REGIONE CAMPANIA

Acqua Campania S.p.A.

UTILIZZO IDROPOTABILE DELLE ACQUE DELL'INVASO DI CAMPOLATTARO E POTENZIAMENTO DELL'ALIMENTAZIONE POTABILE PER L'AREA BENEVENTANA

PROGETTO DI FATTIBILITA' TECNICA ED ECONOMICA

Stralcio Allegato IV D.L. 31.05.2021 n.77 - L. di conversione 21.07.2021 n.108

Responsabile Unico del Procedimento
Dirigente Ciclo Integrato delle Acque della G.R. della Campania
Ing. Rosario Manzi

II Concessionario

Acqua Campania S.p.A.

Direttore Generale

Area Tecnica (Ing. Gianluce Merie SALVIA)

II Geologo

I Progettisti

0	Dicembre 2021	EMISSIONE PER VIA			
Revisione	Data	Descrizione	Redatto	Controllato	Approvato

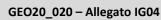
TITOLO:

RELAZIONE TECNICA - GEOLOGIA E GEOTECNICA - PROVE DI LABORATORIO

Parte 4 di 6

Progettazione:

Allegato


ED.02.2.ALL.03

Revisione:

Scala:

Il presente disegno e' di nostra proprieta'. Si fa divieto a chiunque di riprodurlo o renderlo noto a terzi senza nostra autorizzazione

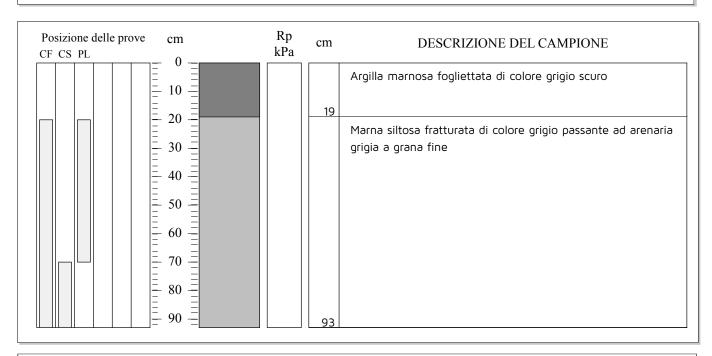
Allegato IG04-D

Campioni sondaggio CL 6

Committente: VIANINI LAVORI SPA
Luogo: CASALDUNI – PONTE (BN)

LAVOFO: ATTIVITÀ DI COLLABORAZIONE ALLE ATTIVITÀ DI PROGETTAZIONE DEFINITIVA, CONCERNENTI L'INTERVENTO DI UTILIZZO IDROPOTABILE DELLE ACQUE

DELL'INVASO DI CAMPOLATTARO - INDAGINI GEOGNOSTICHE



Certificazione Ufficiale - Settore « A e B » - Prove di laboratorio su terre e rocce AUTORIZZAZIONE MINISTERO INFRASTRUTTURE E TRASPORTI Decreto 150/15-06-2016 - Circolare 7618/STC/2010

COMMITTENTE: Vianini Lavori S.p.A.

RIFERIMENTO: Utilizzo idropotabile delle acque dell'invaso di Campolattaro

SONDAGGIO: CL6 CAMPIONE: C1 PROFONDITA': m 82.6-83.5

Certificazione Ufficiale-Settore A e B- Prove di laboratorio su terre e rocce AUTORIZZAZIONE MINISTERO INFRASTRUTTURE E TRASPORTI Decreto 150/15-06-2016 - Circolare 7618/STC/2010

COMMITTENTE: Vianini Lavori S.p.A.

RIFERIMENTO: Utilizzo idropotabile delle acque dell'invaso di Campolattaro

SONDAGGIO: CL6 CAMPIONE: C1 PROFONDITA': m 82.6-83.5

MODULO RIASSUNTIVO

PESO DI VOLUME ALLO STATO NATURALE

Peso di volume (kN/m³): 24.9

PROVA DI COMPRESSIONE UNIASSIALE

Resistenza a compressione (MPa): 25.69

POINT LOAD TEST

Indice Is(50) - Valore medio 0.33

Certificazione Ufficiale-Settore A e B- Prove di laboratorio su terre e rocce AUTORIZZAZIONE MINISTERO INFRASTRUTTURE E TRASPORTI Decreto 150/15-06-2016 - Circolare 7618/STC/2010

COMMITTENTE: Vianini Lavori S.p.A.

RIFERIMENTO: Utilizzo idropotabile delle acque dell'invaso di Campolattaro

SONDAGGIO: CL6 CAMPIONE: C1 PROFONDITA': m 82.6-83.5

MODULO RIASSUNTIVO

CARATTERISTICHE FISICHE

2.0	%
24.9	kN/m³
24.4	kN/m³
25.2	kN/m³
2.71	
0.090	
8.3	%
59.1	%
	%
	%
	%
	%
	24.9 24.4 25.2 2.71 0.090 8.3

ANALISI GRANULOMETRICA

Ghiaia	%
Sabbia	%
Limo	%
Argilla	%
D 10	mm
D 50	mm
D 60	mm
D 90	mm
Passante set. 10	9
Passante set. 4:	2 %
Passante set. 20	00 %
D 60 D 90 Passante set. 10 Passante set. 4:	mm mm 0 % 2 %

PERMEABILITA'

Coefficiente k	cm/sec
Coefficiente k	C111/3EC

COMPRESSIONE

σ	kPa	σ Rim	kPa
C _U	kPa	C _U Rim	kPa

TAGLIO DIRETTO

Prova consolidata-lenta							
C'	kPa	φ'	0				
C'Res	kPa	ф Res	0				

COMPRESSIONE TRIASSIALE

C.D.	c _d	kPa	фа	0
C.U.	c' _{cu}	kPa	φ΄ςυ	o
C.U.	c _{cu}	kPa	φου	0
U.U.	c _u	kPa	φυ	o

PROVA EDOMETRICA

σ kPa	E kPa	Cv cm²/sec	k cm/sec

Certificazione Ufficiale-Settore A e B- Prove di laboratorio su terre e rocce AUTORIZZAZIONE MINISTERO INFRASTRUTTURE E TRASPORTI Decreto 150/15-06-2016 - Circolare 7618/STC/2010

CERTIFICATO DI PROVA N°: 06880	Pagina 1/1	DATA DI EMISSIONE:	2//11/20	Inizio analisi: 26/10/20						
VERBALE DI ACCETTAZIONE N°: 760 d	lel 16/10/20	Apertura campione:	26/10/20	Fine analisi: 27/10/20						
COMMITTENTE: Vianini Lavori S.p.A	١.									
RIFERIMENTO: Utilizzo idropotabile	delle acque dell	'invaso di Campolatta	ero							
SONDAGGIO: CL6	CAMPIONE:	C1	PROFONI	DITA': m 82.6-83.5						
CONTEN	CONTENUTO D'ACQUA ALLO STATO NATURALE									
Мс	dalità di prova:	Norma ASTM D2216	i							

2.0 %

Omogeneo

Struttura del materiale: ☐ Stratificato

Wn = contenuto d'acqua allo stato naturale =

☐ Caotico

Temperatura di essiccazione: 110 °C

Sperimentatore Direttore Roberto Bracadlia Marco Ferrante Marco Ferrante

Certificazione Ufficiale-Settore A e B- Prove di laboratorio su terre e rocce AUTORIZZAZIONE MINISTERO INFRASTRUTTURE E TRASPORTI Decreto 150/15-06-2016 - Circolare 7618/STC/2010

CERTIFICATO DI PROVA N°: 06881	Pagina 1/1	DATA DI EMISSIONE:	27/11/20 Inizio ana		17/11/20				
VERBALE DI ACCETTAZIONE N°: 760	del 16/10/20	del 16/10/20 Apertura campione: 2		Fine analisi:	18/11/20				
COMMITTENTE: Vianini Lavori S.p.A.									
RIFERIMENTO: Utilizzo idropotabile delle acque dell'invaso di Campolattaro									
COMMITTENTE: Vianini Lavori S.p.A.				.6-83.5					
	PESO SPECIFI	CO DEI GRANULI							
N	Modalità di prova:	: Norma ASTM D854							

 γ_s = Peso specifico dei granuli (media delle due misure) = 2.71

 γ_{SC} = Peso specifico dei granuli corretto a 20° = 2.71

Metodo: ■ A □ B

Capacità del picnometro: 100 ml

Temperatura di prova: 19.7 °C

Disaerazione eseguita per bollitura

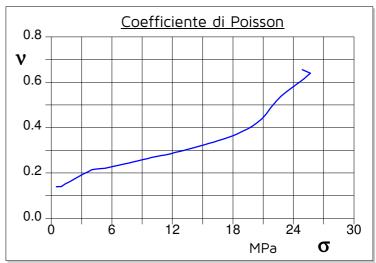
SGEO - Laboratorio 6.2 - 2018

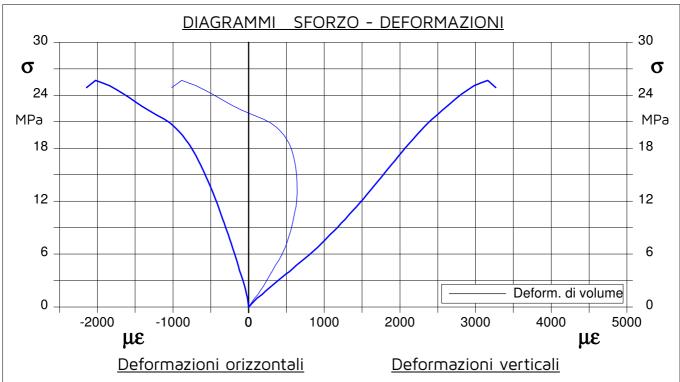
Sperimentatore Direttore
Roberto Bracadlia
Lo hu o mecu gli e Marco Ferrante

Certificazione Ufficiale-Settore A e B- Prove di laboratorio su terre e rocce AUTORIZZAZIONE MINISTERO INFRASTRUTTURE E TRASPORTI Decreto 150/15-06-2016 - Circolare 7618/STC/2010

CERTIFICATO DI PROVA N°: 06882 Pagina 1/2 DATA DI EMISSIONE: 27/11/20 Inizio analisi: 24/11/20 760 del 16/10/20 VERBALE DI ACCETTAZIONE N°: Apertura campione: 26/10/20 Fine analisi: 24/11/20

COMMITTENTE: Vianini Lavori S.p.A.


Utilizzo idropotabile delle acque dell'invaso di Campolattaro RIFERIMENTO:


CAMPIONE: PROFONDITA': m SONDAGGIO: CL6 82.6-83.5

PROVA DI COMPRESSIONE UNIASSIALE

Modalità di prova: Norma ASTM D7012 - 14

Provino n°:	1
Massa provino (g)	2008.0
Diametro (cm):	7.40
Altezza (cm):	18.40
Sezione (cm²):	43.01
Peso di volume (kN/m³):	24.9
Deformazione verticale (με)	3267
Deformazione orizzontale (με)	2141
Modulo elastico tangente (MPa):	10372
Modulo elastico secante (MPa):	8224
Coefficiente di Poisson secante	0.30
Pressione a rottura (MPa)	25.69

Il modulo elastico ed il coefficiente di poisson sono stati calcolati in corrispondenza del 50% della tensione a rottura.

SGEO - Laboratorio 6.2 - 2018

Sperimentatore

Roberto Bracadlia

Lo nu o Juscu gli e Marco Ferrante

Certificazione Ufficiale-Settore A e B- Prove di laboratorio su terre e rocce AUTORIZZAZIONE MINISTERO INFRASTRUTTURE E TRASPORTI Decreto 150/15-06-2016 - Circolare 7618/STC/2010

27/11/20 CERTIFICATO DI PROVA N°: 06882 Pagina 2/2 DATA DI EMISSIONE: Inizio analisi: 24/11/20 760 del 16/10/20 VERBALE DI ACCETTAZIONE N°: Apertura campione: 26/10/20 Fine analisi: 24/11/20

COMMITTENTE: Vianini Lavori S.p.A.

Utilizzo idropotabile delle acque dell'invaso di Campolattaro RIFERIMENTO:

CAMPIONE: SONDAGGIO: CL6 C1 PROFONDITA': m 82.6-83.5

PROVA DI COMPRESSIONE UNIASSIALE

Modalità di prova: Norma ASTM D7012 - 14

	Provino 1												Provinc	o 1			
n°	Tensione MPa		eformazio icale E2	one με Media		formazio ontale E2	one με Media	Coeff. Poisson	n°	Tensione MPa		eformazio ticale E2	one με Media		eformaz ontale E2	ione με Media	Coeff. Poisson
1	0.53	82	38	60	-8	-	-8	0.14	40	18.95	2802	1534	2168	-831	-	-831	0.38
2	1.00	160	61	110	-16	-	-16	0.14	41	19.46	2861	1574	2217	-875	-	-875	0.39
3	1.42	262	95	179	-27	-	-27	0.15	42	19.93	2920	1615	2268	-923	-	-923	0.41
4	1.77	322	119	221	-35	-	-35	0.16	43	20.39	2979	1657	2318	-976	-	-976	0.42
5	2.37	435	172	304	-53	-	-53	0.18	44	20.88	3042	1703	2373	-1042	-	-1042	0.44
6	3.16	570	250	410	-80	-	-80	0.20	45	21.30	3105	1748	2426	-1116	-	-1116	0.46
7	3.74	672	316	494	-103	-	-103	0.21	46	21.79	3182	1804	2493	-1220	-	-1220	0.49
8	3.98	723	345	534	-114	-	-114	0.21	47	22.32	3264	1865	2564	-1329	-	-1329	0.52
9	4.19	760	368	564	-122	-	-122	0.22	48	22.79	3334	1921	2627	-1415	-	-1415	0.54
10	4.70	839	413	626	-137	-	-137	0.22	49	23.23	3403	1974	2689	-1494	-	-1494	0.56
11	5.32	955	478	716	-158	-	-158	0.22	50	23.69	3472	2029	2750	-1570	-	-1570	0.57
12	5.88	1059	533	796	-180	-	-180	0.23	51	24.16	3550	2091	2820	-1654	-	-1654	0.59
13	6.30	1136	573	854	-197	-	-197	0.23	52	24.62	3634	2162	2898	-1742	-	-1742	0.60
14	6.74	1209	611	910	-214	-	-214	0.23	53	25.09	3719	2245	2982	-1838	-	-1838	0.62
15	7.16	1275	645	960	-229	-	-229	0.24	54	25.44	3782	2381	3081	-1942	-	-1942	0.63
16	7.63	1346	683	1015	-247	-	-247	0.24	55	25.69	3833	2490	3162	-2023	-	-2023	0.64
17	8.21	1429	728	1079	-269	-	-269	0.25	56	24.88	3880	2654	3267	-2141	-	-2141	0.66
18	8.63	1496	765	1130	-287	-	-287	0.25									
19	9.04	1556	798	1177	-305	-	-305	0.26									
20	9.53	1623	834	1229	-324	-	-324	0.26									
21	9.95	1685	869	1277	-343	-	-343	0.27									
22	10.46	1751	905	1328	-363	-	-363	0.27									
23	10.93	1816	941	1379	-382	-	-382	0.28									
24	11.37	1878	975	1427	-400	-	-400	0.28									
25	11.86	1941	1011	1476	-421	-	-421	0.29									
26	12.25	1994	1040	1517	-441	-	-441	0.29									
27	12.79	2057	1076	1567	-463	-	-463	0.30									
28	13.28	2117	1111	1614	-487	-	-487	0.30									
29	13.74	2175	1145	1660	-510	-	-510	0.31									
30	14.21	2232	1179	1706	-533	-	-533	0.31									
31	14.67	2289	1212	1751	-558	-	-558	0.32									
32	15.18	2348	1247	1798	-583	-	-583	0.32									
33	15.65	2405	1281	1843	-609	-	-609	0.33									
34	16.14	2462	1316	1889	-636	-	-636	0.34									
35	16.60	2518	1351	1934	-664	-	-664	0.34									
36	17.09	2574	1386	1980	-693	-	-693	0.35									
37	17.55	2631	1421	2026	-724	-	-724	0.36									
38	18.04	2688	1459	2073	-757	-	-757	0.36									
39	18.48	2742	1493	2118	-790	-	-790	0.37									

SGEO - Laboratorio 6.2 - 2018

Sperimentatore
Roberto Bracaglia
Lohuro Pracuglie Marco Ferrante
Lohuro Pracuglie

Certificazione Ufficiale-Settore A e B- Prove di laboratorio su terre e rocce AUTORIZZAZIONE MINISTERO INFRASTRUTTURE E TRASPORTI Decreto 150/15-06-2016 - Circolare 7618/STC/2010

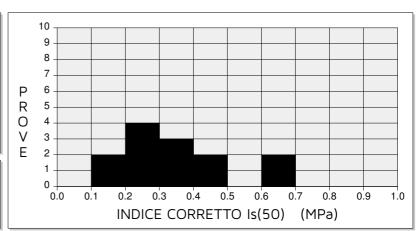
CERTIFICATO DI PROVA N°: 06883 Pagina 1/1 DATA DI EMISSIONE: 27/11/20 Inizio analisi: 24/11/20 VERBALE DI ACCETTAZIONE N°: 760 del 16/10/20 Apertura campione: 26/10/20 Fine analisi: 24/11/20

COMMITTENTE: Vianini Lavori S.p.A.

Utilizzo idropotabile delle acque dell'invaso di Campolattaro RIFERIMENTO:

CAMPIONE: SONDAGGIO: CL6 C1 PROFONDITA': m 82.6-83.5

POINT LOAD TEST


Modalità di prova: Norma ASTM D5731 - 16

INDICE CORRETTO Is(50)

Prove esequite: 13 Valore massimo 0.68 Valore medio * 0.33 Valore minimo 0.16

CARATTERISTICHE FISICHE

Umidità naturale (%) 2.0 Peso di volume (kN/m³): - - -

Prova n°	Forma Rottura	Piani di debolezza	Altezza mm	Larghezza mm	Carico kN	Indice Is MPa	Indice Is(50) MPa
1	С	Α	72.0	75.0	2.63	0.383	0.480
2	D	Α	35.0	47.5	0.35	0.165	0.159
3	D	Α	47.0	47.5	1.10	0.387	0.398
4	С	Α	72.0	73.0	1.35	0.202	0.252
5	D	Α	61.0	62.0	1.20	0.249	0.289
6	D	Α	45.0	55.0	2.00	0.635	0.669
7	D	Α	35.0	48.0	0.93	0.435	0.420
8	С	Α	48.0	72.0	1.00	0.227	0.258
9	D	Α	54.0	63.5	2.60	0.596	0.675
10	D	Α	33.0	56.0	0.48	0.204	0.201
11	D	Α	42.0	65.0	1.20	0.345	0.372
12	D	A	29.0	44.5	0.33	0.201	0.183
13	D	Α	25.0	42.5	0.52	0.384	0.335

^{*} Vengono esclusi dal calcolo del valore medio i due valori maggiori e i due valori minori

Forma del provino e tipo di rottura

A - Blocco

B - Cilindrico - rottura diametrale

- Cilindrico - rottura assiale

D - Informe

Posizione dei piani di debolezza

A - Assenti

B - Perpendicolari alla direzione del carico

C - Paralleli alla direzione del carico

D - In direzioni varie

SGEO - Laboratorio 6.2 - 2018

Roberto Bracadlia
Lo hu o macue gli e Marco Ferrante



Certificazione Ufficiale - Settore « A e B » - Prove di laboratorio su terre e rocce AUTORIZZAZIONE MINISTERO INFRASTRUTTURE E TRASPORTI Decreto 150/15-06-2016 - Circolare 7618/STC/2010

COMMITTENTE: Vianini Lavori S.p.A.

RIFERIMENTO: Utilizzo idropotabile delle acque dell'invaso di Campolattaro

SONDAGGIO: CL6 CAMPIONE: C2 PROFONDITA': m 89.8-91.0

Certificazione Ufficiale-Settore A e B- Prove di laboratorio su terre e rocce AUTORIZZAZIONE MINISTERO INFRASTRUTTURE E TRASPORTI Decreto 150/15-06-2016 - Circolare 7618/STC/2010

COMMITTENTE: Vianini Lavori S.p.A.

RIFERIMENTO: Utilizzo idropotabile delle acque dell'invaso di Campolattaro

SONDAGGIO: CL6 CAMPIONE: C2 PROFONDITA': m 89.8-91.0

MODULO RIASSUNTIVO

CARATTERISTICHE FISICHE

<u> </u>	_	
Umidità naturale	20.9	%
Peso di volume	19.9	kN/m³
Peso di volume secco	16.4	kN/m³
Peso di volume saturo	20.2	kN/m³
Peso specifico	2.73	
Indice dei vuoti	0.629	
Porosità	38.6	%
Grado di saturazione	90.9	%
Limite di liquidità	48.6	%
Limite di plasticità	26.2	%
Indice di plasticità	22.4	%
Indice di consistenza	1.23	
Passante al set. n° 40	SI	
Limite di ritiro		%
CNR-UNI 10006/00		

ANALISI GRANULOMETRICA

Ghiaia	4.0	%
Sabbia	8.5	%
Limo	50.0	%
Argilla	37.5	%
D 10		mm
D 50	0.003549	mm
D 60	0.005210	mm
D 90	0.097441	mm
Passante set. 10	96.0	%
Passante set. 42	95.2	%
Passante set. 200	88.7	%

PERMEABILITA'

Coefficiente k	cm/sec
Coefficiente k	CITI/Sec

COMPRESSIONE

σ	kPa	σ Rim	kPa
CU	kPa	C _U Rim	kPa

TAGLIO DIRETTO

Prova consolidata-lenta				
c'	kPa	φ'	o	
C'Res	kPa	ф ˈRes	o	

COMPRESSIONE TRIASSIALE

C.D.	c _d		kPa	фа		0
C.U.	c' _{cu}	33	kPa	φ 'cυ	27.5	0
C.U.	c _{cu}	35	kPa	фси	26.6	0
U.U.	C U		kPa	фυ		0

PROVA EDOMETRICA

	<u>1071</u>		
σ kPa	E kPa	Cv cm²/sec	k cm/sec
50.0 ÷ 100.0	15873		
100.0 ÷ 200.0	8439		
200.0 ÷ 400.0	10390		
400.0 ÷ 800.0	12539		
800.0 ÷ 1600.0	24615		
100.0 ÷ 200.0	25000		
200.0 ÷ 400.0	74074		
400.0 ÷ 800.0	35242		
800.0 ÷ 1600.0	44568		
1600.0 ÷ 3200.0	45070		
3200.0 ÷ 6400.0	63304		

Certificazione Ufficiale - Settore « A e B » - Prove di laboratorio su terre e rocce AUTORIZZAZIONE MINISTERO INFRASTRUTTURE E TRASPORTI Decreto 150/15-06-2016 - Circolare 7618/STC/2010

27/11/20 CERTIFICATO DI PROVA N°: 6852 Pagina 1/1 DATA DI EMISSIONE: Inizio analisi: 26/10/20 760 del 16/10/20 26/10/20 26/10/20 VERBALE DI ACCETTAZIONE N°: Apertura campione: Fine analisi:

COMMITTENTE: Vianini Lavori S.p.A.

Utilizzo idropotabile delle acque dell'invaso di Campolattaro RIFERIMENTO:

CAMPIONE: SONDAGGIO: CL6 PROFONDITA': m 89.8-91.0

CONTENUTO D'ACQUA ALLO STATO NATURALE

Modalità di prova: Norma ASTM D2216

Wn = contenuto d'acqua allo stato naturale = 20.9 %

Temperatura di essiccazione: 110 °C

SGEO - Laboratorio 6.2 - 2018

Sperimentatore
Roberto Bracaglia
Lo hu o gracu gli e Marco Ferrante fusuto

Certificazione Ufficiale - Settore « A e B » - Prove di laboratorio su terre e rocce AUTORIZZAZIONE MINISTERO INFRASTRUTTURE E TRASPORTI Decreto 150/15-06-2016 - Circolare 7618/STC/2010

27/11/20 CERTIFICATO DI PROVA N°: 6853 Pagina 1/1 DATA DI EMISSIONE: Inizio analisi: 09/11/20 760 del 16/10/20 26/10/20 VERBALE DI ACCETTAZIONE N°: Apertura campione: Fine analisi: 09/11/20

COMMITTENTE: Vianini Lavori S.p.A.

Utilizzo idropotabile delle acque dell'invaso di Campolattaro RIFERIMENTO:

SONDAGGIO: CL6 CAMPIONE: PROFONDITA': m 89.8-91.0

PESO DI VOLUME ALLO STATO NATURALE

Modalità di prova: Norma BS 1377 T 15

Determinazione esequita mediante fustella tarata

Peso di volume allo stato naturale = 19.9 kN/m³

Sperimentatore
Roberto Bracaglia
Lo nu o Pracu gli e Marco Ferrante fousuto

Certificazione Ufficiale - Settore « A e B » - Prove di laboratorio su terre e rocce AUTORIZZAZIONE MINISTERO INFRASTRUTTURE E TRASPORTI Decreto 150/15-06-2016 - Circolare 7618/STC/2010

CERTIFICATO DI PROVA N°: 6854	Pagina 1/1	DATA DI EMISSIONE:	27/11/20	Inizio analisi:	17/11/20			
VERBALE DI ACCETTAZIONE N°: 760	del 16/10/20	Apertura campione:	26/10/20	Fine analisi:	18/11/20			
COMMITTENTE: Vianini Lavori S.p	o.A.							
RIFERIMENTO: Utilizzo idropotabile delle acque dell'invaso di Campolattaro								
SONDAGGIO: CL6 CAMPIONE: C2 PROFONDITA': m 89.8-91					.8-91.0			
PESO SPECIFICO DEI GRANULI								
1	Modalità di prova	: Norma ASTM D854						

 $\gamma_{\rm S}$ = Peso specifico dei granuli (media delle due misure) = 2.73

 γ_{SC} = Peso specifico dei granuli corretto a 20° = 2.73

A □в Metodo:

100 ml Capacità del picnometro:

Temperatura di prova: 21.0 °C

Disaerazione eseguita per bollitura

Sperimentatore

Roberto Bracadlia

Lo nu o guecu gli e Marco Ferrante

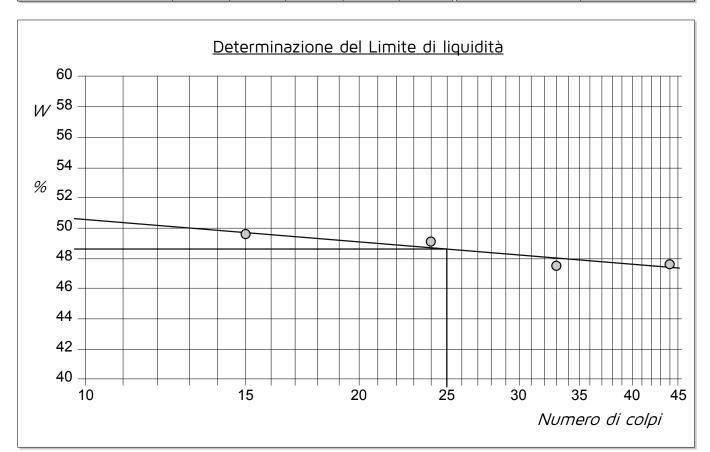
Certificazione Ufficiale - Settore « A e B » - Prove di laboratorio su terre e rocce AUTORIZZAZIONE MINISTERO INFRASTRUTTURE E TRASPORTI Decreto 150/15-06-2016 - Circolare 7618/STC/2010

27/11/20 CERTIFICATO DI PROVA N°: 6855 Pagina 1/1 DATA DI EMISSIONE: Inizio analisi: 17/11/20 760 del 16/10/20 26/10/20 18/11/20 VERBALE DI ACCETTAZIONE N°: Apertura campione: Fine analisi:

COMMITTENTE: Vianini Lavori S.p.A.

Utilizzo idropotabile delle acque dell'invaso di Campolattaro RIFERIMENTO:

SONDAGGIO: CAMPIONE: 89.8-91.0 CL6 C2 PROFONDITA': m


<u>LIMITI DI CONSISTENZA LIQUIDO E PLASTICO</u>

Modalità di prova: Norma ASTM D4318

Limite di liquidità	48.6 %
Limite di plasticità	26.2 %
Indice di plasticità	22.4 %

La prova è stata eseguita sulla frazione granulometrica passante al setaccio n° 40 (0.42 mm)

LIMITE DI LIQUIDITA'						LIMITE DI PI	LASTICI	ΓΑ'
Numero di colpi	15	24	33	44		Umidità (%) 26.1		26.2
Umidità (%)	49.6	49.1	47.5	47.6		Umidità media	26	.2

SGEO - Laboratorio 6.2 - 2018

Sperimentatore

Roberto Bracadlia

Lo huro

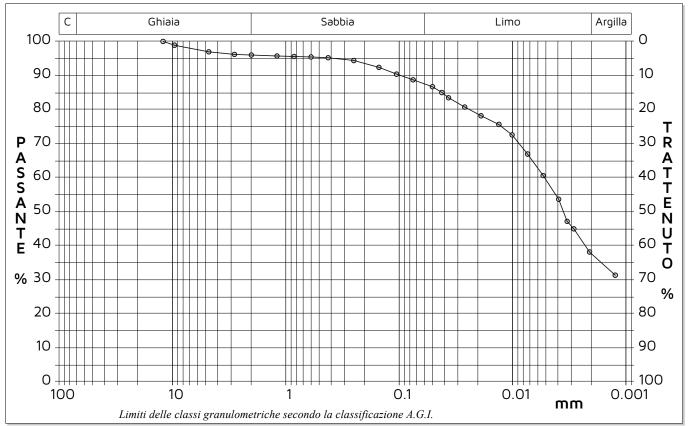
Specia gli e

Marco Ferrante

Certificazione Ufficiale - Settore « A e B » - Prove di laboratorio su terre e rocce AUTORIZZAZIONE MINISTERO INFRASTRUTTURE E TRASPORTI Decreto 150/15-06-2016 - Circolare 7618/STC/2010

27/11/20 CERTIFICATO DI PROVA N°: 6856 Pagina 1/1 DATA DI EMISSIONE: 16/11/20 Inizio analisi: 760 del 16/10/20 26/10/20 19/11/20 VERBALE DI ACCETTAZIONE N°: Apertura campione: Fine analisi:

COMMITTENTE: Vianini Lavori S.p.A.


Utilizzo idropotabile delle acque dell'invaso di Campolattaro RIFERIMENTO:

CAMPIONE: SONDAGGIO: CL6 C2 PROFONDITA': m 89.8-91.0

ANALISI GRANULOMETRICA

Modalità di prova: Norma ASTM D422

Ghiaia	4.0 %	Passante se	etaccio 10 (2 mm)	96.0 %	D ₁₀		mm
Sabbia Limo	8.5 % 50.0 %	Passante se	etaccio 40 (0.42 mm)	95.2 %	D ₃₀	0.00355	mm
Argilla	37.5 %	Passante se	etaccio 200 (0.075 mm)	88.7 %	D ₆₀		mm
Coefficiente	di uniformita		Coefficiente di curvatura		D90	0.09744	mm

Diametro mm	Passante %								
12.0000	100.00	1.1900	95.71	0.1500	92.36	0.0366	83.43	0.0073	66.90
9.5200	98.88	0.8410	95.58	0.1050	90.37	0.0263	80.71	0.0054	60.60
4.7500	96.95	0.5950	95.42	0.0750	88.69	0.0189	78.15	0.0039	53.61
2.8200	96.19	0.4200	95.20	0.0507	86.67	0.0131	75.59	0.0033	47.13
2.0000	96.01	0.2500	94.37	0.0418	84.97	0.0101	72.53	0.0029	44.92

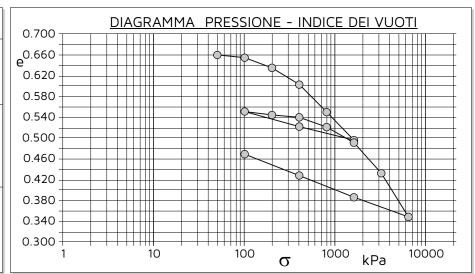
La frazione ghiaiosa è costituita da frammenti litoidi e sublitoidi marnosi

Sperimentatore
Roberto Bracaglia
Lo nu o Pracuglie Marco Ferrante fluorito

Certificazione Ufficiale - Settore « A e B » - Prove di laboratorio su terre e rocce AUTORIZZAZIONE MINISTERO INFRASTRUTTURE E TRASPORTI Decreto 150/15-06-2016 - Circolare 7618/STC/2010

Pagina 1/2 27/11/20 CERTIFICATO DI PROVA N°: 6857 DATA DI EMISSIONE: Inizio analisi: 09/11/20 760 del 16/10/20 26/10/20 27/11/20 VERBALE DI ACCETTAZIONE N°: Apertura campione: Fine analisi:

COMMITTENTE: Vianini Lavori S.p.A.


Utilizzo idropotabile delle acque dell'invaso di Campolattaro RIFERIMENTO:

CAMPIONE: SONDAGGIO: CL6 C2 PROFONDITA': m 89.8-91.0

PROVA EDOMETRICA

Modalità di prova: Norma ASTM D2435

	Caratteristiche del camp	<u>ione</u>
ι	Peso di volume (kN/m³) Jmidità (%) Peso specifico	19.77 22.6 2.73
S	Altezza provino (cm) Diametro provino (cm) Sezione provino (cm²) Volume provino (cm³)	2.00 5.05 20.00 40.00
lı F	/olume dei vuoti (cm³) ndice dei vuoti Porosità (%) Saturazione (%)	15.92 0.66 39.79 93.4

0.0	DIAGRAN	MMA TEMP	O - CEI	DIMENTO	<u>)</u>
Λ					
0.4			+		100.0
%					
0.8					
1.2					
1.6					200.0
2.0					
2.4					
++		+ + + + + + + + + + + + + + + + + + +			
2.8		 			
		 			
3.2					
1 2 6					400.0
3.6					
4.0					
0.1	1	10	100	t 1000	min

Pressione kPa	Cedim. mm/100	Indice Vuoti	Сс
50.0	1.0	0.660	
100.0	7.3	0.655	0.017
200.0	31.0	0.635	0.065
400.0	69.5	0.603	0.106
800.0	133.3	0.550	0.176
1600.0	198.3	0.496	0.179
400.0	167.0	0.522	
100.0	132.0	0.551	
200.0	140.0	0.545	0.022
400.0	145.4	0.540	0.015
800.0	168.1	0.521	0.063
1600.0	204.0	0.491	0.099
3200.0	275.0	0.432	0.196
6400.0	376.1	0.349	0.279
1600.0	330.6	0.386	
400.0	280.2	0.428	
100.0	230.6	0.469	

SGEO - Laboratorio 6.2 - 2018

Sperimentatore Enrico Tallini

Direttore Verco Ferrante Susuto

Certificazione Ufficiale - Settore « A e B » - Prove di laboratorio su terre e rocce AUTORIZZAZIONE MINISTERO INFRASTRUTTURE E TRASPORTI Decreto 150/15-06-2016 - Circolare 7618/STC/2010

CERTIFICATO DI PROVA N°: 6857Pagina 2/2DATA DI EMISSIONE: 27/11/20Inizio analisi: 09/11/20VERBALE DI ACCETTAZIONE N°: 760 del 16/10/20Apertura campione: 26/10/20Fine analisi: 27/11/20

COMMITTENTE: Vianini Lavori S.p.A.

RIFERIMENTO: Utilizzo idropotabile delle acque dell'invaso di Campolattaro

SONDAGGIO: CL6 CAMPIONE: C2 PROFONDITA': m 89.8-91.0

PROVA EDOMETRICA

Modalità di prova: Norma ASTM D2435

LETTURE INTERMEDIE - TABELLE RIASSUNTIVE

Pressione 1	00.0 kPa	Pressione 2	00.0 kPa	Pressione 4	00.0 kPa	Pressione	kPa
Tempo minuti	Cedim. mm/100	Tempo minuti	Cedim. mm/100	Tempo minuti	Cedim. mm/100	Tempo minuti	Cedim. mm/100
0.00	1.0	0.00	7.3	0.00	31.0		
0.10	1.5	0.10	8.0	0.10	40.0		
0.25	1.7	0.25	8.5	0.25	40.8		
0.50	1.8	0.50	9.0	0.50	41.5		
1.00	2.0	1.00	9.8	1.00	42.3		
2.00	2.2	2.00	11.0	2.00	43.3		
5.00	2.8	5.00	13.3	5.00	45.5		
10.00	3.5	10.00	16.0	10.00	48.6		
30.00	5.0	30.00	21.9	30.00	57.7		
60.00	5.9	60.00	24.7	60.00	62.5		
120.00	6.5	120.00	27.4	120.00	65.3		
240.00	6.9	240.00	29.0	240.00	67.2		
480.00	7.1	480.00	30.0	480.00	68.4		
1440.00	7.3	1440.00	31.0	1440.00	69.5		

Pressione		kPa	Pressione		kPa	Pressione	 kPa	Pressione	 kPa
Tempo minuti	Ced mm/		Tempo minuti	Ced mm,		Tempo minuti	dim. n/100	Tempo minuti	edim. m/100

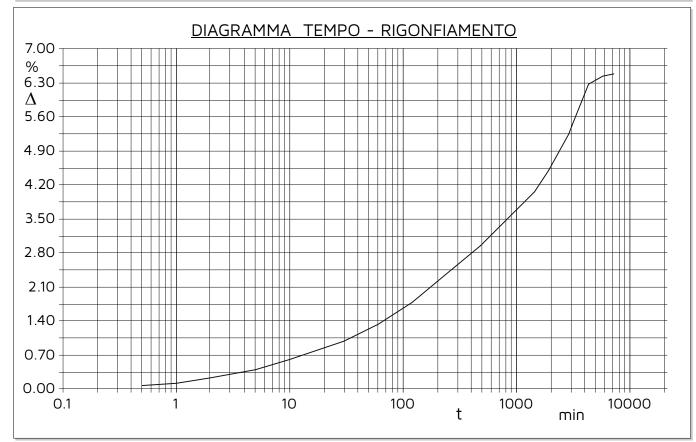
SGEO - Laboratorio 6.2 - 2018

Sperimentatore Enrico Tallini Direttore
Warco Ferrante fluorite

Certificazione Ufficiale - Settore « A e B » - Prove di laboratorio su terre e rocce AUTORIZZAZIONE MINISTERO INFRASTRUTTURE E TRASPORTI Decreto 150/15-06-2016 - Circolare 7618/STC/2010

CERTIFICATO DI PROVA N°: 6859Pagina 1/1DATA DI EMISSIONE: 27/11/20Inizio analisi: 16/11/20VERBALE DI ACCETTAZIONE N°: 760 del 16/10/20Apertura campione: 26/10/20Fine analisi: 21/11/20

COMMITTENTE: Vianini Lavori S.p.A.


RIFERIMENTO: Utilizzo idropotabile delle acque dell'invaso di Campolattaro

SONDAGGIO: CL6 CAMPIONE: C2 PROFONDITA': m 89.8-91.0

PROVA DI RIGONFIAMENTO LIBERO A PRESSIONE DEFINITA

Modalità di prova: Norma ASTM D4546

Caratteristiche del campi	<u>one</u>	Rigonfiamento	
Peso di volume (kN/m³) Umidità (%) Peso specifico	19.85 22.6 2.73	Pressione applicata (kPa)	3
Altezza provino (cm) Volume provino (cm³) Volume dei vuoti (cm³) Indice dei vuoti Porosità (%) Saturazione (%)	1.650 33.01 13.06 0.65 39.57 94.4	Altezza finale (cm) Volume finale (cm³) Deformazione di rigonfiamento (%)	1.757 35.15 6.49

SGEO - Laboratorio 6.2 - 2018

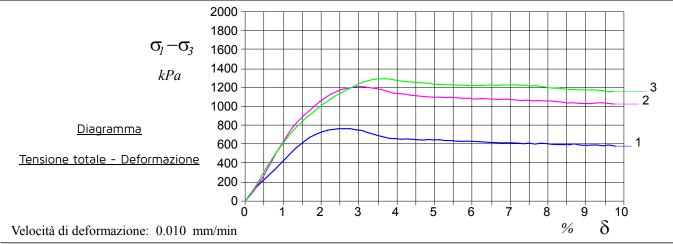
Sperimentatore Enrico Tallini Direttore
Werco Ferrante fluorite

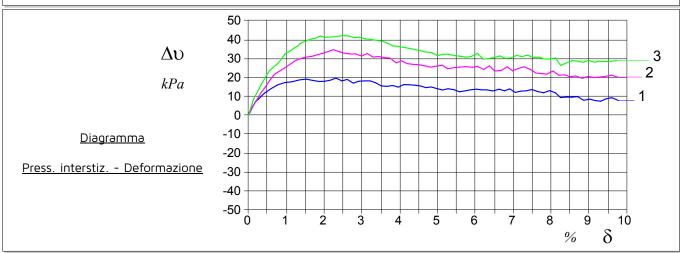
Certificazione Ufficiale - Settore « A e B » - Prove di laboratorio su terre e rocce AUTORIZZAZIONE MINISTERO INFRASTRUTTURE E TRASPORTI Decreto 150/15-06-2016 - Circolare 7618/STC/2010

27/11/20 CERTIFICATO DI PROVA N°: 6858 Pagina 2/3 DATA DI EMISSIONE: Inizio analisi: 23/11/20 760 del 16/10/20 26/10/20 25/11/20 VERBALE DI ACCETTAZIONE N°: Apertura campione: Fine analisi:

COMMITTENTE: Vianini Lavori S.p.A.

RIFERIMENTO: Utilizzo idropotabile delle acque dell'invaso di Campolattaro


CAMPIONE: SONDAGGIO: CL6 PROFONDITA': m 89.8-91.0


PROVA DI COMPRESSIONE TRIASSIALE C.I.U.

Modalità di prova: Norma ASTM D4767

Р	Dimer	nsioni	Cara	etterist	iche	fisiche	Consolidazione					Valori finali o a rottura						
n	H_o	ф	γ	γ_S	$\mathbf{w}_{\!o}$	S_o	$\sigma_{\!\scriptscriptstyle 3}$	\mathbf{u}_o	$\sigma_{\!\scriptscriptstyle 3}^{'}$	ΔV/V	ΔΗ/Η	\mathbf{w}_{f}	δ_f	σ_{l} - σ_{3}	u	$\frac{\sigma_1 + \sigma_3}{2}$	$\frac{\sigma_l' + \sigma_3'}{2}$	$\frac{\sigma_{l}-\sigma_{3}}{2}$
	cm	ст	kN/m^3		%	%	kPa	kPa	kPa	%	%	%	%	kPa	kPa	kPa	kPa	kPa
1	7.60	3.80	20.0	2.73	21.	7 94.1	700	300	400	0.5	0.1	22.1	2.5	764	318	782	764	382
2	7.60	3.80	19.9	2.73	21.0	6 92.9	900	300	600	1.2	0.4	22.4	3.0	1211	331	1206	1174	606
3	7.60	3.80	20.1	2.73	21.	5 95.5	1100	300	800	1.0	0.4	21.6	3.7	1292	338	1446	1408	646
	$H_0 \phi$ - Altezza e diametro provini γ_{S} - Peso di volume e peso spec. $\Delta H \Delta V$ - Variaz. di altezza e volume δ_f - Deformazione a rottura S_{S} - Grado di saturazione iniziale σ_S/μ_S - Press di cella/Back pressure σ_S - Tensioni totali e efficaci																	

 $w_o w_f$ - Umidità iniziale e finale S_o - Grado di saturazione iniziale σ_3/u_o - Press. di cella/Back pressure σ σ - Tensioni totali e efficaci

Nel confezionamento dei provini sono stati asportati alcuni inclusi marnosi

SGEO - Laboratorio 6.2 - 2018

Sperimentatore Enrico Tallini

Certificazione Ufficiale - Settore « A e B » - Prove di laboratorio su terre e rocce AUTORIZZAZIONE MINISTERO INFRASTRUTTURE E TRASPORTI Decreto 150/15-06-2016 - Circolare 7618/STC/2010

CERTIFICATO DI PROVA N°: 6858Pagina 3/3DATA DI EMISSIONE: 27/11/20Inizio analisi: 23/11/20VERBALE DI ACCETTAZIONE N°: 760 del 16/10/20Apertura campione: 26/10/20Fine analisi: 25/11/20

COMMITTENTE: Vianini Lavori S.p.A.

RIFERIMENTO: Utilizzo idropotabile delle acque dell'invaso di Campolattaro

SONDAGGIO: CL6 CAMPIONE: C2 PROFONDITA': m 89.8-91.0

PROVA DI COMPRESSIONE TRIASSIALE C.I.U.

Modalità di prova: Norma ASTM D4767

	PROVI	INO 1			PROV	INO 2		PROVINO 3				
δ	δ	σ_I – σ_3	Δυ	δ	δ	σ_I - σ_3	Δυ	δ	δ	σ_I - σ_3	Δυ	
mm	%	kPa	kPa	mm	%	kPa	kPa	mm	%	kPa	kPa	
0.02	0.02	14.7	1.5	0.03	0.04	21.1	1.5	0.10	0.13	75.6	8.3	
0.06	0.08	45.9	3.4	0.10	0.13	62.8	5.5	0.26	0.34	202.6	16.4	
0.08	0.11	64.6	4.4	0.18	0.24	117.6	8.7	0.42	0.56	353.7 499.9	23.6	
0.15 0.20	0.19 0.26	100.5 134.1	7.3 8.4	0.26 0.34	0.34 0.45	185.0 242.8	12.1 15.1	0.60 0.74	0.79 0.97	598.3	27.6 32.6	
0.32	0.42	197.8	11.6	0.44	0.43	336.8	18.7	0.74	1.13	681.3	34.2	
0.45	0.59	262.3	13.9	0.53	0.69	414.8	21.7	0.86 0.93	1.23	728.8	35.8	
0.59	0.77	330.2	16.0	0.63	0.83	521.5	23.4	1.00	1.31	764.1	36.7	
0.74	0.97	412.1 483.1	17.3	0.73	0.96	600.1	25.0	1.04 1.09	1.36	786.8 809.8 850.7	37.8 38.6	
0.87	1.14	483.1 561.9	17.7	0.84	1.10	691.3	27.0 28.9	1.09	1.43	809.8	38.6	
1.02 1.16	1.34 1.53	620.0	18.7 19.0	0.94 1.06	1.24 1.39	773.5 842.8	28.9	1.16 1.25	1.52 1.64	895.0	39.3 40.3	
1.10	1.70	672.7	18.3	1.17	1.54	901.9	30.8	1.34	1.76	928.7	40.5	
1.29 1.43	1.88	706.3	17.8	1.27	1.67	949.4	31.1	1.45	1.90	977.3	41.8	
1.54	2.03	729.9	18.0	1.38	1.82	1000.2	31.9	1.55	2.04	1019.6	41.2	
1.65	2.18	748.6	18.6	1.49	1.96	1050.3	32.7 33.6	1.67 1.79	2.20 2.35	1062.9	41.3 41.6	
1.76	2.31	755.4	19.6	1.60	2.10	1088.3	33.6	1.79	2.35	1104.2	41.6	
1.88	2.47	764.3	18.1	1.71	2.25	1128.1	34.6	1.89	2.49	1136.2	42.1 41.9	
1.99 2.11	2.61 2.77	764.1 763.5	18.9 17.0	1.82 1.93	2.40 2.54	1155.9 1178.5	33.5 32.8	2.01 2.13	2.64 2.80	1167.6 1198.6	41.9	
2.22	2.92	751.7	18.0	2.05	2.70	1191.8	32.4	2.10	2.94	1227.7	41.3	
2.34	3.08	745.7 725.9	18.1	2.15	2.83	1201.5	32 4	2.24 2.35	3.09	1254.0 1269.6	40.4	
2.45	3.22	725.9	18.1	2.28	2.99	1211.0	31.2	2.46	3.23	1269.6	40.0	
2.56	3.37	708.3	17.1	2.39	3.14	1205.4	32.6	2.57	3.38	1286.0	39.5	
2.66	3.50	690.8	15.5	2.50	3.29	1197.1	30.8	2.68 2.80	3.53	1291.7	39.2 38.0	
2.78 2.90	3.66 3.82	675.5 660.2	15.3 15.7	2.62 2.73	3.45 3.59	1189.5 1178.4	31.0 30.4	2.80	3.68 3.82	1292.2 1289.0	38.0	
3.02	3.97	659.0	14.8	2.73	3.74	1160.2	30.4	3.02	3.82	1277.2	36.6 36.4 35.8	
3.12	4.11	653.2	16.2	2.97	3.91	1141.7	27.7	3.02 3.13 3.24 3.34 3.46	4.11	1268.2	35.8	
3.23	4.25	656.8	16.1	3.08	4.05	1135.3	28.7	3.24	4.26	1261.6	353	
3.35	4.40	653.2 647.4	15.9	3.19	4.20	1131.1	27.3 26.9	3.34	4.40	1257.4 1253.0	34.7	
3.46	4.55	647.4	15.4	3.31	4.36	1117.4	26.9	3.46	4.55	1253.0	34.7 34.0 33.4 33.1	
3.57 3.67	4.70 4.83	643.9 649.8	14.6 14.9	3.43 3.55	4.51 4.67	1113.2 1106.5	26.7 26.1	3.58 3.68 3.80 3.92 4.03	4.71 4.84	1248.7 1244.5	33.4	
3.79	4.83	646.3	14.9	3.66	4.81	1100.5	25.4	3.00	5.00	1233.1	31.1	
3.90	5.13	647.5	13.3	3.78	4.97	1098.2	25.9	3.92	5.15	1233.4	31.5 32.3	
4.01	5.28	639.3	14.0	3.90	5.13	1098.6	26.4	4.03	5.30	1229.1 1227.1	32.2	
4.13	5.44	638.0 632.2	13.5	4.00	5.27	1094.5	24.6	4.14	5.45	1227.1	31.5	
4.24	5.58	632.2	12.4	4.13	5.44	1097.1	25.2	4.26	5.61	1225.1	31.2	
4.35	5.72	631.1 632.3	12.8	4.25	5.59	1090.4	25.4 25.7	4.38 4.48	5.76 5.89	1225.4 1218.9	30.7 31.0 32.7	
4.46 4.58	5.87 6.02	631.0	13.4 13.7	4.37 4.50	5.75 5.92	1086.2 1086.4	25.7 25.3	4.46	6.05	1216.9	31.0	
4.69	6.17	627.5	13.4	4.60	6.06	1077.7	25.8	4.72	6.21	1221.8	29.6	
4.80	6.31	624.1	13.4	4.73	6.23	1082.6	24.1	4.83	6.35	1222.2	29.9	
4.91	6.47	618.1	12.8	4.84	6.37	1080.9	26.1	4.94 5.05	6.50	1227.3	30.5	
5.04	6.63	616.8	13.7	4.95	6.52	1076.7	23.4	5.05	6.64	1220.7	31.3	
5.15	6.77	613.4	12.9	5.08	6.69	1072.3	23.6	5.16	6.78	1225.9	30.1	
5.25 5.37	6.91 7.06	614.6 613.4	13.9 12.0	5.20 5.31	6.84 6.98	1077.4 1073.3	25.6 23.5	5.27 5.39	6.93 7.09	1226.3 1228.8	30.2 31.6	
5.59	7.35	604.1	12.0	5.54	7.29	1073.3	25.6	5.61	7.09	1225.0	31.8	
5.82	7.66	601.7	12.5	5.78	7.60	1058.7	22.3	5.84	7.68	1218.6	30.7	
6.05	7.96	606.2	13.0	6.00	7.90	1057.3	21.7	6.05	7.96	1203.3	29.6	
6.27	8.25	597.0	9.3	6.24	8.21	1051.1	21.1	6.27	8.26	1192.4	26.3	
6.50	8.55	594.6	9.5	6.47	8.51	1035.8	20.3	6.51	8.56	1178.9	28.9	
6.74 6.97	8.86 9.17	589.7 592.0	7.9 7.7	6.71 6.95	8.83 9.14	1031.8 1030.3	19.5 19.9	6.72 6.95	8.85 9.15	1175.2 1173.5	28.0 28.0	
7.19	9.17	582.7	8.6	7.18	9.14	1030.3	20.5	7.18	9.15	1173.3	28.4	
7.43	9.78	580.1	7.8	7.41	9.76	1025.0	20.2	7.40	9.73	1158.8	28.9	

SGEO - Laboratorio 6.2 - 2018

Sperimentatore Enrico Tallini

Certificazione Ufficiale - Settore « A e B » - Prove di laboratorio su terre e rocce AUTORIZZAZIONE MINISTERO INFRASTRUTTURE E TRASPORTI Decreto 150/15-06-2016 - Circolare 7618/STC/2010

ALLEGATO PROVA TRIASSIALE C.I.U: Pagina 1/1 DATA DI EMISSIONE: 27/11/20 Inizio analisi: 23/11/20 VERBALE DI ACCETTAZIONE N°: 760 del 16/10/20 Apertura campione: 26/10/20 Fine analisi: 25/11/20

COMMITTENTE: Vianini Lavori S.p.A.

RIFERIMENTO: Utilizzo idropotabile delle acque dell'invaso di Campolattaro

SONDAGGIO: CL6 CAMPIONE: C2 PROFONDITA': m 89.8-91.0

PROVA DI COMPRESSIONE TRIASSIALE C.I.U.

Modalità di prova: Norma ASTM D4767

Pr.	Dimer	nsioni	Car	ətteristi	che fisi	che	Consolidazione				
n°	H_o	ф <i>ст</i>	γ kN/m³	γ_s	W ₀ %	S ₀ %	σ ₃ kPa	u _o kPa	σ ₃ ' kPa	ΔV/V %	ΔΗ/H %
1	7.60	3.80	20.0	2.73	21.7	94.1	700	300	400	0.5	0.1
2	7.60	3.80	19.9	2.73	21.6	92.9	900	300	600	1.2	0.4
3	7.60	3.80	20.1	2.73	21.5	95.5	1100	300	800	1.0	0.4

Pr.	Coeffici				Vəlori fi	nali o a	rottura		
n°	press. ir	iterstiz.	$\mathbf{W}_{\!f}$	δ_f	σ_{I} - σ_{3}	u	$\frac{\sigma_1 + \sigma_3}{2}$	$\frac{\sigma_l' + \sigma_3'}{2}$	$\frac{\sigma_l - \sigma_3}{2}$
11	\mathbf{A}_f	В	%	%	kPa	kPa	kPa	kPa	kPa
1	0.02	0.80	22.1	2.5	764	318	782	764	382
2	0.03	0.80	22.4	3.0	1211	331	1206	1174	606
3	0.03	0.80	21.6	3.7	1292	338	1446	1408	646

Velocità di deformazione v = 0.010 mm/min

- H_o Altezza dei provini
- Diametro dei provini
- w_o Umidità iniziale
- w_f Umidità finale
- γ Peso di volume
- γ_s Peso specifico
- S Grado di saturazione
- ΔH Variazione di altezza
- ΔV Variazione di volume
- σ₃ Pressione di cella
- uo Back pressure
- δ_f Deformazione a rottura
- $\sigma_{I} \sigma_{3}$ Tensioni totali
- $\sigma'_i \sigma'_3$ Tensioni efficaci
- u Pressione interstiziale

TENSIONI EFFICACI

c' = 33 kPa

ø' = 27.5 °

Nel confezionamento dei provini sono stati asportati alcuni inclusi marnosi

Certificazione Ufficiale-Settore A e B- Prove di laboratorio su terre e rocce AUTORIZZAZIONE MINISTERO INFRASTRUTTURE E TRASPORTI Decreto 150/15-06-2016 - Circolare 7618/STC/2010

ALLEGATO PROVA TRIASSIALE C.I.U. Pagina 1/1
VERBALE DI ACCETTAZIONE N°: 760 del 16/10/20

DATA DI EMISSIONE: 27/11/20 Inizio analisi: 23/11/20 Apertura campione: 26/10/20 Fine analisi: 25/11/20

COMMITTENTE: Vianini Lavori S.p.A.

RIFERIMENTO: Utilizzo idropotabile delle acque dell'invaso di Campolattaro

SONDAGGIO: CL6 CAMPIONE: C2 PROFONDITA': m 89.8-91.0

PROVA DI COMPRESSIONE TRIASSIALE C.I.U.

Modalità di prova: Norma ASTM D4767

Pr.	Dimer	nensioni Caratteristiche fisiche						Consolidazione					
n°	H _o	ф <i>ст</i>	γ kN/m³	γ_s	w _o %	S _o	σ ₃ kPa	u _o kPa	σ' ₃ kPa	ΔV/V %	ΔΗ/H %		
1	7.60	3.80	20.0	2.73	21.7	94.1	700	300	400	0.5	0.1		
2	7.60	3.80	19.9	2.73	21.6	92.9	900	300	600	1.2	0.4		
3	7.60	3.80	20.1	2.73	21.5	95.5	1100	300	800	1.0	0.4		

Pr.	Coefficienti di		Valori finali o a rottura						
	press. interstiz.		$\mathbf{W}_{\!f}$	$\delta_{\scriptscriptstyle f}$	σ_{i} – σ_{i}	u	$\sigma_{I} + \sigma_{3}$	$\sigma_{l}'+\sigma_{3}'$	$\sigma_{l} - \sigma_{3}$
n°	\mathbf{A}_f	В	·· _f %	%	kPa	kPa	2 kPa	2 kPa	2 kPa
1	0.02	0.80	22.1	2.5	764	318	782	764	382
2	0.03	0.80	22.4	3.0	1211	331	1206	1174	606
3	0.03	0.80	21.6	3.7	1292	338	1446	1408	646

Velocità di deformazione v = 0.010 mm/min

H_o - Altezza dei provini

Diametro dei provini

w_o - Umidità iniziale

w_f - Umidità finale

γ - Peso di volume

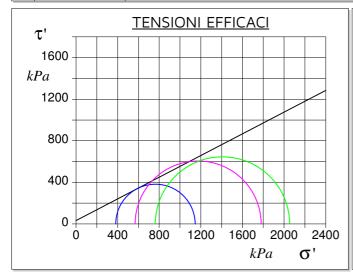
 $\gamma_{\!\scriptscriptstyle S}$ - Peso specifico

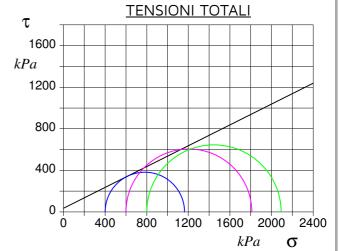
S - Grado di saturazione

 ΔH - Variazione di altezza

 ΔV - Variazione di volume

 σ_3 - Pressione di cella


uo - Back pressure


 δ_f - Deformazione a rottura

 $\sigma_1 \sigma_3$ - Tensioni totali

 $\sigma'_i \sigma'_3$ - Tensioni efficaci

u - Pressione interstiziale

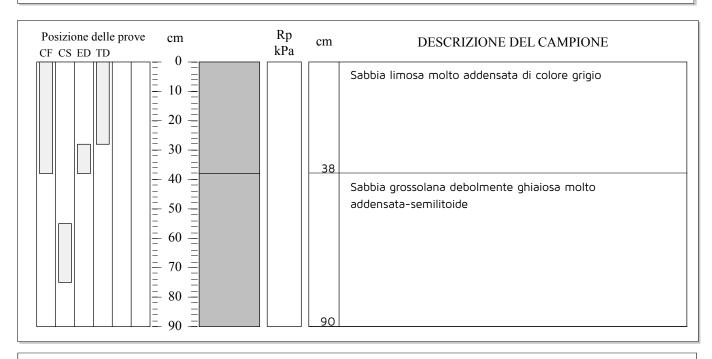
c' = 33 kPa

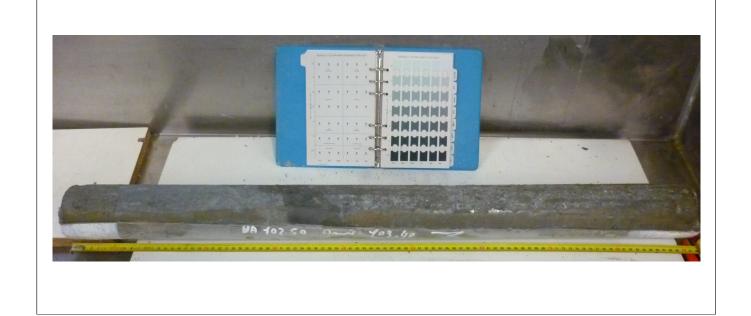
 $ø' = 27.5^{\circ}$

c = 35 kPa

 $\emptyset = 26.6^{\circ}$

Nel confezionamento dei provini sono stati asportati alcuni inclusi marnosi




Certificazione Ufficiale - Settore « A e B » - Prove di laboratorio su terre e rocce AUTORIZZAZIONE MINISTERO INFRASTRUTTURE E TRASPORTI Decreto 150/15-06-2016 - Circolare 7618/STC/2010

COMMITTENTE: Vianini Lavori S.p.A.

RIFERIMENTO: Utilizzo idropotabile delle acque dell'invaso di Campolattaro

SONDAGGIO: CL6 CAMPIONE: C3 PROFONDITA': m 102.5-103.4

Certificazione Ufficiale - Settore « A e B » - Prove di laboratorio su terre e rocce AUTORIZZAZIONE MINISTERO INFRASTRUTTURE E TRASPORTI Decreto 150/15-06-2016 - Circolare 7618/STC/2010

COMMITTENTE: Vianini Lavori S.p.A.

RIFERIMENTO: Utilizzo idropotabile delle acque dell'invaso di Campolattaro

SONDAGGIO: CL6 CAMPIONE: C3 PROFONDITA': m 102.5-103.4

MODULO RIASSUNTIVO

CARATTERISTICHE FISICHE

Umidità naturale	10.8	%
Peso di volume	22.0	kN/m³
Peso di volume secco	19.9	kN/m³
Peso di volume saturo	22.3	kN/m³
Peso specifico	2.70	
Indice dei vuoti	0.330	
Porosità	24.8	%
Grado di saturazione	88.5	%
Limite di liquidità		%
Limite di plasticità		%
Indice di plasticità		%
Indice di consistenza		
Passante al set. n° 40		
Limite di ritiro		%
CNR-UNI 10006/00		

ANALISI GRANULOMETRICA

Ghiaia	0.3	%
Sabbia	83.2	%
Limo	13.6	%
Argilla	2.9	%
D 10	0.039814	mm
D 50	0.152795	mm
D 60	0.180528	mm
D 90	0.362740	mm
Passante set. 10	99.7	%
Passante set. 42	94.1	%
Passante set. 200	21.2	%

PERMEABILITA'

	,
Coefficiente k	cm/sec

COMPRESSIONE

σ	856	kPa	σ Rim	kPa	
C _U		kPa	C _U Rim	kPa	

TAGLIO DIRETTO

F	Prova cons	olidata-le	enta			
	2'	0.0	kPa	φ΄	39.1	0
	C'Res		kPa	φ ˈRes		o

COMPRESSIONE TRIASSIALE

C.D.	c _d	kPa	φd
C.U.	c' _{cu}	kPa	φ 'cυ °
C.U.	c _{cu}	kPa	ф cu °
U.U.	C _U	kPa	φυ

PROVA EDOMETRICA

σ kPa	E kPa	Cv cm²/sec	k cm/sec
50.0 ÷ 100.0	12195		
100.0 ÷ 200.0	10695		
200.0 ÷ 400.0	18100		
400.0 ÷ 800.0	25237		
800.0 ÷ 1600.0	53872		
100.0 ÷ 200.0	34319		
200.0 ÷ 400.0	50174		
400.0 ÷ 800.0	61538		
800.0 ÷ 1600.0	98765		
1600.0 ÷ 3200.0	100629		
3200.0 ÷ 6400.0	130612		

Certificazione Ufficiale - Settore « A e B » - Prove di laboratorio su terre e rocce AUTORIZZAZIONE MINISTERO INFRASTRUTTURE E TRASPORTI Decreto 150/15-06-2016 - Circolare 7618/STC/2010

27/11/20 CERTIFICATO DI PROVA N°: 5860 Pagina 1/1 DATA DI EMISSIONE: Inizio analisi: 26/10/20 760 del 16/10/20 26/10/20 27/10/20 VERBALE DI ACCETTAZIONE N°: Apertura campione: Fine analisi:

COMMITTENTE: Vianini Lavori S.p.A.

Utilizzo idropotabile delle acque dell'invaso di Campolattaro RIFERIMENTO:

CAMPIONE: SONDAGGIO: CL6 PROFONDITA': m 102.5-103.4

CONTENUTO D'ACQUA ALLO STATO NATURALE

Modalità di prova: Norma ASTM D2216

Wn = contenuto d'acqua allo stato naturale = 10.8 %

Temperatura di essiccazione: 110 °C

SGEO - Laboratorio 6.2 - 2018

Sperimentatore
Roberto Bracaglia
Lo nu o macu gli e Marco Ferrante fusuto

Certificazione Ufficiale - Settore « A e B » - Prove di laboratorio su terre e rocce AUTORIZZAZIONE MINISTERO INFRASTRUTTURE E TRASPORTI Decreto 150/15-06-2016 - Circolare 7618/STC/2010

27/11/20 CERTIFICATO DI PROVA N°: 5861 Pagina 1/1 DATA DI EMISSIONE: Inizio analisi: 09/11/20 760 del 16/10/20 26/10/20 VERBALE DI ACCETTAZIONE N°: Apertura campione: Fine analisi: 09/11/20

COMMITTENTE: Vianini Lavori S.p.A.

RIFERIMENTO: Utilizzo idropotabile delle acque dell'invaso di Campolattaro

SONDAGGIO: CL6 CAMPIONE: C3 PROFONDITA': m 102.5-103.4

PESO DI VOLUME ALLO STATO NATURALE

Modalità di prova: Norma BS 1377 T 15

Determinazione esequita mediante fustella tarata

22.0 kN/m³ Peso di volume allo stato naturale =

Sperimentatore
Roberto Bracaglia
Lo nu o macu gli e Marco Ferrante fusuto

Certificazione Ufficiale - Settore « A e B » - Prove di laboratorio su terre e rocce AUTORIZZAZIONE MINISTERO INFRASTRUTTURE E TRASPORTI Decreto 150/15-06-2016 - Circolare 7618/STC/2010

CERTIFICATO DI PROVA N°: 5862	Pagina 1/1	DATA DI EMISSIONE:	27/11/20	Inizio analis	i: 23/11/20	
VERBALE DI ACCETTAZIONE N°: 760	del 16/10/20	Apertura campione:	26/10/20	Fine analisi	: 24/11/20	
COMMITTENTE: Vianini Lavori S.p	.A.					
RIFERIMENTO: Utilizzo idropotabile delle acque dell'invaso di Campolattaro						
SONDAGGIO: CL6	CAMPIONE:	С3	PROFONDI [*]	TA': m 10:	2.5-103.4	
PESO SPECIFICO DEI GRANULI						
Modalità di orova: Norma ASTM D854						

 $\gamma_{\rm S}$ = Peso specifico dei granuli (media delle due misure) = 2.70

 γ_{SC} = Peso specifico dei granuli corretto a 20° = 2.70

Metodo: ■ A □ B

SGEO - Laboratorio 6.2 - 2018

Capacità del picnometro: 100 ml

Temperatura di prova: 21.0 °C

Sperimentatore

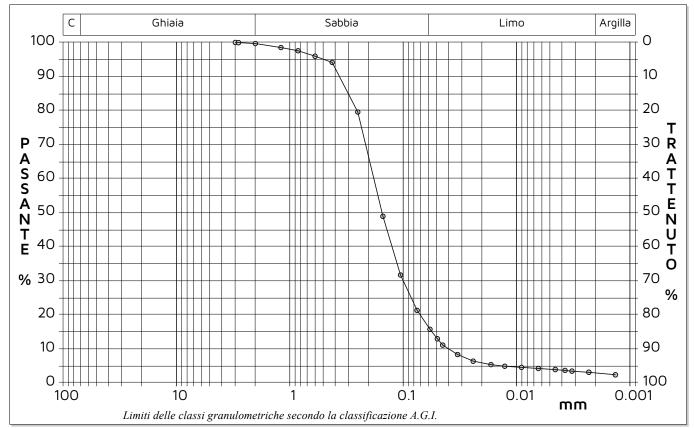
Roberto Bracaglia

Lo hu o pracuegli e Charco Ferrante formation

Certificazione Ufficiale - Settore « A e B » - Prove di laboratorio su terre e rocce AUTORIZZAZIONE MINISTERO INFRASTRUTTURE E TRASPORTI Decreto 150/15-06-2016 - Circolare 7618/STC/2010

27/11/20 CERTIFICATO DI PROVA N°: 5863 Pagina 1/1 DATA DI EMISSIONE: 17/11/20 Inizio analisi: 760 del 16/10/20 26/10/20 20/11/20 VERBALE DI ACCETTAZIONE N°: Apertura campione: Fine analisi:

COMMITTENTE: Vianini Lavori S.p.A.


Utilizzo idropotabile delle acque dell'invaso di Campolattaro RIFERIMENTO:

CAMPIONE: SONDAGGIO: CL6 C3 PROFONDITA': m 102.5-103.4

ANALISI GRANULOMETRICA

Modalità di prova: Norma ASTM D422

Ghiaia Sabbia Limo	Sabbia 83.2 %		etaccio 10 (2 mm) etaccio 40 (0.42 mm)	99.7 % 94.1 %	D ₁₀	0.03981 mm 0.09958 mm
Argilla	2.9 %	Passante se	etaccio 200 (0.075 mm)	21.2 %	D ₅₀	0.15279 mm 0.18053 mm
Coefficiente	e di uniformità	4.53	Coefficiente di curvatura	1.38	D90	0.36274 mm

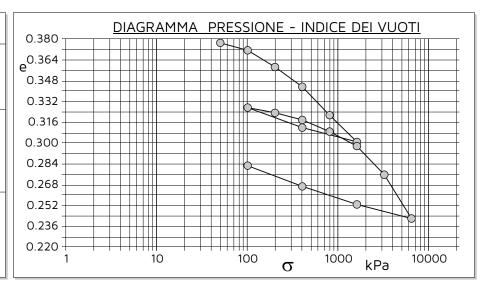
Diametro mm	Passante %								
3.0000	100.00	0.5950	95.92	0.0750	21.25	0.0240	6.32	0.0045	3.87
2.8200	99.92	0.4200	94.13	0.0578	15.70	0.0167	5.32	0.0037	3.62
2.0000	99.67	0.2500	79.52	0.0498	12.91	0.0127	4.82	0.0032	3.41
1.1900	98.48	0.1500	48.89	0.0446	11.03	0.0090	4.49	0.0023	3.07
0.8410	97.53	0.1050	31.64	0.0330	8.28	0.0064	4.16	0.0013	2.32

Sperimentatore
Roberto Bracaglia
Lo nu o gracuglia Charco Ferrante foucuto

Certificazione Ufficiale - Settore « A e B » - Prove di laboratorio su terre e rocce AUTORIZZAZIONE MINISTERO INFRASTRUTTURE E TRASPORTI Decreto 150/15-06-2016 - Circolare 7618/STC/2010

CERTIFICATO DI PROVA N°:5864Pagina 1/2DATA DI EMISSIONE:27/11/20Inizio analisi:09/11/20VERBALE DI ACCETTAZIONE N°:760 del 16/10/20Apertura campione:26/10/20Fine analisi:27/11/20

COMMITTENTE: Vianini Lavori S.p.A.


RIFERIMENTO: Utilizzo idropotabile delle acque dell'invaso di Campolattaro

SONDAGGIO: CL6 CAMPIONE: C3 PROFONDITA': m 102.5-103.4

PROVA EDOMETRICA

Modalità di prova: Norma ASTM D2435

Caratteristiche del camp	<u>ione</u>
Peso di volume (kN/m³)	21.72
Umidità (%)	13.3
Peso specifico	2.70
Altezza provino (cm) Diametro provino (cm) Sezione provino (cm²) Volume provino (cm³)	2.00 5.05 20.00 40.00
Volume dei vuoti (cm³)	11.01
Indice dei vuoti	0.38
Porosità (%)	27.53
Saturazione (%)	94.4

0.0	DIAGRA	MMA TEMI	<u> 20 - CE</u>	DIME	<u>OTV</u>
Δ					0
0.3					
0.6					100.0
0.9					
1.2					
1.5				-	200.0
1.8					
2.1					
2.4					
-					400.0
2.7					
3.0 + + 0.1	+	10	100	t 1	

Pressione kPa	Cedim. mm/100	Indice Vuoti	Сс
50.0	4.1	0.377	
100.0	12.3	0.371	0.019
200.0	31.0	0.359	0.043
400.0	53.1	0.343	0.051
0.008	84.8	0.321	0.073
1600.0	114.5	0.301	0.068
400.0	98.6	0.312	
100.0	76.2	0.327	
200.0	82.0	0.323	0.013
400.0	90.0	0.318	0.018
0.008	103.0	0.309	0.030
1600.0	119.2	0.298	0.037
3200.0	151.0	0.276	0.073
6400.0	200.0	0.242	0.112
1600.0	184.2	0.253	
400.0	164.1	0.267	
100.0	141.0	0.283	

SGEO - Laboratorio 6.2 - 2018

Sperimentatore Enrico Tallini

Certificazione Ufficiale - Settore « A e B » - Prove di laboratorio su terre e rocce AUTORIZZAZIONE MINISTERO INFRASTRUTTURE E TRASPORTI Decreto 150/15-06-2016 - Circolare 7618/STC/2010

CERTIFICATO DI PROVA N°: 5864Pagina 2/2DATA DI EMISSIONE: 27/11/20Inizio analisi: 09/11/20VERBALE DI ACCETTAZIONE N°: 760 del 16/10/20Apertura campione: 26/10/20Fine analisi: 27/11/20

COMMITTENTE: Vianini Lavori S.p.A.

RIFERIMENTO: Utilizzo idropotabile delle acque dell'invaso di Campolattaro

SONDAGGIO: CL6 CAMPIONE: C3 PROFONDITA': m 102.5-103.4

PROVA EDOMETRICA

Modalità di prova: Norma ASTM D2435

LETTURE INTERMEDIE - TABELLE RIASSUNTIVE

Pressione 100.0 kPa		Pressione 200.0 kPa		Pressione 4	00.0 kPa	Pressione	kPa
Tempo minuti	Cedim. mm/100	Tempo minuti	Cedim. mm/100	Tempo minuti	Cedim. mm/100	Tempo minuti	Cedim. mm/100
0.00	4.1	0.00	12.3	0.00	31.0		
0.10	5.0	0.10	16.0	0.10	38.0		
0.25	5.5	0.25	17.4	0.25	39.5		
0.50	6.1	0.50	18.6	0.50	40.7		
1.00	6.7	1.00	20.1	1.00	42.0		
2.00	7.5	2.00	21.5	2.00	43.4		
5.00	8.5	5.00	23.4	5.00	45.4		
10.00	9.2	10.00	24.9	10.00	47.1		
30.00	10.3	30.00	26.8	30.00	49.2		
60.00	11.0	60.00	28.0	60.00	50.2		
120.00	11.6	120.00	29.0	120.00	51.1		
240.00	11.9	240.00	29.8	240.00	51.8		
480.00	12.1	480.00	30.4	480.00	52.3		
1440.00	12.3	1440.00	31.0	1440.00	53.1		

Pressione		kPa	Pressione		kPa	Pressione	 kPa	Pressione	 kPa
Tempo minuti	Ced mm/		Tempo minuti	Ced mm,		Tempo minuti	dim. n/100	Tempo minuti	edim. m/100

SGEO - Laboratorio 6.2 - 2018

Sperimentatore Enrico Tallini Direttore
Merco Ferrante fluorito

Certificazione Ufficiale - Settore « A e B » - Prove di laboratorio su terre e rocce AUTORIZZAZIONE MINISTERO INFRASTRUTTURE E TRASPORTI Decreto 150/15-06-2016 - Circolare 7618/STC/2010

27/11/20 CERTIFICATO DI PROVA N°: 5865 Pagina 1/1 DATA DI EMISSIONE: Inizio analisi: 25/11/20 760 del 16/10/20 26/10/20 25/11/20 VERBALE DI ACCETTAZIONE N°: Apertura campione: Fine analisi:

COMMITTENTE: Vianini Lavori S.p.A.

Utilizzo idropotabile delle acque dell'invaso di Campolattaro RIFERIMENTO:

CAMPIONE: SONDAGGIO: CL6 C3 PROFONDITA': m 102.5-103.4

PROVA DI COMPRESSIONE UNIASSIALE

Modalità di prova: Norma ASTM D7012 - 14

Provino n°:	1
Condizione del provino:	Indisturbato
Velocità di deformazione (mm/min):	0.500
Altezza (cm):	16.50
Sezione (cm²):	43.01
Peso di volume (kN/m³):	22.8
Resistenza a compressione (kPa):	856.1

SGEO - Laboratorio 6.2 - 2018

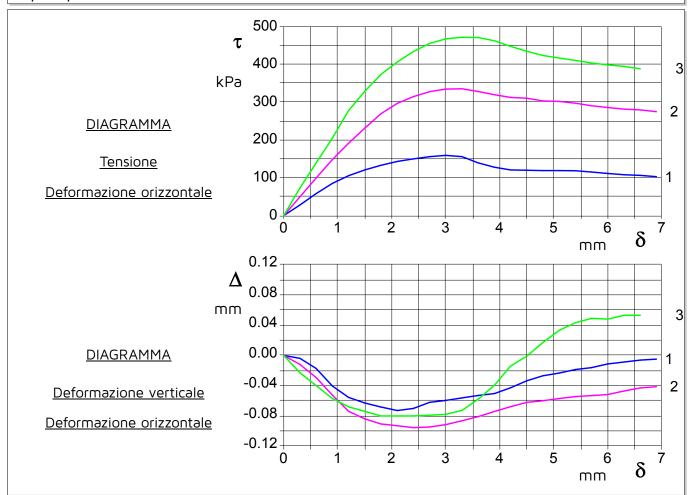
Sperimentatore
Roberto Bracaglia
Lohu o mucu gli e Marco Ferrante fusuto

Certificazione Ufficiale - Settore « A e B » - Prove di laboratorio su terre e rocce AUTORIZZAZIONE MINISTERO INFRASTRUTTURE E TRASPORTI Decreto 150/15-06-2016 - Circolare 7618/STC/2010

CERTIFICATO DI PROVA N°:5866Pagina 1/2DATA DI EMISSIONE:27/11/20Inizio analisi:18/11/20VERBALE DI ACCETTAZIONE N°:760 del 16/10/20Apertura campione:26/10/20Fine analisi:20/11/20

COMMITTENTE: Vianini Lavori S.p.A.

RIFERIMENTO: Utilizzo idropotabile delle acque dell'invaso di Campolattaro


SONDAGGIO: CL6 CAMPIONE: C3 PROFONDITA': m 102.5-103.4

PROVA DI TAGLIO DIRETTO

Modalità di prova: Norma ASTM D3080

Provino n°:	1		,	2	3		
Condizione del provino:	Indist	urbato	Indist	urbato	Indist	urbato	
Tempo di consolidazione (ore):	24		24		24		
Pressione verticale (kPa):	200.0		400.0		600.0		
Umidità iniziale e umidità finale (%):	11.0	11.3	11.4	11.7	11.3	11.5	
Peso di volume (kN/m³):	22.5		22.2		22.4		
T							

Tipo di prova: Consolidata - lenta Velocità di deformazione: 0.008 mm / min

SGEO - Laboratorio 6.2 - 2018

Sperimentatore Enrico Tallini Direttore
Marco Ferrante School

Certificazione Ufficiale - Settore « A e B » - Prove di laboratorio su terre e rocce AUTORIZZAZIONE MINISTERO INFRASTRUTTURE E TRASPORTI Decreto 150/15-06-2016 - Circolare 7618/STC/2010

CERTIFICATO DI PROVA N°:5866Pagina 2/2DATA DI EMISSIONE:27/11/20Inizio analisi:18/11/20VERBALE DI ACCETTAZIONE N°:760 del 16/10/20Apertura campione:26/10/20Fine analisi:20/11/20

COMMITTENTE: Vianini Lavori S.p.A.

RIFERIMENTO: Utilizzo idropotabile delle acque dell'invaso di Campolattaro

SONDAGGIO: CL6 CAMPIONE: C3 PROFONDITA': m 102.5-103.4

PROVA DI TAGLIO DIRETTO

Modalità di prova: Norma ASTM D3080

Provino 1				Provino 2		Provino 3			
Spostam. mm	Tensione kPa	Deform. vert. mm	Spostam. mm	Tensione kPa	Deform. vert.	Spostam. mm	Tensione kPa	Deform. vert.	
0.300	27.7	0.00	0.300	49.2	-0.01	0.300	72.7	-0.02	
0.600	57.9	-0.02	0.600	98.7	-0.03	0.600	138.4	-0.04	
0.900	84.9	-0.04	0.900	147.9	-0.05	0.900	204.9	-0.06	
1.200	105.1	-0.06	1.200	191.1	-0.07	1.200	277.5	-0.07	
1.500	120.5	-0.06	1.500	230.9	-0.08	1.500	328.5	-0.07	
1.800	132.6	-0.07	1.800	269.2	-0.09	1.800	373.1	-0.08	
2.100	142.9	-0.07	2.100	296.5	-0.09	2.100	405.9	-0.08	
2.400	149.6	-0.07	2.400	314.5	-0.10	2.400	433.6	-0.08	
2.700	155.8	-0.06	2.700	327.4	-0.09	2.700	455.0	-0.08	
3.000	158.9	-0.06	3.000	334.0	-0.09	3.000	467.3	-0.08	
3.300	155.4	-0.06	3.300	334.9	-0.09	3.300	471.3	-0.07	
3.600	139.1	-0.05	3.600	327.7	-0.08	3.600	470.6	-0.06	
3.900	127.6	-0.05	3.900	319.3	-0.07	3.900	462.2	-0.04	
4.200	120.3	-0.04	4.200	312.1	-0.07	4.200	447.2	-0.01	
4.500	119.6	-0.03	4.500	310.0	-0.06	4.500	434.2	0.00	
4.800	118.7	-0.03	4.800	302.8	-0.06	4.800	423.4	0.02	
5.100	118.9	-0.02	5.100	301.6	-0.06	5.100	416.4	0.03	
5.400	118.3	-0.02	5.400	296.8	-0.05	5.400	410.1	0.04	
5.700	114.8	-0.02	5.700	290.1	-0.05	5.700	403.2	0.05	
6.000	111.0	-0.01	6.000	285.5	-0.05	6.000	398.1	0.05	
6.300	107.5	-0.01	6.300	281.3	-0.05	6.300	394.2	0.05	
6.600	106.2	-0.01	6.600	279.0	-0.04	6.600	388.1	0.05	
6.900	102.4	-0.01	6.900	274.5	-0.04				
	-								

SGEO - Laboratorio 6.2 - 2018

Sperimentatore Enrico Tallini Direttore
Charco Ferrante School

Certificazione Ufficiale - Settore « A e B » - Prove di laboratorio su terre e rocce AUTORIZZAZIONE MINISTERO INFRASTRUTTURE E TRASPORTI Decreto 150/15-06-2016 - Circolare 7618/STC/2010

ALLEGATO PROVA DI TAGLIO DIRETTO: Pagina 1/1
VERBALE DI ACCETTAZIONE N°: 760 del 16/10/20

DATA DI EMISSIONE: 27/11/20 Inizio analisi: 18/11/20 Apertura campione: 26/10/20 Fine analisi: 20/11/20

COMMITTENTE: Vianini Lavori S.p.A.

RIFERIMENTO: Utilizzo idropotabile delle acque dell'invaso di Campolattaro

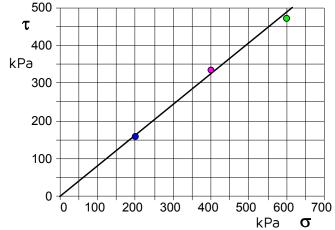
SONDAGGIO: CL6 CAMPIONE: C3 PROFONDITA': m 102.5-103.4

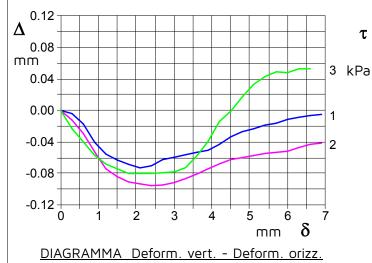
PROVA DI TAGLIO DIRETTO

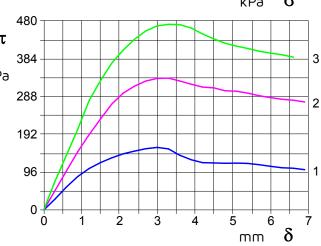
Modalità di prova: Norma ASTM D3080

Provino n°:	1			2	3	
Condizione del provino:	Indisturbato		Indisturbato		Indisturbato	
Pressione verticale (kPa):	200		400		600	
Tensione a rottura (kPa):	159		335		471	
Deformazione orizzontale e verticale a rottura (mm):	3.00	-0.06	3.30	-0.09	3.30	-0.07
Umidità iniziale e umidità finale (%):	11.0	11.3	11.4	11.7	11.3	11.5
Peso di volume iniziale e finale (kN/m³):	22.5	22.6	22.2	22.3	22.4	22.4
Grado di saturazione iniziale e finale (%):	97.6	100.0	94.1	96.6	96.8	98.9

DIAGRAMMA


<u>Tensione - Pressione verticale</u>


Coesione: 0.0 kPa Angolo di attrito interno: 39.1 °


Tipo di prova: Consolidata - lenta

Velocità di deformazione: 0.008 mm / min

Tempo di consolidazione (ore): 24

Certificazione Ufficiale-Settore A e B- Prove di laboratorio su terre e rocce AUTORIZZAZIONE MINISTERO INFRASTRUTTURE E TRASPORTI Decreto 150/15-06-2016 - Circolare 7618/STC/2010

COMMITTENTE: Vianini Lavori S.p.A.

RIFERIMENTO: Progettazione definitiva utilizzo idropotabile delle acque - invaso di Campolattaro

SONDAGGIO: CL6 CAMPIONE: CR1b PROFONDITA': m 83.45-84.00

MODULO RIASSUNTIVO

CONTENUTO D'ACQUA ALLO STATO NATURALE

Umidità media (%):

PESO DI VOLUME ALLO STATO NATURALE

Peso di volume (kN/m^3) : 25.7

MASSA VOLUMICA APPARENTE E REALE - POROSITA'

Massa volumica apparente (kg/m³):	2553.7
Massa volumica reale (kg/m³):	2668.6
Porosità aperta (%):	3.4
Porosità totale (%):	4.3

VELOCITA' DI PROPAGAZIONE E COSTANTI ELASTICHE DELLA ROCCIA

Velocità delle onde di compressione (Vp) (m/sec):	3923
Velocità delle onde di taglio (Vs) (m/sec):	2520

PROVA DI COMPRESSIONE UNIASSIALE

Resistenza a compressione (MPa): 54.08

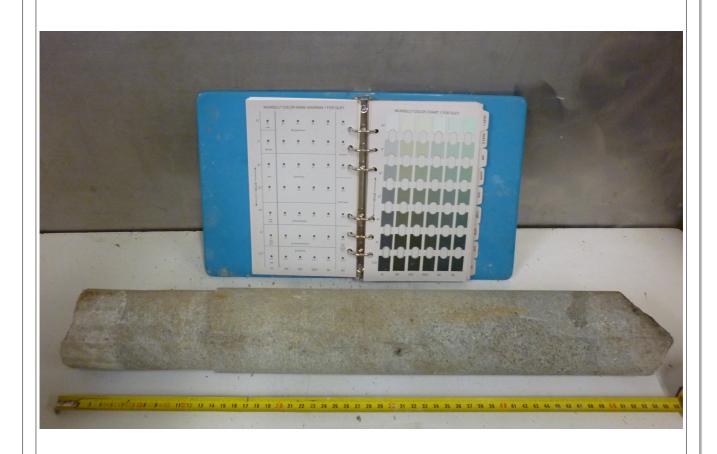
PROVA DI TRAZIONE INDIRETTA «BRASILIANA»

Resistenza a trazione (MPa): 5.38

DESCRIZIONE DEL CAMPIONE

Arenaria di colore grigio.

Campione integrativo prelevato il 21/11/2020.



Certificazione Ufficiale-Settore A e B- Prove di laboratorio su terre e rocce AUTORIZZAZIONE MINISTERO INFRASTRUTTURE E TRASPORTI Decreto 150/15-06-2016 - Circolare 7618/STC/2010

COMMITTENTE: Vianini Lavori S.p.A.

RIFERIMENTO: Progettazione definitiva utilizzo idropotabile delle acque - invaso di Campolattaro

SONDAGGIO: CL6 CAMPIONE: CR1b PROFONDITA': m 83.45-84.00

Arenaria di colore grigio

Certificazione Ufficiale-Settore A e B- Prove di laboratorio su terre e rocce AUTORIZZAZIONE MINISTERO INFRASTRUTTURE E TRASPORTI Decreto 150/15-06-2016 - Circolare 7618/STC/2010

CERTIFICATO DI PROVA N°: 00567 Pagina 1/1 28/01/21 Inizio analisi: 30/11/20 DATA DI EMISSIONE: 828 del 26/11/20 VERBALE DI ACCETTAZIONE N°: Apertura campione: 30/11/20 Fine analisi: 01/12/20

COMMITTENTE: Vianini Lavori S.p.A.

Progettazione definitiva utilizzo idropotabile delle acque - invaso di Campolattaro RIFERIMENTO:

CAMPIONE: CR1b SONDAGGIO: CL6 PROFONDITA': m 83.45-84.00

CONTENUTO D'ACQUA

Modalità di prova: Norma ASTM D2216

Umidità media 1.0 %

Temperatura di essiccazione: 110 °C

Arenaria di colore grigio

Sperimentatore
Roberto Bracaglia
Lohu o mucu gli e Marco Ferrante fluorito

Certificazione Ufficiale-Settore A e B- Prove di laboratorio su terre e rocce AUTORIZZAZIONE MINISTERO INFRASTRUTTURE E TRASPORTI Decreto 150/15-06-2016 - Circolare 7618/STC/2010

CERTIFICATO DI PROVA N°: 00568 Pagina 1/1 28/01/21 11/01/21 DATA DI EMISSIONE: Inizio analisi: 828 del 26/11/20 VERBALE DI ACCETTAZIONE N°: Apertura campione: 30/11/20 Fine analisi: 11/01/21

COMMITTENTE: Vianini Lavori S.p.A.

RIFERIMENTO: Progettazione definitiva utilizzo idropotabile delle acque - invaso di Campolattaro

CAMPIONE: CR1b SONDAGGIO: CL6 PROFONDITA': m 83.45-84.00

MASSA VOLUMICA APPARENTE E REALE - POROSITA'

Modalità di prova: Norma ISRM Suggested Methods

Massa volumica apparente (kg/m³): 2553.7 Massa volumica reale (kg/m³): 2668.6 3.4 Porosità aperta (%): 4.3 Porosità totale (%):

Massa volumica reale determinata con Picnometro

Arenaria di colore grigio

Sperimentatore
Roberto Bracadlia
La huro Juscu gli e Marco Ferrante

Certificazione Ufficiale-Settore A e B- Prove di laboratorio su terre e rocce AUTORIZZAZIONE MINISTERO INFRASTRUTTURE E TRASPORTI Decreto 150/15-06-2016 - Circolare 7618/STC/2010

CERTIFICATO DI PROVA N°: 00569	Pagina 1/1	DATA DI EMISSIONE:	28/01/21	Inizio analisi:	12/01/21
VERBALE DI ACCETTAZIONE N°: 828	del 26/11/20	Apertura campione:	30/11/20	Fine analisi:	12/01/21

COMMITTENTE: Vianini Lavori S.p.A.

Progettazione definitiva utilizzo idropotabile delle acque - invaso di Campolattaro RIFERIMENTO:

CAMPIONE: CR1b SONDAGGIO: CL₆ PROFONDITA': m 83.45-84.00

VELOCITA' DI PROPAGAZIONE E COSTANTI ELASTICHE DELLA ROCCIA

Modalità di prova: Norma ASTM D2845 - 08

Velocità delle onde di compressione (Vp) (m/sec): 3923 Velocità delle onde di taglio (Vs) (m/sec): 2520

Densità della roccia (kg/m³):	2620
Modulo di elasticità di Young (MPa):	38220
Modulo di taglio (MPa):	16634
Coefficiente di Poisson:	0.15
Costante di Lamé (MPa):	7053
Modulo bulk (MPa):	18142

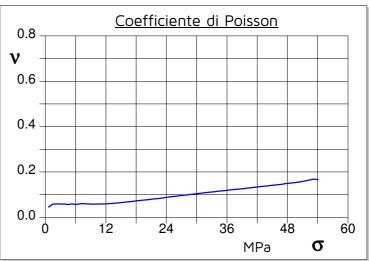
Arenaria di colore grigio

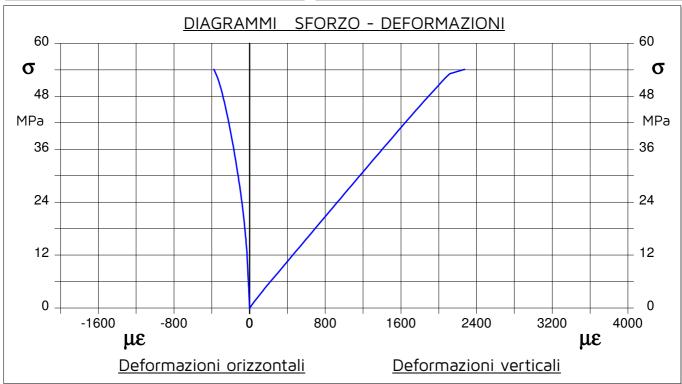
Sperimentatore
Roberto Bracaglia
Lo nu o Pracuglie Marco Ferrante fluorito

Certificazione Ufficiale-Settore A e B- Prove di laboratorio su terre e rocce AUTORIZZAZIONE MINISTERO INFRASTRUTTURE E TRASPORTI Decreto 150/15-06-2016 - Circolare 7618/STC/2010

CERTIFICATO DI PROVA N°: 00570 Pagina 1/2 DATA DI EMISSIONE: 28/01/21 13/01/21 Inizio analisi: 828 del 26/11/20 VERBALE DI ACCETTAZIONE N°: Apertura campione: 30/11/20 Fine analisi: 13/01/21

COMMITTENTE: Vianini Lavori S.p.A.


Proqettazione definitiva utilizzo idropotabile delle acque - invaso di Campolattaro RIFERIMENTO:


CAMPIONE: CR1b SONDAGGIO: CL6 PROFONDITA': m 83.45-84.00

PROVA DI COMPRESSIONE UNIASSIALE

Modalità di prova: Norma ASTM D7012 - 14

Provino n°:	1
Massa provino (g)	2389.0
Diametro (cm):	7.80
Altezza (cm):	19.10
Sezione (cm²):	47.78
Peso di volume (kN/m³):	25.7
Deformazione verticale (με)	2272
Deformazione orizzontale (με)	378
Modulo elastico tangente (MPa):	25354
Modulo elastico secante (MPa):	25772
Coefficiente di Poisson secante	0.10
Pressione a rottura (MPa)	54.08

Arenaria di colore grigio

Il modulo elastico e il coefficiente di poisson sono stati calcolati in corrispondenza del 50% della tensione a rottura.

SGEO - Laboratorio 6.2 - 2018

Sperimentatore Direttore Roberto Bracadlia Marco Ferrante

Certificazione Ufficiale-Settore A e B- Prove di laboratorio su terre e rocce AUTORIZZAZIONE MINISTERO INFRASTRUTTURE E TRASPORTI Decreto 150/15-06-2016 - Circolare 7618/STC/2010

CERTIFICATO DI PROVA N°: 00570 Pagina 2/2 DATA DI EMISSIONE: 28/01/21 13/01/21 Inizio analisi: 828 del 26/11/20 VERBALE DI ACCETTAZIONE N°: Apertura campione: 30/11/20 Fine analisi: 13/01/21

COMMITTENTE: Vianini Lavori S.p.A.

Progettazione definitiva utilizzo idropotabile delle acque - invaso di Campolattaro RIFERIMENTO:

CAMPIONE: CR1b SONDAGGIO: CL6 PROFONDITA': m 83.45-84.00

PROVA DI COMPRESSIONE UNIASSIALE

Modalità di prova: Norma ASTM D7012 - 14

\equiv	Provino 1										Provinc	1					
n°	Tensione MPa		eformazio icale E2	ne με Media	I	formazio ontale E2	one µɛ Media	Coeff. Poisson	n°	Tensione MPa	l	eformazio ticale E2	one με Media		eformazio ontale E2	one με Media	Coeff. Poisson
1	0.69	20	28	24	-1	-	-1	0.05	40	37.23	2308	598	1453	-178	-	-178	0.12
2	1.40	57	39	48	-3	-	-3	0.06	41	38.15	2353	627	1490	-186	-	-186	0.12
3	2.18	103	50	76	-5	-	-5	0.06	42	39.11	2399	658	1528	-194	-	-194	0.13
4	4.00	214	75	144	-8	-	-8	0.06	43	40.08	2445	688	1567	-203	-	-203	0.13
5	4.31	228	82	155	-9	-	-9	0.06	44	41.02	2492	719	1606	-211	-	-211	0.13
6	5.21	287	92	190	-11	-	-11	0.06	45	42.00	2540	749	1644	-220	-	-220	0.13
7	6.09	345	103	224	-13	-	-13	0.06	46	42.90	2585	778	1682	-229	-	-229	0.14
8	7.18	420	116	268	-16	-	-16	0.06	47	43.86	2631	810	1721	-239	-	-239	0.14
9	8.02	497	106	302	-18	-	-18	0.06	48	44.83	2678	843	1760	-248	-	-248	0.14
10	9.04	622	61	342	-20	-	-20	0.06	49	45.75	2722	875	1798	-258	-	-258	0.14
11	9.86	678	67	373	-22	-	-22	0.06	50	46.71	2768	908	1838	-268	-	-268	0.15
12	10.80	742	78	410	-24	-	-24	0.06	51	47.63	2813	940	1877	-279	-	-279	0.15
13	11.80	811	86	449	-27	-	-27	0.06	52	48.51	2855	973	1914	-288	-	-288	0.15
14	12.72	875	94	485	-30	-	-30	0.06	53	49.37	2897	1005	1951	-298	-	-298	0.15
15	13.60	936	103	520	-32	-	-32	0.06	54	50.33	2942	1041	1991	-311	-	-311	0.16
16	14.54	1001	114	557	-36	-	-36	0.06	55	51.29	2987	1077	2032	-325	-	-325	0.16
17	15.49	1063	125	594	-39	-	-39	0.07	56	52.17	3026	1113	2070	-339	-	-339	0.16
18	16.39	1123	138	630	-43	-	-43	0.07	57	53.11	3082	1153	2117	-357	-	-357	0.17
19	17.31	1183	150	666	-47	-	-47	0.07	58	54.08	3342	1203	2272	-378	-	-378	0.17
20	18.25	1255	149	702	-52	-	-52	0.07									
21	19.19	1321	158	739	-56	-	-56	0.08									
22	20.15	1385	170	777	-61	-	-61	0.08									
23	21.12	1444	187	815	-65	-	-65	0.08									
24	22.08	1500	206	853	-71	-	-71	0.08									
25	23.04	1555	226	891	-76	-	-76	0.08									
26	23.96	1606	248	927	-82	-	-82	0.09									
27	24.86	1657	270	963	-87	-	-87	0.09									
28	25.85	1709	294	1001	-93	-	-93	0.09									
29	26.81	1761	317	1039	-99	-	-99	0.10									
30	27.71	1811	340	1075	-105	-	-105	0.10									
31	28.67	1862	364	1113	-112	-	-112	0.10									
32	29.63	1917	384	1151	-119	-	-119	0.10									
33	30.60	1973	404	1189	-126	-	-126	0.11									
34	31.54	2026	428	1227	-133	-	-133	0.11									
35	32.48	2073	453	1263	-140	-	-140	0.11									
36	33.44	2122	482	1302	-147	-	-147	0.11									
37	34.38	2169	510	1340	-155	-	-155	0.12									
38	35.30	2215	537	1376	-162	-	-162	0.12									
39	36.27	2262	568	1415	-170	-	-170	0.12									

SGEO - Laboratorio 6.2 - 2018

Sperimentatore
Roberto Bracadlia
La huro puecu gli e Marco Ferrante
La huro puecu gli e Marco feurutt

Certificazione Ufficiale-Settore A e B- Prove di laboratorio su terre e rocce AUTORIZZAZIONE MINISTERO INFRASTRUTTURE E TRASPORTI Decreto 150/15-06-2016 - Circolare 7618/STC/2010

CERTIFICATO DI PROVA N°: 00571 Pagina 1/1 28/01/21 13/01/21 DATA DI EMISSIONE: Inizio analisi: VERBALE DI ACCETTAZIONE N°: 828 del 26/11/20 Apertura campione: 30/11/20 Fine analisi: 13/01/21

COMMITTENTE: Vianini Lavori S.p.A.

RIFERIMENTO: Progettazione definitiva utilizzo idropotabile delle acque - invaso di Campolattaro

83.45-84.00 SONDAGGIO: CL6 CAMPIONE: CR1b PROFONDITA': m

PROVA DI TRAZIONE INDIRETTA «BRASILIANA»

Modalità di prova: Norma ASTM D3967 - 16

10 5.38 Numero di provini: Resistenza a trazione media (MPa): Resistenza a trazione minima (MPa): 3.90 Deviazione standard: 1.14 7.94 0.21 Resistenza a trazione massima (MPa): Coefficiente di variazione:

CARATTERISTICHE DEI PROVINI									
n°	Massa g	Spessore mm	Diametro mm	Peso di volume kN/m³	Carico a rottura N	Resist. a rottura MPa			
1	368.48	29.5	78.0	25.6	28700.0	7.94			
2	324.58	26.0	78.0	25.6	18100.0	5.68			
3	324.54	30.0	73.0	25.3	13400.0	3.90			
4	233.08	21.0	73.0	26.0	12400.0	5.15			
5	181.56	17.0	73.0	25.0	9400.0	4.82			
6	282.33	22.5	78.0	25.8	15600.0	5.66			
7	289.69	23.0	78.0	25.8	15000.0	5.32			
8	304.30	24.5	78.0	25.5	18500.0	6.16			
9	305.17	24.5	78.0	25.6	15300.0	5.10			
10	197.49	18.5	73.0	25.0	8700.0	4.10			

Arenaria di colore grigio

Sperimentatore

Roberto Bracadlia
Lo nu o puccu gli e Marco Ferrante

Lo nu o puccu gli e Marco fluorito

Certificazione Ufficiale-Settore A e B- Prove di laboratorio su terre e rocce AUTORIZZAZIONE MINISTERO INFRASTRUTTURE E TRASPORTI Decreto 150/15-06-2016 - Circolare 7618/STC/2010

COMMITTENTE: Vianini Lavori S.p.A.

RIFERIMENTO: Progettazione definitiva utilizzo idropotabile delle acque - invaso di Campolattaro

SONDAGGIO: CL6 CAMPIONE: CR2a PROFONDITA': m 91.0-92.0

MODULO RIASSUNTIVO

POINT LOAD TEST

Indice Is(50) - Valore medio

0.27

DESCRIZIONE DEL CAMPIONE

Marna siltosa fratturata di colore grigio.

Campione integrativo prelevato il 21/11/2020.

Certificazione Ufficiale-Settore A e B- Prove di laboratorio su terre e rocce AUTORIZZAZIONE MINISTERO INFRASTRUTTURE E TRASPORTI Decreto 150/15-06-2016 - Circolare 7618/STC/2010

COMMITTENTE: Vianini Lavori S.p.A.

RIFERIMENTO: Progettazione definitiva utilizzo idropotabile delle acque - invaso di Campolattaro

SONDAGGIO: CL6 CAMPIONE: CR2a PROFONDITA': m 91.0-92.0

Marna siltosa fratturata di colore grigio

Certificazione Ufficiale-Settore A e B- Prove di laboratorio su terre e rocce AUTORIZZAZIONE MINISTERO INFRASTRUTTURE E TRASPORTI Decreto 150/15-06-2016 - Circolare 7618/STC/2010

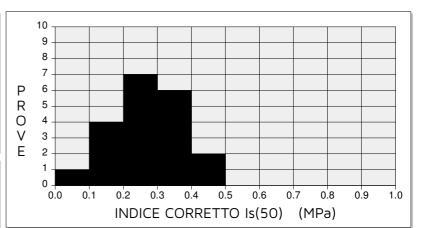
CERTIFICATO DI PROVA N°: 00575 Pagina 1/1 28/01/21 Inizio analisi: 29/12/20 DATA DI EMISSIONE: VERBALE DI ACCETTAZIONE N°: 828 del 26/11/20 Apertura campione: 30/11/20 Fine analisi: 29/12/20

COMMITTENTE: Vianini Lavori S.p.A.

Progettazione definitiva utilizzo idropotabile delle acque - invaso di Campolattaro RIFERIMENTO:

SONDAGGIO: CL6 CAMPIONE: CR2a PROFONDITA': m 91.0-92.0

POINT LOAD TEST


Modalità di prova: Norma ASTM D5731 - 16

INDICE CORRETTO Is(50)

Prove esequite: 20 Valore massimo 0.48 Valore medio * 0.27 Valore minimo 0.10

CARATTERISTICHE FISICHE

Umidità naturale (%) 8.5 Peso di volume (kN/m³): 21.4

Prova n°	Forma Rottura	Piani di debolezza	Altezza mm	Larghezza mm	Carico kN	Indice Is MPa	Indice Is(50) MPa
1	С	D	31.0	77.0	0.96	0.316	0.330
2	С	D	45.0	75.0	0.95	0.221	0.250
3	С	D	29.0	75.0	0.35	0.126	0.129
4	В	D	77.0	79.0	1.43	0.241	0.293
5	В	D	<i>75.0</i>	83.0	0.55	0.098	0.117
6	В	D	77.0	86.0	0.72	0.121	0.147
7	В	D	75.0	120.0	1.06	0.188	0.226
8	В	D	76.0	125.0	1.85	0.320	0.387
9	С	D	61.0	76.0	1.89	0.320	0.388
10	С	D	56.0	76.0	1.26	0.233	0.277
11	С	D	65.0	76.0	1.74	0.277	0.340
12	D	D	41.0	54.5	0.99	0.348	0.358
13	D	D	35.0	64.5	0.74	0.257	0.266
14	D	D	43.0	77.0	0.68	0.161	0.181
15	D	D	40.0	69.5	1.40	0.396	0.428
16	D	D	38.0	63.5	0.29	0.094	0.099
17	D	D	38.0	66.0	0.75	0.235	0.248
18	D	D	35.0	52.0	0.71	0.306	0.301
19	D	D	35.0	68.5	0.62	0.203	0.212
20	D	D	32.0	42.0	0.90	0.526	0.483
* Vengo	no esclusi dal c	alcolo del valore	e medio i due valo	ori maggiori e i du	e valori minori		

Forma del provino e tipo di rottura

A - Blocco

B - Cilindrico - rottura diametrale

- Cilindrico - rottura assiale

D - Informe

Posizione dei piani di debolezza

A - Assenti

B - Perpendicolari alla direzione del carico

C - Paralleli alla direzione del carico

D - In direzioni varie

Marna siltosa fratturata di colore grigio

Roberto Bracaglia Charco Ferrante School of Succession Company

SGEO - Laboratorio 6.2 - 2018

Certificazione Ufficiale-Settore A e B- Prove di laboratorio su terre e rocce AUTORIZZAZIONE MINISTERO INFRASTRUTTURE E TRASPORTI Decreto 150/15-06-2016 - Circolare 7618/STC/2010

COMMITTENTE: Vianini Lavori S.p.A.

RIFERIMENTO: Progettazione definitiva utilizzo idropotabile delle acque - invaso di Campolattaro

SONDAGGIO: CL6 CAMPIONE: CR2a PROFONDITA': m 91.0-92.0

MODULO RIASSUNTIVO

CARATTERISTICHE FISICHE

	 '	
Umidità naturale	5.7	%
Peso di volume	23.9	kN/m³
Peso di volume secco	22.6	kN/m³
Peso di volume saturo	24.1	kN/m³
Peso specifico	2.72	
Indice dei vuoti	0.179	
Porosità	15.2	%
Grado di saturazione	86.4	%
Limite di liquidità		%
Limite di plasticità		%
Indice di plasticità		%
Indice di consistenza		
Passante al set. n° 40		
Limite di ritiro		%
CNR-UNI 10006/00		

ANALISI GRANULOMETRICA

Ghiaia	%
Sabbia	%
Limo	%
Argilla	%
D 10	mm
D 50	mm
D 60	mm
D 90	mm
Passante set. 10	%
Passante set. 42	%
Passante set. 200	%

PERMEABILITA'

Coefficiente k	cm/sec
Coefficiente k	CITI/SEC

COMPRESSIONE

σ	kPa	σ Rim	kPa
C _U	kPa	C _U Rim	kPa

TAGLIO DIRETTO

Prova consolid	ata-lenta		
C'	kPa	φ'	0
C'Res	kPa	ф Res	0

COMPRESSIONE TRIASSIALE

C.D.	c _d	kPa	фа	0
C.U.	c' _{cu}	kPa	φ΄ςυ	o
C.U.	c _{cu}	kPa	фси	0
U.U.	cυ	kPa	φυ	0

PROVA EDOMETRICA

σ kPa	E kPa	Cv cm²/sec	k cm/sec

Marna siltosa fratturata di colore grigio

Certificazione Ufficiale-Settore A e B- Prove di laboratorio su terre e rocce AUTORIZZAZIONE MINISTERO INFRASTRUTTURE E TRASPORTI Decreto 150/15-06-2016 - Circolare 7618/STC/2010

CERTIFICATO DI PROVA N°: 00572 Pagina 1/1 28/01/21 Inizio analisi: 30/11/20 DATA DI EMISSIONE: 828 del 26/11/20 VERBALE DI ACCETTAZIONE N°: Apertura campione: 30/11/20 Fine analisi: 01/12/20

COMMITTENTE: Vianini Lavori S.p.A.

Progettazione definitiva utilizzo idropotabile delle acque - invaso di Campolattaro RIFERIMENTO:

CAMPIONE: 91.0-92.0 SONDAGGIO: CL6 CR2a PROFONDITA': m

CONTENUTO D'ACQUA ALLO STATO NATURALE

Modalità di prova: Norma ASTM D2216

Wn = contenuto d'acqua allo stato naturale = 5.7 %

Temperatura di essiccazione: 110 °C

Marna siltosa fratturata di colore grigio

SGEO - Laboratorio 6.2 - 2018

Sperimentatore

Roberto Bracadlia
Lohu o Juscu gli e Marco Ferrante

Lohu o Juscu gli e Marco fluorita

Certificazione Ufficiale-Settore A e B- Prove di laboratorio su terre e rocce AUTORIZZAZIONE MINISTERO INFRASTRUTTURE E TRASPORTI Decreto 150/15-06-2016 - Circolare 7618/STC/2010

CERTIFICATO DI PROVA N°: 00573 Pagina 1/1 28/01/21 Inizio analisi: 30/11/20 DATA DI EMISSIONE: VERBALE DI ACCETTAZIONE N°: 828 del 26/11/20 Apertura campione: 30/11/20 Fine analisi: 30/11/20

COMMITTENTE: Vianini Lavori S.p.A.

RIFERIMENTO: Progettazione definitiva utilizzo idropotabile delle acque - invaso di Campolattaro

SONDAGGIO: CL6 CAMPIONE: CR2a PROFONDITA': m 91.0-92.0

PESO DI VOLUME ALLO STATO NATURALE

Modalità di prova: Norma BS 1377 T 15

Peso di volume allo stato naturale = 23.9 kN/m³

Marna siltosa fratturata di colore grigio

Sperimentatore

Roberto Bracadlia
Lo nu o puccu gli e Marco Ferrante
Lo nu o puccu gli e Marco fluorito

Certificazione Ufficiale-Settore A e B- Prove di laboratorio su terre e rocce AUTORIZZAZIONE MINISTERO INFRASTRUTTURE E TRASPORTI Decreto 150/15-06-2016 - Circolare 7618/STC/2010

CERTIFICATO DI PROVA N°: 00574	Pagina 1/1	DATA DI EMISSIONE:	28/01/21	Inizio analisi:	17/12/20		
VERBALE DI ACCETTAZIONE N°: 828	del 26/11/20	Apertura campione:	30/11/20	Fine analisi:	17/12/20		
COMMITTENTE: Vianini Lavori S.p.	.A.						
RIFERIMENTO: Progettazione defin	itiva utilizzo idro	opotabile delle acque -	invaso di C	Campolattaro			
SONDAGGIO: CL6	CAMPIONE:	CR2a	PROFONE	DITA': m 91	.0-92.0		
PESO SPECIFICO DEI GRANULI							
Modalità di prova: Norma ASTM D854							

 γ_s = Peso specifico dei granuli (media delle due misure) = 2.72

 γ_{SC} = Peso specifico dei granuli corretto a 20° = 2.72

A ПВ Metodo:

Capacità del picnometro: 100 ml

Temperatura di prova: 19.7 °C

Disaerazione eseguita per bollitura

Marna siltosa fratturata di colore grigio

Sperimentatore
Roberto Bracaglia
Lo hulo mucu gli e Marco Ferrante fluorite

Certificazione Ufficiale-Settore A e B- Prove di laboratorio su terre e rocce AUTORIZZAZIONE MINISTERO INFRASTRUTTURE E TRASPORTI Decreto 150/15-06-2016 - Circolare 7618/STC/2010

COMMITTENTE: Vianini Lavori S.p.A.

RIFERIMENTO: Progettazione definitiva utilizzo idropotabile delle acque - invaso di Campolattaro

SONDAGGIO: CL6 CAMPIONE: CR3a PROFONDITA': m 101.0-102.0

MODULO RIASSUNTIVO

CONTENUTO D'ACQUA ALLO STATO NATURALE

Umidità media (%):

PESO DI VOLUME ALLO STATO NATURALE

Peso di volume (kN/m³): 24.7

MASSA VOLUMICA APPARENTE E REALE - POROSITA'

Massa volumica apparente (kg/m³):	2475.8
Massa volumica reale (kg/m³):	2655.8
Porosità aperta (%):	7.3
Porosità totale (%):	7.8

VELOCITA' DI PROPAGAZIONE E COSTANTI ELASTICHE DELLA ROCCIA

Velocità delle onde di compressione (Vρ) (m/sec):	3040
Velocità delle onde di taglio (Vs) (m/sec):	2009

PROVA DI COMPRESSIONE UNIASSIALE

Resistenza a compressione (MPa): 27.69

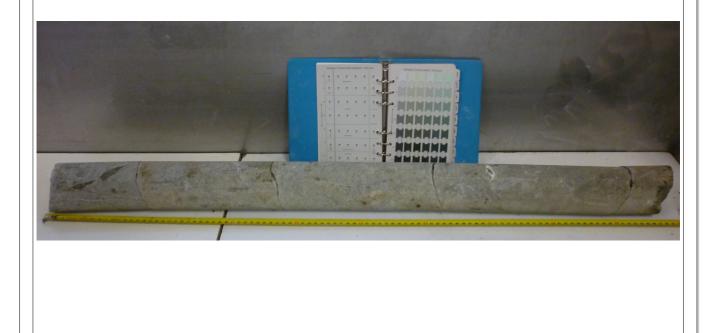
PROVA DI TRAZIONE INDIRETTA «BRASILIANA»

Resistenza a trazione (MPa): 2.10

DESCRIZIONE DEL CAMPIONE

Arenaria di colore grigio.

Campione integrativo prelevato il 21/11/2020.



Certificazione Ufficiale-Settore A e B- Prove di laboratorio su terre e rocce AUTORIZZAZIONE MINISTERO INFRASTRUTTURE E TRASPORTI Decreto 150/15-06-2016 - Circolare 7618/STC/2010

COMMITTENTE: Vianini Lavori S.p.A.

RIFERIMENTO: Progettazione definitiva utilizzo idropotabile delle acque - invaso di Campolattaro

SONDAGGIO: CL6 CAMPIONE: CR3a PROFONDITA': m 101.0-102.0

Arenaria di colore grigio

Certificazione Ufficiale-Settore A e B- Prove di laboratorio su terre e rocce AUTORIZZAZIONE MINISTERO INFRASTRUTTURE E TRASPORTI Decreto 150/15-06-2016 - Circolare 7618/STC/2010

CERTIFICATO DI PROVA N°: 00576 Pagina 1/1 28/01/21 Inizio analisi: 01/12/20 DATA DI EMISSIONE: 828 del 26/11/20 VERBALE DI ACCETTAZIONE N°: Apertura campione: 01/12/20 Fine analisi: 02/12/20

COMMITTENTE: Vianini Lavori S.p.A.

Progettazione definitiva utilizzo idropotabile delle acque - invaso di Campolattaro RIFERIMENTO:

CAMPIONE: SONDAGGIO: CL6 CR3a PROFONDITA': m 101.0-102.0

CONTENUTO D'ACQUA

Modalità di prova: Norma ASTM D2216

Umidità media 1.6 %

Temperatura di essiccazione: 110 °C

Arenaria di colore grigio

Sperimentatore
Roberto Bracaglia
Lohu o mucu gli e Marco Ferrante fluorito

Certificazione Ufficiale-Settore A e B- Prove di laboratorio su terre e rocce AUTORIZZAZIONE MINISTERO INFRASTRUTTURE E TRASPORTI Decreto 150/15-06-2016 - Circolare 7618/STC/2010

CERTIFICATO DI PROVA N°: 00577	Pagina 1/1	DATA DI EMISSIONE:	28/01/21	Inizio analisi:	11/01/21
VERBALE DI ACCETTAZIONE N°: 828 del	26/11/20	Apertura campione:	01/12/20	Fine analisi:	11/01/21

COMMITTENTE: Vianini Lavori S.p.A.

Proqettazione definitiva utilizzo idropotabile delle acque - invaso di Campolattaro RIFERIMENTO:

CAMPIONE: PROFONDITA': m SONDAGGIO: CL6 CR3a 101.0-102.0

MASSA VOLUMICA APPARENTE E REALE - POROSITA'

Modalità di prova: Norma ISRM Suggested Methods

2475.8 Massa volumica apparente (kg/m^3) : Massa volumica reale (kg/m³): 2655.8 7.3 Porosità aperta (%): 7.8 Porosità totale (%):

Massa volumica reale determinata con Picnometro

Arenaria di colore grigio

Sperimentatore
Roberto Bracadlia
La huro Tuecu gli e Marco Ferrante

Certificazione Ufficiale-Settore A e B- Prove di laboratorio su terre e rocce AUTORIZZAZIONE MINISTERO INFRASTRUTTURE E TRASPORTI Decreto 150/15-06-2016 - Circolare 7618/STC/2010

CERTIFICATO DI PROVA N°: 00578 Pagina 1/1 28/01/21 12/01/21 DATA DI EMISSIONE: Inizio analisi: VERBALE DI ACCETTAZIONE N°: 828 del 26/11/20 Apertura campione: 01/12/20 Fine analisi: 12/01/21

COMMITTENTE: Vianini Lavori S.p.A.

RIFERIMENTO: Progettazione definitiva utilizzo idropotabile delle acque - invaso di Campolattaro

SONDAGGIO: CL6 CAMPIONE: CR3a PROFONDITA': m 101.0-102.0

VELOCITA' DI PROPAGAZIONE E COSTANTI ELASTICHE DELLA ROCCIA

Modalità di prova: Norma ASTM D2845 - 08

3040 Velocità delle onde di compressione (Vp) (m/sec): Velocità delle onde di taglio (Vs) (m/sec): 2009

Densità della roccia (kg/m³): 2518 Modulo di elasticità di Young (MPa): 22605 Modulo di taglio (MPa): 10160 Coefficiente di Poisson: 0.11 Costante di Lamé (MPa): 2948 Modulo bulk (MPa): 9722

Arenaria di colore grigio

Sperimentatore

Roberto Bracaglia

Lo nu o Pracuglie

Merco Ferrante

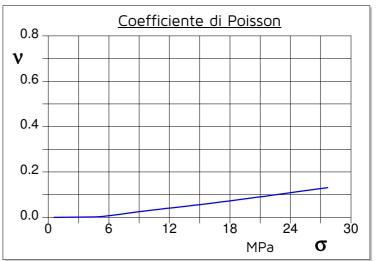
Lo nu o Pracuglie

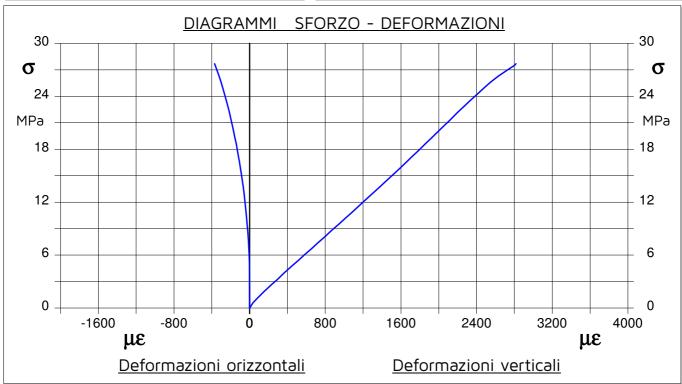
Marco Fluxuto

Certificazione Ufficiale-Settore A e B- Prove di laboratorio su terre e rocce AUTORIZZAZIONE MINISTERO INFRASTRUTTURE E TRASPORTI Decreto 150/15-06-2016 - Circolare 7618/STC/2010

CERTIFICATO DI PROVA N°: 00579 Pagina 1/2 DATA DI EMISSIONE: 28/01/21 13/01/21 Inizio analisi: 828 del 26/11/20 VERBALE DI ACCETTAZIONE N°: Apertura campione: 01/12/20 Fine analisi: 13/01/21

COMMITTENTE: Vianini Lavori S.p.A.


Proqettazione definitiva utilizzo idropotabile delle acque - invaso di Campolattaro RIFERIMENTO:


CAMPIONE: PROFONDITA': m SONDAGGIO: CL6 CR3a 101.0-102.0

PROVA DI COMPRESSIONE UNIASSIALE

Modalità di prova: Norma ASTM D7012 - 14

Provino n°:	1
Massa provino (g)	2202.0
Diametro (cm):	7.80
Altezza (cm):	18.30
Sezione (cm²):	47.78
Peso di volume (kN/m³):	24.7
Deformazione verticale (με)	2816
Deformazione orizzontale (με)	370
Modulo elastico tangente (MPa):	9881
Modulo elastico secante (MPa):	9972
Coefficiente di Poisson tangente	0.13
Pressione a rottura (MPa)	27.69

Arenaria di colore grigio

Il modulo elastico e il coefficiente di poisson sono stati calcolati in corrispondenza del 50% della tensione a rottura.

SGEO - Laboratorio 6.2 - 2018

Sperimentatore Direttore Roberto Bracadlia Marco Ferrante

Certificazione Ufficiale-Settore A e B- Prove di laboratorio su terre e rocce AUTORIZZAZIONE MINISTERO INFRASTRUTTURE E TRASPORTI Decreto 150/15-06-2016 - Circolare 7618/STC/2010

CERTIFICATO DI PROVA N°: 00579 Pagina 2/2 DATA DI EMISSIONE: 28/01/21 13/01/21 Inizio analisi: 828 del 26/11/20 VERBALE DI ACCETTAZIONE N°: Apertura campione: 01/12/20 Fine analisi: 13/01/21

COMMITTENTE: Vianini Lavori S.p.A.

Progettazione definitiva utilizzo idropotabile delle acque - invaso di Campolattaro RIFERIMENTO:

CAMPIONE: PROFONDITA': m SONDAGGIO: CL6 CR3a 101.0-102.0

PROVA DI COMPRESSIONE UNIASSIALE

Modalità di prova: Norma ASTM D7012 - 14

	Provino 1										ļ	Provinc	1				
n°	Tensione MPa		eformazio icale E2	one με Media	I	formazio ntale E2	one µ& Media	Coeff. Poisson	n°	Tensione MPa		eformazio ticale E2	one με Media		eformazi ontale E2	one με Media	Coeff. Poisson
1	0.59	31	43	37	1	-	-	-	40	27.50	2170	3431	2800	-363	-	-363	0.13
2	1.17	41	134	88	3	-	-	-	41	27.69	2187	3445	2816	-370	-	-370	0.13
3	1.84	53	249	151	3	-	-	-									
4	2.76	75	412	243	3	-	-	-									
5	3.20	96	487	292	3	-	-	-									
6	3.98	140	587	364	2	-	-	-									
7	4.73	195	693	444	-1	-	-1	0.00									
8	5.42	250	788	519	-2	-	-2	0.00									
9	6.07	301	870	585	-5	-	-5	0.01									
10	6.74	355	955	655	-8	-	-8	0.01									
11	7.43	412	1042	727	-12	-	-12	0.02									
12	7.99	461	1113	787	-15	-	-15	0.02									
13	8.79	528	1207	868	-21	-	-21	0.02									
14	9.48	591	1294	942	-26	-	-26	0.03									
15	10.21	654	1379	1017	-32	-	-32	0.03									
16	10.95	719	1464	1092	-38	-	-38	0.03									
17	11.66	784	1547	1165	-46	-	-46	0.04									
18	12.35	845	1626	1235	-52	-	-52	0.04									
19	13.02	907	1702	1305	-60	-	-60	0.05									
20	13.73	972	1783	1378	-68	-	-68	0.05									
21	14.46	1037	1863	1450	-78	-	-78	0.05									
22	15.09	1096	1933	1514	-86	-	-86	0.06									
23	15.76	1157	2007	1582	-95	-	-95	0.06									
24	16.49	1221	2085	1653	-106	-	-106	0.06									
25	17.18	1282	2158	1720	-118	-	-118	0.07									
26	17.89	1346	2234	1790	-129	-	-129	0.07									
27	18.58	1405	2306	1856	-141	-	-141	0.08									
28	19.30	1467	2382	1925	-155	-	-155	0.08									
29	20.01	1529	2458	1994	-168	-	-168	0.08									
30	20.68	1587	2530	2059	-182	-	-182	0.09									
31	21.41	1649	2607	2128	-197		-197	0.09									
32	22.14	1710	2684	2197	-213	-	-213	0.10									
33	22.85	1771	2763	2267	-230	_	-230	0.10									
34	23.52	1828	2840	2334	-247	-	-247	0.11									
35	24.19	1886	2919	2402	-264	-	-264	0.11									
36	24.88	1943	3000	2472	-282	-	-282	0.11									
37	25.57	2001	3089	2545	-301	-	-301	0.12					-				
38	26.29	2064	3197	2630	-323	-	-323	0.12									
39	27.00	2127	3329	2728	-347	-	-347	0.13									

SGEO - Laboratorio 6.2 - 2018

Sperimentatore
Roberto Bracadlia
Lo hulo Justinglie Marco Ferrante
Lo hulo Justinglie
Lo

Certificazione Ufficiale-Settore A e B- Prove di laboratorio su terre e rocce AUTORIZZAZIONE MINISTERO INFRASTRUTTURE E TRASPORTI Decreto 150/15-06-2016 - Circolare 7618/STC/2010

CERTIFICATO DI PROVA N°: 00580 Pagina 1/1 28/01/21 13/01/21 DATA DI EMISSIONE: Inizio analisi: VERBALE DI ACCETTAZIONE N°: 828 del 26/11/20 Apertura campione: 01/12/20 Fine analisi: 13/01/21

COMMITTENTE: Vianini Lavori S.p.A.

RIFERIMENTO: Progettazione definitiva utilizzo idropotabile delle acque - invaso di Campolattaro

101.0-102.0 SONDAGGIO: CL6 CAMPIONE: CR3a PROFONDITA': m

PROVA DI TRAZIONE INDIRETTA «BRASILIANA»

Modalità di prova: Norma ASTM D3967 - 16

10 2.10 Numero di provini: Resistenza a trazione media (MPa): Resistenza a trazione minima (MPa): 0.70 Deviazione standard: 0.63 0.30 Resistenza a trazione massima (MPa): 3.12 Coefficiente di variazione:

CARATTERISTICHE DEI PROVINI								
n°	Massa g	Spessore mm	Diametro mm	Peso di volume kN/m³	Carico a rottura N	Resist. a rottura MPa		
1	289.86	24.0	78.0	24.8	5700.0	1.94		
2	341.68	29.0	78.0	24.2	2500.0	0.70		
3	259.56	22.0	78.0	24.2	6300.0	2.34		
4	271.97	22.5	78.0	24.8	7500.0	2.72		
5	369.76	31.0	78.0	24.5	7700.0	2.03		
6	334.40	28.0	78.0	24.5	10700.0	3.12		
7	303.37	25.0	78.0	24.9	6100.0	1.99		
8	337.44	28.0	78.0	24.7	7000.0	2.04		
9	208.88	17.5	78.0	24.5	4900.0	2.29		
10	227.34	19.0	78.0	24.6	4300.0	1.85		

Arenaria di colore grigio

Sperimentatore

Roberto Bracaglia
Lo nu o Pracuglie Marco Ferrante fluorito

Certificazione Ufficiale-Settore A e B- Prove di laboratorio su terre e rocce AUTORIZZAZIONE MINISTERO INFRASTRUTTURE E TRASPORTI Decreto 150/15-06-2016 - Circolare 7618/STC/2010

COMMITTENTE: Vianini Lavori S.p.A.

RIFERIMENTO: Progettazione definitiva utilizzo idropotabile delle acque - invaso di Campolattaro

SONDAGGIO: CL6 CAMPIONE: CR4a PROFONDITA': m 109.0-110.0

MODULO RIASSUNTIVO

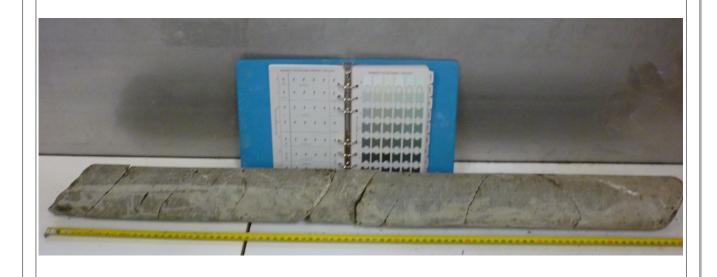
POINT LOAD TEST

Indice Is(50) - Valore medio

0.40

DESCRIZIONE DEL CAMPIONE

Marna siltosa fratturata di colore grigio Campione integrativo prelevato il 21/11/2020.



Certificazione Ufficiale-Settore A e B- Prove di laboratorio su terre e rocce AUTORIZZAZIONE MINISTERO INFRASTRUTTURE E TRASPORTI Decreto 150/15-06-2016 - Circolare 7618/STC/2010

COMMITTENTE: Vianini Lavori S.p.A.

RIFERIMENTO: Progettazione definitiva utilizzo idropotabile delle acque - invaso di Campolattaro

SONDAGGIO: CL6 CAMPIONE: CR4a PROFONDITA': m 109.0-110.0

Marna siltosa fratturata di colore grigio

Certificazione Ufficiale-Settore A e B- Prove di laboratorio su terre e rocce AUTORIZZAZIONE MINISTERO INFRASTRUTTURE E TRASPORTI Decreto 150/15-06-2016 - Circolare 7618/STC/2010

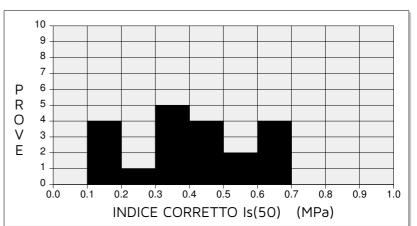
CERTIFICATO DI PROVA N°: 00584 Pagina 1/1 28/01/21 Inizio analisi: 29/12/20 DATA DI EMISSIONE: VERBALE DI ACCETTAZIONE N°: 828 del 26/11/20 Apertura campione: 01/12/20 Fine analisi: 29/12/20

COMMITTENTE: Vianini Lavori S.p.A.

RIFERIMENTO: Progettazione definitiva utilizzo idropotabile delle acque - invaso di Campolattaro

SONDAGGIO: CL6 CAMPIONE: CR4a PROFONDITA': m 109.0-110.0

POINT LOAD TEST


Modalità di prova: Norma ASTM D5731 - 16

INDICE CORRETTO Is(50)

Prove esequite: 20 Valore massimo 0.69 Valore medio * 0.40 Valore minimo 0.10

CARATTERISTICHE FISICHE

Umidità naturale (%) 5.5 Peso di volume (kN/m³): 24.1

Prova n°	Forma Rottura	Piani di debolezza	Altezza mm	Larghezza mm	Carico kN	Indice Is MPa	Indice Is(50) MPa		
1	С	D	36.0	78.0	1.78	0.498	0.540		
2	С	D	26.0	78.0	1.52	0.589	0.593		
3	С	D	40.0	78.0	2.46	0.619	0.687		
4	С	D	27.0	78.0	1.72	0.641	0.652		
5	С	D	47.0	78.0	0.41	0.088	0.101		
6	C	D	65.0	78.0	2.20	0.341	0.422		
7	C	D	42.0	78.0	2.47	0.592	0.664		
8	C	D	30.0	78.0	1.73	0.581	0.604		
9	С	D	40.0	78.0	0.78	0.196	0.218		
10	C	D	50.0	78.0	1.50	0.302	0.353		
11	O	D	55.0	78.0	1.54	0.282	0.336		
12	В	D	78.0	120.0	0.83	0.136	0.167		
13	C	D	44.0	78.0	1.78	0.407	0.462		
14	С	D	30.0	78.0	0.42	0.141	0.147		
15	В	D	78.0	90.0	1.77	0.291	0.355		
16	D	D	35.0	42.5	0.66	0.348	0.327		
17	D	D	40.0	61.5	0.32	0.102	0.107		
18	D	D	36.0	37.0	0.91	0.537	0.492		
19	D	D	24.0	41.0	0.62	0.495	0.424		
20	С	D	35.0	78.0	1.02	0.293	0.316		
* Vengo	* Vengono esclusi dal calcolo del valore medio i due valori maggiori e i due valori minori								

Forma del provino e tipo di rottura

A - Blocco

B - Cilindrico - rottura diametrale

- Cilindrico - rottura assiale

D - Informe

Posizione dei piani di debolezza

A - Assenti

B - Perpendicolari alla direzione del carico

C - Paralleli alla direzione del carico

D - In direzioni varie

Marna siltosa fratturata di colore grigio

Roberto Bracaglia Lo mo procueglie Marco Ferrante

SGEO - Laboratorio 6.2 - 2018

Certificazione Ufficiale-Settore A e B- Prove di laboratorio su terre e rocce AUTORIZZAZIONE MINISTERO INFRASTRUTTURE E TRASPORTI Decreto 150/15-06-2016 - Circolare 7618/STC/2010

COMMITTENTE: Vianini Lavori S.p.A.

RIFERIMENTO: Progettazione definitiva utilizzo idropotabile delle acque - invaso di Campolattaro

SONDAGGIO: CL6 CAMPIONE: CR4a PROFONDITA': m 109.0-110.0

MODULO RIASSUNTIVO

CARATTERISTICHE FISICHE

Umidità naturale	5.5	%
Peso di volume	24.1	kN/m³
Peso di volume secco	22.9	kN/m³
Peso di volume saturo	24.3	kN/m³
Peso specifico	2.72	
Indice dei vuoti	0.166	
Porosità	14.2	%
Grado di saturazione	90.1	%
Limite di liquidità		%
Limite di plasticità		%
Indice di plasticità		%
Indice di consistenza		
Passante al set. n° 40		
Limite di ritiro		%
CNR-UNI 10006/00		

ANALISI GRANULOMETRICA

1
%
%
%
%
mm
mm
mm
mm
%
%
%

PERMEABILITA'

Coefficiente k	cm/sec
Coefficiente k	ciii/sec

COMPRESSIONE

σ	kPa	σ Rim	kPa
CU	kPa	C _U Rim	kPa

TAGLIO DIRETTO

Prova consolidata-lenta				
c'	kPa	φ'	0	
C'Res	kPa	ф ˈRes	0	

COMPRESSIONE TRIASSIALE

C.D.	c _d	kPa	фа	0
C.U.	C' _{cu} kPa		φ΄ςυ	o
C.U.	c _{cu}	kPa	φου	0
U.U.	c _u	kPa	φυ	o

PROVA EDOMETRICA

σ kPa	E kPa	Cv cm²/sec	k cm/sec			

Marna siltosa fratturata di colore grigio

Certificazione Ufficiale-Settore A e B- Prove di laboratorio su terre e rocce AUTORIZZAZIONE MINISTERO INFRASTRUTTURE E TRASPORTI Decreto 150/15-06-2016 - Circolare 7618/STC/2010

CERTIFICATO DI PROVA N°: 00581 Pagina 1/1 28/01/21 Inizio analisi: 01/12/20 DATA DI EMISSIONE: 828 del 26/11/20 VERBALE DI ACCETTAZIONE N°: Apertura campione: 01/12/20 Fine analisi: 02/12/20

COMMITTENTE: Vianini Lavori S.p.A.

RIFERIMENTO: Progettazione definitiva utilizzo idropotabile delle acque - invaso di Campolattaro

CAMPIONE: PROFONDITA': m 109.0-110.0 SONDAGGIO: CL6 CR4a

CONTENUTO D'ACQUA ALLO STATO NATURALE

Modalità di prova: Norma ASTM D2216

Wn = contenuto d'acqua allo stato naturale = 5.5 %

Temperatura di essiccazione: 110 °C

Marna siltosa fratturata di colore grigio

SGEO - Laboratorio 6.2 - 2018

Sperimentatore

Roberto Bracadlia
Lohu o Juscu gli e Marco Ferrante

Lohu o Juscu gli e Marco fluorita

Certificazione Ufficiale-Settore A e B- Prove di laboratorio su terre e rocce AUTORIZZAZIONE MINISTERO INFRASTRUTTURE E TRASPORTI Decreto 150/15-06-2016 - Circolare 7618/STC/2010

CERTIFICATO DI PROVA N°: 00582 Pagina 1/1 28/01/21 Inizio analisi: 01/12/20 DATA DI EMISSIONE: VERBALE DI ACCETTAZIONE N°: 828 del 26/11/20 Apertura campione: 01/12/20 Fine analisi: 01/12/20

COMMITTENTE: Vianini Lavori S.p.A.

RIFERIMENTO: Progettazione definitiva utilizzo idropotabile delle acque - invaso di Campolattaro

SONDAGGIO: CL6 CAMPIONE: CR4a PROFONDITA': m 109.0-110.0

PESO DI VOLUME ALLO STATO NATURALE

Modalità di prova: Norma BS 1377 T 15

Peso di volume allo stato naturale = 24.1 kN/m³

Marna siltosa fratturata di colore grigio

Sperimentatore

Roberto Bracadlia
Lo nu o puccu gli e Marco Ferrante
Lo nu o puccu gli e Marco fluorito

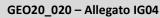
Certificazione Ufficiale-Settore A e B- Prove di laboratorio su terre e rocce AUTORIZZAZIONE MINISTERO INFRASTRUTTURE E TRASPORTI Decreto 150/15-06-2016 - Circolare 7618/STC/2010

CERTIFICATO DI PROVA N°: 00583	Pagina 1/1	DATA	DI EMISSIONE:	28/01/21	Inizio analisi:	17/12/20
VERBALE DI ACCETTAZIONE N°: 828	del 26/11/20	Aper	tura campione:	01/12/20	Fine analisi:	17/12/20
COMMITTENTE: Vianini Lavori S.p	.A.					
RIFERIMENTO: Progettazione defir	RIFERIMENTO: Progettazione definitiva utilizzo idropotabile delle acque - invaso di Campolattaro					
SONDAGGIO: CL6	CAMPIONE:	CR4a		PROFONDI	ΓA': m 109.	0-110.0
PESO SPECIFICO DEI GRANULI						
<u>i ESO SI EGII ICO DEI GIVANOLI</u>						
Modalità di prova: Norma ASTM D854						

 γ_s = Peso specifico dei granuli (media delle due misure) = 2.72

 γ_{SC} = Peso specifico dei granuli corretto a 20° = 2.72

A ПВ Metodo:


Capacità del picnometro: 100 ml

19.7 °C Temperatura di prova:

Disaerazione eseguita per bollitura

Marna siltosa fratturata di colore grigio

Sperimentatore Direttore Roberto Bracadlia Marco Ferrante La Nul O Justice gli e Marco Ferrante

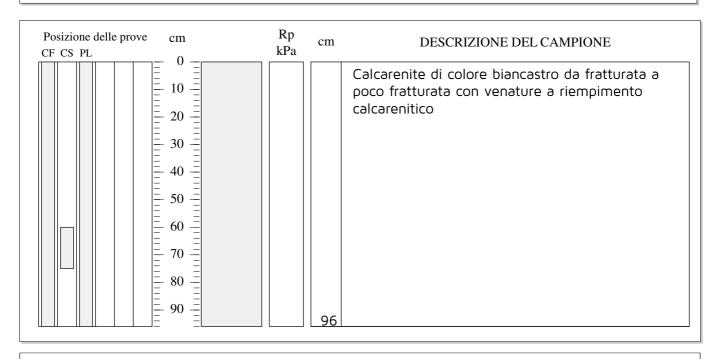
Allegato IG04-E

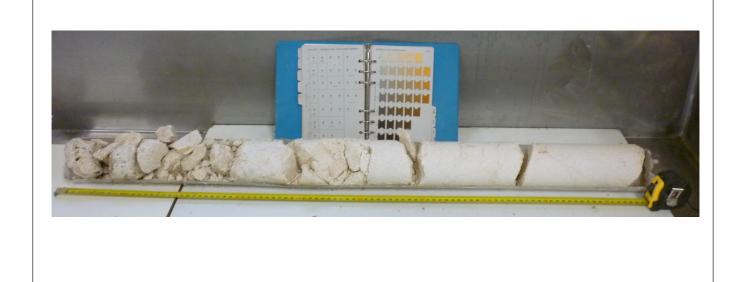
Campioni sondaggio CL 7

Committente: VIANINI LAVORI SPA Luogo: CASALDUNI – PONTE (BN)

LAVOFO: ATTIVITÀ DI COLLABORAZIONE ALLE ATTIVITÀ DI PROGETTAZIONE DEFINITIVA, CONCERNENTI L'INTERVENTO DI UTILIZZO IDROPOTABILE DELLE ACQUE

DELL'INVASO DI CAMPOLATTARO - INDAGINI GEOGNOSTICHE




Certificazione Ufficiale-Settore A e B- Prove di laboratorio su terre e rocce AUTORIZZAZIONE MINISTERO INFRASTRUTTURE E TRASPORTI Decreto 150/15-06-2016 - Circolare 7618/STC/2010

COMMITTENTE: Vianini Lavori S.p.A.

RIFERIMENTO: Utilizzo idropotabile delle acque dell'invaso di Campolattaro

SONDAGGIO: CL7 CAMPIONE: C1 PROFONDITA': m 89.0-90.0

Certificazione Ufficiale-Settore A e B- Prove di laboratorio su terre e rocce AUTORIZZAZIONE MINISTERO INFRASTRUTTURE E TRASPORTI Decreto 150/15-06-2016 - Circolare 7618/STC/2010

COMMITTENTE: Vianini Lavori S.p.A.

RIFERIMENTO: Utilizzo idropotabile delle acque dell'invaso di Campolattaro

SONDAGGIO: CL7 CAMPIONE: C1 PROFONDITA': m 89.0-90.0

MODULO RIASSUNTIVO

CONTENUTO D'ACQUA ALLO STATO NATURALE

Umidità media (%):

PESO DI VOLUME ALLO STATO NATURALE

Peso di volume (kN/m^3) : 25.0

MASSA VOLUMICA APPARENTE E REALE - POROSITA'

Massa volumica apparente (kg/m³):

Massa volumica reale (kg/m³):

Porosità aperta (%):

Porosità totale (%):

2576.2

2703.4

3.3

4.7

PROVA DI COMPRESSIONE UNIASSIALE

Resistenza a compressione (MPa): 22.66

POINT LOAD TEST

Indice Is(50) - Valore medio 2.19

Certificazione Ufficiale-Settore A e B- Prove di laboratorio su terre e rocce AUTORIZZAZIONE MINISTERO INFRASTRUTTURE E TRASPORTI Decreto 150/15-06-2016 - Circolare 7618/STC/2010

27/11/20 CERTIFICATO DI PROVA N°: 06884 Pagina 1/1 DATA DI EMISSIONE: Inizio analisi: 26/10/20 760 del 16/10/20 VERBALE DI ACCETTAZIONE N°: Apertura campione: 26/10/20 Fine analisi: 27/10/20

COMMITTENTE: Vianini Lavori S.p.A.

Utilizzo idropotabile delle acque dell'invaso di Campolattaro RIFERIMENTO:

CAMPIONE: SONDAGGIO: PROFONDITA': m 89.0-90.0

CONTENUTO D'ACQUA

Modalità di prova: Norma ASTM D2216

Umidità media 1.6 %

Temperatura di essiccazione: 110 °C

Sperimentatore Direttore
Roberto Bracaglia
Lo nu o puecu gli e Marco Ferrante
Lo nu o puecu gli e Marco fluorito

Certificazione Ufficiale-Settore A e B- Prove di laboratorio su terre e rocce AUTORIZZAZIONE MINISTERO INFRASTRUTTURE E TRASPORTI Decreto 150/15-06-2016 - Circolare 7618/STC/2010

CERTIFICATO DI PROVA N°: 06885	Pagina 1/1	DATA DI EMISSIONE:	27/11/20	Inizio analisi:	16/11/20
VERBALE DI ACCETTAZIONE N°: 760 de	I 16/10/20	Apertura campione:	26/10/20	Fine analisi:	17/11/20

COMMITTENTE: Vianini Lavori S.p.A.

RIFERIMENTO: Utilizzo idropotabile delle acque dell'invaso di Campolattaro

SONDAGGIO: CL7 CAMPIONE: PROFONDITA': m 89.0-90.0

MASSA VOLUMICA APPARENTE E REALE - POROSITA'

Modalità di prova: Norma ISRM Suggested Methods

2576.2 Massa volumica apparente (kg/m^3) : Massa volumica reale (kg/m³): 2703.4 Porosità aperta (%): 3.3 4.7 Porosità totale (%):

Massa volumica reale determinata con Picnometro

Sperimentatore
Roberto Bracaglia
Lo hulo mucu gli e Marco Ferrante fluorito

Co hulo mucu gli e Marco fluorito

Certificazione Ufficiale-Settore A e B- Prove di laboratorio su terre e rocce AUTORIZZAZIONE MINISTERO INFRASTRUTTURE E TRASPORTI Decreto 150/15-06-2016 - Circolare 7618/STC/2010

CERTIFICATO DI PROVA N°: 06886	Pagina 1/1	DATA DI EMISSIONE:	27/11/20	Inizio analisi:	17/11/20
VERBALE DI ACCETTAZIONE N°: 760	del 16/10/20	Apertura campione:	26/10/20	Fine analisi:	17/11/20

COMMITTENTE: Vianini Lavori S.p.A.

Utilizzo idropotabile delle acque dell'invaso di Campolattaro RIFERIMENTO:

CAMPIONE: SONDAGGIO: CL7 PROFONDITA': m 89.0-90.0

PROVA DI COMPRESSIONE UNIASSIALE

Modalità di prova: Norma ASTM D7012 - 14

Provino n°:	1	
Velocità di deformazione (MPa/sec):	0.10	
Altezza (cm):	11.90	
Diametro (cm):	7.50	
Sezione (cm²)	44.18	
Peso di volume (kN/m³):	25.0	
Resistenza a compressione (MPa):	22.66	

La prova di compressione uniassiale è stata eseguita su un provino di roccia le cui dimensioni non sono conformi con i requisiti richiesti dalla Normativa ASTM D7012-14.

Sperimentatore
Roberto Bracaglia
Lo nu o Pracuglie Marco Ferrante fluorito

Certificazione Ufficiale-Settore A e B- Prove di laboratorio su terre e rocce AUTORIZZAZIONE MINISTERO INFRASTRUTTURE E TRASPORTI Decreto 150/15-06-2016 - Circolare 7618/STC/2010

CERTIFICATO DI PROVA N°: 06887 Pagina 1/1 DATA DI EMISSIONE: 27/11/20 17/11/20 Inizio analisi: VERBALE DI ACCETTAZIONE N°: 760 del 16/10/20 Apertura campione: 26/10/20 Fine analisi: 17/11/20

COMMITTENTE: Vianini Lavori S.p.A.

Utilizzo idropotabile delle acque dell'invaso di Campolattaro RIFERIMENTO:

CAMPIONE: SONDAGGIO: CL7 C1 PROFONDITA': m 89.0-90.0

POINT LOAD TEST


Modalità di prova: Norma ASTM D5731 - 16

INDICE CORRETTO Is(50)

Prove esequite: 10 Valore massimo 3.13 Valore medio * 2.19 Valore minimo 1.33

CARATTERISTICHE FISICHE

Umidità naturale (%) 1.6 Peso di volume (kN/m³): 25.3

Prova n°	Forma Rottura	Piani di debolezza	Altezza mm	Larghezza mm	Carico kN	Indice Is MPa	Indice Is(50) MPa
1	D	Α	59.0	59.5	9.70	2.170	2.473
2	D	Α	48.0	58.5	6.98	1.952	2.116
3	D	Α	39.0	48.5	4.25	1.765	1.750
4	D	Α	48.0	50.0	4.72	1.545	1.616
5	D	Α	32.0	44.0	6.05	3.375	3.131
6	D	A	42.0	54.0	7.02	2.431	2.511
7	D	Α	34.0	40.0	2.51	1.450	1.335
8	D	Α	33.0	42.0	5.77	3.270	3.023
9	D	Α	41.0	42.0	3.38	1.542	1.497
10	D	Α	37.0	39.0	5.28	2.874	2.681

* Vengono esclusi dal calcolo del valore medio i due valori maggiori e i due valori minori

Forma del provino e tipo di rottura

A - Blocco

B - Cilindrico - rottura diametrale

- Cilindrico - rottura assiale

D - Informe

Posizione dei piani di debolezza

A - Assenti

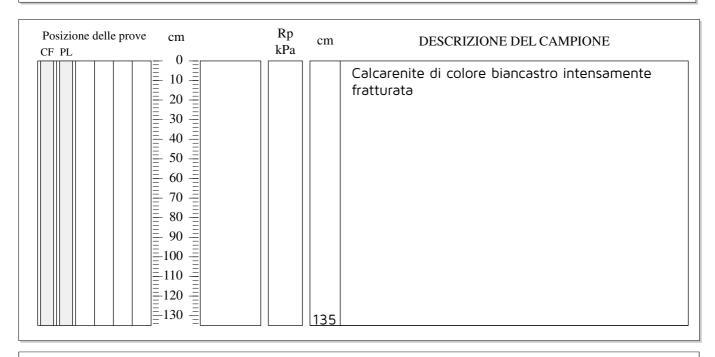
B - Perpendicolari alla direzione del carico

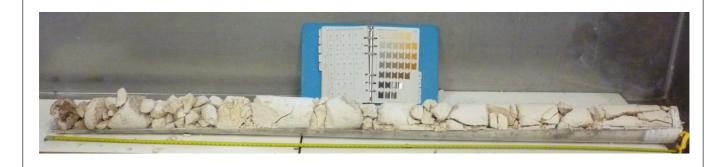
C - Paralleli alla direzione del carico

D - In direzioni varie

SGEO - Laboratorio 6.2 - 2018

Roberto Bracaglia Lo mo procueglie Marco Ferrante




Certificazione Ufficiale-Settore A e B- Prove di laboratorio su terre e rocce AUTORIZZAZIONE MINISTERO INFRASTRUTTURE E TRASPORTI Decreto 150/15-06-2016 - Circolare 7618/STC/2010

COMMITTENTE: Vianini Lavori S.p.A.

RIFERIMENTO: Utilizzo idropotabile delle acque dell'invaso di Campolattaro

SONDAGGIO: CL7 CAMPIONE: C2 PROFONDITA': m 95.0-96.35

Certificazione Ufficiale-Settore A e B- Prove di laboratorio su terre e rocce AUTORIZZAZIONE MINISTERO INFRASTRUTTURE E TRASPORTI Decreto 150/15-06-2016 - Circolare 7618/STC/2010

COMMITTENTE: Vianini Lavori S.p.A.

RIFERIMENTO: Utilizzo idropotabile delle acque dell'invaso di Campolattaro

SONDAGGIO: CL7 CAMPIONE: C2 PROFONDITA': m 95.0-96.35

MODULO RIASSUNTIVO

CONTENUTO D'ACQUA ALLO STATO NATURALE

Umidità media (%):

MASSA VOLUMICA APPARENTE E REALE - POROSITA'

Massa volumica apparente (kg/m³):	2571.9
Massa volumica reale (kg/m³):	2701.9
Porosità aperta (%):	3.5
Porosità totale (%):	4.8

POINT LOAD TEST

Indice Is(50) - Valore medio 3.38

Certificazione Ufficiale-Settore A e B- Prove di laboratorio su terre e rocce AUTORIZZAZIONE MINISTERO INFRASTRUTTURE E TRASPORTI Decreto 150/15-06-2016 - Circolare 7618/STC/2010

27/11/20 CERTIFICATO DI PROVA N°: 06888 Pagina 1/1 DATA DI EMISSIONE: Inizio analisi: 26/10/20 760 del 16/10/20 VERBALE DI ACCETTAZIONE N°: Apertura campione: 26/10/20 Fine analisi: 27/10/20

COMMITTENTE: Vianini Lavori S.p.A.

Utilizzo idropotabile delle acque dell'invaso di Campolattaro RIFERIMENTO:

CAMPIONE: SONDAGGIO: C2 PROFONDITA': m 95.0-96.35

CONTENUTO D'ACQUA

Modalità di prova: Norma ASTM D2216

Umidità media 1.4 %

Temperatura di essiccazione: 110 °C

Sperimentatore

Roberto Bracadlia

Lo hu o guecu gli e Marco Ferrante

Lo hu o guecu gli e Marco fluoriti

Certificazione Ufficiale-Settore A e B- Prove di laboratorio su terre e rocce AUTORIZZAZIONE MINISTERO INFRASTRUTTURE E TRASPORTI Decreto 150/15-06-2016 - Circolare 7618/STC/2010

CERTIFICATO DI PROVA N°: 06889	Pagina 1/1	DATA DI EMISSIONE:	27/11/20	Inizio analisi:	16/11/20
VERBALE DI ACCETTAZIONE N°: 760	del 16/10/20	Apertura campione:	26/10/20	Fine analisi:	17/11/20

COMMITTENTE: Vianini Lavori S.p.A.

Utilizzo idropotabile delle acque dell'invaso di Campolattaro RIFERIMENTO:

SONDAGGIO: CAMPIONE: PROFONDITA': m 95.0-96.35

MASSA VOLUMICA APPARENTE E REALE - POROSITA'

Modalità di prova: Norma ISRM Suggested Methods

Massa volumica apparente (kg/m³): 2571.9 Massa volumica reale (kg/m³): 2701.9 3.5 Porosità aperta (%): 4.8 Porosità totale (%):

Massa volumica reale determinata con Picnometro

Sperimentatore

Roberto Bracadlia

Lo hu o Justice gli e Marco Ferrante

Certificazione Ufficiale-Settore A e B- Prove di laboratorio su terre e rocce AUTORIZZAZIONE MINISTERO INFRASTRUTTURE E TRASPORTI Decreto 150/15-06-2016 - Circolare 7618/STC/2010

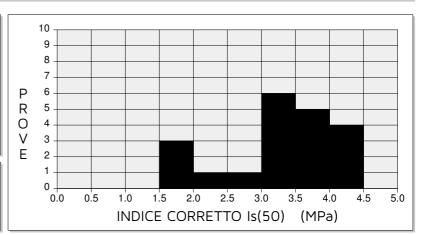
CERTIFICATO DI PROVA N°: 06890 Pagina 1/1 27/11/20 17/11/20 DATA DI EMISSIONE: Inizio analisi: VERBALE DI ACCETTAZIONE N°: 760 del 16/10/20 Apertura campione: 26/10/20 Fine analisi: 17/11/20

COMMITTENTE: Vianini Lavori S.p.A.

Utilizzo idropotabile delle acque dell'invaso di Campolattaro RIFERIMENTO:

CAMPIONE: SONDAGGIO: CL7 C2 PROFONDITA': m 95.0-96.35

POINT LOAD TEST


Modalità di prova: Norma ASTM D5731 - 16

INDICE CORRETTO Is(50)

Prove esequite: 20 Valore massimo 4.12 Valore medio * 3.38 Valore minimo 1.53

CARATTERISTICHE FISICHE

Umidità naturale (%) 1.4 Peso di volume (kN/m³): 25.2

Prova n°	Forma Rottura	Piani di debolezza	Altezza mm	Larghezza mm	Carico kN	Indice Is MPa	Indice Is(50) MPa
1	D	Α	63.0	67.5	14.39	2.658	3.162
2	D	Α	45.0	69.5	6.03	1.514	1.682
3	D	Α	44.0	44.5	10.28	4.124	4.121
4	D	Α	46.0	50.0	11.02	3.763	3.899
5	D	Α	40.0	53.0	9.09	3.368	3.426
6	D	Α	37.0	49.0	5.31	2.300	2.259
7	D	Α	39.0	54.0	5.04	1.880	1.909
8	D	Α	44.0	62.5	10.26	2.930	3.161
9	D	Α	41.5	43.0	8.58	3.776	3.696
10	D	Α	42.0	58.0	11.65	3.756	3.943
11	D	Α	43.0	61.0	10.71	3.207	3.423
12	D	Α	40.0	41.0	8.73	4.181	4.015
13	D	Α	37.0	63.0	9.45	3.184	3.309
14	D	Α	49.0	52.0	10.88	3.354	3.556
15	D	Α	35.0	58.0	7.62	2.948	2.970
16	D	Α	53.0	62.5	15.41	3.654	4.110
17	D	Α	59.0	63.0	6.29	1.329	1.534
18	D	Α	32.0	70.0	11.05	3.874	3.991
19	D	Α	34.0	60.5	10.40	3.971	4.013
20	D	Α	43.0	57.5	10.01	3.180	3.349
* Vengo	no esclusi dal o	alcolo del valor	e medio i due valo	ori maggiori e i du	e valori minori		

Forma del provino e tipo di rottura

A - Blocco

B - Cilindrico - rottura diametrale

- Cilindrico - rottura assiale

D - Informe

Posizione dei piani di debolezza

A - Assenti

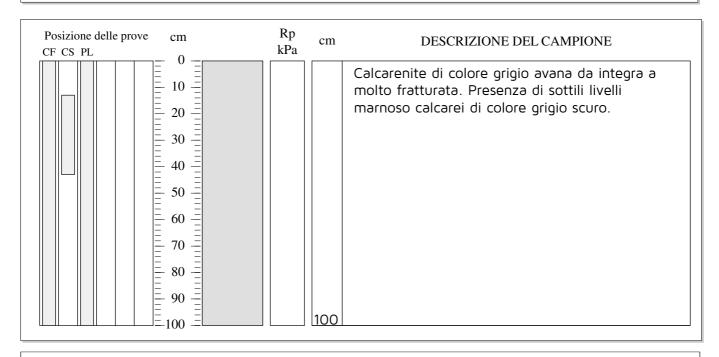
B - Perpendicolari alla direzione del carico

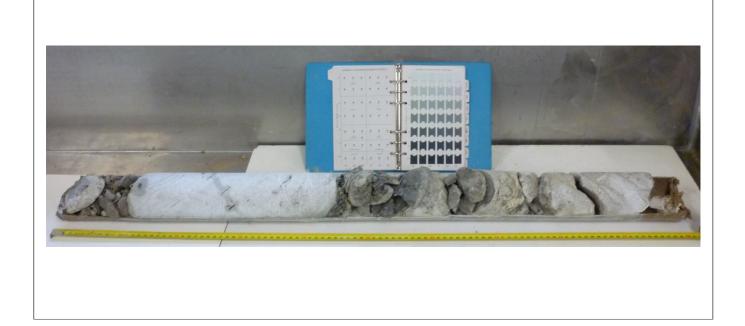
C - Paralleli alla direzione del carico

D - In direzioni varie

SGEO - Laboratorio 6.2 - 2018

Roberto Bracaglia Charco Ferrante Lucuto




Certificazione Ufficiale-Settore A e B- Prove di laboratorio su terre e rocce AUTORIZZAZIONE MINISTERO INFRASTRUTTURE E TRASPORTI Decreto 150/15-06-2016 - Circolare 7618/STC/2010

COMMITTENTE: Vianini Lavori S.p.A.

RIFERIMENTO: Utilizzo idropotabile delle acque dell'invaso di Campolattaro

SONDAGGIO: CL7 CAMPIONE: C3 PROFONDITA': m 113.0-114.0

Certificazione Ufficiale-Settore A e B- Prove di laboratorio su terre e rocce AUTORIZZAZIONE MINISTERO INFRASTRUTTURE E TRASPORTI Decreto 150/15-06-2016 - Circolare 7618/STC/2010

COMMITTENTE: Vianini Lavori S.p.A.

RIFERIMENTO: Utilizzo idropotabile delle acque dell'invaso di Campolattaro

SONDAGGIO: CL7 CAMPIONE: C3 PROFONDITA': m 113.0-114.0

MODULO RIASSUNTIVO

CONTENUTO D'ACQUA ALLO STATO NATURALE

Umidità media (%):

PESO DI VOLUME ALLO STATO NATURALE

Peso di volume (kN/m^3) : 26.5

MASSA VOLUMICA APPARENTE E REALE - POROSITA'

Massa volumica apparente (kg/m³):	2660.8
Massa volumica reale (kg/m³):	2717.0
Porosità aperta (%):	0.8
Porosità totale (%):	2.1

VELOCITA' DI PROPAGAZIONE E COSTANTI ELASTICHE DELLA ROCCIA

Velocità delle onde di compressione (Vp) (m/sec):	5966
Velocità delle onde di taglio (Vs) (m/sec):	3990

PROVA DI COMPRESSIONE UNIASSIALE

Resistenza a	compressione (MPa):	39.73
Resistenza a	compressione (MPa):	39.73

POINT LOAD TEST

Indice Is(50) - Valore medio	4.00
I INDICO ISISIII - VAINTO MODIO	71.11.3
I IIIOICE 13(30) VOIDIE IIIEUIO	7.(7.)

Certificazione Ufficiale-Settore A e B- Prove di laboratorio su terre e rocce AUTORIZZAZIONE MINISTERO INFRASTRUTTURE E TRASPORTI Decreto 150/15-06-2016 - Circolare 7618/STC/2010

27/11/20 CERTIFICATO DI PROVA N°: 06891 Pagina 1/1 DATA DI EMISSIONE: Inizio analisi: 26/10/20 760 del 16/10/20 VERBALE DI ACCETTAZIONE N°: Apertura campione: 26/10/20 Fine analisi: 27/10/20

COMMITTENTE: Vianini Lavori S.p.A.

Utilizzo idropotabile delle acque dell'invaso di Campolattaro RIFERIMENTO:

CAMPIONE: PROFONDITA': m 113.0-114.0 SONDAGGIO: C3

CONTENUTO D'ACQUA

Modalità di prova: Norma ASTM D2216

Umidità media 0.6 %

Temperatura di essiccazione: 110 °C

Sperimentatore
Roberto Bracadlia
Lohu o Juscu gli e Marco Ferrante fluorito

Certificazione Ufficiale-Settore A e B- Prove di laboratorio su terre e rocce AUTORIZZAZIONE MINISTERO INFRASTRUTTURE E TRASPORTI Decreto 150/15-06-2016 - Circolare 7618/STC/2010

CERTIFICATO DI PROVA N°: 06892 Pagina 1/1 27/11/20 16/11/20 DATA DI EMISSIONE: Inizio analisi: VERBALE DI ACCETTAZIONE N°: 760 del 16/10/20 Apertura campione: 26/10/20 Fine analisi: 17/11/20

COMMITTENTE: Vianini Lavori S.p.A.

RIFERIMENTO: Utilizzo idropotabile delle acque dell'invaso di Campolattaro

CAMPIONE: C3 SONDAGGIO: PROFONDITA': m 113.0-114.0

MASSA VOLUMICA APPARENTE E REALE - POROSITA'

Modalità di prova: Norma ISRM Suggested Methods

Massa provino	Massa provino	Massa provino	Massa volumica	Massa volumica	Porosità	Porosità
essiccato	immerso	saturo	apparente	reale	aperta	totale
g	g	g	kg/m³	kg/m³	%	%
845.7	530.9	848.1	2660.8	2717.0	8.0	2.1

Massa volumica apparente (kg/m^3) : 2660.8 2717.0 Massa volumica reale (kg/m³): 8.0 Porosità aperta (%): 2.1 Porosità totale (%):

Massa volumica reale determinata con Picnometro

Sperimentatore

Roberto Bracadlia

Lo nu o Juscu gli e Marco Ferrante

Certificazione Ufficiale-Settore A e B- Prove di laboratorio su terre e rocce AUTORIZZAZIONE MINISTERO INFRASTRUTTURE E TRASPORTI Decreto 150/15-06-2016 - Circolare 7618/STC/2010

CERTIFICATO DI PROVA N°: 06893	Pagina 1/1	DATA DI EMISSIONE:	27/11/20	Inizio analisi:	17/11/20
VERBALE DI ACCETTAZIONE N°: 760 d	del 16/10/20	Apertura campione:	26/10/20	Fine analisi:	17/11/20

COMMITTENTE: Vianini Lavori S.p.A.

Utilizzo idropotabile delle acque dell'invaso di Campolattaro RIFERIMENTO:

SONDAGGIO: CL7 CAMPIONE: PROFONDITA': m 113.0-114.0

VELOCITA' DI PROPAGAZIONE E COSTANTI ELASTICHE DELLA ROCCIA

Velocità delle onde di compressione (Vp) (m/sec): 5966 Velocità delle onde di taglio (Vs) (m/sec): 3990

Densità della roccia (kg/m³):	27
Modulo di elasticità di Young (MPa):	928
Modulo di taglio (MPa):	424
Coefficiente di Poisson:	0.10
Costante di Lamé (MPa):	100
Modulo bulk (MPa):	382

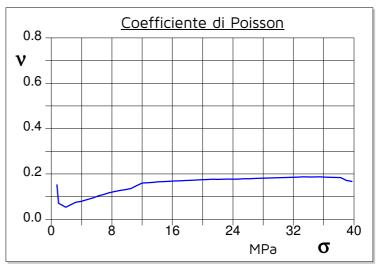
Sperimentatore

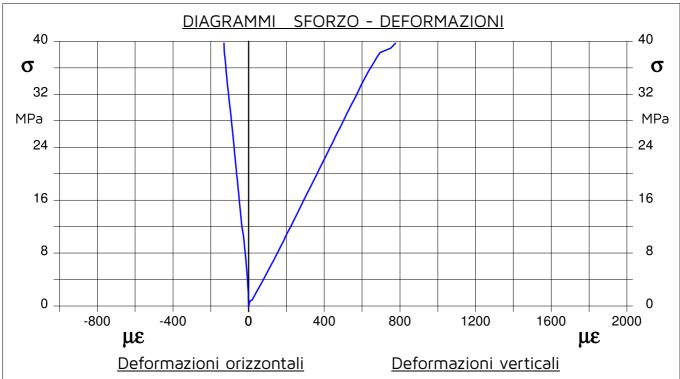
Roberto Bracadlia
Lo nu o Pracuegli e Marco Ferrante fluorito

Certificazione Ufficiale-Settore A e B- Prove di laboratorio su terre e rocce AUTORIZZAZIONE MINISTERO INFRASTRUTTURE E TRASPORTI Decreto 150/15-06-2016 - Circolare 7618/STC/2010

CERTIFICATO DI PROVA N°: 06894 Pagina 1/2 27/11/20 19/11/20 DATA DI EMISSIONE: Inizio analisi: 760 del 16/10/20 VERBALE DI ACCETTAZIONE N°: Apertura campione: 26/10/20 Fine analisi: 19/11/20

COMMITTENTE: Vianini Lavori S.p.A.


Utilizzo idropotabile delle acque dell'invaso di Campolattaro RIFERIMENTO:


CAMPIONE: PROFONDITA': m SONDAGGIO: CL7 113.0-114.0

PROVA DI COMPRESSIONE UNIASSIALE

Modalità di prova: Norma ASTM D7012 - 14

Provino n°:	1
Massa provino (g)	2053.0
Diametro (cm):	7.50
Altezza (cm):	17.20
Sezione (cm²):	44.18
Peso di volume (kN/m³):	26.5
Deformazione verticale (με)	776
Deformazione orizzontale (με)	130
Modulo elastico tangente (MPa):	57218
Modulo elastico secante (MPa):	55296
Coefficiente di Poisson secante	0.18
Pressione a rottura (MPa)	39.73

Il modulo elastico ed il coefficiente di poisson sono stati calcolati in corrispondenza del 50% della tensione a rottura.

SGEO - Laboratorio 6.2 - 2018

Sperimentatore

Roberto Bracadlia

Lo Mulo Justice de Charco Ferrante

Certificazione Ufficiale-Settore A e B- Prove di laboratorio su terre e rocce AUTORIZZAZIONE MINISTERO INFRASTRUTTURE E TRASPORTI Decreto 150/15-06-2016 - Circolare 7618/STC/2010

27/11/20 CERTIFICATO DI PROVA N°: 06894 Pagina 2/2 DATA DI EMISSIONE: 19/11/20 Inizio analisi: 760 del 16/10/20 VERBALE DI ACCETTAZIONE N°: Apertura campione: 26/10/20 Fine analisi: 19/11/20

COMMITTENTE: Vianini Lavori S.p.A.

Utilizzo idropotabile delle acque dell'invaso di Campolattaro RIFERIMENTO:

CAMPIONE: PROFONDITA': m 113.0-114.0 SONDAGGIO: CL7 C3

PROVA DI COMPRESSIONE UNIASSIALE

Modalità di prova: Norma ASTM D7012 - 14

\equiv			F	Provinc	1							·	Provinc	1			
n°	Tensione MPa	De verti E1	formazio icale E2	ne με Media	De orizzo E1	formazio ontale E2	one µɛ Media	Coeff. Poisson	n°	Tensione MPa		eformazio icale E2	one με Media		formazio ontale E2	one µɛ Media	Coeff. Poisson
1	0.75	7	6	7	-1	-	-1	0.15	40	28.34	167	848	507	-92	-	-92	0.18
2	0.95	19	20	20	-1	-	-1	0.07	41	29.06	171	869	520	-95	-	-95	0.18
3	1.90	32	42	37	-2	-	-2	0.05	42	29.79	175	890	532	-98	-	-98	0.18
4	2.63	41	62	52	-3	-	-3	0.07	43	30.51	179	912	545	-100	-	-100	0.18
5	3.24	48	80	64	-5	-	-5	0.08	44	31.17	182	931	557	-103	-	-103	0.18
6	3.98	56	100	78	-6	-	-6	0.08	45	31.89	186	953	570	-106	-	-106	0.19
7	4.82	64	122	93	-8	-	-8	0.09	46	32.57	190	973	582	-108	-	-108	0.19
8	5.50	71	142	106	-10	-	-10	0.09	47	33.32	194	994	594	-111	-	-111	0.19
9	6.22	75	165	120	-12	-	-12	0.10	48	34.04	199	1016	607	-114	-	-114	0.19
10	6.95	79	187	133	-15	-	-15	0.11	49	34.75	202	1038	620	-116	-	-116	0.19
11	7.67	84	208	146	-17	-	-17	0.12	50	35.47	205	1061	633	-119	-	-119	0.19
12	8.38	88	229	159	-19	-	-19	0.12	51	36.15	210	1086	648	-121	-	-121	0.19
13	9.10	93	250	171	-22	-	-22	0.13	52	36.83	213	1112	663	-123	-	-123	0.19
14	9.82	97	271	184	-24	-	-24	0.13	53	37.55	216	1139	678	-125	-	-125	0.19
15	10.55	99	294	196	-27	-	-27	0.14	54	38.28	220	1169	694	-128	-	-128	0.18
16	11.30	95	325	210	-31	-	-31	0.15	55	38.98	228	1274	751	-130	-	-130	0.17
17	12.00	91	354	223	-36	-	-36	0.16	56	39.73	230	1323	776	-130	-	-130	0.17
18	12.70	95	375	235	-38	-	-38	0.16									
19	13.42	98	396	247	-40	-	-40	0.16									
20	14.15	102	418	260	-43	-	-43	0.17									
21	14.85	105	439	272	-45	-	-45	0.17									
22	15.60	109	461	285	-48	-	-48	0.17									
23	16.32	113	482	297	-50	-	-50	0.17									
24	17.02	116	503	310	-53	-	-53	0.17									
25	17.75	117	528	323	-55	-	-55	0.17									
26	18.43	119	550	335	-58	-	-58	0.17									
27	19.15	121	573	347	-60	-	-60	0.17									
28	19.85	125	595	360	-63	-	-63	0.18									
29	20.58	128	616	372	-66	-	-66	0.18									$\sqcup \sqcup$
30	21.30	132	638	385	-68	-	-68	0.18									$\sqcup \sqcup$
31	21.98	135	658	396	-70	-	-70	0.18									
32	22.70	139	679	409	-72	-	-72	0.18									
33	23.38	143	699	421	-75	-	-75	0.18									$\sqcup \sqcup$
34	24.11	147	720	433	-77	-	-77	0.18									\sqcup
35	24.81	150	742	446	-79	-	-79	0.18									$\sqcup \sqcup$
36	25.51	153	762	458	-82	-	-82	0.18									$\sqcup \sqcup$
37	26.23	156	784	470	-84	-	-84	0.18									$\sqcup \sqcup$
38	26.94	159	807	483	-87	-	-87	0.18									$\sqcup \sqcup$
39	27.62	163	827	495	-90	-	-90	0.18									

SGEO - Laboratorio 6.2 - 2018

Sperimentatore
Roberto Bracadlia
La huro Fuecugli e Marco Ferrante
La huro Fuecugli e Marco Ferrante

Certificazione Ufficiale-Settore A e B- Prove di laboratorio su terre e rocce AUTORIZZAZIONE MINISTERO INFRASTRUTTURE E TRASPORTI Decreto 150/15-06-2016 - Circolare 7618/STC/2010

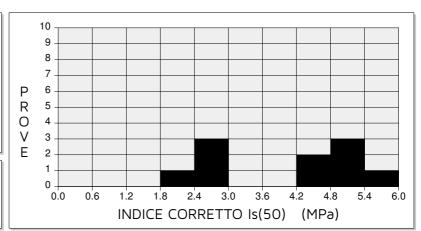
CERTIFICATO DI PROVA N°: 06895 Pagina 1/1 DATA DI EMISSIONE: 27/11/20 17/11/20 Inizio analisi: VERBALE DI ACCETTAZIONE N°: 760 del 16/10/20 Apertura campione: 26/10/20 Fine analisi: 17/11/20

COMMITTENTE: Vianini Lavori S.p.A.

Utilizzo idropotabile delle acque dell'invaso di Campolattaro RIFERIMENTO:

CAMPIONE: PROFONDITA': m SONDAGGIO: CL7 C3 113.0-114.0

POINT LOAD TEST


Modalità di prova: Norma ASTM D5731 - 16

INDICE CORRETTO Is(50)

Prove esequite: 10 Valore massimo 5.65 Valore medio * 4.03 Valore minimo 2.24

CARATTERISTICHE FISICHE

Umidità naturale (%) 0.6 Peso di volume (kN/m³): 26.1

Prova n°	Forma Rottura	Piani di debolezza	Altezza mm	Larghezza mm	Carico kN	Indice Is MPa	Indice Is(50) MPa
1	В	Α	75.0	104.0	10.49	1.865	2.238
2	С	Α	71.0	75.0	14.07	2.075	2.597
3	С	Α	54.0	75.0	22.84	4.429	5.213
4	D	Α	32.0	71.5	12.05	4.136	4.281
5	D	Α	41.0	72.0	8.59	2.285	2.505
6	D	Α	52.0	70.0	9.98	2.153	2.474
7	D	Α	54.0	55.0	19.48	5.151	5.654
8	D	Α	32.0	48.0	10.43	5.333	5.046
9	D	Α	44.0	56.0	15.08	4.807	5.059
10	D	Α	30.0	46.5	9.00	5.067	4.692

^{*} Vengono esclusi dal calcolo del valore medio i due valori maggiori e i due valori minori

Forma del provino e tipo di rottura

A - Blocco

B - Cilindrico - rottura diametrale

- Cilindrico - rottura assiale

D - Informe

Posizione dei piani di debolezza

A - Assenti

B - Perpendicolari alla direzione del carico

C - Paralleli alla direzione del carico

D - In direzioni varie

SGEO - Laboratorio 6.2 - 2018

Roberto Bracadlia
Lo hu o gracue de Marco Ferrante

Certificazione Ufficiale-Settore A e B- Prove di laboratorio su terre e rocce AUTORIZZAZIONE MINISTERO INFRASTRUTTURE E TRASPORTI Decreto 150/15-06-2016 - Circolare 7618/STC/2010

COMMITTENTE: Vianini Lavori S.p.A.

RIFERIMENTO: Progettazione definitiva utilizzo idropotabile delle acque - invaso di Campolattaro

SONDAGGIO: CL7 CAMPIONE: CR2a PROFONDITA': m 96.4-98.0

MODULO RIASSUNTIVO

CONTENUTO D'ACQUA ALLO STATO NATURALE

Umidità media (%):

PESO DI VOLUME ALLO STATO NATURALE

Peso di volume (kN/m³): 25.5

MASSA VOLUMICA APPARENTE E REALE - POROSITA'

Massa volumica apparente (kg/m³):	2598.3
Massa volumica reale (kg/m³):	2699.6
Porosità aperta (%):	3.6
Porosità totale (%):	3.8

VELOCITA' DI PROPAGAZIONE E COSTANTI ELASTICHE DELLA ROCCIA

Velocità delle onde di compressione (Vp) (m/sec):	5721
Velocità delle onde di taglio (Vs) (m/sec):	2905

PROVA DI COMPRESSIONE UNIASSIALE

Resistenza a compressione (MPa): 53.30

PROVA DI TRAZIONE INDIRETTA «BRASILIANA»

Resistenza a trazione (MPa): 8.48

DESCRIZIONE DEL CAMPIONE

Calcarenite di colore biancastro

Campione integrativo prelevato il 13/12/2020.

Certificazione Ufficiale-Settore A e B- Prove di laboratorio su terre e rocce AUTORIZZAZIONE MINISTERO INFRASTRUTTURE E TRASPORTI Decreto 150/15-06-2016 - Circolare 7618/STC/2010

COMMITTENTE: Vianini Lavori S.p.A.

RIFERIMENTO: Progettazione definitiva utilizzo idropotabile delle acque - invaso di Campolattaro

SONDAGGIO: CL7 CAMPIONE: CR2a PROFONDITA': m 96.4-98.0

Calcarenite di colore biancastro

Certificazione Ufficiale-Settore A e B- Prove di laboratorio su terre e rocce AUTORIZZAZIONE MINISTERO INFRASTRUTTURE E TRASPORTI Decreto 150/15-06-2016 - Circolare 7618/STC/2010

CERTIFICATO DI PROVA N°: 00585 Pagina 1/1 28/01/21 Inizio analisi: 11/12/20 DATA DI EMISSIONE: 828 del 26/11/20 VERBALE DI ACCETTAZIONE N°: Apertura campione: 11/12/20 Fine analisi: 12/12/20

COMMITTENTE: Vianini Lavori S.p.A.

Progettazione definitiva utilizzo idropotabile delle acque - invaso di Campolattaro RIFERIMENTO:

CAMPIONE: 96.4-98.0 SONDAGGIO: CR2a PROFONDITA': m

CONTENUTO D'ACQUA

Modalità di prova: Norma ASTM D2216

Umidità media 0.1 %

Temperatura di essiccazione: 110 °C

Calcarenite di colore biancastro

Sperimentatore
Roberto Bracaglia
Lohu o mucu gli e Marco Ferrante fluorito

Certificazione Ufficiale-Settore A e B- Prove di laboratorio su terre e rocce AUTORIZZAZIONE MINISTERO INFRASTRUTTURE E TRASPORTI Decreto 150/15-06-2016 - Circolare 7618/STC/2010

CERTIFICATO DI PROVA N°: 00586	Pagina 1/1	DATA DI EMISSIONE:	28/01/21	Inizio analisi:	11/01/21
VERBALE DI ACCETTAZIONE N°: 828	del 26/11/20	Apertura campione:	11/12/20	Fine analisi:	11/01/21

COMMITTENTE: Vianini Lavori S.p.A.

Progettazione definitiva utilizzo idropotabile delle acque - invaso di Campolattaro RIFERIMENTO:

CAMPIONE: CR2a PROFONDITA': m SONDAGGIO: CL7 96.4-98.0

MASSA VOLUMICA APPARENTE E REALE - POROSITA'

Modalità di prova: Norma ISRM Suggested Methods

Massa volumica apparente (kg/m³): 2598.3 2699.6 Massa volumica reale (kg/m³): 3.6 Porosità aperta (%): 3.8 Porosità totale (%):

Massa volumica reale determinata con Picnometro

Calcarenite di colore biancastro

Sperimentatore

Roberto Bracadlia

Lo hur o Justice gli e Marco Ferrante

Certificazione Ufficiale-Settore A e B- Prove di laboratorio su terre e rocce AUTORIZZAZIONE MINISTERO INFRASTRUTTURE E TRASPORTI Decreto 150/15-06-2016 - Circolare 7618/STC/2010

CERTIFICATO DI PROVA N°: 00587	Pagina 1/1	DATA DI EMISSIONE:	28/01/21	Inizio analisi:	12/01/21
VERBALE DI ACCETTAZIONE N°: 828	del 26/11/20	Apertura campione:	11/12/20	Fine analisi:	12/01/21

COMMITTENTE: Vianini Lavori S.p.A.

Progettazione definitiva utilizzo idropotabile delle acque - invaso di Campolattaro RIFERIMENTO:

CAMPIONE: PROFONDITA': m SONDAGGIO: CL7 CR2a 96.4-98.0

VELOCITA' DI PROPAGAZIONE E COSTANTI ELASTICHE DELLA ROCCIA

Modalità di prova: Norma ASTM D2845 - 08

Velocità delle onde di compressione (Vp) (m/sec): 5721 Velocità delle onde di taglio (Vs) (m/sec): 2905

Calcarenite di colore biancastro

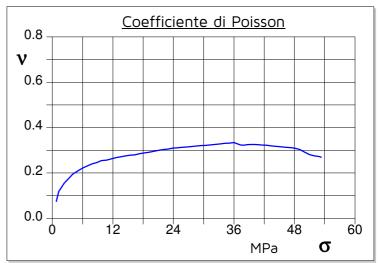
Sperimentatore
Roberto Bracaglia
Lo nu o Pracuglie Marco Ferrante fluorito

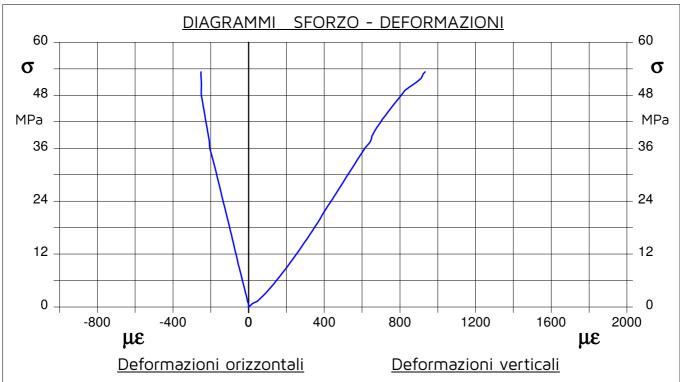
Certificazione Ufficiale-Settore A e B- Prove di laboratorio su terre e rocce AUTORIZZAZIONE MINISTERO INFRASTRUTTURE E TRASPORTI Decreto 150/15-06-2016 - Circolare 7618/STC/2010

CERTIFICATO DI PROVA N°: 00588 Pagina 1/2 828 del 26/11/20 VERBALE DI ACCETTAZIONE N°:

DATA DI EMISSIONE: 28/01/21 13/01/21 Inizio analisi: Apertura campione: 11/12/20 Fine analisi: 13/01/21

COMMITTENTE: Vianini Lavori S.p.A.


Progettazione definitiva utilizzo idropotabile delle acque - invaso di Campolattaro RIFERIMENTO:


CAMPIONE: SONDAGGIO: CL7 CR2a PROFONDITA': m 96.4-98.0

PROVA DI COMPRESSIONE UNIASSIALE

Modalità di prova: Norma ASTM D7012 - 14

Provino n°:	1
Massa provino (g)	2262.0
Diametro (cm):	7.80
Altezza (cm):	18.20
Sezione (cm²):	47.78
Peso di volume (kN/m³):	25.5
Deformazione verticale (με)	933
Deformazione orizzontale (με)	252
Modulo elastico tangente (MPa):	66954
Modulo elastico secante (MPa):	56042
Coefficiente di Poisson secante	0.32
Pressione a rottura (MPa)	53.30

Calcarenite di colore biancastro

Il modulo elastico e il coefficiente di poisson sono stati calcolati in corrispondenza del 50% della tensione a rottura.

SGEO - Laboratorio 6.2 - 2018

Sperimentatore Direttore Roberto Bracadlia Marco Ferrante

Certificazione Ufficiale-Settore A e B- Prove di laboratorio su terre e rocce AUTORIZZAZIONE MINISTERO INFRASTRUTTURE E TRASPORTI Decreto 150/15-06-2016 - Circolare 7618/STC/2010

CERTIFICATO DI PROVA N°: 00588 Pagina 2/2 DATA DI EMISSIONE: 28/01/21 13/01/21 Inizio analisi: 828 del 26/11/20 VERBALE DI ACCETTAZIONE N°: Apertura campione: 11/12/20 Fine analisi: 13/01/21

COMMITTENTE: Vianini Lavori S.p.A.

Progettazione definitiva utilizzo idropotabile delle acque - invaso di Campolattaro RIFERIMENTO:

CAMPIONE: SONDAGGIO: CL7 CR2a PROFONDITA': m 96.4-98.0

PROVA DI COMPRESSIONE UNIASSIALE

Modalità di prova: Norma ASTM D7012 - 14

	Provino 1							Provino 1									
n°	Tensione MPa	De verti E1	formazio icale E2	ne με Media		formazio ntale E2	one µ& Media	Coeff. Poisson	n°	Tensione MPa		eformazio icale E2	ne με Media		eformazi ontale E2	ione με Media	Coeff. Poisson
1	0.82	25	20	22	-2	-	-2	0.08	40	37.27	341	940	641	-207	-	-207	0.32
2	1.28	33	57	45	-5	-	-5	0.12	41	37.90	346	949	648	-209	-	-209	0.32
3	2.34	41	103	72	-11	-	-11	0.16	42	38.76	347	957	652	-212	-	-212	0.33
4	3.16	48	133	90	-16	-	-16	0.17	43	39.78	354	977	665	-217	-	-217	0.33
5	4.06	56	163	109	-21	-	-21	0.20	44	40.66	361	995	678	-220	-	-220	0.33
6	5.19	66	198	132	-28	-	-28	0.21	45	41.63	371	1016	693	-224	-	-224	0.32
7	5.96	72	222	147	-33	-	-33	0.22	46	42.55	381	1034	708	-228	-	-228	0.32
8	6.95	81	250	165	-38	-	-38	0.23	47	43.36	392	1052	722	-231	-	-231	0.32
9	7.91	88	276	182	-44	-	-44	0.24	48	44.43	407	1076	741	-235	-	-235	0.32
10	8.83	96	302	199	-49	-	-49	0.25	49	45.39	418	1099	758	-239	-	-239	0.32
11	9.71	104	325	214	-55	-	-55	0.25	50	46.35	430	1121	776	-243	-	-243	0.31
12	10.76	113	351	232	-60	-	-60	0.26	51	47.28	441	1145	793	-247	-	-247	0.31
13	11.72	121	375	248	-65	-	-65	0.26	52	48.18	454	1166	810	-250	-	-250	0.31
14	12.66	130	399	264	-71	-	-71	0.27	53	49.10	469	1182	825	-250	-	-250	0.30
15	13.62	138	422	280	-76	-	-76	0.27	54	50.06	486	1227	857	-249	-	-249	0.29
16	14.61	146	444	295	-81	-	-81	0.28	55	50.98	505	1271	888	-250	-	-250	0.28
17	15.47	154	465	309	-86	-	-86	0.28	56	51.88	523	1303	913	-252	-	-252	0.28
18	16.34	161	485	323	-91	-	-91	0.28	57	52.82	546	1300	923	-252	-	-252	0.27
19	17.27	169	506	338	-96	-	-96	0.29	58	53.05	551	1304	927	-252	-	-252	0.27
20	18.23	177	527	352	-102	-	-102	0.29	59	53.30	557	1310	933	-251	-	-251	0.27
21	19.15	185	547	366	-107	-	-107	0.29									
22	20.11	193	565	379	-112	-	-112	0.30									
23	21.03	201	582	391	-117	-	-117	0.30									
24	21.95	209	600	405	-123	-	-123	0.30									
25	22.92	218	621	419	-128	-	-128	0.31									
26	23.88	227	642	434	-134	-	-134	0.31									
27	24.80	235	661	448	-139	-	-139	0.31									
28	25.74	243	682	462	-145	-	-145	0.31									
29	26.66	251	700	476	-150	-	-150	0.32									
30	27.58	260	719	490	-155	-	-155	0.32									
31	28.55	268	740	504	-161	-	-161	0.32									
32	29.47	276	758	517	-166	-	-166	0.32									
33	30.39	284	778	531	-171	-	-171	0.32									
34	31.31	293	797	545	-176	-	-176	0.32									
35	32.27	302	817	559	-182	-	-182	0.33									
36	33.21	310	836	573	-188	-	-188	0.33									
37	34.17	319	856	587	-194	-	-194	0.33									
38	35.10	327	875	601	-199	-	-199	0.33									
39	36.02	335	895	615	-206	-	-206	0.33									

SGEO - Laboratorio 6.2 - 2018

Sperimentatore
Roberto Bracaglia
Lo nu o Justu gli e Marco Ferrante
Lo nu o Justu gli e Marco Fluoriti

Certificazione Ufficiale-Settore A e B- Prove di laboratorio su terre e rocce AUTORIZZAZIONE MINISTERO INFRASTRUTTURE E TRASPORTI Decreto 150/15-06-2016 - Circolare 7618/STC/2010

CERTIFICATO DI PROVA N°: 00589 Pagina 1/1 28/01/21 13/01/21 DATA DI EMISSIONE: Inizio analisi: VERBALE DI ACCETTAZIONE N°: 828 del 26/11/20 Apertura campione: 11/12/20 Fine analisi: 13/01/21

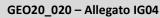
COMMITTENTE: Vianini Lavori S.p.A.

RIFERIMENTO: Progettazione definitiva utilizzo idropotabile delle acque - invaso di Campolattaro

SONDAGGIO: CL7 CAMPIONE: CR2a PROFONDITA': m 96.4-98.0

PROVA DI TRAZIONE INDIRETTA «BRASILIANA»

Modalità di prova: Norma ASTM D3967 - 16


10 8.48 Numero di provini: Resistenza a trazione media (MPa): Resistenza a trazione minima (MPa): 4.03 Deviazione standard: 2.42 0.29 Resistenza a trazione massima (MPa): 10.72 Coefficiente di variazione:

	CARATTERISTICHE DEI PROVINI									
n°	Massa g	Spessore mm	Diametro mm	Peso di volume kN/m³	Carico a rottura N	Resist. a rottura MPa				
1	380.01	31.0	78.0	25.2	15300.0	4.03				
2	347.28	28.0	78.0	25.5	33800.0	9.85				
3	357.86	30.0	78.0	24.5	31900.0	8.68				
4	355.16	28.5	78.0	25.6	31300.0	8.96				
5	367.22	30.0	78.0	25.1	39100.0	10.64				
6	337.86	28.0	78.0	24.8	35800.0	10.44				
7	321.98	26.5	78.0	24.9	34800.0	10.72				
8	376.13	30.5	78.0	25.3	16200.0	4.34				
9	375.15	30.5	78.0	25.2	33300.0	8.91				
10	323.28	26.0	78.0	25.5	26300.0	8.26				

Calcarenite di colore biancastro

Sperimentatore

Roberto Bracaglia
Lo nu o Pracuglie Marco Ferrante fluorito

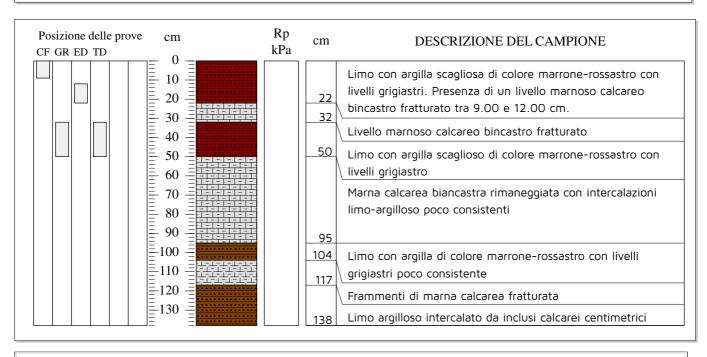
Allegato IG04-F

Campioni sondaggio CL 8

Committente: VIANINI LAVORI SPA
Luogo: CASALDUNI – PONTE (BN)

LAVOFO: ATTIVITÀ DI COLLABORAZIONE ALLE ATTIVITÀ DI PROGETTAZIONE DEFINITIVA, CONCERNENTI L'INTERVENTO DI UTILIZZO IDROPOTABILE DELLE ACQUE

DELL'INVASO DI CAMPOLATTARO - INDAGINI GEOGNOSTICHE



Certificazione Ufficiale-Settore A e B- Prove di laboratorio su terre e rocce AUTORIZZAZIONE MINISTERO INFRASTRUTTURE E TRASPORTI Decreto 150/15-06-2016 - Circolare 7618/STC/2010

COMMITTENTE: Vianini Lavori S.p.A.

RIFERIMENTO: Progettazione definitiva utilizzo idropotabile delle acque - invaso di Campolattaro

SONDAGGIO: CL8 CAMPIONE: CI1 PROFONDITA': m 14.6-16.0

Certificazione Ufficiale-Settore A e B- Prove di laboratorio su terre e rocce AUTORIZZAZIONE MINISTERO INFRASTRUTTURE E TRASPORTI Decreto 150/15-06-2016 - Circolare 7618/STC/2010

COMMITTENTE: Vianini Lavori S.p.A.

RIFERIMENTO: Progettazione definitiva utilizzo idropotabile delle acque - invaso di Campolattaro

SONDAGGIO: CL8 CAMPIONE: CI1 PROFONDITA': m 14.6-16.0

MODULO RIASSUNTIVO

CARATTERISTICHE FISICHE

<u> </u>	_	
Umidità naturale	25.3	%
Peso di volume	18.5	kN/m³
Peso di volume secco	14.8	kN/m³
Peso di volume saturo	19.1	kN/m³
Peso specifico	2.68	
Indice dei vuoti	0.778	
Porosità	43.8	%
Grado di saturazione	87.1	%
Limite di liquidità	54.2	%
Limite di plasticità	38.7	%
Indice di plasticità	15.5	%
Indice di consistenza	1.87	
Passante al set. n° 40	SI	
Limite di ritiro		%
CNR-UNI 10006/00		

ANALISI GRANULOMETRICA

Ghiaia	10.5	%
Sabbia	29.9	%
Limo	35.2	%
Argilla	24.4	%
D 10		mm
D 50	0.019462	mm
D 60	0.069067	mm
D 90	2.213024	mm
Passante set. 10	89.5	%
Passante set. 42	73.2	%
Passante set. 200	60.2	%

PERMEABILITA'

	Coefficiente k	cm/sec
ı	Cocincicinte K	C111/3CC

COMPRESSIONE

σ	kPa	σ Rim	kPa
C _U	kPa	C _U Rim	kPa

TAGLIO DIRETTO

Prova consolidata-lenta						
c'	17.9	kPa	φ.	25.9	0	
c'Res		kPa	ф Res		0	

COMPRESSIONE TRIASSIALE

C.D.	c _d	kPa	фа	0
C.U.	c' _{cu}	kPa	φ 'cυ	0
C.U.	c _{cu}	kPa	φ cυ	0
U.U.	cυ	kPa	φυ	0

PROVA EDOMETRICA

σ kPa	E kPa	Cv cm²/sec	k cm/sec			
25.0 ÷ 50.0 50.0 ÷ 100.0 100.0 ÷ 200.0 50.0 ÷ 100.0 100.0 ÷ 200.0 200.0 ÷ 400.0 400.0 ÷ 800.0 800.0 ÷ 1600.0 1600.0 ÷ 3200.0	10204 5076 6431 16667 18349 10471 19277 25078 50078	0.000530 0.000269 0.000728 	8.08E-09 1.44E-09 6.82E-09 			

Certificazione Ufficiale-Settore A e B- Prove di laboratorio su terre e rocce AUTORIZZAZIONE MINISTERO INFRASTRUTTURE E TRASPORTI Decreto 150/15-06-2016 - Circolare 7618/STC/2010

CERTIFICATO DI PROVA N°: 00298 Pagina 1	./1	DATA DI EMISSIONE:	20/01/21	Inizio analis	si: 04/11/20
VERBALE DI ACCETTAZIONE N°: 795 del 04/11/2	.0	Apertura campione:	04/11/20	Fine analisi	: 05/11/20
COMMITTENTE: Vianini Lavori S.p.A.					
RIFERIMENTO: Progettazione definitiva utilizzo	idro	potabile delle acque -	invaso di C	ampolattar	о
SONDAGGIO: CL8 CAMPION	νE:	CI1	PROFONI	DITA': m	14.6-16.0
CONTENUTO D'AC	QUA	A ALLO STATO NATU	JRALE		
Modalità di pro	:svc	Norma ASTM D2216			

Wn = contenuto d'acqua allo stato naturale = 25.3 %

Omogeneo

Struttura del materiale: ☐ Stratificato

☐ Caotico

Temperatura di essiccazione: 110 °C

Sperimentatore Direttore Roberto Bracadlia Marco Ferrante Marco Ferrante

Certificazione Ufficiale-Settore A e B- Prove di laboratorio su terre e rocce AUTORIZZAZIONE MINISTERO INFRASTRUTTURE E TRASPORTI Decreto 150/15-06-2016 - Circolare 7618/STC/2010

CERTIFICATO DI PROVA N°: 00299 Pagina 1/1 20/01/21 Inizio analisi: 28/12/20 DATA DI EMISSIONE: VERBALE DI ACCETTAZIONE N°: 795 del 04/11/20 Apertura campione: 04/11/20 Fine analisi: 28/12/20

COMMITTENTE: Vianini Lavori S.p.A.

RIFERIMENTO: Progettazione definitiva utilizzo idropotabile delle acque - invaso di Campolattaro

SONDAGGIO: CL8 CAMPIONE: CI1 PROFONDITA': m 14.6-16.0

PESO DI VOLUME ALLO STATO NATURALE

Modalità di prova: Norma BS 1377 T 15

Determinazione eseguita mediante fustella tarata

18.5 kN/m³ Peso di volume allo stato naturale =

Il confezionamneto dei provini è stato eseguito togliendo gli inclusi piu grossolani

Sperimentatore

Roberto Bracadlia
Lo nu o puccu gli e Marco Ferrante
Lo nu o puccu gli e Marco fluorito

Certificazione Ufficiale-Settore A e B- Prove di laboratorio su terre e rocce AUTORIZZAZIONE MINISTERO INFRASTRUTTURE E TRASPORTI Decreto 150/15-06-2016 - Circolare 7618/STC/2010

CERTIFICATO DI PROVA N°: 00300	Pagina 1/1	DATA DI EMISSIONE:	20/01/21	Inizio analisi:	13/01/21	
VERBALE DI ACCETTAZIONE N°: 795	del 04/11/20	Apertura campione:	04/11/20	Fine analisi:	14/01/21	
COMMITTENTE: Vianini Lavori S.p.A.						
RIFERIMENTO: Progettazione defini	itiva utilizzo idro	potabile delle acque -	invaso di C	Campolattaro		
SONDAGGIO: CL8	CAMPIONE:	CI1	PROFON	DITA': m 14	.6-16.0	
PESO SPECIFICO DEI GRANULI						
Modalità di prova: Norma ASTM D854						

 γ_s = Peso specifico dei granuli (media delle due misure) = 2.68

 γ_{SC} = Peso specifico dei granuli corretto a 20° = 2.68

Metodo: ■ A □ B

Capacità del picnometro: 100 ml

Temperatura di prova: 18.8 °C

Disaerazione eseguita per bollitura

SGEO - Laboratorio 6.2 - 2018

Sperimentatore Direttore
Robberto Bracadlia
Lo nu o puecu gli e Marco Ferrante

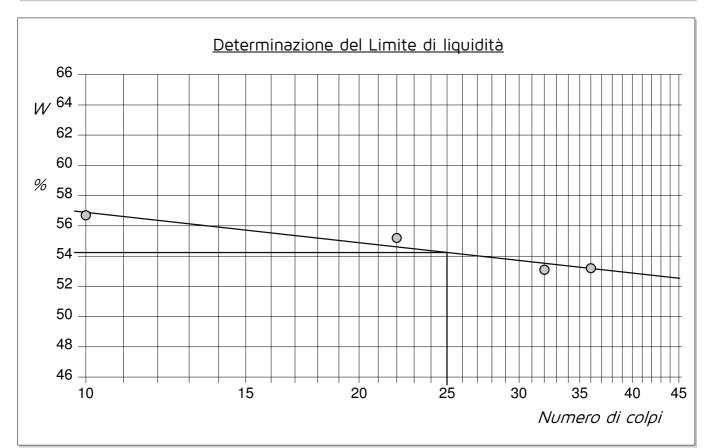
Certificazione Ufficiale-Settore A e B- Prove di laboratorio su terre e rocce AUTORIZZAZIONE MINISTERO INFRASTRUTTURE E TRASPORTI Decreto 150/15-06-2016 - Circolare 7618/STC/2010

CERTIFICATO DI PROVA N°: 00301 Pagina 1/1 DATA DI EMISSIONE: 20/01/21 Inizio analisi: 18/01/21 795 del 04/11/20 04/11/20 19/01/21 VERBALE DI ACCETTAZIONE N°: Apertura campione: Fine analisi:

COMMITTENTE: Vianini Lavori S.p.A.

Progettazione definitiva utilizzo idropotabile delle acque - invaso di Campolattaro RIFERIMENTO:

SONDAGGIO: CAMPIONE: CI1 PROFONDITA': m CL8 14.6-16.0


LIMITI DI CONSISTENZA LIQUIDO E PLASTICO

Modalità di prova: Norma ASTM D4318

Limite di liquidità	54.2 %
Limite di plasticità	38.7 %
Indice di plasticità	15.5 %

La prova è stata eseguita sulla frazione granulometrica passante al setaccio n° 40 (0.42 mm)

LIMITE DI LIQUIDITA'					LIMITE DI PI	_ASTICI	ΓΑ'	
Numero di colpi	10	22	32	36		Umidità (%)	38.1	39.3
Umidità (%)	56.7	55.2	53.1	53.2		Umidità media	38	.7

SGEO - Laboratorio 6.2 - 2018

Sperimentatore

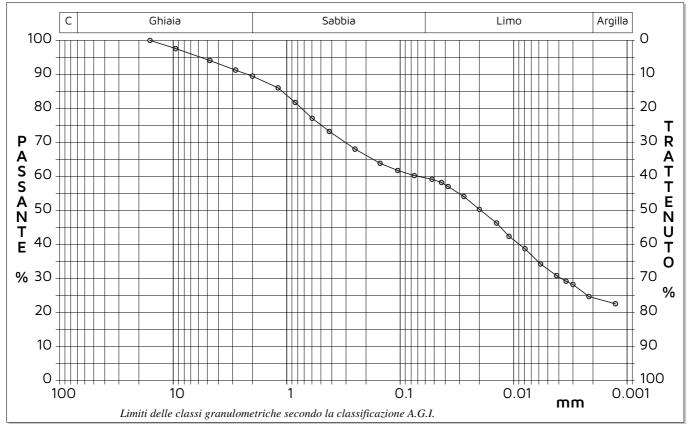
Roberto Bracadlia
Lo nu o puccu gli e Marco Ferrante

Lo nu o puccu gli e Marco fluorito

Certificazione Ufficiale-Settore A e B- Prove di laboratorio su terre e rocce AUTORIZZAZIONE MINISTERO INFRASTRUTTURE E TRASPORTI Decreto 150/15-06-2016 - Circolare 7618/STC/2010

CERTIFICATO DI PROVA N°: 00302 Pagina 1/1 DATA DI EMISSIONE: 20/01/21 12/01/21 Inizio analisi: VERBALE DI ACCETTAZIONE N°: 795 del 04/11/20 Apertura campione: 04/11/20 Fine analisi: 15/01/21

COMMITTENTE: Vianini Lavori S.p.A.


RIFERIMENTO: Progettazione definitiva utilizzo idropotabile delle acque - invaso di Campolattaro

CAMPIONE: SONDAGGIO: CL8 CI1 PROFONDITA': m 14.6-16.0

ANALISI GRANULOMETRICA

Modalità di prova: Norma ASTM D422

Ghiaia Sabbia Limo Argilla	10.5 % 29.9 % 35.2 % 24.4 %	Passante se	etaccio 10 (2 mm) etaccio 40 (0.42 mm) etaccio 200 (0.075 mm)	89.5 % 73.2 % 60.2 %	D ₁₀ D ₃₀ D ₅₀ D ₆₀	mm 0.00379 mm 0.01946 mm 0.06907 mm
Coefficiente d	di uniformită		Coefficiente di curvatura		D ₉₀	2.21302 mm

Diametro mm	Passante %								
16.0000	100.00	1.1900	86.00	0.1500	63.86	0.0378	57.04	0.0080	38.75
9.5200	97.57	0.8410	81.74	0.1050	61.75	0.0274	54.09	0.0058	34.27
4.7500	94.08	0.5950	77.06	0.0750	60.25	0.0200	50.32	0.0042	30.84
2.8200	91.26	0.4200	73.23	0.0524	59.17	0.0142	46.30	0.0034	29.19
2.0000	89.48	0.2500	68.03	0.0432	58.22	0.0110	42.41	0.0030	28.25

La frazione ghiaiosa è costituita da frammenti litoidi e sublitoidi marnosi-calcarei

Sperimentatore

Roberto Bracadlia

Lo hu o Justin gli e Marco Ferrante

Lo hu o Justin gli e Marco Ferrante

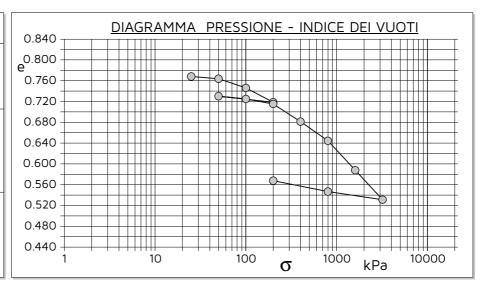
SGEO - Laboratorio 6.2 - 2018

Certificazione Ufficiale-Settore A e B- Prove di laboratorio su terre e rocce AUTORIZZAZIONE MINISTERO INFRASTRUTTURE E TRASPORTI Decreto 150/15-06-2016 - Circolare 7618/STC/2010

CERTIFICATO DI PROVA N°: 00303 Pagina 1/2 VERBALE DI ACCETTAZIONE N°: 795 del 04/11/20

DATA DI EMISSIONE: 20/01/21 Inizio analisi: 28/12/20 Apertura campione: 04/11/20 Fine analisi: 15/01/21

COMMITTENTE: Vianini Lavori S.p.A.


RIFERIMENTO: Progettazione definitiva utilizzo idropotabile delle acque - invaso di Campolattaro

SONDAGGIO: CL8 CAMPIONE: CI1 PROFONDITA': m 14.6-16.0

PROVA EDOMETRICA

Modalità di prova: Norma ASTM D2435

<u>Caratteristiche del campione</u>					
Peso di volume (kN/m³)	18.73				
Umidità (%)	26.4				
Peso specifico	2.68				
Altezza provino (cm) Diametro provino (cm) Sezione provino (cm²) Volume provino (cm³)	2.00 5.05 20.00 40.00				
Volume dei vuoti (cm³)	17.47				
Indice dei vuoti	0.78				
Porosità (%)	43.67				
Saturazione (%)	91.4				

Cedim.

Indice

Pressione

0.0 DIAGRAMMA TEMPO - CEDIMENTO									
0.6 % 1.2									
1.8		0							
2.4									
3.0		200.0							
3.6		20010							
4.2									
4.8									
5.4		400.0							
6.0	1 10	100 t 1000 min							

ı	kPa	mm/100	Vuoti	Cc
	25.0	8.2	0.768	
ı	50.0	13.1	0.764	0.014
ı	100.0	32.8	0.746	0.058
ı	200.0	63.9	0.719	0.092
ı	50.0	50.8	0.730	
ı	100.0	56.8	0.725	0.018
ı	200.0	67.7	0.715	0.032
ı	400.0	105.9	0.681	0.113
ı	800.0	147.4	0.644	0.122
ı	1600.0	211.2	0.588	0.188
ı	3200.0	275.1	0.531	0.188
ı	800.0	257.4	0.547	
ı	200.0	233.8	0.568	
ı				
ı				
ı				
ı				
ı				
ı				
ı				
I				

SGEO - Laboratorio 6.2 - 2018

Sperimentatore Enrico Tallini Direttore
Warco Ferrante fluoriti

Certificazione Ufficiale-Settore A e B- Prove di laboratorio su terre e rocce AUTORIZZAZIONE MINISTERO INFRASTRUTTURE E TRASPORTI Decreto 150/15-06-2016 - Circolare 7618/STC/2010

CERTIFICATO DI PROVA N°:00303Pagina 2/2DATA DI EMISSIONE:20/01/21Inizio analisi:28/12/20VERBALE DI ACCETTAZIONE N°:795del 04/11/20Apertura campione:04/11/20Fine analisi:15/01/21

COMMITTENTE: Vianini Lavori S.p.A.

RIFERIMENTO: Progettazione definitiva utilizzo idropotabile delle acque - invaso di Campolattaro

SONDAGGIO: CL8 CAMPIONE: CI1 PROFONDITA': m 14.6-16.0

PROVA EDOMETRICA

Modalità di prova: Norma ASTM D2435

LETTURE INTERMEDIE - TABELLE RIASSUNTIVE

Pressione 200.0 kPa		Pressione 200.0 kPa		Pressione 4	00.0 kPa	Pressione	kPa
Tempo minuti	Cedim. mm/100	Tempo minuti	Cedim. mm/100	Tempo minuti	Cedim. mm/100	Tempo minuti	Cedim. mm/100
0.00	32.8	0.00	56.8	0.00	67.7		
0.10	35.0	0.10	60.1	0.10	70.0		
0.25	37.0	0.25	60.3	0.25	72.6		
0.50	39.0	0.50	60.6	0.50	76.0		
1.00	41.0	1.00	60.9	1.00	79.0		
2.00	43.0	2.00	61.4	2.00	82.0		
5.00	45.8	5.00	62.0	5.00	85.1		
10.00	47.9	10.00	62.7	10.00	87.4		
30.00	52.4	30.00	64.2	30.00	92.5		
60.00	55.3	60.00	65.1	60.00	95.5		
120.00	57.7	120.00	65.8	120.00	98.5		
240.00	59.7	240.00	66.4	240.00	101.4		
480.00	61.7	480.00	66.9	480.00	103.4		
1440.00	63.9	1440.00	67.7	1440.00	105.9		

Pressione	kPa	Pressione	kPa	Pressione	kPa	Pressione	kPa
Tempo minuti	Cedim. mm/100	Tempo minuti	Cedim. mm/100	Tempo minuti	Cedim. mm/100	Tempo minuti	Cedim. mm/100
]					

SGEO - Laboratorio 6.2 - 2018

Sperimentatore Enrico Tallini Direttore
Warco Ferrante fluoriti

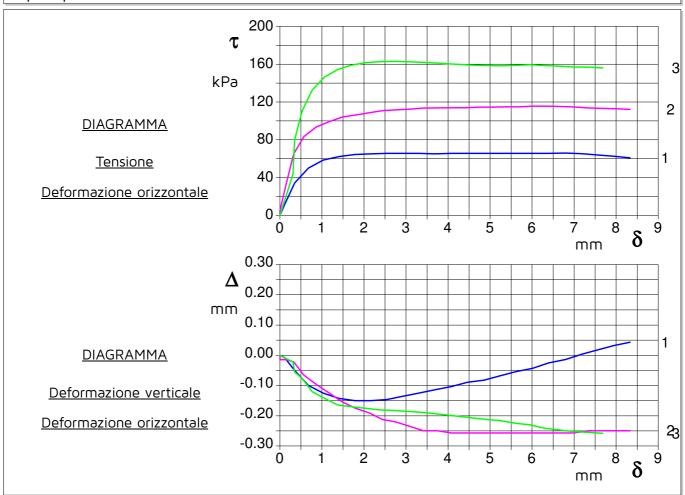
Certificazione Ufficiale-Settore A e B- Prove di laboratorio su terre e rocce AUTORIZZAZIONE MINISTERO INFRASTRUTTURE E TRASPORTI Decreto 150/15-06-2016 - Circolare 7618/STC/2010

CERTIFICATO DI PROVA N°: 00304 Pagina 1/2 795 del 04/11/20 VERBALE DI ACCETTAZIONE N°:

15/01/21 DATA DI EMISSIONE: 20/01/21 Inizio analisi: 04/11/20 18/01/21 Apertura campione: Fine analisi:

COMMITTENTE: Vianini Lavori S.p.A.

Proqettazione definitiva utilizzo idropotabile delle acque - invaso di Campolattaro RIFERIMENTO:


CAMPIONE: PROFONDITA': m SONDAGGIO: CL8 CI1 14.6-16.0

PROVA DI TAGLIO DIRETTO

Modalità di prova: Norma ASTM D3080

Provino n°:		1	2			3
Condizione del provino:	Indisturbato		Indisturbato		Indisturbato	
Tempo di consolidazione (ore):	2	<u>.</u> 4	24		24	
Pressione verticale (kPa):	100.0 200.0		0.0	300.0		
Umidità iniziale e umidità finale (%):	26.0 26.8		27.8	29.6	27.7	25.4
Peso di volume (kN/m³):	18.5		17.9		18.6	

Tipo di prova: Consolidata - lenta Velocità di deformazione: 0.008 mm / min

Il confezionamneto dei provini è stato eseguito togliendo gli inclusi piu grossolani

SGEO - Laboratorio 6.2 - 2018

Sperimentatore Eprico Tallini

Direttore

Certificazione Ufficiale-Settore A e B- Prove di laboratorio su terre e rocce AUTORIZZAZIONE MINISTERO INFRASTRUTTURE E TRASPORTI Decreto 150/15-06-2016 - Circolare 7618/STC/2010

 CERTIFICATO DI PROVA N°:
 00304
 Pagina 2/2
 DATA DI EMISSIONE:
 20/01/21
 Inizio analisi:
 15/01/21

 VERBALE DI ACCETTAZIONE N°:
 795 del 04/11/20
 Apertura campione:
 04/11/20
 Fine analisi:
 18/01/21

COMMITTENTE: Vianini Lavori S.p.A.

RIFERIMENTO: Progettazione definitiva utilizzo idropotabile delle acque - invaso di Campolattaro

SONDAGGIO: CL8 CAMPIONE: CI1 PROFONDITA': m 14.6-16.0

PROVA DI TAGLIO DIRETTO

Modalità di prova: Norma ASTM D3080

Provino 1				Provino 2		Provino 3			
Spostam. mm	Tensione kPa	Deform. vert. mm	Spostam. mm	Tensione kPa	Deform. vert. mm	Spostam. mm	Tensione kPa	Deform. vert. mm	
0.106	10.9	-0.01	0.005	5.7	-0.01	0.314	44.0	-0.02	
0.352	34.3	-0.05	0.146	32.4	-0.01	0.352	80.1	-0.06	
0.679	50.1	-0.10	0.329	65.2	-0.02	0.529	110.6	-0.08	
1.031	58.6	-0.12	0.571	83.5	-0.07	0.771	132.7	-0.12	
1.407	62.2	-0.14	0.857	93.4	-0.10	1.063	146.4	-0.14	
1.784	64.5	-0.15	1.170	99.2	-0.12	1.377	154.3	-0.16	
2.168	65.2	-0.15	1.488	104.0	-0.15	1.701	159.0	-0.17	
2.544	65.6	-0.15	1.811	106.4	-0.18	2.043	161.6	-0.18	
2.921	65.6	-0.14	2.129	108.7	-0.19	2.384	162.6	-0.18	
3.305	65.6	-0.12	2.442	110.8	-0.21	2.737	163.0	-0.18	
3.690	65.2	-0.11	2.760	111.8	-0.22	3.100	162.4	-0.19	
4.083	65.6	-0.10	3.083	112.4	-0.23	3.458	161.8	-0.19	
4.467	65.6	-0.09	3.412	113.5	-0.25	3.816	161.0	-0.19	
4.860	65.6	-0.08	3.746	113.7	-0.25	4.185	160.0	-0.20	
5.236	65.6	-0.07	4.081	113.9	-0.26	4.554	159.2	-0.21	
5.629	65.6	-0.05	4.415	113.9	-0.26	4.900	158.5	-0.21	
6.013	65.6	-0.04	4.744	114.5	-0.26	5.247	158.3	-0.22	
6.398	65.6	-0.02	5.067	114.5	-0.26	5.594	158.8	-0.22	
6.799	65.9	-0.01	5.391	114.9	-0.26	5.952	159.4	-0.23	
7.183	65.3	0.00	5.703	114.9	-0.26	6.294	158.5	-0.24	
7.560	63.9	0.02	6.021	115.5	-0.26	6.640	157.9	-0.25	
7.944	62.6	0.03	6.345	115.6	-0.26	6.982	157.1	-0.25	
8.329	60.8	0.04	6.674	115.3	-0.26	7.334	156.8	-0.25	
			7.002	114.7	-0.26	7.681	156.0	-0.26	
			7.337	113.7	-0.25				
			7.665	113.2	-0.25				
			8.000	112.8	-0.25				
			8.334	112.2	-0.25				

SGEO - Laboratorio 6.2 - 2018

Sperimentatore Eprico Tallini Direttore
Merco Ferrante
Lucut

Certificazione Ufficiale-Settore A e B- Prove di laboratorio su terre e rocce AUTORIZZAZIONE MINISTERO INFRASTRUTTURE E TRASPORTI Decreto 150/15-06-2016 - Circolare 7618/STC/2010

ALLEGATO PROVA DI TAGLIO DIRETTO Pagina 1/1
VERBALE DI ACCETTAZIONE N°: 795 del 04/11/20

DATA DI EMISSIONE: 20/01/21 Inizio analisi: 15/01/21 Apertura campione: 04/11/20 Fine analisi: 18/01/21

COMMITTENTE: Vianini Lavori S.p.A.

RIFERIMENTO: Progettazione definitiva utilizzo idropotabile delle acque - invaso di Campolattaro

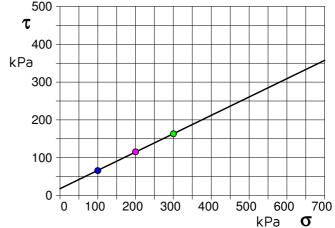
SONDAGGIO: CL8 CAMPIONE: CI1 PROFONDITA': m 14.6-16.0

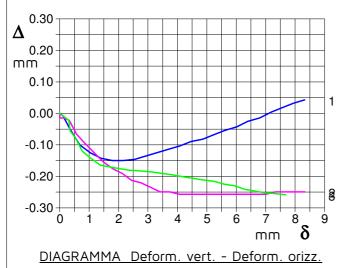
PROVA DI TAGLIO DIRETTO

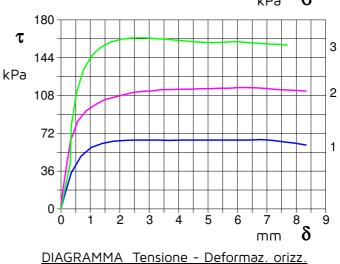
Modalità di prova: Norma ASTM D3080

Provino n°:	1		2		3	
Condizione del provino:	Indist	urbato	Indisturbato		Indisturbato	
Pressione verticale (kPa):	1	00	0 200		300	
Tensione a rottura (kPa):	66		116		163	
Deformazione orizzontale e verticale a rottura (mm):	6.80	-0.01	6.34	-0.26	2.74	-0.18
Umidità iniziale e umidità finale (%):	26.0	26.8	27.8	29.6	27.7	25.4
Peso di volume iniziale e finale (kN/m³):	18.5	18.6	17.9	18.1	18.6	18.3
Grado di saturazione iniziale e finale (%):	88.0	90.8	84.8	90.4	92.5	85.0

<u>DIAGRAMMA</u>


<u>Tensione - Pressione verticale</u>

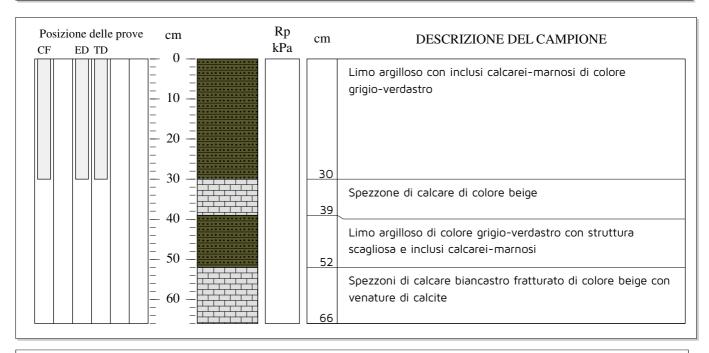

Coesione: 17.9 kPa Angolo di attrito interno: 25.9 °


Tipo di prova: Consolidata - lenta

Velocità di deformazione: 0.008 mm / min

Tempo di consolidazione (ore): 24

Il confezionamneto dei provini è stato eseguito togliendo gli inclusi piu grossolani



Certificazione Ufficiale-Settore A e B- Prove di laboratorio su terre e rocce AUTORIZZAZIONE MINISTERO INFRASTRUTTURE E TRASPORTI Decreto 150/15-06-2016 - Circolare 7618/STC/2010

COMMITTENTE: Vianini Lavori S.p.A.

RIFERIMENTO: Progettazione definitiva utilizzo idropotabile delle acque - invaso di Campolattaro

SONDAGGIO: CL8 CAMPIONE: CI8 PROFONDITA': m 75.8-76.5

Certificazione Ufficiale-Settore A e B- Prove di laboratorio su terre e rocce AUTORIZZAZIONE MINISTERO INFRASTRUTTURE E TRASPORTI Decreto 150/15-06-2016 - Circolare 7618/STC/2010

COMMITTENTE: Vianini Lavori S.p.A.

RIFERIMENTO: Progettazione definitiva utilizzo idropotabile delle acque - invaso di Campolattaro

SONDAGGIO: CL8 CAMPIONE: CI8 PROFONDITA': m 75.8-76.5

MODULO RIASSUNTIVO

CARATTERISTICHE FISICHE

<u> </u>	_	
Umidità naturale	23.7	%
Peso di volume	18.8	kN/m³
Peso di volume secco	15.2	kN/m³
Peso di volume saturo	19.4	kN/m³
Peso specifico	2.69	
Indice dei vuoti	0.729	
Porosità	42.2	%
Grado di saturazione	87.2	%
Limite di liquidità	46.8	%
Limite di plasticità	27.3	%
Indice di plasticità	19.5	%
Indice di consistenza	1.19	
Passante al set. n° 40	SI	
Limite di ritiro		%
CNR-UNI 10006/00		

ANALISI GRANULOMETRICA

Ghiaia	23.0	%
Sabbia	25.9	%
Limo	36.2	%
Argilla	14.9	%
D 10		mm
D 50	0.041824	mm
D 60	0.312137	mm
D 90	13.372290	mm
Passante set. 10	77.0	%
Passante set. 42	62.7	%
Passante set. 200	51.6	%
Passanie Set. 200	31.0	70

PERMEABILITA'

Coefficiente k	cm/sec
Coefficiente k	CITI/Sec

COMPRESSIONE

σ	kPa	σ Rim	kPa
C _U	kPa	C _U Rim	kPa

TAGLIO DIRETTO

Prova consolidata-lenta						
c'	16.3	kPa	φ.	28.3	0	
c'Res		kPa	ф Res		0	

COMPRESSIONE TRIASSIALE

C.D.	c _d	kPa	фа	0
C.U.	c' _{cu}	kPa	φ 'cυ	0
C.U.	c _{cu}	kPa	φ cυ	0
U.U.	cυ	kPa	φυ	0

PROVA EDOMETRICA

PROVA EDUMETRICA						
σ kPa	E kPa	Cv cm²/sec	k cm/sec			
25.0 ÷ 50.0 50.0 ÷ 100.0 100.0 ÷ 200.0 200.0 ÷ 400.0 400.0 ÷ 800.0 800.0 ÷ 1600.0 100.0 ÷ 200.0 200.0 ÷ 400.0 400.0 ÷ 800.0 800.0 ÷ 1600.0 1600.0 ÷ 3200.0 3200.0 ÷ 6400.0	4762 6897 5780 7663 12987 22956 14493 40000 36530 43243 52373 79404	0.001389 0.000250 0.000280 	1.98E-08 4.25E-09 3.58E-09 			

Certificazione Ufficiale-Settore A e B- Prove di laboratorio su terre e rocce AUTORIZZAZIONE MINISTERO INFRASTRUTTURE E TRASPORTI Decreto 150/15-06-2016 - Circolare 7618/STC/2010

20/01/21 Inizio analisi: 19/11/20						
19/11/20 Fine analisi: 20/11/20						
- invaso di Campolattaro						
PROFONDITA': m 75.8-76.5						
<u>URALE</u>						
6						
Wn = contenuto d'acqua allo stato naturale = 23.7 %						

Omogeneo

☐ Stratificato

☐ Caotico

Temperatura di essiccazione: 110 °C

Struttura del materiale:

Sperimentatore
Roberto Bracadlia
Lo hu O Juscu gli e

Direttore
Marco Ferrante
Lucut

Certificazione Ufficiale-Settore A e B- Prove di laboratorio su terre e rocce AUTORIZZAZIONE MINISTERO INFRASTRUTTURE E TRASPORTI Decreto 150/15-06-2016 - Circolare 7618/STC/2010

CERTIFICATO DI PROVA N°: 00306 Pagina 1/1 20/01/21 Inizio analisi: 28/12/20 DATA DI EMISSIONE: VERBALE DI ACCETTAZIONE N°: 795 del 04/11/20 Apertura campione: 19/11/20 Fine analisi: 28/12/20

COMMITTENTE: Vianini Lavori S.p.A.

RIFERIMENTO: Progettazione definitiva utilizzo idropotabile delle acque - invaso di Campolattaro

SONDAGGIO: CL8 CAMPIONE: CI8 PROFONDITA': m 75.8-76.5

PESO DI VOLUME ALLO STATO NATURALE

Modalità di prova: Norma BS 1377 T 15

Determinazione eseguita mediante fustella tarata

18.8 kN/m³ Peso di volume allo stato naturale =

Il confezionamneto dei provini è stato eseguito togliendo gli inclusi piu grossolani

Sperimentatore

Roberto Bracadlia
Lo nu o puccu gli e Marco Ferrante
Lo nu o puccu gli e Marco fluorito

Certificazione Ufficiale-Settore A e B- Prove di laboratorio su terre e rocce AUTORIZZAZIONE MINISTERO INFRASTRUTTURE E TRASPORTI Decreto 150/15-06-2016 - Circolare 7618/STC/2010

CERTIFICATO DI PROVA N°: 00307	Pagina 1/1	DATA DI EMISSIONE:	20/01/21	Inizio ana	isi: 23/12/20	
VERBALE DI ACCETTAZIONE N°: 795	del 04/11/20	Apertura campione:	19/11/20	Fine anali	si: 24/12/20	
COMMITTENTE: Vianini Lavori S.p.A.						=
RIFERIMENTO: Progettazione defin	potabile delle acque -	invaso di C	Campolatta	oro		
SONDAGGIO: CL8	CAMPIONE:	CI8	PROFONI	DITA': m	75.8-76.5	
	PESO SPECIF	ICO DEI GRANULI				_
						Ξ
N	Modalità di prova	: Norma ASTM D854				

 γ_s = Peso specifico dei granuli (media delle due misure) = 2.69

 γ_{SC} = Peso specifico dei granuli corretto a 20° = 2.68

Metodo: ■ A □ B

Capacità del picnometro: 100 ml

Temperatura di prova: 24.0 °C

Disaerazione eseguita per bollitura

SGEO - Laboratorio 6.2 - 2018

Sperimentatore Direttore Roberto Bracaglia Marco Ferrante La Mula Puecu gli e Marco Fe

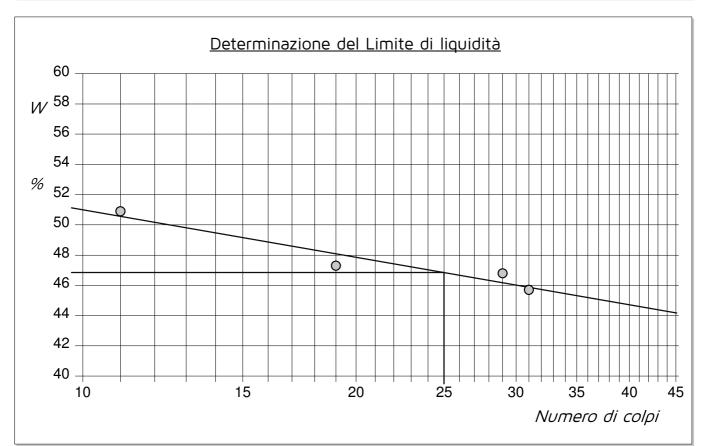
Certificazione Ufficiale-Settore A e B- Prove di laboratorio su terre e rocce AUTORIZZAZIONE MINISTERO INFRASTRUTTURE E TRASPORTI Decreto 150/15-06-2016 - Circolare 7618/STC/2010

CERTIFICATO DI PROVA N°: 00308 Pagina 1/1 DATA DI EMISSIONE: 20/01/21 Inizio analisi: 13/01/21 795 del 04/11/20 19/11/20 14/01/21 VERBALE DI ACCETTAZIONE N°: Apertura campione: Fine analisi:

COMMITTENTE: Vianini Lavori S.p.A.

Progettazione definitiva utilizzo idropotabile delle acque - invaso di Campolattaro RIFERIMENTO:

SONDAGGIO: CAMPIONE: CI8 PROFONDITA': m 75.8-76.5 CL8


LIMITI DI CONSISTENZA LIQUIDO E PLASTICO

Modalità di prova: Norma ASTM D4318

Limite di liquidità	46.8 %
Limite di plasticità	27.3 %
Indice di plasticità	19.5 %

La prova è stata eseguita sulla frazione granulometrica passante al setaccio n° 40 (0.42 mm)

LIMITE DI LIQUIDITA'					LIMITE DI PI	_ASTICI	ΓΑ'	
Numero di colpi	11	19	29	31		Umidità (%) 27.1		27.4
Umidità (%)	50.9	47.3	46.8	45.7		Umidità media 27.3		.3

SGEO - Laboratorio 6.2 - 2018

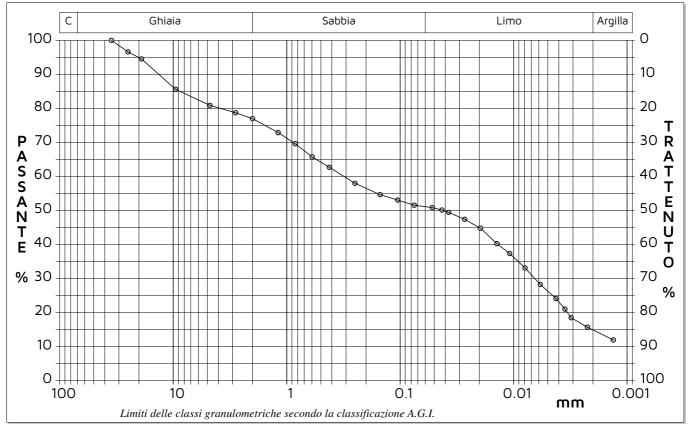
Sperimentatore
Roberto Bracadlia
Lo nu o puccu gli e Marco Ferrante

Certificazione Ufficiale-Settore A e B- Prove di laboratorio su terre e rocce AUTORIZZAZIONE MINISTERO INFRASTRUTTURE E TRASPORTI Decreto 150/15-06-2016 - Circolare 7618/STC/2010

CERTIFICATO DI PROVA N°: 00309 Pagina 1/1 VERBALE DI ACCETTAZIONE N°: 795 del 04/11/20

DATA DI EMISSIONE: 20/01/21 Inizio analisi: 04/01/21 Apertura campione: 19/11/20 Fine analisi: 07/01/21

COMMITTENTE: Vianini Lavori S.p.A.


RIFERIMENTO: Progettazione definitiva utilizzo idropotabile delle acque - invaso di Campolattaro

CAMPIONE: SONDAGGIO: CL8 CI8 PROFONDITA': m 75.8-76.5

ANALISI GRANULOMETRICA

Modalità di prova: Norma ASTM D422

Ghiaia Sabbia Limo Argilla	23.0 % 25.9 % 36.2 % 14.9 %	Passante se	etaccio 10 (2 mm) etaccio 40 (0.42 mm) etaccio 200 (0.075 mm)	77.0 % 62.7 % 51.6 %	D ₁₀ D ₃₀ D ₅₀ D ₆₀	0.00650 0.04182 0.31214	mm
Coefficiente d	1 1.0 70		Coefficiente di curvatura		D60	13.37229	

Diametro mm	Passante %								
35.0000	100.00	2.8200	78.72	0.4200	62.68	0.0521	50.83	0.0140	40.26
25.0000	96.59	2.0000	76.97	0.2500	57.99	0.0429	50.13	0.0108	37.33
19.0000	94.52	1.1900	72.89	0.1500	54.64	0.0374	49.42	0.0079	33.10
9.5200	85.62	0.8410	69.62	0.1050	53.05	0.0270	47.41	0.0058	28.27
4.7500	80.87	0.5950	65.73	0.0750	51.56	0.0196	44.79	0.0042	24.14

La frazione ghiaiosa è costituita da frammenti litoidi e sublitoidi marnosi-calcarei

Sperimentatore

Roberto Bracadlia
Lo nu o puccu gli e Marco Ferrante

Lo nu o puccu gli e Marco fluorito

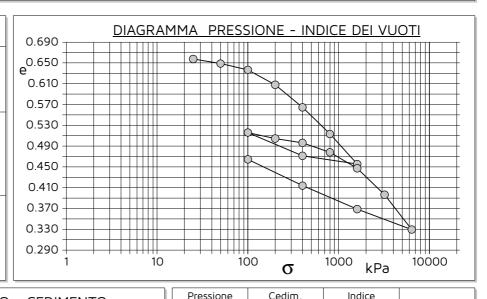
SGEO - Laboratorio 6.2 - 2018

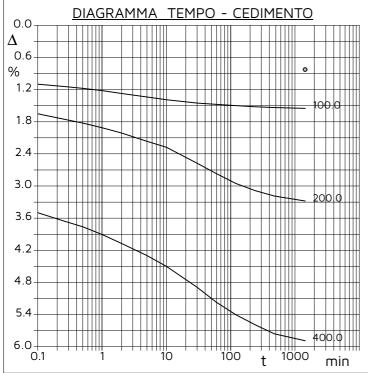
Certificazione Ufficiale-Settore A e B- Prove di laboratorio su terre e rocce AUTORIZZAZIONE MINISTERO INFRASTRUTTURE E TRASPORTI Decreto 150/15-06-2016 - Circolare 7618/STC/2010

CERTIFICATO DI PROVA N°: 00310 Pagina 1/2 VERBALE DI ACCETTAZIONE N°: 795 del 04/11/20

DATA DI EMISSIONE: 20/01/21 Inizio analisi: 28/12/20 Apertura campione: 19/11/20 Fine analisi: 15/01/21

COMMITTENTE: Vianini Lavori S.p.A.


RIFERIMENTO: Progettazione definitiva utilizzo idropotabile delle acque - invaso di Campolattaro


SONDAGGIO: CL8 CAMPIONE: CI8 PROFONDITA': m 75.8-76.5

PROVA EDOMETRICA

Modalità di prova: Norma ASTM D2435

Caratteristiche del camp	<u>ione</u>
Peso di volume (kN/m³) Umidità (%) Peso specifico	19.54 23.2 2.69
Altezza provino (cm) Diametro provino (cm) Sezione provino (cm²) Volume provino (cm³)	2.00 5.05 20.00 40.00
Volume dei vuoti (cm³) Indice dei vuoti Porosità (%) Saturazione (%)	15.94 0.66 39.85 94.3

l	kPa	mm/100	Vuoti	Cc
l	25.0 6.0		0.657	
l	50.0	16.5	0.649	0.029
l	100.0	31.0	0.637	0.040
l	200.0	65.6	0.608	0.096
l	400.0	117.8	0.565	0.144
l	800.0	179.4	0.513	0.170
l	1600.0	249.1	0.455	0.192
l	400.0	230.0	0.471	
l	100.0	176.2	0.516	
l	200.0	190.0	0.505	0.038
l	400.0	200.0	0.496	0.028
l	800.0	221.9	0.478	0.060
l	1600.0	258.9	0.447	0.102
l	3200.0	320.0	0.396	0.169
l	6400.0	400.6	0.329	0.223
l	1600.0	353.3	0.369	
l	400.0	299.0	0.414	
l	100.0	238.0	0.465	
l				

SGEO - Laboratorio 6.2 - 2018

Sperimentatore Enrico Tallini Direttore
Merco Ferrante
Lucut

Certificazione Ufficiale-Settore A e B- Prove di laboratorio su terre e rocce AUTORIZZAZIONE MINISTERO INFRASTRUTTURE E TRASPORTI Decreto 150/15-06-2016 - Circolare 7618/STC/2010

CERTIFICATO DI PROVA N°:00310Pagina 2/2DATA DI EMISSIONE:20/01/21Inizio analisi:28/12/20VERBALE DI ACCETTAZIONE N°:795del 04/11/20Apertura campione:19/11/20Fine analisi:15/01/21

COMMITTENTE: Vianini Lavori S.p.A.

RIFERIMENTO: Progettazione definitiva utilizzo idropotabile delle acque - invaso di Campolattaro

SONDAGGIO: CL8 CAMPIONE: CI8 PROFONDITA': m 75.8-76.5

PROVA EDOMETRICA

Modalità di prova: Norma ASTM D2435

LETTURE INTERMEDIE - TABELLE RIASSUNTIVE

Pressione 1	00.0 kPa	Pressione 2	00.0 kPa	Pressione 400.0 kPa		Pressione	kPa
Tempo minuti	Cedim. mm/100	Tempo minuti	Cedim. mm/100	Tempo minuti	Cedim. mm/100	Tempo minuti	Cedim. mm/100
0.00	16.5	0.00	31.0	0.00	65.6		
0.10	22.0	0.10	33.0	0.10	70.0		
0.25	22.8	0.25	35.0	0.25	73.0		
0.50	23.5	0.50	36.5	0.50	75.2		
1.00	24.4	1.00	38.2	1.00	78.1		
2.00	25.4	2.00	40.2	2.00	81.5		
5.00	26.7	5.00	43.3	5.00	86.0		
10.00	27.8	10.00	45.5	10.00	90.0		
30.00	29.0	30.00	51.5	30.00	97.8		
60.00	29.5	60.00	55.4	60.00	103.4		
120.00	30.0	120.00	59.0	120.00	108.0		
240.00	30.4	240.00	61.7	240.00	111.8		
480.00	30.7	480.00	63.8	480.00	115.2		
1440.00	31.0	1440.00	65.6	1440.00	117.8		

Pressione		kPa	Pressione		kPa	Pressione	 kPa	Pressione	 kPa
Tempo minuti	Cedir mm/1		Tempo minuti	Ced mm/		Tempo minuti	dim. n/100	Tempo minuti	edim. m/100

SGEO - Laboratorio 6.2 - 2018

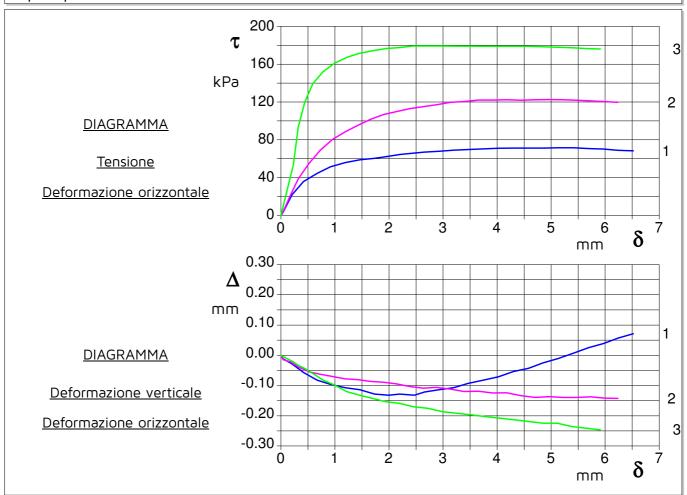
Sperimentatore Eprico Tallini Direttore
Warco Ferrante
Lucut

Certificazione Ufficiale-Settore A e B- Prove di laboratorio su terre e rocce AUTORIZZAZIONE MINISTERO INFRASTRUTTURE E TRASPORTI Decreto 150/15-06-2016 - Circolare 7618/STC/2010

14/01/21 CERTIFICATO DI PROVA N°: 00311 Pagina 1/2 DATA DI EMISSIONE: 20/01/21 Inizio analisi: 795 del 04/11/20 19/11/20 16/01/21 VERBALE DI ACCETTAZIONE N°: Apertura campione: Fine analisi:

COMMITTENTE: Vianini Lavori S.p.A.

Proqettazione definitiva utilizzo idropotabile delle acque - invaso di Campolattaro RIFERIMENTO:


SONDAGGIO: CAMPIONE: CI8 PROFONDITA': m CL8 75.8-76.5

PROVA DI TAGLIO DIRETTO

Modalità di prova: Norma ASTM D3080

Provino n°:	1 Indisturbato		2		3	
Condizione del provino:			Indist	Indisturbato		urbato
Tempo di consolidazione (ore):	24		24		24	
Pressione verticale (kPa):	10	0.0	200.0		30	0.0
Umidità iniziale e umidità finale (%):	25.3	25.3 25.4		23.5	24.9	21.8
Peso di volume (kN/m³):	18.0		18.3		18.2	

Tipo di prova: Consolidata - lenta Velocità di deformazione: 0.008 mm / min

Il confezionamneto dei provini è stato eseguito togliendo gli inclusi piu grossolani

SGEO - Laboratorio 6.2 - 2018

Sperimentatore Eprico Tallini

Direttore

Certificazione Ufficiale-Settore A e B- Prove di laboratorio su terre e rocce AUTORIZZAZIONE MINISTERO INFRASTRUTTURE E TRASPORTI Decreto 150/15-06-2016 - Circolare 7618/STC/2010

CERTIFICATO DI PROVA N°:00311Pagina 2/2DATA DI EMISSIONE:20/01/21Inizio analisi:14/01/21VERBALE DI ACCETTAZIONE N°:795del 04/11/20Apertura campione:19/11/20Fine analisi:16/01/21

COMMITTENTE: Vianini Lavori S.p.A.

RIFERIMENTO: Progettazione definitiva utilizzo idropotabile delle acque - invaso di Campolattaro

SONDAGGIO: CL8 CAMPIONE: CI8 PROFONDITA': m 75.8-76.5

PROVA DI TAGLIO DIRETTO

Modalità di prova: Norma ASTM D3080

	Provino 1			Provino 2			Provino 3	3
Spostam. mm	Tensione kPa	Deform. vert. mm	Spostam. mm	Tensione kPa	Deform. vert. mm	Spostam. mm	Tensione kPa	Deform. vert.
0.033	2.5	-0.01	0.043	4.0	-0.01	0.231	53.7	-0.02
0.205	21.8	-0.03	0.183	21.9	-0.02	0.319	93.3	-0.03
0.417	35.8	-0.06	0.323	38.8	-0.04	0.440	119.7	-0.04
0.671	44.5	-0.08	0.523	55.2	-0.05	0.589	139.4	-0.06
0.916	51.4	-0.10	0.728	68.8	-0.06	0.782	152.2	-0.08
1.186	55.7	-0.11	0.954	80.3	-0.07	0.997	161.1	-0.10
1.464	58.8	-0.11	1.191	88.5	-0.08	1.222	167.1	-0.12
1.734	60.4	-0.13	1.429	95.4	-0.08	1.448	171.4	-0.13
1.996	62.6	-0.13	1.660	101.7	-0.09	1.696	174.2	-0.14
2.201	64.4	-0.13	1.903	106.8	-0.09	1.944	176.6	-0.15
2.471	66.0	-0.13	2.151	109.9	-0.10	2.197	177.6	-0.16
2.659	66.9	-0.12	2.393	113.1	-0.10	2.450	179.3	-0.17
2.921	67.9	-0.11	2.636	115.2	-0.11	2.726	179.3	-0.18
3.199	69.1	-0.11	2.884	117.0	-0.11	2.990	179.3	-0.19
3.469	69.7	-0.09	3.137	119.6	-0.11	3.265	179.1	-0.19
3.747	70.3	-0.08	3.391	120.4	-0.12	3.529	179.1	-0.20
4.025	71.0	-0.07	3.655	122.1	-0.12	3.794	178.9	-0.20
4.303	71.3	-0.05	3.919	122.1	-0.12	4.064	178.9	-0.21
4.582	71.3	-0.04	4.178	122.3	-0.12	4.328	178.9	-0.21
4.852	71.3	-0.02	4.442	121.9	-0.13	4.603	178.9	-0.22
5.130	71.6	-0.01	4.706	122.3	-0.14	4.856	178.4	-0.22
5.416	71.6	0.01	4.965	122.5	-0.14	5.115	177.9	-0.22
5.694	70.7	0.02	5.224	122.3	-0.14	5.385	177.3	-0.24
5.973	70.2	0.04	5.477	121.8	-0.14	5.649	176.6	-0.24
6.242	68.8	0.06	5.725	121.2	-0.14	5.914	176.1	-0.25
6.521	68.3	0.07	5.978	120.5	-0.14			
			6.237	119.6	-0.14			

SGEO - Laboratorio 6.2 - 2018

Sperimentatore Eprico Tallini Direttore
Werco Ferrante flusuit

Certificazione Ufficiale-Settore A e B- Prove di laboratorio su terre e rocce AUTORIZZAZIONE MINISTERO INFRASTRUTTURE E TRASPORTI Decreto 150/15-06-2016 - Circolare 7618/STC/2010

ALLEGATO PROVA DI TAGLIO DIRETTO Pagina 1/1
VERBALE DI ACCETTAZIONE N°: 795 del 04/11/20

DATA DI EMISSIONE: 20/01/21 Inizio analisi: 14/01/21 Apertura campione: 19/11/20 Fine analisi: 16/01/21

COMMITTENTE: Vianini Lavori S.p.A.

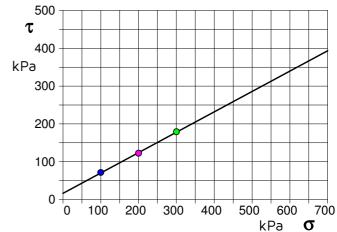
RIFERIMENTO: Progettazione definitiva utilizzo idropotabile delle acque - invaso di Campolattaro

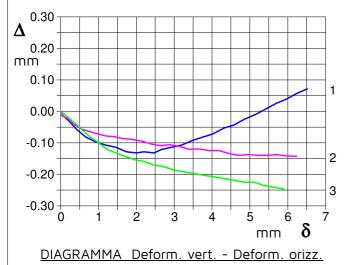
SONDAGGIO: CL8 CAMPIONE: CI8 PROFONDITA': m 75.8-76.5

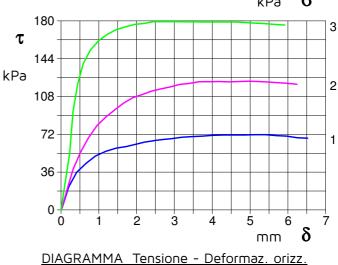
PROVA DI TAGLIO DIRETTO

Modalità di prova: Norma ASTM D3080

Provino n°:		1		2		3
Condizione del provino:	Indist	Indisturbato		urbato	Indisturbato 300	
Pressione verticale (kPa):	1	00	200			
Tensione a rottura (kPa):	7	72		123		79
Deformazione orizzontale e verticale a rottura (mm):	5.13	-0.01	4.96	-0.14	2.45	-0.17
Umidità iniziale e umidità finale (%):	25.3	25.4	26.1	23.5	24.9	21.8
Peso di volume iniziale e finale (kN/m³):	18.0	18.0	18.3	17.9	18.2	17.7
Grado di saturazione iniziale e finale (%):	81.5	81.7	85.6	76.9	82.7	72.3


<u>DIAGRAMMA</u> <u>Tensione - Pressione verticale</u>

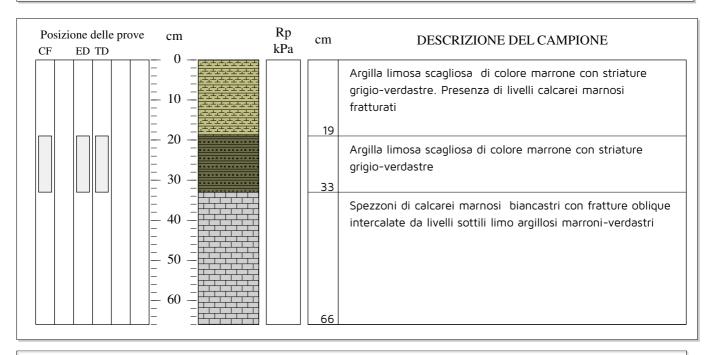

Coesione: 16.3 kPa Angolo di attrito interno: 28.3 °

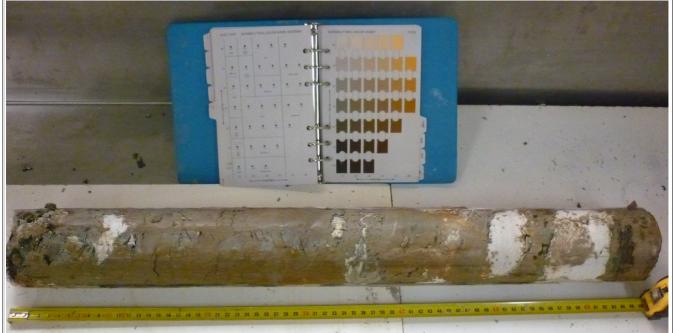

Tipo di prova: Consolidata - lenta

Velocità di deformazione: 0.008 mm / min

Tempo di consolidazione (ore): 24

Il confezionamneto dei provini è stato eseguito togliendo gli inclusi piu grossolani




Certificazione Ufficiale-Settore A e B- Prove di laboratorio su terre e rocce AUTORIZZAZIONE MINISTERO INFRASTRUTTURE E TRASPORTI Decreto 150/15-06-2016 - Circolare 7618/STC/2010

COMMITTENTE: Vianini Lavori S.p.A.

RIFERIMENTO: Progettazione definitiva utilizzo idropotabile delle acque - invaso di Campolattaro

SONDAGGIO: CL8 CAMPIONE: CI10 PROFONDITA': m 89.1-89.75

Certificazione Ufficiale-Settore A e B- Prove di laboratorio su terre e rocce AUTORIZZAZIONE MINISTERO INFRASTRUTTURE E TRASPORTI Decreto 150/15-06-2016 - Circolare 7618/STC/2010

COMMITTENTE: Vianini Lavori S.p.A.

RIFERIMENTO: Progettazione definitiva utilizzo idropotabile delle acque - invaso di Campolattaro

SONDAGGIO: CL8 CAMPIONE: CI10 PROFONDITA': m 89.1-89.75

MODULO RIASSUNTIVO

CARATTERISTICHE FISICHE

Umidità naturale	20.5	%
Peso di volume	19.9	kN/m³
Peso di volume secco	16.5	kN/m³
Peso di volume saturo	20.2	kN/m³
Peso specifico	2.70	
Indice dei vuoti	0.601	
Porosità	37.5	%
Grado di saturazione	92.0	%
Limite di liquidità	49.5	%
Limite di plasticità	32.1	%
Indice di plasticità	17.4	%
Indice di consistenza	1.67	
Passante al set. n° 40	SI	
Limite di ritiro		%
CNR-UNI 10006/00		

ANALISI GRANULOMETRICA

Ghiaia Sabbia Limo Argilla	23.6 38.0 18.3 20.1	% % %
D 10 D 50 D 60 D 90	0.277964 0.566029 7.791451	mm mm mm
Passante set. 10 Passante set. 42 Passante set. 200	76.4 55.7 39.1	% % %

PERMEABILITA'

Coefficiente k	cm/sec
Coefficiente k	CITI/Sec

COMPRESSIONE

σ	kPa	σ Rim	kPa
C _U	kPa	C _U Rim	kPa

TAGLIO DIRETTO

Prova consolidata-lenta					
c'	22.2	kPa	φ.	27.3	0
c'Res		kPa	ф Res		0

COMPRESSIONE TRIASSIALE

C.D.	c _d	kPa	фа	0
C.U.	c' _{cu}	kPa	φ΄ςυ	o
C.U.	c _{cu}	kPa	φου	0
U.U.	c _u	kPa	φυ	o

PROVA EDOMETRICA

σ kPa	E kPa	Cv cm²/sec	k cm/sec
50.0 ÷ 100.0 100.0 ÷ 200.0 200.0 ÷ 400.0 400.0 ÷ 800.0 800.0 ÷ 1600.0 100.0 ÷ 200.0 200.0 ÷ 400.0 400.0 ÷ 800.0 800.0 ÷ 1600.0 1600.0 ÷ 3200.0 3200.0 ÷ 6400.0	7634 7634 10695 20356 32922 14599 27027 50000 61538 84211 118519	0.000372 0.000570 0.000243 	4.77E-09 7.33E-09 2.23E-09

Certificazione Ufficiale-Settore A e B- Prove di laboratorio su terre e rocce AUTORIZZAZIONE MINISTERO INFRASTRUTTURE E TRASPORTI Decreto 150/15-06-2016 - Circolare 7618/STC/2010

CERTIFICATO DI PROVA N°: 00312	Pagina 1/1	DATA DI EMISSIONE:	20/01/21	Inizio analisi	: 20/11/20				
VERBALE DI ACCETTAZIONE N°: 795 d	el 04/11/20	Apertura campione:	20/11/20	Fine analisi:	21/11/20				
COMMITTENTE: Vianini Lavori S.p.A									
RIFERIMENTO: Progettazione definit	iva utilizzo idro	potabile delle acque -	invaso di C	Campolattaro					
SONDAGGIO: CL8	CAMPIONE:	CI10	PROFOND	ITA': m 89	.1-89.75				
CONTENUTO D'ACQUA ALLO STATO NATURALE									
Modalità di prova: Norma ASTM D2216									

Wn = contenuto d'acqua allo stato naturale = 20.5 %

Omogeneo

Struttura del materiale: ☐ Stratificato

☐ Caotico

Temperatura di essiccazione: 110 °C

SGEO - Laboratorio 6.2 - 2018

Sperimentatore Direttore Roberto Bracadlia Marco Ferrante Marco Ferrante

Certificazione Ufficiale-Settore A e B- Prove di laboratorio su terre e rocce AUTORIZZAZIONE MINISTERO INFRASTRUTTURE E TRASPORTI Decreto 150/15-06-2016 - Circolare 7618/STC/2010

CERTIFICATO DI PROVA N°: 00313 Pagina 1/1 20/01/21 Inizio analisi: 28/12/20 DATA DI EMISSIONE: VERBALE DI ACCETTAZIONE N°: 795 del 04/11/20 Apertura campione: 20/11/20 Fine analisi: 28/12/20

COMMITTENTE: Vianini Lavori S.p.A.

RIFERIMENTO: Progettazione definitiva utilizzo idropotabile delle acque - invaso di Campolattaro

CI10 SONDAGGIO: CL8 CAMPIONE: PROFONDITA': m 89.1-89.75

PESO DI VOLUME ALLO STATO NATURALE

Modalità di prova: Norma BS 1377 T 15

Determinazione eseguita mediante fustella tarata

19.9 kN/m³ Peso di volume allo stato naturale =

Il confezionamneto dei provini è stato eseguito togliendo gli inclusi piu grossolani

Sperimentatore
Roberto Bracaglia
Lo nu o Pracuglie Marco Ferrante fluorito

Certificazione Ufficiale-Settore A e B- Prove di laboratorio su terre e rocce AUTORIZZAZIONE MINISTERO INFRASTRUTTURE E TRASPORTI Decreto 150/15-06-2016 - Circolare 7618/STC/2010

CERTIFICATO DI PROVA N°: 00314	Pagina 1/1	DATA DI EMISSIONE:	20/01/21	Inizio ana	lisi:	21/12/20		
VERBALE DI ACCETTAZIONE N°: 795	del 04/11/20	Apertura campione:	20/11/20	Fine anali	si:	22/12/20		
COMMITTENTE: Vianini Lavori S.p.A.								
RIFERIMENTO: Progettazione defir	nitiva utilizzo idr	opotabile delle acque -	invaso di C	Campolatta	ero			
SONDAGGIO: CL8	CAMPIONE:	CI10	PROFOND	ITA': m	89.1	I-89.75		
PESO SPECIFICO DEI GRANULI								
N	Modalità di prova	a: Norma ASTM D854						

 $\gamma_{\!\scriptscriptstyle S}$ = Peso specifico dei granuli (media delle due misure) = 2.70

 γ_{SC} = Peso specifico dei granuli corretto a 20° = 2.70

Metodo: ■ A □ B

Capacità del picnometro: 100 ml

Temperatura di prova: 24.0 °C

Disaerazione eseguita per bollitura

Sperimentatore Direttore
Robberto Bracadlia
Lo nu o nuccu gli e Marco Ferrante

SGEO - Laboratorio 6.2 - 2018

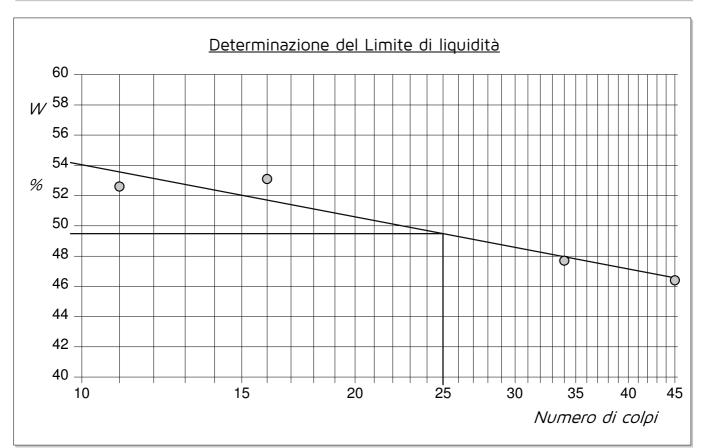
Certificazione Ufficiale-Settore A e B- Prove di laboratorio su terre e rocce AUTORIZZAZIONE MINISTERO INFRASTRUTTURE E TRASPORTI Decreto 150/15-06-2016 - Circolare 7618/STC/2010

CERTIFICATO DI PROVA N°: 00315 Pagina 1/1 DATA DI EMISSIONE: 20/01/21 Inizio analisi: 04/01/21 795 del 04/11/20 20/11/20 VERBALE DI ACCETTAZIONE N°: Apertura campione: Fine analisi: 05/01/21

COMMITTENTE: Vianini Lavori S.p.A.

Progettazione definitiva utilizzo idropotabile delle acque - invaso di Campolattaro RIFERIMENTO:

SONDAGGIO: CAMPIONE: CI10 PROFONDITA': m CL8 89.1-89.75


LIMITI DI CONSISTENZA LIQUIDO E PLASTICO

Modalità di prova: Norma ASTM D4318

Limite di liquidità	49.5	%
Limite di plasticità	32.1	%
Indice di plasticità	17.4	%

La prova è stata eseguita sulla frazione granulometrica passante al setaccio n° 40 (0.42 mm)

LIMITE DI LIQUIDITA'					LIMITE DI PI	_ASTICI	ΓΑ'	
Numero di colpi	mero di colpi 11 16 34 45					Umidità (%)	32.9	31.2
Umidità (%)	52.6	53.1	47.7	46.4		Umidità media 32.1		.1

SGEO - Laboratorio 6.2 - 2018

Sperimentatore

Roberto Bracadlia
Lo nu o puccu gli e Marco Ferrante

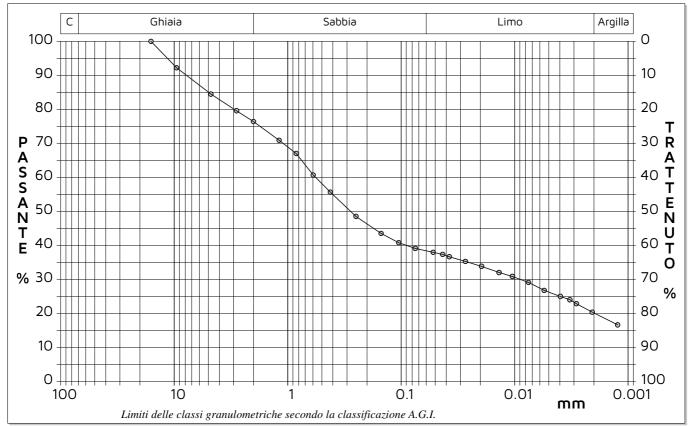
Lo nu o puccu gli e Marco fluorito

Certificazione Ufficiale-Settore A e B- Prove di laboratorio su terre e rocce AUTORIZZAZIONE MINISTERO INFRASTRUTTURE E TRASPORTI Decreto 150/15-06-2016 - Circolare 7618/STC/2010

CERTIFICATO DI PROVA N°: 00316 Pagina 1/1 795 del 04/11/20 VERBALE DI ACCETTAZIONE N°:

DATA DI EMISSIONE: 20/01/21 11/01/21 Inizio analisi: Apertura campione: 20/11/20 Fine analisi: 14/01/21

COMMITTENTE: Vianini Lavori S.p.A.


RIFERIMENTO: Progettazione definitiva utilizzo idropotabile delle acque - invaso di Campolattaro

CAMPIONE: CI10 SONDAGGIO: CL8 PROFONDITA': m 89.1-89.75

ANALISI GRANULOMETRICA

Modalità di prova: Norma ASTM D422

Ghiaia Sabbia Limo Argilla	23.6 % 38.0 % 18.3 % 20.1 %	Passante se	etaccio 10 (2 mm) etaccio 40 (0.42 mm) etaccio 200 (0.075 mm)	76.4 % 55.7 % 39.1 %	D ₁₀ D ₃₀ D ₅₀ D ₆₀	0.00884 0.27796 0.56603	mm
Coefficiente	di uniformită	÷	Coefficiente di curvatura		D ₉₀	7.79145	

Diametro mm	Passante %								
16.0000	100.00	1.1900	70.91	0.1500	43.53	0.0376	36.70	0.0076	29.15
9.5200	92.23	0.8410	67.04	0.1050	40.83	0.0271	35.33	0.0055	26.79
4.7500	84.49	0.5950	60.73	0.0750	39.15	0.0195	33.88	0.0040	25.04
2.8200	79.60	0.4200	55.66	0.0523	37.99	0.0137	32.05	0.0033	24.05
2.0000	76.42	0.2500	48.55	0.0430	37.38	0.0105	30.91	0.0029	22.91

La frazione ghiaiosa è costituita da frammenti litoidi e sublitoidi marnosi-calcarei

Sperimentatore

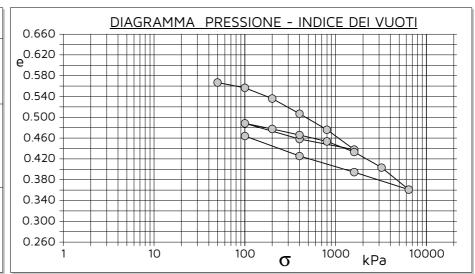
Roberto Bracaglia
Lo nu o Pracuglie Merco Ferrante fluorita

Certificazione Ufficiale-Settore A e B- Prove di laboratorio su terre e rocce AUTORIZZAZIONE MINISTERO INFRASTRUTTURE E TRASPORTI Decreto 150/15-06-2016 - Circolare 7618/STC/2010

CERTIFICATO DI PROVA N°: 00317 Pagina 1/2 VERBALE DI ACCETTAZIONE N°: 795 del 04/11/20

DATA DI EMISSIONE: 20/01/21 Inizio analisi: 28/12/20 Apertura campione: 20/11/20 Fine analisi: 15/01/21

COMMITTENTE: Vianini Lavori S.p.A.


RIFERIMENTO: Progettazione definitiva utilizzo idropotabile delle acque - invaso di Campolattaro

SONDAGGIO: CL8 CAMPIONE: CI10 PROFONDITA': m 89.1-89.75

PROVA EDOMETRICA

Modalità di prova: Norma ASTM D2435

Caratteristiche del can	<u>npione</u>
Peso di volume (kN/m ³	³) 20.31
Umidità (%)	20.4
Peso specifico	2.70
Altezza provino (cm) Diametro provino (cm) Sezione provino (cm²) Volume provino (cm³)	2.00 5.05 20.01 40.01
Volume dei vuoti (cm³)	14.49
Indice dei vuoti	0.57
Porosità (%)	36.22
Saturazione (%)	96.8

0.0 <u>DI</u>	AGRAMMA	TEMPO - C	CEDIMENT	<u>'O</u>
Δ				0
0.4				
% 0.8				_ 100.0
1.2				
1.6				
2.0				_ 200 0
2.4				
2.8				
2.0				
3.2				
3.6				
				400.0
4.0	<u> </u>) † 100	
			L .	1111111

l	Pressione kPa	Cedim. mm/100	Indice Vuoti	Сс
l	50.0 1.2		0.567	
l	100.0	14.3	0.557	0.034
l	200.0	40.5	0.536	0.068
l	400.0	77.9	0.507	0.097
l	800.0	117.2	0.476	0.102
l	1600.0	165.8	0.438	0.127
l	400.0	140.0	0.458	
l	100.0	101.5	0.488	
l	200.0	115.2	0.478	0.036
l	400.0	130.0	0.466	0.039
l	800.0	146.0	0.453	0.042
l	1600.0	172.0	0.433	0.068
l	3200.0	210.0	0.403	0.099
l	6400.0	264.0	0.361	0.141
l	1600.0	221.2	0.395	
l	400.0	181.7	0.425	
l	100.0	132.7	0.464	
l				
l				
l				
ш	1			

SGEO - Laboratorio 6.2 - 2018

Sperimentatore Enrico Tallini Direttore
Merco Ferrante
Lucut

Certificazione Ufficiale-Settore A e B- Prove di laboratorio su terre e rocce AUTORIZZAZIONE MINISTERO INFRASTRUTTURE E TRASPORTI Decreto 150/15-06-2016 - Circolare 7618/STC/2010

CERTIFICATO DI PROVA N°:00317Pagina 2/2DATA DI EMISSIONE:20/01/21Inizio analisi:28/12/20VERBALE DI ACCETTAZIONE N°:795 del 04/11/20Apertura campione:20/11/20Fine analisi:15/01/21

COMMITTENTE: Vianini Lavori S.p.A.

RIFERIMENTO: Progettazione definitiva utilizzo idropotabile delle acque - invaso di Campolattaro

SONDAGGIO: CL8 CAMPIONE: CI10 PROFONDITA': m 89.1-89.75

PROVA EDOMETRICA

Modalità di prova: Norma ASTM D2435

LETTURE INTERMEDIE - TABELLE RIASSUNTIVE

Pressione 1	Pressione 100.0 kPa Pressione 200.0 kPa		Pressione 400.0 kPa		Pressione	kPa	
Tempo minuti	Cedim. mm/100	Tempo minuti	Cedim. mm/100	Tempo minuti	Cedim. mm/100	Tempo minuti	Cedim. mm/100
0.00	1.2	0.00	14.3	0.00	40.5		
0.10	1.5	0.10	15.0	0.10	42.0		
0.25	1.8	0.25	16.3	0.25	44.0		
0.50	2.4	0.50	18.0	0.50	45.6		
1.00	3.0	1.00	19.8	1.00	47.5		
2.00	4.0	2.00	22.0	2.00	49.5		
5.00	5.4	5.00	25.0	5.00	52.7		
10.00	6.8	10.00	27.0	10.00	55.7		
30.00	8.9	30.00	31.2	30.00	62.0		
60.00	10.2	60.00	33.5	60.00	65.6		
120.00	11.4	120.00	35.7	120.00	69.4		
240.00	12.3	240.00	37.5	240.00	72.9		
480.00	13.2	480.00	38.9	480.00	75.6		
1440.00	14.3	1440.00	40.5	1440.00	77.9		

Pressione		kPa	Pressione		kPa	Pressione	 kPa	Pressione	 kPa
Tempo minuti	Cedi mm/1		Tempo minuti	Ced mm/		Tempo minuti	edim. n/100	Tempo minuti	edim. n/100

SGEO - Laboratorio 6.2 - 2018

Sperimentatore Eprico Tallini Direttore
Merco Ferrante fluorito

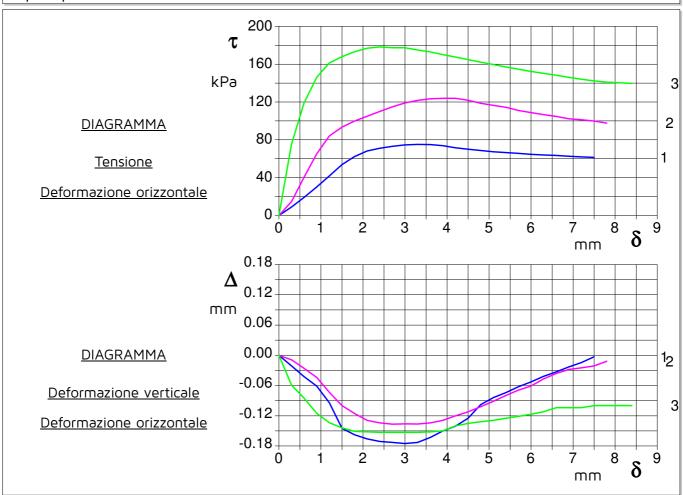
Certificazione Ufficiale-Settore A e B- Prove di laboratorio su terre e rocce AUTORIZZAZIONE MINISTERO INFRASTRUTTURE E TRASPORTI Decreto 150/15-06-2016 - Circolare 7618/STC/2010

CERTIFICATO DI PROVA N°:00318Pagina 1/2VERBALE DI ACCETTAZIONE N°:795del 04/11/20

DATA DI EMISSIONE: 20/01/21 Inizio analisi: 18/01/21 Apertura campione: 20/11/20 Fine analisi: 20/01/21

COMMITTENTE: Vianini Lavori S.p.A.

RIFERIMENTO: Progettazione definitiva utilizzo idropotabile delle acque - invaso di Campolattaro


SONDAGGIO: CL8 CAMPIONE: CI10 PROFONDITA': m 89.1-89.75

PROVA DI TAGLIO DIRETTO

Modalità di prova: Norma ASTM D3080

Provino n°:	1		2		3	
Condizione del provino:	Indisturbato		Indisturbato		Indisturbato	
Tempo di consolidazione (ore):	24		24		24	
Pressione verticale (kPa):	100.0		200.0		300.0	
Umidità iniziale e umidità finale (%):	22.2	23.9	21.4	22.2	21.4	22.6
Peso di volume (kN/m³):	19.4		19.6		19.5	

Tipo di prova: Consolidata - lenta Velocità di deformazione: 0.008 mm / min

Il confezionamneto dei provini è stato eseguito togliendo gli inclusi piu grossolani

SGEO - Laboratorio 6.2 - 2018

Sperimentatore Eprico Tallini Direttore
Werco Ferrante flusuit

Certificazione Ufficiale-Settore A e B- Prove di laboratorio su terre e rocce AUTORIZZAZIONE MINISTERO INFRASTRUTTURE E TRASPORTI Decreto 150/15-06-2016 - Circolare 7618/STC/2010

 CERTIFICATO DI PROVA N°:
 00318
 Pagina 2/2
 DATA DI EMISSIONE:
 20/01/21
 Inizio analisi:
 18/01/21

 VERBALE DI ACCETTAZIONE N°:
 795
 del 04/11/20
 Apertura campione:
 20/11/20
 Fine analisi:
 20/01/21

COMMITTENTE: Vianini Lavori S.p.A.

RIFERIMENTO: Progettazione definitiva utilizzo idropotabile delle acque - invaso di Campolattaro

SONDAGGIO: CL8 CAMPIONE: CI10 PROFONDITA': m 89.1-89.75

PROVA DI TAGLIO DIRETTO

Modalità di prova: Norma ASTM D3080

Spostam. Tensione mm Deform. vert. mm Spostam. mm Tensione kPa Deform. vert. mm Spostam. mm Tensione mm Deform. vert. mm Spostam. mm Tensione mm Mm Nature mm <th< th=""><th>Deform. vert. mm -0.06 -0.09 -0.12 -0.13 -0.14 -0.15 -0.15</th></th<>	Deform. vert. mm -0.06 -0.09 -0.12 -0.13 -0.14 -0.15 -0.15
0.600 19.0 -0.04 0.600 40.4 -0.03 0.600 118.9 0.900 30.0 -0.06 0.900 65.2 -0.04 0.900 146.0 1.200 41.7 -0.09 1.200 84.1 -0.07 1.200 161.2 1.500 53.9 -0.15 1.500 93.4 -0.10 1.500 167.9 1.800 62.3 -0.16 1.800 99.9 -0.12 1.800 173.1	-0.09 -0.12 -0.13 -0.14 -0.15
0.600 19.0 -0.04 0.600 40.4 -0.03 0.600 118.9 0.900 30.0 -0.06 0.900 65.2 -0.04 0.900 146.0 1.200 41.7 -0.09 1.200 84.1 -0.07 1.200 161.2 1.500 53.9 -0.15 1.500 93.4 -0.10 1.500 167.9 1.800 62.3 -0.16 1.800 99.9 -0.12 1.800 173.1	-0.09 -0.12 -0.13 -0.14 -0.15
0.900 30.0 -0.06 0.900 65.2 -0.04 0.900 146.0 1.200 41.7 -0.09 1.200 84.1 -0.07 1.200 161.2 1.500 53.9 -0.15 1.500 93.4 -0.10 1.500 167.9 1.800 62.3 -0.16 1.800 99.9 -0.12 1.800 173.1	-0.12 -0.13 -0.14 -0.15
1.200 41.7 -0.09 1.200 84.1 -0.07 1.200 161.2 1.500 53.9 -0.15 1.500 93.4 -0.10 1.500 167.9 1.800 62.3 -0.16 1.800 99.9 -0.12 1.800 173.1	-0.13 -0.14 -0.15
1.500 53.9 -0.15 1.500 93.4 -0.10 1.500 167.9 1.800 62.3 -0.16 1.800 99.9 -0.12 1.800 173.1	-0.15
1.800 62.3 -0.16 1.800 99.9 -0.12 1.800 173.1	-0.15
2.400 71.1 -0.17 2.400 110.0 -0.13 2.400 178.2	-0.15
2.700 73.1 -0.17 2.700 114.9 -0.14 2.700 177.3	-0.15
3.000 74.6 -0.18 3.000 118.9 -0.14 3.000 177.5	-0.15
3.300 75.1 -0.17 3.300 121.7 -0.14 3.300 174.9	-0.15
3.600 74.8 -0.16 3.600 123.4 -0.13 3.600 172.9	-0.15
3.900 73.7 -0.15 3.900 123.8 -0.13 3.900 170.1	-0.15
4.200 71.6 -0.14 4.200 123.8 -0.12 4.200 167.6	-0.14
4.500 70.0 -0.13 4.500 121.9 -0.11 4.500 164.8	-0.14
4.800 68.7 -0.10 4.800 118.6 -0.10 4.800 162.1	-0.13
5.100 67.3 -0.08 5.100 116.5 -0.09 5.100 159.6	-0.13
5.400 66.4 -0.07 5.400 114.5 -0.08 5.400 157.0	-0.13
5.700 65.5 -0.06 5.700 111.0 -0.07 5.700 154.6	-0.12
6.000 64.6 -0.05 6.000 108.9 -0.06 6.000 152.4	-0.12
6.300 63.9 -0.04 6.300 106.7 -0.05 6.300 150.2	-0.11
6.600 63.3 -0.03 6.600 104.7 -0.04 6.600 148.2	-0.10
6.900 62.6 -0.02 6.900 102.1 -0.03 6.900 146.1	-0.10
7.200 61.9 -0.01 7.200 101.3 -0.03 7.200 144.0	-0.10
7.500 61.3 0.00 7.500 99.9 -0.02 7.500 142.4	-0.10
7.800 97.6 -0.01 7.800 141.0	-0.10
8.100 140.2	-0.10
8.400 139.6	-0.10
3.160	0.10

SGEO - Laboratorio 6.2 - 2018

Sperimentatore Enrico Tallini Direttore
Werco Ferrante Susut

Certificazione Ufficiale-Settore A e B- Prove di laboratorio su terre e rocce AUTORIZZAZIONE MINISTERO INFRASTRUTTURE E TRASPORTI Decreto 150/15-06-2016 - Circolare 7618/STC/2010

ALLEGATO PROVA DI TAGLIO DIRETTO Pagina 1/1
VERBALE DI ACCETTAZIONE N°: 795 del 04/11/20

DATA DI EMISSIONE: 20/01/21 Inizio analisi: 18/01/21 Apertura campione: 20/11/20 Fine analisi: 20/01/21

COMMITTENTE: Vianini Lavori S.p.A.

RIFERIMENTO: Progettazione definitiva utilizzo idropotabile delle acque - invaso di Campolattaro

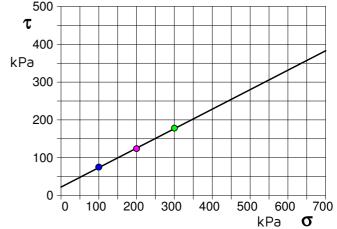
SONDAGGIO: CL8 CAMPIONE: CI10 PROFONDITA': m 89.1-89.75

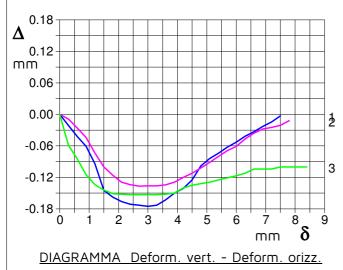
PROVA DI TAGLIO DIRETTO

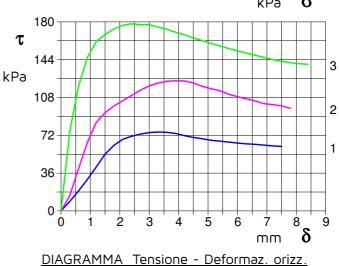
Modalità di prova: Norma ASTM D3080

Provino n°:		1		2	3		
Condizione del provino:		Indisturbato		Indisturbato		Indisturbato	
Pressione verticale (kPa):		100		200		300	
Tensione a rottura (kPa):	75		124		178		
Deformazione orizzontale e verticale a rottura (mm):	3.30	-0.17	3.90	-0.13	2.40	-0.15	
Umidità iniziale e umidità finale (%):	22.2	23.9	21.4	22.2	21.4	22.6	
Peso di volume iniziale e finale (kN/m³):	19.4	19.7	19.6	19.7	19.5	19.7	
Grado di saturazione iniziale e finale (%):	90.4	97.4	89.8	93.3	89.6	94.4	

<u>DIAGRAMMA</u>


<u>Tensione - Pressione verticale</u>


Coesione: 22.2 kPa Angolo di attrito interno: 27.3 °


Tipo di prova: Consolidata - lenta

Velocità di deformazione: 0.008 mm / min

Tempo di consolidazione (ore): 24

Il confezionamneto dei provini è stato eseguito togliendo gli inclusi piu grossolani