISPONDENZA A NORME TECNICHE	10
	1.12.	DATI TECNICI CAVI	10
)	. 4	ALLEGATO CALCOLL DI DIMENSIONAMENTO CONDUTTURE EL ETTRICHE	12

AUTOSTRADA REGIONALE CISPADANA dal casello di Reggiolo-Rolo sulla A22 al casello di Ferrara Sud sulla A13

PROGETTO DEFINITIVO

IMPIANTI TECNICI
OPERE SINGOLARI
GALLERIE INTERCONNESSIONE A22
CALCOLI DIMENSIONAMENTO ELETTRICO

1 CALCOLI DIMENSIONAMENTO IMPIANTI ELETTRICI

1.1 CRITERIO DIMENSIONAMENTO CAVI

Lo scopo della presente relazione è quello di definire i criteri generali e progettuali con cui sono dimensionate le linee e le protezioni elettriche relative agli impianti di illuminazione a servizio delle gallerie IGA01 e IGA02 dell'Interconnessione con l'Autostrada A22 nell'ambito dell'autostrada regionale Cispadana.

Tutti i cavi previsti nella progettazione dell'impianto elettrico sono corrispondenti e dimensionati in base a quanto indicato dalle tabelle UNEL ed alle norme costruttive stabilite dal CEI. In particolare, nella realizzazione degli impianti elettrici saranno impiegati i seguenti tipi di cavi:

- Cavi con conduttori flessibili in rame, unipolari e/o multipolari, isolati in gomma butilica G7, tipo non propagante l'incendio (FG7OR/4 e FG7R/4), grado di isolamento 0,6/1 kV per circuiti di energia con tensione fino a 230/400 V.
- Cavi con conduttore flessibile in rame, unipolari, senza guaina tipo non propagante l'incendio N07V-K con grado d'isolamento 450/750V, per circuiti di energia con tensione fino a 230/400V;

Le sezioni dei cavi sono state dimensionate in conformità a:

- corrente in transito nel cavo nelle normali condizioni di esercizio;
- coefficienti di riduzione della portata relativi alle condizioni di posa;
- caduta di tensione che non deve superare il 4% della tensione nominale del circuito (a carico nominale) sia per cavi alimentanti utilizzatori di forza motrice sia luce.

La caduta di tensione considerata è quella misurata fra il quadro elettrico generale e l'utilizzatore più lontano.

1.2 Calcolo della Sezione dei conduttori in funzione della corrente circolante

La sezione dei conduttori è funzione della corrente d'impiego (In) (circolante) che non deve mai superare la portata massima in regime permanente del cavo che la convoglia (Iz).

La corrente d'impiego (In) è il valore che può fluire in un circuito nel servizio ordinario mentre per portata massima in regime permanente (Iz) si intende la massima corrente che il conduttore è in grado di sopportare senza che, per effetto Joule, la temperatura raggiunga valori tali da compromettere l'integrità e la durata degli isolanti. La temperatura massima sopportabile non ha un valore fisso valido per tutti i cavi ma dipende

AUTOSTRADA REGIONALE CISPADANA dal casello di Reggiolo-Rolo sulla A22 al casello di Ferrara Sud sulla A13

PROGETTO DEFINITIVO

IMPIANTI TECNICI OPERE SINGOLARI **GALLERIE INTERCONNESSIONE A22**

CALCOLI DIMENSIONAMENTO ELETTRICO

dal tipo d'isolante usato per il rivestimento del conduttore (da 80 ℃ per isolanti economici fino o o Itre 200 ℃ per isolanti speciali).

Per il dimensionamento dei conduttori utilizzati nel progetto allegato sono state utilizzate la tabelle CEI UNEL 35024/1 e 35024/2. Le portate massime dei conduttori (Iz) e le relative sezioni ricavate sono state verificate mediante la formula semplificata, sotto indicata:

$$S \ge \frac{I_n}{a}$$

dove

S è la sezione in mm² del conduttore;

è la corrente d'impiego che può interessare un circuito nel servizio ordinario; In

а è la densità di corrente riferita al conduttore di sezione unitaria pari a:

- 10 A/mm² per conduttori in tubo sotto intonaco,
- 12 A/mm² per conduttori a vista,
- 13 A/mm² per conduttori ben ventilati.

Coefficienti riduzione portata – K1 e K2 1.3

Il valore di Iz (portata del conduttore in condizioni normali di servizio) è stato determinato, inoltre, in base ai declassamenti dovuti ai vari coefficienti di correzione a seconda della temperatura d'impiego, del tipo di posa e del numero di conduttori posati in una unica conduttura.

I fattori di correzione presi in considerazione, che contribuiscono alla riduzione della portata nominale del cavo, sono sostanzialmente due:

- il fattore K1, che tiene conto della temperatura ambiente nella quale il cavo è posato,
- il fattore K2 che tiene conto della prossimità di altri cavi.

Le tabelle di riferimento contenenti i fattori K₁ e K₂, sono ricavabili dalla letteratura sopra indicata.

Il fattore K₂ si applica nella ipotesi in cui i cavi del fascio o dello strato abbiano sezioni simili, cioè contenute entro le tre sezioni adiacenti unificate; in caso contrario il fattore K2 diventa:

$$K_2 = \frac{1}{\sqrt{n}}$$

AUTOSTRADA REGIONALE CISPADANA dal casello di Reggiolo-Rolo sulla A22 al casello di Ferrara Sud sulla A13

PROGETTO DEFINITIVO

IMPIANTI TECNICI
OPERE SINGOLARI
GALLERIE INTERCONNESSIONE A22
CALCOLI DIMENSIONAMENTO ELETTRICO

1.4 Calcolo sezione minima in funzione della corrente effettiva di corto circuito

La sezione dei conduttori è stata definita in base alla corrente nominale del conduttore in condizioni normali di servizio (I_z), declassata come accennato al paragrafo precedente.

Occorre verificare che detta sezione non sia mai inferiore a quanto si ricava dalla seguente relazione:

$$S = \frac{I \cdot \sqrt{t}}{t}$$

dove:

S è la sezione in mm²;

t è la durata in secondi del corto circuito;

è la corrente effettiva di corto circuito in Ampere espressa in valore efficace;

k è una costante pari a: 115 per i cavi in rame isolati in PVC (160 ℃)

143 per i cavi in rame isolati in gomma G7 (250 ℃)

1.5 Verifica della caduta di tensione

Oltre a quanto sopra indicato, i cavi sono stati verificati anche in funzione della caduta di tensione, in modo che tra l'origine dell'impianto e qualunque apparecchio utilizzatore non superi il 4% della tensione nominale. Le cadute di tensione sono state verificate con adeguato software di calcolo che utilizza la seguente formula:

$$\Delta V = 2 I_b I (R \cos \varphi + X \sin \varphi)$$
 per i circuiti monofasi e

$$\Delta V = 1,73 I_b I (R \cos \varphi + X \sin \varphi)$$
 per i circuiti trifase + neutro

dove:

- ΔV è la caduta di tensione in Volt proiettata sul vettore di fase;
- Ib è la corrente d'impiego in Ampere della linea;
- ϕ è l'angolo di sfasamento tra la corrente lb e la tensione di fase;
- R è la resistenza al metro in Ω/m;
- **X** è la reattanza al metro in Ω/m ;
- I è la lunghezza della conduttura in km.

I valori della resistenza e della reattanza al metro sono stati ricavati dalla tabella UNEL 35023-70.

1.6 CRITERI GENERALI PER IL DIMENSIONAMENTO DELLE PROTEZIONI

Il dimensionamento di tutte le protezioni è stato determinato tenendo conto delle seguenti correnti di riferimento:

AUTOSTRADA REGIONALE CISPADANA dal casello di Reggiolo-Rolo sulla A22 al casello di Ferrara Sud sulla A13

PROGETTO DEFINITIVO

IMPIANTI TECNICI
OPERE SINGOLARI
GALLERIE INTERCONNESSIONE A22
CALCOLI DIMENSIONAMENTO ELETTRICO

- I_n (Corrente nominale)
 - corrente alla quale si riferiscono tutte le prescrizioni costruttive dell'apparecchio e che rappresenta il valore unitario della caratteristica d'intervento;
- I_{nf} (Corrente di non funzionamento)
 massimo valore di sovracorrente che non fa intervenire la protezione entro il tempo convenzionale;
- I_f (Corrente di funzionamento)
 minimo valore di sovra corrente che fa intervenire certamente la protezione entro il tempo convenzionale.

1.7 Protezione contro le correnti di sovraccarico

La protezione contro il sovraccarico, come indicato dalla Norma CEI 64-8, è assicurato per le seguenti condutture:

- conduttura principale che alimenta utilizzatori derivati funzionanti con coefficienti di contemporaneità inferiori a 1:
- conduttura che alimenta motori ed utilizzatori che nel loro funzionamento possono determinare condizioni di sovraccarico;
- · conduttura che alimenta presa a spina;
- conduttura che alimenta utilizzatori ubicati in luoghi soggetti a pericolo di esplosione o di incendio;

Le caratteristiche dei dispositivi di protezione delle apparecchiature contro i sovraccarichi sono state dimensionate rispettando le seguenti condizioni:

 $I_b \le \ln \le I_z$ $I_f \le 1.45 I_z$

dove:

- I_b è la corrente d'impiego del circuito;
- **I**_z è la portata in regime permanente della conduttura;
- In è la corrente nominale del dispositivo di protezione;
- In è la corrente che assicura l'effettivo funzionamento del dispositivo di protezione entro il tempo convenzionale in condizioni definite.

1.8 Protezione contro le correnti di corto circuito

La corrente presunta di corto circuito in un punto di un impianto utilizzatore è la corrente che si avrebbe nel circuito se nel punto considerato si realizzasse un collegamento con impedenza trascurabile fra i conduttori in tensione. Il potere d'interruzione di un dispositivo di protezione non deve essere inferiore alla corrente di

AUTOSTRADA REGIONALE CISPADANA dal casello di Reggiolo-Rolo sulla A22 al casello di Ferrara Sud sulla A13

PROGETTO DEFINITIVO

IMPIANTI TECNICI
OPERE SINGOLARI
GALLERIE INTERCONNESSIONE A22
CALCOLI DIMENSIONAMENTO ELETTRICO

corto circuito presunta nel punto d'installazione. Il valore della corrente di corto circuito, per cui sono state dimensionate le protezioni, può essere calcolato in generale con la seguente relazione:

$$I_{cc} = \frac{c \cdot V}{k \cdot Z_{cc}}$$

nella quale:

- c fattore di tensione tabulato da Norma
- Z_{cc} impedenza di corto circuito
- K = 1 oppure $\sqrt{3}$ a seconda del tipo di guasto considerato
- V valore di tensione

Il valore della corrente di corto circuito minima (a fondo linea) quando il neutro non è distribuito è stato calcolato con la seguente relazione:

$$I_{cc \text{ min}} = \frac{0.8 U_s \cdot S}{1.5 \rho 2 \cdot l}$$

dove:

U è la tensione concatenata in Volt;

S è la sezione in mm²;

p è la resistività a 20℃ del materiale dei condutto ri in Ωmm²/m;

I è la lunghezza della linea.

Con il conduttore di neutro distribuito la precedente relazione muta in:

$$I_{cc \, min} = \frac{0.8 \, U_s \cdot S}{1.5 \, \rho \, (l+m)}$$

dove:

U_o è la tensione in Volt:

m è il rapporto tra la resistenza del conduttore di neutro e la resistenza del conduttore di fase.

Occorre inoltre ovviamente assicurarsi che il dispositivo di protezione dal cortocircuito venga dimensionato con potere di interruzione superiore al valore massimo della corrente di cortocircuito presunta nella sezione di impianto in cui è installato il dispositivo stesso, e che l'energia passante (specifica) lasciata passare dalla apparecchiatura non sia superiore alla energia passante massima sopportabile da parte delle condutture installate a valle.

Il tutto è tradotto normativamente dalle seguenti relazioni:

$$I^2t \leq K^2S^2$$

dove:

AUTOSTRADA REGIONALE CISPADANA dal casello di Reggiolo-Rolo sulla A22 al casello di Ferrara Sud sulla A13

PROGETTO DEFINITIVO

IMPIANTI TECNICI
OPERE SINGOLARI
GALLERIE INTERCONNESSIONE A22
CALCOLI DIMENSIONAMENTO ELETTRICO

 $I_{cc max}$ = corrente di corto circuito massima.

P.d.l. = potere di interruzione apparecchiatura di protezione.

l'et = valore dell'energia specifica passante letto sulla curva letto della apparecchiatura di protezione in corrispondenza delle correnti di corto circuito.

K²S² = energia specifica passante sopportata dalla conduttura, dove:

K = coefficiente del tipo di cavo (115,135,143 in accordo alla CEI 64-8/4).

S = sezione della conduttura.

1.9 CALCOLI DI CORTO CIRCUITO

Il calcolo per la determinazione della corrente di corto circuito è stato realizzato con l'ausilio di un programma di calcolo, i risultati sono stati riportati in allegato . Nel calcolo delle I_{cc} sui vari livelli del sistema è stato previsto un valore di I_{cc} nel punto di consegna ente erogatore (A2A o ENEL o altro ente) in MT (15 kV) pari a 12,5 kA (valore da verificare con ente distributore in fase di cantierizzazione).

I dati di I_{cc} sono poi recepibili sulle tabelle di calcolo linee allegati alla presente relazione. Il calcolo per la determinazione della corrente di corto circuito e del dimensionamento delle linee elettriche è stato realizzato con l'ausilio di un programma automatico di calcolo.

Con l'utilizzo dei dati riguardanti i cavi di collegamento tra il punto di consegna ed i vari livelli del sistema, si definisce la resistenza e la reattanza totale a monte del quadro stesso, al fine di determinare la corrente di corto circuito in ogni punto della distribuzione. Il valore della I_{cc} è stato calcolato con arrotondamento in eccesso avendo trascurato le impedenze interne sugli interruttori di macchina e quella delle sbarre del quadro stesso.

Tabella valori di corrente di corto circuito prevista a valle in base alla I_{cc} prevista a monte ed in base alla sezione e lunghezza del cavo di alimentazione

AUTOSTRADA REGIONALE CISPADANA dal casello di Reggiolo-Rolo sulla A22 al casello di Ferrara Sud sulla A13

PROGETTO DEFINITIVO

IMPIANTI TECNICI OPERE SINGOLARI

GALLERIE INTERCONNESSIONE A22 CALCOLI DIMENSIONAMENTO ELETTRICO

sezione dei cavi [mm²]	lungr	iezza del	cavi [m										-				
1,5	1								The same	1,2	1,7	2,3	3,3	4,6	6,4	8.9	12,4
2,5						Series -		1	1,4	1,9	2,6	3,9	5,2	6,2	10,4	12,8	15,6
4							1,2	1.6	2.3	3	4,1	6,2	8.2	9,9	16.6	20,4	24,9
6						1,2	1,7	2,4	3,4	4,5	6,1	9,2	12,3	14,8	24,8	30,3	37,3
10				1	1.4	2	2.8	3,9	5.6	7,4	10.1	15,3	20,5	24,7	41,3	49,8	62,1
16			1,1	1,6	2,2	3,1	4,4	6,1	8,8	11.8	16	24,3	32,7	39,3	65,9	70,3	99,1
25		1,2	1,6	2,3	3,3	4.7	6,7	9,4	13,6	18,3	24.8	37.8	50.7	61,1	102,5	123,3	154,2
35	1	1,5	2,1	3,1	4,5	6,4	9,2	12,9	18,8	25.3	34,4	52,4	70,5	84,9	142,6	173,7	214,6
50 esempio	1,3	2	2,8	4,1	6,1	8,8	12.7	17,9	26,2	35,4	48,2	73.8	99.3	119.6	201,1	242,1	303
70	1.6	2,5	3,6	5.4	8	11,6	17	24,2	35,5	48.2	65,8	101	136,1	164,1	276.3	331,6	
95	1,9	2,9	4.3	6,5	10	14,6	21.6	31	45.8	62,4	85,6	131.8	177,9	214,7	362,1	434.5	
120	2,1	3,3	4,9	7,6	11,7	17,3	25,8	37,2	55,3	75.6	103.9	160,4	216,7	261.8			
150	2,3	3,6	5,4	8.4	13,2	19,7	29,7	43,2	64,6	88.7	122.2	189,2	256,1	309.5			
185	2,4	3,9	5,8	9,2	14,6	22	33,5	49	73,7	101,5	140.3	217,7	295,1	357	Name of the		
240	2,6	4,1	6,3	10	16	24,4	37,4	55,3	83,7	115,8	160,6	250,1	339,5	1			
300	2.7	4,3	6,6	10,6	17,1	26,3	40,6	60,3	91,7	127,3	176.9	276.1	375.3				
2x120	4.2	6.6	9.7	15.1	23.3	34.5	51.5	74.3	110.5	151.2	207.8	320.7			1	1	
2x150	4.5	7,2	10,7	16,8	26.3	39,3	59.3	86,3	129.1	177,3	244.4	378.3					1
2x185	4,8	7.7	11,6	18,4	29,1	44	66.9	97.9	147,3	202.9	280.5	***************************************					
3x120	6.2	9.9	14,6	22,6	34.9	51.7	77.2	111.5	165,8	226,7	311.6	EVENT.	750			1	1
3x150	6.7	10.8	16,1	25,2	39,4	59	89	129,5	193,7	265,9	366,6	1	7			describe.	1
3x185	7.2	11.6	17,4	27.6	43.6	65,9	100.3	146.9	221	304,4	W. Per	No.	100	Per III n			1
Icc a monte [kA]	lcc a	valle [k	A]	3-7776			100	E CAN					50-1575	SO THE WAY	SOULIS .		district.
100	91	86	80	71	60	49	38	29	21	16	12	8	6	5	3	3	2
90	83	79	74	67	57	47	37	29	21	16	12	8	6	5	3	3	2
80	75	72	68	61	53	45	36	28	21	16	12	8	6	5	3	3	2
70	66	64	61	55	49	42	34	27	20	16	12	8	6	5	3	3	2
60	57	55	53	49	44	38	32	25	19	15	12	8	6	5	3	3	2
50	48	47	45	42	38	34	29	24	18	15,	11	8	6	5	3	3	2
45	44	43	41	39	36	32	27 .	23	18	14	11	8	6	5	3	3	2
40	39	38	37	35	32	29	25	21	17	14	11	8	6	5	3	3	2
35	34	34	33	31	29	27	23	20	16	13	11	8	6	5	3	3	2
30 esempio	30	29	29	27	26	24	21	18	15	13	10	7	6	5	3	3	2
25	25	25	24	23	22	21	19	17	14	12	10	7	6	5	3	3	2
22	22	22	21	21	20	19	17	15	13	11	9	7	6	5	3	3	2
15	15	15	15	15	14	13	13	12	10	9	8	6	5	4	3	3	2
10	10	10	10	10	10	10	9	9	8	7	6	5	4	4	3	3	2
7	7	7	7	7	7	7	7	7	6	6	5	4	4	4	3	3	2
5	5	5	5	5	5	5	5	5	5	4	4	4	3	3	2	2	2
	4	4	4	4	4	4	4	4	4	4	4	3	3	3	2	2	2

DIMENSIONAMENTO IMPIANTO DI TERRA 1.10

Il dimensionamento dell'impianto di terra destinato alla protezione di sistemi appartenenti alla I categoria distribuiti con sistema TT, viene svolto in conformità alla norme CEI 64-8 paragrafo 413.1.4.

Ai fini del dimensionamento della rete di terra, si dovrà quindi far riferimento alla seguente relazione:

$$R_e \le \frac{50V}{Id}$$

dove:

- R_e = Massimo valore ammesso della resistenza di terra
- 50 V = Massimo valore ammesso della tensione di contatto
- Id = Corrente che determina l'apertura del dispositivo di protezione dai contatti indiretti

Avendo impiegato esclusivamente apparecchi di protezione del tipo differenziale ad alta sensibilità e con corrente d'intervento non superiore ad 1A, il valore massimo che dovrà assumere l'impianto di terra, non

AUTOSTRADA REGIONALE CISPADANA dal casello di Reggiolo-Rolo sulla A22 al casello di Ferrara Sud sulla A13

PROGETTO DEFINITIVO

IMPIANTI TECNICI
OPERE SINGOLARI
GALLERIE INTERCONNESSIONE A22
CALCOLI DIMENSIONAMENTO ELETTRICO

dovrà essere superiore a 50Ω . Qualora il valore della corrente d'intervento differenziale dovesse essere inferiore, ovviamente il limite della resistenza dell'impianto di terrà potrà innalzarsi di conseguenza.

Si ipotizza, in modo cautelativo, che le aree in oggetto si trovino su terreni la cui composizione risulta essere di natura argillosa; sulla base delle tabelle contenute nelle norme CEI 11-1 (allegato K) e guida 64-12 (allegato D), si può quindi prudentemente stimare una resistività del terreno pari a 100 Ωm.

E' così possibile effettuare una verifica analitica della resistenza presunta dell'impianto in base alla sua configurazione, utilizzando formule approssimate fornite dalle Norme.

Se si considera che un dispersore verticale a croce da 1500x50x50x5 mm garantisce non meno di 20 Ohm di R_e , utilizzando 4 dispersori e circa 80 m di corda nuda di rame da 35 mmq si arriverà sicuramente a realizzare impianti di terra molto a di sotto del valore massimo di 50 Ohm previsti a progetto per rispettare la formula sopra esposta.

Con l'ausilio di 4 dispersori a croce e di 50 m di corda emerge un valore di circa 10-15 Ohm.

L'esito del calcolo preliminare eseguito in fase di progettazione definitiva non esula comunque l'impresa dall'obbligo di effettuare la misura diretta della resistenza di terra al termine dei lavori, in quanto il valore ottenuto è da ritenersi puramente indicativo essendo legato a numerose variabili dipendenti dalla conformazione del terreno ed alle modalità d'installazione, le quali potrebbero condizionare sensibilmente il valore effettivo; l'interconnessione della maglia del dispersore ai ferri di armatura di plinti e/o impalcati e/o di altre strutture armate ed il collegamento equipotenziale di masse metalliche, favoriranno ovviamente di fatto la diminuzione del valore di resistenza complessivo di tutto l'impianto.

Le sezioni dei conduttori di protezione sarà pari alle sezioni dei conduttori di fase; per sezioni superiori a 16 mmq la sezione sarà pari alla metà del conduttore di fase con un minimo di 16 mmq e comunque in grado di soddisfare le condizioni stabilite dalle norme CEI 64-8.

Al fine di migliorare la protezione contro i contatti indiretti, all'impianto di terra saranno collegati tutti i sistemi delle tubazioni metalliche accessibili destinati ad adduzione, nonché tutte le masse metalliche che possono costituire massa estranea.

I conduttori per l'esecuzione dei collegamenti equipotenziali saranno del tipo N07V-K di colore giallo-verde delle seguenti sezioni minime (fatte salve le verifiche per sezioni maggiori):

- mmq 2,5 per collegamenti posti in tubo sotto l'intonaco o protetti meccanicamente (equipotenziali secondari)
- mmq 6 per collegamenti su tubazioni o parti metalliche a vista (equipotenziali principali).

Nella posa dei dispersori si eviterà il contatto diretto fra metalli aventi potenziali elettrochimici diversi (ad esempio la giunzione diretta rame - zinco), interponendo materiali in grado di ridurre lo squilibrio di potenziale al fine di evitare fenomeni di corrosione; a tal proposito si consiglia l'uso di capicorda o morsetti a pressione meccanica di tipo cadmiato.

AUTOSTRADA REGIONALE CISPADANA dal casello di Reggiolo-Rolo sulla A22 al casello di Ferrara Sud sulla A13

PROGETTO DEFINITIVO

IMPIANTI TECNICI
OPERE SINGOLARI
GALLERIE INTERCONNESSIONE A22
CALCOLI DIMENSIONAMENTO ELETTRICO

Tutte le connessioni saranno realizzate con morsetti a compressione in rame tipo crimpt con superficie di contatto non inferiore a 150 mmq; in corrispondenza dei pozzetti ispezionabili contenenti derivazioni della maglia di terra, dovranno essere apposti cartelli normalizzati di individuazione.

Saranno connesse all'impianto di terra tutte le masse e le masse estranee presenti sull'impianto; si ricorda che viene considerata massa estranea una massa avente una resistenza verso terra minore di 1.000Ω .

Si ricorda che è responsabilità della proprietà dell'insediamento presentare prima della messa in servizio degli impianti la denuncia dell'impianto di terra al dipartimento periferico dell'ISPESL competente nel territorio; l'impresa dovrà compilare il modulo di denuncia impianto di terra (modello D.P.R. 462/01), firmando in calce i documenti ed allegando la dichiarazione di conformità. L'impianto andrà verificato periodicamente (condizioni generali e misura della resistenza di terra) ogni 2-5 anni come previsto dallo stesso D.P.R. 462/01.

1.11 RISPONDENZA A NORME TECNICHE

L'appaltatore con l'accettazione della presente specifica si impegna a rispettare:

- tutte le leggi pertinenti in vigore nella Repubblica Italiana alla data di definizione dell'appalto e le Norme e Leggi in materia anti-infortunistica
- Norme applicabili del Comitato Elettrotecnico italiano ed in particolare

Le norme applicabili alla presente installazione sono riepilogate in apposito capitolo della relazione generale impianti tecnici. Le condizioni di impiego delle condutture, essenzialmente, saranno per una posa interrata od entro tubazioni in polietilene e saranno del tipo unipolare o multipolare destinati entro tubi protettivi circolari con le seguenti condizioni ambientali.

Temperatura massima + 35℃

Temperatura minima - 10℃

1.12 DATI TECNICI CAVI

Identificazione del cavo	FG7(O)R
Tensione nominale	0,6/1kV
Tensione di prova	4kV
Temperatura d'esercizio	max 90°C
Temperatura di corto-circuito (max)	250°C
Conduttore	a corda flessibile di rame ricotto
Isolamento	gomma HEPR ad alto modulo
Guaina	guaina speciale di qualità R2
Colore	grigio chiaro RAL 7035

AUTOSTRADA REGIONALE CISPADANA dal casello di Reggiolo-Rolo sulla A22 al casello di Ferrara Sud sulla A13

PROGETTO DEFINITIVO

IMPIANTI TECNICI
OPERE SINGOLARI
GALLERIE INTERCONNESSIONE A22
CALCOLI DIMENSIONAMENTO ELETTRICO

I dati caratteristici usati per il calcolo sono riportati sulle tabelle calcoli condutture allegati alla presente relazione.

AUTOSTRADA REGIONALE CISPADANA dal casello di Reggiolo-Rolo sulla A22 al casello di Ferrara Sud sulla A13

PROGETTO DEFINITIVO

IMPIANTI TECNICI
OPERE SINGOLARI
GALLERIE INTERCONNESSIONE A22
CALCOLI DIMENSIONAMENTO ELETTRICO

2 ALLEGATO CALCOLI DI DIMENSIONAMENTO CONDUTTURE ELETTRICHE

Qui di seguito vengono allegati il sommario e relativi calcoli di dimensionamento delle linee elettriche comprese a progetto suddivisi per quadro di alimentazione.

AUTOSTRADA REGIONALE CISPADANA dal casello di Reggiolo-Rolo sulla A22 al casello di Ferrara Sud sulla A13

PROGETTO DEFINITIVO

IMPIANTI TECNICI
OPERE SINGOLARI
GALLERIE INTERCONNESSIONE A22
CALCOLI DIMENSIONAMENTO ELETTRICO

ALIMENTAZIONE

DATI GENERALI DI IMPIANTO

Tensione Nominale [V]	Sistema di Neutro	Distribuzione	P. Contrattuale [kW]	Frequenza[Hz]
400	TNS	3 Fasi + Neutro	0,9	50

ALIMENTAZIONE PRINCIPALE:INGRESSO LINEA

I _{cc} [kA]	dV a monte [%]	Cos φ _{cc}	Cos φ carico
10	0,0	0,50	0,90

AUTOSTRADA REGIONALE CISPADANA dal casello di Reggiolo-Rolo sulla A22 al casello di Ferrara Sud sulla A13

PROGETTO DEFINITIVO

IMPIANTI TECNICI
OPERE SINGOLARI
GALLERIE INTERCONNESSIONE A22
CALCOLI DIMENSIONAMENTO ELETTRICO

STRUTTURA QUADRI

----- QPGA01 - Quadro illuminazione permanente gallerie A22 ramo GA01 ----- QPGA02 - Quadro illuminazione permanente gallerie A22 ramo GA02

AUTOSTRADA REGIONALE CISPADANA dal casello di Reggiolo-Rolo sulla A22 al casello di Ferrara Sud sulla A13

PROGETTO DEFINITIVO

IMPIANTI TECNICI
OPERE SINGOLARI
GALLERIE INTERCONNESSIONE A22
CALCOLI DIMENSIONAMENTO ELETTRICO

LINEE

Utenza	Siglatura	Ph/N/PE Derivazione	P [kW]	Cos φ	Tensione [V]	I _ь [А]		
Quadro: [UPS2] UPS2 8 kVA								
Alimentazione QGA03		3F+N+PE	0,5	0,90	400	0,8		
Alimentazione QGA05		3F+N+PE	0,4	0,89	400	0,7		
Quadro: [QPGA01] Quadro illuminazione permanente gallerie A22 ramo GA01								
Circuito 1	U1.1.1	3F+N+PE	0,3	0,90	400	0,4		
Circuito 2	U1.1.2	3F+N+PE	0,3	0,90	400	0,4		
Quadro: [QPGA02] Quadro il	luminazione permanente galle	rie A22 ramo G	6A02					
Circuito 1	U2.1.1	3F+N+PE	0,2	0,90	400	0,3		
Circuito 2	U2.1.2	3F+N+PE	0,2	0,90	400	0,3		

AUTOSTRADA REGIONALE CISPADANA dal casello di Reggiolo-Rolo sulla A22 al casello di Ferrara Sud sulla A13

PROGETTO DEFINITIVO

IMPIANTI TECNICI
OPERE SINGOLARI
GALLERIE INTERCONNESSIONE A22
CALCOLI DIMENSIONAMENTO ELETTRICO

REGOLAZIONI

Utenza	Interruttore	Poli	Curva Sganciatore	I _n [A]	I _r [A]	T _r [s]	I _m [kA]	I _{sd} [kA]
Siglatura	T _{sd} [s]	li	Ig [A]	T _g [s]	Differenz.	Classe	l _∆ n [A]	T _∆ n [s]
Quadro: [UPS2] UPS	2 8 kVA							
Alimentaz. da UPS1	C40 N	3+N	С	16	16	-	0,16	0,16
Q1	-	-	-	-				
Alimentazione QGA03	C40 a	3+N	С	10	10	-	0,1	0,1
Q0.1.1	-	-	-	-	Vigi	AC	0,3	lst.
Alimentazione QGA05	C40 a	3+N	С	32	32	-	0,32	0,32
Q0.1.2	-	-	-	-	Vigi	AC	0,3	lst.
Quadro: [QPGA01] Q	uadro illumin	azione perma	nente gallerie A	22 ramo G	A01			
Circuito 1	C40 a	3+N	С	10	10	-	0,1	0,1
Q1.1.1	-	-	-	-	Vigi	AC	0,3	lst.
Circuito 2	C40 a	3+N	С	10	10	-	0,1	0,1
Q1.1.2	-	-	-	-	Vigi	AC	0,3	lst.
Quadro: [QPGA02] Q	uadro illumin	azione perma	nente gallerie A	22 ramo G	A02			
Circuito 1	C40 a	3+N	С	10	10	-	0,1	0,1
Q2.1.1	-	-	-	-	Vigi	AC	0,3	lst.
Circuito 2	C40 a	3+N	С	10	10	-	0,1	0,1
Q2.1.2	-	-	-	-	Vigi	AC	0,3	lst.

AUTOSTRADA REGIONALE CISPADANA dal casello di Reggiolo-Rolo sulla A22 al casello di Ferrara Sud sulla A13

PROGETTO DEFINITIVO

IMPIANTI TECNICI
OPERE SINGOLARI
GALLERIE INTERCONNESSIONE A22
CALCOLI DIMENSIONAMENTO ELETTRICO

CALCOLI E VERIFICHE

QUADRO: [UPS2] UPS2 8 KVA

LINEA: ALIMENTAZ. DA UPS1

CARATTERISTICHE GENERALI DELLA LINEA

P [kW]	I _b [A]/I _{nm} [A]	I _R [A]	I _S [A]	I _T [A]	cos φ _b	K _{utilizzo}	K _{contemp} .	η
0,9	1,44	1,44	1,44	1,44	0,90		1,00	

CAVO

Siglatura	Derivazione	tipo cond.	Lungh. [m]	Posa 64-8	T _{emp.} [℃]	n° supp.	Resistività [% m/W]	Prof. di Posa [m]	ravv. dist.	altri circuiti	K sicur.
L1	3F+N+PE	uni	10	43	30			-	ravv.	1	1,0

Sezion fase	e Condutto neutro	ori [mm²] PE	Designazione	R_{cavo} [m Ω]	X_{cavo} [m Ω]	R_{tot} [m Ω]	X_{tot} [m Ω]	ΔV _{cavo} [%]	ΔV _{tot} [%]	ΔV _{max prog} [%]
1x 6	1x 6	1x 6	FG7M1	30,0	1,35	41,547	21,35	0,02	0,02	4,0

I _b [A]	I _b [A] I _z [A] I _{cc}		I _{cc max Fine linea} [kA]	I _{ccmin fine linea} [kA]	I _{cc Terra} [kA]	
1,4	46,4	10	4,94	1,99	1,99	

INTERRUTTORE

Utenza	Interruttore	Poli	Curva Sganciatore	I _n [A]	I _r [A]	T _r [s]	I _m [kA]	I _{sd} [kA]
Siglatura	T _{sd} [s]	l _i	Ig [A]	T _g [s]	Differenz.	Classe	l _∆ n [A]	T _∆ n [s]
Alimentaz. da UPS1	C40 N	3+N	С	16	16	-	0,16	0,16
Q1	-	-	-	-				

Sovraccarico	Corto Circuito massimo	Corto Circuito minimo	Persone
Verificata	-	-	-

AUTOSTRADA REGIONALE CISPADANA dal casello di Reggiolo-Rolo sulla A22 al casello di Ferrara Sud sulla A13

PROGETTO DEFINITIVO

IMPIANTI TECNICI
OPERE SINGOLARI
GALLERIE INTERCONNESSIONE A22
CALCOLI DIMENSIONAMENTO ELETTRICO

CALCOLI E VERIFICHE

QUADRO: [UPS2] UPS2 8 KVA

LINEA: ALIMENTAZIONE QGA03

CARATTERISTICHE GENERALI DELLA LINEA

P [kW]	I _b [A]/I _{nm} [A]	I _R [A]	I _S [A]	I _T [A]	cos φ _b	K _{utilizzo}	K _{contemp} .	η
0,5	0,78	0,78	0,78	0,78	0,90			

CAVO

Siglatura	Derivazione	tipo cond.	Lungh. [m]	Posa 64-8	T _{emp.} [℃]	n° supp.	Resistività [K m/W]	Prof. di Posa [m]	ravv. dist.	altri circuiti	K sicur.
L0.1.1	3F+N+PE	uni	10	43	30			-	ravv.	1	1,0

Sezion fase	e Condutto neutro	ori [mm²] PE	Designazione	R_{cavo} [m Ω]	X_{cavo} [m Ω]	R_{tot} [m Ω]	X_{tot} [m Ω]	ΔV _{cavo} [%]	ΔV _{tot} [%]	ΔV _{max prog} [%]
1x 10	1x 10	1x 10	FTG10M1	18,0	1,19	59,547	22,54	0,01	0,03	4,0

I _b [A]	I _z [A]	I _{cc max inizio linea} [kA]	I _{cc max Fine linea} [kA]	I _{ccmin fine linea} [kA]	I _{cc Terra} [kA]
8,0	64	4,94	3,63	1,34	1,34

INTERRUTTORE

Utenza	Interruttore	Poli	Curva Sganciatore	I _n [A]	I _r [A]	T _r [s]	I _m [kA]	I _{sd} [kA]
Siglatura	T _{sd} [s]	l _i	I _g [A]	T _g [s]	Differenz.	Classe	l _∆ n [A]	T _∆ n [s]
Alimentazione QGA03	C40 a	3+N	С	10	10	-	0,1	0,1
Q0.1.1	-	-	-	-	Vigi	AC	0,3	lst.

Sovraccarico	Corto Circuito massimo	Corto Circuito minimo	Persone
Verificata	Verificata Verificata		Verificata

AUTOSTRADA REGIONALE CISPADANA dal casello di Reggiolo-Rolo sulla A22 al casello di Ferrara Sud sulla A13

PROGETTO DEFINITIVO

IMPIANTI TECNICI
OPERE SINGOLARI
GALLERIE INTERCONNESSIONE A22
CALCOLI DIMENSIONAMENTO ELETTRICO

CALCOLI E VERIFICHE

QUADRO: [UPS2] UPS2 8 KVA

LINEA: ALIMENTAZIONE QGA05

CARATTERISTICHE GENERALI DELLA LINEA

P [kW]	I _b [A]/I _{nm} [A]	I _R [A]	I _S [A]	I _T [A]	cos φ _b	K _{utilizzo}	K _{contemp} .	η
0,4	0,66	0,66	0,66	0,66	0,89			

CAVO

Siglatura	Derivazione	tipo cond.	Lungh. [m]	Posa 64-8	T _{emp.} [℃]	n° supp.	Resistività [% m/W]	Prof. di Posa [m]	ravv. dist.	altri circuiti	K sicur.
L0.1.2	3F+N+PE	uni	10	43	30			-	ravv.	1	1,0

Sezion fase	e Condutto neutro	ori [mm²] PE	Designazione	R_{cavo} [m Ω]	X_{cavo} [m Ω]	R_{tot} [m Ω]	X_{tot} [m Ω]	ΔV _{cavo} [%]	ΔV _{tot} [%]	ΔV _{max prog} [%]
1x 10	1x 10	1x 10	FTG10M1	18,0	1,19	59,547	22,54	0,01	0,03	4,0

I _b [A]	I _z [A]	I _{cc max inizio linea} [kA]	I _{cc max Fine linea} [kA]	I _{ccmin fine linea} [kA]	I _{cc Terra} [kA]
0,7	64	4,94	3,63	1,34	1,34

INTERRUTTORE

Utenza	Interruttore	Poli	Curva Sganciatore	I _n [A]	I _r [A]	T _r [s]	I _m [kA]	I _{sd} [kA]
Siglatura	T _{sd} [s]	l _i	I _g [A]	T _g [s]	Differenz.	Classe	l _∆ n [A]	T _∆ n [s]
Alimentazione QGA05	C40 a	3+N	С	32	32	-	0,32	0,32
Q0.1.2	-	-	-	-	Vigi	AC	0,3	lst.

Sovraccarico	Corto Circuito massimo	Corto Circuito minimo	Persone
Verificata	Verificata	Verificata	Verificata

AUTOSTRADA REGIONALE CISPADANA dal casello di Reggiolo-Rolo sulla A22 al casello di Ferrara Sud sulla A13

PROGETTO DEFINITIVO

IMPIANTI TECNICI
OPERE SINGOLARI
GALLERIE INTERCONNESSIONE A22
CALCOLI DIMENSIONAMENTO ELETTRICO

CALCOLI E VERIFICHE

QUADRO: [QPGA01] QUADRO ILLUMINAZIONE PERMANENTE GALLERIE A22

RAMO GA01

LINEA: ALIM. DA QGBT/UPS1

CARATTERISTICHE GENERALI DELLA LINEA

P [kW]	I _b [A]/I _{nm} [A]	I _R [A]	Is [A]	I _T [A]	cos φ _b	K _{utilizzo}	K _{contemp} .	η
0,5	0,78	0,78	0,78	0,78	0,90		1,00	

SEZIONATORE

Siglatura	Modello	I _n [A]	U _{imp} [kV]	I _{cm} [kA cresta]	I _{cw} [kA eff]	Coordin. interr. Monte [kA]
S1	I-NA	40	6	0,00	6,40	

AUTOSTRADA REGIONALE CISPADANA dal casello di Reggiolo-Rolo sulla A22 al casello di Ferrara Sud sulla A13

PROGETTO DEFINITIVO

IMPIANTI TECNICI
OPERE SINGOLARI
GALLERIE INTERCONNESSIONE A22
CALCOLI DIMENSIONAMENTO ELETTRICO

CALCOLI E VERIFICHE

QUADRO: [QPGA01] QUADRO ILLUMINAZIONE PERMANENTE GALLERIE A22

RAMO GA01

LINEA: CIRCUITO 1

CARATTERISTICHE GENERALI DELLA LINEA

P [kW]	I _b [A]/I _{nm} [A]	I _R [A]	Is [A]	l _τ [A]	cos φ _b	K _{utilizzo}	K _{contemp} .	η
0,25	0,4	0,4	0,4	0,4	0,90	1,00		

CAVO

Siglatura	Derivazione	tipo cond.	Lungh. [m]	Posa 64-8	T _{emp.} [℃]	n° supp.	Resistività [% m/W]	Prof. di Posa [m]	ravv. dist.	altri circuiti	K sicur.
L1.1.1	3F+N+PE	uni	1420	61	30		1,08	0,8	ravv.	3	1,0

Sezior fase	ne Condutto neutro	ori [mm²] PE	Designazione	R _{cavo} [mΩ]	X _{cavo} [mΩ]	R_{tot} [m Ω]	X_{tot} [m Ω]	ΔV _{cavo} [%]	ΔV _{tot} [%]	ΔV _{max prog} [%]
1x 6	1x 6	1x 6	FTG10M1	4260,0	191,7	4318,547	213,24	0,84	0,87	4,0

I _b [A]	I _z [A]	I _{cc max inizio linea} [kA]	Icc max Fine linea [kA]	Iccmin fine linea [kA]	I _{cc Terra} [kA]
0,4	28,6	3,63	0,05	0,02	0,02

INTERRUTTORE

Utenza	Interruttore	Poli	Curva Sganciatore	I _n [A]	I _r [A]	T _r [s]	I _m [kA]	I _{sd} [kA]
Siglatura	T _{sd} [s]	l _i	Ig [A]	T _g [s]	Differenz.	Classe	l∆n [A]	T _∆ n [s]
Circuito 1	C40 a	3+N	С	10	10	-	0,1	0,1
Q1.1.1	-	-	-	-	Vigi	AC	0,3	lst.

CONTATTORE/TERMICO

Siglatura	Contattore	Un Bobina [V]	I _n [A]	Relè Termico	Reg. Min [A]	Reg. Max [A]
Ct1.1.1	LC1D09	230	25			

Sovraccarico	Sovraccarico Corto Circuito massimo		Persone
Verificata	Verificata	Verificata	Verificata

AUTOSTRADA REGIONALE CISPADANA dal casello di Reggiolo-Rolo sulla A22 al casello di Ferrara Sud sulla A13

PROGETTO DEFINITIVO

IMPIANTI TECNICI OPERE SINGOLARI

GALLERIE INTERCONNESSIONE A22
CALCOLI DIMENSIONAMENTO ELETTRICO

CALCOLI E VERIFICHE

QUADRO: [QPGA01] QUADRO ILLUMINAZIONE PERMANENTE GALLERIE A22

RAMO GA01

LINEA: CIRCUITO 2

CARATTERISTICHE GENERALI DELLA LINEA

P [kW]	I _b [A]/I _{nm} [A]	I _R [A]	Is [A]	I _T [A]	cos φ _b	K _{utilizzo}	K _{contemp} .	η
0,25	0,4	0,4	0,4	0,4	0,90	1,00		

CAVO

Siglatura	Derivazione	tipo cond.	Lungh. [m]	Posa 64-8	T _{emp.} [℃]	n° supp.	Resistività [% m/W]	Prof. di Posa [m]	ravv. dist.	altri circuiti	K sicur.
L1.1.2	3F+N+PE	uni	1420	61	30		1,08	0,8	ravv.	3	1,0

Sezione Conduttori [mm²] fase neutro PE			Designazione	R _{cavo} [mΩ]	X _{cavo} [mΩ]	R_{tot} [m Ω]	X_{tot} [m Ω]	ΔV _{cavo} [%]	ΔV _{tot} [%]	ΔV _{max prog} [%]
1x 6	1x 6	1x 6	FTG10M1	4260,0	191,7	4318,547	213,24	0,84	0,87	4,0

I _b [A]	I _z [A]	I _{cc max inizio linea} [kA]	I _{cc max Fine linea} [kA]	Iccmin fine linea [kA]	I _{cc Terra} [kA]
0,4	28,6	3,63	0,05	0,02	0,02

INTERRUTTORE

Utenza	Interruttore	Poli	Curva Sganciatore	I _n [A]	I _r [A]	T _r [s]	I _m [kA]	I _{sd} [kA]
Siglatura	T _{sd} [s]	l _i	Ig [A]	T _g [s]	Differenz.	Classe	l _∆ n [A]	T _∆ n [s]
Circuito 2	C40 a	3+N	С	10	10	-	0,1	0,1
Q1.1.2	-	-	-	-	Vigi	AC	0,3	lst.

CONTATTORE/TERMICO

Siglatura	Contattore	Un Bobina [V]	I _n [A]	Relè Termico	Reg. Min [A]	Reg. Max [A]
Ct1.1.2	LC1D09	230	25			

Sovraccarico	Corto Circuito massimo	Corto Circuito minimo	Persone
Verificata	Verificata	Verificata	Verificata

AUTOSTRADA REGIONALE CISPADANA dal casello di Reggiolo-Rolo sulla A22 al casello di Ferrara Sud sulla A13

PROGETTO DEFINITIVO

IMPIANTI TECNICI
OPERE SINGOLARI
GALLERIE INTERCONNESSIONE A22
CALCOLI DIMENSIONAMENTO ELETTRICO

CALCOLI E VERIFICHE

QUADRO: [QPGA02] QUADRO ILLUMINAZIONE PERMANENTE GALLERIE A22

RAMO GA02

LINEA: ALIM. DA QGBT/UPS1

CARATTERISTICHE GENERALI DELLA LINEA

P [kW]	I _b [A]/I _{nm} [A]	I _R [A]	Is [A]	I _T [A]	cos φ _b	K _{utilizzo}	K _{contemp} .	η
0,4	0,66	0,66	0,66	0,66	0,89		1,00	

SEZIONATORE

Siglatura	Modello	I _n [A]	U _{imp} [kV]	I _{cm} [kA cresta]	I _{cw} [kA eff]	Coordin. interr. Monte [kA]
S1	I-NA	40	6	0,00	6,40	

AUTOSTRADA REGIONALE CISPADANA dal casello di Reggiolo-Rolo sulla A22 al casello di Ferrara Sud sulla A13

PROGETTO DEFINITIVO

IMPIANTI TECNICI
OPERE SINGOLARI
GALLERIE INTERCONNESSIONE A22
CALCOLI DIMENSIONAMENTO ELETTRICO

CALCOLI E VERIFICHE

QUADRO: [QPGA02] QUADRO ILLUMINAZIONE PERMANENTE GALLERIE A22

RAMO GA02

LINEA: CIRCUITO 1

CARATTERISTICHE GENERALI DELLA LINEA

P [kW]	I _b [A]/I _{nm} [A]	I _R [A]	Is [A]	I _T [A]	cos φ _b	K _{utilizzo}	K _{contemp} .	η
0,2	0,32	0,32	0,32	0,32	0,90	1,00		

CAVO

Siglatura	Derivazione	tipo cond.	Lungh. [m]	Posa 64-8	T _{emp.} [℃]	n° supp.	Resistività [% m/W]	Prof. di Posa [m]	ravv. dist.	altri circuiti	K sicur.
L2.1.1	3F+N+PE	uni	970	61	30		1,08	0,8	ravv.	1	1,0

Sezione Conduttori [mm²] fase neutro PE			Designazione	R_{cavo} [m Ω]	X _{cavo} [mΩ]	R_{tot} [m Ω]	X_{tot} [m Ω]	ΔV _{cavo} [%]	ΔV _{tot} [%]	ΔV _{max prog} [%]
1x 6	1x 6	1x 6	FTG10M1	2910,0	130,95	2968,547	152,49	0,46	0,49	4,0

I _b [A]	I _z [A]	I _{cc max inizio linea} [kA]	I _{cc max Fine linea} [kA]	Iccmin fine linea [kA]	I _{cc Terra} [kA]
0,3	35,2	3,63	0,08	0,02	0,02

INTERRUTTORE

Utenza	Interruttore	Poli	Curva Sganciatore	I _n [A]	I _r [A]	T _r [s]	I _m [kA]	I _{sd} [kA]
Siglatura	T _{sd} [s]	l _i	Ig [A]	T _g [s]	Differenz.	Classe	l _∆ n [A]	T _∆ n [s]
Circuito 1	C40 a	3+N	С	10	10	-	0,1	0,1
Q2.1.1	-	-	-	-	Vigi	AC	0,3	lst.

CONTATTORE/TERMICO

Siglatura	Contattore	Un Bobina [V]	I _n [A]	Relè Termico	Reg. Min [A]	Reg. Max [A]
Ct2.1.1	LC1D09	230	25			

Sovraccarico	Corto Circuito massimo	Corto Circuito minimo	Persone	
Verificata	Verificata	Verificata	Verificata	

AUTOSTRADA REGIONALE CISPADANA dal casello di Reggiolo-Rolo sulla A22 al casello di Ferrara Sud sulla A13

PROGETTO DEFINITIVO

IMPIANTI TECNICI OPERE SINGOLARI

GALLERIE INTERCONNESSIONE A22
CALCOLI DIMENSIONAMENTO ELETTRICO

CALCOLI E VERIFICHE

QUADRO: [QPGA02] QUADRO ILLUMINAZIONE PERMANENTE GALLERIE A22

RAMO GA02

LINEA: CIRCUITO 2

CARATTERISTICHE GENERALI DELLA LINEA

P [kW]	I _b [A]/I _{nm} [A]	I _R [A]	I _S [A]	I _τ [A]	cos φ _b	K _{utilizzo}	K _{contemp} .	η
0,2	0,32	0,32	0,32	0,32	0,90	1,00		

CAVO

Siglatura	Derivazione	tipo cond.	Lungh. [m]	Posa 64-8	T _{emp.} [℃]	n° supp.	Resistività [% m/W]	Prof. di Posa [m]	ravv. dist.	altri circuiti	K sicur.
L2.1.2	3F+N+PE	uni	970	61	30		1,08	0,8	ravv.	1	1,0

Sezior fase	zione Conduttori [mm²] se neutro PE		Designazione $\begin{bmatrix} R_{cavo} \\ [m\Omega] \end{bmatrix}$		$egin{array}{ccc} X_{cavo} & R_{tot} \ [m\Omega] & [m\Omega] \end{array}$		X_{tot} [m Ω]	ΔV _{cavo} [%]	ΔV _{tot} [%]	ΔV _{max prog} [%]
1x 6	1x 6	1x 6	FTG10M1	2910,0	130,95	2968,547	152,49	0,46	0,49	4,0

I _b [A]	I _z [A]	I _{cc max inizio linea} [kA]	I _{cc max Fine linea} [kA]	Iccmin fine linea [kA]	I _{cc Terra} [kA]
0,3	35,2	3,63	0,08	0,02	0,02

INTERRUTTORE

Utenza	Interruttore	Poli	Curva Sganciatore	I _n [A]	I _r [A]	T _r [s]	I _m [kA]	I _{sd} [kA]
Siglatura	T _{sd} [s]	l _i	Ig [A]	T _g [s]	Differenz.	Classe	l∆n [A]	T _∆ n [s]
Circuito 2	C40 a	3+N	С	10	10	-	0,1	0,1
Q2.1.2	-	-	-	-	Vigi	AC	0,3	lst.

CONTATTORE/TERMICO

Siglatura	Contattore	Un Bobina [V]	I _n [A]	Relè Termico	Reg. Min [A]	Reg. Max [A]
Ct2.1.2	LC1D09	230	25			

Sovraccarico	Corto Circuito massimo	Corto Circuito minimo	Persone	
Verificata	Verificata	Verificata	Verificata	

AUTOSTRADA REGIONALE CISPADANA dal casello di Reggiolo-Rolo sulla A22 al casello di Ferrara Sud sulla A13

PROGETTO DEFINITIVO

IMPIANTI TECNICI OPERE SINGOLARI GALLERIE INTERCONNESSIONE A22

CALCOLI DIMENSIONAMENTO ELETTRICO

[UPS2] UPS2 8 kVA	Ά	8 k\	UPS2	JPS2]	ſι
-------------------	---	------	------	-------	----

N	lum.	DENOMINAZIONE LINEA	P [kW]	Ib [A] cosFi	FFFN	tipo cond.	Isolante	Designazione	Lungh. [m]	Posa [64- 8]	Sezione Fase	Sezione Neutro	Sezione PE	lz	DVcavo		Prot. Dal Sovracc.	Prot. Da CortoCirc.	Prot. Per Persone	Selettività
	1	Alimentaz. da UPS1		1.44	FFFN PE	Unipolare con guaina	EPR	FG7M1	10	43	1x6	1x6	1x6	46.4	0.02	0.02	SI	-	-	NO
	2	Alimentazione QGA03		0.78	FFFN PE	Unipolare con guaina	EPR	FTG10M1	10	43	1x10	1x10	1x10	64	0.01	0.03	SI	SI	SI	NO
	3	Alimentazione QGA05		0.66	FFFN PE	Unipolare con guaina	EPR	FTG10M1	10	43	1x10	1x10	1x10	64	0.01	0.03	SI	SI	SI	NO

[QPGA01] Quadro illuminazione permanente gallerie A22 ramo GA01

Num.	DENOMINAZIONE LINEA	P [kW]	lb [A]	cosFi FF	FN tipo cond.	Isolante	Designazione	Lungh. [m]	Posa [64- 8]	Sezione Fase	Sezione Neutro	Sezione PE	lz	DVcavo		Prot. Dal Sovracc.	Prot. Da CortoCirc.	Prot. Per Persone	Selettività
1	Alim. da QGBT/UPS1		0.78	FFF	N PE										0.03	-	-	-	NO
2	Circuito 1	0.25	0.4	0.9 FFF	N PE Unipolare con guaina	EPR	FTG10M1	1420	61	1x6	1x6	1x6	28.6	0.84	0.87	SI	SI	SI	NO
3	Circuito 2	0.25	0.4	0.9 FFF	N PE Unipolare con guaina	EPR	FTG10M1	1420	61	1x6	1x6	1x6	28.6	0.84	0.87	SI	SI	SI	NO

[QPGA02] Quadro illuminazione permanente gallerie A22 ramo GA02

Num.	DENOMINAZIONE LINEA	P [kW]	cosFi	FFFN	tipo cond.	Isolante	Designazione	Lungh. [m]	Posa [64- 81	Sezione Fase	Sezione Neutro	Sezione PE	lz	DVcavo	DVtot	_	Prot. Da CortoCirc.	_	Selettività
1	Alim. da QGBT/UPS1	0.6	56	FFFN PE		<u> </u>			8]						0.03	Sovracc.	-	Persone -	NO
2	Circuito 1	0.2 0.3	32 0.9	FFFN PE	Unipolare con guaina	EPR	FTG10M1	970	61	1x6	1x6	1x6	35.2	0.46	0.49	SI	SI	SI	NO
3	Circuito 2	0.2 0.3	32 0.9	FFFN PE	Unipolare con guaina	EPR	FTG10M1	970	61	1x6	1x6	1x6	35.2	0.46	0.49	SI	SI	SI	NO