IMPIANTO AGROVOLTAICO DI PRODUZIONE DI ENERGIA DA FONTE SOLARE DENOMINATO "CRACO" DI POTENZA NOMINALE PARI A 18,0 MVA E POTENZA INSTALLATA PARI A 19,998 MW

REGIONE BASILICATA PROVINCIA di MATERA COMUNE DI CRACO

PROGETTO DEFINITIVO

Tav.:

Titolo:

R04b.2

Relazione di calcolo preliminare e verifica delle strutture - Platee cabine

Scala:	Formato Stampa:	Codice Identificatore Elaborato
n.a.	A4	R04b.2_CalcoliPrelStrutture_04b.2

STC

Progettazione:

Dott. Ing. Fabio CALCARELLA

Via B. Ravenna, 14 - 73100 Lecce Mob. +39 340 9243575

fabio.calcarella@gmail.com - fabio.calcarella@ingpec.eu

Committente:

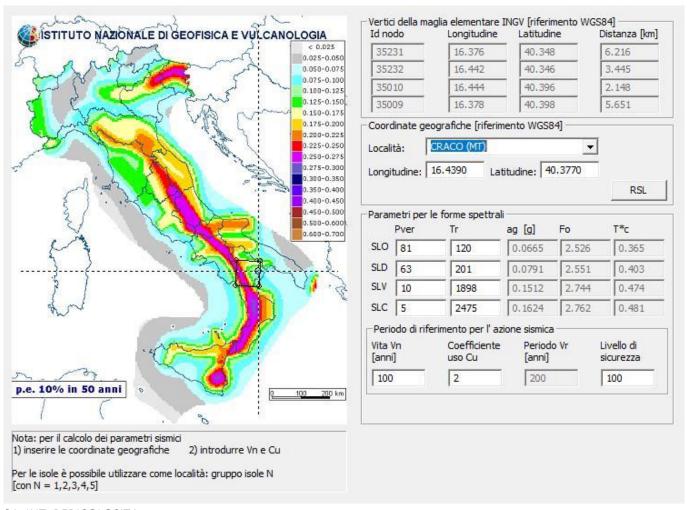
BEE Craco s.r.l.

Largo Michele Novaro 1/A CAP 43121 - PARMA (PR) PEC - beecraco@pec.it

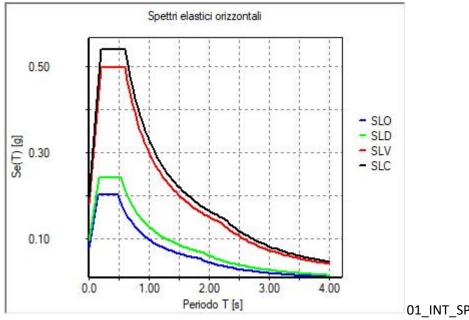
Smert. Julf C

Data	Motivo della revisione:	Redatto:	Controllato:	Approvato:
Ottobre 2021	Prima emissione	STC	FC	BEE Craco Srl

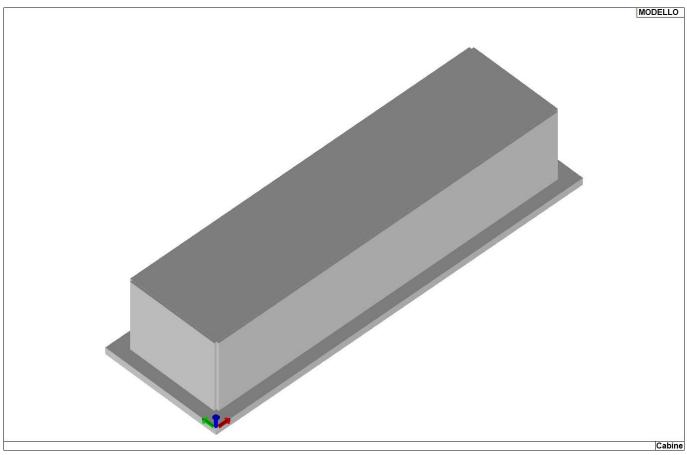
Indice


NORMATIVA DI RIFERIMENTO	2
CARATTERISTICHE MATERIALI UTILIZZATI	5
LEGENDA TABELLA DATI MATERIALI	5
MODELLAZIONE DELLE SEZIONI	8
LEGENDA TABELLA DATI SEZIONI	8
MODELLAZIONE STRUTTURA: NODI	. 11
LEGENDA TABELLA DATI NODI	. 11
TABELLA DATI NODI	. 11
MODELLAZIONE STRUTTURA: ELEMENTI SHELL	. 14
LEGENDA TABELLA DATI SHELL	. 14
MODELLAZIONE DELLA STRUTTURA: ELEMENTI SOLAIO-PANNELLO	. 20
LEGENDA TABELLA DATI SOLAI-PANNELLI	. 20
MODELLAZIONE DELLE AZIONI	. 24
LEGENDA TABELLA DATI AZIONI	. 24
SCHEMATIZZAZIONE DEI CASI DI CARICO	. 27
LEGENDA TABELLA CASI DI CARICO	. 27
DEFINIZIONE DELLE COMBINAZIONI	. 40
LEGENDA TABELLA COMBINAZIONI DI CARICO	. 40
AZIONE SISMICA	. 44
VALUTAZIONE DELL' AZIONE SISMICA	. 44
Parametri della struttura	. 44
RISULTATI ANALISI SISMICHE	. 47
LEGENDA TABELLA ANALISI SISMICHE	. 47
RISULTATI OPERE DI FONDAZIONE	. 55
LEGENDA RISLILTATI OPERE DI FONDAZIONE	55

NORMATIVA DI RIFERIMENTO


- 1. D.Min. Infrastrutture Min. Interni e Prot. Civile 17 Gennaio 2018 e allegate "Norme tecniche per le costruzioni".
- 2. Circolare 21/01/19, n. 7 C.S.LL. PP "Istruzioni per l'applicazione dell'aggiornamento delle Norme Tecniche delle Costruzioni di cui al decreto ministeriale 17 gennaio 2018"
- 3. D.Min. Infrastrutture e trasporti 14 Settembre 2005 e allegate "Norme tecniche per le costruzioni".
- 4. D.M. LL.PP. 9 Gennaio 1996 "Norme tecniche per il calcolo, l'esecuzione ed il collaudo delle strutture in cemento armato, normale e precompresso e per le strutture metalliche".
- 5. D.M. LL.PP. 16 Gennaio 1996 "Norme tecniche relative ai << Criteri generali per la verifica di sicurezza delle costruzioni e dei carichi e sovraccarichi>>".
- 6. D.M. LL.PP. 16 Gennaio 1996 "Norme tecniche per le costruzioni in zone sismiche".
- 7. Circolare 4/07/96, n.156AA.GG. /STC. istruzioni per l'applicazione delle "Norme tecniche relative ai <<Criteri generali per la verifica di sicurezza delle costruzioni e dei carichi e sovraccarichi>>" di cui al D.M. 16/01/96.
- 8. Circolare 10/04/97, n.65AA.GG. istruzioni per l'applicazione delle "Norme tecniche per le costruzioni in zone sismiche" di cui al D.M. 16/01/96.
- 9. D.M. LL.PP. 20 Novembre 1987 "Norme tecniche per la progettazione, esecuzione e collaudo degli edifici in muratura e per il loro consolidamento".
- 10. Circolare 4 Gennaio 1989 n. 30787 "Istruzioni in merito alle norme tecniche per la progettazione, esecuzione e collaudo degli edifici in muratura e per il loro consolidamento".
- 11. D.M. LL.PP. 11 Marzo 1988 "Norme tecniche riguardanti le indagini sui terreni e sulle rocce, la stabilità dei pendii naturali e delle scarpate, i criteri generali e le prescrizioni per la progettazione, l'esecuzione e il collaudo delle opere di sostegno delle terre e delle opere di fondazione".
- 12. D.M. LL.PP. 3 Dicembre 1987 "Norme tecniche per la progettazione, esecuzione e collaudo delle costruzioni prefabbricate".
- 13. UNI 9502 Procedimento analitico per valutare la resistenza al fuoco degli elementi costruttivi di conglomerato cementizio armato, normale e precompresso edizione maggio 2001
- 14. Ordinanza del Presidente del Consiglio dei Ministri n. 3274 del 20 marzo 2003 "Primi elementi in materia di criteri generali per la classificazione sismica del territorio nazionale e di normative tecniche per le costruzioni in zona sismica" e successive modificazioni e integrazioni.
- 15. UNI EN 1990:2006 13/04/2006 Eurocodice 0 Criteri generali di progettazione strutturale.
- 16. UNI EN 1991-1-1:2004 01/08/2004 Eurocodice 1 Azioni sulle strutture Parte 1-1: Azioni in generale Pesi per unità di volume, pesi propri e sovraccarichi per gli edifici.
- 17. UNI EN 1991-2:2005 01/03/2005 Eurocodice 1 Azioni sulle strutture Parte 2: Carichi da traffico sui ponti.
- 18. UNI EN 1991-1-3:2004 01/10/2004 Eurocodice 1 Azioni sulle strutture Parte 1-3: Azioni in generale Carichi da neve.
- 19. UNI EN 1991-1-4:2005 01/07/2005 Eurocodice 1 Azioni sulle strutture Parte 1-4: Azioni in generale Azioni del vento.
- 20. UNI EN 1991-1-5:2004 01/10/2004 Eurocodice 1 Azioni sulle strutture Parte 1-5: Azioni in generale Azioni termiche.
- 21. UNI EN 1992-1-1:2005 24/11/2005 Eurocodice 2 Progettazione delle strutture di calcestruzzo Parte 1-1: Regole generali e regole per gli edifici.
- 22. UNI EN 1992-1-2:2005 01/04/2005 Eurocodice 2 Progettazione delle strutture di calcestruzzo Parte 1-2: Regole generali Progettazione strutturale contro l'incendio.

- 23. UNI EN 1993-1-1:2005 01/08/2005 Eurocodice 3 Progettazione delle strutture di acciaio Parte 1-1: Regole generali e regole per gli edifici.
- 24. UNI EN 1993-1-8:2005 01/08/2005 Eurocodice 3 Progettazione delle strutture di acciaio Parte 1-8: Progettazione dei collegamenti.
- 25. UNI EN 1994-1-1:2005 01/03/2005 Eurocodice 4 Progettazione delle strutture composte acciaio-calcestruzzo Parte 1-1: Regole generali e regole per gli edifici.
- 26. UNI EN 1994-2:2006 12/01/2006 Eurocodice 4 Progettazione delle strutture composte acciaio-calcestruzzo Parte 2: Regole generali e regole per i ponti.
- 27. UNI EN 1995-1-1:2005 01/02/2005 Eurocodice 5 Progettazione delle strutture di legno Parte 1-1: Regole generali Regole comuni e regole per gli edifici.
- 28. UNI EN 1995-2:2005 01/01/2005 Eurocodice 5 Progettazione delle strutture di legno Parte 2: Ponti.
- 29. UNI EN 1996-1-1:2006 26/01/2006 Eurocodice 6 Progettazione delle strutture di muratura Parte 1-1: Regole generali per strutture di muratura armata e non armata.
- 30. UNI EN 1996-3:2006 09/03/2006 Eurocodice 6 Progettazione delle strutture di muratura Parte 3: Metodi di calcolo semplificato per strutture di muratura non armata.
- 31. UNI EN 1997-1:2005 01/02/2005 Eurocodice 7 Progettazione geotecnica Parte 1: Regole generali.
- 32. UNI EN 1998-1:2005 01/03/2005 Eurocodice 8 Progettazione delle strutture per la resistenza sismica Parte 1: Regole generali, azioni sismiche e regole per gli edifici.
- 33. UNI EN 1998-3:2005 01/08/2005 Eurocodice 8 Progettazione delle strutture per la resistenza sismica Parte 3: Valutazione e adequamento degli edifici.
- 34. UNI EN 1998-5:2005 01/01/2005 Eurocodice 8 Progettazione delle strutture per la resistenza sismica Parte 5: Fondazioni, strutture di contenimento ed aspetti geotecnici.


NOTA il capitolo "normativa di riferimento": riporta l'elenco delle normative implementate nel software. Le norme utilizzate per la struttura oggetto della presente relazione sono indicate nel precedente capitolo "RELAZIONE DI CALCOLO STRUTTURALE" "ANALISI E VERIFICHE SVOLTE CON L'AUSILIO DI CODICI DI CALCOLO". Laddove nei capitoli successivi vengano richiamate norme antecedenti al DM 17.01.18 è dovuto o a progettazione simulata di edifico esistente.

01_INT_PERICOLOSITA

01_INT_SPETTRI_ELASTICI_O

01_INT_VISTA_SOLIDA_001

CARATTERISTICHE MATERIALI UTILIZZATI

LEGENDA TABELLA DATI MATERIALI

Il programma consente l'uso di materiali diversi. Sono previsti i seguenti tipi di materiale:

1	materiale tipo cemento armato
2	materiale tipo acciaio
3	materiale tipo muratura
4	materiale tipo legno
5	materiale tipo generico

I materiali utilizzati nella modellazione sono individuati da una sigla identificativa ed un codice numerico (gli elementi strutturali richiamano quest'ultimo nella propria descrizione). Per ogni materiale vengono riportati in tabella i seguenti dati:

Young	modulo di elasticità normale E
Poisson	coefficiente di contrazione trasversale ni
G	modulo di elasticità tangenziale
Gamma	peso specifico

Alfa	coefficiente di dilatazione termica
Fattore di confidenza FC	Fattore di confidenza specifico per materiale (è
m	riportato solo se diverso da quello globale della
	struttura)
Fattore di confidenza FC	Fattore di confidenza specifico per l'armatura (è
а	riportato solo se diverso da quello globale della
	struttura)
Elasto-plastico	Materiale elastico perfettamente plastico per aste
	non lineari
Massima compressione	Massima tensione di compressione per aste non
	lineari
Massima trazione	Massima tensione di trazione per aste non lineari
Fattore attrito	Coefficinete di attrito per aste non lineari
Rapporto HRDb	Rapporto di hardening a flessione
Rapporto HRDv	Rapporto di hardening a taglio

I dati soprariportati vengono utilizzati per la modellazione dello schema statico e per la determinazione dei carichi inerziali e termici. In relazione al tipo di materiale vengono riportati inoltre:

1	c.a.		
		Resistenza Rc	resistenza a cmpressione cubica
		Resistenza fctm	resistenza media a trazione semplice
		Coefficiente ksb	Coefficiente di riduzione della resistenza a compressione da utilizzare nello stress block
2	acciaio		<u> </u>
		Tensione ft	Valore della tensione di rottura
		Tensione fy	Valore della tensione di snervamento
		Resistenza fd	Resistenza di calcolo per SL CNR-UNI 10011
		Resistenza fd (>40)	Resistenza di calcolo per SL CNR-UNI 10011 per spessori > 40mm
		Tensione ammissibile	Tensione ammissibile CNR-UNI 10011
		Tensione ammissibile	Tensione ammissibile CNR-UNI 10011 per spessori > 40mm
		(>40)	

Nel tabulato si riportano sia i valori caratteristici che medi utilizzando gli uni e/o gli altri in relazione alle richieste di normativa ed alla tipologia di verifica. (Cap.7 NTC18 per materiali nuovi, Cap.8 NTC18 e relativa circolare 21/01/2019 per materiali esistenti, Linee Guida Reluis per incamiciatura CAM, CNR-DT 200 per interventi con FRP)

Vengono inoltre riportate le tabelle contenenti il riassunto delle informazioni assegnate nei criteri di progetto in uso.

ld	Tipo / Note	V. caratt.	V. medio	Young	Poisson	G	Gamma	Alfa	Altri
		daN/cm2	daN/cm2	daN/cm2		daN/cm2	daN/cm3		
1	Calcestruzzo Classe C25/30			3.145e+05	0.20	1.310e+05	2.50e-03	1.00e-05	
	Resistenza Rc	300.0							
	Resistenza fctm		25.6						
	Rapporto Rfessurata								1.00
	Coefficiente ksb								0.85
	Rapporto HRDb								1.00e-05
	Rapporto HRDv								1.00e-05

Pareti c.a.	1/7/	2/8/	3/9/	4/10/	5/11/	6/12/
Generalità						
Progetto armatura	Singolo elemento					
Armatura						
Inclinazione Av [gradi]	90.00					

Pareti c.a.	1/7/			2/8/	3/9/	4/10/	5/11/	6/12/
Angolo Av-Ao [gradi]	90.00				0,0,11		0/ 1 1/11	C/ 12/11
Minima tesa	0.25							
Massima tesa	4.00							
Maglia unica centrale	NO.							
Unico strato verticale	NO							
Unico strato verticale Unico strato orizzontale	NO							
Copriferro [cm]	2.00							
	2.00							
Maglia V	40							
diametro	10							
passo	25							
diametro aggiuntivi	12							
Maglia O								
diametro	10							
passo	25							
diametro aggiuntivi	12							
Stati limite ultimi								
Tensione fy [daN/cm2]	4500.00							
Tipo acciaio	tipo C							
Coefficiente gamma s	1.15							
Coefficiente gamma c	1.50							
Verifiche con N costante	SI							
Tensioni ammissibili	J1							
	07.50							
Tensione amm. cls [daN/cm2]	97.50							
Tensione amm. acciaio [daN/cm2]	2600.00							
Rapporto omogeneizzazione N	15.00							
Massimo rapporto area compressa/tesa	1.00							
Parete estesa debolmente armata								
Fattore amplificazione taglio V	0.0							
Hcrit. par. 7.4.4.5.1 [cm]	0.0							
Hcrit. par. 7.4.6.1.4 [cm]	0.0							
Diagramma inviluppo taglio	NO							
Vincolo lati	nessun la	ato						
Verifica come fascia	NO	110						
Diametro di estremità	0							
	U							
Zona confinata	4.00							
Minima tesa	1.00							
Massima tesa	4.00							
Distanza barre [cm]	2.00							
Interferro	2							
Armatura inclinata								
Area barre [cm2]	0.0							
Angolo orizzontale [gradi]	0.0							
Distanza di base [cm]	0.0							
Resistenza al fuoco								
3- intradosso	NO							
3+ estradosso	NO							
Tempo di esposizione R	15							
		0/0/	2/0/	4/40	1	41 014	0/	
Gusci c.a.	1/7/	2/8/	3/9/.	4/10	/ 5/1	1/ 6/1	2/	
Armatura	0.0							
Inclinazione Ax [gradi]	0.0							
Angolo Ax-Ay [gradi]	90.00							
Minima tesa	0.31							
Massima tesa	0.78							
Maglia unica centrale	NO							
Copriferro [cm]	2.00							
Maglia x								
diametro	10							
passo	20							
diametro aggiuntivi	12							
Maglia y	·-							
diametro	10							
	20			-	-	_		
passo diametro aggiuntivi								
diametro aggiuntivi	12			-	_			
Stati limite ultimi	4500 55							
Tensione fy [daN/cm2]	4500.00							
Tipo acciaio	tipo C							
Coefficiente gamma s	1.15							
Coefficiente gamma c	1.50							
Verifiche con N costante	SI						7	
Applica SLU da DIN	NO							
Tensioni ammissibili								
Tensione amm. cls [daN/cm2]	97.50							
Tensione amm. acciaio [daN/cm2]	2600.00							
		1	1	- 1		I		

Pareti c.a.	1/7/	2/8/	3/9	9/	4/10)/	5/11/	6/12/
Rapporto omogeneizzazione N	15.00							
Massimo rapporto area compressa/tesa	1.00							
Resistenza al fuoco								
3- intradosso	NO							
3+ estradosso	NO							
Tempo di esposizione R	15							

Solai e pannelli	1/7/	2/8/	3/9/	4/10/	5/11/	6/12/
Generalità						
Usa tensioni ammissibili	NO					
Af inf: da traliccio	SI					
Consenti armatura a taglio	NO					
Incrementa armatura longitudinale per taglio	SI					
Af inf: da q*L*L /	20.00					
Incremento fascia piena [cm]	5.00					
Armatura						
Minima tesa	0.15					
Massima tesa	3.00					
Minima compressa	0.0					
Af/h [cm]	7.000e-02					
Stati limite ultimi						
Tensione fy [daN/cm2]	4500.00					
Tipo acciaio	tipo C					
Coefficiente gamma s	1.15					
Coefficiente gamma c	1.50					
Fattore di ridistribuzione	0.0					
Tensioni ammissibili						
Tensione amm. cls [daN/cm2]	85.00					
Tensione amm. acciaio [daN/cm2]	2600.00					
Rapporto omogeneizzazione N	15.00					
Massimo rapporto area compressa/tesa	1.00					
Verifica freccia						
Infinita	250.00					
Istantanea	500.00					
Fattore viscosità	3.00					
Usa J non fessurato	NO					
Elementi non strutturali						
Tamponatura antiespulsione	NO					
Tamponatura con armatura	NO					
Fattore di struttura/comportamento	2.00					
Coefficiente gamma m	0.0					
Periodo Ta	0.0					
Altezza pannello	0.0					

MODELLAZIONE DELLE SEZIONI

LEGENDA TABELLA DATI SEZIONI

Il programma consente l'uso di sezioni diverse. Sono previsti i seguenti tipi di sezione:

- 1. sezione di tipo generico
- 2. profilati semplici
- 3. profilati accoppiati e speciali

Le sezioni utilizzate nella modellazione sono individuate da una sigla identificativa ed un codice numerico (gli elementi strutturali richiamano quest'ultimo nella propria descrizione). Per ogni sezione vengono riportati in tabella i seguenti dati:

Area	area della sezione
A V2	area della sezione/fattore di taglio (per il taglio in direzione 2)
A V3	area della sezione/fattore di taglio (per il taglio in direzione 3)
Jt	fattore torsionale di rigidezza
J2-2	momento d'inerzia della sezione riferito all'asse 2
J3-3	momento d'inerzia della sezione riferito all'asse 3

W2-2	modulo di resistenza della sezione riferito all'asse 2
W3-3	modulo di resistenza della sezione riferito all'asse 3
Wp2-2	modulo di resistenza plastico della sezione riferito all'asse 2
Wp3-3	modulo di resistenza plastico della sezione riferito all'asse 3

I dati sopra riportati vengono utilizzati per la determinazione dei carichi inerziali e per la definizione delle rigidezze degli elementi strutturali; qualora il valore di Area V2 (e/o Area V3) sia nullo la deformabilità per taglio V2 (e/o V3) è trascurata. La valutazione delle caratteristiche inerziali delle sezioni è condotta nel riferimento 2-3 dell'elemento.

H B B	Ht Bs ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑	BS Ht Ht IHi	Ht Bs	Ht Hi	Hi] Ht
rettangolare	аТ	a T rovescia	a T di colmo	aL	a L specchiata
Hs Hs	Ht Hs	#Bs ### ### ###	Ht Ht Hi	HnŢ, ☐ ŢHs Bi Bi Hi	HnŢ, ☐ ☐ Hs Bi Hi Bi
a L specchiata	a L rovescia	a L di colmo	a doppio T	a quattro	a quattro
rovescia				specchiata	·
$Ht \underbrace{\boxed{ \begin{matrix} \\ \\ \\ \\ \end{matrix} }}_{\mu = Bi \xrightarrow{A}} \underbrace{}_{\mu Hi}$	Ht Bs THi	He He He	R	$H = \begin{bmatrix} Bi \\ H \end{bmatrix} \underbrace{\dagger}_{H} Hi$	Re RE
a U	аС	a croce	circolare	rettangolare cava	circolare cava

Per quanto concerne i profilati semplici ed accoppiati l'asse 2 del riferimento coincide con l'asse x riportato nei più diffusi profilatari.

Per quanto concerne le sezioni di tipo generico (tipo 1.): i valori dimensionali con prefisso B sono riferiti all'asse 2 i valori dimensionali con prefisso H sono riferiti all'asse 3

ld	Tipo	Area	A V2	A V3	Jt	J 2-2	J 3-3	W 2-2	W 3-3	Wp 2-2	Wp 3-3
		cm2	cm2	cm2	cm4	cm4	cm4	cm3	cm3	cm3	cm3
1	Rettangolare: b=30.00 h =30.00	900.00	750.00	750.00	1.139e+05	6.750e+04	6.750e+04	4500.00	4500.00	6750.00	6750.00

MODELLAZIONE STRUTTURA: NODI

LEGENDA TABELLA DATI NODI

Il programma utilizza per la modellazione nodi strutturali.

Ogni nodo è individuato dalle coordinate cartesiane nel sistema di riferimento globale (X Y Z).

Ad ogni nodo è eventualmente associato un codice di vincolamento rigido, un codice di fondazione speciale, ed un set di sei molle (tre per le traslazioni, tre per le rotazioni). Le tabelle sotto riportate riflettono le succitate possibilità. In particolare, per ogni nodo viene indicato in tabella:

Nodo	numero del nodo.
X	valore della coordinata X
Υ	valore della coordinata Y
Z	valore della coordinata Z

Per i nodi ai quali sia associato un codice di vincolamento rigido, un codice di fondazione speciale o un set di molle viene indicato in tabella:

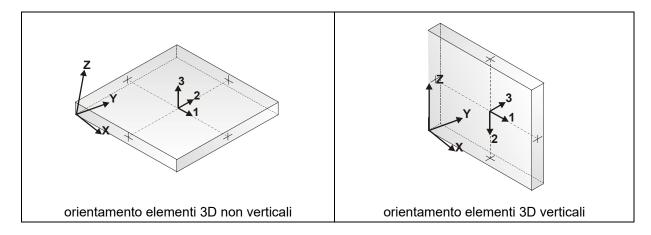
Nodo	numero del nodo.
X	valore della coordinata X
Υ	valore della coordinata Y
Z	valore della coordinata Z
Note	eventuale codice di vincolo (es. v=110010 sei valori relativi ai sei gradi di libertà previsti per il nodo TxTyTzRxRyRz, il valore 1 indica che lo spostamento o rotazione relativo è impedito, il valore 0 indica che lo spostamento o rotazione relativo è libero).
Note	(FS = 1, 2,) eventuale codice del tipo di fondazione speciale (1, 2, fanno riferimento alle tipologie: plinto, palo, plinto su pali,) che è collegato al nodo. (ISO = "id SIGLA") indice e sigla identificativa dell'eventuale isolatore sismico assegnato al nodo
Rig. TX	valore della rigidezza dei vincoli elastici eventualmente applicati al nodo, nello specifico TX (idem per TY, TZ, RX, RY, RZ).

Per strutture sismicamente isolate viene inoltre inserita la tabella delle caratteristiche per gli isolatori utilizzati; le caratteristiche sono indicate in conformità al cap. 7.10 del D.M. 17/01/18

TABELLA DATI NODI

Nodo	Х	Υ	Z	Nodo	X	Υ	Z	Nodo	X	ΥZ
	cm	cm	cm		cm	cm	cm		cm	cm cm
1	60.0	440.0	0.0	2	60.0	440.0	75.0	3	183.3	440.0
75.0										
4	183.3	440.0	0.0	5	60.0	440.0	150.0	6	183.3	440.0
150.0										
7	60.0	440.0	225.0	8	183.3	440.0	225.0	9	60.0	440.0
300.0										
10	183.3	440.0	300.0	11	306.7	440.0	75.0	12	306.7	440.0 0.0
13	306.7	440.0	150.0	14	306.7	440.0	225.0	15	306.7	440.0
300.0										
16	430.0	440.0	75.0	17	430.0	440.0	0.0	18	430.0	440.0
150.0										
19	430.0	440.0	225.0	20	430.0	440.0	300.0	21	553.3	440.0
75.0										
22	553.3	440.0	0.0	23	553.3	440.0	150.0	24	553.3	440.0
225.0										
25	553.3	440.0	300.0	26	676.7	440.0	75.0	27	676.7	440.0 0.0
28	676.7	440.0	150.0	29	676.7	440.0	225.0	30	676.7	440.0
300.0										

31	800.0	440.0	75.0	32	800.0	440.0	0.0	33	800.0	440.0	
150.0 34	800.0	440.0	225.0	35	800.0	440.0	300.0	36	923.3	440.0	
75.0 37	923.3	440.0	0.0	38	923.3	440.0	150.0	39	923.3	440.0	
225.0 40	923.3	440.0	300.0	41	1046.7	440.0	75.0	42	1046.7	440.0 (0.0
43 300.0	1046.7	440.0	150.0	44	1046.7	440.0	225.0	45	1046.7	440.0	
46 150.0	1170.0	440.0	75.0	47	1170.0	440.0	0.0	48	1170.0	440.0	
49 75.0	1170.0	440.0	225.0	50	1170.0	440.0	300.0	51	1293.3	440.0	
52 225.0	1293.3	440.0	0.0	53	1293.3	440.0	150.0	54	1293.3	440.0	
55 58	1293.3	440.0	300.0	56 50	1416.7 1416.7	440.0	75.0 225.0	57 60	1416.7	440.0	0.0
300.0	1416.7	440.0	150.0	59		440.0		60	1416.7	440.0	
61 150.0	1540.0	440.0	75.0	62	1540.0	440.0	0.0	63	1540.0	440.0	
64 75.0	1540.0	440.0	225.0	65	1540.0	440.0	300.0	66	1540.0	345.0	
67 225.0	1540.0	345.0	0.0	68	1540.0	345.0	150.0	69	1540.0	345.0	
70 73	1540.0 1540.0	345.0 250.0	300.0 150.0	71 74	1540.0 1540.0	250.0 250.0	75.0 225.0	72 75	1540.0 1540.0	250.0 (250.0	0.0
300.0 76	1540.0	155.0	75.0	77	1540.0	155.0	0.0	78	1540.0	155.0	
150.0 79	1540.0	155.0	225.0	80	1540.0	155.0	300.0	81	1540.0	60.0	
75.0 82	1540.0	60.0	0.0	83	1540.0	60.0	150.0	84	1540.0	60.0	
225.0 85	1540.0	60.0	300.0	86	1416.7	60.0	75.0	87	1416.7	60.0 (n n
88	1416.7	60.0	150.0	89	1416.7	60.0	225.0	90	1416.7	60.0	J.U
300.0 91	1293.3	60.0	75.0	92	1293.3	60.0	0.0	93	1293.3	60.0	
150.0 94	1293.3	60.0	225.0	95	1293.3	60.0	300.0	96	1170.0	60.0	
75.0 97	1170.0	60.0	0.0	98	1170.0	60.0	150.0	99	1170.0	60.0	
225.0 100	1170.0	60.0	300.0	101	1046.7	60.0	75.0	102	1046.7	60.0	0.0
103 300.0	1046.7	60.0	150.0	104	1046.7	60.0	225.0	105	1046.7	60.0	
106 150.0	923.3	60.0	75.0	107	923.3	60.0	0.0	108	923.3	60.0	
109 75.0	923.3	60.0	225.0	110	923.3	60.0	300.0	111	0.008	60.0	
112 225.0	800.0	60.0	0.0	113	800.0	60.0	150.0	114	0.008	60.0	
115 118	800.0 676.7	60.0 60.0	300.0 150.0	116 119	676.7 676.7	60.0 60.0	75.0 225.0	117 120	676.7 676.7	60.0 (60.0	0.0
300.0 121	553.3	60.0	75.0	122	553.3	60.0	0.0	123	553.3	60.0	
150.0 124	553.3	60.0	225.0	125	553.3	60.0	300.0	126	430.0	60.0	
75.0 127	430.0	60.0	0.0	128	430.0	60.0	150.0	129	430.0	60.0	
225.0											2.0
130 133	430.0 306.7	60.0 60.0	300.0 150.0	131 134	306.7 306.7	60.0 60.0	75.0 225.0	132 135	306.7 306.7	60.0 (60.0	5.0
300.0 136	183.3	60.0	75.0	137	183.3	60.0	0.0	138	183.3	60.0	
150.0 139	183.3	60.0	225.0	140	183.3	60.0	300.0	141	60.0	60.0	
75.0 142	60.0	60.0	0.0	143	60.0	60.0	150.0	144	60.0	60.0	
225.0 145	60.0	60.0	300.0	146	60.0	155.0	75.0	147	60.0	155.0 (0.0
148 300.0	60.0	155.0	150.0	149	60.0	155.0	225.0	150	60.0	155.0	
151 150.0	60.0	250.0	75.0	152	60.0	250.0	0.0	153	60.0	250.0	
154 75.0	60.0	250.0	225.0	155	60.0	250.0	300.0	156	60.0	345.0	
157	60.0	345.0	0.0	158	60.0	345.0	150.0	159	60.0	345.0	


160 60.0 345.0 300.0 161 0.0 500.0 0.0 165 0.0 416.7 0.0 163 1600.0 0.0 0.0 164 1600.0 500.0 0.0 165 0.0 416.7 0.0 169 0.0 83.3 0.0 170 80.0 0.0 0.0 171 160.0 181 960.0 0.0 0.0 182 140.0 0.0 0.0 183 1120.0 0.0 0.0 183 1120.0 0.0 0.0 186 <td< th=""><th>225.0</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></td<>	225.0										
166 0.0 333.3 0.0 167 0.0 250.0 0.0 168 0.0 166.7 0.0 169 0.0 83.3 0.0 170 80.0 0.0 0.0 171 160.0 0.0 <td< td=""><td>160</td><td>60.0</td><td>345.0</td><td>300.0</td><td>161</td><td>0.0</td><td>500.0</td><td>0.0</td><td>162</td><td>0.0</td><td>0.0 0.0</td></td<>	160	60.0	345.0	300.0	161	0.0	500.0	0.0	162	0.0	0.0 0.0
169 0.0 83.3 0.0 170 80.0 0.0 0.0 171 160.0 183 1120.0 0.0 0.0 0.0 184 1200.0 0.0 0.0 185 1280.0 0.0 0.0 186 1360.0 0.0 0.0 186 1360.0 0.0 0.0 189 1600.0 83.3 0.0 196 1360.0 500.0 0.0 195 1440.0 500.0 0.0 195 1440.0 500.0 0.0 198 1200.0 500.0 0.0 <td>163</td> <td>1600.0</td> <td>0.0</td> <td>0.0</td> <td>164</td> <td>1600.0</td> <td>500.0</td> <td>0.0</td> <td>165</td> <td>0.0</td> <td>416.7 0.0</td>	163	1600.0	0.0	0.0	164	1600.0	500.0	0.0	165	0.0	416.7 0.0
172 240.0 0.0 0.0 173 320.0 0.0 0.0 174 400.0 0.0 0.0 0.0 175 480.0 0.0 0.0 177 640.0 184 1200.0 0.0 0.0 185 1280.0 0.0 0.0 186 1360.0 0.0 0.0 189 1600.0 83.3 0.0 190 1600.0 166.7 0.0 191 1600.0 250.0 0.0 192 1600.0 333.3 0.0 193 1600.0 166.7 0.0 194 1520.0 500.0 0.0 192 1600.0 3333.3 0.0 193	166	0.0	333.3	0.0	167	0.0	250.0	0.0	168	0.0	166.7 0.0
175 480.0 0.0 0.0 176 560.0 0.0 0.0 177 640.0 183 1120.0 0.0 0.0 0.0 184 1200.0 0.0 0.0 0.0 186 1360.0 0.0 0.0 188 1520.0 0.0 0.0 189 1600.0 83.3 0.0 193 1600.0 166.7 0.0 194 1520.0 500.0 0.0 195 1440.0 500.0 333.3 0.0 194 1520.0 500.0 0.0 195 1440.0 500.0 0.0 195 1440.0 500.0 0.0 196 1360.0 500.0 0.0 197 1280.0 500.0	169	0.0	83.3	0.0	170	80.0	0.0	0.0	171	160.0	0.0 0.0
178 720.0 0.0 0.0 179 800.0 0.0 0.0 180 880.0 0.0 0.0 0.0 181 960.0 0.0 0.0 182 1040.0 0.0 0.0 183 1120.0 0.0 0.0 0.0 183 1120.0 0.0 0.0 0.0 183 1120.0 0.0 0.0 0.0 186 1360.0 0.0 0.0 0.0 189 1600.0 83.3 0.0 190 1600.0 166.7 0.0 191 1600.0 250.0 0.0 192 1600.0 333.3 0.0 193 1600.0 416.7 0.0 194 1520.0 500.0 0.0 195 1440.0 500.0 0.0 196 13600.0 500.0 0.0 197 1280.0 500.0 0.0 198 1200.0 500.0 0.0 199 1120.0 500.0 0.0 201 960.0 500.0 0.0 201 960.0 500.0 0.0 </td <td>172</td> <td>240.0</td> <td>0.0</td> <td>0.0</td> <td>173</td> <td>320.0</td> <td>0.0</td> <td>0.0</td> <td>174</td> <td>400.0</td> <td>0.0 0.0</td>	172	240.0	0.0	0.0	173	320.0	0.0	0.0	174	400.0	0.0 0.0
181 960.0 0.0 0.0 182 1040.0 0.0 0.0 183 1120.0 0.0 0.0 0.0 186 1360.0 0.0 0.0 186 1360.0 0.0 0.0 186 1360.0 0.0 0.0 189 1600.0 83.3 0.0 190 1600.0 166.7 0.0 191 1600.0 0.0 192 1600.0 333.3 0.0 193 1600.0 416.7 0.0 194 1520.0 500.0 0.0 195 1440.0 500.0 0.0 196 1360.0 500.0 0.0 197 1280.0 500.0 0.0 198 1200.0 500.0 0.0 199 1120.0 500.0 0.0 200 1040.0 500.0 0.0 201 960.0 500.0 0.0 202 880.0 500.0 0.0 203 800.0 500.0 0.0 201 960.0 500.0 0.0	175	480.0	0.0	0.0	176	560.0	0.0	0.0	177	640.0	0.0 0.0
184 1200.0 0.0 0.0 185 1280.0 0.0 0.0 186 1360.0 0.0 0.0 187 1440.0 0.0 0.0 188 1520.0 0.0 0.0 189 1600.0 83.3 0.0 190 1600.0 166.7 0.0 191 1600.0 250.0 0.0 192 1600.0 333.3 0.0 193 1600.0 416.7 0.0 194 1520.0 500.0 0.0 195 1440.0 500.0 0.0 196 1360.0 500.0 0.0 197 1280.0 500.0 0.0 198 1200.0 500.0 0.0 199 1120.0 500.0 0.0 200 1040.0 500.0 0.0 201 960.0 500.0 0.0 202 880.0 500.0 0.0 204 720.0 500.0 0.0 205 640.0 500.0 0.0 205 560.0	178	720.0	0.0	0.0	179	800.0	0.0	0.0	180	0.088	0.0 0.0
187 1440.0 0.0 0.0 188 1520.0 0.0 0.0 189 1600.0 83.3 0.0 190 1600.0 166.7 0.0 191 1600.0 250.0 0.0 192 1600.0 333.3 0.0 193 1600.0 416.7 0.0 194 1520.0 500.0 0.0 195 1440.0 500.0 0.0 196 1360.0 500.0 0.0 197 1280.0 500.0 0.0 198 1200.0 500.0 0.0 199 1120.0 500.0 0.0 200 1040.0 500.0 0.0 201 960.0 500.0 0.0 202 880.0 500.0 0.0 203 800.0 500.0 0.0 204 720.0 500.0 0.0 205 640.0 500.0 0.0 206 560.0 500.0 0.0 207 480.0 500.0 0.0 211 160.0 500.0 <td>181</td> <td>960.0</td> <td>0.0</td> <td>0.0</td> <td>182</td> <td>1040.0</td> <td>0.0</td> <td>0.0</td> <td>183</td> <td>1120.0</td> <td>0.0 0.0</td>	181	960.0	0.0	0.0	182	1040.0	0.0	0.0	183	1120.0	0.0 0.0
190 1600.0 166.7 0.0 191 1600.0 250.0 0.0 192 1600.0 333.3 0.0 193 1600.0 416.7 0.0 194 1520.0 500.0 0.0 195 1440.0 500.0 0.0 196 1360.0 500.0 0.0 197 1280.0 500.0 0.0 198 1200.0 500.0 0.0 199 1120.0 500.0 0.0 200 1040.0 500.0 0.0 201 960.0 500.0 0.0 202 880.0 500.0 0.0 203 8800.0 500.0 0.0 204 720.0 500.0 0.0 205 640.0 500.0 0.0 206 560.0 500.0 0.0 207 480.0 500.0 0.0 208 400.0 500.0 0.0 212 80.0 500.0 0.0 213 245.2 64.5 0.0 214 1354.8 64.0 </td <td>184</td> <td>1200.0</td> <td>0.0</td> <td>0.0</td> <td>185</td> <td>1280.0</td> <td>0.0</td> <td>0.0</td> <td>186</td> <td>1360.0</td> <td>0.0 0.0</td>	184	1200.0	0.0	0.0	185	1280.0	0.0	0.0	186	1360.0	0.0 0.0
193 1600.0 416.7 0.0 194 1520.0 500.0 0.0 195 1440.0 500.0 0.0 196 1360.0 500.0 0.0 197 1280.0 500.0 0.0 198 1200.0 500.0 0.0 199 1120.0 500.0 0.0 200 1040.0 500.0 0.0 201 960.0 500.0 0.0 202 880.0 500.0 0.0 203 800.0 500.0 0.0 204 720.0 500.0 0.0 205 640.0 500.0 0.0 206 560.0 500.0 0.0 207 480.0 500.0 0.0 208 400.0 500.0 0.0 212 80.0 500.0 0.0 210 240.0 500.0 0.0 211 160.0 500.0 0.0 212 80.0 500.0 0.0 213 245.2 436.0 0.0 214 1354.8	187	1440.0	0.0	0.0	188	1520.0	0.0	0.0	189	1600.0	83.3 0.0
196 1360.0 500.0 0.0 197 1280.0 500.0 0.0 198 1200.0 500.0 0.0 199 1120.0 500.0 0.0 200 1040.0 500.0 0.0 201 960.0 500.0 0.0 202 880.0 500.0 0.0 203 800.0 500.0 0.0 204 720.0 500.0 0.0 205 640.0 500.0 0.0 206 560.0 500.0 0.0 207 480.0 500.0 0.0 218 400.0 500.0 0.0 219 320.0 500.0 0.0 210 240.0 500.0 0.0 211 160.0 500.0 0.0 212 80.0 500.0 0.0 213 245.2 64.5 0.0 214 1354.8 64.0 0.0 215 1354.8 435.5 0.0 216 245.2 436.0 0.0 217 163.9 345.9 0.0 218 1440.3 349.8 0.0 219 1458.2	190	1600.0	166.7	0.0	191	1600.0	250.0	0.0	192	1600.0	333.3 0.0
199 1120.0 500.0 0.0 200 1040.0 500.0 0.0 201 960.0 500.0 0.0 202 880.0 500.0 0.0 203 800.0 500.0 0.0 204 720.0 500.0 0.0 205 640.0 500.0 0.0 206 560.0 500.0 0.0 207 480.0 500.0 0.0 208 400.0 500.0 0.0 209 320.0 500.0 0.0 210 240.0 500.0 0.0 211 160.0 500.0 0.0 212 80.0 500.0 0.0 213 245.2 64.5 0.0 214 1354.8 64.0 0.0 215 1354.8 435.5 0.0 216 245.2 436.0 0.0 220 1436.1 154.1 0.0 221 159.7 150.2 0.0 222 141.8 250.0 0.0 223 237.3 338.2 0.0 224 437.6 359.1 0.0 225 335.0	193	1600.0	416.7	0.0	194	1520.0	500.0	0.0	195	1440.0	500.0 0.0
202 880.0 500.0 0.0 203 800.0 500.0 0.0 204 720.0 500.0 0.0 205 640.0 500.0 0.0 206 560.0 500.0 0.0 207 480.0 500.0 0.0 208 400.0 500.0 0.0 209 320.0 500.0 0.0 210 240.0 500.0 0.0 211 160.0 500.0 0.0 212 80.0 500.0 0.0 213 245.2 64.5 0.0 214 1354.8 64.0 0.0 215 1354.8 435.5 0.0 216 245.2 436.0 0.0 217 163.9 345.9 0.0 218 1440.3 349.8 0.0 219 1458.2 250.0 0.0 220 1436.1 154.1 0.0 221 159.7 150.2 0.0 222 141.8 250.0 0.0 223 237.3 338.2 0.0 224 437.6 359.1 0.0 225 335.0	196	1360.0	500.0	0.0	197	1280.0	500.0	0.0	198	1200.0	500.0 0.0
205 640.0 500.0 0.0 206 560.0 500.0 0.0 207 480.0 500.0 0.0 208 400.0 500.0 0.0 209 320.0 500.0 0.0 210 240.0 500.0 0.0 211 160.0 500.0 0.0 212 80.0 500.0 0.0 213 245.2 64.5 0.0 214 1354.8 64.0 0.0 215 1354.8 435.5 0.0 216 245.2 436.0 0.0 217 163.9 345.9 0.0 218 1440.3 349.8 0.0 219 1458.2 250.0 0.0 220 1436.1 154.1 0.0 221 159.7 150.2 0.0 222 141.8 250.0 0.0 223 237.3 338.2 0.0 224 437.6 359.1 0.0 225 335.0 331.1 0.0 226 553.3	199	1120.0	500.0	0.0	200	1040.0	500.0	0.0	201	960.0	500.0 0.0
208 400.0 500.0 0.0 209 320.0 500.0 0.0 210 240.0 500.0 0.0 211 160.0 500.0 0.0 212 80.0 500.0 0.0 213 245.2 64.5 0.0 214 1354.8 64.0 0.0 215 1354.8 435.5 0.0 216 245.2 436.0 0.0 217 163.9 345.9 0.0 218 1440.3 349.8 0.0 219 1458.2 250.0 0.0 220 1436.1 154.1 0.0 221 159.7 150.2 0.0 222 141.8 250.0 0.0 223 237.3 338.2 0.0 224 437.6 359.1 0.0 225 335.0 331.1 0.0 226 553.3 361.7 0.0 227 676.7 361.7 0.0 228 800.0 361.7 0.0 232 1290.5	202	0.088	500.0	0.0	203	0.008	500.0	0.0	204	720.0	500.0 0.0
211 160.0 500.0 0.0 212 80.0 500.0 0.0 213 245.2 64.5 0.0 214 1354.8 64.0 0.0 215 1354.8 435.5 0.0 216 245.2 436.0 0.0 217 163.9 345.9 0.0 218 1440.3 349.8 0.0 219 1458.2 250.0 0.0 220 1436.1 154.1 0.0 221 159.7 150.2 0.0 222 141.8 250.0 0.0 223 237.3 338.2 0.0 224 437.6 359.1 0.0 225 335.0 331.1 0.0 226 553.3 361.7 0.0 227 676.7 361.7 0.0 228 800.0 361.7 0.0 229 923.3 361.7 0.0 230 1046.7 361.7 0.0 231 1170.0 361.7 0.0 232 1290.5 351.9 0.0 233 1378.7 344.3 0.0 234 1362.7	205	640.0	500.0	0.0	206	560.0	500.0	0.0	207	480.0	500.0 0.0
214 1354.8 64.0 0.0 215 1354.8 435.5 0.0 216 245.2 436.0 0.0 217 163.9 345.9 0.0 218 1440.3 349.8 0.0 219 1458.2 250.0 0.0 220 1436.1 154.1 0.0 221 159.7 150.2 0.0 222 141.8 250.0 0.0 223 237.3 338.2 0.0 224 437.6 359.1 0.0 225 335.0 331.1 0.0 226 553.3 361.7 0.0 227 676.7 361.7 0.0 228 800.0 361.7 0.0 229 923.3 361.7 0.0 230 1046.7 361.7 0.0 231 1170.0 361.7 0.0 232 1290.5 351.9 0.0 233 1378.7 344.3 0.0 234 1362.7 161.8 0.0 235 1162.4 140.9 0.0 236 1265.0 168.9 0.0 237 1046.7	208	400.0	500.0	0.0	209	320.0	500.0	0.0	210	240.0	500.0 0.0
217 163.9 345.9 0.0 218 1440.3 349.8 0.0 219 1458.2 250.0 0.0 220 1436.1 154.1 0.0 221 159.7 150.2 0.0 222 141.8 250.0 0.0 223 237.3 338.2 0.0 224 437.6 359.1 0.0 225 335.0 331.1 0.0 226 553.3 361.7 0.0 227 676.7 361.7 0.0 228 800.0 361.7 0.0 229 923.3 361.7 0.0 230 1046.7 361.7 0.0 231 1170.0 361.7 0.0 232 1290.5 351.9 0.0 233 1378.7 344.3 0.0 234 1362.7 161.8 0.0 235 1162.4 140.9 0.0 236 1265.0 168.9 0.0 237 1046.7 138.3 0.0 238 923.3 138.3 0.0 239 800.0 138.3 0.0 240 676.7	211	160.0	500.0	0.0	212	80.0	500.0	0.0	213	245.2	64.5 0.0
220 1436.1 154.1 0.0 221 159.7 150.2 0.0 222 141.8 250.0 0.0 223 237.3 338.2 0.0 224 437.6 359.1 0.0 225 335.0 331.1 0.0 226 553.3 361.7 0.0 227 676.7 361.7 0.0 228 800.0 361.7 0.0 229 923.3 361.7 0.0 230 1046.7 361.7 0.0 231 1170.0 361.7 0.0 232 1290.5 351.9 0.0 233 1378.7 344.3 0.0 234 1362.7 161.8 0.0 235 1162.4 140.9 0.0 236 1265.0 168.9 0.0 237 1046.7 138.3 0.0 238 923.3 138.3 0.0 239 800.0 138.3 0.0 240 676.7 138.3 0.0 241 553.3 138.3 0.0 242 430.0 138.3 0.0 243 309.5	214	1354.8	64.0	0.0	215	1354.8	435.5	0.0	216	245.2	436.0 0.0
223 237.3 338.2 0.0 224 437.6 359.1 0.0 225 335.0 331.1 0.0 226 553.3 361.7 0.0 227 676.7 361.7 0.0 228 800.0 361.7 0.0 229 923.3 361.7 0.0 230 1046.7 361.7 0.0 231 1170.0 361.7 0.0 232 1290.5 351.9 0.0 233 1378.7 344.3 0.0 234 1362.7 161.8 0.0 235 1162.4 140.9 0.0 236 1265.0 168.9 0.0 237 1046.7 138.3 0.0 238 923.3 138.3 0.0 239 800.0 138.3 0.0 240 676.7 138.3 0.0 241 553.3 138.3 0.0 242 430.0 138.3 0.0 243 309.5 148.1 0.0 244 221.3 155.7 0.0 245 222.8 250.0 0.0 246 1377.2	217	163.9	345.9	0.0	218	1440.3	349.8	0.0	219	1458.2	250.0 0.0
226 553.3 361.7 0.0 227 676.7 361.7 0.0 228 800.0 361.7 0.0 229 923.3 361.7 0.0 230 1046.7 361.7 0.0 231 1170.0 361.7 0.0 232 1290.5 351.9 0.0 233 1378.7 344.3 0.0 234 1362.7 161.8 0.0 235 1162.4 140.9 0.0 236 1265.0 168.9 0.0 237 1046.7 138.3 0.0 238 923.3 138.3 0.0 239 800.0 138.3 0.0 240 676.7 138.3 0.0 241 553.3 138.3 0.0 242 430.0 138.3 0.0 243 309.5 148.1 0.0 244 221.3 155.7 0.0 245 222.8 250.0 0.0 246 1377.2 250.0 0.0 247 306.9 237.9 0.0 248 1293.1 262.1 0.0 249 553.3	220	1436.1	154.1	0.0	221	159.7	150.2	0.0	222	141.8	250.0 0.0
229 923.3 361.7 0.0 230 1046.7 361.7 0.0 231 1170.0 361.7 0.0 232 1290.5 351.9 0.0 233 1378.7 344.3 0.0 234 1362.7 161.8 0.0 235 1162.4 140.9 0.0 236 1265.0 168.9 0.0 237 1046.7 138.3 0.0 238 923.3 138.3 0.0 239 800.0 138.3 0.0 240 676.7 138.3 0.0 241 553.3 138.3 0.0 242 430.0 138.3 0.0 243 309.5 148.1 0.0 244 221.3 155.7 0.0 245 222.8 250.0 0.0 246 1377.2 250.0 0.0 247 306.9 237.9 0.0 248 1293.1 262.1 0.0 249 553.3 283.4 0.0 250 453.3 287.9 0.0 251 676.7 283.4 0.0 252 800.0 283.4 0.0	223	237.3	338.2	0.0	224	437.6	359.1	0.0	225	335.0	331.1 0.0
232 1290.5 351.9 0.0 233 1378.7 344.3 0.0 234 1362.7 161.8 0.0 235 1162.4 140.9 0.0 236 1265.0 168.9 0.0 237 1046.7 138.3 0.0 238 923.3 138.3 0.0 239 800.0 138.3 0.0 240 676.7 138.3 0.0 241 553.3 138.3 0.0 242 430.0 138.3 0.0 243 309.5 148.1 0.0 244 221.3 155.7 0.0 245 222.8 250.0 0.0 246 1377.2 250.0 0.0 247 306.9 237.9 0.0 248 1293.1 262.1 0.0 249 553.3 283.4 0.0 250 453.3 287.9 0.0 251 676.7 283.4 0.0 252 800.0 283.4 0.0	226	553.3	361.7	0.0	227	676.7	361.7	0.0	228	0.008	361.7 0.0
235 1162.4 140.9 0.0 236 1265.0 168.9 0.0 237 1046.7 138.3 0.0 238 923.3 138.3 0.0 239 800.0 138.3 0.0 240 676.7 138.3 0.0 241 553.3 138.3 0.0 242 430.0 138.3 0.0 243 309.5 148.1 0.0 244 221.3 155.7 0.0 245 222.8 250.0 0.0 246 1377.2 250.0 0.0 247 306.9 237.9 0.0 248 1293.1 262.1 0.0 249 553.3 283.4 0.0 250 453.3 287.9 0.0 251 676.7 283.4 0.0 252 800.0 283.4 0.0	229	923.3	361.7	0.0	230	1046.7	361.7	0.0	231	1170.0	361.7 0.0
238 923.3 138.3 0.0 239 800.0 138.3 0.0 240 676.7 138.3 0.0 241 553.3 138.3 0.0 242 430.0 138.3 0.0 243 309.5 148.1 0.0 244 221.3 155.7 0.0 245 222.8 250.0 0.0 246 1377.2 250.0 0.0 247 306.9 237.9 0.0 248 1293.1 262.1 0.0 249 553.3 283.4 0.0 250 453.3 287.9 0.0 251 676.7 283.4 0.0 252 800.0 283.4 0.0	232	1290.5	351.9	0.0	233	1378.7	344.3	0.0	234	1362.7	161.8 0.0
241 553.3 138.3 0.0 242 430.0 138.3 0.0 243 309.5 148.1 0.0 244 221.3 155.7 0.0 245 222.8 250.0 0.0 246 1377.2 250.0 0.0 247 306.9 237.9 0.0 248 1293.1 262.1 0.0 249 553.3 283.4 0.0 250 453.3 287.9 0.0 251 676.7 283.4 0.0 252 800.0 283.4 0.0	235	1162.4	140.9	0.0	236	1265.0	168.9	0.0	237	1046.7	138.3 0.0
244 221.3 155.7 0.0 245 222.8 250.0 0.0 246 1377.2 250.0 0.0 247 306.9 237.9 0.0 248 1293.1 262.1 0.0 249 553.3 283.4 0.0 250 453.3 287.9 0.0 251 676.7 283.4 0.0 252 800.0 283.4 0.0	238	923.3	138.3	0.0	239	800.0	138.3	0.0	240	676.7	138.3 0.0
247 306.9 237.9 0.0 248 1293.1 262.1 0.0 249 553.3 283.4 0.0 250 453.3 287.9 0.0 251 676.7 283.4 0.0 252 800.0 283.4 0.0	241	553.3	138.3	0.0	242	430.0	138.3	0.0	243	309.5	148.1 0.0
250 453.3 287.9 0.0 251 676.7 283.4 0.0 252 800.0 283.4 0.0	244	221.3	155.7	0.0	245	222.8	250.0	0.0	246	1377.2	250.0 0.0
	247	306.9	237.9	0.0	248	1293.1	262.1	0.0	249	553.3	283.4 0.0
000 000 000 4 00 004 4040 7 000 4 00 000 400 0	250	453.3	287.9	0.0	251	676.7	283.4	0.0	252	800.0	283.4 0.0
253 923.3 283.4 0.0 254 1046.7 283.4 0.0 255 1136.6 289.4 0.0	253	923.3	283.4	0.0	254	1046.7	283.4	0.0	255	1136.6	289.4 0.0
256 1046.7 216.6 0.0 257 1146.7 212.1 0.0 258 923.3 216.6 0.0	256	1046.7	216.6	0.0	257	1146.7	212.1	0.0	258	923.3	216.6 0.0
259 800.0 216.6 0.0 260 676.7 216.6 0.0 261 553.3 216.6 0.0	259	0.008	216.6	0.0	260	676.7	216.6	0.0	261	553.3	216.6 0.0
262 463.4 210.6 0.0 263 388.8 275.0 0.0 264 1211.2 225.0 0.0	262	463.4	210.6	0.0	263	388.8	275.0	0.0	264	1211.2	225.0 0.0
265 368.3 60.0 0.0 266 371.3 140.4 0.0 267 1228.7 359.6 0.0	265	368.3		0.0	266	371.3	140.4	0.0		1228.7	359.6 0.0
268 1231.7 440.0 0.0 269 375.7 215.5 0.0 270 1224.3 284.5 0.0	268	1231.7	440.0	0.0	269	375.7	215.5	0.0	270	1224.3	284.5 0.0

MODELLAZIONE STRUTTURA: ELEMENTI SHELL

LEGENDA TABELLA DATI SHELL

Il programma utilizza per la modellazione elementi a tre o quattro nodi denominati in generale shell. Ogni elemento shell è individuato dai nodi I, J, K, L (L=I per gli elementi a tre nodi).

Ogni elemento è caratterizzato da un insieme di proprietà riportate in tabella che ne completano la modellazione.

In particolare, per ogni elemento viene indicato in tabella:

Elem.	numero dell'elemento									
Note	codice di comportamento:									
	Guscio (elemento guscio in elevazione non verticale)									
	Guscio fond. (elemento guscio su suolo elastico)									
	Setto (elemento guscio in elevazione verticale)									
	Membrana (elemento guscio con comportamento									
	membranale)									
Nodo I (J, K, L)	numero del nodo I (J, K, L)									
Mat.	codice del materiale assegnato all'elemento									
Spessore	spessore dell'elemento (costante)									
Wink V	costante di sottofondo (coefficiente di Winkler) per la modellazione del									
	suolo elastico verticale									
Wink O	costante di sottofondo (coefficiente di Winkler) per la modellazione del									
	suolo elastico orizzontale									

Elem. Wink O	Note	Nodo I	Nodo J	Nodo K	Nodo L	Mat.	Crit.	Spessore	Svincolo	Wink V
daN/cm3								cm		daN/cm3
1	Setto	2	3	4	1	1	1	20.0		
2	Setto	5	6	3	2	1	1	20.0		
3 4	Setto Setto	7 9	8 10	6 8	5 7	1 1	1 1	20.0 20.0		
5	Setto	3	11	12	4	1	1	20.0		
6	Setto	6	13	11	3	1	1	20.0		
7	Setto	8	14	13	6	1	1	20.0		
8 9	Setto Setto	10 11	15 16	14 17	8 12	1 1	1 1	20.0 20.0		
10	Setto	13	18	16	11	1	1	20.0		
11	Setto	14	19	18	13	1	1	20.0		
12	Setto	15	20	19	14	1	1	20.0		
13 14	Setto Setto	16 18	21 23	22 21	17 16	1 1	1 1	20.0 20.0		
15	Setto	19	24	23	18	1	1	20.0		
16	Setto	20	25	24	19	1	1	20.0		
17	Setto	21	26	27	22	1	1	20.0		
18 19	Setto Setto	23 24	28 29	26 28	21 23	1 1	1 1	20.0 20.0		
20	Setto	25	30	29	24	1	1	20.0		
21	Setto	26	31	32	27	1	1	20.0		
22	Setto	28	33	31	26	1	1	20.0		
23 24	Setto Setto	29 30	34 35	33 34	28 29	1 1	1 1	20.0 20.0		
25	Setto	31	36	37	32	1	1	20.0		
26	Setto	33	38	36	31	1	1	20.0		
27	Setto	34	39	38	33	1	1	20.0		
28 29	Setto Setto	35 36	40 41	39 42	34 37	1 1	1 1	20.0 20.0		
30	Setto	38	43	41	36	1	1	20.0		
31	Setto	39	44	43	38	1	1	20.0		
32	Setto	40	45 46	44	39	1	1	20.0		
33 34	Setto Setto	41 43	46 48	47 46	42 41	1 1	1 1	20.0 20.0		
35	Setto	44	49	48	43	1	1	20.0		
36	Setto	45	50	49	44	1	1	20.0		
37 38	Setto Setto	46 48	51 53	268 51	47 46	1 1	1 1	20.0 20.0		
39	Setto	49	54	53	48	1	1	20.0		
40	Setto	50	55	54	49	1	1	20.0		
41	Setto	51	56	57	52	1	1	20.0		
42 43	Setto Setto	53 54	58 59	56 58	51 53	1 1	1 1	20.0 20.0		
44	Setto	55	60	59	54	1	1	20.0		
45	Setto	56	61	62	57	1	1	20.0		
46	Setto	58	63	61	56	1	1	20.0		
47 48	Setto Setto	59 60	64 65	63 64	58 59	1 1	1 1	20.0 20.0		
49	Setto	67	62	61	66	1	1	20.0		
50	Setto	66	61	63	68	1	1	20.0		
51 52	Setto	68 69	63 64	64 65	69 70	1 1	1	20.0		
52 53	Setto Setto	72	64 67	65 66	70 71	1	1 1	20.0 20.0		
54	Setto	71	66	68	73	1	1	20.0		
55	Setto	73	68	69	74	1	1	20.0		
56	Setto	74 77	69 72	70 71	75 76	1	1	20.0		
57 58	Setto Setto	77 76	72 71	71 73	76 78	1 1	1 1	20.0 20.0		
59	Setto	78	73	74	79	1	1	20.0		
60	Setto	79	74	75	80	1	1	20.0		
61 62	Setto	82 81	77 76	76 78	81 83	1 1	1 1	20.0 20.0		
63	Setto Setto	83	76 78	76 79	84	1	1	20.0		
64	Setto	84	79	80	85	1	1	20.0		
65	Setto	86	81	82	87	1	1	20.0		
66 67	Setto Setto	88 89	83 84	81 83	86 88	1 1	1 1	20.0 20.0		
67 68	Setto	90	84 85	83 84	88 89	1	1	20.0		
69	Setto	91	86	87	92	1	1	20.0		
70	Setto	93	88	86	91	1	1	20.0		

71	Setto	94	89	88	93	1	1	20.0	
72	Setto	95	90	89	94	1	1	20.0	
73	Setto	96	91	92	97	1	1	20.0	
74	Setto	98	93	91	96	1	1	20.0	
75	Setto	99	94	93	98	1	1	20.0	
76	Setto	100	95	94	99	1	1	20.0	
77	Setto	101	96	97	102	1	1	20.0	
78	Setto	103	98	96	101	1	1	20.0	
79	Setto	104	99	98	103	1	1	20.0	
80	Setto	105	100	99	104	1	1	20.0	
81	Setto	106	101	102	107	1	1	20.0	
82	Setto	108	103	101	106	1	1	20.0	
83	Setto	109	103	103	108	1	1	20.0	
84	Setto		104	103	108	1	1	20.0	
		110							
85	Setto	111	106	107	112	1	1	20.0	
86	Setto	113	108	106	111	1	1	20.0	
87	Setto	114	109	108	113	1	1	20.0	
88	Setto	115	110	109	114	1	1	20.0	
89	Setto	116	111	112	117	1	1	20.0	
90	Setto	118	113	111	116	1	1	20.0	
91	Setto	119	114	113	118	1	1	20.0	
92	Setto	120	115	114	119	1	1	20.0	
93	Setto	121	116	117	122	1	1	20.0	
94	Setto	123	118	116	121	1	1	20.0	
95	Setto	124	119	118	123	1	1	20.0	
96	Setto	125	120	119	124	1	1	20.0	
97	Setto	126	121	122	127	1	1	20.0	
98	Setto	128	123	121	126	1	1	20.0	
99	Setto	129	124	123	128	1	1	20.0	
100	Setto	130	125	124	129	1	1	20.0	
101	Setto	131	126	265	132	1	1	20.0	
102	Setto	133	128	126	131	1	1	20.0	
102	Setto	134	129	128	133	1	1	20.0	
103			130	129	134	1	1	20.0	
	Setto	135							
105	Setto	136	131	132	137	1	1	20.0	
106	Setto	138	133	131	136	1	1	20.0	
107	Setto	139	134	133	138	1	1	20.0	
108	Setto	140	135	134	139	1	1	20.0	
109	Setto	141	136	137	142	1	1	20.0	
110	Setto	143	138	136	141	1	1	20.0	
111	Setto	144	139	138	143	1	1	20.0	
112	Setto	145	140	139	144	1	1	20.0	
113	Setto	142	147	146	141	1	1	20.0	
114	Setto	141	146	148	143	1	1	20.0	
115	Setto	143	148	149	144	1	1	20.0	
116	Setto	144	149	150	145	1	1	20.0	
117	Setto	147	152	151	146	1	1	20.0	
118	Setto	146	151	153	148	1	1	20.0	
119	Setto	148	153	154	149	1	1	20.0	
120	Setto	149	154	155	150	i	1	20.0	
121	Setto	152	157	156	151	i	1	20.0	
121	Setto	151	156	158	153	1	1	20.0	
						1	1		
123	Setto	153	158	159	154		=	20.0	
124	Setto	154	159	160	155	1	1	20.0	
125	Setto	157	1	2	156	1	1	20.0	
126	Setto	156	2	5	158	1	1	20.0	
127	Setto	158	5	7	159	1	1	20.0	
128	Setto	159	7	9	160	1	1	20.0	
129Gusci	o fond.	162	170	142	169	1	1	30.0	0.58
0.58									
130Gusci	o fond.	171	172	213	137	1	1	30.0	0.58
0.58									
131Gusci	o fond.	266	242	262	269	1	1	30.0	0.58
0.58									
132Gusci	o fond.	168	147	152	167	1	1	30.0	0.58
0.58						•	-		
133Gusci	io fond	173	174	265	132	1	1	30.0	0.58
0.58	io ioria.	170	17-7	200	102	•	•	00.0	0.00
134Gusci	in fond	1	4	211	212	1	1	30.0	0.58
0.58	o ioriu.	ı	4	411	212	ı	1	30.0	0.30
135Gusci	io fond	185	106	214	92	1	1	30.0	0.50
	io ioria.	100	186	∠ 14	92	1	ı	30.0	0.58
0.58	io fon-	400	160	100	00	4	4	20.0	0.50
136Gusci	io iond.	188	163	189	82	1	1	30.0	0.58
0.58		77	400	404	70	4	4	00.0	0.50
137Gusci	io tond.	77	190	191	72	1	1	30.0	0.58
0.58		00	400	400	77	4	4	00.0	0.50
138Gusci	io fond.	82	189	190	77	1	1	30.0	0.58

(0.58								
	139Guscio fond. 0.58	62	193	164	194	1	1	30.0	0.58
	140Guscio fond. 0.58	186	187	87	214	1	1	30.0	0.58
	141Guscio fond. 0.58	215	57	195	196	1	1	30.0	0.58
	0.36 142Guscio fond. 0.58	52	215	196	197	1	1	30.0	0.58
	143Guscio fond.	170	171	137	142	1	1	30.0	0.58
	0.58 144Guscio fond.	264	236	248	270	1	1	30.0	0.58
	0.58 145Guscio fond.	72	191	192	67	1	1	30.0	0.58
	0.58 146Guscio fond.	267	232	52	268	1	1	30.0	0.58
	0.58 147Guscio fond.	42	47	199	200	1	1	30.0	0.58
	0.58 148Guscio fond.	37	42	200	201	1	1	30.0	0.58
	0.58 149Guscio fond.	32	37	202	203	1	1	30.0	0.58
	0.58 150Guscio fond.	27	32	203	204	1	1	30.0	0.58
	0.58 151Guscio fond.	22	27	205	206	1	1	30.0	0.58
	0.58 152Guscio fond.	226	227	27	22	1	1	30.0	0.58
	0.58 153Guscio fond.	17	22	206	207	1	1	30.0	0.58
	0.58 154Guscio fond.	176	177	117	122	1	1	30.0	0.58
	0.58 155Guscio fond.	269	262	250	263	1	1	30.0	0.58
	0.58 156Guscio fond.	12	17	208	209	1	1	30.0	0.58
	0.58 157Guscio fond.	242	241	261	262	1	1	30.0	0.58
	0.58 158Guscio fond.	216	12	209	210	1	1	30.0	0.58
	0.58 159Guscio fond.	172	173	132	213	1	1	30.0	0.58
	0.58 160Guscio fond.	221	244	245	222	1	1	30.0	0.58
	0.58 161Guscio fond.	4	216	210	211	1	1	30.0	0.58
	0.58 162Guscio fond.	165	1	212	161	1	1	30.0	0.58
	0.58 163Guscio fond.	167	152	157	166	1	1	30.0	0.58
	0.58 164Guscio fond.	175	176	122	127	1	1	30.0	0.58
	0.58 165Guscio fond. 0.58	260	259	252	251	1	1	30.0	0.58
	0.56 166Guscio fond. 0.58	228	229	37	32	1	1	30.0	0.58
	167Guscio fond. 0.58	258	256	254	253	1	1	30.0	0.58
	168Guscio fond. 0.58	179	180	107	112	1	1	30.0	0.58
	169Guscio fond. 0.58	259	258	253	252	1	1	30.0	0.58
	170Guscio fond. 0.58	230	231	47	42	1	1	30.0	0.58
	0.36 171Guscio fond. 0.58	97	92	236	235	1	1	30.0	0.58
	0.56 172Guscio fond. 0.58	182	183	97	102	1	1	30.0	0.58
	0.56 173Guscio fond. 0.58	257	264	270	255	1	1	30.0	0.58
	0.56 174Guscio fond. 0.58	57	62	194	195	1	1	30.0	0.58
	0.56 175Guscio fond. 0.58	67	192	193	62	1	1	30.0	0.58
	0.56 176Guscio fond. 0.58	246	219	218	233	1	1	30.0	0.58
,	0.00								

177Guscio fond. 0.58	184	185	92	97	1	1	30.0	0.58
178Guscio fond. 0.58	270	248	232	267	1	1	30.0	0.58
179Guscio fond. 0.58	219	72	67	218	1	1	30.0	0.58
180Guscio fond.	187	188	82	87	1	1	30.0	0.58
0.58 181Guscio fond.	220	77	72	219	1	1	30.0	0.58
0.58 182Guscio fond.	87	82	77	220	1	1	30.0	0.58
0.58 183Guscio fond.	229	230	42	37	1	1	30.0	0.58
0.58 184Guscio fond.	181	182	102	107	1	1	30.0	0.58
0.58 185Guscio fond.	227	228	32	27	1	1	30.0	0.58
0.58 186Guscio fond.	178	179	112	117	1	1	30.0	0.58
0.58 187Guscio fond.	224	226	22	17	1	1	30.0	0.58
0.58 188Guscio fond.	225	224	17	12	1	1	30.0	0.58
0.58 189Guscio fond.	223	225	12	216	1	1	30.0	0.58
0.58 190Guscio fond.	222	245	223	217	1	1	30.0	0.58
0.58 191Guscio fond.	152	222	217	157	1	1	30.0	0.58
0.58 192Guscio fond.	142	137	221	147	1	1	30.0	0.58
0.58 193Guscio fond.	169	142	147	168	1	1	30.0	0.58
0.58								
194Guscio fond. 0.58	213	132	243	244	1	1	30.0	0.58
195Guscio fond. 0.58	166	157	1	165	1	1	30.0	0.58
196Guscio fond. 0.58	137	213	244	221	1	1	30.0	0.58
197Guscio fond. 0.58	147	221	222	152	1	1	30.0	0.58
198Guscio fond. 0.58	233	218	57	215	1	1	30.0	0.58
199Guscio fond. 0.58	157	217	4	1	1	1	30.0	0.58
200Guscio fond. 0.58	218	67	62	57	1	1	30.0	0.58
201Guscio fond. 0.58	214	87	220	234	1	1	30.0	0.58
202Guscio fond. 0.58	234	220	219	246	1	1	30.0	0.58
203Guscio fond. 0.58	217	223	216	4	1	1	30.0	0.58
204Guscio fond. 0.58	122	117	240	241	1	1	30.0	0.58
205Guscio fond. 0.58	241	240	260	261	1	1	30.0	0.58
206Guscio fond. 0.58	127	122	241	242	1	1	30.0	0.58
207Guscio fond.	117	112	239	240	1	1	30.0	0.58
0.58 208Guscio fond.	112	107	238	239	1	1	30.0	0.58
0.58 209Guscio fond.	107	102	237	238	1	1	30.0	0.58
0.58 210Guscio fond.	102	97	235	237	1	1	30.0	0.58
0.58 211Guscio fond.	232	233	215	52	1	1	30.0	0.58
0.58 212Guscio fond.	92	214	234	236	1	1	30.0	0.58
0.58 213Guscio fond.	236	234	246	248	1	1	30.0	0.58
0.58 214Guscio fond.	253	254	230	229	1	1	30.0	0.58
0.58 215Guscio fond.	248	246	233	232	1	1	30.0	0.58
								1

0.50									
0.58 216Guscio	fond.	252	253	229	228	1	1	30.0	0.58
0.58 217Guscio 0.58	fond.	251	252	228	227	1	1	30.0	0.58
0.56 218Guscio 0.58	fond.	249	251	227	226	1	1	30.0	0.58
0.56 219Guscio 0.58	fond.	250	249	226	224	1	1	30.0	0.58
220Guscio	fond.	245	247	225	223	1	1	30.0	0.58
0.58 221Guscio 0.58	fond.	244	243	247	245	1	1	30.0	0.58
0.56 222Guscio 0.58	fond.	256	257	255	254	1	1	30.0	0.58
0.56 223Guscio 0.58	fond.	261	260	251	249	1	1	30.0	0.58
0.56 224Guscio 0.58	fond.	262	261	249	250	1	1	30.0	0.58
225Guscio	fond.	254	255	231	230	1	1	30.0	0.58
0.58 226Guscio 0.58	fond.	237	235	257	256	1	1	30.0	0.58
0.56 227Guscio 0.58	fond.	240	239	259	260	1	1	30.0	0.58
0.56 228Guscio 0.58	fond.	263	250	224	225	1	1	30.0	0.58
0.56 229Guscio 0.58	fond.	243	266	269	247	1	1	30.0	0.58
0.56 230Guscio 0.58	fond.	239	238	258	259	1	1	30.0	0.58
0.56 231Guscio 0.58	fond.	238	237	256	258	1	1	30.0	0.58
0.56 232Guscio 0.58	fond.	268	52	197	198	1	1	30.0	0.58
0.56 233Guscio 0.58	fond.	47	268	198	199	1	1	30.0	0.58
0.56 234Guscio 0.58	fond.	235	236	264	257	1	1	30.0	0.58
0.56 235Guscio 0.58	fond.	247	269	263	225	1	1	30.0	0.58
0.56 236Guscio 0.58	fond.	174	175	127	265	1	1	30.0	0.58
0.56 237Guscio 0.58	fond.	265	127	242	266	1	1	30.0	0.58
0.56 238Guscio 0.58	fond.	255	270	267	231	1	1	30.0	0.58
239Guscio 0.58	fond.	132	265	266	243	1	1	30.0	0.58
240Guscio 0.58	fond.	231	267	268	47	1	1	30.0	0.58
241Guscio 0.58	fond.	183	184	97		1	1	30.0	0.58
242Guscio 0.58	fond.	202	37	201		1	1	30.0	0.58
243Guscio 0.58	fond.	180	181	107		1	1	30.0	0.58
244Guscio 0.58	fond.	205	27	204		1	1	30.0	0.58
245Guscio 0.58	fond.	177	178	117		1	1	30.0	0.58
246Guscio 0.58	fond.	208	17	207		1	1	30.0	0.58
247	Setto Setto	268 265	51 126	52 127		1	1 1	20.0 20.0	
						-	•		

MODELLAZIONE DELLA STRUTTURA: ELEMENTI SOLAIO-PANNELLO

LEGENDA TABELLA DATI SOLAI-PANNELLI

Il programma utilizza per la modellazione elementi a tre o più nodi denominati in generale solaio o pannello. Ogni elemento solaio-pannello è individuato da una poligonale di nodi 1,2, ..., N.

L'elemento solaio è utilizzato in primo luogo per la modellazione dei carichi agenti sugli elementi strutturali. In secondo luogo, può essere utilizzato per la corretta ripartizione delle forze orizzontali agenti nel proprio piano. L'elemento balcone è derivato dall'elemento solaio.

I carichi agenti sugli elementi solaio, raccolti in un archivio, sono direttamente assegnati agli elementi utilizzando le informazioni raccolte nell' archivio (es. i coefficienti combinatori). La tabella seguente riporta i dati utilizzati per la definizione dei carichi e delle masse.

L'elemento pannello è utilizzato solo per l'applicazione dei carichi, quali pesi delle tamponature o spinte dovute al vento o terre. In questo caso i carichi sono applicati in analogia agli altri elementi strutturali (si veda il cap. SCHEMATIZZAZIONE DEI CASI DI CARICO).

ld.Arch.	Identificativo dell'archivio			
Tipo	o Tipo di carico			
-	Variab. Carico variabile generico			
	Var. rid. Carico variabile generico con riduzione in funzione dell'area (c.5.5)			
	Neve Carico di neve			
G1k	carico permanente (comprensivo del peso proprio)			
G2k	carico permanente non strutturale e non compiutamente definito			
Qk	carico variabile			
Fatt. A	fattore di riduzione del carico variabile (0.5 o 0.75) per tipo "Var.rid."			
S sis.	fattore di riduzione del carico variabile per la definizione delle masse sismiche per D.M.			
	96 (vedi NOTA sul capitolo "normativa di riferimento")			
Psi 0	Coefficiente combinatorio dei valori caratteristici delle azioni variabili: per valore raro			
Psi 1	Coefficiente combinatorio dei valori caratteristici delle azioni variabili: per valore			
	frequente			
Psi 2	Coefficiente combinatorio dei valori caratteristici delle azioni variabili: per valore quasi			
	permanente			
Psi S 2	Coefficiente di combinazione che fornisce il valore quasi-permanente dell'azione			
	variabile: per la definizione delle masse sismiche			
Fatt. Fi	Coefficiente di correlazione dei carichi per edifici			

Ogni elemento è caratterizzato da un insieme di proprietà riportate in tabella che ne completano la modellazione. In particolare per ogni elemento viene indicato in tabella:

Elem	numero dell'e	numero dell'elemento		
Tipo	nportamento			
	S	elemento utilizzato solo per scarico		
	c elemento utilizzato per scarico e per modella			
	P	elemento utilizzato come pannello		
	М	scarico monodirezionale		
	В	scarico bidirezionale		
ld.Arch.	Identificativo	dell' archivio		
Mat	codice del ma	ateriale assegnato all'elemento		
Spessore	spessore dell'elemento (costante)			
Orditura	angolo (rispe	tto all'asse X) della direzione dei travetti principali		

Gk	carico permanente solaio (comprensivo del peso proprio)			
Qk	carico variabile solaio			
Nodi	numero dei nodi che definiscono l'elemento (5 per riga)			

Nel caso in cui si sia proceduto alla progettazione dei solai con le tensioni ammissibili vengono riportate le massime tensioni nell'elemento (massima compressione nel calcestruzzo, massima tensione nell'acciaio, massima tensione tangenziale); nel caso in cui si sia proceduto alla progettazione con il metodo degli stati limite vengono riportati il rapporto x/d e le verifiche per sollecitazioni proporzionali nonché le verifiche in esercizio.

In particolare i simboli utilizzati in tabella assumono il seguente significato:

Elem.	numero identificativo dell'elemento					
Stato	Codici di verifica relativi alle tensioni normali e alle tensioni tangenziali					
Note	Viene riportato il codice relativo alla sezione(s) e relativo al materiale(m);					
Pos.	Ascissa del punto di verifica					
F ist, F infi	Frecce instantanee e a tempo infinito					
Momento	Momento flettente					
Taglio	Sollecitazione di taglio					
Af inf.	Area di armatura longitudinale posta all'intradosso della trave					
Af sup.	Area di armatura longitudinale posta all'estradosso della trave					
AfV	Area dell'armatura atta ad assorbire le azioni di taglio					
Beff	Base della sezione di cls per l'assorbimento del taglio					
	simboli utilizzati con il metodo delle tensioni ammissibili:					
sc max	Massima tensione di compressione del calcestruzzo					
sf max	Massima tensione nell'acciaio					
tau max	Massima tensione tangenziale nel cls					
	simboli utilizzati con il metodo degli stati limite:					
x/d	rapporto tra posizione dell'asse neutro e altezza utile alla rottura della sezione					
	(per sola flessione)					
verif. rapporto Sd/Su con sollecitazioni ultime proporzionali:						
	valore minore o uguale a 1 per verifica positiva					
Verif.V	rapporto Sd/Su con sollecitazioni taglianti proporzionali					
	valore minore o uguale a 1 per verifica positiva					
rRfck	rapporto tra la massima compressione nel calcestruzzo e la tensione fck in					
	combinazioni rare [normalizzato a 1]					
rFfck	rapporto tra la massima compressione nel calcestruzzo e la tensione fck in					
	combinazioni frequenti [normalizzato a 1]					
rPfck	rapporto tra la massima compressione nel calcestruzzo e la tensione fck in					
	combinazioni quasi permanenti [normalizzato a 1]					
rRfyk	rapporto tra la massima tensione nell'acciaio e la tensione fyk in combinazioni frequenti					
	[normalizzato a 1]					
rFyk	rapporto tra la massima tensione nell'acciaio e la tensione fyk in combinazioni rare					
D	[normalizzato a 1]					
rPfyk	rapporto tra la massima tensione nell'acciaio e la tensione fyk in combinazioni quasi					
	permanenti [normalizzato a 1]					
wR	apertura caratteristica delle fessure in combinazioni rare [mm]					
wF	apertura caratteristica delle fessure in combinazioni frequenti [mm]					
wP	apertura caratteristica delle fessure in combinazioni quasi permanenti [mm]					

Nel caso in cui si sia proceduto alla verifica delle tamponature secondo il D.M. 17.01.2018 - §7.2.3 viene riportata una tabella riassuntiva delle verifiche degli elementi pannello. La verifica confronta i momenti

sollecitanti indotti dal sisma con i momenti resistenti, secondo tre ipotesi, due basate sulla resistenza a pressoflessione della tamponatura ed una basata sul cinematismo a seguito della formazione di tre cerniere plastiche sulla tamponatura (rif. Ufficio di Vigilanza sulle Costruzioni, Provincia di Terni).

Qualora la tamponatura sia di tipo antiespulsione (nelle due possibili varianti ordinaria o armata) viene condotta una verifica con meccanismo ad arco con degrado di resistenza. La verifica confronta le pressioni sollecitanti indotte dal sisma con le pressioni resistenti che la tamponatura sviluppa attraverso il meccanismo ad arco. La verifica considera anche il degrado di resistenza dovuto al danneggiamento nel piano della tamponatura.

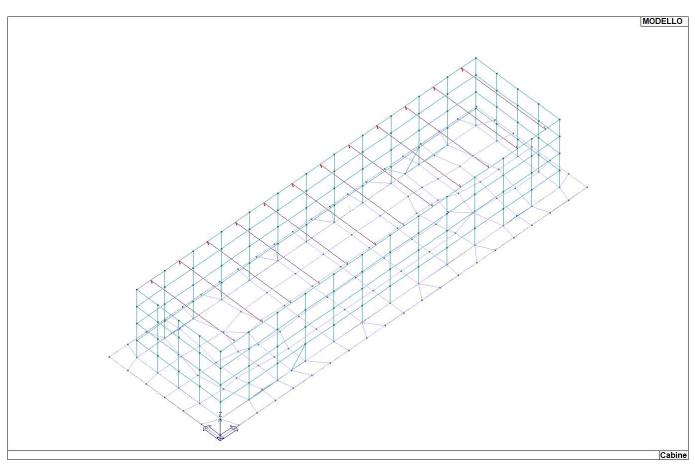
Per quest'ultima tamponatura sono disponibili, in funzione del materiale impiegato (materiale [52] o materiale [53]):

- Tamponatura Antiespulsione ordinaria Poroton[®] Cis Edil sp.30 cm; con metodo di verifica per meccanismo ad arco con degrado di resistenza, sviluppato attraverso i risultati di un progetto di ricerca sperimentale condotto dall'Università degli Studi di Padova.

 Utilizzabile per il materiale [52].
- Tamponatura Antiespulsione armata Poroton® Cis Edil sp.30 cm; con metodo di verifica per meccanismo ad arco con degrado di resistenza, sviluppato attraverso i risultati di un progetto di ricerca sperimentale condotto dall'Università degli Studi di Padova.

 Utilizzabile per il materiale [53].

La verifica è stata calibrata sulla base di prove sperimentali sul sistema di Tamponatura Antiespulsione anche in presenza di aperture.

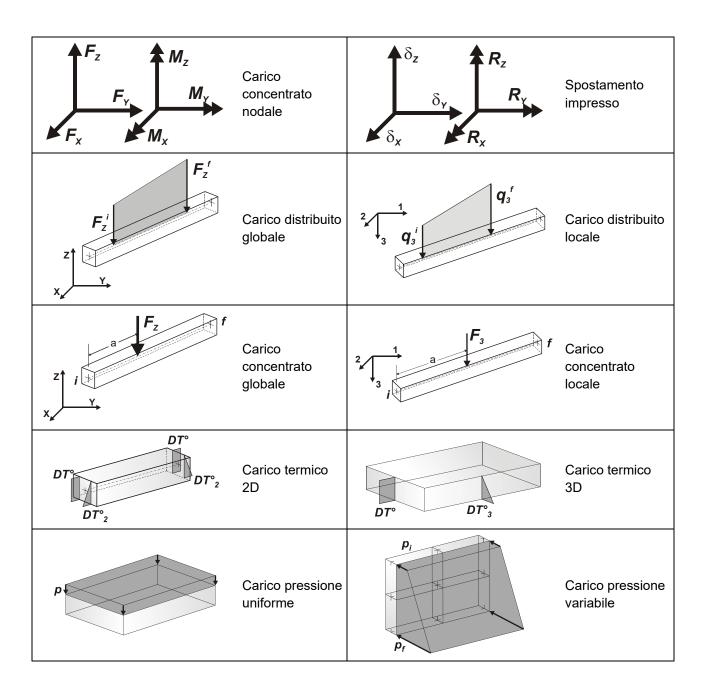

(rif. Rapporti di Prova redatti dal Dipartimento ICEA - Università degli Studi di Padova di test sperimentali condotti sul sistema Tamponatura Antiespulsione di Cis Edil)

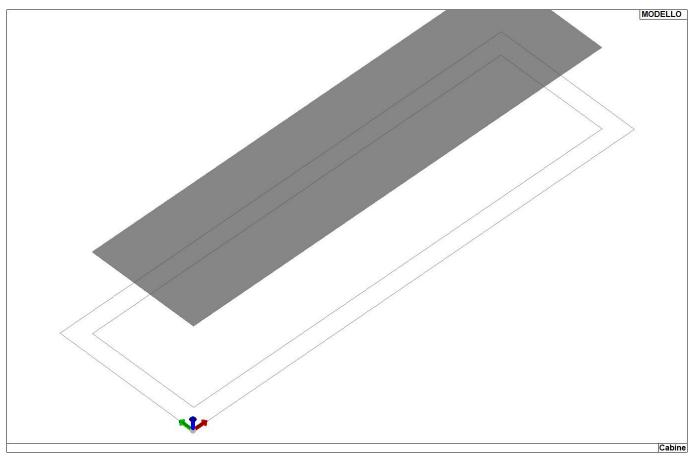
In particolare i simboli utilizzati in tabella assumono il seguente significato:

•						
Elem.	Numero identificativo dell'elemento					
Stato	Codice di verifica					
Ver. c.c.	Verifica nell'ipotesi di trave appoggiata con carico concentrato in mezzeria					
Ver. c.d.	Verifica nell'ipotesi di trave appoggiata con carico distribuito					
Ver. c.cin.	Verifica nell'ipotesi di cinematismo con formazione di cerniere plastiche in appoggio e					
	mezzeria					
Ver. CIS	Rapporto pa/pr (valore minore o uguale a 1 per verifica positiva)					
Z	Quota del baricentro dell'elemento					
T1	Periodo proprio dell'edificio nella direzione di interesse (ortogonale al pannello)					
Та	Periodo proprio della parete					
Sa	Accelerazione massima, adimensionalizzata allo SLV					
ра	Pressione sulla parete causata dall'azione sismica					
pr	Pressione resistente del meccanismo ad arco					
Drift	Spostamento relativo interpiano allo SLV valutato secondo il D.M. 14.01.2018 - §					
	7.3.3.3					
Beta a	Coef. riduttivo per tener conto del danneggiamento del piano dipendente dallo					
	spostamento, ottenuto sperimentalmente					

ID Arch. Fatt. Fi	Tipo	G	1k	G2k		Qk Fa	att. A	s sis.	Psi 0	Psi 1	Psi 2	Psi S 2	
1 1.00	Variab.	daN/cm2 4.50e-02		daN/cm2 1.00e-02	daN/c 2.00e				1.00 0.70		0.30	0.30	
Elem. Nodo	Tipo ID A	rch. I	Mat.	SpessoreC	Orditura	G1k	G2k	Qk	Nodo 1/6	Nodo 2/7 N	Nodo 3/8	Nodo	
						daN/cm2	daN/cm2	daN/cm2					
1 120	SM	1 1	n=1	1.0	90.0	4.50e-02	1.00e-02	2.00e-02	140	135	130	125	
,20									115 90	110 85	105 80	100 95 75 70	

155 65 60 55 50 45 40 35 30 25 20 15 10 9 160


17_MOD_NUMERAZIONE_SOLAI


MODELLAZIONE DELLE AZIONI

LEGENDA TABELLA DATI AZIONI

Il programma consente l'uso di diverse tipologie di carico (azioni). Le azioni utilizzate nella modellazione sono individuate da una sigla identificativa ed un codice numerico (gli elementi strutturali richiamano quest'ultimo nella propria descrizione). Per ogni azione applicata alla struttura viene di riportato il codice, il tipo e la sigla identificativa. Le tabelle successive dettagliano i valori caratteristici di ogni azione in relazione al tipo. Le tabelle riportano infatti i seguenti dati in relazione al tipo:

1	carico concentrato nodale					
•	6 dati (forza Fx, Fy, Fz, momento Mx, My, Mz)					
2	spostamento nodale impresso					
_	6 dati (spostamento Tx,Ty,Tz, rotazione Rx,Ry,Rz)					
3	carico distribuito globale su elemento tipo trave					
3	· ·					
	7 dati (fx,fy,fz,mx,my,mz,ascissa di inizio carico)					
	7 dati (fx,fy,fz,mx,my,mz,ascissa di fine carico)					
4	carico distribuito locale su elemento tipo trave					
	7 dati (f1,f2,f3,m1,m2,m3,ascissa di inizio carico)					
	7 dati (f1,f2,f3,m1,m2,m3,ascissa di fine carico)					
5	carico concentrato globale su elemento tipo trave					
	7 dati (Fx,Fy,Fz,Mx,My,Mz,ascissa di carico)					
6	carico concentrato locale su elemento tipo trave					
	7 dati (F1, F2, F3, M1, M2, M3, ascissa di carico)					
7	variazione termica applicata ad elemento tipo trave					
	7 dati (variazioni termiche: uniforme, media e differenza in altezza e larghezza al nodo					
	iniziale e finale)					
8	carico di pressione uniforme su elemento tipo piastra					
	1 dato (pressione)					
9	carico di pressione variabile su elemento tipo piastra					
	4 dati (pressione, quota, pressione, quota)					
10	variazione termica applicata ad elemento tipo piastra					
	2 dati (variazioni termiche: media e differenza nello spessore)					
11	carico variabile generale su elementi tipo trave e piastra					
	1 dato descrizione della tipologia					
	4 dati per segmento (posizione, valore, posizione, valore)					
	la tipologia precisa l'ascissa di definizione, la direzione del carico, la modalità di carico					
	e la larghezza d'influenza per gli elementi tipo trave					
12	gruppo di carichi con impronta su piastra					
	9 dati (numero di ripetizioni in direzione X e Y, valore di ciascun carico, posizione					
	centrale del primo, dimensioni dell'impronta, interasse tra i carichi					
<u> </u>	The second secon					

21_CAR_CARICHI_SOLAI

SCHEMATIZZAZIONE DEI CASI DI CARICO

LEGENDA TABELLA CASI DI CARICO

Il programma consente l'applicazione di diverse tipologie di casi di carico.

Sono previsti i seguenti 11 tipi di casi di carico:

	Sigla	Tipo	Descrizione
1	Ggk	Α	caso di carico comprensivo del peso proprio struttura
2	Gk	NA	caso di carico con azioni permanenti
3	Qk	NA	caso di carico con azioni variabili
4	Gsk	Α	caso di carico comprensivo dei carichi permanenti sui solai e sulle coperture
5	Qsk	Α	caso di carico comprensivo dei carichi variabili sui solai
6	Qnk	Α	caso di carico comprensivo dei carichi di neve sulle coperture
7	Qtk	SA	caso di carico comprensivo di una variazione termica agente sulla struttura
8	Qvk	NA	caso di carico comprensivo di azioni da vento sulla struttura
9	Esk	SA	caso di carico sismico con analisi statica equivalente
10	Edk	SA	caso di carico sismico con analisi dinamica
11	Etk	NA	caso di carico comprensivo di azioni derivanti dall' incremento di spinta delle terre
			in condizione sismica
12	Pk	NA	caso di carico comprensivo di azioni derivanti da coazioni, cedimenti e
			precompressioni

Sono di <u>tipo automatico A</u> (ossia non prevedono introduzione dati da parte dell'utente) i seguenti casi di carico: 1-Ggk; 4-Gsk; 5-Qsk; 6-Qnk.

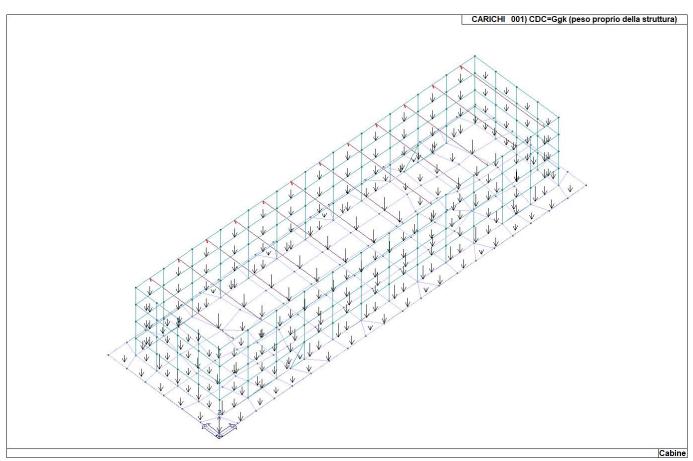
Sono di <u>tipo semi-automatico SA</u> (ossia prevedono una minima introduzione dati da parte dell'utente) i seguenti casi di carico:

7-Qtk, in quanto richiede solo il valore della variazione termica;

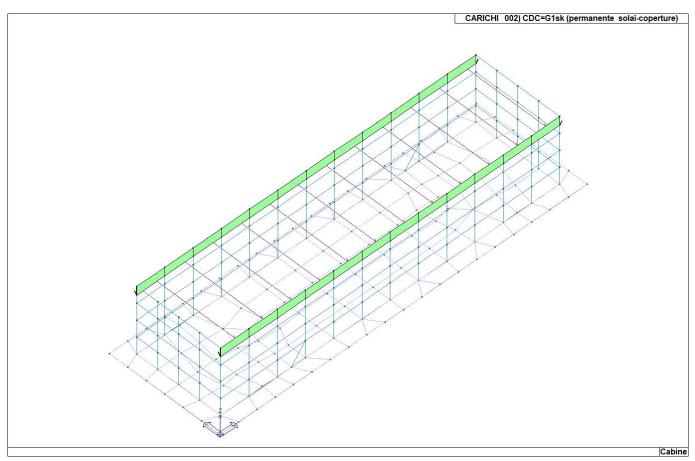
9-Esk e 10-Edk, in quanto richiedono il valore dell'angolo di ingresso del sisma e l'individuazione dei casi di carico partecipanti alla definizione delle masse.

Sono di tipo <u>non automatico NA</u> ossia prevedono la diretta applicazione di carichi generici agli elementi strutturali (si veda il precedente punto Modellazione delle Azioni) i restanti casi di carico.

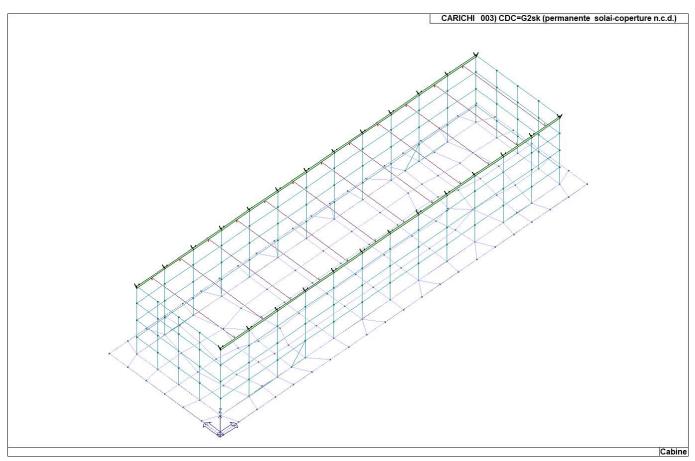
Nella tabella successiva vengono riportati i casi di carico agenti sulla struttura, con l'indicazione dei dati relativi al caso di carico stesso:

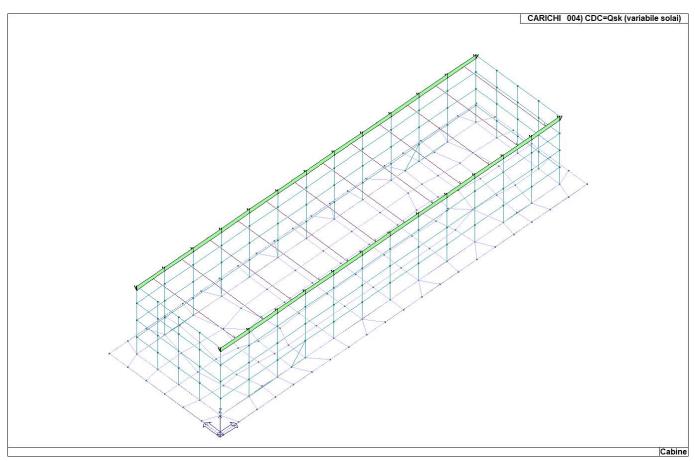

Numero Tipo e Sigla identificativa, Valore di riferimento del caso di carico (se previsto).

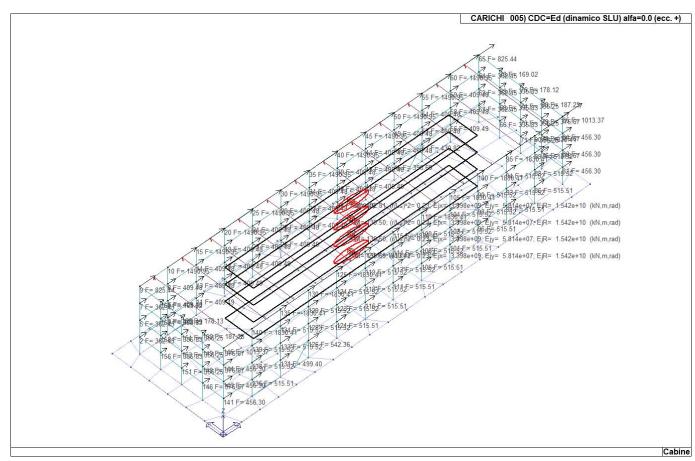
In successione, per i casi di carico non automatici, viene riportato l'elenco di nodi ed elementi direttamente caricati con la sigla identificativa del carico.

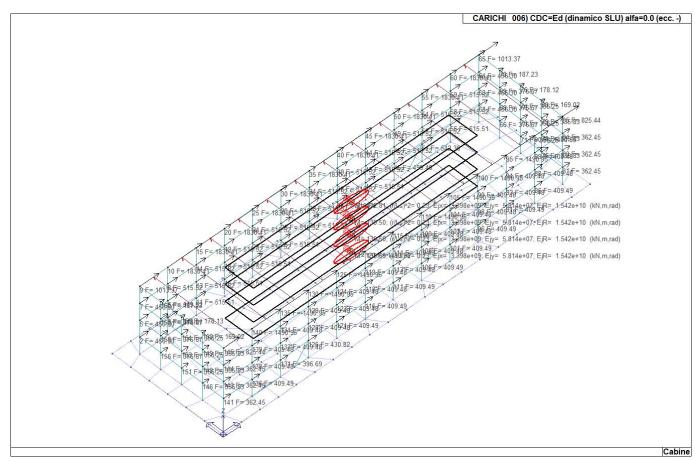

Per i casi di carico di tipo sismico (9-Esk e 10-Edk), viene riportata la tabella di definizione delle masse: per ogni caso di carico partecipante alla definizione delle masse viene indicata la relativa aliquota (partecipazione) considerata. Si precisa che per i caso di carico 5-Qsk e 6-Qnk la partecipazione è prevista localmente per ogni elemento solaio o copertura presente nel modello (si confronti il valore Sksol nel capitolo relativo agli elementi solaio) e pertanto la loro partecipazione è di norma pari a uno.

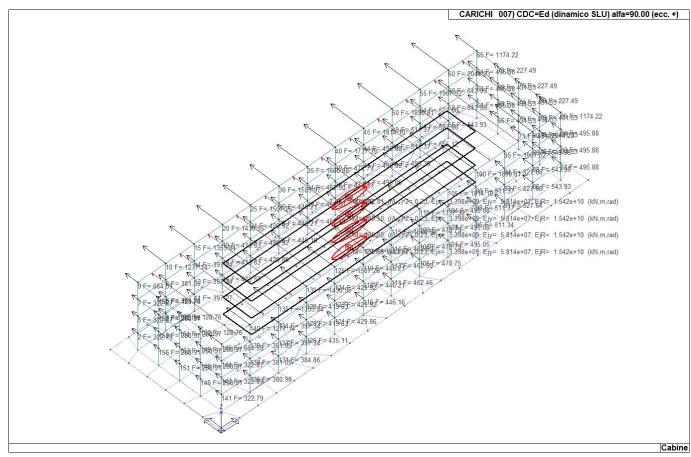
CDC	Tipo	Sigla Id	Note
1	Ggk	CDC=Ggk (peso proprio della struttura)	
2	Gsk	CDC=G1sk (permanente solai-coperture)	
3	Gsk	CDC=G2sk (permanente solai-coperture n.c.d.)	
4	Qsk	CDC=Qsk (variabile solai)	
5	Edk	CDC=Ed (dinamico SLU) alfa=0.0 (ecc. +)	partecipazione:1.00 per 1 CDC=Ggk (peso proprio della struttura)
			partecipazione:1.00 per 2 CDC=G1sk (permanente solai-coperture)

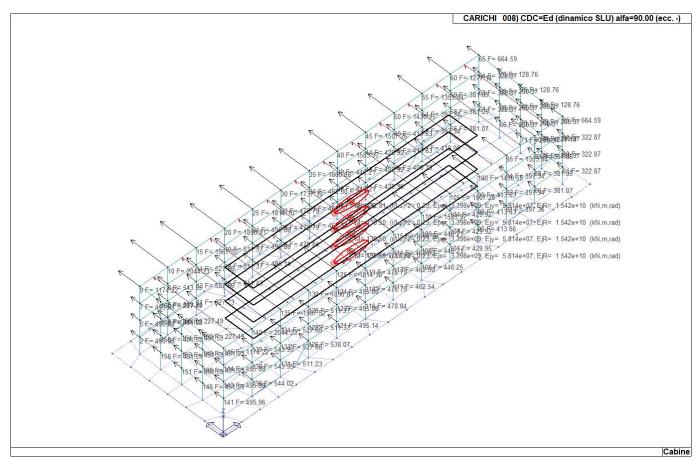

CDC	Tipo	Sigla Id	Note
			partecipazione:1.00 per 3 CDC=G2sk (permanente solai-coperture n.c.d.)
			partecipazione:1.00 per 4 CDC=Qsk (variabile solai)
6	Edk	CDC=Ed (dinamico SLU) alfa=0.0 (ecc)	come precedente CDC sismico
7	Edk	CDC=Ed (dinamico SLU) alfa=90.00 (ecc. +)	come precedente CDC sismico
8	Edk	CDC=Ed (dinamico SLU) alfa=90.00 (ecc)	come precedente CDC sismico
9	Edk	CDC=Ed (dinamico SLD) alfa=0.0 (ecc. +)	come precedente CDC sismico
10	Edk	CDC=Ed (dinamico SLD) alfa=0.0 (ecc)	come precedente CDC sismico
11	Edk	CDC=Ed (dinamico SLD) alfa=90.00 (ecc. +)	come precedente CDC sismico
12	Edk	CDC=Ed (dinamico SLD) alfa=90.00 (ecc)	come precedente CDC sismico

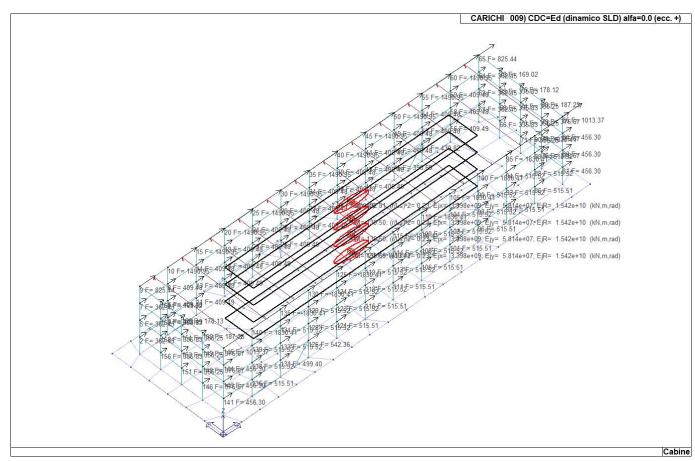

22_CDC_001_CDC=Ggk (peso proprio della struttura)

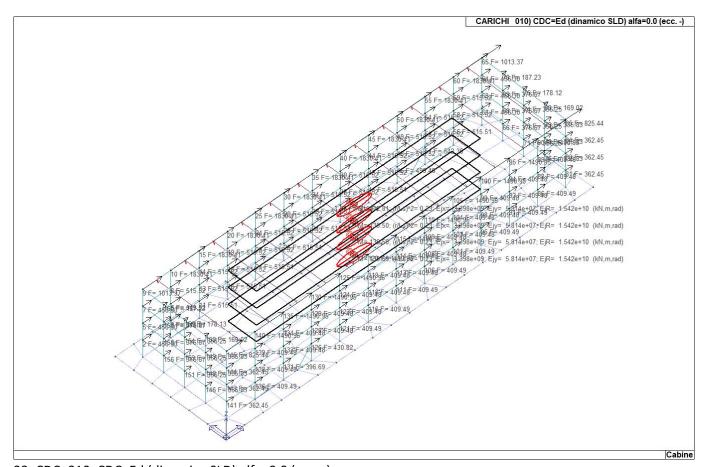

22_CDC_002_CDC=G1sk (permanente solai-coperture)

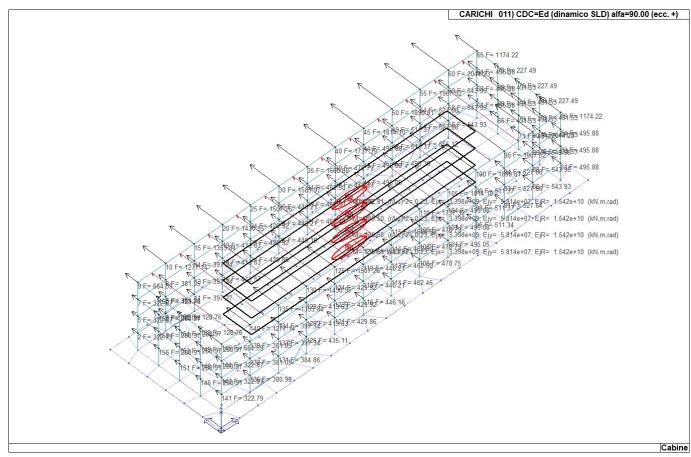

22_CDC_003_CDC=G2sk (permanente solai-coperture n.c.d.)

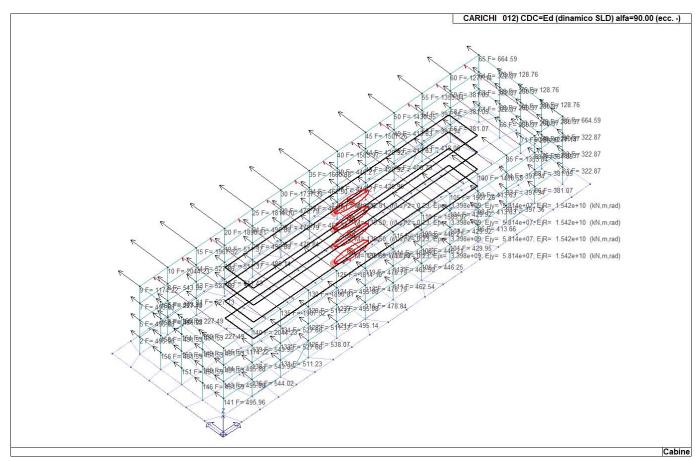

22_CDC_004_CDC=Qsk (variabile solai)


22_CDC_005_CDC=Ed (dinamico SLU) alfa=0.0 (ecc. +)


22_CDC_006_CDC=Ed (dinamico SLU) alfa=0.0 (ecc. -)


22_CDC_007_CDC=Ed (dinamico SLU) alfa=90.00 (ecc. +)


22_CDC_008_CDC=Ed (dinamico SLU) alfa=90.00 (ecc. -)


22_CDC_009_CDC=Ed (dinamico SLD) alfa=0.0 (ecc. +)

22_CDC_010_CDC=Ed (dinamico SLD) alfa=0.0 (ecc. -)

22_CDC_011_CDC=Ed (dinamico SLD) alfa=90.00 (ecc. +)

22_CDC_012_CDC=Ed (dinamico SLD) alfa=90.00 (ecc. -)

DEFINIZIONE DELLE COMBINAZIONI

LEGENDA TABELLA COMBINAZIONI DI CARICO

Il programma combina i diversi tipi di casi di carico (CDC) secondo le regole previste dalla normativa vigente. Le combinazioni previste sono destinate al controllo di sicurezza della struttura ed alla verifica degli spostamenti e delle sollecitazioni.

La prima tabella delle combinazioni riportata di seguito comprende le seguenti informazioni: Numero, Tipo, Sigla identificativa. Una seconda tabella riporta il peso nella combinazione assunto per ogni caso di carico.

Ai fini delle verifiche degli stati limite si definiscono le seguenti combinazioni delle azioni:

Combinazione fondamentale SLU

$$\gamma G1 \cdot G1 + \gamma G2 \cdot G2 + \gamma P \cdot P + \gamma Q1 \cdot Qk1 + \gamma Q2 \cdot \psi 02 \cdot Qk2 + \gamma Q3 \cdot \psi 03 \cdot Qk3 + \dots$$

Combinazione caratteristica (rara) SLE

$$G1 + G2 + P + Qk1 + \psi 02 \cdot Qk2 + \psi 03 \cdot Qk3 + ...$$

Combinazione frequente SLE

$$G1 + G2 + P + \psi 11.Qk1 + \psi 22.Qk2 + \psi 23.Qk3 + ...$$

Combinazione quasi permanente SLE

$$G1 + G2 + P + \psi_{21}Qk_1 + \psi_{22}Qk_2 + \psi_{23}Qk_3 + \dots$$

Combinazione sismica, impiegata per gli stati limite ultimi e di esercizio connessi all'azione sismica $E + G1 + G2 + P + \psi 21 \cdot Qk1 + \psi 22 \cdot Qk2 + ...$

Combinazione eccezionale, impiegata per gli stati limite connessi alle azioni eccezionali

$$G1 + G2 + Ad + P + \psi 21 \cdot Qk1 + \psi 22 \cdot Qk2 + ...$$

Dove:

NTC 2018 Tabella 2.5.I

Destinazione d'uso/azione	ψ0	ψ1	ψ2
Categoria A residenziali	0,70	0,50	0,30
Categoria B uffici	0,70	0,50	0,30
Categoria C ambienti suscettibili di affollamento	0,70	0,70	0,60
Categoria D ambienti ad uso commerciale	0,70	0,70	0,60
Categoria E biblioteche, archivi, magazzini,	1,00	0,90	0,80
Categoria F Rimesse e parcheggi (autoveicoli <= 30kN)	0,70	0,70	0,60
Categoria G Rimesse e parcheggi (autoveicoli > 30kN)	0,70	0,50	0,30
Categoria H Coperture	0,00	0,00	0,00
Vento	0,60	0,20	0,00
Neve a quota <= 1000 m	0,50	0,20	0,00
Neve a quota > 1000 m	0,70	0,50	0,20
Variazioni Termiche	0,60	0,50	0,00

Nelle verifiche possono essere adottati in alternativa due diversi approcci progettuali:

- per l'approccio 1 si considerano due diverse combinazioni di gruppi di coefficienti di sicurezza parziali per le azioni, per i materiali e per la resistenza globale (combinazione 1 con coefficienti A1 e combinazione 2 con coefficienti A2),
- per l'approccio 2 si definisce un'unica combinazione per le azioni, per la resistenza dei materiali e per la resistenza globale (con coefficienti A1).

NTC 2018 Ta				
	Coefficiente	EQU	A1	A2

		γf			
Carichi permanenti	Favorevoli	γG1	0,9	1,0	1,0
	Sfavorevoli		1,1	1,3	1,0
Carichi permanenti	Favorevoli	γG2	0,8	0,8	0,8
non strutturali	Sfavorevoli		1,5	1,5	1,3
(Non compiutamente definiti)					
Carichi variabili	Favorevoli	γQi	0,0	0,0	0,0
	Sfavorevoli		1,5	1,5	1,3

Cmb	Tipo	Sigla Id	effetto P-delta
1	SLU	Comb. SLU A1 1	
2	SLU	Comb. SLU A1 2	
3	SLU	Comb. SLU A1 3	
4	SLU	Comb. SLU A1 4	
5	SLU	Comb. SLU A1 (SLV sism.) 5	
6	SLU	Comb. SLU A1 (SLV sism.) 6	
7	SLU	Comb. SLU A1 (SLV sism.) 7	
8	SLU	Comb. SLU A1 (SLV sism.) 8	
9	SLU	Comb. SLU A1 (SLV sism.) 9	
10	SLU	Comb. SLU A1 (SLV sism.) 10	
11	SLU	Comb. SLU A1 (SLV sism.) 11	
12	SLU	Comb. SLU A1 (SLV sism.) 12	
13	SLU	Comb. SLU A1 (SLV sism.) 13	
14	SLU	Comb. SLU A1 (SLV sism.) 14	
15	SLU	Comb. SLU A1 (SLV sism.) 15	
16	SLU	Comb. SLU A1 (SLV sism.) 16	1
17	SLU	Comb. SLU A1 (SLV sism.) 17	1
18	SLU	Comb. SLU A1 (SLV sism.) 18	1
19	SLU	Comb. SLU A1 (SLV sism.) 19	
20	SLU	Comb. SLU A1 (SLV sism.) 20	+
21	SLU	Comb. SLU A1 (SLV sism.) 21	+
22	SLU	Comb. SLU A1 (SLV sism.) 22	
23	SLU	Comb. SLU A1 (SLV sism.) 23	
24	SLU	Comb. SLU A1 (SLV sism.) 24	
25	SLU	Comb. SLU A1 (SLV sism.) 25	
26	SLU	Comb. SLU A1 (SLV sism.) 26	
27	SLU	Comb. SLU A1 (SLV sism.) 27	
28	SLU	Comb. SLU A1 (SLV sism.) 28	
29	SLU	Comb. SLU A1 (SLV sism.) 29	
30	SLU	Comb. SLU A1 (SLV sism.) 30	
31	SLU	Comb. SLU A1 (SLV sism.) 31	
32	SLU	Comb. SLU A1 (SLV sism.) 32	
33	SLU	Comb. SLU A1 (SLV sism.) 33	
34	SLU	Comb. SLU A1 (SLV sism.) 34	
35	SLU	Comb. SLU A1 (SLV sism.) 35	
36	SLU		
37	SLD(sis)	Comb. SLU A1 (SLV sism.) 36 Comb. SLE (SLD Danno sism.) 37	
38	SLD(sis)	Comb. SLE (SLD Danno sism.) 38	
39	SLD(sis)	Comb. SLE (SLD Danno sism.) 39	
40	SLD(sis)	Comb. SLE (SLD Danno sism.) 40	
41	SLD(sis)	Comb. SLE (SLD Danno sism.) 41	
42	SLD(sis)	Comb. SLE (SLD Danno sism.) 42	
43 44	SLD(sis) SLD(sis)	Comb. SLE (SLD Danno sism.) 43	+
44 45	SLD(sis)	Comb. SLE (SLD Danno sism.) 44 Comb. SLE (SLD Danno sism.) 45	+
	\ /	Comb. SLE (SLD Danno sism.) 45 Comb. SLE (SLD Danno sism.) 46	+
46 47	SLD(sis)		
47 40	SLD(sis)	Comb. SLE (SLD Danno sism.) 47	
48 40	SLD(sis)	Comb. SLE (SLD Danno sism.) 48	
49 50	SLD(sis)	Comb. SLE (SLD Danno sism.) 49	
50	SLD(sis)	Comb. SLE (SLD Danno sism.) 50	+
51	SLD(sis)	Comb. SLE (SLD Danno sism.) 51	+
52	SLD(sis)	Comb. SLE (SLD Danno sism.) 52	
53	SLD(sis)	Comb. SLE (SLD Danno sism.) 53	
54	SLD(sis)	Comb. SLE (SLD Danno sism.) 54	-
55	SLD(sis)	Comb. SLE (SLD Danno sism.) 55	

Cmb	Tipo	Sigla Id	effetto P-delta
56	SLD(sis)	Comb. SLE (SLD Danno sism.) 56	
57	SLD(sis)	Comb. SLE (SLD Danno sism.) 57	
58	SLD(sis)	Comb. SLE (SLD Danno sism.) 58	
59	SLD(sis)	Comb. SLE (SLD Danno sism.) 59	
60	SLD(sis)	Comb. SLE (SLD Danno sism.) 60	
61	SLD(sis)	Comb. SLE (SLD Danno sism.) 61	
62	SLD(sis)	Comb. SLE (SLD Danno sism.) 62	
63	SLD(sis)	Comb. SLE (SLD Danno sism.) 63	
64	SLD(sis)	Comb. SLE (SLD Danno sism.) 64	
65	SLD(sis)	Comb. SLE (SLD Danno sism.) 65	
66	SLD(sis)	Comb. SLE (SLD Danno sism.) 66	
67	SLD(sis)	Comb. SLE (SLD Danno sism.) 67	
68	SLD(sis)	Comb. SLE (SLD Danno sism.) 68	
69	SLU(acc.)	Comb. SLU (Accid.) 69	
70	SLU(acc.)	Comb. SLU (Accid.) 70	
71	SLE(r)	Comb. SLE(rara) 71	
72	SLE(r)	Comb. SLE(rara) 72	
73	SLE(f)	Comb. SLE(freq.) 73	
74	SLE(f)	Comb. SLE(freq.) 74	
75	SLE(p)	Comb. SLE(perm.) 75	
76	SLE(p)	Comb. SLE(perm.) 76	

Cmb	CDC	CDC	CDC	CDC	CDC	CDC	CDC	CDC	CDC	CDC	CDC	CDC	CDC	CDC
	1/15	2/16	3/17	4/18	5/19	6/20	7/21	8/22	9/23	10/24	11/25	12/26	13/27	14/28
1	1.30	1.30	1.50	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		
2	1.30	1.30	1.50	1.50	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		
3	1.00	1.00	0.80	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		
4	1.00	1.00	0.80	1.50	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		
5	1.00	1.00	1.00	0.30	-1.00	0.0	-0.30	0.0	0.0	0.0	0.0	0.0		
6	1.00	1.00	1.00	0.30	-1.00	0.0	0.30	0.0	0.0	0.0	0.0	0.0		
7	1.00	1.00	1.00	0.30	1.00	0.0	-0.30	0.0	0.0	0.0	0.0	0.0		
8	1.00	1.00	1.00	0.30	1.00	0.0	0.30	0.0	0.0	0.0	0.0	0.0		
9	1.00	1.00	1.00	0.30	-1.00	0.0	0.0	-0.30	0.0	0.0	0.0	0.0		
10	1.00	1.00	1.00	0.30	-1.00	0.0	0.0	0.30	0.0	0.0	0.0	0.0		
11	1.00	1.00	1.00	0.30	1.00	0.0	0.0	-0.30	0.0	0.0	0.0	0.0		
12	1.00	1.00	1.00	0.30	1.00	0.0	0.0	0.30	0.0	0.0	0.0	0.0		
13	1.00	1.00	1.00	0.30	0.0	-1.00	-0.30	0.0	0.0	0.0	0.0	0.0		
14	1.00	1.00	1.00	0.30	0.0	-1.00	0.30	0.0	0.0	0.0	0.0	0.0		
15	1.00	1.00	1.00	0.30	0.0	1.00	-0.30	0.0	0.0	0.0	0.0	0.0		
16	1.00	1.00	1.00	0.30	0.0	1.00	0.30	0.0	0.0	0.0	0.0	0.0		
17	1.00	1.00	1.00	0.30	0.0	-1.00	0.0	-0.30	0.0	0.0	0.0	0.0		
18	1.00	1.00	1.00	0.30	0.0	-1.00	0.0	0.30	0.0	0.0	0.0	0.0		
19	1.00	1.00	1.00	0.30	0.0	1.00	0.0	-0.30	0.0	0.0	0.0	0.0		
20	1.00	1.00	1.00	0.30	0.0	1.00	0.0	0.30	0.0	0.0	0.0	0.0		
21	1.00	1.00	1.00	0.30	-0.30	0.0	-1.00	0.0	0.0	0.0	0.0	0.0		
22	1.00	1.00	1.00	0.30	-0.30	0.0	1.00	0.0	0.0	0.0	0.0	0.0		
23	1.00	1.00	1.00	0.30	0.30	0.0	-1.00	0.0	0.0	0.0	0.0	0.0		
24	1.00	1.00	1.00	0.30	0.30	0.0	1.00	0.0	0.0	0.0	0.0	0.0		
25	1.00	1.00	1.00	0.30	0.0	-0.30	-1.00	0.0	0.0	0.0	0.0	0.0		
26	1.00	1.00	1.00	0.30	0.0	-0.30	1.00	0.0	0.0	0.0	0.0	0.0		
27	1.00	1.00	1.00	0.30	0.0	0.30	-1.00	0.0	0.0	0.0	0.0	0.0		
28	1.00	1.00	1.00	0.30	0.0	0.30	1.00	0.0	0.0	0.0	0.0	0.0		
29	1.00	1.00	1.00	0.30	-0.30	0.0	0.0	-1.00	0.0	0.0	0.0	0.0		
30	1.00	1.00	1.00	0.30	-0.30	0.0	0.0	1.00	0.0	0.0	0.0	0.0		
31	1.00	1.00	1.00	0.30	0.30	0.0	0.0	-1.00	0.0	0.0	0.0	0.0		
32	1.00	1.00	1.00	0.30	0.30	0.0	0.0	1.00	0.0	0.0	0.0	0.0		
33	1.00	1.00	1.00	0.30	0.0	-0.30	0.0	-1.00	0.0	0.0	0.0	0.0		
34	1.00	1.00	1.00	0.30	0.0	-0.30	0.0	1.00	0.0	0.0	0.0	0.0		
35	1.00	1.00	1.00	0.30	0.0	0.30	0.0	-1.00	0.0	0.0	0.0	0.0		
36	1.00	1.00	1.00	0.30	0.0	0.30	0.0	1.00	0.0	0.0	0.0	0.0		
37	1.00	1.00	1.00	0.30	0.0	0.0	0.0	0.0	-1.00	0.0	-0.30	0.0		
38	1.00	1.00	1.00	0.30	0.0	0.0	0.0	0.0	-1.00	0.0	0.30	0.0		
39	1.00	1.00	1.00	0.30	0.0	0.0	0.0	0.0	1.00	0.0	-0.30	0.0		
40	1.00	1.00	1.00	0.30	0.0	0.0	0.0	0.0	1.00	0.0	0.30	0.0		
41	1.00	1.00	1.00	0.30	0.0	0.0	0.0	0.0	-1.00	0.0	0.0	-0.30		
42	1.00	1.00	1.00	0.30	0.0	0.0	0.0	0.0	-1.00	0.0	0.0	0.30		
43	1.00	1.00	1.00	0.30	0.0	0.0	0.0	0.0	1.00	0.0	0.0	-0.30		
44	1.00	1.00	1.00	0.30	0.0	0.0	0.0	0.0	1.00	0.0	0.0	0.30		
45	1.00	1.00	1.00	0.30	0.0	0.0	0.0	0.0	0.0	-1.00	-0.30	0.0		
46	1.00	1.00	1.00	0.30	0.0	0.0	0.0	0.0	0.0	-1.00	0.30	0.0		

Cmb	CDC	CDC	CDC	CDC	CDC	CDC								
	1/15	2/16	3/17	4/18	5/19	6/20	7/21	8/22	9/23	10/24	11/25	12/26	13/27	14/28
47	1.00	1.00	1.00	0.30	0.0	0.0	0.0	0.0	0.0	1.00	-0.30	0.0		
48	1.00	1.00	1.00	0.30	0.0	0.0	0.0	0.0	0.0	1.00	0.30	0.0		
49	1.00	1.00	1.00	0.30	0.0	0.0	0.0	0.0	0.0	-1.00	0.0	-0.30		
50	1.00	1.00	1.00	0.30	0.0	0.0	0.0	0.0	0.0	-1.00	0.0	0.30		
51	1.00	1.00	1.00	0.30	0.0	0.0	0.0	0.0	0.0	1.00	0.0	-0.30		
52	1.00	1.00	1.00	0.30	0.0	0.0	0.0	0.0	0.0	1.00	0.0	0.30		
53	1.00	1.00	1.00	0.30	0.0	0.0	0.0	0.0	-0.30	0.0	-1.00	0.0		
54	1.00	1.00	1.00	0.30	0.0	0.0	0.0	0.0	-0.30	0.0	1.00	0.0		
55	1.00	1.00	1.00	0.30	0.0	0.0	0.0	0.0	0.30	0.0	-1.00	0.0		
56	1.00	1.00	1.00	0.30	0.0	0.0	0.0	0.0	0.30	0.0	1.00	0.0		
57	1.00	1.00	1.00	0.30	0.0	0.0	0.0	0.0	0.0	-0.30	-1.00	0.0		
58	1.00	1.00	1.00	0.30	0.0	0.0	0.0	0.0	0.0	-0.30	1.00	0.0		
59	1.00	1.00	1.00	0.30	0.0	0.0	0.0	0.0	0.0	0.30	-1.00	0.0		
60	1.00	1.00	1.00	0.30	0.0	0.0	0.0	0.0	0.0	0.30	1.00	0.0		
61	1.00	1.00	1.00	0.30	0.0	0.0	0.0	0.0	-0.30	0.0	0.0	-1.00		
62	1.00	1.00	1.00	0.30	0.0	0.0	0.0	0.0	-0.30	0.0	0.0	1.00		
63	1.00	1.00	1.00	0.30	0.0	0.0	0.0	0.0	0.30	0.0	0.0	-1.00		
64	1.00	1.00	1.00	0.30	0.0	0.0	0.0	0.0	0.30	0.0	0.0	1.00		
65	1.00	1.00	1.00	0.30	0.0	0.0	0.0	0.0	0.0	-0.30	0.0	-1.00		
66	1.00	1.00	1.00	0.30	0.0	0.0	0.0	0.0	0.0	-0.30	0.0	1.00		
67	1.00	1.00	1.00	0.30	0.0	0.0	0.0	0.0	0.0	0.30	0.0	-1.00		
68	1.00	1.00	1.00	0.30	0.0	0.0	0.0	0.0	0.0	0.30	0.0	1.00		
69	1.00	1.00	1.00	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		
70	1.00	1.00	1.00	0.30	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		
71	1.00	1.00	1.00	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		
72	1.00	1.00	1.00	1.00	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		
73	1.00	1.00	1.00	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		
74	1.00	1.00	1.00	0.50	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		
75	1.00	1.00	1.00	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		
76	1.00	1.00	1.00	0.30	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		

AZIONE SISMICA

VALUTAZIONE DELL' AZIONE SISMICA

L'azione sismica sulle costruzioni è valutata a partire dalla "pericolosità sismica di base", in condizioni ideali di sito di riferimento rigido con superficie topografica orizzontale.

Allo stato attuale, la pericolosità sismica su reticolo di riferimento nell'intervallo di riferimento è fornita dai dati pubblicati sul sito http://esse1.mi.ingv.it/. Per punti non coincidenti con il reticolo di riferimento e periodi di ritorno non contemplati direttamente si opera come indicato nell' allegato alle NTC (rispettivamente media pesata e interpolazione).

L' azione sismica viene definita in relazione ad un periodo di riferimento Vr che si ricava, per ciascun tipo di costruzione, moltiplicandone la vita nominale per il coefficiente d'uso (vedi tabella Parametri della struttura). Fissato il periodo di riferimento Vr e la probabilità di superamento Pver associata a ciascuno degli stati limite considerati, si ottiene il periodo di ritorno Tr e i relativi parametri di pericolosità sismica (vedi tabella successiva):

ag: accelerazione orizzontale massima del terreno;

Fo: valore massimo del fattore di amplificazione dello spettro in accelerazione orizzontale;

T*c: periodo di inizio del tratto a velocità costante dello spettro in accelerazione orizzontale;

Parametri de	Parametri della struttura										
Classe d'uso	Vita Vn [anni]	Coeff. Uso	Periodo Vr [anni]	Tipo di suolo	Categoria topografica						
IV	100.0	2.0	200.0	В	T1						

Individuati su reticolo di riferimento i parametri di pericolosità sismica si valutano i parametri spettrali riportati in tabella:

S è il coefficiente che tiene conto della categoria di sottosuolo e delle condizioni topografiche mediante la relazione seguente S = Ss*St (3.2.3)

Fo è il fattore che quantifica l'amplificazione spettrale massima, su sito di riferimento rigido orizzontale

Fv è il fattore che quantifica l'amplificazione spettrale massima verticale, in termini di accelerazione orizzontale massima del terreno ag su sito di riferimento rigido orizzontale

Tb è il periodo corrispondente all'inizio del tratto dello spettro ad accelerazione costante.

Tc è il periodo corrispondente all'inizio del tratto dello spettro a velocità costante.

Td è il periodo corrispondente all'inizio del tratto dello spettro a spostamento costante.

Lo spettro di risposta elastico in accelerazione della componente orizzontale del moto sismico, Se, è definito dalle seguenti espressioni:

$$\begin{split} 0 &\leq T < T_B & S_e \ (T) = a_g \cdot S \cdot \eta \cdot F_o \cdot \left[\frac{T}{T_B} + \frac{1}{\eta \cdot F_o} \left(1 - \frac{T}{T_B} \right) \right] \\ T_B &\leq T < T_C & S_e \ (T) = a_g \cdot S \cdot \eta \cdot F_o \\ T_C &\leq T < T_D & S_e \ (T) = a_g \cdot S \cdot \eta \cdot F_o \cdot \left(\frac{T_C}{T} \right) \\ T_D &\leq T & S_e \ (T) = a_g \cdot S \cdot \eta \cdot F_o \cdot \left(\frac{T_C \cdot T_D}{T^2} \right) \end{split}$$

Dove per sottosuolo di categoria A i coefficienti S_S e C_C valgono 1; mentre per le categorie di sottosuolo B, C, D, E i coefficienti S_S e C_C vengono calcolati mediante le espressioni riportane nella seguente Tabella

Categoria sottosuolo	S _s	C _c
A	1,00	1,00
В	$1,00 \le 1,40 - 0,40 \cdot F_o \cdot \frac{a_g}{g} \le 1,20$	1,10 · (T _C *) ^{-0,20}
С	$1,00 \le 1,70 - 0,60 \cdot F_o \cdot \frac{a_g}{g} \le 1,50$	$1,05 \cdot (T_C^*)^{-0,33}$
D	D $0.90 \le 2.40 - 1.50 \cdot F_o \cdot \frac{a_g}{g} \le 1.80$	
E	$1,00 \le 2,00 - 1,10 \cdot F_o \cdot \frac{a_g}{g} \le 1,60$	1,15 · (T _C *) ^{-0,40}

Per tenere conto delle condizioni topografiche e in assenza di specifiche analisi di risposta sismica locale, si utilizzano i valori del coefficiente topografico S_T riportati nella seguente Tabella

Categoria topografica	fica Ubicazione dell'opera o dell'intervento			
T1	-	1,0		
T2	In corrispondenza della sommità del pendio	1,2		
Т3	In corrispondenza della cresta di un rilievo con	1,2		
	pendenza media minore o uguale a 30°			
T4	In corrispondenza della cresta di un rilievo con	1,4		
	pendenza media maggiore di 30°			

Lo spettro di risposta elastico in accelerazione della componente verticale del moto sismico, Sve, è definito dalle espressioni:

$$\begin{split} 0 &\leq T < T_B & S_{_{ve}}\left(T\right) = a_{_g} \cdot S \cdot \eta \cdot F_{_v} \cdot \left[\frac{T}{T_B} + \frac{1}{\eta \cdot F_o} \left(1 - \frac{T}{T_B}\right)\right] \\ T_B &\leq T < T_C & S_{_{ve}}\left(T\right) = a_{_g} \cdot S \cdot \eta \cdot F_{_v} \\ T_C &\leq T < T_D & S_{_{ve}}\left(T\right) = a_{_g} \cdot S \cdot \eta \cdot F_{_v} \cdot \left(\frac{T_C}{T}\right) \\ T_D &\leq T & S_{_{ve}}\left(T\right) = a_{_g} \cdot S \cdot \eta \cdot F_{_v} \cdot \left(\frac{T_C \cdot T_D}{T^2}\right) \end{split}$$

I valori di S_S, T_B, T_C e T_D, sono riportati nella seguenteTabella

· ·	1	I .	I .	
Categoria di sottosuolo	S _S	T _B	T _C	T _D
A, B, C, D, E	1,0	0,05 s	0,15 s	1,0 s

ld nodo	Longitudine	Latitudine	Distanza
			Km
Loc.	16.439	40.377	
35231	16.376	40.348	6.216
35232	16.442	40.346	3.445
35010	16.444	40.396	2.148
35009	16.378	40.398	5.651

SL	Pver	Tr	ag	Fo	T*c
		Anni	g		sec
SLO	81.0	120.0	0.067	2.526	0.365
SLD	63.0	201.0	0.079	2.551	0.403
SLV	10.0	1898.0	0.151	2.744	0.474

SL	Pver	Tr	ag	Fo	T*c
SLC	5.0	2475.0	0.162	2.762	0.481

SL	ag	S	Fo	Fv	Tb	Тс	Td
	g				sec	sec	sec
SLO	0.067	1.200	2.526	0.879	0.164	0.491	1.866
SLD	0.079	1.200	2.551	0.969	0.177	0.532	1.916
SLV	0.151	1.200	2.744	1.440	0.202	0.605	2.205
SLC	0 162	1 200	2 762	1 503	0.204	0.613	2 250

RISULTATI ANALISI SISMICHE

LEGENDA TABELLA ANALISI SISMICHE

Il programma consente l'analisi di diverse configurazioni sismiche.

Sono previsti, infatti, i seguenti casi di carico:

9. Esk caso di carico sismico con analisi statica equivalente

10. Edk caso di carico sismico con analisi dinamica

Ciascun caso di carico è caratterizzato da un angolo di ingresso e da una configurazione di masse determinante la forza sismica complessiva (si rimanda al capitolo relativo ai casi di carico per chiarimenti inerenti questo aspetto).

Nella colonna Note, in funzione della norma in uso sono riportati i parametri fondamentali che caratterizzano l'azione sismica: in particolare possono essere presenti i seguenti valori:

Angolo di	Angolo di ingresso dell'azione sismica orizzontale
ingresso	
Fattore di	Fattore di importanza dell'edificio, in base alla categoria di appartenenza
importanza	
Zona sismica	Zona sismica
Accelerazione	Accelerazione orizzontale massima sul suolo
ag	
Categoria suolo	Categoria di profilo stratigrafico del suolo di fondazione
Fattore q	Fattore di struttura/di comportamento. Dipendente dalla tipologia strutturale
Fattore di sito S	Fattore dipendente dalla stratigrafia e dal profilo topografico
Classe di	Classe di duttilità della struttura – "A" duttilità alta, "B" duttilità bassa
duttilità CD	
Fattore riduz.	Fattore di riduzione dello spettro elastico per lo stato limite di danno
SLD	
Periodo proprio	Periodo proprio di vibrazione della struttura
T1	
Coefficiente	Coefficiente dipendente dal periodo proprio T1 e dal numero di piani della struttura
Lambda	
Ordinata	Valore delle ordinate dello spettro di progetto per lo stato limite ultimo, componente orizzontale
spettro Sd(T1)	(verticale Svd)
Ordinata	Valore delle ordinate dello spettro elastico ridotta del fattore SLD per lo stato limite di danno,
spettro Se(T1)	componente orizzontale (verticale Sve)
Ordinata	Valore dell' ordinata dello spettro in uso nel tratto costante
spettro S (Tb-	
Tc)	
numero di modi	Numero di modi di vibrare della struttura considerati nell'analisi dinamica
considerati	

Per ciascun caso di carico sismico viene riportato l'insieme di dati sotto riportati (le masse sono espresse in unità di forza):

a) analisi sismica statica equivalente:

- quota, posizione del centro di applicazione e azione orizzontale risultante, posizione del baricentro delle rigidezze, rapporto r/Ls (per strutture a nucleo), indici di regolarità e/r secondo EC8 4.2.3.2
- azione sismica complessiva
- b) analisi sismica dinamica con spettro di risposta:

- quota, posizione del centro di massa e massa risultante, posizione del baricentro delle rigidezze, rapporto r/Ls (per strutture a nucleo), indici di regolarità e/r secondo EC8 4.2.3.2
- frequenza, periodo, accelerazione spettrale, massa eccitata nelle tre direzioni globali per tutti i modi
- massa complessiva ed aliquota di massa complessiva eccitata.

Per ciascuna combinazione sismica definita SLD o SLO viene riportato il livello di deformazione etaT (dr) degli elementi strutturali verticali. Per semplicità di consultazione il livello è espresso anche in unità 1000*etaT/h da confrontare direttamente con i valori forniti nella norma (es. 5 per edifici con tamponamenti collegati rigidamente alla struttura, 10.0 per edifici con tamponamenti collegati elasticamente, 3 per edifici in muratura ordinaria, 4 per edifici in muratura armata).

Qualora si applichi il D.M. 96 (vedi NOTA sul capitolo "normativa di riferimento") l'analisi sismica dinamica può essere comprensiva di sollecitazione verticale contemporanea a quella orizzontale, nel qual caso è effettuata una sovrapposizione degli effetti in ragione della radice dei quadrati degli effetti stessi. Per ciascuna combinazione sismica - analisi effettuate con il D.M. 96 (vedi NOTA sul capitolo "normativa di riferimento") - viene riportato il livello di deformazione etaT, etaP e etaD degli elementi strutturali verticali. Per semplicità di consultazione il livello è espresso in unità 1000*etaT/h da confrontare direttamente con il valore 2 o 4 per la verifica.

Per gli edifici sismicamente isolati si riportano di seguito le verifiche condotte sui dispositivi di isolamento. Le verifiche sono effettuate secondo la circolare n.7/2019 del C.S.LL. PP nelle combinazioni in SLC come previsto dal DM 17-01-2018. Per ogni combinazione è riportato il codice di verifica ed i valori utilizzati per la verifica: spostamento dE, area ridotta e dimensione A2, azione verticale, deformazioni di taglio dell'elastomero e tensioni nell'acciaio.

Qualora si applichi l'Ordinanza 3274 e s.m.i. le verifiche sono eseguite in accordo con l'allegato 10.A. In particolare, la tabella, per ogni combinazione di calcolo, riporta:

Nodo	Nodo di appoggio dell'isolatore
Cmb	Combinazione oggetto della verifica
Verif.	Codice di verifica ok – verifica positiva, NV – verifica negativa, ND – verifica non completata
dE	Spostamento relativo tra le due facce (amplificato del 20% per Ordinanza 3274 e smi)
	combinato con la regola del 30%
Ang fi	Angolo utilizzato per il calcolo dell'area ridotta Ar (per dispositivi circolari)
V	Azione verticale agente
Ar	Area ridotta efficace
Dim A2	Dimensione utile per il calcolo della deformazione per rotazione
Sig s	Tensione nell' inserto in acciaio
Gam c(a,s,t)	Deformazioni di taglio dell'elastomero
Vcr	Carico critico per instabilità

Affinché la verifica sia positiva deve essere:

- 1) V > 0
- 2) Sig s < fyk
- 3) Gam t < 5
- 4) Gam s < Gam * (caratteristica dell' elastomero)
- 5) Gam s < 2
- 6) V < 0.5 Vcr

CDC	Tipo	Sigla Id	Note
5	Edk	CDC=Ed (dinamico SLU) alfa=0.0 (ecc. +)	
			categoria suolo: B

CDC	Tipo	Sigla Id	Note
			fattore di sito S = 1.200
			ordinata spettro (tratto Tb-Tc) = 0.498 g
			angolo di ingresso:0.0
			eccentricità aggiuntiva: positiva
			periodo proprio T1: 0.111 sec.
			fattore q: 1.000
			fattore per spost. mu d: 1.000
			classe di duttilità CD: ND
			numero di modi considerati: 9
			combinaz. modale: CQC

Quota	M Sismica x g	Pos. GX	Pos. GY	E agg. X-X	E agg. Y-Y	Pos. KX	Pos. KY	(r/Ls)^2	rapp. ex/rx	rapp. ey/ry
cm	daN	cm	cm	cm	cm	cm	cm			
300.00	4.128e+04	800.00	250.00	0.0	-19.00	800.00	250.00	0.233	0.0	0.0
225.00	1.395e+04	800.00	250.00	0.0	-19.00	800.00	250.00	0.233	0.0	0.0
150.00	1.395e+04	800.00	250.00	0.0	-19.00	800.00	250.00	0.233	0.0	0.0
75.00	1.397e+04	800.34	250.00	0.0	-19.00	800.00	250.00	0.233	2.0896e-04	0.0
Risulta	8.315e+04									

Modo	Frequenza	Periodo	Acc.	M efficace	%	M efficace	%	M efficace	Z %	Energia	Energia x v
			Spettrale	Ххg		Yxg		x g			
	Hz	sec	g	daN		daN		daN			
1	4.504	0.222	0.498	1.33e-03	1.60e-06	6.059e+04	72.9	1.20e-05	0.0	0.0	0.0
2	5.749	0.174	0.454	34.82	4.19e-02	5.41e-03	6.51e-06	0.02	1.82e-05	0.0	0.0
3	5.993	0.167	0.443	2.28e-05	0.0	5.50e-03	6.61e-06	285.96	0.3	0.0	0.0
4	8.728	0.115	0.361	1850.15	2.2	0.0	0.0	1.45e-03	1.74e-06	0.0	0.0
5	9.028	0.111	0.355	4.556e+04	54.8	7.18e-03	8.63e-06	1.72e-03	2.06e-06	0.0	0.0
6	9.862	0.101	0.340	0.09	1.08e-04	26.28	3.16e-02	1.38e-05	0.0	0.0	0.0
7	11.608	0.086	0.316	0.01	1.61e-05	2.13e-05	0.0	8.275e+04	99.5	0.0	0.0
8	11.649	0.086	0.316	5.71	6.87e-03	1.75e-03	2.10e-06	35.06	4.22e-02	0.0	0.0
9	12.847	0.078	0.303	1.04e-04	0.0	4.23e-03	5.09e-06	45.17	5.43e-02	0.0	0.0
Risulta				4.746e+04		6.061e+04		8.311e+04			
In				57.07		72.89		99.95			
percentuale											

CDC	Tipo	Sigla Id	Note				
6	Edk	CDC=Ed (dinamico SLU) alfa=0.0 (ecc)					
			categoria suolo: B				
			fattore di sito S = 1.200				
			ordinata spettro (tratto Tb-Tc) = 0.498 g				
			angolo di ingresso:0.0				
			eccentricità aggiuntiva: negativa				
			periodo proprio T1: 0.111 sec.				
			fattore q: 1.000				
			fattore per spost. mu d: 1.000				
			classe di duttilità CD: ND				
			numero di modi considerati: 9				
			combinaz. modale: CQC				

Quota	M Sismica x g	Pos. GX	Pos. GY	E agg. X-X	E agg. Y-Y	Pos. KX	Pos. KY	(r/Ls)^2	rapp. ex/rx	rapp. ey/ry
cm	daN	cm	cm	cm	cm	cm	cm			
300.00	4.128e+04	800.00	250.00	0.0	19.00	800.00	250.00	0.233	0.0	0.0
225.00	1.395e+04	800.00	250.00	0.0	19.00	800.00	250.00	0.233	0.0	0.0
150.00	1.395e+04	800.00	250.00	0.0	19.00	800.00	250.00	0.233	0.0	0.0
75.00	1.397e+04	800.34	250.00	0.0	19.00	800.00	250.00	0.233	2.0896e-04	0.0
Risulta	8.315e+04									

Modo	Frequenza	Periodo	Acc.	M efficace	%	M efficace	%	M efficace	Z %	Energia	Energia x v
			Spettrale	Ххg		Yxg		x g			
	Hz	sec	g	daN		daN		daN			
1	4.504	0.222	0.498	1.25e-03	1.51e-06	6.059e+04	72.9	1.08e-05	0.0	0.0	0.0
2	5.749	0.174	0.454	34.90	4.20e-02	4.87e-03	5.85e-06	0.02	1.83e-05	0.0	0.0
3	5.993	0.167	0.443	1.05e-05	0.0	4.94e-03	5.95e-06	285.96	0.3	0.0	0.0
4	8.728	0.115	0.361	1859.85	2.2	1.66e-06	0.0	1.59e-03	1.91e-06	0.0	0.0
5	9.028	0.111	0.355	4.555e+04	54.8	8.00e-03	9.62e-06	2.86e-03	3.44e-06	0.0	0.0
6	9.862	0.101	0.340	0.08	9.51e-05	26.28	3.16e-02	4.15e-05	0.0	0.0	0.0
7	11.608	0.086	0.316	8.99e-04	1.08e-06	6.85e-05	0.0	8.275e+04	99.5	0.0	0.0
8	11.649	0.086	0.316	5.34	6.42e-03	3.55e-03	4.26e-06	27.99	3.37e-02	0.0	0.0
9	12.847	0.078	0.303	5.67e-04	0.0	1.00e-02	1.20e-05	45.17	5.43e-02	0.0	0.0
Risulta				4.745e+04		6.061e+04		8.311e+04			
In				57.07		72.89		99.95			
percentuale											

CDC	Tipo	Sigla Id	Note
7	Edk	CDC=Ed (dinamico SLU) alfa=90.00 (ecc. +)	
			categoria suolo: B
			fattore di sito S = 1.200
			ordinata spettro (tratto Tb-Tc) = 0.498 g
			angolo di ingresso:90.00
			eccentricità aggiuntiva: positiva
			periodo proprio T1: 0.224 sec.
			fattore q: 1.000
			fattore per spost. mu d: 1.000
			classe di duttilità CD: ND
			numero di modi considerati: 9
			combinaz. modale: CQC

Quota	M Sismica x g	Pos. GX	Pos. GY	E agg. X-X	E agg. Y-Y	Pos. KX	Pos. KY	(r/Ls)^2	rapp. ex/rx	rapp. ey/ry
cm	daN	cm	cm	cm	cm	cm	cm			
300.00	4.128e+04	800.00	250.00	74.00	0.0	00.008	250.00	0.233	0.0	0.0
225.00	1.395e+04	800.00	250.00	74.00	0.0	00.008	250.00	0.233	0.0	0.0
150.00	1.395e+04	800.00	250.00	74.00	0.0	800.00	250.00	0.233	0.0	0.0
75.00	1.397e+04	800.34	250.00	74.00	0.0	800.00	250.00	0.233	2.0896e-04	0.0
Risulta	8.315e+04									

Modo	Frequenza	Periodo	Acc.	M efficace	%	M efficace	%	M efficace	Z %	Energia	Energia x v
			Spettrale	Ххg		Yxg		x g			
	Hz	sec	g	daN		daN		daN			
1	4.461	0.224	0.498	1.19e-03	1.43e-06	5.993e+04	72.1	1.25e-04	0.0	0.0	0.0
2	5.828	0.172	0.450	9.23e-05	0.0	759.14	0.9	0.02	2.69e-05	0.0	0.0
3	5.972	0.167	0.444	4.45e-03	5.35e-06	0.02	2.92e-05	278.94	0.3	0.0	0.0
4	8.755	0.114	0.360	2073.89	2.5	2.19e-04	0.0	19.43	2.34e-02	0.0	0.0
5	9.039	0.111	0.355	4.522e+04	54.4	8.40e-03	1.01e-05	1.35	1.62e-03	0.0	0.0
6	9.858	0.101	0.340	0.08	9.42e-05	29.89	3.59e-02	4.67e-04	0.0	0.0	0.0
7	11.608	0.086	0.316	0.04	4.42e-05	2.40e-03	2.89e-06	8.274e+04	99.5	0.0	0.0
8	11.666	0.086	0.316	6.09e-04	0.0	15.47	1.86e-02	17.54	2.11e-02	0.0	0.0
9	12.899	0.078	0.303	5.76	6.93e-03	5.64e-03	6.78e-06	55.35	6.66e-02	0.0	0.0
Risulta				4.730e+04		6.074e+04		8.311e+04			
In				56.88		73.05		99.95			
percentuale											

CDC	Tipo	Sigla Id	Note
8	Edk	CDC=Ed (dinamico SLU) alfa=90.00 (ecc)	
			categoria suolo: B

CDC	Tipo	Sigla Id	Note			
			fattore di sito S = 1.200			
			ordinata spettro (tratto Tb-Tc) = 0.498 g			
			angolo di ingresso:90.00			
			eccentricità aggiuntiva: negativa			
			periodo proprio T1: 0.224 sec.			
			fattore q: 1.000			
			fattore per spost. mu d: 1.000			
			classe di duttilità CD: ND			
	numero di modi considerati: 9					
			combinaz. modale: CQC			

Quota	M Sismica x g	Pos. GX	Pos. GY	E agg. X-X	E agg. Y-Y	Pos. KX	Pos. KY	(r/Ls)^2	rapp. ex/rx	rapp. ey/ry
cm	daN	cm	cm	cm	cm	cm	cm			
300.00	4.128e+04	800.00	250.00	-74.00	0.0	800.00	250.00	0.233	0.0	0.0
225.00	1.395e+04	800.00	250.00	-74.00	0.0	800.00	250.00	0.233	0.0	0.0
150.00	1.395e+04	800.00	250.00	-74.00	0.0	800.00	250.00	0.233	0.0	0.0
75.00	1.397e+04	800.34	250.00	-74.00	0.0	800.00	250.00	0.233	2.0896e-04	0.0
Risulta	8.315e+04									

Modo	Frequenza	Periodo	Acc.	M efficace	%	M efficace	%	M efficace	Z %	Energia	Energia x v
			Spettrale	Ххg		Yxg		x g			
	Hz	sec	g	daN		daN		daN			
1	4.461	0.224	0.498	1.18e-03	1.42e-06	5.993e+04	72.1	3.07e-04	0.0	0.0	0.0
2	5.828	0.172	0.450	2.76e-04	0.0	765.38	0.9	0.02	2.09e-05	0.0	0.0
3	5.972	0.167	0.444	4.24e-03	5.10e-06	1.97e-04	0.0	278.77	0.3	0.0	0.0
4	8.756	0.114	0.360	2084.97	2.5	3.83e-04	0.0	20.12	2.42e-02	0.0	0.0
5	9.039	0.111	0.355	4.520e+04	54.4	6.50e-03	7.82e-06	1.14	1.38e-03	0.0	0.0
6	9.857	0.101	0.340	0.10	1.24e-04	29.84	3.59e-02	1.03e-03	1.24e-06	0.0	0.0
7	11.608	0.086	0.316	2.65e-03	3.18e-06	1.47e-03	1.77e-06	8.274e+04	99.5	0.0	0.0
8	11.665	0.086	0.316	3.85e-03	4.63e-06	14.76	1.78e-02	19.06	2.29e-02	0.0	0.0
9	12.902	0.078	0.303	5.92	7.12e-03	7.96e-03	9.58e-06	55.38	6.66e-02	0.0	0.0
Risulta				4.730e+04		6.074e+04		8.311e+04			
In				56.88		73.04		99.95			
percentuale											

CDC	Tipo	Sigla Id	Note
9	Edk	CDC=Ed (dinamico SLD) alfa=0.0 (ecc. +)	
			categoria suolo: B
			fattore di sito S = 1.200
			ordinata spettro (tratto Tb-Tc) = 0.242 g
			angolo di ingresso:0.0
			eccentricità aggiuntiva: positiva
			periodo proprio T1: 0.111 sec.
			numero di modi considerati: 9
			combinaz. modale: CQC

Quota	M Sismica x g	Pos. GX	Pos. GY	E agg. X-X	E agg. Y-Y	Pos. KX	Pos. KY	(r/Ls)^2	rapp. ex/rx	rapp. ey/ry
cm	daN	cm	cm	cm	cm	cm	cm			
300.00	4.128e+04	800.00	250.00	0.0	-19.00	00.008	250.00	0.233	0.0	0.0
225.00	1.395e+04	800.00	250.00	0.0	-19.00	00.008	250.00	0.233	0.0	0.0
150.00	1.395e+04	800.00	250.00	0.0	-19.00	00.008	250.00	0.233	0.0	0.0
75.00	1.397e+04	800.34	250.00	0.0	-19.00	00.008	250.00	0.233	2.0896e-04	0.0
Risulta	8.315e+04									

Modo	Frequenza	Periodo	Acc.	M efficace	%	M efficace	%	M efficace	Z %	Energia	Energia x v
			Spettrale	Ххg		Yxg		x g			
	Hz	sec	g	daN		daN		daN			
1	4.504	0.222	0.242	1.33e-03	1.60e-06	6.059e+04	72.9	1.20e-05	0.0	0.0	0.0
2	5.749	0.174	0.240	34.82	4.19e-02	5.41e-03	6.51e-06	0.02	1.82e-05	0.0	0.0
3	5.993	0.167	0.234	2.28e-05	0.0	5.50e-03	6.61e-06	285.96	0.3	0.0	0.0
4	8.728	0.115	0.190	1850.15	2.2	0.0	0.0	1.45e-03	1.74e-06	0.0	0.0
5	9.028	0.111	0.187	4.556e+04	54.8	7.18e-03	8.63e-06	1.72e-03	2.06e-06	0.0	0.0
6	9.862	0.101	0.179	0.09	1.08e-04	26.28	3.16e-02	1.38e-05	0.0	0.0	0.0
7	11.608	0.086	0.167	0.01	1.61e-05	2.13e-05	0.0	8.275e+04	99.5	0.0	0.0
8	11.649	0.086	0.166	5.71	6.87e-03	1.75e-03	2.10e-06	35.06	4.22e-02	0.0	0.0
9	12.847	0.078	0.160	1.04e-04	0.0	4.23e-03	5.09e-06	45.17	5.43e-02	0.0	0.0
Risulta				4.746e+04		6.061e+04		8.311e+04			
In				57.07		72.89		99.95			
percentuale											

CDC	Tipo	Sigla Id	Note
10	Edk	CDC=Ed (dinamico SLD) alfa=0.0 (ecc)	
			categoria suolo: B
			fattore di sito S = 1.200
			ordinata spettro (tratto Tb-Tc) = 0.242 g
			angolo di ingresso:0.0
			eccentricità aggiuntiva: negativa
			periodo proprio T1: 0.111 sec.
			numero di modi considerati: 9
			combinaz. modale: CQC

Quota	M Sismica x g	Pos. GX	Pos. GY	E agg. X-X	E agg. Y-Y	Pos. KX	Pos. KY	(r/Ls)^2	rapp. ex/rx	rapp. ey/ry
cm	daN	cm	cm	cm	cm	cm	cm			
300.00	4.128e+04	800.00	250.00	0.0	19.00	800.00	250.00	0.233	0.0	0.0
225.00	1.395e+04	800.00	250.00	0.0	19.00	800.00	250.00	0.233	0.0	0.0
150.00	1.395e+04	800.00	250.00	0.0	19.00	800.00	250.00	0.233	0.0	0.0
75.00	1.397e+04	800.34	250.00	0.0	19.00	800.00	250.00	0.233	2.0896e-04	0.0
Risulta	8.315e+04									

Modo	Frequenza	Periodo	Acc.	M efficace	%	M efficace	%	M efficace	Z %	Energia	Energia x v
			Spettrale	Ххg		Yxg		хg			
	Hz	sec	g	daN		daN		daN			
1	4.504	0.222	0.242	1.25e-03	1.51e-06	6.059e+04	72.9	1.08e-05	0.0	0.0	0.0
2	5.749	0.174	0.240	34.90	4.20e-02	4.87e-03	5.85e-06	0.02	1.83e-05	0.0	0.0
3	5.993	0.167	0.234	1.05e-05	0.0	4.94e-03	5.95e-06	285.96	0.3	0.0	0.0
4	8.728	0.115	0.190	1859.85	2.2	1.66e-06	0.0	1.59e-03	1.91e-06	0.0	0.0
5	9.028	0.111	0.187	4.555e+04	54.8	8.00e-03	9.62e-06	2.86e-03	3.44e-06	0.0	0.0
6	9.862	0.101	0.179	0.08	9.51e-05	26.28	3.16e-02	4.15e-05	0.0	0.0	0.0
7	11.608	0.086	0.167	8.99e-04	1.08e-06	6.85e-05	0.0	8.275e+04	99.5	0.0	0.0
8	11.649	0.086	0.166	5.34	6.42e-03	3.55e-03	4.26e-06	27.99	3.37e-02	0.0	0.0
9	12.847	0.078	0.160	5.67e-04	0.0	1.00e-02	1.20e-05	45.17	5.43e-02	0.0	0.0
Risulta				4.745e+04		6.061e+04		8.311e+04			
In				57.07		72.89		99.95			
percentuale											

CDC	Tipo	Sigla Id	Note
11	Edk	CDC=Ed (dinamico SLD) alfa=90.00 (ecc. +)	
			categoria suolo: B
			fattore di sito S = 1.200
			ordinata spettro (tratto Tb-Tc) = 0.242 g
			angolo di ingresso:90.00
			eccentricità aggiuntiva: positiva
			periodo proprio T1: 0.224 sec.

CDC	Tipo	Sigla Id	Note
			numero di modi considerati: 9
			combinaz. modale: CQC

Quota	M Sismica x g	Pos. GX	Pos. GY	E agg. X-X	E agg. Y-Y	Pos. KX	Pos. KY	(r/Ls)^2	rapp. ex/rx	rapp. ey/ry
cm	daN	cm	cm	cm	cm	cm	cm			
300.00	4.128e+04	800.00	250.00	74.00	0.0	800.00	250.00	0.233	0.0	0.0
225.00	1.395e+04	800.00	250.00	74.00	0.0	800.00	250.00	0.233	0.0	0.0
150.00	1.395e+04	800.00	250.00	74.00	0.0	800.00	250.00	0.233	0.0	0.0
75.00	1.397e+04	800.34	250.00	74.00	0.0	800.00	250.00	0.233	2.0896e-04	0.0
Risulta	8.315e+04									

Modo	Frequenza	Periodo	Acc.	M efficace	%	M efficace	%	M efficace 2	Z %	Energia	Energia x v
			Spettrale	Ххg		Yxg		x g			
	Hz	sec	g	daN		daN		daN			
1	4.461	0.224	0.242	1.19e-03	1.43e-06	5.993e+04	72.1	1.25e-04	0.0	0.0	0.0
2	5.828	0.172	0.238	9.23e-05	0.0	759.14	0.9	0.02	2.69e-05	0.0	0.0
3	5.972	0.167	0.234	4.45e-03	5.35e-06	0.02	2.92e-05	278.94	0.3	0.0	0.0
4	8.755	0.114	0.190	2073.89	2.5	2.19e-04	0.0	19.43	2.34e-02	0.0	0.0
5	9.039	0.111	0.187	4.522e+04	54.4	8.40e-03	1.01e-05	1.35	1.62e-03	0.0	0.0
6	9.858	0.101	0.179	0.08	9.42e-05	29.89	3.59e-02	4.67e-04	0.0	0.0	0.0
7	11.608	0.086	0.167	0.04	4.42e-05	2.40e-03	2.89e-06	8.274e+04	99.5	0.0	0.0
8	11.666	0.086	0.166	6.09e-04	0.0	15.47	1.86e-02	17.54	2.11e-02	0.0	0.0
9	12.899	0.078	0.159	5.76	6.93e-03	5.64e-03	6.78e-06	55.35	6.66e-02	0.0	0.0
Risulta				4.730e+04		6.074e+04		8.311e+04			
In				56.88		73.05		99.95			
percentuale											

CDC	Tipo	Sigla Id	Note
12	Edk	CDC=Ed (dinamico SLD) alfa=90.00 (ecc)	
			categoria suolo: B
			fattore di sito S = 1.200
			ordinata spettro (tratto Tb-Tc) = 0.242 g
			angolo di ingresso:90.00
			eccentricità aggiuntiva: negativa
			periodo proprio T1: 0.224 sec.
			numero di modi considerati: 9
			combinaz. modale: CQC

Quota	M Sismica x g	Pos. GX	Pos. GY	E agg. X-X	E agg. Y-Y	Pos. KX	Pos. KY	(r/Ls)^2	rapp. ex/rx	rapp. ey/ry
cm	daN	cm	cm	cm	cm	cm	cm			
300.00	4.128e+04	800.00	250.00	-74.00	0.0	00.008	250.00	0.233	0.0	0.0
225.00	1.395e+04	800.00	250.00	-74.00	0.0	00.008	250.00	0.233	0.0	0.0
150.00	1.395e+04	800.00	250.00	-74.00	0.0	00.008	250.00	0.233	0.0	0.0
75.00	1.397e+04	800.34	250.00	-74.00	0.0	800.00	250.00	0.233	2.0896e-04	0.0
Risulta	8.315e+04									

Modo	Frequenza	Periodo	Acc.	M efficace	%	M efficace	%	M efficace	Z %	Energia	Energia x v
			Spettrale	Ххg		Yxg		хg			
	Hz	sec	g	daN		daN		daN			
1	4.461	0.224	0.242	1.18e-03	1.42e-06	5.993e+04	72.1	3.07e-04	0.0	0.0	0.0
2	5.828	0.172	0.238	2.76e-04	0.0	765.38	0.9	0.02	2.09e-05	0.0	0.0
3	5.972	0.167	0.234	4.24e-03	5.10e-06	1.97e-04	0.0	278.77	0.3	0.0	0.0
4	8.756	0.114	0.190	2084.97	2.5	3.83e-04	0.0	20.12	2.42e-02	0.0	0.0
5	9.039	0.111	0.187	4.520e+04	54.4	6.50e-03	7.82e-06	1.14	1.38e-03	0.0	0.0
6	9.857	0.101	0.179	0.10	1.24e-04	29.84	3.59e-02	1.03e-03	1.24e-06	0.0	0.0

Modo	Frequenza	Periodo	Acc.	M efficace	%	M efficace	%	M efficace Z	%	Energia	Energia x v
			Spettrale	Ххg		Υxg		хg			
7	11.608	0.086	0.167	2.65e-03	3.18e-06	1.47e-03	1.77e-06	8.274e+04	99.5	0.0	0.0
8	11.665	0.086	0.166	3.85e-03	4.63e-06	14.76	1.78e-02	19.06	2.29e-02	0.0	0.0
9	12.902	0.078	0.159	5.92	7.12e-03	7.96e-03	9.58e-06	55.38	6.66e-02	0.0	0.0
Risulta				4.730e+04		6.074e+04		8.311e+04			
In				56.88		73.04		99.95			
percentuale											

RISULTATI OPERE DI FONDAZIONE

LEGENDA RISULTATI OPERE DI FONDAZIONE

Il controllo dei risultati delle analisi condotte, per quanto concerne le opere di fondazione, è possibile in relazione alle tabelle sotto riportate.

La prima tabella è riferita alle fondazioni tipo palo e plinto su pali.

Per questo tipo di fondazione vengono riportate le sei componenti di sollecitazione (espresse nel riferimento globale della struttura) per ogni palo componente l'opera.

In particolare, viene riportato:

Nodo	numero del nodo a cui è applicato il plinto							
Tipo	codice corrispondente al nome assegnato al tipo di plinto di fondazione:							
	3) palo singolo (<i>PALO</i>)							
	4) plinto su palo							
	5) plinto su due pali (<i>PL.2P</i>)							
	6) plinto su tre pali (<i>PL.3P</i>)							
	7) plinto su quattro pali (<i>PL.4P</i>)							
	8) plinto rettangolare su cinque pali (<i>PL.5P.R</i>)							
	9) plinto pentagonale su cinque pali (<i>PL.5P</i>)							
	10) plinto su sei pali (<i>PL.6P</i>)							
Palo	numero del palo							
Comb.	combinazione di carico in cui si verificano le sei componenti di sollecitazione.							
Quota	quota assoluta della sezione del palo per cui si riportano le sei componenti di sollecitazione.							

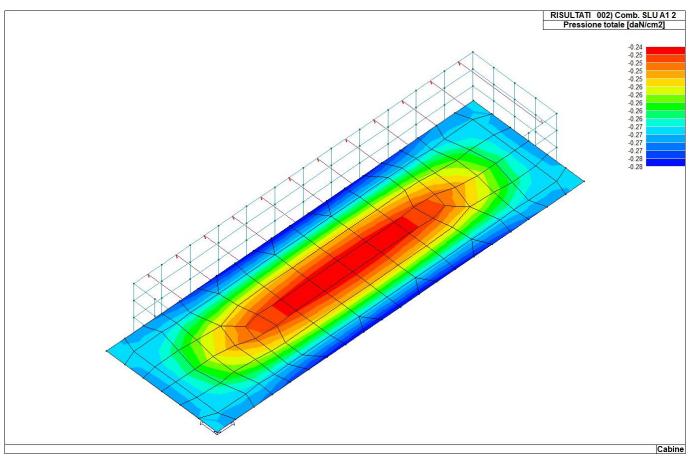
L'azione Fz (corrispondente allo sforzo normale nel palo) è costante poiché il peso del palo stesso non è considerato nella modellazione.

La <u>seconda tabella</u> è riferita alle fondazioni tipo plinto su suolo elastico.

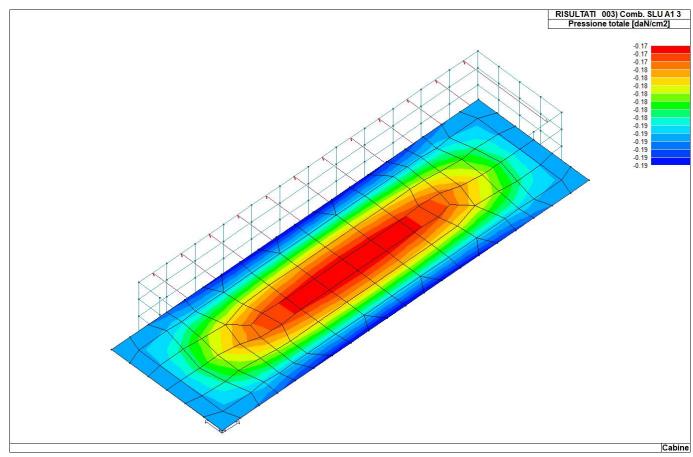
Per questo tipo di fondazione vengono riportate le pressioni nei quattro vertici dell'impronta sul terreno. In particolare, viene riportato:

Nodo		numero del nodo a cui è applicato il plinto
Tipo		Codice identificativo del nome assegnato al plinto
area		area dell'impronta del plinto
Wink O	Wink V	coefficienti di Winkler (orizzontale e verticale) adottati
Comb		Combinazione di carico in cui si verificano i valori riportati
Pt (P1 P2	P3 P4)	valori di pressione nei vertici

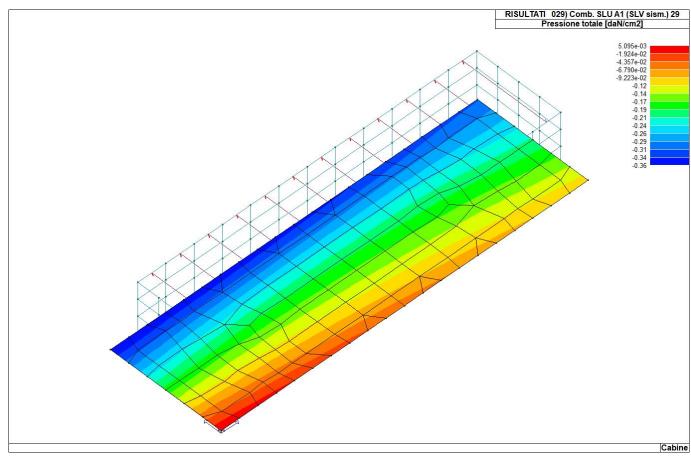
La terza tabella è riferita alle fondazioni tipo platea su suolo elastico.

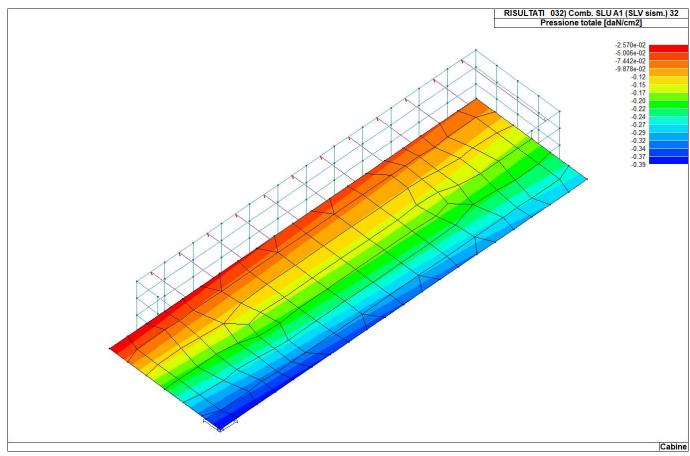

Per questo tipo di fondazione vengono riportate le pressioni in ogni vertice (nodo) degli elementi costituenti la platea.

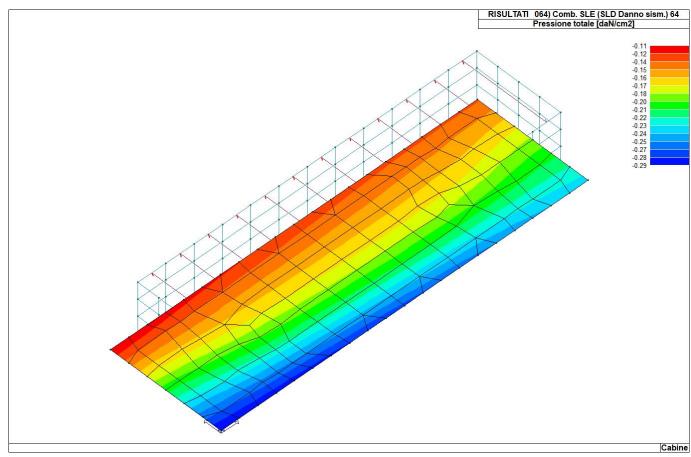
La <u>quarta tabella</u> è riferita alle fondazioni tipo trave su suolo elastico.

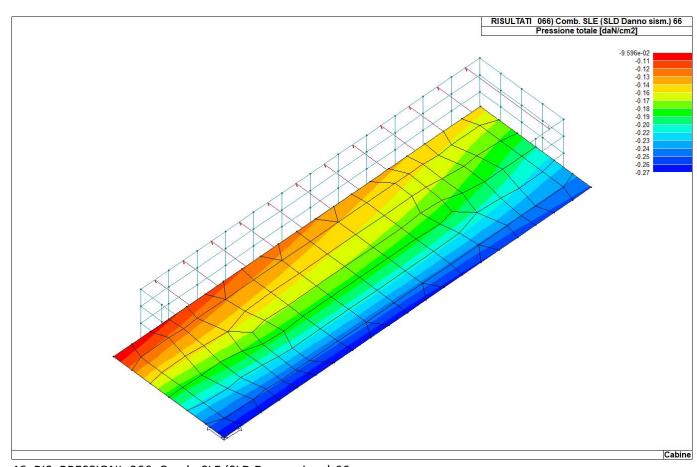

Per questo tipo di fondazione vengono riportate le pressioni alle estremità dell'elemento e la massima (in valore assoluto) pressione lungo lo sviluppo dell'elemento.

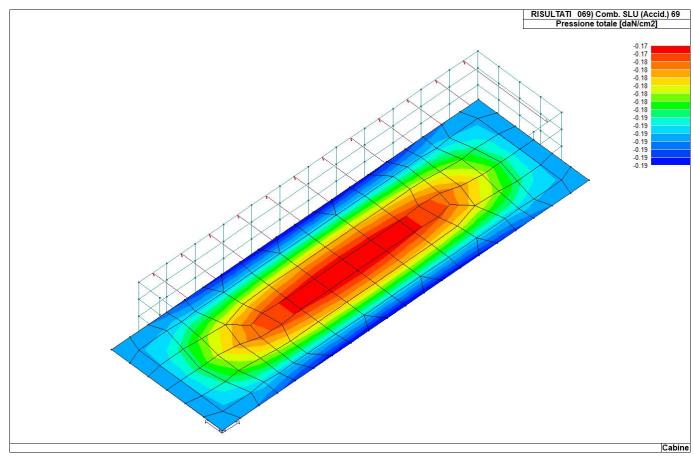
Vengono inoltre riportati, con funzione statistica, i valori massimo e minimo delle pressioni che compaiono nella tabella.

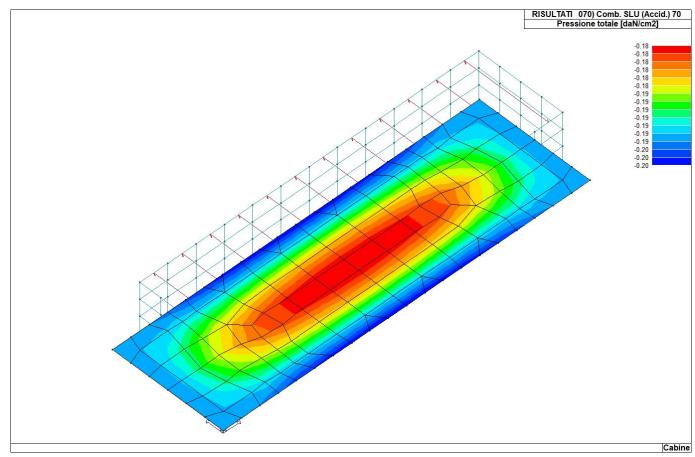

Nodo (G)	Pt 1/12 daN/cm2	Pt 2/13 daN/cm2	Pt 3 daN/cm2	Pt 4 daN/cm2	daN/cm2	daN/cm2	daN/cm2	daN/cm2	daN/cm2	daN/cm2
daN/cm2										
1	-0.27	-0.34	-0.27	-0.19	-0.20	-0.20	-0.19			
4	-0.27	-0.34	-0.26	-0.19	-0.20	-0.20	-0.19			
12	-0.27	-0.33	-0.26	-0.19	-0.20	-0.20	-0.19			
•••										
270 Nodo (G)	-0.25 Pt 1/12 -0.39 -0.18	-0.21 Pt 2/13	-0.20 Pt 3	-0.18 Pt 4	-0.19	-0.18	-0.18			

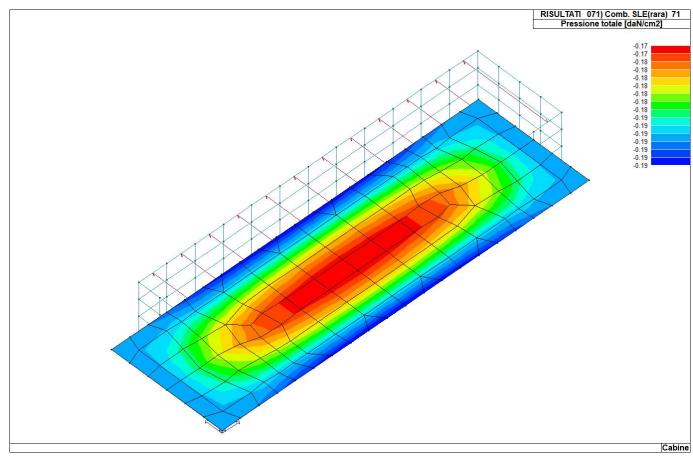

46_RIS_PRESSIONI_002_Comb. SLU A1 2

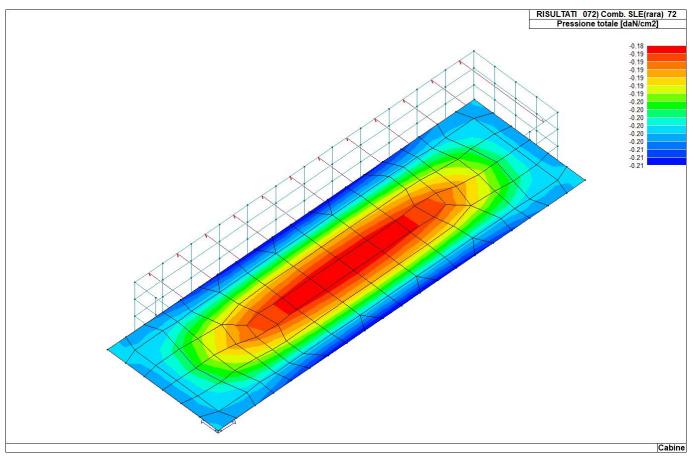

46_RIS_PRESSIONI_003_Comb. SLU A1 3

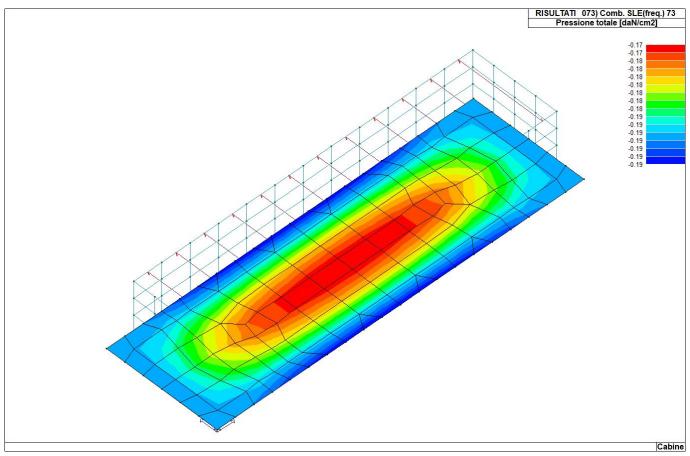

46_RIS_PRESSIONI_029_Comb. SLU A1 (SLV sism.) 29

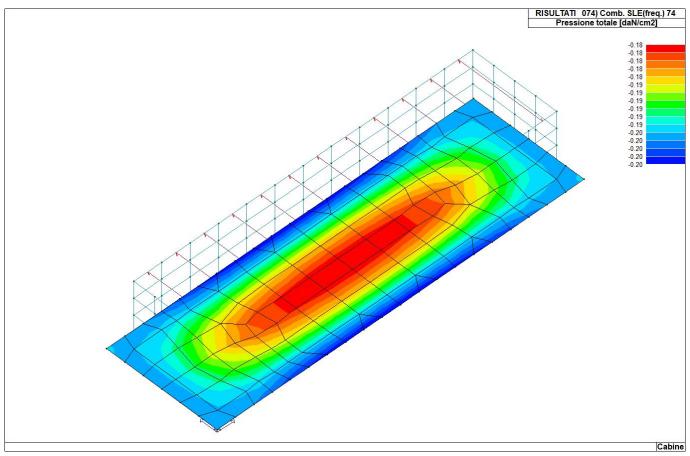

46_RIS_PRESSIONI_032_Comb. SLU A1 (SLV sism.) 32

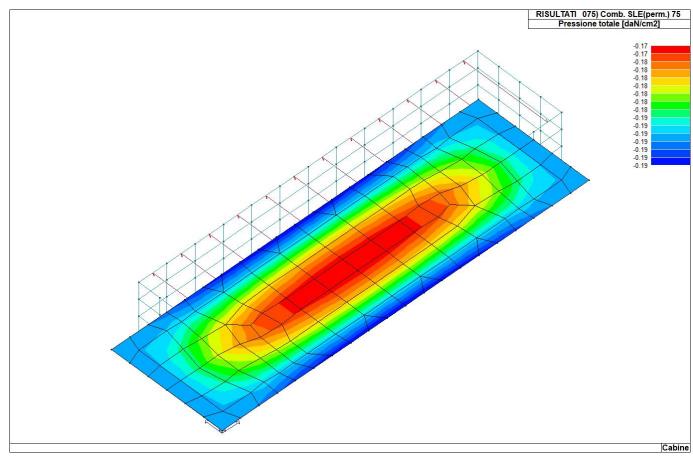

 $46_RIS_PRESSIONI_064_Comb. \ SLE \ (SLD \ Danno \ sism.) \ 64$


46_RIS_PRESSIONI_066_Comb. SLE (SLD Danno sism.) 66


46_RIS_PRESSIONI_069_Comb. SLU (Accid.) 69


46_RIS_PRESSIONI_070_Comb. SLU (Accid.) 70


 $46_RIS_PRESSIO \overline{NI_071_Comb.\ SLE(rara)\ 71}$


46_RIS_PRESSIONI_072_Comb. SLE(rara) 72


46_RIS_PRESSIONI_073_Comb. SLE(freq.) 73

46_RIS_PRESSIONI_074_Comb. SLE(freq.) 74

46_RIS_PRESSIONI_075_Comb. SLE(perm.) 75

46_RIS_PRESSIONI_076_Comb. SLE(perm.) 76