

Direzione Progettazione e Realizzazione Lavori

ADEGUAMENTO S.S. n°87 "SANNITICA" INTERVENTI LOCALIZZATI PER GARANTIRE LA PERCORRIBILITA' IMMEDIATA TRATTO "CAMPOBASSO – BIVIO S.ELIA" LOTTI A2 E A3

PROGETTO DEFINITIVO

CB-150

A.T.I. di PROGETTAZIONE:

(Mandataria)

(Mandante)

Geotechnics Geology Structures Offshore

(Mandante)

IL PROGETTISTA:

Ing. Franco Persio Bocchetto - Ordine Ing. Roma n.º 8664-Sez A Ing. Luigi Albert – Ordine Ing. Milano n.º 14725-Sez A Ing. Paolo Franchetti – Ordine Ing. Vicenza n.º 2013-Sez A

IL GEOLOGO:

Dott. Geol. Anna Maria Bruna - Ordine Geol. Lazio n. 1531

RESPONSABILE DELL'INTEGRAZIONE DELLE

DISCIPLINE SPECIALISTICHE

Ing. Franco Persio Bocchetto - Ordine Ing. Roma n.º 8664-Sez A

COORDINATORE PER LA SICUREZZA:

Ing. Andrea Maria Enea Failla - Ordine Ing. Catania n. °A6701

VISTO: IL RESPONSABILE DEL PROCEDIMENTO:

Ing. CLAUDIO BUCCI

05 OM-OPERE D'ARTE MAGGIORI

05.01 VI01

Relazione tecnica e di calcolo - Impalcato

CODICE PROGETTO		NOME FILE: T00VI01STRRE01B.DOCX			REVISIONE	SCALA
PROGETTO LIV.PROG. ANNO D P C B 0 1 5 0 D 2 2		CODICE TOO VIO 1 STRRE01		В	-	
			11			
В	ISTRUTTORIA ANAS		Luglio 2022	Ing. M. Vari	Ing. A. Tosiani	Ing.F.P.Bocchetto
Α	EMISSIONE		Aprile 2022	Ing. M. Vari	Ing. A. Tosiani	Ing.F.P.Bocchetto
REV.	DESCRIZIONE		DATA	REDATTO	VERIFICATO	APPROVATO

INDICE

1	INTR	ODUZIO	NE	3
	1.1	OGGET	ТО	3
	1.2	DESCRI	ZIONE DELL'OPERA	4
2	CARA	ATTERIST	ICHE DEI MATERIALI	6
3	DOC	UMENTI	DI RIFERIMENTO	9
	3.1	NORMA	ATIVE E RACCOMANDAZIONI	9
4	ANA	LISI STRU	TTURALE	10
	4.1	CODICI	DI CALCOLO	10
		4.1.1	Descrizione del programma	10
		4.1.2	Sistemi di riferimento	13
		4.1.3	Affidabilità dei codici di calcolo	
		4.1.4	Modalità di presentazione dei risultati	14
		4.1.5	Informazioni generali sull'elaborazione	14
		4.1.6	Giudizio motivato di accettabilità dei risultati	14
	4.2	MODEL	LO DI CALCOLO	15
	4.3		I MISTE ACCIAIO-CLS	
	4.4		ZZZA COLLABORANTE DELLA SOLETTA	
	4.5		ERISTICHE INERZIALI DEGLI ELEMENTI PRINCIPALI DEL MODELLO	
5	ANA		ARICHI	
	5.1	CARICH	I ELEMENTARI	
		5.1.1	Peso proprio della struttura g1	
		5.1.2	Carichi permanenti portati g2	
		5.1.3	Cedimento differenziale di pile e spalle (ϵ 1)	
		5.1.4	Ritiro (ε2) e viscosità (ε3)	
		5.1.5	Carichi mobili q1	
		5.1.6	Incremento dinamico q2	
		5.1.7	Forza di frenatura q3	
		5.1.8	Forza centrifuga q4	
		5.1.9	Azione del vento q5	
		5.1.10	Azioni idrodinamiche (q6)	
		5.1.11	Variazioni termiche (q7)	
		5.1.12	Azioni parassite per attrito degli apparecchi d'appoggio (q8)	
		5.1.13	Azioni eccezionali (q9)	
		5.1.14	Azione sismica sull'insieme impalcato/pile (q10)	
	5.2		NAZIONI DEI CARICHI ELEMENTARI	
6			DELLE CARATTERISTICHE DELLA SOLLECITAZIONE INTERNA	
7			DELLE DEFORMAZIONI	
8			RIFICA STRUTTURALE	
_	8.1		DI VERIFICA DELLE SEZIONI IN MISTE ACCIAIO CALCESTRUZZO	
9			EMENTI PRINCIPALI	
	9.1		A DI RESISTENZA DELLE MEMBRATURE (TRAVI PRINCIPALI)	
	9.2		FRATTA	
	9.4		Stabilità dei pappalli d'anima (imbazzamenta)	
		9.4.1	Stabilità della piattabanda (verifica glabala flassatarsianala)	
		9.4.2	Stabilità delle piattabande (verifica globale, flessotorsionale)	
		9.4.3	Stabilita degli imiglolmenti trasversali in comspondenza degli appoggi	/b

Direzione Progettazione e Realizzazione Lavori

RELAZIONE TECNICA E DI CALCOLO - IMPALCATO

	9.5	VERIFICH	E A FATICA	/8
	9.6	VERIFICA	AGLI STATI LIMITE D'ESERCIZIO DELLA SOLETTA IN DIREZIONE LOI	NGITUDINALE80
10	VERIF	FICHE ELEN	MENTI SECONDARI	81
	10.1	VERIFICH	E DEI CONNETTORI ACCIAIO CALCESTRUZZO (PIOLI)	81
	10.2	VERIFICH	E DEI GIUNTI SALDATI TRAVI PRINCIPALI	84
	10.3		E DEI DIAFRAMMI E DEI GIUNTI BULLONATI	
		10.3.1	Diaframma intermedio "reticolare"	86
		10.3.3	11 66	94
	10.4	VERIFICH	E PER LA SOSTITUZIONE DEGLI APPARECCHI D'APPOGGIO	98
			E DEI GIUNTI SALDATI DIAFRAMMI	
			E DEGLI IRRIGIDIMENTI LONGITUDINALI E TRASVERSALI	
			E DELLE ASTE DEI CONTROVENTI	
			PARECCHI DI APPOGGIO E GIUNTI	
			GGI	
			IA COSTRUTTIVA	
			NTO DEI BAGGIOLI	
			VATO DI ACCETTABILITA' DEI RISULTATI	
16			ZIONE TRASVERSALE)	
			TRUTTIVE E DI GETTO	
			AZIONI DI CARICO	
	16.3		DI VERIFICA STRUTTURALE	
			Verifiche per gli stati limite ultimi a flessione-pressoflessione	
			Verifica agli stati limite ultimi a taglio	
			Verifica agli stati limite d'esercizio	
		16.3.4.		
		16.3.4.		
		16.3.4.		
	16.4		IN 1°FASE	
			Dati geometrici	
			Rigidezza flessionale della lastra	
			Dati di carico	
			Sezioni di verifica	
			Verifica dello stato tensionale	
			Sovrapposizione degli effetti (1+2+3 step)	
			Verifica a fessurazione	
	16.5		IN 2° FASE (SEZIONE CORRENTE)	
			Sbalzo lato cordolo	
		16.5.1.	'	
		16.5.1.		
		16.5.1.		
		16.5.1.	' •	
		16.5.1.		
		16.5.1.	, ,	
		16.5.1.		
		16.5.1.		
		16.5.1.	.9 Verifica dello stato limite ultimo	151

	16.5.1.10	Verifica a taglio	152
	16.5.2 Car	mpata	153
	16.5.2.1	Carichi permanenti	153
	16.5.2.2	Sovraccarichi	153
	16.5.2.3	Riepilogo sollecitazioni mezzeria impalcato	157
	16.5.2.4	Mezzeria impalcato - Verifica dello stato tensionale	157
	16.5.2.5	Mezzeria impalcato - Sovrapposizione degli effetti (1 fase + 2 fase)	158
	16.5.2.6	Mezzeria impalcato - Verifica a fessurazione	158
	16.5.2.7	Mezzeria impalcato - Verifica a fatica	159
	16.5.2.8	Mezzeria impalcato - Verifica dello stato limite ultimo	161
	16.5.2.9	Mezzeria soletta - Verifica a taglio	162
16.6	VERIFICA IN 2	2° FASE (SEZIONE DI GIUNTO)	163
	16.6.1 Sba	alzo lato cordolo	163
	16.6.1.1	Carichi permanenti portati	163
	16.6.1.2	Sovraccarichi	163
	16.6.1.3	Momento dovuto all'urto di un veicolo in svio	165
	16.6.1.4	Riepilogo sollecitazioni	165
	16.6.1.5	Verifica dello stato tensionale	
	16.6.1.6	Sovrapposizione degli effetti (1 fase+2 fase)	
	16.6.1.7	Verifica a fessurazione	166
	16.6.1.8	Verifica a fatica	166
	16.6.1.9	Verifica dello stato limite ultimo	
	16.6.1.10	Verifica a taglio	168
	16.6.2 Car	mpata	
	16.6.2.1	Carichi permanenti	169
	16.6.2.2	Sovraccarichi	
	16.6.2.3	Riepilogo sollecitazioni mezzeria impalcato	173
	16.6.2.4	Mezzeria impalcato - Verifica dello stato tensionale	
	16.6.2.5	Mezzeria impalcato - Sovrapposizione degli effetti (1 fase + 2 fase)	
	16.6.2.6	Mezzeria impalcato - Verifica a fessurazione	
	16.6.2.7	Mezzeria impalcato - Verifica a fatica	
	16.6.2.8	Mezzeria impalcato - Verifica dello stato limite ultimo	177
	16.6.2.9	Mezzeria soletta - Verifica a taglio	178

Realizzazione Lavori

Adeguamento S.S n. 87 "Sannitica" – Interventi localizzati per garantire la percorribilità immediata Tratto "Campobasso – Bivio S.Elia" Lotti A2 e A3 PROGETTO DEFINTIVO

RELAZIONE TECNICA E DI CALCOLO - IMPALCATO

1 INTRODUZIONE

1.1 OGGETTO

La presente relazione riporta i calcoli, e le relative verifiche, dell'impalcato del Viadotto n. 1.

L' opera in esame è prevista nell'ambito dell'adeguamento della SS87 in direzione di Campobasso per un'estesa di circa 3.400 m in comune di Campolieto.

Il viadotto in oggetto è realizzato in sistema misto acciaio-calcestruzzo con schema statico a travata continua con 4 campate di luce di 32.5+45+45+32.5 m.

La lunghezza complessiva del viadotto, misurata in asse appoggi spalle, è pari a circa 155 m.

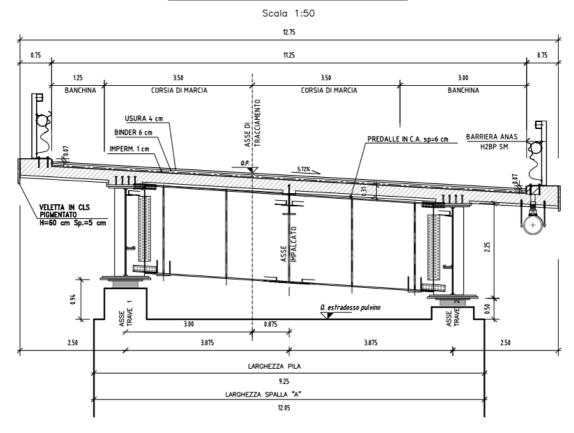
I carichi agenti sulle strutture sono stati valutati con riferimento al caso di "ponti di prima categoria" secondo la normativa vigente in materia di ponti stradali.

Le azioni sismiche di progetto, in base alle quali valutare il rispetto dei diversi stati limite considerati, si definiscono a partire dalla "pericolosità sismica di base" del sito di costruzione, secondo quanto previsto dal D.M. 17-01-2018.

Con riferimento alla destinazione d'uso della costruzione e alla modalità d'impiego, la struttura in oggetto viene considerata appartenente al tipo di costruzione 2: "Opere ordinarie, ponti, opere infrastrutturali e dighe di dimensioni contenute o di importanza normale", per le quali è prevista una vita nominale $V_N = 50$ anni.

La classe d'uso dell'opera si pone al tipo IV: "Costruzioni con funzioni pubbliche o strategiche importanti, anche con riferimento alla gestione della protezione civile in caso di calamità"; da cui discende che il periodo di riferimento per l'azione sismica è $V_R = V_N \times C_U = 100$ anni.

1.2 DESCRIZIONE DELL'OPERA

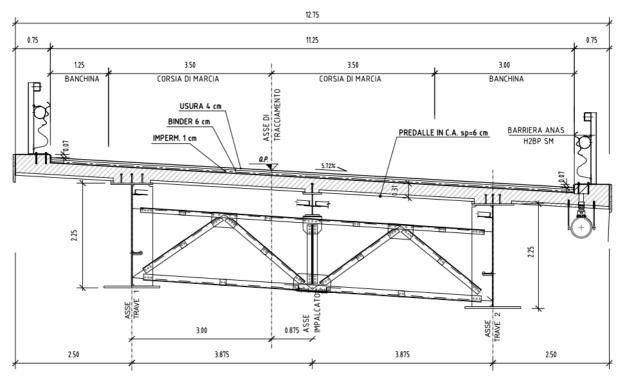

La sezione trasversale dell'impalcato prevede due travi principali in acciaio a doppio T di altezza 2.25m e una trave centrale rompitratta HEB500 ; le travi principali sono collegate trasversalmente principalmente da traversi di tipo reticolare con aste costituite da profilati ad L opportunamente accoppiati con imbottiture. Sulle spalle sono previsti traversi ad anima piena a doppio T.

L'altezza della soletta è costante e pari a 31 cm, di cui 6 cm sono costituiti da predalles autoportanti e i restanti gettati in opera. La geometria della sezione prevede una dimensione costante degli sbalzi laterali di soletta (2.50 m) ed un interasse fra le travi costante pari a 3.875 m.

La larghezza complessiva dell'impalcato è di 12.75 m, di cui 11.25 costituiscono la piattaforma stradale ed i restanti gli elementi marginali di larghezza pari a 0.75 m in destra e 0.75 m in sinistra.

Completano l'impalcato le finiture, la pavimentazione di spessore di 11 cm, le velette laterali in cls e le barriere di sicurezza.

SEZIONE IN ASSE APPOGGIO



PROGETTO DEFINTIVO

RELAZIONE TECNICA E DI CALCOLO - IMPALCATO

SEZIONE IN CAMPATA

Scala 1:50

2 CARATTERISTICHE DEI MATERIALI

Si riportano qui di seguito le caratteristiche prestazionali dei materiali che saranno impiegati per la realizzazione delle opere provvisionali di imbocco, secondo la normativa in vigore e con riferimento al metodo di calcolo agli stati limite.

Calcestruzzo per soletta gettata in opera e predalles:

Tipo (secondo UNI EN 206-1): C35/45

Resistenza cubica caratteristica (t=28 gg): $f_{ck,\,cube} \ge 45 \quad N/mm^2$ Resistenza cilindrica caratteristica (t=28 gg): $f_{ck} \ge 35 \quad N/mm^2$ Modulo elastico secante: $E_{cm} = 34.625 \quad N/mm^2$

Classe di consistenza: S4-S5
Rapporto massimo acqua / cemento A/C \leq 0.45
Diametro massimo inerti: 20 mm
Classe di esposizione ambientale: XC4
Copriferro minimo getti in opera 40 mm
Copriferro minimo predalles 25 mm

Calcestruzzo per Baggioli:

Tipo (secondo UNI EN 206-1): C32/40

Resistenza cubica caratteristica (t=28 gg): $f_{ck, \, cube} \ge 40 \text{N/mm}^2$ Resistenza cilindrica caratteristica (t=28 gg): $f_{ck} \ge 32 \text{ N/mm}^2$ Modulo elastico secante: $E_{cm} = 33.642 \text{ N/mm}^2$

Classe di consistenza: S5

Rapporto massimo acqua / cemento $A/C \le 0.50$ Diametro massimo inerti: 30 mm Classe di esposizione ambientale: XC4 Copriferro minimo getti in opera 45 mm

La scelta del copriferro minimo di progetto c_{min} dei getti in opera inteso come lo spessore minimo del ricoprimento dello strato di calcestruzzo a protezione dei ferri d'armatura è stata determinata in base a quanto indicato nella circolare Esplicativa, tenendo conto della classe di esposizione ambientale e della classe del Calcestruzzo prevista.

Nello specifico, tenendo conto della classe di esposizione ambientale desunta dalle analisi specifiche condotte nei riguardi dell'attacco chimico, che hanno evidenziato una Classe di Esposizione XC4 e pertanto Condizioni Ambientali "Aggressive".

In relazione a quanto riportato in tabella 4.1.III del DM 17.01.18 e in tabelle C4.1.IV della circolare applicativa, per le classi di calcestruzzo previste è prescritto un copriferro minimo c_{min}≥ 30mm. A tale valore va aggiunta una tolleranza di posa di 10 mm.

In definitiva ai fini progettuali si è assunto c=(30+10)=40mm per le fondazioni così come riportato all'interno della tabella materiali (C35/45 - barre da c.a. con elementi a piastra).

PROGETTO DEFINTIVO

RELAZIONE TECNICA E DI CALCOLO - IMPALCATO

CONDIZIONI AMBIENTALI	CLASSE DI ESPOSIZIONE
Ordinarie	X0, XC1, XC2, XC3, XF1
Aggressive	XC4, XD1, XS1, XA1, XA2, XF2, XF3
Molto aggressive	XD2, XD3, XS2, XS3, XA3, XF4

Tab 4.1.III – DM 17.01.18

Tabella C4.1.IV - Copriferri minimi in mm

ATT TO THE TOTAL CONTRACT OF THE TOTAL CONTRACT ON THE TOTAL CONTRACT OF THE TOTAL CONTR		arre da c.a. nenti a piastra	barre da c.a. altri elementi		cavi da c.a.p. elementi a piastra		cavi da c.a.p. altri elementi			
C _{min}	Co	ambiente	C≥Co	C _{min} ≤C <c<sub>o</c<sub>	C≥Co	C _{min} ≤C <c<sub>o</c<sub>	C≥Co	C _{min} ≤C <c<sub>o</c<sub>	C≥Co	C _{min} ≤C <c<sub>o</c<sub>
C25/30	C35/45	ordinario	15	20	20	25	25	30	30	35
C30/37	C40/50	aggressivo	25	30	30	35	35	40	40	45
C35/45	C45/55	molto ag.	35	40	40	45	45	50	50	50

Tab C4.1.IV - Circolare n° 7/19

Acciaio per cemento armato

Tipo: B 450 C

Tensione caratteristica di rottura a trazione: $f_{tk} \ge 540 \text{ N/mm}^2$ Tensione caratteristica di snervamento: $f_{yk} \ge 450 \text{ N/mm}^2$ Tensione ammissibile: $\sigma_{amm} = 260 \text{ N/mm}^2$

Tensione di calcolo (γ =1.15): f_{yd} = 450 / 1.15 = 391 N/mm²

Modulo elastico: $E = 210'000 \text{ N/mm}^2$

Acciaio per carpenteria metallica

I profili metallici e il piastrame sono realizzati con l'impiego di acciaio strutturale per carpenteria nelle qualità sotto indicate, in accordo con la norma UNI EN 10025.

• Lamiere per piattabande, anime, irrigidimenti ed elementi saldati Secondo UNI EN 10025 Acciaio S355J2

t <=	40	mm (spessore lamiera)
ftk =	510	N/mm² resistenza caratteristica alla rottura
fyk =	355	N/mm² resistenza caratteristica allo snervamento
g0=	1.05	coeff. di sicurezza per resistenza
g1=	1.10	coeff. di sicurezza per instabilità
g2=	1.25	coeff. di sicurezza per frattura
gf=	1.35	coeff. di sicurezza per fatica
fyd =	338.1	N/mm² resistenza sezioni agli SLU
fyd =	322.7	N/mm² resistenza instabilità agli SLU
Es =	210 000	N/mm² Modulo Elastico
n=	0.300	coefficiente di Poisson
G =	80 769	N/mm² Modulo di Taglio

 Profili commerciali ed elementi non saldati Secondo UNI EN 10025 Acciaio S355J0

Direzione Progettazione e Realizzazione Lavori

RELAZIONE TECNICA E DI CALCOLO - IMPALCATO

• Bulloni di carpenteria metallica Secondo UNI EN 14399-1 Viti classe 10.9.

ftb =	1 000	N/mm²	resistenza caratteristica alla rottura
fyb =	900	N/mm²	resistenza caratteristica allo snervamento
Es =	200 000	N/mm²	
g2=	1.25	coeff. di sicurezza per resistenza	

• Saldature

t <=	40	mm (spessore lamiera)		
ftk =	510	N/mm² resistenza caratteristica alla rottura		
fyk =	355	N/mm² resistenza caratteristica allo snervamento		
g2=	1.25	coeff. di sicurezza per resistenza		
β =	0.90	coeff. di sicurezza per resistenza		
fvw,d =	N/mm² resistenza a taglio di calcolo agli SLU			

• Connettori a piolo

 $\begin{array}{ll} f_{tb} = 450 \text{ N/mm}^2 & \text{resistenza caratteristica alla rottura} \\ f_{yb} = 350 \text{ N/mm}^2 & \text{resistenza caratteristica allo snervamento} \\ g_2 = 1.25 & \text{coeff. di sicurezza per resistenza} \end{array}$

3 DOCUMENTI DI RIFERIMENTO

3.1 NORMATIVE E RACCOMANDAZIONI

La redazione della presente relazione è stata condotta nel rispetto della normativa in vigore, in particolare:

- D. Min. Infrastrutture 17 gennaio 2018 "Aggiornamento delle nuove norme tecniche per le costruzioni";
- Circolare 21 gennaaio 2019 n. 7: Istruzioni per l'applicazione dell' "Aggiornamento delle nuove norme tecniche per le costruzioni" di cui al D.M. 17 gennaio 2018;
- CNR 10011/97, "Costruzioni di acciaio. Istruzioni per il calcolo, l'esecuzione, il collaudo e la manutenzione";
- CNR 10016/2000, "Strutture composte di acciaio e calcestruzzo. Istruzioni per l'impiego nelle costruzioni";
- CNR 10018/1999, "Apparecchi d'appoggio per le costruzioni Istruzioni per l'impiego";
- CNR 10030/93, "Anime irrigidite di travi a parete piena";
- UNI EN 1991-1-5:2004 "Eurocodice 1 Azioni sulle strutture Parte 1-5: Azioni in generale Azioni termiche";
- UNI EN 1992-1-1:2005, "Eurocodice 2 Progettazione delle strutture di calcestruzzo parte 1 Regole generali e regole per edifici";
- UNI EN 1993-1-1:2005, "Eurocodice 3 Progettazione delle strutture di acciaio Parte 1-1: Regole generali e regole per gli edifici";
- UNI EN UNI EN 1993-1-5:2007, "Eurocodice 3 Progettazione delle strutture di acciaio Parte 1-5: Elementi strutturali a lastra";
- UNI EN 1994-2:2006, "Eurocodice 4 Progettazione delle strutture composte acciaio-calcestruzzo Parte 2: Regole generali e regole per i ponti";
- UNI EN 1998-2:2006, "Eurocodice 8 Progettazione delle strutture per la resistenza sismica Parte
 2: Ponti";
- Model Code 1990, CEB-FIP;
- Capitolato ANAS: "Norme tecniche per l'esecuzione del contratto", 2018.

4 ANALISI STRUTTURALE

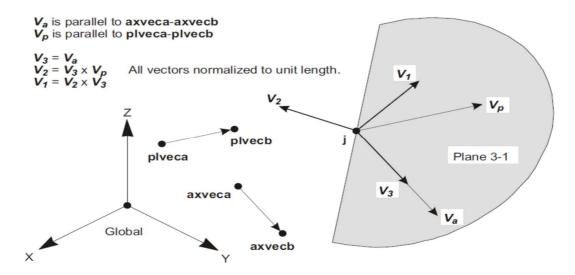
L'analisi strutturale dell'impalcato in oggetto è condotta per le azioni statiche e sismiche illustrate nei paragrafi precedenti. Il seguente paragrafo descrive i metodi di analisi adottati, i codici di calcolo automatico per il calcolo e la verifica delle strutture ed il modello agli elementi finiti utilizzato per la valutazione delle sollecitazioni.

La ricerca dei parametri di sollecitazione è fatta secondo le disposizioni di carico più gravose, avvalendosi di codici di calcolo automatico per l'analisi strutturale.

4.1 CODICI DI CALCOLO

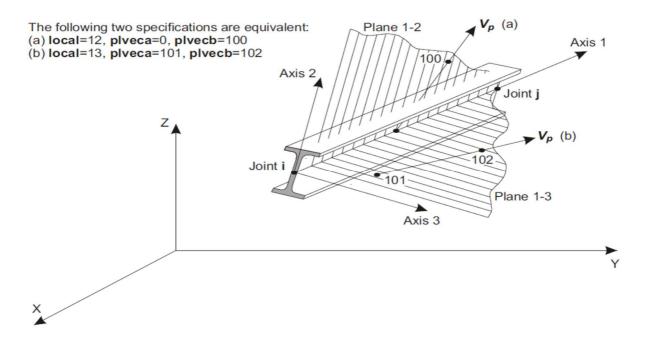
Tutti i codici di calcolo automatico utilizzati per il calcolo e la verifica delle strutture sono di sicura ed accertata validità e sono impiegati conformemente alle loro caratteristiche.

Per i calcoli e le modellazioni di cui alla presente relazione sono impiegati i codici di calcolo brevemente descritti di seguito.


• SAP2000, prodotto dalla "CSI Computer and Structures Inc." — Berkeley (CA) — USA; Codice di calcolo F.E.M. (Finite Element Method) capace di gestire il calcolo e le verifiche delle strutture miste acciaio-calcestruzzo durante tutte le fasi realizzative.

4.1.1 Descrizione del programma

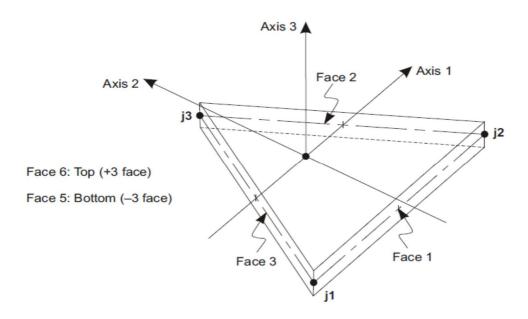
Il programma è un solutore agli E.F. (Elementi Finiti) capace di modellare strutture di forma qualunque, comunque caricate e vincolate, nell'ambito del comportamento lineare e non.


Sono disponibili i seguenti tipi di oggetto elencati in ordine di dimensione geometrica:

- "Point:
- o comune oggetti: sono automaticamente creati in angoli o estremità di tutti gli altri tipi di oggetti, e possono essere aggiunti in modo esplicito
- o collegamento a terra: sono utilizzate per modellare il comportamento di un sostegno speciale ad esempio isolatori, smorzatori, gap, molle multi-lineari
- o il sistema di riferimento per determinare l'orientamento di un elemento punto è:

• "Line":

- o frame/cable/tendon: sono utilizzate per modellare le travi, colonne, braces, trusses, cavi e tiranti
- o collegamento tra oggetti: sono utilizzate per modellare il comportamento di un membro speciali ad esempio isolatori, smorzatori, gap, molle multi-lineari. A differenza degli oggetti o frame/cable/tendon, questi oggetti possono avere lunghezza zero.
- o il sistema di riferimento per determinare l'orientamento di un elemento linea è:



 "Area": vengono utilizzate per modellare le pareti, pavimenti e altri membri dotati di spessore, nonché solidi bidimensionale solids (plane stress, plane strain, and axisymmetric solids). Il sistema di riferimento per determinare l'orientamento di un elemento area è:

Four-node Quadrilateral Shell Element

Three-node Triangular Shell Element

"Solid": sono utilizzate per la modellazione tridimensionale solida

Il programma SAP2000 permette di svolgere analisi atte a definire la risposta in conseguenza dell'applicazione di carichi mobili, analisi del dominio di frequenza (sia steady-state che power-spectraldensity), del dominio del tempo e analisi di instabilità.

Mediante il programma si possono implementare nel modello di calcolo elementi a comportamento particolare quali:

Direzione Progettazione e Realizzazione Lavori

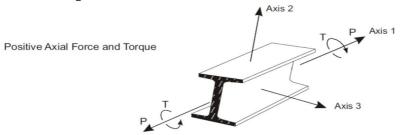
RELAZIONE TECNICA E DI CALCOLO - IMPALCATO

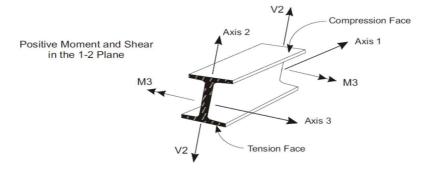
- non linear link element (gaps, hooks, isolators, dampers, and multi-linear plasticity)
- a multi-linear plastic hinge
- catenary cable element
- nonlinear shell element

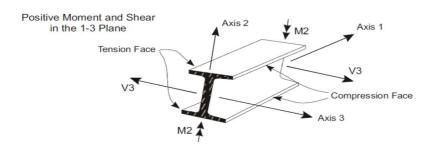
Il programma SAP2000 permette inoltre di condurre analisi tipo non lineare statica, analisi tipo pushover e analisi non lineari tipo time-history mediante l'utilizzo di analisi modale o integrazione diretta. software contempla la presenza di elementi bidimensionali (piani - shell) in grado di rappresentare sia il comportamento di lastra (effetti flessionali) quanto quello di membrana (sforzi di compressione e trazione), ed elementi tipo trave (beam).

4.1.2 Sistemi di riferimento

Il sistema di riferimento nei modelli di calcolo viene assunto con origine coincidente con lo spigolo sinistro basso della struttura schematizzata.


La disposizione degli assi segue la "regola della mano destra":


l'asse X è diretto secondo l'asse longitudinale della struttura;


l'asse Y è diretto secondo l'asse trasversale della struttura;

l'asse Z è diretto verso l'alto, positivo verso l'alto.

Si definiscono positive le azioni e sollecitazioni secondo la convenzione riportata nella figura successiva.

Adeguamento S.S n. 87 "Sannitica" – Interventi localizzati per garantire la percorribilità immediata Tratto "Campobasso – Bivio S.Elia" Lotti A2 e A3 PROGETTO DEFINTIVO

RELAZIONE TECNICA E DI CALCOLO - IMPALCATO

4.1.3 Affidabilità dei codici di calcolo

Un attento esame preliminare della documentazione a corredo del software ha consentito di valutarne l'affidabilità. La documentazione fornita dal produttore del software contiene un'esauriente descrizione delle basi teoriche, degli algoritmi impiegati e l'individuazione dei campi d'impiego. La società produttrice Aztec Informatica srl ha verificato l'affidabilità e la robustezza del codice di calcolo attraverso un numero significativo di casi prova in cui i risultati dell'analisi numerica sono stati confrontati con soluzioni teoriche.

4.1.4 Modalità di presentazione dei risultati

La relazione di calcolo strutturale presenta i dati di calcolo tale da garantirne la leggibilità, la corretta interpretazione e la riproducibilità. La relazione di calcolo illustra in modo esaustivo i dati in ingresso ed i risultati delle analisi in forma tabellare.

4.1.5 Informazioni generali sull'elaborazione

Il software prevede una serie di controlli automatici che consentono l'individuazione di errori di modellazione, di non rispetto di limitazioni geometriche e di armatura e di presenza di elementi non verificati. Il codice di calcolo consente di visualizzare e controllare, sia in forma grafica che tabellare, i dati del modello strutturale, in modo da avere una visione consapevole del comportamento corretto del modello strutturale.

4.1.6 Giudizio motivato di accettabilità dei risultati

I risultati delle elaborazioni sono stati sottoposti a controlli dal sottoscritto utente del software. Tale valutazione ha compreso il confronto con i risultati di semplici calcoli, eseguiti con metodi tradizionali. Inoltre, sulla base di considerazioni riguardanti gli stati tensionali e deformativi determinati, si è valutata la validità delle scelte operate in sede di schematizzazione e di modellazione della struttura e delle azioni. In base a quanto sopra, si asserisce che l'elaborazione è corretta ed idonea al caso specifico, pertanto i risultati di calcolo sono da ritenersi validi ed accettabili (si veda cap. 15).

4.2 MODELLO DI CALCOLO

Il modello schematizza la struttura attraverso un grigliato di travi (fig. 4.1 e 4.2). Esse sono tra loro collegate da elementi trasversali di rigidezza e configurazione tale (fig. 4.3) da essere rappresentativi dei ritegni torsionali realmente presenti sulla struttura (diaframmi e soletta). I diaframmi in corrispondenza delle pile e spalle sono pieni a sezione a doppio "T". I diaframmi intermedi tra le pile sono reticolari e sono stati applicati degli svincoli flessionali agli elementi diagonali e correnti superiore ed inferiori, essi, cioè, non sono in grado di trasmettere la caratteristica di momento flettente nel piano verticale. La soletta è schematizzata con elementi "beam" di larghezza unitaria e altezza pari allo spessore della soletta (31 cm).

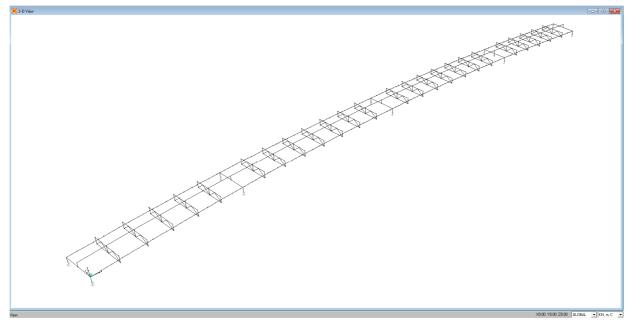


Figura 4-1 – vista assonometrica del modello per il viadotto senza la soletta non collaborante

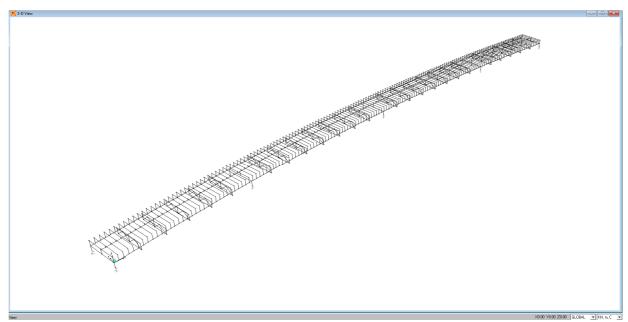


Figura 4-2 – vista assonometrica del modello per il viadotto con la soletta collaborante

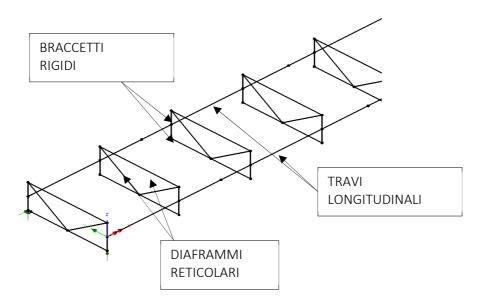


Figura 4-3 – vista assonometrica dei diaframmi

Nelle sezioni in corrispondenza degli appoggi sono stati utilizzati degli elementi rigidi opportunamente svincolati, per rappresentare la presenza degli apparecchi d'appoggio. Essi a loro volta sono collegati attraverso dei 'bracci rigidi' all'estradosso del pulvino.

Per effettuare tutte le analisi previste sono stati realizzati tre modelli aventi le caratteristiche meccaniche variabili in ragione delle varie fasi considerate:

- fase di costruzione

con caratteristiche meccaniche dei soli conci in acciaio. Considera il peso proprio della struttura metallica, delle lastre prefabbricate e del getto della soletta che, in questa fase, è ancora meccanicamente non reagente. La struttura d'impalcato è dunque sottoposta al peso proprio della carpenteria metallica e al carico distribuito della soletta di calcestruzzo. Quest'ultimo è ripartito fra le travi componenti l'impalcato in egual misura.

- fase a tempo T_{\circ}

con caratteristiche meccaniche della trave in acciaio e della soletta in c.a. omogeneizzata in acciaio con n = E_{acc}/E_{cls} = 6.06. Si considerano i carichi permanenti non strutturali applicati all'impalcato quali pavimentazione, cordoli, barriere, ecc. e variabili quali vento e carichi mobili.

- fase a tempo Too

con caratteristiche meccaniche della trave in acciaio e della soletta in c.a. omogeneizzata in acciaio con n = E_{acc}/E_{cls} = 13.55 (azioni lente da carichi permanenti) e 14.12 (azioni lente da effetti primari e secondari da ritiro). Quest'ultimo è applicato al modello F.E.M. come una variazione equivalente alla deformazione del calcestruzzo per ritiro a tempo infinito.

Il riferimento globale è una terna cartesiana destrorsa con l'asse Z verticale e l'asse X orientato lungo le estremità del viadotto.

Il modello è stato realizzato ed analizzato con l'ausilio del programma SAP2000, con successiva elaborazione dei dati di output mediante l'utilizzo del foglio elettronico EXCEL© della Microsoft.

In ciascuno dei file di input sono presenti 10 gruppi di elementi:

- 1. Trave 1 omogeneizzata a rigidezza variabile
- 2. Trave 2 omogeneizzata a rigidezza variabile
- 3. Traversi (bracci rigidi, diagonali, correnti e soletta trasversale)
- 4. Appoggi (bracci rigidi, apparecchi d'appoggio)
- 5. Vincoli in direzione longitudinale
- 6. Vincoli in direzione trasversale
- 7. Vincoli in direzione verticali
- 8. Vincoli rotazionali intorno all'asse longitudinale
- 9. Vincoli rotazionali intorno all'asse trasversale
- 10. Vincoli rotazionali intorno all'asse verticale

Sono stati analizzati i seguenti modelli elementari:

M1_PP Peso proprio della sola trave in acciaio+ peso soletta (senza fasi di montaggio).

- (2) Carico mobile viaggiante a tempo t₀
- (3) Azione del vento a tempo to

 $M21_{T_0}$ (1) variazione di temperatura uniforme a tempo t_0

(2) variazione di temperatura differenziale a tempo to

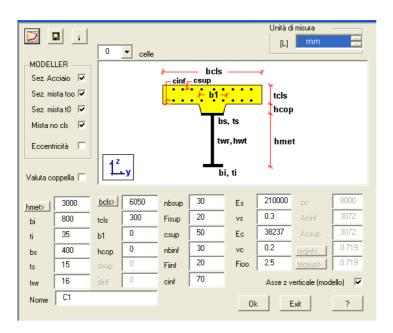
 $M3_{T_{00}}$ (1) carichi permanenti portati a tempo t_{00}

(2) Cedimenti differenziali pile a tempo too

 $M31_{T_{00}}$ (1) variazione di temperatura uniforme a tempo t_{00}

(2) Ritiro soletta a tempo too

Le sollecitazioni rappresentative del passaggio del carico mobile sono state ottenute attraverso opportune combinazioni del passaggio del suddetto carico mobile:


Per ottenere l'inviluppo delle sollecitazioni del passaggio della colonna di carico Q_1 , per ogni sollecitazione è stato considerato, quando sfavorevole, il corrispondente contributo a sinistra e/o a destra degli assi, più l'eventuale contributo relativo alle campate intere.

4.3 SEZIONI MISTE ACCIAIO-CLS

Le caratteristiche geometriche delle travi in acciaio unitamente alla larghezza collaborante calcolata al paragrafo successivo sono state utilizzate per il calcolo delle inerzie utilizzate nel modello di calcolo, riportate negli allegati alla presente relazione.

Le caratteristiche geometriche sono calcolate per:

- sezione di solo acciaio
- la sezione mista a tempo t₀
- la sezione mista a tempo t_{00}
- la sezione mista con calcestruzzo non resistente a trazione (per le zone soggette a momento negativo)

In cui:

hmet altezza delle travi di acciaio

bi, ti base e spessore delle piattabande inferiori delle travi di acciaio **bs, ts** base e spessore delle piattabande superiori delle travi di acciaio

twr spessore delle anime (se inclinate è misurato perpendicolarmente ad esse)

bcls, tcls base e spessore della porzione di soletta collaborante; la soletta collaborante può

essere calcolata cliccando sul bottone "bcls"

base superiore della coppella; la base inferiore è assunta uguale alla base della

piattabanda superiore della trave di acciaio.

hcop altezza della coppella

dsup, dinf interasse superiore ed inferiore fra le anime esterne dei cassoni

Adeguamento S.S n. 87 "Sannitica" – Interventi localizzati per garantire la percorribilità immediata Tratto "Campobasso – Bivio S.Elia" Lotti A2 e A3

PROGETTO DEFINTIVO

RELAZIONE TECNICA E DI CALCOLO - IMPALCATO

nbsup, Fisup, csup armatura superiore: numero di tondini, diametro e copriferro, misurato

dall'estradosso della soletta al baricentro delle armature

nbinf, Fiinf, cinf armatura inferiore: numero di tondini, diametro e copriferro, misurato

dall'intradosso della soletta al baricentro delle armature

Es, vs, Ec, vc moduli di Young e di Poisson dell'acciaio e del calcestruzzo. Sono solo utilizzati

per la definizione dei coefficienti di omogeneizzazione e non per la definizione

delle caratteristiche meccaniche dell'acciaio e del calcestruzzo.

Fi_{oo} coefficiente di viscosità al tempo infinito per una messa in carico al tempo 0

pc, Acsup, Acinf passo dei controventi orizzontali e sezioni trasversali delle aste superiori ed

inferiori

teqsup, teqinf spessori equivalenti di una lamiera piena; possono essere calcolati

automaticamente con un click sui bottoni "teqsup" e "teqinf".

Asse z verticale indica la direzione dell'asse z verticale degli elementi finiti rispetto alla sezione

trasversale processata dal wizard.

Nell'omogenizzazione della sezione, ai fini del calcolo delle sollecitazioni sull'impalcato, si è considerato il contributo dello spessore della soletta e delle predalles.

I controventi, superiori lungo tutto lo sviluppo dell'impalcato ed inferiori solo in corrispondenza degli appoggi, vengono considerati solo ai fini del montaggio dell'impalcato.

4.4 LARGHEZZA COLLABORANTE DELLA SOLETTA

La larghezza della soletta collaborante può essere calcolata automaticamente con le formule del DM18. Nell'analisi globale della struttura, ossia per il calcolo delle sollecitazioni e delle deformazioni, si può assumere un valore costante della larghezza collaborante beff sull'intera lunghezza di ciascuna campata della trave, valutato nella mezzeria della campata per le travi appoggiate o continue ed all'incastro per le travi a mensola. Nelle verifiche delle sezioni trasversali si dovrebbero utilizzare valori delle larghezze collaboranti differenziati per le zone soggette a momento positivo o negativo, assumendo le lunghezze L_0 riportate in figura.

Il calcolo è effettuato in una delle seguenti ipotesi:

1) travi continue, campata di bordo $L_0 = 0.85 L1$ 2) travi continue, campate intermedie $L_0 = 0.7 L2$ 3) travi continue, appoggi $L_0 = 0.25 (L1+L2)$ 4) travi continue, sbalzi $L_0 = 2 L3$

4) travi continue, sbalzi $L_0 = 2 L_0^2$ 5) trave semplicemente appoggiate $L_0 = L_1$

Gli altri dati richiesti sono:

L1, L2, L3 luci delle varie tipologie di campata

bc larghezza impegnata direttamente dai connettori

bsx max, bdx max metà interasse tra travi oppure distanza tra il bordo libero della soletta e l'asse della

trave

Per il calcolo di beff si ha:

be1 = be2 = $1/8 L_0$ beff=be1 + be2 + bc

Per gli appoggi di estremità la formula diviene:

beff= β 1be1 + β 2be2 + bc

dove β i =(0.55+0.025L₀/bei) \leq 1

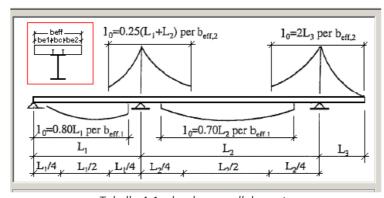


Tabella 4-1 — larghezza collaborante

Adeguamento S.S n. 87 "Sannitica" – Interventi localizzati per garantire la percorribilità immediata Tratto "Campobasso – Bivio S.Elia" Lotti A2 e A3 PROGETTO DEFINTIVO

RELAZIONE TECNICA E DI CALCOLO - IMPALCATO

Per tener conto dell'influenza di fessurazioni del calcestruzzo nelle zone a momento negativo nel calcolo della rigidezza dell'impalcato non vanno considerate le zone di soletta la cui tensione risultasse maggiore di $0.15f_{\rm ck}$ (4.98MPa).

Più semplicemente si può tener conto della fessurazione trascurando il contributo del calcestruzzo alla rigidezza dell'elemento per un tratto pari al 15% della luce delle campate da ciascun lato dell'appoggio intermedio.

CONCI	LARGHEZZA COLLABORANTE SOLETTA [mm]
C1_app	3500
C1	5900
C2	5900
C3	5071
C4	6375
C5	6375
C6	6375
C7	5071

4.5 CARATTERISTICHE INERZIALI DEGLI ELEMENTI PRINCIPALI DEL MODELLO

Di seguito si riportanto le caratteristiche inerziale, calcolato con le modalità sopra descritte, per gli elementi trave (conci c1, c2,...c7), gli elementi traversi (diaframmi pieni D1 e reticolari D2) e della soletta:

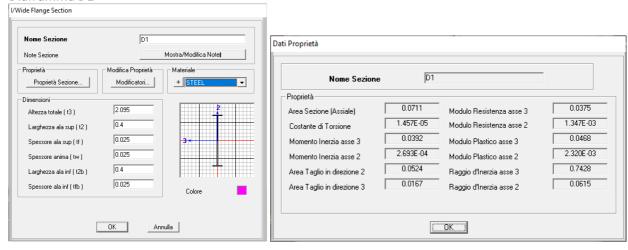
		acc	mista too	mista t0	no_cls
	A (m^2)	0.0878	0.22889	0.401029	0.099462
	Kt (m ⁴)	2.45E-05	0.004516	0.01049	0.01049
c1	Jxx(m ⁴)	0.066221	0.193268	0.228283	0.090261
C I	Jyy(m^4)	0.002068	0.411346	0.910693	0.035896
	WT_x (m^2)	0.038324	0.043297	0.042716	0.041399
	WT_y (m^2)	0.038324	0.043297	0.042716	0.041399
	A (m^2)	0.09504	0.23613	0.408269	0.106702
	Kt (m ⁴)	2.86E-05	0.00452	0.010494	0.010494
c2	Jxx(m ⁴)	0.077888	0.224421	0.267098	0.104573
62	Jyy(m^4)	0.005291	0.414568	0.913915	0.039119
	WT_x (m^2)	0.031782	0.035802	0.035521	0.033944
	WT_y (m^2)	0.031782	0.035802	0.035521	0.033944
	A (m^2)	0.1938	0.315115	0.463092	0.203853
	Kt (m^4)	0.00033	0.004191	0.009326	0.009326
с3	Jxx(m^4)	0.19268	0.333596	0.406221	0.210683
CS	Jyy(m^4)	0.011813	0.27187	0.589084	0.033363
	WT_x (m^2)	0.041551	0.044512	0.044836	0.042241
	WT_y (m^2)	0.041551	0.044512	0.044836	0.042241
	A (m^2)	0.10288	0.295808	0.481806	0.15596
	Kt (m^4)	3.36E-05	0.004887	0.011341	0.011341
-4	Jxx(m ⁴)	0.092496	0.239703	0.273357	0.163873
c4	Jyy(m^4)	0.005717	0.659112	1.289034	0.185485
	WT_x (m^2)	0.032604	0.035346	0.035309	0.034769
	WT_y (m^2)	0.032604	0.035346	0.035309	0.034769
	A (m^2)	0.09504	0.247756	0.433754	0.107908
	Kt (m^4)	2.86E-05	0.004882	0.011336	0.011336
- F	Jxx(m^4)	0.077888	0.22911	0.27063	0.107006
c5	Jyy(m^4)	0.005291	0.522497	1.15242	0.048871
	WT_x (m^2)	0.031782	0.035776	0.0355	0.034082
	WT_y (m^2)	0.031782	0.035776	0.0355	0.034082
	A (m^2)	0.10288	0.295808	0.481806	0.15596
	Kt (m ⁴)	3.36E-05	0.004887	0.011341	0.011341
-0	Jxx(m ⁴)	0.092496	0.239703	0.273357	0.163873
с6	Jyy(m^4)	0.005717	0.659112	1.289034	0.185485
	WT_x (m^2)	0.032604	0.035346	0.035309	0.034769
	WT_y (m^2)	0.032604	0.035346	0.035309	0.034769
	_ ` ′				
	A (m^2)	0.16637	0.287685	0.435662	0.176423
	Kt (m ⁴)	0.000186	0.004048	0.009183	0.009183
	Jxx(m ⁴)	0.159788	0.30513	0.373566	
с7	Jyy(m^4)	0.00978		0.587051	
	WT_x (m^2)	0.04133	0.044663	0.044802	0.04225
	WT_y (m^2)	0.04133	0.044663	0.044802	0.04225
				_	

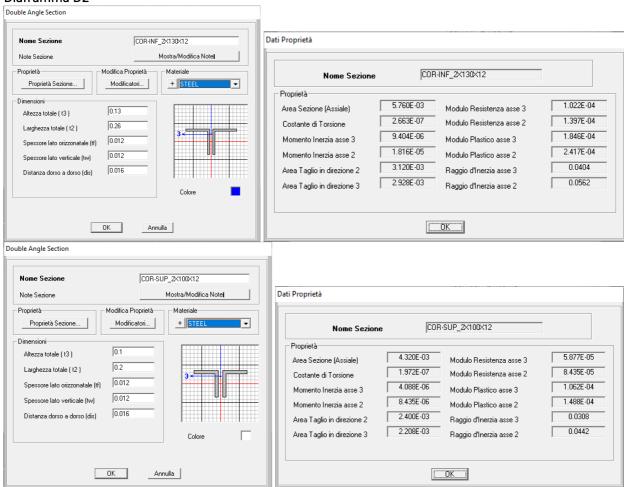
In cui:

acc caratteristiche inerziali della sola trave in acciaio;

mista t0 caratteristiche inerziali della sezione mista acciaio-cls a breve termine; mista t00 caratteristiche inerziali della sezione mista acciaio-cls a lungo termine;

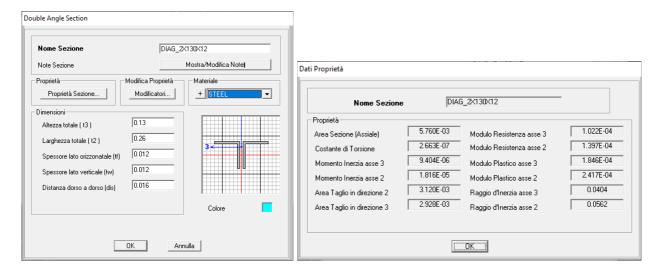
no_cls caratteristiche inerziali della sezione in acciaio e l'area delle armature longitudinale presenti

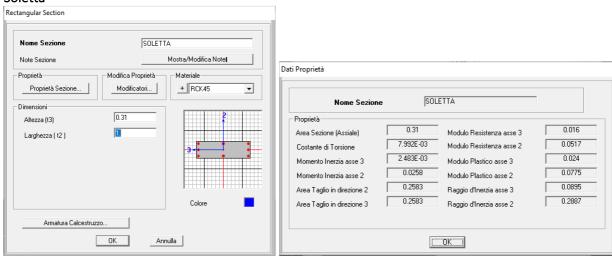

in soletta


Direzione Progettazione e Realizzazione Lavori

RELAZIONE TECNICA E DI CALCOLO - IMPALCATO

Diaframma D1


Diaframma D2



Direzione Progettazione e Realizzazione Lavori

RELAZIONE TECNICA E DI CALCOLO - IMPALCATO

Soletta

5 ANALISI DEI CARICHI

Si riporta nel seguito una descrizione delle azioni agenti sulle strutture, considerate per il dimensionamento degli elementi all'oggetto.

5.1 CARICHI ELEMENTARI

Le azioni di progetto, in accordo con quanto prescritto da D.M. de 17/01/2018, vengono di seguito elencate:

- g1 = peso proprio della struttura;
- g2 = carichi permanenti portati;
- g3 = altri carichi permanenti;
- $\varepsilon 1$ = distorsioni di progetto;
- ε 2 = ritiro del calcestruzzo;
- ε 3 = viscosità;
- q1 = carichi mobili;
- q2 = effetto dinamico dei carichi mobili;
- q3 = azioni longitudinali di frenamento;
- q4 = azione centrifuga;
- q5 = azione del vento;
- q6 = spinta idrodinamica;
- q7 = variazioni termiche;
- q8 = resistenze di attrito agli appoggi;
- q9 = azioni sui parapetti: urto di un veicolo in svio;
- q10 = azioni sismiche.

5.1.1 Peso proprio della struttura g1

Il peso proprio degli elementi strutturali (travi longitudinali, traversi e soletta) è computato considerando un peso specifico pari a γ_{cls} = 25.0 kN/mc per il calcestruzzo e pari a $\gamma_{acciaio}$ = 78.5 kN/mc per l'acciaio. Il peso della carpenteria metallica è pari a 4380 kN.

Carp. metallica:	4380 kN/156.2 ml =	28.00 kN/ml
Soletta in c.a.:	12.75 x 0.31 x 25.00 kN/ml =	98.82 kN/ml
Peso della carpenteria sulla singola trave: Carp. Metallica/3=		9.33 kN/ml
Peso della soletta s	sulla singola trave: Soletta in c.a./3=	32.94 kN/ml

5.1.2 Carichi permanenti portati g2

Cordoli in c.a.:	(0.75 + 0.75) x 0.20 x 25.00 kN/mc =	6.50 kN/ml	
Pavimentazione:	(11.25) x 0.11*26.67(*) kN/mq =	33.00 kN/ml	
Guardrail:	2*1.5 kN/ml =	3.00 kN/ml	
Velette in c.a. sp=5cm:	2*0.05*0.6*25 kN/mc =	1.50 kN/ml	
Sommano:		44.00 kN/ml	

(*) il peso di volume della pavimentazione è pari a 24 kN/m³, poiché per tale carico si utilizza un coefficiente di combinazione pari a 1.5, maggiore rispetto a quello di progetto pari a 1.35. Pertanto, si ha:

$$\gamma p_{av} = 1.5/1.35*24 = 26.67 \text{ kN/m}^3$$

Peso dei permanenti portati sulla singola trave: Perm./3=

14.67 kN/ml

5.1.3 Cedimento differenziale di pile e spalle (ε 1)

Si è valutato l'effetto prodotto dal cedimento isolato di ogni singolo appoggio della trave continua (pile e spalle).

Il cedimento viene calcolato in funzione della distanza tra gli appoggi considerati (1/5000 Luce):

Luce di 32.5 m, il cedimento è pari a 0.66 cm; Luce 32.5-45m, il cedimento è pari a 0.78 cm Luce di 45 m, il cedimento è pari a 0.9 cm;

5.1.4 Ritiro (ε 2) e viscosità (ε 3)

Gli effetti della viscosità sulla soletta sono valutati mediante l'adozione di un modulo elastico del calcestruzzo corretto.

$$\mathsf{E}^{^{\star}}_{\mathsf{c}} = \frac{\mathsf{E}_{\mathsf{c}}}{1 + \varphi(\mathsf{t})}$$

dove:

- E c è il valore medio del modulo elastico del calcestruzzo;
- $\phi(\mathbf{t},\mathbf{t}_0) = \phi_0 \cdot \beta_c(t-t_0)$ è il coefficiente di viscosità definito nell'Appendice B della norma UNI EN 1992-1-1:2005;
- t_0 è l'età del calcestruzzo in giorni al momento dell'applicazione del carico (per i carichi permanenti è assunto $t_0 = 28 \text{ gg}$);
- t è l'età del calcestruzzo in giorni all'istante considerato;
- $arphi_0$ e $eta_c(t-t_0)$ sono coefficienti funzioni della resistenza media a compressione del calcestruzzo f_{cm} , dell'umidità relativa ambientale RH e della dimensione convenzionale della sezione $h_0=2A_c/u$

 $(A_r \text{ è l'area della sezione trasversale di calcestruzzo ed } u \text{ è il perimetro esposto ad essiccamento}).$

Nel caso in oggetto la dimensione convenzionale della sezione vale $h_0 = 700 \ \text{mm}$ e, assumendo un'umidità relativa RH = 75%, si ottiene per $t_0 = 28gg$ e $t_0 = 10000 \ gg$ $\phi(t,t_0) = 1.21$ (azioni lente da carichi permanenti) e per $t_0 = 1gg$ e $t_0 = 10000 \ gg$ $\phi(t,t_0) = 2.25$ (azioni lente da effetti primari e secondari da ritiro).

PROGETTO DEFINTIVO

RELAZIONE TECNICA E DI CALCOLO - IMPALCATO

Le caratteristiche geometriche di una sezione trasversale composta sono definite omogeneizzando la soletta alla trave metallica. Per le azioni di breve durata, si utilizza il modulo elastico del calcestruzzo a 28 giorni. Per le azioni di lunga durata, si definiscono i rapporti modulari corretti in funzione del tipo di azione, mediante l'espressione:

$$n = \frac{E_s}{E_c^*} = \frac{E_s}{1 + \psi_L \cdot \varphi(t, t_0)} = n_0 \cdot (1 + \psi_L \cdot \varphi(t, t_0))$$

avendo indicato con $n_0 = \frac{E_s}{E_c}$ il rapporto modulare per azioni di breve durata ed essendo $\psi_L = 1.1$ il coefficiente

moltiplicativo di viscosità da usare per carichi permanenti e $\psi_L = 0.55$ il coefficiente moltiplicativo della viscosità da usare per azioni lente da ritiro.

Nella relazione da ora in poi si adotterà la dizione "a tempo to o a tempo too" intendendo che il modulo elastico del calcestruzzo è rispettivamente Ec o Ec-viscoso o equivalentemente che il coefficiente di omogeneizzazione vale rispettivamente 6.06 o 14.12 (azioni lente da carichi permanenti) e 13.55 (azioni lente da effetti primari e secondari da ritiro).

La deformazione da ritiro $\varepsilon_{cs}(t,t_0)$ è calcolato secondo quanto prescritto nell'Appendice B della norma UNI EN 1992-1-1:2005:

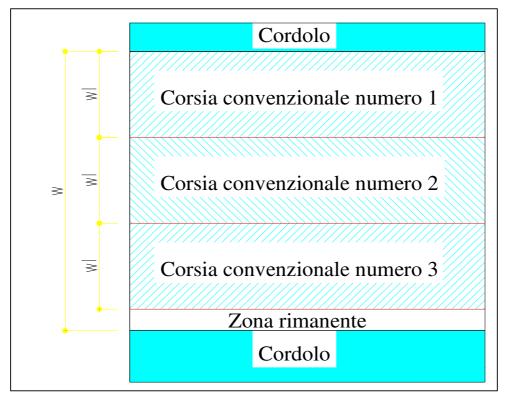
$$\varepsilon_{cs}(t, t_s) = \varepsilon_{ca}(t) + \varepsilon_{cd}(t, t_s)$$

dove:

- $\mathcal{E}_{ca}(t)$ è la deformazione del calcestruzzo per ritiro autogeno al tempo t;
- $\mathcal{E}_{cd}(t,t_s)$ è la deformazione di base dovuta a ritiro per essiccamento.

Nel caso in oggetto, per una dimensione convenzionale della sezione $h_0 = 700 \, \mathrm{mm}$ e un'umidità relativa $\mathrm{RH} = 75\%$, si ottiene (per $t_\mathrm{s} = 1 \, \mathrm{gg}$ e $t_\mathrm{c} = 10000 \, \mathrm{gg}$) $\varepsilon_\mathrm{ca} = 6.25 \cdot 10^{-5}$ e $\varepsilon_\mathrm{cd}(t) = 2.7 \cdot 10^{-4}$, da cui: $\varepsilon_\mathrm{cc}(t,t_\mathrm{s}) = 3.35 \cdot 10^{-4}$.

 $\Delta \text{teg} = \varepsilon_{\text{roo}}/\alpha = 34.0^{\circ}$ Variazione termica equivalente


5.1.5 Carichi mobili q1

Questi sono i carichi stabiliti convenzionalmente dalla normativa specifica per il calcolo dei ponti. I carichi vanno applicati su una "corsia convenzionale" avente un ingombro trasversale stabilito in 3,00m, e sulla "zona rimanente" avente un ingombro trasversale pari a w-(3.00xnl), dove "w" è la larghezza della carreggiata e "nl" è il numero di corsie convenzionali. Nel caso specifico, considerata la variabilità della larghezza della carreggiata, si ha:

w = 9.50 m

nl = Int(w/3) = Int(9.50)/3 = 3

Larghezza della zona rimanente = w-(3.00xnl) = 2.25 m

Carico Q1k: mezzo convenzionale a due assi: 600,00 kN

Carico q1k: carico ripartito: 9 kN/m2

Carico Q2k: mezzo convenzionale a due assi: 400,00 kN

Carico q2k: carico ripartito: 2,5 kN/ m2

Carico Q3k: mezzo convenzionale a due assi: 200,00 kN

Carico q3k: carico ripartito: 2,5 kN/ m2 Carico q4k: zona rimanente: 2,5 kN/ m2

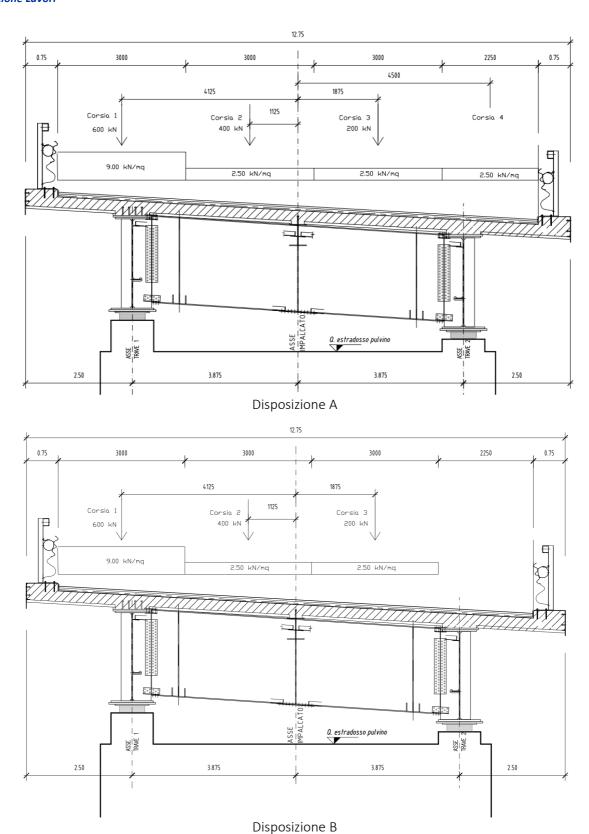
Carico q1e : folla compatta sui marciapiedi: 2.5 kN/ m2

Compatibilmente con la larghezza complessiva della piattaforma carrabile, vengono considerati:

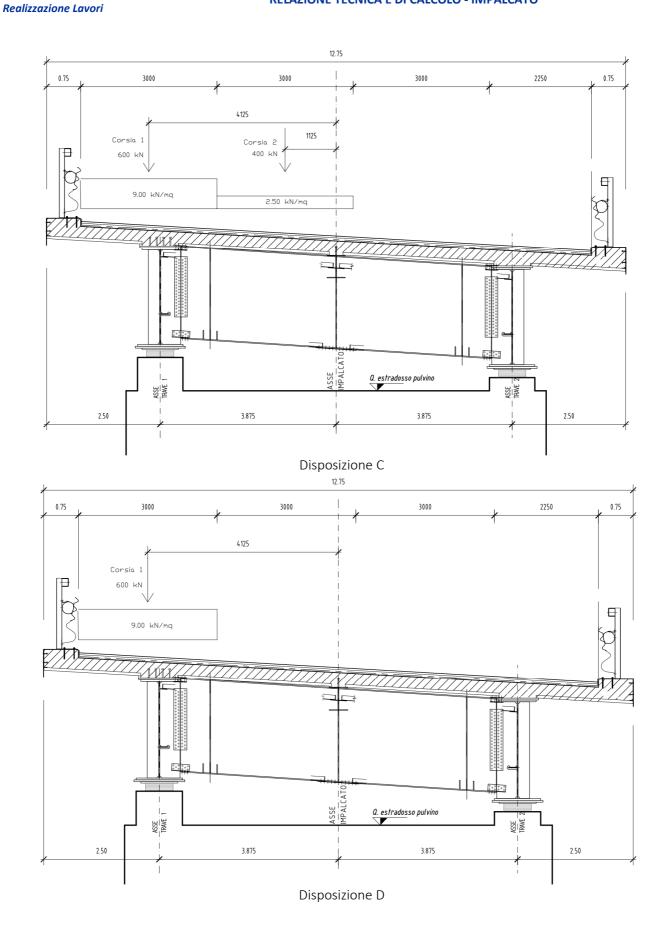
Una colonna di carico costituita da un solo mezzo Q1k (600 kN)e da uno o più tratti di carico q1k (9 kN/mq), disposti ai fini del calcolo delle strutture principali, lungo l'asse della corsia più sfavorevole;

Una seconda colonna di carico analoga alla precedente ma con intensità dei carichi ridotta (Q1k=400 kN; q1k=2.5 kN/mq);

Una terza e una quarta colonna di carico analoga alla precedente ma con intensità dei carichi ridotta (Q1k=200 kN; q1k=2.5 kN/mq);

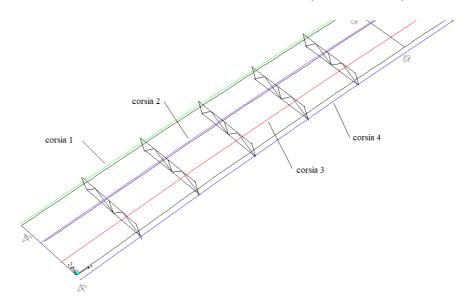

Una quarta colonna di carico pari a 2.5 kN/ mq (zona rimanente);

Per il dimensionamento della carpenteria metallica, compatibilmente con la larghezza complessiva della piattaforma carrabile, viene considerata la seguente distribuzione dei carichi:

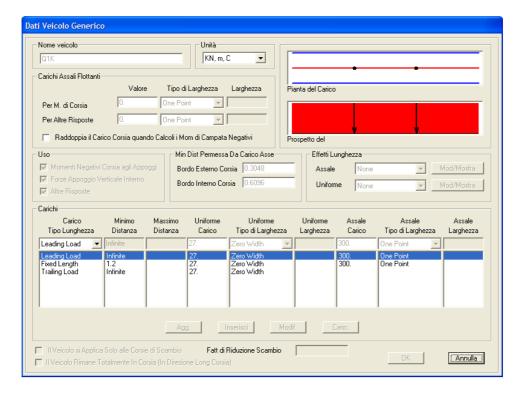


Direzione Progettazione e Realizzazione Lavori

RELAZIONE TECNICA E DI CALCOLO - IMPALCATO

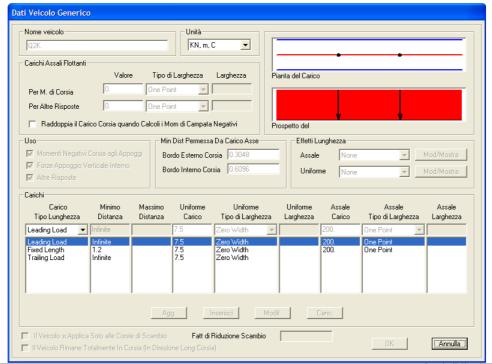

PROGETTO DEFINTIVO

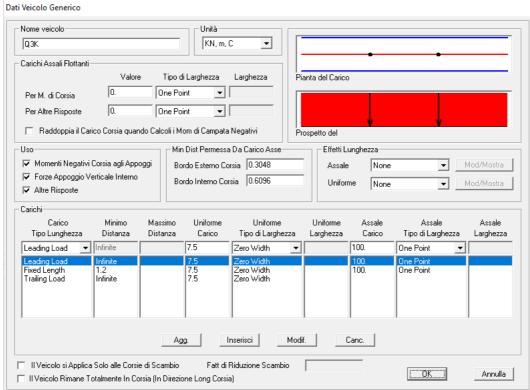
RELAZIONE TECNICA E DI CALCOLO - IMPALCATO

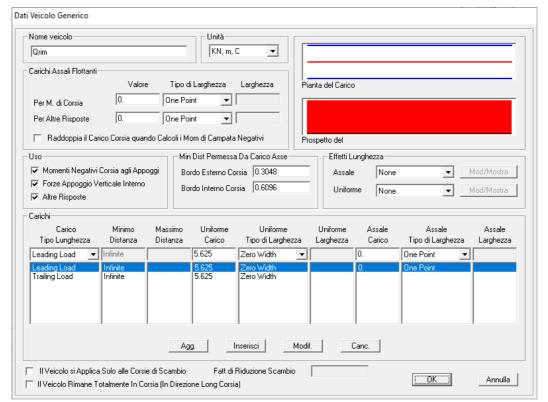

Per quanto attiene all distribuzione dei carichi sulla soletta si faccia riferiemnto al capitolo specifico.

Tali carichi in direzione longitudinale sono considerati viaggianti sull'intero impalcato e in direzione trasversale considerati nelle configurazioni che massimizzano le sollecitazioni di verifica delle sottostrutture.

In particolare, avremo due configurazioni: la prima che massimizza il momento trasversale sulle sottostrutture con i carichi disposti in maniera più eccentrica possibile rispetto all'asse delle pile e la seconda che massimizza lo sforzo normale con tutti i carichi mobili presenti sull'impalcato.


Corsie di carico





Direzione Progettazione e Realizzazione Lavori

RELAZIONE TECNICA E DI CALCOLO - IMPALCATO

Veicoli

5.1.6 Incremento dinamico q2

I carichi mobili includono gli effetti dinamici per pavimentazioni di media rugosità.

5.1.7 Forza di frenatura q3

La forza di frenatura è pari a:

$$180kN \le q_3 = 0.6 \cdot (2 \cdot Q_{1k}) + 0.10 \cdot q_{1k} \cdot w_1 \cdot L \le 900kN$$

essendo "w1" ed "L" rispettivamente la larghezza e la lunghezza totale della prima corsia di carico del viadotto.

Nel nostro caso si ha:

L'azione di frenatura non è rilevante ai fini del dimensionamento dell'impalcato.

5.1.8 Forza centrifuga q4

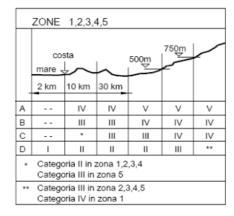
Nel nostro caso il raggio di curvatura è pari a 600 m, pertanto la forza centrifuga sarà la seguente:

in cui:

Qv=2*1200 è il carico tandem dello schema 1. R = 600 m è il raggio di curvatura dell'impalcato.

L'azione distribuito sull'intera lunghezza dell'impalcato (155 m) è pari a:

L'azione centrifuga non è rilevante ai fini del dimensionamento dell'impalcato.


5.1.9 Azione del vento q5

Il vento, la cui direzione si considera generalmente orizzontale, esercita sulle costruzioni azioni che variano nel tempo e nello spazio provocando, in generale, effetti dinamici.

Per le costruzioni usuali tali azioni sono convenzionalmente ricondotte ad azioni statiche equivalenti dirette secondo due assi principali della struttura, tali azioni esercitano normalmente all'elemento di parete o di copertura, pressioni e depressioni p (indicate rispettivamente con segno positivo e negativo) di intensità calcolate con la seguente espressione:

$$p = q_b c_e c_p c_d$$

- qb = pressione cinetica di riferimento;
- ce = coefficiente di esposizione;
- cp = coefficiente di forma (o coefficiente aerodinamico);
- cd = coefficiente dinamico.

Categoria di esposizione del sito	k,	z ₀ [m]	z _{min} [m]
I	0,17	0,01	2
П	0,19	0,05	4
III	0,20	0,10	5
IV	0,22	0,30	8
v	0,23	0,70	12

Il valore di ce può essere ricavato mediante la relazione:

$$c_e(z) = k_r^2 \cdot c_t \cdot \ln\left(\frac{z}{z_0}\right) \left[7 + c_t \cdot \ln\left(\frac{z}{z_0}\right)\right]$$

per z > zmin

$$c_e(z) = c_e(z_{\min})$$

per z < zmin

3) Toscana, Marche, Umbria, Lazio, Abruzzo, Molise, Puglia, Campania, Basilicata, Calabria (esclusa la provincia di Reggio Calabria)

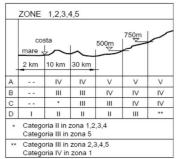
Zona	v _{b,0} [m/s]	a ₀ [m]	k _a [1/s]				
3	27	500	0.02				
a _s (altitudi	850						
T _R	100						
	$v_b = v_{b,0}$ per $a_s \le a_0$						
$v_b = v_{b,i}$	$v_b = v_{b,0} + k_a (a_s - a_0)$ per $a_0 < a_s \le 1500$ m						
<u>v</u>	$\underline{v}_b (T_R = 50 [m/s])$						
	1.03924						
V _b (35.334						

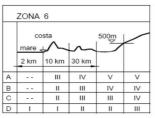
p (pressione del vento [N/mq]) = $q_b.c_e.c_p.c_d$ q_b (pressione cinetica di riferimento [N/mq]) c_e (coefficiente di esposizione) c_p (coefficiente di forma) c_d (coefficiente dinamico)

Pressione cinetica di riferimento

$$q_b = 1/2 \cdot \rho \cdot v_b^2$$
 $(\rho = 1,25 \text{ kg/mc})$

Direzione Progettazione e Realizzazione Lavori


RELAZIONE TECNICA E DI CALCOLO - IMPALCATO


Coefficiente di esposizione

Classe di rugosità del terreno

C) Aree con ostacoli diffusi (alberi, case, muri, recinzioni,....); aree con rugosità non riconducibile alle classi A, B, D

Categoria di esposizione

Zona	Classe di rugosità	a _s [m]
3	С	850

$c_e(z) = k_r^2 \cdot c_t \cdot \ln(z/z_0) [7 + c_t \cdot \ln(z/z_0)]$	$per\ z \geq z_{min}$
$c_e(z) = c_e(z_{min})$	$per\ z < z_{min}$

z [m]	ce
z = 11	1.848

Cat. Esposiz.	k _r	z ₀ [m]	z _{min} [m]	Ct
IV	0.22	0.3	8	1

Per Z si è assunto l'altezza massima dell'impalcato da p.c.

qb	0.781	kN/mq	
Ce	1.848		Coefficiente di esposizione
Ср	1.4		Coefficiente di forma
Cd	1		Coefficiente dinamico
р	2.10	kN/mq	Pressione del vento

Nel nostro caso avremo:

Himp,max = (2.25 + 0.31 + 0.11 + 3.00) m = 5.67 m

Dove:

2.25 m rappresenta l'altezza delle travi in acciaio;

0.31 m rappresenta l'altezza max della soletta in c.a.;

0.11 m rappresenta l'altezza della pavimentazione;

3.00 m rappresenta l'altezza della superficie esposta al vento.

Risultante. Rv = 2.10*5.67=11.9 kN/m Mv = 11.91*(5.67/2-1.125)=20.37 kNm/m

Con:

Rv risultante della forza orizzontale dovuta al vento

Mv risultante del momento dovuto al vento rispetto al baricentro della trave

2.10 kN/mg la pressione del vento

5.67 l'altezza su cui agisce il vento

5.67/2-1.125 è la distanza tra il baricentro di applicazione della pressione del vento e il baricentro della trave

Oltre alla forza orizzontale è prevista anche una forza verticale agente sull'impalcato che nel nostro è trascurabile.

5.1.10 Azioni idrodinamiche (q6)

Non sono presenti azioni idrodinamiche sulle pile.

5.1.11 Variazioni termiche (q7)

Sono state considerate variazioni di temperatura pari a:

I valori caratteristici della variazione termica uniforme per la massima espansione/contrazione si possono esprimere con la seguente formulazione:

$$\Delta T_{exp} = + T_{e,max} - T_0$$
 [C5.1.5]
$$\Delta T_{con} = - T_{e,min} + T_0$$
 [C5.1.6]

- T_{e,max} e T_{e,min} sono rispettivamente la massima e minima temperatura uniforme del ponte ricavabili, come indicato nel Capitolo 6 delle UNI EN 1991-1-5, in funzione della T_{min} e T_{max} dell'aria esterna di cui al § 3.5 delle NTC:

Zona III

Marche, Abruzzo, Molise, Puglia:

$$T_{\min} = -8 - 7 \cdot a_s / 1000$$
 [3.5.5]

$$T_{\text{max}} = 42 - 0.3 \cdot a_s / 1000$$
 [3.5.6]

Nel nostro caso con a_s (altitudine di riferimento) pari a 1000 m avremo:

$$(T_{max}=42^{\circ}C; T_{min} = -15^{\circ}C)$$

- To è la temperatura iniziale all'atto della regolazione degli appoggi del ponte di cui al § 3.5.4 delle NTC (pari a 15°C in assenza di determinazioni più precise).

Quindi:

$$\Delta$$
Texp = 42-15=27°C Δ Tcon = -15-15=-30°C

Pertanto, in favore di sicureza si considera lo stesso valore di variazione uniforme di temperatura sia in allungamento che in accorciamento della struttura:

Variazione termica uniforme di ± 30 °C

Accanto alla variazione termica uniforme, si considera anche una variazione termica differenziale tra estradosso ed intradosso variabile linearmente pari a DT = ± 10 °C.

Per quanto concerne la variazione termica differenziale tra la trave d'acciaio e la soletta si adotta il gradiente di \pm 5 °C.

Adeguamento S.S n. 87 "Sannitica" – Interventi localizzati per garantire la percorribilità immediata Tratto "Campobasso – Bivio S.Elia" Lotti A2 e A3 **PROGETTO DEFINTIVO**

RELAZIONE TECNICA E DI CALCOLO - IMPALCATO

5.1.12 Azioni parassite per attrito degli apparecchi d'appoggio (q8)

Per effetto degli spostamenti orizzontali dell'impalcato in corrispondenza degli appoggi scorrevoli dovuti a variazioni termiche, ritiro della soletta in c.a etc., si sviluppano azioni orizzontali di attrito, funzione delle caratteristiche degli appoggi impiegati.

Sulla struttura sono presenti come apparecchi di appoggio degli isolatori elastomerici.

A causa della tipologia di appoggio adottata le azioni parassite sono in realtà di forze di richiamo elastiche e dipendono quindi dalle deformazioni assiali dell'impalcato e dalla rigidezza elastica dell'apparecchio.

Detta k la rigidezza orizzontale dell'isolatore, ΔT (27°) la variazione termica uniforme dell'impalcato, ΔTr (34°) la variazione termica uniforme equivalente al ritiro, indicando con α il coeff. dilatazione termica e con "d" la distanza dell'appoggio dall'asse di simmetria longitudinale del viadotto (Asse pila P2: asse rispetto a cui avvengono le deformazioni), si ha per la forza orizzontale Fres.passive esercitata sul singolo allineamento:

Fres, passive allineamento spalla, A-B = $k*d*\alpha*(\Delta T + \Delta Tr) = 4950*77.5*0.00001*(27+34)=234 kN$

 $F_{res.passive_allineamento_P1-P3} = k*d*\alpha*(\Delta T + \Delta Tr) = 4950*45*0.00001*(27+34)=136 kN$

 $F_{res,passive\ allineamento\ P2} = k*d*\alpha*(\Delta T + \Delta Tr) = 4950*0.0*0.00001*(27+34)=0.0kN$

Tali azioni sono ininfluenti ai fini del calcolo dell'impalcato essendo azioni orizzontali applicate a quota baggioli.

5.1.13 Azioni eccezionali (q9)

I sicurvia e gli elementi strutturali ai quali sono collegati devono essere dimensionati per un'azione orizzontale trasversale non inferiore a 100 kN, distribuita su 0,50 m ed applicata ad una quota h, misurata dal piano viario, pari alla minore delle dimensioni h1, h2, dove h1 = (altezza della barriera – 0,10 m), h2 = 1,00 m.

5.1.14 Azione sismica sull'insieme impalcato/pile (q10)

Come anticipato in premessa, i viadotti in oggetto sono progettati per una vita nominale VN pari a 50 anni. Gli si attribuisce inoltre una classe d'uso IV ("Ponti e reti ferroviarie di importanza critica") ai sensi del D. Min. 17/01/2018, da cui scaturisce un coefficiente d'uso CU = 2.0.

L'azione sismica di progetto è definita per lo Stato Limite di salvaguardia della Vita (SLV) e per lo stato limite di collasso (SLC). Il periodo di ritorno di quest'ultima - in funzione della vita utile, della classe d'uso, del tipo di costruzione e dello stato limite di riferimento (prima definiti) - è di 949 anni (SLV), 1950 anni (SLC) e 101 anni (SLD).

Essa, conformemente a quanto prescritto dalle Nuove Norme Tecniche, non è definita in funzione dell'appartenenza dell'opera ad una zona sismica bensì è valutata a partire dalla pericolosità sismica di base del sito su cui l'opera insiste. Tale pericolosità sismica è descritta, in termini geografici e temporali:

- attraverso i valori di accelerazione orizzontale di picco ag (attesa in condizioni di campo libero su sito di riferimento rigido con superficie topografica orizzontale) e le espressioni che definiscono le ordinate del relativo spettro di risposta elastico in accelerazione Se(T)
- in corrispondenza del punto del reticolo che individua la posizione geografica dell'opera
- con riferimento a prefissate probabilità di eccedenza PVR.

In particolare, la forma spettrale prevista dalla normativa è definita, su sito di riferimento rigido orizzontale, in funzione di tre parametri:

Realizzazione Lavori

RELAZIONE TECNICA E DI CALCOLO - IMPALCATO

- ag, accelerazione orizzontale massima del terreno
- F0, valore massimo del fattore di amplificazione dello spettro in accelerazione orizzontale
- TC*, periodo di inizio del tratto a velocità costante dello spettro in accelerazione orizzontale.

I suddetti parametri sono calcolati come media pesata dei valori assunti nei quattro vertici della maglia elementare del reticolo di riferimento che contiene il punto caratterizzante la posizione dell'opera, utilizzando come pesi gli inversi delle distanze tra il punto in questione ed i quattro vertici.

In particolare, si può notare come F_0 descriva la pericolosità sismica locale del sito su cui l'opera insiste. Infatti, da quest'ultimo, attraverso le espressioni fornite dalla normativa, sono valutati i valori d'amplificazione stratigrafica e topografica. Nella tabella seguente sono riassunti i valori dei parametri assunti per l'opera in oggetto situtata nelle coordinate: Lat 41.632643 - Long 14.739700.

V _N	Си	V _R	T _R	Località	$a_{g,orizz}$	F ₀	a _{g,vert}	F_{v}	T _c *
[anni]		[anni]	[anni]	-	[g}		[g}		[s]
50	2	100	949.00	Viadotto 1	0.283	2.464	0.204	1.771	0.363

Tabella 5.2: Parametri per la definizione della massima accelerazione locale – SLV

V _N	Cu	V _R	T _R	Località	a _{g,orizz}	F ₀	a _{g,vert}	Fν	T _c *
[anni]		[anni]	[anni]	-	[g}		[g}		[s]
50	2	100	1950.00	Viadotto 1	0.366	2.436	0.298	1.989	0.383

Tabella 5.2: Parametri per la definizione della massima accelerazione locale – SLC

V _N	Cu	V _R	T _R	Località	a _{g,orizz}	F ₀	a _{g,vert}	F_{v}	T _c *
[anni]		[anni]	[anni]	-	[g}		[g}		[s]
50	2	100	101.00	Viadotto 1	0.112	2.482	0.051	1.123	0.320

Tabella 5.3: Parametri per la definizione della massima accelerazione locale – SLD

In quest'ultima V_N è la vita nominale dell'opera; C_U è il coefficiente relativo alla classe d'uso; V_R è il periodo di riferimento per l'azione sismica; TR è il periodo di ritorno associato alla probabilità di non superamento dello stato limite della salvaguardia della vita; ag è la massima accelerazione riferita a quella di gravità attesa sul sito su suolo di riferimento; F_0 è il valore massimo del fattore di amplificazione dello spettro in accelerazione orizzontale; F_V è il valore massimo del fattore di amplificazione dello spettro in accelerazione verticale; T_C^* è il periodo, espresso in secondi, corrispondente alla fine del tratto orizzontale dello spettro su suolo di riferimento.

Lo spettro di risposta elastico per la descrizione della componente orizzontale del moto sismico è costruito a partire dai parametri riassunti nelle tabelle seguenti, per un terreno di tipo **C**.

Suolo	Ss	S _T	S	C _C	T _B	T _C	T_D
С	1.281	1	1.281	1.467	0.177	0.532	2.729

Tabella 5.4: Parametri per la definizione dello spettro elastico orizzontale – SLV

Suolo	Ss	S _T	S	Cc	T _B	T _C	T _D
О	1.167	1	1.167	1.442	0.184	0.552	3.062

Tabella 5.5: Parametri per la definizione dello spettro elastico orizzontale – SLC

Suolo	Ss	S _T	S	C _C	T _B	T _C	T_D
С	1.5	1	1.5	1.529	0.163	0.49	2.049

Tabella 5.6: Parametri per la definizione dello spettro elastico orizzontale – SLD

Realizzazione Lavori

PROGETTO DEFINTIVO

RELAZIONE TECNICA E DI CALCOLO - IMPALCATO

In quest'ultima S_S ed S_T sono rispettivamente i fattori di amplificazione stratigrafica e topografica concorrenti alla determinazione del fattore di amplificazione S; C_C è il coefficiente che modifica il valore del periodo T_C*; T_B è il periodo corrispondente all'inizio del tratto ad accelerazione costante dello spettro della componente orizzontale; T_C è il periodo corrispondente all'inizio del tratto a velocità; T_D è il periodo corrispondente all'inizio del tratto a spostamento costante. Tale spettro è descritto dalle espressioni seguenti.

$$\begin{split} S_{e}(T) &= a_{g} \cdot S \cdot \eta \cdot F_{o} \cdot \left[\frac{T}{T_{B}} + \frac{1}{\eta \cdot F_{o}} \cdot \left(1 - \frac{T}{T_{B}} \right) \right] \quad \text{se} \quad 0 \leq T \leq T_{B} \\ S_{e}(T) &= a_{g} \cdot S \cdot \eta \cdot F_{o} \quad \text{se} \quad T_{B} \leq T \leq T_{c} \\ S_{e}(T) &= a_{g} \cdot S \cdot \eta \cdot F_{o} \cdot \frac{T_{c}}{T} \quad \text{se} \quad T_{c} \leq T \leq T_{D} \\ S_{e}(T) &= a_{g} \cdot S \cdot \eta \cdot F_{o} \cdot \frac{T_{c} \cdot T_{D}}{T^{2}} \quad \text{se} \quad T_{D} \leq T \end{split}$$

Lo spettro di risposta elastico per la descrizione della componente verticale del moto sismico è costruito a partire dai parametri riassunti nella tabella seguente.

Suolo	S _S	S _T	S	T _B	T _C	T_D
С	1	1	1	0.05	0.15	1

Tabella 5.7: Parametri per la definizione dello spettro elastico verticale

In quest'ultima S_S ed S_T, S e C_C hanno i significati prima descritti; T_B è il periodo corrispondente all'inizio del tratto ad accelerazione costante dello spettro per la componente verticale; T_C è il periodo corrispondente all'inizio del tratto a velocità costante; T_D è il periodo corrispondente all'inizio del tratto a spostamento costante. Tale spettro è descritto dalle espressioni seguenti.

$$\begin{split} S_{ve}(T) &= a_{g} \cdot S \cdot \eta \cdot F_{v} \cdot \left[\frac{T}{T_{B}} + \frac{1}{\eta \cdot F_{0}} \cdot \left(1 - \frac{T}{T_{B}} \right) \right] \text{ se } 0 \leq T \leq T_{B} \\ S_{e}(T) &= a_{g} \cdot S \cdot \eta \cdot F_{v} & \text{se } T_{g} \leq T \leq T_{c} \\ S_{e}(T) &= a_{g} \cdot S \cdot \eta \cdot F_{v} \cdot \frac{T_{c}}{T} & \text{se } T_{c} \leq T \leq T_{D} \\ S_{e}(T) &= a_{g} \cdot S \cdot \eta \cdot F_{v} \cdot \frac{T_{c} \cdot T_{D}}{T^{2}} & \text{se } T_{D} \leq T \end{split}$$

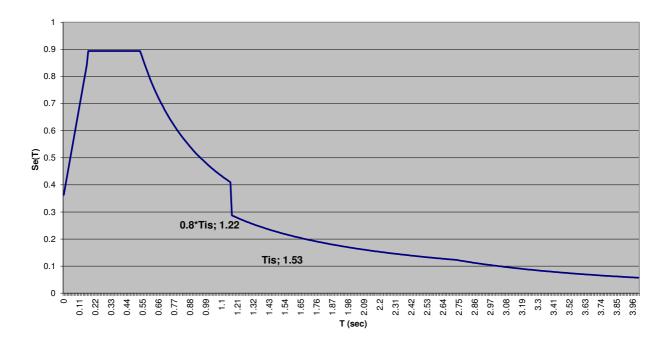
Visto lo schema di vincolo adottato per l'impalcato, l'azione sismica orizzontale si trasmette dall'impalcato agli appoggi elastomerici.

Gli isolatori elastomerici sono dispositivi d'appoggio in elastomero armato, cioè costituiti da strati alterni di acciaio e di elastomero collegati mediante vulcanizzazione.

La dissipazione di energia consente di ottenere un coefficiente di smorzamento viscoso equivalente nel nostro caso pari a 15%.

Il tipico ciclo isteretico forza-spostamento di un isolatore schematizzabile con una relazione lineare, mediante la rigidezza equivalente Ke ed il coefficiente di smorzamento viscoso equivalente ξe che

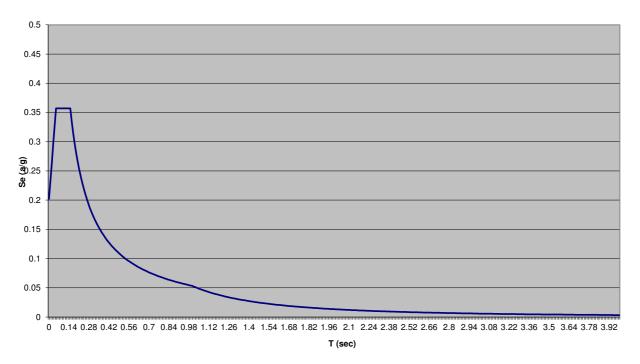
dipendono dallo spostamento massimo d2 (corrispondente allo SLC) e dalla forza corrispondente F2 (corrispondente allo SLV) cui sono riferiti.

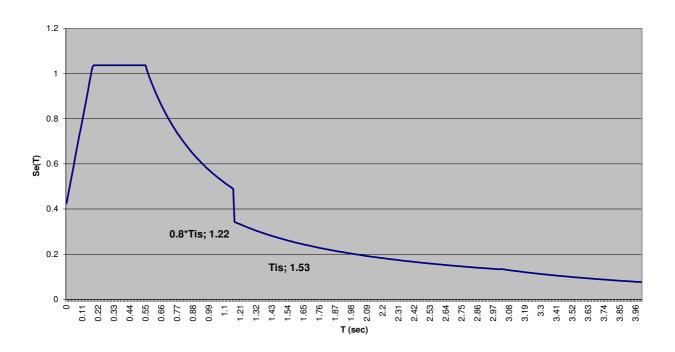

Nel nostro caso abbiamo:

 $P_{eso,imp} = 26323 \text{ kN}$ ke = 4950 kN/m $\xi e = 15\%$ $d2,long = \pm 0.35 \text{ m}$ $d2,trasv = \pm 0.35 \text{ m}$

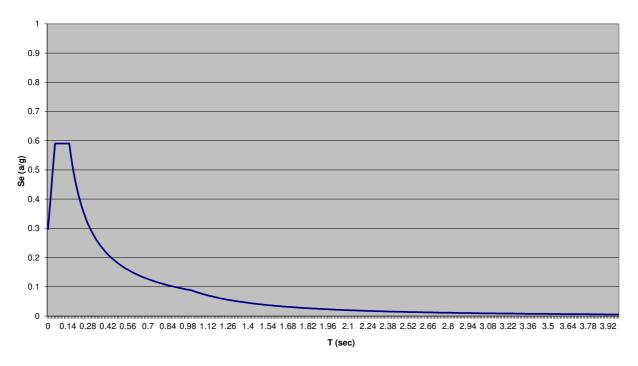
Con smorzamento viscoso equivalente al 15 %. Con tale valore si calcola il fattore h con cui si scala lo spettro per periodi superiori a 0.8 volte il periodo della struttura isolata.

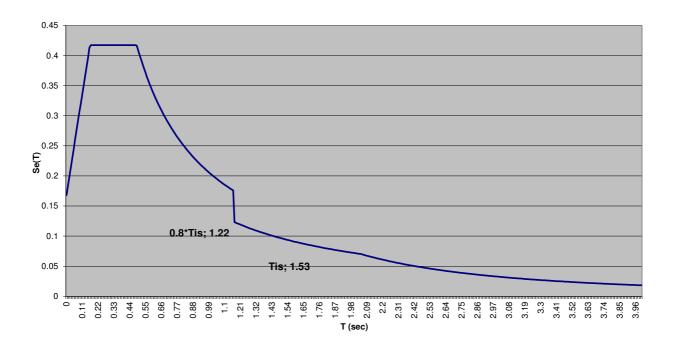
Con riferimento al caso specifico, si riporta nella figura seguente lo spettro elastico isolato per la componente orizzontale e per la componente verticale.

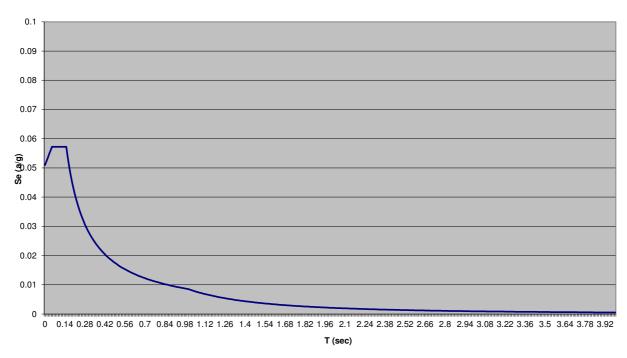

Spettro di risposta elastico orizzontale isolato - SLV


PROGETTO DEFINTIVO

RELAZIONE TECNICA E DI CALCOLO - IMPALCATO


Spettro di risposta elastico verticale - SLV


Spettro di risposta elastico orizzontale isolato - SLC


Spettro di risposta elastico verticale - SLC

Spettro di risposta elastico orizzontale isolato - SLD

Spettro di risposta elastico verticale - SLD

La risposta sismica della struttura è calcolata mediante analisi dinamica lineare, a causa della presenza dei dispositivi antisismici a comportamento elastico.

Ai fini del calcolo dell'impalcato l'azione risulta ininfluente, pertanto non viene considerata.

5.2 COMBINAZIONI DEI CARICHI ELEMENTARI

Le azioni di cui ai paragrafi precedenti sono combinate tra loro, al fine di ottenere le sollecitazioni di progetto utili alle verifiche di stabilità e alle verifiche di resistenza dei singoli elementi strutturali considerando le seguenti combinazioni e i seguenti coefficienti γ e Ψ :

Ai fini delle verifiche degli stati limite, si definiscono le seguenti combinazioni delle azioni.

- $\mbox{ Combinazione fondamentale, generalmente impiegata per gli stati limite ultimi (SLU): } \\ \gamma_{G1} \cdot G_1 + \gamma_{G2} \cdot G_2 + \gamma_P \cdot P + \gamma_{Q1} \cdot Q_{k1} + \gamma_{Q2} \cdot \psi_{02} \cdot Q_{k2} + \gamma_{Q3} \cdot \psi_{03} \cdot Q_{k3} + \dots \\ [2.5.1]$
- Combinazione caratteristica, cosiddetta rara, generalmente impiegata per gli stati limite di esercizio (SLE) irreversibili: $G_1 + G_2 + P + Q_{k1} + \psi_{02} \cdot Q_{k2} + \psi_{03} \cdot Q_{k3} + \dots$ [2.5.2]
- Combinazione frequente, generalmente impiegata per gli stati limite di esercizio (SLE) reversibili: $G_1 + G_2 + P + \psi_{11} \cdot Q_{k1} + \psi_{22} \cdot Q_{k2} + \psi_{23} \cdot Q_{k3} + \dots$ [2.5.3]

Tab. 5.1.V - Coefficienti parziali di sicurezza per le combinazioni di carico agli SLU

		Coefficiente	EQU ⁽¹⁾	A1
Azioni permanenti g ₁ e g ₃	favorevoli sfavorevoli	γ _{G1} e γ _{G3}	0,90 1,10	1,00 1,35
Azioni permanenti non strutturali ⁽²⁾ g ₂	favorevoli sfavorevoli	Υ _{G2}	0,00 1,50	0,00 1,50
Azioni variabili da traffico	favorevoli sfavorevoli	ΥQ	0,00 1,35	0,00 1,35
Azioni variabili	favorevoli sfavorevoli	Ϋ́Qi	0,00 1,50	0,00 1,50
Distorsioni e presollecita- zioni di progetto	favorevoli sfavorevoli	$\gamma_{\epsilon 1}$	0,90 1,00 ⁽³⁾	1,00 1,00 ⁽⁴⁾
Ritiro e viscosità, Cedimenti vincolari	favorevoli sfavorevoli	Υε2ν Υε3ν Υε4	0,00 1,20	0,00 1,20

 $extbf{Tab. 5.1.VI}$ - Coefficienti ψ per le azioni variabili per ponti stradali e pedonali

Azioni	Gruppo di azioni	Coefficiente	Coefficiente	Coefficiente Ψ ₂
	(Tab. 5.1.IV)	ψ ₀ di combi-	Ψ ₁ (valori	(valori quasi
		nazione	frequenti)	permanenti)
	Schema 1 (carichi tandem)	0,75	0,75	0,0
	Schemi 1, 5 e 6 (carichi distribuiti	0,40	0,40	0,0
Azioni da traffico	Schemi 3 e 4 (carichi concentrati)	0,40	0,40	0,0
(Tab. 5.1.IV)	Schema 2	0,0	0,75	0,0
	2	0,0	0,0	0,0
	3	0,0	0,0	0,0
	4 (folla)		0,75	0,0
	5	0,0	0,0	0,0
	a ponte scarico SLU e SLE	0,6	0,2	0,0
Vento	in esecuzione	0,8	0,0	0,0
	a ponte carico SLU e SLE	0,6	0,0	0,0
Neve	SLU e SLE	0,0	0,0	0,0
INCVC	in esecuzione	0,8	0,6	0,5
Temperatura	SLU e SLE	0,6	0,6	0,5

Le combinazioni di carico considerate sono riportate nella seguente tabella:

		SLE		FR		SLU	
fase 1	PP (imp.acciaio + soletta)	1.00	1.00	1.00	1.00	1.35	1.35
fase 2	PERM_TO	1.00	1.00	1.00	1.00	1.35	1.35
	CAR_MOB_verticali	1.00	1.00	0.75	0.75	1.35	1.35
	Vento	0.60	0.00	0.20	0.00	0.90	0.00
	VAR_TERM_TO	0.60	-0.60	0.60	-0.60	1.50	-1.50
fase 3	PERM_T00	1.00	1.00	1.00	1.00	1.35	1.35
	CEDIM. VINCOLARI	0.60	0.00	0.60	0.00	1.20	0.00
	RITIRO	0.60	0.00	0.60	0.00	1.20	0.00

SLE: Combinazione di carico per le verifiche di instabilità delle membrature in acciaio e per le verifiche tensionali della soletta;

FR: Combinazione di carico per le verifiche a fessurazione della soletta;

SLU: Combinazione per le verifiche di resistenza delle membrature in acciaio

6 DIAGRAMMI DELLE CARATTERISTICHE DELLA SOLLECITAZIONE INTERNA

L'analisi delle caratteristiche della sollecitazione interna dei modelli di calcolo appena elencati, come già anticipato, è stata eseguita con l'ausilio del codice di calcolo agli elementi finiti sap2000, in allegato sono riportati i tabulati di output.

Di seguito, per ciascuna fase strutturale analizzata, si riportano i diagrammi delle sollecitazioni di verifica della trave esterno curva (momento e taglio) relativi alle condizioni di carico elementari.

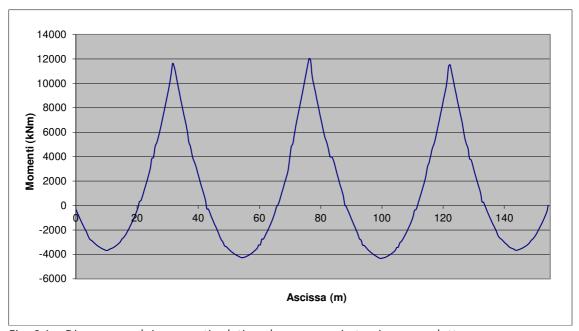


Fig. 6.1 – Diagramma dei momenti relativo al peso proprio travi+ peso soletta

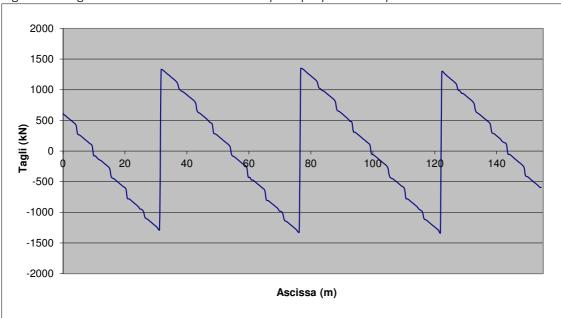


Fig. 6.2 – Diagramma dei tagli relativo al peso proprio travi+ peso soletta

PROGETTO DEFINTIVO

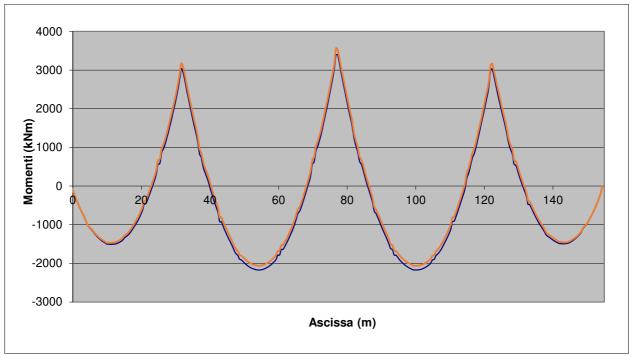


Fig. 6.3 – Diagramma dei momenti relativo al permanente portato a tempo iniziale e a tempo infinito

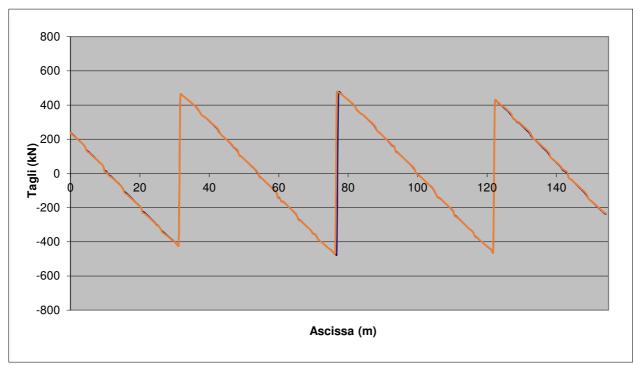


Fig. 6.4 – Diagramma dei tagli relativo al permanente portato a tempo iniziale e a tempo infinito

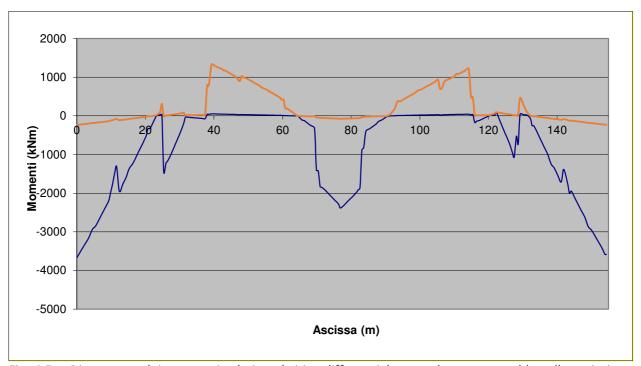


Fig. 6.5 – Diagramma dei momenti relativo al ritiro differenziale tra soletta e trave (-) e alla variazione uniforme di temperatura (\pm) a t_{00}

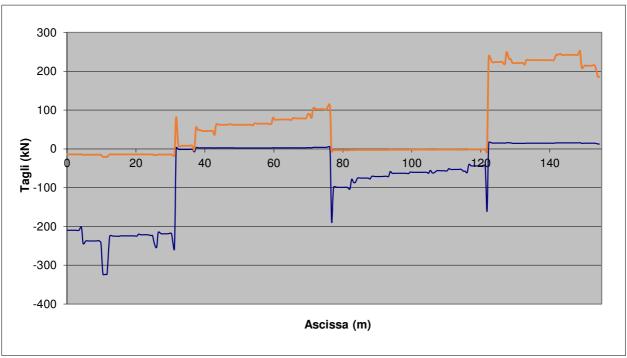


Fig. 6.6 – Diagramma dei tagli relativo al ritiro differenziale tra soletta e trave (-) e alla variazione uniforme di temperatura (\pm) a t_{00}

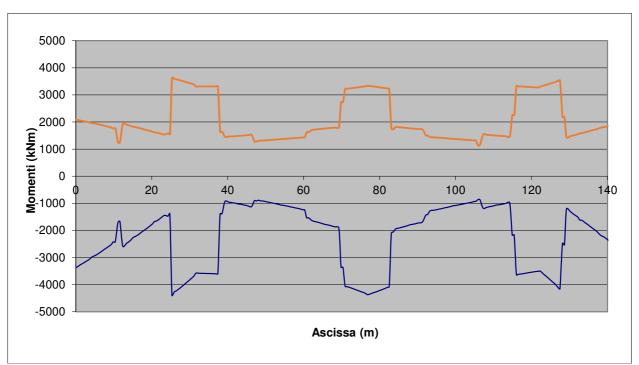


Fig. 6.7 – Diagramma dei momenti relativo alla variazione termica differenziale nella soletta ($\pm 5^{\circ}$ C), alla variazione uniforma di temperatura ($\pm 27^{\circ}$ C) a t₀ e alla variazione termica variabile linermente ($\pm 10^{\circ}$ C)

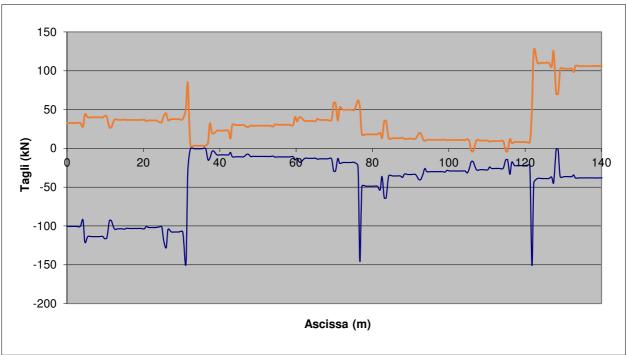


Fig. 6.8 – Diagramma dei tagli relativo alla variazione termica differenziale nella soletta ($\pm 5^{\circ}$ C), alla variazione uniforma di temperatura ($\pm 27^{\circ}$ C) a t₀ e alla variazione termica variabile linermente ($\pm 10^{\circ}$ C)

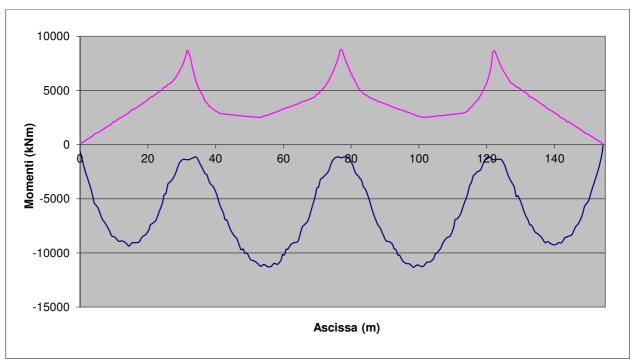


Fig. 6.9 – Diagramma dei momenti relativo ai carichi mobili massimi e minimi

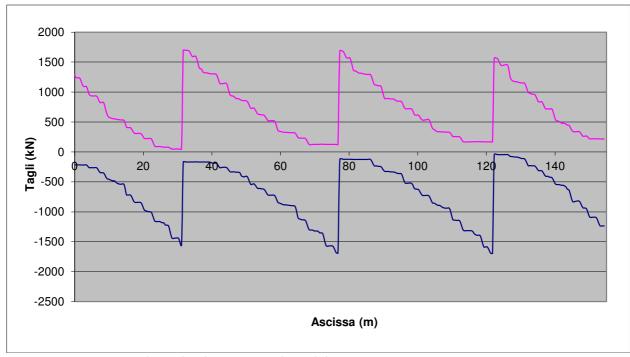


Fig. 6.10 – Diagramma dei tagli relativo ai carichi mobili massimi e minimi

FROGETTO DETINITY

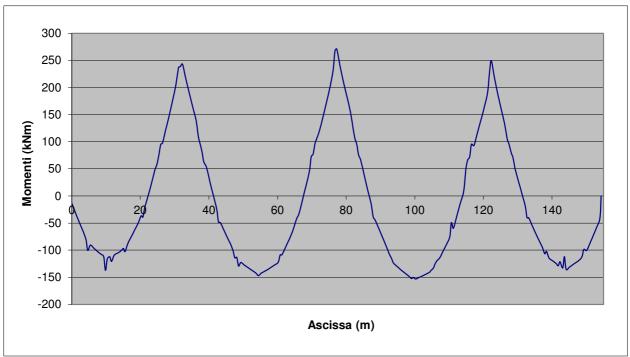


Fig. 6.11 – Diagramma dei momenti relativo al vento

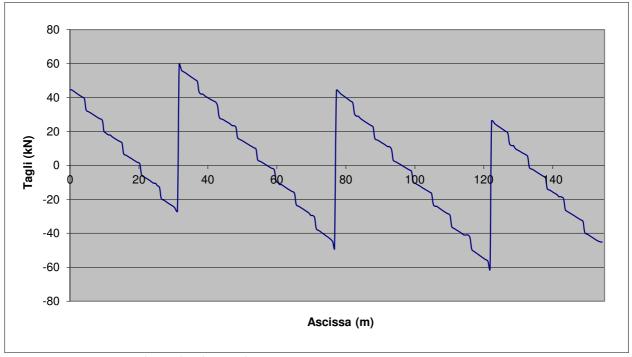


Fig. 6.12 – Diagramma dei tagli relativo al vento

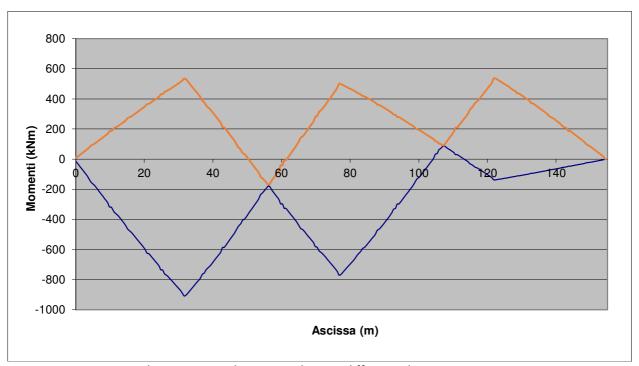


Fig. 6.13 – Diagramma dei momenti relativo ai cedimenti differenziali

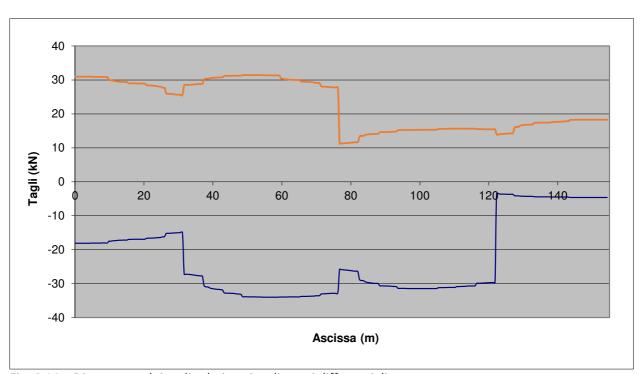


Fig. 6.14 – Diagramma dei tagli relativo ai cedimenti differenziali

7 DIAGRAMMI DELLE DEFORMAZIONI

Le frecce, espresse in millimetri, sono calcolate tenendo conto dei fenomeni viscosi (a tempo Too) e sono relative alla freccia massima delle due travi.

Le condizioni di carico che contribuiscono alla deformata sono le seguenti:

- fp peso proprio della struttura metallica e della soletta dell'impalcato
- ff peso delle opere di finitura
- fr effetti del ritiro della soletta ed effetto viscoso
- fa effetti del traffico veicolare
- fv effetti trasversali in esercizio

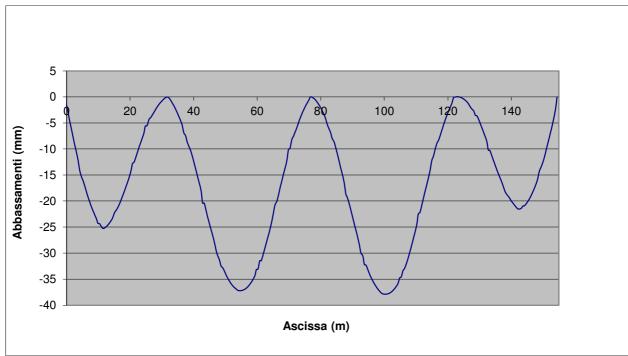
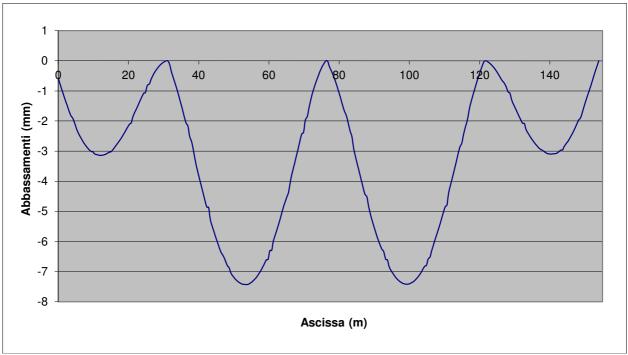



Fig. 7.1 – Abbassamenti verticali per il peso proprio della struttura (acciaio+ soletta)

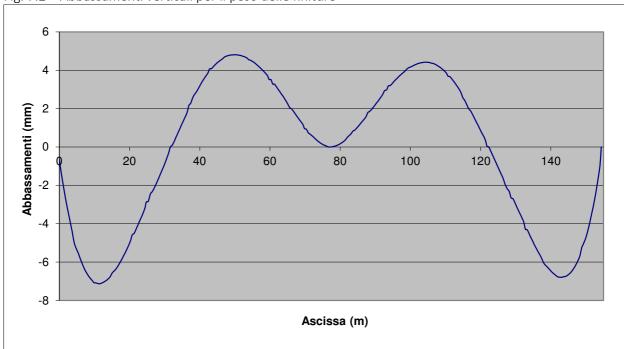


Fig. 7.3 – Abbassamenti verticali per gli effetti del ritiro della soletta ed effetti viscosi

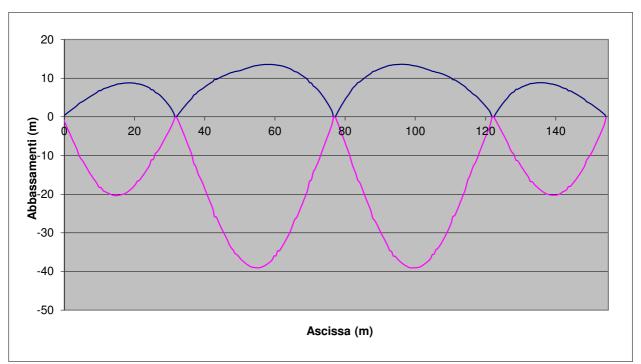


Fig. 7.4 – Abbassamenti verticali per gli effetti del traffico veicolare

La freccia massima del traffico veicolare è pari a 39.04 mm < L/500=45000/500=90 mm.

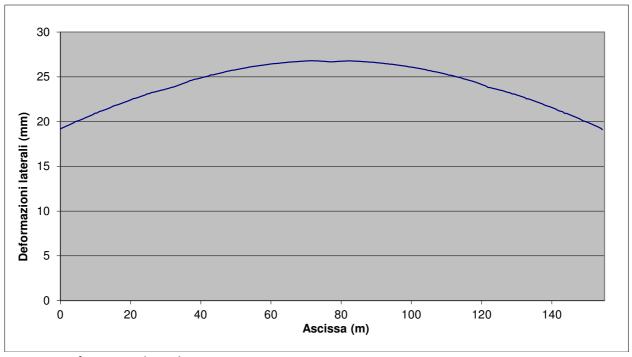


Fig. 7.5 – Deformazioni laterali in esercizio

Realizzazione Lavori

Adeguamento S.S n. 87 "Sannitica" – Interventi localizzati per garantire la percorribilità immediata Tratto "Campobasso – Bivio S.Elia" Lotti A2 e A3 PROGETTO DEFINTIVO

RELAZIONE TECNICA E DI CALCOLO - IMPALCATO

8 CRITERI DI VERIFICA STRUTTURALE

La presente relazione di calcolo strutturale illustra il progetto nei suoi aspetti generali. Essa comprende solo una parte dei calcoli strutturali: le verifiche non riportate sono condotte analogamente a quelle descritte.

Le verifiche di resistenza delle sezioni sono eseguite secondo il metodo semiprobabilistico agli stati limite. I coefficienti di sicurezza adottati sono i seguenti:

- coefficiente parziale di sicurezza per il calcestruzzo: 1.50;
- coefficiente parziale di sicurezza per l'acciaio in barre: 1.15;
- coefficiente parziale di sicurezza per le verifiche di resistenza per l'acciaio da carpenteria: 1.05;
- coefficiente parziale di sicurezza per le verifiche di stabilità per l'acciaio da carpenteria: 1.10.
- coefficiente parziale di sicurezza per le verifiche di resistenza delle sezioni in acciaio indebolite dai fori e per le unioni: 1.25.

Il paragrafo in oggetto illustra nel dettaglio i criteri generali adottati per le verifiche strutturali e geotecniche condotte nel progetto. Ulteriori dettagli di carattere specifico, laddove impiegati, sono dichiarati e motivati nelle relative risultanze delle verifiche.

8.1 CRITERI DI VERIFICA DELLE SEZIONI IN MISTE ACCIAIO CALCESTRUZZO

Per le sezioni miste acciaio calcestruzzo si effettuano:

Verifiche degli elementi principali:

- verifiche di resistenza delle membrature;
- verifiche di stabilità: dei pannelli d'anima delle membrature inflesse (imbozzamento), delle piattabande compresse (stabilità a flesso-torsionale) e degli irrigidimenti in corrispondenza degli appoggi;
- verifiche a fatica;
- verifiche in esercizio della soletta in direzione longitudinale;

Verifiche degli elementi secondari:

- verifiche di resistenza e di scorrimento delle connessioni acciaio-calcestruzzo (pioli);
- verifiche delle unioni delle travate principali;
- verifiche di resistenza dei diaframmi pieni;
- verifiche di resistenza e di stabilità dei diaframmi reticolari e dei controventi;
- verifiche degli irrigidimenti trasversali e longitudinali.

9 VERIFICHE ELEMENTI PRINCIPALI

9.1 VERIFICA DI RESISTENZA DELLE MEMBRATURE (TRAVI PRINCIPALI)

Le verifiche in campo elastico, per gli stati di sforzo piani tipici delle travi, si eseguono con riferimento al seguente criterio:

$$\sigma_{x,Ed}^{2} + \sigma_{z,Ed}^{2} - \sigma_{z,Ed} \sigma_{x,Ed} + 3\tau_{Ed}^{2} \le (f_{yk} / \gamma_{M0})^{2}$$

Dove:

- $\sigma_{x,Ed}$ è il valore di calcolo della tensione normale nel punto in esame, agente in direzione parallela all'asse della membratura;
- $\sigma_{z,Ed}$ è il valore di calcolo della tensione normale nel punto in esame, agente in direzione ortogonale all'asse della membratura;
- au_{Ed} è il valore di calcolo della tensione tangenziale nel punto in esame, agente nel piano della sezione della membratura;

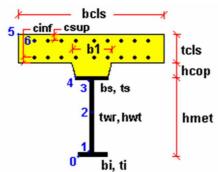
Facendo riferimento ad una procedura di comprovata validità, come consentito ai punti 4.2.4.1.2 e 4.2.4.1.3.4 del DM2018 e C4.2.4.1.3.4 della circolare applicativa, le verifiche saranno eseguite facendo riferimento al limite elastico degli elementi (stato limite ultimo elastico), indipendentemente dalla classificazione delle sezioni.

In tali ipotesi le verifiche di resistenza e stabilità saranno svolte con il metodo tensionale facendo riferimento alle istruzioni CNR 10011. In sostanza ciò significa considerare tutte le sezioni in classe 4 verificandone la stabilità locale senza impiegare il metodo delle larghezze efficaci.

CONCIO TIPO	Э	C1	C2	С3	C4	C5	C6	C7		
ALTEZZA TOTALI (TRAVI)	Ε	2250	2250	2250	2250	2250	2250	2250		
PIATTABANDA SUPERIORE		800×20	800×30	900×40	800×30	800×20	800×30	900×40	<u>x</u> /	
Radd. interno PIATTABANDA SU				800×40				800×30		
ANIMA VERTICAL (TRAVI)	Ε	20	16	20	16	16	16	20		20
PIATTABANDA INFERIORE		1000×40	1200×40	1200×40	1100×40	1100×40	1100×40	1100×40		2250
Radd. interno PIATTABANDA IN				1100×40				1000×40	<u>Y</u>	
SALDATURE	X	10×10	8x8	10x10	8x8	8x8	8x8	10×10		
SALDATURE	Υ	10x10	8x8	10x10	8x8	8x8	8x8	10×10		

Fig. 9.1 Caratteristiche geometriche dei conci di trave

Si riportano di seguito il riepilogo delle verifiche delle sezioni più significative della trave esterno curva (vedi figura seguente) per le combinazioni di carico di normativa. L'unità di misura utilizzata per le tensioni sono i N/mm² (MPa).


Tali verifiche vengono condotte con le sollecitazioni massime in base alle combinazioni di carico di normativa.

I tabulati completi sono presenti nella relazione degli allegati:

Schema delle sezioni di calcolo

Per la localizzazione delle tensioni di verifica che compaiono nelle tabelle seguenti si veda la figura seguente:

Cariana		Max Fz						Min Fz						
Sezione	O id0	⊙ id1	G id2	G id3	Oid4	O 5	O 6	G id0	⊙ id1	G id2	G id3	O id4	O 5	O 6
C1_APP	137	162	146	130	114	-1	35	138	135	73	96	97	-1	33
C1_MEZZ	154	149.2	73.6	158.8	158.4	-2.1	59.5	147.1	154.2	81.1	158.8	158.7	-2.3	55.0
C1_G1	108	105.2	61.1	127.0	127.2	-4.1	75.8	100.9	120.5	87.9	133.2	128.8	-4.4	70.4
C2_G2	297	301.2	197.1	280.3	277.9	-0.2	132.2	300.0	324.7	245.2	291.7	270.3	-0.6	123.3
C3_APP	305	347.5	258.5	311.8	276.4	-2.7	144.2	303.7	309.8	186.9	273.4	275.9	-2.7	143.4
C4_G3	341	351.6	290.6	245.2	231.9	-3.6	33.5	305.8	313.5	283.9	205.2	196.6	-5.5	28.7
C4_G4	105	135.4	134.8	157.9	132.0	-7.5	71.0	99.2	98.9	87.6	128.1	128.7	-7.7	66.9
C5_MEZZ	129	128.8	93.8	211.0	211.3	-7.0	96.7	122.2	127.5	98.6	213.4	212.8	-7.2	93.2
C6_G5	84	85.9	78.0	126.2	126.7	-6.3	85.0	68.2	115.3	130.1	160.1	136.0	-7.0	67.3
C6_G6	324	353.8	268.5	283.5	247.1	-4.6	102.7	323.1	328.2	209.5	251.9	247.5	-4.5	103.6
C7_APP	308	302.6	146.9	277.6	271.5	-1.2	144.9	311.8	332.1	229.3	316.5	267.4	-1.5	141.0

Direzione Progettazione e Realizzazione Lavori

Coriono				Max My				Min My						
Sezione	σ _{id0}	σ id1	σ id2	σ id3	o id4	σ_5	σ_6	σ id0	o _{id1}	σ id2	σ id3	ر انd4	σ_5	σ_6
C1_APP	137	162	144	129	113	-1	36	138	135	74	96	97	-1	32
C1_MEZZ	155.3	150.1	72.6	158.0	157.7	-2.0	63.5	276.6	274.0	82.3	185.2	183.1	-7.2	44.5
C1_G1	109.2	106.5	60.1	126.2	126.4	-4.0	79.2	231.2	233.6	86.3	232.8	231.4	-9.3	119.8
C2_G2	298.5	302.6	198.2	277.3	274.7	-0.4	129.1	203.2	241.4	244.1	161.8	113.4	-4.8	68.5
C3_APP	305.0	347.5	258.5	311.8	276.4	-2.7	144.2	246.6	258.7	186.9	207.6	201.9	-6.7	54.4
C4_G3	343.8	354.4	293.4	236.6	222.7	-4.0	24.3	305.8	313.5	283.9	205.2	196.6	-5.5	28.7
C4_G4	110.2	138.7	133.0	156.0	130.3	-7.2	78.1	246.8	240.3	89.3	140.5	145.2	-13.1	142.8
C5_MEZZ	134.0	134.1	92.2	209.2	209.5	-6.7	105.3	292.1	285.5	100.0	276.1	278.8	-13.3	204.3
C6_G5	83.7	85.9	78.0	126.2	126.7	-6.3	85.0	229.4	241.6	130.1	168.8	148.2	-12.4	146.7
C6_G6	324.5	353.8	268.5	283.5	247.1	-4.6	102.7	239.0	248.9	209.5	150.9	137.7	-7.9	77.9
C7_APP	311.1	305.5	149.1	276.0	269.3	-1.4	143.0	248.7	278.1	228.8	260.2	190.3	-5.3	47.5

9.2 ROMPITRATTA

Il calcolo della trave rompitratta, HEB500, viene condotto considerando la trave continua su più appoggi costituiti dai diaframmi.

Segue l'analisi dei carichi afferenti la trave rompitratta, il calcolo delle sollecitazioni e le conseguenti verifiche di resistenza, imbozzamento e giunzioni bullonate e saldate:

ANALISI DEI CARICHI E SOLLECII	TAZIONI								
ROMPITRATTA									
					mm				
PASSO DIAFRAMMI				р	5625				
LARGHEZZA AFFERENTE ROMPI	TRATTA			I	3875				
ANALISI DEI CARICHI PERMANEN	JTI ITI								
		s (m)	L (m)	Punitario	P1 (kN/mq)	P2 (kN/m)			
Soletta (s=30 cm)		0.31	12.75	25	7.75				
Pavimentazione			11.25		3				
Peso rompitratta (Trave a doppia "T	" B=400; H==50	00)				1.59			
CARICHI SUL ROMPITRATTA									
	С		I (m)	P(unitario)	P1 (kN/mq)	P2 (kN/m)	P(kN/m)	Horiz (kN)	Vert (kN)
Soletta+Pav.+Romp.			3.875		10.75	1.59	43.25		43.25
Accidentali (Courbon)	1			1200			36.5		146.33
Azione del vento								0	
Sisma								0	
SOLLECITAZIONI SUL ROMPITRA	TTA								
								T (kN/m)	M (kNm/m)
Esercizio SLE (g+q+0.6w)								533	500
Esercizio SLU (1.35*g+1.35*q+0.9v	v)							720	675

TABELLA RIASSUNTIVA SOLLEC	ITAZIONI					
AZIONE AS. (KN)		0.00				
MOMENTO (KNm)		675				
TAGLIO (KN)		720				
DATI TRAVE						
Verifica		SLU				
ACCIAIO FE510	fyd	338.10	Мра			

Direzione Progettazione e Realizzazione Lavori

RELAZIONE TECNICA E DI CALCOLO - IMPALCATO

VERIFICA DI RESISTENZA DELLLA TRAVE

VERIFICA DI RESISTEN		1VC				
Caratteristiche delle tr	avi in acciaio					
Altezza trave totale			Htr (m)	0.5000		
Larghezza piattabanda s			Bpe (m)	0.3000		
Spessore piattabanda su			Spe (m)	0.0280		
Larghezza piattabanda ir			Bpi (m)	0.3000		
Spessore piattabanda in	feriore		Spi (m)	0.0280		
Spessore anima			Sa (m)	0.0145		
Altezza anima			Ha (m)	0.4440		
Area della sezione			Aa (m2)	0.0232		
Momento statico lembo			Sai (m3)	0.0058		
Dist. baric. lembo inferio	-		Dagi (m)	0.2500		
Dist. baric. lembo superi			Dage (m)	0.2500		
Momento d'inerzia barice	entrico X		Jgx (m4)	0.0010		
Modulo di resist. lembo :	super.		Wae (m3)	0.0042		
Modulo di resist. lembo i	infer.		Wai (m3)	0.0042		
Momento statico al lemb	oo sup. anima		Sae (m3)	0.0020		
Momento statico al lemb	oo inf. anima		Sai (m3)	0.0020		
Momento statico asse Y	<u> </u>		Svi (m3)	0.0035		
Dist. baric. asse Y			Dvgi (m)	0.1500		
Momento d'inerzia barice	entrico Y		Jgy (m4)	0.0003		
Riepilogo sollecitazion	ni (SLU)					
	· · · · ·					
Sforzo normale		max	N (kN)	0		
		min	N (kN)			
			,			
Sforzo di taglio		max	T (kN)	720		
		min	T (kN)			
			. ()			
Momento flettente		max	M (kNm)			
		min	M (kNm)	675		
			()	9.0		
Verifiche delle sezioni	i (SLII)					
Vermone dene sezioni	(020)					
tanaiana nar la niattahan	do our		MPa	161.00		
tensione nor.le piattaban		σ ala sup.		-161.82		
tensione nor.le piattaban		σ ala inf.	MPa	161.82		
tensione tang.le bar. ani	ma	τ anima baric.	MPa	99.28		
tensione nor.le attacco a		σ _{anima sup.}	MPa	-143.70		
tensione tang.le attacco	anima-piatt. sup.	τ anima sup.	MPa	4.56		
tensione ideale attacco a	anima-piatt. sup.	σ id sup.	MPa	144.13		
tensione nor.le attacco a	anima-piatt. inf.	σ anima inf.	MPa	143.70		
tensione tang.le attacco	•	τ anima inf.	MPa	4.56		
tensione ideale attacco a	·		MPa	-144.13		
tonoione ideale attacco a	aimia piatti iiii.	σ id inf.	ivii a	177.10		
VEDICIOA IMPOZZANIE	NTO					
VERIFICA IMBOZZAME		DOLLETT:	005000	21406224	-	
	RAPPORTI LA			T T		
Fe = 510	h=	44.4	cm	t=	1.450	cm
fd= 355						
h/t = 29.62	(CNR1001					
limte 36.00		h/t< limite	:non fare ve	erifica CNR1	10011	

VERIFICA DEL COLLEGAMENTO A TAGLIO BULLONATO IN CORRISPONDENZA DEI DIAFRAMMA DI PILA

anime					
	Tipologia				
	Giunto	G1			
Α	area lorda (mm²)	6786			
$\sigma_{\! ext{es}}$	massima tensione assiale (Mpa)	0.00			
$ au_{ m es}$	tensione tangenziale media (Mpa)	99.28			
n _b	n° bulloni allineati (verticalmente)	4			
n _f	n° file di bulloni (da un lato del giunto)	4			
A*	area netta (mm²)	4962			
τ _{es} *	tensione tangenziale media netta (Mpa)	135.78			
Tv	taglio verticale su un bullone (una faccia) (kN)	21.05			
То	taglio orizzontale su un bullone (una faccia) (kN)	0.00			
Vf	taglio vettoriale su un bullone (una faccia) (kN)	21.05			
coprigiu	unto anime				
		sp			
		14			
O rif	tensione di rifollamento (Mpa)	52.77	<	275.1	MPa
Ac	area netta coprigiunti (mm²)	5208	>	A*	

VERIFICA DELLE SALDATURE TESTA A TESTA TRA I PROFILI HEB

Le saldature rimanenti sono a piena penetrazione realizzate con materiali d'apporto aventi resistenza uguale o maggiore a quella degli elementi collegati. Pertanto, la resistenza di progetto dei collegamenti a piena penetrazione si assume eguale alla resistenza di progetto del più debole tra gli elementi connessi.

9.4 VERIFICHE DI STABILITÀ

9.4.1 Stabilità dei pannelli d'anima (imbozzamento)

La verifica di instabilità viene condotta in accordo alla [CNR10011] §7.6.2.

I tabulati di verifica completi sono presenti in allegato.

Di seguito vengono riportati i tabulati di riepilogo delle suddette verifiche nelle sezioni precedentemente definite con le seguenti convenzioni:

"P1; P2" e "P3" sono i pannelli dell'anima della trave delimitati lateralmente dagli irrigidimenti trasversali dell'anima, superiormente o inferiormente dalla piattabanda e dagli irrigidimenti longitudinali;

C1 APP

Verifica a imbozzamento dei pannelli d'anima

Interasse degli irrigidimenti trasversali a	2708	mm
Distanza netta fra le piattabande h	2190	mm
Distanza piattabanda superiore - 1° irrigidimento longitudinale	2190	mm
Distanza piattabanda superiore - 2° irrigidimento longitudinale	2190	mm
Spessore dell'anima tweb	20	mm

Pannello 1: h=2190 alfa=1,24 Pannello 2: h=0 alfa=0,00 Pannello 3: h=0 alfa=0,00

C2 MEZZ

Verifica a imbozzamento dei pannelli d'anima

Interasse degli irrigidimenti trasversali a	2708	mm
Distanza netta fra le piattabande h	2190	mm
Distanza piattabanda superiore - 1° irrigidimento longitudinale	750	mm
Distanza piattabanda superiore - 2° irrigidimento longitudinale	2190	mm
Spessore dell'anima tweb	16	mm

C2 G1

Verifica a imbozzamento dei pannelli d'anima

Interasse degli irrigidimenti trasversali a	2708	mm
Distanza netta fra le piattabande h	2180	mm
Distanza piattabanda superiore - 1° irrigidimento longitudinale	750	mm
Distanza piattabanda superiore - 2° irrigidimento longitudinale	2180	mm
Spessore dell'anima tweb	16	mm

C2_G2

Verifica a imbozzamento dei pannelli d'anima

Interasse degli irrigidimenti trasversali a	2708	mm
Distanza netta fra le piattabande h	2190	mm

Adeguamento S.S n. 87 "Sannitica" – Interventi localizzati per garantire la percorribilità immediata Tratto "Campobasso – Bivio S.Elia" Lotti A2 e A3 PROGETTO DEFINTIVO

RELAZIONE TECNICA E DI CALCOLO - IMPALCATO

Distanza piattabanda superiore - 1º irrigidimento longitudinale

Distanza piattabanda superiore - 2º irrigidimento longitudinale

Spessore dell'anima tweb

750 mm

1500 mm

Pannello 1: h=750 alfa=3,61 Pannello 2: h=750 alfa=3,61 Pannello 3: h=690 alfa=3,92

C3 APP

Verifica a imbozzamento dei pannelli d'anima

Interasse degli irrigidimenti trasversali a

Distanza netta fra le piattabande h

Distanza piattabanda superiore - 1° irrigidimento longitudinale

Distanza piattabanda superiore - 2° irrigidimento longitudinale

Spessore dell'anima tweb

2078 mm

2090 mm

50 mm

C4_G3

Verifica a imbozzamento dei pannelli d'anima

Interasse degli irrigidimenti trasversali a

Distanza netta fra le piattabande h

Distanza piattabanda superiore - 1° irrigidimento longitudinale

Distanza piattabanda superiore - 2° irrigidimento longitudinale

Spessore dell'anima tweb

2812 mm

2180 mm

750 mm

1400 mm

Pannello 1: h=750 alfa=3,75 Pannello 2: h=650 alfa=4,33 Pannello 3: h=780 alfa=3,61

C4 G4

Verifica a imbozzamento dei pannelli d'anima

Interasse degli irrigidimenti trasversali a

Distanza netta fra le piattabande h

Distanza piattabanda superiore - 1° irrigidimento longitudinale

Distanza piattabanda superiore - 2° irrigidimento longitudinale

Spessore dell'anima tweb

2812 mm

2180 mm

750 mm

5pessore dell'anima tweb

Pannello 1: h=750 alfa=3,75 Pannello 2: h=1430 alfa=1,97 Pannello 3: h=0 alfa=0,00

C5 MEZZ

Verifica a imbozzamento dei pannelli d'anima

Interasse degli irrigidimenti trasversali a

Distanza netta fra le piattabande h

Distanza piattabanda superiore - 1° irrigidimento longitudinale

Distanza piattabanda superiore - 2° irrigidimento longitudinale

Spessore dell'anima tweb

2812 mm

2190 mm

750 mm

5pessore dell'anima tweb

Pannello 1: h=750 alfa=3,75 Pannello 2: h=1440 alfa=1,95 Pannello 3: h=0 alfa=0,00

C6_G5

Verifica a imbozzamento dei pannelli d'anima

Interasse degli irrigidimenti trasversali a 2812 mm
Distanza netta fra le piattabande h 2180 mm

Adeguamento S.S n. 87 "Sannitica" – Interventi localizzati per garantire la percorribilità immediata Tratto "Campobasso – Bivio S.Elia" Lotti A2 e A3

PROGETTO DEFINTIVO

RELAZIONE TECNICA E DI CALCOLO - IMPALCATO

Distanza piattabanda superiore - 1° irrigidimento longitudinale 750 mm Distanza piattabanda superiore - 2° irrigidimento longitudinale 2180 mm Spessore dell'anima tweb 16 mm

Pannello 1: h=750 alfa=3,75 Pannello 2: h=1430 alfa=1,97 Pannello 3: h=0 alfa=0,00

C6_G6

Verifica a imbozzamento dei pannelli d'anima

Interasse degli irrigidimenti trasversali a 2812 mm Distanza netta fra le piattabande h 2180 mm Distanza piattabanda superiore - 1º irrigidimento longitudinale 750 mm Distanza piattabanda superiore - 2° irrigidimento longitudinale 1500 mm Spessore dell'anima tweb 16 mm

Pannello 1: h=750 alfa=3,75 Pannello 2: h=750 alfa=3,75 Pannello 3: h=680 alfa=4,14

C7_APP

Verifica a imbozzamento dei pannelli d'anima

Interasse degli irrigidimenti trasversali a	2812	mm
Distanza netta fra le piattabande h	2100	mm
Distanza piattabanda superiore - 1° irrigidimento longitudinale	1500	mm
Distanza piattabanda superiore - 2° irrigidimento longitudinale	2100	mm
Spessore dell'anima tweb	20	mm

Pannello 1: h=1500 alfa=1,87 Pannello 2: h=600 alfa=4.69 Pannello 3: h=0 alfa=0.00

"cc" sono le condizioni di carico con o senza ritiro e delta termico differenziale:

cc1=Con ritiro, DT+ cc2=Con Ritiro, DT- cc3=Senza ritiro, DT+ cc4=Senza ritiro, DT-

La verifica risulta soddisfatta se:

$$\eta = \frac{\sigma_{cr,id}}{\sqrt{\sigma_1^2 + 3\tau^2}} \ge \beta \nu$$

Di seguito si riportano i tabulati completi delle verifiche di stabilità locale dei pannelli d'anima:

Direzione Progettazione e Realizzazione Lavori

	Р	П	I							Fz	max							
CONCI		cc	σ _{sup}	G inf	τ_{med}	σ ₁	Ψ	k_{σ}	k_{τ}	σ _{cr,0}	σ _{cr}	τ _{cr}	σ _N	σ_{M}	σ _{cr,id}	$\sigma_{\text{cr,red}}$	νβ	η
		cc1	-83.5	-21.4	60	84	0	6	7.96	15.53	96.20	124	52	31	128	128	0.93	0.96
		cc2	-91.7	115.5	54	92	-1	24	7.96	15.53	371.15	124	12	104	265	265	0.82	2.01
		ссЗ	5.3	-70.0	65	70	0		7.96	15.53	126.83	124	32	38	165	165	0.89	1.24
		cc4	-2.9	66.9	59	3	-23	24	7.96	15.53	371.15	124	32	35	234	234	0.90	2.27
		cc1	-21.4 115.5	-21.4 115.5	60 54	-	-	-	-	-	-	-	-	-	-	-	-	-
C1_APP	P1	cc2	-70.0	-70.0	65	-			_			_	_		_	_	_	
		cc4	66.9	66.9	59	-	-	-	-	-	-	-	-	-	-	-	-	-
		cc1	-21.4	-21.4	60	-	-	-	-	-	-	-	-	-	-	-	-	-
		cc2	115.5	115.5	54	-	-	-	-	-	-	-	-	-	-	-	-	-
		сс3	-70.0	-70.0	65	-	-	-	-	-	-	-	-	-	-	-	-	-
		cc4	66.9	66.9	59	-	-		-	-	-	-	-	-	-	-	-	-
		cc1	-135.5	-43.5	4	135	0		5.65	84.74	500.80	479	90	46	501	337	1.00	2.48
		cc2	-155.0 -70.6	-98.8 -10.1	18 12	155 71	0	5 7	5.65 5.65	84.74 84.74	409.72 572.75	479 479	127 40	28 30	415 580	328 341	1.00	2.07 4.65
		cc3	-90.1	-65.3	26	90	1		5.65	84.74	390.01	479	78	12	416	328	1.00	3.26
		cc1	-43.5	133.0	4	44	-3		6.47	22.99	549.40	149	45	88	535	339	1.00	7.68
01 ME77	P-4	cc2	-98.8	9.1	18	99	0		6.47	22.99	190.83	149	45	54	193	193	1.00	1.86
C1_MEZZ	P1	ссЗ	-10.1	106.1	12	10	-11	24	6.47	22.99	549.40	149	48	58	400	325	1.00	14.33
		cc4	-65.3	-17.8	26	65	0	6	6.47	22.99	140.72	149	42	24	156	156	1.00	1.97
		cc1	133.0	133.0	4	-	-	-	-	-	-	-	-	-	-	-	-	-
		cc2	9.1	9.1	18 12	-	-	-	-	-	-	-	-	-	-	-	-	-
		cc3	-17.8	-17.8	26	-	-	-	-	-	-	-	-	-	-	-	-	-
		cc1	-67.7	-12	-2	68	0	6.54	5.65	84.74	555	479	40	28	555	340	1.00	5.02
		cc2	-121	-79	11	121	1		5.65	84.74	406	479	100	21	409	327	1.00	2.67
		ссЗ	-28.5	8	8	29	0	10.22	5.65	84.74	866	479	10	18	839	349	1.00	10.87
		cc4	-81.8	-58	21	82	1		5.65	84.74	393	479	70	12	414	327	1.00	3.66
		cc1	-12.4	93	-2	12	-7		6.46	23.31	557	150	40	53	546	340	1.00	26.54
C1_G1	P1	cc2	-78.8	1	11	79	0		6.46	23.31	181	150	39	40	182	182	1.00	2.25
		cc3	8.091 -58.3	78 -14	8 21	0 58	0	_	6.46 6.46	23.31	178 147	150 150	43 36	35 22	261 159	261 159	1.00	17.74 2.32
		cc1	92.92	93	-2	-	-	- 0.50	- 0.40	- 20.01	- 147	-	-	- 22	-	-	-	- 2.52
		cc2	1.399	1	11	-	-	-	-	-	-	-	-	-	-	-	-	-
		ссЗ	77.9	78	8	-	-	-	-	-	-	-	-	-	-	-	-	-
		cc4	-13.6	-14	21	-	-	-	-	-	-	-	-	-	-	-	-	-
		cc1	40.84	-70	-38	70	-1		5.65	84.74	1241	479	15	56	961	350	1.00	3.63
		cc2	178.8	75	-42	0	0		5.65	84.74	647	479	127	52	829	348	1.00	4.74
		cc3	120 258	12 158	-38 -42	0	0		5.65 5.65	84.74 84.74	647 647	479 479	66 208	54 50	829 829	348 348	1.00	5.33 4.79
		cc1	-70.3	-181	-38	181	0		5.65	84.74	479	479	126	56	493	336	1.00	1.74
		cc2	75.01	-29	-42	29	-3		5.65	84.74	2025	479	23	52	927	350	1.00	4.43
C2_G2	P1	ссЗ	12.34	-95	-38	95	0		5.65	84.74	730	479	41	54	734	347	1.00	3.00
		cc4	157.7	57	-42	0	0	7.64	5.65	84.74	647	479	108	50	829	348	1.00	4.79
		cc1	-181	-284	-38	284	1		5.60	100.12	483	561	233	51	491	336	1.00	1.15
		cc2	-28.8	-124	-42	124	0		5.60	100.12	632	561	77	48	667	345	1.00	2.39
		cc3	-95.3 57.38	-194 -35	-38 -42	194 35	-2	5.28 23.90	5.60 5.60	100.12 100.12	529 2393	561 561	145 11	50 46	544 1084	339 351	1.00	1.66 4.35
		cc1	-6.57	-199	111	199	-2		7.42	33.10	2393	246	103	96	288	288	0.90	1.04
		cc2	191.1	-34	105	34	-6		7.42	33.10	791	246	78	113	478	335	0.88	1.82
		сс3	48.24	-144	109	144	0		7.42	33.10	359	246	48	96	382	322	0.87	1.35
		cc4	245.9	21	102	0	0		7.42	33.10	253	246	133	113	426	329	0.91	1.86
		cc1	-199	-275	111	275	1		5.66	213.96	985	1212	237	38	1106	351	1.00	1.05
C3_APP	P1	cc2	-34.3	-123	105	123	0		5.66	213.96	1303	1212	79	44	1589	353	1.00	1.61
		cc3	-144 20.59	-220 -68	109 102	220 68	1		5.66 5.66	213.96 213.96	1024 2235	1212 1212	182 24	38 44	1190 2032	352 354	1.00	1.21 1.86
		cc1	-275	-275	111	- 00	-	- 10.43	- 5.00	- 213.80	- 2233	1212	- 24	- 44	- 2032	- 354	- 1.00	1.00
		cc2	-123	-123	105	-	-	-	-	-	-	-	-	-	-	-	-	-
		ссЗ	-220	-220	109	-	-	-	-	-	-	-	-	-	-	-	-	-
		cc4	-68	-68	102	-	-	-	-	-	-	-	-	-	-	-	-	-
		-								-						_		

PROGETTO DEFINTIVO

Direzione Progettazione e Realizzazione Lavori

		cc1	-132	-191	59	191	1	4.68	5.62	84.74	397	477	161	29	427	329	1.00	1.52
		cc2	114	70	56	0	0	7.64	5.62	84.74	647	477	92	22	826	348	1.00	3.57
		сс3	-46.5	-97	58	97	0	5.32	5.62	84.74	451	477	72	25	533	339	1.00	2.43
		cc4	199.7	164	55	0	0	7.64	5.62	84.74	647	477	182	18	826	348	1.00	3.67
		cc1	-191	-241	59	241	1	4.44	5.55	112.82	501	627	216	25	527	338	1.00	1.29
04.00		cc2	70.39	33	56	0	0	7.64	5.55	112.82	862	627	52	19	1085	351	1.00	3.60
C4_G3	P1	сс3	-97.3	-141	58	141	1	4.70	5.55	112.82	530	627	119	22	592	342	1.00	1.98
		cc4	163.7	133	55	0	0		5.55	112.82	862	627	148	16	1085	351	1.00	3.70
		cc1	-241	-302	59	302	1	4.42	5.65	78.35	347	442	271	30	358	317	1.00	1.02
		cc2	32.62	-13	56	13	-3		5.65	78.35	1873	442	10	23	787	348	1.00	3.53
		cc3	-141	-194	58	194	1	4.60	5.65	78.35	360	442	168	26	386	323	1.00	1.48
		_	132.5								598			19	766			
		cc4	_	95	55	0	0		5.65	78.35		442	114			347	1.00	3.66
		cc1	19.08	41	53	0	0	7.64	5.62	84.74	647	477	30	11	826	348	1.00	3.83
		cc2	-113	-90	54	113	1	4.43	5.62	84.74	375	477	101	12	437	330	1.00	2.25
		cc3	20.8	43	52	0	0	7.64	5.62	84.74	647	477	32	11	826	348	1.00	3.83
		cc4	-111	-88	54	111	1	4.44	5.62	84.74	377	477	100	12	440	331	1.00	2.27
		cc1	41.38	84	53	0	0	7.64	6.37	23.31	178	149	63	21	257	257	1.00	2.83
04.04	D.	cc2	-89.9	-46	54	90	1	5.21	6.37	23.31	121	149	68	22	150	150	1.00	1.15
C4_G4	P1	сс3	43.39	86	52	0	0	7.64	6.37	23.31	178	149	65	22	257	257	1.00	2.83
		cc4	-87.9	-43	54	88	0	5.27	6.37	23.31	123	149	66	22	152	152	1.00	1.18
		cc1	83.9	84	53	-	-	-	-	-	-	_	-	-	-	_		
		cc2	-46	-46	54	_	_	_	_	_	-		_	_	-		_	_
		cc3	86.46	86	52	_	_	_	_	_	-		_	_	_		_	
		cc4	-43.4	-43	54	_					<u> </u>		_				_	
	 	+	_				_	7	E 00	0474	0.40	477	00	00	CEE	044	1.00	F 0.1
		cc1	-57.3	-1	18	57	0		5.62	84.74	640	477	29	28	655	344	1.00	5.31
		cc2	-194	-134	20	194	1	4.69	5.62	84.74	397	477	164	30	401	325	1.00	1.65
		cc3	-28.3	18	18	28	-1		5.62	84.74	1336	477	5	23	956	350	1.00	8.45
		cc4	-165	-116	20	165	1	4.67	5.62	84.74	395	477	140	25	400	325	1.00	1.93
		cc1	-0.72	108	18	1	-150		6.39	22.99	549	147	54	54	376	321	1.00	10.54
C5 MEZZ	P1	cc2	-134	-20	20	134	0	6.73	6.39	22.99	155	147	77	57	157	157	1.00	1.13
C3_IVIEZZ	F1	сс3	18.13	107	18	0	0	7.64	6.39	22.99	176	147	63	45	254	254	1.00	8.39
		cc4	-116	-21	20	116	0	6.57	6.39	22.99	151	147	68	47	154	154	1.00	1.28
		cc1	107.9	108	18	-	-	-	-	-	-	-	-	-	-	-	-	-
		cc2	-19.8	-20	20	-	-	-	-	-	-	-	-	-	-	-	-	-
		сс3	107.2	107	18	-	_	-	-	-	-	-	-	-	-	-	-	-
		cc4	-20.5	-21	20	_	-	_	_	_	-	_	_	-	_	_	_	_
		cc1	37 21	47	-10	٥	0	7.64	5.62	84.74	647	477	12	5	826	3/18	1 00	16 20
		cc1	37.21	47	-12	112	0		5.62	84.74	647 376	477	42	5	826	348	1.00	16.29
		cc2	-112	-89	-10	112	1	4.44	5.62	84.74	376	477	100	12	379	322	1.00	2.84
		cc2 cc3	-112 39.11	-89 49	-10 -12	112 0	1	4.44 7.64	5.62 5.62	84.74 84.74	376 647	477 477	100 44	12 5	379 826	322 348	1.00	2.84 16.18
		cc2 cc3	-112 39.11 -110	-89 49 -87	-10 -12 -10	112 0 110	1 0 1	4.44 7.64 4.45	5.62 5.62 5.62	84.74 84.74 84.74	376 647 377	477 477 477	100 44 98	12 5 12	379 826 380	322 348 322	1.00 1.00 1.00	2.84 16.18 2.89
		cc2 cc3 cc4 cc1	-112 39.11 -110 47.2	-89 49 -87 66	-10 -12 -10 -12	112 0 110 0	1 0 1 0	4.44 7.64 4.45 7.64	5.62 5.62 5.62 6.37	84.74 84.74 84.74 23.31	376 647 377 178	477 477 477 149	100 44 98 57	12 5 12 10	379 826 380 257	322 348 322 257	1.00 1.00 1.00 1.00	2.84 16.18 2.89 12.04
C6 G5	P1	cc2 cc3	-112 39.11 -110 47.2 -88.6	-89 49 -87 66 -44	-10 -12 -10 -12 -10	112 0 110	1 0 1 0	4.44 7.64 4.45 7.64 5.25	5.62 5.62 5.62 6.37 6.37	84.74 84.74 84.74 23.31 23.31	376 647 377 178 122	477 477 477 149 149	100 44 98 57 66	12 5 12 10 22	379 826 380 257 124	322 348 322 257 124	1.00 1.00 1.00 1.00 1.00	2.84 16.18 2.89 12.04 1.37
C6_G5	P1	cc2 cc3 cc4 cc1	-112 39.11 -110 47.2	-89 49 -87 66 -44 68	-10 -12 -10 -12	112 0 110 0 89	1 0 1 0	4.44 7.64 4.45 7.64 5.25 7.64	5.62 5.62 5.62 6.37 6.37	84.74 84.74 84.74 23.31	376 647 377 178 122 178	477 477 477 149 149	100 44 98 57 66 59	12 5 12 10 22 10	379 826 380 257 124 257	322 348 322 257 124 257	1.00 1.00 1.00 1.00	2.84 16.18 2.89 12.04 1.37 11.95
C6_G5	P1	cc2 cc3 cc4 cc1	-112 39.11 -110 47.2 -88.6	-89 49 -87 66 -44	-10 -12 -10 -12 -10	112 0 110 0 89	1 0 1 0	4.44 7.64 4.45 7.64 5.25	5.62 5.62 5.62 6.37 6.37	84.74 84.74 84.74 23.31 23.31	376 647 377 178 122	477 477 477 149 149	100 44 98 57 66	12 5 12 10 22	379 826 380 257 124	322 348 322 257 124	1.00 1.00 1.00 1.00 1.00	2.84 16.18 2.89 12.04 1.37
C6_G5	P1	cc2 cc3 cc4 cc1 cc2 cc3	-112 39.11 -110 47.2 -88.6 49.14	-89 49 -87 66 -44 68	-10 -12 -10 -12 -10 -12	112 0 110 0 89	1 0 1 0 0	4.44 7.64 4.45 7.64 5.25 7.64	5.62 5.62 5.62 6.37 6.37	84.74 84.74 84.74 23.31 23.31 23.31	376 647 377 178 122 178	477 477 477 149 149	100 44 98 57 66 59	12 5 12 10 22 10	379 826 380 257 124 257	322 348 322 257 124 257	1.00 1.00 1.00 1.00 1.00	2.84 16.18 2.89 12.04 1.37 11.95
C6_G5	P1	cc2 cc3 cc4 cc1 cc2 cc3 cc4	-112 39.11 -110 47.2 -88.6 49.14 -86.6	-89 49 -87 66 -44 68 -42	-10 -12 -10 -12 -10 -12 -10	112 0 110 0 89	1 0 1 0 0	4.44 7.64 4.45 7.64 5.25 7.64	5.62 5.62 5.62 6.37 6.37	84.74 84.74 84.74 23.31 23.31 23.31	376 647 377 178 122 178	477 477 477 149 149	100 44 98 57 66 59	12 5 12 10 22 10	379 826 380 257 124 257	322 348 322 257 124 257	1.00 1.00 1.00 1.00 1.00	2.84 16.18 2.89 12.04 1.37 11.95
C6_G5	P1	cc2 cc3 cc4 cc1 cc2 cc3 cc4 cc1	-112 39.11 -110 47.2 -88.6 49.14 -86.6 66.25	-89 49 -87 66 -44 68 -42 66	-10 -12 -10 -12 -10 -12 -10	112 0 110 0 89	1 0 1 0 0	4.44 7.64 4.45 7.64 5.25 7.64	5.62 5.62 5.62 6.37 6.37	84.74 84.74 84.74 23.31 23.31 23.31	376 647 377 178 122 178	477 477 477 149 149	100 44 98 57 66 59	12 5 12 10 22 10	379 826 380 257 124 257	322 348 322 257 124 257	1.00 1.00 1.00 1.00 1.00	2.84 16.18 2.89 12.04 1.37 11.95
C6_G5	P1	cc2 cc3 cc4 cc1 cc2 cc3 cc4 cc1	-112 39.11 -110 47.2 -88.6 49.14 -86.6 66.25 -44.2	-89 49 -87 66 -44 68 -42 66 -44	-10 -12 -10 -12 -10 -12 -10 -12 -10	112 0 110 0 89	1 0 1 0 0	4.44 7.64 4.45 7.64 5.25 7.64	5.62 5.62 5.62 6.37 6.37	84.74 84.74 84.74 23.31 23.31 23.31	376 647 377 178 122 178	477 477 477 149 149	100 44 98 57 66 59	12 5 12 10 22 10	379 826 380 257 124 257	322 348 322 257 124 257	1.00 1.00 1.00 1.00 1.00	2.84 16.18 2.89 12.04 1.37 11.95
C6_G5	P1	cc2 cc3 cc4 cc1 cc2 cc3 cc4 cc1 cc2 cc3	-112 39.11 -110 47.2 -88.6 49.14 -86.6 66.25 -44.2 68.26 -42.2	-89 49 -87 66 -44 68 -42 66 -44 68	-10 -12 -10 -12 -10 -12 -10 -12 -10 -12 -10	112 0 110 0 89 0 87 -	1 0 1 0 0 0 0	4.44 7.64 4.45 7.64 5.25 7.64 5.29	5.62 5.62 5.62 6.37 6.37 6.37 - -	84.74 84.74 23.31 23.31 23.31 23.31 -	376 647 377 178 122 178 123 - -	477 477 477 149 149 149 - -	100 44 98 57 66 59 64 -	12 5 12 10 22 10 22 - -	379 826 380 257 124 257 125 -	322 348 322 257 124 257 125 - -	1.00 1.00 1.00 1.00 1.00 1.00 - -	2.84 16.18 2.89 12.04 1.37 11.95 1.41
C6_G5	P1	cc2 cc3 cc4 cc1 cc2 cc3 cc4 cc1 cc2 cc3 cc4	-112 39.11 -110 47.2 -88.6 49.14 -86.6 66.25 -44.2 68.26 -42.2 -60.3	-89 49 -87 66 -44 68 -42 66 -44 68 -42	-10 -12 -10 -12 -10 -12 -10 -12 -10 -12 -10 -98	112 0 110 0 89 0 87 - - - -	1 0 1 0 0 0 0 - - -	4.44 7.64 4.45 7.64 5.25 7.64 5.29 - - - - 5.51	5.62 5.62 6.37 6.37 6.37 - - - 5.62	84.74 84.74 84.74 23.31 23.31 23.31 23.31 	376 647 377 178 122 178 123 - - - - 467	477 477 477 149 149 149 - - - - 477	100 44 98 57 66 59 64 - - - 101	12 5 12 10 22 10 22 - - - - 41	379 826 380 257 124 257 125 - - - - 564	322 348 322 257 124 257 125 - - - 341	1.00 1.00 1.00 1.00 1.00 1.00 - - - - 1.00	2.84 16.18 2.89 12.04 1.37 11.95 1.41 - - - 1.54
C6_G5	P1	cc2 cc3 cc4 cc1 cc2 cc3 cc4 cc1 cc2 cc3 cc4	-112 39.11 -110 47.2 -88.6 49.14 -86.6 66.25 -44.2 68.26 -42.2 -60.3 71.79	-89 49 -87 66 -44 68 -42 66 -44 68 -42 -142 4	-10 -12 -10 -12 -10 -12 -10 -12 -10 -12 -10 -98 96	112 0 110 0 89 0 87 - - - - 142	1 0 0 0 0 0 - - - -	4.44 7.64 4.45 7.64 5.25 7.64 5.29 - - - 5.51 7.64	5.62 5.62 6.37 6.37 6.37 - - - 5.62 5.62	84.74 84.74 84.74 23.31 23.31 23.31 23.31 - - - 84.74 84.74	376 647 377 178 122 178 123 - - - - 467 647	477 477 149 149 149 - - - - 477	100 44 98 57 66 59 64 - - - 101 38	12 5 10 22 10 22 - - - - - 41	379 826 380 257 124 257 125 - - - 564 826	322 348 322 257 124 257 125 - - - 341 348	1.00 1.00 1.00 1.00 1.00 1.00 - - - 1.00 1.00	2.84 16.18 2.89 12.04 1.37 11.95 1.41 - - - 1.54 2.10
C6_G5	P1	cc2 cc3 cc4 cc1 cc2 cc3 cc4 cc1 cc2 cc3 cc4	-112 39.11 -110 47.2 -88.6 49.14 -86.6 66.25 -44.2 68.26 -42.2 -60.3 71.79 39.14	-89 -87 -66 -44 -68 -42 -66 -44 -48 -42 -142 4	-10 -12 -10 -12 -10 -12 -10 -12 -10 -12 -10 -98 98	112 0 110 0 89 0 87 - - - - 142 0 47	1 0 0 0 0 0 - - - - 0 0	4.44 7.64 4.45 7.64 5.25 7.64 5.29 - - - 5.51 7.64 19.72	5.62 5.62 6.37 6.37 6.37 - - - 5.62 5.62 5.62	84.74 84.74 84.74 23.31 23.31 23.31 	376 647 377 178 122 178 123 - - - - - - - 467 647	477 477 477 149 149 149 - - - - 477 477	100 44 98 57 66 59 64 - - - 101 38	12 5 12 10 22 10 22 - - - - - 41 34 43	379 826 380 257 124 257 125 - - - - 564 826 845	322 348 322 257 124 257 125 - - - 341 348 349	1.00 1.00 1.00 1.00 1.00 1.00 - - - 1.00 1.00	2.84 16.18 2.89 12.04 1.37 11.95 1.41 - - - - 1.54 2.10
C6_G5	P1	cc2 cc3 cc4 cc1 cc2 cc3 cc4 cc1 cc2 cc3 cc4 cc1 cc2	-112 39.11 -110 47.2 -88.6 49.14 -86.6 66.25 -44.2 68.26 -42.2 -60.3 71.79 39.14 226	-89 -87 -66 -44 -68 -42 -66 -44 -48 -42 -142 4 -47	-10 -12 -10 -12 -10 -12 -10 -12 -10 -98 96 98 97	112 0 110 0 89 0 87 - - - - 142 0 47	1 0 1 0 0 0 0 - - - - 0 0 0	4.44 7.64 4.45 7.64 5.25 7.64 5.29 - - - 5.51 7.64 19.72 7.64	5.62 5.62 6.37 6.37 6.37 - - - 5.62 5.62 5.62	84.74 84.74 23.31 23.31 23.31 23.31 - - - 84.74 84.74 84.74	376 647 377 178 122 178 123 - - - - - - - - - - 467 647 647	477 477 477 149 149 149 - - - - 477 477 477	100 44 98 57 66 59 64 - - - 101 38 4	12 5 12 10 22 10 22 - - - - - 41 34 43	379 826 380 257 124 257 125 - - - 564 826 845	322 348 322 257 124 257 125 - - - 341 348 349 348	1.00 1.00 1.00 1.00 1.00 1.00 - - - - 1.00 1.00	2.84 16.18 2.89 12.04 1.37 11.95 1.41 - - - - 1.54 2.10 1.98 2.08
C6_G5	P1	cc2 cc3 cc4 cc1 cc2 cc3 cc4 cc1 cc2 cc3 cc4 cc1 cc2 cc3 cc4 cc1	-112 39.11 -110 47.2 -88.6 49.14 -86.6 66.25 -44.2 68.26 -42.2 -60.3 71.79 39.14 226 -142	-89 49 -87 66 -44 68 -42 -66 -44 68 -42 -142 4 -47 129 -224	-10 -12 -10 -12 -10 -12 -10 -12 -10 98 96 98 97 98	112 0 110 0 89 0 87 - - - - 142 0 47 0 224	1 0 1 0 0 0 0 - - - - 0 0 0 1	4.44 7.64 4.45 7.64 5.25 7.64 5.29 - - - - 5.51 7.64 19.72 7.64 4.84	5.62 5.62 6.37 6.37 6.37 - - - - 5.62 5.62 5.62 5.62	84.74 84.74 23.31 23.31 23.31 - - - - 84.74 84.74 84.74 84.74	376 647 377 178 122 178 123 - - - - - 467 647 1671 647 410	477 477 149 149 149 - - - - 477 477 477	100 44 98 57 66 59 64 - - - 101 38 4 177	12 5 10 22 10 22 - - - - - - - - - - - - - - - - - -	379 826 380 257 124 257 125 - - - 564 826 845 826 464	322 348 322 257 124 257 125 - - 341 348 349 348 333	1.00 1.00 1.00 1.00 1.00 1.00 - - - - 1.00 1.00	2.84 16.18 2.89 12.04 1.37 11.95 1.41 - - - 1.54 2.10 1.98 2.08
C6_G5	P1	cc2 cc3 cc4 cc1 cc2 cc3 cc4 cc1 cc2 cc3 cc4 cc1 cc2 cc3 cc4 cc1 cc2 cc3 cc4 cc1 cc2 cc3 cc4 cc1 cc2 cc3 cc4 cc2 cc3 cc4 cc4 cc4 cc4 cc4 cc4 cc4 cc5 cc4 cc5 cc4 cc5 cc4 cc4	-112 39.11 -110 47.2 -88.6 49.14 -86.6 66.25 -44.2 68.26 -42.2 -60.3 71.79 39.14 226 -142 3.797	-89 49 -87 66 -44 68 -42 -68 -44 68 -42 -142 4 -47 129 -224 -64	-10 -12 -10 -12 -10 -12 -10 -12 -10 -12 -10 98 98 98 98 98 99 98	112 0 110 0 89 0 87 - - - 142 0 47 0 224 64	1 0 0 0 0 0 	4.44 7.64 4.45 7.64 5.25 7.64 5.29 - - - - 5.51 7.64 19.72 7.64 4.84 8.04	5.62 5.62 6.37 6.37 - - - - 5.62 5.62 5.62 5.62 5.62	84.74 84.74 23.31 23.31 23.31 - - - - 84.74 84.74 84.74 84.74 84.74	376 647 377 178 122 178 123 - - - - 467 647 1671 647 410	477 477 149 149 149 477 477 477 477	100 44 98 57 66 59 64 - - - 101 38 4 177 183 30	12 5 10 22 10 22 - - - - - - - - - - - - - - - - - -	379 826 380 257 124 257 125 - - - 564 826 845 826 464 755	322 348 322 257 124 257 125 - - - 341 348 349 348 333 347	1.00 1.00 1.00 1.00 1.00 1.00 - - - - 1.00 1.00	2.84 16.18 2.89 12.04 1.37 11.95 1.41 - - - 1.54 2.10 1.95
		cc2 cc3 cc4 cc1 cc2 cc3	-112 39.11 -110 47.2 -88.6 49.14 -86.6 66.25 -44.2 -60.3 71.79 39.14 29.14 3.797 -47.2	-89 49 -87 66 -44 68 -42 66 -44 68 -42 -142 4 -47 129 -224 -64 -133	-10 -12 -10 -12 -10 -12 -10 -12 -10 -12 -10 -12 -9 98 96 98 98 98	112 0 110 0 89 0 87 - - - 142 0 47 0 224 64 133	1 0 0 0 0 0 - - - - 0 0 0 1 0 0 1 0 0 0 0	4.44 7.64 4.45 7.64 5.25 7.64 5.29 - - - 5.51 7.64 19.72 7.64 4.84 8.04 5.78	5.62 5.62 6.37 6.37 6.37 - - - - 5.62 5.62 5.62 5.62 5.62 5.62	84.74 84.74 23.31 23.31 23.31 23.31 - - - - 84.74 84.74 84.74 84.74 84.74 84.74	376 647 377 178 122 178 123 - - - - 467 647 1671 647 410 681	477 477 149 149 149 - - - - 477 477 477 477 477	100 44 98 57 66 59 64 - - - 101 38 4 177 183 30	12 5 12 10 22 10 22 - - - - - - - - - - - - - - - - - -	379 826 380 257 124 257 125 - - - 564 826 845 826 464 755 591	322 348 322 257 124 257 125 - - - 341 348 349 348 333 347 342	1.00 1.00 1.00 1.00 1.00 1.00 1.00 - - - 1.00 1.00 1.00 1.00 1.00 1.00 1.00	2.84 16.18 2.89 12.04 1.37 11.95 1.41 - - 1.54 2.10 1.98 2.08 1.19 1.95
		cc2 cc3 cc4 cc1 cc2 cc3 cc4 cc1 cc2 cc3 cc4 cc1 cc2 cc3 cc4 cc1 cc2 cc3 cc4 cc1 cc2 cc3 cc4 cc1 cc2 cc3 cc4 cc2 cc3 cc4 cc4 cc4 cc4 cc4 cc4 cc4 cc5 cc4 cc5 cc4 cc5 cc4 cc4	-112 39.11 -110 47.2 -88.6 49.14 -86.6 66.25 -44.2 -60.3 71.79 39.14 226 -142 3.797 -47.2 128.8	-89 49 -87 66 -44 68 -42 66 -44 68 -42 -142 -129 -224 -64 -133 32	-10 -12 -10 -12 -10 -12 -10 -12 -10 -12 -10 98 96 98 97 98 99 99 99 99 99	112 0 110 0 89 0 87 - - - 142 0 47 0 224 64 133	1 0 0 0 0 0 	4.44 7.64 4.45 7.64 5.25 7.64 5.29 - - - 5.51 7.64 19.72 7.64 4.84 8.04 5.78 7.64	5.62 5.62 6.37 6.37 6.37 - - - 5.62 5.62 5.62 5.62 5.62 5.62 5.62	84.74 84.74 23.31 23.31 23.31 23.31 	376 647 377 178 122 178 123 - - - - - 467 647 1671 647 410 681 490	477 477 149 149 149 1-49 1-49 1-49 1-7 477 477 477 477 477 477 477	100 44 98 57 66 59 64 - - - 101 38 4 177 183 30 90	12 5 12 10 22 10 22 - - - - - 41 34 43 49 41 34	379 826 380 257 124 257 125 - - - 564 826 845 826 464 755 591 826	322 348 322 257 124 257 125 - - - 341 348 349 348 333 347 342 348	1.00 1.00 1.00 1.00 1.00 1.00 1.00 - - - 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00	2.84 16.18 2.89 12.04 1.37 11.95 1.41 - - - 1.54 2.10 1.98 2.08 1.19 1.95 1.58
		cc2 cc3 cc4 cc1 cc2 cc3	-112 39.11 -110 47.2 -88.6 49.14 -86.6 66.25 -44.2 -60.3 71.79 39.14 226 -142 3.797 -47.2 128.8	-89 49 -87 66 -44 68 -42 -142 4 -47 129 -224 -133 32 -298	-10 -12 -10 -12 -10 -12 -10 -12 -10 -12 -10 98 96 98 97 98 98 99 98	112 0 110 0 89 0 87 - - - 142 0 47 0 224 64 133 0	1 0 0 0 0 0 - - - - - 0 0 0 1 0 0 0 1 - - - -	4.44 7.64 4.45 7.64 5.25 7.64 5.29 - - - - 5.51 7.64 19.72 7.64 4.84 8.04 5.78 7.64	5.62 5.62 6.37 6.37 6.37 - - - - 5.62 5.62 5.62 5.62 5.62 5.62 5.62 5.62	84.74 84.74 23.31 23.31 23.31 23.31 	376 647 377 178 122 178 123 - - - - - 467 647 1671 647 410 681 490 647	477 477 149 149 149 1- - - - - - - - - - - - - - - - - - -	100 44 98 57 66 59 64 - - - 101 38 4 177 183 30 90 80 261	12 5 12 10 22 10 22 - - - - - - - - - - - - 34 43 49 43 49 37	379 826 380 257 124 257 125 - - - 564 826 845 826 464 4755 591 826	322 348 322 257 124 257 125 - - - 341 348 349 348 333 347 342 348 337	1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00	2.84 16.18 2.89 12.04 1.37 11.95 1.41 - - - 1.54 2.10 1.98 2.08 1.19 1.58 2.08 1.19 1.58
		cc2 cc3 cc4 cc1 cc2 cc3 cc4	-112 39.11 -110 47.2 -88.6 49.14 -86.6 66.25 -44.2 -60.3 71.79 39.14 226 -142 3.797 -47.2 128.8	-89 49 -87 66 -44 68 -42 66 -44 68 -42 -142 -129 -224 -64 -133 32	-10 -12 -10 -12 -10 -12 -10 -12 -10 -12 -10 98 96 98 97 98 99 99 99 99 99	112 0 110 0 89 0 87 - - - - - - - - - - - - -	1 0 0 0 0 0 	4.44 7.64 4.45 7.64 5.25 7.64 5.29 - - - 5.51 7.64 19.72 7.64 4.84 8.04 5.78 7.64	5.62 5.62 6.37 6.37 6.37 - - - 5.62 5.62 5.62 5.62 5.62 5.62 5.62	84.74 84.74 23.31 23.31 23.31 23.31 	376 647 377 178 122 178 123 - - - - - - - - - - - - - - - - - - -	477 477 149 149 149 1-49 1-49 1-49 1-7 477 477 477 477 477 477 477	100 44 98 57 66 59 64 - - - 101 38 4 177 183 30 90 80 261	12 5 12 10 22 10 22 - - - - - - - - - - - - - - - - - -	379 826 380 257 124 257 125 - - - - - - - - - - - - - - - - - - -	322 348 322 257 124 257 125 - - - 341 348 349 348 333 347 342 348	1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00	2.84 16.18 2.89 12.04 1.37 11.95 1.41 - - - 1.54 2.10 1.98 2.08 1.19 1.95 1.58 2.08
		cc22 cc3 cc4 cc1 cc2 cc3 cc4 cc1 cc1 cc3 cc4 cc1 cc4 cc3 cc4 cc1 cc4 cc4 cc1 cc4 cc4 cc4 cc4 cc1 cc4 cc4	-112 39.11 -110 47.2 -88.6 49.14 -86.6 66.25 -44.2 -60.3 71.79 39.14 226 -142 3.797 -47.2 128.8	-89 49 -87 66 -44 68 -42 -142 4 -47 129 -224 -133 32 -298	-10 -12 -10 -12 -10 -12 -10 -12 -10 -12 -10 98 96 98 97 98 98 99 98	112 0 110 0 89 0 87 - - - 142 0 47 0 224 64 133 0	1 0 0 0 0 0 - - - - - 0 0 0 1 0 0 0 1 - - - -	4.44 7.64 4.45 7.64 5.25 7.64 5.29 - - - - 5.51 7.64 19.72 7.64 4.84 8.04 5.78 7.64	5.62 5.62 6.37 6.37 6.37 - - - - 5.62 5.62 5.62 5.62 5.62 5.62 5.62 5.62	84.74 84.74 23.31 23.31 23.31 23.31 	376 647 377 178 122 178 123 - - - - - 467 647 1671 647 410 681 490 647	477 477 149 149 149 1- - - - - - - - - - - - - - - - - - -	100 44 98 57 66 59 64 - - - 101 38 4 177 183 30 90 80 261	12 5 12 10 22 10 22 - - - - - - - - - - - - 34 43 49 43 49 37	379 826 380 257 124 257 125 - - - - 564 826 845 826 464 4755 591 826	322 348 322 257 124 257 125 - - - 341 348 349 348 333 347 342 348 337	1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00	2.84 16.18 2.89 12.04 1.37 11.95 1.41 - - - 1.54 2.10 1.98 2.08 1.19 1.58 2.08 1.19 1.58
		cc2 cc3 cc4 cc1 cc2 cc2 cc3 cc4 cc2 cc2 cc3 cc4 cc1 cc2 cc2 cc3 cc4 cc2 cc2 cc3 cc4 cc2 cc3 cc4 cc2 cc2 cc3 cc4 cc2 cc2 cc2 cc3 cc2 cc2 cc2 cc2 cc2 cc2	-112 39.11 -110 47.2 -88.6 49.14 -86.6 66.25 -44.2 68.26 -42.2 -60.3 71.79 39.14 226 -142 3.797 -47.2 128.8 -224 -64.2	-89 49 -87 66 -44 68 -42 -66 -44 68 -42 -142 -142 -224 -64 -133 32 -298 -126	-10 -12 -10 -12 -10 -12 -10 -12 -10 -12 -10 -98 -96 -98 -97 -98 -96 -98 -97 -98 -98 -98 -98 -98 -98 -98 -98 -98 -98	112 0 110 0 89 0 87 - - - - - - - - - - - - -	1 1 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1	4.44 7.64 4.45 7.64 5.25 7.64 5.29 - - - - - - - - - - - - - - - - - - -	5.62 5.62 6.37 6.37 6.37 - - - - - 5.62 5.62 5.62 5.62 5.62 5.62 5.62 5.62	84.74 84.74 23.31 23.31 23.31 - - - - - - - - - - - - - - - - - - -	376 647 377 178 122 178 123 - - - - - - - - - - - - - - - - - - -	477 477 149 149 149 - - - - - 477 477 477 477 477 477 477 4	100 44 98 57 66 59 64 - - - 101 38 4 177 183 30 90 80 261	12 5 12 10 22 10 22 - - - - - - - - - - - - - - - - - -	379 826 380 257 124 257 125 - - - - - - - - - - - - - - - - - - -	322 348 322 257 124 257 125 - - - 341 348 349 348 333 347 342 348 337 345	1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00	2.84 16.18 2.89 12.04 1.37 11.95 1.41 - - - 1.54 2.10 1.98 2.08 1.19 1.95 1.58 2.08
		cc2 cc3 cc4 cc1 cc2 cc3 cc4 cc3 cc3	-112 39.11 -110 47.2 -88.6 49.14 -86.6 66.25 -44.2 -60.3 71.79 39.14 226 -142 3.797 -47.2 128.8 -224 -64.2	-89 49 -87 66 68 -44 68 -42 -44 68 -42 -142 -224 -64 -133 -224 -64 -133 -224 -225 -226	-10 -12 -10 -12 -10 -12 -10 -12 -10 -12 -10 -98 -98 -98 -98 -98 -98 -98 -98 -98 -98	112 0 110 0 89 0 0 87 - - - - - 142 0 47 0 224 64 133 0 0 28 126 29 20 212 212 212 212 212 212 212	1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	4.44 7.64 4.45 7.64 5.25 - - - - - 5.51 7.64 4.84 8.04 5.78 7.64 4.84 5.78 7.64 4.84 5.78 7.64 5.78 7.64 5.78 7.64 5.78 7.64 5.78 7.64 5.78 7.64 5.78 7.64 5.78 7.64 7.64 7.64 7.64 7.64 7.64 7.64 7.64	5.62 5.62 6.37 6.37 - - - - - - - - - - - - - - - - - - -	84.74 84.74 23.31 23.31 23.31 - - - - - - - - - - - - - - - - - - -	376 647 377 178 122 178 123 - - - - - - - - - - - - - - - - - - -	477 477 149 149 149 - - - - 477 477 477 477 477 477 477 477	100 44 98 57 66 59 64 - - - - 101 38 4 177 183 30 90 80 261 95 173	12 5 12 10 22 - - - - - - 41 34 43 49 41 34 43 37 31	379 826 380 257 124 257 125 - - - - - - - - - - - - - - - - - - -	322 348 322 257 124 257 125 - - - 341 348 349 348 333 347 342 348 337 345 341	1.00 1.00 1.00 1.00 1.00 1.00 1.00 - - - - 1.00 1.00	2.84 16.18 2.89 12.04 1.37 11.95 1.41 - - - 1.54 2.10 1.98 2.08 1.19 1.95 1.58 2.08 1.19 1.95
		cc2 cc3 cc4 cc1 cc2 cc3 cc4 cc1 cc2 cc3 cc4 cc2 cc3 cc4 cc3 cc4 cc1 cc2 cc3 cc4 cc4	-112 39.11 -110 47.2 -88.6 49.14 -86.6 66.25 -44.2 -60.3 71.79 39.14 226 -142 3.797 -47.2 128.8 -224 -64.2 -133 31.68 39.75	-89 -89 -87 -66 -44 -68 -42 -142 -47 -129 -224 -64 -133 -32 -298 -126 -212 -56 -187	-10 -12 -10 -12 -10 -12 -10 -12 -10 -12 -10 -98 96 98 97 98 99 99 99 99 99 99 99 99 99 99 99	112 0 110 0 89 0 87 - - - - - - - - - - - - -	1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	4.44 7.64 4.45 7.64 5.25 7.64 5.29 - - - 5.51 7.64 4.84 8.04 5.78 7.64 4.57 8.04 5.78 7.64 4.57 8.04 5.22 5.21 7.64 5.21 7.64 5.21 7.64 5.22 7.64 5.29 7.64 5.21 7.64 7.64 7.64 7.64 7.64 7.64 7.64 7.64	5.62 5.62 6.37 6.37 - - - - 5.62 5.62 5.62 5.62 5.62 5.52 5.57 5.57	84.74 84.74 23.31 23.31 23.31 - - - - 84.74 84.74 84.74 84.74 84.74 103.09 103.09 103.09 103.09 33.10	376 647 377 178 122 178 123 467 647 410 681 490 647 468 538 500 1475	477 477 149 149 149 - - - - 477 477 477 477 477 477 477 575 575 575	100 444 988 57 66 59 64 - - - - 101 38 4 177 183 30 90 80 261 95 97 173 173 174	12 5 12 10 22 10 22 - - - - - - - - - - - - - - - - - -	379 826 380 257 124 257 - - - - - - - - - - - - - - - - - - -	322 348 322 257 124 257 125 - - - 341 348 349 348 333 347 342 348 333 347 342 348 333 347 342 348 333	1.00 1.00 1.00 1.00 1.00 1.00 1.00 - - - 1.00 1.00	2.84 16.18 2.89 12.04 1.37 11.95 1.41 - - - 1.54 2.08 1.19 1.95 1.58 2.08 1.19 1.95 1.61 1.61 1.61 1.61 1.61
		cc2 cc3 cc4 cc1 cc2 cc3 cc4 cc4 cc1 cc2 cc2 cc3 cc4 cc4 cc1 cc2 cc3 cc4 cc2 cc3 cc4 cc2 cc2 cc3 cc4 cc2 cc2 cc2 cc2 cc2 cc2 cc2 cc2 cc2	-112 39.11 -110 47.2 -88.6 49.14 -86.6 66.25 -44.2 -60.3 71.79 39.14 226 -142 3.797 -47.2 128.8 -224 -64.2 -133 31.68 39.75 198.3	-89 -87 -66 -44 -42 -66 -44 -48 -42 -142 -47 -129 -224 -64 -133 -32 -298 -126 -127 -212 -56 -187 -40	-10 -12 -10 -12 -10 -12 -10 -12 -10 -12 -10 -12 -10 -12 -10 -12 -10 -12 -10 -12 -10 -12 -10 -12 -10 -12 -10 -12 -10 -12 -10 -12 -10 -10 -10 -10 -10 -10 -10 -10	112 0 110 0 89 0 87 - - - - - - - - - - - - -	1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	4.44 7.64 4.45 7.64 5.25 7.64 5.29 - - - 5.51 7.64 4.84 8.04 5.78 7.64 4.57 8.04 5.22 4.85 5.22 4.85 5.22 5.22 7.64 5.21 7.64 5.21 7.64 5.21 7.64 5.21 7.64 5.21 7.64 5.21 7.64 5.21 7.64 5.21 7.64 5.21 7.64 5.21 7.64 5.21 7.64 5.21 7.64 5.21 7.64 5.21 7.64 5.21 5.21 5.21 5.21 5.21 5.21 5.21 5.21	5.62 5.62 6.37 6.37 6.37 	84.74 84.74 23.31 23.31 23.31 - - - - 84.74 84.74 84.74 84.74 84.74 103.09 103.09 103.09 103.09 33.10	376 647 377 178 122 178 123	477 477 149 149 149 - - - - 477 477 477 477 477 4	100 44 98 57 66 59 64 - - - - 101 38 4 177 183 30 90 80 261 95 97 173 173 174 79	12 5 12 10 22 22 - - - - - - - - - - - - - - - -	379 826 380 257 124 257 - - - - - - - - - - - - - - - - - - -	322 348 322 257 124 257 - - - - 341 348 349 348 333 347 342 348 337 342 348 337 341 351 303 333	1.00 1.00 1.00 1.00 1.00 1.00 1.00 - - - 1.00 1.00	2.84 16.18 2.89 12.04 1.37 11.95 1.41 1.54 2.10 1.95 1.58 2.08 1.01 1.65 1.26 1.99 1.53 3.31
		cc2 cc3 cc4 cc1 cc2 cc3 cc3 cc4 cc3 cc4 cc3 cc3 cc4 cc3 cc3	-112 39.11 -110 47.2 -88.6 49.14 -86.6 66.25 -44.2 -60.3 71.79 39.14 226 -142 3.797 -47.2 128.8 -224 -64.2 -133 31.68 39.75 198.3 89.15	-89 -87 -66 -44 -48 -42 -142 -47 -129 -224 -64 -133 -32 -298 -126 -212 -212 -56 -187 -40 -138	-10 -12 -10 -12 -10 -12 -10 -12 -10 -12 -10 -98 -96 -98 -97 -98 -98 -98 -97 -98 -98 -97 -98 -98 -98 -98 -98 -98 -98 -98 -98 -98	112 0 110 0 89 0 87 - - - - - - - - - - - - -	1 1 0 0 0 0 0 0 0 1 1 1 1 1 0 0 0 0 0 0	4.44 7.64 4.45 7.64 5.25 7.64 5.29 - - - - 5.51 7.64 4.84 8.04 5.78 7.64 4.54 5.22 4.85 9.42 23.90	5.62 5.62 6.37 6.37 6.37 	84.74 84.74 23.31 23.31 23.31 23.31 23.31 23.31 3.31	376 647 377 178 122 178 123	477 477 149 149 149 - - - - 477 477 477 477 477 477 477 575 575 575	100 444 988 577 666 599 644 - - - - 1011 388 44 177 183 300 900 801 261 955 173 122 744 799 244	12 5 12 10 22 10 22 - - - - - - - - - - - - -	379 826 380 257 124 257 125 - - - - - - - - - - - - - - - - - - -	322 348 322 257 124 257 125 - - - - - - - - - - - - -	1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00	2.84 16.18 2.89 12.04 1.37 11.95 1.41 1.54 2.10 1.98 2.08 1.19 1.95 1.58 2.08 1.01 1.65 1.26 1.99 1.53 3.31 2.12
		cc2 cc3 cc4 cc1 cc2 cc3 cc4	-112 39.11 -110 47.2 -88.6 49.14 -86.6 66.25 -44.2 -60.3 71.79 39.14 22.2 -47.2 128.8 -224 -64.2 -133 31.68 39.75 198.3 89.15	-89 -87 -66 -44 -48 -42 -142 -47 -129 -224 -64 -133 -32 -298 -126 -212 -56 -41 -47 -40 -47 -47 -49 -49 -49 -49 -49 -49 -49 -49	-10 -12 -10 -12 -10 -12 -10 -12 -10 -12 -10 -98 96 98 97 98 99 99 99 98 97 98 96 98 97 98 96 98 96 98 98 96 98 98 96 98 98 98 98 98 98 98 98 98 98 98 98 98	112 0 110 0 89 0 67 - - - - - - - - - - - - -	1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	4.44 7.64 4.45 7.64 5.25 7.64 5.29 - - - 5.51 7.64 19.72 7.64 4.84 8.04 4.54 5.78 7.64 4.54 5.22 4.85 14.31 9.42 9.42 7.64 7.64	5.62 5.62 6.37 6.37 6.37 	84.74 84.74 23.31 23.31 23.31 23.31 23.31 	376 647 377 178 122 178 123	477 477 149 149 149 - - - - 477 477 477 477 477 477 477 477	100 44 98 57 66 59 64 - - - - 101 38 4 177 183 30 0 80 261 173 12 74 79 24 128	12 5 12 10 22 - - - - - - - - - - - - -	379 826 380 257 124 257 125 - - - - - - - - - - - - - - - - - - -	322 348 322 257 124 257 125 - - - 341 348 349 348 333 347 342 348 337 345 341 351 303 333 334 334 333	1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00	2.84 16.18 2.89 12.04 1.37 11.95 1.41 1.54 2.10 1.98 2.08 1.19 1.95 1.58 1.01 1.65 1.26 1.99 1.33 3.31 2.12
		cc2 cc3 cc4 cc1	-112 39.11 -110 47.2 -88.6 49.14 -86.6 66.25 -44.2 -60.3 71.79 39.14 226 -142 3.797 -47.2 128.8 -224 -64.2 -133 31.68 39.75 198.3 89.15 247.7	-89 49 -87 66 68 -44 68 -42 -142 -142 -129 -224 -64 -133 -212 -56 -187 -40 -138 -138 -138 -138 -138	-10 -12 -10 -12 -10 -12 -10 -12 -10 -12 -10 -12 -10 -98 -98 -98 -98 -98 -98 -98 -98 -98 -98	112 0 110 0 89 0 87 - - - - 142 0 47 0 224 64 133 0 298 126 187 40 138 0 0 0 0 0 0 0 0 0 0 0 0 0	1 1 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 0 0 0 0 0 1 1 1 1 0 0 0 0 1	4.44 7.64 4.45 7.64 5.25 7.64 5.29 - - - - 5.51 7.64 4.84 8.04 4.54 8.04 4.54 5.22 4.85 14.31 9.42 23.90 4.74 4.74	5.62 5.62 6.37 6.37 - - - - - 5.62 5.62 5.62 5.62 5.62 5.57 5.57 6.48 6.48 6.48 6.48 6.48	84.74 84.74 23.31 23.31 23.31 - - - - - - - - - - - - - - - - - - -	376 647 377 178 122 178 123	477 477 149 149 149 - - - - - - - 477 477 477 477 477 477 4	100 44 98 57 66 59 64 - - - - 101 38 4 177 183 30 90 261 95 173 12 74 79 24 128 232	12 5 12 10 22 - - - - - - - - - - - - - - - - - -	379 826 380 257 124 - - - - - - - - - - - - - - - - - - -	322 348 322 257 124 257 125 - - - - - - - - - - - - -	1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00	2.84 16.18 2.89 12.04 1.37 11.95 1.41 1.54 2.10 1.98 2.08 1.19 1.95 1.50 2.08 1.01 1.65 1.26 1.99 1.53 3.31 2.12 3.18
		cc2 cc3 cc4 cc1 cc2 cc3	-112 39.11 -110 47.2 -88.6 49.14 -86.6 66.25 -44.2 -60.3 71.79 39.14 226 -142 3.797 -47.2 128.8 39.75 198.3 89.15 247.7 -187 -40.4	-89 -89 -87 -66 -68 -68 -42 -66 -44 -47 -129 -224 -64 -133 -228 -212 -56 -187 -40 -138 -40 -41 -41 -42 -42 -44 -43 -44 -47 -47 -49 -49 -49 -49 -49 -49 -49 -49	-10 -12 -10 -12 -10 -12 -10 -12 -10 -12 -10 -98 -98 -98 -98 -98 -98 -98 -98 -98 -98	112 0 110 0 89 0 0 87 - - - - 142 0 47 0 224 64 133 0 298 126 212 56 187 40 138 0 0 0 0 0 0 0 0 0 0 0 0 0	1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	4.44 7.64 4.45 7.64 5.25 - - - 5.51 7.64 19.72 7.64 4.84 8.04 5.78 4.54 5.22 4.85 14.31 9.42 23.90 4.74 6.01	5.62 5.62 6.37 6.37 6.37 - - - - - - - - - - - - - - - - - - -	84.74 84.74 23.31 23.31 23.31 - - - - - - - - - - - - - - - - - - -	376 647 377 178 122 178 123	477 477 149 149 149 477 477 477 477 477 477 477 4	100 444 988 57 66 - - - - 101 38 4 177 183 30 90 80 173 12 74 79 24 232 88	12 5 12 10 22 - - - - - - - - - - - - - - - - - -	379 826 380 257 124 257 125 - - - - - - - - - - - - - - - - - - -	322 348 322 257 124 257 125 - - - 341 348 349 348 333 347 342 348 333 347 341 351 303 333 334 351 303 333 335 350 350 350	1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00	2.84 16.18 2.89 12.04 1.37 11.95 1.41 1.54 2.10 1.98 2.08 1.19 1.95 1.58 2.08 1.01 1.65 1.26 1.99 1.53 3.31 2.12 3.18 1.23
C6_G6	P1	cc2 cc3 cc4 cc1 cc2 cc3	-112 39.11 -110 47.2 -88.6 49.14 -86.6 66.25 -44.2 -60.3 71.79 39.14 226 -142 3.797 -47.2 128.8 -224 -64.2 -133 31.68 39.75 198.3 89.15 247.7 -187 -40.4	-89 -89 -87 -66 -68 -44 -68 -42 -142 -142 -224 -64 -133 -32 -298 -212 -56 -187 -40 -138	-10 -12 -10 -12 -10 -12 -10 -12 -10 -12 -10 -98 96 98 97 98 99 98 97 -38 -53 -43 -53 -53 -43	112 0 110 0 89 0 87 - - - - - - - - - - - - -	1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	4.44 7.64 4.45 7.64 5.25 6 - - - - 5.51 7.64 4.84 8.04 5.78 7.64 4.57 8.04 9.42 23.90 15.84 7.64 4.74 6.01	5.62 5.62 6.37 6.37 - - - - - 5.62 5.62 5.62 5.62 5.57 5.57 6.48 6.48 6.48 6.48 6.48 6.48 6.48 6.48	84.74 84.74 23.31 23.31 23.31 - - - - 84.74 84.74 84.74 84.74 103.09 103.09 103.09 33.10 33.10 206.89 206.89	376 647 377 178 122 123	477 477 149 149 149 477 477 477 477 477 477 477 4	100 444 988 57 66 59 64 - - - - 101 38 4 177 183 30 90 80 173 12 74 79 24 128 128 128 128 138 148 158 158 158 158 158 158 158 15	12 5 12 10 22 - - - - - - - - - - - - -	379 826 380 257 124 257 - - - - - - - - - - - - - - - - - - -	322 348 322 257 124 257 125 - - 341 348 349 348 333 347 342 348 337 345 341 351 303 333 334 325 351	1.00 1.00 1.00 1.00 1.00 1.00 - - - - 1.00	2.84 16.18 2.89 12.04 1.37 11.95 1.41 1.54 2.08 1.19 1.95 1.58 2.08 1.19 1.95 1.65 1.26 1.99 1.53 3.31 2.12 3.18 1.23 2.15
C6_G6	P1	cc2 cc3 cc4 cc1	-112 39.11 -110 47.2 -88.6 49.14 -86.6 66.25 -44.2 -60.3 71.79 39.14 226 -142 3.797 -47.2 128.8 -224 -64.2 -133 31.68 39.75 198.3 89.15 247.7 -40.4 -138 8.275	-89 -89 -87 -66 -44 -68 -42 -142 -47 -129 -224 -64 -133 -32 -298 -126 -187 -40 -138 -38 -277 -136 -229 -87	-10 -12 -10 -12 -10 -12 -10 -12 -10 -12 -10 -12 -10 -12 -10 -98 -98 -98 -98 -98 -98 -98 -98 -98 -98	112 0 110 0 89 0 0 87 - - - - 142 0 47 0 224 64 133 0 298 126 212 56 187 40 138 0 0 0 0 0 0 0 0 0 0 0 0 0	1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	4.44 7.64 4.45 7.64 5.25 6 - - - - 5.51 7.64 4.84 8.04 5.78 7.64 4.57 8.04 9.42 23.90 15.84 7.64 4.74 6.01	5.62 5.62 6.37 6.37 6.37 - - - - - - - - - - - - - - - - - - -	84.74 84.74 23.31 23.31 23.31 - - - - - - - - - - - - - - - - - - -	376 647 377 178 122 178 123	477 477 149 149 149 477 477 477 477 477 477 477 4	100 444 988 57 66 - - - - 101 38 4 177 183 30 90 80 173 12 74 79 24 232 88	12 5 12 10 22 - - - - - - - - - - - - - - - - - -	379 826 380 257 124 257 125 - - - - - - - - - - - - - - - - - - -	322 348 322 257 124 257 125 - - - 341 348 349 348 333 347 342 348 333 347 341 351 303 333 334 351 303 333 335 350 350 350	1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00	2.84 16.18 2.89 12.04 1.37 11.95 1.41 1.54 2.10 1.98 2.08 1.19 1.95 1.58 2.08 1.01 1.65 1.26 1.99 1.53 3.31 2.12 3.18 1.23 2.15
C6_G6	P1	cc2 cc3 cc4 cc1	-112 39.11 -110 47.2 -88.6 49.14 -86.6 66.25 -44.2 -60.3 71.79 39.14 226 -142 3.797 -47.2 128.8 -224 -64.2 -133 31.68 39.75 198.3 89.15 247.7 -47.4 -4	-89 -89 -87 -66 -44 -42 -66 -44 -47 -129 -224 -64 -133 32 -298 -126 -187 -40 -138 8 -277	-10 -12 -10 -12 -10 -12 -10 -12 -10 -12 -10 -12 -10 -12 -10 -12 -10 -12 -10 -12 -10 -12 -10 -12 -10 -12 -10 -12 -10 -12 -10 -12 -10 -12 -10 -10 -10 -10 -10 -10 -10 -10	112 0 110 0 89 0 87 - - - - - - - - - - - - -	1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	4.44 7.64 4.45 7.64 5.25 6 - - - - 5.51 7.64 4.84 8.04 5.78 7.64 4.57 8.04 9.42 23.90 15.84 7.64 4.74 6.01	5.62 5.62 6.37 6.37 - - - - - 5.62 5.62 5.62 5.62 5.57 5.57 6.48 6.48 6.48 6.48 6.48 6.48 6.48 6.48	84.74 84.74 23.31 23.31 23.31 - - - - 84.74 84.74 84.74 84.74 103.09 103.09 103.09 33.10 33.10 206.89 206.89	376 647 377 178 122 123	477 477 149 149 149 477 477 477 477 477 477 477 4	100 444 988 57 66 59 64 - - - - 101 38 4 177 183 30 90 80 173 12 74 79 24 128 128 128 128 138 148 158 158 158 158 158 158 158 15	12 5 12 10 22 - - - - - - - - - - - - -	379 826 380 257 124 257 - - - - - - - - - - - - - - - - - - -	322 348 322 257 124 257 125 - - 341 348 349 348 333 347 342 348 337 345 341 351 303 333 334 325 351	1.00 1.00 1.00 1.00 1.00 1.00 - - - - 1.00	2.84 16.18 2.89 12.04 1.37 11.95 1.41 1.54 2.08 1.19 1.95 1.58 2.08 1.19 1.95 1.65 1.26 1.99 1.53 3.31 2.12 3.18 1.23 2.15
C6_G6	P1	cc2 cc3 cc4 cc1	-112 39.11 -110 47.2 -88.6 49.14 -86.6 66.25 -44.2 -60.3 71.79 39.14 226 -142 3.797 -47.2 128.8 -224 -64.2 -133 31.68 39.75 198.3 89.15 247.7 -187 -40.4 -136 8.275 -277	-89 -87 -66 -44 -42 -42 -44 -47 -142 -64 -133 -32 -298 -126 -187 -40 -138 8 -277 -136 -229 -229 -377 -136	-10 -12 -10 -10 -10 -10 -10 -10 -10 -10	112 0 110 0 89 0 87 - - - - - - - - - - - - -	1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	4.44 7.64 4.45 7.64 5.25 6 - - - - 5.51 7.64 4.84 8.04 5.78 7.64 4.57 8.04 9.42 23.90 15.84 7.64 4.74 6.01	5.62 5.62 6.37 6.37 - - - - - 5.62 5.62 5.62 5.62 5.57 5.57 6.48 6.48 6.48 6.48 6.48 6.48 6.48 6.48	84.74 84.74 23.31 23.31 23.31 - - - - 84.74 84.74 84.74 84.74 103.09 103.09 103.09 33.10 33.10 206.89 206.89	376 647 377 178 122 123	477 477 149 149 149 477 477 477 477 477 477 477 4	100 444 988 57 66 59 64 - - - - 101 38 4 177 183 30 90 80 173 12 74 79 24 128 128 128 128 138 148 158 158 158 158 158 158 158 15	12 5 12 10 22 - - - - - - - - - - - - -	379 826 380 257 124 257 - - - - - - - - - - - - - - - - - - -	322 348 322 257 124 257 125 - - 341 348 349 348 333 347 342 348 337 345 341 351 303 333 334 325 351	1.00 1.00 1.00 1.00 1.00 1.00 - - - - 1.00	2.84 16.18 2.89 12.04 1.37 11.95 1.41 1.54 2.08 1.19 1.95 1.58 2.08 1.19 1.95 1.65 1.26 1.99 1.53 3.31 2.12 3.18 1.23 2.15
C6_G6	P1	cc2 cc3 cc4 cc1	-112 39.11 -110 47.2 -88.6 49.14 -86.6 66.25 -44.2 68.26 -42.2 -60.3 71.79 39.14 226 -142 3.797 -47.2 128.8 -224 -64.2 -133 31.68 39.75 198.3 89.15 247.7 -187 -40.4 -138 8.275 -277 -136 -229	-89 -89 -87 -66 -68 -42 -66 -44 -47 -129 -224 -64 -133 -32 -298 -126 -187 -40 -138 -277 -136 -229 -229 -212 -212 -212 -329	-10 -12 -10 -12 -10 -12 -10 -12 -10 -12 -10 -12 -10 -98 -98 -98 -98 -98 -98 -98 -98 -98 -98	112 0 110 0 89 0 87 - - - - - - - - - - - - -	1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	4.44 7.64 4.45 7.64 5.25 - - - - 5.51 7.64 4.84 8.04 5.78 7.64 4.57 8.04 9.42 23.90 15.84 7.64 4.74 6.01	5.62 5.62 6.37 6.37 - - - - - 5.62 5.62 5.62 5.62 5.57 5.57 6.48 6.48 6.48 6.48 6.48 6.48 6.48 6.48	84.74 84.74 23.31 23.31 23.31 - - - - 84.74 84.74 84.74 84.74 103.09 103.09 103.09 33.10 33.10 206.89 206.89	376 647 377 178 122 123	477 477 149 149 149 477 477 477 477 477 477 477 4	100 444 988 57 66 59 64 - - - - 101 38 4 177 183 30 90 80 173 12 74 79 24 128 128 128 128 138 148 158 158 158 158 158 158 158 15	12 5 12 10 22 - - - - - - - - - - - - -	379 826 380 257 124 257 - - - - - - - - - - - - - - - - - - -	322 348 322 257 124 257 125 - - 341 348 349 348 333 347 342 348 337 345 341 351 303 333 334 325 351	1.00 1.00 1.00 1.00 1.00 1.00 - - - - 1.00	2.84 16.18 2.89 12.04 1.37 11.95 1.41 1.54 2.08 1.19 1.95 1.58 2.08 1.19 1.95 1.65 1.26 1.99 1.53 3.31 2.12 3.18 1.23 2.15
C6_G6	P1	cc2 cc3 cc4 cc1 cc2 cc3 cc4	-112 39.11 -110 47.2 -88.6 49.14 -86.6 66.25 -44.2 -60.3 71.79 39.14 226 -142 3.797 -47.2 128.8 -224 -64.2 -133 31.68 39.75 198.3 89.15 247.7 -187 -40.4 -136 8.275 -277	-89 -87 -66 -44 -42 -42 -44 -47 -142 -64 -133 -32 -298 -126 -187 -40 -138 8 -277 -136 -229 -229 -377 -136	-10 -12 -10 -10 -10 -10 -10 -10 -10 -10	112 0 110 0 89 0 87 - - - - - - - - - - - - -	1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	4.44 7.64 4.45 7.64 5.25 - - - - 5.51 7.64 4.84 8.04 5.78 7.64 4.57 8.04 9.42 23.90 15.84 7.64 4.74 6.01	5.62 5.62 6.37 6.37 - - - - - 5.62 5.62 5.62 5.62 5.57 5.57 6.48 6.48 6.48 6.48 6.48 6.48 6.48 6.48	84.74 84.74 23.31 23.31 23.31 - - - - 84.74 84.74 84.74 84.74 103.09 103.09 103.09 33.10 33.10 206.89 206.89	376 647 377 178 122 123	477 477 149 149 149 477 477 477 477 477 477 477 4	100 444 988 57 66 59 64 - - - - 101 38 4 177 183 30 90 80 173 12 74 79 24 128 128 128 128 138 148 158 158 158 158 158 158 158 15	12 5 12 10 22 - - - - - - - - - - - - -	379 826 380 257 124 257 - - - - - - - - - - - - - - - - - - -	322 348 322 257 124 257 125 - - 341 348 349 348 333 347 342 348 337 345 341 351 303 333 334 325 351	1.00 1.00 1.00 1.00 1.00 1.00 - - - - 1.00	2.84 16.18 2.89 12.04 1.37 11.95 1.41 1.54 2.08 1.19 1.95 1.58 2.08 1.19 1.95 1.65 1.26 1.99 1.53 3.31 2.12 3.18 1.23 2.15

_

Direzione Progettazione e Realizzazione Lavori

CONCI	Р									Fz mir	<u> </u>							
		СС	σ _{sup}	G inf	τ _{med}	σ1	Ψ	k_{σ}	k_{τ}	σ _{cr,0}	σcr	τcr	σN	σм	σ cr,id	σ _{cr,red}	νβ	η
		cc1	-83.7	-20.3	16	84	0	6	7.96	15.53	97.14	124	52	32	101	101	0.92	1.14
		cc2	-93.9	116.6	11	94	-1	24	7.96	15.53	371.15	124	11	105	358	317	0.82	3.31
		сс3	5.1	-68.9	21	69	0	8	7.96	15.53	126.62	124	32	37	135	135	0.89	1.73
		cc4	-5.0	68.1	16	5	-14	24	7.96	15.53	371.15	124	32	37	285	285	0.89	10.03
		cc1	-20.3	-20.3	16	-	-	-	-	-	-	-	-	-	-	-	-	-
C1 APP	P1	cc2	116.6	116.6	11	-	-	-	-	-	-	-	-	-	-	-	-	-
O1_AI1		сс3	-68.9	-68.9	21	-	-	-	-	-	-	-	-	-	-	-	-	-
		cc4	68.1	68.1	16	-		-	-	-	-	-	1	-	-	-	-	
		cc1	-20.3	-20.3	16	-	-	-	-	-	-	-	-	-	-	-	-	-
		cc2	116.6	116.6	11	-	-	-	-	-	-	-	-	-	-	-	-	-
		сс3	-68.9	-68.9	21	-	-	-	-	-	-	-	-	-	-	-	-	-
		cc4	68.1	68.1	16	-	-	-	-	-	-	-	-	-	-	-	-	-
		cc1	-140	-49.222	-32	140	0	6	5.65	84.74	490.66	479	95	46	508	337	1.00	2.23
		cc2	-157	-100.846	-19	157	1	5	5.65	84.74	408.36	479	129	28	413	327	1.00	2.04
		сс3	-75.2	-15.5882	-25	75	0	6	5.65	84.74	544.49	479	45	30	573	341	1.00	3.93
		cc4	-91.7	-67.2125	-11	92	1	5	5.65	84.74	388.28	479	79	12	393	324	1.00	3.46
		cc1	-49.2	125.7086	-32	49	-3	24	6.47	22.99	549.40	149	38	87	345	314	1.00	4.20
C1 MEZZ	P1	cc2	-101	6.588375	-19	101	0	8	6.47	22.99	185.93	149	47	54	189	189	1.00	1.78
		сс3	-15.6	98.8426	-25	16	-6	24	6.47	22.99	549.40	149	42	57	323	306	1.00	6.67
		cc4	-67.2	-20.2777	-11	67	0	6	6.47	22.99	137.76	149	44	23	141	141	1.00	2.01
		cc1	125.7	125.7086	-32	-	-	-	-	-	-		-	-	-	-	-	-
		cc2	6.588	6.588375	-19	-	-	-	-	-	-	-	-	-	-	-	-	-
		cc3	98.84	98.8426	-25	-	-	-	-	-	-	-	-	-	-	-	-	-
		cc4	-20.3	-20.2777	-11	-	-	-	-	-	-	-	-	-	-	-	-	-
		cc1	-73.2	-18.5211	-39	73	0	6	5.65	84.74	526.12	479	46	27	589	342	1.00	3.43
		cc2	-123	-81.0486	-26	123	1	5	5.65	84.74	404.65	479	102	21	420	328	1.00	2.50
		ссЗ	-33.8	2.174622	-29	34	0	8	5.65	84.74	684.75	479	16	18	729	346	1.00	5.75
		cc4	-83.6	-60.3529	-16	84	1	5	5.65	84.74	390.65	479	72	12	403	326	1.00	3.70
		cc1	-18.5	85.75726	-39	19	-5	24	6.46	23.31	557.12	150	34	52	296	293	1.00	4.19
C1_G1	P1	cc2	-81	-1.12968	-26	81	0	8	6.46	23.31	175.78	150	41	40	185	185	1.00	1.99
_		cc3	2.175		-29	0	0	8	6.46	23.31	178.01	150	36	34	261	261	1.00	5.23
		cc4	-60.4	-16.0842	-16	60	0	6	6.46	23.31	143.29	150	38	22	151	151	1.00	2.27
		cc1	85.76	85.75726	-39	-	-	-	-	-	-	-	-	-	-	-	-	-
		cc2	-1.13	-1.12968	-26	-	-	-	-	-	-	-	-	-	-	-	-	-
		cc3	70.8	70.80269	-29	-	-	-	-	-	-	-	-	-	-	-	-	-
		cc4	-16.1	-16.0842	-16	-	-	-	-	- 0474	- 400.40	- 470	-	-	-	- 0.40	- 4.00	-
		cc1	-41.7	-121.856	-83	122	0	6	5.65	84.74	493.49	479	82	40	586	342	1.00	1.82
		cc2	169.9	65.90674	-87	0	0	8	5.65	84.74	647.12	479	118	52	829	348	1.00	2.31
		cc3	37.43	-39.1992	-82	39	-1	23	5.65	84.74	1926.63	479	1 100	38	853	349	1.00	2.36
		cc4	249.1	148.5638	-86	0	0	8	5.65	84.74	647.12	479	199	50	829	348	1.00	2.33
		cc1	-122	-201.984	-83	202	1	5	5.65	84.74	417.91	479	162	40	466	334	1.00	1.35
C2_G2	P1	cc2	65.91 -39.2	-38.0887 -115.829	-87 -82	38 116	-2	24	5.65	84.74 84.74	2025.33 494.87	479 479	14 78	52 38	865	349 342	1.00	2.25 1.86
		cc3	148.6	48.06621	-82 -86		0	6 8	5.65 5.65	84.74	494.87 647.12	479	78 98	50	592 829	342	1.00	2.33
		cc4	-202	-275.701	-86	0 276	1	5 5	5.60	100.12	458.91	561	239	37	492	348	1.00	1.08
		cc1	-202	-133.764	-83 -87	134	0	6	5.60	100.12	607.34	561	239 86	48	704	336	1.00	1.08
		cc3	-38.1	-133.764	-87	186	1	5	5.60	100.12	488.49	561	151	35	552	340	1.00	1.72
		cc4	48.07	-44.3916	-82	44	-1	24	5.60	100.12	2392.87	561	2	46	1008	351	1.00	2.24
		cc1	-6.58	-198.121	-66 57	198	0	7	7.42	33.10	245.38	246	102	96	260	260	0.90	1.18
		001	1007	00.4400			_		7.40	00.40	704.44	0.40	7.0	440		000		3.84
		cc3	190.7 48.24		55	143	-6 0	11	7.42		791.14 360.17	246	79 47	112 96	369	339	0.88	1.86
		cc4			45	143	0	8	7.42	33.10	252.78	246	134	112	426	329	0.87	4.21
		cc1	-198		57	273	1	5	5.66				236	38	1022	351	1.00	1.21
		cc2	-33.1	-121.175	47	121	0	6	5.66			1212	77	44	1411	353	1.00	2.41
C3_APP	P1	cc3			55	219	1	5	5.66		1023.86	1212	181	38	1076	351	1.00	1.48
		cc4		-66.217	45	66	0	11	5.66				22	44	2087	354	1.00	3.45
		cc1	-273		57	- 00	-	_ ''	- 5.00	- 10.90	- 2000.09	- 1414	- 44	- ++	- 2007	- 334	- 1.00	- 0.40
		cc2	-121	-121.175	47	_	_			 	_	 	_	<u> </u>	-		_	_
		cc3	-219	-121.175	55		_			 	-			<u> </u>	<u> </u>	_		
		cc4		-66.217	45		_			 	<u> </u>	 		-	-			
		UU4	-00.2	-00.21/	40	-				_	l -	Ľ		Ľ	Ľ		-	

Direzione Progettazione e Realizzazione Lavori

C4_Q4 P1 C2_7991 S018073 43 0 0 8 582 87.74 647.12 477 70 10 828 348 100 10																			
C4_O4_O5 P1			cc1	-138	-182.463	46	182	1	5	5.62	84.74	383.59	477	160	22	404	326	1.00	1.64
C4_G3 P1			cc2	79.91	59.18073	43	0	0	8	5.62	84.74	647.12	477	70	10	826	348	1.00	4.72
C4_G3 P1			сс3	-52.1	-89.1377	44	89	1	5	5.62	84.74	422.45	477	71	18	487	335	1.00	2.86
C4_G3 P1			cc4	165.7	152.5065	41	0	0	8	5.62	84.74	647.12	477	159	7	826	348	1.00	4.90
C4_G3 P1					-221 098														1.44
C4_G4 P1																			4.76
C4 04 P1 C5 MEZZ P1 (1975 46)	C4_G3	P1																	
C4_G4_G4 P1			_																2.38
C4_G4 P1			cc4			41			8	5.55									4.94
Col. 121 159,686 44 160 1 5 5,65 76,35 354,01 442 440 19 377 321 1,00 1			cc1	-221	-267.46	46	267	1	4	5.65	78.35	341.59	442	244	23	351	315	1.00	1.13
Cot 1411 1274425 41 0			cc2	41.21	19.6505	43	0	0	8	5.65	78.35	598.30	442	30	11	766	347	1.00	4.71
Cot 1411 127-4428			сс3	-121	-159.668	44	160	1	5	5.65	78.35	354.01	442	140	19	377	321	1.00	1.81
C4_G4 C4_G4 P1 C6_G1				1411	127 4425		0	0		5.65	78.35	598.30	442	134	7	766	347	1.00	4.89
C4_G4 P1							_				_								25.02
C4_C4 P1 C5_MEZZ C6_C6_C7_APP C6_C6_C6_C6_C6_C6_C6_C6_C6_C6_C6_C6_C6_C																			
C4_G4			-																2.78
C4_Q4 P1 C4_Q4 C4_Q4																			25.29
C4_G4 P1 C62_915_1_860,633_1_10_91_1_1_5_637_2_331_1_760,49_1140_70_2_2_122_122_10_11_10_10_10_10_10_10_10_10_10_10_10_			cc4	-113	-89.4912	10	113	1	4	5.62	84.74	375.64	477	101	12	378	321	1.00	2.82
C6_G6 P1 C6_G6 C6_G6 P1 C6_G6 C6_G6 P1 C6_G6 C6_G			cc1	36.49	77.89409	8	0	0	8	6.37	23.31	178.01	149	57	21	257	257	1.00	18.48
C6_G6 P1 C6_G6 C6_G7 C6_G7	04.04	.	cc2	-91.5	-48.0433	10	91	1	5	6.37	23.31	120.49	149	70	22	122	122	1.00	1.31
C6_GG Fig. 45,4826 10 89 1 5 5.37 2.31 121.75 149 67 22 123 123 120 100 17.89 77	C4_G4	P1	_	38.5	80.45479	8	0	0		6.37	23.31	178.01	149	59	21	257	257	1.00	18.68
Cot 77.89 77.89499 8								_											1.35
Col. 448 48.0433 10			_				09		J	0.57	20.01	121.73	143	07	22	123	123	1.00	1.55
Cot		ĺ	_			_	-	-	-		-	-	<u> </u>	-	-	-	-	-	<u> </u>
C6_4655 45.5 45.826		ĺ					-	-	-	-	-	-	-	-	-	-	-	-	<u> </u>
C6_G5 P1 C6_G6 P1 C6_G7 P2 C6_G7 P4 C6_G7		ĺ	сс3	80.45	80.45479	8			<u> </u>	-	-		<u> -</u>]			-		Ŀ
C5_MEZZ P1 C62_1195_136.059	<u></u>	<u>L</u>	cc4	-45.5	-45.4826	10	-	-	Ŀ		Ŀ	<u> </u>	Ŀ				-		E
C5_MEZZ P1 C62_1195_136.059 -24_1195_15_58_28_241 C63_3191_575777 -25_58_32_015_58_28_474_108_640 C7_477_166_30_340_402_326_10_01_10_10_10_10_10_10_10_10_10_10_10_			cc1	-61.1	-5.37753	-26	61	0	7	5.62	84.74	599.16	477	33	28	633	344	1.00	4.52
C5_MEZZ P1 C6_G6_F1 C6_G		ĺ																	1.63
C6_G6 P1 C6_G6 P1 C6_G6 P1 C6_G6 P1 C6_G6 P1 C6_G6 P1 C6_G6 C6_G6 P1 C6_G6 P1 C6_G6 C6_G6 P1 C6_G6 C6_G6 C6_G6 P1 C6_G6	1	1																	6.29
C5_MEZZ P1		ĺ																	
C5_MEZZ P1 C5_MEZZ P1 C52 138 22:1244 24 138 0 77 6.39 22.99 152.93 147, 79 57 156 156 100 100 100 100 117 22.7711 24 117 0 6 6.39 22.99 149.17 147 70 47 154 154 100 1 100 100 117 22.7711 24 117 0 6 6.39 22.99 149.17 147 70 47 154 154 100 1 100 1		ĺ	_																1.90
C6_G6 P1	1	1							24										6.71
C6_666 P1 13.86 100.9212 -26 0 0 8 6.39 22.99 175.34 147 70 44 254 254 1.00 1 1.00 1 1.00	C5 ME77	D1	cc2	-136	-22.1244	-24	136	0	7	6.39	22.99	152.93	147	79	57	156	156	1.00	1.10
Cef 101.6 101.5678 -266 - - - - - - - - -	U3_IVILZZ	F1	сс3	13.58	100.9212	-26	0	0	8	6.39	22.99	175.54	147	57	44	254	254	1.00	5.61
C6_G6 P1			cc4	-117	-22.7711	-24	117	0	6	6.39	22.99	149.17	147	70	47	154	154	1.00	1.24
C6_G6 P1 C6_G66 P1 C6_G66 P1 C6_G66 C6_							_	-	-	-	-	-	-	-	-	-	_	-	-
C6_G6 P1 C6_G6			_																-
C6_G6 P1 C6_G6 C6_G6							-		-		-	-	-	_	-	-			F
C6_G6 P1			_				-	-	-	-	-	-	-	-	-	-	-	-	-
C6_G6 P1 C6_G7 Fig. C6_G7 C6			cc4	-22.8	-22.7711	-24	-	-	-	-	-	-	-	-	-	-	-	-	-
C6_G6 P1 C6_G7 C6_G7			cc1	19.69	30.36112	-56	0	0	8	5.62	84.74	647.12	477	25	5	826	348	1.00	3.60
C6_G5 P1			cc2	-116	-92.7185	-53	116	1	4	5.62	84.74	375.22	477	105	12	433	330	1.00	2.22
C6_G5 P1 C6_G5 P1 C6_G65 P1 C6_G75				21 59				0	8				477						3.59
C6_G65 P1 C6_G7			_																2.24
C6_G5 P1 C62 9.2.7 -47.7267			_																
C6_G6 P1			_				-												2.66
C63 32.3 52.71464 -56 0 0 0 8 6.37 23.31 17.8.01 149 43 10 257 257 1.00 1	C6 G5	P1																	1.13
C6_G6 P1 C7_APP P1 C7_APP P1 C7_APP P1 C62			cc3	32.3			0	0	8	6.37			149	43		257			2.65
C62 4.7.7 4.7.7257 -5.3 -			cc4	-90.8	-45.7111	-54	91	1	5	6.37	23.31	122.11	149	68	23	150	150	1.00	1.15
C63 52.71 52.71464 -56			cc1	50.7	50.70005	-56	-	-	-	-	-	-	-	-	-	-	-	-	-
C63 52.71 52.71464 -56			cc2	-47.7	-47.7257	-53	-	-	-	-	-	-	-	-	-	-	-	-	-
C64 -45.7 -45.7111 -54 - - - - - - - - -		ĺ	_				_	_	-	_	t-	-	l	_	_	_			<u> </u>
P1 Cc1 -59.9 -141.462	1	1	_						-			-	-						
P1 CC2 72.25 4.569.28 44 0 0 0 8 5.62 84.74 647.12 477 38 34 826 348 1.00 4		ļ					-		Ι	-			ļ-			-	-		<u> </u>
P1 P1 C63 39.38 -46.549 46 47 -1 20 5.62 84.74 1702.76 477 4 43 912 350 1.00 3		ĺ																	2.07
C6_G6 P1 C6_G6 P1 C6_G7 C		I	cc2	72.25	4.56928	44	0	0	8	5.62	84.74	647.12	477	38	34	826	348	1.00	4.56
C6_G6 P1 C1 -141 -223.067		ĺ	сс3	39.38	-46.549	46	47	-1	20	5.62	84.74	1702.76	477	4	43	912	350	1.00	3.77
C6_G6 P1 C1 -141 -223.067		ĺ	cc4	227.2	130.6875	44	0	0	8	5.62	84.74	647.12	477	179	48	826	348	1.00	4.54
C6_G6 P1		1	cc1									_							1.39
C6_G66 P1 C63		ĺ																	3.49
C7_APP P1 Cc4 130.7 34.21021 44 0 0 8 5.62 84.74 647.12 477 82 48 826 348 1.00 44 4 4 4 4 4 4 5 5.57 103.09 467.83 575 260 37 478 335 1.00 1 4 4 5 5.57 103.09 538.84 575 5 5 5 5 5 5 5 5	C6_G6	P1																	
C1 -223 -297.055		ĺ																	2.18
C7_APP P1 C2 -63.1 -124.481		ĺ																	4.54
C7_APP P1 P		1	cc1					1											1.09
C7_APP P1 C4 34.21 -53.2625 44 53 -1 16 5.57 103.09 1627.21 575 10 44 1091 351 1.00 3 351 1.00 3 36.46 214 76 114 318 304 1.00 1 36 37.4 -189.884 -91 190 0 9 6.48 33.10 306.46 214 76 114 318 304 1.00 1 37.4 37.5 37.4 -189.884 -91 190 0 9 6.48 33.10 306.46 214 76 114 318 304 1.00 1 37.5		ĺ	cc2	-63.1	-124.481	44	124	1	5	5.57	103.09	538.84	575	94	31	584	342	1.00	2.34
P1		ĺ	сс3	-132	-210.392	46	210	1	5	5.57	103.09	500.63	575	171	39	520	338	1.00	1.50
P1		ĺ	cc4	34.21	-53.2625	44	53	-1	16	5.57	103.09	1627.21	575	10	44	1091	351	1.00	3.76
P1			_								_								1.23
P1		ĺ																	
C7_APP P1 C64 243.4 2.369651		1	_																1.69
C7_APP P1 C1 -190 -280.798 -91 281 1 5 5.52 206.89 978.40 1142 235 45 1056 351 1.00 1		I																	1.49
C7_APP P1 C2 -46.3 -142.416 -108 142 0 6 5.52 206.89 1219.44 1142 94 48 1458 353 1.00 1		ĺ	cc4	243.4				0	8	6.48				123					1.63
C7_APP C63		ĺ	cc1	-190	-280.798	-91	281	1	5	5.52	206.89	978.40	1142	235	45	1056	351	1.00	1.09
C7_APP C63	07 400		cc2	-46.3	-142.416	-108	142	0	6	5.52	206.89	1219.44	1142	94	48	1458	353	1.00	1.50
cc4 2.37 -94.0349 -113 94 0 8 5.52 206.89 1613.85 1142 46 48 1773 354 1.00 1 cc1 -281 -280.798 -91 -	C/_APP	J P1																	1.23
cc1 -281 -280.798 -91 - <th></th> <th>ĺ</th> <td></td> <td>1.63</td>		ĺ																	1.63
cc2 -142 -142.416 -108 - <th></th> <th>ĺ</th> <td>_</td> <td></td> <td></td> <td></td> <td>34</td> <td>U</td> <td> "</td> <td>0.02</td> <td>200.09</td> <td>1010.00</td> <td>1142</td> <td>40</td> <td>40</td> <td>1773</td> <td>334</td> <td>1.00</td> <td>1.03</td>		ĺ	_				34	U	"	0.02	200.09	1010.00	1142	40	40	1773	334	1.00	1.03
cc3 -232 -232.417 -96		ĺ					-		-	-	<u> </u>	-	ļ		-	-	-	-	<u> </u>
		ĺ					-	-	-	-	-	-	ļ	-	-	-	-	-	-
	Ī	I	сс3					آـــــــــا	<u> </u>		<u> -</u>	<u> </u>	<u> </u>	<u>-</u>]	آــــــــا	آــــــــا		-	<u> </u>
									_										

Direzione Progettazione e Realizzazione Lavori

CONCI	Р	1								M	y max							
		СС	σ _{sup}	G inf	Tmed	σ1	Ψ	k _σ	k_{τ}	σcr,0	Осr	τcr	σN	σм	σ cr,id	σ _{cr,red}	νβ	η
		cc1	-83.5	-21.3	59	83	. 0	6	7.96	15.53	96.22	124	52	31	128	128	0.93	0.96
		cc2	-91.3	115.8	54	91	-1	24	7.96	15.53	371.15	124	12	104	265	265	0.82	2.04
		сс3	5.4	-69.9	64	70	0	8	7.96	15.53	126.98	124	32	38	165	165	0.89	1.25
		cc4	-2.5	67.2	59	3	-27	24	7.96	15.53	371.15	124	32	35	234	234	0.90	2.31
		cc1	-21.3	-21.3	59		-	-	-	-	-	-	-	-	-	-	-	-
C1 APP	P1	cc2	115.8	115.8	54	-	-	-	-	-	-	-	-	-	-	-	-	-
OI_AII		ссЗ	-69.9	-69.9	64			-		-	-	-	-		-	-		-
		cc4	67.2	67.2	59	-	·	-	·	-	-	-	-	-	ř	-	·	-
		cc1	-21.3	-21.3	59	-	-	-	-	-	-	-	-	-	-	-	-	-
		cc2	115.8	115.8	54	-	-	-	-	-	-	-	-	-	-	-	-	-
		сс3	-69.9	-69.9	64	-	-	-	-	-	-	-	-	-	-	-	-	-
		cc4	67.2	67.2	59	-	-	-	-	-	-	-	-	-	-	-	-	-
		cc1	-132	-40.8	4	132	0	6	5.65	84.74	504.93	479	86	45	505	337	1.00	2.55
		cc2	-154	-98.6	18	154	1	5	5.65	84.74	409.49	479	126	28	414	327	1.00	2.08
		cc3	-66.9	-7.38	11	67	0	7	5.65	84.74	588.19	479	37	30	595	342	1.00	4.91
		cc4	-89.5	-65.1	25	89	1	5	5.65	84.74	389.53	479	77	12	415	328	1.00	3.29
		cc1	-40.8	133.9	4	41	-3	24	6.47	22.99	549.40	149	47	87	537	339	1.00	8.20
C1_MEZZ	P1	cc2	-98.6	8.664	18	99	0	8	6.47	22.99	189.98	149	45	54	193	193	1.00	1.86
		cc3	-7.38	107	11	7	-15	24	6.47	22.99	549.40	149	50	57	413	327	1.00	15.66
		cc4	-65.1	-18.3	25	65	0	6	6.47	22.99	139.87	149	42	23	154	154	1.00	1.97
		cc1	133.9	133.9	4 18	-	-	-	-	-	-	-	-	-	-	-	-	-
		cc2	8.664	8.664	11	-	-	-	-	-	-	-	-	-	-	-	-	-
		cc3	107 -18.3	107 -18.3	25	-	-	-	-	-	-	-	-			-	_	-
		cc4	-64.5	-9.93	-2 -2	65	- 0	7	- E C E	84.74	567.69	479	37	27	568	341	1.00	5.27
		cc1	-04.5	-9.93	10	120	1	5	5.65 5.65	84.74	406.20	479	99	21	409	327	1.00	2.69
		cc3	-25.3	10.6	8	25	0	12	5.65	84.74	1017.39	479	7	18	940	350	1.00	12.10
		cc4	-81.1	-57.9	20	81	1	5	5.65	84.74	392.32	479	70	12	413	327	1.00	3.70
		cc1	-9.93	94.13	-2	10	-9	24	6.46	23.31	557.12	150	42	52	540	339	1.00	31.98
		cc2	-78.5	1.236	10	78	0	8	6.46	23.31	180.36	150	39	40	182	182	1.00	2.26
C1_G1	P1	cc3	10.6	79.12	8	0	0	8	6.46	23.31	178.01	150	45	34	261	261	1.00	18.67
		cc4	-57.9	-13.8	20	58	0	6	6.46	23.31	146.36	150	36	22	159	159	1.00	2.34
		cc1	94.13	94.13	-2			-	-	-	-	-	-		-	-	-	-
		cc2	1.236	1.236	10		-		-	-	-	-	-	-	-	-	-	-
		сс3	79.12	79.12	8	-	-	-	-	-	-	-	-	-	-	-	-	-
		cc4	-13.8	-13.8	20	-	-	-	-	-	-	-	-	-	-	-	-	-
		cc1	37.68	-73.8	-38	74	-1	13	5.65	84.74	1138.77	479	18	56	935	350	1.00	3.52
		cc2	175.6	71.49	-43	0	0	8	5.65	84.74	647.12	479	124	52	829	348	1.00	4.71
		сс3	116.8	8.829	-38	0	0	8	5.65	84.74	647.12	479	63	54	829	348	1.00	5.30
		cc4	254.8	154.1	-42	0	0	8	5.65	84.74	647.12	479	204	50	829	348	1.00	4.77
		cc1	-73.8	-185	-38	185	0	6	5.65	84.74	475.08	479	130	56	489	336	1.00	1.70
C2 G2	P1	cc2	71.49	-32.6	-43	33	-2	24	5.65	84.74	2025.33	479	19	52	931	350	1.00	4.33
C2_G2	FI	ссЗ	8.829	-99.2	-38	99	0	8	5.65	84.74	701.09	479	45	54	712	346	1.00	2.91
		cc4	154.1	53.51	-42	0	0	8	5.65	84.74	647.12	479	104	50	829	348	1.00	4.77
		cc1	-185	-288	-38	288	1	5	5.60	100.12	482.31	561	237	51	490	336	1.00	1.14
		cc2	-32.6	-128	-43	128	0	6	5.60	100.12	621.06	561	81	48	656	344	1.00	2.32
		cc3	-99.2	-199	-38	199	0		5.60	100.12	525.79	561	149	50	540	339	1.00	1.62
		cc4	53.51	-39.1	-42	39	-1	24	5.60	100.12		561	7	46	1093	351	1.00	4.24
		cc1	-6.57	-199	111	199	0	7	7.42	33.10	245.42	246	103	96	288	288	0.90	1.04
		cc2	191.1	-34.3	105	34	-6	24	7.42	33.10		246	78	113	478	335	0.88	1.82
		cc3	48.24	-144	109	144	0	11	7.42	33.10	359.31	246	48	96	382	322	0.87	1.35
		cc4	245.9	20.59	102	0	0	8	7.42	33.10		246	133	113	426	329	0.91	1.86
		cc1	-199	-275	111	275	1	5	5.66	213.96	985.11	1212	237	38	1106	351	1.00	1.05
C3_APP	P1	cc2	-34.3	-123	105	123	0	6	5.66	213.96		1212	79	44	1589	353	1.00	1.61
·		cc3	-144	-220	109	220	1	5	5.66	213.96		1212	182	38	1190	352	1.00	1.21
		cc4	20.59	-68	102	68	0	10	5.66	213.96	2235.33	1212	24	44	2032	354	1.00	1.86
		cc1	-275	-275	111	-	-	-	-	-	-	-	-	-	-	-	-	-
		cc2	-123 -220	-123 -220	105 109	-	-	-	-	-	-	-	-	-	-	-	-	-
		cc3 cc4	-220 -68	-220 -68	109	-	-	-	-	-	-	-	-	-	-	-	-	-
		UC4	-08	-06	102	-		-			I ⁻	I ⁻	-	-	Ľ	<u> </u>	<u> </u>	-

Direzione Progettazione e Realizzazione Lavori

C4_G3 P1																			
C4_Q3 P1 C3_405_100_0_88_100_0_0_0_8_368_88_114_41_416_86_477_75_86_598_38_100_0_28_38_100_0_28_48_114_61_61_416_416_41_61_61_61_61_61_61_61_61_61_61_61_61_61																			
C4_08_08_P1 C4_1905_194_68_5 55_ 00_ 00_ 08_86_80_88_72_68_7712_477_172_18_86_80_88_80_80_80_80_80_80_80_80_80_80_80_				_	-														
C4_G3 P1																			
C4_Q3 P1																			
C4_G4 Pi																			
C4 D4 D4 D5 D5 D5 D5 D5 D6 D6 D6 D5	C4_G3	P1																	
C4_G4_G4_F4_F4_F4_F4_F4_F4_F4_F4_F4_F4_F4_F4_F4			_																
C4 G4 G4 P1			_															_	
Col. 144 197 58 197 1 5 5.05 78.30 399.20 142 717 72 38 328 101 10 3.65																			
C6_06_06_06_06_06_06_06_06_06_06_06_06_06			_																
C4_G4 P1			_																
C4_C61 P1			+																
C4_G4_G4 P1																			
C4_G4_G4 P1																			
C4_G4 P1			_																
C4_G4 P1																			
C6_G6_F1 P1			_																
C6_06_ C7_APP P1 C6_06_06_06_06_06_06_06_06_06_06_06_06_06	C4_G4	P1	_																
C6_GG R8.86 R8.86 S2																			
C6_G6_F1 P1			_				87	0	5	6.37	23.31	122.92	149	65	22	152	152	1.00	1.20
C6_GG 91.42 91.42 52			_				-	-	-	-	-	-	-	_	-		-	-	-
C6_G6 P1							-	-	-	-	-	-	-	-	-	-	-	-	-
C6_GG P1 C6_GG P1							-	-	-		_		[-		_		_
C6_G6 P1	 		+			_	40		-	E 00	0474	704.05	477	. 01	00	705	0.47	1.00	6.04
C6_GG P1																			
C6_G6 P1			_																
C6_G6 P1			_																
P1																			
C6_G6 P1																			
C64 114 199 19	C5_MEZZ	P1																	
C6_G6 P1 C6_G6 P1 C6_G7 C								_											
Ce_Ge_Ge_Pe_Pe_Pe_Pe_Pe_Pe_Pe_Pe_Pe_Pe_Pe_Pe_Pe							- 117	-	-	- 0.00	- 22.00	- 101.07	- 147	-		- 100	-	- 1.00	- 1.00
C6_G6 Fig. C6_G6							_	_	_	_	_	 -	<u> </u>	_	_	_	_	_	_
C6_G6							_	_	_	_	_	-	-	_	_	_	_	-	-
C6_G6 P1							_	_	_	_	_	-	-	_	_	_	_	-	-
P1			-				0	0	8	5.62	84 74	647 12	477	42	5	826	348	1.00	16.29
P1 C6_G6_F1 P1 C6_G7_F1																			
P1 C6_G6 P1 C6_G6 C7_G C7_G6_G6_G C7_G C7_G6_G6_G C7_G6_G6_G6_G C7_G6_G6_G C7_G6_G6_G C7_G6_G6_G C7_G6_G6_G C7_G6_G6_G6_G C7_G6_G6_G6_G C7_G6_G6_G6_G C7_G6_G6_G6_G C7_G6_G6_G6_G C7_G6_G6_G6_G6_G C7_G6_G6_G6_G C7_G6_G6_G6_G6_G C7_G6_G6_G6_G6_G C7_G6_G6_G6_G6_G6_G6_G C7_G6_G6_G6_G6_G6_G6_G6_G6_G6_G6_G6_G6_G6_			_																
C6_G5 P1 Cc1 62.5 -1.2 0 0 8 6.37 23.31 178.01 149 67 10 257 257 1.00 12.04 C6_G5 -84.4 -10 88 0 5 6.37 23.31 178.01 149 65 22 12.4 12.0 1.0 13.7 C6_G3 414 68.26 -12 0 8 6.37 23.31 178.01 149 64 22 125 125 1.00 11.41 C1 66.25 66.25 -12 -								_											
C6_G6 P1 CC2 -8.6 -4.42 -1.0 89 0 5 6.37 23.31 12.45 149 66 22 124 124 10.0 1.37 C6_G6 4.12 68.66 -12 0 0 8 6.37 23.31 178.01 149 59 10 257 257 1.00 11.95 C6_G4 4.22 64.26 -12 0 0 5 6.37 23.31 178.01 149 59 10 257 257 1.00 1.41 C61 66.25 6.25 -12 -1																			
C6_G6 P1 CC3 49,14 68,26 -12 0 0 8 6.37 23.31 178.01 149 59 10 257 257 1.00 11.95 C64 48.66 4.22 10 87 0 5 6.37 23.31 123.38 149 64 22 125 1.00 1.41 C62 4.42 -10 - <th< td=""><th></th><th></th><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>																			
C6 R6 R6 R6 R6 R6 R6 R6	C6_G5	P1										-							
C6 C6 C6 C6 C7 C7 C7 C7			CCO			-12	0	0	8	0.37	23.31	178.01	I 149	591		23/	25/	1.00	
P1 CG3 68.26 68.26 -12 -			_	-86.6															1.41
C63 68.26 68.26 -12			cc4		-42.2	-10													1.41
C64 -42.2 -42.2 -10 - - - - - - - - -	1		cc4 cc1	66.25	-42.2 66.25	-10 -12													1.41
P1 Cc1 Ge Ge Ge Ge Ge Ge Ge G			cc4 cc1 cc2	66.25 -44.2	-42.2 66.25 -44.2	-10 -12 -10													1.41 - -
P1			cc4 cc1 cc2 cc3	66.25 -44.2 68.26	-42.2 66.25 -44.2 68.26	-10 -12 -10 -12													1.41
C6_G6 P1 CC3 39.14 -47.2 98 47 -1 20 5.62 84.74 1671.18 477 4 43 845 349 1.00 1.98 C6_G6 226 128.8 97 0 0 8 5.62 84.74 647.12 477 177 49 826 348 1.00 2.08 C6_G1 -122 132 98 224 1 5 5.62 84.74 410.38 477 133 41 464 333 1.00 1.95 C6_G2 -142 -224 98 224 1 5 5.62 84.74 410.38 477 30 34 755 347 1.00 1.95 C6_G3 -47.2 -133 98 133 0 6 5.62 84.74 647.12 477 80 49 826 348 1.00 1.58 C6_1 -224 -298 98			cc4 cc1 cc2 cc3 cc4	66.25 -44.2 68.26 -42.2	-42.2 66.25 -44.2 68.26 -42.2	-10 -12 -10 -12 -10	87 - - -	0 - - -	- - -	6.37 - - -	23.31	123.38 - - -	149 - - -	64 - - -	22 - - -	125 - - -	125 - - -	1.00 - - -	- - -
P1 P1 C4 226 128.8 97 0 0 0 8 5.62 84.74 647.12 477 177 49 826 348 1.00 2.08			cc4 cc1 cc2 cc3 cc4	66.25 -44.2 68.26 -42.2 -60.3	-42.2 66.25 -44.2 68.26 -42.2 -142	-10 -12 -10 -12 -10 98	87 - - - - 142	- - - - -	5 - - - - 6	6.37 - - - - 5.62	23.31 - - - - - 84.74	123.38 - - - - - 467.05	149 - - - - 477	64 - - - - 101	22 - - - - 41	125 - - - - 564	125 - - - - 341	1.00 - - - - 1.00	- - - - 1.54
C6_G6 P1 cc2 3.797 -64.2 96 64 0 8 5.62 84.74 681.48 477 30 34 755 347 1.00 1.95 C64 128.8 31.68 97 0 0 8 5.62 84.74 489.78 477 90 43 591 342 1.00 1.58 c61 128.8 31.68 97 0 0 8 5.62 84.74 647.12 477 80 49 826 348 1.00 2.08 c61 -224 -298 98 298 1 5 5.57 103.09 467.78 575 261 37 507 337 1.00 1.05 c62 -64.2 -126 96 126 1 5 5.57 103.09 508.42 575 31 673 345 1.00 1.05 c22 -64.2 -13.00 -66 -1			cc4 cc1 cc2 cc3 cc4 cc1	66.25 -44.2 68.26 -42.2 -60.3 71.79	-42.2 66.25 -44.2 68.26 -42.2 -142 3.797	-10 -12 -10 -12 -10 98 96	87 - - - - 142 0	- - - - 0	5 - - - - 6 8	6.37 - - - - 5.62 5.62	23.31 - - - - 84.74 84.74	123.38 - - - - - 467.05 647.12	149 - - - - 477 477	64 - - - - 101 38	22 - - - - - 34	125 - - - - 564 826	125 - - - - 341 348	1.00 - - - - 1.00 1.00	- - - 1.54 2.10
C7_APP P1 C3 -47.2 -133 98 133 0 6 5.62 84.74 489.78 477 90 43 591 342 1.00 1.58			cc4 cc1 cc2 cc3 cc4 cc1 cc2 cc3	66.25 -44.2 68.26 -42.2 -60.3 71.79 39.14	-42.2 66.25 -44.2 68.26 -42.2 -142 3.797 -47.2	-10 -12 -10 -12 -10 98 96 98	87 - - - 142 0 47	0 - - - - 0 0	5 - - - - 6 8 20	6.37 - - - - 5.62 5.62 5.62	23.31 - - - - 84.74 84.74 84.74	123.38 - - - - - 467.05 647.12 1671.18	149 - - - - 477 477	64 - - - - 101 38 4	22 - - - - 41 34 43	125 - - - - 564 826 845	125 - - - 341 348 349	1.00 - - - - 1.00 1.00	- - - 1.54 2.10 1.98
C7_APP P1 Cc3 -472 -133 98 133 0 6 5.62 84.74 489.78 477 90 43 591 342 1.00 1.58			cc4 cc1 cc2 cc3 cc4 cc1 cc2 cc3	66.25 -44.2 68.26 -42.2 -60.3 71.79 39.14 226	-42.2 66.25 -44.2 68.26 -42.2 -142 3.797 -47.2 128.8	-10 -12 -10 -12 -10 98 96 98 97	87 - - - - 142 0 47	0 - - - - - 0 0 -1	5 - - - - 6 8 20 8	6.37 - - - - 5.62 5.62 5.62 5.62	23.31 - - - - 84.74 84.74 84.74 84.74	123.38 - - - - 467.05 647.12 1671.18 647.12	149 - - - - 477 477 477	64 - - - - 101 38 4 177	22 - - - - - - - 34 43 49	125 - - - - 564 826 845 826	125 - - - - 341 348 349 348	1.00 - - - - 1.00 1.00 1.00	1.54 2.10 1.98 2.08
CT_APP P1 CCT -224 -298 98 298 1 5 5.57 103.09 467.78 575 261 37 507 337 1.00 1.05	C6 C6	D4	cc4 cc1 cc2 cc3 cc4 cc1 cc2 cc3 cc4	66.25 -44.2 68.26 -42.2 -60.3 71.79 39.14 226 -142	-42.2 66.25 -44.2 68.26 -42.2 -142 3.797 -47.2 128.8 -224	-10 -12 -10 -12 -10 98 96 98 97 98	87 142 0 47 0 224	0 - - - - - 0 0 -1 0	5 - - - - 6 8 20 8	6.37 - - - 5.62 5.62 5.62 5.62 5.62	23.31 - - - - 84.74 84.74 84.74 84.74	123.38 - - - - 467.05 647.12 1671.18 647.12 410.38	149 - - - - 477 477 477 477	64 - - - 101 38 4 177 183	22 - - - - 41 34 43 49 41	125 - - - 564 826 845 826 464	125 - - - 341 348 349 348 333	1.00 - - - 1.00 1.00 1.00	- - - 1.54 2.10 1.98 2.08 1.19
CC_APP P1 CC_APP CC	C6_G6	P1	cc4 cc1 cc2 cc3 cc4 cc1 cc2 cc3 cc4 cc1	66.25 -44.2 68.26 -42.2 -60.3 71.79 39.14 226 -142 3.797	-42.2 66.25 -44.2 68.26 -42.2 -142 3.797 -47.2 128.8 -224	-10 -12 -10 -12 -10 98 96 98 97 98	87 - - - 142 0 47 0 224 64	0 - - - - 0 0 -1 0 1	5 - - - - 6 8 20 8 5	6.37 - - - 5.62 5.62 5.62 5.62 5.62 5.62	23.31 - - - - 84.74 84.74 84.74 84.74 84.74	123.38 - - - - 467.05 647.12 1671.18 647.12 410.38 681.48	149 - - - - 477 477 477 477 477	64 - - - 101 38 4 177 183 30	22 - - - - - - - 34 43 49 41 34	125 - - - - 564 826 845 826 464 755	125 - - - 341 348 349 348 333 347	1.00 - - - 1.00 1.00 1.00 1.00	1.54 2.10 1.98 2.08 1.19 1.95
C7_APP P1 C63	C6_G6	P1	cc4 cc1 cc2 cc3 cc4 cc1 cc2 cc3 cc4 cc1 cc2	66.25 -44.2 68.26 -42.2 -60.3 71.79 39.14 226 -142 3.797 -47.2	-42.2 66.25 -44.2 68.26 -42.2 -142 3.797 -47.2 128.8 -224 -64.2	-10 -12 -10 -12 -10 98 96 98 97 98 96	87	0 - - - - 0 0 -1 0 1 0	5 - - - - 6 8 20 8 5 8	6.37 - - - 5.62 5.62 5.62 5.62 5.62 5.62	23.31 - - - 84.74 84.74 84.74 84.74 84.74 84.74	123.38 - - - - - - - - - - - - -	149 477 477 477 477 477 477	64 - - - 101 38 4 177 183 30	22 - - - - 41 34 43 49 41 34	125 - - - - 564 826 845 826 464 755 591	125 - - - 341 348 349 348 333 347 342	1.00 - - - 1.00 1.00 1.00 1.00 1.00	1.54 2.10 1.98 2.08 1.19 1.95
C7_APP P1 C6 31.68 -56.4 97 56 -1 14 5.57 103.09 1474.73 575 12 44 1005 351 1.00 1.99	C6_G6	P1	cc4 cc1 cc2 cc3 cc4 cc1 cc2 cc3 cc4 cc1 cc2	66.25 -44.2 68.26 -42.2 -60.3 71.79 39.14 226 -142 3.797 -47.2 128.8	-42.2 66.25 -44.2 68.26 -42.2 -142 3.797 -47.2 128.8 -224 -64.2 -133 31.68	-10 -12 -10 -12 -10 98 96 98 97 98 96 98 97	87 - - - 142 0 47 0 224 64 133	- 0 0 0 0 -1 0 0 0 0 0 0	5 - - - - 6 8 20 8 5 8 6	6.37 - - - 5.62 5.62 5.62 5.62 5.62 5.62 5.62 5.62	23.31 - - - - 84.74 84.74 84.74 84.74 84.74 84.74 84.74	123.38 - - - - 467.05 647.12 1671.18 647.12 410.38 681.48 489.78 647.12	149 477 477 477 477 477 477 477 477	64 - - - 101 38 4 177 183 30 90 80	22 - - - - 41 34 43 49 41 34 43 49	125 - - - - 564 826 845 826 464 755 591 826	125 - - - 341 348 349 348 333 347 342 348	1.00 - - - 1.00 1.00 1.00 1.00 1.00 1.00 1.00	- 1.54 2.10 1.98 2.08 1.19 1.95 1.58 2.08
C7_APP P1 C 38.39 -189 -39 189 0 9 6.48 33.10 308.53 214 75 114 311 301 1.00 1.50	C6_G6	P1	cc4 cc1 cc2 cc3 cc4 cc1 cc2 cc3 cc4 cc1 cc2 cc3	66.25 -44.2 68.26 -42.2 -60.3 71.79 39.14 226 -142 3.797 -47.2 128.8 -224	-42.2 66.25 -44.2 68.26 -42.2 -142 3.797 -47.2 128.8 -224 -64.2 -133 31.68 -298	-10 -12 -10 -12 -10 98 96 98 97 98 96 98 97 98	87 - - - 142 0 47 0 224 64 133 0 298	0 - - - - 0 0 0 -1 1 0 0 0	5 - - - - 6 8 20 8 5 8 6 8	6.37 - - - 5.62 5.62 5.62 5.62 5.62 5.62 5.62 5.62 5.62 5.62	23.31 - - - - - - - - - - - - - - - - - - -	123.38 - - - - - - - - - - - - - - - - - - -	149 477 477 477 477 477 477 477 575	64 - - - 101 38 4 177 183 30 90 80 261	22 - - - - 41 34 43 49 41 34 43 49 37	125 - - - 564 826 845 826 464 755 591 826 507	125 - - 341 348 349 348 333 347 342 348 337	1.00 - - - 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00	- 1.54 2.10 1.98 2.08 1.19 1.95 1.58 2.08
C7_APP P1 C2 195.9 -44.5 -54 44 -4 24 6.48 33.10 791.14 214 76 120 461 333 1.00 3.21	C6_G6	P1	cc4 cc1 cc2 cc3 cc4 cc1 cc2 cc3 cc4 cc1 cc2 cc3 cc4	66.25 -44.2 68.26 -42.2 -60.3 71.79 39.14 226 -142 3.797 -47.2 128.8 -224 -64.2	-42.2 66.25 -44.2 68.26 -42.2 -142 3.797 -47.2 128.8 -224 -64.2 -133 31.68 -298	-10 -12 -10 -12 -10 98 96 98 97 98 96 98 97 98 99 98 99 98	87	0 - - - - 0 0 0 -1 1 0 0 0 0	5 - - - - 6 8 20 8 5 8 6 8 5 5	6.37 - - - 5.62 5.62 5.62 5.62 5.62 5.62 5.62 5.62 5.57 5.57	23.31 - - - - - - - - - - - - - - - - - - -	123.38 - - - - 467.05 647.12 1671.18 647.12 410.38 681.48 489.78 647.12 467.78 537.80	149 477 477 477 477 477 477 477 575 575	64 - - - 101 38 4 177 183 30 90 80 261 95	22 - - - - - 41 34 43 49 41 34 43 37 31 39	125 - - - 564 826 845 826 464 755 591 826 507 673	125 - - 341 348 349 348 333 347 342 348 337 345	1.00 - - - 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00	- 1.54 2.10 1.98 2.08 1.19 1.95 1.58 2.08 1.05 1.65
C7_APP P1 C3 87.79 -140 -44 140 -1 15 6.48 33.10 511.89 214 26 114 459 333 1.00 2.08	C6_G6	P1	cc4 cc1 cc2 cc3 cc4 cc1 cc2 cc3 cc4 cc1 cc2 cc3 cc4 cc2	66.25 -44.2 68.26 -42.2 -60.3 71.79 39.14 226 -142 3.797 -47.2 128.8 -224 -64.2 -133	-42.2 66.25 -44.2 68.26 -42.2 -142 3.797 -47.2 128.8 -224 -64.2 -133 31.68 -298 -126	-10 -12 -10 -12 -10 98 96 98 97 98 96 98 97 98 99 98 99 98	87	0 - - - - 0 0 0 1 1 0 0 0 0 0 1 1 1 1 1	5 - - - - 6 8 20 8 5 5 8 6 6 8 5 5	6.37 - - - 5.62 5.62 5.62 5.62 5.62 5.62 5.62 5.62 5.57 5.57	23.31 - - - - - - - - - - - - - - - - - - -	123.38 - - - - 467.05 647.12 1671.18 647.12 410.38 681.48 489.78 647.12 467.78 537.80	149 477 477 477 477 477 477 477 575 575	64 - - - - 101 38 4 177 183 30 90 80 261 95 173	22 - - - - - 41 34 43 49 41 34 43 37 31 39	125 - - - - 564 826 845 826 464 755 591 826 507 673 571	125 341 348 349 348 333 347 342 348 337 345	1.00 - - - 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00	- 1.54 2.10 1.98 2.08 1.19 1.95 1.58 2.08 1.05 1.65
P1	C6_G6	P1	cc4 cc1 cc2 cc3 cc4 cc1 cc2 cc3 cc4 cc1 cc2 cc3 cc4 cc2	66.25 -44.2 68.26 -42.2 -60.3 71.79 39.14 226 -142 3.797 -47.2 128.8 -224 -64.2 -133 31.68	-42.2 66.25 -44.2 68.26 -42.2 -142 3.797 -47.2 128.8 -224 -64.2 -133 31.68 -298 -126 -212 -56.4	-10 -12 -10 -12 -10 98 96 98 97 98 96 98 97 98 99 98 97 98 99 98	87	0 - - - - 0 0 0 1 1 0 0 0 0 0 1 1 1 1 1	5 - - - - 6 8 20 8 5 5 8 6 8 5 5 5	6.37 - - - 5.62 5.62 5.62 5.62 5.62 5.62 5.62 5.57 5.57 5.57	23.31 	123.38 - - - - - - - - - - - - - - - - - - -	149 477 477 477 477 477 477 477 575 575 575	64 - - - - 101 38 4 177 183 30 90 80 261 95 173 12	22 - - - - - 41 34 43 49 41 34 43 49 37 31 39 44	125 - - - - 564 826 845 826 464 755 591 826 507 673 571 1005	125 - - - 341 348 349 348 333 347 342 348 337 345 341 351	1.00 - - 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00	- 1.54 2.10 1.98 2.08 1.19 1.95 1.58 2.08 1.65 1.65
C7_APP P1 P1 P1 P1 P1 P1 P1	C6_G6	P1	cc4 cc1 cc2 cc3 cc4 cc1 cc1 cc2 cc3 cc4 cc1 cc1 cc2 cc1 cc1 cc2 cc3 cc4 cc3 cc4 cc1 cc2 cc3 cc4 cc4	66.25 -44.2 68.26 -42.2 -60.3 71.79 39.14 226 -142 3.797 -47.2 128.8 -224 -64.2 -133 31.68 38.39	-42.2 66.25 -44.2 68.26 -42.2 -142 3.797 -47.2 128.8 -224 -64.2 -133 31.68 -298 -126 -212 -56.4	-10 -12 -10 -12 -10 98 96 98 97 98 96 98 97 98 97 98 99 98	87	0 - - - - 0 0 0 1 1 0 0 0 0 1 1 1 1 1 1	5 - - - - - 6 8 20 8 5 5 8 6 8 5 5 5 5 14	6.37 - - - 5.62 5.62 5.62 5.62 5.62 5.62 5.62 5.57 5.57 5.57 6.48	23.31 - 84.74 84.74 84.74 84.74 84.74 84.74 103.09 103.09 103.09 33.10 33.10	123.38 - - - - - - - - - - - - -	149 477 477 477 477 477 477 575 575 575 575	64 - - - 101 38 4 177 183 30 90 80 261 95 173 12 75	22 - - - - - - - - - - - - - - - - - -	125 - - - 564 826 845 826 464 755 591 826 507 673 571 1005 311	125 - - - 341 348 349 348 333 347 342 348 337 345 341 351 301	1.00 - - 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00	- 1.54 2.10 1.98 2.08 1.19 1.95 1.58 2.08 1.05 1.65 1.26 1.99
C7_APP P1 CC2	C6_G6	P1	cc4 cc3 cc4 cc1 cc2 cc3 cc4 cc3 cc4 cc3 cc4 cc4 cc1 cc2 cc3 cc4 cc4 cc4 cc4 cc4 cc4 cc4 cc4 cc4	66.25 -44.2 68.26 -42.2 -60.3 71.79 39.14 226 -142 3.797 -47.2 128.8 -224 -64.2 -133 31.68 38.39 195.9	-42.2 66.25 -44.2 68.26 -42.2 -142 3.797 -47.2 128.8 -224 -64.2 -133 31.68 -298 -126 -212 -56.4 -189 -44.5	-10 -12 -10 -12 -10 98 96 98 97 98 96 98 97 98 97 98 97 98 97 98	87	0 - - - - 0 0 -1 1 0 0 0 0 1 1 1 1 1 1 1	5 - - - - - - - 6 8 20 8 5 5 8 6 6 8 5 5 5 5 14	6.37 5.62 5.62 5.62 5.62 5.62 5.62 5.62 5.62	23.31 - 84.74 84.74 84.74 84.74 84.74 84.74 103.09 103.09 103.09 33.10 33.10	123.38 - - - - - - - - - - - - -	149	64 - - - - - 101 38 4 177 183 30 90 80 261 95 173 12 75 76	22 - - - - - - 41 34 43 49 41 34 49 37 31 39 44 114 120	125 - - - 564 826 845 826 464 755 591 826 507 673 571 1005 311 461	125 - - - 341 348 349 348 333 347 342 348 337 345 341 351 301 333	1.00 - - - 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00	- 1.54 2.10 1.98 2.08 1.19 1.95 1.58 2.08 1.05 1.65 1.26 1.26 1.99
C7_APP cc3 -140 -232 -44 232 1 5 5.52 206.89 1018.67 1142 186 46 1048 351 1.00 1.44 cc4 4.177 -92.3 -59 92 0 8 5.52 206.89 1642.76 1142 44 48 1711 353 1.00 2.56 cc1 -280 -280 -39	C6_G6	P1	cc4 cc3 cc4 cc1 cc2 cc3	66.25 -44.2 68.26 -42.2 -60.3 71.79 39.14 226 -142 3.797 -47.2 128.8 -224 -64.2 -133 31.68 38.39 195.9 87.79	-42.2 66.25 -44.2 68.26 -42.2 -142 3.797 -47.2 128.8 -224 -64.2 -133 31.68 -298 -126 -212 -56.4 -189 -44.5	-10 -12 -10 -12 -10 98 96 98 97 98 96 98 97 98 97 98 97 98 97 98 97 98	87	0 - - - - 0 0 -1 0 0 0 0 0 0 1 1 1 1 1 1	5 - - - - - - - - - - - - - - - - - 8 20 0 8 5 5 - - - - - - - - - - - - - - - - -	6.37 - - - - - - - - - - - - -	23.31 - 84.74 84.74 84.74 84.74 84.74 103.09 103.09 103.09 33.10 33.10 33.10	123.38 - - - - - - - - - - - - -	149 477 477 477 477 477 477 575 575 575 575	64 - - - - 101 38 4 177 183 30 90 80 261 95 173 12 75 76 26	22 - - - - - - - - - - - - - - - - - -	125 - - - - - - - - - - - - -	125 - - - - 341 348 349 348 337 342 348 337 345 341 351 301 333 333	1.00 - - - 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00	- 1.54 2.10 1.95 2.08 1.19 1.95 1.58 2.08 1.05 1.65 1.29 1.50 3.21
cc3 -140 -232 -44 232 1 5 5.52 206.89 1018.67 1142 186 46 1048 351 1.00 1.44 cc4 4.177 -92.3 -59 92 0 8 5.52 206.89 1642.76 1142 44 48 1711 353 1.00 2.56 cc1 -280 -280 -39 - <t< td=""><th>C6_G6</th><th>P1</th><td>cc4 cc1 cc2 cc3 cc4 cc1 cc2 cc3 cc4 cc1 cc2 cc3 cc4 cc1 cc2 cc3 cc4 cc1 cc2 cc3 cc4 cc1 cc2 cc3 cc4 cc1 cc2 cc3 cc4 cc4 cc1 cc2 cc3 cc4 cc4 cc1 cc4 cc4 cc4 cc4 cc4 cc4 cc4</td><td>66.25 -44.2 68.26 -42.2 -60.3 71.79 39.14 226 -142 3.797 -47.2 128.8 -224 -64.2 -133 31.68 38.39 195.9 87.79 245.4</td><td>-42.2 66.25 -44.2 68.26 68.26 -42.2 -142 3.797 -128.8 -224 -64.2 -133 31.68 -298 -126 -212 -212 -44.5 -140 -44.5 -140 -44.5</td><td>-10 -12 -10 -12 -10 98 96 98 97 98 96 98 97 98 96 98 97 -39 -54 -44 -59 -39</td><td>87 </td><td>0 - - - - 0 0 11 0 0 0 0 1 1 1 1 1 1 1 1</td><td>5 - - - - 6 8 8 20 8 8 6 6 8 8 5 5 5 5 5 1 4 4 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9</td><td>6.37 - 5.62 5.62 5.62 5.62 5.62 5.57 5.57 5.57 6.48 6.48 6.48</td><td>23.31 - 84.74 84.74 84.74 84.74 84.74 84.74 103.09 103.09 103.09 33.10 33.10 33.10 206.89</td><td>123.38</td><td>149 - 477 477 477 477 477 477 477 575 575 575</td><td>64 - - - - - 101 38 4 177 183 30 90 80 261 95 173 122 75 76 26 125</td><td>22 - - - - - - - - - - - - - - - - - -</td><td>125 - - - - - - - - - - - - -</td><td>125 - - - - 341 348 333 347 342 348 337 345 341 351 301 333 333 333 333 333 333 335 350</td><td>1.00 - - - 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00</td><td>- 1.54 2.10 1.98 2.08 1.19 1.95 1.58 2.08 1.05 1.65 1.26 1.99 1.50 3.21 2.08</td></t<>	C6_G6	P1	cc4 cc1 cc2 cc3 cc4 cc1 cc2 cc3 cc4 cc1 cc2 cc3 cc4 cc1 cc2 cc3 cc4 cc1 cc2 cc3 cc4 cc1 cc2 cc3 cc4 cc1 cc2 cc3 cc4 cc4 cc1 cc2 cc3 cc4 cc4 cc1 cc4 cc4 cc4 cc4 cc4 cc4 cc4	66.25 -44.2 68.26 -42.2 -60.3 71.79 39.14 226 -142 3.797 -47.2 128.8 -224 -64.2 -133 31.68 38.39 195.9 87.79 245.4	-42.2 66.25 -44.2 68.26 68.26 -42.2 -142 3.797 -128.8 -224 -64.2 -133 31.68 -298 -126 -212 -212 -44.5 -140 -44.5 -140 -44.5	-10 -12 -10 -12 -10 98 96 98 97 98 96 98 97 98 96 98 97 -39 -54 -44 -59 -39	87 	0 - - - - 0 0 11 0 0 0 0 1 1 1 1 1 1 1 1	5 - - - - 6 8 8 20 8 8 6 6 8 8 5 5 5 5 5 1 4 4 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	6.37 - 5.62 5.62 5.62 5.62 5.62 5.57 5.57 5.57 6.48 6.48 6.48	23.31 - 84.74 84.74 84.74 84.74 84.74 84.74 103.09 103.09 103.09 33.10 33.10 33.10 206.89	123.38	149 - 477 477 477 477 477 477 477 575 575 575	64 - - - - - 101 38 4 177 183 30 90 80 261 95 173 122 75 76 26 125	22 - - - - - - - - - - - - - - - - - -	125 - - - - - - - - - - - - -	125 - - - - 341 348 333 347 342 348 337 345 341 351 301 333 333 333 333 333 333 335 350	1.00 - - - 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00	- 1.54 2.10 1.98 2.08 1.19 1.95 1.58 2.08 1.05 1.65 1.26 1.99 1.50 3.21 2.08
cc1 -280 -39 - <			cc4 cc1 cc2 cc3 cc4 cc1 cc2 cc3 cc4 cc1 cc2 cc3 cc4 cc1 cc2 cc3 cc4 cc1 cc2 cc3 cc4 cc1 cc2 cc3 cc4 cc2 cc3 cc4 cc2 cc3 cc4 cc2 cc3 cc4 cc4 cc1 cc2 cc2 cc3 cc4 cc4 cc4 cc4 cc4 cc4 cc4 cc4 cc4	66.25 -44.2 68.26 -42.2 -60.3 71.79 39.14 226 -142 3.797 -47.2 128.8 -224 -64.2 -133 31.68 38.39 195.9 245.4 -189 -44.5	-42.2 66.25 -44.2 -42.2 -142 -128.8 -224 -64.2 -133 31.68 -126 -212 -56.4 -189 -44.5 -140 -44.5 -140 -141 -280 -141	-10 -12 -10 -12 -10 98 96 98 97 98 96 98 97 98 97 -39 -54	87	0 0 0 0 -1 0 1 0 0 1 1 1 1 -1 0 -4 -1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	5 - - - - - - - - - - - - - - - - - - -	6.37 	23.31 	123.38 	149 - - - - - - - - - - - - - - - - - - -	64 - - - - - - - - - - - - -	22 41 34 43 49 41 34 43 37 31 39 44 114 120 114 121 45 48	125 - - - - - - - - - - - - -	125 	1.00 - - - 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00	- 1.54 2.10 1.98 2.08 1.19 1.95 1.58 2.08 1.05 1.65 1.26 1.99 1.50 3.21 2.08 3.13
cc2 -141 -141 -54 -			cc4 cc3 cc4 cc1 cc2 cc3	66.25 -44.2 68.26 -42.2 -60.3 71.79 39.14 226 -142 3.797 -47.2 128.8 -224 -64.2 -133 31.68 38.39 195.9 87.79 245.4 -189 -44.5 -140	-42.2 66.25 -44.2 -42.2 -142 -128.8 -224 -64.2 -133 31.68 -126 -212 -56.4 -189 -44.5 -140 -44.5 -140 -141 -280 -141	-10 -12 -10 -12 -10 98 96 98 97 98 96 98 97 -39 -54 -44 -59 -54 -44	87	0 0 0 0 1 1 1 1 1 - 1 0 0 1 1 1 0 0 1 1 1 0 0 1 1 1 1	5 - - - - - - - - - - - - - - - - - - -	6.37 	23.31 	123.38 	149 	64 - - - - - - - - - - - - -	22 41 34 43 49 41 34 43 37 31 39 44 114 120 114 121 45 48	125 - - - - - - - - - - - - -	125 - 341 348 349 348 333 347 342 348 337 345 341 351 301 333 333 320 350 352	1.00 	- 1.54 2.10 1.98 2.08 1.19 1.95 1.58 2.08 1.05 1.65 1.26 1.99 1.50 3.21 2.08 3.13 1.22 2.08
cc3 -232 -232 -44			cc4 cc1 cc2 cc3	66.25 -44.2 68.26 -42.2 -60.3 71.79 39.14 226 -142 3.797 -47.2 128.8 -224 -64.2 -133 31.68 38.39 195.9 87.79 245.4 -189 -44.5 -140	-42.2 66.25 -44.2 68.26 68.26 68.26 -42.2 128.8 -224 -64.2 -133 31.68 -298 -126 -212 -56.4 -149 -44.5 -140 -141 -232	-10 -12 -10 -12 -10 -12 -10 98 96 98 97 98 96 98 97 98 96 98 97 -39 -54 -44 -59	87	0 0 0 0 1 1 1 1 1 - 1 0 0 1 1 1 0 0 1 1 1 0 0 1 1 1 1	5 - - - - - - - - - - - - - - - - - - -	6.37 	23.31 	123.38 	149	64 - - - - - - - - 101 38 4 177 183 30 90 80 261 95 173 12 75 76 26 125 235 93 186	22 	125 - - - - - - - - - - - - -	125 - 341 348 349 348 333 347 342 348 337 345 341 351 301 333 333 320 350 352	1.00 	- 1.54 2.10 1.98 2.08 1.19 1.95 1.58 2.08 1.05 1.65 1.26 1.99 1.50 3.21 2.08 3.13 1.22 2.08
			cc4 cc1 cc2 cc3 cc4 cc1 cc1 cc2 cc3 cc4 cc1 cc1 cc2 cc3	66.25 -44.2 68.26 -42.2 -60.3 71.79 39.14 226 -142 3.797 -47.2 128.8 -224 -64.2 -133 31.68 38.39 195.9 87.79 245.4 -189 -44.5 -140 4.177 -280	-42.2 66.25 -44.2 -42.2 -142 3.797 -47.2 128.8 -224 -64.2 -133 31.68 -298 -44.5 -140 -41.77 -280 -42.2 -141 -232 -292.3 -292.3 -292.3 -292.3 -292.3	-10 -12 -10 -12 -10 98 96 98 97 98 96 98 97 98 97 -39 -54 -44 -59 -39 -39 -39	87	0 0 0 0 1 1 1 1 1 - 1 0 0 1 1 1 0 0 1 1 1 0 0 1 1 1 1	5 - - - - - - - - - - - - - - - - - - -	6.37 	23.31 	123.38 	149	64 - - - - - - - - 101 38 4 177 183 30 90 80 261 95 173 12 75 76 26 125 235 93 186	22 	125 - - - - - - - - - - - - -	125 - 341 348 349 348 333 347 342 348 337 345 341 351 301 333 333 320 350 352	1.00 	- 1.54 2.10 1.98 2.08 1.19 1.95 1.58 2.08 1.05 1.65 1.26 1.99 1.50 3.21 2.08 3.13 1.22 2.08
			cc4 cc1 cc2 cc3 cc4 cc1 cc2	66.25 -44.2 68.26 -42.2 -60.3 71.79 39.14 226 -142 3.797 -47.2 128.8 -224 -64.2 -133 31.68 38.39 195.9 87.79 245.4 -189 -44.5 -140 4.177 -280 -141	-42.2 66.25 -44.2 -68.26 68.26 68.26 -47.2 -128.8 -224 -64.2 -133 31.68 -298 -126 -56.4 -149 -44.5 -140 -141 -280 -141 -292 -92.3 -92.3 -232 -232 -232 -232 -232 -232 -232 -	-10 -12 -10 -12 -10 98 98 97 98 99 98 97 98 97 98 97 98 97 98 97 98 97 98 97 98 97 98 97 98 97 98 97 98 97 98 98 97 98 98 97 98 98 97 98 98 97 98 98 98 98 97 98 98 98 98 98 98 98 98 98 98	87	0 0 0 0 1 1 1 1 1 - 1 0 0 1 1 1 0 0 1 1 1 0 0 1 1 1 1	5 - - - - - - - - - - - - - - - - - - -	6.37 	23.31 	123.38 	149	64 - - - - - - - - 101 38 4 177 183 30 90 80 261 95 173 12 75 76 26 125 235 93 186	22 	125 - - - - - - - - - - - - -	125 - 341 348 349 348 333 347 342 348 337 345 341 351 301 333 333 320 350 352	1.00 	- 1.54 2.10 1.98 2.08 1.19 1.95 1.58 2.08 1.05 1.65 1.26 1.99 1.50 3.21 2.08 3.13 1.22 2.08
			cc4 cc1 cc2 cc3	66.25 -44.2 68.26 -42.2 -60.3 71.79 39.14 226 -142 3.797 -47.2 128.8 -224 -64.2 -133 31.68 38.39 195.9 87.79 245.4 -189 -44.5 -140 4.177 -280 -141 -232	-42.2 66.25 -44.2 -142 -142 -3.797 -128.8 -224 -64.2 -133 -31.68 -298 -126 -56.4 -141 -212 -140 -141 -232 -241 -242 -141 -232 -244 -141 -232 -244 -244 -244 -244 -244 -244 -244	-10 -12 -10 -12 -10 98 96 98 97 98 97 98 97 98 97 98 97 98 97 98 97 98 97 98 97 98 97 98 97 98 97 98 98 97 98 98 97 98 98 97 98 98 97 98 98 98 97 98 98 98 98 97 98 98 98 98 98 98 98 98 98 98	87	0 0 0 0 1 1 1 1 1 - 1 0 0 1 1 1 0 0 1 1 1 0 0 1 1 1 1	5 - - - - - - - - - - - - - - - - - - -	6.37 	23.31 	123.38 	149	64 - - - - - - - - 101 38 4 177 183 30 90 80 261 95 173 12 75 76 26 125 235 93 186	22 	125 - - - - - - - - - - - - -	125 - 341 348 349 348 333 347 342 348 337 345 341 351 301 333 333 320 350 352	1.00 	- 1.54 2.10 1.98 2.08 1.19 1.95 1.58 2.08 1.05 1.65 1.26 1.99 1.50 3.21 2.08 3.13 1.22 2.08

PROGETTO DEFINTIVO

Direzione Progettazione e Realizzazione Lavori

CONCI	Р	1								My mi	n							
00.10.		СС	О́sup	G inf	Tmed	σ 1	Ψ	k _σ	k_{τ}	Ocr,0	σ _{cr}	τcr	σN	ØМ	σ cr,id	σ _{cr,red}	νβ	η
		cc1	-83.8	-20.4	17	84	Ψ 0	6	7.96	15.53	97.11	124	52	32	101	101	0.92	1.14
		cc2	-94.2	116.4	12	94	-1	24	7.96	15.53	371.15	124	11	105	356	317	0.82	3.28
		cc3	5.0	-69.0	22	69	0	8	7.96	15.53	126.47	124	32	37	135	135	0.89	
		cc4	-5.4	67.8	17	5	-13	24	7.96	15.53	371.15	124	31	37	281	281	0.89	
		cc1	-20.4	-20.4	17	-	-	-	- 7.00	-	-	- 12-1	-	-	-	-	- 0.00	- 0.40
		cc2	116.4	116.4	12	_	_	_	_	_	_	_	-	_	-	_	_	<u> </u>
C1_APP	P1	cc3	-69.0	-69.0	22	-	-	_	_	_	_	_	_	-	_	_	-	<u> </u>
		cc4	67.8	67.8	17	-	-	_	-	_	_	_	-	_	_	_	-	-
		cc1	-20.4	-20.4	17	_	_	_	_	_	_	_	_	_	-	_	_	-
		cc2	116.4	116.4	12	_	_	_	_	_	_	_	-	_	-	_	_	<u> </u>
		cc3	-69.0	-69.0	22	-	-	_	_	_	_	_	_	-	_	_	-	<u> </u>
		cc4	67.8	67.8	17	-	-	_	_	_	_	_	_	-	_	_	-	<u> </u>
		cc1	-176.6	-29.7	-32	177	0	7	5.65	84.74	561.19	479	103	73	570	341	1.00	1.84
		cc2	-167.6	-68.3	-18	168	0	6	5.65	84.74	472.14	479	118	50	476	335	1.00	
		cc3	-111.45	3.89	-25	111	0	8	5.65	84.74	666.68	479	54	58	673	345	1.00	
		cc4	-102.45	-34.7	-11	102	0	6	5.65	84.74	494.81	479	69	34	498	336	1.00	
		cc1	-29.743	252.2	-32	30	-8	24	6.47	22.99	549.40	149	111	141	383	322	1.00	
		cc2	-68.325	122.3	-18	68	-2	24	6.47	22.99	549.40	149	27	95	448	332	1.00	
C1_MEZZ	P1	_	3.8903	225.3	-16		-2		6.47	22.99	175.54	149	115	111	258	258	1.00	
		cc3	-34.691	95.42	-25	0 35	-3	8 24	6.47	22.99	549.40	149	30	65	446	332	1.00	
		cc4 cc1	252.213	252.2	-32	33	-3	24	0.47	22.99	549.40	149	30	65	446	332	1.00	0.43
			122.281	122.3	-18	-	-	-	-	-	-	-	-	-	-	-		-
		cc2	225.347	225.3	-16	-	-	-	-	-	-	-	-	-	-	-		Γ
		cc3			-11	-	-	-	-	-	-	-	-	-	-	-		Γ
		cc4	95.4151	95.42		100	-	-		- 04.74	- 007.00	470		- 54	- 050	- 044	- 4.00	- 0.70
		cc1	-108.78	-1.77	-38	109	0	8	5.65	84.74	637.66	479	55	54	658	344	1.00	
		cc2	-134.63	-51.8	-26	135	0	6	5.65	84.74	479.35	479	93	41	492	336	1.00	
		cc3	-69.391	18.92	-28	69	0	10	5.65	84.74	854.85	479	25	44	819	348	1.00	
		cc4	-95.235	-31.1	-16	95	0	6	5.65	84.74	498.86	479	63	32	508	337	1.00	
		cc1	-1.7749	202.3	-38	2	-114	24	6.46	23.31	557.12	150	100	102	366	319	1.00	
C1_G1	P1	cc2	-51.83	106	-26	52	-2	24	6.46	23.31	557.12	150	27	79	373	320	1.00	
		cc3	18.9208	187.3	-28	0	0	8	6.46	23.31	178.01	150	103	84	261	261	1.00	
		cc4	-31.134	91.09	-16	31	-3	24	6.46	23.31	557.12	150	30	61	390	324	1.00	7.85
		cc1	202.257	202.3	-38	-	-	-	-	-	-	-	-	-	-	-	-	-
		cc2	106.04	106	-26	-	-	-	-	-	-	-	-	-	-	-	-	-
		cc3	187.303	187.3	-28	-	-	-	-	-	-	-	-	-	-	-	-	-
		cc4	91.0851	91.09	-16	-	-	-	-	-	-	-	-	-	-	-	-	-
		cc1	-51.042	-95.5	-82	95	1	5	5.65	84.74	435.49	479	73	22	567	341	1.00	
		cc2	86.9082	49.83	-87	0	0	8	5.65	84.74	647.12	479	68	19	829	348	1.00	
		ссЗ	28.1173	-12.8	-82	13	-2	24	5.65	84.74	2025.33	479	8	20	840	349	1.00	
		cc4	166.067	132.5	-86	0	0	8	5.65	84.74	647.12	479	149	17	829	348	1.00	
		cc1	-95.488	-140	-82	140	1	5	5.65	84.74	399.37	479	118	22	483	335	1.00	
C2 G2	P1	cc2	49.8312	12.75	-87	0	0	8	5.65	84.74	647.12	479	31	19	829	348	1.00	
		сс3	-12.831	-53.8	-82	54	0	6	5.65	84.74	531.78	479	33	20	702	346	1.00	
		cc4	132.488	98.91	-86	0	0	8	5.65	84.74	647.12	479	116	17	829	348	1.00	
		cc1	-139.93	-181	-82	181	1	4	5.60	100.12	448.81	561	160	20	516	338	1.00	
		cc2	12.7542	-21.4	-87	21	-1	15	5.60	100.12	1496.15	561	4	17	968	350	1.00	
		cc3	-53.779	-91.5	-82	91	1	5	5.60	100.12	498.21	561	73	19	659	345	1.00	2.04
		cc4	98.9091	68.02	-86	0	0	8	5.60	100.12	764.55	561	83	15	971	350	1.00	1
		cc1			57	162	0	7	7.42	33.10	229.33	246	90	72	250	250	0.91	
		cc2	121.678		47	9	-14	24	7.42	33.10	791.14	246	57	65	507	337	0.89	
		сс3	36.5576		55	107	0	11	7.42	33.10	361.77	246	35	72	375	321	0.87	
		cc4	176.488		45	0	0	8	7.42	33.10	252.78	246	111	65	426	329	0.93	
		cc1	-162.28	-219	57	219	1	5	5.66	213.96	976.12	1212	191	28	1031	351	1.00	
C3 APP	P1	cc2	-8.6661		47	60	0	7	5.66	213.96	1444.07	1212	34	26	1667	353	1.00	
		сс3	-107.36	-164	55	164	1	5	5.66	213.96	1024.23	1212	136	28	1111	351	1.00	
		cc4	46.2502	-4.98	45	5	-9	24	5.66	213.96	5113.68	1212	21	26	2216	354	1.00	4.52
		cc1	-218.92	-219	57	-		-	-]	-	-	-]	-					<u> - </u>
		cc2	-59.935	-59.9	47	-	-	-	-	-	-	-	-	-	-	-	-	<u> - </u>
	ı	002	-163.97	104	55													1-
		ссЗ	-4.9766	-164	33	_	-		-	-	-	-					-	

Direzione Progettazione e Realizzazione Lavori

C4_G3 P1 C62 79.9134 59.18 43 0 0 0 8 5.62 84.74 647.12 477 70 10 826 348 10 5 5.62 84.74 422.45 477 71 18 487 335 18 335 18 18 18 18 18 18 18 1	.00 1.64 .00 4.72 .00 2.86 .00 4.97 .00 1.44 .00 4.76 .00 2.38 .00 4.94 .00 1.13 .00 4.77 .00 1.81 .00 4.75 .00 2.82 .00 2.62 .00 2.64 .00 11.66 .00 5.63 .00 12.37 .00 5.63
C4_G3	.00 2.86 .00 4.90 .00 1.44 .00 4.76 .00 2.38 .00 4.94 .00 1.81 .00 4.77 .00 1.81 .00 4.85 .00 2.22 .00 2.66 .00 11.66 .00 5.66 .00 12.37
C4_G3 P1 C4_G3 C4_	.00 4.90 .00 1.44 .00 4.77 .00 2.33 .00 4.94 .00 1.13 .00 1.81 .00 2.62 .00 2.66 .00 2.66 .00 11.66
C4_G3 P1 C1 -182.46 -221 46 221 1 4 5.55 112.82 492.25 627 202 19 511 337 19 19 19 19 19 19 19 1	.00 1.44 .00 4.76 .00 2.38 .00 4.94 .00 1.13 .00 4.77 .00 1.8 .00 2.22 .00 2.26 .00 2.66 .00 11.60
C4_G3 P1 C2 C5 C3 C3 C3 C3 C3 C3 C4 C4 C4 C4	.00 4.76 .00 2.38 .00 4.94 .00 1.13 .00 4.77 .00 1.81 .00 4.88 .00 2.22 .00 2.66 .00 11.60 .00 5.63 .00 12.37
C4_G3	.00 2.38 .00 4.94 .00 1.11 .00 4.7 .00 1.8 .00 4.89 .00 2.2 .00 2.62 .00 2.62 .00 11.60 .00 5.63 .00 12.3
C4_G4	.00 4.94 .00 1.13 .00 4.71 .00 1.83 .00 4.89 .00 2.22 .00 2.62 .00 2.62 .00 2.66 .00 11.60 .00 5.63
C4_G4 P1 Cc1 -221.1 -267 46 267 1 4 5.65 78.35 341.59 442 244 23 351 315 3	.00 1.13 .00 4.71 .00 1.81 .00 4.89 .00 2.21 .00 2.62 .00 2.66 .00 11.60 .00 5.63 .00 12.37
C4_G4 P1 C2	.00 4.71 .00 1.81 .00 4.89 .00 2.21 .00 2.62 .00 2.62 .00 2.66 .00 11.60 .00 5.63 .00 12.37
C4_G4 P1 C3	.00 1.81 .00 4.89 .00 2.21 .00 2.62 .00 2.62 .00 2.66 .00 11.60 .00 5.63 .00 12.37
C4 141.114 127.4 41 0 0 0 8 5.65 78.35 598.30 442 134 7 766 347	.00 4.89 .00 2.21 .00 2.62 .00 2.62 .00 2.66 .00 11.60 .00 5.63 .00 12.37
C4_G4 P1 C1 -153.36 -25 9 153 0 7 5.62 84.74 563.64 477 89 64 565 341 126 0 5 5.62 84.74 459.32 477 91 35 462 333 12 12 12 12 12 12	.00 2.21 .00 2.62 .00 2.24 .00 2.66 .00 11.60 .00 5.63
C4_G4 P1 C62	.00 2.62 .00 2.24 .00 2.66 .00 11.60 .00 5.63
C4_G4 P1 P1	.00 2.24 .00 2.66 .00 11.60 .00 5.63 .00 12.37
C4_G4 P1 C4_G4 P1 C4_G5 P1 C5_G62 C6_G7 C6_	.00 2.66 .00 11.60 .00 5.63 .00 12.37
C4_G4 P1 C61 -24.985 219.8 9 25 -9 24 6.37 23.31 557.12 149 97 122 511 337 125	.00 11.60 .00 5.63 .00 12.37
C4_G4 P1 C2	.00 5.63
C4_G4 P1 C3 -22.979 222.3 9 23 -10 24 6.37 23.31 557.12 149 100 123 513 337	.00 12.37
cc4 -54.616 78.03 11 55 -1 24 6.37 23.31 557.12 149 12 66 483 335	
cc1 219.784 219.8 9 -	
cc2 75.4684 75.47 11	-
cc3 222.344 222.3 9 -	-
cc4 78.0291 78.03 11 -	-
cc1 -102.32 21.09 -26 102 0 9 5.62 84.74 792.53 477 41 62 784 348 cc2 -209.39 -97.4 -24 209 0 5 5.62 84.74 454.74 477 153 56 459 333 cc3 -73.153 40.05 -26 73 -1 14 5.62 84.74 1191.66 477 17 57 1021 351 cc4 -180.22 -78.5 -24 180 0 5 5.62 84.74 463.58 477 129 51 470 334 cc1 21.0905 258 -26 0 0 8 6.39 22.99 175.54 147 140 118 254 254 C5 MEZZ P1 -24 97 -1 24 6.39 22.99 549.40 147 10 107 443 331	
cc2 -209.39 -97.4 -24 209 0 5 5.62 84.74 454.74 477 153 56 459 333 - cc3 -73.153 40.05 -26 73 -1 14 5.62 84.74 1191.66 477 17 57 1021 351 cc4 -180.22 -78.5 -24 180 0 5 5.62 84.74 463.58 477 129 51 470 334 cc1 21.0905 258 -26 0 0 8 6.39 22.99 175.54 147 140 118 254 254 C5 MEZZ P1 -24 97 -1 24 6.39 22.99 549.40 147 10 107 443 331	- 0.14
cc3 -73.153 40.05 -26 73 -1 14 5.62 84.74 1191.66 477 17 57 1021 351 57 cc4 -180.22 -78.5 -24 180 0 5 5.62 84.74 463.58 477 129 51 470 334 cc1 21.0905 258 -26 0 0 8 6.39 22.99 175.54 147 140 118 254 254 C5 MEZZ P1 -24 97 -1 24 6.39 22.99 549.40 147 10 107 443 331	.00 3.11
CC4 -180.22 -78.5 -24 180 0 5 5.62 84.74 463.58 477 129 51 470 334 CC5 121.0905 258 -26 0 0 8 6.39 22.99 175.54 147 140 118 254 254 CC5 MEZZ P1 cc2 -97.443 117.5 -24 97 -1 24 6.39 22.99 549.40 147 10 107 443 331	.00 1.56
C5 MEZZ P1 Cc1 21.0905 258 -26 0 0 8 6.39 22.99 175.54 147 140 118 254 254 Cc2 -97.443 117.5 -24 97 -1 24 6.39 22.99 549.40 147 10 107 443 331	.00 4.07
C5 MEZZ P1 cc2 -97.443 117.5 -24 97 -1 24 6.39 22.99 549.40 147 10 107 443 331	.00 1.80
G5 MEZZ P1	.00 5.63
	.00 3.12
	.00 5.61
	.00 3.69
cc1 258.037 258 -26 - - - - - - - - -	-
	_
cc3 257.39 257.4 -26 - - - - - - - - -	_
	-
	.00 3.57
	.00 2.15
	.00 3.57
	.00 2.17
	.00 2.67
(36 (35) P1	.00 2.73
	.00 2.66
	.00 2.75
cc1 202.71 202.7 -56	-
cc2 83.6919 83.69 -53	_
cc3 204.725 204.7 -56	-
	.00 2.35
	.00 4.56
	.00 4.19
	.00 4.54
	.00 1.76
1 C6 G6 1 P1	.00 4.54
	.00 3.06
	.00 4.54
	.00 1.46
c2 -8.4674 -42 44 42 0 6 5.57 103.09 665.40 575 25 17 811 348	.00 3.99
cc3 -77.833 -128 46 128 1 5 5.57 103.09 506.90 575 103 25 554 340 c	.00 2.25
cc3 -77.833 -128 46 128 1 5 5.57 103.09 506.90 575 103 25 554 340 cc4 67.8576 44.13 44 0 0 8 5.57 103.09 787.21 575 56 12 995 350	.00 2.25 .00 4.57
cc3 -77.833 -128 46 128 1 5 5.57 103.09 506.90 575 103 25 554 340 50 cc4 67.8576 44.13 44 0 0 8 5.57 103.09 787.21 575 56 12 995 350 cc1 27.0375 -150 -90 150 0 9 6.48 33.10 301.03 214 61 88 319 305	.00 2.25 .00 4.57 .00 1.41
cc3 -77.833 -128 46 128 1 5 5.57 103.09 506.90 575 103 25 554 340 50 cc4 67.8576 44.13 44 0 0 8 5.57 103.09 787.21 575 56 12 995 350 cc1 27.0375 -150 -90 150 0 9 6.48 33.10 301.03 214 61 88 319 305 cc2 121.665 -16.9 -107 17 -7 24 6.48 33.10 791.14 214 52 69 397 325	.00 2.25 .00 4.57 .00 1.41 .00 1.74
cc3 -77.833 -128 46 128 1 5 5.57 103.09 506.90 575 103 25 554 340 50 cc4 67.8576 44.13 44 0 0 8 5.57 103.09 787.21 575 56 12 995 350 cc1 27.0375 -150 -90 150 0 9 6.48 33.10 301.03 214 61 88 319 305 cc2 121.665 -16.9 -107 17 -7 24 6.48 33.10 791.14 214 52 69 397 325 cc3 76.4438 -101 -95 101 -1 18 6.48 33.10 599.28 214 12 89 402 326	.00 2.25 .00 4.57 .00 1.41 .00 1.74 .00 1.68
cc3 -77.833 -128 46 128 1 5 5.57 103.09 506.90 575 103 25 554 340 50 cc4 67.8576 44.13 44 0 0 8 5.57 103.09 787.21 575 56 12 995 350 cc1 27.0375 -150 -90 150 0 9 6.48 33.10 301.03 214 61 88 319 305 cc2 121.665 -16.9 -107 17 -7 24 6.48 33.10 791.14 214 52 69 397 325 cc3 76.4438 -101 -95 101 -1 18 6.48 33.10 599.28 214 12 89 402 326 cc4 171.071 31.82 -112 0 0 8 6.48 33.10 252.78 214 101 70 371 320	.00 2.25 .00 4.57 .00 1.41 .00 1.74 .00 1.68
cc3 -77.833 -128 46 128 1 5 5.57 103.09 506.90 575 103 25 554 340 50 cc4 67.8576 44.13 44 0 0 8 5.57 103.09 787.21 575 56 12 995 350 cc1 27.0375 -150 -90 150 0 9 6.48 33.10 301.03 214 61 88 319 305 cc2 121.665 -16.9 -107 17 -7 24 6.48 33.10 791.14 214 52 69 397 325 cc3 76.4438 -101 -95 101 -1 18 6.48 33.10 599.28 214 12 89 402 326 cc4 171.071 31.82 -112 0 0 8 6.48 33.10 252.78 214 101 70 371 320 cc1 -149.68 -220 -90 220 1 5 5.52 206.89 976.75 1142 185 35 1091 351	.00 2.25 .00 4.57 .00 1.4 .00 1.7 .00 1.68 .00 1.65
cc3 -77.833 -128 46 128 1 5 5.57 103.09 506.90 575 103 25 554 340 cc4 67.8576 44.13 44 0 0 8 5.57 103.09 787.21 575 56 12 995 350 cc1 27.0375 -150 -90 150 0 9 6.48 33.10 301.03 214 61 88 319 305 cc2 121.665 -16.9 -107 17 -7 24 6.48 33.10 791.14 214 52 69 397 325 cc3 76.4438 -101 -95 101 -1 18 6.48 33.10 599.28 214 12 89 402 326 cc4 171.071 31.82 -112 0 0 8 6.48 33.10 599.28 214 101 70 371 320 cc1 -149.68 -220 -90 220 1 5 5.52 206.89 976.75 1142 185 35 1091 351 C7 APP P1 6 -16.857 -72.3 -10	.00 2.25 .00 4.57 .00 1.41 .00 1.72 .00 1.68 .00 1.30 .00 1.77
cc3 -77.833 -128 46 128 1 5 5.57 103.09 506.90 575 103 25 554 340 cc4 67.8576 44.13 44 0 0 8 5.57 103.09 787.21 575 56 12 995 350 cc1 27.0375 -150 -90 150 0 9 6.48 33.10 301.03 214 61 88 319 305 cc2 121.665 -16.9 -107 17 -7 24 6.48 33.10 791.14 214 52 69 397 325 cc3 76.4438 -101 -95 101 -1 18 6.48 33.10 599.28 214 12 89 402 326 cc4 171.071 31.82 -112 0 0 8 6.48 33.10 252.78 214 101 70 371 320	.00 2.25 .00 4.57 .00 1.4 .00 1.72 .00 1.68 .00 1.65 .00 1.30 .00 1.77
C7_APP C3 -77.833 -128 46 128 1 5 5.57 103.09 506.90 575 103 25 554 340 105	.00 2.25 .00 4.57 .00 1.41 .00 1.72 .00 1.68 .00 1.30 .00 1.77
C7_APP P1 C3 -77.833 -128 46 128 1 5 5.57 103.09 506.90 575 103 25 554 340 506.90 575 56 12 995 350 575 56 12 995 350 575	.00 2.25 .00 4.57 .00 1.4 .00 1.72 .00 1.68 .00 1.65 .00 1.30 .00 1.77
C7_APP P1 C3	.00 2.25 .00 4.57 .00 1.4 .00 1.72 .00 1.68 .00 1.65 .00 1.30 .00 1.77
C7_APP P1 C3 -77.833 -128 46 128 1 5 5.57 103.09 506.90 575 103 25 554 340 506.90 575 56 12 995 350 575 56 12 995 350 575	.00 2.25 .00 4.57 .00 1.4 .00 1.72 .00 1.68 .00 1.65 .00 1.30 .00 1.77

PROGETTO DEFINTIVO

RELAZIONE TECNICA E DI CALCOLO - IMPALCATO

9.4.2 Stabilità delle piattabande (verifica globale, flessotorsionale)

Piattabanda superiore compressa in campata

La piattabanda superiore è impedita di instabilizzarsi in esercizio dalla presenza dei pioli di collegamento tra trave e soletta. Al fine di cautelarsi da eventuali fenomeni di instabilità durante le fasi di getto della soletta per la piattabanda superiore, si effettua una verifica a sbandamento laterale della piattabanda compressa supposta isolata dalla restante trave ([CNR10011] §7.3.2.2.2). A parziale vincolo di tale cinematismo si considera la presenza dei diaframmi di campata.

Piattabanda superiore:

 $h = 2250 \, mm$ altezza trave

L = 2812 mmpasso tra due ritegni torsionali successivi

 $b = 800 \, \text{mm}$ larghezza piattabanda tf = 20 mmspessore piattabanda

 $A = 16000 \, \text{mm}^2$ area ala

 $J = 1.99 * 10^{10} \text{ mm}^4$ momento di inerzia ala r = 1115raggio di inerzia $\lambda = 1.77$ snellezza (0.7*L/r)

 $\omega = 1.00$ coefficiente dimensionale (prospetto 7-IV-c per t<40 mm)

 $\sigma_4 = 106.94 \text{ MPa}$ (concio C5_mezz) tensione massima di compressione (getto) $\omega \cdot \sigma_4 = 1.00*106.94 \text{ MPa} = 106.94 \le \sigma_{amm} = 355/1.25 = 284 \text{ MPa}$ resistenza di progetto

Piattabanda inferiore compressa sull'appoggio

La piattabanda inferiore è compressa sull'appoggio in esercizio. Al fine di cautelarsi da eventuali fenomeni di instabilità, si effettua una verifica a sbandamento laterale della piattabanda compressa supposta isolata dalla restante trave ([CNR10011] §7.3.2.2.2). A parziale vincolo di tale cinematismo si considera la presenza dei diaframmi di campata.

Piattabanda inferiore:

 $h = 2250 \, mm$ altezza trave

L = 2812 mmpasso tra due ritegni torsionali successivi

b = 1200 mm+1100 mm larghezza piattabanda+raddoppio tf = 40+40 mmspessore piattabanda+ raddoppio

A = 92000area ala

 $J = 1.08*10^{11}$ momento di inerzia ala r = 1085raggio di inerzia $\lambda = 1.82$ snellezza (0.7*L/r)

 $\omega = 1.00$ coefficiente dimensionale (prospetto 7-IV-c per t<40 mm)

 $\sigma_0 = 281.3 \text{ MPa}$ (concio C3 app) tensione massima di compressione (esercizio)

 $\omega \cdot \sigma$ = 1.00*268 MPa =279 $\leq \sigma_{amm}$ =355/1.25= 284 MPa resistenza di progetto

9.4.3 Stabilità degli irrigidimenti trasversali in corrispondenza degli appoggi

Carico di punta

In accordo con [CNR 10030] §6.3, la sezione di verifica considerata è pari all'irrigidimento trasversale più un'aliquota dell'anima non inferiore a 12 volte il suo spessore (per ciascun lato).

ts = 20mm spessore irrigidimento centrale tl =16 mm spessore irrigidimento laterale

hs = 250 mm larghezza irrigidimento centrale (simmetrico rispetto all'anima) hl = 250 mm larghezza irrigidimento laterale (simmetrico rispetto all'anima)

tw = 20 mm spessore anima

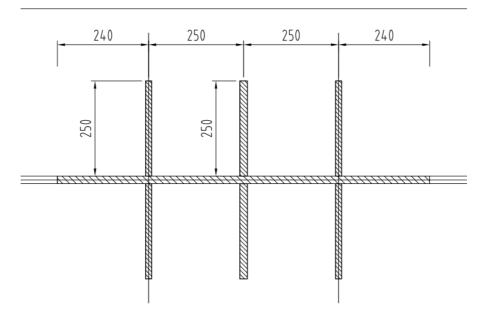


Figura 9.1 – Sezione dell'irrigidimento utilizzata nelle verifiche

 $A = 45.59 \cdot 10^{3} \text{ mm}^{2}$ area della sezione $J = 60.99 \cdot 10^{7} \text{ mm}^{4}$ momento d'inerzia i = 116 mm giratore d'inerzia

 $L_0 = 2190 \text{ mm}$ luce libera d'inflessione (h_{anima}) $\lambda = 19$ snellezza dell'irrigidimento

ωFe510,c(λ = 19) = 1.03 coefficiente ω

 $N_{RD} = f_{yd} \cdot A/\omega = 355/1.25*45.59/1.03 = 12570 \text{ kN}$ massimo sforzo resistente

Essendo la portata degli appoggi (≈9100 kN) inferiore al massimo sforzo resistente sull'irrigidimento la verifica risulta soddisfatta.

Verifica dei rapporti larghezza-spessore della nervatura

Per le nervature in piatto semplice dovrà risultare:

hs/ts ≤ 15 ε

Essendo:

 $\varepsilon = (235/fy)^{1/2}$

h_s= 250 mm larghezza di ciascun piatto costituente la nervatura;

 t_s = 20 mm spessore piatto;

 f_y = 355 MPa tensione di snervamento.

In definitiva avremo:

 $250/20 < 15*(235/355)^{1/2} \rightarrow 12.00 < 12.20$

La verifica risulta soddisfatta

9.5 VERIFICHE A FATICA

In accordo con [DM2018] §4.2.4.1.4 si riportano di seguito le verifiche a fatica degli elementi maggiormente interessati da questo fenomeno.

Affinché la verifica risulti soddisfatta la variazione di tensione (Δs_{max} , Δt_{max}) ad opera dei carichi ciclici deve risultare inferiore al rispettivo valore ammissibile (Δs_D , Δt_D) del particolare in esame:

Il modello di carico di fatica per vita illimitata è costituito dallo schema di carico 1 [DM2018 §5.1.3.3.5] con i valori dei carichi concentrati ridotti del 30% e valori dei carichi distribuiti ridotti del 70%. La verifica a vita illimitata si esegue controllando che:

$$\Delta \sigma_{\text{max,d}} = \gamma_{\text{Mf}} \cdot \Delta \sigma_{\text{max}} \leq \Delta \sigma_{\text{D}}$$

$$\Delta \tau_{\text{max,d}} = \gamma_{\text{Mf}} \cdot \Delta \tau_{\text{max}} \, \leq \Delta \tau_{\text{D}} \, = \Delta \tau_{\text{L}}$$

in cui:

 $\gamma_{\rm Mf}$ = 1 coefficiente di maggiorazione da normativa

 γ_M = 1.35 coefficiente riduttivo per conseguenze significative

Dove $\Delta s_{\text{max,d}}$ e $\Delta t_{\text{max,d}}$ sono, rispettivamente, i valori di progetto delle massime escursioni di tensioni normali e tangenziali indotte nel dettaglio considerato dallo spettro di carico per le verifiche a vita illimitata e $\Delta \sigma_D$ e $\Delta \tau_D$ sono i limiti di fatica ad ampiezza costante pari a:

 $\Delta \sigma_D = 0.737 \Delta \sigma_R$

 $\Delta \tau_D = 0.457 \Delta \tau_R$

Di seguito si riportano le verifiche degli elementi principali:

Dettagli per saldature longitudinali a cordone d'angolo tra piattabande ed anime (EN1993-1-9 Tabella 8.2)

 $\Delta \sigma_R = 125 \text{ MPa}$

$$\Delta \sigma_{\text{MAX}} = 42.4 \text{ MPa } (\text{C5_mezz}) < \Delta \sigma_{\text{D}} = 0.737*125/1.35=68.25 \text{ MPa}$$

Dettagli per saldature trasversali a piena penetrazione tra lamiere (EN 1993-1-9 Tab. 8.3)

$$\Delta \sigma_R = 71 \text{ MPa}$$
 (per spessori < 25 mm)

$$\Delta \sigma_R = (25/t)^{0.2*}71=64.63 \text{ MPa}$$
 (per spessori > 25 mm)

$$\Delta \sigma_{MAX} = 12.3 \text{ MPa (C1_G1)} < \Delta \sigma_{D} = 0.737*71/1.35=38.76 \text{ MPa}$$
 (s=20 mm)

$$\Delta \sigma_{\text{MAX}} = 33.6 \text{ MPa} (C6_G5) < \Delta \sigma_{D} = 0.737*64.63/1.35=35.28 \text{ MPa} (s=40 \text{ mm})$$

Particolari saldati (EN1993-1-9 Tabella 8.4)

Pioli per collaborazione con calcestruzzo $\Delta \tau_R = 80 \text{ MPa}$

Irrigidimenti trasversali e longitudinali (sp=16÷20 mm) $\Delta \sigma_R = 80 \text{ MPa}$

$$\Delta \tau_{max}$$
 =425.6/19=22.4 MPa (C7_app) < $\Delta \tau_{D}$ =0.457*80/1.35 = 27.08 MPa (Pioli)
 $\Delta \sigma_{max}$ =30.92 MPa < $\Delta \sigma_{D}$ = 0.737*80/1.35 = 43.67 MPa (Irrigidimenti d'appoggio)

Dettagli per saldature di travi composte (raddoppi di piattabanda) (EN 1993-1-9 Tab. 8.5)

 $\Delta \sigma_R = 40 \text{ MPa}$

 $\Delta \sigma_{MAX} = 20.7 \text{ MPa } (C3_app) < Ds_D = 0.737*40/1.35=21.83 \text{ MPa}$

Dettagli per giunti bullonati con coprigiunti doppi e bulloni AR (EN1993-1-9 Tabella 8.1)

 $\Delta \sigma_R = 112 \text{ MPa}$

 $\Delta \sigma_{max} = 34.72$ MPa (Diaframma D1) < $\Delta \sigma_{D} = 0.737*112/1.35 = 61.14$ MPa

Le verifiche risultano soddisfatte.

9.6 VERIFICA AGLI STATI LIMITE D'ESERCIZIO DELLA SOLETTA IN DIREZIONE LONGITUDINALE

Si effettuano le seguenti verifiche agli stati limite di esercizio:

- stato limite delle tensioni in esercizio;
- stato limite di fessurazione.

Nel primo caso, si esegue il controllo delle tensioni nei materiali supponendo una legge costitutiva tensioni-deformazioni di tipo lineare. In particolare, si controlla la tensione massima di compressione del calcestruzzo e di trazione dell'acciaio, verificando che:

- $\sigma_{c,ls} < 0.60 f_{ck}$ per combinazione rara delle azioni;
- $\sigma_{c_{\it ls}} < 0.45 f_{ck}$ per combinazione quasi permanente delle azioni;
- $\bullet \quad \sigma_{\rm f} < 0.80 f_{yk} \, .$

Di seguito si riportano le tensioni (in MPa) relative alla combinazione rara SLE:

Cariana	Ma	x Fz	Mi	n Fz	Ma	x My	Min	Му
Sezione	$\sigma_{\!\scriptscriptstyle \text{Cls}}$	σ _f	$\sigma_{\!\scriptscriptstyle \text{Cls}}$	$\sigma_{\!f}$	$\sigma_{\!\!\scriptscriptstyle Cls}$	σ _f	$\sigma_{\!\scriptscriptstyle \text{Cls}}$	$\sigma_{\!f}$
C1_APP	-1	18	-1	16	-1	18	-1	16
C1_MEZZ	-0.6	35.9	-0.8	29.7	-0.6	35.9	-4.4	26.9
C1_G1	-1.3	42.9	-1.6	36.5	-1.3	42.9	-5.2	31.9
C2_G2	0.0	94.2	0.0	90.0	0.0	94.2	-2.6	7.4
C3_APP	0.0	94.6	0.0	93.4	0.0	94.6	-2.8	27.5
C4_G3	-1.1	21.4	-2.6	13.7	-1.4	14.6	-2.6	13.7
C4_G4	-2.5	47.7	-2.9	39.5	-2.5	47.7	-6.7	41.8
C5_MEZZ	-2.4	56.4	-2.7	47.5	-2.4	56.4	-7.0	43.3
C6_G5	-2.1	54.6	-2.4	47.2	-2.1	54.6	-6.4	39.8
C6_G6	-1.2	79.0	-1.3	75.7	-1.2	79.0	-3.8	37.5
C7_APP	0.0	99.2	0.0	97.7	0.0	99.2	-2.2	27.1

Nel secondo caso, si assume che le condizioni ambientali del sito in cui sorge l'opera siano aggressive e si verifica che il valore limite di apertura della fessura, calcolato per armature poco sensibili, sia al più pari ai seguenti valori nominali:

- $w_1 = 0.2 \text{ mm}$ per combinazione delle azioni quasi permanente;
- $w_2 = 0.3 \text{ mm}$ per combinazione delle azioni frequente.

Sezione	Max Fz	Min Fz	Max My	Min My
Sezione	$\sigma_{\!f}$	$\sigma_{\!f}$	$\sigma_{\!f}$	$\sigma_{\!f}$
C1_APP	17	16	17	16
C1_MEZZ	27.7	22.9	27.7	22.9
C1_G1	34.9	30.0	34.9	27.9
C2_G2	74.6	71.4	74.6	9.5
C3_APP	80.1	79.3	80.1	29.8
C4_G3	19.3	11.1	14.2	11.1
C4_G4	39.0	32.8	39.0	79.7
C5_MEZZ	46.2	39.5	46.2	106.9
C6_G5	43.8	38.2	43.8	35.5
C6_G6	63.7	61.2	63.7	36.2
C7_APP	83.3	82.2	83.3	29.2

L'armatura longitudinale della soletta $[(1+1)\phi 16/20]$.

PROGETTO DEFINTIVO

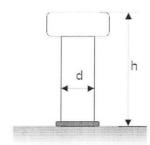
RELAZIONE TECNICA E DI CALCOLO - IMPALCATO

In base alle tabelle 7.1 e 7.2 dell EN1994-2, tali tensioni, in relazione al diametro e al passo delle barre utilizzate, rientrano nei limiti consentiti affinché l'apertura delle fessure sia al di sotto dei limiti di normativa.

10 VERIFICHE ELEMENTI SECONDARI

VERIFICHE DEI CONNETTORI ACCIAIO CALCESTRUZZO (PIOLI) 10.1

La resistenza dei pioli è calcolata in accordo ad EN 1994-2, 6.6.3.1 secondo cui si ipotizzano due diversi meccanismi di rottura: a taglio del gambo del piolo e per schiacciamento del cls.


$$P_{\text{Rd}}^{1} = \frac{0.8 f_{\text{u}} \pi d^{2} / 4}{\gamma_{\text{V}}}$$

$$P_{\text{Rd}}^{2} = \frac{0.29 \alpha d^{2} \sqrt{f_{\text{ck}} E_{\text{cm}}}}{\gamma_{\text{V}}}$$

$$\alpha = 0.2 \left(\frac{h_{\text{sc}}}{d} + 1\right) \text{ for } 3 \le h_{\text{sc}} / d \le 4$$

$$\alpha = 1 \qquad \text{for } h_{\text{sc}} / d \ge 4$$

Essendo:

d: diametro del piolo

hsc=h: altezza del piolo

fu: resistenza ultima dell'acciaio del piolo (<=500 MPa)

fck: resistenza caratteristica cilindrica del cls

Ecm: modulo di elasticità secante del cls

La verifica consiste in:

$$v_{\it Ed} \leq n * P_{\it rd}$$
 a SLU (Combinazione fondamentale)

Essendo:

P_{rd} =min (P_{Rd}¹;P_{Rd}²) Resistenza di un piolo

n = numero di piolo per metro

 $v_{Ed} = V*S_{sv4}/J_v =$ flusso delle tensioni tangenziali all'interfaccia estradosso della piattabanda superiore-intradosso della soletta, calcolato per ogni fase.

Come connettori tra la soletta di calcestruzzo e le travi d'acciaio si adottano pioli muniti di testa che possiedono le seguenti caratteristiche:

CONNETTORI (pioli saldati muniti di testa)			
		SI	_U
Resistenza ultima a trazione del materiale de	el piolo	f_u [N/mm ²]	450
Resistenza a fatica (2x10 ⁶ cicli)		$\Delta \tau_R$ [N/mm ²]	80
CAPACITA' PORTANTE			
	Dia	metro dp [mm]	19
	A	ltezza hp [mm]	200
	Coefficiente pa	arziale γ_{v} a slu	1.25
		hp/dp	10.53

Di seguito si riporta il riepilogo delle verifiche dei pioli in cui "V_{Ed}" sono espressi in N/mm:

CONCI	n pioli/m	vEd,max	vEd,min	P _{Rd tot}	'vEdmax/(P _{Rd,tot})	'vEdmin/(P _{Rd,tot})	Combinazione
C1_APP	20	998.01	25.1648	1633	0.61	0.02	SLU
C1_MEZZ	15	367.66	-266.24	1225	0.30	0.22	SLU
C1_G1	15	326.32	-288.21	1225	0.27	0.24	SLU
C2_G2	15	-100.12	-851.11	1225	0.08	0.69	SLU
C3_APP	20	1102.63	124.046	1633	0.68	0.08	SLU
C4_G3	15	356.30	125.999	1225	0.29	0.10	SLU
C4_G4	15	618	-128.96	1225	0.50	0.11	SLU
C5_MEZZ	15	357	-391.6	1225	0.29	0.32	SLU
C6_G5	15	99	-631.11	1225	0.08	0.52	SLU
C6_G6	15	911	134.954	1225	0.74	0.11	SLU
C7_APP	20	-145	-1114	1633	0.09	0.68	SLU

Il rapporto V_{Ed}/P_{Rd} deve essere inferiore a 1 (SLU)

CONCI	n pioli/m	vEd,max	vEd,min	P _{Rd tot}	'vEdmax/(P _{Rd,tot})	'vEdmin/(P _{Rd,tot})	Combinazione
C1_APP	20	708.78	5.26397	1633	0.43	0.00	SLE
C1_MEZZ	15	260.53	-201.05	1225	0.21	0.16	SLE
C1_G1	15	231.44	-216.67	1225	0.19	0.18	SLE
C2_G2	15	-74.38	-624.37	1225	0.06	0.51	SLE
C3_APP	20	784.30	76.9044	1633	0.48	0.05	SLE
C4_G3	15	202.48	63.0105	1225	0.17	0.05	SLE
C4_G4	15	444	-98.521	1225	0.36	0.08	SLE
C5_MEZZ	15	263	-287.05	1225	0.21	0.23	SLE
C6_G5	15	77	-457.08	1225	0.06	0.37	SLE
C6_G6	15	628	91.4312	1225	0.51	0.07	SLE
C7_APP	20	-97	-800.09	1633	0.06	0.49	SLE

Il rapporto V_{Ed}/P_{Rd} deve essere inferiore a 0.6 (SLE)

Direzione Progettazione e Realizzazione Lavori

RELAZIONE TECNICA E DI CALCOLO - IMPALCATO

CONCI	n pioli/m	vEd,max	vEd,min	P _{Rd tot}	'vEdmax/(P _{Rd,tot})	'vEdmin/(P _{Rd,tot})	Combinazione
C1_APP	20	415.90	-96.945	1633	0.25	0.06	SLfatica
C1_MEZZ	15	256.91	-200.37	1225	0.21	0.16	SLfatica
C1_G1	15	236.94	-207.11	1225	0.19	0.17	SLfatica
C2_G2	15	39.02	-409.4	1225	0.03	0.33	SLfatica
C3_APP	20	420.70	-63.429	1633	0.26	0.04	SLfatica
C4_G3	15	63.78	-74.015	1225	0.05	0.06	SLfatica
C4_G4	15	387	-147.45	1225	0.32	0.12	SLfatica
C5_MEZZ	15	270	-271.08	1225	0.22	0.22	SLfatica
C6_G5	15	142	-383.81	1225	0.12	0.31	SLfatica
C6_G6	15	474	-54.663	1225	0.39	0.04	SLfatica
C7_APP	20	48	-425.6	1633	0.03	0.26	SLfatica

Per le verifica a fatica dei pioli si veda il §9.5.

10.2 VERIFICHE DEI GIUNTI SALDATI TRAVI PRINCIPALI

In accordo con le tensioni riportate in allegato, si riportano di seguito le verifiche più gravose per le saldature dell'opera in oggetto.

Verifica saldature anima/piattabande (cordoni di lato L = 8mm)

La sezione resistente della saldatura, in accordo con [DM18] §4.2.8.2.3, è pari a:

$$t_{saldatura} = 0.7 \cdot L = 5.6 \text{ mm}$$

Le massime tensioni indotte sulla saldatura sono:

$$\tau_{//} = \tau_{\text{anima}} \cdot t_{\text{anima}} / \left(2 \cdot t_{\text{saldatura}}\right) = 121,06 \cdot 20 / \left(2 \cdot 5,6\right) = 216,08 \; \text{MPa} \leq \frac{f_{tk}}{\sqrt{3}\beta \gamma_{M2}} = 261 \; \text{MPa}$$

Nella verifica precedente è stata utilizzata la tensione tangenziale massima (Sezione C3_app) di tutte le sezioni di calcolo dell'impalcato sulla saldatura di lato più piccolo.

Le saldature rimanenti sono a piena penetrazione realizzate con materiali d'apporto aventi resistenza uguale o maggiore a quella degli elementi collegati. Pertanto, la resistenza di progetto dei collegamenti a piena penetrazione si assume eguale alla resistenza di progetto del più debole tra gli elementi connessi.

Adeguamento S.S n. 87 "Sannitica" – Interventi localizzati per garantire la percorribilità immediata Tratto "Campobasso – Bivio S.Elia" Lotti A2 e A3 PROGETTO DEFINTIVO

RELAZIONE TECNICA E DI CALCOLO - IMPALCATO

10.3 VERIFICHE DEI DIAFRAMMI E DEI GIUNTI BULLONATI

In questo capitolo sono riportate le analisi e le verifiche di resistenza e stabilità per gli elementi costituenti i diaframmi con verifiche delle relative giunzioni bullonate in accordo con le sollecitazioni dedotte dal modello a grigliato.

Sono state concepite due tipologie di diaframmi in grado di soddisfare tutte le esigenze di resistenza derivanti dalle azioni agenti considerate:

DIAFRAMMA INTEMEDIO "RETICOLARE"

DIAFRAMMA D'APPOGGIO TRAVE "AD ANIMA PIENA"

Per quanto riguarda il diaframma di appoggio trave occorre effettuare anche la verifica con le azioni indotte dal sollevamento dell'impalcato (vedi par. 10.4).

Direzione Progettazione e Realizzazione Lavori

RELAZIONE TECNICA E DI CALCOLO - IMPALCATO

10.3.1 Diaframma intermedio "reticolare"

SOLLECITAZIONI							
		N	(kN)				
Diagonale Esercizio SLE -		-2					
Diagonale Esercizio SLU -			52				
Diagonale Sisma -		-1					
			-				
Diagonale Esercizio SLE +		25	8				
Diagonale Esercizio SLU +		34	9				
Diagonale Sisma +		11	5				
Briglia inferiore esercizio SL	E.	49					
Briglia inferiore esercizio SL		27					
•	.0 -						
Briglia inferiore sisma - Briglia inferiore esercizio SL	E .	70 32					
•							
Briglia inferiore esercizio SL	.0 +	43					
Briglia inferiore sisma +		16	-				
Briglia superiore esercizio S		-2					
Briglia superiore esercizio S	SLU -		02				
Briglia superiore sisma -		-5					
Briglia superiore esercizio S		35					
Briglia superiore esercizio S	LU +	47					
Briglia superiore sisma +		12					
Monaco SLE -			69				
Monaco SLU -			63				
Monaco SISMA -		-1:	20				
DATI ASTA RETICOLARE DIAGONA	LE	_			07.11		
Verifica		1			SLU		
ACCIAIO FE510 (fyk/γm1) (instabilità)		γm1	1.1	σa	322.73		
ACCIAIO FE510 (fyk/γm2) (frattura se	zioni tese forate)	γm2	1.25	σa	284.00		
Luce libera di inflessione				L	1947		
Interasse dei collegamenti intermedi (L	/2)	_		i		mm	
Spazio netto tra i profili				S _X		mm	
Coffeciente di riduzione dell luce libera	a			β	1 2		
Numero di profili accoppiati				np			
CARICO CRITICO ASTA PER INFLES	SSIONE NEL PIAN	Ю Х-Х					
Tipo del profilo ad L					L130x130x12		
Area				Α	3000	mm ²	
Area al netto delle forature (1M27)				An	2715	mm ²	
momento di inerzia				J	4720000	mm ⁴	
Distanza baricentro lato profilo				е	36.4	mm	
raggio di inerzia minimo				i _{min}	39.7	mm	
Snellezza singolo profilo				λι	25		
Coefficiente ω (CNR tabella c)				ωι	1.07		
Ncritico singolo profilo				N _{cr,1}	995		
lamda				λ	1.03		
alfa				α	0.34		
Fi				Φ	1.18		
coefficiente				X	0.58		
Resistenza all'instabilità				Nb,Rd,1	557	kN	
CARICO CRITICO ASTA PER INFLES	SSIONE NEL PIAN	Ю Y-Y		-		_	
Area dell'asta composta				npA		mm ²	
Area dell'asta composta al netto delle				npAn		mm ²	
Posizione baricentro asta rispetto ass				CX		mm 4	
Momento di inerzia dell'asta composta		_	-	np(Jy+Acx ²)			
		_		i oı		mm	
raggio di inerzia asta composta				βL	1947		
raggio di inerzia asta composta luce libera di inflessione							
raggio di inerzia asta composta luce libera di inflessione Snellezza asta composta							
raggio di inerzia asta composta luce libera di inflessione Snellezza asta composta Snellezza equivalente (λ ₁ ²+λ²) ^{1/2}				λ_{eq}	42		
raggio di inerzia asta composta luce libera di inflessione Snellezza asta composta Snellezza equivalente $(\lambda_{q}^{2}+\lambda^{2})^{1/2}$ Coefficiente ω (CNR tabella c)				λ_{eq} ω_2	42 1.23		
raggio di inerzia asta composta luce libera di inflessione Snellezza asta composta Snellezza equivalente (λ ₁ ²+χ²) 1/2 Coefficiente ω (CNR tabella c) Ncritico asta composta				λ_{eq} ω_2 $N_{cr,2}$	42 1.23 1732	kN	
raggio di inerzia asta composta luce libera di inflessione Snellezza asta composta Snellezza equivalente (λ ₁ ² +λ ²) ^{1/2} Coefficiente ω (CNR tabella c) Ncritico asta composta lamda				λ_{eq} ω_2 $N_{cr,2}$	42 1.23 1732 1.11	kN	
raggio di inerzia asta composta luce libera di inflessione Snelezza asta composta Snelezza equivalente (λ ₁ ² +λ ₂ ²) ^{1/2} Coefficiente ω (CNR tabella c) Noritico asta composta lamda alfa				λ_{eq} ω_2 $N_{cr,2}$ λ	42 1.23 1732 1.11 0.34	kN	
raggio di inerzia asta composta luce libera di inflessione Snellezza asta composta Snellezza acta composta Snellezza equivalente $(\lambda_1^2 + \lambda_2^2)^{1/2}$ Coefficiente ω (CNR tabella c) Noritico asta composta lamda alfa				λ_{eq} ω_2 $N_{cr,2}$ λ α Φ	42 1.23 1732 1.11 0.34 1.27	kN	
raggio di inerzia asta composta luce libera di inflessione Snellezza asta composta Snellezza asta composta Snellezza equivalente (\(\hat{\chi}_2^2 + \frac{1}{2}^2\))^{1/2} Coefficiente \(\omega\) (CNR tabella c) Noritico asta composta lamda alfa a Fi coefficiente				$\begin{array}{c} \lambda_{eq} \\ \omega_2 \\ N_{cr,2} \\ \lambda \\ \alpha \\ \Phi \\ X \end{array}$	42 1.23 1732 1.11 0.34 1.27 0.53	kN	
raggio di inerzia asta composta luce libera di inflessione Snellezza asta composta Snellezza asta composta Snellezza equivalente (\(\hat{\chi}_2^2 + \frac{1}{2}^2\))^{1/2} Coefficiente \(\omega\) (CNR tabella c) Noritico asta composta lamda alfa a Fi coefficiente				λ_{eq} ω_2 $N_{cr,2}$ λ α Φ	42 1.23 1732 1.11 0.34 1.27	kN	
raggio di inerzia asta composta luce libera di inflessione Snellezza asta composta Snellezza asta composta Snellezza equivalente (\(\hat{\chi}_2^2 + \frac{1}{2}^2\))^{1/2} Coefficiente \(\omega\) (CNR tabella c) Noritico asta composta lamda alfa a Fi coefficiente				$\begin{array}{c} \lambda_{eq} \\ \omega_2 \\ N_{cr,2} \\ \lambda \\ \alpha \\ \Phi \\ X \end{array}$	42 1.23 1732 1.11 0.34 1.27 0.53	kN	
raggio di inerzia asta composta luce libera di inflessione Snellezza asta composta Snellezza asta composta Coefficiente (CNR tabella c) Ncritico asta composta lamda all'a Fi coefficiente Resistenza all'instabilità				$\begin{array}{c} \lambda_{eq} \\ \omega_2 \\ N_{cr,2} \\ \lambda \\ \alpha \\ \Phi \\ X \end{array}$	42 1.23 1732 1.11 0.34 1.27 0.53	kN	
raggio di inerzia asta composta luce libera di inflessione Snellezza asta composta Snellezza asta composta Snellezza equivalente ($\lambda_1^{-2}+\lambda_2^{2}$) $^{-2}$ Coefficiente ω (CNR tabella c) Ncritico asta composta lamda alla Fi coefficiente Resistenza all'instabilità				$\begin{array}{c} \lambda_{eq} \\ \omega_2 \\ N_{cr,2} \\ \lambda \\ \alpha \\ \Phi \\ X \end{array}$	42 1.23 1732 1.11 0.34 1.27 0.53 1026	kN kN	
raggio di inerzia asta composta luce libera di inflessione Snellezza asta composta Snellezza asta composta Snellezza equivalente (λ ₁ ⁻¹ +λ ₂ ²) ^{1/2} Coefficiente ω (CNR tabella c) Ncritico asta composta lamda alf a Fi coefficiente Resistenza all'instabilità VERIFICA ASTA N limite asta + N esterno +				$\begin{array}{c} \lambda_{eq} \\ \omega_2 \\ N_{cr,2} \\ \lambda \\ \alpha \\ \Phi \\ X \end{array}$	42 1.23 1732 1.11 0.34 1.27 0.53 1026	kN kN kN	Verifica soddisfatt
raggio di inerzia asta composta uce libera di inflessione Snellezza asta composta Snellezza asta composta Snellezza equivalente (λ ₁ ² +λ ²) ^{1/2} Coefficiente ω (CNR tabella c) Noritico asta composta lamda alfa Fi coefficiente Resistenza all'instabilità				$\begin{array}{c} \lambda_{eq} \\ \omega_2 \\ N_{cr,2} \\ \lambda \\ \alpha \\ \Phi \\ X \end{array}$	42 1.23 1732 1.11 0.34 1.27 0.53 1026	kN kN kN kN	Verifica soddisfatt

VERIFICA I	MBOZZAMEN	ТО									
	R/	APPORTI L	ARGHEZZA	-SPESSOR	E DIAGON	ALE					
Fe =											
fyk=	355										
h/t =	9.83										
limte (15 ϵ)	12.20		SEZIONE D	CLASSE	3 NON NO	CESSITA DI	VERIFICA				
Verifica de	i bulloni (M2	7)					Y Y	14			
N	massimo sfo	orzo trasme	sso (kN)		352		1111	i			
eccentricità	asse bulloni-a	asse profilo	(m)		0.029		1 1 1	i			
interasse bu	ılloni (m)				0.065	X					
n _{b,min}	n° minimo di	bulloni con	siderando 2	facce	2.43	4	mind h	-			
n _b	n° minimo b	ulloni da dis	porre		3.00	*	1.	1			
Verifica a r	ifollamento				sp			1-9			
					12						
σ _{rif}	tensione di r	ifollamento	(Мра)		171.54	<	275.09	MPa			

Direzione Progettazione e Realizzazione Lavori

DATI ASTA R	ETICOLARE	BRIGLIA INF	ERIORE							
Verifica							SLU			
ACCIAIO FE51	0 (fyk/γm1)	(instabilità)		γm1	1.1	σa	322.73	Мра		
ACCIAIO FE51	0 (fyk/γm2)	(frattura sezio	oni tese forat	γm2	1.25	σa	284.00	Мра		
Luce libera di i	inflessione					L	3628	mm		
Interasse dei c	collegamenti	intermedi (L/2)			i	1814	mm		
Spazio netto tr	a i profili					S _X	16	mm		
Coffeciente di	riduzione de	ell luce libera				β	1			
Numero di prof	fili accoppiat	ti				np	2			
CARICO CRIT	ICO ASTA	PER INFLESS	IONE NEL PIA	NO X-X						
Tipo del profilo							L130x130x12			
Area						Α	2520	mm ²		
Area al netto d	delle forature	e (1M27)				An	2235	mm ²		
momento di ine		,				J	4720000	mm ⁴		
Distanza bario		ofilo				e	36.4			
raggio di inerzi						i _{min}	39.7	mm		
Snellezza sing						λ ₁	46			
Coefficiente ω		ella c)				ω	1.28			
Ncritico singolo		oa o,				N _{cr,1}	699	ĿN		
	o promo					· ·	1.13	KIN		
lamda alfa						α	0.34			
Fi						Φ	1.30			
coefficiente						X	0.52			
Resistenza all'	instabilità					Nb,Rd,1	420	kN		
CARICO CRIT	ICO ASTA	PER INFL ESS	IONE NEL PIA	NO V-V						
Area dell'asta			ONE NEE 1 174			npA	5040	mm ²		
Area dell'asta	composta a	I netto delle fo	rature (M27)			npAn	4470	mm ²		
Posizione bario			-			cx	44.4	mm		
Momento di ine	erzia dell'ast	a composta				np(Jy+Acx ²)	18251979	mm ⁴		
raggio di inerzi						i	60	mm		
luce libera di in	nflessione					βL	3628	mm		
Snellezza asta						λ	60			
Snellezza equi						λeq	76			
Coefficiente ω	(CNR tab	ella c)				ω_2	1.89			
Ncritico asta c	omposta					N _{cr,2}	947	kN		
lamda						λ	1.37			
alfa						α	0.34			
Fi						Φ	1.64			
coefficiente						X	0.39			
Resistenza all'	instabilità					Nb,Rd,2	638	kN		
VEDICIOA ACT	T A									
VERIFICA AS T N limite asta +	I A						635	kN		
N esterno +							438		Verifica s	oddisfatta
N critico minimo	0 -						-420		Torritor 9	Jaaroialla
N esterno -	~						_	kN	Verifica s	nddiefatte

Realizzazione Lavori

VERIFICA	IMBOZZAN	/IENTO						
	F	RAPPORTI	LARGHEZ	ZA-SPESS	ORE DIAG	ONALE		
Fe =	510	h=	130	t=	12			
fyk=	355							
h/t =	9.83							
limte (15 ϵ)	12.20		SEZIONE	DI CLASSE	3 NON NE	CESSITA DI	VERIFICA	
								_
Verifica d	ei bulloni	(M27)					1 4 1 1	Y.,
N	massimo s	forzo trasn	nesso (kN)		438		1 1 1	
eccentricit	à asse bull	oni-asse pro	ofilo (m)		0.029			
interasse l	oulloni (m)				0.065	X		per noncono 3
n _{b,min}	n° minimo	di bulloni c	onsiderando	o 2 facce	3.00	- 7	-	_
n _b	n° minimo	bulloni da c	disporre		3.00	19	v.	, ×
Varifica a	wife He was a	-4-					•3	
vernica a	rifollame	110			sp			
	1				12			
σrif	tensione di	rifollament	o (Mpa)		213.45	<	275.09	MPa

PROGETTO DEFINTIVO

Direzione Progettazione e Realizzazione Lavori

DATI ASTA R	RETICOLARE	BRIGLIA SU	PERIORE							
Verifica							SLU			
ACCIAIO FE51	0 (fyk/γm1)	(instabilità)		γm1	1.1	σa	322.73	-		
ACCIAIO FE51	0 (fyk/γm2)	(frattura sezio	oni tese forat	γm2	1.25	σa	284.00	Мра		
Luce libera di	inflessione					L	1810			
Interasse dei d	collegamenti	intermedi (L/2)			i	905	mm		
Spazio netto ti	ra i profili					S _x	16	mm		
Coffeciente di	riduzione de	ell luce libera				β	1			
Numero di pro	fili accoppiat	i				np	2			
CARICO CRIT	TICO ASTA	PER INFLESS	IONE NEL PIA	NO X-X						
Tipo del profilo	ad L						L100x100x12			
Area						Α	2270			
Area al netto d	delle forature	e (M27)				An	1985	mm ²		
momento di ine	erzia					J	2070000	mm ⁴		
Distanza bario	entro lato pr	of ilo				е	29	mm		
raggio di inerz	ia minimo					i _{min}	30.2	mm		
Snellezza sing	golo profilo					λ ₁	30			
Coefficiente a	(CNR tab	ella c)				ω_1	1.11			
Ncritico singol						N _{cr,1}	726	kN		
lamda						λ	1.05			
alfa						α	0.34			
Fi						Φ	1.20			
coefficiente						X	0.56			
Resistenza all	'instabilità					Nb,Rd,1	413	kN		
CARICO CRIT	TICO ASTA	PER INFLESS	IONE NEL PIA	NO Y-Y						
Area dell'asta	composta					npA	4540	mm ²		
Area dell'asta	composta al	netto delle fo	rature (M27)			npAn	3970	mm ²		
Posizione bari	centro asta	rispetto asse	y			сх	37	mm		
Momento di ine	erzia dell'ast	a composta				np(Jy+Acx ²)	9574930	mm ⁴		
raggio di inerz	ia asta comp	oosta				i		mm		
luce libera di ir	nflessione					βL	1810	mm		
Snellezza asta						λ	39			
Snellezza equ	· · · · · · · · · · · · · · · · · · ·					λ _{eq}	50			
Coefficiente α	(CNR tab	ella c)				ω_2	1.34			
Ncritico asta c	composta					N _{cr,2}	1203	kN		
lamda						λ	1.16			
alfa						α	0.34			
Fi						Φ	1.33			
coefficiente						X	0.50			
Resistenza all	'instabilità					Nb,Rd,2	735	kN		
VERIFICA AS	ТΔ									
N limite asta +							564	kN		
N esterno +							477		Verifica s	oddisfatta
N critico minim	10 -						-413			
N esterno -							-402		Verifica s	oddisfatta

VERIFICA	IMBOZZAN	MENTO						
	F	RAPPORTI	LARGHEZ	ZA-SPESS	ORE DIAG	ONALE		
Fe =	510	h=	100	t=	12			
fyk=	355							
h/t =	7.33							
limte (15 ϵ)	12.20		SEZIONE I	DI CLASSE	3 NON NE	ECESSITA DI	VERIFICA	
							Y Y	, Y,
Verifica d	lei bulloni	(M27)					4 1	
N	massimo s	forzo trasn	nesso (kN)		477		1.8	11
eccentricit	à asse bull	oni-asse pr	ofilo (m)		0.021	Y	i	N
interasse l	oulloni (m)				0.065		20	-
n _{b,min}	n° minimo	di bulloni c	onsiderando	o 2 facce	3.14		771	
n _b	n° minimo	bulloni da d	disporre		4.00	77	Y. r	15
Vorifies	rifallans s	• • • • • • • • • • • • • • • • • • •			on I		40	
verifica a	rifollamer	110			sp			
	1				12			
σ_{rif}	tensione di	i rifollament	o (Mpa)		174.34	<	275.09	MPa

Realizzazione Lavori

PROGETTO DEFINTIVO

DATI ASTA RETICOLARE MONACO							
Verifica				SLU			
ACCIAIO FE510 (fyk/ym1) (instabilità)	γm1	1.1	$\sigma_{\rm a}$	905.00			
ACCIAIO FE510 (fyk/γm²) (frattura sezioni tese forat	γm2	1.25		16.00			
Luce libera di inflessione	r··-=	1.20	σ _a L	1290			
Interasse dei collegamenti intermedi			i	1290			
					mm		
Spazio netto tra i profili			S _X		111111		
Coffeciente di riduzione dell'Iuce libera			β	1			
Numero di profili accoppiati			np	4			
CARICO CRITICO ASTA PER INFLESSIONE NEL PIA	NO X-X						
Tipo del profilo ad L	NO A A			L100x100x10			
Area			Α	1920	mm ²		
Area al netto delle forature (M27)			An		mm ²		
momento di inerzia			J	1770000			
Distanza baricentro lato profilo			e	28.2			
raggio di inerzia minimo				30.4			
			I _{min}		111111		
Snellezza singolo profilo			λ₁	42			
Coefficiente ω (CNR tabella c)			ω_{l}	1.23			
Ncritico singolo profilo			N _{cr,1}	1554	kN		
lamda			λ	1.11			
alfa			α	0.34			
Fi			Φ	1.27			
coefficiente			X	0.53			
Resistenza all'instabilità			Nb,Rd,1	921	kN		
CARICO CRITICO ASTA PER INFLESSIONE NEL PIA	NO Y-Y						
Area dell'asta composta			npA	7680	mm ²		
Area dell'asta composta al netto delle forature (M27)			npAn	6540	mm ²		
Posizione baricentro asta rispetto asse y			сх	36.2			
Momento di inerzia dell'asta composta			np(Jy+Acx	15650278	mm ⁴		
raggio di inerzia asta composta			i		mm		
luce libera di inflessione			βL	1290			
Snellezza asta composta			λ	29			
Snellezza equivalente $(\lambda_1^2 + \lambda^2)^{1/2}$			λ _{eq}	51			
Coefficiente ω (CNR tabella c)			ω ₂	1.34			
Ncritico asta composta			N _{cr,2}	5706	kN		
lamda			λ	1.16			
alfa			α	0.34			
Fi			Φ	1.33			
coefficiente			X	0.50			
Resistenza all'instabilità			Nb,Rd,2	3487			
			. ,				
VERIFICA ASTA							
N limite asta +				26	kN		
N esterno +				-120	kN	Verifica so	oddisfatta
N critico minimo -				-921	kN		
N esterno -				-363	kN	Verifica so	oddisfatta

VERIFICA	IMBOZZAN	MENTO						
	R/	APPORTI L	ARGHEZZ	A-SPESSO	RE DIAGO	NALE		
Fe =	510	h=	100	t=	10			
fyk=	355							
h/t =	9.00							
limte (15 ϵ)	12.20		SEZIONE	DI CLASSE	3 NON NE	CESSITA	DI VERIFICA	
								_
		(3.5.OT)					Y ₀	1
	lei bulloni	<u> </u>					1 1	
N	massimo s	forzo trasn	nesso (kN)		363		1 1 1	•
eccentricit	à asse bull	oni-asse pro	ofilo (m)		0.022	х-		4
interasse l	bulloni (m)				0.065			ь
$n_{b,min}$	n° minimo	di bulloni c	onsiderando	o 2 facce	2.39		e	
n _b	n° minimo	bulloni da d	disporre		3.00	,	Y. 1	r
							*)	
Verifica a	rifollamer	nto			sp			
					10			
σ_{rif}	tensione d	i rifollament	o (Mpa)		212.28	<	275.09	М

10.3.3 Diaframma d'appoggio trave "AD ANIMA PIENA"

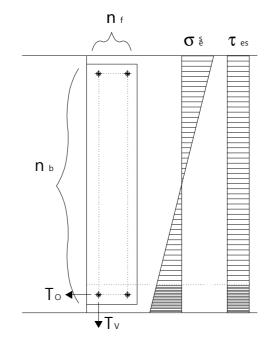
SEZIONE NON FORATA IN CORRISPON	DENZA DEL	GIUNTO				
Caratteristiche delle travi in acciaio						
Altezza trave totale	•	Htr (m)	2.0950			
Larghezza piattabanda superiore		Bpe (m)	0.4000			
Spessore piattabanda superiore		Spe (m)	0.0250			
Larghezza piattabanda inferiore		Bpi (m)	0.4000			
Spessore piattabanda inferiore		Spi (m)	0.0250			
Spessore anima		Sa (m)	0.0250			
Altezza anima		Ha (m)	2.0450			
Area della sezione		Aa (m2)	0.0711			
Momento statico lembo inferiore		Sai (m3)	0.0745			
Dist. baric. lembo inferiore		Dagi (m)	1.0475			
Dist. baric. lembo superiore		Dage (m)	1.0475			
Momento d'inerzia baricentrico X		Jgx (m4)	0.0392			
Modulo di resist. lembo super.		Wae (m3)	0.0375			
Modulo di resist. lembo infer.		Wai (m3)	0.0375			
Momento statico al lembo sup. anima		Sae (m3)	0.0104			
Momento statico al lembo inf. anima		Sai (m3)	0.0104			
Momento statico asse Y		Svi (m3)	0.0142			
Dist. baric. asse Y		Dvgi (m)	0.2000			
Momento d'inerzia baricentrico Y		Jgy (m4)	0.0021			
Riepilogo sollecitazioni (SLU)						
Sforzo normale	max	N (kN)	0			
	min	N (kN)				
Sforzo di taglio	max	T (kN)	408			
	min	T (kN)	0			
Momento flettente	max	M (kNm)	0			
	min	M (kNm)	1045			
Verifiche delle sezioni (SLU)				Tens	sioni di cal	colo
tensione nor.le piattabanda sup.	σ ala sup.	MPa	-27.89	< fyd =	338.10	MPa
tensione nor.le piattabanda inf.	σ ala inf.	MPa	27.89	< fyd =	338.10	MPa
tensione tang.le bar. anima		MPa	7.79	< ftyd =	195.20	MPa
tonsione tangle bar, anima	τ anima baric.	ivii a	1.19	\yu =	100.20	ivii a
Lanciana manda attana a satura a statt		MD -	07.00	a find	000.40	MD-
tensione nor.le attacco anima-piatt. sup.	σ anima sup.	MPa	-27.23	< fyd =	338.10	MPa
tensione tang.le attacco anima-piatt. sup.	τ _{anima sup.}	MPa	0.27	< ftyd =	195.20	MPa
tensione ideale attacco anima-piatt. sup.	σ id sup.	MPa	27.24	< fyd =	338.10	MPa
tensione nor.le attacco anima-piatt. inf.	σ anima inf.	MPa	27.23	< fyd =	338.10	MPa
tensione tang.le attacco anima-piatt. inf.		MPa	0.27	< ftyd =	195.20	MPa
	τ anima inf.			< fyd =		
tensione ideale attacco anima-piatt. inf.	σ id inf .	MPa	-27.24	< iyu =	338.10	MPa

SEZIONE DI GIUNTO FORATA E GIUNTI BULLONATI

	NE DI GIUNTO FORATA E GIUNTI BULI	<u>-UIVAII</u>			
piattaba	nde inferiori Tipologia				
	Giunto	G1			
4	area lorda (mm²)	10000			
J _{es}	massima tensione (Mpa)	27.89			
	n° bulloni allineati	4			
Դ _b Հ *					
	area netta (mm²)	7150			
Jes*	massima tensione netta (Mpa)	39.01			
V	massimo sforzo trasmesso (kN)	279			
Դ _{b,min}	nº minimo di bulloni considerando 2 facce	1.81			
n _b	nº minimo bulloni da disporre	2			
coprigiu	nto piattabande inferiori				
20	spessore profilo	sp			
sp sp	spessore pidilid	25			
	tensione di rifollamento (Mpa)	163.12		275.1	MDo
3 _{rif}			<		
S rif	tensione di rifollamento piattabanda (MPa)	195.75	<	275.1	мРа
Ac	area netta coprigiunti (mm²)	7290	>	A*	
oiattaba	nde superiori				
	Tipologia				
	Giunto	G1			
4	area lorda (mm²)	10000			
Jes -	massima tensione (Mpa)	-27.89			
1 _b	n° bulloni allineati	2			
A*	area netta (mm²)	8575			
Jes*	massima tensione netta (Mpa)	-32.53			
V V	massimo sforzo trasmesso (kN)	279			
	n° minimo di bulloni considerando 2 facce	2.31			
1 _{b,min}					
1 _b	nº minimo bulloni da disporre	3			
coprigiu	nto piattabande superiori				
sp	spessore coprigiunto	sp			
sp sp	spessore coprigranto	25			
	tensione di rifollamento (Mpa)	90.62	<	275.1	MPa
Orif T.:	tensione di rifollamento piattabanda (MPa)	130.50	<	275.1	
σ _{rif}	tensione di monamento piattabanda (Wir a)	100.00		275.1	IVII Q
Ac	area netta coprigiunti (mm²)	9054	>	A*	
anime					
aiiiiic	Tipologia				
	Giunto	G1			
า	altezza anima (mm)	1542			
w	spessore anima (mm)	25			
<u>,,, , , , , , , , , , , , , , , , , , </u>	distanza bulloni esterni coprigiunto (mm)	1430			
4	area lorda (mm²)	38550			
	massima tensione assiale (Mpa)	27.23			
Jes					
Jes .	miniima tensione assiale (Mpa)	-27.23			
(distanza asse neutro lembo compresso	771			
es	tensione tangenziale media (Mpa)	0.27			
1 _b	n° bulloni allineati (verticalmente)	23			
1 _b	nº file di bulloni (da un lato del giunto)	2			
Α*	area netta (mm²)	22162.5			
VI	momento agente su mezza porzione di coprigiunto (kNm)	270			
/	taglio agente sul giunto (kN)	10			
Γv	azione su un bullone (una faccia) (kN) dovuta al taglio V	0.13			
Гм	azione su un bullone (una faccia) (kN) dovuta al momento	12.05			
/ f	taglio vettoriale su un bullone (una faccia) (kN)	12.05	<	77	kN
coprigiu	nto anime				
		sp			
	spessore coprigiunto	18			
	spessore anima	25			
Orif	tensione di rifollamento coprigiunto (Mpa)	23.50	<	275.1	MPa
O rif	tensione di rifollamento anima (Mpa)	33.84	<	275.1	MPa
_					
	area netta coprigiunti (mm²)			A*	

Realizzazione Lavori

RELAZIONE TECNICA E DI CALCOLO - IMPALCATO


dove:

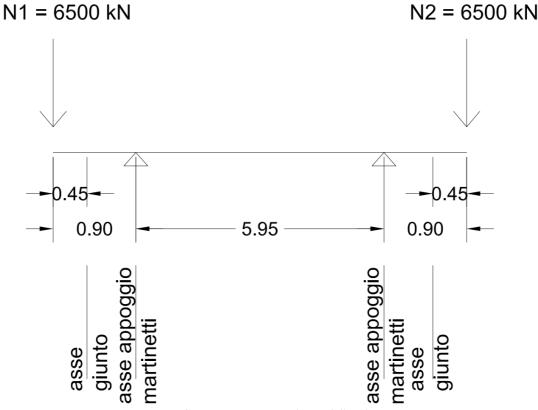
$$\begin{split} &\sigma_{es*} &= \sigma_{es} \times \text{A/A*} \leq 338.10 \text{ MPa} \\ &\text{N=} \sigma_{es} \times \text{A/A*} \\ &n_{b,min} = \text{N / (2·Vf,o)} \leq n_b \\ &\sigma_{rif} = \text{N/(2*}n_b*d_{foro}*sp) < \sigma_{b,Rd} \end{aligned} = 275 \text{ MPa (con d}_{foro} = 28.5 \text{ mm)} \end{split}$$

Essendo nb ≥ nb,min e l'area netta dei coprigiunti Ac ≥ A*, le verifiche risultano soddisfatte.

Dove:

$$\begin{split} \tau_{es}* &= \tau_{es} \times A/A^* \\ T_v &= \tau_{es} \times A / [2(n_b \times n_f)] \\ T_o &\cong \sigma_{es} \times A / [(n_b + 1) \times n_f]/2 \\ V_f &= (T_v^2 + T_o^2)^{0.5} \leq V_{f,o} \\ \sigma_{rif} < \sigma_{b,Rd} &= 275 \text{ MPa} \end{split}$$

Essendo Vf < Vfo e l'area netta dei coprigiunti $Ac \ge A^*$, le verifiche risultano soddisfatte.


<u>VERIFICA DI STABILITA' A FLESSIONE PANNELLO D'ANIMA DIAFRAMMA DI ALTEZZA MEDIA (IMBOZZAMENTO)</u>

VERIFIC	CA ALL'IMI	BOZZAMENTO I	DEI PANNE	LLI D'ANIMA	DIAFRAMMA	PIENO APP	POGGIO
		RAPP	ORTI LARG	HEZZA-SPES	SORE		
S	355	Bpe (m)	0.400	Spe (m)	0.025		
fyd=	322.73	Ha (m)	2.045	Sa (m)	0.025		
b/t =	81.80		(CNR10011	,			
limte	47.54	b/t>limite	occorre fa	re verifica ac	imbozzame	nto CNR100)11
VEDIEI	O A A L L 11841	BOZZAMENTO I	DEL DANNE	LLLDIANIMA	DIACDAMMA	DIENO ADE	200010
	-					_	
σ ₁ (+)		N/mm ²		i trazione all'in		•	*
σ ₂ (-)		N/mm ²		i compression	e all'estradoss	so ala inferio	re (SLE)
N	0.00		Sforzo norr	nale			
Т	302.22		Taglio				
A=		cm ²		mento (19*3)			
i	277	cm		rigidimenti ver			
α	1.35			egli irrigidimer			
Ψ	-1.00			che definisce		ariazione dell	aσ
kσ	23.90			d'imbozzame			
kτ	7.52			e d'imbozzame	ento		
σ _{cr,o}	27.83	N/mm ²	Tensione d	i riferimento			
σ _{cr}		N/mm ²	Tensione c	ritica normale			
τ _{cr}		N/mm ²	Tensione c	ritica tangenzi	ale		
σ_1		N/mm ²	Tensione m	nassima norma	ale nell'anima		
τ_1	5.30	N/mm ²	Tensione m	nedia di taglio	nell'anima		
τ_2		N/mm ²	Tensione d	i taglio derivan	te dalla torsio	ne	
τ_{tot}		N/mm ²	Tensione ta	angenziale cor	mplessiva		
σ _{cr,id}		N/mm²	Tensione d	i confronto			
σ _{cr,red}		N/mm ²	Tensione d	i confronto rido	otta nel caso i	n cui _{ocr,id} >0	,8*fd
O _{ideale}		N/mm ²	Tensione ic	leale di imboz	zamento		
βν	1.20						
	2.00			erimento per l	a verifica all'im	nbozzamento)
2.00	>	βν	VERIFICAT	ГО			

10.4 VERIFICHE PER LA SOSTITUZIONE DEGLI APPARECCHI D'APPOGGIO

In occasione della sostituzione degli apparecchi d'appoggio, si assume l'80% dei carichi concentrati (Modello di carico 1) senza riduzione dei carichi distribuiti.

Il sollevamento dell'impalcato avviene in asse diaframma di collegamento delle travi come da schemi sotto riportati che rappresentano le due situazioni limite sia in termini geometrici che di carichi.

Diaframma in corrispondenza della pila P2

Di seguito si riportano le verifiche del diaframma e degli irrigidimenti previsti in corrispondenza delle seguenti sezioni di verifica:

1. Sezione in corrispondenza del martinetto;

Le sollecitazioni sono le seguenti:

M= 1.35*6500*0.90= 7897.5Nm

T = 1.35*6500*= 8775 kN

2. Sezione in corrispondenza del giunto tra diaframma e irrigidimento anima diaframma.

Le sollecitazioni sono le seguenti:

M= 1.35*6500*0.45= 3949 kNm

T = 1.35*6500 = 8775 kN

SEZIONE IN CORRISPONDENZA DEI MA	RTINETTI					
SEZIONE IN CONTRIO CHEENZA DEI MA						
Caratteristiche delle travi in acciaio						
Altezza trave totale		Htr (m)	2.0950			
Larghezza piattabanda superiore		Bpe (m)	0.4000			
Spessore piattabanda superiore		Spe (m)	0.0250			
Larghezza piattabanda inferiore		Bpi (m)	0.4000			
Spessore piattabanda inferiore		Spi (m)	0.0250			
Spessore anima		Sa (m)	0.0250			
Altezza anima		Ha (m)	2.0450			
Area della sezione		Aa (m2)	0.0711			
Momento statico lembo inferiore		Sai (m3)	0.0745			
Dist. baric. lembo inferiore		Dagi (m)	1.0475			
Dist. baric. lembo superiore		Dage (m)	1.0475			
Momento d'inerzia baricentrico X		Jgx (m4)	0.0392			
Modulo di resist. lembo super.		Wae (m3)	0.0375			
Modulo di resist. lembo infer.		Wai (m3)	0.0375			
Momento statico al lembo sup. anima		Sae (m3)	0.0104			
Momento statico al lembo inf. anima		Sai (m3)	0.0104			
Momento statico asse Y		Svi (m3)	0.0142			
Dist. baric. asse Y		Dvgi (m)	0.2000			
Momento d'inerzia baricentrico Y		Jgy (m4)	0.0021			
District on a substitution (OLII)						
Riepilogo sollecitazioni (SLU)						
Sforzo normale	max	N (kN)	0			
Sioizo fiormale	min	N (kN)	0			
	1111111	IN (KIN)				
Sforzo di taglio	max	T (kN)	8775			
Olorzo di taglio	min	T (kN)	0113			
	111111	1 (1(14)				
Momento flettente	max	M (kNm)				
Widification indication	min	M (kNm)	7898			
		ivi (ixi viii)	7000			
Verifiche delle sezioni (SLU)				Tens	sioni di cal	colo
tensione nor.le piattabanda sup.	σ _{ala sup.}	MPa	-210.81	< fyd =	338.10	MPa
tensione nor.le piattabanda inf.	σ ala inf.	MPa	210.81	< fyd =	338.10	MPa
tensione tang.le bar. anima	τ anima baric.	MPa	167.54	< ftyd =	195.20	MPa
	•					
tensione nor.le attacco anima-piatt. sup.	σ _{anima sup.}	MPa	-205.78	< fyd =	338.10	MPa
· · · · · ·	σ anima sup. τ anima sup.	MPa MPa	-205.78 5.79	< fyd = < ftyd =	338.10 195.20	MPa MPa
tensione tang.le attacco anima-piatt. sup.	·					
tensione tang.le attacco anima-piatt. sup.	τ anima sup.	MPa	5.79	< ftyd =	195.20	MPa
tensione nor.le attacco anima-piatt. sup. tensione tang.le attacco anima-piatt. sup. tensione ideale attacco anima-piatt. sup. tensione nor.le attacco anima-piatt. inf.	τ anima sup.	MPa	5.79	< ftyd =	195.20	MPa
tensione tang.le attacco anima-piatt. sup. tensione ideale attacco anima-piatt. sup.	τ anima sup. σ id sup.	MPa MPa	5.79 206.26	< ftyd = < fyd =	195.20 338.10	MPa MPa

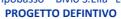
Direzione Progettazione e Realizzazione Lavori

RELAZIONE TECNICA E DI CALCOLO - IMPALCATO

Valore di riferimento per la verifica all'imbozzamento

				GHEZZA-SPE						
S	355	I (/		Spe (m)	0.025					
fyd=	322.73	(/		Sa (m)	0.025					
b/t =	81.80		(CNR10011							
limte	47.54	b/t>limite	occorre fa	re verifica Cl	NR10011					
VERIFICA A	LL'IMBOZZAMENT	TO DEI PANNE	LLI D'ANIM	A DIAFRAMN	IA PIENO IN (CORRISPOND	ENZA MARTINETTO			
σ ₁ (+)		N/mm ²	Tensione di	trazione all'in	tradosso ala s	superiore (SLE)				
σ ₂ (-)	-152.79	N/mm ²	Tensione di	compression	e all'estradoss	so ala inferiore (SLE)			
N	0.00		Sforzo norn	nale						
Τ	6500.00		Taglio							
A=		cm ²	Area irrigidi	mento (19*3)						
i	138.5	cm	Interasse irrigidimenti verticali							
α	0.68					ltezza dell'anim				
Ψ	-1.00					ariazione della d	5			
kσ	23.90			d'imbozzame						
kτ	15.64			d'imbozzame	ento					
$\sigma_{cr,o}$		N/mm ²	Tensione di	riferimento						
σ _{cr}		N/mm ²	Tensione ci	ritica normale						
τ _{cr}		N/mm ²	Tensione ci	ritica tangenzi	ale					
σ_1		N/mm ²	Tensione m	assima norma	ale nell'anima					
τ_1	114.04	N/mm ²	Tensione m	edia di taglio	nell'anima					
τ_2	_	N/mm ²	Tensione di	taglio derivan	te dalla torsio	ne				
τ_{tot}		N/mm ²	Tensione ta	ıngenziale cor	nplessiva					
σ _{cr,id}		N/mm ²	Tensione di	confronto						
σ _{cr,red}		N/mm ²	Tensione di confronto ridotta nel caso in cui _{ocr,id} >0,8*fd							
G ideale	249.49	N/mm ²	Tensione id	eale di imboz	zamento					
βν	1.20									

VERIFICATO


1.222

βν

1.22

SEZIONE NON FORA	TA IN CORRISPON	DENZA DEL	GIUNTO				
Caratteristiche delle	travi in acciaio						
Altezza trave totale			Htr (m)	2.0950			
Larghezza piattabanda superiore			Bpe (m)	0.4000			
Spessore piattabanda superiore			Spe (m)	0.0250			
Larghezza piattabanda inferiore			Bpi (m)	0.4000			
Spessore piattabanda inferiore			Spi (m)	0.0250			
Spessore anima			Sa (m)	0.0250			
Altezza anima	Ha (m)	2.0450					
Area della sezione	Aa (m2)	0.0711					
Momento statico lembo inferiore			Sai (m3)	0.0745			
Dist. baric. lembo inferiore			Dagi (m)	1.0475			
Dist. baric. lembo superiore			Dage (m)	1.0475			
Momento d'inerzia baricentrico X			Jgx (m4)	0.0392			
Modulo di resist. lembo super.			Wae (m3)	0.0375			
Modulo di resist. lembo infer.			Wai (m3)	0.0375			
Momento statico al lembo sup. anima			Sae (m3)	0.0104 0.0104			
Momento statico al lembo inf. anima			Sai (m3)				
Momento statico asse Y Dist. baric. asse Y			Svi (m3)	0.0142 0.2000			
	via antvia a V		Dvgi (m)				
Momento d'inerzia ba	ricentrico y		Jgy (m4)	0.0021			
Riepilogo sollecitaz	ioni (SLU)						
Sforzo normale		max	N (kN)	0			
		min	N (kN)				
Cforzo di toglio		may	T (N	8775			
Sforzo di taglio		max	T (kN)	8775			
		min	T (kN)				
Momento flettente		may	M (kNlm)				
iviomento nettente		max min	M (kNm) M (kNm)	3949			
		111111	IVI (KINITI)	3949			
Verifiche delle sezioni (SLU)					Tensioni di calcolo		colo
tensione nor.le piattal	oanda sup.	σ _{ala sup.}	MPa	-105.41	< fyd =	338.10	MPa
tensione nor.le piattabanda inf.		σ ala inf.	MPa	105.41	< fyd =	338.10	MPa
tensione tang.le bar. anima		τ anima baric.	MPa	167.54	< ftyd =	195.20	MPa
		amma banc.			,		
tensione nor.le attacco anima-piatt. sup.		σ anima sup.	MPa	-102.89	< fyd =	338.10	MPa
tensione tang.le attacco anima-piatt. sup. τ_{anima}			MPa	5.79	< ftyd =	195.20	MPa
		σ id sup.	MPa	103.86	< fyd =	338.10	MPa
tensione nor.le attacc	o anima-piatt. inf.	σ anima inf.	MPa	102.89	< fyd =	338.10	MPa
tensione tang.le attacco anima-piatt. inf.		τ anima inf.	MPa	5.79	< ftyd =	195.20	MPa
tensione ideale attacco anima-piatt. inf. $\sigma_{id inf.}$		σ id inf	MPa	-103.86	< fyd =	338.10	MPa

SEZIONE DI GIUNTO FORATA E GIUNTI BULLONATI

A σ _{es}	nde inferiori				
σes	The stands				-
σes	Tipologia	01			
σes	Giunto	G1			
	area lorda (mm²)	10000			
	massima tensione (Mpa)	105.41			
n _b	n° bulloni allineati	4			
A*	area netta (mm²)	7150			
σ _{es} *	massima tensione netta (Mpa)				
N	massimo sforzo trasmesso (kN)	1054			
n _{b,min}	n° minimo di bulloni considerando 2 facce	6.84			
n _b	n° minimo bulloni da disporre	7			
0					
coprigiu	nto piattabande inferiori				
		sp			
sp	spessore profilo	15			
sp	spessore piattabanda	25			
O rif	tensione di rifollamento (Mpa)	176.12	<	275.1	MPa
σ _{rif}	tensione di rifollamento anima (Mpa)	211.35	<	275.1	MPa
4111					
Ac	area netta coprigiunti (mm²)	7290	>	A*	
710	area netta coprigianti (mm)	7200		7.	
piattabar	nde superiori				
	Tipologia				
	Giunto	G1			
A	area lorda (mm²)	10000			
σes	massima tensione (Mpa)	-105.41			
n _b	n° bulloni allineati	2			
A*	area netta (mm²)	8575			
σ _{es} *	massima tensione netta (Mpa)	-122.93			
	, , ,				
N	massimo sforzo trasmesso (kN)	1054			
n _{b,min}	nº minimo di bulloni considerando 2 facce	6.84			
n _b	n° minimo bulloni da disporre	7			
coprigiu	nto piattabande superiori				
		sp			
sp	spessore coprigiunto	18			
sp	spessore piattabanda	25			
σ rif	tensione di rifollamento (Mpa)	146.77	<	275.1	MPa
σ rif	tensione di rifollamento piattabanda (Mpa)	211.35	<	275.1	MPa
Ac	area netta coprigiunti (mm²)	9054			
			>	A*	
			>	A*	
anime			>	A*	
anime	Tipologia		>	A*	
	Giunto	G1	>	A*	
h	Giunto altezza anima (mm)	1542	>	A*	
h t _w	Giunto altezza anima (mm) spessore anima (mm)	1542 25	>	A*	
h t _w	Giunto altezza anima (mm) spessore anima (mm) distanza bulloni esterni coprigiunto (mm)	1542 25 1430	>	A*	
h t _w	Giunto altezza anima (mm) spessore anima (mm)	1542 25 1430 38550	>	A*	
h t _w	Giunto altezza anima (mm) spessore anima (mm) distanza bulloni esterni coprigiunto (mm)	1542 25 1430	>	A*	
h t _w d A	Giunto altezza anima (mm) spessore anima (mm) distanza bulloni esterni coprigiunto (mm) area lorda (mm²)	1542 25 1430 38550	>	A*	
h t _w	Giunto altezza anima (mm) spessore anima (mm) distanza bulloni esterni coprigiunto (mm) area lorda (mm²) massima tensione assiale (Mpa)	1542 25 1430 38550 102.89	>	A*	
h t _w d A σ _{es} σ _{es} x	Giunto altezza anima (mm) spessore anima (mm) distanza bulloni esterni coprigiunto (mm) area lorda (mm²) massima tensione assiale (Mpa) miniima tensione assiale (Mpa)	1542 25 1430 38550 102.89 -102.89	>	A*	
h tw d A Ges Ges X Tes	Giunto altezza anima (mm) spessore anima (mm) distanza bulloni esterni coprigiunto (mm) area lorda (mm²) massima tensione assiale (Mpa) miniima tensione assiale (Mpa) distanza asse neutro lembo compresso tensione tangenziale media (Mpa)	1542 25 1430 38550 102.89 -102.89 771 5.79	>	A*	
h tw d A Ges Ges X Tes nb	Giunto altezza anima (mm) spessore anima (mm) distanza bulloni esterni coprigiunto (mm) area lorda (mm²) massima tensione assiale (Mpa) miniima tensione assiale (Mpa) distanza asse neutro lembo compresso tensione tangenziale media (Mpa) n° bulloni allineati (verticalmente)	1542 25 1430 38550 102.89 -102.89 771 5.79	>	A*	
h t _w d A Ges Tes n _b n	Giunto altezza anima (mm) spessore anima (mm) distanza bulloni esterni coprigiunto (mm) area lorda (mm²) massima tensione assiale (Mpa) miniima tensione assiale (Mpa) distanza asse neutro lembo compresso tensione tangenziale media (Mpa) n° bulloni allineati (verticalmente) n° file di bulloni (da un lato del giunto)	1542 25 1430 38550 102.89 -102.89 771 5.79 23	>	A*	
h t _w d A Ges Ges X Tes n _b n _b A*	Giunto altezza anima (mm) spessore anima (mm) distanza bulloni esterni coprigiunto (mm) area lorda (mm²) massima tensione assiale (Mpa) miniima tensione assiale (Mpa) distanza asse neutro lembo compresso tensione tangenziale media (Mpa) n° bulloni allineati (verticalmente) n° file di bulloni (da un lato del giunto) area netta (mm²)	1542 25 1430 38550 102.89 -102.89 771 5.79 23 2	>	A*	
h tw d A Ges Ses X Tes nb h A*	Giunto altezza anima (mm) spessore anima (mm) distanza bulloni esterni coprigiunto (mm) area lorda (mm²) massima tensione assiale (Mpa) miniima tensione assiale (Mpa) distanza asse neutro lembo compresso tensione tangenziale media (Mpa) n° bulloni allineati (verticalmente) n° file di bulloni (da un lato del giunto) area netta (mm²) momento agente su mezza porzione di coprigiunto (kNm)	1542 25 1430 38550 102.89 -102.89 771 5.79 23 2 22162.5 1032	>	A*	
h t w d A Ges Ges X Tes n b A M V	Giunto altezza anima (mm) spessore anima (mm) distanza bulloni esterni coprigiunto (mm) area lorda (mm²) massima tensione assiale (Mpa) miniima tensione assiale (Mpa) distanza asse neutro lembo compresso tensione tangenziale media (Mpa) n° bulloni allineati (verticalmente) n° file di bulloni (da un lato del giunto) area netta (mm²) momento agente su mezza porzione di coprigiunto (kNm) taglio agente sul giunto (kN)	1542 25 1430 38550 102.89 -102.89 771 5.79 23 2 22162.5 1032 223	>	A*	
h t w d A Ges V Ges X Ces A V TV	Giunto altezza anima (mm) spessore anima (mm) distanza bulloni esterni coprigiunto (mm) area lorda (mm²) massima tensione assiale (Mpa) miniima tensione assiale (Mpa) distanza asse neutro lembo compresso tensione tangenziale media (Mpa) n° bulloni allineati (verticalmente) n° file di bulloni (da un lato del giunto) area netta (mm²) momento agente su mezza porzione di coprigiunto (kNm) taglio agente sul giunto (kN) azione su un bullone (una faccia) (kN) dovuta al taglio V	1542 25 1430 38550 102.89 -102.89 771 5.79 23 2 22162.5 1032 223 2.79	>	A*	
h t _w d A Gos Gos X Tes n _b n _b A* M V TV T _M	Giunto altezza anima (mm) spessore anima (mm) distanza bulloni esterni coprigiunto (mm) area lorda (mm²) massima tensione assiale (Mpa) miniima tensione assiale (Mpa) distanza asse neutro lembo compresso tensione tangenziale media (Mpa) n° bulloni allineati (verticalmente) n° file di bulloni (da un lato del giunto) area netta (mm²) momento agente su mezza porzione di coprigiunto (kNm) taglio agente sul giunto (kN) azione su un bullone (una faccia) (kN) dovuta al taglio V azione su un bullone (una faccia) (kN) dovuta al momento	1542 25 1430 38550 102.89 -102.89 771 5.79 23 2 22162.5 1032 223 2.79 46.01			
h t w d A Ges V Ges X Ces A V TV	Giunto altezza anima (mm) spessore anima (mm) distanza bulloni esterni coprigiunto (mm) area lorda (mm²) massima tensione assiale (Mpa) miniima tensione assiale (Mpa) distanza asse neutro lembo compresso tensione tangenziale media (Mpa) n° bulloni allineati (verticalmente) n° file di bulloni (da un lato del giunto) area netta (mm²) momento agente su mezza porzione di coprigiunto (kNm) taglio agente sul giunto (kN) azione su un bullone (una faccia) (kN) dovuta al taglio V	1542 25 1430 38550 102.89 -102.89 771 5.79 23 2 22162.5 1032 223 2.79	>	A*	kN
h ttw d A Ges Ges X Tes Nb Nb A* M V TTV TM	Giunto altezza anima (mm) spessore anima (mm) distanza bulloni esterni coprigiunto (mm) area lorda (mm²) massima tensione assiale (Mpa) miniima tensione assiale (Mpa) distanza asse neutro lembo compresso tensione tangenziale media (Mpa) n° bulloni allineati (verticalmente) n° file di bulloni (da un lato del giunto) area netta (mm²) momento agente su mezza porzione di coprigiunto (kNm) taglio agente sul giunto (kN) azione su un bullone (una faccia) (kN) dovuta al taglio V taglio vettoriale su un bullone (una faccia) (kN) dovuta al momento	1542 25 1430 38550 102.89 -102.89 771 5.79 23 2 22162.5 1032 223 2.79 46.01			kN
h ttw d A Ges Ges X Tes Nb Nb A* M V TTV TM	Giunto altezza anima (mm) spessore anima (mm) distanza bulloni esterni coprigiunto (mm) area lorda (mm²) massima tensione assiale (Mpa) miniima tensione assiale (Mpa) distanza asse neutro lembo compresso tensione tangenziale media (Mpa) n° bulloni allineati (verticalmente) n° file di bulloni (da un lato del giunto) area netta (mm²) momento agente su mezza porzione di coprigiunto (kNm) taglio agente sul giunto (kN) azione su un bullone (una faccia) (kN) dovuta al taglio V azione su un bullone (una faccia) (kN) dovuta al momento	1542 25 1430 38550 102.89 -102.89 771 5.79 23 2 22162.5 1032 223 2.79 46.01			kN
h ttw d A Ges Ges X Tes Nb Nb A* M V TTV TM	Giunto altezza anima (mm) spessore anima (mm) distanza bulloni esterni coprigiunto (mm) area lorda (mm²) massima tensione assiale (Mpa) miniima tensione assiale (Mpa) distanza asse neutro lembo compresso tensione tangenziale media (Mpa) n° bulloni allineati (verticalmente) n° file di bulloni (da un lato del giunto) area netta (mm²) momento agente su mezza porzione di coprigiunto (kNm) taglio agente sul giunto (kN) azione su un bullone (una faccia) (kN) dovuta al taglio V azione su un bullone (una faccia) (kN) dovuta al momento taglio vettoriale su un bullone (una faccia) (kN)	1542 25 1430 38550 102.89 -102.89 771 5.79 23 2 22162.5 1032 223 2.79 46.01 46.09			kN
h ttw d A Ges Ges X Tes Nb Nb A* M V TTV TM	Giunto altezza anima (mm) spessore anima (mm) distanza bulloni esterni coprigiunto (mm) area lorda (mm²) massima tensione assiale (Mpa) miniima tensione assiale (Mpa) distanza asse neutro lembo compresso tensione tangenziale media (Mpa) n° bulloni allineati (verticalmente) n° file di bulloni (da un lato del giunto) area netta (mm²) momento agente su mezza porzione di coprigiunto (kNm) taglio agente sul giunto (kN) azione su un bullone (una faccia) (kN) dovuta al taglio V azione su un bullone (una faccia) (kN) dovuta al momento taglio vettoriale su un bullone (una faccia) (kN)	1542 25 1430 38550 102.89 -102.89 771 5.79 23 2 22162.5 1032 223 2.79 46.01 46.09			kN
$\begin{array}{c} h \\ h \\ t_w \\ d \\ A \\ G_{0s} \\ G_{0s} \\ x \\ x \\ \tau_{es} \\ n_b \\ n_b \\ A^* \\ M \\ V \\ Tv \\ T_M \\ Vf \\ \\ \hline coprigium \\ \end{array}$	Giunto altezza anima (mm) spessore anima (mm) distanza bulloni esterni coprigiunto (mm) area lorda (mm²) massima tensione assiale (Mpa) miniima tensione assiale (Mpa) distanza asse neutro lembo compresso tensione tangenziale media (Mpa) n° bulloni allineati (verticalmente) n° file di bulloni (da un lato del giunto) area netta (mm²) momento agente su mezza porzione di coprigiunto (kNm) taglio agente sul giunto (kN) azione su un bullone (una faccia) (kN) dovuta al taglio V azione su un bullone (una faccia) (kN) dovuta al momento taglio vettoriale su un bullone (una faccia) (kN)	1542 25 1430 38550 102.89 -102.89 771 5.79 23 2 22162.5 1032 223 2.79 46.01 46.09	<	77	
$\begin{array}{c} h \\ h \\ t_w \\ d \\ A \\ G_{0s} \\ G_{0s} \\ x \\ x \\ \tau_{es} \\ n_b \\ n_b \\ A^* \\ M \\ V \\ Tv \\ T_M \\ Vf \\ \\ \textbf{Coprigiun} \\ \\ G_{rif} \\ \end{array}$	Giunto altezza anima (mm) spessore anima (mm) distanza bulloni esterni coprigiunto (mm) area lorda (mm²) massima tensione assiale (Mpa) miniima tensione assiale (Mpa) distanza asse neutro lembo compresso tensione tangenziale media (Mpa) n° bulloni allineati (verticalmente) n° file di bulloni (da un lato del giunto) area netta (mm²) momento agente su mezza porzione di coprigiunto (kNm) taglio agente sul giunto (kN) azione su un bullone (una faccia) (kN) dovuta al taglio V azione su un bullone (una faccia) (kN) dovuta al momento taglio vettoriale su un bullone (una faccia) (kN) nto anime spessore coprigiunto spessore anima tensione di rifollamento coprigiunto (Mpa)	1542 25 1430 38550 102.89 -102.89 771 5.79 23 2 22162.5 1032 223 2.79 46.01 46.09 sp 18 25 89.84	<	77 275.1	MPa
$\begin{array}{c} h \\ h \\ t_w \\ d \\ A \\ G_{0s} \\ G_{0s} \\ x \\ x \\ \tau_{es} \\ n_b \\ n_b \\ A^* \\ M \\ V \\ Tv \\ T_M \\ Vf \\ \\ \hline coprigium \\ \end{array}$	Giunto altezza anima (mm) spessore anima (mm) distanza bulloni esterni coprigiunto (mm) area lorda (mm²) massima tensione assiale (Mpa) miniima tensione assiale (Mpa) distanza asse neutro lembo compresso tensione tangenziale media (Mpa) n° bulloni allineati (verticalmente) n° file di bulloni (da un lato del giunto) area netta (mm²) momento agente su mezza porzione di coprigiunto (kNm) taglio agente sul giunto (kN) azione su un bullone (una faccia) (kN) dovuta al taglio V azione su un bullone (una faccia) (kN) dovuta al momento taglio vettoriale su un bullone (una faccia) (kN)	1542 25 1430 38550 102.89 -102.89 771 5.79 23 2 22162.5 1032 223 2.79 46.01 46.09	<	77	
$\begin{array}{c} h \\ h \\ t_w \\ d \\ A \\ G_{0s} \\ G_{0s} \\ x \\ x \\ \tau_{es} \\ n_b \\ n_b \\ A^* \\ M \\ V \\ Tv \\ T_M \\ Vf \\ \\ \textbf{Coprigiun} \\ \\ G_{rif} \\ \end{array}$	Giunto altezza anima (mm) spessore anima (mm) distanza bulloni esterni coprigiunto (mm) area lorda (mm²) massima tensione assiale (Mpa) miniima tensione assiale (Mpa) distanza asse neutro lembo compresso tensione tangenziale media (Mpa) n° bulloni allineati (verticalmente) n° file di bulloni (da un lato del giunto) area netta (mm²) momento agente su mezza porzione di coprigiunto (kNm) taglio agente sul giunto (kN) azione su un bullone (una faccia) (kN) dovuta al taglio V azione su un bullone (una faccia) (kN) dovuta al momento taglio vettoriale su un bullone (una faccia) (kN) nto anime spessore coprigiunto spessore anima tensione di rifollamento coprigiunto (Mpa)	1542 25 1430 38550 102.89 -102.89 771 5.79 23 2 22162.5 1032 223 2.79 46.01 46.09 sp 18 25 89.84	<	77 275.1	MPa

STABILITÀ DEGLI IRRIGIDIMENTI TRASVERSALI IN CORRISPONDENZA DEI MARTINETTI

Lo sforzo normale massimo in corrispondenza di ciascun martinetto è pari a:

	P2	
Scarico-SLU (kN) su	18000	
ogni allineamento	18000	
n. martinetti	2	
martinetto (kN)	9000	

Si riporta di seguito la verifica a carico di punta dell'irrigidimento dell'anima in corrispondenza del diaframma:

N = 9000 kN sforzo normale in un martinetto - SLU

In accordo con [CNR 10030] §6.3, la sezione di verifica considerata è pari all'irrigidimento trasversale più un'aliquota dell'anima non inferiore a 12 volte il suo spessore (per ciascun lato).

Irrigidimenti:

ts = 30 mm spessore irrigidimento centrale tl = 16 mm spessore irrigidimenti laterali

hs = 190 mm larghezza irrigidimenti (simmetrico rispetto all'anima)

tw = 25 mm spessore anima

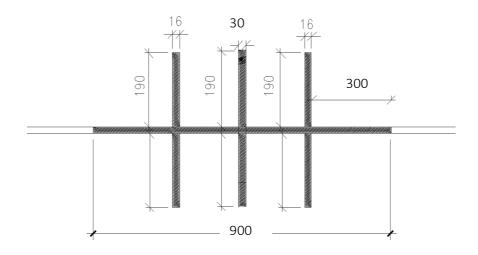


Figura – Sezione dell'irrigidimento utilizzata nelle verifiche

PROGETTO DEFINTIVO

RELAZIONE TECNICA E DI CALCOLO - IMPALCATO

 $A = 45.62 \cdot 10^3 \text{ mm}^2$ area della sezione

 $J = 33.12 \cdot 10^7 \text{ mm}^4$ momento d'inerzia

i = 85 mmgiratore d'inerzia

 $L_0 = 2045 \text{ mm}$ luce libera d'inflessione (hanima)

 $\lambda = 24$ snellezza dell'irrigidimento

 ω Fe510,c(λ = 24) = 1.03 coefficiente ω

 $N_{RD} = f_{vd} \cdot A/\omega = 355/1.25*45.62/1.03 = 12578 \text{ kN}$ massimo sforzo resistente

Essendo la portata in corrispondenza del martinetto (≈9000 kN) inferiore al massimo sforzo resistente sull'irrigidimento la verifica risulta soddisfatta.

Verifica dei rapporti larghezza-spessore della nervatura

Per le nervature in piatto semplice dovrà risultare:

hs/ts ≤ 15 ε

Essendo:

 $\varepsilon = (235/fy)^{1/2}$

hs= 190 mm larghezza di ciascun piatto costituente la nervatura;

ts = 30 mmspessore piatto;

fy= 355 MPa tensione di snervamento.

In definitiva avremo:

 $190/30 < 15*(235/355)^{1/2} \rightarrow 6.33 < 12.15$

La verifica risulta soddisfatta

10.5 VERIFICHE DEI GIUNTI SALDATI DIAFRAMMI

In accordo con le tensioni riportate nei par. 10.3 e 10.4, si riportano di seguito le verifiche più gravose per le saldature dell'opera in oggetto.

Verifica saldature anima/piattabande (cordoni di lato L = 15 mm)

La sezione resistente della saldatura, in accordo con [DM2018] §4.2.8.2.3, è pari a:

$$t_{saldatura} = 0.7 \cdot L = 10.5 \text{ mm}$$

Le massime tensioni indotte sulla saldatura sono:

$$au = au_{\text{anima}} \cdot au_{\text{anima}} / (2 \cdot au_{\text{saldatura}}) = 167.54 \cdot 25 / (2 \cdot 10.5) = 199.46 \text{ MPa} \le \frac{f_{tk}}{\sqrt{3} \beta \gamma_{M2}} = 265 \text{ MPa}$$

Le saldature rimanenti sono a piena penetrazione realizzate con materiali d'apporto aventi resistenza uguale o maggiore a quella degli elementi collegati. Pertanto, la resistenza di progetto dei collegamenti a piena penetrazione si assume eguale alla resistenza di progetto del più debole tra gli elementi connessi.

10.6 VERIFICHE DEGLI IRRIGIDIMENTI LONGITUDINALI E TRASVERSALI

Vengono previsti irrigidimenti trasversali e longitudinali lungo tutto l'impalcato.

In corrispondenza dei diaframmi di campata è previsto l'utilizzo di irrigidimenti trasversali costituiti da un piatto a tutta altezza dell'anima della trave di spessore 16 mm. con passo longitudinale pari a circa 2708 mm nelle campate esterne e 2812 mm nelle campate centrali.

Nei conci di appoggio su spalla lo spessore di tale piatto è pari a 20 mm.

Gli irrigidimenti longitudinali sono disposti su una fila in corrispondenza della campata e si trovano ad una distanza dal lembo superiore della trave rispettivamente pari a 750 mm dall'estradosso della piattabanda superiore. In corrispondenza degli appoggi sono disposti sempre su una fila ad una distanza pari a 1500 mm dall'estradosso della piattabanda superiore.

La sezione trasversale di tali irrigidimenti è pari ad un profilato ad un piatto di dimensioni pari a 190*20 mm

In accordo con [CNR 10030] §3, affinché sia efficace la suddivisione in sottopannelli dell'anima e le conseguenti verifiche di instabilità, la rigidezza flessionale degli irrigidimenti deve essere maggiore di:

```
\begin{array}{ll} I_{\text{min},T} &= 0.15 \cdot \gamma_{\text{T}}^* \cdot h_w \cdot t_w^3 & \text{inerzia minima irrigidimenti trasversali} \\ I_{\text{min},L} &= 0.15 \cdot \text{mL} \cdot \gamma_{\text{L}\sigma}^* \cdot h_w \cdot t_w^3 & \text{inerzia minima irrigidimenti longitudinali} \\ m_L &= 0.015 \times (h_w/t_w - 70) & 1 \leq m_L \leq 2 \\ \text{dove} \\ h_w & \text{altezza totale dell'anima} \\ t_w & \text{spessore dell'anima} \\ \gamma_{\text{T}}^* , \gamma_{\text{L}}^* & \text{coefficienti di rigidezza flessionale minima funzione di } \alpha, \Psi, \delta, \eta_1. \\ \text{a} & \text{interasse degli irrigidimenti trasversali} \end{array}
```

1 Irrigidimento longitudinale con irrigidimenti trasversali in campata

Assumendo lo stato tensionale più gravoso per le verifiche di ciascun irrigidimento si ottiene (cfr. [CNR 10030] Prospetto 3.1):

```
\begin{split} &\alpha = a/hw = 2812/2190 = 1.28 \\ &\Psi = \sigma_2/\sigma_1 \text{=-}1.31 \\ &\delta = A_L/(h_w * t_w) = (190 * 20)/(1740 * 16) = 0.14 \\ &\eta_1 = h_1/h_w = 730/2190 = 0.33 \\ &\gamma_{L\sigma} * = 7; \\ &I_{min,L} = 0.15 \times 1.0 \times 7 \times 2190 \times 16^3 = 9 \ 418 \ 752 \ mm^4 \\ &I_{reale} \cong 20x190^3/3 = 45 \ 726 \ 666 \ mm^4 \ge I_{min,L} \end{split}
```

1 Irrigidimento longitudinale con irrigidimenti trasversali in appoggio

Assumendo lo stato tensionale più gravoso per le verifiche di ciascun irrigidimento si ottiene (cfr. [CNR 10030] Prospetto 3.1):

$$\begin{split} &\alpha = \text{a/hw} = 2812/2090 = 1.35 \\ &\Psi = \sigma_2/\sigma_1 \text{=-}1.14 \\ &\delta = \text{A}_\text{L}/(\text{h}_\text{w}*\text{t}_\text{w}) \text{= } (190*20)/(2090*20) = 0.10 \\ &\eta_1 = \text{h}_1/\text{h}_\text{w} = 1420/2090 = 0.68 \\ &\gamma_\text{L}\sigma^* = 9; \end{split}$$

 $= 0.15 \times 1.0 \times 9 \times 2090 \times 20^3 = 20064000 \text{ mm}^4$ $\approx 20 \times 190^3 / 3 = 45726666 \text{ mm}^4 \ge I_{\text{min,L}}$

Irrigidimenti trasversali di campata

Assumendo lo stato tensionale più gravoso per le verifiche di ciascun irrigidimento si ottiene (cfr. [CNR 10030] Prospetto 3.1):

 α = a/hw = 2812/2190 = 1.28 $\gamma_{T}^{*} = 20$ $= 0.15 \times 20 \times 2190 \times 16^3 = 26910720 \text{ mm}^4$ $\cong 16x250^3/3 = 250\ 000\ 000\ mm^4 \ge I_{min,L}$

Irrigidimenti trasversali di appoggio su spalla

Assumendo lo stato tensionale più gravoso per le verifiche di ciascun irrigidimento si ottiene (cfr. [CNR 10030] Prospetto 3.1):

 α = a/hw = 2812/2090 = 1.35 $\gamma_{T}^* = 75$ $I_{min,T} = 0.15 \times 75 \times 2090 \times 20^3 = 50 \ 160 \ 000 \ mm^4$ $\cong 20x250^3/3 = 312500000 \text{ mm}^4 \ge I_{min,L}$

PROGETTO DEFINTIVO

RELAZIONE TECNICA E DI CALCOLO - IMPALCATO

10.7 VERIFICHE DELLE ASTE DEI CONTROVENTI

Si verificano i controventi di piano superiori ed inferiori durante le fasi di montaggio per resistere all'intera azione del vento. Si suppongono le aste compresse non collaboranti.

 $q_v = 2.00 \text{ m} \times 2.50 \text{ kN/m}^2 = 5.00 \text{ kN/m}$ pressione sull'impalcato

 $T = L_{max} \times q_v = 5.625*5.00 = 29 \text{ kN}$ taglio massimo all'appoggio

P =7.75 m distanza travi principali

Lmax =5.625 m passo controventi

N = T / [cos(arctan(5.625/7.75))] = 35.84 kN sforzo normale nell'asta (trazione)

verifica profilato (1 L100x8)

 $A = 1550 \text{ mm}^2$ area lorda

 $A_{eff} = 1172 \text{ mm}^2$ area effettiva (cfr [CNR10011] §6.2.1.2)

 σ = N / Aeff = 30.57 MPa \leq 338.10 MPa tensione assiale

verifica unione bullonata (2M20 a taglio, 1 faccia)

e = 45/2 =22.50 mm eccentricità del collegamento

i = 45 mm interasse dei bulloni

 $T_b = \sqrt{(N/2)^2 + (N \cdot e/i)^2} = 25.35 \text{ kN}$ taglio su 1 bullone

 $\tau = T_b/A_{res} = 103.44 \text{ MPa} < 0.5 \cdot f_{tb}/\gamma_{M2} = 320 \text{ MPa}$ tensione tangenziale (classe 8.8 A_{res}=245 mm²)

 $\sigma_{rif} = N / (2*21*8) = 106.67 \text{ MPa} \le 230 \text{ MPa}$ tensione rifollamento

Verifica unione saldata piatto di collegamento controvento trave principale (cordone L = 6 mm)

 $N = N_{max} = 35.84 \text{ kN}$ -carico massimo sul controvento

La sezione resistente della saldatura, in accordo con [DM2018] §4.2.8.2.3, è pari a:

 $t_{saldatura} = 0.7 \cdot L = 4.2 \text{ mm}$

L = 160 mm - lunghezza min. saldatura piatto-anima trave

 $A_{saldatura} = 2 \times L \times t_{saldatura} = 1344 \text{ mm}^2$

$$\sigma_{\perp}$$
 = N / A_{saldatura} =26.67 MPa $\leq \frac{f_{tk}}{\beta \gamma_{M2}}$ = 453 MPa

PROGETTO DEFINTIVO

RELAZIONE TECNICA E DI CALCOLO - IMPALCATO

11 ESCURSIONI APPARECCHI DI APPOGGIO E GIUNTI

La valutazione degli spostamenti longitudinali e trasversali in corrispondenza degli apparecchi d'appoggio è eseguita con riferimento alle azioni statiche ed alle azioni sismiche. In particolare, le azioni considerate nell'analisi sono:

- ritiro del cls di soletta (dε2);
- variazione termica uniforme pari a 27°C, con effetto sia in allungamento sia un accorciamento (dε3);
- azione sismica con moto asincrono delle due spalle (d_E).

Le combinazioni di calcolo utilizzate sono espresse in forma sintetica nel seguito:

- combinazione statica: $d_{tot,stat} = d_{\varepsilon 2} \pm d_{\varepsilon 3}$;
- combinazione sismica: $d_{tot,sisma} = 0.5 \cdot d_{\varepsilon 2} \pm 0.5 \cdot d_{\varepsilon 3} \pm d_E$.

I valori di progetto della variazione termica uniforme per la valutazione agli **SLU** della massima espansione/contrazione si possono esprimere come segue:

$$\Delta T_{exp,d} = \Delta T_{exp} + \Delta T_0$$
 [C5.1.3]

$$\Delta T_{con,d} = \Delta T_{con} + \Delta T_0$$
 [C5.1.4]

In cui:

$$\Delta T_{exp} = +T_{e,max} - T_0$$
 [C5.1.5]
 $\Delta T_{con} = -T_{e,min} + T_0$ [C5.1.6]

- $T_{e,max}$ e $T_{e,min}$ sono rispettivamente la massima e minima temperatura uniforme del ponte ricavabili, come indicato nel Capitolo 6 delle UNI EN 1991-1-5, in funzione della T_{min} e T_{max} dell'aria esterna di cui al § 3.5 delle NTC (T_{max} =42°C; T_{min} = -15°C)
- To è la temperatura iniziale all'atto della regolazione degli appoggi del ponte di cui al § 3.5.4 delle NTC (pari a 15°C).
- ΔT_0 è pari a 20°C (Installazione senza preregolazione per effetti termici).

Quindi:

$$\Delta Texp = 42-15+20=47^{\circ}C$$

 $\Delta Tcon = -15-15-20=-50^{\circ}C$

Pertanto, l'allungamento/accorciamento per metro lineare di impalcato in acciaio dovuto alla dilatazione termica equivale a:

$$d_{arepsilon3, {
m exp}}$$
 = 0.000012 x (47°) x 1000 = + 0.56 mm/ml

$$d_{\varepsilon 3,con}$$
 = 0.000012 x (50°) x 1000 = + 0.60 mm/ml

E l'accorciamento dovuto al ritiro del cls equivale a:

$$d_{e2,con}$$
 = 0.000010 x (-34°) x 1000 \approx - 0.34 mm/ml

Di seguito si esegue il calcolo dell'escursione totale degli apparecchi di appoggio con l'azione sismica allo SLC, l'escursione dei giunti con l'azione sismica allo SLD e il varco con l'azione sismica allo SLV, tenendo presente che l'escursione dovuta alla termica e al ritiro produce i seguenti valori di allungamento/accorciamento per metro lineare di impalcato:

$$d_{\varepsilon 3, \mathrm{exp}}$$
 =0.56 mm/ml

$$d_{\varepsilon 3.con}$$
 = 0.60+0.34 = 0.94 mm/ml

Escursione apparecchi d'appoggio (SLC):

allin.to		distanza dal fisso (m)	unilaterale statica		Escursione Unilaterale allo SLC	O	Escursione trasv. Unilaterale sismica allo SLC
			Allung. Accorc.		Allung.	Accorc.	
	SPA	-77.5	+43.4	-72.85	+169.7	-184.43	± 148
	P1	-45	+25.2	-42.3	+160.6	-169.15	± 148
Fisso	P2	0.00	0.00	0.00	+148	-148	± 148
	Р3	+45	+25.2	-42.3	+160.6	-169.15	± 148
	SPB	+77.5	+43.4	-72.85	+169.7	-184.43	± 148

Nell'escursione longitudinale dei giunti occorre tener conto del moto asincrono delle due spalle.

Il moto asincrono (SLC) delle due spalle è valutato secondo l'Euorcodice 8 - §3.3:

$$d_{ri} = \varepsilon_r L_i = 0.62 * 155 = 96.1 \text{ mm} \le d_g \sqrt{2}$$

con:

$$\varepsilon_r = d_g \sqrt{2/L_g} = 177.05 * \sqrt{2/400} = 0.626$$

Dove:

$$dg = 0.025 \cdot S \cdot TC \cdot TD \cdot ag = \pm 0.025 \cdot 1.167 \cdot 0.552 \cdot 3.062 \cdot 0.366 \cdot 9.81 \cdot 10^{3} = \pm 177.05 \text{ mm}$$

L_i= 155 m Luce di calcolo viadotto

Lg=400 m è la distanza oltre la quale si possono considerare i movimenti del suolo completamente non

correlati (Eurocodice 8 – tab. 3.1N per terreno tipo C)

L'escursione totale degli apparecchi di appoggio si ottiene combinando usando secondo SRSS gli spostamenti prodotti dal moto asincrono con quelli provenienti dal calcolo:

SRSS =
$$-\sqrt{184.43^2 + 96.1^2} = -208mm < 300$$
 mm (escursione di progetto dell'apparecchio)

SRSS =
$$+\sqrt{169.67^2 + 96.1^2} = +195 \, mm < 300 \, \text{mm}$$
 (escursione di progetto dell'apparecchio)

La valutazione degli spostamenti longitudinali e trasversali in corrispondenza dei giunti è eseguita con riferimento alle azioni statiche ed alle azioni sismiche allo SLD:

Escursione giunti (SLD):

allin.te	0	distanza	Escursione long.		Escursione	long.	Escursione	trasv.
		dal fisso	unilaterale statica		unilaterale sismica		unilaterale allo S	
		(m)			allo SLV			
			Allung.	Accorc.	Allung.	Accorc.		
	Giunto SPA	-78.1	+43.74	-72.85	+76.87	-91.43	± 55	
	Giunto SPB	+78.1	+43.74	-72.85	+76.87	-91.43	± 55	

Nell'escursione longitudinale dei giunti occorre tener conto del moto asincrono delle due spalle.

Il moto asincrono (SLD) delle due spalle è valutato secondo l'Euorcodice 8 - §3.3:

$$d_{ri} = \varepsilon_r L_i = 0.066 * 155 = 10.23 \text{ mm} \le d_g \sqrt{2}$$

con:

$$\varepsilon_r = d_g \sqrt{2/L_g} = 18.8 * \sqrt{2/400} = 0.066$$

Dove:

$$dg = 0.025 \cdot S \cdot TC \cdot TD \cdot ag = \pm 0.025 \cdot 1.50 \cdot 0.49 \cdot 2.049 \cdot 0.051 \cdot 9.81 \cdot 10^3 = \pm 18.8 \text{ mm}$$

L_i= 155 m Luce di calcolo viadotto

Lg=400 m è la distanza oltre la quale si possono considerare i movimenti del suolo completamente non

correlati (Eurocodice 8 – tab. 3.1N per terreno tipo C)

L'escursione totale dei giunti si ottiene combinando usando secondo SRSS gli spostamenti prodotti dal moto asincrono con quelli provenienti dal calcolo.

Quindi l'escursione totale longitudinale e trasversale dei giunti è pari a:

$$eT = \pm \sqrt{55^2 + 10.23^2} = \pm 55.94 \, mm$$
 -giunto SPA/SPB trasversale

$$eL = -\sqrt{91.43^2 + 10.23^2} = -92.00 \, mm$$
 -giunto SPA/SPB longitudinale

$$eL = +\sqrt{76.87^2 + 10.23^2} = +77.55 \, mm$$
 -giunto SPA/SPB longitudinale

Si adotta un giunto con un'escursione totale pari a 200 mm in direzione longitudinale e 120 in direzione trasversale.

La valutazione dei varchi è eseguita con riferimento alle azioni statiche ed alle azioni sismiche allo SLV e si ottiene calcolando l'escursione longitudinale totale dei giunti allo SLV:

Escursione giunti:

allin.t		distanza		Escursione long.		e long.
О		dal fisso	unilaterale statica		unilaterale	e sismica
		(m)			allo SLV	
			Allung.	Accorc.	Allung.	Accorc.
	Giunto SPA	-78.1	+43.74	-72.85	+145.88	-160.43
	Giunto SPB	+78.1	+43.74	-72.85	+145.88	-160.43

Nell'escursione longitudinale dei giunti occorre tener conto del moto asincrono delle due spalle.

Il moto asincrono (SLV) delle due spalle è valutato secondo l'Euorcodice 8 - §3.3:

$$d_{ri} = \varepsilon_r L_i = 0.456 * 155 = 70.68 \text{ mm} \le d_g \sqrt{2}$$

con:

$$\varepsilon_r = d_g \sqrt{2/L_g} = 129 * \sqrt{2/400} = 0.456$$

Dove:

$$dg = 0.025 \cdot S \cdot TC \cdot TD \cdot ag = \pm 0.025 \cdot 1.281 \cdot 0.532 \cdot 2.729 \cdot 0.283 \cdot 9.81 \cdot 10^{3} = \pm 129.0 \text{ mm}$$

L_i= 155 m Luce di calcolo viadotto

Lg=400 m è la distanza oltre la quale si possono considerare i movimenti del suolo completamente non

correlati (Eurocodice 8 – tab. 3.1N per terreno tipo C)

L'escursione totale dei giunti si ottiene combinando usando secondo SRSS gli spostamenti prodotti dal moto asincrono con quelli provenienti dal calcolo.

Quindi l'escursione totale longitudinale dei giunti è pari a:

eL=
$$-\sqrt{160.43^2+70.68^2}=-175.31~mm$$
 -giunto SPA/SPB longitudinale eL= $+\sqrt{145.88^2+70.68^2}=+162.1~mm$ -giunto SPA/SPB longitudinale

Il varco minimo è pari a:

v= eL /2+20 mm \approx 190mm -giunto SPA/SPB

Si adotta, in favore di sicurezza, un varco di 300 mm

12 SCARICHI APPOGGI

Di seguito vengono riportati gli scarichi delle singole condizioni di carico e delle seguenti combinazioni di carico (SLE. SLU E SISMA):

\ , ,													
	SLE	SLE_II		STR		SISMA 1		SISMA 2			SISMA 3		
	SLE_II	SLE_III	STR_II	STR_III	Х	у	Z	Х	у	Z	Х	У	Z
Permanenti	1	1	1.35	1.35	1	1	1	1	1	1	1	1	1
Carichi mobili_Nmax	1	1	1.35	1.025	0	0	0	0	0	0	0	0	0
Carichi mobili_Mmax	1	1	1.35	1.025	0	0	0	0	0	0	0	0	0
Frenatura	0	1	0	1.35	0	0	0	0	0	0	0	0	0
Vento	0.6	0.6	0.9	0.9	0	0	0	0	0	0	0	0	0
Sisma	0	0	0	0	1	0.3	0.3	0.3	1	0.3	0.3	0.3	1

Per le convenzioni utilizzate si veda il prospetto seguente:

Denominazione casi di carico

Permanenti Peso proprio carpenteria metallica+Peso proprio soletta+Carichi permanenti portati

Carichi mobili Nmax
Carichi mobili caratteristici con reazione verticale Nmax
Carichi mobili Mmax
Carichi mobili caratteristici con momento trasversale Mmax

Frenatura Frenatura

Vento Vento a ponte carico

Sisma Inviluppo dell'azione sismica orizzontale e verticale

	SPALLA "A"					
Carichi		App_01			App_02	
Cariciii	Vert.	Long.	Trasv.	Vert.	Long.	Trasv.
	(kN)	(kN)	(kN)	(kN)	(kN)	(kN)
Permanenti	-1040	0	0	-998	0	0
Carichi mobili_Nmax	-1410	0	0	-442	0	0
Frenatura	0	79	0	0	79	0
Vento	-110	82	160	110	82	160
Sisma	-285	620	480	-285	620	480
	SPALLA "A"					
	JI ALLA A	App_01			App_02	
	Vert.	Long.	Trasv.	Vert.	Long.	Trasv.
SLE II	-2523	55	107	-1367	55	107
SLE III	-2184	134	107	-1260	134	107
STR II	-3407	74	144	-1845	74	144
STR III	-2948	180	144	-1701	180	144
SISMA 1	-1126	620	144	-1084	620	144
SISMA 2	-1126	186	480	-1084	186	480
SISMA 3	-1325	186	144	-1283	186	144
	SPALLA "A"					
		APPOGGIO 01			APPOGGIO ()2
	R (kN)	HI (kN)	Ht (kN)	R (kN)	HI (kN)	Ht (kN)
SLE	-2523	134	107	-2523	134	107
SLU	-3407	180	144	-3407	180	144
SISMICA	-1325	620	480	-1325	620	480

Direzione Progettazione e Realizzazione Lavori

	SPALLA "B"					
Os vish:		App_01			App_02	
Carichi	Vert.	Long.	Trasv.	Vert.	Long.	Trasv.
	(kN)	(kN)	(kN)	(kN)	(kN)	(kN)
Permanenti	-1040	0	0	-998	0	0
Carichi mobili_Nmax	-1410	0	0	-442	0	0
Frenatura	0	79	0	0	79	0
Vento	-110	82	160	110	82	160
Sisma	-285	620	480	-285	620	480
	SPALLA "B"					
		App_01			App_02	
	Vert.	Long.	Trasv.	Vert.	Long.	Trasv.
SLE_II	-2523	55	107	-1367	55	107
SLE_III	-2184	134	107	-1260	134	107
STR_II	-3407	74	144	-1845	74	144
STR_III	-2948	180	144	-1701	180	144
SISMA 1	-1126	620	144	-1084	620	144
SISMA 2	-1126	186	480	-1084	186	480
SISMA 3	-1325	186	144	-1283	186	144
	SPALLA "B"					
		APPOGGIO 01			APPOGGIO (
	R (kN)	HI (kN)	Ht (kN)	R (kN)	HI (kN)	Ht (kN)
SLE	-2523	134	107	-2523	134	107
SLU	-3407	180	144	-3407	180	144
SISMICA	-1325	620	480	-1325	620	480

Direzione Progettazione e Realizzazione Lavori

	PILA "1" e"3"					
Osviski		App_01			App_02	
Carichi	Vert.	Long.	Trasv.	Vert.	Long.	Trasv.
	(kN)	(kN)	(kN)	(kN)	(kN)	(kN)
Permanenti	-3690	0	0	-3622	0	0
Carichi mobili_Nmax	-2415	0	0	-937	0	0
Frenatura	0	79	0	0	79	0
Vento	-152	0	196	152	0	196
Sisma	-528	595	607	-452	595	607
	PILA "1" e"3"					
		App_01			App_02	
	Vert.	Long.	Trasv.	Vert.	Long.	Trasv.
SLE_II	-6206	0	131	-4458	0	131
SLE_III	-5625	79	131	-4232	79	131
STR_II	-8379	0	176	-6018	0	176
STR_III	-7594	107	176	-5713	107	176
SISMA 1	-3848	595	182	-3758	595	182
SISMA 2	-3848	179	607	-3758	179	607
SISMA 3	-4218	179	182	-4074	179	182
	PILA "1" e"3"				1000000	
		APPOGGIO 01			APPOGGIO (
	R (kN)	HI (kN)	Ht (kN)	R (kN)	HI (kN)	Ht (kN)
SLE	-6206	79	131	-6206	79	131
SLU	-8379	107	176	-8379	107	176
SISMICA	-4218	595	607	-4218	595	607

Direzione Progettazione e Realizzazione Lavori

	PILA "2"					
Osviski		App_01			App_02	
Carichi	Vert.	Long.	Trasv.	Vert.	Long.	Trasv.
	(kN)	(kN)	(kN)	(kN)	(kN)	(kN)
Permanenti	-3967	0	0	-3967	0	0
Carichi mobili_Nmax	-2639	0	0	-984	0	0
Frenatura	0	79	0	0	79	0
Vento	-165	0	219	165	0	219
Sisma	-430	586	702	-347	586	702
	PILA "2"					
		App_01			App_02	
	Vert.	Long.	Trasv.	Vert.	Long.	Trasv.
SLE_II	-6716	0	146	-4841	0	146
SLE_III	-6081	79	146	-4604	79	146
STR_II	-9067	0	197	-6535	0	197
STR_III	-8209	107	197	-6216	107	197
SISMA 1	-4096	586	211	-4071	586	211
SISMA 2	-4096	176	702	-4071	176	702
SISMA 3	-4397	176	211	-4314	176	211
	PILA "2"	100000000			4556666	
	5 (1)	APPOGGIO 01	11: (1.50)	5 (11)	APPOGGIO (
	R (kN)	HI (kN)	Ht (kN)	R (kN)	HI (kN)	Ht (kN)
SLE	-6716	79	146	-6716	79	146
SLU	-9067	107	197	-9067	107	197
SISMICA	-4397	586	702	-4397	586	702

13 CONTROFRECCIA COSTRUTTIVA

La deformazione elastica, prodotta dai seguenti contributi, dovrà essere compensata mediante sagomatura dell'anima all'atto del taglio delle lamiere (contromonta). Le frecce sono calcolate tenendo conto dei fenomeni viscosi (a tempo Too). La controfreccia calcolata è valida per entrambe le travi. Le condizioni di carico che contribuiscono alla contromonta, sono le seguenti:

fpp peso proprio della struttura metallica e della soletta dell'impalcato;

fperm peso delle opere di finitura;

fritiro effetti del ritiro della soletta ed effetto viscoso;

0.25*facc effetti del traffico veicolare.

TRAVE ESTERNO CURVA

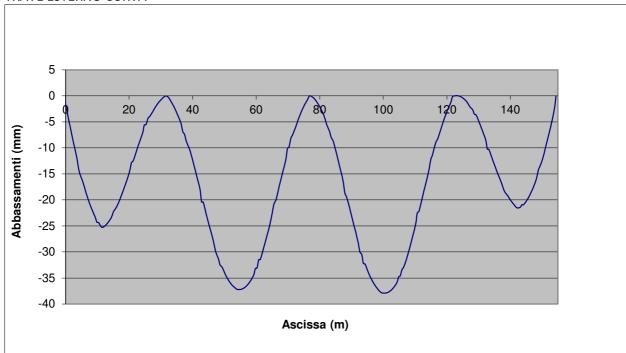
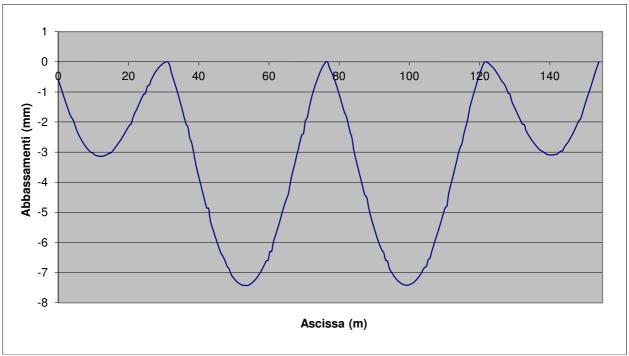



Fig. 13.1 – Abbassamenti verticali per il peso proprio della struttura (acciaio+ soletta)

PROGETTO DEFINTIVO

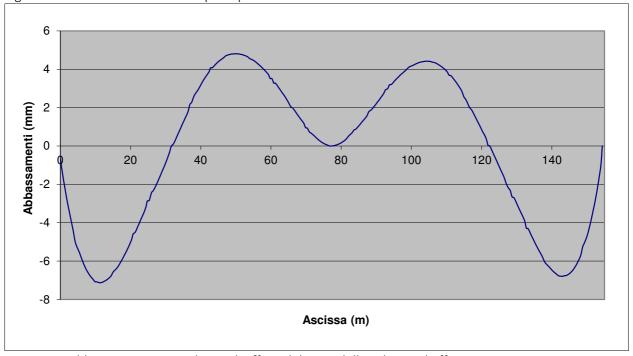


Fig. 13.3 – Abbassamenti verticali per gli effetti del ritiro della soletta ed effetti viscosi

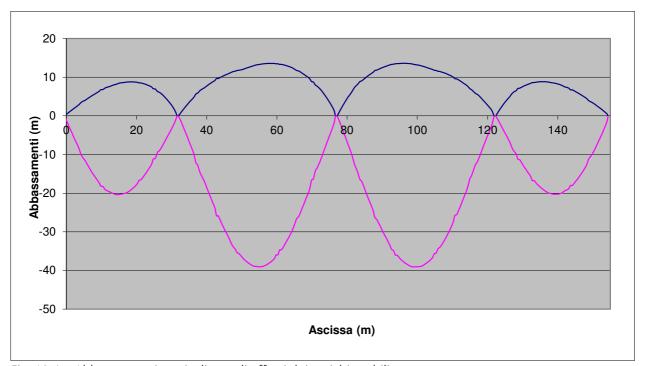


Fig. 13.4 – Abbassamenti verticali per gli effetti dei carichi mobili

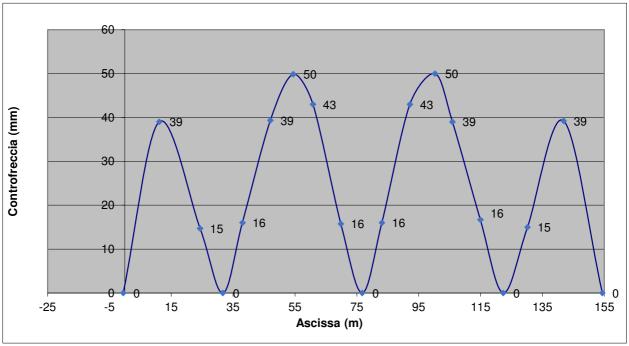


Fig. 13.5 – Diagramma della contromonta da predisporre per annullare la freccia delle componenti precedenti per la trave esterno curva

PROGETTO DEFINTIVO

RELAZIONE TECNICA E DI CALCOLO - IMPALCATO

TRAVE INTERNO CURVA

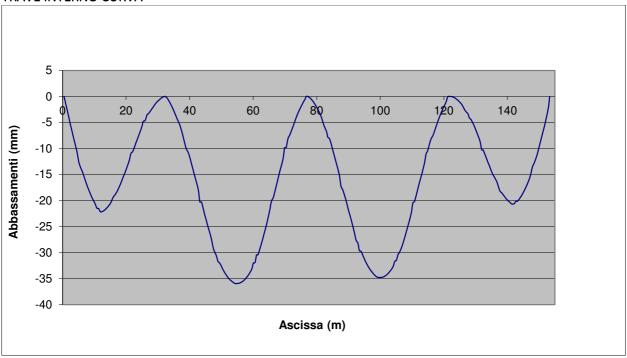


Fig. 13.6 – Abbassamenti verticali per il peso proprio della struttura (acciaio+ soletta)

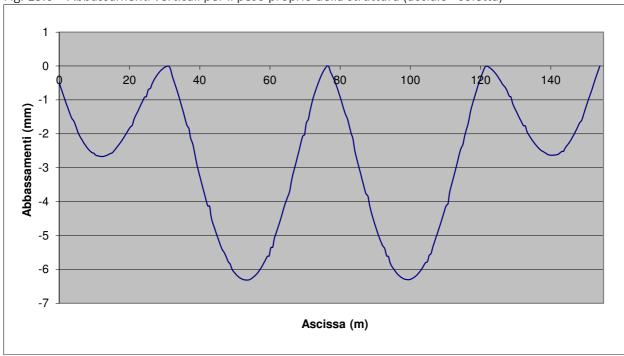


Fig. 13.7 – Abbassamenti verticali per il peso delle finiture

PROGETTO DEFINTIVO

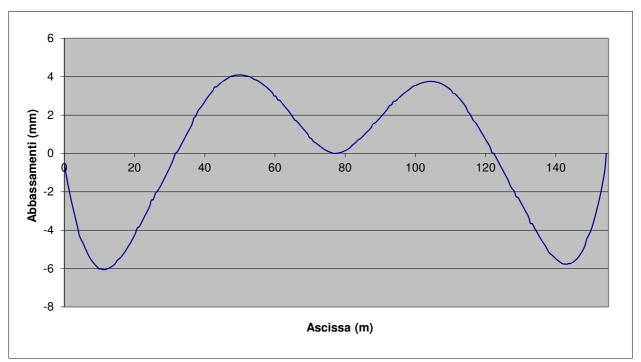


Fig. 13.8 – Abbassamenti verticali per gli effetti del ritiro della soletta ed effetti viscosi

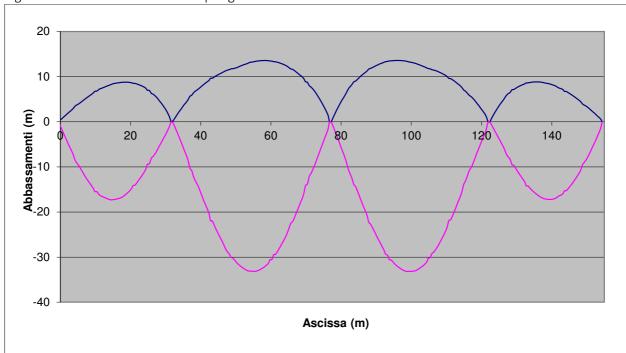


Fig. 13.9 – Abbassamenti verticali per gli effetti dei carichi mobili

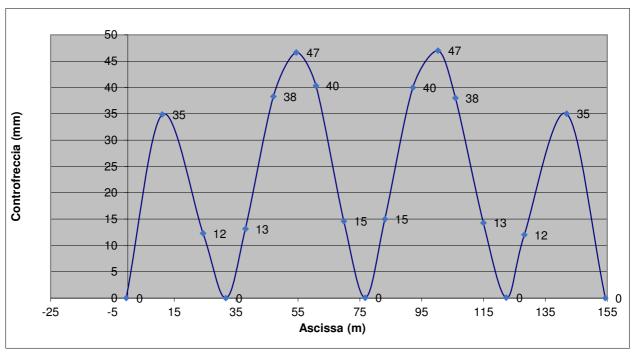


Fig. 13.10 – Diagramma della contromonta da predisporre per annullare la freccia delle componenti precedenti per la <u>trave interno curva</u>

14 DIMENSINAMENTO DEI BAGGIOLI

Il dimensionamento delle armature nei baggioli previsti per l'alloggiamento degli apparecchi di appoggio è condotto in base a quanto riportato nell'Eurocodice 2 del 1990 e/o nel Model Code CEB-FIP 1990, secondo un meccanismo resistente tipo "shear-friction".

Le formulazioni utilizzate sono in particolare, quelle di cui al P.to 6.10 - CEB-FIP Model Code 1990, per la valutazione della resistenza alle azioni orizzontali, ovvero quella del (P.to 6.7 - EC2 parte 1-1) per il calcolo della resistenza per azioni verticali.

	PC	RTATA APPOGGI (KN)	
TIPO	V	H∟	H _T
APPOGGIO ELASTOMERICO	9100	600	705
Materiali			
<u>Calcestruzzo</u>			
Resistenza caratteristica cubica	R _{ck} =	40	MPa
Resistenza caratteristica cilindri	ca $f_{ck}=0.83*R_{ck}=$	33.2	MPa
Resistenza a compressione di ca	alcolo $f_{cd}=f_{ck}/\gamma_c=$	22.13	MPa
Resistenza a trazione media	$f_{ctm}=0.3*(R_{ck})^{2/3}=$	3.50	MPa
Resistenza caratteristica a trazion Resistenza car. a trazion		2.45	MPa
$f_{cfk}=1.2*f_{ctm}=$	ie pei nessione	2.94	MPa
Resistenza a trazione di calcolo	$f_{ctd} = f_{ctk} / \gamma_c =$	1.96	MPa
<u>Acciaio</u>			
Tensione caratteristica di snerv	amento f _{yk} =	450	MPa
Tensione di snervamento di calo	colo $f_{yd}=f_{yk}/\gamma_s=$	391	MPa
Dimensioni piastre inferiore ap	poggi	a (long.)	b (trasv.)
Appoggio		950	950
Tipo e dimensioni baggioli		a' (long.)	b' (trasv.)
Baggiolo		1000	1000

VERIFICHE STRUTTURALI DEL BAGGIOLO)											
Resistenza alle forze orizzontali (P.to 6.10 - CEB-FIP Model Code 1990)												
Azione tagliante ultima F _{sdu} =(H	$L^2 + H_T^2)^{1/2} =$			930	KN							
Utilizzando un meccanismo resistente di shear-friction si ottiene:												
μ=0.6 (coefficiente di attrico cls-cls)												
β =0.2, essendo βf_{ctd} la coesione del calce	struzzo (resist	enza per attrito)									
σ_{cd} =tensione di compressione dovuta ai	carichi esterni											
La condizione di resistenza al taglio si es	prime con la:											
$\tau_{sd} < \tau_{rd}$		2.13	MPa									
$\tau_{rd} = \beta f_{ctd} + \mu (\rho f_{yd} + \sigma_{cd}) < 0.25 f_{cd}$		$0.25 f_{cd} =$	4.70	MPa								
Trascurando l'influenza dell'attrito e dell	a tensione di d	compressione σ	_{:d} si ha:									
Num. ferri :	24											
Diametro singolo ferro:	22	mm										
Area complessiva As=	9096	mm²										
Perc. di armatura ρ=	0.009096	(<u>></u> 0.001)	ОК									
Resistenza a taglio teorica	τ_{rd} =		2.13	N/mm ²								
Resistenza a taglio di calcolo	τ_{rd} =		2.13	N/mm ²								
Taglio agente di progetto	τ_{sd} =		0.93	N/mm ²	ОК							
			·	·								

Resistenza alle forze verticali (P.to 6.7 -	EC2 parte 1-1)			
Azione di progetto ultima	$F_{sdu}=V=$		9100	KN
area caricata A _{c0} =		902500	mm^2	
massima area di diffusione Ac1=		1000000	mm^2	
Resistenza ultima F _{rdu} =A _{c0} *f _{cd} *(A _{c1} /A _{c0}) ^{1/2}	2=	17872.00	KN	
$F_{rdu} < 3*f_{cd}*A_{c0} =$	50937 kN	ОК		

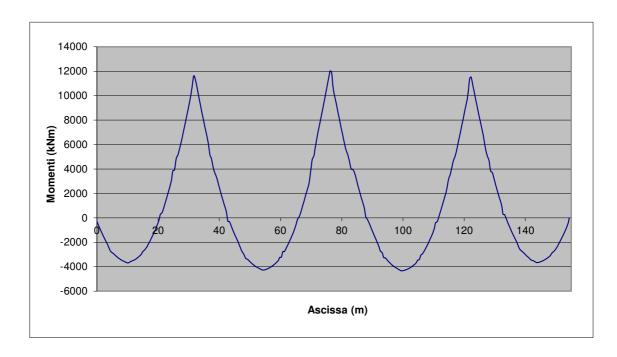
L'armatura trasversale prevista, 3 staffe ϕ 16+ 12 spille ϕ 16, per un'armatura totale sulle quattro facce del baggiolo pari a 4*(6+12)*201=14472 mm², deve soddisfare la seguente espressione:

$$A_t \cdot f_{yd} \ge N_{sd} / 2$$
 \Longrightarrow 14472 $mm^2 \cdot 391.3MPa = 5662893 > 9100000N / 2 \Longrightarrow 5 662 893 N > 4 550 000 N$

La verifica risulta soddisfatta.

15 GIUDIZIO MOTIVATO DI ACCETTABILITA' DEI RISULTATI

Per valutare i risultati ottenuti attraverso il software SAP2000 si effettuerà un rapido confronto relativo al massimo momento longitudinale massimo agente lungo la trave per le condizioni di carico principali dell'impalcato (allo SLE).

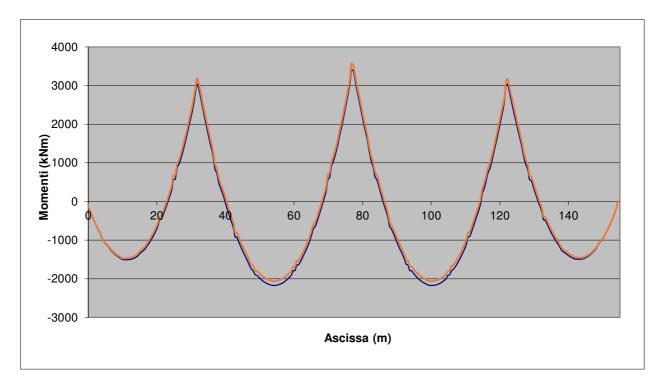

Si consideri una sezione composta da una sola trave con i seguenti carichi applicati:

Peso della soletta sulla singola trave: Soletta in c.a.=32.94*3/2=
 49.41 kN/ml (il carico di 32.94 kN/ml (§ 5.1.1) è il carico applicato al modello in cui vengono schematizzate le due travi principali e la trave di spina. Quest'ultima è collegata tramite i diaframmi alle due travi principali, pertanto il carico afferente alla singole travi principali è pari a 32.94*3/2)

Allo stato limite di esercizio il massimo momento agente ottenuto manulamente sarà pari a circa 1/10 del carico moltiplicato il quadrato della luce (Ltrave curva est =45.25m), ovvero:

$$M_{appoggio} = \frac{49.41kN / m \times (45.25)^2}{10} = 10117kNm$$

Di seguito si riporta il diagramma dei momenti prodotti con il software in cui il momeno all'appoggio intermedio dovuto al peso della carpenteria metallica e della soletta è pari a circa **11750 kNm** paragonabile a quello calcolato manualmente, pertanto i risultati ottenuti dal modello agli elementi finiti possono considerarsi attendibili.



Peso dei permanenti portati sulla singola trave: Perm.=14.67*3/2
 22.00 kN/ml (il carico di 14.67 kN/ml (§ 5.1.2) è il carico applicato al modello in cui vengono schematizzate le due travi principali e la trave di spina. Quest'ultima è collegata tramite i diaframmi alle due travi principali, pertanto il carico afferente alla singole travi principali è pari a 14.67*3/2)

Allo stato limite di esercizio il massimo momento agente ottenuto manualmente sarà pari a circa 1/10 del carico moltiplicato il quadrato della luce (Ltrave curva est =45.25m), ovvero:

$$M_{appoggio} = \frac{22.00kN / m \times (45.25)^2}{10} = 4505kNm$$

Di seguito si riporta il diagramma dei momenti prodotti con il software in cui il momeno dovuto al peso del permanente portato è pari a circa **3600 kNm** paragonabile a quello calcolato manualmente, pertanto i risultati ottenuti dal modello agli elementi finiti possono considerarsi attendibili.

• Azione del traffico:

In favore di sicurezza per ricavare la ripartizione dei carichi tandem tra le due travi si applica il metodo di Courbon, pertanto, sulla trave 1 avremo il carico concentrato pari a 1.548*600= 928.8 kN:

COURBON	Calcolo de	ei coefficie	enti di ripa	rtizione		Mobili 1			Mobili 2			Mobili 3	
	Caratterist	iche geon	netriche		Q1	2.00		Q2	1.67		Q1	1.00	
	n travi	2			e1	2.13		e2	2.93		e1	4.13	
TRAVE	xi(m)	di(m)	di²(m²)	Wi = J/di	KN1	KM1	K1	KN2	KM2	K2	KN1	KM1	K1
1	-3.875	3.875	15.02	7.75	1.00	0.548	1.548	0.83	0.629	1.462	0.50	0.53	1.032
2	3.875	-3.875	15.02	-7.75	1.00	-0.548	0.451	0.83	-0.629	0.204	0.50	-0.53	-0.032
Totale	0.00	J	30.03		6.00	0.00	3.00	5.00	0.00	2.50	3.00	0.00	1.50
xg (m)	0.00												
					CONDI	710111 01 0	4 DI OL III 844	DDII I					
						ZIONI DI C	ARICHI MC		- 1				
		Mobili 1			Mobili 2			Mobili 3					
Stese	Q	e (m)	Q*e	Q	e (m)	Q*e	Q	e (m)	Q*e				
:	1.00	4.125	4.13	1.00	4.125	4.13	1.00	4.125	4.13				
2	0.67	1.125	0.75	0.67	1.125	0.75	0.00	1.125	0.00				
3	0.33	-1.875	-0.62	0.00	-1.875	0.00	0.00	-1.875	0.00				
4	0.000	-4.50	0.00	0.00	-4.50	0.00	0.000	-4.5	0.00				
Totale	2.00		4.25	1.67		4.87	1.00		4.13				
	e1=	2.13		e2 =	2.93		e2=	4.13					

Mentre i carichi distribuiti sulla trave 1 saranno pari a 1.282*9*3= 34.61 kN/m

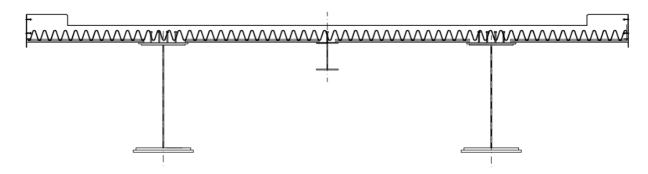
COURBON	Calcolo dei coefficienti di ripartizione				Mobili 1			Mobili 2			Mobili 3			Mobili 4		
	Caratteristiche geometriche				Q1	1.76		Q2	1.55		Q1	1.28		Q2	1.00	
	n travi	2			e1	1.69		e2	2.52		e1	3.47		e2	0.00	
TRAVE	xi(m)	di(m)	di²(m²)	Wi = J/di	KN1	KM1	K1	KN2	KM2	K2	KN1	KM1	K1	KN2	KM2	K2
1	-3.875	3.875	15.02	7.75	0.88	0.385	1.266	0.78	0.505	1.282	0.64	0.57	1.211	0.50	0.00	0.500
2	3.875	-3.875	15.02	-7.75	0.88	-0.385	0.496	0.78	-0.505	0.272	0.64	-0.57	0.066	0.50	0.00	0.500
Totale	0.00	J	30.03		5.29	0.00	2.64	4.66	0.00	2.33	3.83	0.00	1.92	3.00	0.00	1.50
xg (m)	0.00															
					CONDI	ZIONI DI C	ARICHI MO	OBILI								
	Mobili 1				Mobili 2			Mobili 3			Mobili 4					
Stese	Q	e (m)	Q*e	Q	e (m)	Q*e	Q	e (m)	Q*e	Q	e (m)	Q*e				
1	1.00	4.125	4.13	1.00	4.125	4.13	1.00	4.125	4.13	1.00	4.125	4.13				
	0.277	1.125	0.31	0.277	1.125	0.31	0.2770	1.125	0.31	0.00	1.125	0.00				
3	0.277	-1.875	-0.52	0.277	-1.875	-0.52	0.0000	-1.875	0.00	0.00	-1.875	0.00				
4	0.208	-4.50	-0.94	0.000	-4.50	0.00	0.000	-4.50	0.00	0.000	-4.50	0.00				
Totale	1.76		2.98	1.55		3.92	1.28		4.44	1.00		4.13				
	e1=	1.69		e2 =	2.52		e2=	3.47		e2=	4.13					

Allo stato limite di esercizio il massimo momento agente manualmente sarà pari a circa 1/10 del carico uniforme moltiplicato il quadrato della luce (Ltrave curva est =45.25m), più 1/8 del carico concentrato moltiplicato per la luce ovvero:

$$M_{appoggio} = \frac{34.61kN / m \times (45.25)^2}{10} + 928.8 * 45.25 / 8 = 12340kNm$$

Di seguito si riporta il diagramma dei momenti prodotti con il software in cui il momeno all'appoggio dovuto al peso del carcio da traffico è pari a circa **11038 kNm** paragonabile a quello calcolato manualmente, pertanto i risultati ottenuti dal modello agli elementi finiti possono considerarsi attendibili.

Realizzazione Lavori


SOLETTA

16 SOLETTA (DIREZIONE TRASVERSALE)

La verifica in direzione longitudinale della soletta è riportata nel cap. 9.6 della presente. Di seguito si riporta la verifica in direzione trasversale della soletta.

16.1 FASI COSTRUTTIVE E DI GETTO

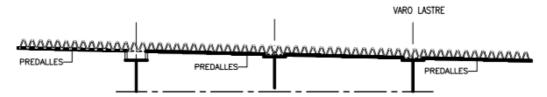
La sezione trasversale dell'impalcato in questione è costituita da due travi in acciaio e soletta in calcestruzzo collaborante con le predette travi. L'altezza della soletta è pari a 31 cm. La geometria della sezione prevede una dimensione degli sbalzi laterali di soletta uguali (2.50 m in sx; e 2.50m in dx) ed un interasse fra la trave principale e la trave rompitratta pari a 3.875 m. La soletta, infatti, ha una dimensione trasversale di 12.75 m:

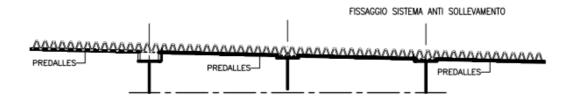
L'impalcato in c.a. è previsto gettato in opera, utilizzando predalle autoportanti di spessore 6 cm e larghezza 240 cm con 8 tralicci disposti ad interasse di 30 cm.

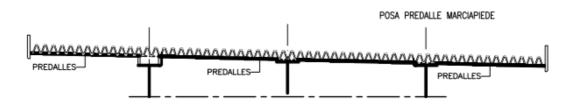
Una volta disposte le predalle si provvede alla posa dell'armatura longitudinale ed al completamento di quella trasversale e quindi, al getto della soletta fino agli spessori di progetto.

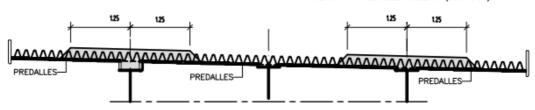
Si prevede di utilizzare due modelli di comportamento della soletta ai fini delle diverse verifiche da effettuare:

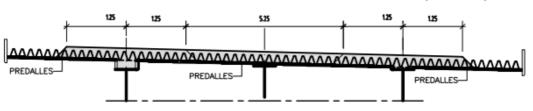
Nel primo modello, utilizzato nelle verifiche di esercizio (tensioni e fessure), si distinguono due fasi di funzionamento corrispondenti a diverse sezioni resistenti:

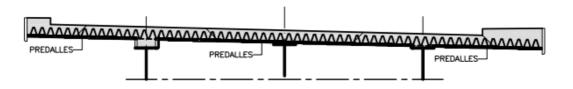

- 1° fase: le predalle sostengono il peso proprio ed il getto della soletta;
- 2° fase: la soletta maturata sostiene il peso delle opere di finitura e quelle dei sovraccarichi.


Nell'ambito della 1° fase (vedi par. successivi) si prevedono, inoltre, diversi step di carico a cui corrispondono ulteriori sezioni resistenti differenti, Pertanto, si effettua la verifica di ciascuna sezione e si sommano gli effetti (tensioni e fessure) prodotti dalle diverse situazioni di carico.


Il secondo modello, utilizzato nelle verifiche allo stato limite ultimo, poiché il legame costitutivo del materiale è di tipo non lineare, non si può applicare il principio di sovrapposizione degli effetti e dunque si considera la soletta realizzata in un'unica fase con il peso proprio, le opere di finitura ed i carichi accidentali agenti contemporaneamente.


FASI DI MONTAGGIO LASTRE SCALA 1:50




GETTO 1^ FASE DELLA SOLETTA (sulle travi)

GETTO 2° FASE DELLA SOLETTA (tratto centrale)

GETTO 3 DI COMPLETAMENTO

16.2 COMBINAZIONI DI CARICO

Le combinazioni dei carichi elementari, in ciascuna fase e descritti nei paragrafi seguenti, sono state condotte secondo il D.M. 17/01/2018:

		SLE		QP		FR		STR		URTO
fase 1	PP_PREDALLA	1.00	1.00	1.00	1.00	1.00	1.00	1.35	1.35	1.00
	SOLETTA	1.00	1.00	1.00	1.00	1.00	1.00	1.35	1.35	1.00
fase 2	PERM	1.00	1.00	1.00	1.00	1.00	1.00	1.35	1.35	1.00
	CAR_MOB_verticali	1.00	1.00	0.00	0.00	0.75	0.75	1.35	1.35	1.00
	VENTO	0.60	-0.60	0.00	0.00	0.20	-0.20	0.90	-0.90	0.00
	URTO IN SVIO	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	1.00

16.3 CRITERI DI VERIFICA STRUTTURALE

La presente relazione di calcolo strutturale illustra il progetto nei suoi aspetti generali. Essa comprende solo una parte dei calcoli strutturali: le verifiche non riportate sono condotte analogamente a quelle descritte.

Le verifiche di resistenza delle sezioni sono eseguite secondo il metodo semiprobabilistico agli stati limite. I coefficienti di sicurezza adottati sono i seguenti:

- coefficiente parziale di sicurezza per il calcestruzzo: 1.50;
- coefficiente parziale di sicurezza per l'acciaio in barre: 1.15;

Il paragrafo in oggetto illustra nel dettaglio i criteri generali adottati per le verifiche strutturali condotte nel progetto. Ulteriori dettagli di carattere specifico, laddove impiegati, sono dichiarati e motivati nelle relative risultanze delle verifiche.

16.3.1 Criteri di verifica delle sezioni in c.a.

Per le sezioni in cemento armato si effettuano:

- verifiche per gli stati limite ultimi a presso-flessione;
- verifiche per gli stati limite ultimi a taglio;
- verifiche per gli stati limite di esercizio.

16.3.2 Verifiche per gli stati limite ultimi a flessione-pressoflessione

Allo stato limite ultimo, le verifiche a flessione o presso-flessione vengono condotte confrontando (per le sezioni più significative) le resistenze ultime e le sollecitazioni massime agenti, valutando di conseguenza il corrispondente fattore di sicurezza.

16.3.3 Verifica agli stati limite ultimi a taglio

La verifica allo stato limite ultimo per azioni di taglio è condotta secondo quanto prescritto dalla norma UNI EN 1992-1-1:2005, per elementi con armatura a taglio verticali.

Si fa, pertanto, riferimento ai seguenti valori della resistenza di calcolo:

PROGETTO DEFINTIVO

Direzione Progettazione e Realizzazione Lavori

RELAZIONE TECNICA E DI CALCOLO - IMPALCATO

- $V_{\text{Rd,c}} = \text{max} \Biggl\{ \Biggl[\frac{0.18}{\gamma_c} \cdot k \cdot \left(100 \cdot \rho_1 \cdot f_{ck} \right)^{1/3} + 0.15 \cdot \sigma_{cp} \Biggr] \cdot b_w \cdot d; \Biggl(v_{\text{min}} + 0.15 \cdot \sigma_{cp} \right) \cdot b_w \cdot d \Biggr\} \text{, resistenza}$ di calcolo dell'elemento privo di armatura a taglio
- $V_{Rd,s} = 0.9 \cdot \frac{A_{sw}}{s} \cdot z \cdot f_{ywd} \cdot (\cot \alpha + \cot \vartheta) \cdot sen \alpha$, valore di progetto dello sforzo di taglio che può essere sopportato dall'armatura a taglio alla tensione di snervamento
- $V_{Rd,max} = 0.9 \cdot d \cdot b_w \cdot \alpha_c \cdot f_{cd}' (\cot \alpha + \cot \vartheta) / (1 + \cot^2 \vartheta)$, valore di progetto del massimo sforzo di taglio che può essere sopportato dall'elemento, limitato dalla rottura delle bielle compresse. Nelle espressioni precedenti, i simboli hanno i seguenti significati:

•
$$k = 1 + \sqrt{\frac{200}{d}} \le 2$$
 cond in mm;

$$\bullet \quad \rho_1 = \frac{A_{sl}}{b_w \cdot d} \le 0.02;$$

- ullet A_{sl} è l'area dell'armatura tesa;
- b_w è la larghezza minima della sezione in zona tesa;

$$\bullet \quad \sigma_{\rm cp} = \frac{N_{\rm Ed}}{A_{\rm c}} < 0.2 \cdot f_{\rm cd};$$

- ullet N_{Ed} è la forza assiale nella sezione dovuta ai carichi;
- A è l'area della sezione di calcestruzzo;

•
$$v_{min} = 0.035 \cdot k^{3/2} \cdot f_{ck}^{1/2}$$
;

- $1 \le \cot \vartheta \le 2.5$ è l'inclinazione dei puntoni di calcestruzzo rispetto all'asse della trave
- ullet A_{sw} è l'area della sezione trasversale dell'armatura a taglio;
- S è il passo delle staffe;
- $\bullet \quad f_{ywd}$ è la tensione di snervamento di progetto dell'armatura a taglio;
- $f^{'}_{cd} = 0.5 \cdot f_{cd}$ è la resistenza ridotta a compressione del calcestruzzo d'anima;
- $\alpha_{cw} = 1$ è un coefficiente che tiene conto dell'interazione tra la tensione nel corrente compresso e qualsiasi tensione di compressione assiale.

16.3.4 Verifica agli stati limite d'esercizio

Si effettuano le seguenti verifiche agli stati limite di esercizio: stato limite delle tensioni in esercizio; stato limite di fessurazione; stato limite di fatica.

16.3.4.1 Stato limite delle tensioni

Nel primo caso, si esegue il controllo delle tensioni nei materiali supponendo una legge costitutiva tensionideformazioni di tipo lineare. In particolare, si controlla la tensione massima di compressione del calcestruzzo e di trazione dell'acciaio, verificando che:

 $\sigma_{\rm c}$ < 0.60 $f_{\rm ck}$ per combinazione rara delle azioni;

 σ_{c} < 0.45 f_{ck} per combinazione quasi permanente delle azioni;

 $\sigma_s < 0.80 f_{yk}$

16.3.4.2 Stato limite di fessurazione

Nel secondo caso, si assume che le condizioni ambientali del sito in cui sorge l'opera siano aggressive e si verifica che il valore limite di apertura della fessura, calcolato per armature poco sensibili, sia al più pari ai seguenti valori nominali:

 $w_1 = 0.2 \,\mathrm{mm}$ per combinazione delle azioni quasi permanente;

 $w_2 = 0.3 \,\mathrm{mm}$ per combinazione delle azioni frequente.

16.3.4.3 Stato limite di fatica

In accordo con [DM2018] §4.2.4.1.4 si riportano di seguito le verifiche a fatica degli elementi maggiormente interessati da questo fenomeno.

Affinché la verifica risulti soddisfatta la variazione di tensione ($\Delta \sigma$ max) ad opera dei carichi ciclici deve risultare inferiore al rispettivo valore ammissibile ($\Delta \sigma$ R) del particolare in esame:

 $\gamma f \Delta \sigma max \leq \Delta \sigma R / \gamma M$

 γ f = 1.00 coefficiente di maggiorazione da normativa

 $\gamma M = 1.00$ coefficiente riduttivo

Combinazione di azioni

- (1)P Per il calcolo dell'escursione delle tensioni, l'azione deve essere divisa in una parte che non induce cicli di fatica e in un'altra parte che li induce (un numero di azioni ripetute di carico).
- (2)P La combinazione fondamentale di carichi non ciclici corrisponde alla definizione di combinazione frequente nello stato limite di esercizio (SLS):

$$E_{d} = E\{G_{k,i}; P; \Psi_{1,1}Q_{k,1}; \Psi_{2,i}Q_{k,i}\} j \ge 1; i > 1$$
(6.66)

La combinazione di azioni contenuta nelle parentesi {}, (chiamata combinazione di base), può essere espressa nella forma:

$$\sum_{i\geq 1} G_{k,j} + P + \Psi_{1,1} Q_{k,1} + \sum_{i\geq 1} \Psi_{2,i} Q_{k,i}$$
(6.67)

 $Q_{k,1}$ e $Q_{k,1}$ sono azioni non cicliche, non permanenti.

(3)P Le azioni cicliche devono essere combinate con la più sfavorevole combinazione di base:

$$E_{d} = E\{\{G_{k,i}; P; \Psi_{1,1}Q_{k,1}; \Psi_{2,i}Q_{k,i}\}; Q_{fat}\} j \ge 1; i > 1$$
(6.68)

La combinazione di azioni nella parentesi {}, (denominata combinazione di base più azione ciclica) può essere espressa come:

$$\left(\sum_{j\geq 1} G_{k,j} + P + P + P_{1,1} Q_{k,1} + \sum_{j\geq 1} \Psi_{2,j} Q_{k,j}\right) + + P Q_{\text{fat}}$$
(6.69)

dove:

 Q_{fat} è il modello di carico di fatica costituito dallo schema di carico 1 [DM08 §5.1.3.3.5] con i valori dei carichi concentrati ridotti del 30% e valori dei carichi distribuiti ridotti del 70% o, in alternativa, dallo schema di carico 2 con i valori dei carichi ridotti del 30%.

Combinazione di azioni

- (1)P Per il calcolo dell'escursione delle tensioni, l'azione deve essere divisa in una parte che non induce cicli di fatica e in un'altra parte che li induce (un numero di azioni ripetute di carico).
- (2)P La combinazione fondamentale di carichi non ciclici corrisponde alla definizione di combinazione frequente nello stato limite di esercizio (SLS):

$$E_{d} = E\{G_{k,i}; P; \Psi_{1,1}Q_{k,1}; \Psi_{2,i}Q_{k,i}\} j \ge 1; i > 1$$
(6.66)

La combinazione di azioni contenuta nelle parentesi {}, (chiamata combinazione di base), può essere espressa nella forma:

$$\sum_{i\geq 1} G_{k,j} + P + P + P + P_{1,1} Q_{k,1} + \sum_{i\geq 1} \Psi_{2,i} Q_{k,i}$$
(6.67)

 $Q_{k,1}$ e $Q_{k,1}$ sono azioni non cicliche, non permanenti

(3)P Le azioni cicliche devono essere combinate con la più sfavorevole combinazione di base:

$$E_{d} = E\{\{G_{k,i}; P; \Psi_{1,1}Q_{k,1}; \Psi_{2,i}Q_{k,i}\}; Q_{fat}\} j \ge 1; i > 1$$
(6.68)

La combinazione di azioni nella parentesi {}, (denominata combinazione di base più azione ciclica) può essere espressa come:

$$\left(\sum_{j\geq 1} G_{k,j} + P + P + P + P_{1,1} Q_{k,1} + \sum_{j>1} \Psi_{2,j} Q_{k,j}\right) + + P + Q_{\text{fat}}$$
(6.69)

dove:

Procedimento di verifica delle armature ordinarie

Il danneggiamento prodotto da un singolo carico che induce un'escursione di tensioni $\Delta\sigma$ max può essere determinato facendo ricorso alle curve S-N per acciaio ordinario. Il valore di tensione massima raccomandata è pari a $\Delta\sigma$ R=195 MPa (UNI ENV 1992-2 §4.3.7) a 10^6 cicli. Pertanto, la verifica è soddisfatta se:

 $\gamma f \Delta \sigma \max \leq \Delta \sigma R / \gamma M$ \Rightarrow 1.00* $\Delta \sigma \max \leq 195.0 / 1.00 = 195.0 MPa$

Procedimento di verifica del calcestruzzo

Si può ritenere che la verifica a fatica del calcestruzzo compresso sia positiva se è soddisfatta la condizione seguente:

$$\frac{\sigma_{\text{c,max}}}{f_{\text{cd,fat}}} \le 0.5 + 0.45 \frac{\sigma_{\text{c,min}}}{f_{\text{cd,fat}}}$$
(6.77)

 \leq 0,9 f_{ck} per $f_{ck} \leq$ 50 MPa

$$\leq$$
0,8 f_{ck} per f_{ck} > 50 MPa

dove:

 $\sigma_{c,max}$ è la massima tensione di compressione in una corda sotto la combinazione di carico frequente (compressione assunta come positiva);

 $\sigma_{\rm c,min}$ è la minima tensione di compressione nella stessa corda dove si verifica $\sigma_{\rm c,max}.$ Se $\sigma_{\rm c,min}$ è una tensione di trazione, allora si raccomanda di assumere $\sigma_{\rm c,min}$ con valore 0.

$$f_{\text{cd,fat}} = k_1 \beta_{\text{cc}}(t_0) f_{\text{cd}} \left(1 - \frac{f_{\text{ck}}}{250} \right)$$
 (6.76)

dove:

 $\beta_{cc}(t_0)$ è un coefficiente che definisce la resistenza del calcestruzzo alla prima applicazione del carico [vedere punto 3.1.2 (6)];

 t_0 è il tempo in giorni in cui comincia l'applicazione del carico ciclico al calcestruzzo.

PROGETTO DEFINTIVO

RELAZIONE TECNICA E DI CALCOLO - IMPALCATO

16.4 VERIFICA IN 1°FASE

In 1° fase vengono condotte solamente le verifiche in esercizio (tensioni e fessure) rimandando alla 2° fase le verifiche allo stato limite ultimo.

Le verifiche tensionali vengono condotte in tutte le sezioni per tutti gli step di carico.

La tensione finale è la somma delle tensioni nei singoli step.

La verifica a fessurazione viene condotta solamente a soletta completamente gettata (3° step di carico).

16.4.1 Dati geometrici

Lunghezza terica lastra: 250+387.5+387.5+250 cm

Larghezza lastra: 240 cm Spessore lastra: 6 cm Numero tralicci per lastra: 8 tralicci Spessore getto di completamento: 25 cm

Schema statico: ved. Pagine seguenti Tralicci: H=20.5 cm (Tipo Pittini: 12/16/10)

16.4.2 Rigidezza flessionale della lastra

L'analisi è condotta per una lastra di larghezza 120 cm.

Sezione sullo sbalzo

Armatura superiore: $4 \phi 16$ As = 8.04 cm² Armatura inferiore: $8 \phi 12$ As = 9.04 cm² n=Ea/Ec = 10 (coeff. omogeneizzazione)

 $A_{rea} A = (120 \times 6 / 10) + 9.04 + 8.04 = 89.08 \text{ cm}^2$

Momento statico rispetto al lembo inferiore:

 $S = (120 \times 6 \times 3.0/10) + 9.04 \times 4.00 + 8.04 \times 22.7 = 434.67 \text{ cm}^3$

Baricentro:

 $Y_{inf} = S/A = 4.87 \text{ cm}$ $Y_{sup} = 17.83 \text{ cm}$

Momento d'inerzia:

 $I = (1/12 \times 120/10 \times 6^3 + 120/10 \times 6 \times 1.87^2 + 9.04 \times 0.87^2 + 8.04 \times 17.83^2 = 3030.6 \text{ cm}^4$

Sezione tra le travi metalliche

Armatura superiore: $4 \phi 16$ As = 8.04 cm^2 Armatura inferiore: $8 \phi 12$ As = 9.04 cm^2

n=Ea/Ec = 10 (coeff. omogeneizzazione)

 $A_{rea} A = (120 \times 6 / 10) + 9.04 + 8.04 = 89.08 \text{ cm}^2$

Momento statico rispetto al lembo inferiore:

 $S = (120 \times 6 \times 3.0/10) + 9.04 \times 3.60 + 8.04 \times 22.70 = 431.05 \text{ cm}^3$

Baricentro:

Yinf = S/A = 4.83 cm Ysup = 17.87 cm

Elaborato

T00VI01STRRE01B.DOCX

Momento d'inerzia:

 $I = 1/12 \times 120/10 \times 6^3 + 120/10 \times 6 \times 1.83^2 + 9.04 \times 1.23^2 + 8.04 \times 17.87^2 = 3038.26 \text{ cm}^4$

Sezione su asole travi

Armatura superiore: $4 \phi 16$ As = 8.04 cm^2 Armatura inferiore: $8 \phi 12$ As = 9.04 cm^2

n=Ea/Ec = 10 (coeff. omogeneizzazione)

Area A = 17.08 cm^2

Interassi correnti = 18.7 cmS = $8.04 \times 18.7 = 150.35 \text{ cm}^3$

Baricentro:

Yinf = S/A = 8.81 cm $Y_{sup} = 9.82 \text{ cm}$

Momento d'inerzia:

 $I = 9.04 \times 8.812 + 8.04 \times 9.822 = 1477 \text{ cm}^4$

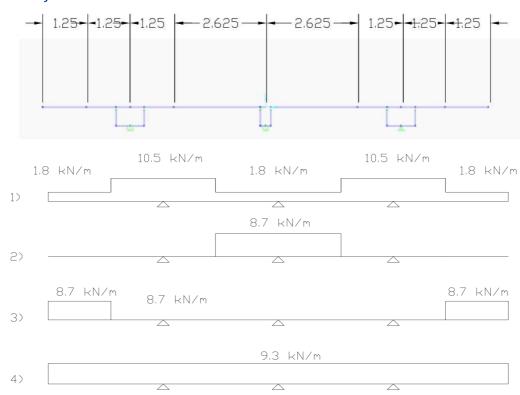
16.4.3 Dati di carico

L'analisi dei carichi e delle sollecitazioni è condotta per una striscia di larghezza pari a 1.20 m.

Peso proprio lastra prefabbricata: $P1 = 0.06 \times 1.20 \times 25.00 = 1.8 \text{ kN/m}$ Peso del getto di completamento: $P2 = 0.25 \times 1.20 \times 25 = 7.50 \text{ kN/m}$ Peso dei mezzi d'opera: $P3 = 1.00 \times 1.2 = 1.20 \times 1.20 \times 1.2 = 1.20 \times 1.20 \times 1.2 = 1.20 \times 1.20 \times 1.2 = 1.20 \times 1.2$

Si considerano 4 step di carico:

- 1. Getto di una porzione degli sbalzi laterali (2.5 m a cavallo degli appoggi sulle travi).
- 2. Ad avvenuta sufficiente maturazione del getto di fase 1 (almeno il 70% di Rck), avanzamento dei mezzi d'opera e del getto in campata.
- 3. Ad avvenuta sufficiente maturazione del getto di fase 2 (almeno il 70% di Rck), avanzamento dei mezzi d'opera e del getto nelle porzioni rimanenti degli sbalzi mediante messa in opera delle velette.
- 4. Soletta completamente gettata


Il calcolo delle sollecitazioni viene effettuato in automatico mediante il programma di calcolo SAP2000 della Computers and Structures i cui tabulati sono nell'allegato specifico.

16.4.4 Sezioni di verifica

Le sezioni di verifica sono le seguenti:

- 1. sezione in asse appoggio;
- 2. sezione a filo getto che avviene nel 1° step;
- 3. sezione in mezzeria.

16.4.5 Verifica dello stato tensionale

1) Step 1: getto di una porzione degli sbalzi laterali.

1) In asse appoggio lato marciapiede (sezione asolata):

Ma = -7.11 kNm -SLE

Sforzo nei correnti dei tralicci:

H = 0.187 m

 $N = Ma/H = \pm 38.02 \text{ kN}$ -SLE

Verifica correnti superiori (4 \ 16):

 $\sigma_{a2} = N/A = -38.02 \times 10/(4*2.01) = -47.29 \text{ MPa} < 0.8* \text{fyk} = 360 \text{ MPa}$ -SLE

Verifica correnti inferiori (8 \ 12):

 $\begin{array}{l} L_0 = 20 \text{ cm; i} = 1.2/4 = 0.3; \quad \lambda = 20/0.3 = 66.67 \qquad \omega = 1.53 \text{ (DIN 4114)} \\ \sigma_{a0} = (1.53 \times 38.02 \times 10)/(8 \times 1.13) = 64.35 \text{ MPa} < 0.8 \text{*fyk} = 360 \text{ MPa} \end{array} \quad \text{-SLE}$

Nelle zone interessate dai coprigiunti bullonati, con correnti inferiori dei tralicci rialzati e quindi con tralicci di altezza ridotta, si ha:

H = 0.15 m (interesse correnti per traliccio ribassato)

 $N = M/H = \pm 7.11/0.15 = 47.4 \text{ kN}$ -SLE

Verifica correnti superiori (4 ϕ 16):

 $\sigma = N/A = 47.4 \times 10/(4*2.01) = 58.96 \text{ MPa} < 0.8* \text{fyk} = 360 \text{ MPa} - \text{SLE}$

Verifica correnti inferiori (8 \ 20):

La verifica è condotta per i conci con asola maggiore

 $L_0 = 80 \text{ cm}$; i = 2.0/4 = 0.5; $\lambda = 80/0.5 = 160$ $\omega = 6.48$ (DIN 4114)

 $\sigma = (6.48 \times 47.4 \times 10)/(8 \times 3.14) = 122.28 \text{ MPa} < 0.8 \text{ fyk} = 360 \text{ MPa} - \text{SLE}$

Verifica di stabilità diagonali (A_d = 8 φ 10)

Il taglio massimo vale: T = 11.18 kN

 $\alpha \approx 68^{\circ}$; $\beta = 8^{\circ}$ $L_0 = 18.7/(\text{sen}\alpha \times \cos\beta) = 20.37 \text{ cm}$

Con staffe ϕ 10 si ottiene: i = 1.0/4 = 0.25; λ = 20.37/0.25 = 81.50; ω = 1.83 (DIN 4114)

 $N = 11.18/(8 \times sen \alpha \times cos \beta) = 1.53 \text{ kN}$

 $\sigma = (1.83 \times 1.53 \times 10)/0.785 = 35.67 \text{ MPa} < 360 \text{ MPa}$

2) a filo getto di 1° step (sezione con predalle):

Ma = -1.41 kNm -SLE

B = 120 cm; H = 6 cm

 $A_{a2} = 8.04 \text{ cm}^2$ (4\psi16) $d_2 = 22.7 \text{ cm}$

 $A_{a0} = 9.04 \text{ cm}^2$ (8\phi12) $d_0 = 3.60 \text{ cm}$

 σ_c = 0.18 MPa < 22.41 MPa (Rck (predalle) = 45 MPa) -SLE

 σ_{a2} = -8.57 MPa < 360 MPa

 $\sigma_{a0} = 0.95 \text{ MPa} < 360 \text{ MPa}$

3) in mezzeria (sezione con predalle)

Mc = 1.07 kNm -SLE

B = 120 cm; H = 6 cm

 $A_{a2} = 8.04 \text{ cm}^2$ (4\psi16) $d_2 = 22.7 \text{ cm}$

 $A_{a0} = 9.04 \text{ cm}^2$ (8\psi12) $d_0 = 3.60 \text{ cm}$

 σ_c = 0.02 MPa < 22.41 MPa (Rck (predalle) = 45 MPa) -SLE

 σ_{a2} = 12.58 MPa < 360 MPa

 σ_{a0} = -1.39 MPa < 360 MPa

Verifica di stabilità correnti superiori (A_{a1} = 8.04 cm² : 4 ф 16):

 $L_0 = 20 \text{ cm}$; i = 0.40; $\lambda = 20/0.40 = 50$ $\omega = 1.28$ (DIN 4114)

 σ_{a2} = 1.28 x 12.58= 16.11 MPa < 0.8*fyk = 360 MPa -SLE

2) Step 2: Ad avvenuta sufficiente maturazione del getto di step 1 (almeno il 70% di Rck) getto in campata

```
1) In asse appoggio lato marciapiede (sezione predalle + getto (Rck=0.7*45≅30 MPa)):
Ma = 1.78 \text{ kNm}
                                -SLE
B = 120 \text{ cm}; H = 31 \text{ cm}
A_{a3} = 24.12 \text{ cm}^2
                                                     d_3 = 26.2 \text{ cm}
                             (1\phi 16/10)
A_{a2} = 8.04 \text{ cm}^2
                             (4\phi 16)
                                                     d_2 = 22.7 cm
A_{a1} = 12.06 \text{ cm}^2
                             (1\phi 16/20)
                                                     d_1 = 6.8 \text{ cm}
A_{a0} = 9.04 \text{ cm}^2
                                                     d_0 = 3.60 \text{ cm}
                             (8\phi 12)
\sigma_c = 0.12 MPa < 14.94 MPa (Rck (predalle+getto) = 30 MPa) -SLE
\sigma_{a3} = 0.75 \text{ MPa} < 360 \text{ MPa}
\sigma_{a2} = 0.03 \text{ MPa} < 360 \text{ MPa}
\sigma_{a1} = -3.49 \text{ MPa} < 360 \text{ MPa}
\sigma_{a0} = -3.90 \text{ MPa} < 360 \text{ MPa}
2) a filo getto di 1° step (sezione predalle):
Ma = 5.56 \text{ kNm}
                               -SLF
B = 120 \text{ cm}; H = 6 \text{ cm}
A_{a2} = 8.04 \text{ cm}^2
                                               d_2 = 22.7 cm
                              (4\phi 16)
A_{a0} = 9.04 \text{ cm}^2
                                               d_0 = 3.60 \text{ cm}
                              (8\phi 12)
\sigma_c = 0.55 MPa < 22.41 MPa (Rck (predalle) = 45 MPa) -SLE
\sigma_{a2} = -1.56 MPa < 360 MPa
\sigma_{a0} = -24.16 MPa < 360 MPa
3) in mezzeria (sezione predalle (Rck=45MPa)):
Ma = 6.69 \text{ kNm}
B = 120 \text{ cm}; H = 6 \text{ cm}
A_{a2} = 8.04 \text{ cm}^2
                             (4\phi 16)
                                                d_2 = 22.7 cm
A_{a0} = 9.04 \text{ cm}^2
                                                d_0 = 3.60 \text{ cm}
                             (8\phi 12)
\sigma_c = 0.08MPa < 22.41 MPa (Rck (predalle) = 45 MPa) -SLE
\sigma_{a2} = 40.67 \text{ MPa} < 360 \text{ MPa}
\sigma_{a0} = -4.51 \text{ MPa} < 360 \text{ MPa}
Verifica di stabilità correnti superiori (A<sub>a1</sub> = 8.04 cm<sup>2</sup> : 4 \phi 16):
L_0 = 20 \text{ cm}; i = 0.40; \lambda = 20/0.40 = 50 \omega = 1.28 (DIN 4114)
```

 σ_{a2} = 1.28 x 40.67= 52.06 MPa < 0.8*fyk = 360 MPa -SLE

PROGETTO DEFINITIVO

RELAZIONE TECNICA E DI CALCOLO - IMPALCATO

3) Step 3: Ad avvenuta sufficiente maturazione del getto di step 2 (almeno il 70% di Rck) getto degli sbalzi rimanenti

1) In asse appoggio lato marciapiede (sezione predalle + getto (Rck=45 MPa)):

Ma = -16.62 kNm -SLE

B = 120 cm; H = 31 cm

 $A_{a3} = 24.12 \text{ cm}^2$ (1\phi16/10) $d_3 = 26.2 \text{ cm}$ $A_{a2} = 8.04 \text{ cm}^2$ (4\phi16) $d_2 = 22.7 \text{ cm}$ $A_{a1} = 12.06 \text{ cm}^2$ (1\phi16/20) $d_1 = 6.8 \text{ cm}$

 $A_{a0} = 9.04 \text{ cm}^2$

 $(8\phi 12)$

 $d_0 = 3.60 \text{ cm}$

 σ_c = 1.00 MPa < 22.41 MPa (Rck (predalle+getto) = 45 MPa) -SLE

 σ_{a3} = -24.97 MPa < 360 MPa

 σ_{a2} = -19.62 MPa < 360 MPa

 σ_{a1} = 6.51 MPa < 360 MPa

 $\sigma_{a0} = 9.56 \text{ MPa} < 360 \text{ MPa}$

2) a filo getto di 1° step (sezione predalle (Rck=45 MPa)):

Ma = -10.09 kNm -SLE

B = 120 cm; H = 6 cm

 $A_{a2} = 8.04 \text{ cm}^2$ (4\psi16) $d_2 = 22.7 \text{ cm}$ $A_{a0} = 9.04 \text{ cm}^2$ (8\psi12) $d_0 = 3.60 \text{ cm}$

 σ_c = 1.30 MPa < 22.41 MPa (Rck (predalle) = 45 MPa) -SLE

 σ_{a2} = -60.77 MPa < 360 MPa σ_{a0} = 6.72 MPa < 360 MPa

3) in mezzeria (sezione predalle + getto (Rck=30 MPa)):

Ma = 8.90 kNm -SLE

B = 120 cm; H = 31 cm

 $\sigma_c = 0.62 \text{ MPa} < 14.94 \text{ MPa}$ (Rck (predalle+getto) = 30 MPa) -SLE

 $\sigma_{a3} = 4.27 \text{ MPa} < 360 \text{ MPa}$

Direzione Progettazione e Realizzazione Lavori

RELAZIONE TECNICA E DI CALCOLO - IMPALCATO

$$\begin{split} &\sigma_{a2} = 0.59 \text{ MPa} < 360 \text{ MPa} \\ &\sigma_{a1} = -17.38 \text{ MPa} < 360 \text{ MPa} \\ &\sigma_{a0} = -19.49 \text{ MPa} < 360 \text{ MPa} \end{split}$$

4) Step 4: soletta completamente gettata

1) In asse appoggio lato marciapiede (sezione predalle + getto (Rck=45 MPa)):

Ma = -20.51 kNm

B = 120 cm; H = 31 cm

 σ_c = 1.24 MPa < 22.41 MPa (Rck (predalle+getto) = 45 MPa) -SLE

-SLE

 σ_{a3} = -30.81 MPa < 360 MPa

 σ_{a2} = -24.21 MPa < 360 MPa

 σ_{a1} = 8.03 MPa < 360 MPa

 σ_{a0} = 11.80 MPa < 360 MPa

2) a filo getto di 1° step (sezione predalle (Rck=45 MPa)):

Ma = -7.27 kNm -SLE

B = 120 cm; H = 31 cm

 σ_c = 0.54 MPa < 22.41 MPa (Rck (predalle) = 45 MPa) -SLE

 $\sigma_{a3} = -17.96 \text{ MPa} < 360 \text{ MPa}$

 $\sigma_{a2} = -14.49 \text{ MPa} < 360 \text{ MPa}$

 σ_{a1} = 2.50 MPa < 360 MPa

 σ_{a0} = 4.49 MPa < 360 MPa

3) in mezzeria (sezione predalle + getto (Rck=45MPa)):

Ma = 3.94 kNm -SLE

B = 120 cm; H = 31 cm

Direzione Progettazione e Realizzazione Lavori

RELAZIONE TECNICA E DI CALCOLO - IMPALCATO

$A_{a3} = 12.06 \text{ cm}^2$	$(1\phi 16/20)$	$d_3 = 26.2 \text{ cm}$
$A_{a2} = 8.04 \text{ cm}^2$	(4 ф 16)	$d_2 = 22.7 \text{ cm}$
$A_{a1} = 12.06 \text{ cm}^2$	$(1\phi 16/20)$	$d_1 = 6.8 \text{ cm}$
$A_{a0} = 9.04 \text{ cm}^2$	(8 \phi 12)	$d_0 = 3.60 \text{ cm}$

 σ_c = 0.28 MPa < 22.41 MPa (Rck (predalle+getto) = 45MPa) -SLE

 σ_{a3} = 1.89 MPa < 360 MPa σ_{a2} = 0.26 MPa < 360 MPa

 σ_{a1} = -7.70 MPa < 360 MPa

 σ_{a0} = -8.63 MPa < 360 MPa

16.4.6 Sovrapposizione degli effetti (1+2+3 step)

Come anticipato nel par. 14.1, nell'ambito della 1° fase si prevedono diversi step di carico a cui corrispondono ulteriori sezioni resistenti differenti, Pertanto, si effettua la verifica di ciascuna sezione e si sommano gli effetti (tensioni: positive quelle di compressione) prodotti dalle diverse situazioni di carico (step 1, 2 e 3):

1) In asse appoggio lato marciapiede

$$\begin{split} &\sigma_{c,1\;fase} = \sigma_{c,1\;step} + \sigma_{c,2\;step} + \sigma_{c,3\;step} = 0.00 + 0.12 + 1.00 = 1.12\;\text{MPa} < 22.41\;\text{MPa} \\ &\sigma_{a3,1\;fase} = \sigma_{a3,1\;step} + \sigma_{a3,2\;step} + \sigma_{a3,3\;step} = 0.00 + 0.75 - 24.97 = -24.22\;\text{MPa} < 360\;\text{MPa} \\ &\sigma_{a2,1\;fase} = \sigma_{a2,1\;step} + \sigma_{a2,2\;step} + \sigma_{a2,3\;step} = -47.29 + 0.03 - 19.62 = -66.88\;\text{MPa} < 360\;\text{MPa} \\ &\sigma_{a1,1\;fase} = \sigma_{a1,1\;step} + \sigma_{a1,2\;step} + \sigma_{a1,3\;step} = 0.00 - 3.49 + 6.51 = 3.02\;\text{MPa} < 360\;\text{MPa} \\ &\sigma_{a0,1\;fase} = \sigma_{a0,1\;step} + \sigma_{a0,2\;step} + \sigma_{a0,3\;step} = 64.35 - 3.90 + 9.56 = 70.01\;\text{MPa} < 360\;\text{MPa} \end{split}$$

2) a filo getto di 1° step

$$\begin{split} & \sigma_{c,1 \; fase} = \sigma_{c,1 \; step} + \sigma_{c,2 \; step} + \sigma_{c,3 \; step} = 0.18 + 0.55 + 1.30 = 2.03 \; MPa < 22.41 \; MPa \\ & \sigma_{a3,1 \; fase} = \sigma_{a3,1 \; step} + \sigma_{a3,2 \; step} + \sigma_{a3,3 \; step} = 0.00 + 0.00 + 0.00 = 0.00 \; MPa < 360 \; MPa \\ & \sigma_{a2,1 \; fase} = \sigma_{a2,1 \; step} + \sigma_{a2,2 \; step} + \sigma_{a2,3 \; step} = -8.57 - 1.56 - 60.77 = -70.90 \; MPa < 360 \; MPa \\ & \sigma_{a1,1 \; fase} = \sigma_{a1,1 \; step} + \sigma_{a1,2 \; step} + \sigma_{a1,3 \; step} = 0.00 + 0.00 + 0.00 = 0.00 \; MPa < 360 \; MPa \\ & \sigma_{a0,1 \; fase} = \sigma_{a0,1 \; step} + \sigma_{a0,2 \; step} + \sigma_{a0,3 \; step} = 0.95 - 24.16 + 6.72 = -16.49 \; MPa < 360 \; MPa \end{split}$$

3) in mezzeria

```
\begin{split} & \sigma_{c,1 \; fase} = \sigma_{c,1 \; step} + \sigma_{c,2 \; step} + \sigma_{c,3 \; step} = 0.02 + 0.08 + 0.62 = 0.72 \; \text{MPa} < 22.41 \; \text{MPa} \\ & \sigma_{a3,1 \; fase} = \sigma_{a3,1 \; step} + \sigma_{a3,2 \; step} + \sigma_{a3,3 \; step} = 0.00 + 0.00 + 4.27 = 4.27 \; \text{MPa} < 360 \; \text{MPa} \\ & \sigma_{a2,1 \; fase} = \sigma_{a2,1 \; step} + \sigma_{a2,2 \; step} + \sigma_{a2,3 \; step} = 12.58 + 40.67 + 0.59 = 53.84 \; \text{MPa} < 360 \; \text{MPa} \\ & \sigma_{a1,1 \; fase} = \sigma_{a1,1 \; step} + \sigma_{a1,2 \; step} + \sigma_{a1,3 \; step} = 0.00 + 0.00 - 17.38 = -17.38 \; \text{MPa} < 360 \; \text{MPa} \\ & \sigma_{a0,1 \; fase} = \sigma_{a0,1 \; step} + \sigma_{a0,2 \; step} + \sigma_{a0,3 \; step} = -1.39 - 4.51 - 19.49 = -25.39 \; \text{MPa} < 360 \; \text{MPa} \end{split}
```

Realizzazione Lavori

PROGETTO DEFINTIVO

RELAZIONE TECNICA E DI CALCOLO - IMPALCATO

16.4.7 Verifica a fessurazione

Tale verifica viene condotta solo a getto ultimato (Step 4):

1) In asse appoggio lato marciapiede (sezione predalle + getto (Rck=45 MPa)):

Ma = -20.51 kNm -SLE

B = 120 cm; H = 31 cm

Wk = 0.025 mm

2) a filo getto di 1° step (sezione predalle + getto (Rck=45 MPa)):

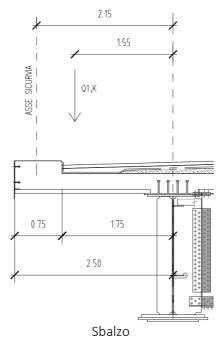
Ma = -7.27 kNm -SLE

B = 120 cm; H = 31 cm

 $A_{a3} = 24.12 \text{ cm}^2$ (1 ϕ 16/10) $d_3 = 26.2 \text{ cm}$ $A_{a2} = 8.04 \text{ cm}^2$ (4 ϕ 16) $d_2 = 22.7 \text{ cm}$ $A_{a1} = 12.06 \text{ cm}^2$ (1 ϕ 16/20) $d_1 = 6.8 \text{ cm}$ $A_{a0} = 9.04 \text{ cm}^2$ (8 ϕ 12) $d_0 = 3.60 \text{ cm}$

Wk = 0.026 mm

3) in mezzeria (sezione predalle + getto (Rck=45 MPa)):


Ma = 3.94 kNm -SLE

B = 120 cm; H = 31 cm

 $Wk = 0.00 \, mm$

16.5 VERIFICA IN 2° FASE (SEZIONE CORRENTE)

16.5.1 Sbalzo lato cordolo

16.5.1.1 Carichi permanenti portati

Sbalzo lato cordolo - Analisi dei carichi per 1 m di soletta					
	P (kN)	B (m)	M (kNm)		
Marciapiede: (0.20 x 0.75 x 25)	3.75	2.15	8.07		
Pavimentazione: (3.0 x 1.75)	5.25	0.88	4.60		
Barriere sicurvia	1.5	2.15	3.23		
TOTALE	10.50		15.90		

16.5.1.2 Sovraccarichi

Carico mobile

Lo schema di carico scelto è il peggiore tra i seguenti:

Carico1

I carichi mobili concentrati si ipotizzano agenti su di un'area equivalente che si ricava dalla effettiva area di contatto del singolo carico sulla pavimentazione (0.4x0.4 m); fornita dalle norme), ipotizzando una diffusione a 45° fino al piano medio della soletta (circa 0.80 x 0.80 m).

 $Q1k = 2 \times 150 \text{ kN}$

Carico2

I carichi mobili concentrati si ipotizzano agenti su di un'area equivalente che si ricava dalla effettiva area di contatto del singolo carico sulla pavimentazione (0.6m; dir trasversale x0.35 m; dir. longitudinale), ipotizzando una diffusione a 45° fino al piano medio della soletta (circa 1.00×0.75 m).

 $Q1k = 1 \times 200 \text{ kN}$

Dal calcolo con modello a shell si ha:

Mezzeria impalcato-esercizio

Mmin = -127.04 kNm/m; T = 148.62 kN/m

Mezzeria impalcato-fatica

Mmin = -81.30 kNm/m; T = 93.62 kN/m

16.5.1.3 Momento dovuto all'urto di un veicolo in svio

I sicurvia e gli elementi strutturali ai quali sono collegati devono essere dimensionati per un'azione orizzontale trasversale non inferiore a 100 kN, distribuita su 0,50 m ed applicata ad una quota h, misurata dal piano viario, pari alla minore delle dimensioni h1, h2, dove h1 = (altezza della barriera - 0,10 m), h2 = 1,00 m.

$$Mu = 100 \times [(1.00 + 0.11 + (0.31/2)] = 127 \text{ kNm}$$
 -rispetto al piano medio della soletta

Supponendo una ripartizione a 45° dal punto di applicazione verso il piano medio della soletta e considerando un'impronta di carico di 0.50 m si ha il seguente momento a metro lineare:

$$Mu = 127/(0.5+2*(1.00+.0.11+0.31/2)) = 41.78 \text{ kN/m/m}$$

16.5.1.4 Riepilogo sollecitazioni

Sommando gli effetti dei carichi permanenti e dei sovraccarichi si ottiene, per una striscia di lunghezza pari a 1.20 m:

```
SLE - M_{2 \text{ fase}} = 1.2 \cdot [1 \cdot (Mp + Ms)] = 1.2 \cdot [1.00 \cdot (-15.90 - 127.04)] = -171.53 \text{ kNm};

QP - M_{2 \text{ fase}} = 1.2 \cdot 1 \cdot Mp = 1.2 \cdot 1.00 \cdot (-15.90) = -19.08 \text{ kNm};

FR - M_{2 \text{ fase}} = 1.2 \cdot (1 \cdot Mp + 0.75 \cdot Ms) = 1.2 \cdot (-1 \cdot 15.90 - 0.75 \cdot 127.04) = -133.42 \text{ kNm};
```

16.5.1.5 Verifica dello stato tensionale

```
M = -171.53 \text{ kNm} -SLE 
 B = 120 \text{ cm}; H = 31 \text{ cm}
```

$A_{a3} = 24.12 \text{ cm}^2$	$(1\phi 16/10)$	$d_3 = 26.2 \text{ cm}$
$A_{a2} = 8.04 \text{ cm}^2$	(4 ф 16)	$d_2 = 22.7 \text{ cm}$
$A_{a1} = 12.06 \text{ cm}^2$	$(1\phi 16/20)$	$d_1 = 6.8 \text{ cm}$
$A_{a0} = 9.04 \text{ cm}^2$	(8 \phi 12)	$d_0 = 3.60 \text{ cm}$

```
\sigma_{c,2 \text{ fase}} = 10.36 \text{ MPa} < 22.41 \text{ MPa} (Rck = 45 MPa)
```

 $\sigma_{a3, 2 \text{ fase}} = -257.70 \text{ MPa} < 360 \text{ MPa}$

 $\sigma_{a2,2 \text{ fase}} = -202.51 \text{ MPa} < 360 \text{ MPa}$

 $\sigma_{a1,2 \text{ fase}} = 67.15 \text{ MPa} < 360 \text{ MPa}$

 $\sigma_{a0,2 \text{ fase}} = 98.69 \text{ MPa} < 360 \text{ MPa}$

16.5.1.6 Sovrapposizione degli effetti (1 fase+2 fase)

$$\begin{split} &\sigma_{c} = \sigma_{c,1\,fase} + \sigma_{c,2\,fase} = 1.12 + 10.36 = 11.48 \text{ MPa} < 22.41 \text{ MPa} \quad \text{(Rck} = 45 \text{ MPa)} \\ &\sigma_{a3} = \sigma_{a3,1\,fase} + \sigma_{a3,2\,fase} = -24.22 - 257.70 = -281.92 \text{ MPa} < 360 \text{ MPa} \\ &\sigma_{a2} = \sigma_{a2,1\,fase} + \sigma_{a2,2\,fase} = -66.88 - 202.51 = -269.39 \text{ MPa} < 360 \text{ MPa} \\ &\sigma_{a1} = \sigma_{a1,1\,fase} + \sigma_{a1,2\,fase} = 3.02 + 67.15 = 70.17 \text{ MPa} < 360 \text{ MPa} \\ &\sigma_{a0} = \sigma_{a0,1\,fase} + \sigma_{a0,2\,fase} = 70.01 + 98.69 = 168.7 \text{ MPa} < 360 \text{ MPa} \end{split}$$

16.5.1.7 Verifica a fessurazione

La verifica a fessurazione condotta in 1° fase, con getto della soletta ultimata, ha prodotto una fessura pari a 0.025 mm.

Nella verifica a fessurazione in 2° fase si ha:

$$M = -133.42 \text{ kNm}$$
 -FR

B = 120 cm; H = 31 cm

 $A_{a3} = 24.12 \text{ cm}^2$ (1\phi16/10) $d_3 = 26.2 \text{ cm}$ $A_{a2} = 8.04 \text{ cm}^2$ (4\phi16) $d_2 = 22.7 \text{ cm}$ $A_{a1} = 12.06 \text{ cm}^2$ (1\phi16/20) $d_1 = 6.8 \text{ cm}$ $A_{a0} = 9.04 \text{ cm}^2$ (8\phi12) $d_0 = 3.60 \text{ cm}$

wk= 0.194 mm

Pertanto, la fessura totale è pari a:

$$wk = wk_{1,fase} + wk_{2,fase} = 0.025 + 0.194 = 0.219 \text{ mm} < 0.30 \text{ mm}$$

16.5.1.8 Verifica a fatica

La combinazione, denominata di base nel par. 15.3.4.3, è rappresenta dal peso proprio della predalle + peso del getto, le cui tensioni sono riportate nelle verifiche in 1° fase, dalle opere di finitura (M_{fin} =-1.2*15.90 kNm) le cui tensioni sono prodotte in 2° fase:

$$B = 120 \text{ cm}$$
; $H = 31 \text{ cm}$

$$\sigma_{c,base} = \sigma_{c,1 \, fase} + \sigma_{c,2 \, fase, fin} = 1.12 + 1.15 = 2.27 \, MPa$$

$$\sigma_{\text{a3,base}}$$
 = $\sigma_{\text{a3,1 fase}}$ + $\sigma_{\text{a3,2 fase,fin}}$ = -24.22 $-$ 28.67 = -52.89 MPa

$$\sigma_{a2,base} = \sigma_{a2,1 \, fase} + \sigma_{a2,2 \, fase, fin} = -66.88 - 22.53 = -89.41 \, MPa$$

$$\sigma_{a1,base} = \sigma_{a1,1 \, fase} + \sigma_{a1,2 \, fase, fin} = 3.02 + 7.47 = 10.49 \, MPa$$

$$\sigma_{a0,base} = \sigma_{a0,1\,fase} + \sigma_{a0,2\,fase,fin} = 70.01 + 10.98 = 80.99 \text{ MPa}$$

L'azione ciclica prodotta dai carichi mobili (M=-1.2*81.30 kNm), definiti sempre in precedenza, produce le seguenti escursioni di tensione:

$$\sigma_{c,max,ciclica} = 4.91 \text{ MPa}$$

$$\Delta_{\text{smax,ciclica,a3}}$$
= -122.13 MPa

$$\Delta_{\text{smax,ciclica,a2}}$$
= -95.97 MPa

$$\Delta_{\text{smax,ciclica,a1}}$$
= 31.83 MPa

$$\Delta_{\text{smax,ciclica,a0}}$$
= 46.77 MPa

La verifica a fatica dell'armatura consiste nel confrontare l'escursione di tensione con il valore limite definito nel par. 14.3.4.3:

$$\begin{split} &\Delta_{\text{smax,a3}}\text{= -122.13 MPa} < 195.0 \text{ MPa} \\ &\Delta_{\text{smax,a2}}\text{= -95.97 MPa} < 195.0 \text{ MPa} \\ &\Delta_{\text{smax,a1}}\text{= 31.83 MPa} < 195.0 \text{ MPa} \\ &\Delta_{\text{smax,a0}}\text{= 46.77 MPa} < 195.0 \text{ MPa} \end{split}$$

Le verifica a fatica del calcestruzzo consiste nel verificare che:

$$(\sigma_{c,max,ciclica} + \sigma_{c,base}) \le 0.5 * f_{cd,fat} + 0.45 * \sigma_{c,min} \Rightarrow 7.18 \text{ MPa} < 0.5 * 22.41 + 0.45 * 2.27 = 12.22 \text{ MPa}$$

16.5.1.9 Verifica dello stato limite ultimo

Come anticipato nel par. 15.1 nelle verifiche allo stato limite ultimo, poiché il legame costitutivo del materiale è di tipo non lineare, non si può applicare il principio di sovrapposizione degli effetti e dunque si considera la soletta realizzata in un'unica fase con il peso proprio, le opere di finitura e i carichi accidentali agenti contemporaneamente:

Sollecitazioni

STR - M = 1.2*[1.35*(Msol+Mp+Ms] = 1.2*[1.35*(-24.22-15.90-127.08)] = -270.86 kNm; URTO - M = 1.2*(1.0*(Msol+Mp+Ms+Mu) = 1.20*(-24.22-15.90-127.08-41.78) = -250.78 kNm; STR - T = 1.2*1.35*(Tsol+Tp+Ts) = 1.2*1.35*(19.38+10.50+148.62) = 289.17 kN

Verifica

M = -270.86 kNm

B = 120 cm; H = 31 cm

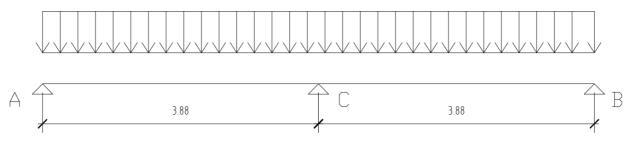
Mrd = 288.77 kNm > 270.86 kNm

PROGETTO DEFINTIVO

RELAZIONE TECNICA E DI CALCOLO - IMPALCATO

16.5.1.10 Verifica a taglio

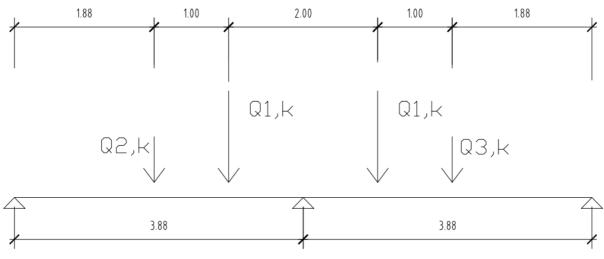
Con:	Verifica a taglio					
VRd = [0, 18"k"(100"p1"t _{oo}) 1"3/γc+0, 15"σcp) "bw"d = 207.55 kN VEd = T/cosβ β= 8 289.17 kN NO Con: K = 1+(200/d) 1"2 = 1.917 ≤ 2 Rck = 45 N/mm² Mmin = 0,035"k3"2"fck1"2 = 0.568 N/mm² cot = 21.17 N/mm² dot = 0.66 0.60" N/mm² dot = 0.60" N/mm² dot = 0.60" N/mm² dot = 1200 mm	Elementi senza armatura	trasversale a ta	aalio			
VRd = [0,18"k*(100" p1"f _{ck}) ^{1/3} /γc+0,15" σcp] "bw"d = 207.55 kN VEd = T/cosβ β= 8 289.17 kN NO Don: K = 1+(200/d) ^{1/2} = 1.917 ≤ 2 Rck = 45 N/mm²						
VEd = T/cosβ β= 8 269.17 kN NO con: NO NO NO con: K = 1+(200/d) ^{1/2} = 1.917 ≤ 2 Rck = 45 N/mm² N/mm² ck = 0,83 'Rck = 37.35 N/mm² N/mm² ck = 0,83 'Rck = 37.35 N/mm² N/mm² cd = 0,61 = Asl/(bw²d) = 0.00845 ≤ 0,02 d = 238 mm H = 310 mm bow = 1200 mm Asl = 2412 mm² Ned = 0.000 kN Ned = 0.000 N/mm² ≤ 0,2**fcd Occorre armare a taglio. La verifica viene condotta con le armature diagonale del traliccio Verifiche allo stato limite ultimo di taglio Sezione da verificare Altezza trave	 Verifica del conglomerat 	0				
Scot	VRd =[0,18*k*(100* ρ 1*f _{ck})	^{1/3} /γc+0,15* _σ cp]*bw*d =	207.55	kN	
$K = 1 + (200/d)^{1/2} = 1.917 \qquad \leq 2$ $Rck = 45 \qquad N/mm^2 \qquad N/mm^2$ $Ick = 0.935*k^{3/2*}fck^{1/2} = 0.568 \qquad N/mm^2$ $Ick = 0.83*Rck = 37.35 \qquad N/mm^2$ $Ick = 0.035*k^{3/2*}fck^{1/2} = 0.00845 \qquad \leq 0.02$ $Ick = 0.83*(bw^*d) = 0.00845 \qquad \leq 0.02$ $Ick = 0.00845 \qquad \leq 0.02$ $Ick = 0.00845 \qquad = 0.002$ $Ick = 0.009 \qquad mm \qquad = 0.0$	VEd = T/cosβ β=	8	289.17	kN	NO	
Rck = 45 N/mm² Nmin = 0,035*k³²²-fck¹²² = 0.568 N/mm² Nmin = 0,035*k³²-fck¹²² = 0.008 N/mm² Nmin = 0,035*k³²-fck¹² = 0.00845	con:					
Main = 0,035**β³²²-fck¹²² = 0.568 N/mm² fck = 0,83*Rck = 37.35 N/mm² fcd = α _{cc} *fck/γc = 21.17 N/mm² fcd = α _{cc} *fck/γc = 21.17 N/mm² fcd = 238 mm H = 310 mm Mm AsI = 2412 mm² AsI = 2412 mm² AsI = 0.000 kN Calcestruzzo Materiali (Unità N,mm) Calcestruzzo Accialo Fck = 37.35 fywk = 450 Fck = 37.35 fywk = 391.3 Fcd = 21.17 Fctd = 1.56 Sezione da verificare Altezza trave Ocopriferro staffe Larghezza netta resistente a taglio Bracci Brac	$K = 1 + (200/d)^{1/2} =$	1.917		≤ 2		
Main = 0,035**β³²²-fck¹²² = 0.568 N/mm² fck = 0,83*Rck = 37.35 N/mm² fcd = α _{cc} *fck/γc = 21.17 N/mm² fcd = α _{cc} *fck/γc = 21.17 N/mm² fcd = 238 mm H = 310 mm Mm AsI = 2412 mm² AsI = 2412 mm² AsI = 0.000 kN Calcestruzzo Materiali (Unità N,mm) Calcestruzzo Accialo Fck = 37.35 fywk = 450 Fck = 37.35 fywk = 391.3 Fcd = 21.17 Fctd = 1.56 Sezione da verificare Altezza trave Ocopriferro staffe Larghezza netta resistente a taglio Bracci Brac	D-I-	45	N1/2			
Cck = 0,83*Rck = 37.35 N/mm²						
Second	$v_{min} = 0.035*k^{3/2*t}ck^{1/2} =$	0.568	IN/mm ⁻			
Dot = Asl/(bw*d) = 0.00845	fck =0,83*Rck =	37.35	N/mm ²			
d = 238 mm H = 310 mm Ow = 1200 mm AsI = 2412 mm² NEd = 0.00 kN NEd = 0.00 kN Occorre armare a taglio. La verifica viene condotta con le armature diagonale del traliccio Verifiche allo stato limite ultimo di taglio Materiali (Unità N,mm) Calcestruzzo Acciaio	$fcd = \alpha_{cc} * fck/\gamma c =$	21.17	N/mm ²			
d = 238 mm H = 310 mm Ow = 1200 mm AsI = 2412 mm² NEd = 0.00 kN NEd = 0.00 kN Occorre armare a taglio. La verifica viene condotta con le armature diagonale del traliccio Verifiche allo stato limite ultimo di taglio Materiali (Unità N,mm) Calcestruzzo Acciaio	a1 = AsI/(bw*d) =	0.00845		< 0.02		
H =	p : = 7.6%(6W d) =	0.00010		<u> </u>		
Second Secon	d =					
Asl = 2412 mm²						
N _{Ed} = 0.00 kN	-					
Occorre armare a taglio. La verifica viene condotta con le armature diagonale del traliccio Verifiche allo stato limite ultimo di taglio	Asl =	2412	mm ²			
Verifiche allo stato limite ultimo di taglio	N _{Ed} =	0.00	kN			
Verifiche allo stato limite ultimo di taglio	$\sigma_{cp} = N_{Ed}/Ac =$	0.000	N/mm ²	≤ 0,2*fcd		
Materiali (Unità N,mm) Calcestruzzo	Occorre armare a taglio. L	a verifica viene	condotta co	n le armatur	e diagonale	del traliccio
Calcestruzzo	Verit	iche allo sta	nto limite	ultimo di 1	taglio	
Calcestruzzo	Mate	riali (Unità N.n	nm)		İ	
fck = 37.35 fywd = 391.3				ciaio		
Sezione da verificare						
Sezione da verificare Sez	fck =	37.35	fywd =	391.3		
Sezione da verificare 310 mm Copriferro staffe 40 mm 1200 mm 12						
Altezza trave 310 mm Copriferro staffe 40 mm Larghezza netta resistente a taglio 1200 mm Diametro diagonali 10 (4ϕ 10/200) Bracci 8 Interasse 200 mm Area staffe al metro 3.14 cm²/m $\cot g \alpha \qquad \alpha = \qquad 68.00 \qquad 0.40$ $\cot g \alpha \qquad \alpha = \qquad 40.00 \qquad 1.19$ Verifiche allo s.l.u. per taglio VR,d > VEd Taglio di calcolo V _{Ed} Vrcd 3028.71 kN Vrsd 441.99 kN	ictu =	1.50				
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		one da verifica I	are		310	mm
Larghezza netta resistente a taglio 1200 mm Diametro diagonali 10 $(4\phi10/200)$ Bracci 8 Interasse 200 mm Area staffe al metro 3.14 cm²/m cotg α α = 68.00 ° 0.40 cotg θ θ = 40.00 ° 1.19 Verifiche allo s.l.u. per taglio VR,d > VEd Taglio di calcolo V_{Ed} 289.17 kN Vrcd 3028.71 kN Vrsd 441.99 kN	Copriferro staffe					
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		e a taglio				
Interasse	Diametro diagonali	_			10	(4 _{\phi} 10/200)
Area staffe al metro 3.14 cm²/m cotgα α= 68.00 ° 0.40 cotgθ θ = 40.00 ° 1.19 Verifiche allo s.l.u. per taglio VR,d > VEd Taglio di calcolo V _{Ed} Vrcd 3028.71 kN Vrsd 441.99 kN	Bracci				8	
cotgα α= 68.00 ° 0.40 cotgθ θ = 40.00 ° 1.19 Verifiche allo s.l.u. per taglio VR,d > VEd Taglio di calcolo V _{Ed} Vrcd 3028.71 kN Vrsd 441.99 kN	Interasse				200	
Cottge θ = 40.00 ° 1.19 Verifiche allo s.l.u. per taglio VR,d > VEd Taglio di calcolo V _{Ed} 289.17 kN Vrcd 3028.71 kN Vrsd 441.99 kN	Area staffe al metro				3.14	cm ² /m
Verifiche allo s.l.u. per taglio VR,d > VEd Taglio di calcolo V _{Ed} 289.17 kN Vrcd 3028.71 kN Vrsd 441.99 kN						
Taglio di calcolo V _{Ed} 289.17 kN Vrcd 3028.71 kN Vrsd 441.99 kN						
Vrcd 3028.71 kN Vrsd 441.99 kN		ano s.i.u. pei	agno			
Vrsd 441.99 kN						
VRd=min[Vrcd;Vrsd] ok 441.99 kN	VRd=min[Vrcd;Vrsd]			<u> </u>		


16.5.2 Campata

16.5.2.1 Carichi permanenti

La soletta viene schematizzata come trave continua su tre appoggi.

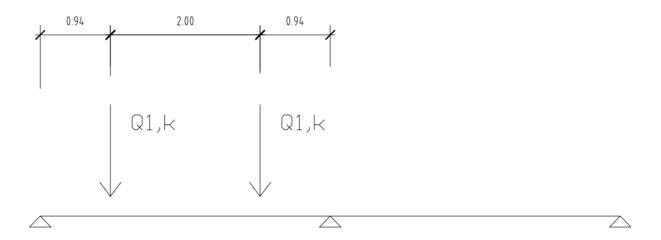
p = 3 kN/mq


 $M_A = -15.90 \text{ kNm/m}$ lato cordolo sx vedi par. 15.5.1 $M_B = -15.90 \text{ kNm/m}$ lato cordolo dx vedi par. 15.5.1

 T_{A-B} = 10.41 kN/m T_{C} = 1.20 kN/m M_{C} = 2.25 kNm/m

16.5.2.2 Sovraccarichi

Ai fini del calcolo della soletta di impalcato fra le travi si prende in considerazione, nella posizione di volta in volta più gravosa per la sezione considerata, gli effetti del seguente carico:



Disposizione dell'accidentale che massimizza le sollecitazioni di taglio e flettenti sull'appoggio centrale

Direzione Progettazione e Realizzazione Lavori

RELAZIONE TECNICA E DI CALCOLO - IMPALCATO

Disposizione dell'accidentale che massimizza le sollecitazioni flettenti in campata

Carico mobile Q1,k, composto da 2 file di 2 ruote ciascuna da 150 kN di peso e da un carico uniformemente pari a 9 kN/mq distribuito su una corsia di 3 m, affiancato da un secondo carico Q2,k, composto da 2 file di 2 ruote ciascuna da 100 kN di peso e da un carico uniformemente pari a 2.5 kN/mq distribuito su una corsia di 3 m. Tutti i carichi sono disposti con il proprio asse longitudinale parallelamente all'asse longitudinale del viadotto.

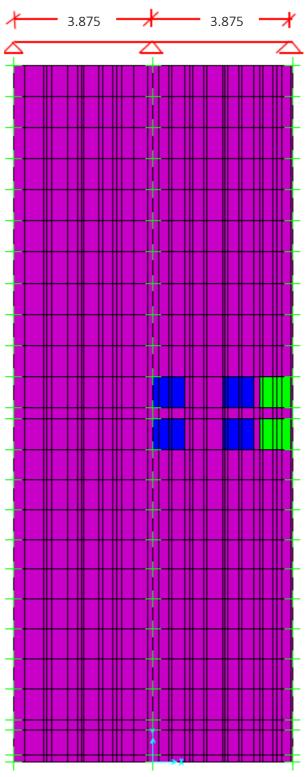
 $Q1,k = 2 \times 150 = 300 \text{ kN}$ $Q2,k = 2 \times 100 = 200 \text{ kN}$

q1,k unif = 9 kN/mq - su una larghezza pari a 3 m q2,k unif = 2.5 kN/mq - sulla rimanente larghezza

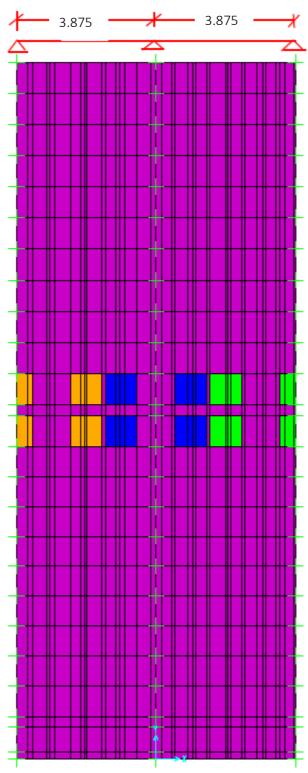
Dal calcolo con modello a shell che massimizza le sollecitazioni sull'appoggio a metà impalcato si ha:

Mezzeria impalcato -esercizio

Mmax = 71.5 kNm/m; (campata)


Mmin = -92.5 kNm/m; T = 149.5 kN/m (appoggio trave centrale)

Mezzeria impalcato - fatica


Mmax = 42.90 kNm/m; (campata)

Mmin = -55.5 kNm/m; T = 89.7 kN/m (appoggio trave centrale)

Disposizione nel modello degli accidentali in campata

Disposizione nel modello degli accidentali sull'appoggio centrale

Realizzazione Lavori

RELAZIONE TECNICA E DI CALCOLO - IMPALCATO

16.5.2.3 Riepilogo sollecitazioni mezzeria impalcato

Sommando gli effetti dei carichi permanenti e dei sovraccarichi si ottiene, per una striscia di lunghezza pari a 1.20 m:

Campata

```
SLE -M_{2 \, fase} = 1.20*(1.00*Mp + 1.00*Ms) = 1.2*(2.25 + 71.5) = 88.50 \, kNm; QP -M_{2 \, fase} = 1.20*1.00*Mp = 1.2*2.25 = 2.70 \, kNm; FR -M_{2 \, fase} = 1.20*(1.00*Mp + 0.75*Ms) = 1.2*(2.25 + 0.75*71.5) = 67.05 \, kNm;
```

Appoggio centrale

```
SLE -M_{2 \, fase} = 1.20*(1.00*Mp + 1.00*Ms) = 1.2*(2.25-92.5) = -108.30 \, kNm; QP -M_{2 \, fase} = 1.20*1.00*Mp = 1.2*2.25 = 2.70 \, kNm; FR -M_{2 \, fase} = 1.20*(1.00*Mp + 0.75*Ms) = 1.2*(2.25-0.75*92.5) = -80.55 \, kNm;
```

16.5.2.4 Mezzeria impalcato - Verifica dello stato tensionale

Campata

```
M = 88.50 \text{ kNm}
B = 120 \text{ cm}; H = 31 \text{ cm}
A_{a3} = 12.06 \text{ cm}^2
                                                                         d_3 = 26.2 \text{ cm}
                                         (1\phi 16/20)
A_{a2} = 8.04 \text{ cm}^2
                                         (4\phi 16)
                                                                         d_2 = 22.7 cm
A_{a1} = 12.06 \text{ cm}^2
                                                                         d_2 = 6.8 \text{ cm}
                                         (1\phi 16/20)
A_{a0} = 9.04 \text{ cm}^2
                                                                         d_0 = 3.60 \text{ cm}
                                        (8\phi 12)
                                                           (Rck = 45 MPa)
\sigma_{c,2 \text{ fase}} = 6.18 \text{ MPa} < 22.41 \text{ MPa}
\sigma_{a3.2 \text{ fase}} = 42.50 \text{ MPa} < 360 \text{ MPa}
\sigma_{a2,2 \text{ fase}} = 5.91 \text{ MPa} < 360 \text{ MPa}
\sigma_{a1,2 \text{ fase}} = -172.85 \text{ MPa} < 360 \text{ MPa}
\sigma_{a0.2 \text{ fase}} = -193.76 \text{ MPa} < 360 \text{ MPa}
```

Appoggio centrale

```
M = -108.30 \text{ kNm}
                                     -SLE
B = 120 \text{ cm}; H = 31 \text{ cm}
A_{a3} = 24.12 \text{ cm}^2
                                      (1\phi 16/10)
                                                                    d_3 = 26.2 \text{ cm}
A_{a2} = 8.04 \text{ cm}^2
                                      (4\phi 16)
                                                                    d_2 = 22.7 cm
A_{a1} = 12.06 \text{ cm}^2
                                      (1\phi 16/20)
                                                                    d_2 = 6.8 \text{ cm}
A_{a0} = 9.04 \text{ cm}^2
                                      (8\phi 12)
                                                                    d_0 = 3.60 \text{ cm}
\sigma_{c.2 \text{ fase}} = 6.57 \text{ MPa} < 22.41 \text{ MPa} (Rck = 45 MPa)
\sigma_{a3,2 \text{ fase}} = -163.37 \text{ MPa} < 360 \text{ MPa}
```

Direzione Progettazione e Realizzazione Lavori

RELAZIONE TECNICA E DI CALCOLO - IMPALCATO

$$\begin{split} &\sigma_{a2,2\;fase} = -128.38\;\text{MPa} < 360\;\text{MPa} \\ &\sigma_{a1,2\;fase} = 42.57\;\text{MPa} < 360\;\text{MPa} \\ &\sigma_{a0,2\;fase} = 62.57\;\text{MPa} < 360\;\text{MPa} \end{split}$$

16.5.2.5 Mezzeria impalcato - Sovrapposizione degli effetti (1 fase + 2 fase)

Campata

$$\begin{split} &\sigma_{\text{c,s}} = \sigma_{\text{c,1 fase}} + \sigma_{\text{c,2 fase}} = 0.72 + 6.18 = 6.90 \text{ MPa} < 22.41 \text{ MPa} \quad (\text{Rck} = 45 \text{MPa}) \\ &\sigma_{\text{a3}} = \sigma_{\text{a3,1 fase}} + \sigma_{\text{a3,2 fase}} = 4.27 + 42.50 = 46.77 \text{ MPa} < 360 \text{ MPa} \\ &\sigma_{\text{a2}} = \sigma_{\text{a2,1 fase}} + \sigma_{\text{a2,2 fase}} = 53.84 + 5.91 = 59.75 \text{ MPa} < 360 \text{ MPa} \\ &\sigma_{\text{a1}} = \sigma_{\text{a1,1 fase}} + \sigma_{\text{a1,2 fase}} = -17.38 - 172.85 = -190.23 \text{ MPa} < 360 \text{ MPa} \\ &\sigma_{\text{a0}} = \sigma_{\text{a0,1 fase}} + \sigma_{\text{a0,2 fase}} = -25.39 - 193.76 = -219.15 \text{ MPa} < 360 \text{ MPa} \end{split}$$

Apppoggio centrale

$$\begin{split} &\sigma_{c,i} = \sigma_{c,1\,fase} + \sigma_{c,2\,fase} = 1.12 + 6.57 = 7.69 \text{ MPa} < 22.41 \text{ MPa} \quad \text{(Rck} = 45 \text{ MPa)} \qquad \text{-lembo inferiore} \\ &\sigma_{a3} = \sigma_{a3,1\,fase} + \sigma_{a3,2\,fase} = -24.22 - 163.37 = -187.59 \text{ MPa} < 360 \text{ MPa} \\ &\sigma_{a2} = \sigma_{a2,1\,fase} + \sigma_{a2,2\,fase} = -66.88 - 128.38 = -195.26 \text{ MPa} < 360 \text{ MPa} \\ &\sigma_{a1} = \sigma_{a1,1\,fase} + \sigma_{a1,2\,fase} = 3.02 + 42.57 = 45.59 \text{ MPa} < 360 \text{ MPa} \\ &\sigma_{a0} = \sigma_{a0,1\,fase} + \sigma_{a0,2\,fase} = 70.01 + 62.57 = 132.58 \text{ MPa} < 360 \text{ MPa} \end{split}$$

16.5.2.6 Mezzeria impalcato - Verifica a fessurazione

Campata

La verifica a fessurazione condotta in 1° fase, con getto della soletta ultimata, ha prodotto una fessura pari a 0.00 mm.

Nella verifica a fessurazione in 2° fase si ha:

M = 67.05 kNm -FR

B = 120 cm; H = 31 cm

 $A_{a3} = 12.06 \text{ cm}^2$ (1\phi16/20) $d_3 = 26.2 \text{ cm}$ $A_{a2} = 8.04 \text{ cm}^2$ (4\phi16) $d_2 = 22.7 \text{ cm}$ $A_{a1} = 12.06 \text{ cm}^2$ (1\phi16/20) $d_2 = 6.8 \text{ cm}$ $A_{a0} = 9.04 \text{ cm}^2$ (8\phi12) $d_0 = 3.60 \text{ cm}$

wk= 0.103 mm

Pertanto, la fessura totale è pari a:

 $wk = wk_{1,fase} + wk_{2,fase} = 0.00 + 0.103 = 0.103 \text{ mm} < 0.3 \text{ mm}$

Appoggio centrale

La verifica a fessurazione condotta in 1° fase, con getto della soletta ultimata, ha prodotto una fessura pari a 0.025 mm.

Nella verifica a fessurazione in 2° fase si ha:

M = -80.98 kNm -FR

B = 120 cm; H = 31 cm	า	
$A_{a3} = 24.12 \text{ cm}^2$	$(1\phi 16/10)$	$d_3 = 26.2 \text{ cm}$
$A_{a2} = 8.04 \text{ cm}^2$	(4 \phi 16)	$d_2 = 22.7 \text{ cm}$
$A_{a1} = 12.06 \text{ cm}^2$	$(1\phi 16/20)$	$d_2 = 6.8 \text{ cm}$
$A_{a0} = 9.04 \text{ cm}^2$	(8φ12)	$d_0 = 3.60 \text{ cm}$
wk-0000 mm		

wk = 0.099 mm

Pertanto, la fessura totale è pari a:

 $wk = wk_{1,fase} + wk_{2,fase} = 0.025 + 0.099 = 0.124 \text{ mm} < 0.3 \text{ mm}$

16.5.2.7 Mezzeria impalcato - Verifica a fatica

Campata

La combinazione, denominata di base nel par. 15.3.1.3, è rappresenta dal peso proprio della predalle + peso del getto, le cui tensioni sono riportate nelle verifiche in 1° fase, dalle opere di finitura ($M_{fin}=1.2*2.25$ kNm) le cui tensioni sono prodotte in 2° fase:

B = 120 cm; H = 31 cm

$$\begin{array}{lll} \sigma_{c} = & \sigma_{c,1\,fase} \ + \ \sigma_{c,2\,fase,fin} = 0.72 \ + 0.19 = 0.91 \ \text{MPa} & - \text{lembo superiore} \\ \sigma_{a3} = & \sigma_{a3,1\,fase} \ + \ \sigma_{c,2\,fase,fin} = 4.27 \ + 1.30 = 5.57 \ \text{MPa} \\ \sigma_{a2} = & \sigma_{a2,1\,fase} \ + \ \sigma_{c,2\,fase,fin} = 53.84 \ + 0.18 = 54.02 \ \text{MPa} \\ \sigma_{a1} = & \sigma_{a1,1\,fase} \ + \ \sigma_{c,2\,fase,fin} = -17.38 \ - 5.27 = -22.65 \ \text{MPa} \\ \sigma_{a0} = & \sigma_{a0,1\,fase} \ + \ \sigma_{c,2\,fase,fin} = -25.39 \ - 5.91 = -31.3 \ \text{MPa} \\ \end{array}$$

L'azione ciclica prodotta dai carichi mobili (M(+)=1.2*42.90 kNm, definiti sempre nel par. 15.5.2.2, produce le seguenti escursioni di tensione:

```
\begin{split} &\sigma_{c,max,ciclica(+)} = 3.59 \text{ MPa} \quad; &-lembo \text{ superiore} \\ &\sigma_{smax,ciclica,a3(+)} = 24.72 \text{ MPa}; \\ &\sigma_{smax,ciclica,a2(+)} = 3.44 \text{ MPa}; \\ &\sigma_{smax,ciclica,a1(+)} = -100.55 \text{ MPa}; \\ &\sigma_{smax,ciclica,a0(+)} = -112.71 \text{ MPa}; \end{split}
```

La verifica a fatica dell'armatura consiste nel confrontare l'escursione di tensione con il valore limite definito nel par. 14.3.1.3:

Δ s _{max,a3} =	$ \sigma_{\text{smax,ciclica,a3(+)}} =$	24.72 MPa < 195.0 MPa
Δ s _{max,a2} =	$ \sigma_{\text{smax,ciclica,a2(+)}} =$	3.44 MPa < 195.0 MPa
Δ s _{max,a1} =	$ \sigma_{\text{smax,ciclica,a1(+)}} =$	100.55 MPa < 195.0 MPa
Δ s _{max,a0} =	$ \sigma_{\text{smax,ciclica,a0(+)}} =$	112.71 MPa < 195.0 MPa

Le verifica a fatica del calcestruzzo consiste nel verificare che:

$$(\sigma_{c,max,ciclica} + \sigma_{c,base}) \le 0.5 * f_{cd,fat} + 0.45 * \sigma_{c,min} \implies 4.5 \text{ MPa} < 0.5 * 22.41 + 0.45 * 0.91 = 11.61 \text{MPa}$$

Appoggio centrale

La combinazione, denominata di base nel par. 15.3.1.3, è rappresenta dal peso proprio della predalle + peso del getto, le cui tensioni sono riportate nelle verifiche in 1° fase, dalle opere di finitura ($M_{fin}=+1.2*2.25$ kNm) le cui tensioni sono prodotte in 2° fase:

$$B = 120 \text{ cm}$$
; $H = 31 \text{ cm}$

$$A_{a3} = 24.12 \text{ cm}^2$$
 (1\phi16/10) $d_3 = 26.2 \text{ cm}$
 $A_{a2} = 8.04 \text{ cm}^2$ (4\phi16) $d_2 = 22.7 \text{ cm}$
 $A_{a1} = 12.06 \text{ cm}^2$ (1\phi16/20) $d_2 = 6.8 \text{ cm}$
 $A_{a0} = 9.04 \text{ cm}^2$ (8\phi12) $d_0 = 3.60 \text{ cm}$

$$\begin{array}{lll} \sigma_{c} = & \sigma_{c,1\,fase} + & \sigma_{c,2\,fase,fin} = 1.12 + 0.00 = 1.12 \; \text{MPa} & - \; \text{lembo inferiore} \\ \sigma_{c} = & \sigma_{c,1\,fase} + & \sigma_{c,2\,fase,fin} = 0.00 + 0.18 = 0.18 \; \text{MPa} & - \; \text{lembo superiore} \\ \sigma_{a3} = & \sigma_{a3,1\,fase} + & \sigma_{c,2\,fase,fin} = -24.22 + 1.14 = -23.08 \; \text{MPa} \\ \sigma_{a2} = & \sigma_{a2,1\,fase} + & \sigma_{c,2\,fase,fin} = -66.88 + 0.05 = -66.83 \; \text{MPa} \\ \sigma_{a1} = & \sigma_{a1,1\,fase} + & \sigma_{c,2\,fase,fin} = 3.02 - 5.29 = -2.27 \; \text{MPa} \\ \sigma_{a0} = & \sigma_{a0,1\,fase} + & \sigma_{c,2\,fase,fin} = 70.01 - 5.91 = 64.1 \; \text{MPa} \\ \end{array}$$

L'azione ciclica prodotta dai carichi mobili (M(-)=-1.2*55.5 kNm), definiti sempre nel par. 15.5.2.2, produce le seguenti escursioni di tensione:

$$\begin{split} &\sigma_{c,max,ciclica(-)}=4.02 \text{ MPa} &-lembo \text{ inferiore} \\ &\sigma_{smax,ciclica,a3(-)}=-100.06 \text{ MPa} \\ &\sigma_{smax,ciclica,a2(-)}=-78.63 \text{ MPa} \\ &\sigma_{smax,ciclica,a1(-)}=26.07 \text{ MPa} \\ &\sigma_{smax,ciclica,a0(-)}=38.32 \text{ MPa} \end{split}$$

La verifica a fatica dell'armatura consiste nel confrontare l'escursione di tensione con il valore limite definito nel par. 14.3.1.3:

$$\begin{split} &\Delta s_{\text{max,a3}} = \left| \left. \sigma_{\text{smax,ciclica,a3(-)}} \right| = 100.06 \text{ MPa} < 195.0 \text{ MPa} \\ &\Delta s_{\text{max,a2}} = \left| \left. \sigma_{\text{smax,ciclica,a2(-)}} \right| = 78.63 \text{ MPa} < 195.0 \text{ MPa} \\ &\Delta s_{\text{max,a1}} = \left| \left. \sigma_{\text{smax,ciclica,a1(-)}} \right| = 26.07 \text{ MPa} < 195.0 \text{ MPa} \\ &\Delta s_{\text{max,a0}} = \left| \left. \sigma_{\text{smax,ciclica,a0(-)}} \right| = 38.32 \text{ MPa} < 195.0 \text{ MPa} \end{split}$$

Le verifica a fatica del calcestruzzo consiste nel verificare che:

$$(\sigma_{c,max,ciclica} + \sigma_{c,base}) \le 0.5 * f_{cd,fat} + 0.45 * \sigma_{c,min} \implies 5.14 \text{ MPa} < 0.5 * 22.41 + 0.45 * 1.12 = 11.70 \text{ MPa}$$

16.5.2.8 Mezzeria impalcato - Verifica dello stato limite ultimo

Come anticipato nel par. 15.1 nelle verifiche allo stato limite ultimo, poiché il legame costitutivo del materiale è di tipo non lineare, non si può applicare il principio di sovrapposizione degli effetti e dunque si considera la soletta realizzata in un'unica fase con il peso proprio, le opere di finitura ed i carichi accidentali agenti contemporaneamente:

<u>Sollecitazioni</u>

Campata

STR - M = $1.20*[1.35*(M_{sol}+M_p+M_s)]=1.2*[1.35*(3.00+2.25+71.5)]=124.34 \text{ kNm};$

Appoggio centrale

STR - M =
$$1.20*[1.35*(M_{sol}+M_p+M_s)]=1.2*[1.35*(3.00+2.25-92.5)]=-141.35 \text{ kNm};$$
 STR - T = $1.20*1.35*(T_{sol}+T_p+T_s)=1.2*1.35*(9.50+1.20+149.5)=259.53 \text{ kN}$

Verifica

Campata

M = 124.34 kNm -STR

B = 120 cm; H = 31 cm

$A_{a3} = 12.06 \text{ cm}^2$	(1\psi16/20)	$d_3 = 26.2 \text{ cm}$
$A_{a2} = 8.04 \text{ cm}^2$	(4\psi16)	$d_2 = 22.7 \text{ cm}$
$A_{a1} = 12.06 \text{ cm}^2$	$(1\phi 16/20)$	$d_2 = 6.8 \text{ cm}$
$A_{a0} = 9.04 \text{ cm}^2$	(8 \phi 12)	$d_0 = 3.60 \text{ cm}$

 M_{rd} = 203.66 kNm > 124.34 kNm

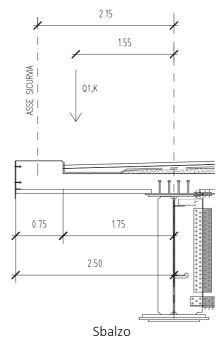
Appoggio centrale

M = -141.35 kNm -STR

B = 120 cm; H = 31 cm

$A_{a3} = 24.12 \text{ cm}^2$	$(1\phi 16/10)$	$d_3 = 26.2 \text{ cm}$
$A_{a2} = 8.04 \text{ cm}^2$	(4 \phi 16)	$d_2 = 22.7 \text{ cm}$
$A_{a1} = 12.06 \text{ cm}^2$	$(1\phi 16/20)$	$d_2 = 6.8 \text{ cm}$
$A_{a0} = 9.04 \text{ cm}^2$	$(8\phi 12)$	$d_0 = 3.60 \text{ cm}$

 M_{rd} = 288.77 kNm > 141.35 kNm


16.5.2.9 Mezzeria soletta - Verifica a taglio

Elementi senza armat	tura t	rasversale a	taglio			
- Verifica del conglom	erato					
VRd =[0,18*k*(100* _ρ 1	*f _{ck}) ^{1/}	³ /γc+0,15*σc	p]*bw*d =	207.55	kN	
VEd = T/cosβ	β=	8	259.53	kN	NO	
	_					
con:						
$K = 1 + (200/d)^{1/2} =$		1.917		≤ 2		
Rck =		45	N/mm ²			
$v_{min} = 0.035 k^{3/2} fck^{1/2}$	2 =	0.568	N/mm ²			
fck =0,83*Rck =		37.35	N/mm ²			
$fcd = \alpha_{cc} * fck / \gamma c =$		21.17	N/mm ²			
$_{\rho}$ 1 = Asl/(bw*d) =		0.00845		≤ 0,02		
d =		238	mm			
H =		310	mm			
bw =		1200	mm			
AsI =		2412	mm ²			
N _{Ed} =		0.00	kN			
			N/mm ²	. 0. 0*4- 1		
$\sigma_{cp} = N_{Ed}/Ac =$		0.000	iv/mm-	≤ 0,2*fcd		
			<u> </u>			
Occorre armare a tagl	io. La	verifica viene	e condotta co	n Ie armatu	re diagonale	e del tralico

Verifiche allo stato limite ultimo di taglio					
Mater	riali (Unità N,n	nm)			
Calcestruzzo	כ	Acc	iaio		
Rck =	37	fywk =	450		
fck =	37.35	fywd =	391.3		
fcd =	21.17				
fctd =	1.37				
Sezio	one da verifica	are			
Altezza trave				310	mm
Copriferro staffe				40	mm
Larghezza netta resistente	a taglio			1200	mm
Diametro diagonali				10	$(4_{\phi}10/20)$
Bracci				8	
Interasse				200	mm
Area staffe al metro				3.14	cm ² /m
$\cot g_{\alpha}$ $\alpha =$	68.00	0		0.40	
$\cot g\theta$ $\theta =$	40.00	0		1.19	
Verifiche allo s.l.u. per taglio VR,d > VEd					> VEd
Taglio di calcolo V _{Ed}				259.53	kN
Vrcd				3028.71	kN
Vrsd				441.99	kN
VRd=min[Vrcd;Vrsd]			ok	441.99	kN

16.6 VERIFICA IN 2° FASE (SEZIONE DI GIUNTO)

16.6.1 Sbalzo lato cordolo

16.6.1.1 Carichi permanenti portati

Sbalzo lato cordolo - Analisi dei carichi per 1 m di soletta					
	P (kN)	B (m)	M (kNm)		
Marciapiede: (0.20 x 0.75 x 25)	3.75	2.15	8.07		
Pavimentazione: (3.0 x 1.75)	5.25	0.88	4.60		
Barriere sicurvia	1.5	2.15	3.23		
TOTALE	10.50		15.90		

16.6.1.2 Sovraccarichi

Carico mobile

Lo schema di carico scelto è il peggiore tra i seguenti:

Carico1

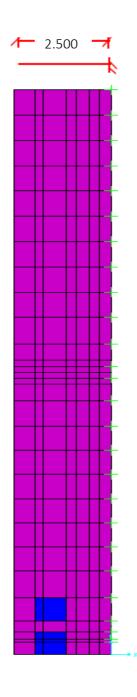
I carichi mobili concentrati si ipotizzano agenti su di un'area equivalente che si ricava dalla effettiva area di contatto del singolo carico sulla pavimentazione (0.4x0.4 m); fornita dalle norme), ipotizzando una diffusione a 45° fino al piano medio della soletta (circa 0.80 x 0.80 m).

 $Q1k = 2 \times 150 \text{ kN}$

Carico2

I carichi mobili concentrati si ipotizzano agenti su di un'area equivalente che si ricava dalla effettiva area di contatto del singolo carico sulla pavimentazione (0.6m; dir trasversale x0.35 m; dir. longitudinale), ipotizzando una diffusione a 45° fino al piano medio della soletta (circa 1.00×0.75 m).

 $Q1k = 1 \times 200 \text{ kN}$


Dal calcolo con modello a shell si ha:

Giunto impalcato-esercizio

Mmin = -222.54 kNm/m; T = 170.92 kN/m

Giunto impalcato-fatica

Mmin = -109.16 kNm/m; T = 102.55 kN/m

16.6.1.3 Momento dovuto all'urto di un veicolo in svio

I sicurvia e gli elementi strutturali ai quali sono collegati devono essere dimensionati per un'azione orizzontale trasversale non inferiore a 100 kN, distribuita su 0,50 m ed applicata ad una quota h, misurata dal piano viario, pari alla minore delle dimensioni h1, h2, dove h1 = (altezza della barriera - 0,10 m), h2 = 1,00 m.

$$Mu = 100 \times [(1.00 + 0.11 + (0.31/2)] = 127 \text{ kNm}$$
 -rispetto al piano medio della soletta

Supponendo una ripartizione a 45° dal punto di applicazione verso il piano medio della soletta e considerando un'impronta di carico di 0.50 m si ha il seguente momento a metro lineare:

$$Mu = 127/(0.5+2*(1.00+.0.11+0.31/2)) = 41.78 \text{ kN/m/m}$$

16.6.1.4 Riepilogo sollecitazioni

Sommando gli effetti dei carichi permanenti e dei sovraccarichi si ottiene, per una striscia di lunghezza pari a 1.20 m:

```
SLE - M_{2 \text{ fase}} = 1.2 \cdot [1 \cdot (Mp + Ms)] = 1.2 \cdot [1.00 \cdot (-15.90 - 222.54)] = -286.13 \text{ kNm};

QP - M_{2 \text{ fase}} = 1.2 \cdot 1 \cdot Mp = 1.2 \cdot 1.00 \cdot (-15.90) = -19.08 \text{ kNm};

FR - M_{2 \text{ fase}} = 1.2 \cdot (1 \cdot Mp + 0.75 \cdot Ms) = 1.2 \cdot (-1 \cdot 15.90 - 0.75 \cdot 222.54) = -182.80 \text{ kNm};
```

16.6.1.5 Verifica dello stato tensionale

```
M = -286.13 \text{ kNm} -SLE 
 B = 120 \text{ cm}; H = 31 \text{ cm}
```

$A_{a3} = 45.48 \text{ cm}^2$	$(1\phi 22/10)$	$d_3 = 25.9 \text{ cm}$
$A_{a2} = 8.04 \text{ cm}^2$	(4 ф 16)	$d_2 = 22.7 \text{ cm}$
$A_{a1} = 12.06 \text{ cm}^2$	$(1\phi 16/20)$	$d_1 = 6.8 \text{ cm}$
$A_{a0} = 9.04 \text{ cm}^2$	(8 \phi 12)	$d_0 = 3.60 \text{ cm}$

$$\sigma_{c,2 \text{ fase}} = 15.00 \text{ MPa} < 22.41 \text{ MPa}$$
 (Rck = 45 MPa)

 $\sigma_{a3, 2 \text{ fase}} = -259.62 \text{ MPa} < 360 \text{ MPa}$

 $\sigma_{a2,2 \text{ fase}} = -199.74 \text{ MPa} < 360 \text{ MPa}$

 $\sigma_{a1,2 \text{ fase}} = 97.81 \text{ MPa} < 360 \text{ MPa}$

 $\sigma_{a0,2 \text{ fase}} = 157.70 \text{ MPa} < 360 \text{ MPa}$

16.6.1.6 Sovrapposizione degli effetti (1 fase+2 fase)

$$\begin{split} &\sigma_{c}=\sigma_{c,1\,fase}+\sigma_{c,2\,fase}=1.12+15.00=16.12\;\text{MPa}<22.41\;\text{MPa}\quad \text{(Rck}=45\;\text{MPa)}\\ &\sigma_{a3}=\sigma_{a3,1\,fase}+\sigma_{a3,2\,fase}=-24.22-259.62=-283.84\;\text{MPa}<360\;\text{MPa}\\ &\sigma_{a2}=\sigma_{a2,1\,fase}+\sigma_{a2,2\,fase}=-66.88-199.74=-266.62\;\text{MPa}<360\;\text{MPa}\\ &\sigma_{a1}=\sigma_{a1,1\,fase}+\sigma_{a1,2\,fase}=3.02+97.81=100.83\;\text{MPa}<360\;\text{MPa}\\ &\sigma_{a0}=\sigma_{a0,1\,fase}+\sigma_{a0,2\,fase}=70.01+157.7=227.71\;\text{MPa}<360\;\text{MPa} \end{split}$$

16.6.1.7 Verifica a fessurazione

La verifica a fessurazione condotta in 1° fase, con getto della soletta ultimata, ha prodotto una fessura pari a 0.025 mm.

Nella verifica a fessurazione in 2° fase si ha:

M = -182.80 kNm -FR

B = 120 cm; H = 31 cm

 $A_{a3} = 45.48 \text{ cm}^2$ $(1\phi22/10)$ $d_3 = 25.9 \text{ cm}$ $A_{a2} = 8.04 \text{ cm}^2$ $(4\phi16)$ $d_2 = 22.7 \text{ cm}$ $d_3 = 25.9 \text{ cm}$ $d_4 = 22.7 \text{ cm}$ $d_4 = 6.8 \text{ cm}$ $d_5 = 3.60 \text{ cm}$

wk= 0.151mm

Pertanto, la fessura totale è pari a:

 $wk = wk_{1,fase} + wk_{2,fase} = 0.025 + 0.151 = 0.176 \text{ mm} < 0.30 \text{ mm}$

16.6.1.8 Verifica a fatica

In corrispondenza dei giunti si considera un fattore di amplificazione addizionale $\Delta \phi$ fat=1.30 da applicare a tutti i carichi

La combinazione, denominata di base nel par. 15.3.4.3, è rappresenta dal peso proprio della predalle + peso del getto, le cui tensioni sono riportate nelle verifiche in 1° fase, dalle opere di finitura (M_{fin} =-1.3*1.2*15.90 kNm) le cui tensioni sono prodotte in 2° fase:

B = 120 cm; H = 31 cm

 $A_{a3} = 45.48 \text{ cm}^2$ $(1\phi22/10)$ $d_3 = 25.9 \text{ cm}$ $A_{a2} = 8.04 \text{ cm}^2$ $(4\phi16)$ $d_2 = 22.7 \text{ cm}$ $d_3 = 25.9 \text{ cm}$ $d_4 = 22.7 \text{ cm}$ $d_4 = 6.8 \text{ cm}$ $d_5 = 6.8 \text{ cm}$ $d_6 = 6.8 \text{ cm}$ $d_8 = 6.8 \text{ cm}$

 $\sigma_{c,base}$ = $\sigma_{c,1 \, fase}$ + $\sigma_{c,2 \, fase, fin}$ = 1.12 + 1.30= 2.37 MPa

 $\sigma_{a3,base} = \sigma_{a3,1\,fase} + \sigma_{a3,2\,fase,fin} = -24.22 - 22.51 = -46.73 \text{ MPa}$

 $\sigma_{a2,base}$ = $\sigma_{a2,1\,fase}$ + $\sigma_{a2,2\,fase,fin}$ = -66.88 - 17.32 = -84.2 MPa

 $\sigma_{a1,base} = \sigma_{a1,1 \, fase} + \sigma_{a1,2 \, fase, fin} = 3.02 + 8.48 = 11.5 \, MPa$

 $\sigma_{a0,base} = \sigma_{a0,1 \, fase} + \sigma_{a0,2 \, fase, fin} = 70.01 + 13.67 = 83.68 \, MPa$

L'azione ciclica prodotta dai carichi mobili (M=-1.3*1.2*109.16 kNm), definiti sempre in precedenza, produce le seguenti escursioni di tensione:

 $\sigma_{\text{c,max,ciclica}}$ =8.93 MPa

 $\Delta_{\text{smax,ciclica,a3}}$ = -154.51 MPa

 $\Delta_{\text{smax,ciclica,a2}}$ = -118.87 MPa

 $\Delta_{\text{smax,ciclica,a1}}$ = 58.21 MPa

 $\Delta_{\text{smax,ciclica,a0}}$ = 93.85 MPa

La verifica a fatica dell'armatura consiste nel confrontare l'escursione di tensione con il valore limite definito nel par. 14.3.4.3:

 $\Delta_{\text{smax,a3}}$ = -154.51 MPa < 195.0 MPa

 $\Delta_{\text{smax,a}} = -118.87 \text{ MPa} < 195.0 \text{ MPa}$

 $\Delta_{\rm smax,a1}$ = 58.21 MPa < 195.0 MPa

 $\Delta_{\rm smax,a0}$ = 93.85 MPa < 195.0 MPa

Le verifica a fatica del calcestruzzo consiste nel verificare che:

$$(\sigma_{c,max,ciclica} + \sigma_{c,base}) \le 0.5 * f_{cd,fat} + 0.45 * \sigma_{c,min} \implies 11.30 \text{ MPa} < 0.5 * 22.41 + 0.45 * 2.37 = 12.27 \text{ MPa}$$

16.6.1.9 Verifica dello stato limite ultimo

Come anticipato nel par. 15.1 nelle verifiche allo stato limite ultimo, poiché il legame costitutivo del materiale è di tipo non lineare, non si può applicare il principio di sovrapposizione degli effetti e dunque si considera la soletta realizzata in un'unica fase con il peso proprio, le opere di finitura e i carichi accidentali agenti contemporaneamente:

Sollecitazioni

$$\begin{array}{lll} \text{STR} & -\text{M}=1.2*[1.35*(\text{Msol+Mp+Ms}]=1.2*[1.35*(-24.22-15.90-222.54)]=-425.51 \text{ kNm};} \\ \text{URTO} & -\text{M}=1.2*(1.0*(\text{Msol+Mp+Ms+Mu})=1.20*(-24.22-15.90-222.54-41.78)=-365.33 \text{ kNm};} \\ \end{array}$$

STR
$$-T = 1.2*1.35*(Tsol+Tp+Ts)=1.2*1.35*(19.38+10.50+170.92) = 325.30 \text{ kN}$$

Verifica

M = -425.51 kNm

B = 120 cm; H = 31 cm

$A_{a3} = 45.48 \text{ cm}^2$	$(1\phi 22/10)$	$d_3 = 25.9 \text{ cm}$
$A_{a2} = 8.04 \text{ cm}^2$	(4 ф 16)	$d_2 = 22.7 \text{ cm}$
$A_{a1} = 12.06 \text{ cm}^2$	$(1\phi 16/20)$	$d_1 = 6.8 \text{ cm}$
$A_{a0} = 9.04 \text{ cm}^2$	(8 \phi 12)	$d_0 = 3.60 \text{ cm}$

Mrd = 458.56 kNm > 425.51 kNm

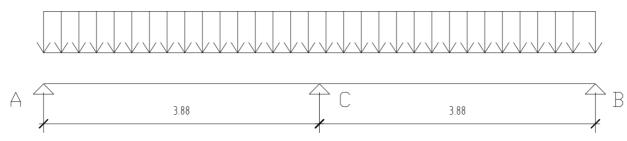
Realizzazione Lavori

RELAZIONE TECNICA E DI CALCOLO - IMPALCATO

16.6.1.10 Verifica a taglio

Verifica a taglio					
Elementi senza armatura	trasversale a i	taglio			
		luge			
- Verifica del conglomera	0				
VRd =[0,18*k*(100* ρ 1*f _{ck}) ^{1/3} /γc+0,15* _σ c _l	p]*bw*d =	261.88	kN	
VEd = T/cosβ β=	. 8	325.30	kN	NO	
con:					
$K = 1 + (200/d)^{1/2} =$	1.894		≤ 2		
Rck =	45	N/mm ²			
$V_{min} = 0.035 k^{3/2} fck^{1/2} =$	0.558	N/mm ²			
fck =0,83*Rck =	37.35	N/mm ²			
$fcd = \alpha_{cc} * fck/\gamma c =$	21.17	N/mm ²			
$\rho 1 = AsI/(bw^*d) =$	0.01516		≤ 0,02		
d =	250	mm			
H =	310	mm			
bw =	1200	mm			
Asl =	4548	mm ²			
N _{Ed} =	0.00	kN			
$\sigma_{cp} = N_{Ed}/Ac =$	0.000	N/mm ²	≤ 0,2*fcd		
Occorre armare a taglio. I	_a verifica viene	condotta co	n le armatu	re diagonale	e del traliccio

Verifiche allo stato limite ultimo di taglio							
Mater	riali (Unità N,m	ım)					
Calcestruzzo	0	Acc	iaio				
Rck =	45	fywk =	450				
fck =	37.35	fywd =	391.3				
fcd =	21.17						
fctd =	1.56						
Sezione da verificare							
Altezza trave				310	mm		
Copriferro staffe				40	mm		
Larghezza netta resistente	rghezza netta resistente a taglio		1200	mm			
Diametro diagonali				10	$(4\phi 10/200)$		
Bracci				8			
Interasse				200	mm		
Area staffe al metro				3.14	cm ² /m		
$\cot g_{\alpha}$ $\alpha =$	68.00	0		0.40			
$\cot g\theta$ $\theta =$	40.00	0		1.19			
Verifiche allo s.l.u. per taglio		VR,d > VEd					
Taglio di calcolo V _{Ed}				325.30 kN			
Vrcd				3028.71	kN		
Vrsd				441.99	kN		
VRd=min[Vrcd;Vrsd]			ok	441.99	kN		


16.6.2 Campata

16.6.2.1 Carichi permanenti

La soletta viene schematizzata come trave continua su tre appoggi.

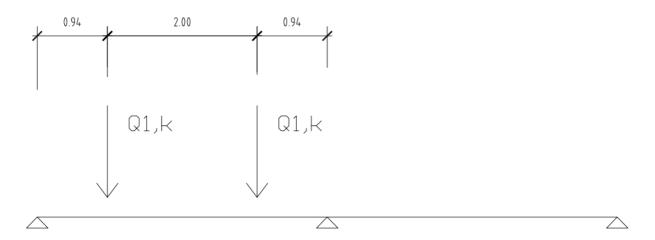
p = 3 kN/mq


 $M_A = -15.90 \text{ kNm/m}$ lato cordolo sx vedi par. 14.5.1 $M_B = -15.90 \text{ kNm/m}$ lato cordolo dx vedi par. 14.5.1

 T_{A-B} = 10.41 kN/m T_{C} = 1.20 kN/m M_{C} = 2.25 kNm/m

16.6.2.2 Sovraccarichi

Ai fini del calcolo della soletta di impalcato fra le travi si prende in considerazione, nella posizione di volta in volta più gravosa per la sezione considerata, gli effetti del seguente carico:



Disposizione dell'accidentale che massimizza le sollecitazioni di taglio e flettenti sull'appoggio centrale

Direzione Progettazione e Realizzazione Lavori

RELAZIONE TECNICA E DI CALCOLO - IMPALCATO

Disposizione dell'accidentale che massimizza le sollecitazioni flettenti in campata

Carico mobile Q1,k, composto da 2 file di 2 ruote ciascuna da 150 kN di peso e da un carico uniformemente pari a 9 kN/mq distribuito su una corsia di 3 m, affiancato da un secondo carico Q2,k, composto da 2 file di 2 ruote ciascuna da 100 kN di peso e da un carico uniformemente pari a 2.5 kN/mq distribuito su una corsia di 3 m. Tutti i carichi sono disposti con il proprio asse longitudinale parallelamente all'asse longitudinale del viadotto.

 $Q1,k = 2 \times 150 = 300 \text{ kN}$ $Q2,k = 2 \times 100 = 200 \text{ kN}$

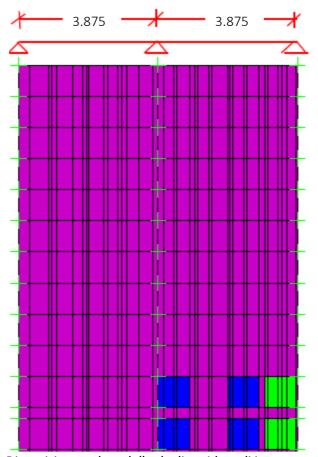
q1,k unif = 9 kN/mq - su una larghezza pari a 3 m q2,k unif = 2.5 kN/mq - sulla rimanente larghezza

Dal calcolo con modello a shell che massimizza le sollecitazioni sull'appoggio a metà impalcato si ha:

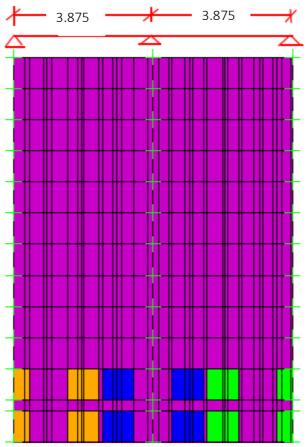
Giunto impalcato -esercizio

Mmax = 121.5 kNm/m; (campata)

Mmin = -157.5 kNm/m; T = 254.15 kN/m (appoggio trave centrale)


Giunto impalcato - fatica

Mmax = 60.75 kNm/m; (campata)


Mmin = -78.75 kNm/m; T = 127.08 kN/m (appoggio trave centrale)

Direzione Progettazione e Realizzazione Lavori

RELAZIONE TECNICA E DI CALCOLO - IMPALCATO

Disposizione nel modello degli accidentali in campata

Disposizione nel modello degli accidentali sull'appoggio centrale

Realizzazione Lavori

RELAZIONE TECNICA E DI CALCOLO - IMPALCATO

16.6.2.3 Riepilogo sollecitazioni mezzeria impalcato

Sommando gli effetti dei carichi permanenti e dei sovraccarichi si ottiene, per una striscia di lunghezza pari a 1.20 m:

Campata

```
SLE -M_{2 \, fase} = 1.20*(1.00*Mp + 1.00*Ms) = 1.2*(2.25 + 121.5) = 148.50 \, kNm;

QP -M_{2 \, fase} = 1.20*1.00*Mp = 1.2*2.25 = 2.70 \, kNm;

FR -M_{2 \, fase} = 1.20*(1.00*Mp + 0.75*Ms) = 1.2*(2.25 + 0.75*121.5) = 112.05 \, kNm;
```

Appoggio centrale

```
SLE -M_{2 \, fase} = 1.20*(1.00*Mp + 1.00*Ms) = 1.2*(2.25-157.5) = -186.3 \, kNm;

QP -M_{2 \, fase} = 1.20*1.00*Mp = 1.2*2.25 = 2.70 \, kNm;

FR -M_{2 \, fase} = 1.20*(1.00*Mp + 0.75*Ms) = 1.2*(2.25-0.75*157.5) = -139.05 \, kNm;
```

16.6.2.4 Mezzeria impalcato - Verifica dello stato tensionale

Campata

```
M = 148.5 \text{ kNm}
B = 120 \text{ cm}; H = 31 \text{ cm}
A_{a3} = 45.48 \text{ cm}^2
                                                                         d_3 = 25.9 \text{ cm}
                                         (1\phi 22/10)
A_{a2} = 8.04 \text{ cm}^2
                                         (4\phi 16)
                                                                         d_2 = 22.7 cm
A_{a1} = 18.84 \text{ cm}^2
                                                                         d_2 = 7.00 \text{ cm}
                                         (1\phi 20/20)
A_{a0} = 9.04 \text{ cm}^2
                                                                         d_0 = 3.60 \text{ cm}
                                        (8\phi 12)
\sigma_{c,2 \text{ fase}} = 8.60 \text{ MPa} < 22.41 \text{ MPa}
                                                           (Rck = 45 MPa)
\sigma_{a3.2 \text{ fase}} = 52.70 \text{ MPa} < 360 \text{ MPa}
\sigma_{a2.2 \text{ fase}} = 4.82 \text{ MPa} < 360 \text{ MPa}
\sigma_{a1,2 \text{ fase}} = -230.12 \text{ MPa} < 360 \text{ MPa}
\sigma_{a0.2 \text{ fase}} = -281.00 \text{ MPa} < 360 \text{ MPa}
```

Appoggio centrale

```
M = -186.3 \text{ kNm}
                                  -SLE
B = 120 \text{ cm}; H = 31 \text{ cm}
A_{a3} = 45.48 \text{ cm}^2
                                      (1\phi 22/10)
                                                                    d_3 = 25.9 \text{ cm}
A_{a2} = 8.04 \text{ cm}^2
                                      (4\phi 16)
                                                                    d_2 = 22.7 cm
A_{a1} = 18.84 \text{ cm}^2
                                      (1\phi 20/20)
                                                                    d_2 = 7.00 \text{ cm}
A_{a0} = 9.04 \text{ cm}^2
                                      (8\phi 12)
                                                                    d_0 = 3.60 \text{ cm}
\sigma_{c.2 \text{ fase}} = 9.54 \text{ MPa} < 22.41 \text{ MPa} (Rck = 45 MPa)
\sigma_{a3,2 \text{ fase}} = -169.66 \text{ MPa} < 360 \text{ MPa}
```

Realizzazione Lavori

RELAZIONE TECNICA E DI CALCOLO - IMPALCATO

$$\begin{split} &\sigma_{a2,2\;fase} = -131.02\;\text{MPa} < 360\;\text{MPa} \\ &\sigma_{a1,2\;fase} = 58.53\;\text{MPa} < 360\;\text{MPa} \\ &\sigma_{a0,2\;fase} = 99.58\;\text{MPa} < 360\;\text{MPa} \end{split}$$

16.6.2.5 Mezzeria impalcato - Sovrapposizione degli effetti (1 fase + 2 fase)

Campata

$$\begin{split} &\sigma_{\text{c,s}} = \sigma_{\text{c,1 fase}} + \sigma_{\text{c,2 fase}} = 0.72 + 8.60 = 9.32 \text{ MPa} < 22.41 \text{ MPa} \quad \text{(Rck = 45MPa)} \\ &\sigma_{\text{a3}} = \sigma_{\text{a3,1 fase}} + \sigma_{\text{a3,2 fase}} = 4.27 + 52.70 = 56.97 \text{ MPa} < 360 \text{ MPa} \\ &\sigma_{\text{a2}} = \sigma_{\text{a2,1 fase}} + \sigma_{\text{a2,2 fase}} = 53.84 + 4.82 = 58.66 \text{ MPa} < 360 \text{ MPa} \\ &\sigma_{\text{a1}} = \sigma_{\text{a1,1 fase}} + \sigma_{\text{a1,2 fase}} = -17.38 - 230.12 = -247.44 \text{ MPa} < 360 \text{ MPa} \\ &\sigma_{\text{a0}} = \sigma_{\text{a0,1 fase}} + \sigma_{\text{a0,2 fase}} = -25.39 - 281.00 = -306.39 \text{ MPa} < 360 \text{ MPa} \end{split}$$

Apppoggio centrale

$$\begin{split} &\sigma_{\text{c,i}} = \sigma_{\text{c,1 fase}} + \sigma_{\text{c,2 fase}} = 1.12 + 9.54 = 10.66 \text{ MPa} < 22.41 \text{ MPa} \quad \text{(Rck = 45 MPa)} \qquad \text{-lembo inferiore} \\ &\sigma_{\text{a3}} = \sigma_{\text{a3,1 fase}} + \sigma_{\text{a3,2 fase}} = -24.22 - 169.66 = -193.88 \text{ MPa} < 360 \text{ MPa} \\ &\sigma_{\text{a2}} = \sigma_{\text{a2,1 fase}} + \sigma_{\text{a2,2 fase}} = -66.88 - 131.02 = -197.9 \text{ MPa} < 360 \text{ MPa} \\ &\sigma_{\text{a1}} = \sigma_{\text{a1,1 fase}} + \sigma_{\text{a1,2 fase}} = 3.02 + 58.53 = 61.55 \text{ MPa} < 360 \text{ MPa} \\ &\sigma_{\text{a0}} = \sigma_{\text{a0,1 fase}} + \sigma_{\text{a0,2 fase}} = 70.01 + 99.58 = 169.59 \text{ MPa} < 360 \text{ MPa} \end{split}$$

16.6.2.6 Mezzeria impalcato - Verifica a fessurazione

Campata

La verifica a fessurazione condotta in 1° fase, con getto della soletta ultimata, ha prodotto una fessura pari a 0.00 mm.

Nella verifica a fessurazione in 2° fase si ha:

M = 112.05 kNm -FR

B = 120 cm; H = 31 cm

wk= 0.16 mm

Pertanto, la fessura totale è pari a:

 $wk = wk_{1,fase} + wk_{2,fase} = 0.00 + 0.16 = 0.16 \text{ mm} < 0.3 \text{ mm}$

Appoggio centrale

La verifica a fessurazione condotta in 1° fase, con getto della soletta ultimata, ha prodotto una fessura pari a 0.025 mm.

Nella verifica a fessurazione in 2° fase si ha:

M = -139.05 kNm -FR

B = 120 cm; $H = 31 cm$		
$A_{a3} = 45.48 \text{ cm}^2$	$(1\phi 22/10)$	$d_3 = 25.9 \text{ cm}$
$A_{a2} = 8.04 \text{ cm}^2$	(4 ф 16)	$d_2 = 22.7 \text{ cm}$
$A_{a1} = 18.84 \text{ cm}^2$	$(1\phi 20/20)$	$d_2 = 7.00 \text{ cm}$
$A_{a0} = 9.04 \text{ cm}^2$	(8 \phi 12)	$d_0 = 3.60 \text{ cm}$
wk= 0.106 mm		
Pertanto, la fessura to	tale è pari a:	
$wk = wk_{1,fase} + wk_{2,fase} =$	0.025 + 0.106 = 0.	131 mm < 0.3 mm

16.6.2.7 Mezzeria impalcato - Verifica a fatica

Campata

In corrispondenza dei giunti si considera un fattore di amplificazione addizionale $\Delta \phi$ fat=1.30 da applicare a tutti i carichi.

La combinazione, denominata di base nel par. 15.3.1.3, è rappresenta dal peso proprio della predalle + peso del getto, le cui tensioni sono riportate nelle verifiche in 1° fase, dalle opere di finitura (M_{fin} =1.3*1.2*2.25 kNm) le cui tensioni sono prodotte in 2° fase:

B = 120 cm; H = 31 cm

$A_{a3} = 45.48 \text{ cm}^2$	$(1\phi 22/10)$	$d_3 = 25.9 \text{ cm}$
$A_{a2} = 8.04 \text{ cm}^2$	(4\psi16)	$d_2 = 22.7 \text{ cm}$
$A_{a1} = 18.84 \text{ cm}^2$	$(1\phi 20/20)$	$d_2 = 7.00 \text{ cm}$
$A_{a0} = 9.04 \text{ cm}^2$	(8 \phi 12)	$d_0 = 3.60 \text{ cm}$

$$\begin{array}{lll} \sigma_c = & \sigma_{c,1\,fase} + \sigma_{c,2\,fase,fin} = 0.72 + 0.20 = 0.92 \; \text{MPa} & - \, \text{lembo superiore} \\ \sigma_{a3} = & \sigma_{a3,1\,fase} + \sigma_{c,2\,fase,fin} = 4.27 + 1.25 = 5.52 \; \text{MPa} \\ \sigma_{a2} = & \sigma_{a2,1\,fase} + \sigma_{c,2\,fase,fin} = 53.84 + 0.11 = 53.95 \; \text{MPa} \\ \sigma_{a1} = & \sigma_{a1,1\,fase} + \sigma_{c,2\,fase,fin} = -17.38 - 5.44 = -22.82 \; \text{MPa} \\ \sigma_{a0} = & \sigma_{a0,1\,fase} + \sigma_{c,2\,fase,fin} = -25.39 - 6.64 = -32.03 \; \text{MPa} \\ \end{array}$$

L'azione ciclica prodotta dai carichi mobili (M(+)=1.3*1.2*60.75 kNm), definiti sempre nel par. 15.6.1.2, produce le seguenti escursioni di tensione:

$$\begin{split} &\sigma_{\text{c,max,ciclica}(+)} = 5.49 \text{ MPa} \quad; \quad &-\text{lembo superiore} \\ &\sigma_{\text{smax,ciclica,a3}(+)} = 33.63 \text{ MPa}; \\ &\sigma_{\text{smax,ciclica,a2}(+)} = 3.07 \text{ MPa}; \\ &\sigma_{\text{smax,ciclica,a1}(+)} = -146.86 \text{ MPa}; \\ &\sigma_{\text{smax,ciclica,a0}(+)} = -179.33 \text{ MPa}; \end{split}$$

La verifica a fatica dell'armatura consiste nel confrontare l'escursione di tensione con il valore limite definito nel par. 14.3.1.3:

$$\Delta$$
s_{max,a3}= $|\sigma$ smax,ciclica,a3(+) $|$ = 33.63 MPa < 195.0 MPa

Realizzazione Lavori

RELAZIONE TECNICA E DI CALCOLO - IMPALCATO

$$\Delta s_{max,a2} = |\sigma_{smax,ciclica,a2(+)}| = 3.07 \text{ MPa} < 195.0 \text{ MPa}$$

 $\Delta s_{max,a1} = |\sigma_{smax,ciclica,a1(+)}| = 146.86 \text{ MPa} < 195.0 \text{ MPa}$
 $\Delta s_{max,a0} = |\sigma_{smax,ciclica,a0(+)}| = 179.33 \text{ MPa} < 195.0 \text{ MPa}$

Le verifica a fatica del calcestruzzo consiste nel verificare che:

$$(\sigma_{c,\text{max,ciclica}} + \sigma_{c,\text{base}}) \le 0.5 * f_{cd,\text{fat}} + 0.45 * \sigma_{c,\text{min}} \Rightarrow 6.41 \text{ MPa} < 0.5 * 22.41 + 0.45 * 0.92 = 11.62 \text{MPa}$$

Appoggio centrale

In corrispondenza dei giunti si considera un fattore di amplificazione addizionale $\Delta \phi$ fat=1.30 da applicare a tutti i carichi.

La combinazione, denominata di base nel par. 15.3.1.3, è rappresenta dal peso proprio della predalle + peso del getto, le cui tensioni sono riportate nelle verifiche in 1° fase, dalle opere di finitura ($M_{\rm fin}$ =1.3*1.2*2.25 kNm) le cui tensioni sono prodotte in 2° fase:

B = 120 cm; H = 31 cm

$$A_{a3} = 45.48 \text{ cm}^2$$
 (1 ϕ 22/10) $d_3 = 25.9 \text{ cm}$
 $A_{a2} = 8.04 \text{ cm}^2$ (4 ϕ 16) $d_2 = 22.7 \text{ cm}$
 $A_{a1} = 18.84 \text{ cm}^2$ (1 ϕ 20/20) $d_2 = 7.00 \text{ cm}$
 $A_{a0} = 9.04 \text{ cm}^2$ (8 ϕ 12) $d_0 = 3.60 \text{ cm}$

$$\begin{array}{lll} \sigma_c = & \sigma_{c,1 \, fase} \, + \, \sigma_{c,2 \, fase, fin} = 1.12 \, + 0.00 = 1.12 \, \, \text{MPa} & - \, \text{lembo inferiore} \\ \sigma_c = & \sigma_{c,1 \, fase} \, + \, \sigma_{c,2 \, fase, fin} = 0.00 \, + 0.20 = 0.20 \, \, \text{MPa} & - \, \text{lembo superiore} \\ \sigma_{a3} = & \sigma_{a3,1 \, fase} \, + \, \sigma_{c,2 \, fase, fin} = -24.22 \, + 1.25 = -22.97 \, \, \text{MPa} \\ \sigma_{a2} = & \sigma_{a2,1 \, fase} \, + \, \sigma_{c,2 \, fase, fin} = -66.88 \, + 0.11 = -66.77 \, \, \text{MPa} \\ \sigma_{a1} = & \sigma_{a1,1 \, fase} \, + \, \sigma_{c,2 \, fase, fin} = 3.02 - 5.44 = -2.42 \, \, \text{MPa} \\ \sigma_{a0} = & \sigma_{a0,1 \, fase} \, + \, \sigma_{c,2 \, fase, fin} = 70.01 \, - 6.64 = 63.37 \, \, \text{MPa} \\ \end{array}$$

L'azione ciclica prodotta dai carichi mobili (M(-)=1.3*1.2*(-78.75) kNm), definiti sempre nel par. 15.6.2.2, produce le seguenti escursioni di tensione:

$$\begin{split} &\sigma_{c,\text{max,ciclica(-)}} = 6.29 \text{ MPa} &-\text{lembo inferiore} \\ &\sigma_{s\text{max,ciclica,a3(-)}} = -111.87 \text{ MPa} \\ &\sigma_{s\text{max,ciclica,a2(-)}} = -86.40 \text{ MPa} \\ &\sigma_{s\text{max,ciclica,a1(-)}} = 38.59 \text{ MPa} \\ &\sigma_{s\text{max,ciclica,a0(-)}} = 65.66 \text{ MPa} \end{split}$$

La verifica a fatica dell'armatura consiste nel confrontare l'escursione di tensione con il valore limite definito nel par. 14.3.1.3:

$$\begin{split} &\Delta s_{\text{max,a3}} = \| \sigma_{\text{smax,ciclica,a3(-)}} \| = 111.87 \text{ MPa} < 195.0 \text{ MPa} \\ &\Delta s_{\text{max,a2}} = \| \sigma_{\text{smax,ciclica,a2(-)}} \| = 86.40 \text{ MPa} < 195.0 \text{ MPa} \\ &\Delta s_{\text{max,a1}} = \| \sigma_{\text{smax,ciclica,a1(-)}} \| = 38.59 \text{ MPa} < 195.0 \text{ MPa} \\ &\Delta s_{\text{max,a0}} = \| \sigma_{\text{smax,ciclica,a0(-)}} \| = 65.66 \text{ MPa} < 195.0 \text{ MPa} \end{split}$$

Le verifica a fatica del calcestruzzo consiste nel verificare che:

$$(\sigma_{c,\text{max,ciclica}} + \sigma_{c,\text{base}}) \le 0.5 * f_{cd,\text{fat}} + 0.45 * \sigma_{c,\text{min}} \Rightarrow 7.41 \text{ MPa} < 0.5 * 22.41 + 0.45 * 1.12 = 11.70 \text{ MPa}$$

16.6.2.8 Mezzeria impalcato - Verifica dello stato limite ultimo

Come anticipato nel par. 14.1 nelle verifiche allo stato limite ultimo, poiché il legame costitutivo del materiale è di tipo non lineare, non si può applicare il principio di sovrapposizione degli effetti e dunque si considera la soletta realizzata in un'unica fase con il peso proprio, le opere di finitura ed i carichi accidentali agenti contemporaneamente:

Sollecitazioni

Campata

STR - M = $1.20*[1.35*(M_{sol}+M_p+M_s)]=1.2*[1.35*(3.00+2.25+121.5)]=205.34 \text{ kNm};$

Appoggio centrale

STR - M =
$$1.20*[1.35*(M_{sol}+M_p+M_s)]=1.2*[1.35*(3.00+2.25-157.5)]=-246.65$$
 kNm; STR - T = $1.20*1.35*(T_{sol}+T_p+T_s)=1.2*1.35*(9.50+1.20+254.15)=429.06$ kN

Verifica

Campata

M = 205.34 kNm -STR

B = 120 cm; H = 31 cm

$A_{a3} = 45.48 \text{ cm}^2$	$(1\phi 22/10)$	$d_3 = 25.9 \text{ cm}$
$A_{a2} = 8.04 \text{ cm}^2$	(4 ф 16)	$d_2 = 22.7 \text{ cm}$
$A_{a1} = 18.84 \text{ cm}^2$	$(1\phi 20/20)$	$d_2 = 7.00 \text{ cm}$
$A_{a0} = 9.04 \text{ cm}^2$	(8\psi12)	$d_0 = 3.60 \text{ cm}$

 M_{rd} = 247.24 kNm > 124.34 kNm

Appoggio centrale

M = -246.65 kNm -STR

B = 120 cm; H = 31 cm

$A_{a3} = 45.48 \text{ cm}^2$	$(1\phi 22/10)$	$d_3 = 25.9 \text{ cm}$
$A_{a2} = 8.04 \text{ cm}^2$	(4 ф 16)	$d_2 = 22.7 \text{ cm}$
$A_{a1} = 18.84 \text{ cm}^2$	$(1\phi 20/20)$	$d_2 = 7.00 \text{ cm}$
$A_{a0} = 9.04 \text{ cm}^2$	(8 \phi 12)	$d_0 = 3.60 \text{ cm}$

 M_{rd} = 458.13 kNm > 141.35 kNm

Realizzazione Lavori

PROGETTO DEFINTIVO

RELAZIONE TECNICA E DI CALCOLO - IMPALCATO

16.6.2.9 Mezzeria soletta - Verifica a taglio

Elementi senza armatura	trasversale a t	aglio			
- Verifica del conglomerato	<u> </u>				
romioa dei congremerati	_				
$VRd = [0,18*k*(100*_{\rho}1*f_{ck})]$	^{1/3} /γc+0,15*σcp]*bw*d =	261.88	kN	
VEd = $T/\cos\beta$ $\beta=$	8	429.06	kN	NO	
con:					
$K = 1 + (200/d)^{1/2} =$	1.894		≤ 2		
Rck =	45	N/mm ²			
$v_{min} = 0.035 * k^{3/2} * fck^{1/2} =$	0.558	N/mm ²			
fck =0,83*Rck =	37.35	N/mm ²			
$fcd = \alpha_{cc} * fck / \gamma c =$	21.17	N/mm ²			
$\rho 1 = AsI/(bw^*d) =$	0.01516		≤ 0,02		
d =	250	mm			
H =	310	mm			
bw =	1200	mm			
Asl =	4548	mm ²			
N _{Ed} =	0.00	kN			
$\sigma_{cp} = N_{Ed}/Ac =$	0.000	N/mm ²	≤ 0,2*fcd		
ООР 20 1					
Occorre armare a taglio. L	a verifica viene	condotta co	n le armatur	e diagonale	del tralic
Vorific	he allo stato	limito uli	timo di ta	alio	
			iiiio ui ta	gilo	
	riali (Unità N,n				
Calcestruzzo			ciaio		
Rck =	37	fywk =	450		
fck =	37.35	fywd =	391.3		
fcd =	21.17				
fctd =	1.37				
Sezio	one da verifica	are			
Altezza trave				310	mm
Conriforro etaffo				40	mm

S	ezio	ne da verifica	are			
Altezza trave					310	mm
Copriferro staffe					40	mm
Larghezza netta resist	tente	a taglio			1200	mm
Diametro diagonali					10	$(4\phi 10/20)$
Bracci					8	
Interasse					200	mm
Area staffe al metro					3.14	cm ² /m
$cotg_{\alpha}$	α=	68.00	0		0.40	
cotgθ	θ=	40.00	0		1.19	
Verif	iche	allo s.l.u. per	¹ taglio		VR,d	> VEd
Taglio di calcolo V _E	d				429.06	kN
Vrcd					3028.71	kN
Vrsd					441.99	kN
VRd=min[Vrcd;Vrsd]	1			ok	441.99	kN